Sample records for cloud system study

  1. Comparison of Cirrus Cloud Models: A Project of the GEWEX Cloud System Study (GCSS) Working Group on Cirrus Cloud Systems

    NASA Technical Reports Server (NTRS)

    Starr, David O'C.; Benedetti, Angela; Boehm, Matt; Brown, Philip R. A.; Gierens, Klaus M.; Girard, Eric; Giraud, Vincent; Jakob, Christian; Jensen, Eric

    2000-01-01

    The GEWEX Cloud System Study (GCSS, GEWEX is the Global Energy and Water Cycle Experiment) is a community activity aiming to promote development of improved cloud parameterizations for application in the large-scale general circulation models (GCMs) used for climate research and for numerical weather prediction. The GCSS strategy is founded upon the use of cloud-system models (CSMs). These are "process" models with sufficient spatial and temporal resolution to represent individual cloud elements, but spanning a wide range of space and time scales to enable statistical analysis of simulated cloud systems. GCSS also employs single-column versions of the parametric cloud models (SCMs) used in GCMs. GCSS has working groups on boundary-layer clouds, cirrus clouds, extratropical layer cloud systems, precipitating deep convective cloud systems, and polar clouds.

  2. Comparison of Cirrus Cloud Models: A Project of the GEWEX Cloud System Study (GCSS) Working Group on Cirrus Cloud Systems

    NASA Technical Reports Server (NTRS)

    Starr, David OC.; Benedetti, Angela; Boehm, Matt; Brown, Philip R. A.; Gierens, Klaus M.; Girard, Eric; Giraud, Vincent; Jakob, Christian; Jensen, Eric; Khvorostyanov, Vitaly; hide

    2000-01-01

    The GEWEX Cloud System Study (GCSS, GEWEX is the Global Energy and Water Cycle Experiment) is a community activity aiming to promote development of improved cloud parameterizations for application in the large-scale general circulation models (GCMs) used for climate research and for numerical weather prediction (Browning et al, 1994). The GCSS strategy is founded upon the use of cloud-system models (CSMs). These are "process" models with sufficient spatial and temporal resolution to represent individual cloud elements, but spanning a wide range of space and time scales to enable statistical analysis of simulated cloud systems. GCSS also employs single-column versions of the parametric cloud models (SCMs) used in GCMs. GCSS has working groups on boundary-layer clouds, cirrus clouds, extratropical layer cloud systems, precipitating deep convective cloud systems, and polar clouds.

  3. GEWEX Cloud Systems Study (GCSS)

    NASA Technical Reports Server (NTRS)

    Moncrieff, Mitch

    1993-01-01

    The Global Energy and Water Cycle Experiment (GEWEX) Cloud Systems Study (GCSS) program seeks to improve the physical understanding of sub-grid scale cloud processes and their representation in parameterization schemes. By improving the description and understanding of key cloud system processes, GCSS aims to develop the necessary parameterizations in climate and numerical weather prediction (NWP) models. GCSS will address these issues mainly through the development and use of cloud-resolving or cumulus ensemble models to generate realizations of a set of archetypal cloud systems. The focus of GCSS is on mesoscale cloud systems, including precipitating convectively-driven cloud systems like MCS's and boundary layer clouds, rather than individual clouds, and on their large-scale effects. Some of the key scientific issues confronting GCSS that particularly relate to research activities in the central U.S. are presented.

  4. Cloud GIS Based Watershed Management

    NASA Astrophysics Data System (ADS)

    Bediroğlu, G.; Colak, H. E.

    2017-11-01

    In this study, we generated a Cloud GIS based watershed management system with using Cloud Computing architecture. Cloud GIS is used as SAAS (Software as a Service) and DAAS (Data as a Service). We applied GIS analysis on cloud in terms of testing SAAS and deployed GIS datasets on cloud in terms of DAAS. We used Hybrid cloud computing model in manner of using ready web based mapping services hosted on cloud (World Topology, Satellite Imageries). We uploaded to system after creating geodatabases including Hydrology (Rivers, Lakes), Soil Maps, Climate Maps, Rain Maps, Geology and Land Use. Watershed of study area has been determined on cloud using ready-hosted topology maps. After uploading all the datasets to systems, we have applied various GIS analysis and queries. Results shown that Cloud GIS technology brings velocity and efficiency for watershed management studies. Besides this, system can be easily implemented for similar land analysis and management studies.

  5. Petri net modeling of encrypted information flow in federated cloud

    NASA Astrophysics Data System (ADS)

    Khushk, Abdul Rauf; Li, Xiaozhong

    2017-08-01

    Solutions proposed and developed for the cost-effective cloud systems suffer from a combination of secure private clouds and less secure public clouds. Need to locate applications within different clouds poses a security risk to the information flow of the entire system. This study addresses this by assigning security levels of a given lattice to the entities of a federated cloud system. A dynamic flow sensitive security model featuring Bell-LaPadula procedures is explored that tracks and authenticates the secure information flow in federated clouds. Additionally, a Petri net model is considered as a case study to represent the proposed system and further validate the performance of the said system.

  6. Spatial characteristics of the tropical cloud systems: comparison between model simulation and satellite observations

    NASA Astrophysics Data System (ADS)

    Zhang, Guang J.; Zurovac-Jevtic, Dance; Boer, Erwin R.

    1999-10-01

    A Lagrangian cloud classification algorithm is applied to the cloud fields in the tropical Pacific simulated by a high-resolution regional atmospheric model. The purpose of this work is to assess the model's ability to reproduce the observed spatial characteristics of the tropical cloud systems. The cloud systems are broadly grouped into three categories: deep clouds, mid-level clouds and low clouds. The deep clouds are further divided into mesoscale convective systems and non-mesoscale convective systems. It is shown that the model is able to simulate the total cloud cover for each category reasonably well. However, when the cloud cover is broken down into contributions from cloud systems of different sizes, it is shown that the simulated cloud size distribution is biased toward large cloud systems, with contribution from relatively small cloud systems significantly under-represented in the model for both deep and mid-level clouds. The number distribution and area contribution to the cloud cover from mesoscale convective systems are very well simulated compared to the satellite observations, so are low clouds as well. The dependence of the cloud physical properties on cloud scale is examined. It is found that cloud liquid water path, rainfall, and ocean surface sensible and latent heat fluxes have a clear dependence on cloud types and scale. This is of particular interest to studies of the cloud effects on surface energy budget and hydrological cycle. The diurnal variation of the cloud population and area is also examined. The model exhibits a varying degree of success in simulating the diurnal variation of the cloud number and area. The observed early morning maximum cloud cover in deep convective cloud systems is qualitatively simulated. However, the afternoon secondary maximum is missing in the model simulation. The diurnal variation of the tropospheric temperature is well reproduced by the model while simulation of the diurnal variation of the moisture field is poor. The implication of this comparison between model simulation and observations on cloud parameterization is discussed.

  7. Health Information System in a Cloud Computing Context.

    PubMed

    Sadoughi, Farahnaz; Erfannia, Leila

    2017-01-01

    Healthcare as a worldwide industry is experiencing a period of growth based on health information technology. The capabilities of cloud systems make it as an option to develop eHealth goals. The main objectives of the present study was to evaluate the advantages and limitations of health information systems implementation in a cloud-computing context that was conducted as a systematic review in 2016. Science direct, Scopus, Web of science, IEEE, PubMed and Google scholar were searched according study criteria. Among 308 articles initially found, 21 articles were entered in the final analysis. All the studies had considered cloud computing as a positive tool to help advance health technology, but none had insisted too much on its limitations and threats. Electronic health record systems have been mostly studied in the fields of implementation, designing, and presentation of models and prototypes. According to this research, the main advantages of cloud-based health information systems could be categorized into the following groups: economic benefits and advantages of information management. The main limitations of the implementation of cloud-based health information systems could be categorized into the 4 groups of security, legal, technical, and human restrictions. Compared to earlier studies, the present research had the advantage of dealing with the issue of health information systems in a cloud platform. The high frequency of studies conducted on the implementation of cloud-based health information systems revealed health industry interest in the application of this technology. Security was a subject discussed in most studies due to health information sensitivity. In this investigation, some mechanisms and solutions were discussed concerning the mentioned systems, which would provide a suitable area for future scientific research on this issue. The limitations and solutions discussed in this systematic study would help healthcare managers and decision-makers take better and more efficient advantages of this technology and make better planning to adopt cloud-based health information systems.

  8. GEWEX Cloud System Study (GCSS) Working Group on Cirrus Cloud Systems (WG2)

    NASA Technical Reports Server (NTRS)

    Starr, David

    2002-01-01

    Status, progress and plans will be given for current GCSS (GEWEX Cloud System Study) WG2 (Working Group on Cirrus Cloud Systems) projects, including: (a) the Idealized Cirrus Model Comparison Project, (b) the Cirrus Parcel Model Comparison Project (Phase 2), and (c) the developing Hurricane Nora extended outflow model case study project. Past results will be summarized and plans for the upcoming year described. Issues and strategies will be discussed. Prospects for developing improved cloud parameterizations derived from results of GCSS WG2 projects will be assessed. Plans for NASA's CRYSTAL-FACE (Cirrus Regional Study of Tropical Anvils and Layers - Florida Area Cirrus Experiment) potential opportunities for use of those data for WG2 model simulations (future projects) will be briefly described.

  9. Air Force Global Weather Central System Architecture Study. Final System/Subsystem Summary Report. Volume 4. Systems Analysis and Trade Studies

    DTIC Science & Technology

    1976-03-01

    atmosphere,as well as very fine grid cloud models and cloud probability models. Some of the new requirements that will be supported with this system are a...including the Advanced Prediction Model for the global atmosphere, as well as very fine grid cloud models and cloud proba- bility models. Some of the new...with the mapping and gridding function (imput and output)? Should the capability exist to interface raw ungridded data with the SID interface

  10. Upper tropospheric cloud systems determined from IR Sounders and their influence on the atmosphere

    NASA Astrophysics Data System (ADS)

    Stubenrauch, Claudia; Protopapadaki, Sofia; Feofilov, Artem; Velasco, Carola Barrientos

    2017-02-01

    Covering about 30% of the Earth, upper tropospheric clouds play a key role in the climate system by modulating the Earth's energy budget and heat transport. Infrared Sounders reliably identify cirrus down to an IR optical depth of 0.1. Recently LMD has built global cloud climate data records from AIRS and IASI observations, covering the periods from 2003-2015 and 2008-2015, respectively. Upper tropospheric clouds often form mesoscale systems. Their organization and properties are being studied by (1) distinguishing cloud regimes within 2° × 2° regions and (2) applying a spatial composite technique on adjacent cloud pressures, which estimates the horizontal extent of the mesoscale cloud systems. Convective core, cirrus anvil and thin cirrus of these systems are then distinguished by their emissivity. Compared to other studies of tropical mesoscale convective systems our data include also the thinner anvil parts, which make out about 30% of the area of tropical mesoscale convective systems. Once the horizontal and vertical structure of these upper tropospheric cloud systems is known, we can estimate their radiative effects in terms of top of atmosphere and surface radiative fluxes and by computing their heating rates.

  11. Atmospheric cloud physics laboratory project study

    NASA Technical Reports Server (NTRS)

    Schultz, W. E.; Stephen, L. A.; Usher, L. H.

    1976-01-01

    Engineering studies were performed for the Zero-G Cloud Physics Experiment liquid cooling and air pressure control systems. A total of four concepts for the liquid cooling system was evaluated, two of which were found to closely approach the systems requirements. Thermal insulation requirements, system hardware, and control sensor locations were established. The reservoir sizes and initial temperatures were defined as well as system power requirements. In the study of the pressure control system, fluid analyses by the Atmospheric Cloud Physics Laboratory were performed to determine flow characteristics of various orifice sizes, vacuum pump adequacy, and control systems performance. System parameters predicted in these analyses as a function of time include the following for various orifice sizes: (1) chamber and vacuum pump mass flow rates, (2) the number of valve openings or closures, (3) the maximum cloud chamber pressure deviation from the allowable, and (4) cloud chamber and accumulator pressure.

  12. National electronic medical records integration on cloud computing system.

    PubMed

    Mirza, Hebah; El-Masri, Samir

    2013-01-01

    Few Healthcare providers have an advanced level of Electronic Medical Record (EMR) adoption. Others have a low level and most have no EMR at all. Cloud computing technology is a new emerging technology that has been used in other industry and showed a great success. Despite the great features of Cloud computing, they haven't been utilized fairly yet in healthcare industry. This study presents an innovative Healthcare Cloud Computing system for Integrating Electronic Health Record (EHR). The proposed Cloud system applies the Cloud Computing technology on EHR system, to present a comprehensive EHR integrated environment.

  13. Application of advanced data assimilation techniques to the study of cloud and precipitation feedbacks in the tropical climate system

    NASA Astrophysics Data System (ADS)

    Posselt, Derek J.

    The research documented in this study centers around two topics: evaluation of the response of precipitating cloud systems to changes in the tropical climate system, and assimilation of cloud and precipitation information from remote-sensing platforms. The motivation for this work proceeds from the following outstanding problems: (1) Use of models to study the response of clouds to perturbations in the climate system is hampered by uncertainties in cloud microphysical parameterizations. (2) Though there is an ever-growing set of available observations, cloud and precipitation assimilation remains a difficult problem, particularly in the tropics. (3) Though it is widely acknowledged that cloud and precipitation processes play a key role in regulating the Earth's response to surface warming, the response of the tropical hydrologic cycle to climate perturbations remains largely unknown. The above issues are addressed in the following manner. First, Markov chain Monte Carlo (MCMC) methods are used to quantify the sensitivity of the NASA Goddard Cumulus Ensemble (GCE) cloud resolving model (CRM) to changes in its cloud odcrnpbymiC8l parameters. TRMM retrievals of precipitation rate, cloud properties, and radiative fluxes and heating rates over the South China Sea are then assimilated into the GCE model to constrain cloud microphysical parameters to values characteristic of convection in the tropics, and the resulting observation-constrained model is used to assess the response of the tropical hydrologic cycle to surface warming. The major findings of this study are the following: (1) MCMC provides an effective tool with which to evaluate both model parameterizations and the assumption of Gaussian statistics used in optimal estimation procedures. (2) Statistics of the tropical radiation budget and hydrologic cycle can be used to effectively constrain CRM cloud microphysical parameters. (3) For 2D CRM simulations run with and without shear, the precipitation efficiency of cloud systems increases with increasing sea surface temperature, while the high cloud fraction and outgoing shortwave radiation decrease.

  14. Study of the Radiative Properties of Inhomogeneous Stratocumulus Clouds

    NASA Technical Reports Server (NTRS)

    Batey, Michael

    1996-01-01

    Clouds play an important role in the radiation budget of the atmosphere. A good understanding of how clouds interact with solar radiation is necessary when considering their effects in both general circulation models and climate models. This study examined the radiative properties of clouds in both an inhomogeneous cloud system, and a simplified cloud system through the use of a Monte Carlo model. The purpose was to become more familiar with the radiative properties of clouds, especially absorption, and to investigate the excess absorption of solar radiation from observations over that calculated from theory. The first cloud system indicated that the absorptance actually decreased as the cloud's inhomogeneity increased, and that cloud forcing does not indicate any changes. The simplified cloud system looked at two different cases of absorption of solar radiation in the cloud. The absorptances calculated from the Monte Carlo is compared to a correction method for calculating absorptances and found that the method can over or underestimate absorptances at cloud edges. Also the cloud edge effects due to solar radiation points to a possibility of overestimating the retrieved optical depth at the edge, and indicates a possible way to correct for it. The effective cloud fraction (Ne) for a long time has been calculated from a cloud's reflectance. From the reflectance it has been observed that the N, for most cloud geometries is greater than the actual cloud fraction (Nc) making a cloud appear wider than it is optically. Recent studies we have performed used a Monte Carlo model to calculate the N, of a cloud using not only the reflectance but also the absorptance. The derived Ne's from the absorptance in some of the Monte Carlo runs did not give the same results as derived from the reflectance. This study also examined the inhomogeneity of clouds to find a relationship between larger and smaller scales, or wavelengths, of the cloud. Both Fourier transforms and wavelet transforms were used to analyze the liquid water content of marine stratocumulus clouds taken during the ASTEX project. From the analysis it was found that the energy in the cloud is not uniformly distributed but is greater at the larger scales than at the smaller scales. This was determined by examining the slope of the power spectrum, and by comparing the variability at two scales from a wavelet analysis.

  15. Research on cloud-based remote measurement and analysis system

    NASA Astrophysics Data System (ADS)

    Gao, Zhiqiang; He, Lingsong; Su, Wei; Wang, Can; Zhang, Changfan

    2015-02-01

    The promising potential of cloud computing and its convergence with technologies such as cloud storage, cloud push, mobile computing allows for creation and delivery of newer type of cloud service. Combined with the thought of cloud computing, this paper presents a cloud-based remote measurement and analysis system. This system mainly consists of three parts: signal acquisition client, web server deployed on the cloud service, and remote client. This system is a special website developed using asp.net and Flex RIA technology, which solves the selective contradiction between two monitoring modes, B/S and C/S. This platform supplies customer condition monitoring and data analysis service by Internet, which was deployed on the cloud server. Signal acquisition device is responsible for data (sensor data, audio, video, etc.) collection and pushes the monitoring data to the cloud storage database regularly. Data acquisition equipment in this system is only conditioned with the function of data collection and network function such as smartphone and smart sensor. This system's scale can adjust dynamically according to the amount of applications and users, so it won't cause waste of resources. As a representative case study, we developed a prototype system based on Ali cloud service using the rotor test rig as the research object. Experimental results demonstrate that the proposed system architecture is feasible.

  16. Evaluation of Cirrus Cloud Simulations using ARM Data-Development of Case Study Data Set

    NASA Technical Reports Server (NTRS)

    Starr, David OC.; Demoz, Belay; Wang, Yansen; Lin, Ruei-Fong; Lare, Andrew; Mace, Jay; Poellot, Michael; Sassen, Kenneth; Brown, Philip

    2002-01-01

    Cloud-resolving models (CRMs) are being increasingly used to develop parametric treatments of clouds and related processes for use in global climate models (GCMs). CRMs represent the integrated knowledge of the physical processes acting to determine cloud system lifecycle and are well matched to typical observational data in terms of physical parameters/measurables and scale-resolved physical processes. Thus, they are suitable for direct comparison to field observations for model validation and improvement. The goal of this project is to improve state-of-the-art CRMs used for studies of cirrus clouds and to establish a relative calibration with GCMs through comparisons among CRMs, single column model (SCM) versions of the GCMs, and observations. The objective is to compare and evaluate a variety of CRMs and SCMs, under the auspices of the GEWEX Cloud Systems Study (GCSS) Working Group on Cirrus Cloud Systems (WG2), using ARM data acquired at the Southern Great Plains (SGP) site. This poster will report on progress in developing a suitable WG2 case study data set based on the September 26, 1996 ARM IOP case - the Hurricane Nora outflow case. Progress is assessing cloud and other environmental conditions will be described. Results of preliminary simulations using a regional cloud system model (MM5) and a CRM will be discussed. Focal science questions for the model comparison are strongly based on results of the idealized GCSS WG2 cirrus cloud model comparison projects (Idealized Cirrus Cloud Model Comparison Project and Cirrus Parcel Model Comparison Project), which will also be briefly summarized.

