A Framework and Improvements of the Korea Cloud Services Certification System.
Jeon, Hangoo; Seo, Kwang-Kyu
2015-01-01
Cloud computing service is an evolving paradigm that affects a large part of the ICT industry and provides new opportunities for ICT service providers such as the deployment of new business models and the realization of economies of scale by increasing efficiency of resource utilization. However, despite benefits of cloud services, there are some obstacles to adopt such as lack of assessing and comparing the service quality of cloud services regarding availability, security, and reliability. In order to adopt the successful cloud service and activate it, it is necessary to establish the cloud service certification system to ensure service quality and performance of cloud services. This paper proposes a framework and improvements of the Korea certification system of cloud service. In order to develop it, the critical issues related to service quality, performance, and certification of cloud service are identified and the systematic framework for the certification system of cloud services and service provider domains are developed. Improvements of the developed Korea certification system of cloud services are also proposed.
A Framework and Improvements of the Korea Cloud Services Certification System
Jeon, Hangoo
2015-01-01
Cloud computing service is an evolving paradigm that affects a large part of the ICT industry and provides new opportunities for ICT service providers such as the deployment of new business models and the realization of economies of scale by increasing efficiency of resource utilization. However, despite benefits of cloud services, there are some obstacles to adopt such as lack of assessing and comparing the service quality of cloud services regarding availability, security, and reliability. In order to adopt the successful cloud service and activate it, it is necessary to establish the cloud service certification system to ensure service quality and performance of cloud services. This paper proposes a framework and improvements of the Korea certification system of cloud service. In order to develop it, the critical issues related to service quality, performance, and certification of cloud service are identified and the systematic framework for the certification system of cloud services and service provider domains are developed. Improvements of the developed Korea certification system of cloud services are also proposed. PMID:26125049
Future of Department of Defense Cloud Computing Amid Cultural Confusion
2013-03-01
enterprise cloud - computing environment and transition to a public cloud service provider. Services have started the development of individual cloud - computing environments...endorsing cloud computing . It addresses related issues in matters of service culture changes and how strategic leaders will dictate the future of cloud ...through data center consolidation and individual Service provided cloud computing .
A service brokering and recommendation mechanism for better selecting cloud services.
Gui, Zhipeng; Yang, Chaowei; Xia, Jizhe; Huang, Qunying; Liu, Kai; Li, Zhenlong; Yu, Manzhu; Sun, Min; Zhou, Nanyin; Jin, Baoxuan
2014-01-01
Cloud computing is becoming the new generation computing infrastructure, and many cloud vendors provide different types of cloud services. How to choose the best cloud services for specific applications is very challenging. Addressing this challenge requires balancing multiple factors, such as business demands, technologies, policies and preferences in addition to the computing requirements. This paper recommends a mechanism for selecting the best public cloud service at the levels of Infrastructure as a Service (IaaS) and Platform as a Service (PaaS). A systematic framework and associated workflow include cloud service filtration, solution generation, evaluation, and selection of public cloud services. Specifically, we propose the following: a hierarchical information model for integrating heterogeneous cloud information from different providers and a corresponding cloud information collecting mechanism; a cloud service classification model for categorizing and filtering cloud services and an application requirement schema for providing rules for creating application-specific configuration solutions; and a preference-aware solution evaluation mode for evaluating and recommending solutions according to the preferences of application providers. To test the proposed framework and methodologies, a cloud service advisory tool prototype was developed after which relevant experiments were conducted. The results show that the proposed system collects/updates/records the cloud information from multiple mainstream public cloud services in real-time, generates feasible cloud configuration solutions according to user specifications and acceptable cost predication, assesses solutions from multiple aspects (e.g., computing capability, potential cost and Service Level Agreement, SLA) and offers rational recommendations based on user preferences and practical cloud provisioning; and visually presents and compares solutions through an interactive web Graphical User Interface (GUI).
Generic-distributed framework for cloud services marketplace based on unified ontology.
Hasan, Samer; Valli Kumari, V
2017-11-01
Cloud computing is a pattern for delivering ubiquitous and on demand computing resources based on pay-as-you-use financial model. Typically, cloud providers advertise cloud service descriptions in various formats on the Internet. On the other hand, cloud consumers use available search engines (Google and Yahoo) to explore cloud service descriptions and find the adequate service. Unfortunately, general purpose search engines are not designed to provide a small and complete set of results, which makes the process a big challenge. This paper presents a generic-distrusted framework for cloud services marketplace to automate cloud services discovery and selection process, and remove the barriers between service providers and consumers. Additionally, this work implements two instances of generic framework by adopting two different matching algorithms; namely dominant and recessive attributes algorithm borrowed from gene science and semantic similarity algorithm based on unified cloud service ontology. Finally, this paper presents unified cloud services ontology and models the real-life cloud services according to the proposed ontology. To the best of the authors' knowledge, this is the first attempt to build a cloud services marketplace where cloud providers and cloud consumers can trend cloud services as utilities. In comparison with existing work, semantic approach reduced the execution time by 20% and maintained the same values for all other parameters. On the other hand, dominant and recessive attributes approach reduced the execution time by 57% but showed lower value for recall.
A Service Brokering and Recommendation Mechanism for Better Selecting Cloud Services
Gui, Zhipeng; Yang, Chaowei; Xia, Jizhe; Huang, Qunying; Liu, Kai; Li, Zhenlong; Yu, Manzhu; Sun, Min; Zhou, Nanyin; Jin, Baoxuan
2014-01-01
Cloud computing is becoming the new generation computing infrastructure, and many cloud vendors provide different types of cloud services. How to choose the best cloud services for specific applications is very challenging. Addressing this challenge requires balancing multiple factors, such as business demands, technologies, policies and preferences in addition to the computing requirements. This paper recommends a mechanism for selecting the best public cloud service at the levels of Infrastructure as a Service (IaaS) and Platform as a Service (PaaS). A systematic framework and associated workflow include cloud service filtration, solution generation, evaluation, and selection of public cloud services. Specifically, we propose the following: a hierarchical information model for integrating heterogeneous cloud information from different providers and a corresponding cloud information collecting mechanism; a cloud service classification model for categorizing and filtering cloud services and an application requirement schema for providing rules for creating application-specific configuration solutions; and a preference-aware solution evaluation mode for evaluating and recommending solutions according to the preferences of application providers. To test the proposed framework and methodologies, a cloud service advisory tool prototype was developed after which relevant experiments were conducted. The results show that the proposed system collects/updates/records the cloud information from multiple mainstream public cloud services in real-time, generates feasible cloud configuration solutions according to user specifications and acceptable cost predication, assesses solutions from multiple aspects (e.g., computing capability, potential cost and Service Level Agreement, SLA) and offers rational recommendations based on user preferences and practical cloud provisioning; and visually presents and compares solutions through an interactive web Graphical User Interface (GUI). PMID:25170937
Analysis of the Security and Privacy Requirements of Cloud-Based Electronic Health Records Systems
Fernández, Gonzalo; López-Coronado, Miguel
2013-01-01
Background The Cloud Computing paradigm offers eHealth systems the opportunity to enhance the features and functionality that they offer. However, moving patients’ medical information to the Cloud implies several risks in terms of the security and privacy of sensitive health records. In this paper, the risks of hosting Electronic Health Records (EHRs) on the servers of third-party Cloud service providers are reviewed. To protect the confidentiality of patient information and facilitate the process, some suggestions for health care providers are made. Moreover, security issues that Cloud service providers should address in their platforms are considered. Objective To show that, before moving patient health records to the Cloud, security and privacy concerns must be considered by both health care providers and Cloud service providers. Security requirements of a generic Cloud service provider are analyzed. Methods To study the latest in Cloud-based computing solutions, bibliographic material was obtained mainly from Medline sources. Furthermore, direct contact was made with several Cloud service providers. Results Some of the security issues that should be considered by both Cloud service providers and their health care customers are role-based access, network security mechanisms, data encryption, digital signatures, and access monitoring. Furthermore, to guarantee the safety of the information and comply with privacy policies, the Cloud service provider must be compliant with various certifications and third-party requirements, such as SAS70 Type II, PCI DSS Level 1, ISO 27001, and the US Federal Information Security Management Act (FISMA). Conclusions Storing sensitive information such as EHRs in the Cloud means that precautions must be taken to ensure the safety and confidentiality of the data. A relationship built on trust with the Cloud service provider is essential to ensure a transparent process. Cloud service providers must make certain that all security mechanisms are in place to avoid unauthorized access and data breaches. Patients must be kept informed about how their data are being managed. PMID:23965254
Analysis of the security and privacy requirements of cloud-based electronic health records systems.
Rodrigues, Joel J P C; de la Torre, Isabel; Fernández, Gonzalo; López-Coronado, Miguel
2013-08-21
The Cloud Computing paradigm offers eHealth systems the opportunity to enhance the features and functionality that they offer. However, moving patients' medical information to the Cloud implies several risks in terms of the security and privacy of sensitive health records. In this paper, the risks of hosting Electronic Health Records (EHRs) on the servers of third-party Cloud service providers are reviewed. To protect the confidentiality of patient information and facilitate the process, some suggestions for health care providers are made. Moreover, security issues that Cloud service providers should address in their platforms are considered. To show that, before moving patient health records to the Cloud, security and privacy concerns must be considered by both health care providers and Cloud service providers. Security requirements of a generic Cloud service provider are analyzed. To study the latest in Cloud-based computing solutions, bibliographic material was obtained mainly from Medline sources. Furthermore, direct contact was made with several Cloud service providers. Some of the security issues that should be considered by both Cloud service providers and their health care customers are role-based access, network security mechanisms, data encryption, digital signatures, and access monitoring. Furthermore, to guarantee the safety of the information and comply with privacy policies, the Cloud service provider must be compliant with various certifications and third-party requirements, such as SAS70 Type II, PCI DSS Level 1, ISO 27001, and the US Federal Information Security Management Act (FISMA). Storing sensitive information such as EHRs in the Cloud means that precautions must be taken to ensure the safety and confidentiality of the data. A relationship built on trust with the Cloud service provider is essential to ensure a transparent process. Cloud service providers must make certain that all security mechanisms are in place to avoid unauthorized access and data breaches. Patients must be kept informed about how their data are being managed.
Adopting Cloud Computing in the Pakistan Navy
2015-06-01
administrative aspect is required to operate optimally, provide synchronized delivery of cloud services, and integrate multi-provider cloud environment...AND ABBREVIATIONS ANSI American National Standards Institute AWS Amazon web services CIA Confidentiality Integrity Availability CIO Chief...also adopted cloud computing as an integral component of military operations conducted either locally or remotely. With the use of 2 cloud services
A Multilateral Negotiation Model for Cloud Service Market
NASA Astrophysics Data System (ADS)
Yoo, Dongjin; Sim, Kwang Mong
Trading cloud services between consumers and providers is a complicated issue of cloud computing. Since a consumer can negotiate with multiple providers to acquire the same service and each provider can receive many requests from multiple consumers, to facilitate the trading of cloud services among multiple consumers and providers, a multilateral negotiation model for cloud market is necessary. The contribution of this work is the proposal of a business model supporting a multilateral price negotiation for trading cloud services. The design of proposed systems for cloud service market includes considering a many-to-many negotiation protocol, and price determining factor from service level feature. Two negotiation strategies are implemented: 1) MDA (Market Driven Agent); and 2) adaptive concession making responding to changes of bargaining position are proposed for cloud service market. Empirical results shows that MDA achieved better performance in some cases that the adaptive concession making strategy, it is noted that unlike the MDA, the adaptive concession making strategy does not assume that an agent has information of the number of competitors (e.g., a consumer agent adopting the adaptive concession making strategy need not know the number of consumer agents competing for the same service).
Benefits of cloud computing for PACS and archiving.
Koch, Patrick
2012-01-01
The goal of cloud-based services is to provide easy, scalable access to computing resources and IT services. The healthcare industry requires a private cloud that adheres to government mandates designed to ensure privacy and security of patient data while enabling access by authorized users. Cloud-based computing in the imaging market has evolved from a service that provided cost effective disaster recovery for archived data to fully featured PACS and vendor neutral archiving services that can address the needs of healthcare providers of all sizes. Healthcare providers worldwide are now using the cloud to distribute images to remote radiologists while supporting advanced reading tools, deliver radiology reports and imaging studies to referring physicians, and provide redundant data storage. Vendor managed cloud services eliminate large capital investments in equipment and maintenance, as well as staffing for the data center--creating a reduction in total cost of ownership for the healthcare provider.
The Ethics of Cloud Computing.
de Bruin, Boudewijn; Floridi, Luciano
2017-02-01
Cloud computing is rapidly gaining traction in business. It offers businesses online services on demand (such as Gmail, iCloud and Salesforce) and allows them to cut costs on hardware and IT support. This is the first paper in business ethics dealing with this new technology. It analyzes the informational duties of hosting companies that own and operate cloud computing datacentres (e.g., Amazon). It considers the cloud services providers leasing 'space in the cloud' from hosting companies (e.g., Dropbox, Salesforce). And it examines the business and private 'clouders' using these services. The first part of the paper argues that hosting companies, services providers and clouders have mutual informational (epistemic) obligations to provide and seek information about relevant issues such as consumer privacy, reliability of services, data mining and data ownership. The concept of interlucency is developed as an epistemic virtue governing ethically effective communication. The second part considers potential forms of government restrictions on or proscriptions against the development and use of cloud computing technology. Referring to the concept of technology neutrality, it argues that interference with hosting companies and cloud services providers is hardly ever necessary or justified. It is argued, too, however, that businesses using cloud services (e.g., banks, law firms, hospitals etc. storing client data in the cloud) will have to follow rather more stringent regulations.
A study on strategic provisioning of cloud computing services.
Whaiduzzaman, Md; Haque, Mohammad Nazmul; Rejaul Karim Chowdhury, Md; Gani, Abdullah
2014-01-01
Cloud computing is currently emerging as an ever-changing, growing paradigm that models "everything-as-a-service." Virtualised physical resources, infrastructure, and applications are supplied by service provisioning in the cloud. The evolution in the adoption of cloud computing is driven by clear and distinct promising features for both cloud users and cloud providers. However, the increasing number of cloud providers and the variety of service offerings have made it difficult for the customers to choose the best services. By employing successful service provisioning, the essential services required by customers, such as agility and availability, pricing, security and trust, and user metrics can be guaranteed by service provisioning. Hence, continuous service provisioning that satisfies the user requirements is a mandatory feature for the cloud user and vitally important in cloud computing service offerings. Therefore, we aim to review the state-of-the-art service provisioning objectives, essential services, topologies, user requirements, necessary metrics, and pricing mechanisms. We synthesize and summarize different provision techniques, approaches, and models through a comprehensive literature review. A thematic taxonomy of cloud service provisioning is presented after the systematic review. Finally, future research directions and open research issues are identified.
A Study on Strategic Provisioning of Cloud Computing Services
Rejaul Karim Chowdhury, Md
2014-01-01
Cloud computing is currently emerging as an ever-changing, growing paradigm that models “everything-as-a-service.” Virtualised physical resources, infrastructure, and applications are supplied by service provisioning in the cloud. The evolution in the adoption of cloud computing is driven by clear and distinct promising features for both cloud users and cloud providers. However, the increasing number of cloud providers and the variety of service offerings have made it difficult for the customers to choose the best services. By employing successful service provisioning, the essential services required by customers, such as agility and availability, pricing, security and trust, and user metrics can be guaranteed by service provisioning. Hence, continuous service provisioning that satisfies the user requirements is a mandatory feature for the cloud user and vitally important in cloud computing service offerings. Therefore, we aim to review the state-of-the-art service provisioning objectives, essential services, topologies, user requirements, necessary metrics, and pricing mechanisms. We synthesize and summarize different provision techniques, approaches, and models through a comprehensive literature review. A thematic taxonomy of cloud service provisioning is presented after the systematic review. Finally, future research directions and open research issues are identified. PMID:25032243
Applications integration in a hybrid cloud computing environment: modelling and platform
NASA Astrophysics Data System (ADS)
Li, Qing; Wang, Ze-yuan; Li, Wei-hua; Li, Jun; Wang, Cheng; Du, Rui-yang
2013-08-01
With the development of application services providers and cloud computing, more and more small- and medium-sized business enterprises use software services and even infrastructure services provided by professional information service companies to replace all or part of their information systems (ISs). These information service companies provide applications, such as data storage, computing processes, document sharing and even management information system services as public resources to support the business process management of their customers. However, no cloud computing service vendor can satisfy the full functional IS requirements of an enterprise. As a result, enterprises often have to simultaneously use systems distributed in different clouds and their intra enterprise ISs. Thus, this article presents a framework to integrate applications deployed in public clouds and intra ISs. A run-time platform is developed and a cross-computing environment process modelling technique is also developed to improve the feasibility of ISs under hybrid cloud computing environments.
Security Risks of Cloud Computing and Its Emergence as 5th Utility Service
NASA Astrophysics Data System (ADS)
Ahmad, Mushtaq
Cloud Computing is being projected by the major cloud services provider IT companies such as IBM, Google, Yahoo, Amazon and others as fifth utility where clients will have access for processing those applications and or software projects which need very high processing speed for compute intensive and huge data capacity for scientific, engineering research problems and also e- business and data content network applications. These services for different types of clients are provided under DASM-Direct Access Service Management based on virtualization of hardware, software and very high bandwidth Internet (Web 2.0) communication. The paper reviews these developments for Cloud Computing and Hardware/Software configuration of the cloud paradigm. The paper also examines the vital aspects of security risks projected by IT Industry experts, cloud clients. The paper also highlights the cloud provider's response to cloud security risks.
Cloud Service Provider Methods for Managing Insider Threats: Analysis Phase 1
2013-11-01
of Standards and Technology (NIST) Special Publication 800-145 (NIST SP 800-145) defines three types of cloud services : Software as a Service ( SaaS ...among these three models. NIST SP 800-145 describes the three service models as follows: SaaS —The capability provided to the consumer is to use the...Cloud Service Provider Methods for Managing Insider Threats: Analysis Phase I Greg Porter November 2013 TECHNICAL NOTE CMU/SEI-2013-TN-020
Analysis on the security of cloud computing
NASA Astrophysics Data System (ADS)
He, Zhonglin; He, Yuhua
2011-02-01
Cloud computing is a new technology, which is the fusion of computer technology and Internet development. It will lead the revolution of IT and information field. However, in cloud computing data and application software is stored at large data centers, and the management of data and service is not completely trustable, resulting in safety problems, which is the difficult point to improve the quality of cloud service. This paper briefly introduces the concept of cloud computing. Considering the characteristics of cloud computing, it constructs the security architecture of cloud computing. At the same time, with an eye toward the security threats cloud computing faces, several corresponding strategies are provided from the aspect of cloud computing users and service providers.
AceCloud: Molecular Dynamics Simulations in the Cloud.
Harvey, M J; De Fabritiis, G
2015-05-26
We present AceCloud, an on-demand service for molecular dynamics simulations. AceCloud is designed to facilitate the secure execution of large ensembles of simulations on an external cloud computing service (currently Amazon Web Services). The AceCloud client, integrated into the ACEMD molecular dynamics package, provides an easy-to-use interface that abstracts all aspects of interaction with the cloud services. This gives the user the experience that all simulations are running on their local machine, minimizing the learning curve typically associated with the transition to using high performance computing services.
The Education Value of Cloud Computing
ERIC Educational Resources Information Center
Katzan, Harry, Jr.
2010-01-01
Cloud computing is a technique for supplying computer facilities and providing access to software via the Internet. Cloud computing represents a contextual shift in how computers are provisioned and accessed. One of the defining characteristics of cloud software service is the transfer of control from the client domain to the service provider.…
A European Federated Cloud: Innovative distributed computing solutions by EGI
NASA Astrophysics Data System (ADS)
Sipos, Gergely; Turilli, Matteo; Newhouse, Steven; Kacsuk, Peter
2013-04-01
The European Grid Infrastructure (EGI) is the result of pioneering work that has, over the last decade, built a collaborative production infrastructure of uniform services through the federation of national resource providers that supports multi-disciplinary science across Europe and around the world. This presentation will provide an overview of the recently established 'federated cloud computing services' that the National Grid Initiatives (NGIs), operators of EGI, offer to scientific communities. The presentation will explain the technical capabilities of the 'EGI Federated Cloud' and the processes whereby earth and space science researchers can engage with it. EGI's resource centres have been providing services for collaborative, compute- and data-intensive applications for over a decade. Besides the well-established 'grid services', several NGIs already offer privately run cloud services to their national researchers. Many of these researchers recently expressed the need to share these cloud capabilities within their international research collaborations - a model similar to the way the grid emerged through the federation of institutional batch computing and file storage servers. To facilitate the setup of a pan-European cloud service from the NGIs' resources, the EGI-InSPIRE project established a Federated Cloud Task Force in September 2011. The Task Force has a mandate to identify and test technologies for a multinational federated cloud that could be provisioned within EGI by the NGIs. A guiding principle for the EGI Federated Cloud is to remain technology neutral and flexible for both resource providers and users: • Resource providers are allowed to use any cloud hypervisor and management technology to join virtualised resources into the EGI Federated Cloud as long as the site is subscribed to the user-facing interfaces selected by the EGI community. • Users can integrate high level services - such as brokers, portals and customised Virtual Research Environments - with the EGI Federated Cloud as long as these services access cloud resources through the user-facing interfaces selected by the EGI community. The Task Force will be closed in May 2013. It already • Identified key enabling technologies by which a multinational, federated 'Infrastructure as a Service' (IaaS) type cloud can be built from the NGIs' resources; • Deployed a test bed to evaluate the integration of virtualised resources within EGI and to engage with early adopter use cases from different scientific domains; • Integrated cloud resources into the EGI production infrastructure through cloud specific bindings of the EGI information system, monitoring system, authentication system, etc.; • Collected and catalogued requirements concerning the federated cloud services from the feedback of early adopter use cases; • Provided feedback and requirements to relevant technology providers on their implementations and worked with these providers to address those requirements; • Identified issues that need to be addressed by other areas of EGI (such as portal solutions, resource allocation policies, marketing and user support) to reach a production system. The Task Force will publish a blueprint in April 2013. The blueprint will drive the establishment of a production level EGI Federated Cloud service after May 2013.
Supporting the scientific lifecycle through cloud services
NASA Astrophysics Data System (ADS)
Gensch, S.; Klump, J. F.; Bertelmann, R.; Braune, C.
2014-12-01
Cloud computing has made resources and applications available for numerous use cases ranging from business processes in the private sector to scientific applications. Developers have created tools for data management, collaborative writing, social networking, data access and visualization, project management and many more; either for free or as paid premium services with additional or extended features. Scientists have begun to incorporate tools that fit their needs into their daily work. To satisfy specialized needs, some cloud applications specifically address the needs of scientists for sharing research data, literature search, laboratory documentation, or data visualization. Cloud services may vary in extent, user coverage, and inter-service integration and are also at risk of being abandonend or changed by the service providers making changes to their business model, or leaving the field entirely.Within the project Academic Enterprise Cloud we examine cloud based services that support the research lifecycle, using feature models to describe key properties in the areas of infrastructure and service provision, compliance to legal regulations, and data curation. Emphasis is put on the term Enterprise as to establish an academic cloud service provider infrastructure that satisfies demands of the research community through continious provision across the whole cloud stack. This could enable the research community to be independent from service providers regarding changes to terms of service and ensuring full control of its extent and usage. This shift towards a self-empowered scientific cloud provider infrastructure and its community raises implications about feasability of provision and overall costs. Legal aspects and licensing issues have to be considered, when moving data into cloud services, especially when personal data is involved.Educating researchers about cloud based tools is important to help in the transition towards effective and safe use. Scientists can benefit from the provision of standard services, like weblog and website creation, virtual machine deployments, and groupware provision using cloud based app store-like portals. And, other than in an industrial environment, researchers will want to keep their existing user profile when moving from one institution to another.
NASA Astrophysics Data System (ADS)
Brandic, Ivona; Music, Dejan; Dustdar, Schahram
Nowadays, novel computing paradigms as for example Cloud Computing are gaining more and more on importance. In case of Cloud Computing users pay for the usage of the computing power provided as a service. Beforehand they can negotiate specific functional and non-functional requirements relevant for the application execution. However, providing computing power as a service bears different research challenges. On one hand dynamic, versatile, and adaptable services are required, which can cope with system failures and environmental changes. On the other hand, human interaction with the system should be minimized. In this chapter we present the first results in establishing adaptable, versatile, and dynamic services considering negotiation bootstrapping and service mediation achieved in context of the Foundations of Self-Governing ICT Infrastructures (FoSII) project. We discuss novel meta-negotiation and SLA mapping solutions for Cloud services bridging the gap between current QoS models and Cloud middleware and representing important prerequisites for the establishment of autonomic Cloud services.
2012-01-01
Background Bioinformatics services have been traditionally provided in the form of a web-server that is hosted at institutional infrastructure and serves multiple users. This model, however, is not flexible enough to cope with the increasing number of users, increasing data size, and new requirements in terms of speed and availability of service. The advent of cloud computing suggests a new service model that provides an efficient solution to these problems, based on the concepts of "resources-on-demand" and "pay-as-you-go". However, cloud computing has not yet been introduced within bioinformatics servers due to the lack of usage scenarios and software layers that address the requirements of the bioinformatics domain. Results In this paper, we provide different use case scenarios for providing cloud computing based services, considering both the technical and financial aspects of the cloud computing service model. These scenarios are for individual users seeking computational power as well as bioinformatics service providers aiming at provision of personalized bioinformatics services to their users. We also present elasticHPC, a software package and a library that facilitates the use of high performance cloud computing resources in general and the implementation of the suggested bioinformatics scenarios in particular. Concrete examples that demonstrate the suggested use case scenarios with whole bioinformatics servers and major sequence analysis tools like BLAST are presented. Experimental results with large datasets are also included to show the advantages of the cloud model. Conclusions Our use case scenarios and the elasticHPC package are steps towards the provision of cloud based bioinformatics services, which would help in overcoming the data challenge of recent biological research. All resources related to elasticHPC and its web-interface are available at http://www.elasticHPC.org. PMID:23281941
El-Kalioby, Mohamed; Abouelhoda, Mohamed; Krüger, Jan; Giegerich, Robert; Sczyrba, Alexander; Wall, Dennis P; Tonellato, Peter
2012-01-01
Bioinformatics services have been traditionally provided in the form of a web-server that is hosted at institutional infrastructure and serves multiple users. This model, however, is not flexible enough to cope with the increasing number of users, increasing data size, and new requirements in terms of speed and availability of service. The advent of cloud computing suggests a new service model that provides an efficient solution to these problems, based on the concepts of "resources-on-demand" and "pay-as-you-go". However, cloud computing has not yet been introduced within bioinformatics servers due to the lack of usage scenarios and software layers that address the requirements of the bioinformatics domain. In this paper, we provide different use case scenarios for providing cloud computing based services, considering both the technical and financial aspects of the cloud computing service model. These scenarios are for individual users seeking computational power as well as bioinformatics service providers aiming at provision of personalized bioinformatics services to their users. We also present elasticHPC, a software package and a library that facilitates the use of high performance cloud computing resources in general and the implementation of the suggested bioinformatics scenarios in particular. Concrete examples that demonstrate the suggested use case scenarios with whole bioinformatics servers and major sequence analysis tools like BLAST are presented. Experimental results with large datasets are also included to show the advantages of the cloud model. Our use case scenarios and the elasticHPC package are steps towards the provision of cloud based bioinformatics services, which would help in overcoming the data challenge of recent biological research. All resources related to elasticHPC and its web-interface are available at http://www.elasticHPC.org.
NASA Astrophysics Data System (ADS)
Wang, Xi Vincent; Wang, Lihui
2017-08-01
Cloud computing is the new enabling technology that offers centralised computing, flexible data storage and scalable services. In the manufacturing context, it is possible to utilise the Cloud technology to integrate and provide industrial resources and capabilities in terms of Cloud services. In this paper, a function block-based integration mechanism is developed to connect various types of production resources. A Cloud-based architecture is also deployed to offer a service pool which maintains these resources as production services. The proposed system provides a flexible and integrated information environment for the Cloud-based production system. As a specific type of manufacturing, Waste Electrical and Electronic Equipment (WEEE) remanufacturing experiences difficulties in system integration, information exchange and resource management. In this research, WEEE is selected as the example of Internet of Things to demonstrate how the obstacles and bottlenecks are overcome with the help of Cloud-based informatics approach. In the case studies, the WEEE recycle/recovery capabilities are also integrated and deployed as flexible Cloud services. Supporting mechanisms and technologies are presented and evaluated towards the end of the paper.
Scheduling multimedia services in cloud computing environment
NASA Astrophysics Data System (ADS)
Liu, Yunchang; Li, Chunlin; Luo, Youlong; Shao, Yanling; Zhang, Jing
2018-02-01
Currently, security is a critical factor for multimedia services running in the cloud computing environment. As an effective mechanism, trust can improve security level and mitigate attacks within cloud computing environments. Unfortunately, existing scheduling strategy for multimedia service in the cloud computing environment do not integrate trust mechanism when making scheduling decisions. In this paper, we propose a scheduling scheme for multimedia services in multi clouds. At first, a novel scheduling architecture is presented. Then, We build a trust model including both subjective trust and objective trust to evaluate the trust degree of multimedia service providers. By employing Bayesian theory, the subjective trust degree between multimedia service providers and users is obtained. According to the attributes of QoS, the objective trust degree of multimedia service providers is calculated. Finally, a scheduling algorithm integrating trust of entities is proposed by considering the deadline, cost and trust requirements of multimedia services. The scheduling algorithm heuristically hunts for reasonable resource allocations and satisfies the requirement of trust and meets deadlines for the multimedia services. Detailed simulated experiments demonstrate the effectiveness and feasibility of the proposed trust scheduling scheme.
A Highly Scalable Data Service (HSDS) using Cloud-based Storage Technologies for Earth Science Data
NASA Astrophysics Data System (ADS)
Michaelis, A.; Readey, J.; Votava, P.; Henderson, J.; Willmore, F.
2017-12-01
Cloud based infrastructure may offer several key benefits of scalability, built in redundancy, security mechanisms and reduced total cost of ownership as compared with a traditional data center approach. However, most of the tools and legacy software systems developed for online data repositories within the federal government were not developed with a cloud based infrastructure in mind and do not fully take advantage of commonly available cloud-based technologies. Moreover, services bases on object storage are well established and provided through all the leading cloud service providers (Amazon Web Service, Microsoft Azure, Google Cloud, etc…) of which can often provide unmatched "scale-out" capabilities and data availability to a large and growing consumer base at a price point unachievable from in-house solutions. We describe a system that utilizes object storage rather than traditional file system based storage to vend earth science data. The system described is not only cost effective, but shows a performance advantage for running many different analytics tasks in the cloud. To enable compatibility with existing tools and applications, we outline client libraries that are API compatible with existing libraries for HDF5 and NetCDF4. Performance of the system is demonstrated using clouds services running on Amazon Web Services.
A Hybrid Cloud Computing Service for Earth Sciences
NASA Astrophysics Data System (ADS)
Yang, C. P.
2016-12-01
Cloud Computing is becoming a norm for providing computing capabilities for advancing Earth sciences including big Earth data management, processing, analytics, model simulations, and many other aspects. A hybrid spatiotemporal cloud computing service is bulit at George Mason NSF spatiotemporal innovation center to meet this demands. This paper will report the service including several aspects: 1) the hardware includes 500 computing services and close to 2PB storage as well as connection to XSEDE Jetstream and Caltech experimental cloud computing environment for sharing the resource; 2) the cloud service is geographically distributed at east coast, west coast, and central region; 3) the cloud includes private clouds managed using open stack and eucalyptus, DC2 is used to bridge these and the public AWS cloud for interoperability and sharing computing resources when high demands surfing; 4) the cloud service is used to support NSF EarthCube program through the ECITE project, ESIP through the ESIP cloud computing cluster, semantics testbed cluster, and other clusters; 5) the cloud service is also available for the earth science communities to conduct geoscience. A brief introduction about how to use the cloud service will be included.
Tourism guide cloud service quality: What actually delights customers?
Lin, Shu-Ping; Yang, Chen-Lung; Pi, Han-Chung; Ho, Thao-Minh
2016-01-01
The emergence of advanced IT and cloud services has beneficially supported the information-intensive tourism industry, simultaneously caused extreme competitions in attracting customers through building efficient service platforms. On response, numerous nations have implemented cloud platforms to provide value-added sightseeing information and personal intelligent service experiences. Despite these efforts, customers' actual perspectives have yet been sufficiently understood. To bridge the gap, this study attempts to investigate what aspects of tourism cloud services actually delight customers' satisfaction and loyalty. 336 valid survey questionnaire answers were analyzed using structural equation modeling method. The results prove positive impacts of function quality, enjoyment, multiple visual aids, and information quality on customers' satisfaction as well as of enjoyment and satisfaction on use loyalty. The findings hope to provide helpful references of customer use behaviors for enhancing cloud service quality in order to achieve better organizational competitiveness.
Cloud-Based Speech Technology for Assistive Technology Applications (CloudCAST).
Cunningham, Stuart; Green, Phil; Christensen, Heidi; Atria, José Joaquín; Coy, André; Malavasi, Massimiliano; Desideri, Lorenzo; Rudzicz, Frank
2017-01-01
The CloudCAST platform provides a series of speech recognition services that can be integrated into assistive technology applications. The platform and the services provided by the public API are described. Several exemplar applications have been developed to demonstrate the platform to potential developers and users.
Cloud Service Selection Using Multicriteria Decision Analysis
Anuar, Nor Badrul; Shiraz, Muhammad; Haque, Israat Tanzeena
2014-01-01
Cloud computing (CC) has recently been receiving tremendous attention from the IT industry and academic researchers. CC leverages its unique services to cloud customers in a pay-as-you-go, anytime, anywhere manner. Cloud services provide dynamically scalable services through the Internet on demand. Therefore, service provisioning plays a key role in CC. The cloud customer must be able to select appropriate services according to his or her needs. Several approaches have been proposed to solve the service selection problem, including multicriteria decision analysis (MCDA). MCDA enables the user to choose from among a number of available choices. In this paper, we analyze the application of MCDA to service selection in CC. We identify and synthesize several MCDA techniques and provide a comprehensive analysis of this technology for general readers. In addition, we present a taxonomy derived from a survey of the current literature. Finally, we highlight several state-of-the-art practical aspects of MCDA implementation in cloud computing service selection. The contributions of this study are four-fold: (a) focusing on the state-of-the-art MCDA techniques, (b) highlighting the comparative analysis and suitability of several MCDA methods, (c) presenting a taxonomy through extensive literature review, and (d) analyzing and summarizing the cloud computing service selections in different scenarios. PMID:24696645
Cloud service selection using multicriteria decision analysis.
Whaiduzzaman, Md; Gani, Abdullah; Anuar, Nor Badrul; Shiraz, Muhammad; Haque, Mohammad Nazmul; Haque, Israat Tanzeena
2014-01-01
Cloud computing (CC) has recently been receiving tremendous attention from the IT industry and academic researchers. CC leverages its unique services to cloud customers in a pay-as-you-go, anytime, anywhere manner. Cloud services provide dynamically scalable services through the Internet on demand. Therefore, service provisioning plays a key role in CC. The cloud customer must be able to select appropriate services according to his or her needs. Several approaches have been proposed to solve the service selection problem, including multicriteria decision analysis (MCDA). MCDA enables the user to choose from among a number of available choices. In this paper, we analyze the application of MCDA to service selection in CC. We identify and synthesize several MCDA techniques and provide a comprehensive analysis of this technology for general readers. In addition, we present a taxonomy derived from a survey of the current literature. Finally, we highlight several state-of-the-art practical aspects of MCDA implementation in cloud computing service selection. The contributions of this study are four-fold: (a) focusing on the state-of-the-art MCDA techniques, (b) highlighting the comparative analysis and suitability of several MCDA methods, (c) presenting a taxonomy through extensive literature review, and (d) analyzing and summarizing the cloud computing service selections in different scenarios.
Cloud Computing Security Issue: Survey
NASA Astrophysics Data System (ADS)
Kamal, Shailza; Kaur, Rajpreet
2011-12-01
Cloud computing is the growing field in IT industry since 2007 proposed by IBM. Another company like Google, Amazon, and Microsoft provides further products to cloud computing. The cloud computing is the internet based computing that shared recourses, information on demand. It provides the services like SaaS, IaaS and PaaS. The services and recourses are shared by virtualization that run multiple operation applications on cloud computing. This discussion gives the survey on the challenges on security issues during cloud computing and describes some standards and protocols that presents how security can be managed.
NASA Technical Reports Server (NTRS)
O'Brien, Raymond
2017-01-01
In 2016, Ames supported the NASA CIO in delivering an initial operating capability for Agency use of commercial cloud computing. This presentation provides an overview of the project, the services approach followed, and the major components of the capability that was delivered. The presentation is being given at the request of Amazon Web Services to a contingent representing the Brazilian Federal Government and Defense Organization that is interested in the use of Amazon Web Services (AWS). NASA is currently a customer of AWS and delivered the Initial Operating Capability using AWS as its first commercial cloud provider. The IOC, however, designed to also support other cloud providers in the future.
2009-11-12
Service (IaaS) Software -as-a- Service ( SaaS ) Cloud Computing Types Platform-as-a- Service (PaaS) Based on Type of Capability Based on access Based...Mellon University Software -as-a- Service ( SaaS ) Application-specific capabilities, e.g., service that provides customer management Allows organizations...as a Service ( SaaS ) Model of software deployment in which a provider licenses an application to customers for use as a service on
Legal issues in clouds: towards a risk inventory.
Djemame, Karim; Barnitzke, Benno; Corrales, Marcelo; Kiran, Mariam; Jiang, Ming; Armstrong, Django; Forgó, Nikolaus; Nwankwo, Iheanyi
2013-01-28
Cloud computing technologies have reached a high level of development, yet a number of obstacles still exist that must be overcome before widespread commercial adoption can become a reality. In a cloud environment, end users requesting services and cloud providers negotiate service-level agreements (SLAs) that provide explicit statements of all expectations and obligations of the participants. If cloud computing is to experience widespread commercial adoption, then incorporating risk assessment techniques is essential during SLA negotiation and service operation. This article focuses on the legal issues surrounding risk assessment in cloud computing. Specifically, it analyses risk regarding data protection and security, and presents the requirements of an inherent risk inventory. The usefulness of such a risk inventory is described in the context of the OPTIMIS project.
IAServ: an intelligent home care web services platform in a cloud for aging-in-place.
Su, Chuan-Jun; Chiang, Chang-Yu
2013-11-12
As the elderly population has been rapidly expanding and the core tax-paying population has been shrinking, the need for adequate elderly health and housing services continues to grow while the resources to provide such services are becoming increasingly scarce. Thus, increasing the efficiency of the delivery of healthcare services through the use of modern technology is a pressing issue. The seamless integration of such enabling technologies as ontology, intelligent agents, web services, and cloud computing is transforming healthcare from hospital-based treatments to home-based self-care and preventive care. A ubiquitous healthcare platform based on this technological integration, which synergizes service providers with patients' needs to be developed to provide personalized healthcare services at the right time, in the right place, and the right manner. This paper presents the development and overall architecture of IAServ (the Intelligent Aging-in-place Home care Web Services Platform) to provide personalized healthcare service ubiquitously in a cloud computing setting to support the most desirable and cost-efficient method of care for the aged-aging in place. The IAServ is expected to offer intelligent, pervasive, accurate and contextually-aware personal care services. Architecturally the implemented IAServ leverages web services and cloud computing to provide economic, scalable, and robust healthcare services over the Internet.
IAServ: An Intelligent Home Care Web Services Platform in a Cloud for Aging-in-Place
Su, Chuan-Jun; Chiang, Chang-Yu
2013-01-01
As the elderly population has been rapidly expanding and the core tax-paying population has been shrinking, the need for adequate elderly health and housing services continues to grow while the resources to provide such services are becoming increasingly scarce. Thus, increasing the efficiency of the delivery of healthcare services through the use of modern technology is a pressing issue. The seamless integration of such enabling technologies as ontology, intelligent agents, web services, and cloud computing is transforming healthcare from hospital-based treatments to home-based self-care and preventive care. A ubiquitous healthcare platform based on this technological integration, which synergizes service providers with patients’ needs to be developed to provide personalized healthcare services at the right time, in the right place, and the right manner. This paper presents the development and overall architecture of IAServ (the Intelligent Aging-in-place Home care Web Services Platform) to provide personalized healthcare service ubiquitously in a cloud computing setting to support the most desirable and cost-efficient method of care for the aged-aging in place. The IAServ is expected to offer intelligent, pervasive, accurate and contextually-aware personal care services. Architecturally the implemented IAServ leverages web services and cloud computing to provide economic, scalable, and robust healthcare services over the Internet. PMID:24225647
Bigdata Driven Cloud Security: A Survey
NASA Astrophysics Data System (ADS)
Raja, K.; Hanifa, Sabibullah Mohamed
2017-08-01
Cloud Computing (CC) is a fast-growing technology to perform massive-scale and complex computing. It eliminates the need to maintain expensive computing hardware, dedicated space, and software. Recently, it has been observed that massive growth in the scale of data or big data generated through cloud computing. CC consists of a front-end, includes the users’ computers and software required to access the cloud network, and back-end consists of various computers, servers and database systems that create the cloud. In SaaS (Software as-a-Service - end users to utilize outsourced software), PaaS (Platform as-a-Service-platform is provided) and IaaS (Infrastructure as-a-Service-physical environment is outsourced), and DaaS (Database as-a-Service-data can be housed within a cloud), where leading / traditional cloud ecosystem delivers the cloud services become a powerful and popular architecture. Many challenges and issues are in security or threats, most vital barrier for cloud computing environment. The main barrier to the adoption of CC in health care relates to Data security. When placing and transmitting data using public networks, cyber attacks in any form are anticipated in CC. Hence, cloud service users need to understand the risk of data breaches and adoption of service delivery model during deployment. This survey deeply covers the CC security issues (covering Data Security in Health care) so as to researchers can develop the robust security application models using Big Data (BD) on CC (can be created / deployed easily). Since, BD evaluation is driven by fast-growing cloud-based applications developed using virtualized technologies. In this purview, MapReduce [12] is a good example of big data processing in a cloud environment, and a model for Cloud providers.
NASA Astrophysics Data System (ADS)
Aneri, Parikh; Sumathy, S.
2017-11-01
Cloud computing provides services over the internet and provides application resources and data to the users based on their demand. Base of the Cloud Computing is consumer provider model. Cloud provider provides resources which consumer can access using cloud computing model in order to build their application based on their demand. Cloud data center is a bulk of resources on shared pool architecture for cloud user to access. Virtualization is the heart of the Cloud computing model, it provides virtual machine as per application specific configuration and those applications are free to choose their own configuration. On one hand, there is huge number of resources and on other hand it has to serve huge number of requests effectively. Therefore, resource allocation policy and scheduling policy play very important role in allocation and managing resources in this cloud computing model. This paper proposes the load balancing policy using Hungarian algorithm. Hungarian Algorithm provides dynamic load balancing policy with a monitor component. Monitor component helps to increase cloud resource utilization by managing the Hungarian algorithm by monitoring its state and altering its state based on artificial intelligent. CloudSim used in this proposal is an extensible toolkit and it simulates cloud computing environment.
What CFOs should know before venturing into the cloud.
Rajendran, Janakan
2013-05-01
There are three major trends in the use of cloud-based services for healthcare IT: Cloud computing involves the hosting of health IT applications in a service provider cloud. Cloud storage is a data storage service that can involve, for example, long-term storage and archival of information such as clinical data, medical images, and scanned documents. Data center colocation involves rental of secure space in the cloud from a vendor, an approach that allows a hospital to share power capacity and proven security protocols, reducing costs.
Privacy-Preserving Location-Based Service Scheme for Mobile Sensing Data.
Xie, Qingqing; Wang, Liangmin
2016-11-25
With the wide use of mobile sensing application, more and more location-embedded data are collected and stored in mobile clouds, such as iCloud, Samsung cloud, etc. Using these data, the cloud service provider (CSP) can provide location-based service (LBS) for users. However, the mobile cloud is untrustworthy. The privacy concerns force the sensitive locations to be stored on the mobile cloud in an encrypted form. However, this brings a great challenge to utilize these data to provide efficient LBS. To solve this problem, we propose a privacy-preserving LBS scheme for mobile sensing data, based on the RSA (for Rivest, Shamir and Adleman) algorithm and ciphertext policy attribute-based encryption (CP-ABE) scheme. The mobile cloud can perform location distance computing and comparison efficiently for authorized users, without location privacy leakage. In the end, theoretical security analysis and experimental evaluation demonstrate that our scheme is secure against the chosen plaintext attack (CPA) and efficient enough for practical applications in terms of user side computation overhead.
Privacy-Preserving Location-Based Service Scheme for Mobile Sensing Data †
Xie, Qingqing; Wang, Liangmin
2016-01-01
With the wide use of mobile sensing application, more and more location-embedded data are collected and stored in mobile clouds, such as iCloud, Samsung cloud, etc. Using these data, the cloud service provider (CSP) can provide location-based service (LBS) for users. However, the mobile cloud is untrustworthy. The privacy concerns force the sensitive locations to be stored on the mobile cloud in an encrypted form. However, this brings a great challenge to utilize these data to provide efficient LBS. To solve this problem, we propose a privacy-preserving LBS scheme for mobile sensing data, based on the RSA (for Rivest, Shamir and Adleman) algorithm and ciphertext policy attribute-based encryption (CP-ABE) scheme. The mobile cloud can perform location distance computing and comparison efficiently for authorized users, without location privacy leakage. In the end, theoretical security analysis and experimental evaluation demonstrate that our scheme is secure against the chosen plaintext attack (CPA) and efficient enough for practical applications in terms of user side computation overhead. PMID:27897984
Hybrid cloud: bridging of private and public cloud computing
NASA Astrophysics Data System (ADS)
Aryotejo, Guruh; Kristiyanto, Daniel Y.; Mufadhol
2018-05-01
Cloud Computing is quickly emerging as a promising paradigm in the recent years especially for the business sector. In addition, through cloud service providers, cloud computing is widely used by Information Technology (IT) based startup company to grow their business. However, the level of most businesses awareness on data security issues is low, since some Cloud Service Provider (CSP) could decrypt their data. Hybrid Cloud Deployment Model (HCDM) has characteristic as open source, which is one of secure cloud computing model, thus HCDM may solve data security issues. The objective of this study is to design, deploy and evaluate a HCDM as Infrastructure as a Service (IaaS). In the implementation process, Metal as a Service (MAAS) engine was used as a base to build an actual server and node. Followed by installing the vsftpd application, which serves as FTP server. In comparison with HCDM, public cloud was adopted through public cloud interface. As a result, the design and deployment of HCDM was conducted successfully, instead of having good security, HCDM able to transfer data faster than public cloud significantly. To the best of our knowledge, Hybrid Cloud Deployment model is one of secure cloud computing model due to its characteristic as open source. Furthermore, this study will serve as a base for future studies about Hybrid Cloud Deployment model which may relevant for solving big security issues of IT-based startup companies especially in Indonesia.
Using Cloud-based Storage Technologies for Earth Science Data
NASA Astrophysics Data System (ADS)
Michaelis, A.; Readey, J.; Votava, P.
2016-12-01
Cloud based infrastructure may offer several key benefits of scalability, built in redundancy and reduced total cost of ownership as compared with a traditional data center approach. However, most of the tools and software systems developed for NASA data repositories were not developed with a cloud based infrastructure in mind and do not fully take advantage of commonly available cloud-based technologies. Object storage services are provided through all the leading public (Amazon Web Service, Microsoft Azure, Google Cloud, etc.) and private (Open Stack) clouds, and may provide a more cost-effective means of storing large data collections online. We describe a system that utilizes object storage rather than traditional file system based storage to vend earth science data. The system described is not only cost effective, but shows superior performance for running many different analytics tasks in the cloud. To enable compatibility with existing tools and applications, we outline client libraries that are API compatible with existing libraries for HDF5 and NetCDF4. Performance of the system is demonstrated using clouds services running on Amazon Web Services.
Model-as-a-service (MaaS) using the cloud service innovation platform (CSIP)
USDA-ARS?s Scientific Manuscript database
Cloud infrastructures for modelling activities such as data processing, performing environmental simulations, or conducting model calibrations/optimizations provide a cost effective alternative to traditional high performance computing approaches. Cloud-based modelling examples emerged into the more...
Service Migration from Cloud to Multi-tier Fog Nodes for Multimedia Dissemination with QoE Support
Camargo, João; Rochol, Juergen; Gerla, Mario
2018-01-01
A wide range of multimedia services is expected to be offered for mobile users via various wireless access networks. Even the integration of Cloud Computing in such networks does not support an adequate Quality of Experience (QoE) in areas with high demands for multimedia contents. Fog computing has been conceptualized to facilitate the deployment of new services that cloud computing cannot provide, particularly those demanding QoE guarantees. These services are provided using fog nodes located at the network edge, which is capable of virtualizing their functions/applications. Service migration from the cloud to fog nodes can be actuated by request patterns and the timing issues. To the best of our knowledge, existing works on fog computing focus on architecture and fog node deployment issues. In this article, we describe the operational impacts and benefits associated with service migration from the cloud to multi-tier fog computing for video distribution with QoE support. Besides that, we perform the evaluation of such service migration of video services. Finally, we present potential research challenges and trends. PMID:29364172
Service Migration from Cloud to Multi-tier Fog Nodes for Multimedia Dissemination with QoE Support.
Rosário, Denis; Schimuneck, Matias; Camargo, João; Nobre, Jéferson; Both, Cristiano; Rochol, Juergen; Gerla, Mario
2018-01-24
A wide range of multimedia services is expected to be offered for mobile users via various wireless access networks. Even the integration of Cloud Computing in such networks does not support an adequate Quality of Experience (QoE) in areas with high demands for multimedia contents. Fog computing has been conceptualized to facilitate the deployment of new services that cloud computing cannot provide, particularly those demanding QoE guarantees. These services are provided using fog nodes located at the network edge, which is capable of virtualizing their functions/applications. Service migration from the cloud to fog nodes can be actuated by request patterns and the timing issues. To the best of our knowledge, existing works on fog computing focus on architecture and fog node deployment issues. In this article, we describe the operational impacts and benefits associated with service migration from the cloud to multi-tier fog computing for video distribution with QoE support. Besides that, we perform the evaluation of such service migration of video services. Finally, we present potential research challenges and trends.
Processing Shotgun Proteomics Data on the Amazon Cloud with the Trans-Proteomic Pipeline*
Slagel, Joseph; Mendoza, Luis; Shteynberg, David; Deutsch, Eric W.; Moritz, Robert L.
2015-01-01
Cloud computing, where scalable, on-demand compute cycles and storage are available as a service, has the potential to accelerate mass spectrometry-based proteomics research by providing simple, expandable, and affordable large-scale computing to all laboratories regardless of location or information technology expertise. We present new cloud computing functionality for the Trans-Proteomic Pipeline, a free and open-source suite of tools for the processing and analysis of tandem mass spectrometry datasets. Enabled with Amazon Web Services cloud computing, the Trans-Proteomic Pipeline now accesses large scale computing resources, limited only by the available Amazon Web Services infrastructure, for all users. The Trans-Proteomic Pipeline runs in an environment fully hosted on Amazon Web Services, where all software and data reside on cloud resources to tackle large search studies. In addition, it can also be run on a local computer with computationally intensive tasks launched onto the Amazon Elastic Compute Cloud service to greatly decrease analysis times. We describe the new Trans-Proteomic Pipeline cloud service components, compare the relative performance and costs of various Elastic Compute Cloud service instance types, and present on-line tutorials that enable users to learn how to deploy cloud computing technology rapidly with the Trans-Proteomic Pipeline. We provide tools for estimating the necessary computing resources and costs given the scale of a job and demonstrate the use of cloud enabled Trans-Proteomic Pipeline by performing over 1100 tandem mass spectrometry files through four proteomic search engines in 9 h and at a very low cost. PMID:25418363
Processing shotgun proteomics data on the Amazon cloud with the trans-proteomic pipeline.
Slagel, Joseph; Mendoza, Luis; Shteynberg, David; Deutsch, Eric W; Moritz, Robert L
2015-02-01
Cloud computing, where scalable, on-demand compute cycles and storage are available as a service, has the potential to accelerate mass spectrometry-based proteomics research by providing simple, expandable, and affordable large-scale computing to all laboratories regardless of location or information technology expertise. We present new cloud computing functionality for the Trans-Proteomic Pipeline, a free and open-source suite of tools for the processing and analysis of tandem mass spectrometry datasets. Enabled with Amazon Web Services cloud computing, the Trans-Proteomic Pipeline now accesses large scale computing resources, limited only by the available Amazon Web Services infrastructure, for all users. The Trans-Proteomic Pipeline runs in an environment fully hosted on Amazon Web Services, where all software and data reside on cloud resources to tackle large search studies. In addition, it can also be run on a local computer with computationally intensive tasks launched onto the Amazon Elastic Compute Cloud service to greatly decrease analysis times. We describe the new Trans-Proteomic Pipeline cloud service components, compare the relative performance and costs of various Elastic Compute Cloud service instance types, and present on-line tutorials that enable users to learn how to deploy cloud computing technology rapidly with the Trans-Proteomic Pipeline. We provide tools for estimating the necessary computing resources and costs given the scale of a job and demonstrate the use of cloud enabled Trans-Proteomic Pipeline by performing over 1100 tandem mass spectrometry files through four proteomic search engines in 9 h and at a very low cost. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Unidata's Vision for Transforming Geoscience by Moving Data Services and Software to the Cloud
NASA Astrophysics Data System (ADS)
Ramamurthy, M. K.; Fisher, W.; Yoksas, T.
2014-12-01
Universities are facing many challenges: shrinking budgets, rapidly evolving information technologies, exploding data volumes, multidisciplinary science requirements, and high student expectations. These changes are upending traditional approaches to accessing and using data and software. It is clear that Unidata's products and services must evolve to support new approaches to research and education. After years of hype and ambiguity, cloud computing is maturing in usability in many areas of science and education, bringing the benefits of virtualized and elastic remote services to infrastructure, software, computation, and data. Cloud environments reduce the amount of time and money spent to procure, install, and maintain new hardware and software, and reduce costs through resource pooling and shared infrastructure. Cloud services aimed at providing any resource, at any time, from any place, using any device are increasingly being embraced by all types of organizations. Given this trend and the enormous potential of cloud-based services, Unidata is taking moving to augment its products, services, data delivery mechanisms and applications to align with the cloud-computing paradigm. Specifically, Unidata is working toward establishing a community-based development environment that supports the creation and use of software services to build end-to-end data workflows. The design encourages the creation of services that can be broken into small, independent chunks that provide simple capabilities. Chunks could be used individually to perform a task, or chained into simple or elaborate workflows. The services will also be portable, allowing their use in researchers' own cloud-based computing environments. In this talk, we present a vision for Unidata's future in a cloud-enabled data services and discuss our initial efforts to deploy a subset of Unidata data services and tools in the Amazon EC2 and Microsoft Azure cloud environments, including the transfer of real-time meteorological data into its cloud instances, product generation using those data, and the deployment of TDS, McIDAS ADDE and AWIPS II data servers and the Integrated Data Server visualization tool.
A cloud system for mobile medical services of traditional Chinese medicine.
Hu, Nian-Ze; Lee, Chia-Ying; Hou, Mark C; Chen, Ying-Ling
2013-12-01
Many medical centers in Taiwan have started to provide Traditional Chinese Medicine (TCM) services for hospitalized patients. Due to the complexity of TCM modality and the increasing need for providing TCM services for patients in different wards at distantly separate locations within the hospital, it is getting difficult to manage the situation in the traditional way. A computerized system with mobile ability can therefore provide a practical solution to the challenge presented. The study tries to develop a cloud system equipped with mobile devices to integrate electronic medical records, facilitate communication between medical workers, and improve the quality of TCM services for the hospitalized patients in a medical center. The system developed in the study includes mobile devices carrying Android operation system and a PC as a cloud server. All the devices use the same TCM management system developed by the study. A website of database is set up for information sharing. The cloud system allows users to access and update patients' medical information, which is of great help to medical workers for verifying patients' identification and giving proper treatments to patients. The information then can be wirelessly transmitted between medical personnel through the cloud system. Several quantitative and qualitative evaluation indexes are developed to measure the effectiveness of the cloud system on the quality of the TCM service. The cloud system is tested and verified based on a sample of hospitalized patients receiving the acupuncture treatment at the Lukang Branch of Changhua Christian Hospital (CCH) in Taiwan. The result shows a great improvement in operating efficiency of the TCM service in that a significant saving in labor time can be attributable to the cloud system. In addition, the cloud system makes it easy to confirm patients' identity through taking a picture of the patient upon receiving any medical treatment. The result also shows that the cloud system achieves significant improvement in the acupuncture treatment. All the acupuncture needles now can be removed at the time they are expected to be removed. Furthermore, through the cloud system, medical workers can access and update patients' medical information on-site, which provides a means of effective communication between medical workers. These functions allow us to make the most use of the portability feature of the acupuncture service. The result shows that the contribution made by the cloud system to the TCM service is multi-dimensional: cost-effective, environment-protective, performance-enhancing etc. Developing and implementing such a cloud system for the TCM service in Taiwan symbolizes a pioneering effort. We believe that the work we have done here can serve as a stepping-stone toward advancing the TCM service quality in the future.
Smart learning services based on smart cloud computing.
Kim, Svetlana; Song, Su-Mi; Yoon, Yong-Ik
2011-01-01
Context-aware technologies can make e-learning services smarter and more efficient since context-aware services are based on the user's behavior. To add those technologies into existing e-learning services, a service architecture model is needed to transform the existing e-learning environment, which is situation-aware, into the environment that understands context as well. The context-awareness in e-learning may include the awareness of user profile and terminal context. In this paper, we propose a new notion of service that provides context-awareness to smart learning content in a cloud computing environment. We suggest the elastic four smarts (E4S)--smart pull, smart prospect, smart content, and smart push--concept to the cloud services so smart learning services are possible. The E4S focuses on meeting the users' needs by collecting and analyzing users' behavior, prospecting future services, building corresponding contents, and delivering the contents through cloud computing environment. Users' behavior can be collected through mobile devices such as smart phones that have built-in sensors. As results, the proposed smart e-learning model in cloud computing environment provides personalized and customized learning services to its users.
Smart Learning Services Based on Smart Cloud Computing
Kim, Svetlana; Song, Su-Mi; Yoon, Yong-Ik
2011-01-01
Context-aware technologies can make e-learning services smarter and more efficient since context-aware services are based on the user’s behavior. To add those technologies into existing e-learning services, a service architecture model is needed to transform the existing e-learning environment, which is situation-aware, into the environment that understands context as well. The context-awareness in e-learning may include the awareness of user profile and terminal context. In this paper, we propose a new notion of service that provides context-awareness to smart learning content in a cloud computing environment. We suggest the elastic four smarts (E4S)—smart pull, smart prospect, smart content, and smart push—concept to the cloud services so smart learning services are possible. The E4S focuses on meeting the users’ needs by collecting and analyzing users’ behavior, prospecting future services, building corresponding contents, and delivering the contents through cloud computing environment. Users’ behavior can be collected through mobile devices such as smart phones that have built-in sensors. As results, the proposed smart e-learning model in cloud computing environment provides personalized and customized learning services to its users. PMID:22164048
Signal and image processing algorithm performance in a virtual and elastic computing environment
NASA Astrophysics Data System (ADS)
Bennett, Kelly W.; Robertson, James
2013-05-01
The U.S. Army Research Laboratory (ARL) supports the development of classification, detection, tracking, and localization algorithms using multiple sensing modalities including acoustic, seismic, E-field, magnetic field, PIR, and visual and IR imaging. Multimodal sensors collect large amounts of data in support of algorithm development. The resulting large amount of data, and their associated high-performance computing needs, increases and challenges existing computing infrastructures. Purchasing computer power as a commodity using a Cloud service offers low-cost, pay-as-you-go pricing models, scalability, and elasticity that may provide solutions to develop and optimize algorithms without having to procure additional hardware and resources. This paper provides a detailed look at using a commercial cloud service provider, such as Amazon Web Services (AWS), to develop and deploy simple signal and image processing algorithms in a cloud and run the algorithms on a large set of data archived in the ARL Multimodal Signatures Database (MMSDB). Analytical results will provide performance comparisons with existing infrastructure. A discussion on using cloud computing with government data will discuss best security practices that exist within cloud services, such as AWS.
Impact of different cloud deployments on real-time video applications for mobile video cloud users
NASA Astrophysics Data System (ADS)
Khan, Kashif A.; Wang, Qi; Luo, Chunbo; Wang, Xinheng; Grecos, Christos
2015-02-01
The latest trend to access mobile cloud services through wireless network connectivity has amplified globally among both entrepreneurs and home end users. Although existing public cloud service vendors such as Google, Microsoft Azure etc. are providing on-demand cloud services with affordable cost for mobile users, there are still a number of challenges to achieve high-quality mobile cloud based video applications, especially due to the bandwidth-constrained and errorprone mobile network connectivity, which is the communication bottleneck for end-to-end video delivery. In addition, existing accessible clouds networking architectures are different in term of their implementation, services, resources, storage, pricing, support and so on, and these differences have varied impact on the performance of cloud-based real-time video applications. Nevertheless, these challenges and impacts have not been thoroughly investigated in the literature. In our previous work, we have implemented a mobile cloud network model that integrates localized and decentralized cloudlets (mini-clouds) and wireless mesh networks. In this paper, we deploy a real-time framework consisting of various existing Internet cloud networking architectures (Google Cloud, Microsoft Azure and Eucalyptus Cloud) and a cloudlet based on Ubuntu Enterprise Cloud over wireless mesh networking technology for mobile cloud end users. It is noted that the increasing trend to access real-time video streaming over HTTP/HTTPS is gaining popularity among both research and industrial communities to leverage the existing web services and HTTP infrastructure in the Internet. To study the performance under different deployments using different public and private cloud service providers, we employ real-time video streaming over the HTTP/HTTPS standard, and conduct experimental evaluation and in-depth comparative analysis of the impact of different deployments on the quality of service for mobile video cloud users. Empirical results are presented and discussed to quantify and explain the different impacts resulted from various cloud deployments, video application and wireless/mobile network setting, and user mobility. Additionally, this paper analyses the advantages, disadvantages, limitations and optimization techniques in various cloud networking deployments, in particular the cloudlet approach compared with the Internet cloud approach, with recommendations of optimized deployments highlighted. Finally, federated clouds and inter-cloud collaboration challenges and opportunities are discussed in the context of supporting real-time video applications for mobile users.
NASA Astrophysics Data System (ADS)
Qian, Ling; Luo, Zhiguo; Du, Yujian; Guo, Leitao
In order to support the maximum number of user and elastic service with the minimum resource, the Internet service provider invented the cloud computing. within a few years, emerging cloud computing has became the hottest technology. From the publication of core papers by Google since 2003 to the commercialization of Amazon EC2 in 2006, and to the service offering of AT&T Synaptic Hosting, the cloud computing has been evolved from internal IT system to public service, from cost-saving tools to revenue generator, and from ISP to telecom. This paper introduces the concept, history, pros and cons of cloud computing as well as the value chain and standardization effort.
An Overview of Cloud Computing in Distributed Systems
NASA Astrophysics Data System (ADS)
Divakarla, Usha; Kumari, Geetha
2010-11-01
Cloud computing is the emerging trend in the field of distributed computing. Cloud computing evolved from grid computing and distributed computing. Cloud plays an important role in huge organizations in maintaining huge data with limited resources. Cloud also helps in resource sharing through some specific virtual machines provided by the cloud service provider. This paper gives an overview of the cloud organization and some of the basic security issues pertaining to the cloud.
Global Software Development with Cloud Platforms
NASA Astrophysics Data System (ADS)
Yara, Pavan; Ramachandran, Ramaseshan; Balasubramanian, Gayathri; Muthuswamy, Karthik; Chandrasekar, Divya
Offshore and outsourced distributed software development models and processes are facing challenges, previously unknown, with respect to computing capacity, bandwidth, storage, security, complexity, reliability, and business uncertainty. Clouds promise to address these challenges by adopting recent advances in virtualization, parallel and distributed systems, utility computing, and software services. In this paper, we envision a cloud-based platform that addresses some of these core problems. We outline a generic cloud architecture, its design and our first implementation results for three cloud forms - a compute cloud, a storage cloud and a cloud-based software service- in the context of global distributed software development (GSD). Our ”compute cloud” provides computational services such as continuous code integration and a compile server farm, ”storage cloud” offers storage (block or file-based) services with an on-line virtual storage service, whereas the on-line virtual labs represent a useful cloud service. We note some of the use cases for clouds in GSD, the lessons learned with our prototypes and identify challenges that must be conquered before realizing the full business benefits. We believe that in the future, software practitioners will focus more on these cloud computing platforms and see clouds as a means to supporting a ecosystem of clients, developers and other key stakeholders.
An open science cloud for scientific research
NASA Astrophysics Data System (ADS)
Jones, Bob
2016-04-01
The Helix Nebula initiative was presented at EGU 2013 (http://meetingorganizer.copernicus.org/EGU2013/EGU2013-1510-2.pdf) and has continued to expand with more research organisations, providers and services. The hybrid cloud model deployed by Helix Nebula has grown to become a viable approach for provisioning ICT services for research communities from both public and commercial service providers (http://dx.doi.org/10.5281/zenodo.16001). The relevance of this approach for all those communities facing societal challenges in explained in a recent EIROforum publication (http://dx.doi.org/10.5281/zenodo.34264). This presentation will describe how this model brings together a range of stakeholders to implement a common platform for data intensive services that builds upon existing public funded e-infrastructures and commercial cloud services to promote open science. It explores the essential characteristics of a European Open Science Cloud if it is to address the big data needs of the latest generation of Research Infrastructures. The high-level architecture and key services as well as the role of standards is described. A governance and financial model together with the roles of the stakeholders, including commercial service providers and downstream business sectors, that will ensure a European Open Science Cloud can innovate, grow and be sustained beyond the current project cycles is described.
Trust Model to Enhance Security and Interoperability of Cloud Environment
NASA Astrophysics Data System (ADS)
Li, Wenjuan; Ping, Lingdi
Trust is one of the most important means to improve security and enable interoperability of current heterogeneous independent cloud platforms. This paper first analyzed several trust models used in large and distributed environment and then introduced a novel cloud trust model to solve security issues in cross-clouds environment in which cloud customer can choose different providers' services and resources in heterogeneous domains can cooperate. The model is domain-based. It divides one cloud provider's resource nodes into the same domain and sets trust agent. It distinguishes two different roles cloud customer and cloud server and designs different strategies for them. In our model, trust recommendation is treated as one type of cloud services just like computation or storage. The model achieves both identity authentication and behavior authentication. The results of emulation experiments show that the proposed model can efficiently and safely construct trust relationship in cross-clouds environment.
Toward ubiquitous healthcare services with a novel efficient cloud platform.
He, Chenguang; Fan, Xiaomao; Li, Ye
2013-01-01
Ubiquitous healthcare services are becoming more and more popular, especially under the urgent demand of the global aging issue. Cloud computing owns the pervasive and on-demand service-oriented natures, which can fit the characteristics of healthcare services very well. However, the abilities in dealing with multimodal, heterogeneous, and nonstationary physiological signals to provide persistent personalized services, meanwhile keeping high concurrent online analysis for public, are challenges to the general cloud. In this paper, we proposed a private cloud platform architecture which includes six layers according to the specific requirements. This platform utilizes message queue as a cloud engine, and each layer thereby achieves relative independence by this loosely coupled means of communications with publish/subscribe mechanism. Furthermore, a plug-in algorithm framework is also presented, and massive semistructure or unstructured medical data are accessed adaptively by this cloud architecture. As the testing results showing, this proposed cloud platform, with robust, stable, and efficient features, can satisfy high concurrent requests from ubiquitous healthcare services.
Privacy-preserving public auditing for data integrity in cloud
NASA Astrophysics Data System (ADS)
Shaik Saleem, M.; Murali, M.
2018-04-01
Cloud computing which has collected extent concentration from communities of research and with industry research development, a large pool of computing resources using virtualized sharing method like storage, processing power, applications and services. The users of cloud are vend with on demand resources as they want in the cloud computing. Outsourced file of the cloud user can easily tampered as it is stored at the third party service providers databases, so there is no integrity of cloud users data as it has no control on their data, therefore providing security assurance to the users data has become one of the primary concern for the cloud service providers. Cloud servers are not responsible for any data loss as it doesn’t provide the security assurance to the cloud user data. Remote data integrity checking (RDIC) licenses an information to data storage server, to determine that it is really storing an owners data truthfully. RDIC is composed of security model and ID-based RDIC where it is responsible for the security of every server and make sure the data privacy of cloud user against the third party verifier. Generally, by running a two-party Remote data integrity checking (RDIC) protocol the clients would themselves be able to check the information trustworthiness of their cloud. Within the two party scenario the verifying result is given either from the information holder or the cloud server may be considered as one-sided. Public verifiability feature of RDIC gives the privilege to all its users to verify whether the original data is modified or not. To ensure the transparency of the publicly verifiable RDIC protocols, Let’s figure out there exists a TPA who is having knowledge and efficiency to verify the work to provide the condition clearly by publicly verifiable RDIC protocols.
A Novel Market-Oriented Dynamic Collaborative Cloud Service Platform
NASA Astrophysics Data System (ADS)
Hassan, Mohammad Mehedi; Huh, Eui-Nam
In today's world the emerging Cloud computing (Weiss, 2007) offer a new computing model where resources such as computing power, storage, online applications and networking infrastructures can be shared as "services" over the internet. Cloud providers (CPs) are incentivized by the profits to be made by charging consumers for accessing these services. Consumers, such as enterprises, are attracted by the opportunity for reducing or eliminating costs associated with "in-house" provision of these services.
Cloud Computing with iPlant Atmosphere.
McKay, Sheldon J; Skidmore, Edwin J; LaRose, Christopher J; Mercer, Andre W; Noutsos, Christos
2013-10-15
Cloud Computing refers to distributed computing platforms that use virtualization software to provide easy access to physical computing infrastructure and data storage, typically administered through a Web interface. Cloud-based computing provides access to powerful servers, with specific software and virtual hardware configurations, while eliminating the initial capital cost of expensive computers and reducing the ongoing operating costs of system administration, maintenance contracts, power consumption, and cooling. This eliminates a significant barrier to entry into bioinformatics and high-performance computing for many researchers. This is especially true of free or modestly priced cloud computing services. The iPlant Collaborative offers a free cloud computing service, Atmosphere, which allows users to easily create and use instances on virtual servers preconfigured for their analytical needs. Atmosphere is a self-service, on-demand platform for scientific computing. This unit demonstrates how to set up, access and use cloud computing in Atmosphere. Copyright © 2013 John Wiley & Sons, Inc.
Unidata cyberinfrastructure in the cloud: A progress report
NASA Astrophysics Data System (ADS)
Ramamurthy, Mohan
2016-04-01
Data services, software, and committed support are critical components of geosciences cyber-infrastructure that can help scientists address problems of unprecedented complexity, scale, and scope. Unidata is currently working on innovative ideas, new paradigms, and novel techniques to complement and extend its offerings. Our goal is to empower users so that they can tackle major, heretofore difficult problems. Unidata recognizes that its products and services must evolve to support new approaches to research and education. After years of hype and ambiguity, cloud computing is maturing in usability in many areas of science and education, bringing the benefits of virtualized and elastic remote services to infrastructure, software, computation, and data. Cloud environments reduce the amount of time and money spent to procure, install, and maintain new hardware and software, and reduce costs through resource pooling and shared infrastructure. Cloud services aimed at providing any resource, at any time, from any place, using any device are increasingly being embraced by all types of organizations. Given this trend and the enormous potential of cloud-based services, Unidata is moving to augment its products, services, data delivery mechanisms and applications to align with the cloud-computing paradigm. To realize the above vision, Unidata is working toward: * Providing access to many types of data from a cloud (e.g., TDS, RAMADDA and EDEX); * Deploying data-proximate tools to easily process, analyze and visualize those data in a cloud environment cloud for consumption by any one, by any device, from anywhere, at any time; * Developing and providing a range of pre-configured and well-integrated tools and services that can be deployed by any university in their own private or public cloud settings. Specifically, Unidata has developed Docker for "containerized applications", making them easy to deploy. Docker helps to create "disposable" installs and eliminates many configuration challenges. Containerized applications include tools for data transport, access, analysis, and visualization: THREDDS Data Server, Integrated Data Viewer, GEMPAK, Local Data Manager, RAMADDA Data Server, and Python tools; * Fostering partnerships with NOAA and public cloud vendors (e.g., Amazon) to harness their capabilities and resources for the benefit of the academic community.
An Efficient Virtual Machine Consolidation Scheme for Multimedia Cloud Computing.
Han, Guangjie; Que, Wenhui; Jia, Gangyong; Shu, Lei
2016-02-18
Cloud computing has innovated the IT industry in recent years, as it can delivery subscription-based services to users in the pay-as-you-go model. Meanwhile, multimedia cloud computing is emerging based on cloud computing to provide a variety of media services on the Internet. However, with the growing popularity of multimedia cloud computing, its large energy consumption cannot only contribute to greenhouse gas emissions, but also result in the rising of cloud users' costs. Therefore, the multimedia cloud providers should try to minimize its energy consumption as much as possible while satisfying the consumers' resource requirements and guaranteeing quality of service (QoS). In this paper, we have proposed a remaining utilization-aware (RUA) algorithm for virtual machine (VM) placement, and a power-aware algorithm (PA) is proposed to find proper hosts to shut down for energy saving. These two algorithms have been combined and applied to cloud data centers for completing the process of VM consolidation. Simulation results have shown that there exists a trade-off between the cloud data center's energy consumption and service-level agreement (SLA) violations. Besides, the RUA algorithm is able to deal with variable workload to prevent hosts from overloading after VM placement and to reduce the SLA violations dramatically.
An Efficient Virtual Machine Consolidation Scheme for Multimedia Cloud Computing
Han, Guangjie; Que, Wenhui; Jia, Gangyong; Shu, Lei
2016-01-01
Cloud computing has innovated the IT industry in recent years, as it can delivery subscription-based services to users in the pay-as-you-go model. Meanwhile, multimedia cloud computing is emerging based on cloud computing to provide a variety of media services on the Internet. However, with the growing popularity of multimedia cloud computing, its large energy consumption cannot only contribute to greenhouse gas emissions, but also result in the rising of cloud users’ costs. Therefore, the multimedia cloud providers should try to minimize its energy consumption as much as possible while satisfying the consumers’ resource requirements and guaranteeing quality of service (QoS). In this paper, we have proposed a remaining utilization-aware (RUA) algorithm for virtual machine (VM) placement, and a power-aware algorithm (PA) is proposed to find proper hosts to shut down for energy saving. These two algorithms have been combined and applied to cloud data centers for completing the process of VM consolidation. Simulation results have shown that there exists a trade-off between the cloud data center’s energy consumption and service-level agreement (SLA) violations. Besides, the RUA algorithm is able to deal with variable workload to prevent hosts from overloading after VM placement and to reduce the SLA violations dramatically. PMID:26901201
Cloudbus Toolkit for Market-Oriented Cloud Computing
NASA Astrophysics Data System (ADS)
Buyya, Rajkumar; Pandey, Suraj; Vecchiola, Christian
This keynote paper: (1) presents the 21st century vision of computing and identifies various IT paradigms promising to deliver computing as a utility; (2) defines the architecture for creating market-oriented Clouds and computing atmosphere by leveraging technologies such as virtual machines; (3) provides thoughts on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain SLA-oriented resource allocation; (4) presents the work carried out as part of our new Cloud Computing initiative, called Cloudbus: (i) Aneka, a Platform as a Service software system containing SDK (Software Development Kit) for construction of Cloud applications and deployment on private or public Clouds, in addition to supporting market-oriented resource management; (ii) internetworking of Clouds for dynamic creation of federated computing environments for scaling of elastic applications; (iii) creation of 3rd party Cloud brokering services for building content delivery networks and e-Science applications and their deployment on capabilities of IaaS providers such as Amazon along with Grid mashups; (iv) CloudSim supporting modelling and simulation of Clouds for performance studies; (v) Energy Efficient Resource Allocation Mechanisms and Techniques for creation and management of Green Clouds; and (vi) pathways for future research.
USDA-ARS?s Scientific Manuscript database
Infrastructure-as-a-service (IaaS) clouds provide a new medium for deployment of environmental modeling applications. Harnessing advancements in virtualization, IaaS clouds can provide dynamic scalable infrastructure to better support scientific modeling computational demands. Providing scientific m...
Secure Cloud-Based Solutions for Different eHealth Services in Spanish Rural Health Centers.
de la Torre-Díez, Isabel; Lopez-Coronado, Miguel; Garcia-Zapirain Soto, Begonya; Mendez-Zorrilla, Amaia
2015-07-27
The combination of eHealth applications and/or services with cloud technology provides health care staff—with sufficient mobility and accessibility for them—to be able to transparently check any data they may need without having to worry about its physical location. The main aim of this paper is to put forward secure cloud-based solutions for a range of eHealth services such as electronic health records (EHRs), telecardiology, teleconsultation, and telediagnosis. The scenario chosen for introducing the services is a set of four rural health centers located within the same Spanish region. iCanCloud software was used to perform simulations in the proposed scenario. We chose online traffic and the cost per unit in terms of time as the parameters for choosing the secure solution on the most optimum cloud for each service. We suggest that load balancers always be fitted for all solutions in communication together with several Internet service providers and that smartcards be used to maintain identity to an appropriate extent. The solutions offered via private cloud for EHRs, teleconsultation, and telediagnosis services require a volume of online traffic calculated at being able to reach 2 Gbps per consultation. This may entail an average cost of €500/month. The security solutions put forward for each eHealth service constitute an attempt to centralize all information on the cloud, thus offering greater accessibility to medical information in the case of EHRs alongside more reliable diagnoses and treatment for telecardiology, telediagnosis, and teleconsultation services. Therefore, better health care for the rural patient can be obtained at a reasonable cost.
Unidata's Vision for Transforming Geoscience by Moving Data Services and Software to the Cloud
NASA Astrophysics Data System (ADS)
Ramamurthy, Mohan; Fisher, Ward; Yoksas, Tom
2015-04-01
Universities are facing many challenges: shrinking budgets, rapidly evolving information technologies, exploding data volumes, multidisciplinary science requirements, and high expectations from students who have grown up with smartphones and tablets. These changes are upending traditional approaches to accessing and using data and software. Unidata recognizes that its products and services must evolve to support new approaches to research and education. After years of hype and ambiguity, cloud computing is maturing in usability in many areas of science and education, bringing the benefits of virtualized and elastic remote services to infrastructure, software, computation, and data. Cloud environments reduce the amount of time and money spent to procure, install, and maintain new hardware and software, and reduce costs through resource pooling and shared infrastructure. Cloud services aimed at providing any resource, at any time, from any place, using any device are increasingly being embraced by all types of organizations. Given this trend and the enormous potential of cloud-based services, Unidata is taking moving to augment its products, services, data delivery mechanisms and applications to align with the cloud-computing paradigm. Specifically, Unidata is working toward establishing a community-based development environment that supports the creation and use of software services to build end-to-end data workflows. The design encourages the creation of services that can be broken into small, independent chunks that provide simple capabilities. Chunks could be used individually to perform a task, or chained into simple or elaborate workflows. The services will also be portable in the form of downloadable Unidata-in-a-box virtual images, allowing their use in researchers' own cloud-based computing environments. In this talk, we present a vision for Unidata's future in a cloud-enabled data services and discuss our ongoing efforts to deploy a suite of Unidata data services and tools in the Amazon EC2 and Microsoft Azure cloud environments, including the transfer of real-time meteorological data into its cloud instances, product generation using those data, and the deployment of TDS, McIDAS ADDE and AWIPS II data servers and the Integrated Data Server visualization tool.
Reviews on Security Issues and Challenges in Cloud Computing
NASA Astrophysics Data System (ADS)
An, Y. Z.; Zaaba, Z. F.; Samsudin, N. F.
2016-11-01
Cloud computing is an Internet-based computing service provided by the third party allowing share of resources and data among devices. It is widely used in many organizations nowadays and becoming more popular because it changes the way of how the Information Technology (IT) of an organization is organized and managed. It provides lots of benefits such as simplicity and lower costs, almost unlimited storage, least maintenance, easy utilization, backup and recovery, continuous availability, quality of service, automated software integration, scalability, flexibility and reliability, easy access to information, elasticity, quick deployment and lower barrier to entry. While there is increasing use of cloud computing service in this new era, the security issues of the cloud computing become a challenges. Cloud computing must be safe and secure enough to ensure the privacy of the users. This paper firstly lists out the architecture of the cloud computing, then discuss the most common security issues of using cloud and some solutions to the security issues since security is one of the most critical aspect in cloud computing due to the sensitivity of user's data.
Integration of hybrid wireless networks in cloud services oriented enterprise information systems
NASA Astrophysics Data System (ADS)
Li, Shancang; Xu, Lida; Wang, Xinheng; Wang, Jue
2012-05-01
This article presents a hybrid wireless network integration scheme in cloud services-based enterprise information systems (EISs). With the emerging hybrid wireless networks and cloud computing technologies, it is necessary to develop a scheme that can seamlessly integrate these new technologies into existing EISs. By combining the hybrid wireless networks and computing in EIS, a new framework is proposed, which includes frontend layer, middle layer and backend layers connected to IP EISs. Based on a collaborative architecture, cloud services management framework and process diagram are presented. As a key feature, the proposed approach integrates access control functionalities within the hybrid framework that provide users with filtered views on available cloud services based on cloud service access requirements and user security credentials. In future work, we will implement the proposed framework over SwanMesh platform by integrating the UPnP standard into an enterprise information system.
Genomic cloud computing: legal and ethical points to consider
Dove, Edward S; Joly, Yann; Tassé, Anne-Marie; Burton, Paul; Chisholm, Rex; Fortier, Isabel; Goodwin, Pat; Harris, Jennifer; Hveem, Kristian; Kaye, Jane; Kent, Alistair; Knoppers, Bartha Maria; Lindpaintner, Klaus; Little, Julian; Riegman, Peter; Ripatti, Samuli; Stolk, Ronald; Bobrow, Martin; Cambon-Thomsen, Anne; Dressler, Lynn; Joly, Yann; Kato, Kazuto; Knoppers, Bartha Maria; Rodriguez, Laura Lyman; McPherson, Treasa; Nicolás, Pilar; Ouellette, Francis; Romeo-Casabona, Carlos; Sarin, Rajiv; Wallace, Susan; Wiesner, Georgia; Wilson, Julia; Zeps, Nikolajs; Simkevitz, Howard; De Rienzo, Assunta; Knoppers, Bartha M
2015-01-01
The biggest challenge in twenty-first century data-intensive genomic science, is developing vast computer infrastructure and advanced software tools to perform comprehensive analyses of genomic data sets for biomedical research and clinical practice. Researchers are increasingly turning to cloud computing both as a solution to integrate data from genomics, systems biology and biomedical data mining and as an approach to analyze data to solve biomedical problems. Although cloud computing provides several benefits such as lower costs and greater efficiency, it also raises legal and ethical issues. In this article, we discuss three key ‘points to consider' (data control; data security, confidentiality and transfer; and accountability) based on a preliminary review of several publicly available cloud service providers' Terms of Service. These ‘points to consider' should be borne in mind by genomic research organizations when negotiating legal arrangements to store genomic data on a large commercial cloud service provider's servers. Diligent genomic cloud computing means leveraging security standards and evaluation processes as a means to protect data and entails many of the same good practices that researchers should always consider in securing their local infrastructure. PMID:25248396
Genomic cloud computing: legal and ethical points to consider.
Dove, Edward S; Joly, Yann; Tassé, Anne-Marie; Knoppers, Bartha M
2015-10-01
The biggest challenge in twenty-first century data-intensive genomic science, is developing vast computer infrastructure and advanced software tools to perform comprehensive analyses of genomic data sets for biomedical research and clinical practice. Researchers are increasingly turning to cloud computing both as a solution to integrate data from genomics, systems biology and biomedical data mining and as an approach to analyze data to solve biomedical problems. Although cloud computing provides several benefits such as lower costs and greater efficiency, it also raises legal and ethical issues. In this article, we discuss three key 'points to consider' (data control; data security, confidentiality and transfer; and accountability) based on a preliminary review of several publicly available cloud service providers' Terms of Service. These 'points to consider' should be borne in mind by genomic research organizations when negotiating legal arrangements to store genomic data on a large commercial cloud service provider's servers. Diligent genomic cloud computing means leveraging security standards and evaluation processes as a means to protect data and entails many of the same good practices that researchers should always consider in securing their local infrastructure.
The StratusLab cloud distribution: Use-cases and support for scientific applications
NASA Astrophysics Data System (ADS)
Floros, E.
2012-04-01
The StratusLab project is integrating an open cloud software distribution that enables organizations to setup and provide their own private or public IaaS (Infrastructure as a Service) computing clouds. StratusLab distribution capitalizes on popular infrastructure virtualization solutions like KVM, the OpenNebula virtual machine manager, Claudia service manager and SlipStream deployment platform, which are further enhanced and expanded with additional components developed within the project. The StratusLab distribution covers the core aspects of a cloud IaaS architecture, namely Computing (life-cycle management of virtual machines), Storage, Appliance management and Networking. The resulting software stack provides a packaged turn-key solution for deploying cloud computing services. The cloud computing infrastructures deployed using StratusLab can support a wide range of scientific and business use cases. Grid computing has been the primary use case pursued by the project and for this reason the initial priority has been the support for the deployment and operation of fully virtualized production-level grid sites; a goal that has already been achieved by operating such a site as part of EGI's (European Grid Initiative) pan-european grid infrastructure. In this area the project is currently working to provide non-trivial capabilities like elastic and autonomic management of grid site resources. Although grid computing has been the motivating paradigm, StratusLab's cloud distribution can support a wider range of use cases. Towards this direction, we have developed and currently provide support for setting up general purpose computing solutions like Hadoop, MPI and Torque clusters. For what concerns scientific applications the project is collaborating closely with the Bioinformatics community in order to prepare VM appliances and deploy optimized services for bioinformatics applications. In a similar manner additional scientific disciplines like Earth Science can take advantage of StratusLab cloud solutions. Interested users are welcomed to join StratusLab's user community by getting access to the reference cloud services deployed by the project and offered to the public.
Cardiovascular imaging environment: will the future be cloud-based?
Kawel-Boehm, Nadine; Bluemke, David A
2017-07-01
In cardiovascular CT and MR imaging large datasets have to be stored, post-processed, analyzed and distributed. Beside basic assessment of volume and function in cardiac magnetic resonance imaging e.g., more sophisticated quantitative analysis is requested requiring specific software. Several institutions cannot afford various types of software and provide expertise to perform sophisticated analysis. Areas covered: Various cloud services exist related to data storage and analysis specifically for cardiovascular CT and MR imaging. Instead of on-site data storage, cloud providers offer flexible storage services on a pay-per-use basis. To avoid purchase and maintenance of specialized software for cardiovascular image analysis, e.g. to assess myocardial iron overload, MR 4D flow and fractional flow reserve, evaluation can be performed with cloud based software by the consumer or complete analysis is performed by the cloud provider. However, challenges to widespread implementation of cloud services include regulatory issues regarding patient privacy and data security. Expert commentary: If patient privacy and data security is guaranteed cloud imaging is a valuable option to cope with storage of large image datasets and offer sophisticated cardiovascular image analysis for institutions of all sizes.
A price- and-time-slot-negotiation mechanism for Cloud service reservations.
Son, Seokho; Sim, Kwang Mong
2012-06-01
When making reservations for Cloud services, consumers and providers need to establish service-level agreements through negotiation. Whereas it is essential for both a consumer and a provider to reach an agreement on the price of a service and when to use the service, to date, there is little or no negotiation support for both price and time-slot negotiations (PTNs) for Cloud service reservations. This paper presents a multi-issue negotiation mechanism to facilitate the following: 1) PTNs between Cloud agents and 2) tradeoff between price and time-slot utilities. Unlike many existing negotiation mechanisms in which a negotiation agent can only make one proposal at a time, agents in this work are designed to concurrently make multiple proposals in a negotiation round that generate the same aggregated utility, differing only in terms of individual price and time-slot utilities. Another novelty of this work is formulating a novel time-slot utility function that characterizes preferences for different time slots. These ideas are implemented in an agent-based Cloud testbed. Using the testbed, experiments were carried out to compare this work with related approaches. Empirical results show that PTN agents reach faster agreements and achieve higher utilities than other related approaches. A case study was carried out to demonstrate the application of the PTN mechanism for pricing Cloud resources.
Three-Dimensional Space to Assess Cloud Interoperability
2013-03-01
12 1. Portability and Mobility ...collection of network-enabled services that guarantees to provide a scalable, easy accessible, reliable, and personalized computing infrastructure , based on...are used in research to describe cloud models, such as SaaS (Software as a Service), PaaS (Platform as a service), IaaS ( Infrastructure as a Service
Cloud computing applications for biomedical science: A perspective.
Navale, Vivek; Bourne, Philip E
2018-06-01
Biomedical research has become a digital data-intensive endeavor, relying on secure and scalable computing, storage, and network infrastructure, which has traditionally been purchased, supported, and maintained locally. For certain types of biomedical applications, cloud computing has emerged as an alternative to locally maintained traditional computing approaches. Cloud computing offers users pay-as-you-go access to services such as hardware infrastructure, platforms, and software for solving common biomedical computational problems. Cloud computing services offer secure on-demand storage and analysis and are differentiated from traditional high-performance computing by their rapid availability and scalability of services. As such, cloud services are engineered to address big data problems and enhance the likelihood of data and analytics sharing, reproducibility, and reuse. Here, we provide an introductory perspective on cloud computing to help the reader determine its value to their own research.
Cloud computing applications for biomedical science: A perspective
2018-01-01
Biomedical research has become a digital data–intensive endeavor, relying on secure and scalable computing, storage, and network infrastructure, which has traditionally been purchased, supported, and maintained locally. For certain types of biomedical applications, cloud computing has emerged as an alternative to locally maintained traditional computing approaches. Cloud computing offers users pay-as-you-go access to services such as hardware infrastructure, platforms, and software for solving common biomedical computational problems. Cloud computing services offer secure on-demand storage and analysis and are differentiated from traditional high-performance computing by their rapid availability and scalability of services. As such, cloud services are engineered to address big data problems and enhance the likelihood of data and analytics sharing, reproducibility, and reuse. Here, we provide an introductory perspective on cloud computing to help the reader determine its value to their own research. PMID:29902176
The JASMIN Cloud: specialised and hybrid to meet the needs of the Environmental Sciences Community
NASA Astrophysics Data System (ADS)
Kershaw, Philip; Lawrence, Bryan; Churchill, Jonathan; Pritchard, Matt
2014-05-01
Cloud computing provides enormous opportunities for the research community. The large public cloud providers provide near-limitless scaling capability. However, adapting Cloud to scientific workloads is not without its problems. The commodity nature of the public cloud infrastructure can be at odds with the specialist requirements of the research community. Issues such as trust, ownership of data, WAN bandwidth and costing models make additional barriers to more widespread adoption. Alongside the application of public cloud for scientific applications, a number of private cloud initiatives are underway in the research community of which the JASMIN Cloud is one example. Here, cloud service models are being effectively super-imposed over more established services such as data centres, compute cluster facilities and Grids. These have the potential to deliver the specialist infrastructure needed for the science community coupled with the benefits of a Cloud service model. The JASMIN facility based at the Rutherford Appleton Laboratory was established in 2012 to support the data analysis requirements of the climate and Earth Observation community. In its first year of operation, the 5PB of available storage capacity was filled and the hosted compute capability used extensively. JASMIN has modelled the concept of a centralised large-volume data analysis facility. Key characteristics have enabled success: peta-scale fast disk connected via low latency networks to compute resources and the use of virtualisation for effective management of the resources for a range of users. A second phase is now underway funded through NERC's (Natural Environment Research Council) Big Data initiative. This will see significant expansion to the resources available with a doubling of disk-based storage to 12PB and an increase of compute capacity by a factor of ten to over 3000 processing cores. This expansion is accompanied by a broadening in the scope for JASMIN, as a service available to the entire UK environmental science community. Experience with the first phase demonstrated the range of user needs. A trade-off is needed between access privileges to resources, flexibility of use and security. This has influenced the form and types of service under development for the new phase. JASMIN will deploy a specialised private cloud organised into "Managed" and "Unmanaged" components. In the Managed Cloud, users have direct access to the storage and compute resources for optimal performance but for reasons of security, via a more restrictive PaaS (Platform-as-a-Service) interface. The Unmanaged Cloud is deployed in an isolated part of the network but co-located with the rest of the infrastructure. This enables greater liberty to tenants - full IaaS (Infrastructure-as-a-Service) capability to provision customised infrastructure - whilst at the same time protecting more sensitive parts of the system from direct access using these elevated privileges. The private cloud will be augmented with cloud-bursting capability so that it can exploit the resources available from public clouds, making it effectively a hybrid solution. A single interface will overlay the functionality of both the private cloud and external interfaces to public cloud providers giving users the flexibility to migrate resources between infrastructures as requirements dictate.
Secure Cloud-Based Solutions for Different eHealth Services in Spanish Rural Health Centers
2015-01-01
Background The combination of eHealth applications and/or services with cloud technology provides health care staff—with sufficient mobility and accessibility for them—to be able to transparently check any data they may need without having to worry about its physical location. Objective The main aim of this paper is to put forward secure cloud-based solutions for a range of eHealth services such as electronic health records (EHRs), telecardiology, teleconsultation, and telediagnosis. Methods The scenario chosen for introducing the services is a set of four rural health centers located within the same Spanish region. iCanCloud software was used to perform simulations in the proposed scenario. We chose online traffic and the cost per unit in terms of time as the parameters for choosing the secure solution on the most optimum cloud for each service. Results We suggest that load balancers always be fitted for all solutions in communication together with several Internet service providers and that smartcards be used to maintain identity to an appropriate extent. The solutions offered via private cloud for EHRs, teleconsultation, and telediagnosis services require a volume of online traffic calculated at being able to reach 2 Gbps per consultation. This may entail an average cost of €500/month. Conclusions The security solutions put forward for each eHealth service constitute an attempt to centralize all information on the cloud, thus offering greater accessibility to medical information in the case of EHRs alongside more reliable diagnoses and treatment for telecardiology, telediagnosis, and teleconsultation services. Therefore, better health care for the rural patient can be obtained at a reasonable cost. PMID:26215155
Cloud-based hospital information system as a service for grassroots healthcare institutions.
Yao, Qin; Han, Xiong; Ma, Xi-Kun; Xue, Yi-Feng; Chen, Yi-Jun; Li, Jing-Song
2014-09-01
Grassroots healthcare institutions (GHIs) are the smallest administrative levels of medical institutions, where most patients access health services. The latest report from the National Bureau of Statistics of China showed that 96.04 % of 950,297 medical institutions in China were at the grassroots level in 2012, including county-level hospitals, township central hospitals, community health service centers, and rural clinics. In developing countries, these institutions are facing challenges involving a shortage of funds and talent, inconsistent medical standards, inefficient information sharing, and difficulties in management during the adoption of health information technologies (HIT). Because of the necessity and gravity for GHIs, our aim is to provide hospital information services for GHIs using Cloud computing technologies and service modes. In this medical scenario, the computing resources are pooled by means of a Cloud-based Virtual Desktop Infrastructure (VDI) to serve multiple GHIs, with different hospital information systems dynamically assigned and reassigned according to demand. This paper is concerned with establishing a Cloud-based Hospital Information Service Center to provide hospital information software as a service (HI-SaaS) with the aim of providing GHIs with an attractive and high-performance medical information service. Compared with individually establishing all hospital information systems, this approach is more cost-effective and affordable for GHIs and does not compromise HIT performance.
Migrating To The Cloud: Preparing The USMC CDET For MCEITS
2016-03-01
Service SAAR System Authorization Access Request SaaS Software as a... Service (IaaS), Platform as a Service (PaaS), Software as a Service ( SaaS ), and Data as a Service (DaaS) (Takai, 2012). A closer examination of each...8 3. Software as a Service NIST described SaaS as a model of cloud computing where the service provider offers its customers fee-based access
Pervez, Zeeshan; Ahmad, Mahmood; Khattak, Asad Masood; Lee, Sungyoung; Chung, Tae Choong
2016-01-01
Privacy-aware search of outsourced data ensures relevant data access in the untrusted domain of a public cloud service provider. Subscriber of a public cloud storage service can determine the presence or absence of a particular keyword by submitting search query in the form of a trapdoor. However, these trapdoor-based search queries are limited in functionality and cannot be used to identify secure outsourced data which contains semantically equivalent information. In addition, trapdoor-based methodologies are confined to pre-defined trapdoors and prevent subscribers from searching outsourced data with arbitrarily defined search criteria. To solve the problem of relevant data access, we have proposed an index-based privacy-aware search methodology that ensures semantic retrieval of data from an untrusted domain. This method ensures oblivious execution of a search query and leverages authorized subscribers to model conjunctive search queries without relying on predefined trapdoors. A security analysis of our proposed methodology shows that, in a conspired attack, unauthorized subscribers and untrusted cloud service providers cannot deduce any information that can lead to the potential loss of data privacy. A computational time analysis on commodity hardware demonstrates that our proposed methodology requires moderate computational resources to model a privacy-aware search query and for its oblivious evaluation on a cloud service provider.
Pervez, Zeeshan; Ahmad, Mahmood; Khattak, Asad Masood; Lee, Sungyoung; Chung, Tae Choong
2016-01-01
Privacy-aware search of outsourced data ensures relevant data access in the untrusted domain of a public cloud service provider. Subscriber of a public cloud storage service can determine the presence or absence of a particular keyword by submitting search query in the form of a trapdoor. However, these trapdoor-based search queries are limited in functionality and cannot be used to identify secure outsourced data which contains semantically equivalent information. In addition, trapdoor-based methodologies are confined to pre-defined trapdoors and prevent subscribers from searching outsourced data with arbitrarily defined search criteria. To solve the problem of relevant data access, we have proposed an index-based privacy-aware search methodology that ensures semantic retrieval of data from an untrusted domain. This method ensures oblivious execution of a search query and leverages authorized subscribers to model conjunctive search queries without relying on predefined trapdoors. A security analysis of our proposed methodology shows that, in a conspired attack, unauthorized subscribers and untrusted cloud service providers cannot deduce any information that can lead to the potential loss of data privacy. A computational time analysis on commodity hardware demonstrates that our proposed methodology requires moderate computational resources to model a privacy-aware search query and for its oblivious evaluation on a cloud service provider. PMID:27571421
Service-oriented Software Defined Optical Networks for Cloud Computing
NASA Astrophysics Data System (ADS)
Liu, Yuze; Li, Hui; Ji, Yuefeng
2017-10-01
With the development of big data and cloud computing technology, the traditional software-defined network is facing new challenges (e.g., ubiquitous accessibility, higher bandwidth, more flexible management and greater security). This paper proposes a new service-oriented software defined optical network architecture, including a resource layer, a service abstract layer, a control layer and an application layer. We then dwell on the corresponding service providing method. Different service ID is used to identify the service a device can offer. Finally, we experimentally evaluate that proposed service providing method can be applied to transmit different services based on the service ID in the service-oriented software defined optical network.
Game Theory Based Trust Model for Cloud Environment
Gokulnath, K.; Uthariaraj, Rhymend
2015-01-01
The aim of this work is to propose a method to establish trust at bootload level in cloud computing environment. This work proposes a game theoretic based approach for achieving trust at bootload level of both resources and users perception. Nash equilibrium (NE) enhances the trust evaluation of the first-time users and providers. It also restricts the service providers and the users to violate service level agreement (SLA). Significantly, the problem of cold start and whitewashing issues are addressed by the proposed method. In addition appropriate mapping of cloud user's application to cloud service provider for segregating trust level is achieved as a part of mapping. Thus, time complexity and space complexity are handled efficiently. Experiments were carried out to compare and contrast the performance of the conventional methods and the proposed method. Several metrics like execution time, accuracy, error identification, and undecidability of the resources were considered. PMID:26380365
NASA Astrophysics Data System (ADS)
Nguyen, L.; Chee, T.; Palikonda, R.; Smith, W. L., Jr.; Bedka, K. M.; Spangenberg, D.; Vakhnin, A.; Lutz, N. E.; Walter, J.; Kusterer, J.
2017-12-01
Cloud Computing offers new opportunities for large-scale scientific data producers to utilize Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) IT resources to process and deliver data products in an operational environment where timely delivery, reliability, and availability are critical. The NASA Langley Research Center Atmospheric Science Data Center (ASDC) is building and testing a private and public facing cloud for users in the Science Directorate to utilize as an everyday production environment. The NASA SatCORPS (Satellite ClOud and Radiation Property Retrieval System) team processes and derives near real-time (NRT) global cloud products from operational geostationary (GEO) satellite imager datasets. To deliver these products, we will utilize the public facing cloud and OpenShift to deploy a load-balanced webserver for data storage, access, and dissemination. The OpenStack private cloud will host data ingest and computational capabilities for SatCORPS processing. This paper will discuss the SatCORPS migration towards, and usage of, the ASDC Cloud Services in an operational environment. Detailed lessons learned from use of prior cloud providers, specifically the Amazon Web Services (AWS) GovCloud and the Government Cloud administered by the Langley Managed Cloud Environment (LMCE) will also be discussed.
NASA Astrophysics Data System (ADS)
Farroha, Bassam S.; Farroha, Deborah L.
2011-06-01
The new corporate approach to efficient processing and storage is migrating from in-house service-center services to the newly coined approach of Cloud Computing. This approach advocates thin clients and providing services by the service provider over time-shared resources. The concept is not new, however the implementation approach presents a strategic shift in the way organizations provision and manage their IT resources. The requirements on some of the data sets targeted to be run on the cloud vary depending on the data type, originator, user, and confidentiality level. Additionally, the systems that fuse such data would have to deal with the classifying the product and clearing the computing resources prior to allowing new application to be executed. This indicates that we could end up with a multi-level security system that needs to follow specific rules and can send the output to a protected network and systems in order not to have data spill or contaminated resources. The paper discusses these requirements and potential impact on the cloud architecture. Additionally, the paper discusses the unexpected advantages of the cloud framework providing a sophisticated environment for information sharing and data mining.
Security Certification Challenges in a Cloud Computing Delivery Model
2010-04-27
Relevant Security Standards, Certifications, and Guidance NIST SP 800 series ISO /IEC 27001 framework Cloud Security Alliance Statement of...CSA Domains / Cloud Features ISO 27001 Cloud Service Provider Responsibility Government Agency Responsibility Analyze Security gaps Compensating
Dong, Yu-Shuang; Xu, Gao-Chao; Fu, Xiao-Dong
2014-01-01
The cloud platform provides various services to users. More and more cloud centers provide infrastructure as the main way of operating. To improve the utilization rate of the cloud center and to decrease the operating cost, the cloud center provides services according to requirements of users by sharding the resources with virtualization. Considering both QoS for users and cost saving for cloud computing providers, we try to maximize performance and minimize energy cost as well. In this paper, we propose a distributed parallel genetic algorithm (DPGA) of placement strategy for virtual machines deployment on cloud platform. It executes the genetic algorithm parallelly and distributedly on several selected physical hosts in the first stage. Then it continues to execute the genetic algorithm of the second stage with solutions obtained from the first stage as the initial population. The solution calculated by the genetic algorithm of the second stage is the optimal one of the proposed approach. The experimental results show that the proposed placement strategy of VM deployment can ensure QoS for users and it is more effective and more energy efficient than other placement strategies on the cloud platform. PMID:25097872
Dong, Yu-Shuang; Xu, Gao-Chao; Fu, Xiao-Dong
2014-01-01
The cloud platform provides various services to users. More and more cloud centers provide infrastructure as the main way of operating. To improve the utilization rate of the cloud center and to decrease the operating cost, the cloud center provides services according to requirements of users by sharding the resources with virtualization. Considering both QoS for users and cost saving for cloud computing providers, we try to maximize performance and minimize energy cost as well. In this paper, we propose a distributed parallel genetic algorithm (DPGA) of placement strategy for virtual machines deployment on cloud platform. It executes the genetic algorithm parallelly and distributedly on several selected physical hosts in the first stage. Then it continues to execute the genetic algorithm of the second stage with solutions obtained from the first stage as the initial population. The solution calculated by the genetic algorithm of the second stage is the optimal one of the proposed approach. The experimental results show that the proposed placement strategy of VM deployment can ensure QoS for users and it is more effective and more energy efficient than other placement strategies on the cloud platform.
A Secure and Efficient Audit Mechanism for Dynamic Shared Data in Cloud Storage
2014-01-01
With popularization of cloud services, multiple users easily share and update their data through cloud storage. For data integrity and consistency in the cloud storage, the audit mechanisms were proposed. However, existing approaches have some security vulnerabilities and require a lot of computational overheads. This paper proposes a secure and efficient audit mechanism for dynamic shared data in cloud storage. The proposed scheme prevents a malicious cloud service provider from deceiving an auditor. Moreover, it devises a new index table management method and reduces the auditing cost by employing less complex operations. We prove the resistance against some attacks and show less computation cost and shorter time for auditing when compared with conventional approaches. The results present that the proposed scheme is secure and efficient for cloud storage services managing dynamic shared data. PMID:24959630
A secure and efficient audit mechanism for dynamic shared data in cloud storage.
Kwon, Ohmin; Koo, Dongyoung; Shin, Yongjoo; Yoon, Hyunsoo
2014-01-01
With popularization of cloud services, multiple users easily share and update their data through cloud storage. For data integrity and consistency in the cloud storage, the audit mechanisms were proposed. However, existing approaches have some security vulnerabilities and require a lot of computational overheads. This paper proposes a secure and efficient audit mechanism for dynamic shared data in cloud storage. The proposed scheme prevents a malicious cloud service provider from deceiving an auditor. Moreover, it devises a new index table management method and reduces the auditing cost by employing less complex operations. We prove the resistance against some attacks and show less computation cost and shorter time for auditing when compared with conventional approaches. The results present that the proposed scheme is secure and efficient for cloud storage services managing dynamic shared data.
2014-01-01
and software as a service ( SaaS )) for staff’s abnormal behavior that may indicate an insider incident. As mentioned above, combining SIEM data...Mellon Software Engineering Institute, contacted commercial and government cloud service providers (CSPs) to better understand the administrative and...availability services . We have observed a number of scenarios in which a customer leaves a CSP’s IaaS, PaaS, or SaaS , but its data remains online for some
The Role of Networks in Cloud Computing
NASA Astrophysics Data System (ADS)
Lin, Geng; Devine, Mac
The confluence of technology advancements and business developments in Broadband Internet, Web services, computing systems, and application software over the past decade has created a perfect storm for cloud computing. The "cloud model" of delivering and consuming IT functions as services is poised to fundamentally transform the IT industry and rebalance the inter-relationships among end users, enterprise IT, software companies, and the service providers in the IT ecosystem (Armbrust et al., 2009; Lin, Fu, Zhu, & Dasmalchi, 2009).
Performance Analysis of Cloud Computing Architectures Using Discrete Event Simulation
NASA Technical Reports Server (NTRS)
Stocker, John C.; Golomb, Andrew M.
2011-01-01
Cloud computing offers the economic benefit of on-demand resource allocation to meet changing enterprise computing needs. However, the flexibility of cloud computing is disadvantaged when compared to traditional hosting in providing predictable application and service performance. Cloud computing relies on resource scheduling in a virtualized network-centric server environment, which makes static performance analysis infeasible. We developed a discrete event simulation model to evaluate the overall effectiveness of organizations in executing their workflow in traditional and cloud computing architectures. The two part model framework characterizes both the demand using a probability distribution for each type of service request as well as enterprise computing resource constraints. Our simulations provide quantitative analysis to design and provision computing architectures that maximize overall mission effectiveness. We share our analysis of key resource constraints in cloud computing architectures and findings on the appropriateness of cloud computing in various applications.
Cloud based emergency health care information service in India.
Karthikeyan, N; Sukanesh, R
2012-12-01
A hospital is a health care organization providing patient treatment by expert physicians, surgeons and equipments. A report from a health care accreditation group says that miscommunication between patients and health care providers is the reason for the gap in providing emergency medical care to people in need. In developing countries, illiteracy is the major key root for deaths resulting from uncertain diseases constituting a serious public health problem. Mentally affected, differently abled and unconscious patients can't communicate about their medical history to the medical practitioners. Also, Medical practitioners can't edit or view DICOM images instantly. Our aim is to provide palm vein pattern recognition based medical record retrieval system, using cloud computing for the above mentioned people. Distributed computing technology is coming in the new forms as Grid computing and Cloud computing. These new forms are assured to bring Information Technology (IT) as a service. In this paper, we have described how these new forms of distributed computing will be helpful for modern health care industries. Cloud Computing is germinating its benefit to industrial sectors especially in medical scenarios. In Cloud Computing, IT-related capabilities and resources are provided as services, via the distributed computing on-demand. This paper is concerned with sprouting software as a service (SaaS) by means of Cloud computing with an aim to bring emergency health care sector in an umbrella with physical secured patient records. In framing the emergency healthcare treatment, the crucial thing considered necessary to decide about patients is their previous health conduct records. Thus a ubiquitous access to appropriate records is essential. Palm vein pattern recognition promises a secured patient record access. Likewise our paper reveals an efficient means to view, edit or transfer the DICOM images instantly which was a challenging task for medical practitioners in the past years. We have developed two services for health care. 1. Cloud based Palm vein recognition system 2. Distributed Medical image processing tools for medical practitioners.
Cloud based intelligent system for delivering health care as a service.
Kaur, Pankaj Deep; Chana, Inderveer
2014-01-01
The promising potential of cloud computing and its convergence with technologies such as mobile computing, wireless networks, sensor technologies allows for creation and delivery of newer type of cloud services. In this paper, we advocate the use of cloud computing for the creation and management of cloud based health care services. As a representative case study, we design a Cloud Based Intelligent Health Care Service (CBIHCS) that performs real time monitoring of user health data for diagnosis of chronic illness such as diabetes. Advance body sensor components are utilized to gather user specific health data and store in cloud based storage repositories for subsequent analysis and classification. In addition, infrastructure level mechanisms are proposed to provide dynamic resource elasticity for CBIHCS. Experimental results demonstrate that classification accuracy of 92.59% is achieved with our prototype system and the predicted patterns of CPU usage offer better opportunities for adaptive resource elasticity. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Ramírez De La Pinta, Javier; Maestre Torreblanca, José María; Jurado, Isabel; Reyes De Cozar, Sergio
2017-03-06
In this paper, we explore the possibilities offered by the integration of home automation systems and service robots. In particular, we examine how advanced computationally expensive services can be provided by using a cloud computing approach to overcome the limitations of the hardware available at the user's home. To this end, we integrate two wireless low-cost, off-the-shelf systems in this work, namely, the service robot Rovio and the home automation system Z-wave. Cloud computing is used to enhance the capabilities of these systems so that advanced sensing and interaction services based on image processing and voice recognition can be offered.
Off the Shelf Cloud Robotics for the Smart Home: Empowering a Wireless Robot through Cloud Computing
Ramírez De La Pinta, Javier; Maestre Torreblanca, José María; Jurado, Isabel; Reyes De Cozar, Sergio
2017-01-01
In this paper, we explore the possibilities offered by the integration of home automation systems and service robots. In particular, we examine how advanced computationally expensive services can be provided by using a cloud computing approach to overcome the limitations of the hardware available at the user’s home. To this end, we integrate two wireless low-cost, off-the-shelf systems in this work, namely, the service robot Rovio and the home automation system Z-wave. Cloud computing is used to enhance the capabilities of these systems so that advanced sensing and interaction services based on image processing and voice recognition can be offered. PMID:28272305
Implementing a New Cloud Computing Library Management Service: A Symbiotic Approach
ERIC Educational Resources Information Center
Dula, Michael; Jacobsen, Lynne; Ferguson, Tyler; Ross, Rob
2012-01-01
This article presents the story of how Pepperdine University migrated its library management functions to the cloud using what is now known as OCLC's WorldShare Management Services (WMS). The story of implementing this new service is told from two vantage points: (1) that of the library; and (2) that of the service provider. The authors were the…
Default Parallels Plesk Panel Page
services that small businesses want and need. Our software includes key building blocks of cloud service virtualized servers Service Provider Products Parallels® Automation Hosting, SaaS, and cloud computing , the leading hosting automation software. You see this page because there is no Web site at this
Silva, Luís A Bastião; Costa, Carlos; Oliveira, José Luis
2013-05-01
Healthcare institutions worldwide have adopted picture archiving and communication system (PACS) for enterprise access to images, relying on Digital Imaging Communication in Medicine (DICOM) standards for data exchange. However, communication over a wider domain of independent medical institutions is not well standardized. A DICOM-compliant bridge was developed for extending and sharing DICOM services across healthcare institutions without requiring complex network setups or dedicated communication channels. A set of DICOM routers interconnected through a public cloud infrastructure was implemented to support medical image exchange among institutions. Despite the advantages of cloud computing, new challenges were encountered regarding data privacy, particularly when medical data are transmitted over different domains. To address this issue, a solution was introduced by creating a ciphered data channel between the entities sharing DICOM services. Two main DICOM services were implemented in the bridge: Storage and Query/Retrieve. The performance measures demonstrated it is quite simple to exchange information and processes between several institutions. The solution can be integrated with any currently installed PACS-DICOM infrastructure. This method works transparently with well-known cloud service providers. Cloud computing was introduced to augment enterprise PACS by providing standard medical imaging services across different institutions, offering communication privacy and enabling creation of wider PACS scenarios with suitable technical solutions.
Symmetrical compression distance for arrhythmia discrimination in cloud-based big-data services.
Lillo-Castellano, J M; Mora-Jiménez, I; Santiago-Mozos, R; Chavarría-Asso, F; Cano-González, A; García-Alberola, A; Rojo-Álvarez, J L
2015-07-01
The current development of cloud computing is completely changing the paradigm of data knowledge extraction in huge databases. An example of this technology in the cardiac arrhythmia field is the SCOOP platform, a national-level scientific cloud-based big data service for implantable cardioverter defibrillators. In this scenario, we here propose a new methodology for automatic classification of intracardiac electrograms (EGMs) in a cloud computing system, designed for minimal signal preprocessing. A new compression-based similarity measure (CSM) is created for low computational burden, so-called weighted fast compression distance, which provides better performance when compared with other CSMs in the literature. Using simple machine learning techniques, a set of 6848 EGMs extracted from SCOOP platform were classified into seven cardiac arrhythmia classes and one noise class, reaching near to 90% accuracy when previous patient arrhythmia information was available and 63% otherwise, hence overcoming in all cases the classification provided by the majority class. Results show that this methodology can be used as a high-quality service of cloud computing, providing support to physicians for improving the knowledge on patient diagnosis.
Near-Real-Time Cloud Auditing for Rapid Response
2013-10-01
cloud auditing , which provides timely evaluation results and rapid response, is the key to assuring the cloud. In this paper, we discuss security and...providers with possible automation of the audit , assertion, assessment, and assurance of their services. The Cloud Security Alliance (CSA [15]) was formed...monitoring tools, research literature, standards, and other resources related to IA (Information Assurance ) metrics and IT auditing . In the following
Geometric Data Perturbation-Based Personal Health Record Transactions in Cloud Computing
Balasubramaniam, S.; Kavitha, V.
2015-01-01
Cloud computing is a new delivery model for information technology services and it typically involves the provision of dynamically scalable and often virtualized resources over the Internet. However, cloud computing raises concerns on how cloud service providers, user organizations, and governments should handle such information and interactions. Personal health records represent an emerging patient-centric model for health information exchange, and they are outsourced for storage by third parties, such as cloud providers. With these records, it is necessary for each patient to encrypt their own personal health data before uploading them to cloud servers. Current techniques for encryption primarily rely on conventional cryptographic approaches. However, key management issues remain largely unsolved with these cryptographic-based encryption techniques. We propose that personal health record transactions be managed using geometric data perturbation in cloud computing. In our proposed scheme, the personal health record database is perturbed using geometric data perturbation and outsourced to the Amazon EC2 cloud. PMID:25767826
Geometric data perturbation-based personal health record transactions in cloud computing.
Balasubramaniam, S; Kavitha, V
2015-01-01
Cloud computing is a new delivery model for information technology services and it typically involves the provision of dynamically scalable and often virtualized resources over the Internet. However, cloud computing raises concerns on how cloud service providers, user organizations, and governments should handle such information and interactions. Personal health records represent an emerging patient-centric model for health information exchange, and they are outsourced for storage by third parties, such as cloud providers. With these records, it is necessary for each patient to encrypt their own personal health data before uploading them to cloud servers. Current techniques for encryption primarily rely on conventional cryptographic approaches. However, key management issues remain largely unsolved with these cryptographic-based encryption techniques. We propose that personal health record transactions be managed using geometric data perturbation in cloud computing. In our proposed scheme, the personal health record database is perturbed using geometric data perturbation and outsourced to the Amazon EC2 cloud.
NASA Astrophysics Data System (ADS)
Meertens, C. M.; Boler, F. M.; Ertz, D. J.; Mencin, D.; Phillips, D.; Baker, S.
2017-12-01
UNAVCO, in its role as a NSF facility for geodetic infrastructure and data, has succeeded for over two decades using on-premises infrastructure, and while the promise of cloud-based infrastructure is well-established, significant questions about suitability of such infrastructure for facility-scale services remain. Primarily through the GeoSciCloud award from NSF EarthCube, UNAVCO is investigating the costs, advantages, and disadvantages of providing its geodetic data and services in the cloud versus using UNAVCO's on-premises infrastructure. (IRIS is a collaborator on the project and is performing its own suite of investigations). In contrast to the 2-3 year time scale for the research cycle, the time scale of operation and planning for NSF facilities is for a minimum of five years and for some services extends to a decade or more. Planning for on-premises infrastructure is deliberate, and migrations typically take months to years to fully implement. Migrations to a cloud environment can only go forward with similar deliberate planning and understanding of all costs and benefits. The EarthCube GeoSciCloud project is intended to address the uncertainties of facility-level operations in the cloud. Investigations are being performed in a commercial cloud environment (Amazon AWS) during the first year of the project and in a private cloud environment (NSF XSEDE resource at the Texas Advanced Computing Center) during the second year. These investigations are expected to illuminate the potential as well as the limitations of running facility scale production services in the cloud. The work includes running parallel equivalent cloud-based services to on premises services and includes: data serving via ftp from a large data store, operation of a metadata database, production scale processing of multiple months of geodetic data, web services delivery of quality checked data and products, large-scale compute services for event post-processing, and serving real time data from a network of 700-plus GPS stations. The evaluation is based on a suite of metrics that we have developed to elucidate the effectiveness of cloud-based services in price, performance, and management. Services are currently running in AWS and evaluation is underway.
NASA Astrophysics Data System (ADS)
Khan, Kashif A.; Wang, Qi; Luo, Chunbo; Wang, Xinheng; Grecos, Christos
2014-05-01
Mobile cloud computing is receiving world-wide momentum for ubiquitous on-demand cloud services for mobile users provided by Amazon, Google etc. with low capital cost. However, Internet-centric clouds introduce wide area network (WAN) delays that are often intolerable for real-time applications such as video streaming. One promising approach to addressing this challenge is to deploy decentralized mini-cloud facility known as cloudlets to enable localized cloud services. When supported by local wireless connectivity, a wireless cloudlet is expected to offer low cost and high performance cloud services for the users. In this work, we implement a realistic framework that comprises both a popular Internet cloud (Amazon Cloud) and a real-world cloudlet (based on Ubuntu Enterprise Cloud (UEC)) for mobile cloud users in a wireless mesh network. We focus on real-time video streaming over the HTTP standard and implement a typical application. We further perform a comprehensive comparative analysis and empirical evaluation of the application's performance when it is delivered over the Internet cloud and the cloudlet respectively. The study quantifies the influence of the two different cloud networking architectures on supporting real-time video streaming. We also enable movement of the users in the wireless mesh network and investigate the effect of user's mobility on mobile cloud computing over the cloudlet and Amazon cloud respectively. Our experimental results demonstrate the advantages of the cloudlet paradigm over its Internet cloud counterpart in supporting the quality of service of real-time applications.
Unidata Cyberinfrastructure in the Cloud
NASA Astrophysics Data System (ADS)
Ramamurthy, M. K.; Young, J. W.
2016-12-01
Data services, software, and user support are critical components of geosciences cyber-infrastructure to help researchers to advance science. With the maturity of and significant advances in cloud computing, it has recently emerged as an alternative new paradigm for developing and delivering a broad array of services over the Internet. Cloud computing is now mature enough in usability in many areas of science and education, bringing the benefits of virtualized and elastic remote services to infrastructure, software, computation, and data. Cloud environments reduce the amount of time and money spent to procure, install, and maintain new hardware and software, and reduce costs through resource pooling and shared infrastructure. Given the enormous potential of cloud-based services, Unidata has been moving to augment its software, services, data delivery mechanisms to align with the cloud-computing paradigm. To realize the above vision, Unidata has worked toward: * Providing access to many types of data from a cloud (e.g., via the THREDDS Data Server, RAMADDA and EDEX servers); * Deploying data-proximate tools to easily process, analyze, and visualize those data in a cloud environment cloud for consumption by any one, by any device, from anywhere, at any time; * Developing and providing a range of pre-configured and well-integrated tools and services that can be deployed by any university in their own private or public cloud settings. Specifically, Unidata has developed Docker for "containerized applications", making them easy to deploy. Docker helps to create "disposable" installs and eliminates many configuration challenges. Containerized applications include tools for data transport, access, analysis, and visualization: THREDDS Data Server, Integrated Data Viewer, GEMPAK, Local Data Manager, RAMADDA Data Server, and Python tools; * Leveraging Jupyter as a central platform and hub with its powerful set of interlinking tools to connect interactively data servers, Python scientific libraries, scripts, and workflows; * Exploring end-to-end modeling and prediction capabilities in the cloud; * Partnering with NOAA and public cloud vendors (e.g., Amazon and OCC) on the NOAA Big Data Project to harness their capabilities and resources for the benefit of the academic community.
Scientific Data Storage for Cloud Computing
NASA Astrophysics Data System (ADS)
Readey, J.
2014-12-01
Traditionally data storage used for geophysical software systems has centered on file-based systems and libraries such as NetCDF and HDF5. In contrast cloud based infrastructure providers such as Amazon AWS, Microsoft Azure, and the Google Cloud Platform generally provide storage technologies based on an object based storage service (for large binary objects) complemented by a database service (for small objects that can be represented as key-value pairs). These systems have been shown to be highly scalable, reliable, and cost effective. We will discuss a proposed system that leverages these cloud-based storage technologies to provide an API-compatible library for traditional NetCDF and HDF5 applications. This system will enable cloud storage suitable for geophysical applications that can scale up to petabytes of data and thousands of users. We'll also cover other advantages of this system such as enhanced metadata search.
Performance Evaluation of Resource Management in Cloud Computing Environments.
Batista, Bruno Guazzelli; Estrella, Julio Cezar; Ferreira, Carlos Henrique Gomes; Filho, Dionisio Machado Leite; Nakamura, Luis Hideo Vasconcelos; Reiff-Marganiec, Stephan; Santana, Marcos José; Santana, Regina Helena Carlucci
2015-01-01
Cloud computing is a computational model in which resource providers can offer on-demand services to clients in a transparent way. However, to be able to guarantee quality of service without limiting the number of accepted requests, providers must be able to dynamically manage the available resources so that they can be optimized. This dynamic resource management is not a trivial task, since it involves meeting several challenges related to workload modeling, virtualization, performance modeling, deployment and monitoring of applications on virtualized resources. This paper carries out a performance evaluation of a module for resource management in a cloud environment that includes handling available resources during execution time and ensuring the quality of service defined in the service level agreement. An analysis was conducted of different resource configurations to define which dimension of resource scaling has a real influence on client requests. The results were used to model and implement a simulated cloud system, in which the allocated resource can be changed on-the-fly, with a corresponding change in price. In this way, the proposed module seeks to satisfy both the client by ensuring quality of service, and the provider by ensuring the best use of resources at a fair price.
Performance Evaluation of Resource Management in Cloud Computing Environments
Batista, Bruno Guazzelli; Estrella, Julio Cezar; Ferreira, Carlos Henrique Gomes; Filho, Dionisio Machado Leite; Nakamura, Luis Hideo Vasconcelos; Reiff-Marganiec, Stephan; Santana, Marcos José; Santana, Regina Helena Carlucci
2015-01-01
Cloud computing is a computational model in which resource providers can offer on-demand services to clients in a transparent way. However, to be able to guarantee quality of service without limiting the number of accepted requests, providers must be able to dynamically manage the available resources so that they can be optimized. This dynamic resource management is not a trivial task, since it involves meeting several challenges related to workload modeling, virtualization, performance modeling, deployment and monitoring of applications on virtualized resources. This paper carries out a performance evaluation of a module for resource management in a cloud environment that includes handling available resources during execution time and ensuring the quality of service defined in the service level agreement. An analysis was conducted of different resource configurations to define which dimension of resource scaling has a real influence on client requests. The results were used to model and implement a simulated cloud system, in which the allocated resource can be changed on-the-fly, with a corresponding change in price. In this way, the proposed module seeks to satisfy both the client by ensuring quality of service, and the provider by ensuring the best use of resources at a fair price. PMID:26555730
Context-aware distributed cloud computing using CloudScheduler
NASA Astrophysics Data System (ADS)
Seuster, R.; Leavett-Brown, CR; Casteels, K.; Driemel, C.; Paterson, M.; Ring, D.; Sobie, RJ; Taylor, RP; Weldon, J.
2017-10-01
The distributed cloud using the CloudScheduler VM provisioning service is one of the longest running systems for HEP workloads. It has run millions of jobs for ATLAS and Belle II over the past few years using private and commercial clouds around the world. Our goal is to scale the distributed cloud to the 10,000-core level, with the ability to run any type of application (low I/O, high I/O and high memory) on any cloud. To achieve this goal, we have been implementing changes that utilize context-aware computing designs that are currently employed in the mobile communication industry. Context-awareness makes use of real-time and archived data to respond to user or system requirements. In our distributed cloud, we have many opportunistic clouds with no local HEP services, software or storage repositories. A context-aware design significantly improves the reliability and performance of our system by locating the nearest location of the required services. We describe how we are collecting and managing contextual information from our workload management systems, the clouds, the virtual machines and our services. This information is used not only to monitor the system but also to carry out automated corrective actions. We are incrementally adding new alerting and response services to our distributed cloud. This will enable us to scale the number of clouds and virtual machines. Further, a context-aware design will enable us to run analysis or high I/O application on opportunistic clouds. We envisage an open-source HTTP data federation (for example, the DynaFed system at CERN) as a service that would provide us access to existing storage elements used by the HEP experiments.
A Model for Trust-based Access Control and Delegation in Mobile Clouds (Post Print)
2013-10-01
the access-granter knowing the identity of access requester beforehand and authenticating the requester, can no longer be applied. Mobile Wallet Cloud...TktC) for a reservation and con- tacts the user’s mobile wallet provider (MobWC) to purchase the ticket from TktC. For accessing different services...receiving regular services. For example, the human user in our scenario can be an elite member with the mobile wallet service provider that
Making Spatial Statistics Service Accessible On Cloud Platform
NASA Astrophysics Data System (ADS)
Mu, X.; Wu, J.; Li, T.; Zhong, Y.; Gao, X.
2014-04-01
Web service can bring together applications running on diverse platforms, users can access and share various data, information and models more effectively and conveniently from certain web service platform. Cloud computing emerges as a paradigm of Internet computing in which dynamical, scalable and often virtualized resources are provided as services. With the rampant growth of massive data and restriction of net, traditional web services platforms have some prominent problems existing in development such as calculation efficiency, maintenance cost and data security. In this paper, we offer a spatial statistics service based on Microsoft cloud. An experiment was carried out to evaluate the availability and efficiency of this service. The results show that this spatial statistics service is accessible for the public conveniently with high processing efficiency.
Integrating Cloud-Computing-Specific Model into Aircraft Design
NASA Astrophysics Data System (ADS)
Zhimin, Tian; Qi, Lin; Guangwen, Yang
Cloud Computing is becoming increasingly relevant, as it will enable companies involved in spreading this technology to open the door to Web 3.0. In the paper, the new categories of services introduced will slowly replace many types of computational resources currently used. In this perspective, grid computing, the basic element for the large scale supply of cloud services, will play a fundamental role in defining how those services will be provided. The paper tries to integrate cloud computing specific model into aircraft design. This work has acquired good results in sharing licenses of large scale and expensive software, such as CFD (Computational Fluid Dynamics), UG, CATIA, and so on.
Charlebois, Kathleen; Palmour, Nicole; Knoppers, Bartha Maria
2016-01-01
This study aims to understand the influence of the ethical and legal issues on cloud computing adoption in the field of genomics research. To do so, we adapted Diffusion of Innovation (DoI) theory to enable understanding of how key stakeholders manage the various ethical and legal issues they encounter when adopting cloud computing. Twenty semi-structured interviews were conducted with genomics researchers, patient advocates and cloud service providers. Thematic analysis generated five major themes: 1) Getting comfortable with cloud computing; 2) Weighing the advantages and the risks of cloud computing; 3) Reconciling cloud computing with data privacy; 4) Maintaining trust and 5) Anticipating the cloud by creating the conditions for cloud adoption. Our analysis highlights the tendency among genomics researchers to gradually adopt cloud technology. Efforts made by cloud service providers to promote cloud computing adoption are confronted by researchers’ perpetual cost and security concerns, along with a lack of familiarity with the technology. Further underlying those fears are researchers’ legal responsibility with respect to the data that is stored on the cloud. Alternative consent mechanisms aimed at increasing patients’ control over the use of their data also provide a means to circumvent various institutional and jurisdictional hurdles that restrict access by creating siloed databases. However, the risk of creating new, cloud-based silos may run counter to the goal in genomics research to increase data sharing on a global scale. PMID:27755563
Charlebois, Kathleen; Palmour, Nicole; Knoppers, Bartha Maria
2016-01-01
This study aims to understand the influence of the ethical and legal issues on cloud computing adoption in the field of genomics research. To do so, we adapted Diffusion of Innovation (DoI) theory to enable understanding of how key stakeholders manage the various ethical and legal issues they encounter when adopting cloud computing. Twenty semi-structured interviews were conducted with genomics researchers, patient advocates and cloud service providers. Thematic analysis generated five major themes: 1) Getting comfortable with cloud computing; 2) Weighing the advantages and the risks of cloud computing; 3) Reconciling cloud computing with data privacy; 4) Maintaining trust and 5) Anticipating the cloud by creating the conditions for cloud adoption. Our analysis highlights the tendency among genomics researchers to gradually adopt cloud technology. Efforts made by cloud service providers to promote cloud computing adoption are confronted by researchers' perpetual cost and security concerns, along with a lack of familiarity with the technology. Further underlying those fears are researchers' legal responsibility with respect to the data that is stored on the cloud. Alternative consent mechanisms aimed at increasing patients' control over the use of their data also provide a means to circumvent various institutional and jurisdictional hurdles that restrict access by creating siloed databases. However, the risk of creating new, cloud-based silos may run counter to the goal in genomics research to increase data sharing on a global scale.
Christoph, J; Griebel, L; Leb, I; Engel, I; Köpcke, F; Toddenroth, D; Prokosch, H-U; Laufer, J; Marquardt, K; Sedlmayr, M
2015-01-01
The secondary use of clinical data provides large opportunities for clinical and translational research as well as quality assurance projects. For such purposes, it is necessary to provide a flexible and scalable infrastructure that is compliant with privacy requirements. The major goals of the cloud4health project are to define such an architecture, to implement a technical prototype that fulfills these requirements and to evaluate it with three use cases. The architecture provides components for multiple data provider sites such as hospitals to extract free text as well as structured data from local sources and de-identify such data for further anonymous or pseudonymous processing. Free text documentation is analyzed and transformed into structured information by text-mining services, which are provided within a cloud-computing environment. Thus, newly gained annotations can be integrated along with the already available structured data items and the resulting data sets can be uploaded to a central study portal for further analysis. Based on the architecture design, a prototype has been implemented and is under evaluation in three clinical use cases. Data from several hundred patients provided by a University Hospital and a private hospital chain have already been processed. Cloud4health has shown how existing components for secondary use of structured data can be complemented with text-mining in a privacy compliant manner. The cloud-computing paradigm allows a flexible and dynamically adaptable service provision that facilitates the adoption of services by data providers without own investments in respective hardware resources and software tools.
Integrated Model to Assess Cloud Deployment Effectiveness When Developing an IT-strategy
NASA Astrophysics Data System (ADS)
Razumnikov, S.; Prankevich, D.
2016-04-01
Developing an IT-strategy of cloud deployment is a complex issue since even the stage of its formation necessitates revealing what applications will be the best possible to meet the requirements of a company business-strategy, evaluate reliability and safety of cloud providers and analyze staff satisfaction. A system of criteria, as well an integrated model to assess cloud deployment effectiveness is offered. The model makes it possible to identify what applications being at the disposal of a company, as well as new tools to be deployed are reliable and safe enough for implementation in the cloud environment. The data on practical use of the procedure to assess cloud deployment effectiveness by a provider of telecommunication services is presented. The model was used to calculate values of integral indexes of services to be assessed, then, ones, meeting the criteria and answering the business-strategy of a company, were selected.
Liu, Li; Chen, Weiping; Nie, Min; Zhang, Fengjuan; Wang, Yu; He, Ailing; Wang, Xiaonan; Yan, Gen
2016-11-01
To handle the emergence of the regional healthcare ecosystem, physicians and surgeons in various departments and healthcare institutions must process medical images securely, conveniently, and efficiently, and must integrate them with electronic medical records (EMRs). In this manuscript, we propose a software as a service (SaaS) cloud called the iMAGE cloud. A three-layer hybrid cloud was created to provide medical image processing services in the smart city of Wuxi, China, in April 2015. In the first step, medical images and EMR data were received and integrated via the hybrid regional healthcare network. Then, traditional and advanced image processing functions were proposed and computed in a unified manner in the high-performance cloud units. Finally, the image processing results were delivered to regional users using the virtual desktop infrastructure (VDI) technology. Security infrastructure was also taken into consideration. Integrated information query and many advanced medical image processing functions-such as coronary extraction, pulmonary reconstruction, vascular extraction, intelligent detection of pulmonary nodules, image fusion, and 3D printing-were available to local physicians and surgeons in various departments and healthcare institutions. Implementation results indicate that the iMAGE cloud can provide convenient, efficient, compatible, and secure medical image processing services in regional healthcare networks. The iMAGE cloud has been proven to be valuable in applications in the regional healthcare system, and it could have a promising future in the healthcare system worldwide.
Applying analytic hierarchy process to assess healthcare-oriented cloud computing service systems.
Liao, Wen-Hwa; Qiu, Wan-Li
2016-01-01
Numerous differences exist between the healthcare industry and other industries. Difficulties in the business operation of the healthcare industry have continually increased because of the volatility and importance of health care, changes to and requirements of health insurance policies, and the statuses of healthcare providers, which are typically considered not-for-profit organizations. Moreover, because of the financial risks associated with constant changes in healthcare payment methods and constantly evolving information technology, healthcare organizations must continually adjust their business operation objectives; therefore, cloud computing presents both a challenge and an opportunity. As a response to aging populations and the prevalence of the Internet in fast-paced contemporary societies, cloud computing can be used to facilitate the task of balancing the quality and costs of health care. To evaluate cloud computing service systems for use in health care, providing decision makers with a comprehensive assessment method for prioritizing decision-making factors is highly beneficial. Hence, this study applied the analytic hierarchy process, compared items related to cloud computing and health care, executed a questionnaire survey, and then classified the critical factors influencing healthcare cloud computing service systems on the basis of statistical analyses of the questionnaire results. The results indicate that the primary factor affecting the design or implementation of optimal cloud computing healthcare service systems is cost effectiveness, with the secondary factors being practical considerations such as software design and system architecture.