  17. Studies of extra-solar Oort Clouds and the Kuiper Disk

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1994-01-01

    The March 1994 Semi-Annual report for Studies of Extra-Solar Oort Clouds and the Kuiper Disk is presented. We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. This area holds promise for also improving our understanding of outer solar system formation, the bombardment history of the planets, the transport of volatiles and organics from the outer solar system to the inner planets, and to the ultimate fate of comet clouds around the Sun and other stars. According to 'standard' theory, both the Kuiper Disk and Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Therefore, searches for comet disks and clouds orbiting other stars offer a new method for inferring the presence of planetary systems. Our three-year effort consists of two major efforts: observational work to predict and search for the signatures of Oort Clouds and comet disks around other stars; and modeling studies of the formation and evolution of the Kuiper Disk (KD) and similar assemblages that may reside around other stars, including beta Pic.

  18. A cloud-based production system for information and service integration: an internet of things case study on waste electronics

    NASA Astrophysics Data System (ADS)

    Wang, Xi Vincent; Wang, Lihui

    2017-08-01

    Cloud computing is the new enabling technology that offers centralised computing, flexible data storage and scalable services. In the manufacturing context, it is possible to utilise the Cloud technology to integrate and provide industrial resources and capabilities in terms of Cloud services. In this paper, a function block-based integration mechanism is developed to connect various types of production resources. A Cloud-based architecture is also deployed to offer a service pool which maintains these resources as production services. The proposed system provides a flexible and integrated information environment for the Cloud-based production system. As a specific type of manufacturing, Waste Electrical and Electronic Equipment (WEEE) remanufacturing experiences difficulties in system integration, information exchange and resource management. In this research, WEEE is selected as the example of Internet of Things to demonstrate how the obstacles and bottlenecks are overcome with the help of Cloud-based informatics approach. In the case studies, the WEEE recycle/recovery capabilities are also integrated and deployed as flexible Cloud services. Supporting mechanisms and technologies are presented and evaluated towards the end of the paper.

  19. AIRS Subpixel Cloud Characterization Using MODIS Cloud Products.

    NASA Astrophysics Data System (ADS)

    Li, Jun; Menzel, W. Paul; Sun, Fengying; Schmit, Timothy J.; Gurka, James

    2004-08-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) measurements from the Earth Observing System's (EOS's) Aqua satellite enable improved global monitoring of the distribution of clouds. MODIS is able to provide, at high spatial resolution (1 5 km), a cloud mask, surface and cloud types, cloud phase, cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size (CPS), and cloud optical thickness (COT). AIRS is able to provide CTP, ECA, CPS, and COT at coarser spatial resolution (13.5 km at nadir) but with much better accuracy using its high-spectral-resolution measurements. The combined MODIS AIRS system offers the opportunity for improved cloud products over those possible from either system alone. The key steps for synergistic use of imager and sounder radiance measurements are 1) collocation in space and time and 2) imager cloud amount, type, and phase determination within the sounder pixel. The MODIS and AIRS measurements from the EOS Aqua satellite provide the opportunity to study the synergistic use of advanced imager and sounder measurements. As the first step, the MODIS classification procedure is applied to identify various surface and cloud types within an AIRS footprint. Cloud-layer information (lower, midlevel, or high clouds) and phase information (water, ice, or mixed-phase clouds) within the AIRS footprint are sorted and characterized using MODIS 1-km-spatial-resolution data. The combined MODIS and AIRS data for various scenes are analyzed to study the utility of the synergistic use of high-spatial-resolution imager products and high-spectral-resolution sounder radiance measurements. There is relevance to the optimal use of data from the Advanced Baseline Imager (ABI) and Hyperspectral Environmental Suite (HES) systems, which are to fly on the Geostationary Operational Environmental Satellite (GOES)-R.


  20. Evaluation of Cirrus Cloud Simulations Using ARM Data - Development of a Case Study Data Set

    NASA Technical Reports Server (NTRS)

    O'C.Starr, David; Demoz, Belay; Lare, Andrew; Poellot, Michael; Sassen, Kenneth; Heymsfield, Andrew; Brown, Philip; Mace, Jay; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Cloud-resolving models (CRMs) provide an effective linkage in terms of parameters and scales between observations and the parametric treatments of clouds in global climate models (GCMs). They also represent the best understanding of the physical processes acting to determine cloud system lifecycle. The goal of this project is to improve state-of-the-art CRMs used for studies of cirrus clouds and to establish a relative calibration with GCMs through comparisons among CRMs, single column model (SCM) versions of the GCMs, and observations. This project will compare and evaluate a variety of CRMs and SCMs, under the auspices of the GEWEX Cloud Systems Study (GCSS) Working Group on Cirrus Cloud Systems (WG2), using ARM data acquired at the Southern Great Plains (SGP) site. This poster will report on progress in developing a suitable WG2 case study data set based on the September 26, 1996 ARM IOP case - the Hurricane Nora outflow case. The environmental data (input) will be described as well as the wealth of validating cloud observations. We plan to also show results of preliminary simulations. The science questions to be addressed derive significantly from results of the GCSS WG2 cloud model comparison projects, which will be briefly summarized.

  1. Establishing a Cloud Computing Success Model for Hospitals in Taiwan.

    PubMed

    Lian, Jiunn-Woei

    2017-01-01

    The purpose of this study is to understand the critical quality-related factors that affect cloud computing success of hospitals in Taiwan. In this study, private cloud computing is the major research target. The chief information officers participated in a questionnaire survey. The results indicate that the integration of trust into the information systems success model will have acceptable explanatory power to understand cloud computing success in the hospital. Moreover, information quality and system quality directly affect cloud computing satisfaction, whereas service quality indirectly affects the satisfaction through trust. In other words, trust serves as the mediator between service quality and satisfaction. This cloud computing success model will help hospitals evaluate or achieve success after adopting private cloud computing health care services.

  2. Establishing a Cloud Computing Success Model for Hospitals in Taiwan

    PubMed Central

    Lian, Jiunn-Woei

    2017-01-01

    The purpose of this study is to understand the critical quality-related factors that affect cloud computing success of hospitals in Taiwan. In this study, private cloud computing is the major research target. The chief information officers participated in a questionnaire survey. The results indicate that the integration of trust into the information systems success model will have acceptable explanatory power to understand cloud computing success in the hospital. Moreover, information quality and system quality directly affect cloud computing satisfaction, whereas service quality indirectly affects the satisfaction through trust. In other words, trust serves as the mediator between service quality and satisfaction. This cloud computing success model will help hospitals evaluate or achieve success after adopting private cloud computing health care services. PMID:28112020

  3. A cloud system for mobile medical services of traditional Chinese medicine.

    PubMed

    Hu, Nian-Ze; Lee, Chia-Ying; Hou, Mark C; Chen, Ying-Ling

    2013-12-01

    Many medical centers in Taiwan have started to provide Traditional Chinese Medicine (TCM) services for hospitalized patients. Due to the complexity of TCM modality and the increasing need for providing TCM services for patients in different wards at distantly separate locations within the hospital, it is getting difficult to manage the situation in the traditional way. A computerized system with mobile ability can therefore provide a practical solution to the challenge presented. The study tries to develop a cloud system equipped with mobile devices to integrate electronic medical records, facilitate communication between medical workers, and improve the quality of TCM services for the hospitalized patients in a medical center. The system developed in the study includes mobile devices carrying Android operation system and a PC as a cloud server. All the devices use the same TCM management system developed by the study. A website of database is set up for information sharing. The cloud system allows users to access and update patients' medical information, which is of great help to medical workers for verifying patients' identification and giving proper treatments to patients. The information then can be wirelessly transmitted between medical personnel through the cloud system. Several quantitative and qualitative evaluation indexes are developed to measure the effectiveness of the cloud system on the quality of the TCM service. The cloud system is tested and verified based on a sample of hospitalized patients receiving the acupuncture treatment at the Lukang Branch of Changhua Christian Hospital (CCH) in Taiwan. The result shows a great improvement in operating efficiency of the TCM service in that a significant saving in labor time can be attributable to the cloud system. In addition, the cloud system makes it easy to confirm patients' identity through taking a picture of the patient upon receiving any medical treatment. The result also shows that the cloud system achieves significant improvement in the acupuncture treatment. All the acupuncture needles now can be removed at the time they are expected to be removed. Furthermore, through the cloud system, medical workers can access and update patients' medical information on-site, which provides a means of effective communication between medical workers. These functions allow us to make the most use of the portability feature of the acupuncture service. The result shows that the contribution made by the cloud system to the TCM service is multi-dimensional: cost-effective, environment-protective, performance-enhancing etc. Developing and implementing such a cloud system for the TCM service in Taiwan symbolizes a pioneering effort. We believe that the work we have done here can serve as a stepping-stone toward advancing the TCM service quality in the future.

  4. Does Cloud Computing in the Atmospheric Sciences Make Sense? A case study of hybrid cloud computing at NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    Nguyen, L.; Chee, T.; Minnis, P.; Spangenberg, D.; Ayers, J. K.; Palikonda, R.; Vakhnin, A.; Dubois, R.; Murphy, P. R.

    2014-12-01

    The processing, storage and dissemination of satellite cloud and radiation products produced at NASA Langley Research Center are key activities for the Climate Science Branch. A constellation of systems operates in sync to accomplish these goals. Because of the complexity involved with operating such intricate systems, there are both high failure rates and high costs for hardware and system maintenance. Cloud computing has the potential to ameliorate cost and complexity issues. Over time, the cloud computing model has evolved and hybrid systems comprising off-site as well as on-site resources are now common. Towards our mission of providing the highest quality research products to the widest audience, we have explored the use of the Amazon Web Services (AWS) Cloud and Storage and present a case study of our results and efforts. This project builds upon NASA Langley Cloud and Radiation Group's experience with operating large and complex computing infrastructures in a reliable and cost effective manner to explore novel ways to leverage cloud computing resources in the atmospheric science environment. Our case study presents the project requirements and then examines the fit of AWS with the LaRC computing model. We also discuss the evaluation metrics, feasibility, and outcomes and close the case study with the lessons we learned that would apply to others interested in exploring the implementation of the AWS system in their own atmospheric science computing environments.

  5. Deployment of the third-generation infrared cloud imager: A two-year study of Arctic clouds at Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Nugent, Paul Winston

    Cloud cover is an important but poorly understood component of current climate models, and although climate change is most easily observed in the Arctic, cloud data in the Arctic is unreliable or simply unavailable. Ground-based infrared cloud imaging has the potential to fill this gap. This technique uses a thermal infrared camera to observe cloud amount, cloud optical depth, and cloud spatial distribution at a particular location. The Montana State University Optical Remote Sensor Laboratory has developed the ground-based Infrared Cloud Imager (ICI) instrument to measure spatial and temporal cloud data. To build an ICI for Arctic sites required the system to be engineered to overcome the challenges of this environment. Of particular challenge was keeping the system calibration and data processing accurate through the severe temperature changes. Another significant challenge was that weak emission from the cold, dry Arctic atmosphere pushed the camera used in the instrument to its operational limits. To gain an understanding of the operation of the ICI systems for the Arctic and to gather critical data on Arctic clouds, a prototype arctic ICI was deployed in Barrow, AK from July 2012 through July 2014. To understand the long-term operation of an ICI in the arctic, a study was conducted of the ICI system accuracy in relation to co-located active and passive sensors. Understanding the operation of this system in the Arctic environment required careful characterization of the full optical system, including the lens, filter, and detector. Alternative data processing techniques using decision trees and support vector machines were studied to improve data accuracy and reduce dependence on auxiliary instrument data and the resulting accuracy is reported here. The work described in this project was part of the effort to develop a fourth-generation ICI ready to be deployed in the Arctic. This system will serve a critical role in developing our understanding of cloud cover in the Arctic, an important but poorly understood region of the world.

  6. Studies of extra-solar OORT clouds and the Kuiper disk

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1993-01-01

    This is the second report for NAGW-3023, Studies of Extra-Solar Oort Clouds and the Kuiper Disk. We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. This area holds promise for also improving our understanding of outer solar system formation, the bombardment history of the planets, the transport of volatiles and organics from the outer solar system to the inner planets, and the ultimate fate of comet clouds around the Sun and other stars. According to 'standard' theory, both the Kuiper Disk and Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Therefore, searches for comet disks and clouds orbiting other stars offer a new method for infering the presence of planetary systems. Our three-year effort consists of two major efforts: (1) observational work to predict and search for the signatures of Oort Clouds and comet disks around other stars; and (2) modelling studies of the formation and evolution of the Kuiper Disk (KD) and similar assemblages that may reside around other stars, including Beta Pic. These efforts are referred to as Task 1 and 2, respectively.

  7. Studies of extra-solar Oort Clouds and the Kuiper Disk

    NASA Technical Reports Server (NTRS)

    Stern, Alan

    1995-01-01

    This is the September 1995 Semi-Annual report for Studies of Extra-Solar Oort Clouds and the Kuiper Disk. We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. This area holds promise for also improving our understanding of outer solar system formation the bombardment history of the planets, the transport of volatiles and organics from the outer solar system to the inner planets, and to the ultimate fate of comet clouds around the Sun and other stars. According to 'standard' theory, both the Kuiper Disk and the Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Therefore, searches for comet disks and clouds orbiting other stars offer a new method for inferring the presence of planetary systems. This project consists of two major efforts: (1) observational work to predict and search for the signatures of Oort Clouds and comet disks around other stars; and (2) modelling studies of the formation and evolution of the Kuiper Disk (KD) and similar assemblages that may reside around other stars, including beta Pic. These efforts are referred to as Task 1 and 2.

  8. Feasibility and demonstration of a cloud-based RIID analysis system

    NASA Astrophysics Data System (ADS)

    Wright, Michael C.; Hertz, Kristin L.; Johnson, William C.; Sword, Eric D.; Younkin, James R.; Sadler, Lorraine E.

    2015-06-01

    A significant limitation in the operational utility of handheld and backpack radioisotope identifiers (RIIDs) is the inability of their onboard algorithms to accurately and reliably identify the isotopic sources of the measured gamma-ray energy spectrum. A possible solution is to move the spectral analysis computations to an external device, the cloud, where significantly greater capabilities are available. The implementation and demonstration of a prototype cloud-based RIID analysis system have shown this type of system to be feasible with currently available communication and computational technology. A system study has shown that the potential user community could derive significant benefits from an appropriately implemented cloud-based analysis system and has identified the design and operational characteristics required by the users and stakeholders for such a system. A general description of the hardware and software necessary to implement reliable cloud-based analysis, the value of the cloud expressed by the user community, and the aspects of the cloud implemented in the demonstrations are discussed.

  9. Results from the Two-Year Infrared Cloud Imager Deployment at ARM's NSA Observatory in Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Shaw, J. A.; Nugent, P. W.

    2016-12-01

    Ground-based longwave-infrared (LWIR) cloud imaging can provide continuous cloud measurements in the Arctic. This is of particular importance during the Arctic winter when visible wavelength cloud imaging systems cannot operate. This method uses a thermal infrared camera to observe clouds and produce measurements of cloud amount and cloud optical depth. The Montana State University Optical Remote Sensor Laboratory deployed an infrared cloud imager (ICI) at the Atmospheric Radiation Monitoring North Slope of Alaska site at Barrow, AK from July 2012 through July 2014. This study was used to both understand the long-term operation of an ICI in the Arctic and to study the consistency of the ICI data products in relation to co-located active and passive sensors. The ICI was found to have a high correlation (> 0.92) with collocated cloud instruments and to produce an unbiased data product. However, the ICI also detects thin clouds that are not detected by most operational cloud sensors. Comparisons with high-sensitivity actively sensed cloud products confirm the existence of these thin clouds. Infrared cloud imaging systems can serve a critical role in developing our understanding of cloud cover in the Arctic by provided a continuous annual measurement of clouds at sites of interest.

  10. Cost Savings Associated with the Adoption of a Cloud Computing Data Transfer System for Trauma Patients.

    PubMed

    Feeney, James M; Montgomery, Stephanie C; Wolf, Laura; Jayaraman, Vijay; Twohig, Michael

    2016-09-01

    Among transferred trauma patients, challenges with the transfer of radiographic studies include problems loading or viewing the studies at the receiving hospitals, and problems manipulating, reconstructing, or evalu- ating the transferred images. Cloud-based image transfer systems may address some ofthese problems. We reviewed the charts of patients trans- ferred during one year surrounding the adoption of a cloud computing data transfer system. We compared the rates of repeat imaging before (precloud) and af- ter (postcloud) the adoption of the cloud-based data transfer system. During the precloud period, 28 out of 100 patients required 90 repeat studies. With the cloud computing transfer system in place, three out of 134 patients required seven repeat films. There was a statistically significant decrease in the proportion of patients requiring repeat films (28% to 2.2%, P < .0001). Based on an annualized volume of 200 trauma patient transfers, the cost savings estimated using three methods of cost analysis, is between $30,272 and $192,453.

  11. A modeling study of marine boundary layer clouds

    NASA Technical Reports Server (NTRS)

    Wang, Shouping; Fitzjarrald, Daniel E.

    1993-01-01

    Marine boundary layer (MBL) clouds are important components of the earth's climate system. These clouds drastically reduce the amount of solar radiation absorbed by the earth, but have little effect on the emitted infrared radiation on top of the atmosphere. In addition, these clouds are intimately involved in regulating boundary layer turbulent fluxes. For these reasons, it is important that general circulation models used for climate studies must realistically simulate the global distribution of the MBL. While the importance of these cloud systems is well recognized, many physical processes involved in these clouds are poorly understood and their representation in large-scale models remains an unresolved problem. The present research aims at the development and improvement of the parameterization of these cloud systems and an understanding of physical processes involved. This goal is addressed in two ways. One is to use regional modeling approach to validate and evaluate two-layer marine boundary layer models using satellite and ground-truth observations; the other is to combine this simple model with a high-order turbulence closure model to study the transition processes from stratocumulus to shallow cumulus clouds. Progress made in this effort is presented.

  12. The 94 GHz Cloud Radar System on a NASA ER-2 Aircraft

    NASA Technical Reports Server (NTRS)

    Li, Lihua; Heymsfield, Gerald M.; Racette, Paul E.; Tian, Lin; Zenker, Ed

    2003-01-01

    The 94-GHz (W-band) Cloud Radar System (CRS) has been developed and flown on a NASA ER-2 high-altitude (20 km) aircraft. The CRS is a fully coherent, polarimeteric Doppler radar that is capable of detecting clouds and precipitation from the surface up to the aircraft altitude in the lower stratosphere. The radar is especially well suited for cirrus cloud studies because of its high sensitivity and fine spatial resolution. This paper describes the CRS motivation, instrument design, specifications, calibration, and preliminary data &om NASA s Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE) field campaign. The unique combination of CRS with other sensors on the ER-2 provides an unprecedented opportunity to study cloud radiative effects on the global energy budget. CRS observations are being used to improve our knowledge of atmospheric scattering and attenuation characteristics at 94 GHz, and to provide datasets for algorithm implementation and validation for the upcoming NASA CloudSat mission that will use a 94-GHz spaceborne cloud radar to provide the first direct global survey of the vertical structure of cloud systems.