Where the Cloud Meets the Commons
ERIC Educational Resources Information Center
Ipri, Tom
2011-01-01
Changes presented by cloud computing--shared computing services, applications, and storage available to end users via the Internet--have the potential to seriously alter how libraries provide services, not only remotely, but also within the physical library, specifically concerning challenges facing the typical desktop computing experience.…
ERIC Educational Resources Information Center
Alshihri, Bandar A.
2017-01-01
Cloud computing is a recent computing paradigm that has been integrated into the educational system. It provides numerous opportunities for delivering a variety of computing services in a way that has not been experienced before. The Google Company is among the top business companies that afford their cloud services by launching a number of…
Dalpé, Gratien; Joly, Yann
2014-09-01
Healthcare-related bioinformatics databases are increasingly offering the possibility to maintain, organize, and distribute DNA sequencing data. Different national and international institutions are currently hosting such databases that offer researchers website platforms where they can obtain sequencing data on which they can perform different types of analysis. Until recently, this process remained mostly one-dimensional, with most analysis concentrated on a limited amount of data. However, newer genome sequencing technology is producing a huge amount of data that current computer facilities are unable to handle. An alternative approach has been to start adopting cloud computing services for combining the information embedded in genomic and model system biology data, patient healthcare records, and clinical trials' data. In this new technological paradigm, researchers use virtual space and computing power from existing commercial or not-for-profit cloud service providers to access, store, and analyze data via different application programming interfaces. Cloud services are an alternative to the need of larger data storage; however, they raise different ethical, legal, and social issues. The purpose of this Commentary is to summarize how cloud computing can contribute to bioinformatics-based drug discovery and to highlight some of the outstanding legal, ethical, and social issues that are inherent in the use of cloud services. © 2014 Wiley Periodicals, Inc.
Pinheiro, Alexandre; Dias Canedo, Edna; de Sousa Junior, Rafael Timoteo; de Oliveira Albuquerque, Robson; García Villalba, Luis Javier; Kim, Tai-Hoon
2018-03-02
Cloud computing is considered an interesting paradigm due to its scalability, availability and virtually unlimited storage capacity. However, it is challenging to organize a cloud storage service (CSS) that is safe from the client point-of-view and to implement this CSS in public clouds since it is not advisable to blindly consider this configuration as fully trustworthy. Ideally, owners of large amounts of data should trust their data to be in the cloud for a long period of time, without the burden of keeping copies of the original data, nor of accessing the whole content for verifications regarding data preservation. Due to these requirements, integrity, availability, privacy and trust are still challenging issues for the adoption of cloud storage services, especially when losing or leaking information can bring significant damage, be it legal or business-related. With such concerns in mind, this paper proposes an architecture for periodically monitoring both the information stored in the cloud and the service provider behavior. The architecture operates with a proposed protocol based on trust and encryption concepts to ensure cloud data integrity without compromising confidentiality and without overloading storage services. Extensive tests and simulations of the proposed architecture and protocol validate their functional behavior and performance.
2018-01-01
Cloud computing is considered an interesting paradigm due to its scalability, availability and virtually unlimited storage capacity. However, it is challenging to organize a cloud storage service (CSS) that is safe from the client point-of-view and to implement this CSS in public clouds since it is not advisable to blindly consider this configuration as fully trustworthy. Ideally, owners of large amounts of data should trust their data to be in the cloud for a long period of time, without the burden of keeping copies of the original data, nor of accessing the whole content for verifications regarding data preservation. Due to these requirements, integrity, availability, privacy and trust are still challenging issues for the adoption of cloud storage services, especially when losing or leaking information can bring significant damage, be it legal or business-related. With such concerns in mind, this paper proposes an architecture for periodically monitoring both the information stored in the cloud and the service provider behavior. The architecture operates with a proposed protocol based on trust and encryption concepts to ensure cloud data integrity without compromising confidentiality and without overloading storage services. Extensive tests and simulations of the proposed architecture and protocol validate their functional behavior and performance. PMID:29498641
Universal Keyword Classifier on Public Key Based Encrypted Multikeyword Fuzzy Search in Public Cloud
Munisamy, Shyamala Devi; Chokkalingam, Arun
2015-01-01
Cloud computing has pioneered the emerging world by manifesting itself as a service through internet and facilitates third party infrastructure and applications. While customers have no visibility on how their data is stored on service provider's premises, it offers greater benefits in lowering infrastructure costs and delivering more flexibility and simplicity in managing private data. The opportunity to use cloud services on pay-per-use basis provides comfort for private data owners in managing costs and data. With the pervasive usage of internet, the focus has now shifted towards effective data utilization on the cloud without compromising security concerns. In the pursuit of increasing data utilization on public cloud storage, the key is to make effective data access through several fuzzy searching techniques. In this paper, we have discussed the existing fuzzy searching techniques and focused on reducing the searching time on the cloud storage server for effective data utilization. Our proposed Asymmetric Classifier Multikeyword Fuzzy Search method provides classifier search server that creates universal keyword classifier for the multiple keyword request which greatly reduces the searching time by learning the search path pattern for all the keywords in the fuzzy keyword set. The objective of using BTree fuzzy searchable index is to resolve typos and representation inconsistencies and also to facilitate effective data utilization. PMID:26380364
Munisamy, Shyamala Devi; Chokkalingam, Arun
2015-01-01
Cloud computing has pioneered the emerging world by manifesting itself as a service through internet and facilitates third party infrastructure and applications. While customers have no visibility on how their data is stored on service provider's premises, it offers greater benefits in lowering infrastructure costs and delivering more flexibility and simplicity in managing private data. The opportunity to use cloud services on pay-per-use basis provides comfort for private data owners in managing costs and data. With the pervasive usage of internet, the focus has now shifted towards effective data utilization on the cloud without compromising security concerns. In the pursuit of increasing data utilization on public cloud storage, the key is to make effective data access through several fuzzy searching techniques. In this paper, we have discussed the existing fuzzy searching techniques and focused on reducing the searching time on the cloud storage server for effective data utilization. Our proposed Asymmetric Classifier Multikeyword Fuzzy Search method provides classifier search server that creates universal keyword classifier for the multiple keyword request which greatly reduces the searching time by learning the search path pattern for all the keywords in the fuzzy keyword set. The objective of using BTree fuzzy searchable index is to resolve typos and representation inconsistencies and also to facilitate effective data utilization.
IoT-based flood embankments monitoring system
NASA Astrophysics Data System (ADS)
Michta, E.; Szulim, R.; Sojka-Piotrowska, A.; Piotrowski, K.
2017-08-01
In the paper a concept of flood embankments monitoring system based on using Internet of Things approach and Cloud Computing technologies will be presented. The proposed system consists of sensors, IoT nodes, Gateways and Cloud based services. Nodes communicates with the sensors measuring certain physical parameters describing the state of the embankments and communicates with the Gateways. Gateways are specialized active devices responsible for direct communication with the nodes, collecting sensor data, preprocess the data, applying local rules and communicate with the Cloud Services using communication API delivered by cloud services providers. Architecture of all of the system components will be proposed consisting IoT devices functionalities description, their communication model, software modules and services bases on using a public cloud computing platform like Microsoft Azure will be proposed. The most important aspects of maintaining the communication in a secure way will be shown.
Virtualized Multi-Mission Operations Center (vMMOC) and its Cloud Services
NASA Technical Reports Server (NTRS)
Ido, Haisam Kassim
2017-01-01
His presentation will cover, the current and future, technical and organizational opportunities and challenges with virtualizing a multi-mission operations center. The full deployment of Goddard Space Flight Centers (GSFC) Virtualized Multi-Mission Operations Center (vMMOC) is nearly complete. The Space Science Mission Operations (SSMO) organizations spacecraft ACE, Fermi, LRO, MMS(4), OSIRIS-REx, SDO, SOHO, Swift, and Wind are in the process of being fully migrated to the vMMOC. The benefits of the vMMOC will be the normalization and the standardization of IT services, mission operations, maintenance, and development as well as ancillary services and policies such as collaboration tools, change management systems, and IT Security. The vMMOC will also provide operational efficiencies regarding hardware, IT domain expertise, training, maintenance and support.The presentation will also cover SSMO's secure Situational Awareness Dashboard in an integrated, fleet centric, cloud based web services fashion. Additionally the SSMO Telemetry as a Service (TaaS) will be covered, which allows authorized users and processes to access telemetry for the entire SSMO fleet, and for the entirety of each spacecrafts history. Both services leverage cloud services in a secure FISMA High and FedRamp environment, and also leverage distributed object stores in order to house and provide the telemetry. The services are also in the process of leveraging the cloud computing services elasticity and horizontal scalability. In the design phase is the Navigation as a Service (NaaS) which will provide a standardized, efficient, and normalized service for the fleet's space flight dynamics operations. Additional future services that may be considered are Ground Segment as a Service (GSaaS), Telemetry and Command as a Service (TCaaS), Flight Software Simulation as a Service, etc.
Cloud computing in pharmaceutical R&D: business risks and mitigations.
Geiger, Karl
2010-05-01
Cloud computing provides information processing power and business services, delivering these services over the Internet from centrally hosted locations. Major technology corporations aim to supply these services to every sector of the economy. Deploying business processes 'in the cloud' requires special attention to the regulatory and business risks assumed when running on both hardware and software that are outside the direct control of a company. The identification of risks at the correct service level allows a good mitigation strategy to be selected. The pharmaceutical industry can take advantage of existing risk management strategies that have already been tested in the finance and electronic commerce sectors. In this review, the business risks associated with the use of cloud computing are discussed, and mitigations achieved through knowledge from securing services for electronic commerce and from good IT practice are highlighted.
Intelligent cloud computing security using genetic algorithm as a computational tools
NASA Astrophysics Data System (ADS)
Razuky AL-Shaikhly, Mazin H.
2018-05-01
An essential change had occurred in the field of Information Technology which represented with cloud computing, cloud giving virtual assets by means of web yet awesome difficulties in the field of information security and security assurance. Currently main problem with cloud computing is how to improve privacy and security for cloud “cloud is critical security”. This paper attempts to solve cloud security by using intelligent system with genetic algorithm as wall to provide cloud data secure, all services provided by cloud must detect who receive and register it to create list of users (trusted or un-trusted) depend on behavior. The execution of present proposal has shown great outcome.
Gutiérrez, Miguel F; Cajiao, Alejandro; Hidalgo, José A; Cerón, Jesús D; López, Diego M; Quintero, Víctor M; Rendón, Alvaro
2014-01-01
This article presents the development process of an acquisition and data storage system managing clinical variables through a cloud storage service and a Personal Health Record (PHR) System. First, the paper explains how a Wireless Body Area Network (WBAN) that captures data from two sensors corresponding to arterial pressure and heart rate is designed. Second, this paper illustrates how data collected by the WBAN are transmitted to a cloud storage service. It is worth mentioning that this cloud service allows the data to be stored in a persistent way on an online database system. Finally, the paper describes, how the data stored in the cloud service are sent to the Indivo PHR System, where they are registered and charted for future revision by health professionals. The research demonstrated the feasibility of implementing WBAN networks for the acquisition of clinical data, and particularly for the use of Web technologies and standards to provide interoperability with PHR Systems at technical and syntactic levels.
SSeCloud: Using secret sharing scheme to secure keys
NASA Astrophysics Data System (ADS)
Hu, Liang; Huang, Yang; Yang, Disheng; Zhang, Yuzhen; Liu, Hengchang
2017-08-01
With the use of cloud storage services, one of the concerns is how to protect sensitive data securely and privately. While users enjoy the convenience of data storage provided by semi-trusted cloud storage providers, they are confronted with all kinds of risks at the same time. In this paper, we present SSeCloud, a secure cloud storage system that improves security and usability by applying secret sharing scheme to secure keys. The system encrypts uploading files on the client side and splits encrypted keys into three shares. Each of them is respectively stored by users, cloud storage providers and the alternative third trusted party. Any two of the parties can reconstruct keys. Evaluation results of prototype system show that SSeCloud provides high security without too much performance penalty.
Dinh, Thanh; Kim, Younghan; Lee, Hyukjoon
2017-03-01
This paper presents a location-based interactive model of Internet of Things (IoT) and cloud integration (IoT-cloud) for mobile cloud computing applications, in comparison with the periodic sensing model. In the latter, sensing collections are performed without awareness of sensing demands. Sensors are required to report their sensing data periodically regardless of whether or not there are demands for their sensing services. This leads to unnecessary energy loss due to redundant transmission. In the proposed model, IoT-cloud provides sensing services on demand based on interest and location of mobile users. By taking advantages of the cloud as a coordinator, sensing scheduling of sensors is controlled by the cloud, which knows when and where mobile users request for sensing services. Therefore, when there is no demand, sensors are put into an inactive mode to save energy. Through extensive analysis and experimental results, we show that the location-based model achieves a significant improvement in terms of network lifetime compared to the periodic model.
Dinh, Thanh; Kim, Younghan; Lee, Hyukjoon
2017-01-01
This paper presents a location-based interactive model of Internet of Things (IoT) and cloud integration (IoT-cloud) for mobile cloud computing applications, in comparison with the periodic sensing model. In the latter, sensing collections are performed without awareness of sensing demands. Sensors are required to report their sensing data periodically regardless of whether or not there are demands for their sensing services. This leads to unnecessary energy loss due to redundant transmission. In the proposed model, IoT-cloud provides sensing services on demand based on interest and location of mobile users. By taking advantages of the cloud as a coordinator, sensing scheduling of sensors is controlled by the cloud, which knows when and where mobile users request for sensing services. Therefore, when there is no demand, sensors are put into an inactive mode to save energy. Through extensive analysis and experimental results, we show that the location-based model achieves a significant improvement in terms of network lifetime compared to the periodic model. PMID:28257067
The thinking of Cloud computing in the digital construction of the oil companies
NASA Astrophysics Data System (ADS)
CaoLei, Qizhilin; Dengsheng, Lei
In order to speed up digital construction of the oil companies and enhance productivity and decision-support capabilities while avoiding the disadvantages from the waste of the original process of building digital and duplication of development and input. This paper presents a cloud-based models for the build in the digital construction of the oil companies that National oil companies though the private network will join the cloud data of the oil companies and service center equipment integrated into a whole cloud system, then according to the needs of various departments to prepare their own virtual service center, which can provide a strong service industry and computing power for the Oil companies.
State of the Art of Network Security Perspectives in Cloud Computing
NASA Astrophysics Data System (ADS)
Oh, Tae Hwan; Lim, Shinyoung; Choi, Young B.; Park, Kwang-Roh; Lee, Heejo; Choi, Hyunsang
Cloud computing is now regarded as one of social phenomenon that satisfy customers' needs. It is possible that the customers' needs and the primary principle of economy - gain maximum benefits from minimum investment - reflects realization of cloud computing. We are living in the connected society with flood of information and without connected computers to the Internet, our activities and work of daily living will be impossible. Cloud computing is able to provide customers with custom-tailored features of application software and user's environment based on the customer's needs by adopting on-demand outsourcing of computing resources through the Internet. It also provides cloud computing users with high-end computing power and expensive application software package, and accordingly the users will access their data and the application software where they are located at the remote system. As the cloud computing system is connected to the Internet, network security issues of cloud computing are considered as mandatory prior to real world service. In this paper, survey and issues on the network security in cloud computing are discussed from the perspective of real world service environments.
Shi, Yang; Fan, Hongfei; Xiong, Guoyue
2015-01-01
With the rapid development of cloud computing techniques, it is attractive for personal health record (PHR) service providers to deploy their PHR applications and store the personal health data in the cloud. However, there could be a serious privacy leakage if the cloud-based system is intruded by attackers, which makes it necessary for the PHR service provider to encrypt all patients' health data on cloud servers. Existing techniques are insufficiently secure under circumstances where advanced threats are considered, or being inefficient when many recipients are involved. Therefore, the objectives of our solution are (1) providing a secure implementation of re-encryption in white-box attack contexts and (2) assuring the efficiency of the implementation even in multi-recipient cases. We designed the multi-recipient re-encryption functionality by randomness-reusing and protecting the implementation by obfuscation. The proposed solution is secure even in white-box attack contexts. Furthermore, a comparison with other related work shows that the computational cost of the proposed solution is lower. The proposed technique can serve as a building block for supporting secure, efficient and privacy-preserving personal health record service systems.
Supporting reputation based trust management enhancing security layer for cloud service models
NASA Astrophysics Data System (ADS)
Karthiga, R.; Vanitha, M.; Sumaiya Thaseen, I.; Mangaiyarkarasi, R.
2017-11-01
In the existing system trust between cloud providers and consumers is inadequate to establish the service level agreement though the consumer’s response is good cause to assess the overall reliability of cloud services. Investigators recognized the significance of trust can be managed and security can be provided based on feedback collected from participant. In this work a face recognition system that helps to identify the user effectively. So we use an image comparison algorithm where the user face is captured during registration time and get stored in database. With that original image we compare it with the sample image that is already stored in database. If both the image get matched then the users are identified effectively. When the confidential data are subcontracted to the cloud, data holders will become worried about the confidentiality of their data in the cloud. Encrypting the data before subcontracting has been regarded as the important resources of keeping user data privacy beside the cloud server. So in order to keep the data secure we use an AES algorithm. Symmetric-key algorithms practice a shared key concept, keeping data secret requires keeping this key secret. So only the user with private key can decrypt data.
Developing cloud applications using the e-Science Central platform.
Hiden, Hugo; Woodman, Simon; Watson, Paul; Cala, Jacek
2013-01-28
This paper describes the e-Science Central (e-SC) cloud data processing system and its application to a number of e-Science projects. e-SC provides both software as a service (SaaS) and platform as a service for scientific data management, analysis and collaboration. It is a portable system and can be deployed on both private (e.g. Eucalyptus) and public clouds (Amazon AWS and Microsoft Windows Azure). The SaaS application allows scientists to upload data, edit and run workflows and share results in the cloud, using only a Web browser. It is underpinned by a scalable cloud platform consisting of a set of components designed to support the needs of scientists. The platform is exposed to developers so that they can easily upload their own analysis services into the system and make these available to other users. A representational state transfer-based application programming interface (API) is also provided so that external applications can leverage the platform's functionality, making it easier to build scalable, secure cloud-based applications. This paper describes the design of e-SC, its API and its use in three different case studies: spectral data visualization, medical data capture and analysis, and chemical property prediction.
Developing cloud applications using the e-Science Central platform
Hiden, Hugo; Woodman, Simon; Watson, Paul; Cala, Jacek
2013-01-01
This paper describes the e-Science Central (e-SC) cloud data processing system and its application to a number of e-Science projects. e-SC provides both software as a service (SaaS) and platform as a service for scientific data management, analysis and collaboration. It is a portable system and can be deployed on both private (e.g. Eucalyptus) and public clouds (Amazon AWS and Microsoft Windows Azure). The SaaS application allows scientists to upload data, edit and run workflows and share results in the cloud, using only a Web browser. It is underpinned by a scalable cloud platform consisting of a set of components designed to support the needs of scientists. The platform is exposed to developers so that they can easily upload their own analysis services into the system and make these available to other users. A representational state transfer-based application programming interface (API) is also provided so that external applications can leverage the platform's functionality, making it easier to build scalable, secure cloud-based applications. This paper describes the design of e-SC, its API and its use in three different case studies: spectral data visualization, medical data capture and analysis, and chemical property prediction. PMID:23230161
ERIC Educational Resources Information Center
Adeboje, Adewale
2015-01-01
The purpose of this study was to gain an insight into perceived use and acceptance for implementing an enterprise resource planning system and the decision whether to contract out the enterprise resource planning (ERP) service to a cloud provider. Cloud-based ERP systems can provide many advantages to the normal implementation of the same systems…
Bootstrapping and Maintaining Trust in the Cloud
2016-03-16
of infrastructure-as-a- service (IaaS) cloud computing services such as Ama- zon Web Services, Google Compute Engine, Rackspace, et. al. means that...Implementation We implemented keylime in ∼3.2k lines of Python in four components: registrar, node, CV, and tenant. The registrar offers a REST-based web ...bootstrap key K. It provides an unencrypted REST-based web service for these two functions. As described earlier, the pro- tocols for exchanging data
Atlas2 Cloud: a framework for personal genome analysis in the cloud
2012-01-01
Background Until recently, sequencing has primarily been carried out in large genome centers which have invested heavily in developing the computational infrastructure that enables genomic sequence analysis. The recent advancements in next generation sequencing (NGS) have led to a wide dissemination of sequencing technologies and data, to highly diverse research groups. It is expected that clinical sequencing will become part of diagnostic routines shortly. However, limited accessibility to computational infrastructure and high quality bioinformatic tools, and the demand for personnel skilled in data analysis and interpretation remains a serious bottleneck. To this end, the cloud computing and Software-as-a-Service (SaaS) technologies can help address these issues. Results We successfully enabled the Atlas2 Cloud pipeline for personal genome analysis on two different cloud service platforms: a community cloud via the Genboree Workbench, and a commercial cloud via the Amazon Web Services using Software-as-a-Service model. We report a case study of personal genome analysis using our Atlas2 Genboree pipeline. We also outline a detailed cost structure for running Atlas2 Amazon on whole exome capture data, providing cost projections in terms of storage, compute and I/O when running Atlas2 Amazon on a large data set. Conclusions We find that providing a web interface and an optimized pipeline clearly facilitates usage of cloud computing for personal genome analysis, but for it to be routinely used for large scale projects there needs to be a paradigm shift in the way we develop tools, in standard operating procedures, and in funding mechanisms. PMID:23134663
Atlas2 Cloud: a framework for personal genome analysis in the cloud.
Evani, Uday S; Challis, Danny; Yu, Jin; Jackson, Andrew R; Paithankar, Sameer; Bainbridge, Matthew N; Jakkamsetti, Adinarayana; Pham, Peter; Coarfa, Cristian; Milosavljevic, Aleksandar; Yu, Fuli
2012-01-01
Until recently, sequencing has primarily been carried out in large genome centers which have invested heavily in developing the computational infrastructure that enables genomic sequence analysis. The recent advancements in next generation sequencing (NGS) have led to a wide dissemination of sequencing technologies and data, to highly diverse research groups. It is expected that clinical sequencing will become part of diagnostic routines shortly. However, limited accessibility to computational infrastructure and high quality bioinformatic tools, and the demand for personnel skilled in data analysis and interpretation remains a serious bottleneck. To this end, the cloud computing and Software-as-a-Service (SaaS) technologies can help address these issues. We successfully enabled the Atlas2 Cloud pipeline for personal genome analysis on two different cloud service platforms: a community cloud via the Genboree Workbench, and a commercial cloud via the Amazon Web Services using Software-as-a-Service model. We report a case study of personal genome analysis using our Atlas2 Genboree pipeline. We also outline a detailed cost structure for running Atlas2 Amazon on whole exome capture data, providing cost projections in terms of storage, compute and I/O when running Atlas2 Amazon on a large data set. We find that providing a web interface and an optimized pipeline clearly facilitates usage of cloud computing for personal genome analysis, but for it to be routinely used for large scale projects there needs to be a paradigm shift in the way we develop tools, in standard operating procedures, and in funding mechanisms.
SLA-based optimisation of virtualised resource for multi-tier web applications in cloud data centres
NASA Astrophysics Data System (ADS)
Bi, Jing; Yuan, Haitao; Tie, Ming; Tan, Wei
2015-10-01
Dynamic virtualised resource allocation is the key to quality of service assurance for multi-tier web application services in cloud data centre. In this paper, we develop a self-management architecture of cloud data centres with virtualisation mechanism for multi-tier web application services. Based on this architecture, we establish a flexible hybrid queueing model to determine the amount of virtual machines for each tier of virtualised application service environments. Besides, we propose a non-linear constrained optimisation problem with restrictions defined in service level agreement. Furthermore, we develop a heuristic mixed optimisation algorithm to maximise the profit of cloud infrastructure providers, and to meet performance requirements from different clients as well. Finally, we compare the effectiveness of our dynamic allocation strategy with two other allocation strategies. The simulation results show that the proposed resource allocation method is efficient in improving the overall performance and reducing the resource energy cost.
Cloud Computing for Mission Design and Operations
NASA Technical Reports Server (NTRS)
Arrieta, Juan; Attiyah, Amy; Beswick, Robert; Gerasimantos, Dimitrios
2012-01-01
The space mission design and operations community already recognizes the value of cloud computing and virtualization. However, natural and valid concerns, like security, privacy, up-time, and vendor lock-in, have prevented a more widespread and expedited adoption into official workflows. In the interest of alleviating these concerns, we propose a series of guidelines for internally deploying a resource-oriented hub of data and algorithms. These guidelines provide a roadmap for implementing an architecture inspired in the cloud computing model: associative, elastic, semantical, interconnected, and adaptive. The architecture can be summarized as exposing data and algorithms as resource-oriented Web services, coordinated via messaging, and running on virtual machines; it is simple, and based on widely adopted standards, protocols, and tools. The architecture may help reduce common sources of complexity intrinsic to data-driven, collaborative interactions and, most importantly, it may provide the means for teams and agencies to evaluate the cloud computing model in their specific context, with minimal infrastructure changes, and before committing to a specific cloud services provider.
2010-07-01
Cloud computing , an emerging form of computing in which users have access to scalable, on-demand capabilities that are provided through Internet... cloud computing , (2) the information security implications of using cloud computing services in the Federal Government, and (3) federal guidance and...efforts to address information security when using cloud computing . The complete report is titled Information Security: Federal Guidance Needed to
NASA Technical Reports Server (NTRS)
Maluf, David A.; Shetye, Sandeep D.; Chilukuri, Sri; Sturken, Ian
2012-01-01
Cloud computing can reduce cost significantly because businesses can share computing resources. In recent years Small and Medium Businesses (SMB) have used Cloud effectively for cost saving and for sharing IT expenses. With the success of SMBs, many perceive that the larger enterprises ought to move into Cloud environment as well. Government agency s stove-piped environments are being considered as candidates for potential use of Cloud either as an enterprise entity or pockets of small communities. Cloud Computing is the delivery of computing as a service rather than as a product, whereby shared resources, software, and information are provided to computers and other devices as a utility over a network. Underneath the offered services, there exists a modern infrastructure cost of which is often spread across its services or its investors. As NASA is considered as an Enterprise class organization, like other enterprises, a shift has been occurring in perceiving its IT services as candidates for Cloud services. This paper discusses market trends in cloud computing from an enterprise angle and then addresses the topic of Cloud Computing for NASA in two possible forms. First, in the form of a public Cloud to support it as an enterprise, as well as to share it with the commercial and public at large. Second, as a private Cloud wherein the infrastructure is operated solely for NASA, whether managed internally or by a third-party and hosted internally or externally. The paper addresses the strengths and weaknesses of both paradigms of public and private Clouds, in both internally and externally operated settings. The content of the paper is from a NASA perspective but is applicable to any large enterprise with thousands of employees and contractors.
Identity Management and Trust Services: Foundations for Cloud Computing
ERIC Educational Resources Information Center
Suess, Jack; Morooney, Kevin
2009-01-01
Increasingly, IT organizations will move from providing IT services locally to becoming an integrator of IT services--some provided locally and others provided outside the institution. As a result, institutions must immediately begin to plan for shared services and must understand the essential role that identity management and trust services play…
A PACS archive architecture supported on cloud services.
Silva, Luís A Bastião; Costa, Carlos; Oliveira, José Luis
2012-05-01
Diagnostic imaging procedures have continuously increased over the last decade and this trend may continue in coming years, creating a great impact on storage and retrieval capabilities of current PACS. Moreover, many smaller centers do not have financial resources or requirements that justify the acquisition of a traditional infrastructure. Alternative solutions, such as cloud computing, may help address this emerging need. A tremendous amount of ubiquitous computational power, such as that provided by Google and Amazon, are used every day as a normal commodity. Taking advantage of this new paradigm, an architecture for a Cloud-based PACS archive that provides data privacy, integrity, and availability is proposed. The solution is independent from the cloud provider and the core modules were successfully instantiated in examples of two cloud computing providers. Operational metrics for several medical imaging modalities were tabulated and compared for Google Storage, Amazon S3, and LAN PACS. A PACS-as-a-Service archive that provides storage of medical studies using the Cloud was developed. The results show that the solution is robust and that it is possible to store, query, and retrieve all desired studies in a similar way as in a local PACS approach. Cloud computing is an emerging solution that promises high scalability of infrastructures, software, and applications, according to a "pay-as-you-go" business model. The presented architecture uses the cloud to setup medical data repositories and can have a significant impact on healthcare institutions by reducing IT infrastructures.
NASA Astrophysics Data System (ADS)
Yue, S. S.; Wen, Y. N.; Lv, G. N.; Hu, D.
2013-10-01
In recent years, the increasing development of cloud computing technologies laid critical foundation for efficiently solving complicated geographic issues. However, it is still difficult to realize the cooperative operation of massive heterogeneous geographical models. Traditional cloud architecture is apt to provide centralized solution to end users, while all the required resources are often offered by large enterprises or special agencies. Thus, it's a closed framework from the perspective of resource utilization. Solving comprehensive geographic issues requires integrating multifarious heterogeneous geographical models and data. In this case, an open computing platform is in need, with which the model owners can package and deploy their models into cloud conveniently, while model users can search, access and utilize those models with cloud facility. Based on this concept, the open cloud service strategies for the sharing of heterogeneous geographic analysis models is studied in this article. The key technology: unified cloud interface strategy, sharing platform based on cloud service, and computing platform based on cloud service are discussed in detail, and related experiments are conducted for further verification.
Testing as a Service with HammerCloud
NASA Astrophysics Data System (ADS)
Medrano Llamas, Ramón; Barrand, Quentin; Elmsheuser, Johannes; Legger, Federica; Sciacca, Gianfranco; Sciabà, Andrea; van der Ster, Daniel
2014-06-01
HammerCloud was designed and born under the needs of the grid community to test the resources and automate operations from a user perspective. The recent developments in the IT space propose a shift to the software defined data centres, in which every layer of the infrastructure can be offered as a service. Testing and monitoring is an integral part of the development, validation and operations of big systems, like the grid. This area is not escaping the paradigm shift and we are starting to perceive as natural the Testing as a Service (TaaS) offerings, which allow testing any infrastructure service, such as the Infrastructure as a Service (IaaS) platforms being deployed in many grid sites, both from the functional and stressing perspectives. This work will review the recent developments in HammerCloud and its evolution to a TaaS conception, in particular its deployment on the Agile Infrastructure platform at CERN and the testing of many IaaS providers across Europe in the context of experiment requirements. The first section will review the architectural changes that a service running in the cloud needs, such an orchestration service or new storage requirements in order to provide functional and stress testing. The second section will review the first tests of infrastructure providers on the perspective of the challenges discovered from the architectural point of view. Finally, the third section will evaluate future requirements of scalability and features to increase testing productivity.
A service based adaptive U-learning system using UX.
Jeong, Hwa-Young; Yi, Gangman
2014-01-01
In recent years, traditional development techniques for e-learning systems have been changing to become more convenient and efficient. One new technology in the development of application systems includes both cloud and ubiquitous computing. Cloud computing can support learning system processes by using services while ubiquitous computing can provide system operation and management via a high performance technical process and network. In the cloud computing environment, a learning service application can provide a business module or process to the user via the internet. This research focuses on providing the learning material and processes of courses by learning units using the services in a ubiquitous computing environment. And we also investigate functions that support users' tailored materials according to their learning style. That is, we analyzed the user's data and their characteristics in accordance with their user experience. We subsequently applied the learning process to fit on their learning performance and preferences. Finally, we demonstrate how the proposed system outperforms learning effects to learners better than existing techniques.
A Service Based Adaptive U-Learning System Using UX
Jeong, Hwa-Young
2014-01-01
In recent years, traditional development techniques for e-learning systems have been changing to become more convenient and efficient. One new technology in the development of application systems includes both cloud and ubiquitous computing. Cloud computing can support learning system processes by using services while ubiquitous computing can provide system operation and management via a high performance technical process and network. In the cloud computing environment, a learning service application can provide a business module or process to the user via the internet. This research focuses on providing the learning material and processes of courses by learning units using the services in a ubiquitous computing environment. And we also investigate functions that support users' tailored materials according to their learning style. That is, we analyzed the user's data and their characteristics in accordance with their user experience. We subsequently applied the learning process to fit on their learning performance and preferences. Finally, we demonstrate how the proposed system outperforms learning effects to learners better than existing techniques. PMID:25147832
NASA Astrophysics Data System (ADS)
Aldeen Yousra, S.; Mazleena, Salleh
2018-05-01
Recent advancement in Information and Communication Technologies (ICT) demanded much of cloud services to sharing users’ private data. Data from various organizations are the vital information source for analysis and research. Generally, this sensitive or private data information involves medical, census, voter registration, social network, and customer services. Primary concern of cloud service providers in data publishing is to hide the sensitive information of individuals. One of the cloud services that fulfill the confidentiality concerns is Privacy Preserving Data Mining (PPDM). The PPDM service in Cloud Computing (CC) enables data publishing with minimized distortion and absolute privacy. In this method, datasets are anonymized via generalization to accomplish the privacy requirements. However, the well-known privacy preserving data mining technique called K-anonymity suffers from several limitations. To surmount those shortcomings, I propose a new heuristic anonymization framework for preserving the privacy of sensitive datasets when publishing on cloud. The advantages of K-anonymity, L-diversity and (α, k)-anonymity methods for efficient information utilization and privacy protection are emphasized. Experimental results revealed the superiority and outperformance of the developed technique than K-anonymity, L-diversity, and (α, k)-anonymity measure.
Distance Learning and Cloud Computing: "Just Another Buzzword or a Major E-Learning Breakthrough?"
ERIC Educational Resources Information Center
Romiszowski, Alexander J.
2012-01-01
"Cloud computing is a model for the enabling of ubiquitous, convenient, and on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and other services) that can be rapidly provisioned and released with minimal management effort or service provider interaction." This…
GABE: A Cloud Brokerage System for Service Selection, Accountability and Enforcement
ERIC Educational Resources Information Center
Sundareswaran, Smitha
2014-01-01
Much like its meteorological counterpart, "Cloud Computing" is an amorphous agglomeration of entities. It is amorphous in that the exact layout of the servers, the load balancers and their functions are neither known nor fixed. Its an agglomerate in that multiple service providers and vendors often coordinate to form a multitenant system…
Creating a Rackspace and NASA Nebula compatible cloud using the OpenStack project (Invited)
NASA Astrophysics Data System (ADS)
Clark, R.
2010-12-01
NASA and Rackspace have both provided technology to the OpenStack that allows anyone to create a private Infrastructure as a Service (IaaS) cloud using open source software and commodity hardware. OpenStack is designed and developed completely in the open and with an open governance process. NASA donated Nova, which powers the compute portion of NASA Nebula Cloud Computing Platform, and Rackspace donated Swift, which powers Rackspace Cloud Files. The project is now in continuous development by NASA, Rackspace, and hundreds of other participants. When you create a private cloud using Openstack, you will have the ability to easily interact with your private cloud, a government cloud, and an ecosystem of public cloud providers, using the same API.
Impact of office productivity cloud computing on energy consumption and greenhouse gas emissions.
Williams, Daniel R; Tang, Yinshan
2013-05-07
Cloud computing is usually regarded as being energy efficient and thus emitting less greenhouse gases (GHG) than traditional forms of computing. When the energy consumption of Microsoft's cloud computing Office 365 (O365) and traditional Office 2010 (O2010) software suites were tested and modeled, some cloud services were found to consume more energy than the traditional form. The developed model in this research took into consideration the energy consumption at the three main stages of data transmission; data center, network, and end user device. Comparable products from each suite were selected and activities were defined for each product to represent a different computing type. Microsoft provided highly confidential data for the data center stage, while the networking and user device stages were measured directly. A new measurement and software apportionment approach was defined and utilized allowing the power consumption of cloud services to be directly measured for the user device stage. Results indicated that cloud computing is more energy efficient for Excel and Outlook which consumed less energy and emitted less GHG than the standalone counterpart. The power consumption of the cloud based Outlook (8%) and Excel (17%) was lower than their traditional counterparts. However, the power consumption of the cloud version of Word was 17% higher than its traditional equivalent. A third mixed access method was also measured for Word which emitted 5% more GHG than the traditional version. It is evident that cloud computing may not provide a unified way forward to reduce energy consumption and GHG. Direct conversion from the standalone package into the cloud provision platform can now consider energy and GHG emissions at the software development and cloud service design stage using the methods described in this research.
Adaptive Resource Utilization Prediction System for Infrastructure as a Service Cloud.
Zia Ullah, Qazi; Hassan, Shahzad; Khan, Gul Muhammad
2017-01-01
Infrastructure as a Service (IaaS) cloud provides resources as a service from a pool of compute, network, and storage resources. Cloud providers can manage their resource usage by knowing future usage demand from the current and past usage patterns of resources. Resource usage prediction is of great importance for dynamic scaling of cloud resources to achieve efficiency in terms of cost and energy consumption while keeping quality of service. The purpose of this paper is to present a real-time resource usage prediction system. The system takes real-time utilization of resources and feeds utilization values into several buffers based on the type of resources and time span size. Buffers are read by R language based statistical system. These buffers' data are checked to determine whether their data follows Gaussian distribution or not. In case of following Gaussian distribution, Autoregressive Integrated Moving Average (ARIMA) is applied; otherwise Autoregressive Neural Network (AR-NN) is applied. In ARIMA process, a model is selected based on minimum Akaike Information Criterion (AIC) values. Similarly, in AR-NN process, a network with the lowest Network Information Criterion (NIC) value is selected. We have evaluated our system with real traces of CPU utilization of an IaaS cloud of one hundred and twenty servers.
Adaptive Resource Utilization Prediction System for Infrastructure as a Service Cloud
Hassan, Shahzad; Khan, Gul Muhammad
2017-01-01
Infrastructure as a Service (IaaS) cloud provides resources as a service from a pool of compute, network, and storage resources. Cloud providers can manage their resource usage by knowing future usage demand from the current and past usage patterns of resources. Resource usage prediction is of great importance for dynamic scaling of cloud resources to achieve efficiency in terms of cost and energy consumption while keeping quality of service. The purpose of this paper is to present a real-time resource usage prediction system. The system takes real-time utilization of resources and feeds utilization values into several buffers based on the type of resources and time span size. Buffers are read by R language based statistical system. These buffers' data are checked to determine whether their data follows Gaussian distribution or not. In case of following Gaussian distribution, Autoregressive Integrated Moving Average (ARIMA) is applied; otherwise Autoregressive Neural Network (AR-NN) is applied. In ARIMA process, a model is selected based on minimum Akaike Information Criterion (AIC) values. Similarly, in AR-NN process, a network with the lowest Network Information Criterion (NIC) value is selected. We have evaluated our system with real traces of CPU utilization of an IaaS cloud of one hundred and twenty servers. PMID:28811819
Geo-spatial Service and Application based on National E-government Network Platform and Cloud
NASA Astrophysics Data System (ADS)
Meng, X.; Deng, Y.; Li, H.; Yao, L.; Shi, J.
2014-04-01
With the acceleration of China's informatization process, our party and government take a substantive stride in advancing development and application of digital technology, which promotes the evolution of e-government and its informatization. Meanwhile, as a service mode based on innovative resources, cloud computing may connect huge pools together to provide a variety of IT services, and has become one relatively mature technical pattern with further studies and massive practical applications. Based on cloud computing technology and national e-government network platform, "National Natural Resources and Geospatial Database (NRGD)" project integrated and transformed natural resources and geospatial information dispersed in various sectors and regions, established logically unified and physically dispersed fundamental database and developed national integrated information database system supporting main e-government applications. Cross-sector e-government applications and services are realized to provide long-term, stable and standardized natural resources and geospatial fundamental information products and services for national egovernment and public users.
ERIC Educational Resources Information Center
Gray, Terry
2010-01-01
The University of Washington (UW) adopted a dual-provider cloud-computing strategy, focusing initially on software as a service. The original project--to replace an obsolete alumni e-mail system--resulted in a cloud solution that soon grew to encompass the entire campus community. The policies and contract terms UW developed, focusing on…
ERIC Educational Resources Information Center
Grush, Mary
2009-01-01
As colleges and universities rely more heavily on software as a service (SaaS), they're putting more critical data in the cloud. What are the security issues, and how are cloud providers responding? "Campus Technology" ("CT") went to three higher ed SaaS vendors--Google, IBM, and TopSchool--and asked them to share their thoughts about the state of…
Do Clouds Compute? A Framework for Estimating the Value of Cloud Computing
NASA Astrophysics Data System (ADS)
Klems, Markus; Nimis, Jens; Tai, Stefan
On-demand provisioning of scalable and reliable compute services, along with a cost model that charges consumers based on actual service usage, has been an objective in distributed computing research and industry for a while. Cloud Computing promises to deliver on this objective: consumers are able to rent infrastructure in the Cloud as needed, deploy applications and store data, and access them via Web protocols on a pay-per-use basis. The acceptance of Cloud Computing, however, depends on the ability for Cloud Computing providers and consumers to implement a model for business value co-creation. Therefore, a systematic approach to measure costs and benefits of Cloud Computing is needed. In this paper, we discuss the need for valuation of Cloud Computing, identify key components, and structure these components in a framework. The framework assists decision makers in estimating Cloud Computing costs and to compare these costs to conventional IT solutions. We demonstrate by means of representative use cases how our framework can be applied to real world scenarios.
Improvements in dental care using a new mobile app with cloud services.
Lin, Chia-Yung; Peng, Kang-Lin; Chen, Ji; Tsai, Jui-Yuan; Tseng, Yu-Chee; Yang, Jhih-Ren; Chen, Min-Huey
2014-10-01
Traditional dental care, which includes long-term oral hygiene maintenance and scheduled dental appointments, requires effective communication between dentists and patients. In this study, a new system was designed to provide a platform for direct communication between dentists and patients. A new mobile app, Dental Calendar, combined with cloud services specific for dental care was created by a team constituted by dentists, computer scientists, and service scientists. This new system would remind patients about every scheduled appointment, and help them take pictures of their own oral cavity parts that require dental treatment and send them to dentists along with a symptom description. Dentists, by contrast, could confirm or change appointments easily and provide professional advice to their patients immediately. In this study, 26 dentists and 32 patients were evaluated by a questionnaire containing eight dental-service items before and after using this system. Paired sample t test was used for statistical analysis. After using the Dental Calendar combined with cloud services, dentists were able to improve appointment arrangements significantly, taking care of the patients with sudden worse prosthesis (p < 0.05). Patients also achieved significant improvement in appointment reminder systems, rearrangement of appointments in case of sudden worse prosthesis, and establishment of a direct relationship with dentists (p < 0.05). Our new mobile app, Dental Calendar, in combination with cloud services, provides efficient service to both dentists and patients, and helps establish a better relationship between them. It also helps dentists to arrange appointments for patients with sudden worsening of prosthesis function. Copyright © 2014. Published by Elsevier B.V.
Research on Key Technologies of Cloud Computing
NASA Astrophysics Data System (ADS)
Zhang, Shufen; Yan, Hongcan; Chen, Xuebin
With the development of multi-core processors, virtualization, distributed storage, broadband Internet and automatic management, a new type of computing mode named cloud computing is produced. It distributes computation task on the resource pool which consists of massive computers, so the application systems can obtain the computing power, the storage space and software service according to its demand. It can concentrate all the computing resources and manage them automatically by the software without intervene. This makes application offers not to annoy for tedious details and more absorbed in his business. It will be advantageous to innovation and reduce cost. It's the ultimate goal of cloud computing to provide calculation, services and applications as a public facility for the public, So that people can use the computer resources just like using water, electricity, gas and telephone. Currently, the understanding of cloud computing is developing and changing constantly, cloud computing still has no unanimous definition. This paper describes three main service forms of cloud computing: SAAS, PAAS, IAAS, compared the definition of cloud computing which is given by Google, Amazon, IBM and other companies, summarized the basic characteristics of cloud computing, and emphasized on the key technologies such as data storage, data management, virtualization and programming model.
OpenID Connect as a security service in cloud-based medical imaging systems.
Ma, Weina; Sartipi, Kamran; Sharghigoorabi, Hassan; Koff, David; Bak, Peter
2016-04-01
The evolution of cloud computing is driving the next generation of medical imaging systems. However, privacy and security concerns have been consistently regarded as the major obstacles for adoption of cloud computing by healthcare domains. OpenID Connect, combining OpenID and OAuth together, is an emerging representational state transfer-based federated identity solution. It is one of the most adopted open standards to potentially become the de facto standard for securing cloud computing and mobile applications, which is also regarded as "Kerberos of cloud." We introduce OpenID Connect as an authentication and authorization service in cloud-based diagnostic imaging (DI) systems, and propose enhancements that allow for incorporating this technology within distributed enterprise environments. The objective of this study is to offer solutions for secure sharing of medical images among diagnostic imaging repository (DI-r) and heterogeneous picture archiving and communication systems (PACS) as well as Web-based and mobile clients in the cloud ecosystem. The main objective is to use OpenID Connect open-source single sign-on and authorization service and in a user-centric manner, while deploying DI-r and PACS to private or community clouds should provide equivalent security levels to traditional computing model.
Key Lessons in Building "Data Commons": The Open Science Data Cloud Ecosystem
NASA Astrophysics Data System (ADS)
Patterson, M.; Grossman, R.; Heath, A.; Murphy, M.; Wells, W.
2015-12-01
Cloud computing technology has created a shift around data and data analysis by allowing researchers to push computation to data as opposed to having to pull data to an individual researcher's computer. Subsequently, cloud-based resources can provide unique opportunities to capture computing environments used both to access raw data in its original form and also to create analysis products which may be the source of data for tables and figures presented in research publications. Since 2008, the Open Cloud Consortium (OCC) has operated the Open Science Data Cloud (OSDC), which provides scientific researchers with computational resources for storing, sharing, and analyzing large (terabyte and petabyte-scale) scientific datasets. OSDC has provided compute and storage services to over 750 researchers in a wide variety of data intensive disciplines. Recently, internal users have logged about 2 million core hours each month. The OSDC also serves the research community by colocating these resources with access to nearly a petabyte of public scientific datasets in a variety of fields also accessible for download externally by the public. In our experience operating these resources, researchers are well served by "data commons," meaning cyberinfrastructure that colocates data archives, computing, and storage infrastructure and supports essential tools and services for working with scientific data. In addition to the OSDC public data commons, the OCC operates a data commons in collaboration with NASA and is developing a data commons for NOAA datasets. As cloud-based infrastructures for distributing and computing over data become more pervasive, we ask, "What does it mean to publish data in a data commons?" Here we present the OSDC perspective and discuss several services that are key in architecting data commons, including digital identifier services.
The Role of Standards in Cloud-Computing Interoperability
2012-10-01
services are not shared outside the organization. CloudStack, Eucalyptus, HP, Microsoft, OpenStack , Ubuntu, and VMWare provide tools for building...center requirements • Developing usage models for cloud ven- dors • Independent IT consortium OpenStack http://www.openstack.org • Open-source...software for running private clouds • Currently consists of three core software projects: OpenStack Compute (Nova), OpenStack Object Storage (Swift
NASA Astrophysics Data System (ADS)
Schnase, J. L.; Duffy, D.; Tamkin, G. S.; Nadeau, D.; Thompson, J. H.; Grieg, C. M.; McInerney, M.; Webster, W. P.
2013-12-01
Climate science is a Big Data domain that is experiencing unprecedented growth. In our efforts to address the Big Data challenges of climate science, we are moving toward a notion of Climate Analytics-as-a-Service (CAaaS). We focus on analytics, because it is the knowledge gained from our interactions with Big Data that ultimately produce societal benefits. We focus on CAaaS because we believe it provides a useful way of thinking about the problem: a specialization of the concept of business process-as-a-service, which is an evolving extension of IaaS, PaaS, and SaaS enabled by Cloud Computing. Within this framework, Cloud Computing plays an important role; however, we see it as only one element in a constellation of capabilities that are essential to delivering climate analytics as a service. These elements are essential because in the aggregate they lead to generativity, a capacity for self-assembly that we feel is the key to solving many of the Big Data challenges in this domain. MERRA Analytic Services (MERRA/AS) is an example of cloud-enabled CAaaS built on this principle. MERRA/AS enables MapReduce analytics over NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) data collection. The MERRA reanalysis integrates observational data with numerical models to produce a global temporally and spatially consistent synthesis of 26 key climate variables. It represents a type of data product that is of growing importance to scientists doing climate change research and a wide range of decision support applications. MERRA/AS brings together the following generative elements in a full, end-to-end demonstration of CAaaS capabilities: (1) high-performance, data proximal analytics, (2) scalable data management, (3) software appliance virtualization, (4) adaptive analytics, and (5) a domain-harmonized API. The effectiveness of MERRA/AS has been demonstrated in several applications. In our experience, Cloud Computing lowers the barriers and risk to organizational change, fosters innovation and experimentation, facilitates technology transfer, and provides the agility required to meet our customers' increasing and changing needs. Cloud Computing is providing a new tier in the data services stack that helps connect earthbound, enterprise-level data and computational resources to new customers and new mobility-driven applications and modes of work. For climate science, Cloud Computing's capacity to engage communities in the construction of new capabilies is perhaps the most important link between Cloud Computing and Big Data.
NASA Technical Reports Server (NTRS)
Schnase, John L.; Duffy, Daniel Quinn; Tamkin, Glenn S.; Nadeau, Denis; Thompson, John H.; Grieg, Christina M.; McInerney, Mark A.; Webster, William P.
2014-01-01
Climate science is a Big Data domain that is experiencing unprecedented growth. In our efforts to address the Big Data challenges of climate science, we are moving toward a notion of Climate Analytics-as-a-Service (CAaaS). We focus on analytics, because it is the knowledge gained from our interactions with Big Data that ultimately produce societal benefits. We focus on CAaaS because we believe it provides a useful way of thinking about the problem: a specialization of the concept of business process-as-a-service, which is an evolving extension of IaaS, PaaS, and SaaS enabled by Cloud Computing. Within this framework, Cloud Computing plays an important role; however, we it see it as only one element in a constellation of capabilities that are essential to delivering climate analytics as a service. These elements are essential because in the aggregate they lead to generativity, a capacity for self-assembly that we feel is the key to solving many of the Big Data challenges in this domain. MERRA Analytic Services (MERRAAS) is an example of cloud-enabled CAaaS built on this principle. MERRAAS enables MapReduce analytics over NASAs Modern-Era Retrospective Analysis for Research and Applications (MERRA) data collection. The MERRA reanalysis integrates observational data with numerical models to produce a global temporally and spatially consistent synthesis of 26 key climate variables. It represents a type of data product that is of growing importance to scientists doing climate change research and a wide range of decision support applications. MERRAAS brings together the following generative elements in a full, end-to-end demonstration of CAaaS capabilities: (1) high-performance, data proximal analytics, (2) scalable data management, (3) software appliance virtualization, (4) adaptive analytics, and (5) a domain-harmonized API. The effectiveness of MERRAAS has been demonstrated in several applications. In our experience, Cloud Computing lowers the barriers and risk to organizational change, fosters innovation and experimentation, facilitates technology transfer, and provides the agility required to meet our customers' increasing and changing needs. Cloud Computing is providing a new tier in the data services stack that helps connect earthbound, enterprise-level data and computational resources to new customers and new mobility-driven applications and modes of work. For climate science, Cloud Computing's capacity to engage communities in the construction of new capabilies is perhaps the most important link between Cloud Computing and Big Data.
Cloud Computing Technologies in Writing Class: Factors Influencing Students' Learning Experience
ERIC Educational Resources Information Center
Wang, Jenny
2017-01-01
The proposed interactive online group within the cloud computing technologies as a main contribution of this paper provides easy and simple access to the cloud-based Software as a Service (SaaS) system and delivers effective educational tools for students and teacher on after-class group writing assignment activities. Therefore, this study…
BetterThanPin: Empowering Users to Fight Phishing (Poster)
NASA Astrophysics Data System (ADS)
Tan, Teik Guan
The BetterThanPin concept is an online security service that allows users to enable almost any Cloud or Web-based account (e.g. Gmail, MSN, Yahoo, etc) to be protected with "almost" 2-factor authentication (2FA). The result is that users can now protect their online accounts with better authentication, without waiting for the service or cloud provider.
Performance Evaluation of Cloud Service Considering Fault Recovery
NASA Astrophysics Data System (ADS)
Yang, Bo; Tan, Feng; Dai, Yuan-Shun; Guo, Suchang
In cloud computing, cloud service performance is an important issue. To improve cloud service reliability, fault recovery may be used. However, the use of fault recovery could have impact on the performance of cloud service. In this paper, we conduct a preliminary study on this issue. Cloud service performance is quantified by service response time, whose probability density function as well as the mean is derived.
Assessment of physical server reliability in multi cloud computing system
NASA Astrophysics Data System (ADS)
Kalyani, B. J. D.; Rao, Kolasani Ramchand H.
2018-04-01
Business organizations nowadays functioning with more than one cloud provider. By spreading cloud deployment across multiple service providers, it creates space for competitive prices that minimize the burden on enterprises spending budget. To assess the software reliability of multi cloud application layered software reliability assessment paradigm is considered with three levels of abstractions application layer, virtualization layer, and server layer. The reliability of each layer is assessed separately and is combined to get the reliability of multi-cloud computing application. In this paper, we focused on how to assess the reliability of server layer with required algorithms and explore the steps in the assessment of server reliability.
Dynamic VMs placement for energy efficiency by PSO in cloud computing
NASA Astrophysics Data System (ADS)
Dashti, Seyed Ebrahim; Rahmani, Amir Masoud
2016-03-01
Recently, cloud computing is growing fast and helps to realise other high technologies. In this paper, we propose a hieratical architecture to satisfy both providers' and consumers' requirements in these technologies. We design a new service in the PaaS layer for scheduling consumer tasks. In the providers' perspective, incompatibility between specification of physical machine and user requests in cloud leads to problems such as energy-performance trade-off and large power consumption so that profits are decreased. To guarantee Quality of service of users' tasks, and reduce energy efficiency, we proposed to modify Particle Swarm Optimisation to reallocate migrated virtual machines in the overloaded host. We also dynamically consolidate the under-loaded host which provides power saving. Simulation results in CloudSim demonstrated that whatever simulation condition is near to the real environment, our method is able to save as much as 14% more energy and the number of migrations and simulation time significantly reduces compared with the previous works.
A green strategy for federated and heterogeneous clouds with communicating workloads.
Mateo, Jordi; Vilaplana, Jordi; Plà, Lluis M; Lérida, Josep Ll; Solsona, Francesc
2014-01-01
Providers of cloud environments must tackle the challenge of configuring their system to provide maximal performance while minimizing the cost of resources used. However, at the same time, they must guarantee an SLA (service-level agreement) to the users. The SLA is usually associated with a certain level of QoS (quality of service). As response time is perhaps the most widely used QoS metric, it was also the one chosen in this work. This paper presents a green strategy (GS) model for heterogeneous cloud systems. We provide a solution for heterogeneous job-communicating tasks and heterogeneous VMs that make up the nodes of the cloud. In addition to guaranteeing the SLA, the main goal is to optimize energy savings. The solution results in an equation that must be solved by a solver with nonlinear capabilities. The results obtained from modelling the policies to be executed by a solver demonstrate the applicability of our proposal for saving energy and guaranteeing the SLA.
A Green Strategy for Federated and Heterogeneous Clouds with Communicating Workloads
Plà, Lluis M.; Lérida, Josep Ll.
2014-01-01
Providers of cloud environments must tackle the challenge of configuring their system to provide maximal performance while minimizing the cost of resources used. However, at the same time, they must guarantee an SLA (service-level agreement) to the users. The SLA is usually associated with a certain level of QoS (quality of service). As response time is perhaps the most widely used QoS metric, it was also the one chosen in this work. This paper presents a green strategy (GS) model for heterogeneous cloud systems. We provide a solution for heterogeneous job-communicating tasks and heterogeneous VMs that make up the nodes of the cloud. In addition to guaranteeing the SLA, the main goal is to optimize energy savings. The solution results in an equation that must be solved by a solver with nonlinear capabilities. The results obtained from modelling the policies to be executed by a solver demonstrate the applicability of our proposal for saving energy and guaranteeing the SLA. PMID:25478589
Secure and Resilient Cloud Computing for the Department of Defense
2015-07-21
that addresses that threat model, and (3) integrate the technology into a usable, secure, resilient cloud test bed. Underpinning this work is the...risks for the DoD’s acquisition of secure, resilient cloud technology by providing proofs of concept, technology maturity, integration demonstrations...we need a strategy for integrating LLSRC technology with the cloud services and applications that need to be secured. The LLSRC integration
Data-proximate Visualization via Unidata Cloud Technologies
NASA Astrophysics Data System (ADS)
Fisher, W. I.; Oxelson Ganter, J.; Weber, J.
2016-12-01
The rise in cloud computing, coupled with the growth of "Big Data", has lead to a migration away from local scientific data storage. The increasing size of remote scientific data sets increase, however, makes it difficult for scientists to subject them to large-scale analysis and visualization. These large datasets can take an inordinate amount of time to download; subsetting is a potential solution, but subsetting services are not yet ubiquitous. Data providers may also pay steep prices, as many cloud providers meter data based on how much data leaves their cloud service.The solution to this problem is a deceptively simple one; move data analysis and visualization tools to the cloud, so that scientists may perform data-proximate analysis and visualization. This results in increased transfer speeds, while egress costs are lowered or completely eliminated. The challenge now becomes creating tools which are cloud-ready.The solution to this challenge is provided by Application Streaming. This technology allows a program to run entirely on a remote virtual machine while still allowing for interactivity and dynamic visualizations. When coupled with containerization technology such as Docker, we are able to easily deploy legacy analysis and visualization software to the cloud whilst retaining access via a desktop, netbook, a smartphone, or the next generation of hardware, whatever it may be.Unidata has harnessed Application Streaming to provide a cloud-capable version of our visualization software, the Integrated Data Viewer (IDV). This work will examine the challenges associated with adapting the IDV to an application streaming platform, and include a brief discussion of the underlying technologies involved.
Cloud-based data-proximate visualization and analysis
NASA Astrophysics Data System (ADS)
Fisher, Ward
2017-04-01
The rise in cloud computing, coupled with the growth of "Big Data", has lead to a migration away from local scientific data storage. The increasing size of remote scientific data sets increase, however, makes it difficult for scientists to subject them to large-scale analysis and visualization. These large datasets can take an inordinate amount of time to download; subsetting is a potential solution, but subsetting services are not yet ubiquitous. Data providers may also pay steep prices, as many cloud providers meter data based on how much data leaves their cloud service. The solution to this problem is a deceptively simple one; move data analysis and visualization tools to the cloud, so that scientists may perform data-proximate analysis and visualization. This results in increased transfer speeds, while egress costs are lowered or completely eliminated. The challenge now becomes creating tools which are cloud-ready. The solution to this challenge is provided by Application Streaming. This technology allows a program to run entirely on a remote virtual machine while still allowing for interactivity and dynamic visualizations. When coupled with containerization technology such as Docker, we are able to easily deploy legacy analysis and visualization software to the cloud whilst retaining access via a desktop, netbook, a smartphone, or the next generation of hardware, whatever it may be. Unidata has harnessed Application Streaming to provide a cloud-capable version of our visualization software, the Integrated Data Viewer (IDV). This work will examine the challenges associated with adapting the IDV to an application streaming platform, and include a brief discussion of the underlying technologies involved.
The Metadata Cloud: The Last Piece of a Distributed Data System Model
NASA Astrophysics Data System (ADS)
King, T. A.; Cecconi, B.; Hughes, J. S.; Walker, R. J.; Roberts, D.; Thieman, J. R.; Joy, S. P.; Mafi, J. N.; Gangloff, M.
2012-12-01
Distributed data systems have existed ever since systems were networked together. Over the years the model for distributed data systems have evolved from basic file transfer to client-server to multi-tiered to grid and finally to cloud based systems. Initially metadata was tightly coupled to the data either by embedding the metadata in the same file containing the data or by co-locating the metadata in commonly named files. As the sources of data multiplied, data volumes have increased and services have specialized to improve efficiency; a cloud system model has emerged. In a cloud system computing and storage are provided as services with accessibility emphasized over physical location. Computation and data clouds are common implementations. Effectively using the data and computation capabilities requires metadata. When metadata is stored separately from the data; a metadata cloud is formed. With a metadata cloud information and knowledge about data resources can migrate efficiently from system to system, enabling services and allowing the data to remain efficiently stored until used. This is especially important with "Big Data" where movement of the data is limited by bandwidth. We examine how the metadata cloud completes a general distributed data system model, how standards play a role and relate this to the existing types of cloud computing. We also look at the major science data systems in existence and compare each to the generalized cloud system model.
The Globus Galaxies Platform. Delivering Science Gateways as a Service
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madduri, Ravi; Chard, Kyle; Chard, Ryan
We use public cloud computers to host sophisticated scientific data; software is then used to transform scientific practice by enabling broad access to capabilities previously available only to the few. The primary obstacle to more widespread use of public clouds to host scientific software (‘cloud-based science gateways’) has thus far been the considerable gap between the specialized needs of science applications and the capabilities provided by cloud infrastructures. We describe here a domain-independent, cloud-based science gateway platform, the Globus Galaxies platform, which overcomes this gap by providing a set of hosted services that directly address the needs of science gatewaymore » developers. The design and implementation of this platform leverages our several years of experience with Globus Genomics, a cloud-based science gateway that has served more than 200 genomics researchers across 30 institutions. Building on that foundation, we have also implemented a platform that leverages the popular Galaxy system for application hosting and workflow execution; Globus services for data transfer, user and group management, and authentication; and a cost-aware elastic provisioning model specialized for public cloud resources. We describe here the capabilities and architecture of this platform, present six scientific domains in which we have successfully applied it, report on user experiences, and analyze the economics of our deployments. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.« less
NASA Astrophysics Data System (ADS)
Arko, S. A.; Hogenson, R.; Geiger, A.; Herrmann, J.; Buechler, B.; Hogenson, K.
2016-12-01
In the coming years there will be an unprecedented amount of SAR data available on a free and open basis to research and operational users around the globe. The Alaska Satellite Facility (ASF) DAAC hosts, through an international agreement, data from the Sentinel-1 spacecraft and will be hosting data from the upcoming NASA ISRO SAR (NISAR) mission. To more effectively manage and exploit these vast datasets, ASF DAAC has begun moving portions of the archive to the cloud and utilizing cloud services to provide higher-level processing on the data. The Hybrid Pluggable Processing Pipeline (HyP3) project is designed to support higher-level data processing in the cloud and extend the capabilities of researchers to larger scales. Built upon a set of core Amazon cloud services, the HyP3 system allows users to request data processing using a number of canned algorithms or their own algorithms once they have been uploaded to the cloud. The HyP3 system automatically accesses the ASF cloud-based archive through the DAAC RESTful application programming interface and processes the data on Amazon's elastic compute cluster (EC2). Final products are distributed through Amazon's simple storage service (S3) and are available for user download. This presentation will provide an overview of ASF DAAC's activities moving the Sentinel-1 archive into the cloud and developing the integrated HyP3 system, covering both the benefits and difficulties of working in the cloud. Additionally, we will focus on the utilization of HyP3 for higher-level processing of SAR data. Two example algorithms, for sea-ice tracking and change detection, will be discussed as well as the mechanism for integrating new algorithms into the pipeline for community use.
Wearable Internet of Things - from human activity tracking to clinical integration.
Kumari, Poonam; Lopez-Benitez, Miguel; Gyu Myoung Lee; Tae-Seong Kim; Minhas, Atul S
2017-07-01
Wearable devices for human activity tracking have been emerging rapidly. Most of them are capable of sending health statistics to smartphones, smartwatches or smart bands. However, they only provide the data for individual analysis and their data is not integrated into clinical practice. Leveraging on the Internet of Things (IoT), edge and cloud computing technologies, we propose an architecture which is capable of providing cloud based clinical services using human activity data. Such services could supplement the shortage of staff in primary healthcare centers thereby reducing the burden on healthcare service providers. The enormous amount of data created from such services could also be utilized for planning future therapies by studying recovery cycles of existing patients. We provide a prototype based on our architecture and discuss its salient features. We also provide use cases of our system in personalized and home based healthcare services. We propose an International Telecommunication Union based standardization (ITU-T) for our design and discuss future directions in wearable IoT.
Cloud Computing for Geosciences--GeoCloud for standardized geospatial service platforms (Invited)
NASA Astrophysics Data System (ADS)
Nebert, D. D.; Huang, Q.; Yang, C.
2013-12-01
The 21st century geoscience faces challenges of Big Data, spike computing requirements (e.g., when natural disaster happens), and sharing resources through cyberinfrastructure across different organizations (Yang et al., 2011). With flexibility and cost-efficiency of computing resources a primary concern, cloud computing emerges as a promising solution to provide core capabilities to address these challenges. Many governmental and federal agencies are adopting cloud technologies to cut costs and to make federal IT operations more efficient (Huang et al., 2010). However, it is still difficult for geoscientists to take advantage of the benefits of cloud computing to facilitate the scientific research and discoveries. This presentation reports using GeoCloud to illustrate the process and strategies used in building a common platform for geoscience communities to enable the sharing, integration of geospatial data, information and knowledge across different domains. GeoCloud is an annual incubator project coordinated by the Federal Geographic Data Committee (FGDC) in collaboration with the U.S. General Services Administration (GSA) and the Department of Health and Human Services. It is designed as a staging environment to test and document the deployment of a common GeoCloud community platform that can be implemented by multiple agencies. With these standardized virtual geospatial servers, a variety of government geospatial applications can be quickly migrated to the cloud. In order to achieve this objective, multiple projects are nominated each year by federal agencies as existing public-facing geospatial data services. From the initial candidate projects, a set of common operating system and software requirements was identified as the baseline for platform as a service (PaaS) packages. Based on these developed common platform packages, each project deploys and monitors its web application, develops best practices, and documents cost and performance information. This paper presents the background, architectural design, and activities of GeoCloud in support of the Geospatial Platform Initiative. System security strategies and approval processes for migrating federal geospatial data, information, and applications into cloud, and cost estimation for cloud operations are covered. Finally, some lessons learned from the GeoCloud project are discussed as reference for geoscientists to consider in the adoption of cloud computing.
NASA Astrophysics Data System (ADS)
Delipetrev, Blagoj
2016-04-01
Presently, most of the existing software is desktop-based, designed to work on a single computer, which represents a major limitation in many ways, starting from limited computer processing, storage power, accessibility, availability, etc. The only feasible solution lies in the web and cloud. This abstract presents research and development of a cloud computing geospatial application for water resources based on free and open source software and open standards using hybrid deployment model of public - private cloud, running on two separate virtual machines (VMs). The first one (VM1) is running on Amazon web services (AWS) and the second one (VM2) is running on a Xen cloud platform. The presented cloud application is developed using free and open source software, open standards and prototype code. The cloud application presents a framework how to develop specialized cloud geospatial application that needs only a web browser to be used. This cloud application is the ultimate collaboration geospatial platform because multiple users across the globe with internet connection and browser can jointly model geospatial objects, enter attribute data and information, execute algorithms, and visualize results. The presented cloud application is: available all the time, accessible from everywhere, it is scalable, works in a distributed computer environment, it creates a real-time multiuser collaboration platform, the programing languages code and components are interoperable, and it is flexible in including additional components. The cloud geospatial application is implemented as a specialized water resources application with three web services for 1) data infrastructure (DI), 2) support for water resources modelling (WRM), 3) user management. The web services are running on two VMs that are communicating over the internet providing services to users. The application was tested on the Zletovica river basin case study with concurrent multiple users. The application is a state-of-the-art cloud geospatial collaboration platform. The presented solution is a prototype and can be used as a foundation for developing of any specialized cloud geospatial applications. Further research will be focused on distributing the cloud application on additional VMs, testing the scalability and availability of services.
Menu-driven cloud computing and resource sharing for R and Bioconductor.