  13. A New Approach to Integrate Internet-of-Things and Software-as-a-Service Model for Logistic Systems: A Case Study

    PubMed Central

    Chen, Shang-Liang; Chen, Yun-Yao; Hsu, Chiang

    2014-01-01

    Cloud computing is changing the ways software is developed and managed in enterprises, which is changing the way of doing business in that dynamically scalable and virtualized resources are regarded as services over the Internet. Traditional manufacturing systems such as supply chain management (SCM), customer relationship management (CRM), and enterprise resource planning (ERP) are often developed case by case. However, effective collaboration between different systems, platforms, programming languages, and interfaces has been suggested by researchers. In cloud-computing-based systems, distributed resources are encapsulated into cloud services and centrally managed, which allows high automation, flexibility, fast provision, and ease of integration at low cost. The integration between physical resources and cloud services can be improved by combining Internet of things (IoT) technology and Software-as-a-Service (SaaS) technology. This study proposes a new approach for developing cloud-based manufacturing systems based on a four-layer SaaS model. There are three main contributions of this paper: (1) enterprises can develop their own cloud-based logistic management information systems based on the approach proposed in this paper; (2) a case study based on literature reviews with experimental results is proposed to verify that the system performance is remarkable; (3) challenges encountered and feedback collected from T Company in the case study are discussed in this paper for the purpose of enterprise deployment. PMID:24686728

  14. A new approach to integrate Internet-of-things and software-as-a-service model for logistic systems: a case study.

    PubMed

    Chen, Shang-Liang; Chen, Yun-Yao; Hsu, Chiang

    2014-03-28

    Cloud computing is changing the ways software is developed and managed in enterprises, which is changing the way of doing business in that dynamically scalable and virtualized resources are regarded as services over the Internet. Traditional manufacturing systems such as supply chain management (SCM), customer relationship management (CRM), and enterprise resource planning (ERP) are often developed case by case. However, effective collaboration between different systems, platforms, programming languages, and interfaces has been suggested by researchers. In cloud-computing-based systems, distributed resources are encapsulated into cloud services and centrally managed, which allows high automation, flexibility, fast provision, and ease of integration at low cost. The integration between physical resources and cloud services can be improved by combining Internet of things (IoT) technology and Software-as-a-Service (SaaS) technology. This study proposes a new approach for developing cloud-based manufacturing systems based on a four-layer SaaS model. There are three main contributions of this paper: (1) enterprises can develop their own cloud-based logistic management information systems based on the approach proposed in this paper; (2) a case study based on literature reviews with experimental results is proposed to verify that the system performance is remarkable; (3) challenges encountered and feedback collected from T Company in the case study are discussed in this paper for the purpose of enterprise deployment.

  15. The Effectiveness of Using Cloud-Based Cross-Device IRS to Support Classical Chinese Learning

    ERIC Educational Resources Information Center

    Wang, Yi-Hsuan

    2017-01-01

    The purpose of the present study was to examine the effects of integrating a cloud-based cross-device interactive response system (CCIRS) on enhancing students' classical Chinese learning. The system is a cloud-based IRS system which provides instructors and learners with an environment in which to achieve immediate interactive learning and…

  16. Predictive Control of Networked Multiagent Systems via Cloud Computing.

    PubMed

    Liu, Guo-Ping

    2017-01-18

    This paper studies the design and analysis of networked multiagent predictive control systems via cloud computing. A cloud predictive control scheme for networked multiagent systems (NMASs) is proposed to achieve consensus and stability simultaneously and to compensate for network delays actively. The design of the cloud predictive controller for NMASs is detailed. The analysis of the cloud predictive control scheme gives the necessary and sufficient conditions of stability and consensus of closed-loop networked multiagent control systems. The proposed scheme is verified to characterize the dynamical behavior and control performance of NMASs through simulations. The outcome provides a foundation for the development of cooperative and coordinative control of NMASs and its applications.

  17. Daytime Cloud Property Retrievals Over the Arctic from Multispectral MODIS Data

    NASA Technical Reports Server (NTRS)

    Spangenberg, Douglas A.; Trepte, Qing; Minnis, Patrick; Uttal, Taneil

    2004-01-01

    Improving climate model predictions over Earth's polar regions requires a complete understanding of polar clouds properties. Passive satellite remote sensing techniques can be used to retrieve macro and microphysical properties of polar cloud systems. However, over the Arctic, there is minimal contrast between clouds and the background snow surface observed in satellite data, especially for visible wavelengths. This makes it difficult to identify clouds and retrieve their properties from space. Variable snow and ice cover, temperature inversions, and the predominance of mixed-phase clouds further complicate cloud property identification. For this study, the operational Clouds and the Earth s Radiant Energy System (CERES) cloud mask is first used to discriminate clouds from the background surface in Terra Moderate Resolution Imaging Spectroradiometer (MODIS) data. A solar-infrared infrared nearinfrared technique (SINT) first used by Platnick et al. (2001) is used here to retrieve cloud properties over snow and ice covered regions.

  18. The Effect of Environmental Conditions on Tropical Deep Convective Systems Observed from the TRMM Satellite

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Wielicki, Bruce A.; Minnis, Patrick; Chambers, Lin H.; Xu, Kuan-Man; Hu, Yongxiang; Fan, Tai-Fang

    2005-01-01

    This study uses measurements of radiation and cloud properties taken between January and August 1998 by three Tropical Rainfall Measuring Mission (TRMM) instruments, the Clouds and the Earth's Radiant Energy System (CERES) scanner, the TRMM Microwave Imager (TMI), and the Visible and InfraRed Scanner (VIRS), to evaluate the variations of tropical deep convective systems (DCS) with sea surface temperature (SST) and precipitation. This study finds that DCS precipitation efficiency increases with SST at a rate of approx. 2%/K. Despite increasing rainfall efficiency, the cloud areal coverage rises with SST at a rate of about 7%/K in the warm tropical seas. There, the boundary layer moisture supply for deep convection and the moisture transported to the upper troposphere for cirrus-anvil cloud formation increase by approx. 6.3%/K and approx. 4.0%/K, respectively. The changes in cloud formation efficiency, along with the increased transport of moisture available for cloud formation, likely contribute to the large rate of increasing DCS areal coverage. Although no direct observations are available, the increase of cloud formation efficiency with rising SST is deduced indirectly from measurements of changes in the ratio of DCS ice water path and boundary layer water vapor amount with SST. Besides the cloud areal coverage, DCS cluster effective sizes also increase with precipitation. Furthermore, other cloud properties, such as cloud total water and ice water paths, increase with SST. These changes in DCS properties will produce a negative radiative feedback for the earth's climate system due to strong reflection of shortwave radiation by the DCS. These results significantly differ from some previous hypothesized dehydration scenarios for warmer climates, and have great potential in testing current cloud-system resolving models and convective parameterizations of general circulation models.

  19. Cloud System Evolution in the Trades—CSET

    NASA Astrophysics Data System (ADS)

    Albrecht, B. A.; Zuidema, P.; Bretherton, C. S.; Wood, R.; Ghate, V. P.

    2015-12-01

    The Cloud System Evolution in the Trades (CSET) study was designed to describe and explain the evolution of the boundary layer aerosol, cloud, and thermodynamic structures along trajectories within the north-Pacific trade-winds. The observational component of this study centered on 7 round-trips made by the NSF NCAR Gulfstream V (GV) between Sacramento, CA and Kona, Hawaii between 1 July and 15 August 2015. The CSET observing strategy used a Lagrangian approach to sample aerosol, cloud, and boundary layer properties upwind from the transition zone over the North Pacific and to resample these areas two days later. GFS forecast trajectories were used to plan the outbound flight to Hawaii and then updated forecast trajectories helped set the return flight plan two days later. Two key elements of the CSET observing system were the newly developed HIAPER Cloud Radar (HCR) and the HIAPER Spectral Resolution Lidar (HSRL). Together they provided unprecedented characterizations of aerosol, cloud and precipitation structures. A full suite of probes on the aircraft were used for in situ measurements of aerosol, cloud, precipitation, and turbulence properties during the low-level aircraft profiling portions of the flights. A wide range of boundary layer structures and aerosol, cloud, and precipitation conditions were observed during CSET. The cloud systems sampled included solid stratocumulus infused with smoke from Canadian wildfires, mesoscale (100-200 km) cloud-precipitation complexes, and patches of shallow cumuli in environments with accumulation mode aerosol concentrations of less than 50 cm-3. Ultra clean layers (UCLs with accumulation mode concentrations of less than 10 cm-3) were observed frequently near the top of the boundary layer and were often associated with shallow, gray (optically thin) layered clouds—features that are the subject of focused investigations by the CSET science team. The extent of aerosol, cloud, drizzle and boundary layer sampling that was made over open areas of the North Pacific along 2-day trajectories during CSET is unprecedented and will enable focused modeling studies of cloud system evolution and the role of aerosol-cloud-precipitation interactions in that evolution.

  20. Simulation of Asia Dust and Cloud Interaction Over Pacific Ocean During Pacdex

    NASA Astrophysics Data System (ADS)

    Long, X.; Huang, J.; Cheng, C.; Wang, W.

    2007-12-01

    The effect of dust plume on the Pacific cloud systems and the associated radiative forcing is an outstanding problem for understanding climate change. Many studies showing that dust aerosol might be a good absorber for solar radiation, at the same time dust aerosols could affect the cloud's formation and precipitation by its capability as cloud condensation nuclei (CCN) and ice forming nuclei (IFN). But the role of aerosols in clouds and precipitation is very complex. Simulation of interaction between cloud and dust aerosols requires recognition that the aerosol cloud system comprises coupled components of dynamics, aerosol and cloud microphysics, radiation processes. In this study, we investigated the interaction between dust aerosols and cloud with WRF which coupled with detailed cloud microphysics processes and dust process. The observed data of SACOL (Semi-Arid Climate and Environment Observatory of Lanzhou University) and PACDEX (Pacific Dust Experiment) is used as the initialization which include the vertical distributions and concentration of dust particles. Our results show that dust aerosol not only impacts cloud microphysical processes but also cloud microstructure; Dust aerosols can act as effective ice nuclei and intensify the ice-forming processes.

  1. Studies of extra-solar Oort clouds and the Kuiper disk

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1996-01-01

    We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. According to 'standard' theory, both the Kuiper Belt and the Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Therefore, searches for comet disks and clouds orbiting other stars offer a new method for inferring the presence of planetary systems. This project consists of two efforts: (1) observational work to predict and search for the signatures of Oort Clouds and comet disks around other stars; and (2) modelling studies of the formation and evolution of the Kuiper Belt (KB) and similar assemblages that may reside around other stars, including beta Pic.

  2. Review of Aerosol–Cloud Interactions: Mechanisms, Significance, and Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Jiwen; Wang, Yuan; Rosenfeld, Daniel

    2016-11-01

    Over the past decade, the number of studies that investigate aerosol-cloud interactions has increased considerably. Although tremendous progress has been made to improve our understanding of basic physical mechanisms of aerosol-cloud interactions and reduce their uncertainties in climate forcing, we are still in poor understanding of (1) some of the mechanisms that interact with each other over multiple spatial and temporal scales, (2) the feedback between microphysical and dynamical processes and between local-scale processes and large-scale circulations, and (3) the significance of cloud-aerosol interactions on weather systems as well as regional and global climate. This review focuses on recent theoreticalmore » studies and important mechanisms on aerosol-cloud interactions, and discusses the significances of aerosol impacts on raditative forcing and precipitation extremes associated with different cloud systems. Despite significant understanding has been gained about aerosol impacts on the main cloud types, there are still many unknowns especially associated with various deep convective systems. Therefore, large efforts are needed to escalate our understanding. Future directions should focus on obtaining concurrent measurements of aerosol properties, cloud microphysical and dynamic properties over a range of temporal and spatial scales collected over typical climate regimes and closure studies, as well as improving understanding and parameterizations of cloud microphysics such as ice nucleation, mixed-phase properties, and hydrometeor size and fall speed« less

  3. The interpretation of remotely sensed cloud properties from a model paramterization perspective

    NASA Technical Reports Server (NTRS)

    HARSHVARDHAN; Wielicki, Bruce A.; Ginger, Kathryn M.

    1994-01-01

    A study has been made of the relationship between mean cloud radiative properties and cloud fraction in stratocumulus cloud systems. The analysis is of several Land Resources Satellite System (LANDSAT) images and three hourly International Satellite Cloud Climatology Project (ISCCP) C-1 data during daylight hours for two grid boxes covering an area typical of a general circulation model (GCM) grid increment. Cloud properties were inferred from the LANDSAT images using two thresholds and several pixel resolutions ranging from roughly 0.0625 km to 8 km. At the finest resolution, the analysis shows that mean cloud optical depth (or liquid water path) increases somewhat with increasing cloud fraction up to 20% cloud coverage. More striking, however, is the lack of correlation between the two quantities for cloud fractions between roughly 0.2 and 0.8. When the scene is essentially overcast, the mean cloud optical tends to be higher. Coarse resolution LANDSAT analysis and the ISCCP 8-km data show lack of correlation between mean cloud optical depth and cloud fraction for coverage less than about 90%. This study shows that there is perhaps a local mean liquid water path (LWP) associated with partly cloudy areas of stratocumulus clouds. A method has been suggested to use this property to construct the cloud fraction paramterization in a GCM when the model computes a grid-box-mean LWP.

  4. Exploring the factors influencing the cloud computing adoption: a systematic study on cloud migration.

    PubMed

    Rai, Rashmi; Sahoo, Gadadhar; Mehfuz, Shabana

    2015-01-01

    Today, most of the organizations trust on their age old legacy applications, to support their business-critical systems. However, there are several critical concerns, as maintainability and scalability issues, associated with the legacy system. In this background, cloud services offer a more agile and cost effective platform, to support business applications and IT infrastructure. As the adoption of cloud services has been increasing recently and so has been the academic research in cloud migration. However, there is a genuine need of secondary study to further strengthen this research. The primary objective of this paper is to scientifically and systematically identify, categorize and compare the existing research work in the area of legacy to cloud migration. The paper has also endeavored to consolidate the research on Security issues, which is prime factor hindering the adoption of cloud through classifying the studies on secure cloud migration. SLR (Systematic Literature Review) of thirty selected papers, published from 2009 to 2014 was conducted to properly understand the nuances of the security framework. To categorize the selected studies, authors have proposed a conceptual model for cloud migration which has resulted in a resource base of existing solutions for cloud migration. This study concludes that cloud migration research is in seminal stage but simultaneously it is also evolving and maturing, with increasing participation from academics and industry alike. The paper also identifies the need for a secure migration model, which can fortify organization's trust into cloud migration and facilitate necessary tool support to automate the migration process.

  5. Cloud Computing in the Curricula of Schools of Computer Science and Information Systems

    ERIC Educational Resources Information Center

    Lawler, James P.

    2011-01-01

    The cloud continues to be a developing area of information systems. Evangelistic literature in the practitioner field indicates benefit for business firms but disruption for technology departments of the firms. Though the cloud currently is immature in methodology, this study defines a model program by which computer science and information…

  6. OpenID connect as a security service in Cloud-based diagnostic imaging systems

    NASA Astrophysics Data System (ADS)

    Ma, Weina; Sartipi, Kamran; Sharghi, Hassan; Koff, David; Bak, Peter

    2015-03-01

    The evolution of cloud computing is driving the next generation of diagnostic imaging (DI) systems. Cloud-based DI systems are able to deliver better services to patients without constraining to their own physical facilities. However, privacy and security concerns have been consistently regarded as the major obstacle for adoption of cloud computing by healthcare domains. Furthermore, traditional computing models and interfaces employed by DI systems are not ready for accessing diagnostic images through mobile devices. RESTful is an ideal technology for provisioning both mobile services and cloud computing. OpenID Connect, combining OpenID and OAuth together, is an emerging REST-based federated identity solution. It is one of the most perspective open standards to potentially become the de-facto standard for securing cloud computing and mobile applications, which has ever been regarded as "Kerberos of Cloud". We introduce OpenID Connect as an identity and authentication service in cloud-based DI systems and propose enhancements that allow for incorporating this technology within distributed enterprise environment. The objective of this study is to offer solutions for secure radiology image sharing among DI-r (Diagnostic Imaging Repository) and heterogeneous PACS (Picture Archiving and Communication Systems) as well as mobile clients in the cloud ecosystem. Through using OpenID Connect as an open-source identity and authentication service, deploying DI-r and PACS to private or community clouds should obtain equivalent security level to traditional computing model.

  7. The Dependence of Cloud Property Trend Detection on Absolute Calibration Accuracy of Passive Satellite Sensors

    NASA Astrophysics Data System (ADS)

    Shea, Y.; Wielicki, B. A.; Sun-Mack, S.; Minnis, P.; Zelinka, M. D.

    2016-12-01

    Detecting trends in climate variables on global, decadal scales requires highly accurate, stable measurements and retrieval algorithms. Trend uncertainty depends on its magnitude, natural variability, and instrument and retrieval algorithm accuracy and stability. We applied a climate accuracy framework to quantify the impact of absolute calibration on cloud property trend uncertainty. The cloud properties studied were cloud fraction, effective temperature, optical thickness, and effective radius retrieved using the Clouds and the Earth's Radiant Energy System (CERES) Cloud Property Retrieval System, which uses Moderate-resolution Imaging Spectroradiometer measurements (MODIS). Modeling experiments from the fifth phase of the Climate Model Intercomparison Project (CMIP5) agree that net cloud feedback is likely positive but disagree regarding its magnitude, mainly due to uncertainty in shortwave cloud feedback. With the climate accuracy framework we determined the time to detect trends for instruments with various calibration accuracies. We estimated a relationship between cloud property trend uncertainty, cloud feedback, and Equilibrium Climate Sensitivity and also between effective radius trend uncertainty and aerosol indirect effect trends. The direct relationship between instrument accuracy requirements and climate model output provides the level of instrument absolute accuracy needed to reduce climate model projection uncertainty. Different cloud types have varied radiative impacts on the climate system depending on several attributes, such as their thermodynamic phase, altitude, and optical thickness. Therefore, we also conducted these studies by cloud types for a clearer understanding of instrument accuracy requirements needed to detect changes in their cloud properties. Combining this information with the radiative impact of different cloud types helps to prioritize among requirements for future satellite sensors and understanding the climate detection capabilities of existing sensors.