Bolouri, Hamid; Dulepet, Rajiv; Angerman, Michael
2011-08-15
We report CRdata.org, a cloud-based, free, open-source web server for running analyses and sharing data and R scripts with others. In addition to using the free, public service, CRdata users can launch their own private Amazon Elastic Computing Cloud (EC2) nodes and store private data and scripts on Amazon's Simple Storage Service (S3) with user-controlled access rights. All CRdata services are provided via point-and-click menus. CRdata is open-source and free under the permissive MIT License (opensource.org/licenses/mit-license.php). The source code is in Ruby (ruby-lang.org/en/) and available at: github.com/seerdata/crdata. hbolouri@fhcrc.org.
Evaluating the Influence of the Client Behavior in Cloud Computing.
Souza Pardo, Mário Henrique; Centurion, Adriana Molina; Franco Eustáquio, Paulo Sérgio; Carlucci Santana, Regina Helena; Bruschi, Sarita Mazzini; Santana, Marcos José
2016-01-01
This paper proposes a novel approach for the implementation of simulation scenarios, providing a client entity for cloud computing systems. The client entity allows the creation of scenarios in which the client behavior has an influence on the simulation, making the results more realistic. The proposed client entity is based on several characteristics that affect the performance of a cloud computing system, including different modes of submission and their behavior when the waiting time between requests (think time) is considered. The proposed characterization of the client enables the sending of either individual requests or group of Web services to scenarios where the workload takes the form of bursts. The client entity is included in the CloudSim, a framework for modelling and simulation of cloud computing. Experimental results show the influence of the client behavior on the performance of the services executed in a cloud computing system.
Evaluating the Influence of the Client Behavior in Cloud Computing
Centurion, Adriana Molina; Franco Eustáquio, Paulo Sérgio; Carlucci Santana, Regina Helena; Bruschi, Sarita Mazzini; Santana, Marcos José
2016-01-01
This paper proposes a novel approach for the implementation of simulation scenarios, providing a client entity for cloud computing systems. The client entity allows the creation of scenarios in which the client behavior has an influence on the simulation, making the results more realistic. The proposed client entity is based on several characteristics that affect the performance of a cloud computing system, including different modes of submission and their behavior when the waiting time between requests (think time) is considered. The proposed characterization of the client enables the sending of either individual requests or group of Web services to scenarios where the workload takes the form of bursts. The client entity is included in the CloudSim, a framework for modelling and simulation of cloud computing. Experimental results show the influence of the client behavior on the performance of the services executed in a cloud computing system. PMID:27441559
OpenID Connect as a security service in cloud-based medical imaging systems
Ma, Weina; Sartipi, Kamran; Sharghigoorabi, Hassan; Koff, David; Bak, Peter
2016-01-01
Abstract. The evolution of cloud computing is driving the next generation of medical imaging systems. However, privacy and security concerns have been consistently regarded as the major obstacles for adoption of cloud computing by healthcare domains. OpenID Connect, combining OpenID and OAuth together, is an emerging representational state transfer-based federated identity solution. It is one of the most adopted open standards to potentially become the de facto standard for securing cloud computing and mobile applications, which is also regarded as “Kerberos of cloud.” We introduce OpenID Connect as an authentication and authorization service in cloud-based diagnostic imaging (DI) systems, and propose enhancements that allow for incorporating this technology within distributed enterprise environments. The objective of this study is to offer solutions for secure sharing of medical images among diagnostic imaging repository (DI-r) and heterogeneous picture archiving and communication systems (PACS) as well as Web-based and mobile clients in the cloud ecosystem. The main objective is to use OpenID Connect open-source single sign-on and authorization service and in a user-centric manner, while deploying DI-r and PACS to private or community clouds should provide equivalent security levels to traditional computing model. PMID:27340682
An Architecture for Cross-Cloud System Management
NASA Astrophysics Data System (ADS)
Dodda, Ravi Teja; Smith, Chris; van Moorsel, Aad
The emergence of the cloud computing paradigm promises flexibility and adaptability through on-demand provisioning of compute resources. As the utilization of cloud resources extends beyond a single provider, for business as well as technical reasons, the issue of effectively managing such resources comes to the fore. Different providers expose different interfaces to their compute resources utilizing varied architectures and implementation technologies. This heterogeneity poses a significant system management problem, and can limit the extent to which the benefits of cross-cloud resource utilization can be realized. We address this problem through the definition of an architecture to facilitate the management of compute resources from different cloud providers in an homogenous manner. This preserves the flexibility and adaptability promised by the cloud computing paradigm, whilst enabling the benefits of cross-cloud resource utilization to be realized. The practical efficacy of the architecture is demonstrated through an implementation utilizing compute resources managed through different interfaces on the Amazon Elastic Compute Cloud (EC2) service. Additionally, we provide empirical results highlighting the performance differential of these different interfaces, and discuss the impact of this performance differential on efficiency and profitability.
Mobile healthcare information management utilizing Cloud Computing and Android OS.
Doukas, Charalampos; Pliakas, Thomas; Maglogiannis, Ilias
2010-01-01
Cloud Computing provides functionality for managing information data in a distributed, ubiquitous and pervasive manner supporting several platforms, systems and applications. This work presents the implementation of a mobile system that enables electronic healthcare data storage, update and retrieval using Cloud Computing. The mobile application is developed using Google's Android operating system and provides management of patient health records and medical images (supporting DICOM format and JPEG2000 coding). The developed system has been evaluated using the Amazon's S3 cloud service. This article summarizes the implementation details and presents initial results of the system in practice.
Templet Web: the use of volunteer computing approach in PaaS-style cloud
NASA Astrophysics Data System (ADS)
Vostokin, Sergei; Artamonov, Yuriy; Tsarev, Daniil
2018-03-01
This article presents the Templet Web cloud service. The service is designed for high-performance scientific computing automation. The use of high-performance technology is specifically required by new fields of computational science such as data mining, artificial intelligence, machine learning, and others. Cloud technologies provide a significant cost reduction for high-performance scientific applications. The main objectives to achieve this cost reduction in the Templet Web service design are: (a) the implementation of "on-demand" access; (b) source code deployment management; (c) high-performance computing programs development automation. The distinctive feature of the service is the approach mainly used in the field of volunteer computing, when a person who has access to a computer system delegates his access rights to the requesting user. We developed an access procedure, algorithms, and software for utilization of free computational resources of the academic cluster system in line with the methods of volunteer computing. The Templet Web service has been in operation for five years. It has been successfully used for conducting laboratory workshops and solving research problems, some of which are considered in this article. The article also provides an overview of research directions related to service development.
NASA Astrophysics Data System (ADS)
Schaap, Dick M. A.; Fichaut, Michele
2017-04-01
SeaDataCloud marks the third phase of developing the pan-European SeaDataNet infrastructure for marine and ocean data management. The SeaDataCloud project is funded by EU and runs for 4 years from 1st November 2016. It succeeds the successful SeaDataNet II (2011 - 2015) and SeaDataNet (2006 - 2011) projects. SeaDataNet has set up and operates a pan-European infrastructure for managing marine and ocean data and is undertaken by National Oceanographic Data Centres (NODC's) and oceanographic data focal points from 34 coastal states in Europe. The infrastructure comprises a network of interconnected data centres and central SeaDataNet portal. The portal provides users a harmonised set of metadata directories and controlled access to the large collections of datasets, managed by the interconnected data centres. The population of directories has increased considerably in cooperation with and involvement in many associated EU projects and initiatives such as EMODnet. SeaDataNet at present gives overview and access to more than 1.9 million data sets for physical oceanography, chemistry, geology, geophysics, bathymetry and biology from more than 100 connected data centres from 34 countries riparian to European seas. SeaDataNet is also active in setting and governing marine data standards, and exploring and establishing interoperability solutions to connect to other e-infrastructures on the basis of standards of ISO (19115, 19139), and OGC (WMS, WFS, CS-W and SWE). Standards and associated SeaDataNet tools are made available at the SeaDataNet portal for wide uptake by data handling and managing organisations. SeaDataCloud aims at further developing standards, innovating services & products, adopting new technologies, and giving more attention to users. Moreover, it is about implementing a cooperation between the SeaDataNet consortium of marine data centres and the EUDAT consortium of e-infrastructure service providers. SeaDataCloud aims at considerably advancing services and increasing their usage by adopting cloud and High Performance Computing technology. SeaDataCloud will empower researchers with a packaged collection of services and tools, tailored to their specific needs, supporting research and enabling generation of added-value products from marine and ocean data. Substantial activities will be focused on developing added-value services, such as data subsetting, analysis, visualisation, and publishing workflows for users, both regular and advanced users, as part of a Virtual Research Environment (VRE). SeaDataCloud aims at a number of leading user communities that have new challenges for upgrading and expanding the SeaDataNet standards and services: Science, EMODnet, Copernicus Marine Environmental Monitoring Service (CMEMS) and EuroGOOS, and International scientific programmes. The presentation will give information on present services of the SeaDataNet infrastructure and services, and the new challenges in SeaDataCloud, and will highlight a number of key achievements in SeaDataCloud so far.
A Review Study on Cloud Computing Issues
NASA Astrophysics Data System (ADS)
Kanaan Kadhim, Qusay; Yusof, Robiah; Sadeq Mahdi, Hamid; Al-shami, Sayed Samer Ali; Rahayu Selamat, Siti
2018-05-01
Cloud computing is the most promising current implementation of utility computing in the business world, because it provides some key features over classic utility computing, such as elasticity to allow clients dynamically scale-up and scale-down the resources in execution time. Nevertheless, cloud computing is still in its premature stage and experiences lack of standardization. The security issues are the main challenges to cloud computing adoption. Thus, critical industries such as government organizations (ministries) are reluctant to trust cloud computing due to the fear of losing their sensitive data, as it resides on the cloud with no knowledge of data location and lack of transparency of Cloud Service Providers (CSPs) mechanisms used to secure their data and applications which have created a barrier against adopting this agile computing paradigm. This study aims to review and classify the issues that surround the implementation of cloud computing which a hot area that needs to be addressed by future research.
NASA Astrophysics Data System (ADS)
Yang, Wei; Hall, Trevor
2012-12-01
The Internet is entering an era of cloud computing to provide more cost effective, eco-friendly and reliable services to consumer and business users and the nature of the Internet traffic will undertake a fundamental transformation. Consequently, the current Internet will no longer suffice for serving cloud traffic in metro areas. This work proposes an infrastructure with a unified control plane that integrates simple packet aggregation technology with optical express through the interoperation between IP routers and electrical traffic controllers in optical metro networks. The proposed infrastructure provides flexible, intelligent, and eco-friendly bandwidth on demand for cloud computing in metro areas.
Expeditionary Oblong Mezzanine
2016-03-01
Operating System OSI Open Systems Interconnection OS X Operating System Ten PDU Power Distribution Unit POE Power Over Ethernet xvii SAAS ...providing infrastructure as a service (IaaS) and software as a service ( SaaS ) cloud computing technologies. IaaS is a way of providing computing services...such as servers, storage, and network equipment services (Mell & Grance, 2009). SaaS is a means of providing software and applications as an on
A secure EHR system based on hybrid clouds.
Chen, Yu-Yi; Lu, Jun-Chao; Jan, Jinn-Ke
2012-10-01
Consequently, application services rendering remote medical services and electronic health record (EHR) have become a hot topic and stimulating increased interest in studying this subject in recent years. Information and communication technologies have been applied to the medical services and healthcare area for a number of years to resolve problems in medical management. Sharing EHR information can provide professional medical programs with consultancy, evaluation, and tracing services can certainly improve accessibility to the public receiving medical services or medical information at remote sites. With the widespread use of EHR, building a secure EHR sharing environment has attracted a lot of attention in both healthcare industry and academic community. Cloud computing paradigm is one of the popular healthIT infrastructures for facilitating EHR sharing and EHR integration. In this paper, we propose an EHR sharing and integration system in healthcare clouds and analyze the arising security and privacy issues in access and management of EHRs.
Mobile cloud-computing-based healthcare service by noncontact ECG monitoring.
Fong, Ee-May; Chung, Wan-Young
2013-12-02
Noncontact electrocardiogram (ECG) measurement technique has gained popularity these days owing to its noninvasive features and convenience in daily life use. This paper presents mobile cloud computing for a healthcare system where a noncontact ECG measurement method is employed to capture biomedical signals from users. Healthcare service is provided to continuously collect biomedical signals from multiple locations. To observe and analyze the ECG signals in real time, a mobile device is used as a mobile monitoring terminal. In addition, a personalized healthcare assistant is installed on the mobile device; several healthcare features such as health status summaries, medication QR code scanning, and reminders are integrated into the mobile application. Health data are being synchronized into the healthcare cloud computing service (Web server system and Web server dataset) to ensure a seamless healthcare monitoring system and anytime and anywhere coverage of network connection is available. Together with a Web page application, medical data are easily accessed by medical professionals or family members. Web page performance evaluation was conducted to ensure minimal Web server latency. The system demonstrates better availability of off-site and up-to-the-minute patient data, which can help detect health problems early and keep elderly patients out of the emergency room, thus providing a better and more comprehensive healthcare cloud computing service.
Mobile Cloud-Computing-Based Healthcare Service by Noncontact ECG Monitoring
Fong, Ee-May; Chung, Wan-Young
2013-01-01
Noncontact electrocardiogram (ECG) measurement technique has gained popularity these days owing to its noninvasive features and convenience in daily life use. This paper presents mobile cloud computing for a healthcare system where a noncontact ECG measurement method is employed to capture biomedical signals from users. Healthcare service is provided to continuously collect biomedical signals from multiple locations. To observe and analyze the ECG signals in real time, a mobile device is used as a mobile monitoring terminal. In addition, a personalized healthcare assistant is installed on the mobile device; several healthcare features such as health status summaries, medication QR code scanning, and reminders are integrated into the mobile application. Health data are being synchronized into the healthcare cloud computing service (Web server system and Web server dataset) to ensure a seamless healthcare monitoring system and anytime and anywhere coverage of network connection is available. Together with a Web page application, medical data are easily accessed by medical professionals or family members. Web page performance evaluation was conducted to ensure minimal Web server latency. The system demonstrates better availability of off-site and up-to-the-minute patient data, which can help detect health problems early and keep elderly patients out of the emergency room, thus providing a better and more comprehensive healthcare cloud computing service. PMID:24316562
Automatic energy expenditure measurement for health science.
Catal, Cagatay; Akbulut, Akhan
2018-04-01
It is crucial to predict the human energy expenditure in any sports activity and health science application accurately to investigate the impact of the activity. However, measurement of the real energy expenditure is not a trivial task and involves complex steps. The objective of this work is to improve the performance of existing estimation models of energy expenditure by using machine learning algorithms and several data from different sensors and provide this estimation service in a cloud-based platform. In this study, we used input data such as breathe rate, and hearth rate from three sensors. Inputs are received from a web form and sent to the web service which applies a regression model on Azure cloud platform. During the experiments, we assessed several machine learning models based on regression methods. Our experimental results showed that our novel model which applies Boosted Decision Tree Regression in conjunction with the median aggregation technique provides the best result among other five regression algorithms. This cloud-based energy expenditure system which uses a web service showed that cloud computing technology is a great opportunity to develop estimation systems and the new model which applies Boosted Decision Tree Regression with the median aggregation provides remarkable results. Copyright © 2018 Elsevier B.V. All rights reserved.
A Systematic Process for Developing High Quality SaaS Cloud Services
NASA Astrophysics Data System (ADS)
La, Hyun Jung; Kim, Soo Dong
Software-as-a-Service (SaaS) is a type of cloud service which provides software functionality through Internet. Its benefits are well received in academia and industry. To fully utilize the benefits, there should be effective methodologies to support the development of SaaS services which provide high reusability and applicability. Conventional approaches such as object-oriented methods do not effectively support SaaS-specific engineering activities such as modeling common features, variability, and designing quality services. In this paper, we present a systematic process for developing high quality SaaS and highlight the essentiality of commonality and variability (C&V) modeling to maximize the reusability. We first define criteria for designing the process model and provide a theoretical foundation for SaaS; its meta-model and C&V model. We clarify the notion of commonality and variability in SaaS, and propose a SaaS development process which is accompanied with engineering instructions. Using the proposed process, SaaS services with high quality can be effectively developed.
Menu-driven cloud computing and resource sharing for R and Bioconductor
Bolouri, Hamid; Angerman, Michael
2011-01-01
Summary: We report CRdata.org, a cloud-based, free, open-source web server for running analyses and sharing data and R scripts with others. In addition to using the free, public service, CRdata users can launch their own private Amazon Elastic Computing Cloud (EC2) nodes and store private data and scripts on Amazon's Simple Storage Service (S3) with user-controlled access rights. All CRdata services are provided via point-and-click menus. Availability and Implementation: CRdata is open-source and free under the permissive MIT License (opensource.org/licenses/mit-license.php). The source code is in Ruby (ruby-lang.org/en/) and available at: github.com/seerdata/crdata. Contact: hbolouri@fhcrc.org PMID:21685055
Biomedical image analysis and processing in clouds
NASA Astrophysics Data System (ADS)
Bednarz, Tomasz; Szul, Piotr; Arzhaeva, Yulia; Wang, Dadong; Burdett, Neil; Khassapov, Alex; Chen, Shiping; Vallotton, Pascal; Lagerstrom, Ryan; Gureyev, Tim; Taylor, John
2013-10-01
Cloud-based Image Analysis and Processing Toolbox project runs on the Australian National eResearch Collaboration Tools and Resources (NeCTAR) cloud infrastructure and allows access to biomedical image processing and analysis services to researchers via remotely accessible user interfaces. By providing user-friendly access to cloud computing resources and new workflow-based interfaces, our solution enables researchers to carry out various challenging image analysis and reconstruction tasks. Several case studies will be presented during the conference.
Cloud computing can simplify HIT infrastructure management.
Glaser, John
2011-08-01
Software as a Service (SaaS), built on cloud computing technology, is emerging as the forerunner in IT infrastructure because it helps healthcare providers reduce capital investments. Cloud computing leads to predictable, monthly, fixed operating expenses for hospital IT staff. Outsourced cloud computing facilities are state-of-the-art data centers boasting some of the most sophisticated networking equipment on the market. The SaaS model helps hospitals safeguard against technology obsolescence, minimizes maintenance requirements, and simplifies management.
Facilitating Secure Sharing of Personal Health Data in the Cloud.
Thilakanathan, Danan; Calvo, Rafael A; Chen, Shiping; Nepal, Surya; Glozier, Nick
2016-05-27
Internet-based applications are providing new ways of promoting health and reducing the cost of care. Although data can be kept encrypted in servers, the user does not have the ability to decide whom the data are shared with. Technically this is linked to the problem of who owns the data encryption keys required to decrypt the data. Currently, cloud service providers, rather than users, have full rights to the key. In practical terms this makes the users lose full control over their data. Trust and uptake of these applications can be increased by allowing patients to feel in control of their data, generally stored in cloud-based services. This paper addresses this security challenge by providing the user a way of controlling encryption keys independently of the cloud service provider. We provide a secure and usable system that enables a patient to share health information with doctors and specialists. We contribute a secure protocol for patients to share their data with doctors and others on the cloud while keeping complete ownership. We developed a simple, stereotypical health application and carried out security tests, performance tests, and usability tests with both students and doctors (N=15). We developed the health application as an app for Android mobile phones. We carried out the usability tests on potential participants and medical professionals. Of 20 participants, 14 (70%) either agreed or strongly agreed that they felt safer using our system. Using mixed methods, we show that participants agreed that privacy and security of health data are important and that our system addresses these issues. We presented a security protocol that enables patients to securely share their eHealth data with doctors and nurses and developed a secure and usable system that enables patients to share mental health information with doctors.
Cryptonite: A Secure and Performant Data Repository on Public Clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumbhare, Alok; Simmhan, Yogesh; Prasanna, Viktor
2012-06-29
Cloud storage has become immensely popular for maintaining synchronized copies of files and for sharing documents with collaborators. However, there is heightened concern about the security and privacy of Cloud-hosted data due to the shared infrastructure model and an implicit trust in the service providers. Emerging needs of secure data storage and sharing for domains like Smart Power Grids, which deal with sensitive consumer data, require the persistence and availability of Cloud storage but with client-controlled security and encryption, low key management overhead, and minimal performance costs. Cryptonite is a secure Cloud storage repository that addresses these requirements using amore » StrongBox model for shared key management.We describe the Cryptonite service and desktop client, discuss performance optimizations, and provide an empirical analysis of the improvements. Our experiments shows that Cryptonite clients achieve a 40% improvement in file upload bandwidth over plaintext storage using the Azure Storage Client API despite the added security benefits, while our file download performance is 5 times faster than the baseline for files greater than 100MB.« less
Efficient Redundancy Techniques in Cloud and Desktop Grid Systems using MAP/G/c-type Queues
NASA Astrophysics Data System (ADS)
Chakravarthy, Srinivas R.; Rumyantsev, Alexander
2018-03-01
Cloud computing is continuing to prove its flexibility and versatility in helping industries and businesses as well as academia as a way of providing needed computing capacity. As an important alternative to cloud computing, desktop grids allow to utilize the idle computer resources of an enterprise/community by means of distributed computing system, providing a more secure and controllable environment with lower operational expenses. Further, both cloud computing and desktop grids are meant to optimize limited resources and at the same time to decrease the expected latency for users. The crucial parameter for optimization both in cloud computing and in desktop grids is the level of redundancy (replication) for service requests/workunits. In this paper we study the optimal replication policies by considering three variations of Fork-Join systems in the context of a multi-server queueing system with a versatile point process for the arrivals. For services we consider phase type distributions as well as shifted exponential and Weibull. We use both analytical and simulation approach in our analysis and report some interesting qualitative results.
Cloud Infrastructure & Applications - CloudIA
NASA Astrophysics Data System (ADS)
Sulistio, Anthony; Reich, Christoph; Doelitzscher, Frank
The idea behind Cloud Computing is to deliver Infrastructure-as-a-Services and Software-as-a-Service over the Internet on an easy pay-per-use business model. To harness the potentials of Cloud Computing for e-Learning and research purposes, and to small- and medium-sized enterprises, the Hochschule Furtwangen University establishes a new project, called Cloud Infrastructure & Applications (CloudIA). The CloudIA project is a market-oriented cloud infrastructure that leverages different virtualization technologies, by supporting Service-Level Agreements for various service offerings. This paper describes the CloudIA project in details and mentions our early experiences in building a private cloud using an existing infrastructure.
Research on phone contacts online status based on mobile cloud computing
NASA Astrophysics Data System (ADS)
Wang, Wen-jinga; Ge, Weib
2013-03-01
Because the limited ability of storage space, CPU processing on mobile phone, it is difficult to realize complex applications on mobile phones, but along with the development of cloud computing, we can place the computing and storage in the clouds, provide users with rich cloud services, helping users complete various function through the browser has become the trend for future mobile communication. This article is taking the mobile phone contacts online status as an example to analysis the development and application of mobile cloud computing.
Cloud Computing Value Chains: Understanding Businesses and Value Creation in the Cloud
NASA Astrophysics Data System (ADS)
Mohammed, Ashraf Bany; Altmann, Jörn; Hwang, Junseok
Based on the promising developments in Cloud Computing technologies in recent years, commercial computing resource services (e.g. Amazon EC2) or software-as-a-service offerings (e.g. Salesforce. com) came into existence. However, the relatively weak business exploitation, participation, and adoption of other Cloud Computing services remain the main challenges. The vague value structures seem to be hindering business adoption and the creation of sustainable business models around its technology. Using an extensive analyze of existing Cloud business models, Cloud services, stakeholder relations, market configurations and value structures, this Chapter develops a reference model for value chains in the Cloud. Although this model is theoretically based on porter's value chain theory, the proposed Cloud value chain model is upgraded to fit the diversity of business service scenarios in the Cloud computing markets. Using this model, different service scenarios are explained. Our findings suggest new services, business opportunities, and policy practices for realizing more adoption and value creation paths in the Cloud.
NASA Astrophysics Data System (ADS)
Timm, S.; Cooper, G.; Fuess, S.; Garzoglio, G.; Holzman, B.; Kennedy, R.; Grassano, D.; Tiradani, A.; Krishnamurthy, R.; Vinayagam, S.; Raicu, I.; Wu, H.; Ren, S.; Noh, S.-Y.
2017-10-01
The Fermilab HEPCloud Facility Project has as its goal to extend the current Fermilab facility interface to provide transparent access to disparate resources including commercial and community clouds, grid federations, and HPC centers. This facility enables experiments to perform the full spectrum of computing tasks, including data-intensive simulation and reconstruction. We have evaluated the use of the commercial cloud to provide elasticity to respond to peaks of demand without overprovisioning local resources. Full scale data-intensive workflows have been successfully completed on Amazon Web Services for two High Energy Physics Experiments, CMS and NOνA, at the scale of 58000 simultaneous cores. This paper describes the significant improvements that were made to the virtual machine provisioning system, code caching system, and data movement system to accomplish this work. The virtual image provisioning and contextualization service was extended to multiple AWS regions, and to support experiment-specific data configurations. A prototype Decision Engine was written to determine the optimal availability zone and instance type to run on, minimizing cost and job interruptions. We have deployed a scalable on-demand caching service to deliver code and database information to jobs running on the commercial cloud. It uses the frontiersquid server and CERN VM File System (CVMFS) clients on EC2 instances and utilizes various services provided by AWS to build the infrastructure (stack). We discuss the architecture and load testing benchmarks on the squid servers. We also describe various approaches that were evaluated to transport experimental data to and from the cloud, and the optimal solutions that were used for the bulk of the data transport. Finally, we summarize lessons learned from this scale test, and our future plans to expand and improve the Fermilab HEP Cloud Facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timm, S.; Cooper, G.; Fuess, S.
The Fermilab HEPCloud Facility Project has as its goal to extend the current Fermilab facility interface to provide transparent access to disparate resources including commercial and community clouds, grid federations, and HPC centers. This facility enables experiments to perform the full spectrum of computing tasks, including data-intensive simulation and reconstruction. We have evaluated the use of the commercial cloud to provide elasticity to respond to peaks of demand without overprovisioning local resources. Full scale data-intensive workflows have been successfully completed on Amazon Web Services for two High Energy Physics Experiments, CMS and NOνA, at the scale of 58000 simultaneous cores.more » This paper describes the significant improvements that were made to the virtual machine provisioning system, code caching system, and data movement system to accomplish this work. The virtual image provisioning and contextualization service was extended to multiple AWS regions, and to support experiment-specific data configurations. A prototype Decision Engine was written to determine the optimal availability zone and instance type to run on, minimizing cost and job interruptions. We have deployed a scalable on-demand caching service to deliver code and database information to jobs running on the commercial cloud. It uses the frontiersquid server and CERN VM File System (CVMFS) clients on EC2 instances and utilizes various services provided by AWS to build the infrastructure (stack). We discuss the architecture and load testing benchmarks on the squid servers. We also describe various approaches that were evaluated to transport experimental data to and from the cloud, and the optimal solutions that were used for the bulk of the data transport. Finally, we summarize lessons learned from this scale test, and our future plans to expand and improve the Fermilab HEP Cloud Facility.« less
Cell phones as imaging sensors
NASA Astrophysics Data System (ADS)
Bhatti, Nina; Baker, Harlyn; Marguier, Joanna; Berclaz, Jérôme; Süsstrunk, Sabine
2010-04-01
Camera phones are ubiquitous, and consumers have been adopting them faster than any other technology in modern history. When connected to a network, though, they are capable of more than just picture taking: Suddenly, they gain access to the power of the cloud. We exploit this capability by providing a series of image-based personal advisory services. These are designed to work with any handset over any cellular carrier using commonly available Multimedia Messaging Service (MMS) and Short Message Service (SMS) features. Targeted at the unsophisticated consumer, these applications must be quick and easy to use, not requiring download capabilities or preplanning. Thus, all application processing occurs in the back-end system (i.e., as a cloud service) and not on the handset itself. Presenting an image to an advisory service in the cloud, a user receives information that can be acted upon immediately. Two of our examples involve color assessment - selecting cosmetics and home décor paint palettes; the third provides the ability to extract text from a scene. In the case of the color imaging applications, we have shown that our service rivals the advice quality of experts. The result of this capability is a new paradigm for mobile interactions - image-based information services exploiting the ubiquity of camera phones.
NASA Astrophysics Data System (ADS)
Ali, Mufajjul
This paper proposes a Green Cloud model for mobile Cloud computing. The proposed model leverage on the current trend of IaaS (Infrastructure as a Service), PaaS (Platform as a Service) and SaaS (Software as a Service), and look at new paradigm called "Network as a Service" (NaaS). The Green Cloud model proposes various Telco's revenue generating streams and services with the CaaS (Cloud as a Service) for the near future.
CERNBox + EOS: end-user storage for science
NASA Astrophysics Data System (ADS)
Mascetti, L.; Gonzalez Labrador, H.; Lamanna, M.; Mościcki, JT; Peters, AJ
2015-12-01
CERNBox is a cloud synchronisation service for end-users: it allows syncing and sharing files on all major mobile and desktop platforms (Linux, Windows, MacOSX, Android, iOS) aiming to provide offline availability to any data stored in the CERN EOS infrastructure. The successful beta phase of the service confirmed the high demand in the community for an easily accessible cloud storage solution such as CERNBox. Integration of the CERNBox service with the EOS storage back-end is the next step towards providing “sync and share” capabilities for scientific and engineering use-cases. In this report we will present lessons learnt in offering the CERNBox service, key technical aspects of CERNBox/EOS integration and new, emerging usage possibilities. The latter includes the ongoing integration of “sync and share” capabilities with the LHC data analysis tools and transfer services.
Integration of Cloud resources in the LHCb Distributed Computing
NASA Astrophysics Data System (ADS)
Úbeda García, Mario; Méndez Muñoz, Víctor; Stagni, Federico; Cabarrou, Baptiste; Rauschmayr, Nathalie; Charpentier, Philippe; Closier, Joel
2014-06-01
This contribution describes how Cloud resources have been integrated in the LHCb Distributed Computing. LHCb is using its specific Dirac extension (LHCbDirac) as an interware for its Distributed Computing. So far, it was seamlessly integrating Grid resources and Computer clusters. The cloud extension of DIRAC (VMDIRAC) allows the integration of Cloud computing infrastructures. It is able to interact with multiple types of infrastructures in commercial and institutional clouds, supported by multiple interfaces (Amazon EC2, OpenNebula, OpenStack and CloudStack) - instantiates, monitors and manages Virtual Machines running on this aggregation of Cloud resources. Moreover, specifications for institutional Cloud resources proposed by Worldwide LHC Computing Grid (WLCG), mainly by the High Energy Physics Unix Information Exchange (HEPiX) group, have been taken into account. Several initiatives and computing resource providers in the eScience environment have already deployed IaaS in production during 2013. Keeping this on mind, pros and cons of a cloud based infrasctructure have been studied in contrast with the current setup. As a result, this work addresses four different use cases which represent a major improvement on several levels of our infrastructure. We describe the solution implemented by LHCb for the contextualisation of the VMs based on the idea of Cloud Site. We report on operational experience of using in production several institutional Cloud resources that are thus becoming integral part of the LHCb Distributed Computing resources. Furthermore, we describe as well the gradual migration of our Service Infrastructure towards a fully distributed architecture following the Service as a Service (SaaS) model.
Cloudweaver: Adaptive and Data-Driven Workload Manager for Generic Clouds
NASA Astrophysics Data System (ADS)
Li, Rui; Chen, Lei; Li, Wen-Syan
Cloud computing denotes the latest trend in application development for parallel computing on massive data volumes. It relies on clouds of servers to handle tasks that used to be managed by an individual server. With cloud computing, software vendors can provide business intelligence and data analytic services for internet scale data sets. Many open source projects, such as Hadoop, offer various software components that are essential for building a cloud infrastructure. Current Hadoop (and many others) requires users to configure cloud infrastructures via programs and APIs and such configuration is fixed during the runtime. In this chapter, we propose a workload manager (WLM), called CloudWeaver, which provides automated configuration of a cloud infrastructure for runtime execution. The workload management is data-driven and can adapt to dynamic nature of operator throughput during different execution phases. CloudWeaver works for a single job and a workload consisting of multiple jobs running concurrently, which aims at maximum throughput using a minimum set of processors.
The direction of cloud computing for Malaysian education sector in 21st century
NASA Astrophysics Data System (ADS)
Jaafar, Jazurainifariza; Rahman, M. Nordin A.; Kadir, M. Fadzil A.; Shamsudin, Syadiah Nor; Saany, Syarilla Iryani A.
2017-08-01
In 21st century, technology has turned learning environment into a new way of education to make learning systems more effective and systematic. Nowadays, education institutions are faced many challenges to ensure the teaching and learning process is running smoothly and manageable. Some of challenges in the current education management are lack of integrated systems, high cost of maintenance, difficulty of configuration and deployment as well as complexity of storage provision. Digital learning is an instructional practice that use technology to make learning experience more effective, provides education process more systematic and attractive. Digital learning can be considered as one of the prominent application that implemented under cloud computing environment. Cloud computing is a type of network resources that provides on-demands services where the users can access applications inside it at any location and no time border. It also promises for minimizing the cost of maintenance and provides a flexible of data storage capacity. The aim of this article is to review the definition and types of cloud computing for improving digital learning management as required in the 21st century education. The analysis of digital learning context focused on primary school in Malaysia. Types of cloud applications and services in education sector are also discussed in the article. Finally, gap analysis and direction of cloud computing in education sector for facing the 21st century challenges are suggested.
SenseMyHeart: A cloud service and API for wearable heart monitors.
Pinto Silva, P M; Silva Cunha, J P
2015-01-01
In the era of ubiquitous computing, the growing adoption of wearable systems and body sensor networks is trailing the path for new research and software for cardiovascular intensity, energy expenditure and stress and fatigue detection through cardiovascular monitoring. Several systems have received clinical-certification and provide huge amounts of reliable heart-related data in a continuous basis. PhysioNet provides equally reliable open-source software tools for ECG processing and analysis that can be combined with these devices. However, this software remains difficult to use in a mobile environment and for researchers unfamiliar with Linux-based systems. In the present paper we present an approach that aims at tackling these limitations by developing a cloud service that provides an API for a PhysioNet-based pipeline for ECG processing and Heart Rate Variability measurement. We describe the proposed solution, along with its advantages and tradeoffs. We also present some client tools (windows and Android) and several projects where the developed cloud service has been used successfully as a standard for Heart Rate and Heart Rate Variability studies in different scenarios.
Bao, Shunxing; Damon, Stephen M; Landman, Bennett A; Gokhale, Aniruddha
2016-02-27
Adopting high performance cloud computing for medical image processing is a popular trend given the pressing needs of large studies. Amazon Web Services (AWS) provide reliable, on-demand, and inexpensive cloud computing services. Our research objective is to implement an affordable, scalable and easy-to-use AWS framework for the Java Image Science Toolkit (JIST). JIST is a plugin for Medical-Image Processing, Analysis, and Visualization (MIPAV) that provides a graphical pipeline implementation allowing users to quickly test and develop pipelines. JIST is DRMAA-compliant allowing it to run on portable batch system grids. However, as new processing methods are implemented and developed, memory may often be a bottleneck for not only lab computers, but also possibly some local grids. Integrating JIST with the AWS cloud alleviates these possible restrictions and does not require users to have deep knowledge of programming in Java. Workflow definition/management and cloud configurations are two key challenges in this research. Using a simple unified control panel, users have the ability to set the numbers of nodes and select from a variety of pre-configured AWS EC2 nodes with different numbers of processors and memory storage. Intuitively, we configured Amazon S3 storage to be mounted by pay-for-use Amazon EC2 instances. Hence, S3 storage is recognized as a shared cloud resource. The Amazon EC2 instances provide pre-installs of all necessary packages to run JIST. This work presents an implementation that facilitates the integration of JIST with AWS. We describe the theoretical cost/benefit formulae to decide between local serial execution versus cloud computing and apply this analysis to an empirical diffusion tensor imaging pipeline.
NASA Astrophysics Data System (ADS)
Bao, Shunxing; Damon, Stephen M.; Landman, Bennett A.; Gokhale, Aniruddha
2016-03-01
Adopting high performance cloud computing for medical image processing is a popular trend given the pressing needs of large studies. Amazon Web Services (AWS) provide reliable, on-demand, and inexpensive cloud computing services. Our research objective is to implement an affordable, scalable and easy-to-use AWS framework for the Java Image Science Toolkit (JIST). JIST is a plugin for Medical- Image Processing, Analysis, and Visualization (MIPAV) that provides a graphical pipeline implementation allowing users to quickly test and develop pipelines. JIST is DRMAA-compliant allowing it to run on portable batch system grids. However, as new processing methods are implemented and developed, memory may often be a bottleneck for not only lab computers, but also possibly some local grids. Integrating JIST with the AWS cloud alleviates these possible restrictions and does not require users to have deep knowledge of programming in Java. Workflow definition/management and cloud configurations are two key challenges in this research. Using a simple unified control panel, users have the ability to set the numbers of nodes and select from a variety of pre-configured AWS EC2 nodes with different numbers of processors and memory storage. Intuitively, we configured Amazon S3 storage to be mounted by pay-for- use Amazon EC2 instances. Hence, S3 storage is recognized as a shared cloud resource. The Amazon EC2 instances provide pre-installs of all necessary packages to run JIST. This work presents an implementation that facilitates the integration of JIST with AWS. We describe the theoretical cost/benefit formulae to decide between local serial execution versus cloud computing and apply this analysis to an empirical diffusion tensor imaging pipeline.
Bao, Shunxing; Damon, Stephen M.; Landman, Bennett A.; Gokhale, Aniruddha
2016-01-01
Adopting high performance cloud computing for medical image processing is a popular trend given the pressing needs of large studies. Amazon Web Services (AWS) provide reliable, on-demand, and inexpensive cloud computing services. Our research objective is to implement an affordable, scalable and easy-to-use AWS framework for the Java Image Science Toolkit (JIST). JIST is a plugin for Medical-Image Processing, Analysis, and Visualization (MIPAV) that provides a graphical pipeline implementation allowing users to quickly test and develop pipelines. JIST is DRMAA-compliant allowing it to run on portable batch system grids. However, as new processing methods are implemented and developed, memory may often be a bottleneck for not only lab computers, but also possibly some local grids. Integrating JIST with the AWS cloud alleviates these possible restrictions and does not require users to have deep knowledge of programming in Java. Workflow definition/management and cloud configurations are two key challenges in this research. Using a simple unified control panel, users have the ability to set the numbers of nodes and select from a variety of pre-configured AWS EC2 nodes with different numbers of processors and memory storage. Intuitively, we configured Amazon S3 storage to be mounted by pay-for-use Amazon EC2 instances. Hence, S3 storage is recognized as a shared cloud resource. The Amazon EC2 instances provide pre-installs of all necessary packages to run JIST. This work presents an implementation that facilitates the integration of JIST with AWS. We describe the theoretical cost/benefit formulae to decide between local serial execution versus cloud computing and apply this analysis to an empirical diffusion tensor imaging pipeline. PMID:27127335
dCache, Sync-and-Share for Big Data
NASA Astrophysics Data System (ADS)
Millar, AP; Fuhrmann, P.; Mkrtchyan, T.; Behrmann, G.; Bernardt, C.; Buchholz, Q.; Guelzow, V.; Litvintsev, D.; Schwank, K.; Rossi, A.; van der Reest, P.
2015-12-01
The availability of cheap, easy-to-use sync-and-share cloud services has split the scientific storage world into the traditional big data management systems and the very attractive sync-and-share services. With the former, the location of data is well understood while the latter is mostly operated in the Cloud, resulting in a rather complex legal situation. Beside legal issues, those two worlds have little overlap in user authentication and access protocols. While traditional storage technologies, popular in HEP, are based on X.509, cloud services and sync-and-share software technologies are generally based on username/password authentication or mechanisms like SAML or Open ID Connect. Similarly, data access models offered by both are somewhat different, with sync-and-share services often using proprietary protocols. As both approaches are very attractive, dCache.org developed a hybrid system, providing the best of both worlds. To avoid reinventing the wheel, dCache.org decided to embed another Open Source project: OwnCloud. This offers the required modern access capabilities but does not support the managed data functionality needed for large capacity data storage. With this hybrid system, scientists can share files and synchronize their data with laptops or mobile devices as easy as with any other cloud storage service. On top of this, the same data can be accessed via established mechanisms, like GridFTP to serve the Globus Transfer Service or the WLCG FTS3 tool, or the data can be made available to worker nodes or HPC applications via a mounted filesystem. As dCache provides a flexible authentication module, the same user can access its storage via different authentication mechanisms; e.g., X.509 and SAML. Additionally, users can specify the desired quality of service or trigger media transitions as necessary, thus tuning data access latency to the planned access profile. Such features are a natural consequence of using dCache. We will describe the design of the hybrid dCache/OwnCloud system, report on several months of operations experience running it at DESY, and elucidate the future road-map.
Cafe: A Generic Configurable Customizable Composite Cloud Application Framework
NASA Astrophysics Data System (ADS)
Mietzner, Ralph; Unger, Tobias; Leymann, Frank
In this paper we present Cafe (Composite Application Framework) an approach to describe configurable composite service-oriented applications and to automatically provision them across different providers. Cafe enables independent software vendors to describe their composite service-oriented applications and the components that are used to assemble them. Components can be internal to the application or external and can be deployed in any of the delivery models present in the cloud. The components are annotated with requirements for the infrastructure they later need to be run on. Providers on the other hand advertise their infrastructure services by describing them as infrastructure capabilities. The separation of software vendors and providers enables end users and providers to follow a best-of-breed strategy by combining arbitrary applications with arbitrary providers. We show how such applications can be automatically provisioned and present an architecture and a prototype that implements the concepts.
Abstracting application deployment on Cloud infrastructures
NASA Astrophysics Data System (ADS)
Aiftimiei, D. C.; Fattibene, E.; Gargana, R.; Panella, M.; Salomoni, D.
2017-10-01
Deploying a complex application on a Cloud-based infrastructure can be a challenging task. In this contribution we present an approach for Cloud-based deployment of applications and its present or future implementation in the framework of several projects, such as “!CHAOS: a cloud of controls” [1], a project funded by MIUR (Italian Ministry of Research and Education) to create a Cloud-based deployment of a control system and data acquisition framework, “INDIGO-DataCloud” [2], an EC H2020 project targeting among other things high-level deployment of applications on hybrid Clouds, and “Open City Platform”[3], an Italian project aiming to provide open Cloud solutions for Italian Public Administrations. We considered to use an orchestration service to hide the complex deployment of the application components, and to build an abstraction layer on top of the orchestration one. Through Heat [4] orchestration service, we prototyped a dynamic, on-demand, scalable platform of software components, based on OpenStack infrastructures. On top of the orchestration service we developed a prototype of a web interface exploiting the Heat APIs. The user can start an instance of the application without having knowledge about the underlying Cloud infrastructure and services. Moreover, the platform instance can be customized by choosing parameters related to the application such as the size of a File System or the number of instances of a NoSQL DB cluster. As soon as the desired platform is running, the web interface offers the possibility to scale some infrastructure components. In this contribution we describe the solution design and implementation, based on the application requirements, the details of the development of both the Heat templates and of the web interface, together with possible exploitation strategies of this work in Cloud data centers.
Cloud4Psi: cloud computing for 3D protein structure similarity searching.
Mrozek, Dariusz; Małysiak-Mrozek, Bożena; Kłapciński, Artur
2014-10-01
Popular methods for 3D protein structure similarity searching, especially those that generate high-quality alignments such as Combinatorial Extension (CE) and Flexible structure Alignment by Chaining Aligned fragment pairs allowing Twists (FATCAT) are still time consuming. As a consequence, performing similarity searching against large repositories of structural data requires increased computational resources that are not always available. Cloud computing provides huge amounts of computational power that can be provisioned on a pay-as-you-go basis. We have developed the cloud-based system that allows scaling of the similarity searching process vertically and horizontally. Cloud4Psi (Cloud for Protein Similarity) was tested in the Microsoft Azure cloud environment and provided good, almost linearly proportional acceleration when scaled out onto many computational units. Cloud4Psi is available as Software as a Service for testing purposes at: http://cloud4psi.cloudapp.net/. For source code and software availability, please visit the Cloud4Psi project home page at http://zti.polsl.pl/dmrozek/science/cloud4psi.htm. © The Author 2014. Published by Oxford University Press.
Cloud4Psi: cloud computing for 3D protein structure similarity searching
Mrozek, Dariusz; Małysiak-Mrozek, Bożena; Kłapciński, Artur
2014-01-01
Summary: Popular methods for 3D protein structure similarity searching, especially those that generate high-quality alignments such as Combinatorial Extension (CE) and Flexible structure Alignment by Chaining Aligned fragment pairs allowing Twists (FATCAT) are still time consuming. As a consequence, performing similarity searching against large repositories of structural data requires increased computational resources that are not always available. Cloud computing provides huge amounts of computational power that can be provisioned on a pay-as-you-go basis. We have developed the cloud-based system that allows scaling of the similarity searching process vertically and horizontally. Cloud4Psi (Cloud for Protein Similarity) was tested in the Microsoft Azure cloud environment and provided good, almost linearly proportional acceleration when scaled out onto many computational units. Availability and implementation: Cloud4Psi is available as Software as a Service for testing purposes at: http://cloud4psi.cloudapp.net/. For source code and software availability, please visit the Cloud4Psi project home page at http://zti.polsl.pl/dmrozek/science/cloud4psi.htm. Contact: dariusz.mrozek@polsl.pl PMID:24930141
Towards an e-Health Cloud Solution for Remote Regions at Bahia-Brazil.
Sarinho, V T; Mota, A O; Silva, E P
2017-12-19
This paper presents CloudMedic, an e-Health Cloud solution that manages health care services in remote regions of Bahia-Brazil. For that, six main modules: Clinic, Hospital, Supply, Administrative, Billing and Health Business Intelligence, were developed to control the health flow among health actors at health institutions. They provided database model and procedures for health business rules, a standard gateway for data maintenance between web views and database layer, and a multi-front-end framework based on web views and web commands configurations. These resources were used by 2042 health actors in 261 health posts covering health demands from 118 municipalities at Bahia state. They also managed approximately 2.4 million health service 'orders and approximately 13.5 million health exams for more than 1.3 million registered patients. As a result, a collection of health functionalities available in a cloud infrastructure was successfully developed, deployed and validated in more than 28% of Bahia municipalities. A viable e-Health Cloud solution that, despite municipality limitations in remote regions, decentralized and improved the access to health care services at Bahia state.
Cloud-based adaptive exon prediction for DNA analysis.
Putluri, Srinivasareddy; Zia Ur Rahman, Md; Fathima, Shaik Yasmeen
2018-02-01
Cloud computing offers significant research and economic benefits to healthcare organisations. Cloud services provide a safe place for storing and managing large amounts of such sensitive data. Under conventional flow of gene information, gene sequence laboratories send out raw and inferred information via Internet to several sequence libraries. DNA sequencing storage costs will be minimised by use of cloud service. In this study, the authors put forward a novel genomic informatics system using Amazon Cloud Services, where genomic sequence information is stored and accessed for processing. True identification of exon regions in a DNA sequence is a key task in bioinformatics, which helps in disease identification and design drugs. Three base periodicity property of exons forms the basis of all exon identification techniques. Adaptive signal processing techniques found to be promising in comparison with several other methods. Several adaptive exon predictors (AEPs) are developed using variable normalised least mean square and its maximum normalised variants to reduce computational complexity. Finally, performance evaluation of various AEPs is done based on measures such as sensitivity, specificity and precision using various standard genomic datasets taken from National Center for Biotechnology Information genomic sequence database.
Cloud Computing Services for Seismic Networks
NASA Astrophysics Data System (ADS)
Olson, Michael
This thesis describes a compositional framework for developing situation awareness applications: applications that provide ongoing information about a user's changing environment. The thesis describes how the framework is used to develop a situation awareness application for earthquakes. The applications are implemented as Cloud computing services connected to sensors and actuators. The architecture and design of the Cloud services are described and measurements of performance metrics are provided. The thesis includes results of experiments on earthquake monitoring conducted over a year. The applications developed by the framework are (1) the CSN---the Community Seismic Network---which uses relatively low-cost sensors deployed by members of the community, and (2) SAF---the Situation Awareness Framework---which integrates data from multiple sources, including the CSN, CISN---the California Integrated Seismic Network, a network consisting of high-quality seismometers deployed carefully by professionals in the CISN organization and spread across Southern California---and prototypes of multi-sensor platforms that include carbon monoxide, methane, dust and radiation sensors.
NASA Cloud-Based Climate Data Services
NASA Astrophysics Data System (ADS)
McInerney, M. A.; Schnase, J. L.; Duffy, D. Q.; Tamkin, G. S.; Strong, S.; Ripley, W. D., III; Thompson, J. H.; Gill, R.; Jasen, J. E.; Samowich, B.; Pobre, Z.; Salmon, E. M.; Rumney, G.; Schardt, T. D.
2012-12-01
Cloud-based scientific data services are becoming an important part of NASA's mission. Our technological response is built around the concept of specialized virtual climate data servers, repetitive cloud provisioning, image-based deployment and distribution, and virtualization-as-a-service (VaaS). A virtual climate data server (vCDS) is an Open Archive Information System (OAIS) compliant, iRODS-based data server designed to support a particular type of scientific data collection. iRODS is data grid middleware that provides policy-based control over collection-building, managing, querying, accessing, and preserving large scientific data sets. We have deployed vCDS Version 1.0 in the Amazon EC2 cloud using S3 object storage and are using the system to deliver a subset of NASA's Intergovernmental Panel on Climate Change (IPCC) data products to the latest CentOS federated version of Earth System Grid Federation (ESGF), which is also running in the Amazon cloud. vCDS-managed objects are exposed to ESGF through FUSE (Filesystem in User Space), which presents a POSIX-compliant filesystem abstraction to applications such as the ESGF server that require such an interface. A vCDS manages data as a distinguished collection for a person, project, lab, or other logical unit. A vCDS can manage a collection across multiple storage resources using rules and microservices to enforce collection policies. And a vCDS can federate with other vCDSs to manage multiple collections over multiple resources, thereby creating what can be thought of as an ecosystem of managed collections. With the vCDS approach, we are trying to enable the full information lifecycle management of scientific data collections and make tractable the task of providing diverse climate data services. In this presentation, we describe our approach, experiences, lessons learned, and plans for the future.; (A) vCDS/ESG system stack. (B) Conceptual architecture for NASA cloud-based data services.
Adapting the CUAHSI Hydrologic Information System to OGC standards
NASA Astrophysics Data System (ADS)
Valentine, D. W.; Whitenack, T.; Zaslavsky, I.
2010-12-01
The CUAHSI Hydrologic Information System (HIS) provides web and desktop client access to hydrologic observations via water data web services using an XML schema called “WaterML”. The WaterML 1.x specification and the corresponding Water Data Services have been the backbone of the HIS service-oriented architecture (SOA) and have been adopted for serving hydrologic data by several federal agencies and many academic groups. The central discovery service, HIS Central, is based on an metadata catalog that references 4.7 billion observations, organized as 23 million data series from 1.5 million sites from 51 organizations. Observations data are published using HydroServer nodes that have been deployed at 18 organizations. Usage of HIS has increased by 8x from 2008 to 2010, and doubled in usage from 1600 data series a day in 2009 to 3600 data series a day in the first half of 2010. The HIS central metadata catalog currently harvests information from 56 Water Data Services. We collaborate on the catalog updates with two federal partners, USGS and US EPA: their data series are periodically reloaded into the HIS metadata catalog. We are pursuing two main development directions in the HIS project: Cloud-based computing, and further compliance with Open Geospatial Consortium (OGC) standards. The goal of moving to cloud-computing is to provide a scalable collaborative system with a simpler deployment and less dependence of hardware maintenance and staff. This move requires re-architecting the information models underlying the metadata catalog, and Water Data Services to be independent of the underlying relational database model, allowing for implementation on both relational databases, and cloud-based processing systems. Cloud-based HIS central resources can be managed collaboratively; partners share responsibility for their metadata by publishing data series information into the centralized catalog. Publishing data series will use REST-based service interfaces, like OData, as the basis for ingesting data series information into a cloud-hosted catalog. The future HIS services involve providing information via OGC Standards that will allow for observational data access from commercial GIS applications. Use of standards will allow for tools to access observational data from other projects using standards, such as the Ocean Observatories Initiative, and for tools from such projects to be integrated into the HIS toolset. With international collaborators, we have been developing a water information exchange language called “WaterML 2.0” which will be used to deliver observations data over OGC Sensor Observation Services (SOS). A software stack of OGC standard services will provide access to HIS information. In addition to SOS, Web Mapping and Feature Services (WMS, and WFS) will provide access to location information. Catalog Services for the Web (CSW) will provide a catalog for water information that is both centralized, and distributed. We intend the OGC standards supplement the existing HIS service interfaces, rather than replace the present service interfaces. The ultimate goal of this development is expand access to hydrologic observations data, and create an environment where these data can be seamlessly integrated with standards-compliant data resources.
NASA Astrophysics Data System (ADS)
Lengert, Wolfgang; Farres, Jordi; Lanari, Riccardo; Casu, Francesco; Manunta, Michele; Lassalle-Balier, Gerard
2014-05-01
Helix Nebula has established a growing public private partnership of more than 30 commercial cloud providers, SMEs, and publicly funded research organisations and e-infrastructures. The Helix Nebula strategy is to establish a federated cloud service across Europe. Three high-profile flagships, sponsored by CERN (high energy physics), EMBL (life sciences) and ESA/DLR/CNES/CNR (earth science), have been deployed and extensively tested within this federated environment. The commitments behind these initial flagships have created a critical mass that attracts suppliers and users to the initiative, to work together towards an "Information as a Service" market place. Significant progress in implementing the following 4 programmatic goals (as outlined in the strategic Plan Ref.1) has been achieved: × Goal #1 Establish a Cloud Computing Infrastructure for the European Research Area (ERA) serving as a platform for innovation and evolution of the overall infrastructure. × Goal #2 Identify and adopt suitable policies for trust, security and privacy on a European-level can be provided by the European Cloud Computing framework and infrastructure. × Goal #3 Create a light-weight governance structure for the future European Cloud Computing Infrastructure that involves all the stakeholders and can evolve over time as the infrastructure, services and user-base grows. × Goal #4 Define a funding scheme involving the three stake-holder groups (service suppliers, users, EC and national funding agencies) into a Public-Private-Partnership model to implement a Cloud Computing Infrastructure that delivers a sustainable business environment adhering to European level policies. Now in 2014 a first version of this generic cross-domain e-infrastructure is ready to go into operations building on federation of European industry and contributors (data, tools, knowledge, ...). This presentation describes how Helix Nebula is being used in the domain of earth science focusing on geohazards. The so called "Supersite Exploitation Platform" (SSEP) provides scientists an overarching federated e-infrastructure with a very fast access to (i) large volume of data (EO/non-space data), (ii) computing resources (e.g. hybrid cloud/grid), (iii) processing software (e.g. toolboxes, RTMs, retrieval baselines, visualization routines), and (iv) general platform capabilities (e.g. user management and access control, accounting, information portal, collaborative tools, social networks etc.). In this federation each data provider remains in full control of the implementation of its data policy. This presentation outlines the Architecture (technical and services) supporting very heterogeneous science domains as well as the procedures for new-comers to join the Helix Nebula Market Place. Ref.1 http://cds.cern.ch/record/1374172/files/CERN-OPEN-2011-036.pdf
Open Reading Frame Phylogenetic Analysis on the Cloud
2013-01-01
Phylogenetic analysis has become essential in researching the evolutionary relationships between viruses. These relationships are depicted on phylogenetic trees, in which viruses are grouped based on sequence similarity. Viral evolutionary relationships are identified from open reading frames rather than from complete sequences. Recently, cloud computing has become popular for developing internet-based bioinformatics tools. Biocloud is an efficient, scalable, and robust bioinformatics computing service. In this paper, we propose a cloud-based open reading frame phylogenetic analysis service. The proposed service integrates the Hadoop framework, virtualization technology, and phylogenetic analysis methods to provide a high-availability, large-scale bioservice. In a case study, we analyze the phylogenetic relationships among Norovirus. Evolutionary relationships are elucidated by aligning different open reading frame sequences. The proposed platform correctly identifies the evolutionary relationships between members of Norovirus. PMID:23671843
Educational and Scientific Applications of Climate Model Diagnostic Analyzer
NASA Astrophysics Data System (ADS)
Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Kubar, T. L.; Zhang, J.; Bao, Q.
2016-12-01
Climate Model Diagnostic Analyzer (CMDA) is a web-based information system designed for the climate modeling and model analysis community to analyze climate data from models and observations. CMDA provides tools to diagnostically analyze climate data for model validation and improvement, and to systematically manage analysis provenance for sharing results with other investigators. CMDA utilizes cloud computing resources, multi-threading computing, machine-learning algorithms, web service technologies, and provenance-supporting technologies to address technical challenges that the Earth science modeling and model analysis community faces in evaluating and diagnosing climate models. As CMDA infrastructure and technology have matured, we have developed the educational and scientific applications of CMDA. Educationally, CMDA supported the summer school of the JPL Center for Climate Sciences for three years since 2014. In the summer school, the students work on group research projects where CMDA provide datasets and analysis tools. Each student is assigned to a virtual machine with CMDA installed in Amazon Web Services. A provenance management system for CMDA is developed to keep track of students' usages of CMDA, and to recommend datasets and analysis tools for their research topic. The provenance system also allows students to revisit their analysis results and share them with their group. Scientifically, we have developed several science use cases of CMDA covering various topics, datasets, and analysis types. Each use case developed is described and listed in terms of a scientific goal, datasets used, the analysis tools used, scientific results discovered from the use case, an analysis result such as output plots and data files, and a link to the exact analysis service call with all the input arguments filled. For example, one science use case is the evaluation of NCAR CAM5 model with MODIS total cloud fraction. The analysis service used is Difference Plot Service of Two Variables, and the datasets used are NCAR CAM total cloud fraction and MODIS total cloud fraction. The scientific highlight of the use case is that the CAM5 model overall does a fairly decent job at simulating total cloud cover, though simulates too few clouds especially near and offshore of the eastern ocean basins where low clouds are dominant.
The Determination of Jurisdiction in Grid and Cloud Service Level Agreements
NASA Astrophysics Data System (ADS)
Parrilli, Davide Maria
Service Level Agreements in Grid and Cloud scenarios can be a source of disputes particularly in case of breach of the obligations arising under them. It is then important to determine where parties can litigate in relation with such agreements. The paper deals with this question in the peculiar context of the European Union, and so taking into consideration Regulation 44/2001. According to the rules on jurisdiction provided by the Regulation, two general distinctions are drawn in order to determine which (European) courts are competent to adjudicate disputes arising out of a Service Level Agreement. The former is between B2B and B2C transactions, and the latter regards contracts which provide a jurisdiction clause and contracts which do not.
Development of a cloud-based application for the Fracture Liaison Service model of care.
Holzmueller, C G; Karp, S; Zeldow, D; Lee, D B; Thompson, D A
2016-02-01
The aims of this study are to develop a cloud-based application of the Fracture Liaison Service for practitioners to coordinate the care of osteoporotic patients after suffering primary fractures and provide a performance feedback portal for practitioners to determine quality of care. The application provides continuity of care, improved patient outcomes, and reduced medical costs. The purpose of this study is to describe the content development and functionality of a cloud-based application to broadly deploy the Fracture Liaison Service (FLS) to coordinate post-fracture care for osteoporotic patients. The Bone Health Collaborative developed the FLS application in 2013 to support practitioners' access to information and management of patients and provide a feedback portal for practitioners to track their performance in providing quality care. A five-step protocol (identify, inform, initiate, investigate, and iterate) organized osteoporotic post-fracture care-related tasks and timelines for the application. A range of descriptive data about the patient, their medical condition, therapies and care, and current providers can be collected. Seven quality of care measures from the National Quality Forum, The Joint Commission, and the Centers for Medicare and Medicaid Services can be tracked through the application. There are five functional areas including home, tasks, measures, improvement, and data. The home, tasks, and data pages are used to enter patient information and coordinate care using the five-step protocol. Measures and improvement pages are used to enter quality measures and provide practitioners with continuous performance feedback. The application resides within a portal, running on a multitenant, private cloud-based Avedis enterprise registry platform. All data are encrypted in transit and users access the application using a password from any common web browser. The application could spread the FLS model of care across the US health care system, provide continuity of care, effectively manage osteoporotic patients, improve outcomes, and reduce medical costs.
A cloud computing based platform for sleep behavior and chronic diseases collaborative research.
Kuo, Mu-Hsing; Borycki, Elizabeth; Kushniruk, Andre; Huang, Yueh-Min; Hung, Shu-Hui
2014-01-01
The objective of this study is to propose a Cloud Computing based platform for sleep behavior and chronic disease collaborative research. The platform consists of two main components: (1) a sensing bed sheet with textile sensors to automatically record patient's sleep behaviors and vital signs, and (2) a service-oriented cloud computing architecture (SOCCA) that provides a data repository and allows for sharing and analysis of collected data. Also, we describe our systematic approach to implementing the SOCCA. We believe that the new cloud-based platform can provide nurse and other health professional researchers located in differing geographic locations with a cost effective, flexible, secure and privacy-preserved research environment.
WE-B-BRD-01: Innovation in Radiation Therapy Planning II: Cloud Computing in RT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, K; Kagadis, G; Xing, L
As defined by the National Institute of Standards and Technology, cloud computing is “a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.” Despite the omnipresent role of computers in radiotherapy, cloud computing has yet to achieve widespread adoption in clinical or research applications, though the transition to such “on-demand” access is underway. As this transition proceeds, new opportunities for aggregate studies and efficient use of computational resources are set againstmore » new challenges in patient privacy protection, data integrity, and management of clinical informatics systems. In this Session, current and future applications of cloud computing and distributed computational resources will be discussed in the context of medical imaging, radiotherapy research, and clinical radiation oncology applications. Learning Objectives: Understand basic concepts of cloud computing. Understand how cloud computing could be used for medical imaging applications. Understand how cloud computing could be employed for radiotherapy research.4. Understand how clinical radiotherapy software applications would function in the cloud.« less
The Technological Growth in eHealth Services.
Srivastava, Shilpa; Pant, Millie; Abraham, Ajith; Agrawal, Namrata
2015-01-01
The infusion of information communication technology (ICT) into health services is emerging as an active area of research. It has several advantages but perhaps the most important one is providing medical benefits to one and all irrespective of geographic boundaries in a cost effective manner, providing global expertise and holistic services, in a time bound manner. This paper provides a systematic review of technological growth in eHealth services. The present study reviews and analyzes the role of four important technologies, namely, satellite, internet, mobile, and cloud for providing health services.
The Technological Growth in eHealth Services
Srivastava, Shilpa; Pant, Millie; Abraham, Ajith; Agrawal, Namrata
2015-01-01
The infusion of information communication technology (ICT) into health services is emerging as an active area of research. It has several advantages but perhaps the most important one is providing medical benefits to one and all irrespective of geographic boundaries in a cost effective manner, providing global expertise and holistic services, in a time bound manner. This paper provides a systematic review of technological growth in eHealth services. The present study reviews and analyzes the role of four important technologies, namely, satellite, internet, mobile, and cloud for providing health services. PMID:26146515
75 FR 80042 - Information Privacy and Innovation in the Internet Economy
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-21
... statistics that provide evidence of concern--or comments explaining why concerns are unwarranted--about cloud computing data privacy and security in the commercial context. We also seek data that links any such concerns to decisions to adopt, or refrain from adopting, cloud computing services. (41) The Task Force...
Oh, Sungyoung; Cha, Jieun; Ji, Myungkyu; Kang, Hyekyung; Kim, Seok; Heo, Eunyoung; Han, Jong Soo; Kang, Hyunggoo; Chae, Hoseok; Hwang, Hee; Yoo, Sooyoung
2015-04-01
To design a cloud computing-based Healthcare Software-as-a-Service (SaaS) Platform (HSP) for delivering healthcare information services with low cost, high clinical value, and high usability. We analyzed the architecture requirements of an HSP, including the interface, business services, cloud SaaS, quality attributes, privacy and security, and multi-lingual capacity. For cloud-based SaaS services, we focused on Clinical Decision Service (CDS) content services, basic functional services, and mobile services. Microsoft's Azure cloud computing for Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) was used. The functional and software views of an HSP were designed in a layered architecture. External systems can be interfaced with the HSP using SOAP and REST/JSON. The multi-tenancy model of the HSP was designed as a shared database, with a separate schema for each tenant through a single application, although healthcare data can be physically located on a cloud or in a hospital, depending on regulations. The CDS services were categorized into rule-based services for medications, alert registration services, and knowledge services. We expect that cloud-based HSPs will allow small and mid-sized hospitals, in addition to large-sized hospitals, to adopt information infrastructures and health information technology with low system operation and maintenance costs.
A Geospatial Information Grid Framework for Geological Survey.
Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong
2015-01-01
The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of these features, desktop and web-based geographic information systems (GISs) experience difficulties in meeting the demand for geological spatial information. To facilitate the real-time sharing of data and services in distributed environments, a GIS platform that is open, integrative, reconfigurable, reusable and elastic would represent an indispensable tool. The purpose of this paper is to develop a geological cloud-computing platform for integrating and sharing geological information based on a cloud architecture. Thus, the geological cloud-computing platform defines geological ontology semantics; designs a standard geological information framework and a standard resource integration model; builds a peer-to-peer node management mechanism; achieves the description, organization, discovery, computing and integration of the distributed resources; and provides the distributed spatial meta service, the spatial information catalog service, the multi-mode geological data service and the spatial data interoperation service. The geological survey information cloud-computing platform has been implemented, and based on the platform, some geological data services and geological processing services were developed. Furthermore, an iron mine resource forecast and an evaluation service is introduced in this paper.
A Geospatial Information Grid Framework for Geological Survey
Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong
2015-01-01
The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of these features, desktop and web-based geographic information systems (GISs) experience difficulties in meeting the demand for geological spatial information. To facilitate the real-time sharing of data and services in distributed environments, a GIS platform that is open, integrative, reconfigurable, reusable and elastic would represent an indispensable tool. The purpose of this paper is to develop a geological cloud-computing platform for integrating and sharing geological information based on a cloud architecture. Thus, the geological cloud-computing platform defines geological ontology semantics; designs a standard geological information framework and a standard resource integration model; builds a peer-to-peer node management mechanism; achieves the description, organization, discovery, computing and integration of the distributed resources; and provides the distributed spatial meta service, the spatial information catalog service, the multi-mode geological data service and the spatial data interoperation service. The geological survey information cloud-computing platform has been implemented, and based on the platform, some geological data services and geological processing services were developed. Furthermore, an iron mine resource forecast and an evaluation service is introduced in this paper. PMID:26710255
NASA Astrophysics Data System (ADS)
Furht, Borko
In the introductory chapter we define the concept of cloud computing and cloud services, and we introduce layers and types of cloud computing. We discuss the differences between cloud computing and cloud services. New technologies that enabled cloud computing are presented next. We also discuss cloud computing features, standards, and security issues. We introduce the key cloud computing platforms, their vendors, and their offerings. We discuss cloud computing challenges and the future of cloud computing.
Architectural Implications of Cloud Computing
2011-10-24
Public Cloud Infrastructure-as-a- Service (IaaS) Software -as-a- Service ( SaaS ) Cloud Computing Types Platform-as-a- Service (PaaS) Based on Type of...Twitter #SEIVirtualForum © 2011 Carnegie Mellon University Software -as-a- Service ( SaaS ) Model of software deployment in which a third-party...and System Solutions (RTSS) Program. Her current interests and projects are in service -oriented architecture (SOA), cloud computing, and context
Implementation of cloud computing in higher education
NASA Astrophysics Data System (ADS)
Asniar; Budiawan, R.
2016-04-01
Cloud computing research is a new trend in distributed computing, where people have developed service and SOA (Service Oriented Architecture) based application. This technology is very useful to be implemented, especially for higher education. This research is studied the need and feasibility for the suitability of cloud computing in higher education then propose the model of cloud computing service in higher education in Indonesia that can be implemented in order to support academic activities. Literature study is used as the research methodology to get a proposed model of cloud computing in higher education. Finally, SaaS and IaaS are cloud computing service that proposed to be implemented in higher education in Indonesia and cloud hybrid is the service model that can be recommended.