  8. Confronting Models with Data: The GEWEX Cloud Systems Study

    NASA Technical Reports Server (NTRS)

    Randall, David; Curry, Judith; Duynkerke, Peter; Krueger, Steven; Moncrieff, Mitchell; Ryan, Brian; Starr, David OC.; Miller, Martin; Rossow, William; Tselioudis, George

    2002-01-01

    The GEWEX Cloud System Study (GCSS; GEWEX is the Global Energy and Water Cycle Experiment) was organized to promote development of improved parameterizations of cloud systems for use in climate and numerical weather prediction models, with an emphasis on the climate applications. The strategy of GCSS is to use two distinct kinds of models to analyze and understand observations of the behavior of several different types of clouds systems. Cloud-system-resolving models (CSRMs) have high enough spatial and temporal resolutions to represent individual cloud elements, but cover a wide enough range of space and time scales to permit statistical analysis of simulated cloud systems. Results from CSRMs are compared with detailed observations, representing specific cases based on field experiments, and also with statistical composites obtained from satellite and meteorological analyses. Single-column models (SCMs) are the surgically extracted column physics of atmospheric general circulation models. SCMs are used to test cloud parameterizations in an un-coupled mode, by comparison with field data and statistical composites. In the original GCSS strategy, data is collected in various field programs and provided to the CSRM Community, which uses the data to "certify" the CSRMs as reliable tools for the simulation of particular cloud regimes, and then uses the CSRMs to develop parameterizations, which are provided to the GCM Community. We report here the results of a re-thinking of the scientific strategy of GCSS, which takes into account the practical issues that arise in confronting models with data. The main elements of the proposed new strategy are a more active role for the large-scale modeling community, and an explicit recognition of the importance of data integration.

  9. Visual Analysis of Cloud Computing Performance Using Behavioral Lines.

    PubMed

    Muelder, Chris; Zhu, Biao; Chen, Wei; Zhang, Hongxin; Ma, Kwan-Liu

    2016-02-29

    Cloud computing is an essential technology to Big Data analytics and services. A cloud computing system is often comprised of a large number of parallel computing and storage devices. Monitoring the usage and performance of such a system is important for efficient operations, maintenance, and security. Tracing every application on a large cloud system is untenable due to scale and privacy issues. But profile data can be collected relatively efficiently by regularly sampling the state of the system, including properties such as CPU load, memory usage, network usage, and others, creating a set of multivariate time series for each system. Adequate tools for studying such large-scale, multidimensional data are lacking. In this paper, we present a visual based analysis approach to understanding and analyzing the performance and behavior of cloud computing systems. Our design is based on similarity measures and a layout method to portray the behavior of each compute node over time. When visualizing a large number of behavioral lines together, distinct patterns often appear suggesting particular types of performance bottleneck. The resulting system provides multiple linked views, which allow the user to interactively explore the data by examining the data or a selected subset at different levels of detail. Our case studies, which use datasets collected from two different cloud systems, show that this visual based approach is effective in identifying trends and anomalies of the systems.

  10. Cloud cover analysis associated to cut-off low-pressure systems over Europe using Meteosat Imagery

    NASA Astrophysics Data System (ADS)

    Delgado, G.; Redaño, A.; Lorente, J.; Nieto, R.; Gimeno, L.; Ribera, P.; Barriopedro, D.; García-Herrera, R.; Serrano, A.

    2007-04-01

    This paper reports a cloud cover analysis of cut-off low pressure systems (COL) using a pattern recognition method applied to IR and VIS bispectral histograms. 35 COL occurrences were studied over five years (1994-1998). Five cloud types were identified in COLs, of which high clouds (HCC) and deep convective clouds (DCC) were found to be the most relevant to characterize COL systems, though not the most numerous. Cloud cover in a COL is highly dependent on its stage of development, but a higher percentage of cloud cover is always present in the frontal zone, attributable due to higher amounts of high and deep convective clouds. These general characteristics are most marked during the first stage (when the amplitude of the geopotencial wave increases) and second stage (characterized by the development of a cold upper level low), closed cyclonic circulation minimizing differences between rearward and frontal zones during the third stage. The probability of heavy rains during this stage decreases considerably. The centres of mass of high and deep convective clouds move towards the COL-axis centre during COL evolution.

  11. Cloud-based preoperative planning for total hip arthroplasty: a study of accuracy, efficiency, and compliance.

    PubMed

    Maratt, Joseph D; Srinivasan, Ramesh C; Dahl, William J; Schilling, Peter L; Urquhart, Andrew G

    2012-08-01

    As digital radiography becomes more prevalent, several systems for digital preoperative planning have become available. The purpose of this study was to evaluate the accuracy and efficiency of an inexpensive, cloud-based digital templating system, which is comparable with acetate templating. However, cloud-based templating is substantially faster and more convenient than acetate templating or locally installed software. Although this is a practical solution for this particular medical application, regulatory changes are necessary before the tremendous advantages of cloud-based storage and computing can be realized in medical research and clinical practice. Copyright 2012, SLACK Incorporated.

  12. Using Multi-Scale Modeling Systems and Satellite Data to Study the Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei--Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.

    2010-01-01

    In recent years, exponentially increasing computer power extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 sq km in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale models can be run in grid size similar to cloud resolving models through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model). (2) a regional scale model (a NASA unified weather research and forecast, W8F). (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling systems to study the interactions between clouds, precipitation, and aerosols will be presented. Also how to use the multi-satellite simulator to improve precipitation processes will be discussed.

  13. Using Multi-Scale Modeling Systems to Study the Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2010-01-01

    In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the interactions between clouds, precipitation, and aerosols will be presented. Also how to use of the multi-satellite simulator to improve precipitation processes will be discussed.

  14. Lightning studies using LDAR and LLP data

    NASA Technical Reports Server (NTRS)

    Forbes, Gregory S.

    1993-01-01

    This study intercompared lightning data from LDAR and LLP systems in order to learn more about the spatial relationships between thunderstorm electrical discharges aloft and lightning strikes to the surface. The ultimate goal of the study is to provide information that can be used to improve the process of real-time detection and warning of lightning by weather forecasters who issue lightning advisories. The Lightning Detection and Ranging (LDAR) System provides data on electrical discharges from thunderstorms that includes cloud-ground flashes as well as lightning aloft (within cloud, cloud-to-cloud, and sometimes emanating from cloud to clear air outside or above cloud). The Lightning Location and Protection (LLP) system detects primarily ground strikes from lightning. Thunderstorms typically produce LDAR signals aloft prior to the first ground strike, so that knowledge of preferred positions of ground strikes relative to the LDAR data pattern from a thunderstorm could allow advance estimates of enhanced ground strike threat. Studies described in the report examine the position of LLP-detected ground strikes relative to the LDAR data pattern from the thunderstorms. The report also describes other potential approaches to the use of LDAR data in the detection and forecasting of lightning ground strikes.

  15. Quantifying the Climate-Scale Accuracy of Satellite Cloud Retrievals

    NASA Astrophysics Data System (ADS)

    Roberts, Y.; Wielicki, B. A.; Sun-Mack, S.; Minnis, P.; Liang, L.; Di Girolamo, L.

    2014-12-01

    Instrument calibration and cloud retrieval algorithms have been developed to minimize retrieval errors on small scales. However, measurement uncertainties and assumptions within retrieval algorithms at the pixel level may alias into decadal-scale trends of cloud properties. We first, therefore, quantify how instrument calibration changes could alias into cloud property trends. For a perfect observing system the climate trend accuracy is limited only by the natural variability of the climate variable. Alternatively, for an actual observing system, the climate trend accuracy is additionally limited by the measurement uncertainty. Drifts in calibration over time may therefore be disguised as a true climate trend. We impose absolute calibration changes to MODIS spectral reflectance used as input to the CERES Cloud Property Retrieval System (CPRS) and run the modified MODIS reflectance through the CPRS to determine the sensitivity of cloud properties to calibration changes. We then use these changes to determine the impact of instrument calibration changes on trend uncertainty in reflected solar cloud properties. Secondly, we quantify how much cloud retrieval algorithm assumptions alias into cloud optical retrieval trends by starting with the largest of these biases: the plane-parallel assumption in cloud optical thickness (τC) retrievals. First, we collect liquid water cloud fields obtained from Multi-angle Imaging Spectroradiometer (MISR) measurements to construct realistic probability distribution functions (PDFs) of 3D cloud anisotropy (a measure of the degree to which clouds depart from plane-parallel) for different ISCCP cloud types. Next, we will conduct a theoretical study with dynamically simulated cloud fields and a 3D radiative transfer model to determine the relationship between 3D cloud anisotropy and 3D τC bias for each cloud type. Combining these results provides distributions of 3D τC bias by cloud type. Finally, we will estimate the change in frequency of occurrence of cloud types between two decades and will have the information needed to calculate the total change in 3D optical thickness bias between two decades. If we uncover aliases in this study, the results will motivate the development and rigorous testing of climate specific cloud retrieval algorithms.

  16. Probabilistic verification of cloud fraction from three different products with CALIPSO

    NASA Astrophysics Data System (ADS)

    Jung, B. J.; Descombes, G.; Snyder, C.

    2017-12-01

    In this study, we present how Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) can be used for probabilistic verification of cloud fraction, and apply this probabilistic approach to three cloud fraction products: a) The Air Force Weather (AFW) World Wide Merged Cloud Analysis (WWMCA), b) Satellite Cloud Observations and Radiative Property retrieval Systems (SatCORPS) from NASA Langley Research Center, and c) Multi-sensor Advection Diffusion nowCast (MADCast) from NCAR. Although they differ in their details, both WWMCA and SatCORPS retrieve cloud fraction from satellite observations, mainly of infrared radiances. MADCast utilizes in addition a short-range forecast of cloud fraction (provided by the Model for Prediction Across Scales, assuming cloud fraction is advected as a tracer) and a column-by-column particle filter implemented within the Gridpoint Statistical Interpolation (GSI) data-assimilation system. The probabilistic verification considers the retrieved or analyzed cloud fractions as predicting the probability of cloud at any location within a grid cell and the 5-km vertical feature mask (VFM) from CALIPSO level-2 products as a point observation of cloud.

  17. Cloud Computing and Its Applications in GIS

    NASA Astrophysics Data System (ADS)

    Kang, Cao

    2011-12-01

    Cloud computing is a novel computing paradigm that offers highly scalable and highly available distributed computing services. The objectives of this research are to: 1. analyze and understand cloud computing and its potential for GIS; 2. discover the feasibilities of migrating truly spatial GIS algorithms to distributed computing infrastructures; 3. explore a solution to host and serve large volumes of raster GIS data efficiently and speedily. These objectives thus form the basis for three professional articles. The first article is entitled "Cloud Computing and Its Applications in GIS". This paper introduces the concept, structure, and features of cloud computing. Features of cloud computing such as scalability, parallelization, and high availability make it a very capable computing paradigm. Unlike High Performance Computing (HPC), cloud computing uses inexpensive commodity computers. The uniform administration systems in cloud computing make it easier to use than GRID computing. Potential advantages of cloud-based GIS systems such as lower barrier to entry are consequently presented. Three cloud-based GIS system architectures are proposed: public cloud- based GIS systems, private cloud-based GIS systems and hybrid cloud-based GIS systems. Public cloud-based GIS systems provide the lowest entry barriers for users among these three architectures, but their advantages are offset by data security and privacy related issues. Private cloud-based GIS systems provide the best data protection, though they have the highest entry barriers. Hybrid cloud-based GIS systems provide a compromise between these extremes. The second article is entitled "A cloud computing algorithm for the calculation of Euclidian distance for raster GIS". Euclidean distance is a truly spatial GIS algorithm. Classical algorithms such as the pushbroom and growth ring techniques require computational propagation through the entire raster image, which makes it incompatible with the distributed nature of cloud computing. This paper presents a parallel Euclidean distance algorithm that works seamlessly with the distributed nature of cloud computing infrastructures. The mechanism of this algorithm is to subdivide a raster image into sub-images and wrap them with a one pixel deep edge layer of individually computed distance information. Each sub-image is then processed by a separate node, after which the resulting sub-images are reassembled into the final output. It is shown that while any rectangular sub-image shape can be used, those approximating squares are computationally optimal. This study also serves as a demonstration of this subdivide and layer-wrap strategy, which would enable the migration of many truly spatial GIS algorithms to cloud computing infrastructures. However, this research also indicates that certain spatial GIS algorithms such as cost distance cannot be migrated by adopting this mechanism, which presents significant challenges for the development of cloud-based GIS systems. The third article is entitled "A Distributed Storage Schema for Cloud Computing based Raster GIS Systems". This paper proposes a NoSQL Database Management System (NDDBMS) based raster GIS data storage schema. NDDBMS has good scalability and is able to use distributed commodity computers, which make it superior to Relational Database Management Systems (RDBMS) in a cloud computing environment. In order to provide optimized data service performance, the proposed storage schema analyzes the nature of commonly used raster GIS data sets. It discriminates two categories of commonly used data sets, and then designs corresponding data storage models for both categories. As a result, the proposed storage schema is capable of hosting and serving enormous volumes of raster GIS data speedily and efficiently on cloud computing infrastructures. In addition, the scheme also takes advantage of the data compression characteristics of Quadtrees, thus promoting efficient data storage. Through this assessment of cloud computing technology, the exploration of the challenges and solutions to the migration of GIS algorithms to cloud computing infrastructures, and the examination of strategies for serving large amounts of GIS data in a cloud computing infrastructure, this dissertation lends support to the feasibility of building a cloud-based GIS system. However, there are still challenges that need to be addressed before a full-scale functional cloud-based GIS system can be successfully implemented. (Abstract shortened by UMI.)

  18. Lidar cloud studies for FIRE and ECLIPS

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Grund, Christian J.; Spinhirne, James D.; Hardesty, Michael; Alvarez, James

    1990-01-01

    Optical remote sensing measurements of cirrus cloud properties were collected by one airborne and four ground-based lidar systems over a 32 h period during this case study from the First ISCCP (International Satellite Cloud Climatology Program) Regional Experiment (FIRE) Intensive Field Observation (IFO) program. The lidar systems were variously equipped to collect linear depolarization, intrinsically calibrated backscatter, and Doppler velocity information. Data presented describe the temporal evolution and spatial distribution of cirrus clouds over an area encompassing southern and central Wisconsin. The cirrus cloud types include: dissipating subvisual and thin fibrous cirrus cloud bands, an isolated mesoscale uncinus complex (MUC), a large-scale deep cloud that developed into an organized cirrus structure within the lidar array, and a series of intensifying mesoscale cirrus cloud masses. Although the cirrus frequently developed in the vertical from particle fall-streaks emanating from generating regions at or near cloud tops, glaciating supercooled (-30 to -35 C) altocumulus clouds contributed to the production of ice mass at the base of the deep cirrus cloud, apparently even through riming, and other mechanisms involving evaporation, wave motions, and radiative effects are indicated. The generating regions ranged in scale from approximately 1.0 km cirrus uncinus cells, to organized MUC structures up to approximately 120 km across.

  19. Observations of marine stratocumulus clouds during FIRE

    NASA Technical Reports Server (NTRS)

    Albrecht, Bruce A.; Randall, David A.; Nicholls, Stephen

    1988-01-01

    The First International Satellite Cloud Climatology Project Regional Experiment (FIRE) to study extensive fields of stratocumulus clouds off the coast of California is presented. Measurements on the regional and detailed local scales were taken, allowing for a wide interpretation of the mean, turbulent, microphysical, radiative, and chemical characteristics of stratocumulus. Multiple aircraft and ground-based remote-sensing systems were used to study the time evolution of the boundary layer structure over a three-week period, and probes from tethered balloons were used to measure turbulence and to collect cloud-microphysical and cloud-radiative data. The observations provide a base for studying the generation maintenance and dissipation of stratocumulus clouds, and could aid in developing numerical models and improved methods for retrieving cloud properties by satellite.

  20. Boundary Conditions for the Paleoenvironment: Chemical and Physical Processes in the Pre-Solar Nebula

    NASA Technical Reports Server (NTRS)

    Irvine, William M.; Schloerb, F. Peter

    1997-01-01

    The basic theme of this program is the study of molecular complexity and evolution in interstellar clouds and in primitive solar system objects. Research has included the detection and study of a number of new interstellar molecules and investigation of reaction pathways for astrochemistry from a comparison of theory and observed molecular abundances. The latter includes studies of cold, dark clouds in which ion-molecule chemistry should predominate, searches for the effects of interchange of material between the gas and solid phases in interstellar clouds, unbiased spectral surveys of particular sources, and systematic investigation of the interlinked chemistry and physics of dense interstellar clouds. In addition, the study of comets has allowed a comparison between the chemistry of such minimally thermally processed objects and that of interstellar clouds, shedding light on the evolution of the biogenic elements during the process of solar system formation.

  1. OpenID Connect as a security service in cloud-based medical imaging systems.

    PubMed

    Ma, Weina; Sartipi, Kamran; Sharghigoorabi, Hassan; Koff, David; Bak, Peter

    2016-04-01

    The evolution of cloud computing is driving the next generation of medical imaging systems. However, privacy and security concerns have been consistently regarded as the major obstacles for adoption of cloud computing by healthcare domains. OpenID Connect, combining OpenID and OAuth together, is an emerging representational state transfer-based federated identity solution. It is one of the most adopted open standards to potentially become the de facto standard for securing cloud computing and mobile applications, which is also regarded as "Kerberos of cloud." We introduce OpenID Connect as an authentication and authorization service in cloud-based diagnostic imaging (DI) systems, and propose enhancements that allow for incorporating this technology within distributed enterprise environments. The objective of this study is to offer solutions for secure sharing of medical images among diagnostic imaging repository (DI-r) and heterogeneous picture archiving and communication systems (PACS) as well as Web-based and mobile clients in the cloud ecosystem. The main objective is to use OpenID Connect open-source single sign-on and authorization service and in a user-centric manner, while deploying DI-r and PACS to private or community clouds should provide equivalent security levels to traditional computing model.

  2. Major Characteristics of Southern Ocean Cloud Regimes and Their Effects on the Energy Budget

    NASA Technical Reports Server (NTRS)

    Haynes, John M.; Jakob, Christian; Rossow, William B.; Tselioudis, George; Brown, Josephine

    2011-01-01

    Clouds over the Southern Ocean are often poorly represented by climate models, but they make a significant contribution to the top-of-atmosphere (TOA) radiation balance, particularly in the shortwave portion of the energy spectrum. This study seeks to better quantify the organization and structure of Southern Hemisphere midlatitude clouds by combining measurements from active and passive satellite-based datasets. Geostationary and polar-orbiter satellite data from the International Satellite Cloud Climatology Project (ISCCP) are used to quantify large-scale, recurring modes of cloudiness, and active observations from CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) are used to examine vertical structure, radiative heating rates, and precipitation associated with these clouds. It is found that cloud systems are organized into eight distinct regimes and that ISCCP overestimates the midlevel cloudiness of these regimes. All regimes contain a relatively high occurrence of low cloud, with 79%of all cloud layers observed having tops below 3 km, but multiple-layered clouds systems are present in approximately 34% of observed cloud profiles. The spatial distribution of regimes varies according to season, with cloud systems being geometrically thicker, on average, during the austral winter. Those regimes found to be most closely associated with midlatitude cyclones produce precipitation the most frequently, although drizzle is extremely common in low-cloud regimes. The regimes associated with cyclones have the highest in-regime shortwave cloud radiative effect at the TOA, but the low-cloud regimes, by virtue of their high frequency of occurrence over the oceans, dominate both TOA and surface shortwave effects in this region as a whole.