Above the cloud computing: applying cloud computing principles to create an orbital services model
NASA Astrophysics Data System (ADS)
Straub, Jeremy; Mohammad, Atif; Berk, Josh; Nervold, Anders K.
2013-05-01
Large satellites and exquisite planetary missions are generally self-contained. They have, onboard, all of the computational, communications and other capabilities required to perform their designated functions. Because of this, the satellite or spacecraft carries hardware that may be utilized only a fraction of the time; however, the full cost of development and launch are still bone by the program. Small satellites do not have this luxury. Due to mass and volume constraints, they cannot afford to carry numerous pieces of barely utilized equipment or large antennas. This paper proposes a cloud-computing model for exposing satellite services in an orbital environment. Under this approach, each satellite with available capabilities broadcasts a service description for each service that it can provide (e.g., general computing capacity, DSP capabilities, specialized sensing capabilities, transmission capabilities, etc.) and its orbital elements. Consumer spacecraft retain a cache of service providers and select one utilizing decision making heuristics (e.g., suitability of performance, opportunity to transmit instructions and receive results - based on the orbits of the two craft). The two craft negotiate service provisioning (e.g., when the service can be available and for how long) based on the operating rules prioritizing use of (and allowing access to) the service on the service provider craft, based on the credentials of the consumer. Service description, negotiation and sample service performance protocols are presented. The required components of each consumer or provider spacecraft are reviewed. These include fully autonomous control capabilities (for provider craft), a lightweight orbit determination routine (to determine when consumer and provider craft can see each other and, possibly, pointing requirements for craft with directional antennas) and an authentication and resource utilization priority-based access decision making subsystem (for provider craft). Two prospective uses for the proposed system are presented: Earth-orbiting applications and planetary science applications. A mission scenario is presented for both uses to illustrate system functionality and operation. The performance of the proposed system is compared to traditional self-contained spacecraft performance, both in terms of task performance (e.g., how well / quickly / etc. was a given task performed) and task performance as a function of cost. The integration of the proposed service provider model is compared to other control architectures for satellites including traditional scripted control, top-down multi-tier autonomy and bottom-up multi-tier autonomy.
A Novel Deployment Method for Communication-Intensive Applications in Service Clouds
Liu, Chuanchang; Yang, Jingqi
2014-01-01
The service platforms are migrating to clouds for reasonably solving long construction periods, low resource utilizations, and isolated constructions of service platforms. However, when the migration is conducted in service clouds, there is a little focus of deploying communication-intensive applications in previous deployment methods. To address this problem, this paper proposed the combination of the online deployment and the offline deployment for deploying communication-intensive applications in service clouds. Firstly, the system architecture was designed for implementing the communication-aware deployment method for communication-intensive applications in service clouds. Secondly, in the online-deployment algorithm and the offline-deployment algorithm, service instances were deployed in an optimal cloud node based on the communication overhead which is determined by the communication traffic between services, as well as the communication performance between cloud nodes. Finally, the experimental results demonstrated that the proposed methods deployed communication-intensive applications effectively with lower latency and lower load compared with existing algorithms. PMID:25140331
A novel deployment method for communication-intensive applications in service clouds.
Liu, Chuanchang; Yang, Jingqi
2014-01-01
The service platforms are migrating to clouds for reasonably solving long construction periods, low resource utilizations, and isolated constructions of service platforms. However, when the migration is conducted in service clouds, there is a little focus of deploying communication-intensive applications in previous deployment methods. To address this problem, this paper proposed the combination of the online deployment and the offline deployment for deploying communication-intensive applications in service clouds. Firstly, the system architecture was designed for implementing the communication-aware deployment method for communication-intensive applications in service clouds. Secondly, in the online-deployment algorithm and the offline-deployment algorithm, service instances were deployed in an optimal cloud node based on the communication overhead which is determined by the communication traffic between services, as well as the communication performance between cloud nodes. Finally, the experimental results demonstrated that the proposed methods deployed communication-intensive applications effectively with lower latency and lower load compared with existing algorithms.
Enhancing Security by System-Level Virtualization in Cloud Computing Environments
NASA Astrophysics Data System (ADS)
Sun, Dawei; Chang, Guiran; Tan, Chunguang; Wang, Xingwei
Many trends are opening up the era of cloud computing, which will reshape the IT industry. Virtualization techniques have become an indispensable ingredient for almost all cloud computing system. By the virtual environments, cloud provider is able to run varieties of operating systems as needed by each cloud user. Virtualization can improve reliability, security, and availability of applications by using consolidation, isolation, and fault tolerance. In addition, it is possible to balance the workloads by using live migration techniques. In this paper, the definition of cloud computing is given; and then the service and deployment models are introduced. An analysis of security issues and challenges in implementation of cloud computing is identified. Moreover, a system-level virtualization case is established to enhance the security of cloud computing environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Dongwan; Claycomb, William R.; Urias, Vincent E.
Cloud computing is a paradigm rapidly being embraced by government and industry as a solution for cost-savings, scalability, and collaboration. While a multitude of applications and services are available commercially for cloud-based solutions, research in this area has yet to fully embrace the full spectrum of potential challenges facing cloud computing. This tutorial aims to provide researchers with a fundamental understanding of cloud computing, with the goals of identifying a broad range of potential research topics, and inspiring a new surge in research to address current issues. We will also discuss real implementations of research-oriented cloud computing systems for bothmore » academia and government, including configuration options, hardware issues, challenges, and solutions.« less
Job Scheduling with Efficient Resource Monitoring in Cloud Datacenter
Loganathan, Shyamala; Mukherjee, Saswati
2015-01-01
Cloud computing is an on-demand computing model, which uses virtualization technology to provide cloud resources to users in the form of virtual machines through internet. Being an adaptable technology, cloud computing is an excellent alternative for organizations for forming their own private cloud. Since the resources are limited in these private clouds maximizing the utilization of resources and giving the guaranteed service for the user are the ultimate goal. For that, efficient scheduling is needed. This research reports on an efficient data structure for resource management and resource scheduling technique in a private cloud environment and discusses a cloud model. The proposed scheduling algorithm considers the types of jobs and the resource availability in its scheduling decision. Finally, we conducted simulations using CloudSim and compared our algorithm with other existing methods, like V-MCT and priority scheduling algorithms. PMID:26473166
Job Scheduling with Efficient Resource Monitoring in Cloud Datacenter.
Loganathan, Shyamala; Mukherjee, Saswati
2015-01-01
Cloud computing is an on-demand computing model, which uses virtualization technology to provide cloud resources to users in the form of virtual machines through internet. Being an adaptable technology, cloud computing is an excellent alternative for organizations for forming their own private cloud. Since the resources are limited in these private clouds maximizing the utilization of resources and giving the guaranteed service for the user are the ultimate goal. For that, efficient scheduling is needed. This research reports on an efficient data structure for resource management and resource scheduling technique in a private cloud environment and discusses a cloud model. The proposed scheduling algorithm considers the types of jobs and the resource availability in its scheduling decision. Finally, we conducted simulations using CloudSim and compared our algorithm with other existing methods, like V-MCT and priority scheduling algorithms.
Virtual Facility at Fermilab: Infrastructure and Services Expand to Public Clouds
Timm, Steve; Garzoglio, Gabriele; Cooper, Glenn; ...
2016-02-18
In preparation for its new Virtual Facility Project, Fermilab has launched a program of work to determine the requirements for running a computation facility on-site, in public clouds, or a combination of both. This program builds on the work we have done to successfully run experimental workflows of 1000-VM scale both on an on-site private cloud and on Amazon AWS. To do this at scale we deployed dynamically launched and discovered caching services on the cloud. We are now testing the deployment of more complicated services on Amazon AWS using native load balancing and auto scaling features they provide. Themore » Virtual Facility Project will design and develop a facility including infrastructure and services that can live on the site of Fermilab, off-site, or a combination of both. We expect to need this capacity to meet the peak computing requirements in the future. The Virtual Facility is intended to provision resources on the public cloud on behalf of the facility as a whole instead of having each experiment or Virtual Organization do it on their own. We will describe the policy aspects of a distributed Virtual Facility, the requirements, and plans to make a detailed comparison of the relative cost of the public and private clouds. Furthermore, this talk will present the details of the technical mechanisms we have developed to date, and the plans currently taking shape for a Virtual Facility at Fermilab.« less
Virtual Facility at Fermilab: Infrastructure and Services Expand to Public Clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timm, Steve; Garzoglio, Gabriele; Cooper, Glenn
In preparation for its new Virtual Facility Project, Fermilab has launched a program of work to determine the requirements for running a computation facility on-site, in public clouds, or a combination of both. This program builds on the work we have done to successfully run experimental workflows of 1000-VM scale both on an on-site private cloud and on Amazon AWS. To do this at scale we deployed dynamically launched and discovered caching services on the cloud. We are now testing the deployment of more complicated services on Amazon AWS using native load balancing and auto scaling features they provide. Themore » Virtual Facility Project will design and develop a facility including infrastructure and services that can live on the site of Fermilab, off-site, or a combination of both. We expect to need this capacity to meet the peak computing requirements in the future. The Virtual Facility is intended to provision resources on the public cloud on behalf of the facility as a whole instead of having each experiment or Virtual Organization do it on their own. We will describe the policy aspects of a distributed Virtual Facility, the requirements, and plans to make a detailed comparison of the relative cost of the public and private clouds. Furthermore, this talk will present the details of the technical mechanisms we have developed to date, and the plans currently taking shape for a Virtual Facility at Fermilab.« less
Chung, Wei-Chun; Chen, Chien-Chih; Ho, Jan-Ming; Lin, Chung-Yen; Hsu, Wen-Lian; Wang, Yu-Chun; Lee, D T; Lai, Feipei; Huang, Chih-Wei; Chang, Yu-Jung
2014-01-01
Explosive growth of next-generation sequencing data has resulted in ultra-large-scale data sets and ensuing computational problems. Cloud computing provides an on-demand and scalable environment for large-scale data analysis. Using a MapReduce framework, data and workload can be distributed via a network to computers in the cloud to substantially reduce computational latency. Hadoop/MapReduce has been successfully adopted in bioinformatics for genome assembly, mapping reads to genomes, and finding single nucleotide polymorphisms. Major cloud providers offer Hadoop cloud services to their users. However, it remains technically challenging to deploy a Hadoop cloud for those who prefer to run MapReduce programs in a cluster without built-in Hadoop/MapReduce. We present CloudDOE, a platform-independent software package implemented in Java. CloudDOE encapsulates technical details behind a user-friendly graphical interface, thus liberating scientists from having to perform complicated operational procedures. Users are guided through the user interface to deploy a Hadoop cloud within in-house computing environments and to run applications specifically targeted for bioinformatics, including CloudBurst, CloudBrush, and CloudRS. One may also use CloudDOE on top of a public cloud. CloudDOE consists of three wizards, i.e., Deploy, Operate, and Extend wizards. Deploy wizard is designed to aid the system administrator to deploy a Hadoop cloud. It installs Java runtime environment version 1.6 and Hadoop version 0.20.203, and initiates the service automatically. Operate wizard allows the user to run a MapReduce application on the dashboard list. To extend the dashboard list, the administrator may install a new MapReduce application using Extend wizard. CloudDOE is a user-friendly tool for deploying a Hadoop cloud. Its smart wizards substantially reduce the complexity and costs of deployment, execution, enhancement, and management. Interested users may collaborate to improve the source code of CloudDOE to further incorporate more MapReduce bioinformatics tools into CloudDOE and support next-generation big data open source tools, e.g., Hadoop BigTop and Spark. CloudDOE is distributed under Apache License 2.0 and is freely available at http://clouddoe.iis.sinica.edu.tw/.
Chung, Wei-Chun; Chen, Chien-Chih; Ho, Jan-Ming; Lin, Chung-Yen; Hsu, Wen-Lian; Wang, Yu-Chun; Lee, D. T.; Lai, Feipei; Huang, Chih-Wei; Chang, Yu-Jung
2014-01-01
Background Explosive growth of next-generation sequencing data has resulted in ultra-large-scale data sets and ensuing computational problems. Cloud computing provides an on-demand and scalable environment for large-scale data analysis. Using a MapReduce framework, data and workload can be distributed via a network to computers in the cloud to substantially reduce computational latency. Hadoop/MapReduce has been successfully adopted in bioinformatics for genome assembly, mapping reads to genomes, and finding single nucleotide polymorphisms. Major cloud providers offer Hadoop cloud services to their users. However, it remains technically challenging to deploy a Hadoop cloud for those who prefer to run MapReduce programs in a cluster without built-in Hadoop/MapReduce. Results We present CloudDOE, a platform-independent software package implemented in Java. CloudDOE encapsulates technical details behind a user-friendly graphical interface, thus liberating scientists from having to perform complicated operational procedures. Users are guided through the user interface to deploy a Hadoop cloud within in-house computing environments and to run applications specifically targeted for bioinformatics, including CloudBurst, CloudBrush, and CloudRS. One may also use CloudDOE on top of a public cloud. CloudDOE consists of three wizards, i.e., Deploy, Operate, and Extend wizards. Deploy wizard is designed to aid the system administrator to deploy a Hadoop cloud. It installs Java runtime environment version 1.6 and Hadoop version 0.20.203, and initiates the service automatically. Operate wizard allows the user to run a MapReduce application on the dashboard list. To extend the dashboard list, the administrator may install a new MapReduce application using Extend wizard. Conclusions CloudDOE is a user-friendly tool for deploying a Hadoop cloud. Its smart wizards substantially reduce the complexity and costs of deployment, execution, enhancement, and management. Interested users may collaborate to improve the source code of CloudDOE to further incorporate more MapReduce bioinformatics tools into CloudDOE and support next-generation big data open source tools, e.g., Hadoop BigTop and Spark. Availability: CloudDOE is distributed under Apache License 2.0 and is freely available at http://clouddoe.iis.sinica.edu.tw/. PMID:24897343
Cloud-based adaptive exon prediction for DNA analysis
Putluri, Srinivasareddy; Fathima, Shaik Yasmeen
2018-01-01
Cloud computing offers significant research and economic benefits to healthcare organisations. Cloud services provide a safe place for storing and managing large amounts of such sensitive data. Under conventional flow of gene information, gene sequence laboratories send out raw and inferred information via Internet to several sequence libraries. DNA sequencing storage costs will be minimised by use of cloud service. In this study, the authors put forward a novel genomic informatics system using Amazon Cloud Services, where genomic sequence information is stored and accessed for processing. True identification of exon regions in a DNA sequence is a key task in bioinformatics, which helps in disease identification and design drugs. Three base periodicity property of exons forms the basis of all exon identification techniques. Adaptive signal processing techniques found to be promising in comparison with several other methods. Several adaptive exon predictors (AEPs) are developed using variable normalised least mean square and its maximum normalised variants to reduce computational complexity. Finally, performance evaluation of various AEPs is done based on measures such as sensitivity, specificity and precision using various standard genomic datasets taken from National Center for Biotechnology Information genomic sequence database. PMID:29515813
NASA Astrophysics Data System (ADS)
Schnase, J. L.; Duffy, D. Q.; Tamkin, G. S.; Strong, S.; Ripley, D.; Gill, R.; Sinno, S. S.; Shen, Y.; Carriere, L. E.; Brieger, L.; Moore, R.; Rajasekar, A.; Schroeder, W.; Wan, M.
2011-12-01
Scientific data services are becoming an important part of the NASA Center for Climate Simulation's mission. Our technological response to this expanding role is built around the concept of specialized virtual climate data servers, repetitive cloud provisioning, image-based deployment and distribution, and virtualization-as-a-service. A virtual climate data server is an OAIS-compliant, iRODS-based data server designed to support a particular type of scientific data collection. iRODS is data grid middleware that provides policy-based control over collection-building, managing, querying, accessing, and preserving large scientific data sets. We have developed prototype vCDSs to manage NetCDF, HDF, and GeoTIF data products. We use RPM scripts to build vCDS images in our local computing environment, our local Virtual Machine Environment, NASA's Nebula Cloud Services, and Amazon's Elastic Compute Cloud. Once provisioned into these virtualized resources, multiple vCDSs can use iRODS's federation and realized object capabilities to create an integrated ecosystem of data servers that can scale and adapt to changing requirements. This approach enables platform- or software-as-a-service deployment of the vCDSs and allows the NCCS to offer virtualization-as-a-service, a capacity to respond in an agile way to new customer requests for data services, and a path for migrating existing services into the cloud. We have registered MODIS Atmosphere data products in a vCDS that contains 54 million registered files, 630TB of data, and over 300 million metadata values. We are now assembling IPCC AR5 data into a production vCDS that will provide the platform upon which NCCS's Earth System Grid (ESG) node publishes to the extended science community. In this talk, we describe our approach, experiences, lessons learned, and plans for the future.
Experience of Developing Cloud Service for accounting Sales in installments
NASA Astrophysics Data System (ADS)
Barankov, V. V.; Barankova, I. I.; Mikhailova, U. V.; Kalugina, O. B.
2018-05-01
The paper presents the developed and implemented system of accounting sales in installments using tables as a cloud variant of Google services. The main system requirements and the special features of the program implementation such as the multi user data cleaning, the volume and speed of converting the tables, the mechanisms of conditional formatting of cells, the protection of cells and ranges and the data input check are provided. The paper also discusses the functionality of the system of accounting sales in installments, which is implemented by the formulae in the cells, the formulae in the extra options of Google tables and by programming in Google Apps Script, as a cloud variant of Java Script. The safety and security of the customers’ data, as well as staff members’ accountability and responsibility for the input of data in the system, are provided by a number of information security measures
Services for domain specific developments in the Cloud
NASA Astrophysics Data System (ADS)
Schwichtenberg, Horst; Gemuend, André
2015-04-01
We will discuss and demonstrate the possibilities of new Cloud Services where the complete development of code is in the Cloud. We will discuss the possibilities of such services where the complete development cycle from programing to testing is in the cloud. This can be also combined with dedicated research domain specific services and hide the burden of accessing available infrastructures. As an example, we will show a service that is intended to complement the services of the VERCE projects infrastructure, a service that utilizes Cloud resources to offer simplified execution of data pre- and post-processing scripts. It offers users access to the ObsPy seismological toolbox for processing data with the Python programming language, executed on virtual Cloud resources in a secured sandbox. The solution encompasses a frontend with a modern graphical user interface, a messaging infrastructure as well as Python worker nodes for background processing. All components are deployable in the Cloud and have been tested on different environments based on OpenStack and OpenNebula. Deployments on commercial, public Clouds will be tested in the future.
Criteria for the evaluation of a cloud-based hospital information system outsourcing provider.
Low, Chinyao; Hsueh Chen, Ya
2012-12-01
As cloud computing technology has proliferated rapidly worldwide, there has been a trend toward adopting cloud-based hospital information systems (CHISs). This study examines the critical criteria for selecting the CHISs outsourcing provider. The fuzzy Delphi method (FDM) is used to evaluate the primary indicator collected from 188 useable responses at a working hospital in Taiwan. Moreover, the fuzzy analytic hierarchy process (FAHP) is employed to calculate the weights of these criteria and establish a fuzzy multi-criteria model of CHISs outsourcing provider selection from 42 experts. The results indicate that the five most critical criteria related to CHISs outsourcing provider selection are (1) system function, (2) service quality, (3) integration, (4) professionalism, and (5) economics. This study may contribute to understanding how cloud-based hospital systems can reinforce content design and offer a way to compete in the field by developing more appropriate systems.
Enhancing data utilization through adoption of cloud-based data architectures (Invited Paper 211869)
NASA Astrophysics Data System (ADS)
Kearns, E. J.
2017-12-01
A traditional approach to data distribution and utilization of open government data involves continuously moving those data from a central government location to each potential user, who would then utilize them on their local computer systems. An alternate approach would be to bring those users to the open government data, where users would also have access to computing and analytics capabilities that would support data utilization. NOAA's Big Data Project is exploring such an alternate approach through an experimental collaboration with Amazon Web Services, Google Cloud Platform, IBM, Microsoft Azure, and the Open Commons Consortium. As part of this ongoing experiment, NOAA is providing open data of interest which are freely hosted by the Big Data Project Collaborators, who provide a variety of cloud-based services and capabilities to enable utilization by data users. By the terms of the agreement, the Collaborators may charge for those value-added services and processing capacities to recover their costs to freely host the data and to generate profits if so desired. Initial results have shown sustained increases in data utilization from 2 to over 100 times previously-observed access patterns from traditional approaches. Significantly increased utilization speed as compared to the traditional approach has also been observed by NOAA data users who have volunteered their experiences on these cloud-based systems. The potential for implementing and sustaining the alternate cloud-based approach as part of a change in operational data utilization strategies will be discussed.
Facilitating Secure Sharing of Personal Health Data in the Cloud
Nepal, Surya; Glozier, Nick
2016-01-01
Background Internet-based applications are providing new ways of promoting health and reducing the cost of care. Although data can be kept encrypted in servers, the user does not have the ability to decide whom the data are shared with. Technically this is linked to the problem of who owns the data encryption keys required to decrypt the data. Currently, cloud service providers, rather than users, have full rights to the key. In practical terms this makes the users lose full control over their data. Trust and uptake of these applications can be increased by allowing patients to feel in control of their data, generally stored in cloud-based services. Objective This paper addresses this security challenge by providing the user a way of controlling encryption keys independently of the cloud service provider. We provide a secure and usable system that enables a patient to share health information with doctors and specialists. Methods We contribute a secure protocol for patients to share their data with doctors and others on the cloud while keeping complete ownership. We developed a simple, stereotypical health application and carried out security tests, performance tests, and usability tests with both students and doctors (N=15). Results We developed the health application as an app for Android mobile phones. We carried out the usability tests on potential participants and medical professionals. Of 20 participants, 14 (70%) either agreed or strongly agreed that they felt safer using our system. Using mixed methods, we show that participants agreed that privacy and security of health data are important and that our system addresses these issues. Conclusions We presented a security protocol that enables patients to securely share their eHealth data with doctors and nurses and developed a secure and usable system that enables patients to share mental health information with doctors. PMID:27234691
Oh, Sungyoung; Cha, Jieun; Ji, Myungkyu; Kang, Hyekyung; Kim, Seok; Heo, Eunyoung; Han, Jong Soo; Kang, Hyunggoo; Chae, Hoseok; Hwang, Hee
2015-01-01
Objectives To design a cloud computing-based Healthcare Software-as-a-Service (SaaS) Platform (HSP) for delivering healthcare information services with low cost, high clinical value, and high usability. Methods We analyzed the architecture requirements of an HSP, including the interface, business services, cloud SaaS, quality attributes, privacy and security, and multi-lingual capacity. For cloud-based SaaS services, we focused on Clinical Decision Service (CDS) content services, basic functional services, and mobile services. Microsoft's Azure cloud computing for Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) was used. Results The functional and software views of an HSP were designed in a layered architecture. External systems can be interfaced with the HSP using SOAP and REST/JSON. The multi-tenancy model of the HSP was designed as a shared database, with a separate schema for each tenant through a single application, although healthcare data can be physically located on a cloud or in a hospital, depending on regulations. The CDS services were categorized into rule-based services for medications, alert registration services, and knowledge services. Conclusions We expect that cloud-based HSPs will allow small and mid-sized hospitals, in addition to large-sized hospitals, to adopt information infrastructures and health information technology with low system operation and maintenance costs. PMID:25995962
The CUAHSI Water Data Center: Enabling Data Publication, Discovery and Re-use
NASA Astrophysics Data System (ADS)
Seul, M.; Pollak, J.
2014-12-01
The CUAHSI Water Data Center (WDC) supports a standards-based, services-oriented architecture for time-series data and provides a separate service to publish spatial data layers as shape files. Two new services that the WDC offers are a cloud-based server (Cloud HydroServer) for publishing data and a web-based client for data discovery. The Cloud HydroServer greatly simplifies data publication by eliminating the need for scientists to set up an SQL-server data base, a requirement that has proven to be a significant barrier, and ensures greater reliability and continuity of service. Uploaders have been developed to simplify the metadata documentation process. The web-based data client eliminates the need for installing a program to be used as a client and works across all computer operating systems. The services provided by the WDC is a foundation for big data use, re-use, and meta-analyses. Using data transmission standards enables far more effective data sharing and discovery; standards used by the WDC are part of a global set of standards that should enable scientists to access unprecedented amount of data to address larger-scale research questions than was previously possible. A central mission of the WDC is to ensure these services meet the needs of the water science community and are effective at advancing water science.
Implementation and use of a highly available and innovative IaaS solution: the Cloud Area Padovana
NASA Astrophysics Data System (ADS)
Aiftimiei, C.; Andreetto, P.; Bertocco, S.; Biasotto, M.; Dal Pra, S.; Costa, F.; Crescente, A.; Dorigo, A.; Fantinel, S.; Fanzago, F.; Frizziero, E.; Gulmini, M.; Michelotto, M.; Sgaravatto, M.; Traldi, S.; Venaruzzo, M.; Verlato, M.; Zangrando, L.
2015-12-01
While in the business world the cloud paradigm is typically implemented purchasing resources and services from third party providers (e.g. Amazon), in the scientific environment there's usually the need of on-premises IaaS infrastructures which allow efficient usage of the hardware distributed among (and owned by) different scientific administrative domains. In addition, the requirement of open source adoption has led to the choice of products like OpenStack by many organizations. We describe a use case of the Italian National Institute for Nuclear Physics (INFN) which resulted in the implementation of a unique cloud service, called ’Cloud Area Padovana’, which encompasses resources spread over two different sites: the INFN Legnaro National Laboratories and the INFN Padova division. We describe how this IaaS has been implemented, which technologies have been adopted and how services have been configured in high-availability (HA) mode. We also discuss how identity and authorization management were implemented, adopting a widely accepted standard architecture based on SAML2 and OpenID: by leveraging the versatility of those standards the integration with authentication federations like IDEM was implemented. We also discuss some other innovative developments, such as a pluggable scheduler, implemented as an extension of the native OpenStack scheduler, which allows the allocation of resources according to a fair-share based model and which provides a persistent queuing mechanism for handling user requests that can not be immediately served. Tools, technologies, procedures used to install, configure, monitor, operate this cloud service are also discussed. Finally we present some examples that show how this IaaS infrastructure is being used.
MC-GenomeKey: a multicloud system for the detection and annotation of genomic variants.
Elshazly, Hatem; Souilmi, Yassine; Tonellato, Peter J; Wall, Dennis P; Abouelhoda, Mohamed
2017-01-20
Next Generation Genome sequencing techniques became affordable for massive sequencing efforts devoted to clinical characterization of human diseases. However, the cost of providing cloud-based data analysis of the mounting datasets remains a concerning bottleneck for providing cost-effective clinical services. To address this computational problem, it is important to optimize the variant analysis workflow and the used analysis tools to reduce the overall computational processing time, and concomitantly reduce the processing cost. Furthermore, it is important to capitalize on the use of the recent development in the cloud computing market, which have witnessed more providers competing in terms of products and prices. In this paper, we present a new package called MC-GenomeKey (Multi-Cloud GenomeKey) that efficiently executes the variant analysis workflow for detecting and annotating mutations using cloud resources from different commercial cloud providers. Our package supports Amazon, Google, and Azure clouds, as well as, any other cloud platform based on OpenStack. Our package allows different scenarios of execution with different levels of sophistication, up to the one where a workflow can be executed using a cluster whose nodes come from different clouds. MC-GenomeKey also supports scenarios to exploit the spot instance model of Amazon in combination with the use of other cloud platforms to provide significant cost reduction. To the best of our knowledge, this is the first solution that optimizes the execution of the workflow using computational resources from different cloud providers. MC-GenomeKey provides an efficient multicloud based solution to detect and annotate mutations. The package can run in different commercial cloud platforms, which enables the user to seize the best offers. The package also provides a reliable means to make use of the low-cost spot instance model of Amazon, as it provides an efficient solution to the sudden termination of spot machines as a result of a sudden price increase. The package has a web-interface and it is available for free for academic use.
HEPCloud, a New Paradigm for HEP Facilities: CMS Amazon Web Services Investigation
Holzman, Burt; Bauerdick, Lothar A. T.; Bockelman, Brian; ...
2017-09-29
Historically, high energy physics computing has been performed on large purpose-built computing systems. These began as single-site compute facilities, but have evolved into the distributed computing grids used today. Recently, there has been an exponential increase in the capacity and capability of commercial clouds. Cloud resources are highly virtualized and intended to be able to be flexibly deployed for a variety of computing tasks. There is a growing interest among the cloud providers to demonstrate the capability to perform large-scale scientific computing. In this paper, we discuss results from the CMS experiment using the Fermilab HEPCloud facility, which utilized bothmore » local Fermilab resources and virtual machines in the Amazon Web Services Elastic Compute Cloud. We discuss the planning, technical challenges, and lessons learned involved in performing physics workflows on a large-scale set of virtualized resources. Additionally, we will discuss the economics and operational efficiencies when executing workflows both in the cloud and on dedicated resources.« less
HEPCloud, a New Paradigm for HEP Facilities: CMS Amazon Web Services Investigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holzman, Burt; Bauerdick, Lothar A. T.; Bockelman, Brian
Historically, high energy physics computing has been performed on large purpose-built computing systems. These began as single-site compute facilities, but have evolved into the distributed computing grids used today. Recently, there has been an exponential increase in the capacity and capability of commercial clouds. Cloud resources are highly virtualized and intended to be able to be flexibly deployed for a variety of computing tasks. There is a growing interest among the cloud providers to demonstrate the capability to perform large-scale scientific computing. In this paper, we discuss results from the CMS experiment using the Fermilab HEPCloud facility, which utilized bothmore » local Fermilab resources and virtual machines in the Amazon Web Services Elastic Compute Cloud. We discuss the planning, technical challenges, and lessons learned involved in performing physics workflows on a large-scale set of virtualized resources. Additionally, we will discuss the economics and operational efficiencies when executing workflows both in the cloud and on dedicated resources.« less
Department of Defense Use of Commercial Cloud Computing Capabilities and Services
2015-11-01
models (Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service ( SaaS )), and four deployment models (Public...NIST defines three main models for cloud computing: IaaS, PaaS, and SaaS . These models help differentiate the implementation responsibilities that fall...and SaaS . 3. Public, Private, Community, and Hybrid Clouds Cloud services come in different forms, depending on the customer’s specific needs
INDIGO: Building a DataCloud Framework to support Open Science
NASA Astrophysics Data System (ADS)
Chen, Yin; de Lucas, Jesus Marco; Aguilar, Fenando; Fiore, Sandro; Rossi, Massimiliano; Ferrari, Tiziana
2016-04-01
New solutions are required to support Data Intensive Science in the emerging panorama of e-infrastructures, including Grid, Cloud and HPC services. The architecture proposed by the INDIGO-DataCloud (INtegrating Distributed data Infrastructures for Global ExplOitation) (https://www.indigo-datacloud.eu/) H2020 project, provides the path to integrate IaaS resources and PaaS platforms to provide SaaS solutions, while satisfying the requirements posed by different Research Communities, including several in Earth Science. This contribution introduces the INDIGO DataCloud architecture, describes the methodology followed to assure the integration of the requirements from different research communities, including examples like ENES, LifeWatch or EMSO, and how they will build their solutions using different INDIGO components.
WebGIS based community services architecture by griddization managements and crowdsourcing services
NASA Astrophysics Data System (ADS)
Wang, Haiyin; Wan, Jianhua; Zeng, Zhe; Zhou, Shengchuan
2016-11-01
Along with the fast economic development of cities, rapid urbanization, population surge, in China, the social community service mechanisms need to be rationalized and the policy standards need to be unified, which results in various types of conflicts and challenges for community services of government. Based on the WebGIS technology, the article provides a community service architecture by gridding management and crowdsourcing service. The WEBGIS service architecture includes two parts: the cloud part and the mobile part. The cloud part refers to community service centres, which can instantaneously response the emergency, visualize the scene of the emergency, and analyse the data from the emergency. The mobile part refers to the mobile terminal, which can call the centre, report the event, collect data and verify the feedback. This WebGIS based community service systems for Huangdao District of Qingdao, were awarded the “2015’ national innovation of social governance case of typical cases”.
A new data collaboration service based on cloud computing security
NASA Astrophysics Data System (ADS)
Ying, Ren; Li, Hua-Wei; Wang, Li na
2017-09-01
With the rapid development of cloud computing, the storage and usage of data have undergone revolutionary changes. Data owners can store data in the cloud. While bringing convenience, it also brings many new challenges to cloud data security. A key issue is how to support a secure data collaboration service that supports access and updates to cloud data. This paper proposes a secure, efficient and extensible data collaboration service, which prevents data leaks in cloud storage, supports one to many encryption mechanisms, and also enables cloud data writing and fine-grained access control.
Evaluating the Usage of Cloud-Based Collaboration Services through Teamwork
ERIC Educational Resources Information Center
Qin, Li; Hsu, Jeffrey; Stern, Mel
2016-01-01
With the proliferation of cloud computing for both organizational and educational use, cloud-based collaboration services are transforming how people work in teams. The authors investigated the determinants of the usage of cloud-based collaboration services including teamwork quality, computer self-efficacy, and prior experience, as well as its…
Bootstrapping and Maintaining Trust in the Cloud
2016-12-01
simultaneous cloud nodes. 1. INTRODUCTION The proliferation and popularity of infrastructure-as-a- service (IaaS) cloud computing services such as...Amazon Web Services and Google Compute Engine means more cloud tenants are hosting sensitive, private, and business critical data and applications in the...thousands of IaaS resources as they are elastically instantiated and terminated. Prior cloud trusted computing solutions address a subset of these features
Delivering Unidata Technology via the Cloud
NASA Astrophysics Data System (ADS)
Fisher, Ward; Oxelson Ganter, Jennifer
2016-04-01
Over the last two years, Docker has emerged as the clear leader in open-source containerization. Containerization technology provides a means by which software can be pre-configured and packaged into a single unit, i.e. a container. This container can then be easily deployed either on local or remote systems. Containerization is particularly advantageous when moving software into the cloud, as it simplifies the process. Unidata is adopting containerization as part of our commitment to migrate our technologies to the cloud. We are using a two-pronged approach in this endeavor. In addition to migrating our data-portal services to a cloud environment, we are also exploring new and novel ways to use cloud-specific technology to serve our community. This effort has resulted in several new cloud/Docker-specific projects at Unidata: "CloudStream," "CloudIDV," and "CloudControl." CloudStream is a docker-based technology stack for bringing legacy desktop software to new computing environments, without the need to invest significant engineering/development resources. CloudStream helps make it easier to run existing software in a cloud environment via a technology called "Application Streaming." CloudIDV is a CloudStream-based implementation of the Unidata Integrated Data Viewer (IDV). CloudIDV serves as a practical example of application streaming, and demonstrates how traditional software can be easily accessed and controlled via a web browser. Finally, CloudControl is a web-based dashboard which provides administrative controls for running docker-based technologies in the cloud, as well as providing user management. In this work we will give an overview of these three open-source technologies and the value they offer to our community.
Rautenberg, Philipp L.; Kumaraswamy, Ajayrama; Tejero-Cantero, Alvaro; Doblander, Christoph; Norouzian, Mohammad R.; Kai, Kazuki; Jacobsen, Hans-Arno; Ai, Hiroyuki; Wachtler, Thomas; Ikeno, Hidetoshi
2014-01-01
Neuroscience today deals with a “data deluge” derived from the availability of high-throughput sensors of brain structure and brain activity, and increased computational resources for detailed simulations with complex output. We report here (1) a novel approach to data sharing between collaborating scientists that brings together file system tools and cloud technologies, (2) a service implementing this approach, called NeuronDepot, and (3) an example application of the service to a complex use case in the neurosciences. The main drivers for our approach are to facilitate collaborations with a transparent, automated data flow that shields scientists from having to learn new tools or data structuring paradigms. Using NeuronDepot is simple: one-time data assignment from the originator and cloud based syncing—thus making experimental and modeling data available across the collaboration with minimum overhead. Since data sharing is cloud based, our approach opens up the possibility of using new software developments and hardware scalabitliy which are associated with elastic cloud computing. We provide an implementation that relies on existing synchronization services and is usable from all devices via a reactive web interface. We are motivating our solution by solving the practical problems of the GinJang project, a collaboration of three universities across eight time zones with a complex workflow encompassing data from electrophysiological recordings, imaging, morphological reconstructions, and simulations. PMID:24971059
Rautenberg, Philipp L; Kumaraswamy, Ajayrama; Tejero-Cantero, Alvaro; Doblander, Christoph; Norouzian, Mohammad R; Kai, Kazuki; Jacobsen, Hans-Arno; Ai, Hiroyuki; Wachtler, Thomas; Ikeno, Hidetoshi
2014-01-01
Neuroscience today deals with a "data deluge" derived from the availability of high-throughput sensors of brain structure and brain activity, and increased computational resources for detailed simulations with complex output. We report here (1) a novel approach to data sharing between collaborating scientists that brings together file system tools and cloud technologies, (2) a service implementing this approach, called NeuronDepot, and (3) an example application of the service to a complex use case in the neurosciences. The main drivers for our approach are to facilitate collaborations with a transparent, automated data flow that shields scientists from having to learn new tools or data structuring paradigms. Using NeuronDepot is simple: one-time data assignment from the originator and cloud based syncing-thus making experimental and modeling data available across the collaboration with minimum overhead. Since data sharing is cloud based, our approach opens up the possibility of using new software developments and hardware scalabitliy which are associated with elastic cloud computing. We provide an implementation that relies on existing synchronization services and is usable from all devices via a reactive web interface. We are motivating our solution by solving the practical problems of the GinJang project, a collaboration of three universities across eight time zones with a complex workflow encompassing data from electrophysiological recordings, imaging, morphological reconstructions, and simulations.
Genomics Virtual Laboratory: A Practical Bioinformatics Workbench for the Cloud
Afgan, Enis; Sloggett, Clare; Goonasekera, Nuwan; Makunin, Igor; Benson, Derek; Crowe, Mark; Gladman, Simon; Kowsar, Yousef; Pheasant, Michael; Horst, Ron; Lonie, Andrew
2015-01-01
Background Analyzing high throughput genomics data is a complex and compute intensive task, generally requiring numerous software tools and large reference data sets, tied together in successive stages of data transformation and visualisation. A computational platform enabling best practice genomics analysis ideally meets a number of requirements, including: a wide range of analysis and visualisation tools, closely linked to large user and reference data sets; workflow platform(s) enabling accessible, reproducible, portable analyses, through a flexible set of interfaces; highly available, scalable computational resources; and flexibility and versatility in the use of these resources to meet demands and expertise of a variety of users. Access to an appropriate computational platform can be a significant barrier to researchers, as establishing such a platform requires a large upfront investment in hardware, experience, and expertise. Results We designed and implemented the Genomics Virtual Laboratory (GVL) as a middleware layer of machine images, cloud management tools, and online services that enable researchers to build arbitrarily sized compute clusters on demand, pre-populated with fully configured bioinformatics tools, reference datasets and workflow and visualisation options. The platform is flexible in that users can conduct analyses through web-based (Galaxy, RStudio, IPython Notebook) or command-line interfaces, and add/remove compute nodes and data resources as required. Best-practice tutorials and protocols provide a path from introductory training to practice. The GVL is available on the OpenStack-based Australian Research Cloud (http://nectar.org.au) and the Amazon Web Services cloud. The principles, implementation and build process are designed to be cloud-agnostic. Conclusions This paper provides a blueprint for the design and implementation of a cloud-based Genomics Virtual Laboratory. We discuss scope, design considerations and technical and logistical constraints, and explore the value added to the research community through the suite of services and resources provided by our implementation. PMID:26501966
Genomics Virtual Laboratory: A Practical Bioinformatics Workbench for the Cloud.
Afgan, Enis; Sloggett, Clare; Goonasekera, Nuwan; Makunin, Igor; Benson, Derek; Crowe, Mark; Gladman, Simon; Kowsar, Yousef; Pheasant, Michael; Horst, Ron; Lonie, Andrew
2015-01-01
Analyzing high throughput genomics data is a complex and compute intensive task, generally requiring numerous software tools and large reference data sets, tied together in successive stages of data transformation and visualisation. A computational platform enabling best practice genomics analysis ideally meets a number of requirements, including: a wide range of analysis and visualisation tools, closely linked to large user and reference data sets; workflow platform(s) enabling accessible, reproducible, portable analyses, through a flexible set of interfaces; highly available, scalable computational resources; and flexibility and versatility in the use of these resources to meet demands and expertise of a variety of users. Access to an appropriate computational platform can be a significant barrier to researchers, as establishing such a platform requires a large upfront investment in hardware, experience, and expertise. We designed and implemented the Genomics Virtual Laboratory (GVL) as a middleware layer of machine images, cloud management tools, and online services that enable researchers to build arbitrarily sized compute clusters on demand, pre-populated with fully configured bioinformatics tools, reference datasets and workflow and visualisation options. The platform is flexible in that users can conduct analyses through web-based (Galaxy, RStudio, IPython Notebook) or command-line interfaces, and add/remove compute nodes and data resources as required. Best-practice tutorials and protocols provide a path from introductory training to practice. The GVL is available on the OpenStack-based Australian Research Cloud (http://nectar.org.au) and the Amazon Web Services cloud. The principles, implementation and build process are designed to be cloud-agnostic. This paper provides a blueprint for the design and implementation of a cloud-based Genomics Virtual Laboratory. We discuss scope, design considerations and technical and logistical constraints, and explore the value added to the research community through the suite of services and resources provided by our implementation.
A Cloud-Based Car Parking Middleware for IoT-Based Smart Cities: Design and Implementation
Ji, Zhanlin; Ganchev, Ivan; O'Droma, Máirtín; Zhao, Li; Zhang, Xueji
2014-01-01
This paper presents the generic concept of using cloud-based intelligent car parking services in smart cities as an important application of the Internet of Things (IoT) paradigm. This type of services will become an integral part of a generic IoT operational platform for smart cities due to its pure business-oriented features. A high-level view of the proposed middleware is outlined and the corresponding operational platform is illustrated. To demonstrate the provision of car parking services, based on the proposed middleware, a cloud-based intelligent car parking system for use within a university campus is described along with details of its design, implementation, and operation. A number of software solutions, including Kafka/Storm/Hbase clusters, OSGi web applications with distributed NoSQL, a rule engine, and mobile applications, are proposed to provide ‘best’ car parking service experience to mobile users, following the Always Best Connected and best Served (ABC&S) paradigm. PMID:25429416
A cloud-based car parking middleware for IoT-based smart cities: design and implementation.
Ji, Zhanlin; Ganchev, Ivan; O'Droma, Máirtín; Zhao, Li; Zhang, Xueji
2014-11-25
This paper presents the generic concept of using cloud-based intelligent car parking services in smart cities as an important application of the Internet of Things (IoT) paradigm. This type of services will become an integral part of a generic IoT operational platform for smart cities due to its pure business-oriented features. A high-level view of the proposed middleware is outlined and the corresponding operational platform is illustrated. To demonstrate the provision of car parking services, based on the proposed middleware, a cloud-based intelligent car parking system for use within a university campus is described along with details of its design, implementation, and operation. A number of software solutions, including Kafka/Storm/Hbase clusters, OSGi web applications with distributed NoSQL, a rule engine, and mobile applications, are proposed to provide 'best' car parking service experience to mobile users, following the Always Best Connected and best Served (ABC&S) paradigm.
Extended outlook: description, utilization, and daily applications of cloud technology in radiology.
Gerard, Perry; Kapadia, Neil; Chang, Patricia T; Acharya, Jay; Seiler, Michael; Lefkovitz, Zvi
2013-12-01
The purpose of this article is to discuss the concept of cloud technology, its role in medical applications and radiology, the role of the radiologist in using and accessing these vast resources of information, and privacy concerns and HIPAA compliance strategies. Cloud computing is the delivery of shared resources, software, and information to computers and other devices as a metered service. This technology has a promising role in the sharing of patient medical information and appears to be particularly suited for application in radiology, given the field's inherent need for storage and access to large amounts of data. The radiology cloud has significant strengths, such as providing centralized storage and access, reducing unnecessary repeat radiologic studies, and potentially allowing radiologic second opinions more easily. There are significant cost advantages to cloud computing because of a decreased need for infrastructure and equipment by the institution. Private clouds may be used to ensure secure storage of data and compliance with HIPAA. In choosing a cloud service, there are important aspects, such as disaster recovery plans, uptime, and security audits, that must be considered. Given that the field of radiology has become almost exclusively digital in recent years, the future of secure storage and easy access to imaging studies lies within cloud computing technology.
A New Cloud Architecture of Virtual Trusted Platform Modules
NASA Astrophysics Data System (ADS)
Liu, Dongxi; Lee, Jack; Jang, Julian; Nepal, Surya; Zic, John
We propose and implement a cloud architecture of virtual Trusted Platform Modules (TPMs) to improve the usability of TPMs. In this architecture, virtual TPMs can be obtained from the TPM cloud on demand. Hence, the TPM functionality is available for applications that do not have physical TPMs in their local platforms. Moreover, the TPM cloud allows users to access their keys and data in the same virtual TPM even if they move to untrusted platforms. The TPM cloud is easy to access for applications in different languages since cloud computing delivers services in standard protocols. The functionality of the TPM cloud is demonstrated by applying it to implement the Needham-Schroeder public-key protocol for web authentications, such that the strong security provided by TPMs is integrated into high level applications. The chain of trust based on the TPM cloud is discussed and the security properties of the virtual TPMs in the cloud is analyzed.
Providing Access and Visualization to Global Cloud Properties from GEO Satellites
NASA Astrophysics Data System (ADS)
Chee, T.; Nguyen, L.; Minnis, P.; Spangenberg, D.; Palikonda, R.; Ayers, J. K.
2015-12-01
Providing public access to cloud macro and microphysical properties is a key concern for the NASA Langley Research Center Cloud and Radiation Group. This work describes a tool and method that allows end users to easily browse and access cloud information that is otherwise difficult to acquire and manipulate. The core of the tool is an application-programming interface that is made available to the public. One goal of the tool is to provide a demonstration to end users so that they can use the dynamically generated imagery as an input into their own work flows for both image generation and cloud product requisition. This project builds upon NASA Langley Cloud and Radiation Group's experience with making real-time and historical satellite cloud product imagery accessible and easily searchable. As we see the increasing use of virtual supply chains that provide additional value at each link there is value in making satellite derived cloud product information available through a simple access method as well as allowing users to browse and view that imagery as they need rather than in a manner most convenient for the data provider. Using the Open Geospatial Consortium's Web Processing Service as our access method, we describe a system that uses a hybrid local and cloud based parallel processing system that can return both satellite imagery and cloud product imagery as well as the binary data used to generate them in multiple formats. The images and cloud products are sourced from multiple satellites and also "merged" datasets created by temporally and spatially matching satellite sensors. Finally, the tool and API allow users to access information that spans the time ranges that our group has information available. In the case of satellite imagery, the temporal range can span the entire lifetime of the sensor.
Secure Genomic Computation through Site-Wise Encryption
Zhao, Yongan; Wang, XiaoFeng; Tang, Haixu
2015-01-01
Commercial clouds provide on-demand IT services for big-data analysis, which have become an attractive option for users who have no access to comparable infrastructure. However, utilizing these services for human genome analysis is highly risky, as human genomic data contains identifiable information of human individuals and their disease susceptibility. Therefore, currently, no computation on personal human genomic data is conducted on public clouds. To address this issue, here we present a site-wise encryption approach to encrypt whole human genome sequences, which can be subject to secure searching of genomic signatures on public clouds. We implemented this method within the Hadoop framework, and tested it on the case of searching disease markers retrieved from the ClinVar database against patients’ genomic sequences. The secure search runs only one order of magnitude slower than the simple search without encryption, indicating our method is ready to be used for secure genomic computation on public clouds. PMID:26306278
A dynamic access control method based on QoS requirement
NASA Astrophysics Data System (ADS)
Li, Chunquan; Wang, Yanwei; Yang, Baoye; Hu, Chunyang
2013-03-01
A dynamic access control method is put forward to ensure the security of the sharing service in Cloud Manufacturing, according to the application characteristics of cloud manufacturing collaborative task. The role-based access control (RBAC) model is extended according to the characteristics of cloud manufacturing in this method. The constraints are considered, which are from QoS requirement of the task context to access control, based on the traditional static authorization. The fuzzy policy rules are established about the weighted interval value of permissions. The access control authorities of executable service by users are dynamically adjusted through the fuzzy reasoning based on the QoS requirement of task. The main elements of the model are described. The fuzzy reasoning algorithm of weighted interval value based QoS requirement is studied. An effective method is provided to resolve the access control of cloud manufacturing.
Secure Genomic Computation through Site-Wise Encryption.
Zhao, Yongan; Wang, XiaoFeng; Tang, Haixu
2015-01-01
Commercial clouds provide on-demand IT services for big-data analysis, which have become an attractive option for users who have no access to comparable infrastructure. However, utilizing these services for human genome analysis is highly risky, as human genomic data contains identifiable information of human individuals and their disease susceptibility. Therefore, currently, no computation on personal human genomic data is conducted on public clouds. To address this issue, here we present a site-wise encryption approach to encrypt whole human genome sequences, which can be subject to secure searching of genomic signatures on public clouds. We implemented this method within the Hadoop framework, and tested it on the case of searching disease markers retrieved from the ClinVar database against patients' genomic sequences. The secure search runs only one order of magnitude slower than the simple search without encryption, indicating our method is ready to be used for secure genomic computation on public clouds.
SUPAR: Smartphone as a ubiquitous physical activity recognizer for u-healthcare services.
Fahim, Muhammad; Lee, Sungyoung; Yoon, Yongik
2014-01-01
Current generation smartphone can be seen as one of the most ubiquitous device for physical activity recognition. In this paper we proposed a physical activity recognizer to provide u-healthcare services in a cost effective manner by utilizing cloud computing infrastructure. Our model is comprised on embedded triaxial accelerometer of the smartphone to sense the body movements and a cloud server to store and process the sensory data for numerous kind of services. We compute the time and frequency domain features over the raw signals and evaluate different machine learning algorithms to identify an accurate activity recognition model for four kinds of physical activities (i.e., walking, running, cycling and hopping). During our experiments we found Support Vector Machine (SVM) algorithm outperforms for the aforementioned physical activities as compared to its counterparts. Furthermore, we also explain how smartphone application and cloud server communicate with each other.
NASA Astrophysics Data System (ADS)
Xiong, Ting; He, Zhiwen
2017-06-01
Cloud computing was first proposed by Google Company in the United States, which was based on the Internet center, providing a standard and open network sharing service approach. With the rapid development of the higher education in China, the educational resources provided by colleges and universities had greatly gap in the actual needs of teaching resources. therefore, Cloud computing of using the Internet technology to provide shared methods liked the timely rain, which had become an important means of the Digital Education on sharing applications in the current higher education. Based on Cloud computing environment, the paper analyzed the existing problems about the sharing of digital educational resources in Jiangxi Province Independent Colleges. According to the sharing characteristics of mass storage, efficient operation and low input about Cloud computing, the author explored and studied the design of the sharing model about the digital educational resources of higher education in Independent College. Finally, the design of the shared model was put into the practical applications.
Streaming support for data intensive cloud-based sequence analysis.
Issa, Shadi A; Kienzler, Romeo; El-Kalioby, Mohamed; Tonellato, Peter J; Wall, Dennis; Bruggmann, Rémy; Abouelhoda, Mohamed
2013-01-01
Cloud computing provides a promising solution to the genomics data deluge problem resulting from the advent of next-generation sequencing (NGS) technology. Based on the concepts of "resources-on-demand" and "pay-as-you-go", scientists with no or limited infrastructure can have access to scalable and cost-effective computational resources. However, the large size of NGS data causes a significant data transfer latency from the client's site to the cloud, which presents a bottleneck for using cloud computing services. In this paper, we provide a streaming-based scheme to overcome this problem, where the NGS data is processed while being transferred to the cloud. Our scheme targets the wide class of NGS data analysis tasks, where the NGS sequences can be processed independently from one another. We also provide the elastream package that supports the use of this scheme with individual analysis programs or with workflow systems. Experiments presented in this paper show that our solution mitigates the effect of data transfer latency and saves both time and cost of computation.
Facilitating NASA Earth Science Data Processing Using Nebula Cloud Computing
NASA Technical Reports Server (NTRS)
Pham, Long; Chen, Aijun; Kempler, Steven; Lynnes, Christopher; Theobald, Michael; Asghar, Esfandiari; Campino, Jane; Vollmer, Bruce
2011-01-01
Cloud Computing has been implemented in several commercial arenas. The NASA Nebula Cloud Computing platform is an Infrastructure as a Service (IaaS) built in 2008 at NASA Ames Research Center and 2010 at GSFC. Nebula is an open source Cloud platform intended to: a) Make NASA realize significant cost savings through efficient resource utilization, reduced energy consumption, and reduced labor costs. b) Provide an easier way for NASA scientists and researchers to efficiently explore and share large and complex data sets. c) Allow customers to provision, manage, and decommission computing capabilities on an as-needed bases
An adaptive process-based cloud infrastructure for space situational awareness applications
NASA Astrophysics Data System (ADS)
Liu, Bingwei; Chen, Yu; Shen, Dan; Chen, Genshe; Pham, Khanh; Blasch, Erik; Rubin, Bruce
2014-06-01
Space situational awareness (SSA) and defense space control capabilities are top priorities for groups that own or operate man-made spacecraft. Also, with the growing amount of space debris, there is an increase in demand for contextual understanding that necessitates the capability of collecting and processing a vast amount sensor data. Cloud computing, which features scalable and flexible storage and computing services, has been recognized as an ideal candidate that can meet the large data contextual challenges as needed by SSA. Cloud computing consists of physical service providers and middleware virtual machines together with infrastructure, platform, and software as service (IaaS, PaaS, SaaS) models. However, the typical Virtual Machine (VM) abstraction is on a per operating systems basis, which is at too low-level and limits the flexibility of a mission application architecture. In responding to this technical challenge, a novel adaptive process based cloud infrastructure for SSA applications is proposed in this paper. In addition, the details for the design rationale and a prototype is further examined. The SSA Cloud (SSAC) conceptual capability will potentially support space situation monitoring and tracking, object identification, and threat assessment. Lastly, the benefits of a more granular and flexible cloud computing resources allocation are illustrated for data processing and implementation considerations within a representative SSA system environment. We show that the container-based virtualization performs better than hypervisor-based virtualization technology in an SSA scenario.
Lai, Chin-Feng; Chen, Min; Pan, Jeng-Shyang; Youn, Chan-Hyun; Chao, Han-Chieh
2014-03-01
As cloud computing and wireless body sensor network technologies become gradually developed, ubiquitous healthcare services prevent accidents instantly and effectively, as well as provides relevant information to reduce related processing time and cost. This study proposes a co-processing intermediary framework integrated cloud and wireless body sensor networks, which is mainly applied to fall detection and 3-D motion reconstruction. In this study, the main focuses includes distributed computing and resource allocation of processing sensing data over the computing architecture, network conditions and performance evaluation. Through this framework, the transmissions and computing time of sensing data are reduced to enhance overall performance for the services of fall events detection and 3-D motion reconstruction.
NASA Astrophysics Data System (ADS)
Blodgett, D. L.; Booth, N.; Walker, J.; Kunicki, T.
2012-12-01
The U.S. Geological Survey Center for Integrated Data Analytics (CIDA), in holding with the President's Digital Government Strategy and the Department of Interior's IT Transformation initiative, has evolved its data center and application architecture toward the "cloud" paradigm. In this case, "cloud" refers to a goal of developing services that may be distributed to infrastructure anywhere on the Internet. This transition has taken place across the entire data management spectrum from data center location to physical hardware configuration to software design and implementation. In CIDA's case, physical hardware resides in Madison at the Wisconsin Water Science Center, in South Dakota at the Earth Resources Observation and Science Center (EROS), and in the near future at a DOI approved commercial vendor. Tasks normally conducted on desktop-based GIS software with local copies of data in proprietary formats are now done using browser-based interfaces to web processing services drawing on a network of standard data-source web services. Organizations are gaining economies of scale through data center consolidation and the creation of private cloud services as well as taking advantage of the commoditization of data processing services. Leveraging open standards for data and data management take advantage of this commoditization and provide the means to reliably build distributed service based systems. This presentation will use CIDA's experience as an illustration of the benefits and hurdles of moving to the cloud. Replicating, reformatting, and processing large data sets, such as downscaled climate projections, traditionally present a substantial challenge to environmental science researchers who need access to data subsets and derived products. The USGS Geo Data Portal (GDP) project uses cloud concepts to help earth system scientists' access subsets, spatial summaries, and derivatives of commonly needed very large data. The GDP project has developed a reusable architecture and advanced processing services that currently accesses archives hosted at Lawrence Livermore National Lab, Oregon State University, the University Corporation for Atmospheric Research, and the U.S. Geological Survey, among others. Several examples of how the GDP project uses cloud concepts will be highlighted in this presentation: 1) The high bandwidth network connectivity of large data centers reduces the need for data replication and storage local to processing services. 2) Standard data serving web services, like OPeNDAP, Web Coverage Services, and Web Feature Services allow GDP services to remotely access custom subsets of data in a variety of formats, further reducing the need for data replication and reformatting. 3) The GDP services use standard web service APIs to allow browser-based user interfaces to run complex and compute-intensive processes for users from any computer with an Internet connection. The combination of physical infrastructure and application architecture implemented for the Geo Data Portal project offer an operational example of how distributed data and processing on the cloud can be used to aid earth system science.
Proposing Telecardiology Services on Cloud for Different Medical Institutions: A Model of Reference.
de la Torre-Díez, Isabel; Garcia-Zapirain, Begoña; López-Coronado, Miguel; Rodrigues, Joel J P C
2017-08-01
For a cloud-based telecardiology solution to be established in any scenario, it is necessary to ensure optimum levels of security, as patient's data will not be in the same place from where access is gained. The main objective of this article is to present a secure, cloud-based solution for a telecardiology service in different scenarios: a hospital, a health center in a city, and a group of health centers in a rural area. iCanCloud software is used to simulate the scenarios. The first scenario will be a city hospital with over 220,000 patients at its emergency services, and ∼1 million outpatient consultations. For the health center in a city, it serves ∼107,000 medical consultations and 16,700 pediatric consultations/year. In the last scenario, a group of health centers in a rural area serve an average 437.08 consultations/month and around 15.6 a day. Each one of the solutions proposed shares common features including the following: secure authentication through smart cards, the use of StorageGRID technology, and load balancers. For all cases, the cloud is private and the estimated price of the solution would cost around 450 €/month. Thanks to the research conducted in this work, it has been possible to provide an adapted solution in the form of a telecardiology service for a hospital, city health center, and rural health centers that offer security, privacy, and robustness, and is also optimum for a large number of cloud requests.
Privacy and Integrity in the Untrusted Cloud
2012-06-01
TYPE 3. DATES COVERED 00-00-2012 to 00-00-2012 4 . TITLE AND SUBTITLE Privacy and Integrity in the Untrusted Cloud 5a. CONTRACT NUMBER 5b...54 4 Frientegrity 55 4.1 Introduction...but still showing them to the user [105]. This behavior is 4 an example of provider equivocation [74, 67], in which a malicious service presents
Cloud access to interoperable IVOA-compliant VOSpace storage
NASA Astrophysics Data System (ADS)
Bertocco, S.; Dowler, P.; Gaudet, S.; Major, B.; Pasian, F.; Taffoni, G.
2018-07-01
Handling, processing and archiving the huge amount of data produced by the new generation of experiments and instruments in Astronomy and Astrophysics are among the more exciting challenges to address in designing the future data management infrastructures and computing services. We investigated the feasibility of a data management and computation infrastructure, available world-wide, with the aim of merging the FAIR data management provided by IVOA standards with the efficiency and reliability of a cloud approach. Our work involved the Canadian Advanced Network for Astronomy Research (CANFAR) infrastructure and the European EGI federated cloud (EFC). We designed and deployed a pilot data management and computation infrastructure that provides IVOA-compliant VOSpace storage resources and wide access to interoperable federated clouds. In this paper, we detail the main user requirements covered, the technical choices and the implemented solutions and we describe the resulting Hybrid cloud Worldwide infrastructure, its benefits and limitations.
Cloud computing for context-aware enhanced m-Health services.
Fernandez-Llatas, Carlos; Pileggi, Salvatore F; Ibañez, Gema; Valero, Zoe; Sala, Pilar
2015-01-01
m-Health services are increasing its presence in our lives due to the high penetration of new smartphone devices. This new scenario proposes new challenges in terms of information accessibility that require new paradigms which enable the new applications to access the data in a continuous and ubiquitous way, ensuring the privacy required depending on the kind of data accessed. This paper proposes an architecture based on cloud computing paradigms in order to empower new m-Health applications to enrich their results by providing secure access to user data.
NASA Astrophysics Data System (ADS)
McInerney, M.; Schnase, J. L.; Duffy, D.; Tamkin, G.; Nadeau, D.; Strong, S.; Thompson, J. H.; Sinno, S.; Lazar, D.
2014-12-01
The climate sciences represent a big data domain that is experiencing unprecedented growth. In our efforts to address the big data challenges of climate science, we are moving toward a notion of Climate Analytics-as-a-Service (CAaaS). We focus on analytics, because it is the knowledge gained from our interactions with big data that ultimately product societal benefits. We focus on CAaaS because we believe it provides a useful way of thinking about the problem: a specialization of the concept of business process-as-a-service, which is an evolving extension of IaaS, PaaS, and SaaS enabled by cloud computing. Within this framework, cloud computing plays an important role; however, we see it as only one element in a constellation of capabilities that are essential to delivering climate analytics-as-a-service. These elements are essential because in the aggregate they lead to generativity, a capacity for self-assembly that we feel is the key to solving many of the big data challenges in this domain. This poster will highlight specific examples of CAaaS using climate reanalysis data, high-performance cloud computing, map reduce, and the Climate Data Services API.
Cloud Computing - A Unified Approach for Surveillance Issues
NASA Astrophysics Data System (ADS)
Rachana, C. R.; Banu, Reshma, Dr.; Ahammed, G. F. Ali, Dr.; Parameshachari, B. D., Dr.
2017-08-01
Cloud computing describes highly scalable resources provided as an external service via the Internet on a basis of pay-per-use. From the economic point of view, the main attractiveness of cloud computing is that users only use what they need, and only pay for what they actually use. Resources are available for access from the cloud at any time, and from any location through networks. Cloud computing is gradually replacing the traditional Information Technology Infrastructure. Securing data is one of the leading concerns and biggest issue for cloud computing. Privacy of information is always a crucial pointespecially when an individual’s personalinformation or sensitive information is beingstored in the organization. It is indeed true that today; cloud authorization systems are notrobust enough. This paper presents a unified approach for analyzing the various security issues and techniques to overcome the challenges in the cloud environment.
Trust-Enhanced Cloud Service Selection Model Based on QoS Analysis.
Pan, Yuchen; Ding, Shuai; Fan, Wenjuan; Li, Jing; Yang, Shanlin
2015-01-01
Cloud computing technology plays a very important role in many areas, such as in the construction and development of the smart city. Meanwhile, numerous cloud services appear on the cloud-based platform. Therefore how to how to select trustworthy cloud services remains a significant problem in such platforms, and extensively investigated owing to the ever-growing needs of users. However, trust relationship in social network has not been taken into account in existing methods of cloud service selection and recommendation. In this paper, we propose a cloud service selection model based on the trust-enhanced similarity. Firstly, the direct, indirect, and hybrid trust degrees are measured based on the interaction frequencies among users. Secondly, we estimate the overall similarity by combining the experience usability measured based on Jaccard's Coefficient and the numerical distance computed by Pearson Correlation Coefficient. Then through using the trust degree to modify the basic similarity, we obtain a trust-enhanced similarity. Finally, we utilize the trust-enhanced similarity to find similar trusted neighbors and predict the missing QoS values as the basis of cloud service selection and recommendation. The experimental results show that our approach is able to obtain optimal results via adjusting parameters and exhibits high effectiveness. The cloud services ranking by our model also have better QoS properties than other methods in the comparison experiments.
Trust-Enhanced Cloud Service Selection Model Based on QoS Analysis
Pan, Yuchen; Ding, Shuai; Fan, Wenjuan; Li, Jing; Yang, Shanlin
2015-01-01
Cloud computing technology plays a very important role in many areas, such as in the construction and development of the smart city. Meanwhile, numerous cloud services appear on the cloud-based platform. Therefore how to how to select trustworthy cloud services remains a significant problem in such platforms, and extensively investigated owing to the ever-growing needs of users. However, trust relationship in social network has not been taken into account in existing methods of cloud service selection and recommendation. In this paper, we propose a cloud service selection model based on the trust-enhanced similarity. Firstly, the direct, indirect, and hybrid trust degrees are measured based on the interaction frequencies among users. Secondly, we estimate the overall similarity by combining the experience usability measured based on Jaccard’s Coefficient and the numerical distance computed by Pearson Correlation Coefficient. Then through using the trust degree to modify the basic similarity, we obtain a trust-enhanced similarity. Finally, we utilize the trust-enhanced similarity to find similar trusted neighbors and predict the missing QoS values as the basis of cloud service selection and recommendation. The experimental results show that our approach is able to obtain optimal results via adjusting parameters and exhibits high effectiveness. The cloud services ranking by our model also have better QoS properties than other methods in the comparison experiments. PMID:26606388
Consolidation of cloud computing in ATLAS
NASA Astrophysics Data System (ADS)
Taylor, Ryan P.; Domingues Cordeiro, Cristovao Jose; Giordano, Domenico; Hover, John; Kouba, Tomas; Love, Peter; McNab, Andrew; Schovancova, Jaroslava; Sobie, Randall; ATLAS Collaboration
2017-10-01
Throughout the first half of LHC Run 2, ATLAS cloud computing has undergone a period of consolidation, characterized by building upon previously established systems, with the aim of reducing operational effort, improving robustness, and reaching higher scale. This paper describes the current state of ATLAS cloud computing. Cloud activities are converging on a common contextualization approach for virtual machines, and cloud resources are sharing monitoring and service discovery components. We describe the integration of Vacuum resources, streamlined usage of the Simulation at Point 1 cloud for offline processing, extreme scaling on Amazon compute resources, and procurement of commercial cloud capacity in Europe. Finally, building on the previously established monitoring infrastructure, we have deployed a real-time monitoring and alerting platform which coalesces data from multiple sources, provides flexible visualization via customizable dashboards, and issues alerts and carries out corrective actions in response to problems.
JINR cloud infrastructure evolution
NASA Astrophysics Data System (ADS)
Baranov, A. V.; Balashov, N. A.; Kutovskiy, N. A.; Semenov, R. N.
2016-09-01
To fulfil JINR commitments in different national and international projects related to the use of modern information technologies such as cloud and grid computing as well as to provide a modern tool for JINR users for their scientific research a cloud infrastructure was deployed at Laboratory of Information Technologies of Joint Institute for Nuclear Research. OpenNebula software was chosen as a cloud platform. Initially it was set up in simple configuration with single front-end host and a few cloud nodes. Some custom development was done to tune JINR cloud installation to fit local needs: web form in the cloud web-interface for resources request, a menu item with cloud utilization statistics, user authentication via Kerberos, custom driver for OpenVZ containers. Because of high demand in that cloud service and its resources over-utilization it was re-designed to cover increasing users' needs in capacity, availability and reliability. Recently a new cloud instance has been deployed in high-availability configuration with distributed network file system and additional computing power.
A Mobility Management Using Follow-Me Cloud-Cloudlet in Fog-Computing-Based RANs for Smart Cities.