  3. Biotoxicity and bioavailability of hydrophobic organic compounds solubilized in nonionic surfactant micelle phase and cloud point system.

    PubMed

    Pan, Tao; Liu, Chunyan; Zeng, Xinying; Xin, Qiao; Xu, Meiying; Deng, Yangwu; Dong, Wei

    2017-06-01

    A recent work has shown that hydrophobic organic compounds solubilized in the micelle phase of some nonionic surfactants present substrate toxicity to microorganisms with increasing bioavailability. However, in cloud point systems, biotoxicity is prevented, because the compounds are solubilized into a coacervate phase, thereby leaving a fraction of compounds with cells in a dilute phase. This study extends the understanding of the relationship between substrate toxicity and bioavailability of hydrophobic organic compounds solubilized in nonionic surfactant micelle phase and cloud point system. Biotoxicity experiments were conducted with naphthalene and phenanthrene in the presence of mixed nonionic surfactants Brij30 and TMN-3, which formed a micelle phase or cloud point system at different concentrations. Saccharomyces cerevisiae, unable to degrade these compounds, was used for the biotoxicity experiments. Glucose in the cloud point system was consumed faster than in the nonionic surfactant micelle phase, indicating that the solubilized compounds had increased toxicity to cells in the nonionic surfactant micelle phase. The results were verified by subsequent biodegradation experiments. The compounds were degraded faster by PAH-degrading bacterium in the cloud point system than in the micelle phase. All these results showed that biotoxicity of the hydrophobic organic compounds increases with bioavailability in the surfactant micelle phase but remains at a low level in the cloud point system. These results provide a guideline for the application of cloud point systems as novel media for microbial transformation or biodegradation.

  4. Analysis and modeling of summertime convective cloud and precipitation structure over the Southeastern United States

    NASA Technical Reports Server (NTRS)

    Knupp, Kevin R.

    1991-01-01

    A summary of an investigation of deep convective cloud systems that typify the summertime subtropical environment of northern Alabama is presented. The major portion of the research effort included analysis of data acquired during the 1986 Cooperative Huntsville Meteorological Experiment (COHMEX), which consisted of the joint programs Satellite Precipitation and Cloud Experiment (SPACE) under NASA direction, the Microburst and Service Thunderstorm (MIST) Program under NSF sponsorship, and the FAA-Lincoln Laboratory Weather Study (FLOWS). This work relates closely to the SPACE component of COHMEX, one of the general goals of which was to further the understanding of kinematic and precipitation structure of convective cloud systems. The special observational plateforms that were available under the SPACE/COHMEX Program are shown. The original objectives included studies of both isolated deep convection and of (small) mesoscale convection systems that are observed in the Southeast environment. In addition, it was proposed to include both observational and comparative numerical modeling studies of these characteristic cloud systems. Changes in scope were made during the course of this investigation to better accommodate both the manpower available and the data that was acquired. A greater emphasis was placed on determination of the internal structure of small mesoscale convective systems, and the relationship of internal dynamical and microphysical processes to the observed cloud top behavior as inferred from GOES IR (30 min) data. The major accomplishments of this investigation are presented.

  5. Criteria for the evaluation of a cloud-based hospital information system outsourcing provider.

    PubMed

    Low, Chinyao; Hsueh Chen, Ya

    2012-12-01

    As cloud computing technology has proliferated rapidly worldwide, there has been a trend toward adopting cloud-based hospital information systems (CHISs). This study examines the critical criteria for selecting the CHISs outsourcing provider. The fuzzy Delphi method (FDM) is used to evaluate the primary indicator collected from 188 useable responses at a working hospital in Taiwan. Moreover, the fuzzy analytic hierarchy process (FAHP) is employed to calculate the weights of these criteria and establish a fuzzy multi-criteria model of CHISs outsourcing provider selection from 42 experts. The results indicate that the five most critical criteria related to CHISs outsourcing provider selection are (1) system function, (2) service quality, (3) integration, (4) professionalism, and (5) economics. This study may contribute to understanding how cloud-based hospital systems can reinforce content design and offer a way to compete in the field by developing more appropriate systems.

  6. A Goddard Multi-Scale Modeling System with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, W.K.; Anderson, D.; Atlas, R.; Chern, J.; Houser, P.; Hou, A.; Lang, S.; Lau, W.; Peters-Lidard, C.; Kakar, R.; hide

    2008-01-01

    Numerical cloud resolving models (CRMs), which are based the non-hydrostatic equations of motion, have been extensively applied to cloud-scale and mesoscale processes during the past four decades. Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that CRMs agree with observations in simulating various types of clouds and cloud systems from different geographic locations. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that Numerical Weather Prediction (NWP) and regional scale model can be run in grid size similar to cloud resolving model through nesting technique. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a szrper-parameterization or multi-scale modeling -framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign can provide initial conditions as well as validation through utilizing the Earth Satellite simulators. At Goddard, we have developed a multi-scale modeling system with unified physics. The modeling system consists a coupled GCM-CRM (or MMF); a state-of-the-art weather research forecast model (WRF) and a cloud-resolving model (Goddard Cumulus Ensemble model). In these models, the same microphysical schemes (2ICE, several 3ICE), radiation (including explicitly calculated cloud optical properties), and surface models are applied. In addition, a comprehensive unified Earth Satellite simulator has been developed at GSFC, which is designed to fully utilize the multi-scale modeling system. A brief review of the multi-scale modeling system with unified physics/simulator and examples is presented in this article.

  7. Impact of Surface Active Ionic Liquids on the Cloud Points of Nonionic Surfactants and the Formation of Aqueous Micellar Two-Phase Systems.

    PubMed

    Vicente, Filipa A; Cardoso, Inês S; Sintra, Tânia E; Lemus, Jesus; Marques, Eduardo F; Ventura, Sónia P M; Coutinho, João A P

    2017-09-21

    Aqueous micellar two-phase systems (AMTPS) hold a large potential for cloud point extraction of biomolecules but are yet poorly studied and characterized, with few phase diagrams reported for these systems, hence limiting their use in extraction processes. This work reports a systematic investigation of the effect of different surface-active ionic liquids (SAILs)-covering a wide range of molecular properties-upon the clouding behavior of three nonionic Tergitol surfactants. Two different effects of the SAILs on the cloud points and mixed micelle size have been observed: ILs with a more hydrophilic character and lower critical packing parameter (CPP < 1 / 2 ) lead to the formation of smaller micelles and concomitantly increase the cloud points; in contrast, ILs with a more hydrophobic character and higher CPP (CPP ≥ 1) induce significant micellar growth and a decrease in the cloud points. The latter effect is particularly interesting and unusual for it was accepted that cloud point reduction is only induced by inorganic salts. The effects of nonionic surfactant concentration, SAIL concentration, pH, and micelle ζ potential are also studied and rationalized.

  8. Surface factors governing the stratocumulus breakup and evolution in southern West Africa: A LES study

    NASA Astrophysics Data System (ADS)

    Pedruzo-Bagazgoitia, Xabier; Lohou, Fabienne; Dione, Cheikh; Lothon, Marie; Kalthoff, Norbert; Adler, Bianca; Babić, Karmen; Vilà-Guerau de Arellano, Jordi

    2017-04-01

    The role of boundary-layer clouds as part of the Western African Monsoon system is investigated. The system encompasses the interaction between large-scale phenomena such as the (southerly) monsoon flow, the African Easterly Jet and the (northerly) Harmattan wind, and the role of smaller scale processes driven by turbulence and the sea-vegetation transition on the lower troposphere, such as the frequently observed nocturnal low-level jet. As observed during the DACCIWA project campaign, low stratocumulus clouds recurrently appear inland during the night, sometimes prevailing until the next afternoon while in other cases they break up in the morning and disappear or transform to convective clouds. These observations rise two research questions: Do surface conditions affect the cloud breakup? Is the direct or diffuse character of radiation relevant for the cloud transition? In our study we focus on the local effect of the surface and radiation on the breakup of stratocumulus and the subsequent transition to convective clouds during the morning transition. We design an idealized Large Eddy Simulation (LES) experiment in which the surface is coupled to the cloud dynamics based on radiosoundings launched during the campaign at the supersite of Savé (Benin), which is located about 180 km north of the Gulf of Guinea. This experiment includes the most relevant factors for the evolution of the boundary layer and stratocumulus in the morning. By systematically breaking down the complexity of the system, we study the relevance of atmospheric stability (by modifying the atmospheric lapse rates), and the partition of evaporation and sensible heat flux on the evolution, break up and transition of the stratocumulus cloud layer. Previous studies have shown that diffuse radiation controlled by clouds and aerosols can locally enhance evaporation. Therefore, particular emphasize is put on the determination of the role of direct and diffuse radiation during the cloud transition on the vegetated canopy, and the impact on the surface fluxes and cloud dynamics.

  9. Stratocumulus Precipitation and Entrainment Experiment (SPEE) Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albrecht, Bruce; Ghate, Virendra; CADeddu, Maria

    2016-06-01

    The scientific focus of this project was to examine precipitation and entrainment processes in marine stratocumulus clouds. The entrainment studies focused on characterizing cloud turbulence at cloud top using Doppler cloud radar observations. The precipitation studies focused on characterizing the precipitation and the macroscopic properties (cloud thickness, and liquid water path) of the clouds. This project will contribute to the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s overall objective of providing the remote-sensing observations needed to improve the representation of key cloud processes in climate models. It will be of direct relevance to the componentsmore » of ARM dealing with entrainment and precipitation processes in stratiform clouds. Further, the radar observing techniques that will be used in this study were developed using ARM Southern Great Plains (SGP) facility observations under Atmospheric System Research (ASR) support. The observing systems operating automatously from a site located just north of the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) aircraft hangar in Marina, California during the period of 1 May to 4 November 2015 included: 1. Microwave radiometer: ARM Microwave Radiometer, 3-Channel (MWR3C) with channels centered at 23.834, 30, and 89 GHz; supported by Dr. Maria Cadeddu. 2. Cloud Radar: CIRPAS 95 GHz Frequency Modulated Continuous Wave (FMCW) Cloud Radar (Centroid Frequency Chirp Rate [CFCR]); operations overseen by Drs. Ghate and Albrecht. 3. Ceilometer: Vaisala CK-14; operations overseen by Drs. Ghate and Albrecht.« less

  10. Perceived Use and Acceptance of Cloud Enterprise Resource Planning (ERP) Implementation in the Manufacturing Industries

    ERIC Educational Resources Information Center

    Adeboje, Adewale

    2015-01-01

    The purpose of this study was to gain an insight into perceived use and acceptance for implementing an enterprise resource planning system and the decision whether to contract out the enterprise resource planning (ERP) service to a cloud provider. Cloud-based ERP systems can provide many advantages to the normal implementation of the same systems…

  11. Particle nonuniformity effects on particle cloud flames in low gravity

    NASA Technical Reports Server (NTRS)

    Berlad, A. L.; Tangirala, V.; Seshadri, K.; Facca, L. T.; Ogrin, J.; Ross, H.

    1991-01-01

    Experimental and analytical studies of particle cloud combustion at reduced gravity reveal the substantial roles that particle cloud nonuniformities may play in particle cloud combustion. Macroscopically uniform, quiescent particle cloud systems (at very low gravitational levels and above) sustain processes which can render them nonuniform on both macroscopic and microscopic scales. It is found that a given macroscopically uniform, quiescent particle cloud flame system can display a range of microscopically nonuniform features which lead to a range of combustion features. Microscopically nonuniform particle cloud distributions are difficult experimentally to detect and characterize. A uniformly distributed lycopodium cloud of particle-enriched microscopic nonuniformities in reduced gravity displays a range of burning velocities for any given overall stoichiometry. The range of observed and calculated burning velocities corresponds to the range of particle enriched concentrations within a characteristic microscopic nonuniformity. Sedimentation effects (even in reduced gravity) are also examined.

  12. Study on ice cloud optical thickness retrieval with MODIS IR spectral bands

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Li, Jun

    2005-01-01

    The operational Moderate-Resolution Imaging Spectroradiometer (MODIS) products for cloud properties such as cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size (CPS), cloud optical thickness (COT), and cloud phase (CP) have been available for users globally. An approach to retrieve COT is investigated using MODIS infrared (IR) window spectral bands (8.5 mm, 11mm, and 12 mm). The COT retrieval from MODIS IR bands has the potential to provide microphysical properties with high spatial resolution during night. The results are compared with those from operational MODIS products derived from the visible (VIS) and near-infrared (NIR) bands during day. Sensitivity of COT to MODIS spectral brightness temperature (BT) and BT difference (BTD) values is studied. A look-up table is created from the cloudy radiative transfer model accounting for the cloud absorption and scattering for the cloud microphysical property retrieval. The potential applications and limitations are also discussed. This algorithm can be applied to the future imager systems such as Visible/Infrared Imager/Radiometer Suite (VIIRS) on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) and Advanced Baseline Imager (ABI) on the Geostationary Operational Environmental Satellite (GOES)-R.

  13. Using Multi-Scale Modeling Systems and Satellite Data to Study the Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.

    2011-01-01

    In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (l) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, the recent developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the precipitating systems and hurricanes/typhoons will be presented. The high-resolution spatial and temporal visualization will be utilized to show the evolution of precipitation processes. Also how to use of the multi-satellite simulator tqimproy precipitation processes will be discussed.

  14. An Examination of the Nature of Global MODIS Cloud Regimes

    NASA Technical Reports Server (NTRS)

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin; Kato, Seiji; Huffman, George J.

    2014-01-01

    We introduce global cloud regimes (previously also referred to as "weather states") derived from cloud retrievals that use measurements by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Aqua and Terra satellites. The regimes are obtained by applying clustering analysis on joint histograms of retrieved cloud top pressure and cloud optical thickness. By employing a compositing approach on data sets from satellites and other sources, we examine regime structural and thermodynamical characteristics. We establish that the MODIS cloud regimes tend to form in distinct dynamical and thermodynamical environments and have diverse profiles of cloud fraction and water content. When compositing radiative fluxes from the Clouds and the Earth's Radiant Energy System instrument and surface precipitation from the Global Precipitation Climatology Project, we find that regimes with a radiative warming effect on the atmosphere also produce the largest implied latent heat. Taken as a whole, the results of the study corroborate the usefulness of the cloud regime concept, reaffirm the fundamental nature of the regimes as appropriate building blocks for cloud system classification, clarify their association with standard cloud types, and underscore their distinct radiative and hydrological signatures.

  15. Advancing cloud lifecycle representation in numerical models using innovative analysis methods that bridge arm observations over a breadth of scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tselioudis, George

    2016-03-04

    From its location on the subtropics-midlatitude boundary, the Azores is influenced by both the subtropical high pressure and the midlatitude baroclinic storm regimes, and therefore experiences a wide range of cloud structures, from fair-weather scenes to stratocumulus sheets to deep convective systems. This project combined three types of data sets to study cloud variability in the Azores: a satellite analysis of cloud regimes, a reanalysis characterization of storminess, and a 19-month field campaign that occurred on Graciosa Island. Combined analysis of the three data sets provides a detailed picture of cloud variability and the respective dynamic influences, with emphasis onmore » low clouds that constitute a major uncertainty source in climate model simulations. The satellite cloud regime analysis shows that the Azores cloud distribution is similar to the mean global distribution and can therefore be used to evaluate cloud simulation in global models. Regime analysis of low clouds shows that stratocumulus decks occur under the influence of the Azores high-pressure system, while shallow cumulus clouds are sustained by cold-air outbreaks, as revealed by their preference for post-frontal environments and northwesterly flows. An evaluation of CMIP5 climate model cloud regimes over the Azores shows that all models severely underpredict shallow cumulus clouds, while most models also underpredict the occurrence of stratocumulus cloud decks. It is demonstrated that carefully selected case studies can be related through regime analysis to climatological cloud distributions, and a methodology is suggested utilizing process-resolving model simulations of individual cases to better understand cloud-dynamics interactions and attempt to explain and correct climate model cloud deficiencies.« less

  16. Atrial Fibrillation Screening in Nonmetropolitan Areas Using a Telehealth Surveillance System With an Embedded Cloud-Computing Algorithm: Prospective Pilot Study

    PubMed Central

    Chen, Ying-Hsien; Hung, Chi-Sheng; Huang, Ching-Chang; Hung, Yu-Chien

    2017-01-01

    Background Atrial fibrillation (AF) is a common form of arrhythmia that is associated with increased risk of stroke and mortality. Detecting AF before the first complication occurs is a recognized priority. No previous studies have examined the feasibility of undertaking AF screening using a telehealth surveillance system with an embedded cloud-computing algorithm; we address this issue in this study. Objective The objective of this study was to evaluate the feasibility of AF screening in nonmetropolitan areas using a telehealth surveillance system with an embedded cloud-computing algorithm. Methods We conducted a prospective AF screening study in a nonmetropolitan area using a single-lead electrocardiogram (ECG) recorder. All ECG measurements were reviewed on the telehealth surveillance system and interpreted by the cloud-computing algorithm and a cardiologist. The process of AF screening was evaluated with a satisfaction questionnaire. Results Between March 11, 2016 and August 31, 2016, 967 ECGs were recorded from 922 residents in nonmetropolitan areas. A total of 22 (2.4%, 22/922) residents with AF were identified by the physician’s ECG interpretation, and only 0.2% (2/967) of ECGs contained significant artifacts. The novel cloud-computing algorithm for AF detection had a sensitivity of 95.5% (95% CI 77.2%-99.9%) and specificity of 97.7% (95% CI 96.5%-98.5%). The overall satisfaction score for the process of AF screening was 92.1%. Conclusions AF screening in nonmetropolitan areas using a telehealth surveillance system with an embedded cloud-computing algorithm is feasible. PMID:28951384

  17. Cloud and ice in the planetary scale circulation and in climate

    NASA Technical Reports Server (NTRS)

    Herman, G. F.; Houghton, D. D.; Kutzbach, J. E.; Suomi, V. E.

    1984-01-01

    The roles of the cryosphere, and of cloud-radiative interactions are investigated. The effects clouds and ice have in the climate system are examined. The cloud radiation research attempts explain the modes of interaction (feedback) between raditive transfer, cloud formation, and atmospheric dynamics. The role of sea ice in weather and climate is also discussed. Models are used to describe the ice and atmospheric dynamics under study.

  18. Best practices for implementing, testing and using a cloud-based communication system in a disaster situation.

    PubMed

    Makowski, Dale

    2016-01-01

    This paper sets out the basics for approaching the selection and implementation of a cloud-based communication system to support a business continuity programme, including: • consideration for how a cloud-based communication system can enhance a business continuity programme; • descriptions of some of the more popular features of a cloud-based communication system; • options to evaluate when selecting a cloud-based communication system; • considerations for how to design a system to be most effective for an organisation; • best practices for how to conduct the initial load of data to a cloud-based communication system; • best practices for how to conduct an initial validation of the data loaded to a cloud-based communication system; • considerations for how to keep contact information in the cloud-based communication system current and accurate; • best practices for conducting ongoing system testing; • considerations for how to conduct user training; • review of other potential uses of a cloud-based communication system; and • review of other tools and features many cloud-based communication systems may offer.