Chen, Yuh-Shyan; Tsai, Yi-Ting
2018-02-06
Mobility management for supporting the location tracking and location-based service (LBS) is an important issue of smart city by providing the means for the smooth transportation of people and goods. The mobility is useful to contribute the innovation in both public and private transportation infrastructures for smart cities. With the assistance of edge/fog computing, this paper presents a fully new mobility management using the proposed follow-me cloud-cloudlet (FMCL) approach in fog-computing-based radio access networks (Fog-RANs) for smart cities. The proposed follow-me cloud-cloudlet approach is an integration strategy of follow-me cloud (FMC) and follow-me edge (FME) (or called cloudlet). A user equipment (UE) receives the data, transmitted from original cloud, into the original edge cloud before the handover operation. After the handover operation, an UE searches for a new cloud, called as a migrated cloud, and a new edge cloud, called as a migrated edge cloud near to UE, where the remaining data is migrated from the original cloud to the migrated cloud and all the remaining data are received in the new edge cloud. Existing FMC results do not have the property of the VM migration between cloudlets for the purpose of reducing the transmission latency, and existing FME results do not keep the property of the service migration between data centers for reducing the transmission latency. Our proposed FMCL approach can simultaneously keep the VM migration between cloudlets and service migration between data centers to significantly reduce the transmission latency. The new proposed mobility management using FMCL approach aims to reduce the total transmission time if some data packets are pre-scheduled and pre-stored into the cache of cloudlet if UE is switching from the previous Fog-RAN to the serving Fog-RAN. To illustrate the performance achievement, the mathematical analysis and simulation results are examined in terms of the total transmission time, the throughput, the probability of packet loss, and the number of control messages.
A Mobility Management Using Follow-Me Cloud-Cloudlet in Fog-Computing-Based RANs for Smart Cities
Tsai, Yi-Ting
2018-01-01
Mobility management for supporting the location tracking and location-based service (LBS) is an important issue of smart city by providing the means for the smooth transportation of people and goods. The mobility is useful to contribute the innovation in both public and private transportation infrastructures for smart cities. With the assistance of edge/fog computing, this paper presents a fully new mobility management using the proposed follow-me cloud-cloudlet (FMCL) approach in fog-computing-based radio access networks (Fog-RANs) for smart cities. The proposed follow-me cloud-cloudlet approach is an integration strategy of follow-me cloud (FMC) and follow-me edge (FME) (or called cloudlet). A user equipment (UE) receives the data, transmitted from original cloud, into the original edge cloud before the handover operation. After the handover operation, an UE searches for a new cloud, called as a migrated cloud, and a new edge cloud, called as a migrated edge cloud near to UE, where the remaining data is migrated from the original cloud to the migrated cloud and all the remaining data are received in the new edge cloud. Existing FMC results do not have the property of the VM migration between cloudlets for the purpose of reducing the transmission latency, and existing FME results do not keep the property of the service migration between data centers for reducing the transmission latency. Our proposed FMCL approach can simultaneously keep the VM migration between cloudlets and service migration between data centers to significantly reduce the transmission latency. The new proposed mobility management using FMCL approach aims to reduce the total transmission time if some data packets are pre-scheduled and pre-stored into the cache of cloudlet if UE is switching from the previous Fog-RAN to the serving Fog-RAN. To illustrate the performance achievement, the mathematical analysis and simulation results are examined in terms of the total transmission time, the throughput, the probability of packet loss, and the number of control messages. PMID:29415510
Virtualization and cloud computing in dentistry.
Chow, Frank; Muftu, Ali; Shorter, Richard
2014-01-01
The use of virtualization and cloud computing has changed the way we use computers. Virtualization is a method of placing software called a hypervisor on the hardware of a computer or a host operating system. It allows a guest operating system to run on top of the physical computer with a virtual machine (i.e., virtual computer). Virtualization allows multiple virtual computers to run on top of one physical computer and to share its hardware resources, such as printers, scanners, and modems. This increases the efficient use of the computer by decreasing costs (e.g., hardware, electricity administration, and management) since only one physical computer is needed and running. This virtualization platform is the basis for cloud computing. It has expanded into areas of server and storage virtualization. One of the commonly used dental storage systems is cloud storage. Patient information is encrypted as required by the Health Insurance Portability and Accountability Act (HIPAA) and stored on off-site private cloud services for a monthly service fee. As computer costs continue to increase, so too will the need for more storage and processing power. Virtual and cloud computing will be a method for dentists to minimize costs and maximize computer efficiency in the near future. This article will provide some useful information on current uses of cloud computing.
Digital Photograph Security: What Plastic Surgeons Need to Know.
Thomas, Virginia A; Rugeley, Patricia B; Lau, Frank H
2015-11-01
Sharing and storing digital patient photographs occur daily in plastic surgery. Two major risks associated with the practice, data theft and Health Insurance Portability and Accountability Act (HIPAA) violations, have been dramatically amplified by high-speed data connections and digital camera ubiquity. The authors review what plastic surgeons need to know to mitigate those risks and provide recommendations for implementing an ideal, HIPAA-compliant solution for plastic surgeons' digital photography needs: smartphones and cloud storage. Through informal discussions with plastic surgeons, the authors identified the most common photograph sharing and storage methods. For each method, a literature search was performed to identify the risks of data theft and HIPAA violations. HIPAA violation risks were confirmed by the second author (P.B.R.), a compliance liaison and privacy officer. A comprehensive review of HIPAA-compliant cloud storage services was performed. When possible, informal interviews with cloud storage services representatives were conducted. The most common sharing and storage methods are not HIPAA compliant, and several are prone to data theft. The authors' review of cloud storage services identified six HIPAA-compliant vendors that have strong to excellent security protocols and policies. These options are reasonably priced. Digital photography and technological advances offer major benefits to plastic surgeons but are not without risks. A proper understanding of data security and HIPAA regulations needs to be applied to these technologies to safely capture their benefits. Cloud storage services offer efficient photograph sharing and storage with layers of security to ensure HIPAA compliance and mitigate data theft risk.
ERIC Educational Resources Information Center
Zadahmad, Manouchehr; Yousefzadehfard, Parisa
2016-01-01
Mobile Cloud Computing (MCC) aims to improve all mobile applications such as m-learning systems. This study presents an innovative method to use web technology and software engineering's best practices to provide m-learning functionalities hosted in a MCC-learning system as service. Components hosted by MCC are used to empower developers to create…
Cloud-based distributed control of unmanned systems
NASA Astrophysics Data System (ADS)
Nguyen, Kim B.; Powell, Darren N.; Yetman, Charles; August, Michael; Alderson, Susan L.; Raney, Christopher J.
2015-05-01
Enabling warfighters to efficiently and safely execute dangerous missions, unmanned systems have been an increasingly valuable component in modern warfare. The evolving use of unmanned systems leads to vast amounts of data collected from sensors placed on the remote vehicles. As a result, many command and control (C2) systems have been developed to provide the necessary tools to perform one of the following functions: controlling the unmanned vehicle or analyzing and processing the sensory data from unmanned vehicles. These C2 systems are often disparate from one another, limiting the ability to optimally distribute data among different users. The Space and Naval Warfare Systems Center Pacific (SSC Pacific) seeks to address this technology gap through the UxV to the Cloud via Widgets project. The overarching intent of this three year effort is to provide three major capabilities: 1) unmanned vehicle control using an open service oriented architecture; 2) data distribution utilizing cloud technologies; 3) a collection of web-based tools enabling analysts to better view and process data. This paper focuses on how the UxV to the Cloud via Widgets system is designed and implemented by leveraging the following technologies: Data Distribution Service (DDS), Accumulo, Hadoop, and Ozone Widget Framework (OWF).
Science in the cloud (SIC): A use case in MRI connectomics.
Kiar, Gregory; Gorgolewski, Krzysztof J; Kleissas, Dean; Roncal, William Gray; Litt, Brian; Wandell, Brian; Poldrack, Russel A; Wiener, Martin; Vogelstein, R Jacob; Burns, Randal; Vogelstein, Joshua T
2017-05-01
Modern technologies are enabling scientists to collect extraordinary amounts of complex and sophisticated data across a huge range of scales like never before. With this onslaught of data, we can allow the focal point to shift from data collection to data analysis. Unfortunately, lack of standardized sharing mechanisms and practices often make reproducing or extending scientific results very difficult. With the creation of data organization structures and tools that drastically improve code portability, we now have the opportunity to design such a framework for communicating extensible scientific discoveries. Our proposed solution leverages these existing technologies and standards, and provides an accessible and extensible model for reproducible research, called 'science in the cloud' (SIC). Exploiting scientific containers, cloud computing, and cloud data services, we show the capability to compute in the cloud and run a web service that enables intimate interaction with the tools and data presented. We hope this model will inspire the community to produce reproducible and, importantly, extensible results that will enable us to collectively accelerate the rate at which scientific breakthroughs are discovered, replicated, and extended. © The Author 2017. Published by Oxford University Press.
Cloud-Based Numerical Weather Prediction for Near Real-Time Forecasting and Disaster Response
NASA Technical Reports Server (NTRS)
Molthan, Andrew; Case, Jonathan; Venners, Jason; Schroeder, Richard; Checchi, Milton; Zavodsky, Bradley; Limaye, Ashutosh; O'Brien, Raymond
2015-01-01
The use of cloud computing resources continues to grow within the public and private sector components of the weather enterprise as users become more familiar with cloud-computing concepts, and competition among service providers continues to reduce costs and other barriers to entry. Cloud resources can also provide capabilities similar to high-performance computing environments, supporting multi-node systems required for near real-time, regional weather predictions. Referred to as "Infrastructure as a Service", or IaaS, the use of cloud-based computing hardware in an on-demand payment system allows for rapid deployment of a modeling system in environments lacking access to a large, supercomputing infrastructure. Use of IaaS capabilities to support regional weather prediction may be of particular interest to developing countries that have not yet established large supercomputing resources, but would otherwise benefit from a regional weather forecasting capability. Recently, collaborators from NASA Marshall Space Flight Center and Ames Research Center have developed a scripted, on-demand capability for launching the NOAA/NWS Science and Training Resource Center (STRC) Environmental Modeling System (EMS), which includes pre-compiled binaries of the latest version of the Weather Research and Forecasting (WRF) model. The WRF-EMS provides scripting for downloading appropriate initial and boundary conditions from global models, along with higher-resolution vegetation, land surface, and sea surface temperature data sets provided by the NASA Short-term Prediction Research and Transition (SPoRT) Center. This presentation will provide an overview of the modeling system capabilities and benchmarks performed on the Amazon Elastic Compute Cloud (EC2) environment. In addition, the presentation will discuss future opportunities to deploy the system in support of weather prediction in developing countries supported by NASA's SERVIR Project, which provides capacity building activities in environmental monitoring and prediction across a growing number of regional hubs throughout the world. Capacity-building applications that extend numerical weather prediction to developing countries are intended to provide near real-time applications to benefit public health, safety, and economic interests, but may have a greater impact during disaster events by providing a source for local predictions of weather-related hazards, or impacts that local weather events may have during the recovery phase.
A computer vision approach for solar radiation nowcasting using MSG images
NASA Astrophysics Data System (ADS)
Álvarez, L.; Castaño Moraga, C. A.; Martín, J.
2010-09-01
Cloud structures and haze are the two main atmospheric phenomena that reduce the performance of solar power plants, since they absorb solar energy reaching terrestrial surface. Thus, accurate forecasting of solar radiation is a challenging research area that involves both a precise localization of cloud structures and haze, as well as the attenuation introduced by these artifacts. Our work presents a novel approach for nowcasting services based on image processing techniques applied to MSG satellite images provided by the EUMETSAT Rapid Scan Service (RSS) service. These data are an interesting source of information for our purposes since every 5 minutes we obtain actual information of the atmospheric state in nearly real time. However, a workaround must be given in order to forecast solar radiation. To that end, we synthetically forecast MSG images forecasts from past images applying computer vision techniques adapted to fluid flows in order to evolve atmospheric state. First, we classify cloud structures on two different layers, corresponding to top and bottom clouds, which includes haze. This two-level classification responds to the dominant climate conditions found in our region of interest, the Canary Islands archipelago, regulated by the Gulf Stream and Trade Winds. Vertical structure of Trade Winds consists of two layers, the bottom one, which is fresh and humid, and the top one, which is warm and dry. Between these two layers a thermal inversion appears that does not allow bottom clouds to go up and naturally divides clouds in these two layers. Top clouds can be directly obtained from satellite images by means of a segmentation algorithm on histogram heights. However, bottom clouds are usually overlapped by the former, so an inpainting algorithm is used to recover overlapped areas of bottom clouds. For each layer, cloud motion is estimated through a correlation based optic flow algorithm that provides a vector field that describes the displacement field in each layer between two consecutive images in a sequence. Since RSS service from EUMETSAT provides images every 5 minutes (Δt), the cloud motion vector field between images at time t0 and (t0 - Δt) is quite similar to that between (t0 - Δt) and (t0 - 2Δt). Under this assumption, we infer the motion vector field for the next image in order to build a synthetic version of the image at time (t0 + Δt). The computation of this future motion vector field takes into account terrain orography in order to produce more realistic forecasts. In this sense, we are currently working on the integration of information from NWP outputs in order to introduce other atmospheric phenomena. Applying this algorithm several times we are able to produce short-term forecasts up to 6 hours with encouraging performance. To validate our results, we use both, comparison of synthetically generated images with the corresponding images at a given time, and direct solar radiation measurement with the set of meteorological stations located at several points of the canarian archipelago.
CSNS computing environment Based on OpenStack
NASA Astrophysics Data System (ADS)
Li, Yakang; Qi, Fazhi; Chen, Gang; Wang, Yanming; Hong, Jianshu
2017-10-01
Cloud computing can allow for more flexible configuration of IT resources and optimized hardware utilization, it also can provide computing service according to the real need. We are applying this computing mode to the China Spallation Neutron Source(CSNS) computing environment. So, firstly, CSNS experiment and its computing scenarios and requirements are introduced in this paper. Secondly, the design and practice of cloud computing platform based on OpenStack are mainly demonstrated from the aspects of cloud computing system framework, network, storage and so on. Thirdly, some improvments to openstack we made are discussed further. Finally, current status of CSNS cloud computing environment are summarized in the ending of this paper.
Cloud GIS Based Watershed Management
NASA Astrophysics Data System (ADS)
Bediroğlu, G.; Colak, H. E.
2017-11-01
In this study, we generated a Cloud GIS based watershed management system with using Cloud Computing architecture. Cloud GIS is used as SAAS (Software as a Service) and DAAS (Data as a Service). We applied GIS analysis on cloud in terms of testing SAAS and deployed GIS datasets on cloud in terms of DAAS. We used Hybrid cloud computing model in manner of using ready web based mapping services hosted on cloud (World Topology, Satellite Imageries). We uploaded to system after creating geodatabases including Hydrology (Rivers, Lakes), Soil Maps, Climate Maps, Rain Maps, Geology and Land Use. Watershed of study area has been determined on cloud using ready-hosted topology maps. After uploading all the datasets to systems, we have applied various GIS analysis and queries. Results shown that Cloud GIS technology brings velocity and efficiency for watershed management studies. Besides this, system can be easily implemented for similar land analysis and management studies.
Ding, Shuai; Xia, Chen-Yi; Zhou, Kai-Le; Yang, Shan-Lin; Shang, Jennifer S.
2014-01-01
Facing a customer market with rising demands for cloud service dependability and security, trustworthiness evaluation techniques are becoming essential to cloud service selection. But these methods are out of the reach to most customers as they require considerable expertise. Additionally, since the cloud service evaluation is often a costly and time-consuming process, it is not practical to measure trustworthy attributes of all candidates for each customer. Many existing models cannot easily deal with cloud services which have very few historical records. In this paper, we propose a novel service selection approach in which the missing value prediction and the multi-attribute trustworthiness evaluation are commonly taken into account. By simply collecting limited historical records, the current approach is able to support the personalized trustworthy service selection. The experimental results also show that our approach performs much better than other competing ones with respect to the customer preference and expectation in trustworthiness assessment. PMID:24972237
Ding, Shuai; Xia, Cheng-Yi; Xia, Chen-Yi; Zhou, Kai-Le; Yang, Shan-Lin; Shang, Jennifer S
2014-01-01
Facing a customer market with rising demands for cloud service dependability and security, trustworthiness evaluation techniques are becoming essential to cloud service selection. But these methods are out of the reach to most customers as they require considerable expertise. Additionally, since the cloud service evaluation is often a costly and time-consuming process, it is not practical to measure trustworthy attributes of all candidates for each customer. Many existing models cannot easily deal with cloud services which have very few historical records. In this paper, we propose a novel service selection approach in which the missing value prediction and the multi-attribute trustworthiness evaluation are commonly taken into account. By simply collecting limited historical records, the current approach is able to support the personalized trustworthy service selection. The experimental results also show that our approach performs much better than other competing ones with respect to the customer preference and expectation in trustworthiness assessment.
Observational evidence for cloud cover enhancement over western European forests.
Teuling, Adriaan J; Taylor, Christopher M; Meirink, Jan Fokke; Melsen, Lieke A; Miralles, Diego G; van Heerwaarden, Chiel C; Vautard, Robert; Stegehuis, Annemiek I; Nabuurs, Gert-Jan; de Arellano, Jordi Vilà-Guerau
2017-01-11
Forests impact regional hydrology and climate directly by regulating water and heat fluxes. Indirect effects through cloud formation and precipitation can be important in facilitating continental-scale moisture recycling but are poorly understood at regional scales. In particular, the impact of temperate forest on clouds is largely unknown. Here we provide observational evidence for a strong increase in cloud cover over large forest regions in western Europe based on analysis of 10 years of 15 min resolution data from geostationary satellites. In addition, we show that widespread windthrow by cyclone Klaus in the Landes forest led to a significant decrease in local cloud cover in subsequent years. Strong cloud development along the downwind edges of larger forest areas are consistent with a forest-breeze mesoscale circulation. Our results highlight the need to include impacts on cloud formation when evaluating the water and climate services of temperate forests, in particular around densely populated areas.
Observational evidence for cloud cover enhancement over western European forests
Teuling, Adriaan J.; Taylor, Christopher M.; Meirink, Jan Fokke; Melsen, Lieke A.; Miralles, Diego G.; van Heerwaarden, Chiel C.; Vautard, Robert; Stegehuis, Annemiek I.; Nabuurs, Gert-Jan; de Arellano, Jordi Vilà-Guerau
2017-01-01
Forests impact regional hydrology and climate directly by regulating water and heat fluxes. Indirect effects through cloud formation and precipitation can be important in facilitating continental-scale moisture recycling but are poorly understood at regional scales. In particular, the impact of temperate forest on clouds is largely unknown. Here we provide observational evidence for a strong increase in cloud cover over large forest regions in western Europe based on analysis of 10 years of 15 min resolution data from geostationary satellites. In addition, we show that widespread windthrow by cyclone Klaus in the Landes forest led to a significant decrease in local cloud cover in subsequent years. Strong cloud development along the downwind edges of larger forest areas are consistent with a forest-breeze mesoscale circulation. Our results highlight the need to include impacts on cloud formation when evaluating the water and climate services of temperate forests, in particular around densely populated areas. PMID:28074840
Notes on a storage manager for the Clouds kernel
NASA Technical Reports Server (NTRS)
Pitts, David V.; Spafford, Eugene H.
1986-01-01
The Clouds project is research directed towards producing a reliable distributed computing system. The initial goal is to produce a kernel which provides a reliable environment with which a distributed operating system can be built. The Clouds kernal consists of a set of replicated subkernels, each of which runs on a machine in the Clouds system. Each subkernel is responsible for the management of resources on its machine; the subkernal components communicate to provide the cooperation necessary to meld the various machines into one kernel. The implementation of a kernel-level storage manager that supports reliability is documented. The storage manager is a part of each subkernel and maintains the secondary storage residing at each machine in the distributed system. In addition to providing the usual data transfer services, the storage manager ensures that data being stored survives machine and system crashes, and that the secondary storage of a failed machine is recovered (made consistent) automatically when the machine is restarted. Since the storage manager is part of the Clouds kernel, efficiency of operation is also a concern.
Streaming Support for Data Intensive Cloud-Based Sequence Analysis
Issa, Shadi A.; Kienzler, Romeo; El-Kalioby, Mohamed; Tonellato, Peter J.; Wall, Dennis; Bruggmann, Rémy; Abouelhoda, Mohamed
2013-01-01
Cloud computing provides a promising solution to the genomics data deluge problem resulting from the advent of next-generation sequencing (NGS) technology. Based on the concepts of “resources-on-demand” and “pay-as-you-go”, scientists with no or limited infrastructure can have access to scalable and cost-effective computational resources. However, the large size of NGS data causes a significant data transfer latency from the client's site to the cloud, which presents a bottleneck for using cloud computing services. In this paper, we provide a streaming-based scheme to overcome this problem, where the NGS data is processed while being transferred to the cloud. Our scheme targets the wide class of NGS data analysis tasks, where the NGS sequences can be processed independently from one another. We also provide the elastream package that supports the use of this scheme with individual analysis programs or with workflow systems. Experiments presented in this paper show that our solution mitigates the effect of data transfer latency and saves both time and cost of computation. PMID:23710461
Securing services in the cloud: an investigation of the threats and the mitigations
NASA Astrophysics Data System (ADS)
Farroha, Bassam S.; Farroha, Deborah L.
2012-05-01
The stakeholder's security concerns over data in the clouds (Voice, Video and Text) are a real concern to DoD, the IC and private sector. This is primarily due to the lack of physical isolation of data when migrating to shared infrastructure platforms. The security concerns are related to privacy and regulatory compliance required in many industries (healthcare, financial, law enforcement, DoD, etc) and the corporate knowledge databases. The new paradigm depends on the service provider to ensure that the customer's information is continuously monitored and is kept available, secure, access controlled and isolated from potential adversaries.
NASA Wrangler: Automated Cloud-Based Data Assembly in the RECOVER Wildfire Decision Support System
NASA Technical Reports Server (NTRS)
Schnase, John; Carroll, Mark; Gill, Roger; Wooten, Margaret; Weber, Keith; Blair, Kindra; May, Jeffrey; Toombs, William
2017-01-01
NASA Wrangler is a loosely-coupled, event driven, highly parallel data aggregation service designed to take advantageof the elastic resource capabilities of cloud computing. Wrangler automatically collects Earth observational data, climate model outputs, derived remote sensing data products, and historic biophysical data for pre-, active-, and post-wildfire decision making. It is a core service of the RECOVER decision support system, which is providing rapid-response GIS analytic capabilities to state and local government agencies. Wrangler reduces to minutes the time needed to assemble and deliver crucial wildfire-related data.
Dynamic VM Provisioning for TORQUE in a Cloud Environment
NASA Astrophysics Data System (ADS)
Zhang, S.; Boland, L.; Coddington, P.; Sevior, M.
2014-06-01
Cloud computing, also known as an Infrastructure-as-a-Service (IaaS), is attracting more interest from the commercial and educational sectors as a way to provide cost-effective computational infrastructure. It is an ideal platform for researchers who must share common resources but need to be able to scale up to massive computational requirements for specific periods of time. This paper presents the tools and techniques developed to allow the open source TORQUE distributed resource manager and Maui cluster scheduler to dynamically integrate OpenStack cloud resources into existing high throughput computing clusters.
Bootstrapping and Maintaining Trust in the Cloud
2016-12-01
proliferation and popularity of infrastructure-as-a- service (IaaS) cloud computing services such as Amazon Web Services and Google Compute Engine means...IaaS trusted computing system: • Secure Bootstrapping – the system should enable the tenant to securely install an initial root secret into each cloud ...elastically instantiated and terminated. Prior cloud trusted computing solutions address a subset of these features, but none achieve all. Excalibur [31] sup
Enabling BOINC in infrastructure as a service cloud system
NASA Astrophysics Data System (ADS)
Montes, Diego; Añel, Juan A.; Pena, Tomás F.; Uhe, Peter; Wallom, David C. H.
2017-02-01
Volunteer or crowd computing is becoming increasingly popular for solving complex research problems from an increasingly diverse range of areas. The majority of these have been built using the Berkeley Open Infrastructure for Network Computing (BOINC) platform, which provides a range of different services to manage all computation aspects of a project. The BOINC system is ideal in those cases where not only does the research community involved need low-cost access to massive computing resources but also where there is a significant public interest in the research being done.We discuss the way in which cloud services can help BOINC-based projects to deliver results in a fast, on demand manner. This is difficult to achieve using volunteers, and at the same time, using scalable cloud resources for short on demand projects can optimize the use of the available resources. We show how this design can be used as an efficient distributed computing platform within the cloud, and outline new approaches that could open up new possibilities in this field, using Climateprediction.net (http://www.climateprediction.net/) as a case study.
NASA Astrophysics Data System (ADS)
Fisher, W. I.
2017-12-01
The rise in cloud computing, coupled with the growth of "Big Data", has lead to a migration away from local scientific data storage. The increasing size of remote scientific data sets increase, however, makes it difficult for scientists to subject them to large-scale analysis and visualization. These large datasets can take an inordinate amount of time to download; subsetting is a potential solution, but subsetting services are not yet ubiquitous. Data providers may also pay steep prices, as many cloud providers meter data based on how much data leaves their cloud service. The solution to this problem is a deceptively simple one; move data analysis and visualization tools to the cloud, so that scientists may perform data-proximate analysis and visualization. This results in increased transfer speeds, while egress costs are lowered or completely eliminated. Moving standard desktop analysis and visualization tools to the cloud is enabled via a technique called "Application Streaming". This technology allows a program to run entirely on a remote virtual machine while still allowing for interactivity and dynamic visualizations. When coupled with containerization technology such as Docker, we are able to easily deploy legacy analysis and visualization software to the cloud whilst retaining access via a desktop, netbook, a smartphone, or the next generation of hardware, whatever it may be. Unidata has created a Docker-based solution for easily adapting legacy software for Application Streaming. This technology stack, dubbed Cloudstream, allows desktop software to run in the cloud with little-to-no effort. The docker container is configured by editing text files, and the legacy software does not need to be modified in any way. This work will discuss the underlying technologies used by Cloudstream, and outline how to use Cloudstream to run and access an existing desktop application to the cloud.
The structure of the clouds distributed operating system
NASA Technical Reports Server (NTRS)
Dasgupta, Partha; Leblanc, Richard J., Jr.
1989-01-01
A novel system architecture, based on the object model, is the central structuring concept used in the Clouds distributed operating system. This architecture makes Clouds attractive over a wide class of machines and environments. Clouds is a native operating system, designed and implemented at Georgia Tech. and runs on a set of generated purpose computers connected via a local area network. The system architecture of Clouds is composed of a system-wide global set of persistent (long-lived) virtual address spaces, called objects that contain persistent data and code. The object concept is implemented at the operating system level, thus presenting a single level storage view to the user. Lightweight treads carry computational activity through the code stored in the objects. The persistent objects and threads gives rise to a programming environment composed of shared permanent memory, dispensing with the need for hardware-derived concepts such as the file systems and message systems. Though the hardware may be distributed and may have disks and networks, the Clouds provides the applications with a logically centralized system, based on a shared, structured, single level store. The current design of Clouds uses a minimalist philosophy with respect to both the kernel and the operating system. That is, the kernel and the operating system support a bare minimum of functionality. Clouds also adheres to the concept of separation of policy and mechanism. Most low-level operating system services are implemented above the kernel and most high level services are implemented at the user level. From the measured performance of using the kernel mechanisms, we are able to demonstrate that efficient implementations are feasible for the object model on commercially available hardware. Clouds provides a rich environment for conducting research in distributed systems. Some of the topics addressed in this paper include distributed programming environments, consistency of persistent data and fault-tolerance.
NASA Technical Reports Server (NTRS)
Dasgupta, Partha; Leblanc, Richard J., Jr.; Appelbe, William F.
1988-01-01
Clouds is an operating system in a novel class of distributed operating systems providing the integration, reliability, and structure that makes a distributed system usable. Clouds is designed to run on a set of general purpose computers that are connected via a medium-of-high speed local area network. The system structuring paradigm chosen for the Clouds operating system, after substantial research, is an object/thread model. All instances of services, programs and data in Clouds are encapsulated in objects. The concept of persistent objects does away with the need for file systems, and replaces it with a more powerful concept, namely the object system. The facilities in Clouds include integration of resources through location transparency; support for various types of atomic operations, including conventional transactions; advanced support for achieving fault tolerance; and provisions for dynamic reconfiguration.
CE-ACCE: The Cloud Enabled Advanced sCience Compute Environment
NASA Astrophysics Data System (ADS)
Cinquini, L.; Freeborn, D. J.; Hardman, S. H.; Wong, C.
2017-12-01
Traditionally, Earth Science data from NASA remote sensing instruments has been processed by building custom data processing pipelines (often based on a common workflow engine or framework) which are typically deployed and run on an internal cluster of computing resources. This approach has some intrinsic limitations: it requires each mission to develop and deploy a custom software package on top of the adopted framework; it makes use of dedicated hardware, network and storage resources, which must be specifically purchased, maintained and re-purposed at mission completion; and computing services cannot be scaled on demand beyond the capability of the available servers.More recently, the rise of Cloud computing, coupled with other advances in containerization technology (most prominently, Docker) and micro-services architecture, has enabled a new paradigm, whereby space mission data can be processed through standard system architectures, which can be seamlessly deployed and scaled on demand on either on-premise clusters, or commercial Cloud providers. In this talk, we will present one such architecture named CE-ACCE ("Cloud Enabled Advanced sCience Compute Environment"), which we have been developing at the NASA Jet Propulsion Laboratory over the past year. CE-ACCE is based on the Apache OODT ("Object Oriented Data Technology") suite of services for full data lifecycle management, which are turned into a composable array of Docker images, and complemented by a plug-in model for mission-specific customization. We have applied this infrastructure to both flying and upcoming NASA missions, such as ECOSTRESS and SMAP, and demonstrated deployment on the Amazon Cloud, either using simple EC2 instances, or advanced AWS services such as Amazon Lambda and ECS (EC2 Container Services).
Cloud computing basics for librarians.
Hoy, Matthew B
2012-01-01
"Cloud computing" is the name for the recent trend of moving software and computing resources to an online, shared-service model. This article briefly defines cloud computing, discusses different models, explores the advantages and disadvantages, and describes some of the ways cloud computing can be used in libraries. Examples of cloud services are included at the end of the article. Copyright © Taylor & Francis Group, LLC
An Analysis of Cloud Computing with Amazon Web Services for the Atmospheric Science Data Center
NASA Astrophysics Data System (ADS)
Gleason, J. L.; Little, M. M.
2013-12-01
NASA science and engineering efforts rely heavily on compute and data handling systems. The nature of NASA science data is such that it is not restricted to NASA users, instead it is widely shared across a globally distributed user community including scientists, educators, policy decision makers, and the public. Therefore NASA science computing is a candidate use case for cloud computing where compute resources are outsourced to an external vendor. Amazon Web Services (AWS) is a commercial cloud computing service developed to use excess computing capacity at Amazon, and potentially provides an alternative to costly and potentially underutilized dedicated acquisitions whenever NASA scientists or engineers require additional data processing. AWS desires to provide a simplified avenue for NASA scientists and researchers to share large, complex data sets with external partners and the public. AWS has been extensively used by JPL for a wide range of computing needs and was previously tested on a NASA Agency basis during the Nebula testing program. Its ability to support the Langley Science Directorate needs to be evaluated by integrating it with real world operational needs across NASA and the associated maturity that would come with that. The strengths and weaknesses of this architecture and its ability to support general science and engineering applications has been demonstrated during the previous testing. The Langley Office of the Chief Information Officer in partnership with the Atmospheric Sciences Data Center (ASDC) has established a pilot business interface to utilize AWS cloud computing resources on a organization and project level pay per use model. This poster discusses an effort to evaluate the feasibility of the pilot business interface from a project level perspective by specifically using a processing scenario involving the Clouds and Earth's Radiant Energy System (CERES) project.
Establishing a Cloud Computing Success Model for Hospitals in Taiwan.
Lian, Jiunn-Woei
2017-01-01
The purpose of this study is to understand the critical quality-related factors that affect cloud computing success of hospitals in Taiwan. In this study, private cloud computing is the major research target. The chief information officers participated in a questionnaire survey. The results indicate that the integration of trust into the information systems success model will have acceptable explanatory power to understand cloud computing success in the hospital. Moreover, information quality and system quality directly affect cloud computing satisfaction, whereas service quality indirectly affects the satisfaction through trust. In other words, trust serves as the mediator between service quality and satisfaction. This cloud computing success model will help hospitals evaluate or achieve success after adopting private cloud computing health care services.
Establishing a Cloud Computing Success Model for Hospitals in Taiwan
Lian, Jiunn-Woei
2017-01-01
The purpose of this study is to understand the critical quality-related factors that affect cloud computing success of hospitals in Taiwan. In this study, private cloud computing is the major research target. The chief information officers participated in a questionnaire survey. The results indicate that the integration of trust into the information systems success model will have acceptable explanatory power to understand cloud computing success in the hospital. Moreover, information quality and system quality directly affect cloud computing satisfaction, whereas service quality indirectly affects the satisfaction through trust. In other words, trust serves as the mediator between service quality and satisfaction. This cloud computing success model will help hospitals evaluate or achieve success after adopting private cloud computing health care services. PMID:28112020
Move It or Lose It: Cloud-Based Data Storage
ERIC Educational Resources Information Center
Waters, John K.
2010-01-01
There was a time when school districts showed little interest in storing or backing up their data to remote servers. Nothing seemed less secure than handing off data to someone else. But in the last few years the buzz around cloud storage has grown louder, and the idea that data backup could be provided as a service has begun to gain traction in…
Bioinformatics clouds for big data manipulation.
Dai, Lin; Gao, Xin; Guo, Yan; Xiao, Jingfa; Zhang, Zhang
2012-11-28
As advances in life sciences and information technology bring profound influences on bioinformatics due to its interdisciplinary nature, bioinformatics is experiencing a new leap-forward from in-house computing infrastructure into utility-supplied cloud computing delivered over the Internet, in order to handle the vast quantities of biological data generated by high-throughput experimental technologies. Albeit relatively new, cloud computing promises to address big data storage and analysis issues in the bioinformatics field. Here we review extant cloud-based services in bioinformatics, classify them into Data as a Service (DaaS), Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS), and present our perspectives on the adoption of cloud computing in bioinformatics. This article was reviewed by Frank Eisenhaber, Igor Zhulin, and Sandor Pongor.
The Best of Both Worlds: Developing a Hybrid Data System for the ASF DAAC
NASA Astrophysics Data System (ADS)
Arko, S. A.; Buechler, B.; Wolf, V. G.
2017-12-01
The Alaska Satellite Facility (ASF) at the University of Alaska Fairbanks hosts the NASA Distributed Active Archive Center (DAAC) specializing in synthetic aperture radar (SAR). Historically, the ASF DAAC has hosted hardware on-premises and developed DAAC-specific software to operate, manage, and maintain the DAAC data system. In the past year, ASF DAAC has been moving many of the standard DAAC operations into the Amazon Web Services (AWS) cloud. This includes data ingest, basic pre-processing, archiving, and distribution within the AWS environment. While the cloud offers nearly unbounded capacity for expansion and a great host of services, there also can be unexpected and unplanned costs for such. Additionally, these costs can be difficult to forecast even with historic data usage patterns and models for future usage. In an effort to maximize the effectiveness of the DAAC data system, while still managing and accurately forecasting costs, ASF DAAC has developed a hybrid, cloud and on-premises, data system. The goal of this project is to make extensive use of the AWS cloud, and when appropriate, utilize on-premises resources to help constrain costs. This hybrid system attempts to mimic, on premises, a cloud environment using Kubernetes container orchestration in order that software can be run in either location with little change. Combined with hybrid data storage architecture, the new data system makes use of the great capacity of the cloud while maintaining an on-premises options. This presentation will describe the development of the hybrid data system, including the micro-services architecture and design, the container orchestration, and hybrid storage. Additional we will highlight the lessons learned through the development process, cost forecasting for current and future SAR-mission operations, and provide a discussion of the pros and cons of hybrid architectures versus all-cloud deployments. This development effort has led to a system that is capable and flexible for the future while allowing ASF DAAC to continue supporting the SAR community with the highest level of services.
Giovanni in the Cloud: Earth Science Data Exploration in Amazon Web Services
NASA Astrophysics Data System (ADS)
Hegde, M.; Petrenko, M.; Smit, C.; Zhang, H.; Pilone, P.; Zasorin, A. A.; Pham, L.
2017-12-01
Giovanni (https://giovanni.gsfc.nasa.gov/giovanni/) is a popular online data exploration tool at the NASA Goddard Earth Sciences Data Information Services Center (GES DISC), providing 22 analysis and visualization services for over 1600 Earth Science data variables. Owing to its popularity, Giovanni has experienced a consistent growth in overall demand, with periodic usage spikes attributed to trainings by education organizations, extensive data analysis in response to natural disasters, preparations for science meetings, etc. Furthermore, the new generation of spaceborne sensors and high resolution models have resulted in an exponential growth in data volume with data distributed across the traditional boundaries of datacenters. Seamless exploration of data (without users having to worry about data center boundaries) has been a key recommendation of the GES DISC User Working Group. These factors have required new strategies for delivering acceptable performance. The cloud-based Giovanni, built on Amazon Web Services (AWS), evaluates (1) AWS native solutions to provide a scalable, serverless architecture; (2) open standards for data storage in the Cloud; (3) a cost model for operations; and (4) end-user performance. Our preliminary findings indicate that the use of serverless architecture has a potential to significantly reduce development and operational cost of Giovanni. The combination of using AWS managed services, storage of data in open standards, and schema-on-read data access strategy simplifies data access and analytics, in addition to making data more accessible to the end users of Giovanni through popular programming languages.
Giovanni in the Cloud: Earth Science Data Exploration in Amazon Web Services
NASA Technical Reports Server (NTRS)
Petrenko, Maksym; Hegde, Mahabal; Smit, Christine; Zhang, Hailiang; Pilone, Paul; Zasorin, Andrey A.; Pham, Long
2017-01-01
Giovanni is an exploration tool at the NASA Goddard Earth Sciences Data Information Services Center (GES DISC), providing 22 analysis and visualization services for over 1600 Earth Science data variables. Owing to its popularity, Giovanni has experienced a consistent growth in overall demand, with periodic usage spikes attributed to trainings by education organizations, extensive data analysis in response to natural disasters, preparations for science meetings, etc. Furthermore, the new generation of spaceborne sensors and high resolution models have resulted in an exponential growth in data volume with data distributed across the traditional boundaries of data centers. Seamless exploration of data (without users having to worry about data center boundaries) has been a key recommendation of the GES DISC User Working Group. These factors have required new strategies for delivering acceptable performance. The cloud-based Giovanni, built on Amazon Web Services (AWS), evaluates (1) AWS native solutions to provide a scalable, serverless architecture; (2) open standards for data storage in the Cloud; (3) a cost model for operations; and (4) end-user performance. Our preliminary findings indicate that the use of serverless architecture has a potential to significantly reduce development and operational cost of Giovanni. The combination of using AWS managed services, storage of data in open standards, and schema-on-read data access strategy simplifies data access and analytics, in addition to making data more accessible to the end users of Giovanni through popular programming languages.
TTSA: An Effective Scheduling Approach for Delay Bounded Tasks in Hybrid Clouds.
Yuan, Haitao; Bi, Jing; Tan, Wei; Zhou, MengChu; Li, Bo Hu; Li, Jianqiang
2017-11-01
The economy of scale provided by cloud attracts a growing number of organizations and industrial companies to deploy their applications in cloud data centers (CDCs) and to provide services to users around the world. The uncertainty of arriving tasks makes it a big challenge for private CDC to cost-effectively schedule delay bounded tasks without exceeding their delay bounds. Unlike previous studies, this paper takes into account the cost minimization problem for private CDC in hybrid clouds, where the energy price of private CDC and execution price of public clouds both show the temporal diversity. Then, this paper proposes a temporal task scheduling algorithm (TTSA) to effectively dispatch all arriving tasks to private CDC and public clouds. In each iteration of TTSA, the cost minimization problem is modeled as a mixed integer linear program and solved by a hybrid simulated-annealing particle-swarm-optimization. The experimental results demonstrate that compared with the existing methods, the optimal or suboptimal scheduling strategy produced by TTSA can efficiently increase the throughput and reduce the cost of private CDC while meeting the delay bounds of all the tasks.
The AIST Managed Cloud Environment
NASA Astrophysics Data System (ADS)
Cook, S.
2016-12-01
ESTO is currently in the process of developing and implementing the AIST Managed Cloud Environment (AMCE) to offer cloud computing services to ESTO-funded PIs to conduct their project research. AIST will provide projects access to a cloud computing framework that incorporates NASA security, technical, and financial standards, on which project can freely store, run, and process data. Currently, many projects led by research groups outside of NASA do not have the awareness of requirements or the resources to implement NASA standards into their research, which limits the likelihood of infusing the work into NASA applications. Offering this environment to PIs will allow them to conduct their project research using the many benefits of cloud computing. In addition to the well-known cost and time savings that it allows, it also provides scalability and flexibility. The AMCE will facilitate infusion and end user access by ensuring standardization and security. This approach will ultimately benefit ESTO, the science community, and the research, allowing the technology developments to have quicker and broader applications.
The AMCE (AIST Managed Cloud Environment)
NASA Astrophysics Data System (ADS)
Cook, S.
2017-12-01
ESTO has developed and implemented the AIST Managed Cloud Environment (AMCE) to offer cloud computing services to SMD-funded PIs to conduct their project research. AIST will provide projects access to a cloud computing framework that incorporates NASA security, technical, and financial standards, on which project can freely store, run, and process data. Currently, many projects led by research groups outside of NASA do not have the awareness of requirements or the resources to implement NASA standards into their research, which limits the likelihood of infusing the work into NASA applications. Offering this environment to PIs allows them to conduct their project research using the many benefits of cloud computing. In addition to the well-known cost and time savings that it allows, it also provides scalability and flexibility. The AMCE facilitates infusion and end user access by ensuring standardization and security. This approach will ultimately benefit ESTO, the science community, and the research, allowing the technology developments to have quicker and broader applications.
Cloud Based Earth Observation Data Exploitation Platforms
NASA Astrophysics Data System (ADS)
Romeo, A.; Pinto, S.; Loekken, S.; Marin, A.
2017-12-01
In the last few years data produced daily by several private and public Earth Observation (EO) satellites reached the order of tens of Terabytes, representing for scientists and commercial application developers both a big opportunity for their exploitation and a challenge for their management. New IT technologies, such as Big Data and cloud computing, enable the creation of web-accessible data exploitation platforms, which offer to scientists and application developers the means to access and use EO data in a quick and cost effective way. RHEA Group is particularly active in this sector, supporting the European Space Agency (ESA) in the Exploitation Platforms (EP) initiative, developing technology to build multi cloud platforms for the processing and analysis of Earth Observation data, and collaborating with larger European initiatives such as the European Plate Observing System (EPOS) and the European Open Science Cloud (EOSC). An EP is a virtual workspace, providing a user community with access to (i) large volume of data, (ii) algorithm development and integration environment, (iii) processing software and services (e.g. toolboxes, visualization routines), (iv) computing resources, (v) collaboration tools (e.g. forums, wiki, etc.). When an EP is dedicated to a specific Theme, it becomes a Thematic Exploitation Platform (TEP). Currently, ESA has seven TEPs in a pre-operational phase dedicated to geo-hazards monitoring and prevention, costal zones, forestry areas, hydrology, polar regions, urban areas and food security. On the technology development side, solutions like the multi cloud EO data processing platform provides the technology to integrate ICT resources and EO data from different vendors in a single platform. In particular it offers (i) Multi-cloud data discovery, (ii) Multi-cloud data management and access and (iii) Multi-cloud application deployment. This platform has been demonstrated with the EGI Federated Cloud, Innovation Platform Testbed Poland and the Amazon Web Services cloud. This work will present an overview of the TEPs and the multi-cloud EO data processing platform, and discuss their main achievements and their impacts in the context of distributed Research Infrastructures such as EPOS and EOSC.
Research on cloud-based remote measurement and analysis system
NASA Astrophysics Data System (ADS)
Gao, Zhiqiang; He, Lingsong; Su, Wei; Wang, Can; Zhang, Changfan
2015-02-01
The promising potential of cloud computing and its convergence with technologies such as cloud storage, cloud push, mobile computing allows for creation and delivery of newer type of cloud service. Combined with the thought of cloud computing, this paper presents a cloud-based remote measurement and analysis system. This system mainly consists of three parts: signal acquisition client, web server deployed on the cloud service, and remote client. This system is a special website developed using asp.net and Flex RIA technology, which solves the selective contradiction between two monitoring modes, B/S and C/S. This platform supplies customer condition monitoring and data analysis service by Internet, which was deployed on the cloud server. Signal acquisition device is responsible for data (sensor data, audio, video, etc.) collection and pushes the monitoring data to the cloud storage database regularly. Data acquisition equipment in this system is only conditioned with the function of data collection and network function such as smartphone and smart sensor. This system's scale can adjust dynamically according to the amount of applications and users, so it won't cause waste of resources. As a representative case study, we developed a prototype system based on Ali cloud service using the rotor test rig as the research object. Experimental results demonstrate that the proposed system architecture is feasible.
Cloud Computing. Technology Briefing. Number 1
ERIC Educational Resources Information Center
Alberta Education, 2013
2013-01-01
Cloud computing is Internet-based computing in which shared resources, software and information are delivered as a service that computers or mobile devices can access on demand. Cloud computing is already used extensively in education. Free or low-cost cloud-based services are used daily by learners and educators to support learning, social…
Rich, Jane; Handley, Tonelle; Inder, Kerry; Perkins, David
2018-02-01
Conducting research in rural and remote areas is compounded by challenges associated with accessing relatively small populations spread over large geographical areas. Open-ended questions provided in a postal survey format are an advantageous way of including rural and remote residents in research studies. This method means that it is possible to ask for in-depth perspectives, from a large sample, in a relatively resource-efficient way. Such questions are frequently included in population-based surveys; however, they are rarely analysed. The aim of this article is to explore word cloud analysis, to evaluate the utility of automated programs to supplement the analysis of open-ended survey responses. Participants from the Australian Rural Mental Health Study completed the open-ended question 'What health services would you like to see the local health district providing that are currently not available in your area?' A word cloud analysis was then undertaken using the program Wordle; the size of the word in the cloud illustrates how many times, in proportion to other words, a word has appeared in responses, and provides an easily interpretable visual illustration of research results. In total, 388 participants provided a response to the free-text question. Using the word cloud as a visual guide, key words were identified and used to locate relevant quotes from the full open-text responses. \\'Mental health\\' was the most frequent request, cited by 81 people (20.8%). Following mental health, requests for more \\'specialists\\' (n=59) and \\'services\\' (n=53) were the second and third most frequent responses respectively. Visiting specialists were requested by multiple respondents (n=14). Less frequent requests illustrated in the word cloud are important when considering representatives from smaller population groups such as those with specific health needs or conditions including \\'maternity\\' services (n=13), \\'cancer\\' (n=10), \\'drug and alcohol\\' services (n=8), and \\'aged care\\' (n=7) services are all core services even though they were being called for by fewer people. This lesser frequency may suggest that these services are already considered as available in some rural and remote communities. This research aimed to determine whether meaningful and informative data could be obtained from short responses from open-ended survey questions using an automated data analysis technique to supplement a more in-depth analysis. The findings showed that, while not as detailed as interview responses, the open-ended survey questions provided sufficient information to develop a broad overview of the health service priorities identified by this large rural sample. Such automated data analysis techniques are rarely employed; however, the current research provides valuable support for their utility in rural and remote health research. This research has implications for researchers interested in engaging rural and remote residents, demonstrating that meaningful information can be extracted from short survey response data, contributing a resource-efficient supplement to a more detailed analysis. Open-ended questions are often asked in population-based studies yet they are rarely analysed, posing both an opportunity and a challenge for researchers using such participant-driven responses. The lessons learned from the methodology applied can be transferred to other population-based survey studies more widely.
NASA Astrophysics Data System (ADS)
Yu, Xiaoyuan; Yuan, Jian; Chen, Shi
2013-03-01
Cloud computing is one of the most popular topics in the IT industry and is recently being adopted by many companies. It has four development models, as: public cloud, community cloud, hybrid cloud and private cloud. Except others, private cloud can be implemented in a private network, and delivers some benefits of cloud computing without pitfalls. This paper makes a comparison of typical open source platforms through which we can implement a private cloud. After this comparison, we choose Eucalyptus and Wavemaker to do a case study on the private cloud. We also do some performance estimation of cloud platform services and development of prototype software as cloud services.
Cloud Infrastructures for In Silico Drug Discovery: Economic and Practical Aspects
Clematis, Andrea; Quarati, Alfonso; Cesini, Daniele; Milanesi, Luciano; Merelli, Ivan
2013-01-01
Cloud computing opens new perspectives for small-medium biotechnology laboratories that need to perform bioinformatics analysis in a flexible and effective way. This seems particularly true for hybrid clouds that couple the scalability offered by general-purpose public clouds with the greater control and ad hoc customizations supplied by the private ones. A hybrid cloud broker, acting as an intermediary between users and public providers, can support customers in the selection of the most suitable offers, optionally adding the provisioning of dedicated services with higher levels of quality. This paper analyses some economic and practical aspects of exploiting cloud computing in a real research scenario for the in silico drug discovery in terms of requirements, costs, and computational load based on the number of expected users. In particular, our work is aimed at supporting both the researchers and the cloud broker delivering an IaaS cloud infrastructure for biotechnology laboratories exposing different levels of nonfunctional requirements. PMID:24106693
NASA Astrophysics Data System (ADS)
Marinos, Alexandros; Briscoe, Gerard
Cloud Computing is rising fast, with its data centres growing at an unprecedented rate. However, this has come with concerns over privacy, efficiency at the expense of resilience, and environmental sustainability, because of the dependence on Cloud vendors such as Google, Amazon and Microsoft. Our response is an alternative model for the Cloud conceptualisation, providing a paradigm for Clouds in the community, utilising networked personal computers for liberation from the centralised vendor model. Community Cloud Computing (C3) offers an alternative architecture, created by combing the Cloud with paradigms from Grid Computing, principles from Digital Ecosystems, and sustainability from Green Computing, while remaining true to the original vision of the Internet. It is more technically challenging than Cloud Computing, having to deal with distributed computing issues, including heterogeneous nodes, varying quality of service, and additional security constraints. However, these are not insurmountable challenges, and with the need to retain control over our digital lives and the potential environmental consequences, it is a challenge we must pursue.
Robotic disaster recovery efforts with ad-hoc deployable cloud computing
NASA Astrophysics Data System (ADS)
Straub, Jeremy; Marsh, Ronald; Mohammad, Atif F.
2013-06-01
Autonomous operations of search and rescue (SaR) robots is an ill posed problem, which is complexified by the dynamic disaster recovery environment. In a typical SaR response scenario, responder robots will require different levels of processing capabilities during various parts of the response effort and will need to utilize multiple algorithms. Placing these capabilities onboard the robot is a mediocre solution that precludes algorithm specific performance optimization and results in mediocre performance. Architecture for an ad-hoc, deployable cloud environment suitable for use in a disaster response scenario is presented. Under this model, each service provider is optimized for the task and maintains a database of situation-relevant information. This service-oriented architecture (SOA 3.0) compliant framework also serves as an example of the efficient use of SOA 3.0 in an actual cloud application.
NASA Astrophysics Data System (ADS)
Weeden, R.; Horn, W. B.; Dimarchi, H.; Arko, S. A.; Hogenson, K.
2017-12-01
A problem often faced by Earth science researchers is the question of how to scale algorithms that were developed against few datasets and take them to regional or global scales. This problem only gets worse as we look to a future with larger and larger datasets becoming available. One significant hurdle can be having the processing and storage resources available for such a task, not to mention the administration of those resources. As a processing environment, the cloud offers nearly unlimited potential for compute and storage, with limited administration required. The goal of the Hybrid Pluggable Processing Pipeline (HyP3) project was to demonstrate the utility of the Amazon cloud to process large amounts of data quickly and cost effectively. Principally built by three undergraduate students at the ASF DAAC, the HyP3 system relies on core Amazon cloud services such as Lambda, Relational Database Service (RDS), Elastic Compute Cloud (EC2), Simple Storage Service (S3), and Elastic Beanstalk. HyP3 provides an Application Programming Interface (API) through which users can programmatically interface with the HyP3 system; allowing them to monitor and control processing jobs running in HyP3, and retrieve the generated HyP3 products when completed. This presentation will focus on the development techniques and enabling technologies that were used in developing the HyP3 system. Data and process flow, from new subscription through to order completion will be shown, highlighting the benefits of the cloud for each step. Because the HyP3 system can be accessed directly from a user's Python scripts, powerful applications leveraging SAR products can be put together fairly easily. This is the true power of HyP3; allowing people to programmatically leverage the power of the cloud.
76 FR 47637 - Kansas Disaster #KS-00055
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-05
... disaster declaration on 07/29/2011, Private Non- Profit organizations that provide essential services of... Counties: Barton, Clay, Cloud, Hamilton, Jewell, Lincoln, Logan, Lyon, Marion, Mitchell, Morton, Osage...
Considerations for Software Defined Networking (SDN): Approaches and use cases
NASA Astrophysics Data System (ADS)
Bakshi, K.
Software Defined Networking (SDN) is an evolutionary approach to network design and functionality based on the ability to programmatically modify the behavior of network devices. SDN uses user-customizable and configurable software that's independent of hardware to enable networked systems to expand data flow control. SDN is in large part about understanding and managing a network as a unified abstraction. It will make networks more flexible, dynamic, and cost-efficient, while greatly simplifying operational complexity. And this advanced solution provides several benefits including network and service customizability, configurability, improved operations, and increased performance. There are several approaches to SDN and its practical implementation. Among them, two have risen to prominence with differences in pedigree and implementation. This paper's main focus will be to define, review, and evaluate salient approaches and use cases of the OpenFlow and Virtual Network Overlay approaches to SDN. OpenFlow is a communication protocol that gives access to the forwarding plane of a network's switches and routers. The Virtual Network Overlay relies on a completely virtualized network infrastructure and services to abstract the underlying physical network, which allows the overlay to be mobile to other physical networks. This is an important requirement for cloud computing, where applications and associated network services are migrated to cloud service providers and remote data centers on the fly as resource demands dictate. The paper will discuss how and where SDN can be applied and implemented, including research and academia, virtual multitenant data center, and cloud computing applications. Specific attention will be given to the cloud computing use case, where automated provisioning and programmable overlay for scalable multi-tenancy is leveraged via the SDN approach.
Application of microarray analysis on computer cluster and cloud platforms.
Bernau, C; Boulesteix, A-L; Knaus, J
2013-01-01
Analysis of recent high-dimensional biological data tends to be computationally intensive as many common approaches such as resampling or permutation tests require the basic statistical analysis to be repeated many times. A crucial advantage of these methods is that they can be easily parallelized due to the computational independence of the resampling or permutation iterations, which has induced many statistics departments to establish their own computer clusters. An alternative is to rent computing resources in the cloud, e.g. at Amazon Web Services. In this article we analyze whether a selection of statistical projects, recently implemented at our department, can be efficiently realized on these cloud resources. Moreover, we illustrate an opportunity to combine computer cluster and cloud resources. In order to compare the efficiency of computer cluster and cloud implementations and their respective parallelizations we use microarray analysis procedures and compare their runtimes on the different platforms. Amazon Web Services provide various instance types which meet the particular needs of the different statistical projects we analyzed in this paper. Moreover, the network capacity is sufficient and the parallelization is comparable in efficiency to standard computer cluster implementations. Our results suggest that many statistical projects can be efficiently realized on cloud resources. It is important to mention, however, that workflows can change substantially as a result of a shift from computer cluster to cloud computing.
Security on Cloud Revocation Authority using Identity Based Encryption
NASA Astrophysics Data System (ADS)
Rajaprabha, M. N.
2017-11-01
As due to the era of cloud computing most of the people are saving there documents, files and other things on cloud spaces. Due to this security over the cloud is also important because all the confidential things are there on the cloud. So to overcome private key infrastructure (PKI) issues some revocable Identity Based Encryption (IBE) techniques are introduced which eliminates the demand of PKI. The technique introduced is key update cloud service provider which is having two issues in it and they are computation and communication cost is high and second one is scalability issue. So to overcome this problem we come along with the system in which the Cloud Revocation Authority (CRA) is there for the security which will only hold the secret key for each user. And the secret key was send with the help of advanced encryption standard security. The key is encrypted and send to the CRA for giving the authentication to the person who wants to share the data or files or for the communication purpose. Through that key only the other user will able to access that file and if the user apply some invalid key on the particular file than the information of that user and file is send to the administrator and administrator is having rights to block that person of black list that person to use the system services.
OS2: Oblivious similarity based searching for encrypted data outsourced to an untrusted domain
Pervez, Zeeshan; Ahmad, Mahmood; Khattak, Asad Masood; Ramzan, Naeem
2017-01-01
Public cloud storage services are becoming prevalent and myriad data sharing, archiving and collaborative services have emerged which harness the pay-as-you-go business model of public cloud. To ensure privacy and confidentiality often encrypted data is outsourced to such services, which further complicates the process of accessing relevant data by using search queries. Search over encrypted data schemes solve this problem by exploiting cryptographic primitives and secure indexing to identify outsourced data that satisfy the search criteria. Almost all of these schemes rely on exact matching between the encrypted data and search criteria. A few schemes which extend the notion of exact matching to similarity based search, lack realism as those schemes rely on trusted third parties or due to increase storage and computational complexity. In this paper we propose Oblivious Similarity based Search (OS2) for encrypted data. It enables authorized users to model their own encrypted search queries which are resilient to typographical errors. Unlike conventional methodologies, OS2 ranks the search results by using similarity measure offering a better search experience than exact matching. It utilizes encrypted bloom filter and probabilistic homomorphic encryption to enable authorized users to access relevant data without revealing results of search query evaluation process to the untrusted cloud service provider. Encrypted bloom filter based search enables OS2 to reduce search space to potentially relevant encrypted data avoiding unnecessary computation on public cloud. The efficacy of OS2 is evaluated on Google App Engine for various bloom filter lengths on different cloud configurations. PMID:28692697
Pervez, Zeeshan; Ahmad, Mahmood; Khattak, Asad Masood; Ramzan, Naeem; Khan, Wajahat Ali
2017-01-01
Public cloud storage services are becoming prevalent and myriad data sharing, archiving and collaborative services have emerged which harness the pay-as-you-go business model of public cloud. To ensure privacy and confidentiality often encrypted data is outsourced to such services, which further complicates the process of accessing relevant data by using search queries. Search over encrypted data schemes solve this problem by exploiting cryptographic primitives and secure indexing to identify outsourced data that satisfy the search criteria. Almost all of these schemes rely on exact matching between the encrypted data and search criteria. A few schemes which extend the notion of exact matching to similarity based search, lack realism as those schemes rely on trusted third parties or due to increase storage and computational complexity. In this paper we propose Oblivious Similarity based Search ([Formula: see text]) for encrypted data. It enables authorized users to model their own encrypted search queries which are resilient to typographical errors. Unlike conventional methodologies, [Formula: see text] ranks the search results by using similarity measure offering a better search experience than exact matching. It utilizes encrypted bloom filter and probabilistic homomorphic encryption to enable authorized users to access relevant data without revealing results of search query evaluation process to the untrusted cloud service provider. Encrypted bloom filter based search enables [Formula: see text] to reduce search space to potentially relevant encrypted data avoiding unnecessary computation on public cloud. The efficacy of [Formula: see text] is evaluated on Google App Engine for various bloom filter lengths on different cloud configurations.
Measuring agreement between decision support reminders: the cloud vs. the local expert.
Dixon, Brian Edward; Simonaitis, Linas; Perkins, Susan M; Wright, Adam; Middleton, Blackford
2014-04-10
A cloud-based clinical decision support system (CDSS) was implemented to remotely provide evidence-based guideline reminders in support of preventative health. Following implementation, we measured the agreement between preventive care reminders generated by an existing, local CDSS and the new, cloud-based CDSS operating on the same patient visit data. Electronic health record data for the same set of patients seen in primary care were sent to both the cloud-based web service and local CDSS. The clinical reminders returned by both services were captured for analysis. Cohen's Kappa coefficient was calculated to compare the two sets of reminders. Kappa statistics were further adjusted for prevalence and bias due to the potential effects of bias in the CDS logic and prevalence in the relative small sample of patients. The cloud-based CDSS generated 965 clinical reminders for 405 patient visits over 3 months. The local CDSS returned 889 reminders for the same patient visit data. When adjusted for prevalence and bias, observed agreement varied by reminder from 0.33 (95% CI 0.24 - 0.42) to 0.99 (95% CI 0.97 - 1.00) and demonstrated almost perfect agreement for 7 of the 11 reminders. Preventive care reminders delivered by two disparate CDS systems show substantial agreement. Subtle differences in rule logic and terminology mapping appear to account for much of the discordance. Cloud-based CDSS therefore show promise, opening the door for future development and implementation in support of health care providers with limited resources for knowledge management of complex logic and rules.
Measuring agreement between decision support reminders: the cloud vs. the local expert
2014-01-01
Background A cloud-based clinical decision support system (CDSS) was implemented to remotely provide evidence-based guideline reminders in support of preventative health. Following implementation, we measured the agreement between preventive care reminders generated by an existing, local CDSS and the new, cloud-based CDSS operating on the same patient visit data. Methods Electronic health record data for the same set of patients seen in primary care were sent to both the cloud-based web service and local CDSS. The clinical reminders returned by both services were captured for analysis. Cohen’s Kappa coefficient was calculated to compare the two sets of reminders. Kappa statistics were further adjusted for prevalence and bias due to the potential effects of bias in the CDS logic and prevalence in the relative small sample of patients. Results The cloud-based CDSS generated 965 clinical reminders for 405 patient visits over 3 months. The local CDSS returned 889 reminders for the same patient visit data. When adjusted for prevalence and bias, observed agreement varied by reminder from 0.33 (95% CI 0.24 – 0.42) to 0.99 (95% CI 0.97 – 1.00) and demonstrated almost perfect agreement for 7 of the 11 reminders. Conclusions Preventive care reminders delivered by two disparate CDS systems show substantial agreement. Subtle differences in rule logic and terminology mapping appear to account for much of the discordance. Cloud-based CDSS therefore show promise, opening the door for future development and implementation in support of health care providers with limited resources for knowledge management of complex logic and rules. PMID:24720863
Cloud Computing and Your Library
ERIC Educational Resources Information Center
Mitchell, Erik T.
2010-01-01
One of the first big shifts in how libraries manage resources was the move from print-journal purchasing models to database-subscription and electronic-journal purchasing models. Libraries found that this transition helped them scale their resources and provide better service just by thinking a bit differently about their services. Likewise,…
Big data processing in the cloud - Challenges and platforms
NASA Astrophysics Data System (ADS)
Zhelev, Svetoslav; Rozeva, Anna
2017-12-01
Choosing the appropriate architecture and technologies for a big data project is a difficult task, which requires extensive knowledge in both the problem domain and in the big data landscape. The paper analyzes the main big data architectures and the most widely implemented technologies used for processing and persisting big data. Clouds provide for dynamic resource scaling, which makes them a natural fit for big data applications. Basic cloud computing service models are presented. Two architectures for processing big data are discussed, Lambda and Kappa architectures. Technologies for big data persistence are presented and analyzed. Stream processing as the most important and difficult to manage is outlined. The paper highlights main advantages of cloud and potential problems.
An Adaptive Multilevel Security Framework for the Data Stored in Cloud Environment
Dorairaj, Sudha Devi; Kaliannan, Thilagavathy
2015-01-01
Cloud computing is renowned for delivering information technology services based on internet. Nowadays, organizations are interested in moving their massive data and computations into cloud to reap their significant benefits of on demand service, resource pooling, and rapid elasticity that helps to satisfy the dynamically changing infrastructure demand without the burden of owning, managing, and maintaining it. Since the data needs to be secured throughout its life cycle, security of the data in cloud is a major challenge to be concentrated on because the data is in third party's premises. Any uniform simple or high level security method for all the data either compromises the sensitive data or proves to be too costly with increased overhead. Any common multiple method for all data becomes vulnerable when the common security pattern is identified at the event of successful attack on any information and also encourages more attacks on all other data. This paper suggests an adaptive multilevel security framework based on cryptography techniques that provide adequate security for the classified data stored in cloud. The proposed security system acclimates well for cloud environment and is also customizable and more reliant to meet the required level of security of data with different sensitivity that changes with business needs and commercial conditions. PMID:26258165
An Adaptive Multilevel Security Framework for the Data Stored in Cloud Environment.
Dorairaj, Sudha Devi; Kaliannan, Thilagavathy
2015-01-01
Cloud computing is renowned for delivering information technology services based on internet. Nowadays, organizations are interested in moving their massive data and computations into cloud to reap their significant benefits of on demand service, resource pooling, and rapid elasticity that helps to satisfy the dynamically changing infrastructure demand without the burden of owning, managing, and maintaining it. Since the data needs to be secured throughout its life cycle, security of the data in cloud is a major challenge to be concentrated on because the data is in third party's premises. Any uniform simple or high level security method for all the data either compromises the sensitive data or proves to be too costly with increased overhead. Any common multiple method for all data becomes vulnerable when the common security pattern is identified at the event of successful attack on any information and also encourages more attacks on all other data. This paper suggests an adaptive multilevel security framework based on cryptography techniques that provide adequate security for the classified data stored in cloud. The proposed security system acclimates well for cloud environment and is also customizable and more reliant to meet the required level of security of data with different sensitivity that changes with business needs and commercial conditions.
Enabling Secure XMPP Communications in Federated IoT Clouds Through XEP 0027 and SAML/SASL SSO
Celesti, Antonio; Fazio, Maria; Villari, Massimo
2017-01-01
Nowadays, in the panorama of Internet of Things (IoT), finding a right compromise between interactivity and security is not trivial at all. Currently, most of pervasive communication technologies are designed to work locally. As a consequence, the development of large-scale Internet services and applications is not so easy for IoT Cloud providers. The main issue is that both IoT architectures and services have started as simple but they are becoming more and more complex. Consequently, the web service technology is often inappropriate. Recently, many operators in both academia and industry fields are considering the possibility to adopt the eXtensible Messaging and Presence Protocol (XMPP) for the implementation of IoT Cloud communication systems. In fact, XMPP offers many advantages in term of real-time capabilities, efficient data distribution, service discovery and inter-domain communication compared to other technologies. Nevertheless, the protocol lacks of native security, data confidentiality and trustworthy federation features. In this paper, considering an XMPP-based IoT Cloud architectural model, we discuss how can be possible to enforce message signing/encryption and Single-Sign On (SSO) authentication respectively for secure inter-module and inter-domain communications in a federated environment. Experiments prove that security mechanisms introduce an acceptable overhead, considering the obvious advantages achieved in terms of data trustiness and privacy. PMID:28178214
Enabling Secure XMPP Communications in Federated IoT Clouds Through XEP 0027 and SAML/SASL SSO.
Celesti, Antonio; Fazio, Maria; Villari, Massimo
2017-02-07
Nowadays, in the panorama of Internet of Things (IoT), finding a right compromise between interactivity and security is not trivial at all. Currently, most of pervasive communication technologies are designed to work locally. As a consequence, the development of large-scale Internet services and applications is not so easy for IoT Cloud providers. The main issue is that both IoT architectures and services have started as simple but they are becoming more and more complex. Consequently, the web service technology is often inappropriate. Recently, many operators in both academia and industry fields are considering the possibility to adopt the eXtensible Messaging and Presence Protocol (XMPP) for the implementation of IoT Cloud communication systems. In fact, XMPP offers many advantages in term of real-time capabilities, efficient data distribution, service discovery and inter-domain communication compared to other technologies. Nevertheless, the protocol lacks of native security, data confidentiality and trustworthy federation features. In this paper, considering an XMPP-based IoT Cloud architectural model, we discuss how can be possible to enforce message signing/encryption and Single-Sign On (SSO) authentication respectively for secure inter-module and inter-domain communications in a federated environment. Experiments prove that security mechanisms introduce an acceptable overhead, considering the obvious advantages achieved in terms of data trustiness and privacy.
Cloud Computing E-Communication Services in the University Environment
ERIC Educational Resources Information Center
Babin, Ron; Halilovic, Branka
2017-01-01
The use of cloud computing services has grown dramatically in post-secondary institutions in the last decade. In particular, universities have been attracted to the low-cost and flexibility of acquiring cloud software services from Google, Microsoft and others, to implement e-mail, calendar and document management and other basic office software.…
Identity-Based Authentication for Cloud Computing
NASA Astrophysics Data System (ADS)
Li, Hongwei; Dai, Yuanshun; Tian, Ling; Yang, Haomiao
Cloud computing is a recently developed new technology for complex systems with massive-scale services sharing among numerous users. Therefore, authentication of both users and services is a significant issue for the trust and security of the cloud computing. SSL Authentication Protocol (SAP), once applied in cloud computing, will become so complicated that users will undergo a heavily loaded point both in computation and communication. This paper, based on the identity-based hierarchical model for cloud computing (IBHMCC) and its corresponding encryption and signature schemes, presented a new identity-based authentication protocol for cloud computing and services. Through simulation testing, it is shown that the authentication protocol is more lightweight and efficient than SAP, specially the more lightweight user side. Such merit of our model with great scalability is very suited to the massive-scale cloud.
Bioinformatics clouds for big data manipulation
2012-01-01
Abstract As advances in life sciences and information technology bring profound influences on bioinformatics due to its interdisciplinary nature, bioinformatics is experiencing a new leap-forward from in-house computing infrastructure into utility-supplied cloud computing delivered over the Internet, in order to handle the vast quantities of biological data generated by high-throughput experimental technologies. Albeit relatively new, cloud computing promises to address big data storage and analysis issues in the bioinformatics field. Here we review extant cloud-based services in bioinformatics, classify them into Data as a Service (DaaS), Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS), and present our perspectives on the adoption of cloud computing in bioinformatics. Reviewers This article was reviewed by Frank Eisenhaber, Igor Zhulin, and Sandor Pongor. PMID:23190475
NASA Astrophysics Data System (ADS)
Yang, Wei; Hall, Trevor J.
2013-12-01
The Internet is entering an era of cloud computing to provide more cost effective, eco-friendly and reliable services to consumer and business users. As a consequence, the nature of the Internet traffic has been fundamentally transformed from a pure packet-based pattern to today's predominantly flow-based pattern. Cloud computing has also brought about an unprecedented growth in the Internet traffic. In this paper, a hybrid optical switch architecture is presented to deal with the flow-based Internet traffic, aiming to offer flexible and intelligent bandwidth on demand to improve fiber capacity utilization. The hybrid optical switch is capable of integrating IP into optical networks for cloud-based traffic with predictable performance, for which the delay performance of the electronic module in the hybrid optical switch architecture is evaluated through simulation.
Scientific Services on the Cloud
NASA Astrophysics Data System (ADS)
Chapman, David; Joshi, Karuna P.; Yesha, Yelena; Halem, Milt; Yesha, Yaacov; Nguyen, Phuong
Scientific Computing was one of the first every applications for parallel and distributed computation. To this date, scientific applications remain some of the most compute intensive, and have inspired creation of petaflop compute infrastructure such as the Oak Ridge Jaguar and Los Alamos RoadRunner. Large dedicated hardware infrastructure has become both a blessing and a curse to the scientific community. Scientists are interested in cloud computing for much the same reason as businesses and other professionals. The hardware is provided, maintained, and administrated by a third party. Software abstraction and virtualization provide reliability, and fault tolerance. Graduated fees allow for multi-scale prototyping and execution. Cloud computing resources are only a few clicks away, and by far the easiest high performance distributed platform to gain access to. There may still be dedicated infrastructure for ultra-scale science, but the cloud can easily play a major part of the scientific computing initiative.
Cloud Based Educational Systems and Its Challenges and Opportunities and Issues
ERIC Educational Resources Information Center
Paul, Prantosh Kr.; Lata Dangwal, Kiran
2014-01-01
Cloud Computing (CC) is actually is a set of hardware, software, networks, storage, services an interface combines to deliver aspects of computing as a service. Cloud Computing (CC) actually uses the central remote servers to maintain data and applications. Practically Cloud Computing (CC) is extension of Grid computing with independency and…
The OGC Innovation Program Testbeds - Advancing Architectures for Earth and Systems
NASA Astrophysics Data System (ADS)
Bermudez, L. E.; Percivall, G.; Simonis, I.; Serich, S.
2017-12-01
The OGC Innovation Program provides a collaborative agile process for solving challenging science problems and advancing new technologies. Since 1999, 100 initiatives have taken place, from multi-million dollar testbeds to small interoperability experiments. During these initiatives, sponsors and technology implementers (including academia and private sector) come together to solve problems, produce prototypes, develop demonstrations, provide best practices, and advance the future of standards. This presentation will provide the latest system architectures that can be used for Earth and space systems as a result of the OGC Testbed 13, including the following components: Elastic cloud autoscaler for Earth Observations (EO) using a WPS in an ESGF hybrid climate data research platform. Accessibility of climate data for the scientist and non-scientist users via on demand models wrapped in WPS. Standards descriptions for containerize applications to discover processes on the cloud, including using linked data, a WPS extension for hybrid clouds and linking to hybrid big data stores. OpenID and OAuth to secure OGC Services with built-in Attribute Based Access Control (ABAC) infrastructures leveraging GeoDRM patterns. Publishing and access of vector tiles, including use of compression and attribute options reusing patterns from WMS, WMTS and WFS. Servers providing 3D Tiles and streaming of data, including Indexed 3d Scene Layer (I3S), CityGML and Common DataBase (CDB). Asynchronous Services with advanced pushed notifications strategies, with a filter language instead of simple topic subscriptions, that can be use across OGC services. Testbed 14 will continue advancing topics like Big Data, security, and streaming, as well as making easier to use OGC services (e.g. RESTful APIs). The Call for Participation will be issued in December and responses are due on mid January 2018.
The OGC Innovation Program Testbeds - Advancing Architectures for Earth and Systems
NASA Astrophysics Data System (ADS)
Bermudez, L. E.; Percivall, G.; Simonis, I.; Serich, S.
2016-12-01
The OGC Innovation Program provides a collaborative agile process for solving challenging science problems and advancing new technologies. Since 1999, 100 initiatives have taken place, from multi-million dollar testbeds to small interoperability experiments. During these initiatives, sponsors and technology implementers (including academia and private sector) come together to solve problems, produce prototypes, develop demonstrations, provide best practices, and advance the future of standards. This presentation will provide the latest system architectures that can be used for Earth and space systems as a result of the OGC Testbed 13, including the following components: Elastic cloud autoscaler for Earth Observations (EO) using a WPS in an ESGF hybrid climate data research platform. Accessibility of climate data for the scientist and non-scientist users via on demand models wrapped in WPS. Standards descriptions for containerize applications to discover processes on the cloud, including using linked data, a WPS extension for hybrid clouds and linking to hybrid big data stores. OpenID and OAuth to secure OGC Services with built-in Attribute Based Access Control (ABAC) infrastructures leveraging GeoDRM patterns. Publishing and access of vector tiles, including use of compression and attribute options reusing patterns from WMS, WMTS and WFS. Servers providing 3D Tiles and streaming of data, including Indexed 3d Scene Layer (I3S), CityGML and Common DataBase (CDB). Asynchronous Services with advanced pushed notifications strategies, with a filter language instead of simple topic subscriptions, that can be use across OGC services. Testbed 14 will continue advancing topics like Big Data, security, and streaming, as well as making easier to use OGC services (e.g. RESTful APIs). The Call for Participation will be issued in December and responses are due on mid January 2018.
OpenID connect as a security service in Cloud-based diagnostic imaging systems
NASA Astrophysics Data System (ADS)
Ma, Weina; Sartipi, Kamran; Sharghi, Hassan; Koff, David; Bak, Peter
2015-03-01
The evolution of cloud computing is driving the next generation of diagnostic imaging (DI) systems. Cloud-based DI systems are able to deliver better services to patients without constraining to their own physical facilities. However, privacy and security concerns have been consistently regarded as the major obstacle for adoption of cloud computing by healthcare domains. Furthermore, traditional computing models and interfaces employed by DI systems are not ready for accessing diagnostic images through mobile devices. RESTful is an ideal technology for provisioning both mobile services and cloud computing. OpenID Connect, combining OpenID and OAuth together, is an emerging REST-based federated identity solution. It is one of the most perspective open standards to potentially become the de-facto standard for securing cloud computing and mobile applications, which has ever been regarded as "Kerberos of Cloud". We introduce OpenID Connect as an identity and authentication service in cloud-based DI systems and propose enhancements that allow for incorporating this technology within distributed enterprise environment. The objective of this study is to offer solutions for secure radiology image sharing among DI-r (Diagnostic Imaging Repository) and heterogeneous PACS (Picture Archiving and Communication Systems) as well as mobile clients in the cloud ecosystem. Through using OpenID Connect as an open-source identity and authentication service, deploying DI-r and PACS to private or community clouds should obtain equivalent security level to traditional computing model.
Research on the application in disaster reduction for using cloud computing technology
NASA Astrophysics Data System (ADS)
Tao, Liang; Fan, Yida; Wang, Xingling
Cloud Computing technology has been rapidly applied in different domains recently, promotes the progress of the domain's informatization. Based on the analysis of the state of application requirement in disaster reduction and combining the characteristics of Cloud Computing technology, we present the research on the application of Cloud Computing technology in disaster reduction. First of all, we give the architecture of disaster reduction cloud, which consists of disaster reduction infrastructure as a service (IAAS), disaster reduction cloud application platform as a service (PAAS) and disaster reduction software as a service (SAAS). Secondly, we talk about the standard system of disaster reduction in five aspects. Thirdly, we indicate the security system of disaster reduction cloud. Finally, we draw a conclusion the use of cloud computing technology will help us to solve the problems for disaster reduction and promote the development of disaster reduction.
Reconciliation of the cloud computing model with US federal electronic health record regulations
2011-01-01
Cloud computing refers to subscription-based, fee-for-service utilization of computer hardware and software over the Internet. The model is gaining acceptance for business information technology (IT) applications because it allows capacity and functionality to increase on the fly without major investment in infrastructure, personnel or licensing fees. Large IT investments can be converted to a series of smaller operating expenses. Cloud architectures could potentially be superior to traditional electronic health record (EHR) designs in terms of economy, efficiency and utility. A central issue for EHR developers in the US is that these systems are constrained by federal regulatory legislation and oversight. These laws focus on security and privacy, which are well-recognized challenges for cloud computing systems in general. EHRs built with the cloud computing model can achieve acceptable privacy and security through business associate contracts with cloud providers that specify compliance requirements, performance metrics and liability sharing. PMID:21727204
Use of cloud computing in biomedicine.
Sobeslav, Vladimir; Maresova, Petra; Krejcar, Ondrej; Franca, Tanos C C; Kuca, Kamil
2016-12-01
Nowadays, biomedicine is characterised by a growing need for processing of large amounts of data in real time. This leads to new requirements for information and communication technologies (ICT). Cloud computing offers a solution to these requirements and provides many advantages, such as cost savings, elasticity and scalability of using ICT. The aim of this paper is to explore the concept of cloud computing and the related use of this concept in the area of biomedicine. Authors offer a comprehensive analysis of the implementation of the cloud computing approach in biomedical research, decomposed into infrastructure, platform and service layer, and a recommendation for processing large amounts of data in biomedicine. Firstly, the paper describes the appropriate forms and technological solutions of cloud computing. Secondly, the high-end computing paradigm of cloud computing aspects is analysed. Finally, the potential and current use of applications in scientific research of this technology in biomedicine is discussed.
Reconciliation of the cloud computing model with US federal electronic health record regulations.
Schweitzer, Eugene J
2012-01-01
Cloud computing refers to subscription-based, fee-for-service utilization of computer hardware and software over the Internet. The model is gaining acceptance for business information technology (IT) applications because it allows capacity and functionality to increase on the fly without major investment in infrastructure, personnel or licensing fees. Large IT investments can be converted to a series of smaller operating expenses. Cloud architectures could potentially be superior to traditional electronic health record (EHR) designs in terms of economy, efficiency and utility. A central issue for EHR developers in the US is that these systems are constrained by federal regulatory legislation and oversight. These laws focus on security and privacy, which are well-recognized challenges for cloud computing systems in general. EHRs built with the cloud computing model can achieve acceptable privacy and security through business associate contracts with cloud providers that specify compliance requirements, performance metrics and liability sharing.
Latif, Rabia; Abbas, Haider; Assar, Saïd
2014-11-01
Wireless Body Area Networks (WBANs) have emerged as a promising technology that has shown enormous potential in improving the quality of healthcare, and has thus found a broad range of medical applications from ubiquitous health monitoring to emergency medical response systems. The huge amount of highly sensitive data collected and generated by WBAN nodes requires an ascendable and secure storage and processing infrastructure. Given the limited resources of WBAN nodes for storage and processing, the integration of WBANs and cloud computing may provide a powerful solution. However, despite the benefits of cloud-assisted WBAN, several security issues and challenges remain. Among these, data availability is the most nagging security issue. The most serious threat to data availability is a distributed denial of service (DDoS) attack that directly affects the all-time availability of a patient's data. The existing solutions for standalone WBANs and sensor networks are not applicable in the cloud. The purpose of this review paper is to identify the most threatening types of DDoS attacks affecting the availability of a cloud-assisted WBAN and review the state-of-the-art detection mechanisms for the identified DDoS attacks.
NAPR: a Cloud-Based Framework for Neuroanatomical Age Prediction.
Pardoe, Heath R; Kuzniecky, Ruben
2018-01-01
The availability of cloud computing services has enabled the widespread adoption of the "software as a service" (SaaS) approach for software distribution, which utilizes network-based access to applications running on centralized servers. In this paper we apply the SaaS approach to neuroimaging-based age prediction. Our system, named "NAPR" (Neuroanatomical Age Prediction using R), provides access to predictive modeling software running on a persistent cloud-based Amazon Web Services (AWS) compute instance. The NAPR framework allows external users to estimate the age of individual subjects using cortical thickness maps derived from their own locally processed T1-weighted whole brain MRI scans. As a demonstration of the NAPR approach, we have developed two age prediction models that were trained using healthy control data from the ABIDE, CoRR, DLBS and NKI Rockland neuroimaging datasets (total N = 2367, age range 6-89 years). The provided age prediction models were trained using (i) relevance vector machines and (ii) Gaussian processes machine learning methods applied to cortical thickness surfaces obtained using Freesurfer v5.3. We believe that this transparent approach to out-of-sample evaluation and comparison of neuroimaging age prediction models will facilitate the development of improved age prediction models and allow for robust evaluation of the clinical utility of these methods.
Cloud-based mobility management in heterogeneous wireless networks
NASA Astrophysics Data System (ADS)
Kravchuk, Serhii; Minochkin, Dmytro; Omiotek, Zbigniew; Bainazarov, Ulan; Weryńska-Bieniasz, RóŻa; Iskakova, Aigul
2017-08-01
Mobility management is the key feature that supports the roaming of users between different systems. Handover is the essential aspect in the development of solutions supporting mobility scenarios. The handover process becomes more complex in a heterogeneous environment compared to the homogeneous one. Seamlessness and reduction of delay in servicing the handover calls, which can reduce the handover dropping probability, also require complex algorithms to provide a desired QoS for mobile users. A challenging problem to increase the scalability and availability of handover decision mechanisms is discussed. The aim of the paper is to propose cloud based handover as a service concept to cope with the challenges that arise.
Fine-grained Database Field Search Using Attribute-Based Encryption for E-Healthcare Clouds.
Guo, Cheng; Zhuang, Ruhan; Jie, Yingmo; Ren, Yizhi; Wu, Ting; Choo, Kim-Kwang Raymond
2016-11-01
An effectively designed e-healthcare system can significantly enhance the quality of access and experience of healthcare users, including facilitating medical and healthcare providers in ensuring a smooth delivery of services. Ensuring the security of patients' electronic health records (EHRs) in the e-healthcare system is an active research area. EHRs may be outsourced to a third-party, such as a community healthcare cloud service provider for storage due to cost-saving measures. Generally, encrypting the EHRs when they are stored in the system (i.e. data-at-rest) or prior to outsourcing the data is used to ensure data confidentiality. Searchable encryption (SE) scheme is a promising technique that can ensure the protection of private information without compromising on performance. In this paper, we propose a novel framework for controlling access to EHRs stored in semi-trusted cloud servers (e.g. a private cloud or a community cloud). To achieve fine-grained access control for EHRs, we leverage the ciphertext-policy attribute-based encryption (CP-ABE) technique to encrypt tables published by hospitals, including patients' EHRs, and the table is stored in the database with the primary key being the patient's unique identity. Our framework can enable different users with different privileges to search on different database fields. Differ from previous attempts to secure outsourcing of data, we emphasize the control of the searches of the fields within the database. We demonstrate the utility of the scheme by evaluating the scheme using datasets from the University of California, Irvine.
Private and Efficient Query Processing on Outsourced Genomic Databases.
Ghasemi, Reza; Al Aziz, Md Momin; Mohammed, Noman; Dehkordi, Massoud Hadian; Jiang, Xiaoqian
2017-09-01
Applications of genomic studies are spreading rapidly in many domains of science and technology such as healthcare, biomedical research, direct-to-consumer services, and legal and forensic. However, there are a number of obstacles that make it hard to access and process a big genomic database for these applications. First, sequencing genomic sequence is a time consuming and expensive process. Second, it requires large-scale computation and storage systems to process genomic sequences. Third, genomic databases are often owned by different organizations, and thus, not available for public usage. Cloud computing paradigm can be leveraged to facilitate the creation and sharing of big genomic databases for these applications. Genomic data owners can outsource their databases in a centralized cloud server to ease the access of their databases. However, data owners are reluctant to adopt this model, as it requires outsourcing the data to an untrusted cloud service provider that may cause data breaches. In this paper, we propose a privacy-preserving model for outsourcing genomic data to a cloud. The proposed model enables query processing while providing privacy protection of genomic databases. Privacy of the individuals is guaranteed by permuting and adding fake genomic records in the database. These techniques allow cloud to evaluate count and top-k queries securely and efficiently. Experimental results demonstrate that a count and a top-k query over 40 Single Nucleotide Polymorphisms (SNPs) in a database of 20 000 records takes around 100 and 150 s, respectively.
Private and Efficient Query Processing on Outsourced Genomic Databases
Ghasemi, Reza; Al Aziz, Momin; Mohammed, Noman; Dehkordi, Massoud Hadian; Jiang, Xiaoqian
2017-01-01
Applications of genomic studies are spreading rapidly in many domains of science and technology such as healthcare, biomedical research, direct-to-consumer services, and legal and forensic. However, there are a number of obstacles that make it hard to access and process a big genomic database for these applications. First, sequencing genomic sequence is a time-consuming and expensive process. Second, it requires large-scale computation and storage systems to processes genomic sequences. Third, genomic databases are often owned by different organizations and thus not available for public usage. Cloud computing paradigm can be leveraged to facilitate the creation and sharing of big genomic databases for these applications. Genomic data owners can outsource their databases in a centralized cloud server to ease the access of their databases. However, data owners are reluctant to adopt this model, as it requires outsourcing the data to an untrusted cloud service provider that may cause data breaches. In this paper, we propose a privacy-preserving model for outsourcing genomic data to a cloud. The proposed model enables query processing while providing privacy protection of genomic databases. Privacy of the individuals is guaranteed by permuting and adding fake genomic records in the database. These techniques allow cloud to evaluate count and top-k queries securely and efficiently. Experimental results demonstrate that a count and a top-k query over 40 SNPs in a database of 20,000 records takes around 100 and 150 seconds, respectively. PMID:27834660
An overview of the DII-HEP OpenStack based CMS data analysis
NASA Astrophysics Data System (ADS)
Osmani, L.; Tarkoma, S.; Eerola, P.; Komu, M.; Kortelainen, M. J.; Kraemer, O.; Lindén, T.; Toor, S.; White, J.
2015-05-01
An OpenStack based private cloud with the Cluster File System has been built and used with both CMS analysis and Monte Carlo simulation jobs in the Datacenter Indirection Infrastructure for Secure High Energy Physics (DII-HEP) project. On the cloud we run the ARC middleware that allows running CMS applications without changes on the job submission side. Our test results indicate that the adopted approach provides a scalable and resilient solution for managing resources without compromising on performance and high availability. To manage the virtual machines (VM) dynamically in an elastic fasion, we are testing the EMI authorization service (Argus) and the Execution Environment Service (Argus-EES). An OpenStackplugin has been developed for Argus-EES. The Host Identity Protocol (HIP) has been designed for mobile networks and it provides a secure method for IP multihoming. HIP separates the end-point identifier and locator role for IP address which increases the network availability for the applications. Our solution leverages HIP for traffic management. This presentation gives an update on the status of the work and our lessons learned in creating an OpenStackbased cloud for HEP.
The North Alabama Lightning Warning Product
NASA Technical Reports Server (NTRS)
Buechler, Dennis E.; Blakeslee, R. J.; Stano, G. T.
2009-01-01
The North Alabama Lightning Mapping Array NALMA has been collecting total lightning data on storms in the Tennessee Valley region since 2001. Forecasters from nearby National Weather Service (NWS) offices have been ingesting this data for display with other AWIPS products. The current lightning product used by the offices is the lightning source density plot. The new product provides a probabalistic, short-term, graphical forecast of the probability of lightning activity occurring at 5 min intervals over the next 30 minutes . One of the uses of the current lightning source density product by the Huntsville National Weather Service Office is to identify areas of potential for cloud-to-ground flashes based on where LMA total lightning is occurring. This product quantifies that observation. The Lightning Warning Product is derived from total lightning observations from the Washington, D.C. (DCLMA) and North Alabama Lightning Mapping Arrays and cloud-to-ground lightning flashes detected by the National Lightning Detection Network (NLDN). Probability predictions are provided for both intracloud and cloud-to-ground flashes. The gridded product can be displayed on AWIPS workstations in a manner similar to that of the lightning source density product.
Virtual Business Operating Environment in the Cloud: Conceptual Architecture and Challenges
NASA Astrophysics Data System (ADS)
Nezhad, Hamid R. Motahari; Stephenson, Bryan; Singhal, Sharad; Castellanos, Malu
Advances in service oriented architecture (SOA) have brought us close to the once imaginary vision of establishing and running a virtual business, a business in which most or all of its business functions are outsourced to online services. Cloud computing offers a realization of SOA in which IT resources are offered as services that are more affordable, flexible and attractive to businesses. In this paper, we briefly study advances in cloud computing, and discuss the benefits of using cloud services for businesses and trade-offs that they have to consider. We then present 1) a layered architecture for the virtual business, and 2) a conceptual architecture for a virtual business operating environment. We discuss the opportunities and research challenges that are ahead of us in realizing the technical components of this conceptual architecture. We conclude by giving the outlook and impact of cloud services on both large and small businesses.
Krintz, Chandra
2013-01-01
AppScale is an open source distributed software system that implements a cloud platform as a service (PaaS). AppScale makes cloud applications easy to deploy and scale over disparate cloud fabrics, implementing a set of APIs and architecture that also makes apps portable across the services they employ. AppScale is API-compatible with Google App Engine (GAE) and thus executes GAE applications on-premise or over other cloud infrastructures, without modification. PMID:23828721
Towards Smart Homes Using Low Level Sensory Data
Khattak, Asad Masood; Truc, Phan Tran Ho; Hung, Le Xuan; Vinh, La The; Dang, Viet-Hung; Guan, Donghai; Pervez, Zeeshan; Han, Manhyung; Lee, Sungyoung; Lee, Young-Koo
2011-01-01
Ubiquitous Life Care (u-Life care) is receiving attention because it provides high quality and low cost care services. To provide spontaneous and robust healthcare services, knowledge of a patient’s real-time daily life activities is required. Context information with real-time daily life activities can help to provide better services and to improve healthcare delivery. The performance and accuracy of existing life care systems is not reliable, even with a limited number of services. This paper presents a Human Activity Recognition Engine (HARE) that monitors human health as well as activities using heterogeneous sensor technology and processes these activities intelligently on a Cloud platform for providing improved care at low cost. We focus on activity recognition using video-based, wearable sensor-based, and location-based activity recognition engines and then use intelligent processing to analyze the context of the activities performed. The experimental results of all the components showed good accuracy against existing techniques. The system is deployed on Cloud for Alzheimer’s disease patients (as a case study) with four activity recognition engines to identify low level activity from the raw data captured by sensors. These are then manipulated using ontology to infer higher level activities and make decisions about a patient’s activity using patient profile information and customized rules. PMID:22247682
75 FR 51293 - [Disaster Declaration greek-i12272 and greek-i12273
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-19
... on 08/10/2010, Private Non- Profit organizations that provide essential services of governmental... Counties: Atchison, Brown, Butler, Chase, Clay, Cloud, Comanche, Doniphan, Ellis, Franklin, Greenwood...
Secure data sharing in public cloud
NASA Astrophysics Data System (ADS)
Venkataramana, Kanaparti; Naveen Kumar, R.; Tatekalva, Sandhya; Padmavathamma, M.
2012-04-01
Secure multi-party protocols have been proposed for entities (organizations or individuals) that don't fully trust each other to share sensitive information. Many types of entities need to collect, analyze, and disseminate data rapidly and accurately, without exposing sensitive information to unauthorized or untrusted parties. Solutions based on secure multiparty computation guarantee privacy and correctness, at an extra communication (too costly in communication to be practical) and computation cost. The high overhead motivates us to extend this SMC to cloud environment which provides large computation and communication capacity which makes SMC to be used between multiple clouds (i.e., it may between private or public or hybrid clouds).Cloud may encompass many high capacity servers which acts as a hosts which participate in computation (IaaS and PaaS) for final result, which is controlled by Cloud Trusted Authority (CTA) for secret sharing within the cloud. The communication between two clouds is controlled by High Level Trusted Authority (HLTA) which is one of the hosts in a cloud which provides MgaaS (Management as a Service). Due to high risk for security in clouds, HLTA generates and distributes public keys and private keys by using Carmichael-R-Prime- RSA algorithm for exchange of private data in SMC between itself and clouds. In cloud, CTA creates Group key for Secure communication between the hosts in cloud based on keys sent by HLTA for exchange of Intermediate values and shares for computation of final result. Since this scheme is extended to be used in clouds( due to high availability and scalability to increase computation power) it is possible to implement SMC practically for privacy preserving in data mining at low cost for the clients.
Towards a Multi-Mission, Airborne Science Data System Environment
NASA Astrophysics Data System (ADS)
Crichton, D. J.; Hardman, S.; Law, E.; Freeborn, D.; Kay-Im, E.; Lau, G.; Oswald, J.
2011-12-01
NASA earth science instruments are increasingly relying on airborne missions. However, traditionally, there has been limited common infrastructure support available to principal investigators in the area of science data systems. As a result, each investigator has been required to develop their own computing infrastructures for the science data system. Typically there is little software reuse and many projects lack sufficient resources to provide a robust infrastructure to capture, process, distribute and archive the observations acquired from airborne flights. At NASA's Jet Propulsion Laboratory (JPL), we have been developing a multi-mission data system infrastructure for airborne instruments called the Airborne Cloud Computing Environment (ACCE). ACCE encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation. This includes improving data system interoperability across each instrument. A principal characteristic is being able to provide an agile infrastructure that is architected to allow for a variety of configurations of the infrastructure from locally installed compute and storage services to provisioning those services via the "cloud" from cloud computer vendors such as Amazon.com. Investigators often have different needs that require a flexible configuration. The data system infrastructure is built on the Apache's Object Oriented Data Technology (OODT) suite of components which has been used for a number of spaceborne missions and provides a rich set of open source software components and services for constructing science processing and data management systems. In 2010, a partnership was formed between the ACCE team and the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to support the data processing and data management needs. A principal goal is to provide support for the Fourier Transform Spectrometer (FTS) instrument which will produce over 700,000 soundings over the life of their three-year mission. The cost to purchase and operate a cluster-based system in order to generate Level 2 Full Physics products from this data was prohibitive. Through an evaluation of cloud computing solutions, Amazon's Elastic Compute Cloud (EC2) was selected for the CARVE deployment. As the ACCE infrastructure is developed and extended to form an infrastructure for airborne missions, the experience of working with CARVE has provided a number of lessons learned and has proven to be important in reinforcing the unique aspects of airborne missions and the importance of the ACCE infrastructure in developing a cost effective, flexible multi-mission capability that leverages emerging capabilities in cloud computing, workflow management, and distributed computing.
The cloud paradigm applied to e-Health.
Vilaplana, Jordi; Solsona, Francesc; Abella; Filgueira, Rosa; Rius, Josep
2013-03-14
Cloud computing is a new paradigm that is changing how enterprises, institutions and people understand, perceive and use current software systems. With this paradigm, the organizations have no need to maintain their own servers, nor host their own software. Instead, everything is moved to the cloud and provided on demand, saving energy, physical space and technical staff. Cloud-based system architectures provide many advantages in terms of scalability, maintainability and massive data processing. We present the design of an e-health cloud system, modelled by an M/M/m queue with QoS capabilities, i.e. maximum waiting time of requests. Detailed results for the model formed by a Jackson network of two M/M/m queues from the queueing theory perspective are presented. These results show a significant performance improvement when the number of servers increases. Platform scalability becomes a critical issue since we aim to provide the system with high Quality of Service (QoS). In this paper we define an architecture capable of adapting itself to different diseases and growing numbers of patients. This platform could be applied to the medical field to greatly enhance the results of those therapies that have an important psychological component, such as addictions and chronic diseases.
Exploiting NASA's Cumulus Earth Science Cloud Archive with Services and Computation
NASA Astrophysics Data System (ADS)
Pilone, D.; Quinn, P.; Jazayeri, A.; Schuler, I.; Plofchan, P.; Baynes, K.; Ramachandran, R.
2017-12-01
NASA's Earth Observing System Data and Information System (EOSDIS) houses nearly 30PBs of critical Earth Science data and with upcoming missions is expected to balloon to between 200PBs-300PBs over the next seven years. In addition to the massive increase in data collected, researchers and application developers want more and faster access - enabling complex visualizations, long time-series analysis, and cross dataset research without needing to copy and manage massive amounts of data locally. NASA has started prototyping with commercial cloud providers to make this data available in elastic cloud compute environments, allowing application developers direct access to the massive EOSDIS holdings. In this talk we'll explain the principles behind the archive architecture and share our experience of dealing with large amounts of data with serverless architectures including AWS Lambda, the Elastic Container Service (ECS) for long running jobs, and why we dropped thousands of lines of code for AWS Step Functions. We'll discuss best practices and patterns for accessing and using data available in a shared object store (S3) and leveraging events and message passing for sophisticated and highly scalable processing and analysis workflows. Finally we'll share capabilities NASA and cloud services are making available on the archives to enable massively scalable analysis and computation in a variety of formats and tools.
INDIGO-DataCloud solutions for Earth Sciences
NASA Astrophysics Data System (ADS)
Aguilar Gómez, Fernando; de Lucas, Jesús Marco; Fiore, Sandro; Monna, Stephen; Chen, Yin
2017-04-01
INDIGO-DataCloud (https://www.indigo-datacloud.eu/) is a European Commission funded project aiming to develop a data and computing platform targeting scientific communities, deployable on multiple hardware and provisioned over hybrid (private or public) e-infrastructures. The development of INDIGO solutions covers the different layers in cloud computing (IaaS, PaaS, SaaS), and provides tools to exploit resources like HPC or GPGPUs. INDIGO is oriented to support European Scientific research communities, that are well represented in the project. Twelve different Case Studies have been analyzed in detail from different fields: Biological & Medical sciences, Social sciences & Humanities, Environmental and Earth sciences and Physics & Astrophysics. INDIGO-DataCloud provides solutions to emerging challenges in Earth Science like: -Enabling an easy deployment of community services at different cloud sites. Many Earth Science research infrastructures often involve distributed observation stations across countries, and also have distributed data centers to support the corresponding data acquisition and curation. There is a need to easily deploy new data center services while the research infrastructure continuous spans. As an example: LifeWatch (ESFRI, Ecosystems and Biodiversity) uses INDIGO solutions to manage the deployment of services to perform complex hydrodynamics and water quality modelling over a Cloud Computing environment, predicting algae blooms, using the Docker technology: TOSCA requirement description, Docker repository, Orchestrator for deployment, AAI (AuthN, AuthZ) and OneData (Distributed Storage System). -Supporting Big Data Analysis. Nowadays, many Earth Science research communities produce large amounts of data and and are challenged by the difficulties of processing and analysing it. A climate models intercomparison data analysis case study for the European Network for Earth System Modelling (ENES) community has been setup, based on the Ophidia big data analysis framework and the Kepler workflow management system. Such services normally involve a large and distributed set of data and computing resources. In this regard, this case study exploits the INDIGO PaaS for a flexible and dynamic allocation of the resources at the infrastructural level. -Providing Distributed Data Storage Solutions. In order to allow scientific communities to perform heavy computation on huge datasets, INDIGO provides global data access solutions allowing researchers to access data in a distributed environment like fashion regardless of its location, and also to publish and share their research results with public or close communities. INDIGO solutions that support the access to distributed data storage (OneData) are being tested on EMSO infrastructure (Ocean Sciences and Geohazards) data. Another aspect of interest for the EMSO community is in efficient data processing by exploiting INDIGO services like PaaS Orchestrator. Further, for HPC exploitation, a new solution named Udocker has been implemented, enabling users to execute docker containers in supercomputers, without requiring administration privileges. This presentation will overview INDIGO solutions that are interesting and useful for Earth science communities and will show how they can be applied to other Case Studies.
The Power of the Cloud: Google Forms for Transition Assessment
ERIC Educational Resources Information Center
Scheef, Andrew R.; Johnson, Cinda
2017-01-01
The inclusion of age-appropriate transition assessments is a key component of transition services for students with disabilities. Although these assessments may focus on a variety of areas, their general purpose is to provide guidance in developing individualized postschool goals and design transition services to help students achieve these goals.…
Enabling On-Demand Database Computing with MIT SuperCloud Database Management System
2015-09-15
arc.liv.ac.uk/trac/SGE) provides these services and is independent of programming language (C, Fortran, Java , Matlab, etc) or parallel programming...a MySQL database to store DNS records. The DNS records are controlled via a simple web service interface that allows records to be created
On Using Home Networks and Cloud Computing for a Future Internet of Things
NASA Astrophysics Data System (ADS)
Niedermayer, Heiko; Holz, Ralph; Pahl, Marc-Oliver; Carle, Georg
In this position paper we state four requirements for a Future Internet and sketch our initial concept. The requirements: (1) more comfort, (2) integration of home networks, (3) resources like service clouds in the network, and (4) access anywhere on any machine. Future Internet needs future quality and future comfort. There need to be new possiblities for everyone. Our focus is on higher layers and related to the many overlay proposals. We consider them to run on top of a basic Future Internet core. A new user experience means to include all user devices. Home networks and services should be a fundamental part of the Future Internet. Home networks extend access and allow interaction with the environment. Cloud Computing can provide reliable resources beyond local boundaries. For access anywhere, we also need secure storage for data and profiles in the network, in particular for access with non-personal devices (Internet terminal, ticket machine, ...).
NASA Astrophysics Data System (ADS)
Pouchard, L. C.; Depriest, A.; Huhns, M.
2012-12-01
Ontologies and semantic technologies are an essential infrastructure component of systems supporting knowledge integration in the Earth Sciences. Numerous earth science ontologies exist, but are hard to discover because they tend to be hosted with the projects that develop them. There are often few quality measures and sparse metadata associated with these ontologies, such as modification dates, versioning, purpose, number of classes, and properties. Projects often develop ontologies for their own needs without considering existing ontology entities or derivations from formal and more basic ontologies. The result is mostly orthogonal ontologies, and ontologies that are not modular enough to reuse in part or adapt for new purposes, in spite of existing, standards for ontology representation. Additional obstacles to sharing and reuse include a lack of maintenance once a project is completed. The obstacles prevent the full exploitation of semantic technologies in a context where they could become needed enablers for service discovery and for matching data with services. To start addressing this gap, we have deployed BioPortal, a mature, domain-independent ontology and semantic service system developed by the National Center for Biomedical Ontologies (NCBO), on the ESIP Testbed under the governance of the ESIP Semantic Web cluster. ESIP provides a forum for a broad-based, distributed community of data and information technology practitioners and stakeholders to coordinate their efforts and develop new ideas for interoperability solutions. The Testbed provides an environment where innovations and best practices can be explored and evaluated. One objective of this deployment is to provide a community platform that would harness the organizational and cyber infrastructure provided by ESIP at minimal costs. Another objective is to host ontology services on a scalable, public cloud and investigate the business case for crowd sourcing of ontology maintenance. We deployed the system on Amazon 's Elastic Compute Cloud (EC2) where ESIP maintains an account. Our approach had three phases: 1) set up a private cloud environment at the University of South Carolina to become familiar with the complex architecture of the system and enable some basic customization, 2) coordinate the production of a Virtual Appliance for the system with NCBO and deploy it on the Amazon cloud, and 3) outreach to the ESIP community to solicit participation, populate the repository, and develop new use cases. Phase 2 is nearing completion and Phase 3 is underway. Ontologies were gathered during updates to the ESIP cluster. Discussion points included the criteria for a shareable ontology and how to determine the best size for an ontology to be reusable. Outreach highlighted that the system can start addressing an integration of discovery frameworks via linking data and services in a pull model (data and service casting), a key issue of the Discovery cluster. This work thus presents several contributions: 1) technology injection from another domain into the earth sciences, 2) the deployment of a mature knowledge platform on the EC2 cloud, and 3) the successful engagement of the community through the ESIP clusters and Testbed model.
ERIC Educational Resources Information Center
Iji, Clement Onwu; Abah, Joshua Abah; Anyor, Joseph Wuave
2018-01-01
This study investigated the impact of cloud services on mathematics education students' mathematics confidence, affective engagement, and behavioral engagement in public universities in Benue State, Nigeria. Ex-post facto research design was adopted for the study. The instrument for the study was the researcher-developed Cloud Services Mathematics…
ERIC Educational Resources Information Center
Iji, Clement Onwu; Abah, Joshua Abah; Anyor, Joseph Wuave
2017-01-01
This study focused on the impact of cloud services on students' attitude towards mathematics education in public universities in Benue State, Nigeria. Ex-post facto research design was adopted for the study. The instrument for the study is the researcher-developed Cloud Service Impact Questionnaire--CSIQ (Cronbach Alpha Coefficient = 0.92). The…
Developing national on-line services to annotate and analyse underwater imagery in a research cloud
NASA Astrophysics Data System (ADS)
Proctor, R.; Langlois, T.; Friedman, A.; Davey, B.
2017-12-01
Fish image annotation data is currently collected by various research, management and academic institutions globally (+100,000's hours of deployments) with varying degrees of standardisation and limited formal collaboration or data synthesis. We present a case study of how national on-line services, developed within a domain-oriented research cloud, have been used to annotate habitat images and synthesise fish annotation data sets collected using Autonomous Underwater Vehicles (AUVs) and baited remote underwater stereo-video (stereo-BRUV). Two developing software tools have been brought together in the marine science cloud to provide marine biologists with a powerful service for image annotation. SQUIDLE+ is an online platform designed for exploration, management and annotation of georeferenced images & video data. It provides a flexible annotation framework allowing users to work with their preferred annotation schemes. We have used SQUIDLE+ to sample the habitat composition and complexity of images of the benthos collected using stereo-BRUV. GlobalArchive is designed to be a centralised repository of aquatic ecological survey data with design principles including ease of use, secure user access, flexible data import, and the collection of any sampling and image analysis information. To easily share and synthesise data we have implemented data sharing protocols, including Open Data and synthesis Collaborations, and a spatial map to explore global datasets and filter to create a synthesis. These tools in the science cloud, together with a virtual desktop analysis suite offering python and R environments offer an unprecedented capability to deliver marine biodiversity information of value to marine managers and scientists alike.
Migrating EO/IR sensors to cloud-based infrastructure as service architectures
NASA Astrophysics Data System (ADS)
Berglie, Stephen T.; Webster, Steven; May, Christopher M.
2014-06-01
The Night Vision Image Generator (NVIG), a product of US Army RDECOM CERDEC NVESD, is a visualization tool used widely throughout Army simulation environments to provide fully attributed synthesized, full motion video using physics-based sensor and environmental effects. The NVIG relies heavily on contemporary hardware-based acceleration and GPU processing techniques, which push the envelope of both enterprise and commodity-level hypervisor support for providing virtual machines with direct access to hardware resources. The NVIG has successfully been integrated into fully virtual environments where system architectures leverage cloudbased technologies to various extents in order to streamline infrastructure and service management. This paper details the challenges presented to engineers seeking to migrate GPU-bound processes, such as the NVIG, to virtual machines and, ultimately, Cloud-Based IAS architectures. In addition, it presents the path that led to success for the NVIG. A brief overview of Cloud-Based infrastructure management tool sets is provided, and several virtual desktop solutions are outlined. A discrimination is made between general purpose virtual desktop technologies compared to technologies that expose GPU-specific capabilities, including direct rendering and hard ware-based video encoding. Candidate hypervisor/virtual machine configurations that nominally satisfy the virtualized hardware-level GPU requirements of the NVIG are presented , and each is subsequently reviewed in light of its implications on higher-level Cloud management techniques. Implementation details are included from the hardware level, through the operating system, to the 3D graphics APls required by the NVIG and similar GPU-bound tools.
Delta 2 Explosion Plume Analysis Report
NASA Technical Reports Server (NTRS)
Evans, Randolph J.
2000-01-01
A Delta II rocket exploded seconds after liftoff from Cape Canaveral Air Force Station (CCAFS) on 17 January 1997. The cloud produced by the explosion provided an opportunity to evaluate the models which are used to track potentially toxic dispersing plumes and clouds at CCAFS. The primary goal of this project was to conduct a case study of the dispersing cloud and the models used to predict the dispersion resulting from the explosion. The case study was conducted by comparing mesoscale and dispersion model results with available meteorological and plume observations. This study was funded by KSC under Applied Meteorology Unit (AMU) option hours. The models used in the study are part of the Eastern Range Dispersion Assessment System (ERDAS) and include the Regional Atmospheric Modeling System (RAMS), HYbrid Particle And Concentration Transport (HYPACT), and Rocket Exhaust Effluent Dispersion Model (REEDM). The primary observations used for explosion cloud verification of the study were from the National Weather Service's Weather Surveillance Radar 1988-Doppler (WSR-88D). Radar reflectivity measurements of the resulting cloud provided good estimates of the location and dimensions of the cloud over a four-hour period after the explosion. The results indicated that RAMS and HYPACT models performed reasonably well. Future upgrades to ERDAS are recommended.
Science in the cloud (SIC): A use case in MRI connectomics
Gorgolewski, Krzysztof J.; Kleissas, Dean; Roncal, William Gray; Litt, Brian; Wandell, Brian; Poldrack, Russel A.; Wiener, Martin; Vogelstein, R. Jacob; Burns, Randal
2017-01-01
Abstract Modern technologies are enabling scientists to collect extraordinary amounts of complex and sophisticated data across a huge range of scales like never before. With this onslaught of data, we can allow the focal point to shift from data collection to data analysis. Unfortunately, lack of standardized sharing mechanisms and practices often make reproducing or extending scientific results very difficult. With the creation of data organization structures and tools that drastically improve code portability, we now have the opportunity to design such a framework for communicating extensible scientific discoveries. Our proposed solution leverages these existing technologies and standards, and provides an accessible and extensible model for reproducible research, called ‘science in the cloud’ (SIC). Exploiting scientific containers, cloud computing, and cloud data services, we show the capability to compute in the cloud and run a web service that enables intimate interaction with the tools and data presented. We hope this model will inspire the community to produce reproducible and, importantly, extensible results that will enable us to collectively accelerate the rate at which scientific breakthroughs are discovered, replicated, and extended. PMID:28327935
BlueSky Cloud Framework: An E-Learning Framework Embracing Cloud Computing
NASA Astrophysics Data System (ADS)
Dong, Bo; Zheng, Qinghua; Qiao, Mu; Shu, Jian; Yang, Jie
Currently, E-Learning has grown into a widely accepted way of learning. With the huge growth of users, services, education contents and resources, E-Learning systems are facing challenges of optimizing resource allocations, dealing with dynamic concurrency demands, handling rapid storage growth requirements and cost controlling. In this paper, an E-Learning framework based on cloud computing is presented, namely BlueSky cloud framework. Particularly, the architecture and core components of BlueSky cloud framework are introduced. In BlueSky cloud framework, physical machines are virtualized, and allocated on demand for E-Learning systems. Moreover, BlueSky cloud framework combines with traditional middleware functions (such as load balancing and data caching) to serve for E-Learning systems as a general architecture. It delivers reliable, scalable and cost-efficient services to E-Learning systems, and E-Learning organizations can establish systems through these services in a simple way. BlueSky cloud framework solves the challenges faced by E-Learning, and improves the performance, availability and scalability of E-Learning systems.
Design and Implementation of a Cloud Computing Adoption Decision Tool: Generating a Cloud Road.
Bildosola, Iñaki; Río-Belver, Rosa; Cilleruelo, Ernesto; Garechana, Gaizka
2015-01-01
Migrating to cloud computing is one of the current enterprise challenges. This technology provides a new paradigm based on "on-demand payment" for information and communication technologies. In this sense, the small and medium enterprise is supposed to be the most interested, since initial investments are avoided and the technology allows gradual implementation. However, even if the characteristics and capacities have been widely discussed, entry into the cloud is still lacking in terms of practical, real frameworks. This paper aims at filling this gap, presenting a real tool already implemented and tested, which can be used as a cloud computing adoption decision tool. This tool uses diagnosis based on specific questions to gather the required information and subsequently provide the user with valuable information to deploy the business within the cloud, specifically in the form of Software as a Service (SaaS) solutions. This information allows the decision makers to generate their particular Cloud Road. A pilot study has been carried out with enterprises at a local level with a two-fold objective: to ascertain the degree of knowledge on cloud computing and to identify the most interesting business areas and their related tools for this technology. As expected, the results show high interest and low knowledge on this subject and the tool presented aims to readdress this mismatch, insofar as possible.
Design and Implementation of a Cloud Computing Adoption Decision Tool: Generating a Cloud Road
Bildosola, Iñaki; Río-Belver, Rosa; Cilleruelo, Ernesto; Garechana, Gaizka
2015-01-01
Migrating to cloud computing is one of the current enterprise challenges. This technology provides a new paradigm based on “on-demand payment” for information and communication technologies. In this sense, the small and medium enterprise is supposed to be the most interested, since initial investments are avoided and the technology allows gradual implementation. However, even if the characteristics and capacities have been widely discussed, entry into the cloud is still lacking in terms of practical, real frameworks. This paper aims at filling this gap, presenting a real tool already implemented and tested, which can be used as a cloud computing adoption decision tool. This tool uses diagnosis based on specific questions to gather the required information and subsequently provide the user with valuable information to deploy the business within the cloud, specifically in the form of Software as a Service (SaaS) solutions. This information allows the decision makers to generate their particular Cloud Road. A pilot study has been carried out with enterprises at a local level with a two-fold objective: to ascertain the degree of knowledge on cloud computing and to identify the most interesting business areas and their related tools for this technology. As expected, the results show high interest and low knowledge on this subject and the tool presented aims to readdress this mismatch, insofar as possible. PMID:26230400
Hybrid Cloud Computing Environment for EarthCube and Geoscience Community
NASA Astrophysics Data System (ADS)
Yang, C. P.; Qin, H.
2016-12-01
The NSF EarthCube Integration and Test Environment (ECITE) has built a hybrid cloud computing environment to provides cloud resources from private cloud environments by using cloud system software - OpenStack and Eucalyptus, and also manages public cloud - Amazon Web Service that allow resource synchronizing and bursting between private and public cloud. On ECITE hybrid cloud platform, EarthCube and geoscience community can deploy and manage the applications by using base virtual machine images or customized virtual machines, analyze big datasets by using virtual clusters, and real-time monitor the virtual resource usage on the cloud. Currently, a number of EarthCube projects have deployed or started migrating their projects to this platform, such as CHORDS, BCube, CINERGI, OntoSoft, and some other EarthCube building blocks. To accomplish the deployment or migration, administrator of ECITE hybrid cloud platform prepares the specific needs (e.g. images, port numbers, usable cloud capacity, etc.) of each project in advance base on the communications between ECITE and participant projects, and then the scientists or IT technicians in those projects launch one or multiple virtual machines, access the virtual machine(s) to set up computing environment if need be, and migrate their codes, documents or data without caring about the heterogeneity in structure and operations among different cloud platforms.
Opportunities and challenges of cloud computing to improve health care services.
Kuo, Alex Mu-Hsing
2011-09-21
Cloud computing is a new way of delivering computing resources and services. Many managers and experts believe that it can improve health care services, benefit health care research, and change the face of health information technology. However, as with any innovation, cloud computing should be rigorously evaluated before its widespread adoption. This paper discusses the concept and its current place in health care, and uses 4 aspects (management, technology, security, and legal) to evaluate the opportunities and challenges of this computing model. Strategic planning that could be used by a health organization to determine its direction, strategy, and resource allocation when it has decided to migrate from traditional to cloud-based health services is also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malik, Saif Ur Rehman; Khan, Samee U.; Ewen, Sam J.
2015-03-14
As we delve deeper into the ‘Digital Age’, we witness an explosive growth in the volume, velocity, and variety of the data available on the Internet. For example, in 2012 about 2.5 quintillion bytes of data was created on a daily basis that originated from myriad of sources and applications including mobiledevices, sensors, individual archives, social networks, Internet of Things, enterprises, cameras, software logs, etc. Such ‘Data Explosions’ has led to one of the most challenging research issues of the current Information and Communication Technology era: how to optimally manage (e.g., store, replicated, filter, and the like) such large amountmore » of data and identify new ways to analyze large amounts of data for unlocking information. It is clear that such large data streams cannot be managed by setting up on-premises enterprise database systems as it leads to a large up-front cost in buying and administering the hardware and software systems. Therefore, next generation data management systems must be deployed on cloud. The cloud computing paradigm provides scalable and elastic resources, such as data and services accessible over the Internet Every Cloud Service Provider must assure that data is efficiently processed and distributed in a way that does not compromise end-users’ Quality of Service (QoS) in terms of data availability, data search delay, data analysis delay, and the like. In the aforementioned perspective, data replication is used in the cloud for improving the performance (e.g., read and write delay) of applications that access data. Through replication a data intensive application or system can achieve high availability, better fault tolerance, and data recovery. In this paper, we survey data management and replication approaches (from 2007 to 2011) that are developed by both industrial and research communities. The focus of the survey is to discuss and characterize the existing approaches of data replication and management that tackle the resource usage and QoS provisioning with different levels of efficiencies. Moreover, the breakdown of both influential expressions (data replication and management) to provide different QoS attributes is deliberated. Furthermore, the performance advantages and disadvantages of data replication and management approaches in the cloud computing environments are analyzed. Open issues and future challenges related to data consistency, scalability, load balancing, processing and placement are also reported.« less
Lebeda, Frank J; Zalatoris, Jeffrey J; Scheerer, Julia B
2018-02-07
This position paper summarizes the development and the present status of Department of Defense (DoD) and other government policies and guidances regarding cloud computing services. Due to the heterogeneous and growing biomedical big datasets, cloud computing services offer an opportunity to mitigate the associated storage and analysis requirements. Having on-demand network access to a shared pool of flexible computing resources creates a consolidated system that should reduce potential duplications of effort in military biomedical research. Interactive, online literature searches were performed with Google, at the Defense Technical Information Center, and at two National Institutes of Health research portfolio information sites. References cited within some of the collected documents also served as literature resources. We gathered, selected, and reviewed DoD and other government cloud computing policies and guidances published from 2009 to 2017. These policies were intended to consolidate computer resources within the government and reduce costs by decreasing the number of federal data centers and by migrating electronic data to cloud systems. Initial White House Office of Management and Budget information technology guidelines were developed for cloud usage, followed by policies and other documents from the DoD, the Defense Health Agency, and the Armed Services. Security standards from the National Institute of Standards and Technology, the Government Services Administration, the DoD, and the Army were also developed. Government Services Administration and DoD Inspectors General monitored cloud usage by the DoD. A 2016 Government Accountability Office report characterized cloud computing as being economical, flexible and fast. A congressionally mandated independent study reported that the DoD was active in offering a wide selection of commercial cloud services in addition to its milCloud system. Our findings from the Department of Health and Human Services indicated that the security infrastructure in cloud services may be more compliant with the Health Insurance Portability and Accountability Act of 1996 regulations than traditional methods. To gauge the DoD's adoption of cloud technologies proposed metrics included cost factors, ease of use, automation, availability, accessibility, security, and policy compliance. Since 2009, plans and policies were developed for the use of cloud technology to help consolidate and reduce the number of data centers which were expected to reduce costs, improve environmental factors, enhance information technology security, and maintain mission support for service members. Cloud technologies were also expected to improve employee efficiency and productivity. Federal cloud computing policies within the last decade also offered increased opportunities to advance military healthcare. It was assumed that these opportunities would benefit consumers of healthcare and health science data by allowing more access to centralized cloud computer facilities to store, analyze, search and share relevant data, to enhance standardization, and to reduce potential duplications of effort. We recommend that cloud computing be considered by DoD biomedical researchers for increasing connectivity, presumably by facilitating communications and data sharing, among the various intra- and extramural laboratories. We also recommend that policies and other guidances be updated to include developing additional metrics that will help stakeholders evaluate the above mentioned assumptions and expectations. Published by Oxford University Press on behalf of the Association of Military Surgeons of the United States 2018. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Data Center Consolidation: A Step towards Infrastructure Clouds
NASA Astrophysics Data System (ADS)
Winter, Markus
Application service providers face enormous challenges and rising costs in managing and operating a growing number of heterogeneous system and computing landscapes. Limitations of traditional computing environments force IT decision-makers to reorganize computing resources within the data center, as continuous growth leads to an inefficient utilization of the underlying hardware infrastructure. This paper discusses a way for infrastructure providers to improve data center operations based on the findings of a case study on resource utilization of very large business applications and presents an outlook beyond server consolidation endeavors, transforming corporate data centers into compute clouds.
NASA Astrophysics Data System (ADS)
Besnard, Laurent; Blain, Peter; Mancini, Sebastien; Proctor, Roger
2017-04-01
The Integrated Marine Observing System (IMOS) is a national project funded by the Australian government established to deliver ocean observations to the marine and climate science community. Now in its 10th year its mission is to undertake systematic and sustained observations and to turn them into data, products and analyses that can be freely used and reused for broad societal benefits. As IMOS has matured as an observing system expectation on the system's availability and reliability has also increased and IMOS is now seen as delivering 'operational' information. In responding to this expectation, IMOS has relocated its services to the commercial cloud service Amazon Web Services. This has enabled IMOS to improve the system architecture, utilizing more advanced features like object storage (S3 - Simple Storage Service) and autoscaling features, and introducing new checking procedures in a pipeline approach. This has improved data availability and resilience while protecting against human errors in data handling and providing a more efficient ingestion process.
European grid services for global earth science
NASA Astrophysics Data System (ADS)
Brewer, S.; Sipos, G.
2012-04-01
This presentation will provide an overview of the distributed computing services that the European Grid Infrastructure (EGI) offers to the Earth Sciences community and also explain the processes whereby Earth Science users can engage with the infrastructure. One of the main overarching goals for EGI over the coming year is to diversify its user-base. EGI therefore - through the National Grid Initiatives (NGIs) that provide the bulk of resources that make up the infrastructure - offers a number of routes whereby users, either individually or as communities, can make use of its services. At one level there are two approaches to working with EGI: either users can make use of existing resources and contribute to their evolution and configuration; or alternatively they can work with EGI, and hence the NGIs, to incorporate their own resources into the infrastructure to take advantage of EGI's monitoring, networking and managing services. Adopting this approach does not imply a loss of ownership of the resources. Both of these approaches are entirely applicable to the Earth Sciences community. The former because researchers within this field have been involved with EGI (and previously EGEE) as a Heavy User Community and the latter because they have very specific needs, such as incorporating HPC services into their workflows, and these will require multi-skilled interventions to fully provide such services. In addition to the technical support services that EGI has been offering for the last year or so - the applications database, the training marketplace and the Virtual Organisation services - there now exists a dynamic short-term project framework that can be utilised to establish and operate services for Earth Science users. During this talk we will present a summary of various on-going projects that will be of interest to Earth Science users with the intention that suggestions for future projects will emerge from the subsequent discussions: • The Federated Cloud Task Force is already providing a cloud infrastructure through a few committed NGIs. This is being made available to research communities participating in the Task Force and the long-term aim is to integrate these national clouds into a pan-European infrastructure for scientific communities. • The MPI group provides support for application developers to port and scale up parallel applications to the global European Grid Infrastructure. • A lively portal developer and provider community that is able to setup and operate custom, application and/or community specific portals for members of the Earth Science community to interact with EGI. • A project to assess the possibilities for federated identity management in EGI and the readiness of EGI member states for federated authentication and authorisation mechanisms. • Operating resources and user support services to process data with new types of services and infrastructures, such as desktop grids, map-reduce frameworks, GPU clusters.
Cloud Computing and Its Applications in GIS
NASA Astrophysics Data System (ADS)
Kang, Cao
2011-12-01
Cloud computing is a novel computing paradigm that offers highly scalable and highly available distributed computing services. The objectives of this research are to: 1. analyze and understand cloud computing and its potential for GIS; 2. discover the feasibilities of migrating truly spatial GIS algorithms to distributed computing infrastructures; 3. explore a solution to host and serve large volumes of raster GIS data efficiently and speedily. These objectives thus form the basis for three professional articles. The first article is entitled "Cloud Computing and Its Applications in GIS". This paper introduces the concept, structure, and features of cloud computing. Features of cloud computing such as scalability, parallelization, and high availability make it a very capable computing paradigm. Unlike High Performance Computing (HPC), cloud computing uses inexpensive commodity computers. The uniform administration systems in cloud computing make it easier to use than GRID computing. Potential advantages of cloud-based GIS systems such as lower barrier to entry are consequently presented. Three cloud-based GIS system architectures are proposed: public cloud- based GIS systems, private cloud-based GIS systems and hybrid cloud-based GIS systems. Public cloud-based GIS systems provide the lowest entry barriers for users among these three architectures, but their advantages are offset by data security and privacy related issues. Private cloud-based GIS systems provide the best data protection, though they have the highest entry barriers. Hybrid cloud-based GIS systems provide a compromise between these extremes. The second article is entitled "A cloud computing algorithm for the calculation of Euclidian distance for raster GIS". Euclidean distance is a truly spatial GIS algorithm. Classical algorithms such as the pushbroom and growth ring techniques require computational propagation through the entire raster image, which makes it incompatible with the distributed nature of cloud computing. This paper presents a parallel Euclidean distance algorithm that works seamlessly with the distributed nature of cloud computing infrastructures. The mechanism of this algorithm is to subdivide a raster image into sub-images and wrap them with a one pixel deep edge layer of individually computed distance information. Each sub-image is then processed by a separate node, after which the resulting sub-images are reassembled into the final output. It is shown that while any rectangular sub-image shape can be used, those approximating squares are computationally optimal. This study also serves as a demonstration of this subdivide and layer-wrap strategy, which would enable the migration of many truly spatial GIS algorithms to cloud computing infrastructures. However, this research also indicates that certain spatial GIS algorithms such as cost distance cannot be migrated by adopting this mechanism, which presents significant challenges for the development of cloud-based GIS systems. The third article is entitled "A Distributed Storage Schema for Cloud Computing based Raster GIS Systems". This paper proposes a NoSQL Database Management System (NDDBMS) based raster GIS data storage schema. NDDBMS has good scalability and is able to use distributed commodity computers, which make it superior to Relational Database Management Systems (RDBMS) in a cloud computing environment. In order to provide optimized data service performance, the proposed storage schema analyzes the nature of commonly used raster GIS data sets. It discriminates two categories of commonly used data sets, and then designs corresponding data storage models for both categories. As a result, the proposed storage schema is capable of hosting and serving enormous volumes of raster GIS data speedily and efficiently on cloud computing infrastructures. In addition, the scheme also takes advantage of the data compression characteristics of Quadtrees, thus promoting efficient data storage. Through this assessment of cloud computing technology, the exploration of the challenges and solutions to the migration of GIS algorithms to cloud computing infrastructures, and the examination of strategies for serving large amounts of GIS data in a cloud computing infrastructure, this dissertation lends support to the feasibility of building a cloud-based GIS system. However, there are still challenges that need to be addressed before a full-scale functional cloud-based GIS system can be successfully implemented. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Cox, S. J.; Wyborn, L. A.; Fraser, R.; Rankine, T.; Woodcock, R.; Vote, J.; Evans, B.
2012-12-01
The Virtual Geophysics Laboratory (VGL) is web portal that provides geoscientists with an integrated online environment that: seamlessly accesses geophysical and geoscience data services from the AuScope national geoscience information infrastructure; loosely couples these data to a variety of gesocience software tools; and provides large scale processing facilities via cloud computing. VGL is a collaboration between CSIRO, Geoscience Australia, National Computational Infrastructure, Monash University, Australian National University and the University of Queensland. The VGL provides a distributed system whereby a user can enter an online virtual laboratory to seamlessly connect to OGC web services for geoscience data. The data is supplied in open standards formats using international standards like GeoSciML. A VGL user uses a web mapping interface to discover and filter the data sources using spatial and attribute filters to define a subset. Once the data is selected the user is not required to download the data. VGL collates the service query information for later in the processing workflow where it will be staged directly to the computing facilities. The combination of deferring data download and access to Cloud computing enables VGL users to access their data at higher resolutions and to undertake larger scale inversions, more complex models and simulations than their own local computing facilities might allow. Inside the Virtual Geophysics Laboratory, the user has access to a library of existing models, complete with exemplar workflows for specific scientific problems based on those models. For example, the user can load a geological model published by Geoscience Australia, apply a basic deformation workflow provided by a CSIRO scientist, and have it run in a scientific code from Monash. Finally the user can publish these results to share with a colleague or cite in a paper. This opens new opportunities for access and collaboration as all the resources (models, code, data, processing) are shared in the one virtual laboratory. VGL provides end users with access to an intuitive, user-centered interface that leverages cloud storage and cloud and cluster processing from both the research communities and commercial suppliers (e.g. Amazon). As the underlying data and information services are agnostic of the scientific domain, they can support many other data types. This fundamental characteristic results in a highly reusable virtual laboratory infrastructure that could also be used for example natural hazards, satellite processing, soil geochemistry, climate modeling, agriculture crop modeling.
NASA Astrophysics Data System (ADS)
Angius, S.; Bisegni, C.; Ciuffetti, P.; Di Pirro, G.; Foggetta, L. G.; Galletti, F.; Gargana, R.; Gioscio, E.; Maselli, D.; Mazzitelli, G.; Michelotti, A.; Orrù, R.; Pistoni, M.; Spagnoli, F.; Spigone, D.; Stecchi, A.; Tonto, T.; Tota, M. A.; Catani, L.; Di Giulio, C.; Salina, G.; Buzzi, P.; Checcucci, B.; Lubrano, P.; Piccini, M.; Fattibene, E.; Michelotto, M.; Cavallaro, S. R.; Diana, B. F.; Enrico, F.; Pulvirenti, S.
2016-01-01
The paper is aimed to present the !CHAOS open source project aimed to develop a prototype of a national private Cloud Computing infrastructure, devoted to accelerator control systems and large experiments of High Energy Physics (HEP). The !CHAOS project has been financed by MIUR (Italian Ministry of Research and Education) and aims to develop a new concept of control system and data acquisition framework by providing, with a high level of aaabstraction, all the services needed for controlling and managing a large scientific, or non-scientific, infrastructure. A beta version of the !CHAOS infrastructure will be released at the end of December 2015 and will run on private Cloud infrastructures based on OpenStack.
Modelling operations and security of cloud systems using Z-notation and Chinese Wall security policy
NASA Astrophysics Data System (ADS)
Basu, Srijita; Sengupta, Anirban; Mazumdar, Chandan
2016-11-01
Enterprises are increasingly using cloud computing for hosting their applications. Availability of fast Internet and cheap bandwidth are causing greater number of people to use cloud-based services. This has the advantage of lower cost and minimum maintenance. However, ensuring security of user data and proper management of cloud infrastructure remain major areas of concern. Existing techniques are either too complex, or fail to properly represent the actual cloud scenario. This article presents a formal cloud model using the constructs of Z-notation. Principles of the Chinese Wall security policy have been applied to design secure cloud-specific operations. The proposed methodology will enable users to safely host their services, as well as process sensitive data, on cloud.
Atmospheric Science Data Center
2018-05-23
... The Cloud-Aerosol Transport System (CATS) is a three wavelength, polarization-sensitive lidar that provides ... Temporal Resolution: .051 second File Format: HDF-5 Tools: Contact User Services ...
Atmospheric Science Data Center
2018-04-04
... The Cloud-Aerosol Transport System (CATS) is a three wavelength, polarization-sensitive lidar that provides ... Temporal Resolution: .051 second File Format: HDF-5 Tools: Contact User Services ...
Atmospheric Science Data Center
2018-05-23
... The Cloud-Aerosol Transport System (CATS) is a three wavelength, polarization-sensitive lidar that provides ... Temporal Resolution: .051 second File Format: HDF-5 Tools: Contact User Services ...
Atmospheric Science Data Center
2018-05-23
... The Cloud-Aerosol Transport System (CATS) is a three wavelength, polarization-sensitive lidar that provides ... Temporal Resolution: .051 second File Format: HDF-5 Tools: Contact User Services ...
Atmospheric Science Data Center
2018-04-04
... The Cloud-Aerosol Transport System (CATS) is a three wavelength, polarization-sensitive lidar that provides ... Temporal Resolution: .051 second File Format: HDF-5 Tools: Contact User Services ...
Atmospheric Science Data Center
2018-05-23
... The Cloud-Aerosol Transport System (CATS) is a three wavelength, polarization-sensitive lidar that provides ... Temporal Resolution: .051 second File Format: HDF-5 Tools: Contact User Services ...
A Cloud-Based System for Automatic Hazard Monitoring from Sentinel-1 SAR Data
NASA Astrophysics Data System (ADS)
Meyer, F. J.; Arko, S. A.; Hogenson, K.; McAlpin, D. B.; Whitley, M. A.
2017-12-01
Despite the all-weather capabilities of Synthetic Aperture Radar (SAR), and its high performance in change detection, the application of SAR for operational hazard monitoring was limited in the past. This has largely been due to high data costs, slow product delivery, and limited temporal sampling associated with legacy SAR systems. Only since the launch of ESA's Sentinel-1 sensors have routinely acquired and free-of-charge SAR data become available, allowing—for the first time—for a meaningful contribution of SAR to disaster monitoring. In this paper, we present recent technical advances of the Sentinel-1-based SAR processing system SARVIEWS, which was originally built to generate hazard products for volcano monitoring centers. We outline the main functionalities of SARVIEWS including its automatic database interface to Sentinel-1 holdings of the Alaska Satellite Facility (ASF), and its set of automatic processing techniques. Subsequently, we present recent system improvements that were added to SARVIEWS and allowed for a vast expansion of its hazard services; specifically: (1) In early 2017, the SARVIEWS system was migrated into the Amazon Cloud, providing access to cloud capabilities such as elastic scaling of compute resources and cloud-based storage; (2) we co-located SARVIEWS with ASF's cloud-based Sentinel-1 archive, enabling the efficient and cost effective processing of large data volumes; (3) we integrated SARVIEWS with ASF's HyP3 system (http://hyp3.asf.alaska.edu/), providing functionality such as subscription creation via API or map interface as well as automatic email notification; (4) we automated the production chains for seismic and volcanic hazards by integrating SARVIEWS with the USGS earthquake notification service (ENS) and the USGS eruption alert system. Email notifications from both services are parsed and subscriptions are automatically created when certain event criteria are met; (5) finally, SARVIEWS-generated hazard products are now being made available to the public via the SARVIEWS hazard portal. These improvements have led to the expansion of SARVIEWS toward a broader set of hazard situations, now including volcanoes, earthquakes, and severe weather. We provide details on newly developed techniques and show examples of disasters for which SARVIEWS was invoked.