  19. The ACRIDICON-CHUVA observational study of tropical convective clouds and precipitation using the new German research aircraft HALO

    NASA Astrophysics Data System (ADS)

    Wendisch, Manfred; Pöschl, Ulrich; Andreae, Meinrat O.; Machado, Luiz A. T.; Albrecht, Rachel; Schlager, Hans; Rosenfeld, Daniel; Krämer, Martina

    2015-04-01

    An extensive airborne/ground-based measurement campaign to study tropical convective clouds is introduced. It was performed in Brazil with focus on the Amazon rainforest from 1 September to 4 October 2014. The project combined the joint German-Brazilian ACRIDICON (Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems) and CHUVA (Machado et al.2014) projects. ACRIDICON aimed at the quantification of aerosol-cloud-precipitation interactions and their thermodynamic, dynamic and radiative effects in convective cloud systems by in-situ aircraft observations and indirect measurements (aircraft, satellite, and ground-based). The ACRIDICON-CHUVA campaign was conducted in cooperation with the second Intensive Operational Phase (IOP) of the GOAmazon (Green Ocean Amazon) program. The focus in this presentation is on the airborne observations within ACRIDICON-CHUVA. The German HALO (High Altitude and Long-Range Research Aircraft) was based in Manaus (Amazonas State); it carried out 14 research flights (96 flight hours in total). HALO was equipped with remote sensing and in-situ instrumentation for meteorological, trace gas, aerosol, cloud, and precipitation measurements. Five mission objectives were pursued: (1) cloud vertical evolution (cloud profiling), (2) aerosol processing (inflow and outflow), (3) satellite validation, (4) vertical transport and mixing (tracer experiment), and (5) clouds over forested and deforested areas. The five cloud missions collected data in clean atmospheric conditions and in contrasting polluted (urban and biomass burning) environments.

  20. Global Observations of Aerosols and Clouds from Combined Lidar and Passive Instruments to Improve Radiation Budget and Climate Studies

    NASA Technical Reports Server (NTRS)

    Winker, David M.

    1999-01-01

    Current uncertainties in the effects of clouds and aerosols on the Earth radiation budget limit our understanding of the climate system and the potential for global climate change. Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations - Climatologie Etendue des Nuages et des Aerosols (PICASSO-CENA) is a recently approved satellite mission within NASA's Earth System Science Pathfinder (ESSP) program which will address these uncertainties with a unique suite of active and passive instruments. The Lidar In-space Technology Experiment (LITE) demonstrated the potential benefits of space lidar for studies of clouds and aerosols. PICASSO-CENA builds on this experience with a payload consisting of a two-wavelength polarization-sensitive lidar, an oxygen A-band spectrometer (ABS), an imaging infrared radiometer (IIR), and a wide field camera (WFC). Data from these instruments will be used to measure the vertical distributions of aerosols and clouds in the atmosphere, as well as optical and physical properties of aerosols and clouds which influence the Earth radiation budget. PICASSO-CENA will be flown in formation with the PM satellite of the NASA Earth Observing System (EOS) to provide a comprehensive suite of coincident measurements of atmospheric state, aerosol and cloud optical properties, and radiative fluxes. The mission will address critical uncertainties iin the direct radiative forcing of aerosols and clouds as well as aerosol influences on cloud radiative properties and cloud-climate radiation feedbacks. PICASSO-CENA is planned for a three year mission, with a launch in early 2003. PICASSO-CENA is being developed within the framework of a collaboration between NASA and CNES.

  1. Determinants of Low Cloud Properties - An Artificial Neural Network Approach Using Observation Data Sets

    NASA Astrophysics Data System (ADS)

    Andersen, Hendrik; Cermak, Jan

    2015-04-01

    This contribution studies the determinants of low cloud properties based on the application of various global observation data sets in machine learning algorithms. Clouds play a crucial role in the climate system as their radiative properties and precipitation patterns significantly impact the Earth's energy balance. Cloud properties are determined by environmental conditions, as cloud formation requires the availability of water vapour ("precipitable water") and condensation nuclei in sufficiently saturated conditions. A main challenge in the research of aerosol-cloud interactions is the separation of aerosol effects from meteorological influence. To gain understanding of the processes that govern low cloud properties in order to increase accuracy of climate models and predictions of future changes in the climate system is thus of great importance. In this study, artificial neural networks are used to relate a selection of predictors (meteorological parameters, aerosol loading) to a set of predictands (cloud microphysical and optical properties). As meteorological parameters, wind direction and velocity, sea level pressure, static stability of the lower troposphere, atmospheric water vapour and temperature at the surface are used (re-analysis data by the European Centre for Medium-Range Weather Forecasts). In addition to meteorological conditions, aerosol loading is used as a predictor of cloud properties (MODIS collection 6 aerosol optical depth). The statistical model reveals significant relationships between predictors and predictands and is able to represent the aerosol-cloud-meteorology system better than frequently used bivariate relationships. The most important predictors can be identified by the additional error when excluding one predictor at a time. The sensitivity of each predictand to each of the predictors is analyzed.

  2. Evaluating Clouds in Long-Term Cloud-Resolving Model Simulations with Observational Data

    NASA Technical Reports Server (NTRS)

    Zeng, Xiping; Tao, Wei-Kuo; Zhang, Minghua; Peters-Lidard, Christa; Lang, Stephen; Simpson, Joanne; Kumar, Sujay; Xie, Shaocheng; Eastman, Joseph L.; Shie, Chung-Lin; hide

    2006-01-01

    Two 20-day, continental midlatitude cases are simulated with a three-dimensional (3D) cloud-resolving model (CRM) and compared to Atmospheric Radiation Measurement (ARM) data. This evaluation of long-term cloud-resolving model simulations focuses on the evaluation of clouds and surface fluxes. All numerical experiments, as compared to observations, simulate surface precipitation well but over-predict clouds, especially in the upper troposphere. The sensitivity of cloud properties to dimensionality and other factors is studied to isolate the origins of the over prediction of clouds. Due to the difference in buoyancy damping between 2D and 3D models, surface precipitation fluctuates rapidly with time, and spurious dehumidification occurs near the tropopause in the 2D CRM. Surface fluxes from a land data assimilation system are compared with ARM observations. They are used in place of the ARM surface fluxes to test the sensitivity of simulated clouds to surface fluxes. Summertime simulations show that surface fluxes from the assimilation system bring about a better simulation of diurnal cloud variation in the lower troposphere.

  3. OpenID Connect as a security service in cloud-based medical imaging systems

    PubMed Central

    Ma, Weina; Sartipi, Kamran; Sharghigoorabi, Hassan; Koff, David; Bak, Peter

    2016-01-01

    Abstract. The evolution of cloud computing is driving the next generation of medical imaging systems. However, privacy and security concerns have been consistently regarded as the major obstacles for adoption of cloud computing by healthcare domains. OpenID Connect, combining OpenID and OAuth together, is an emerging representational state transfer-based federated identity solution. It is one of the most adopted open standards to potentially become the de facto standard for securing cloud computing and mobile applications, which is also regarded as “Kerberos of cloud.” We introduce OpenID Connect as an authentication and authorization service in cloud-based diagnostic imaging (DI) systems, and propose enhancements that allow for incorporating this technology within distributed enterprise environments. The objective of this study is to offer solutions for secure sharing of medical images among diagnostic imaging repository (DI-r) and heterogeneous picture archiving and communication systems (PACS) as well as Web-based and mobile clients in the cloud ecosystem. The main objective is to use OpenID Connect open-source single sign-on and authorization service and in a user-centric manner, while deploying DI-r and PACS to private or community clouds should provide equivalent security levels to traditional computing model. PMID:27340682

  4. Extractive biodegradation and bioavailability assessment of phenanthrene in the cloud point system by Sphingomonas polyaromaticivorans.

    PubMed

    Pan, Tao; Deng, Tao; Zeng, Xinying; Dong, Wei; Yu, Shuijing

    2016-01-01

    The biological treatment of polycyclic aromatic hydrocarbons is an important issue. Most microbes have limited practical applications because of the poor bioavailability of polycyclic aromatic hydrocarbons. In this study, the extractive biodegradation of phenanthrene by Sphingomonas polyaromaticivorans was conducted by introducing the cloud point system. The cloud point system is composed of a mixture of (40 g/L) Brij 30 and Tergitol TMN-3, which are nonionic surfactants, in equal proportions. After phenanthrene degradation, a higher wet cell weight and lower phenanthrene residue were obtained in the cloud point system than that in the control system. According to the results of high-performance liquid chromatography, the residual phenanthrene preferred to partition from the dilute phase into the coacervate phase. The concentration of residual phenanthrene in the dilute phase (below 0.001 mg/L) is lower than its solubility in water (1.18 mg/L) after extractive biodegradation. Therefore, dilute phase detoxification was achieved, thus indicating that the dilute phase could be discharged without causing phenanthrene pollution. Bioavailability was assessed by introducing the apparent logP in the cloud point system. Apparent logP decreased significantly, thus indicating that the bioavailability of phenanthrene increased remarkably in the system. This study provides a potential application of biological treatment in water and soil contaminated by phenanthrene.

  5. Preliminary physician and pharmacist survey of the National Health Insurance PharmaCloud system in Taiwan.

    PubMed

    Tseng, Yu-Ting; Chang, Elizabeth H; Kuo, Li-Na; Shen, Wan-Chen; Bai, Kuan-Jen; Wang, Chih-Chi; Chen, Hsiang-Yin

    2017-10-01

    The PharmaCloud system, a cloud-based medication system, was launched by the Taiwan National Health Insurance Administration (NHIA) in 2013 to integrate patients' medication lists among different medical institutions. The aim of the preliminary study was to evaluate satisfaction with this system among physicians and pharmacists at the early stage of system implementation. A questionnaire was developed through a review of the literature and discussion in 6 focus groups to understand the level of satisfaction, attitudes, and intentions of physicians and pharmacists using the PharmaCloud system. It was then administered nationally in Taiwan in July to September 2015. Descriptive statistics and multiple regression were performed to identify variables influencing satisfaction and intention to use the system. In total, 895 pharmacist and 105 physician questionnaires were valid for analysis. The results showed that satisfaction with system quality warranted improvement. Positive attitudes toward medication reconciliation among physicians and pharmacists, which were significant predictors of the intention to use the system (β= 0.223, p < 0.001). Most physicians and pharmacists agreed that obtaining signed patient consent was needed but preferred that it be conducted by the NHIA rather than by individual medical institutions (4.02 ± 1.19 vs. 3.49 ± 1.40, p < 0.01). The preliminary study results indicated a moderate satisfaction toward the PharmaCloud system. Hospital pharmacists had a high satisfaction rate, but neither are physicians and community pharmacists. Continuously improvement on system quality has been performing based on the results of this preliminary survey. Policies and standardization processes, including privacy protection, are still warranted further actions to make the Taiwan PharmaCloud system a convenient platform for medication reconciliation. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A City Parking Integration System Combined with Cloud Computing Technologies and Smart Mobile Devices

    ERIC Educational Resources Information Center

    Yeh, Her-Tyan; Chen, Bing-Chang; Wang, Bo-Xun

    2016-01-01

    The current study applied cloud computing technology and smart mobile devices combined with a streaming server for parking lots to plan a city parking integration system. It is also equipped with a parking search system, parking navigation system, parking reservation service, and car retrieval service. With this system, users can quickly find…

  7. The implications of dust ice nuclei effect on cloud top temperature in a complex mesoscale convective system.

    PubMed

    Li, Rui; Dong, Xue; Guo, Jingchao; Fu, Yunfei; Zhao, Chun; Wang, Yu; Min, Qilong

    2017-10-23

    Mineral dust is the most important natural source of atmospheric ice nuclei (IN) which may significantly mediate the properties of ice cloud through heterogeneous nucleation and lead to crucial impacts on hydrological and energy cycle. The potential dust IN effect on cloud top temperature (CTT) in a well-developed mesoscale convective system (MCS) was studied using both satellite observations and cloud resolving model (CRM) simulations. We combined satellite observations from passive spectrometer, active cloud radar, lidar, and wind field simulations from CRM to identify the place where ice cloud mixed with dust particles. For given ice water path, the CTT of dust-mixed cloud is warmer than that in relatively pristine cloud. The probability distribution function (PDF) of CTT for dust-mixed clouds shifted to the warmer end and showed two peaks at about -45 °C and -25 °C. The PDF for relatively pristine cloud only show one peak at -55 °C. Cloud simulations with different microphysical schemes agreed well with each other and showed better agreement with satellite observations in pristine clouds, but they showed large discrepancies in dust-mixed clouds. Some microphysical schemes failed to predict the warm peak of CTT related to heterogeneous ice formation.

  8. A Multi-scale Modeling System with Unified Physics to Study Precipitation Processes

    NASA Astrophysics Data System (ADS)

    Tao, W. K.

    2017-12-01

    In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), and (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF). The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the precipitation, processes and their sensitivity on model resolution and microphysics schemes will be presented. Also how to use of the multi-satellite simulator to improve precipitation processes will be discussed.

  9. Phase B-final definition and preliminary design study for the initial Atmospheric Cloud Physics Laboratory (ACPL). A spacelab mission payload

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Progress in the development of the Atmospheric Cloud Physics Laboratory is outlined. The fluid subsystem, aerosol generator, expansion chamber, optical system, control systems, and software are included.

  10. Delta 2 Explosion Plume Analysis Report

    NASA Technical Reports Server (NTRS)

    Evans, Randolph J.

    2000-01-01

    A Delta II rocket exploded seconds after liftoff from Cape Canaveral Air Force Station (CCAFS) on 17 January 1997. The cloud produced by the explosion provided an opportunity to evaluate the models which are used to track potentially toxic dispersing plumes and clouds at CCAFS. The primary goal of this project was to conduct a case study of the dispersing cloud and the models used to predict the dispersion resulting from the explosion. The case study was conducted by comparing mesoscale and dispersion model results with available meteorological and plume observations. This study was funded by KSC under Applied Meteorology Unit (AMU) option hours. The models used in the study are part of the Eastern Range Dispersion Assessment System (ERDAS) and include the Regional Atmospheric Modeling System (RAMS), HYbrid Particle And Concentration Transport (HYPACT), and Rocket Exhaust Effluent Dispersion Model (REEDM). The primary observations used for explosion cloud verification of the study were from the National Weather Service's Weather Surveillance Radar 1988-Doppler (WSR-88D). Radar reflectivity measurements of the resulting cloud provided good estimates of the location and dimensions of the cloud over a four-hour period after the explosion. The results indicated that RAMS and HYPACT models performed reasonably well. Future upgrades to ERDAS are recommended.

  11. A Coupled GCM-Cloud Resolving Modeling System, and a Regional Scale Model to Study Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2006-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CFWs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1 998 and 1999). In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications).

  12. Cloud Overlapping Detection Algorithm Using Solar and IR Wavelengths With GOSE Data Over ARM/SGP Site

    NASA Technical Reports Server (NTRS)

    Kawamoto, Kazuaki; Minnis, Patrick; Smith, William L., Jr.

    2001-01-01

    One of the most perplexing problems in satellite cloud remote sensing is the overlapping of cloud layers. Although most techniques assume a 1-layer cloud system in a given retrieval of cloud properties, many observations are affected by radiation from more than one cloud layer. As such, cloud overlap can cause errors in the retrieval of many properties including cloud height, optical depth, phase, and particle size. A variety of methods have been developed to identify overlapped clouds in a given satellite imager pixel. Baum el al. (1995) used CO2 slicing and a spatial coherence method to demonstrate a possible analysis method for nighttime detection of multilayered clouds. Jin and Rossow (1997) also used a multispectral CO2 slicing technique for a global analysis of overlapped cloud amount. Lin et al. (1999) used a combination infrared, visible, and microwave data to detect overlapped clouds over water. Recently, Baum and Spinhirne (2000) proposed 1.6 and 11 microns. bispectral threshold method. While all of these methods have made progress in solving this stubborn problem, none have yet proven satisfactory for continuous and consistent monitoring of multilayer cloud systems. It is clear that detection of overlapping clouds from passive instruments such as satellite radiometers is in an immature stage of development and requires additional research. Overlapped cloud systems also affect the retrievals of cloud properties over the ARM domains (e.g., Minnis et al 1998) and hence should identified as accurately as possible. To reach this goal, it is necessary to determine which information can be exploited for detecting multilayered clouds from operational meteorological satellite data used by ARM. This paper examines the potential information available in spectral data available on the Geostationary Operational Environmental Satellite (GOES) imager and the NOAA Advanced Very High Resolution Radiometer (AVHRR) used over the ARM SGP and NSA sites to study the capability of detecting overlapping clouds

  13. Cloud Overlapping Detection Algorithm Using Solar and IR Wavelengths with GOES Data Over ARM/SGP Site

    NASA Technical Reports Server (NTRS)

    Kawamoto, K.; Minnis, P.; Smith, W. L., Jr.

    2001-01-01

    One of the most perplexing problems in satellite cloud remote sensing is the overlapping of cloud layers. Although most techniques assume a one layer cloud system in a given retrieval of cloud properties, many observations are affected by radiation from more than one cloud layer. As such, cloud overlap can cause errors in the retrieval of many properties including cloud height, optical depth, phase, and particle size. A variety of methods have been developed to identify overlapped clouds in a given satellite imager pixel. Baum et al used CO2 slicing and a spatial coherence method to demonstrate a possible analysis method for nighttime detection of multilayered clouds. Jin and Rossow also used a multispectral CO2 slicing technique for a global analysis of overlapped cloud amount. Lin et al. used a combination infrared (IR), visible (VIS), and microwave data to detect overlapped clouds over water. Recently, Baum and Spinhirne proposed a 1.6 and 11 micron bispectral threshold method. While all of these methods have made progress in solving this stubborn problem none have yet proven satisfactory for continuous and consistent monitoring of multilayer cloud systems. It is clear that detection of overlapping clouds from passive instruments such as satellite radiometers is in an immature stage of development and requires additional research. Overlapped cloud systems also affect the retrievals of cloud properties over the Atmospheric Radiation Measurement (ARM) domains and hence should be identified as accurately as possible. To reach this goal, it is necessary to determine which information can be exploited for detecting multilayered clouds from operational meteorological satellite data used by ARM. This paper examines the potential information available in spectral data available on the Geostationary Operational Environmental Satellite (GOES) imager and the National Oceanic Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) used over the ARM Program's Southern Great Plains (SGP), and North Slope of Alaska (NSA) sites to study the capability of detecting overlapping clouds.

  14. Atrial Fibrillation Screening in Nonmetropolitan Areas Using a Telehealth Surveillance System With an Embedded Cloud-Computing Algorithm: Prospective Pilot Study.

    PubMed

    Chen, Ying-Hsien; Hung, Chi-Sheng; Huang, Ching-Chang; Hung, Yu-Chien; Hwang, Juey-Jen; Ho, Yi-Lwun

    2017-09-26

    Atrial fibrillation (AF) is a common form of arrhythmia that is associated with increased risk of stroke and mortality. Detecting AF before the first complication occurs is a recognized priority. No previous studies have examined the feasibility of undertaking AF screening using a telehealth surveillance system with an embedded cloud-computing algorithm; we address this issue in this study. The objective of this study was to evaluate the feasibility of AF screening in nonmetropolitan areas using a telehealth surveillance system with an embedded cloud-computing algorithm. We conducted a prospective AF screening study in a nonmetropolitan area using a single-lead electrocardiogram (ECG) recorder. All ECG measurements were reviewed on the telehealth surveillance system and interpreted by the cloud-computing algorithm and a cardiologist. The process of AF screening was evaluated with a satisfaction questionnaire. Between March 11, 2016 and August 31, 2016, 967 ECGs were recorded from 922 residents in nonmetropolitan areas. A total of 22 (2.4%, 22/922) residents with AF were identified by the physician's ECG interpretation, and only 0.2% (2/967) of ECGs contained significant artifacts. The novel cloud-computing algorithm for AF detection had a sensitivity of 95.5% (95% CI 77.2%-99.9%) and specificity of 97.7% (95% CI 96.5%-98.5%). The overall satisfaction score for the process of AF screening was 92.1%. AF screening in nonmetropolitan areas using a telehealth surveillance system with an embedded cloud-computing algorithm is feasible. ©Ying-Hsien Chen, Chi-Sheng Hung, Ching-Chang Huang, Yu-Chien Hung, Juey-Jen Hwang, Yi-Lwun Ho. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 26.09.2017.

  15. A Multi-Year Data Set of Cloud Properties Derived for CERES from Aqua, Terra, and TRMM

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Sunny Sun-Mack; Trepte, Quinz Z.; Yan Chen; Brown, Richard R.; Gibson, Sharon C.; Heck, Michael L.; Dong, Xiquan; Xi, Baike

    2007-01-01

    The Clouds and Earth's Radiant Energy System (CERES) Project is producing a suite of cloud properties from high-resolution imagers on several satellites and matching them precisely with broadband radiance data to study the influence of clouds and radiation on climate. The cloud properties generally compare well with independent validation sources. Distinct differences are found between the CERES cloud properties and those derived with other algorithms from the same imager data. CERES products will be updated beginning in late 2006.

  16. Introducing Convective Cloud Microphysics to a Deep Convection Parameterization Facilitating Aerosol Indirect Effects

    NASA Astrophysics Data System (ADS)

    Alapaty, K.; Zhang, G. J.; Song, X.; Kain, J. S.; Herwehe, J. A.

    2012-12-01

    Short lived pollutants such as aerosols play an important role in modulating not only the radiative balance but also cloud microphysical properties and precipitation rates. In the past, to understand the interactions of aerosols with clouds, several cloud-resolving modeling studies were conducted. These studies indicated that in the presence of anthropogenic aerosols, single-phase deep convection precipitation is reduced or suppressed. On the other hand, anthropogenic aerosol pollution led to enhanced precipitation for mixed-phase deep convective clouds. To date, there have not been many efforts to incorporate such aerosol indirect effects (AIE) in mesoscale models or global models that use parameterization schemes for deep convection. Thus, the objective of this work is to implement a diagnostic cloud microphysical scheme directly into a deep convection parameterization facilitating aerosol indirect effects in the WRF-CMAQ integrated modeling systems. Major research issues addressed in this study are: What is the sensitivity of a deep convection scheme to cloud microphysical processes represented by a bulk double-moment scheme? How close are the simulated cloud water paths as compared to observations? Does increased aerosol pollution lead to increased precipitation for mixed-phase clouds? These research questions are addressed by performing several WRF simulations using the Kain-Fritsch convection parameterization and a diagnostic cloud microphysical scheme. In the first set of simulations (control simulations) the WRF model is used to simulate two scenarios of deep convection over the continental U.S. during two summer periods at 36 km grid resolution. In the second set, these simulations are repeated after incorporating a diagnostic cloud microphysical scheme to study the impacts of inclusion of cloud microphysical processes. Finally, in the third set, aerosol concentrations simulated by the CMAQ modeling system are supplied to the embedded cloud microphysical scheme to study impacts of aerosol concentrations on precipitation and radiation fields. Observations available from the ARM microbase data, the SURFRAD network, GOES imagery, and other reanalysis and measurements will be used to analyze the impacts of a cloud microphysical scheme and aerosol concentrations on parameterized convection.

  17. Microphysics in the Multi-Scale Modeling Systems with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.

    2011-01-01

    In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (l) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, the microphysics developments of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the heavy precipitation processes will be presented.

  18. Cloud cover estimation: Use of GOES imagery in development of cloud cover data base for insolation assessment

    NASA Technical Reports Server (NTRS)

    Huning, J. R.; Logan, T. L.; Smith, J. H.

    1982-01-01

    The potential of using digital satellite data to establish a cloud cover data base for the United States, one that would provide detailed information on the temporal and spatial variability of cloud development are studied. Key elements include: (1) interfacing GOES data from the University of Wisconsin Meteorological Data Facility with the Jet Propulsion Laboratory's VICAR image processing system and IBIS geographic information system; (2) creation of a registered multitemporal GOES data base; (3) development of a simple normalization model to compensate for sun angle; (4) creation of a variable size georeference grid that provides detailed cloud information in selected areas and summarized information in other areas; and (5) development of a cloud/shadow model which details the percentage of each grid cell that is cloud and shadow covered, and the percentage of cloud or shadow opacity. In addition, comparison of model calculations of insolation with measured values at selected test sites was accomplished, as well as development of preliminary requirements for a large scale data base of cloud cover statistics.

  19. Cloud Properties of CERES-MODIS Edition 4 and CERES-VIIRS Edition 1

    NASA Technical Reports Server (NTRS)

    Sun-Mack, Sunny; Minnis, Patrick; Chang, Fu-Lung; Hong, Gang; Arduini, Robert; Chen, Yan; Trepte, Qing; Yost, Chris; Smith, Rita; Brown, Ricky; hide

    2015-01-01

    The Clouds and Earth's Radiant Energy System (CERES) analyzes MODerate-resolution Imaging Spectroradiometer (MODIS) data and Visible Infrared Imaging Radiometer Suite (VIIRS) to derive cloud properties that are combine with aerosol and CERES broadband flux data to create a multi-parameter data set for climate study. CERES has produced over 15 years of data from Terra and over 13 years of data from Aqua using the CERES-MODIS Edition-2 cloud retrieval algorithm. A recently revised algorithm, CERESMODIS Edition 4, has been developed and is now generating enhanced cloud data for climate research (over 10 years for Terra and 8 years for Aqua). New multispectral retrievals of properties are included along with a multilayer cloud retrieval system. Cloud microphysical properties are reported at 3 wavelengths, 0.65, 1.24, and 2.1 microns to enable better estimates of the vertical profiles of cloud water contents. Cloud properties over snow are retrieved using the 1.24-micron channel. A new CERES-VIIRS cloud retrieval package was developed for the VIIRS spectral complement and is currently producing the CERES-VIIRS Edition 1 cloud dataset. The results from CERES-MODIS Edition 4 and CERES-VIIRS Edition 1 are presented and compared with each other and other datasets, including CALIPSO, CloudSat and the CERES-MODIS Edition-2 results.

  20. Global Single and Multiple Cloud Classification with a Fuzzy Logic Expert System

    NASA Technical Reports Server (NTRS)

    Welch, Ronald M.; Tovinkere, Vasanth; Titlow, James; Baum, Bryan A.

    1996-01-01

    An unresolved problem in remote sensing concerns the analysis of satellite imagery containing both single and multiple cloud layers. While cloud parameterizations are very important both in global climate models and in studies of the Earth's radiation budget, most cloud retrieval schemes, such as the bispectral method used by the International Satellite Cloud Climatology Project (ISCCP), have no way of determining whether overlapping cloud layers exist in any group of satellite pixels. Coakley (1983) used a spatial coherence method to determine whether a region contained more than one cloud layer. Baum et al. (1995) developed a scheme for detection and analysis of daytime multiple cloud layers using merged AVHRR (Advanced Very High Resolution Radiometer) and HIRS (High-resolution Infrared Radiometer Sounder) data collected during the First ISCCP Regional Experiment (FIRE) Cirrus 2 field campaign. Baum et al. (1995) explored the use of a cloud classification technique based on AVHRR data. This study examines the feasibility of applying the cloud classifier to global satellite imagery.

  1. Aerosols and polar stratospheric clouds measurements during the EASOE campaign

    NASA Technical Reports Server (NTRS)

    Haner, D.; Godin, S.; Megie, G.; David, C.; Mitev, V.

    1992-01-01

    Preliminary results of observations performed using two different lidar systems during the EASOE (European Arctic Stratospheric Ozone Experiment), which has taken place in the winter of 1991-1992 in the northern hemisphere lattitude regions, are presented. The first system is a ground based multiwavelength lidar intended to perform measurements of the ozone vertical distribution in the 5 km to 40 km altitude range. It was located in Sodankyla (67 degrees N, 27 degrees E) as part of the ELSA experiment. The objectives of the ELSA cooperative project is to study the relation between polar stratospheric cloud events and ozone depletion with high vertical resolution and temporal continuity, and the evolution of the ozone distribution in relation to the position of the polar vortex. The second system is an airborne backscatter lidar (Leandre) which allows for the study of the 3-D structure and the optical properties of polar stratospheric clouds. The Leandre instrument is a dual-polarization lidar system, emitting at 532 nm, which allows for the determination of the type of clouds observed, according to the usual classification of polar stratospheric clouds. More than 60 hours of flight were performed in Dec. 1991, and Jan. and Feb. 1992 in Kiruna, Sweden. The operation of the Leandre instrument has led to the observation of the short scale variability of the Pinatubo volcanic cloud in the high latitude regions and to several episodes of polar stratospheric clouds. Preliminary analysis of the data is presented.

  2. Coupled fvGCM-GCE Modeling System, 3D Cloud-Resolving Model and Cloud Library

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2005-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional singlecolumn models in simulating various types of clouds and cloud systems from Merent geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloudscale model (termed a super-parameterization or multiscale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameteridon NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D Goddard cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF in being developed and production nms will be conducted at the beginning of 2005. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes, (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), (3) A cloud library generated by Goddard MMF, and 3D GCE model, and (4) A brief discussion on the GCE model on developing a global cloud simulator.

  3. A Framework and Improvements of the Korea Cloud Services Certification System.

    PubMed

    Jeon, Hangoo; Seo, Kwang-Kyu

    2015-01-01

    Cloud computing service is an evolving paradigm that affects a large part of the ICT industry and provides new opportunities for ICT service providers such as the deployment of new business models and the realization of economies of scale by increasing efficiency of resource utilization. However, despite benefits of cloud services, there are some obstacles to adopt such as lack of assessing and comparing the service quality of cloud services regarding availability, security, and reliability. In order to adopt the successful cloud service and activate it, it is necessary to establish the cloud service certification system to ensure service quality and performance of cloud services. This paper proposes a framework and improvements of the Korea certification system of cloud service. In order to develop it, the critical issues related to service quality, performance, and certification of cloud service are identified and the systematic framework for the certification system of cloud services and service provider domains are developed. Improvements of the developed Korea certification system of cloud services are also proposed.

  4. A Framework and Improvements of the Korea Cloud Services Certification System

    PubMed Central

    Jeon, Hangoo

    2015-01-01

    Cloud computing service is an evolving paradigm that affects a large part of the ICT industry and provides new opportunities for ICT service providers such as the deployment of new business models and the realization of economies of scale by increasing efficiency of resource utilization. However, despite benefits of cloud services, there are some obstacles to adopt such as lack of assessing and comparing the service quality of cloud services regarding availability, security, and reliability. In order to adopt the successful cloud service and activate it, it is necessary to establish the cloud service certification system to ensure service quality and performance of cloud services. This paper proposes a framework and improvements of the Korea certification system of cloud service. In order to develop it, the critical issues related to service quality, performance, and certification of cloud service are identified and the systematic framework for the certification system of cloud services and service provider domains are developed. Improvements of the developed Korea certification system of cloud services are also proposed. PMID:26125049

  5. Coupled fvGCM-GCE Modeling System, TRMM Latent Heating and Cloud Library

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2004-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to imiprove the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D GCE model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF will be developed by the end of 2004 and production runs will be conducted at the beginning of 2005. The purpose of this proposal is to augment the current Goddard MMF and other cloud modeling activities. I this talk, I will present: (1) A summary of the second Cloud Modeling Workshop took place at NASA Goddard, (2) A summary of the third TRMM Latent Heating Workshop took place at Nara Japan, (3) A brief discussion on the Goddard research plan of using Weather Research Forecast (WRF) model, and (4) A brief discussion on the GCE model on developing a global cloud simulator.

  6. Coupled fvGCM-GCE Modeling System: TRMM Latent Heating and Cloud Library

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2005-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D GCE model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF will be developed by the end of 2004 and production runs will be conducted at the beginning of 2005. The purpose of this proposal is to augment the current Goddard MMF and other cloud modeling activities. In this talk, I will present: (1) A summary of the second Cloud Modeling Workshop took place at NASA Goddard, (2) A summary of the third TRMM Latent Heating Workshop took place at Nara Japan, (3) A brief discussion on the GCE model on developing a global cloud simulator.

  7. Coupled fvGCM-GCE Modeling System, 3D Cloud-Resolving Model and Cloud Library

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2005-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud- resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF in being developed and production runs will be conducted at the beginning of 2005. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes, ( 2 ) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), (3) A cloud library generated by Goddard MMF, and 3D GCE model, and (4) A brief discussion on the GCE model on developing a global cloud simulator.

  8. Cloud Impacts on Pavement Temperature in Energy Balance Models

    NASA Astrophysics Data System (ADS)

    Walker, C. L.

    2013-12-01

    Forecast systems provide decision support for end-users ranging from the solar energy industry to municipalities concerned with road safety. Pavement temperature is an important variable when considering vehicle response to various weather conditions. A complex, yet direct relationship exists between tire and pavement temperatures. Literature has shown that as tire temperature increases, friction decreases which affects vehicle performance. Many forecast systems suffer from inaccurate radiation forecasts resulting in part from the inability to model different types of clouds and their influence on radiation. This research focused on forecast improvement by determining how cloud type impacts the amount of shortwave radiation reaching the surface and subsequent pavement temperatures. The study region was the Great Plains where surface solar radiation data were obtained from the High Plains Regional Climate Center's Automated Weather Data Network stations. Road pavement temperature data were obtained from the Meteorological Assimilation Data Ingest System. Cloud properties and radiative transfer quantities were obtained from the Clouds and Earth's Radiant Energy System mission via Aqua and Terra Moderate Resolution Imaging Spectroradiometer satellite products. An additional cloud data set was incorporated from the Naval Research Laboratory Cloud Classification algorithm. Statistical analyses using a modified nearest neighbor approach were first performed relating shortwave radiation variability with road pavement temperature fluctuations. Then statistical associations were determined between the shortwave radiation and cloud property data sets. Preliminary results suggest that substantial pavement forecasting improvement is possible with the inclusion of cloud-specific information. Future model sensitivity testing seeks to quantify the magnitude of forecast improvement.

  9. Analysis of the new health management based on health internet of things and cloud computing

    NASA Astrophysics Data System (ADS)

    Liu, Shaogang

    2018-05-01

    With the development and application of Internet of things and cloud technology in the medical field, it provides a higher level of exploration space for human health management. By analyzing the Internet of things technology and cloud technology, this paper studies a new form of health management system which conforms to the current social and technical level, and explores its system architecture, system characteristics and application. The new health management platform for networking and cloud can achieve the real-time monitoring and prediction of human health through a variety of sensors and wireless networks based on information and can be transmitted to the monitoring system, and then through the software analysis model, and gives the targeted prevention and treatment measures, to achieve real-time, intelligent health management.

  10. A Weibull distribution accrual failure detector for cloud computing.

    PubMed

    Liu, Jiaxi; Wu, Zhibo; Wu, Jin; Dong, Jian; Zhao, Yao; Wen, Dongxin

    2017-01-01

    Failure detectors are used to build high availability distributed systems as the fundamental component. To meet the requirement of a complicated large-scale distributed system, accrual failure detectors that can adapt to multiple applications have been studied extensively. However, several implementations of accrual failure detectors do not adapt well to the cloud service environment. To solve this problem, a new accrual failure detector based on Weibull Distribution, called the Weibull Distribution Failure Detector, has been proposed specifically for cloud computing. It can adapt to the dynamic and unexpected network conditions in cloud computing. The performance of the Weibull Distribution Failure Detector is evaluated and compared based on public classical experiment data and cloud computing experiment data. The results show that the Weibull Distribution Failure Detector has better performance in terms of speed and accuracy in unstable scenarios, especially in cloud computing.

  11. Development and Initial Testing of a Multi-Sensor Platform for Cloud-Aerosol Interactions in the Lower Troposphere

    NASA Astrophysics Data System (ADS)

    Nehrir, A. R.; Hoffman, D. S.; Repasky, K. S.; Todt, B.; Sharpe, T.; Half Red, C.; Carlsten, J. L.

    2009-12-01

    Coupled atmospheric components of the lower troposphere including aerosols and water vapor have a large affect on the chemical processes that drive the earth’s complex climate system. Aerosols can affect the earth’s global radiation budget directly by absorbing or reflecting incoming solar radiation, and indirectly by changing the microphysical properties of clouds by serving as cloud condensation nuclei (CCN). An increase in CCN results in higher cloud droplet concentration which has been shown to suppress drizzle formation and lead to more reflective clouds. The changes in the cloud microphysical structure due to the interaction of aerosols and water vapor result in more incoming solar radiation being reflected back into space, leading to a net negative radiative forcing in the global radiation budget. The uncertainty in this radiative forcing reflects the uncertainty in the understanding of the aerosol indirect effect and its role in the climate system. To better understand the aerosol direct and indirect effects, lidar measurements of aerosol properties and water vapor distributions can provide important information to enhance our understanding of the role of aerosols in the climate system. The LIDAR group at Montana State University has initiated a program to simultaneously study aerosols, water vapor, and cloud formation with high spatial and temporal resolution using both active and passive sensors. Aerosol distributions and radiative properties are currently being studied with a two-color LIDAR system at 1064 and 532 nm. In addition, a three color, high spectral resolution LIDAR system at 1064,532, and 355 nm has also been developed and is starting to take initial data. Daytime and nighttime boundary layer water vapor number density profiles are also currently being studied with an external cavity diode oscillator/diode amplifier based micro-pulsed differential absorption lidar (DIAL) instrument at the 830 nm water vapor absorption band. Cloud formation studies are being conducted by a simultaneous, spatially correlated digital sky imaging camera system where aerosol loading and water vapor distributions are monitored as a function of lateral distance to clouds. Furthermore, a commercially purchased sun/sky scanning solar radiometer (CIMEL 318) as part of the NASA run AERONET program is also being used to study aerosol loading and radiative transfer through the atmosphere. A brief description of these instruments will be presented as well as initial simultaneous results showing correlated data between lower tropospheric aerosols and boundary layer water vapor distributions over extended periods if time.