The EPOS Vision for the Open Science Cloud
NASA Astrophysics Data System (ADS)
Jeffery, Keith; Harrison, Matt; Cocco, Massimo
2016-04-01
Cloud computing offers dynamic elastic scalability for data processing on demand. For much research activity, demand for computing is uneven over time and so CLOUD computing offers both cost-effectiveness and capacity advantages. However, as reported repeatedly by the EC Cloud Expert Group, there are barriers to the uptake of Cloud Computing: (1) security and privacy; (2) interoperability (avoidance of lock-in); (3) lack of appropriate systems development environments for application programmers to characterise their applications to allow CLOUD middleware to optimize their deployment and execution. From CERN, the Helix-Nebula group has proposed the architecture for the European Open Science Cloud. They are discussing with other e-Infrastructure groups such as EGI (GRIDs), EUDAT (data curation), AARC (network authentication and authorisation) and also with the EIROFORUM group of 'international treaty' RIs (Research Infrastructures) and the ESFRI (European Strategic Forum for Research Infrastructures) RIs including EPOS. Many of these RIs are either e-RIs (electronic-RIs) or have an e-RI interface for access and use. The EPOS architecture is centred on a portal: ICS (Integrated Core Services). The architectural design already allows for access to e-RIs (which may include any or all of data, software, users and resources such as computers or instruments). Those within any one domain (subject area) of EPOS are considered within the TCS (Thematic Core Services). Those outside, or available across multiple domains of EPOS, are ICS-d (Integrated Core Services-Distributed) since the intention is that they will be used by any or all of the TCS via the ICS. Another such service type is CES (Computational Earth Science); effectively an ICS-d specializing in high performance computation, analytics, simulation or visualization offered by a TCS for others to use. Already discussions are underway between EPOS and EGI, EUDAT, AARC and Helix-Nebula for those offerings to be considered as ICS-ds by EPOS.. Provision of access to ICS-Ds from ICS-C concerns several aspects: (a) Technical : it may be more or less difficult to connect and pass from ICS-C to the ICS-d/ CES the 'package' (probably a virtual machine) of data and software; (b) Security/privacy : including passing personal information e.g. related to AAAI (Authentication, authorization, accounting Infrastructure); (c) financial and legal : such as payment, licence conditions; Appropriate interfaces from ICS-C to ICS-d are being designed to accommodate these aspects. The Open Science Cloud is timely because it provides a framework to discuss governance and sustainability for computational resource provision as well as an effective interpretation of federated approach to HPC(High Performance Computing) -HTC (High Throughput Computing). It will be a unique opportunity to share and adopt procurement policies to provide access to computational resources for RIs. The current state of discussions and expected roadmap for the EPOS-Open Science Cloud relationship are presented.
NASA Astrophysics Data System (ADS)
Chiaradia, M. T.; Samarelli, S.; Massimi, V.; Nutricato, R.; Nitti, D. O.; Morea, A.; Tijani, K.
2017-12-01
Geospatial information is today essential for organizations and professionals working in several industries. More and more, huge information is collected from multiple data sources and is freely available to anyone as open data. Rheticus® is an innovative cloud-based data and services hub able to deliver Earth Observation added-value products through automatic complex processes and, if appropriate, a minimum interaction with human operators. This target is achieved by means of programmable components working as different software layers in a modern enterprise system which relies on SOA (Service-Oriented-Architecture) model. Due to its spread architecture, where every functionality is defined and encapsulated in a standalone component, Rheticus is potentially highly scalable and distributable allowing different configurations depending on the user needs. This approach makes the system very flexible with respect to the services implementation, ensuring the ability to rethink and redesign the whole process with little effort. In this work, we outline the overall cloud-based platform and focus on the "Rheticus Displacement" service, aimed at providing accurate information to monitor movements occurring across landslide features or structural instabilities that could affect buildings or infrastructures. Using Sentinel-1 (S1) open data images and Multi-Temporal SAR Interferometry techniques (MTInSAR), the service is complementary to traditional survey methods, providing a long-term solution to slope instability monitoring. Rheticus automatically browses and accesses (on a weekly basis) the products of the rolling archive of ESA S1 Scientific Data Hub. S1 data are then processed by SPINUA (Stable Point Interferometry even in Unurbanized Areas), a robust MTInSAR algorithm, which is responsible of producing displacement maps immediately usable to measure movements of point and distributed scatterers, with sub-centimetric precision. We outline the automatic generation process of displacement maps and we provide examples of the detection and monitoring of geohazard and infrastructure instabilities. ACK: Rheticus® is a registered trademark of Planetek Italia srl. Study carried out in the framework of the FAST4MAP project (ASI Contract n. 2015-020-R.0). Sentinel-1A products provided by ESA.
Practising cloud-based telemedicine in developing countries.
Puustjärvi, Juha; Puustjärvi, Leena
2013-01-01
In industrialised countries, telemedicine has proven to be a valuable tool for enabling access to knowledge and allowing information exchange, and showing that it is possible to provide good quality of healthcare to isolated communities. However, there are many barriers to the widespread implementation of telemedicine in rural areas of developing countries. These include deficient internet connectivity and sophisticated peripheral medical devices. Furthermore, developing countries have very high patients-per-doctor ratios. In this paper, we report our work on developing a cloud-based health information system, which promotes telemedicine and patient-centred healthcare by exploiting modern information and communication technologies such as OWL-ontologies and SQL-triggers. The reason for using cloud technology is twofold. First, cloud service models are easily adaptable for sharing patients health information, which is of prime importance in patient-centred healthcare as well as in telemedicine. Second, the cloud and the consulting physicians may locate anywhere in the internet.
Space Science Cloud: a Virtual Space Science Research Platform Based on Cloud Model
NASA Astrophysics Data System (ADS)
Hu, Xiaoyan; Tong, Jizhou; Zou, Ziming
Through independent and co-operational science missions, Strategic Pioneer Program (SPP) on Space Science, the new initiative of space science program in China which was approved by CAS and implemented by National Space Science Center (NSSC), dedicates to seek new discoveries and new breakthroughs in space science, thus deepen the understanding of universe and planet earth. In the framework of this program, in order to support the operations of space science missions and satisfy the demand of related research activities for e-Science, NSSC is developing a virtual space science research platform based on cloud model, namely the Space Science Cloud (SSC). In order to support mission demonstration, SSC integrates interactive satellite orbit design tool, satellite structure and payloads layout design tool, payload observation coverage analysis tool, etc., to help scientists analyze and verify space science mission designs. Another important function of SSC is supporting the mission operations, which runs through the space satellite data pipelines. Mission operators can acquire and process observation data, then distribute the data products to other systems or issue the data and archives with the services of SSC. In addition, SSC provides useful data, tools and models for space researchers. Several databases in the field of space science are integrated and an efficient retrieve system is developing. Common tools for data visualization, deep processing (e.g., smoothing and filtering tools), analysis (e.g., FFT analysis tool and minimum variance analysis tool) and mining (e.g., proton event correlation analysis tool) are also integrated to help the researchers to better utilize the data. The space weather models on SSC include magnetic storm forecast model, multi-station middle and upper atmospheric climate model, solar energetic particle propagation model and so on. All the services above-mentioned are based on the e-Science infrastructures of CAS e.g. cloud storage and cloud computing. SSC provides its users with self-service storage and computing resources at the same time.At present, the prototyping of SSC is underway and the platform is expected to be put into trial operation in August 2014. We hope that as SSC develops, our vision of Digital Space may come true someday.
An Efficient Interactive Model for On-Demand Sensing-As-A-Servicesof Sensor-Cloud
Dinh, Thanh; Kim, Younghan
2016-01-01
This paper proposes an efficient interactive model for the sensor-cloud to enable the sensor-cloud to efficiently provide on-demand sensing services for multiple applications with different requirements at the same time. The interactive model is designed for both the cloud and sensor nodes to optimize the resource consumption of physical sensors, as well as the bandwidth consumption of sensing traffic. In the model, the sensor-cloud plays a key role in aggregating application requests to minimize the workloads required for constrained physical nodes while guaranteeing that the requirements of all applications are satisfied. Physical sensor nodes perform their sensing under the guidance of the sensor-cloud. Based on the interactions with the sensor-cloud, physical sensor nodes adapt their scheduling accordingly to minimize their energy consumption. Comprehensive experimental results show that our proposed system achieves a significant improvement in terms of the energy consumption of physical sensors, the bandwidth consumption from the sink node to the sensor-cloud, the packet delivery latency, reliability and scalability, compared to current approaches. Based on the obtained results, we discuss the economical benefits and how the proposed system enables a win-win model in the sensor-cloud. PMID:27367689
An Efficient Interactive Model for On-Demand Sensing-As-A-Servicesof Sensor-Cloud.
Dinh, Thanh; Kim, Younghan
2016-06-28
This paper proposes an efficient interactive model for the sensor-cloud to enable the sensor-cloud to efficiently provide on-demand sensing services for multiple applications with different requirements at the same time. The interactive model is designed for both the cloud and sensor nodes to optimize the resource consumption of physical sensors, as well as the bandwidth consumption of sensing traffic. In the model, the sensor-cloud plays a key role in aggregating application requests to minimize the workloads required for constrained physical nodes while guaranteeing that the requirements of all applications are satisfied. Physical sensor nodes perform their sensing under the guidance of the sensor-cloud. Based on the interactions with the sensor-cloud, physical sensor nodes adapt their scheduling accordingly to minimize their energy consumption. Comprehensive experimental results show that our proposed system achieves a significant improvement in terms of the energy consumption of physical sensors, the bandwidth consumption from the sink node to the sensor-cloud, the packet delivery latency, reliability and scalability, compared to current approaches. Based on the obtained results, we discuss the economical benefits and how the proposed system enables a win-win model in the sensor-cloud.
Human face recognition using eigenface in cloud computing environment
NASA Astrophysics Data System (ADS)
Siregar, S. T. M.; Syahputra, M. F.; Rahmat, R. F.
2018-02-01
Doing a face recognition for one single face does not take a long time to process, but if we implement attendance system or security system on companies that have many faces to be recognized, it will take a long time. Cloud computing is a computing service that is done not on a local device, but on an internet connected to a data center infrastructure. The system of cloud computing also provides a scalability solution where cloud computing can increase the resources needed when doing larger data processing. This research is done by applying eigenface while collecting data as training data is also done by using REST concept to provide resource, then server can process the data according to existing stages. After doing research and development of this application, it can be concluded by implementing Eigenface, recognizing face by applying REST concept as endpoint in giving or receiving related information to be used as a resource in doing model formation to do face recognition.
Machine Learning for Knowledge Extraction from PHR Big Data.
Poulymenopoulou, Michaela; Malamateniou, Flora; Vassilacopoulos, George
2014-01-01
Cloud computing, Internet of things (IOT) and NoSQL database technologies can support a new generation of cloud-based PHR services that contain heterogeneous (unstructured, semi-structured and structured) patient data (health, social and lifestyle) from various sources, including automatically transmitted data from Internet connected devices of patient living space (e.g. medical devices connected to patients at home care). The patient data stored in such PHR systems constitute big data whose analysis with the use of appropriate machine learning algorithms is expected to improve diagnosis and treatment accuracy, to cut healthcare costs and, hence, to improve the overall quality and efficiency of healthcare provided. This paper describes a health data analytics engine which uses machine learning algorithms for analyzing cloud based PHR big health data towards knowledge extraction to support better healthcare delivery as regards disease diagnosis and prognosis. This engine comprises of the data preparation, the model generation and the data analysis modules and runs on the cloud taking advantage from the map/reduce paradigm provided by Apache Hadoop.
USDA-ARS?s Scientific Manuscript database
Service oriented architectures allow modelling engines to be hosted over the Internet abstracting physical hardware configuration and software deployments from model users. Many existing environmental models are deployed as desktop applications running on user's personal computers (PCs). Migration ...
Cloud Based Drive Forensic and DDoS Analysis on Seafile as Case Study
NASA Astrophysics Data System (ADS)
Bahaweres, R. B.; Santo, N. B.; Ningsih, A. S.
2017-01-01
The rapid development of Internet due to increasing data rates through both broadband cable networks and 4G wireless mobile, make everyone easily connected to the internet. Storages as Services (StaaS) is more popular and many users want to store their data in one place so that whenever they need they can easily access anywhere, any place and anytime in the cloud. The use of the service makes it vulnerable to use by someone to commit a crime or can do Denial of Service (DoS) on cloud storage services. The criminals can use the cloud storage services to store, upload and download illegal file or document to the cloud storage. In this study, we try to implement a private cloud storage using Seafile on Raspberry Pi and perform simulations in Local Area Network and Wi-Fi environment to analyze forensically to discover or open a criminal act can be traced and proved forensically. Also, we can identify, collect and analyze the artifact of server and client, such as a registry of the desktop client, the file system, the log of seafile, the cache of the browser, and database forensic.
NASA Astrophysics Data System (ADS)
Lapshinsky, V. A.
2017-01-01
The article is devoted to the consideration of issues of functionality and application of educational portal as virtual learning environments and webinars as SaaS services. Examples of their use in educational and vocational guidance processes are presented. The prospects of transition from portal VLE to SaaS and cloud services are marked. Portal www.valinfo.ru with original learning management system has been used in the educational process since 2003 in the National Research Nuclear University MEPhI and in the Peoples' Friendship University of Russia. Supported courses: Computer Science, Computer Workshop, Networks, Information Technology, The Introduction to Nano-Engineer, Nanotechnology and Nanomaterials etc. For webinars as SaaS services, used the "virtual classroom," kindly provided by WebSoft Company.
Cloud Computing for Protein-Ligand Binding Site Comparison
2013-01-01
The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery. PMID:23762824
Cloud computing for protein-ligand binding site comparison.
Hung, Che-Lun; Hua, Guan-Jie
2013-01-01
The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery.
A pilot study of distributed knowledge management and clinical decision support in the cloud.
Dixon, Brian E; Simonaitis, Linas; Goldberg, Howard S; Paterno, Marilyn D; Schaeffer, Molly; Hongsermeier, Tonya; Wright, Adam; Middleton, Blackford
2013-09-01
Implement and perform pilot testing of web-based clinical decision support services using a novel framework for creating and managing clinical knowledge in a distributed fashion using the cloud. The pilot sought to (1) develop and test connectivity to an external clinical decision support (CDS) service, (2) assess the exchange of data to and knowledge from the external CDS service, and (3) capture lessons to guide expansion to more practice sites and users. The Clinical Decision Support Consortium created a repository of shared CDS knowledge for managing hypertension, diabetes, and coronary artery disease in a community cloud hosted by Partners HealthCare. A limited data set for primary care patients at a separate health system was securely transmitted to a CDS rules engine hosted in the cloud. Preventive care reminders triggered by the limited data set were returned for display to clinician end users for review and display. During a pilot study, we (1) monitored connectivity and system performance, (2) studied the exchange of data and decision support reminders between the two health systems, and (3) captured lessons. During the six month pilot study, there were 1339 patient encounters in which information was successfully exchanged. Preventive care reminders were displayed during 57% of patient visits, most often reminding physicians to monitor blood pressure for hypertensive patients (29%) and order eye exams for patients with diabetes (28%). Lessons learned were grouped into five themes: performance, governance, semantic interoperability, ongoing adjustments, and usability. Remote, asynchronous cloud-based decision support performed reasonably well, although issues concerning governance, semantic interoperability, and usability remain key challenges for successful adoption and use of cloud-based CDS that will require collaboration between biomedical informatics and computer science disciplines. Decision support in the cloud is feasible and may be a reasonable path toward achieving better support of clinical decision-making across the widest range of health care providers. Published by Elsevier B.V.
The Confluence of GIS, Cloud and Open Source, Enabling Big Raster Data Applications
NASA Astrophysics Data System (ADS)
Plesea, L.; Emmart, C. B.; Boller, R. A.; Becker, P.; Baynes, K.
2016-12-01
The rapid evolution of available cloud services is profoundly changing the way applications are being developed and used. Massive object stores, service scalability, continuous integration are some of the most important cloud technology advances that directly influence science applications and GIS. At the same time, more and more scientists are using GIS platforms in their day to day research. Yet with new opportunities there are always some challenges. Given the large amount of data commonly required in science applications, usually large raster datasets, connectivity is one of the biggest problems. Connectivity has two aspects, one being the limited bandwidth and latency of the communication link due to the geographical location of the resources, the other one being the interoperability and intrinsic efficiency of the interface protocol used to connect. NASA and Esri are actively helping each other and collaborating on a few open source projects, aiming to provide some of the core technology components to directly address the GIS enabled data connectivity problems. Last year Esri contributed LERC, a very fast and efficient compression algorithm to the GDAL/MRF format, which itself is a NASA/Esri collaboration project. The MRF raster format has some cloud aware features that make it possible to build high performance web services on cloud platforms, as some of the Esri projects demonstrate. Currently, another NASA open source project, the high performance OnEarth WMTS server is being refactored and enhanced to better integrate with MRF, GDAL and Esri software. Taken together, the GDAL, MRF and OnEarth form the core of an open source CloudGIS toolkit that is already showing results. Since it is well integrated with GDAL, which is the most common interoperability component of GIS applications, this approach should improve the connectivity and performance of many science and GIS applications in the cloud.
A Cloud-based Infrastructure and Architecture for Environmental System Research
NASA Astrophysics Data System (ADS)
Wang, D.; Wei, Y.; Shankar, M.; Quigley, J.; Wilson, B. E.
2016-12-01
The present availability of high-capacity networks, low-cost computers and storage devices, and the widespread adoption of hardware virtualization and service-oriented architecture provide a great opportunity to enable data and computing infrastructure sharing between closely related research activities. By taking advantage of these approaches, along with the world-class high computing and data infrastructure located at Oak Ridge National Laboratory, a cloud-based infrastructure and architecture has been developed to efficiently deliver essential data and informatics service and utilities to the environmental system research community, and will provide unique capabilities that allows terrestrial ecosystem research projects to share their software utilities (tools), data and even data submission workflow in a straightforward fashion. The infrastructure will minimize large disruptions from current project-based data submission workflows for better acceptances from existing projects, since many ecosystem research projects already have their own requirements or preferences for data submission and collection. The infrastructure will eliminate scalability problems with current project silos by provide unified data services and infrastructure. The Infrastructure consists of two key components (1) a collection of configurable virtual computing environments and user management systems that expedite data submission and collection from environmental system research community, and (2) scalable data management services and system, originated and development by ORNL data centers.
Avoidable Software Procurements
2012-09-01
software license, software usage, ELA, Software as a Service , SaaS , Software Asset...PaaS Platform as a Service SaaS Software as a Service SAM Software Asset Management SMS System Management Server SEWP Solutions for Enterprise Wide...delivery of full Cloud Services , we will see the transition of the Cloud Computing service model from Iaas to SaaS , or Software as a Service . Software
2010-09-01
Cloud computing describes a new distributed computing paradigm for IT data and services that involves over-the-Internet provision of dynamically scalable and often virtualized resources. While cost reduction and flexibility in storage, services, and maintenance are important considerations when deciding on whether or how to migrate data and applications to the cloud, large organizations like the Department of Defense need to consider the organization and structure of data on the cloud and the operations on such data in order to reap the full benefit of cloud
Opportunities and Challenges of Cloud Computing to Improve Health Care Services
2011-01-01
Cloud computing is a new way of delivering computing resources and services. Many managers and experts believe that it can improve health care services, benefit health care research, and change the face of health information technology. However, as with any innovation, cloud computing should be rigorously evaluated before its widespread adoption. This paper discusses the concept and its current place in health care, and uses 4 aspects (management, technology, security, and legal) to evaluate the opportunities and challenges of this computing model. Strategic planning that could be used by a health organization to determine its direction, strategy, and resource allocation when it has decided to migrate from traditional to cloud-based health services is also discussed. PMID:21937354
A Simple Technique for Securing Data at Rest Stored in a Computing Cloud
NASA Astrophysics Data System (ADS)
Sedayao, Jeff; Su, Steven; Ma, Xiaohao; Jiang, Minghao; Miao, Kai
"Cloud Computing" offers many potential benefits, including cost savings, the ability to deploy applications and services quickly, and the ease of scaling those application and services once they are deployed. A key barrier for enterprise adoption is the confidentiality of data stored on Cloud Computing Infrastructure. Our simple technique implemented with Open Source software solves this problem by using public key encryption to render stored data at rest unreadable by unauthorized personnel, including system administrators of the cloud computing service on which the data is stored. We validate our approach on a network measurement system implemented on PlanetLab. We then use it on a service where confidentiality is critical - a scanning application that validates external firewall implementations.
The cloud paradigm applied to e-Health
2013-01-01
Background Cloud computing is a new paradigm that is changing how enterprises, institutions and people understand, perceive and use current software systems. With this paradigm, the organizations have no need to maintain their own servers, nor host their own software. Instead, everything is moved to the cloud and provided on demand, saving energy, physical space and technical staff. Cloud-based system architectures provide many advantages in terms of scalability, maintainability and massive data processing. Methods We present the design of an e-health cloud system, modelled by an M/M/m queue with QoS capabilities, i.e. maximum waiting time of requests. Results Detailed results for the model formed by a Jackson network of two M/M/m queues from the queueing theory perspective are presented. These results show a significant performance improvement when the number of servers increases. Conclusions Platform scalability becomes a critical issue since we aim to provide the system with high Quality of Service (QoS). In this paper we define an architecture capable of adapting itself to different diseases and growing numbers of patients. This platform could be applied to the medical field to greatly enhance the results of those therapies that have an important psychological component, such as addictions and chronic diseases. PMID:23496912
The effective use of virtualization for selection of data centers in a cloud computing environment
NASA Astrophysics Data System (ADS)
Kumar, B. Santhosh; Parthiban, Latha
2018-04-01
Data centers are the places which consist of network of remote servers to store, access and process the data. Cloud computing is a technology where users worldwide will submit the tasks and the service providers will direct the requests to the data centers which are responsible for execution of tasks. The servers in the data centers need to employ the virtualization concept so that multiple tasks can be executed simultaneously. In this paper we proposed an algorithm for data center selection based on energy of virtual machines created in server. The virtualization energy in each of the server is calculated and total energy of the data center is obtained by the summation of individual server energy. The tasks submitted are routed to the data center with least energy consumption which will result in minimizing the operational expenses of a service provider.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudkevich, Aleksandr; Goldis, Evgeniy
This research conducted by the Newton Energy Group, LLC (NEG) is dedicated to the development of pCloud: a Cloud-based Power Market Simulation Environment. pCloud is offering power industry stakeholders the capability to model electricity markets and is organized around the Software as a Service (SaaS) concept -- a software application delivery model in which software is centrally hosted and provided to many users via the internet. During the Phase I of this project NEG developed a prototype design for pCloud as a SaaS-based commercial service offering, system architecture supporting that design, ensured feasibility of key architecture's elements, formed technological partnershipsmore » and negotiated commercial agreements with partners, conducted market research and other related activities and secured funding for continue development of pCloud between the end of Phase I and beginning of Phase II, if awarded. Based on the results of Phase I activities, NEG has established that the development of a cloud-based power market simulation environment within the Windows Azure platform is technologically feasible, can be accomplished within the budget and timeframe available through the Phase II SBIR award with additional external funding. NEG believes that pCloud has the potential to become a game-changing technology for the modeling and analysis of electricity markets. This potential is due to the following critical advantages of pCloud over its competition: - Standardized access to advanced and proven power market simulators offered by third parties. - Automated parallelization of simulations and dynamic provisioning of computing resources on the cloud. This combination of automation and scalability dramatically reduces turn-around time while offering the capability to increase the number of analyzed scenarios by a factor of 10, 100 or even 1000. - Access to ready-to-use data and to cloud-based resources leading to a reduction in software, hardware, and IT costs. - Competitive pricing structure, which will make high-volume usage of simulation services affordable. - Availability and affordability of high quality power simulators, which presently only large corporate clients can afford, will level the playing field in developing regional energy policies, determining prudent cost recovery mechanisms and assuring just and reasonable rates to consumers. - Users that presently do not have the resources to internally maintain modeling capabilities will now be able to run simulations. This will invite more players into the industry, ultimately leading to more transparent and liquid power markets.« less
NASA Astrophysics Data System (ADS)
Praveenkumar, B. A.; Suresh, K.; Nikhil, A.; Rohan, M.; Nikhila, B. S.; Rohit, C. K.; Srinivas, A.
2014-11-01
Providing Healthcare to rural population has been a challenge to the medical service providers especially in developing countries. For this to be effective, scalable and sustainable, certain strategic decisions have to be taken during the planning phase. Also, there is a big gap between the services available and the availability of doctors and medical resources in rural areas. Use of Information Technology can aid this deficiency to a good extent. In this paper, a mobile application has been developed to gather data from the field. A cloud based interface has been developed to store the data in the cloud for effective usage and management of the data. A decision tree based solution developed in this paper helps in diagnosing a patient based on his health parameters. Interactive geospatial maps have been developed to provide effective data visualization facility. This will help both the user community as well as decision makers to carry out long term strategy planning.
Flexible services for the support of research.
Turilli, Matteo; Wallom, David; Williams, Chris; Gough, Steve; Curran, Neal; Tarrant, Richard; Bretherton, Dan; Powell, Andy; Johnson, Matt; Harmer, Terry; Wright, Peter; Gordon, John
2013-01-28
Cloud computing has been increasingly adopted by users and providers to promote a flexible, scalable and tailored access to computing resources. Nonetheless, the consolidation of this paradigm has uncovered some of its limitations. Initially devised by corporations with direct control over large amounts of computational resources, cloud computing is now being endorsed by organizations with limited resources or with a more articulated, less direct control over these resources. The challenge for these organizations is to leverage the benefits of cloud computing while dealing with limited and often widely distributed computing resources. This study focuses on the adoption of cloud computing by higher education institutions and addresses two main issues: flexible and on-demand access to a large amount of storage resources, and scalability across a heterogeneous set of cloud infrastructures. The proposed solutions leverage a federated approach to cloud resources in which users access multiple and largely independent cloud infrastructures through a highly customizable broker layer. This approach allows for a uniform authentication and authorization infrastructure, a fine-grained policy specification and the aggregation of accounting and monitoring. Within a loosely coupled federation of cloud infrastructures, users can access vast amount of data without copying them across cloud infrastructures and can scale their resource provisions when the local cloud resources become insufficient.
Adventures in Private Cloud: Balancing Cost and Capability at the CloudSat Data Processing Center
NASA Astrophysics Data System (ADS)
Partain, P.; Finley, S.; Fluke, J.; Haynes, J. M.; Cronk, H. Q.; Miller, S. D.
2016-12-01
Since the beginning of the CloudSat Mission in 2006, The CloudSat Data Processing Center (DPC) at the Cooperative Institute for Research in the Atmosphere (CIRA) has been ingesting data from the satellite and other A-Train sensors, producing data products, and distributing them to researchers around the world. The computing infrastructure was specifically designed to fulfill the requirements as specified at the beginning of what nominally was a two-year mission. The environment consisted of servers dedicated to specific processing tasks in a rigid workflow to generate the required products. To the benefit of science and with credit to the mission engineers, CloudSat has lasted well beyond its planned lifetime and is still collecting data ten years later. Over that period requirements of the data processing system have greatly expanded and opportunities for providing value-added services have presented themselves. But while demands on the system have increased, the initial design allowed for very little expansion in terms of scalability and flexibility. The design did change to include virtual machine processing nodes and distributed workflows but infrastructure management was still a time consuming task when system modification was required to run new tests or implement new processes. To address the scalability, flexibility, and manageability of the system Cloud computing methods and technologies are now being employed. The use of a public cloud like Amazon Elastic Compute Cloud or Google Compute Engine was considered but, among other issues, data transfer and storage cost becomes a problem especially when demand fluctuates as a result of reprocessing and the introduction of new products and services. Instead, the existing system was converted to an on premises private Cloud using the OpenStack computing platform and Ceph software defined storage to reap the benefits of the Cloud computing paradigm. This work details the decisions that were made, the benefits that have been realized, the difficulties that were encountered and issues that still exist.
HammerCloud: A Stress Testing System for Distributed Analysis
NASA Astrophysics Data System (ADS)
van der Ster, Daniel C.; Elmsheuser, Johannes; Úbeda García, Mario; Paladin, Massimo
2011-12-01
Distributed analysis of LHC data is an I/O-intensive activity which places large demands on the internal network, storage, and local disks at remote computing facilities. Commissioning and maintaining a site to provide an efficient distributed analysis service is therefore a challenge which can be aided by tools to help evaluate a variety of infrastructure designs and configurations. HammerCloud is one such tool; it is a stress testing service which is used by central operations teams, regional coordinators, and local site admins to (a) submit arbitrary number of analysis jobs to a number of sites, (b) maintain at a steady-state a predefined number of jobs running at the sites under test, (c) produce web-based reports summarizing the efficiency and performance of the sites under test, and (d) present a web-interface for historical test results to both evaluate progress and compare sites. HammerCloud was built around the distributed analysis framework Ganga, exploiting its API for grid job management. HammerCloud has been employed by the ATLAS experiment for continuous testing of many sites worldwide, and also during large scale computing challenges such as STEP'09 and UAT'09, where the scale of the tests exceeded 10,000 concurrently running and 1,000,000 total jobs over multi-day periods. In addition, HammerCloud is being adopted by the CMS experiment; the plugin structure of HammerCloud allows the execution of CMS jobs using their official tool (CRAB).
NASA Astrophysics Data System (ADS)
Eilers, J.
2013-09-01
The interface analysis from an observer of space objects makes a standard necessary. This standardized dataset serves as input for a cloud based service, which aimed for a near real-time Space Situational Awareness (SSA) system. The system contains all advantages of a cloud based solution, like redundancy, scalability and an easy way to distribute information. For the standard based on the interface analysis of the observer, the information can be separated in three parts. One part is the information about the observer e.g. a ground station. The next part is the information about the sensors that are used by the observer. And the last part is the data from the detected object. Backbone of the SSA System is the cloud based service which includes the consistency check for the observed objects, a database for the objects, the algorithms and analysis as well as the visualization of the results. This paper also provides an approximation of the needed computational power, data storage and a financial approach to deliver this service to a broad community. In this context cloud means, neither the user nor the observer has to think about the infrastructure of the calculation environment. The decision if the IT-infrastructure will be built by a conglomerate of different nations or rented on the marked should be based on an efficiency analysis. Also combinations are possible like starting on a rented cloud and then go to a private cloud owned by the government. One of the advantages of a cloud solution is the scalability. There are about 3000 satellites in space, 900 of them are active, and in total there are about ~17.000 detected space objects orbiting earth. But for the computation it is not a N(active) to N problem it is more N(active) to N(apo peri) quantity of N(all). Instead of 15.3 million possible collisions to calculate a computation of only approx. 2.3 million possible collisions must be done. In general, this Space Situational Awareness System can be used as a tool for satellite system owner for collision avoidance.
NASA Astrophysics Data System (ADS)
Sproles, E. A.; Crumley, R. L.; Nolin, A. W.; Mar, E.; Lopez-Moreno, J. J.
2017-12-01
Streamflow in snowy mountain regions is extraordinarily challenging to forecast, and prediction efforts are hampered by the lack of timely snow data—particularly in data sparse regions. SnowCloud is a prototype web-based framework that integrates remote sensing, cloud computing, interactive mapping tools, and a hydrologic model to offer a new paradigm for delivering key data to water resource managers. We tested the skill of SnowCloud to forecast monthly streamflow with one month lead time in three snow-dominated headwaters. These watersheds represent a range of precipitation/runoff schemes: the Río Elqui in northern Chile (200 mm/yr, entirely snowmelt); the John Day River, Oregon, USA (635 mm/yr, primarily snowmelt); and the Río Aragon in the northern Spain (850 mm/yr, snowmelt dominated). Model skill corresponded to snowpack contribution with Nash-Sutcliffe Efficiencies of 0.86, 0.52, and 0.21 respectively. SnowCloud does not require the user to possess advanced programming skills or proprietary software. We access NASA's MOD10A1 snow cover product to calculate the snow metrics globally using Google Earth Engine's geospatial analysis and cloud computing service. The analytics and forecast tools are provided through a web-based portal that requires only internet access and minimal training. To test the efficacy of SnowCloud we provided the tools and a series of tutorials in English and Spanish to water resource managers in Chile, Spain, and the United States. Participants assessed their user experience and provided feedback, and the results of our multi-cultural assessment are also presented. While our results focus on SnowCloud, they outline methods to develop cloud-based tools that function effectively across cultures and languages. Our approach also addresses the primary challenges of science-based computing; human resource limitations, infrastructure costs, and expensive proprietary software. These challenges are particularly problematic in developing countries.
NASA Astrophysics Data System (ADS)
Gallagher, J. H. R.; Jelenak, A.; Potter, N.; Fulker, D. W.; Habermann, T.
2017-12-01
Providing data services based on cloud computing technology that is equivalent to those developed for traditional computing and storage systems is critical for successful migration to cloud-based architectures for data production, scientific analysis and storage. OPeNDAP Web-service capabilities (comprising the Data Access Protocol (DAP) specification plus open-source software for realizing DAP in servers and clients) are among the most widely deployed means for achieving data-as-service functionality in the Earth sciences. OPeNDAP services are especially common in traditional data center environments where servers offer access to datasets stored in (very large) file systems, and a preponderance of the source data for these services is being stored in the Hierarchical Data Format Version 5 (HDF5). Three candidate architectures for serving NASA satellite Earth Science HDF5 data via Hyrax running on Amazon Web Services (AWS) were developed and their performance examined for a set of representative use cases. The performance was based both on runtime and incurred cost. The three architectures differ in how HDF5 files are stored in the Amazon Simple Storage Service (S3) and how the Hyrax server (as an EC2 instance) retrieves their data. The results for both the serial and parallel access to HDF5 data in the S3 will be presented. While the study focused on HDF5 data, OPeNDAP and the Hyrax data server, the architectures are generic and the analysis can be extrapolated to many different data formats, web APIs, and data servers.
A sustainability model based on cloud infrastructures for core and downstream Copernicus services
NASA Astrophysics Data System (ADS)
Manunta, Michele; Calò, Fabiana; De Luca, Claudio; Elefante, Stefano; Farres, Jordi; Guzzetti, Fausto; Imperatore, Pasquale; Lanari, Riccardo; Lengert, Wolfgang; Zinno, Ivana; Casu, Francesco
2014-05-01
The incoming Sentinel missions have been designed to be the first remote sensing satellite system devoted to operational services. In particular, the Synthetic Aperture Radar (SAR) Sentinel-1 sensor, dedicated to globally acquire over land in the interferometric mode, guarantees an unprecedented capability to investigate and monitor the Earth surface deformations related to natural and man-made hazards. Thanks to the global coverage strategy and 12-day revisit time, jointly with the free and open access data policy, such a system will allow an extensive application of Differential Interferometric SAR (DInSAR) techniques. In such a framework, European Commission has been funding several projects through the GMES and Copernicus programs, aimed at preparing the user community to the operational and extensive use of Sentinel-1 products for risk mitigation and management purposes. Among them, the FP7-DORIS, an advanced GMES downstream service coordinated by Italian National Council of Research (CNR), is based on the fully exploitation of advanced DInSAR products in landslides and subsidence contexts. In particular, the DORIS project (www.doris-project.eu) has developed innovative scientific techniques and methodologies to support Civil Protection Authorities (CPA) during the pre-event, event, and post-event phases of the risk management cycle. Nonetheless, the huge data stream expected from the Sentinel-1 satellite may jeopardize the effective use of such data in emergency response and security scenarios. This potential bottleneck can be properly overcome through the development of modern infrastructures, able to efficiently provide computing resources as well as advanced services for big data management, processing and dissemination. In this framework, CNR and ESA have tightened up a cooperation to foster the use of GRID and cloud computing platforms for remote sensing data processing, and to make available to a large audience advanced and innovative tools for DInSAR products generation and exploitation. In particular, CNR is porting the multi-temporal DInSAR technique referred to as Small Baseline Subset (SBAS) into the ESA G-POD (Grid Processing On Demand) and CIOP (Cloud Computing Operational Pilot) platforms (Elefante et al., 2013) within the SuperSites Exploitation Platform (SSEP) project, which aim is contributing to the development of an ecosystem for big geo-data processing and dissemination. This work focuses on presenting the main results that have been achieved by the DORIS project concerning the use of advanced DInSAR products for supporting CPA during the risk management cycle. Furthermore, based on the DORIS experience, a sustainability model for Core and Downstream Copernicus services based on the effective exploitation of cloud platforms is proposed. In this framework, remote sensing community, both service providers and users, can significantly benefit from the Helix Nebula-The Science Cloud initiative, created by European scientific institutions, agencies, SMEs and enterprises to pave the way for the development and exploitation of a cloud computing infrastructure for science. REFERENCES Elefante, S., Imperatore, P. , Zinno, I., M. Manunta, E. Mathot, F. Brito, J. Farres, W. Lengert, R. Lanari, F. Casu, 2013, "SBAS-DINSAR Time series generation on cloud computing platforms". IEEE IGARSS Conference, Melbourne (AU), July 2013.
AIRS Version 6 Products and Data Services at NASA GES DISC
NASA Astrophysics Data System (ADS)
Ding, F.; Savtchenko, A. K.; Hearty, T. J.; Theobald, M. L.; Vollmer, B.; Esfandiari, E.
2013-12-01
The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is the home of processing, archiving, and distribution services for data from the Atmospheric Infrared Sounder (AIRS) mission. The AIRS mission is entering its 11th year of global observations of the atmospheric state, including temperature and humidity profiles, outgoing longwave radiation, cloud properties, and trace gases. The GES DISC, in collaboration with the AIRS Project, released data from the Version 6 algorithm in early 2013. The new algorithm represents a significant improvement over previous versions in terms of greater stability, yield, and quality of products. Among the most substantial advances are: improved soundings of Tropospheric and Sea Surface Temperatures; larger improvements with increasing cloud cover; improved retrievals of surface spectral emissivity; near-complete removal of spurious temperature bias trends seen in earlier versions; substantially improved retrieval yield (i.e., number of soundings accepted for output) for climate studies; AIRS-Only retrievals with comparable accuracy to AIRS+AMSU (Advanced Microwave Sounding Unit) retrievals; and more realistic hemispheric seasonal variability and global distribution of carbon monoxide. The GES DISC is working to bring the distribution services up-to-date with these new developments. Our focus is on popular services, like variable subsetting and quality screening, which are impacted by the new elements in Version 6. Other developments in visualization services, such as Giovanni, Near-Real Time imagery, and a granule-map viewer, are progressing along with the introduction of the new data; each service presents its own challenge. This presentation will demonstrate the most significant improvements in Version 6 AIRS products, such as newly added variables (higher resolution outgoing longwave radiation, new cloud property products, etc.), the new quality control schema, and improved retrieval yields. We will also demonstrate the various distribution and visualization services for AIRS data products. The cloud properties, model physics, and water and energy cycles research communities are invited to take advantage of the improvements in Version 6 AIRS products and the various services at GES DISC which provide them.
Lee, Keonsoo; Rho, Seungmin; Lee, Seok-Won
2014-01-01
In mobile cloud computing environment, the cooperation of distributed computing objects is one of the most important requirements for providing successful cloud services. To satisfy this requirement, all the members, who are employed in the cooperation group, need to share the knowledge for mutual understanding. Even if ontology can be the right tool for this goal, there are several issues to make a right ontology. As the cost and complexity of managing knowledge increase according to the scale of the knowledge, reducing the size of ontology is one of the critical issues. In this paper, we propose a method of extracting ontology module to increase the utility of knowledge. For the given signature, this method extracts the ontology module, which is semantically self-contained to fulfill the needs of the service, by considering the syntactic structure and semantic relation of concepts. By employing this module, instead of the original ontology, the cooperation of computing objects can be performed with less computing load and complexity. In particular, when multiple external ontologies need to be combined for more complex services, this method can be used to optimize the size of shared knowledge.
VidCat: an image and video analysis service for personal media management
NASA Astrophysics Data System (ADS)
Begeja, Lee; Zavesky, Eric; Liu, Zhu; Gibbon, David; Gopalan, Raghuraman; Shahraray, Behzad
2013-03-01
Cloud-based storage and consumption of personal photos and videos provides increased accessibility, functionality, and satisfaction for mobile users. One cloud service frontier that is recently growing is that of personal media management. This work presents a system called VidCat that assists users in the tagging, organization, and retrieval of their personal media by faces and visual content similarity, time, and date information. Evaluations for the effectiveness of the copy detection and face recognition algorithms on standard datasets are also discussed. Finally, the system includes a set of application programming interfaces (API's) allowing content to be uploaded, analyzed, and retrieved on any client with simple HTTP-based methods as demonstrated with a prototype developed on the iOS and Android mobile platforms.
SenSyF Experience on Integration of EO Services in a Generic, Cloud-Based EO Exploitation Platform
NASA Astrophysics Data System (ADS)
Almeida, Nuno; Catarino, Nuno; Gutierrez, Antonio; Grosso, Nuno; Andrade, Joao; Caumont, Herve; Goncalves, Pedro; Villa, Guillermo; Mangin, Antoine; Serra, Romain; Johnsen, Harald; Grydeland, Tom; Emsley, Stephen; Jauch, Eduardo; Moreno, Jose; Ruiz, Antonio
2016-08-01
SenSyF is a cloud-based data processing framework for EO- based services. It has been pioneer in addressing Big Data issues from the Earth Observation point of view, and is a precursor of several of the technologies and methodologies that will be deployed in ESA's Thematic Exploitation Platforms and other related systems.The SenSyF system focuses on developing fully automated data management, together with access to a processing and exploitation framework, including Earth Observation specific tools. SenSyF is both a development and validation platform for data intensive applications using Earth Observation data. With SenSyF, scientific, institutional or commercial institutions developing EO- based applications and services can take advantage of distributed computational and storage resources, tailored for applications dependent on big Earth Observation data, and without resorting to deep infrastructure and technological investments.This paper describes the integration process and the experience gathered from different EO Service providers during the project.
The State of Cloud-Based Biospecimen and Biobank Data Management Tools.
Paul, Shonali; Gade, Aditi; Mallipeddi, Sumani
2017-04-01
Biobanks are critical for collecting and managing high-quality biospecimens from donors with appropriate clinical annotation. The high-quality human biospecimens and associated data are required to better understand disease processes. Therefore, biobanks have become an important and essential resource for healthcare research and drug discovery. However, collecting and managing huge volumes of data (biospecimens and associated clinical data) necessitate that biobanks use appropriate data management solutions that can keep pace with the ever-changing requirements of research. To automate biobank data management, biobanks have been investing in traditional Laboratory Information Management Systems (LIMS). However, there are a myriad of challenges faced by biobanks in acquiring traditional LIMS. Traditional LIMS are cost-intensive and often lack the flexibility to accommodate changes in data sources and workflows. Cloud technology is emerging as an alternative that provides the opportunity to small and medium-sized biobanks to automate their operations in a cost-effective manner, even without IT personnel. Cloud-based solutions offer the advantage of heightened security, rapid scalability, dynamic allocation of services, and can facilitate collaboration between different research groups by using a shared environment on a "pay-as-you-go" basis. The benefits offered by cloud technology have resulted in the development of cloud-based data management solutions as an alternative to traditional on-premise software. After evaluating the advantages offered by cloud technology, several biobanks have started adopting cloud-based tools. Cloud-based tools provide biobanks with easy access to biospecimen data for real-time sharing with clinicians. Another major benefit realized by biobanks by implementing cloud-based applications is unlimited data storage on the cloud and automatic backups for protecting any data loss in the face of natural calamities.
PRECISE:PRivacy-prEserving Cloud-assisted quality Improvement Service in hEalthcare
Chen, Feng; Wang, Shuang; Mohammed, Noman; Cheng, Samuel; Jiang, Xiaoqian
2015-01-01
Quality improvement (QI) requires systematic and continuous efforts to enhance healthcare services. A healthcare provider might wish to compare local statistics with those from other institutions in order to identify problems and develop intervention to improve the quality of care. However, the sharing of institution information may be deterred by institutional privacy as publicizing such statistics could lead to embarrassment and even financial damage. In this article, we propose a PRivacy-prEserving Cloud-assisted quality Improvement Service in hEalthcare (PRECISE), which aims at enabling cross-institution comparison of healthcare statistics while protecting privacy. The proposed framework relies on a set of state-of-the-art cryptographic protocols including homomorphic encryption and Yao’s garbled circuit schemes. By securely pooling data from different institutions, PRECISE can rank the encrypted statistics to facilitate QI among participating institutes. We conducted experiments using MIMIC II database and demonstrated the feasibility of the proposed PRECISE framework. PMID:26146645
PRECISE:PRivacy-prEserving Cloud-assisted quality Improvement Service in hEalthcare.
Chen, Feng; Wang, Shuang; Mohammed, Noman; Cheng, Samuel; Jiang, Xiaoqian
2014-10-01
Quality improvement (QI) requires systematic and continuous efforts to enhance healthcare services. A healthcare provider might wish to compare local statistics with those from other institutions in order to identify problems and develop intervention to improve the quality of care. However, the sharing of institution information may be deterred by institutional privacy as publicizing such statistics could lead to embarrassment and even financial damage. In this article, we propose a PRivacy-prEserving Cloud-assisted quality Improvement Service in hEalthcare (PRECISE), which aims at enabling cross-institution comparison of healthcare statistics while protecting privacy. The proposed framework relies on a set of state-of-the-art cryptographic protocols including homomorphic encryption and Yao's garbled circuit schemes. By securely pooling data from different institutions, PRECISE can rank the encrypted statistics to facilitate QI among participating institutes. We conducted experiments using MIMIC II database and demonstrated the feasibility of the proposed PRECISE framework.
The optimal design of service level agreement in IAAS based on BDIM
NASA Astrophysics Data System (ADS)
Liu, Xiaochen; Zhan, Zhiqiang
2013-03-01
Cloud Computing has become more and more prevalent over the past few years, and we have seen the importance of Infrastructure-as-a-service (IaaS). This kind of service enables scaling of bandwidth, memory, computing power and storage. But the SLA in IaaS also faces complexity and variety. Users also consider the business of the service. To meet the most users requirements, a methodology for designing optimal SLA in IaaS from the business perspectives is proposed. This method is different from the conventional SLA design method, It not only focuses on service provider perspective, also from the customer to carry on the design. This methodology better captures the linkage between service provider and service client by considering minimizing the business loss originated from performance degradation and IT infrastructure failures and maximizing profits for service provider and clients. An optimal design in an IaaS model is provided and an example are analyzed to show this approach obtain higher profit.
An energy-efficient failure detector for vehicular cloud computing.
Liu, Jiaxi; Wu, Zhibo; Dong, Jian; Wu, Jin; Wen, Dongxin
2018-01-01
Failure detectors are one of the fundamental components for maintaining the high availability of vehicular cloud computing. In vehicular cloud computing, lots of RSUs are deployed along the road to improve the connectivity. Many of them are equipped with solar battery due to the unavailability or excess expense of wired electrical power. So it is important to reduce the battery consumption of RSU. However, the existing failure detection algorithms are not designed to save battery consumption RSU. To solve this problem, a new energy-efficient failure detector 2E-FD has been proposed specifically for vehicular cloud computing. 2E-FD does not only provide acceptable failure detection service, but also saves the battery consumption of RSU. Through the comparative experiments, the results show that our failure detector has better performance in terms of speed, accuracy and battery consumption.
An energy-efficient failure detector for vehicular cloud computing
Liu, Jiaxi; Wu, Zhibo; Wu, Jin; Wen, Dongxin
2018-01-01
Failure detectors are one of the fundamental components for maintaining the high availability of vehicular cloud computing. In vehicular cloud computing, lots of RSUs are deployed along the road to improve the connectivity. Many of them are equipped with solar battery due to the unavailability or excess expense of wired electrical power. So it is important to reduce the battery consumption of RSU. However, the existing failure detection algorithms are not designed to save battery consumption RSU. To solve this problem, a new energy-efficient failure detector 2E-FD has been proposed specifically for vehicular cloud computing. 2E-FD does not only provide acceptable failure detection service, but also saves the battery consumption of RSU. Through the comparative experiments, the results show that our failure detector has better performance in terms of speed, accuracy and battery consumption. PMID:29352282
Compression-based aggregation model for medical web services.
Al-Shammary, Dhiah; Khalil, Ibrahim
2010-01-01
Many organizations such as hospitals have adopted Cloud Web services in applying their network services to avoid investing heavily computing infrastructure. SOAP (Simple Object Access Protocol) is the basic communication protocol of Cloud Web services that is XML based protocol. Generally,Web services often suffer congestions and bottlenecks as a result of the high network traffic that is caused by the large XML overhead size. At the same time, the massive load on Cloud Web services in terms of the large demand of client requests has resulted in the same problem. In this paper, two XML-aware aggregation techniques that are based on exploiting the compression concepts are proposed in order to aggregate the medical Web messages and achieve higher message size reduction.
Climate simulations and services on HPC, Cloud and Grid infrastructures
NASA Astrophysics Data System (ADS)
Cofino, Antonio S.; Blanco, Carlos; Minondo Tshuma, Antonio
2017-04-01
Cloud, Grid and High Performance Computing have changed the accessibility and availability of computing resources for Earth Science research communities, specially for Climate community. These paradigms are modifying the way how climate applications are being executed. By using these technologies the number, variety and complexity of experiments and resources are increasing substantially. But, although computational capacity is increasing, traditional applications and tools used by the community are not good enough to manage this large volume and variety of experiments and computing resources. In this contribution, we evaluate the challenges to run climate simulations and services on Grid, Cloud and HPC infrestructures and how to tackle them. The Grid and Cloud infrastructures provided by EGI's VOs ( esr , earth.vo.ibergrid and fedcloud.egi.eu) will be evaluated, as well as HPC resources from PRACE infrastructure and institutional clusters. To solve those challenges, solutions using DRM4G framework will be shown. DRM4G provides a good framework to manage big volume and variety of computing resources for climate experiments. This work has been supported by the Spanish National R&D Plan under projects WRF4G (CGL2011-28864), INSIGNIA (CGL2016-79210-R) and MULTI-SDM (CGL2015-66583-R) ; the IS-ENES2 project from the 7FP of the European Commission (grant agreement no. 312979); the European Regional Development Fund—ERDF and the Programa de Personal Investigador en Formación Predoctoral from Universidad de Cantabria and Government of Cantabria.
Evaluation of Future Internet Technologies for Processing and Distribution of Satellite Imagery
NASA Astrophysics Data System (ADS)
Becedas, J.; Perez, R.; Gonzalez, G.; Alvarez, J.; Garcia, F.; Maldonado, F.; Sucari, A.; Garcia, J.
2015-04-01
Satellite imagery data centres are designed to operate a defined number of satellites. For instance, difficulties when new satellites have to be incorporated in the system appear. This occurs because traditional infrastructures are neither flexible nor scalable. With the appearance of Future Internet technologies new solutions can be provided to manage large and variable amounts of data on demand. These technologies optimize resources and facilitate the appearance of new applications and services in the traditional Earth Observation (EO) market. The use of Future Internet technologies for the EO sector were validated with the GEO-Cloud experiment, part of the Fed4FIRE FP7 European project. This work presents the final results of the project, in which a constellation of satellites records the whole Earth surface on a daily basis. The satellite imagery is downloaded into a distributed network of ground stations and ingested in a cloud infrastructure, where the data is processed, stored, archived and distributed to the end users. The processing and transfer times inside the cloud, workload of the processors, automatic cataloguing and accessibility through the Internet are evaluated to validate if Future Internet technologies present advantages over traditional methods. Applicability of these technologies is evaluated to provide high added value services. Finally, the advantages of using federated testbeds to carry out large scale, industry driven experiments are analysed evaluating the feasibility of an experiment developed in the European infrastructure Fed4FIRE and its migration to a commercial cloud: SoftLayer, an IBM Company.
NASA Astrophysics Data System (ADS)
Asbjornsen, H.; Geissert, D.; Gomez-Tagle, A.; Holwerda, F.; Manson, R.; Perez-Maqueo, O.; Munoz-Villers, L.; Scullion, J.
2013-05-01
Payment for hydrologic service (PHS) programs are increasingly being used as a means to incentivize watershed protection by compensating upstream 'water producers' with payments made by downstream 'water consumers'. However, the effectiveness of PHS programs in achieving their target goals is often poorly understood. Here, we draw from insights obtained from socioeconomic and ecohydrological research in Veracruz, Mexico to explore interactions between PHS policies, landowner decisions, and hydrologic services. GIS analysis of land-cover changes during 2003-2009 combined with interviews of PHS participants indicated that despite lower deforestation rates on properties receiving PES payments, other factors were likely to have a greater influence on land use decisions than PHS payments per se, including opportunity costs and personal conservation ethic. The interviews also highlighted a general lack of trust and cooperation between the citizen participants and government administrators, which was reflected in the relatively low level of knowledge of the PHS programs' regulations and goals, the role of forests in protecting water resources, and a low level of co-financing by the private sector. An important premise of PHS programs is that protecting existing forest cover (and planting trees) will enhance water supply, especially in upland cloud forests that are due to their perceived role as water producers. Measurements of climate, steamflow, canopy fog interception, plant transpiration, soil water dynamics, and hydrologic flow paths were collected over a 3-year period to assess stand water balance and streamflow response under four different land covers: mature cloud forest, pasture, regenerating cloud forest, pine reforestation. Results suggested relatively minor additional inputs of fog to increasing streamflow in cloud forest watersheds, while conversion of forest to pasture did not markedly decrease dry season flows, but did increase annual flows due to lower pasture evapotranspiration. Nevertheless, the pasture showed higher surface runoff for the most intense storms, indicating a diminished infiltration capacity. Young pine plantations and regenerating cloud forest had higher evapotranspiration and therefore higher water yield relative to mature cloud forest. Our analysis suggests a disconnect between PHS policies and the hydrological services provided through forest conservation and tree planting. The implications of this apparent disconnect are discussed within the context of designing effective policies for enhancing hydrologic services, and the importance of site-based research and monitoring to improve understanding of coupled social-ecohydrological systems.
Analysis of cloud-based solutions on EHRs systems in different scenarios.
Fernández-Cardeñosa, Gonzalo; de la Torre-Díez, Isabel; López-Coronado, Miguel; Rodrigues, Joel J P C
2012-12-01
Nowadays with the growing of the wireless connections people can access all the resources hosted in the Cloud almost everywhere. In this context, organisms can take advantage of this fact, in terms of e-Health, deploying Cloud-based solutions on e-Health services. In this paper two Cloud-based solutions for different scenarios of Electronic Health Records (EHRs) management system are proposed. We have researched articles published between the years 2005 and 2011 about the implementation of e-Health services based on the Cloud in Medline. In order to analyze the best scenario for the deployment of Cloud Computing two solutions for a large Hospital and a network of Primary Care Health centers have been studied. Economic estimation of the cost of the implementation for both scenarios has been done via the Amazon calculator tool. As a result of this analysis two solutions are suggested depending on the scenario: To deploy a Cloud solution for a large Hospital a typical Cloud solution in which are hired just the needed services has been assumed. On the other hand to work with several Primary Care Centers it's suggested the implementation of a network, which interconnects these centers with just one Cloud environment. Finally it's considered the fact of deploying a hybrid solution: in which EHRs with images will be hosted in the Hospital or Primary Care Centers and the rest of them will be migrated to the Cloud.
A General Cross-Layer Cloud Scheduling Framework for Multiple IoT Computer Tasks.
Wu, Guanlin; Bao, Weidong; Zhu, Xiaomin; Zhang, Xiongtao
2018-05-23
The diversity of IoT services and applications brings enormous challenges to improving the performance of multiple computer tasks' scheduling in cross-layer cloud computing systems. Unfortunately, the commonly-employed frameworks fail to adapt to the new patterns on the cross-layer cloud. To solve this issue, we design a new computer task scheduling framework for multiple IoT services in cross-layer cloud computing systems. Specifically, we first analyze the features of the cross-layer cloud and computer tasks. Then, we design the scheduling framework based on the analysis and present detailed models to illustrate the procedures of using the framework. With the proposed framework, the IoT services deployed in cross-layer cloud computing systems can dynamically select suitable algorithms and use resources more effectively to finish computer tasks with different objectives. Finally, the algorithms are given based on the framework, and extensive experiments are also given to validate its effectiveness, as well as its superiority.
Design for Run-Time Monitor on Cloud Computing
NASA Astrophysics Data System (ADS)
Kang, Mikyung; Kang, Dong-In; Yun, Mira; Park, Gyung-Leen; Lee, Junghoon
Cloud computing is a new information technology trend that moves computing and data away from desktops and portable PCs into large data centers. The basic principle of cloud computing is to deliver applications as services over the Internet as well as infrastructure. A cloud is the type of a parallel and distributed system consisting of a collection of inter-connected and virtualized computers that are dynamically provisioned and presented as one or more unified computing resources. The large-scale distributed applications on a cloud require adaptive service-based software, which has the capability of monitoring the system status change, analyzing the monitored information, and adapting its service configuration while considering tradeoffs among multiple QoS features simultaneously. In this paper, we design Run-Time Monitor (RTM) which is a system software to monitor the application behavior at run-time, analyze the collected information, and optimize resources on cloud computing. RTM monitors application software through library instrumentation as well as underlying hardware through performance counter optimizing its computing configuration based on the analyzed data.
A Cloud Robotics Based Service for Managing RPAS in Emergency, Rescue and Hazardous Scenarios
NASA Astrophysics Data System (ADS)
Silvagni, Mario; Chiaberge, Marcello; Sanguedolce, Claudio; Dara, Gianluca
2016-04-01
Cloud robotics and cloud services are revolutionizing not only the ICT world but also the robotics industry, giving robots more computing capabilities, storage and connection bandwidth while opening new scenarios that blend the physical to the digital world. In this vision, new IT architectures are required to manage robots, retrieve data from them and create services to interact with users. Among all the robots this work is mainly focused on flying robots, better known as drones, UAV (Unmanned Aerial Vehicle) or RPAS (Remotely Piloted Aircraft Systems). The cloud robotics approach shifts the concept of having a single local "intelligence" for every single UAV, as a unique device that carries out onboard all the computation and storage processes, to a more powerful "centralized brain" located in the cloud. This breakthrough opens new scenarios where UAVs are agents, relying on remote servers for most of their computational load and data storage, creating a network of devices where they can share knowledge and information. Many applications, using UAVs, are growing as interesting and suitable devices for environment monitoring. Many services can be build fetching data from UAVs, such as telemetry, video streaming, pictures or sensors data; once. These services, part of the IT architecture, can be accessed via web by other devices or shared with other UAVs. As test cases of the proposed architecture, two examples are reported. In the first one a search and rescue or emergency management, where UAVs are required for monitoring intervention, is shown. In case of emergency or aggression, the user requests the emergency service from the IT architecture, providing GPS coordinates and an identification number. The IT architecture uses a UAV (choosing among the available one according to distance, service status, etc.) to reach him/her for monitoring and support operations. In the meantime, an officer will use the service to see the current position of the UAV, its telemetry and video streaming from its camera. Data are stored for further use and documentation and can be shared to all the involved personal or services. The second case refer to imaging survey. An investigation area is selected using a map or a set of coordinates by a user that can be on the field on in a management facility. The cloud system elaborate this data and automatically compute a flight plan that consider the survey data requirements (i.e: picture ground resolution, overlapping) but also several environment constraints (i.e: no fly zones, possible hazardous areas, known obstacles, etc). Once the flight plan is loaded in the selected UAV the mission starts. During the mission, if a suitable data network coverage is available, the UAV transmit acquired images (typically low quality image to limit bandwidth) and shooting pose in order to perform a preliminary check during the mission and minimize failing in survey; if not, all data are uploaded asynchronously after the mission. The cloud servers perform all the tasks related to image processing (mosaic, ortho-photo, geo-referencing, 3D models) and data management.
System and Method for Providing a Climate Data Persistence Service
NASA Technical Reports Server (NTRS)
Schnase, John L. (Inventor); Ripley, III, William David (Inventor); Duffy, Daniel Q. (Inventor); Thompson, John H. (Inventor); Strong, Savannah L. (Inventor); McInerney, Mark (Inventor); Sinno, Scott (Inventor); Tamkin, Glenn S. (Inventor); Nadeau, Denis (Inventor)
2018-01-01
A system, method and computer-readable storage devices for providing a climate data persistence service. A system configured to provide the service can include a climate data server that performs data and metadata storage and management functions for climate data objects, a compute-storage platform that provides the resources needed to support a climate data server, provisioning software that allows climate data server instances to be deployed as virtual climate data servers in a cloud computing environment, and a service interface, wherein persistence service capabilities are invoked by software applications running on a client device. The climate data objects can be in various formats, such as International Organization for Standards (ISO) Open Archival Information System (OAIS) Reference Model Submission Information Packages, Archive Information Packages, and Dissemination Information Packages. The climate data server can enable scalable, federated storage, management, discovery, and access, and can be tailored for particular use cases.
Dynamic partitioning as a way to exploit new computing paradigms: the cloud use case.
NASA Astrophysics Data System (ADS)
Ciaschini, Vincenzo; Dal Pra, Stefano; dell'Agnello, Luca
2015-12-01
The WLCG community and many groups in the HEP community have based their computing strategy on the Grid paradigm, which proved successful and still ensures its goals. However, Grid technology has not spread much over other communities; in the commercial world, the cloud paradigm is the emerging way to provide computing services. WLCG experiments aim to achieve integration of their existing current computing model with cloud deployments and take advantage of the so-called opportunistic resources (including HPC facilities) which are usually not Grid compliant. One missing feature in the most common cloud frameworks, is the concept of job scheduler, which plays a key role in a traditional computing centre, by enabling a fairshare based access at the resources to the experiments in a scenario where demand greatly outstrips availability. At CNAF we are investigating the possibility to access the Tier-1 computing resources as an OpenStack based cloud service. The system, exploiting the dynamic partitioning mechanism already being used to enable Multicore computing, allowed us to avoid a static splitting of the computing resources in the Tier-1 farm, while permitting a share friendly approach. The hosts in a dynamically partitioned farm may be moved to or from the partition, according to suitable policies for request and release of computing resources. Nodes being requested in the partition switch their role and become available to play a different one. In the cloud use case hosts may switch from acting as Worker Node in the Batch system farm to cloud compute node member, made available to tenants. In this paper we describe the dynamic partitioning concept, its implementation and integration with our current batch system, LSF.
Evaluating open-source cloud computing solutions for geosciences
NASA Astrophysics Data System (ADS)
Huang, Qunying; Yang, Chaowei; Liu, Kai; Xia, Jizhe; Xu, Chen; Li, Jing; Gui, Zhipeng; Sun, Min; Li, Zhenglong
2013-09-01
Many organizations start to adopt cloud computing for better utilizing computing resources by taking advantage of its scalability, cost reduction, and easy to access characteristics. Many private or community cloud computing platforms are being built using open-source cloud solutions. However, little has been done to systematically compare and evaluate the features and performance of open-source solutions in supporting Geosciences. This paper provides a comprehensive study of three open-source cloud solutions, including OpenNebula, Eucalyptus, and CloudStack. We compared a variety of features, capabilities, technologies and performances including: (1) general features and supported services for cloud resource creation and management, (2) advanced capabilities for networking and security, and (3) the performance of the cloud solutions in provisioning and operating the cloud resources as well as the performance of virtual machines initiated and managed by the cloud solutions in supporting selected geoscience applications. Our study found that: (1) no significant performance differences in central processing unit (CPU), memory and I/O of virtual machines created and managed by different solutions, (2) OpenNebula has the fastest internal network while both Eucalyptus and CloudStack have better virtual machine isolation and security strategies, (3) Cloudstack has the fastest operations in handling virtual machines, images, snapshots, volumes and networking, followed by OpenNebula, and (4) the selected cloud computing solutions are capable for supporting concurrent intensive web applications, computing intensive applications, and small-scale model simulations without intensive data communication.
Embracing the Cloud: Six Ways to Look at the Shift to Cloud Computing
ERIC Educational Resources Information Center
Ullman, David F.; Haggerty, Blake
2010-01-01
Cloud computing is the latest paradigm shift for the delivery of IT services. Where previous paradigms (centralized, decentralized, distributed) were based on fairly straightforward approaches to technology and its management, cloud computing is radical in comparison. The literature on cloud computing, however, suffers from many divergent…
An approximate dynamic programming approach to resource management in multi-cloud scenarios
NASA Astrophysics Data System (ADS)
Pietrabissa, Antonio; Priscoli, Francesco Delli; Di Giorgio, Alessandro; Giuseppi, Alessandro; Panfili, Martina; Suraci, Vincenzo
2017-03-01
The programmability and the virtualisation of network resources are crucial to deploy scalable Information and Communications Technology (ICT) services. The increasing demand of cloud services, mainly devoted to the storage and computing, requires a new functional element, the Cloud Management Broker (CMB), aimed at managing multiple cloud resources to meet the customers' requirements and, simultaneously, to optimise their usage. This paper proposes a multi-cloud resource allocation algorithm that manages the resource requests with the aim of maximising the CMB revenue over time. The algorithm is based on Markov decision process modelling and relies on reinforcement learning techniques to find online an approximate solution.
Integrated Geo Hazard Management System in Cloud Computing Technology
NASA Astrophysics Data System (ADS)
Hanifah, M. I. M.; Omar, R. C.; Khalid, N. H. N.; Ismail, A.; Mustapha, I. S.; Baharuddin, I. N. Z.; Roslan, R.; Zalam, W. M. Z.
2016-11-01
Geo hazard can result in reducing of environmental health and huge economic losses especially in mountainous area. In order to mitigate geo-hazard effectively, cloud computer technology are introduce for managing geo hazard database. Cloud computing technology and it services capable to provide stakeholder's with geo hazards information in near to real time for an effective environmental management and decision-making. UNITEN Integrated Geo Hazard Management System consist of the network management and operation to monitor geo-hazard disaster especially landslide in our study area at Kelantan River Basin and boundary between Hulu Kelantan and Hulu Terengganu. The system will provide easily manage flexible measuring system with data management operates autonomously and can be controlled by commands to collects and controls remotely by using “cloud” system computing. This paper aims to document the above relationship by identifying the special features and needs associated with effective geohazard database management using “cloud system”. This system later will use as part of the development activities and result in minimizing the frequency of the geo-hazard and risk at that research area.
Grids, virtualization, and clouds at Fermilab
Timm, S.; Chadwick, K.; Garzoglio, G.; ...
2014-06-11
Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture andmore » the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). Lastly, this work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.« less
Grids, virtualization, and clouds at Fermilab
NASA Astrophysics Data System (ADS)
Timm, S.; Chadwick, K.; Garzoglio, G.; Noh, S.
2014-06-01
Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture and the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). This work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.
Military clouds: utilization of cloud computing systems at the battlefield
NASA Astrophysics Data System (ADS)
Süleyman, Sarıkürk; Volkan, Karaca; İbrahim, Kocaman; Ahmet, Şirzai
2012-05-01
Cloud computing is known as a novel information technology (IT) concept, which involves facilitated and rapid access to networks, servers, data saving media, applications and services via Internet with minimum hardware requirements. Use of information systems and technologies at the battlefield is not new. Information superiority is a force multiplier and is crucial to mission success. Recent advances in information systems and technologies provide new means to decision makers and users in order to gain information superiority. These developments in information technologies lead to a new term, which is known as network centric capability. Similar to network centric capable systems, cloud computing systems are operational today. In the near future extensive use of military clouds at the battlefield is predicted. Integrating cloud computing logic to network centric applications will increase the flexibility, cost-effectiveness, efficiency and accessibility of network-centric capabilities. In this paper, cloud computing and network centric capability concepts are defined. Some commercial cloud computing products and applications are mentioned. Network centric capable applications are covered. Cloud computing supported battlefield applications are analyzed. The effects of cloud computing systems on network centric capability and on the information domain in future warfare are discussed. Battlefield opportunities and novelties which might be introduced to network centric capability by cloud computing systems are researched. The role of military clouds in future warfare is proposed in this paper. It was concluded that military clouds will be indispensible components of the future battlefield. Military clouds have the potential of improving network centric capabilities, increasing situational awareness at the battlefield and facilitating the settlement of information superiority.