  12. Arctic Boreal Vulnerability Experiment (ABoVE) Science Cloud

    NASA Astrophysics Data System (ADS)

    Duffy, D.; Schnase, J. L.; McInerney, M.; Webster, W. P.; Sinno, S.; Thompson, J. H.; Griffith, P. C.; Hoy, E.; Carroll, M.

    2014-12-01

    The effects of climate change are being revealed at alarming rates in the Arctic and Boreal regions of the planet. NASA's Terrestrial Ecology Program has launched a major field campaign to study these effects over the next 5 to 8 years. The Arctic Boreal Vulnerability Experiment (ABoVE) will challenge scientists to take measurements in the field, study remote observations, and even run models to better understand the impacts of a rapidly changing climate for areas of Alaska and western Canada. The NASA Center for Climate Simulation (NCCS) at the Goddard Space Flight Center (GSFC) has partnered with the Terrestrial Ecology Program to create a science cloud designed for this field campaign - the ABoVE Science Cloud. The cloud combines traditional high performance computing with emerging technologies to create an environment specifically designed for large-scale climate analytics. The ABoVE Science Cloud utilizes (1) virtualized high-speed InfiniBand networks, (2) a combination of high-performance file systems and object storage, and (3) virtual system environments tailored for data intensive, science applications. At the center of the architecture is a large object storage environment, much like a traditional high-performance file system, that supports data proximal processing using technologies like MapReduce on a Hadoop Distributed File System (HDFS). Surrounding the storage is a cloud of high performance compute resources with many processing cores and large memory coupled to the storage through an InfiniBand network. Virtual systems can be tailored to a specific scientist and provisioned on the compute resources with extremely high-speed network connectivity to the storage and to other virtual systems. In this talk, we will present the architectural components of the science cloud and examples of how it is being used to meet the needs of the ABoVE campaign. In our experience, the science cloud approach significantly lowers the barriers and risks to organizations that require high performance computing solutions and provides the NCCS with the agility required to meet our customers' rapidly increasing and evolving requirements.

  13. Cirrus cloud development in a mobile upper tropospheric trough: The November 26th FIRE cirrus case study

    NASA Technical Reports Server (NTRS)

    Mace, Gerald G.; Ackerman, Thomas P.

    1993-01-01

    The period from 18 UTC 26 Nov. 1991 to roughly 23 UTC 26 Nov. 1991 is one of the study periods of the FIRE (First International Satellite Cloud Climatology Regional Experiment) 2 field campaign. The middle and upper tropospheric cloud data that was collected during this time allowed FIRE scientists to learn a great deal about the detailed structure, microphysics, and radiative characteristics of the mid latitude cirrus that occurred during that time. Modeling studies that range from the microphysical to the mesoscale are now underway attempting to piece the detailed knowledge of this cloud system into a coherent picture of the atmospheric processes important to cirrus cloud development and maintenance. An important component of the modeling work, either as an input parameter in the case of cloud-scale models, or as output in the case of meso and larger scale models, is the large scale forcing of the cloud system. By forcing we mean the synoptic scale vertical motions and moisture budget that initially send air parcels ascending and supply the water vapor to allow condensation during ascent. Defining this forcing from the synoptic scale to the cloud scale is one of the stated scientific objectives of the FIRE program. From the standpoint of model validation, it is also necessary that the vertical motions and large scale moisture budget of the case studies be derived from observations. It is considered important that the models used to simulate the observed cloud fields begin with the correct dynamics and that the dynamics be in the right place for the right reasons.

  14. Effect of additives on the clouding and aggregation behavior of Triton X-100

    NASA Astrophysics Data System (ADS)

    Semwal, Divyam; Sen, Indrani Das; Jayaram, Radha V.

    2018-04-01

    The present study investigates the effect of additives such as CsNO3 and imidazolium ionic liquids on the cloud point (CP) of Triton X-100. Thermodynamic parameters of the clouding process were determined in order to understand the interactions. CP was found to increase with the increase in concentration of most of the ionic liquids studied. This increase of CP reflects the solubilization of the ionic liquids in the micellar phase1. The thermodynamic parameters on the introduction of CsNO3 in TX-100 - ionic liquid system helps in understanding the different interactions occurring in the system. All ΔG values for clouding were found to be positive and hence made the process non spontaneous.

  15. H2O2 modulates the energetic metabolism of the cloud microbiome

    NASA Astrophysics Data System (ADS)

    Wirgot, Nolwenn; Vinatier, Virginie; Deguillaume, Laurent; Sancelme, Martine; Delort, Anne-Marie

    2017-12-01

    Chemical reactions in clouds lead to oxidation processes driven by radicals (mainly HO⚫, NO3⚫, or HO2⚫) or strong oxidants such as H2O2, O3, nitrate, and nitrite. Among those species, hydrogen peroxide plays a central role in the cloud chemistry by driving its oxidant capacity. In cloud droplets, H2O2 is transformed by microorganisms which are metabolically active. Biological activity can therefore impact the cloud oxidant capacity. The present article aims at highlighting the interactions between H2O2 and microorganisms within the cloud system. First, experiments were performed with selected strains studied as a reference isolated from clouds in microcosms designed to mimic the cloud chemical composition, including the presence of light and iron. Biotic and abiotic degradation rates of H2O2 were measured and results showed that biodegradation was the most efficient process together with the photo-Fenton process. H2O2 strongly impacted the microbial energetic state as shown by adenosine triphosphate (ATP) measurements in the presence and absence of H2O2. This ATP depletion was not due to the loss of cell viability. Secondly, correlation studies were performed based on real cloud measurements from 37 cloud samples collected at the PUY station (1465 m a.s.l., France). The results support a strong correlation between ATP and H2O2 concentrations and confirm that H2O2 modulates the energetic metabolism of the cloud microbiome. The modulation of microbial metabolism by H2O2 concentration could thus impact cloud chemistry, in particular the biotransformation rates of carbon compounds, and consequently can perturb the way the cloud system is modifying the global atmospheric chemistry.

  16. Synergistic Use of MODIS and AIRS in a Variational Retrieval of Cloud Parameters.

    NASA Astrophysics Data System (ADS)

    Li, Jun; Menzel, W. Paul; Zhang, Wenjian; Sun, Fengying; Schmit, Timothy J.; Gurka, James J.; Weisz, Elisabeth

    2004-11-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) measurements from the Earth Observing System's (EOS's) Aqua satellite enable global monitoring of the distribution of clouds. MODIS is able to provide a cloud mask, surface and cloud types, cloud phase, cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size, and cloud optical thickness at high spatial resolution (1 5 km). The combined MODIS AIRS system offers the opportunity for improved cloud products, better than from either system alone; this improvement is demonstrated in this paper with both simulated and real radiances. A one-dimensional variational (1DVAR) methodology is used to retrieve the CTP and ECA from AIRS longwave (650 790 cm-1 or 15.38 12.65 μm) cloudy radiance measurements (hereinafter referred to as MODIS AIRS 1DVAR). The MODIS AIRS 1DVAR cloud properties show significant improvement over the MODIS-alone cloud properties and slight improvement over AIRS-alone cloud properties in a simulation study, while MODIS AIRS 1DVAR is much more computationally efficient than the AIRS-alone 1DVAR; comparisons with radiosonde observations show that CTPs improve by 10 40 hPa for MODIS AIRS CTPs over those from MODIS alone. The 1DVAR approach is applied to process the AIRS longwave cloudy radiance measurements; results are compared with MODIS and Geostationary Operational Environmental Satellite sounder cloud products. Data from ground-based instrumentation at the Atmospheric Radiation Measurement Program Cloud and Radiation Test Bed in Oklahoma are used for validation; results show that MODIS AIRS improves the MODIS CTP, especially in low-level clouds. The operational use of a high-spatial-resolution imager, along with information from a high-spectral-resolution sounder will be possible with instruments planned for the next-generation geostationary operational instruments.


  17. Challenges in Securing the Interface Between the Cloud and Pervasive Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagesse, Brent J

    2011-01-01

    Cloud computing presents an opportunity for pervasive systems to leverage computational and storage resources to accomplish tasks that would not normally be possible on such resource-constrained devices. Cloud computing can enable hardware designers to build lighter systems that last longer and are more mobile. Despite the advantages cloud computing offers to the designers of pervasive systems, there are some limitations of leveraging cloud computing that must be addressed. We take the position that cloud-based pervasive system must be secured holistically and discuss ways this might be accomplished. In this paper, we discuss a pervasive system utilizing cloud computing resources andmore » issues that must be addressed in such a system. In this system, the user's mobile device cannot always have network access to leverage resources from the cloud, so it must make intelligent decisions about what data should be stored locally and what processes should be run locally. As a result of these decisions, the user becomes vulnerable to attacks while interfacing with the pervasive system.« less

  18. Study of cloud properties using airborne and satellite measurements

    NASA Astrophysics Data System (ADS)

    Boscornea, Andreea; Stefan, Sabina; Vajaiac, Sorin Nicolae

    2014-08-01

    The present study investigates cloud microphysics properties using aircraft and satellite measurements. Cloud properties were drawn from data acquired both from in situ measurements with state of the art airborne instrumentation and from satellite products of the MODIS06 System. The used aircraft was ATMOSLAB - Airborne Laboratory for Environmental Atmospheric Research, property of the National Institute for Aerospace Research "Elie Carafoli" (INCAS), Bucharest, Romania, which is specially equipped for this kind of research. The main tool of the airborne laboratory is a Cloud, Aerosol and Precipitation Spectrometer - CAPS (30 bins, 0.51- 50 μm). The data was recorded during two flights during the winter 2013-2014, over a flat region in the south-eastern part of Romania (between Bucharest and Constanta). The analysis of cloud particle size variations and cloud liquid water content provided by CAPS can explain cloud processes, and can also indicate the extent of aerosols effects on clouds. The results, such as cloud coverage and/or cloud types, microphysical parameters of aerosols on the one side and the cloud microphysics parameters obtained from aircraft flights on the other side, was used to illustrate the importance of microphysics cloud properties for including the radiative effects of clouds in the regional climate models.

  19. The Metadata Cloud: The Last Piece of a Distributed Data System Model

    NASA Astrophysics Data System (ADS)

    King, T. A.; Cecconi, B.; Hughes, J. S.; Walker, R. J.; Roberts, D.; Thieman, J. R.; Joy, S. P.; Mafi, J. N.; Gangloff, M.

    2012-12-01

    Distributed data systems have existed ever since systems were networked together. Over the years the model for distributed data systems have evolved from basic file transfer to client-server to multi-tiered to grid and finally to cloud based systems. Initially metadata was tightly coupled to the data either by embedding the metadata in the same file containing the data or by co-locating the metadata in commonly named files. As the sources of data multiplied, data volumes have increased and services have specialized to improve efficiency; a cloud system model has emerged. In a cloud system computing and storage are provided as services with accessibility emphasized over physical location. Computation and data clouds are common implementations. Effectively using the data and computation capabilities requires metadata. When metadata is stored separately from the data; a metadata cloud is formed. With a metadata cloud information and knowledge about data resources can migrate efficiently from system to system, enabling services and allowing the data to remain efficiently stored until used. This is especially important with "Big Data" where movement of the data is limited by bandwidth. We examine how the metadata cloud completes a general distributed data system model, how standards play a role and relate this to the existing types of cloud computing. We also look at the major science data systems in existence and compare each to the generalized cloud system model.

  20. Development and clinical study of mobile 12-lead electrocardiography based on cloud computing for cardiac emergency.

    PubMed

    Fujita, Hideo; Uchimura, Yuji; Waki, Kayo; Omae, Koji; Takeuchi, Ichiro; Ohe, Kazuhiko

    2013-01-01

    To improve emergency services for accurate diagnosis of cardiac emergency, we developed a low-cost new mobile electrocardiography system "Cloud Cardiology®" based upon cloud computing for prehospital diagnosis. This comprises a compact 12-lead ECG unit equipped with Bluetooth and Android Smartphone with an application for transmission. Cloud server enables us to share ECG simultaneously inside and outside the hospital. We evaluated the clinical effectiveness by conducting a clinical trial with historical comparison to evaluate this system in a rapid response car in the real emergency service settings. We found that this system has an ability to shorten the onset to balloon time of patients with acute myocardial infarction, resulting in better clinical outcome. Here we propose that cloud-computing based simultaneous data sharing could be powerful solution for emergency service for cardiology, along with its significant clinical outcome.

  1. Applying analytic hierarchy process to assess healthcare-oriented cloud computing service systems.

    PubMed

    Liao, Wen-Hwa; Qiu, Wan-Li

    2016-01-01

    Numerous differences exist between the healthcare industry and other industries. Difficulties in the business operation of the healthcare industry have continually increased because of the volatility and importance of health care, changes to and requirements of health insurance policies, and the statuses of healthcare providers, which are typically considered not-for-profit organizations. Moreover, because of the financial risks associated with constant changes in healthcare payment methods and constantly evolving information technology, healthcare organizations must continually adjust their business operation objectives; therefore, cloud computing presents both a challenge and an opportunity. As a response to aging populations and the prevalence of the Internet in fast-paced contemporary societies, cloud computing can be used to facilitate the task of balancing the quality and costs of health care. To evaluate cloud computing service systems for use in health care, providing decision makers with a comprehensive assessment method for prioritizing decision-making factors is highly beneficial. Hence, this study applied the analytic hierarchy process, compared items related to cloud computing and health care, executed a questionnaire survey, and then classified the critical factors influencing healthcare cloud computing service systems on the basis of statistical analyses of the questionnaire results. The results indicate that the primary factor affecting the design or implementation of optimal cloud computing healthcare service systems is cost effectiveness, with the secondary factors being practical considerations such as software design and system architecture.

  2. GIFT-Cloud: A data sharing and collaboration platform for medical imaging research.

    PubMed

    Doel, Tom; Shakir, Dzhoshkun I; Pratt, Rosalind; Aertsen, Michael; Moggridge, James; Bellon, Erwin; David, Anna L; Deprest, Jan; Vercauteren, Tom; Ourselin, Sébastien

    2017-02-01

    Clinical imaging data are essential for developing research software for computer-aided diagnosis, treatment planning and image-guided surgery, yet existing systems are poorly suited for data sharing between healthcare and academia: research systems rarely provide an integrated approach for data exchange with clinicians; hospital systems are focused towards clinical patient care with limited access for external researchers; and safe haven environments are not well suited to algorithm development. We have established GIFT-Cloud, a data and medical image sharing platform, to meet the needs of GIFT-Surg, an international research collaboration that is developing novel imaging methods for fetal surgery. GIFT-Cloud also has general applicability to other areas of imaging research. GIFT-Cloud builds upon well-established cross-platform technologies. The Server provides secure anonymised data storage, direct web-based data access and a REST API for integrating external software. The Uploader provides automated on-site anonymisation, encryption and data upload. Gateways provide a seamless process for uploading medical data from clinical systems to the research server. GIFT-Cloud has been implemented in a multi-centre study for fetal medicine research. We present a case study of placental segmentation for pre-operative surgical planning, showing how GIFT-Cloud underpins the research and integrates with the clinical workflow. GIFT-Cloud simplifies the transfer of imaging data from clinical to research institutions, facilitating the development and validation of medical research software and the sharing of results back to the clinical partners. GIFT-Cloud supports collaboration between multiple healthcare and research institutions while satisfying the demands of patient confidentiality, data security and data ownership. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Life in the Cloud: A WorldShare Management Services Case Study

    ERIC Educational Resources Information Center

    Hartman, Robin R.

    2012-01-01

    A small, private academic library took the risk of moving from a traditional integrated library system to adopting a system "in the cloud." This case study presents the setting, history, and local needs of the library, including staffing challenges, and explains the decision-making rationale and process. A description of the library's transition…

  4. T-Check in System-of-Systems Technologies: Cloud Computing

    DTIC Science & Technology

    2010-09-01

    T-Check in System-of-Systems Technologies: Cloud Computing Harrison D. Strowd Grace A. Lewis September 2010 TECHNICAL NOTE CMU/SEI-2010... Cloud Computing 1 1.2 Types of Cloud Computing 2 1.3 Drivers and Barriers to Cloud Computing Adoption 5 2 Using the T-Check Method 7 2.1 T-Check...Hypothesis 3 25 3.4.2 Deployment View of the Solution for Testing Hypothesis 3 27 3.5 Selecting Cloud Computing Providers 30 3.6 Implementing the T-Check

  5. On the Cloud Observations in JAXA's Next Coming Satellite Missions

    NASA Technical Reports Server (NTRS)

    Nakajima, Takashi Y.; Nagao, Takashi M.; Letu, Husi; Ishida, Haruma; Suzuki, Kentaroh

    2012-01-01

    The use of JAXA's next generation satellites, the EarthCARE and the GCOM-C, for observing overall cloud systems on the Earth is discussed. The satellites will be launched in the middle of 2010-era and contribute for observing aerosols and clouds in terms of climate change, environment, weather forecasting, and cloud revolution process study. This paper describes the role of such satellites and how to use the observing data showing concepts and some sample viewgraphs. Synergistic use of sensors is a key of the study. Visible to infrared bands are used for cloudy and clear discriminating from passively obtained satellite images. Cloud properties such as the cloud optical thickness, the effective particle radii, and the cloud top temperature will be retrieved from visible to infrared wavelengths of imagers. Additionally, we are going to combine cloud properties obtained from passive imagers and radar reflectivities obtained from an active radar in order to improve our understanding of cloud evolution process. This is one of the new techniques of satellite data analysis in terms of cloud sciences in the next decade. Since the climate change and cloud process study have mutual beneficial relationship, a multispectral wide-swath imagers like the GCOM-C SGLI and a comprehensive observation package of cloud and aerosol like the EarthCARE are both necessary.

  6. A Hierarchical Modeling Study of the Interactions Among Turbulence, Cloud Microphysics, and Radiative Transfer in the Evolution of Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Curry, Judith; Khvorostyanov, V. I.

    2005-01-01

    This project used a hierarchy of cloud resolving models to address the following science issues of relevance to CRYSTAL-FACE: What ice crystal nucleation mechanisms are active in the different types of cirrus clouds in the Florida area and how do these different nucleation processes influence the evolution of the cloud system and the upper tropospheric humidity? How does the feedback between supersaturation and nucleation impact the evolution of the cloud? What is the relative importance of the large-scale vertical motion and the turbulent motions in the evolution of the crystal size spectra? How does the size spectra impact the life-cycle of the cloud, stratospheric dehydration, and cloud radiative forcing? What is the nature of the turbulence and waves in the upper troposphere generated by precipitating deep convective cloud systems? How do cirrus microphysical and optical properties vary with the small-scale dynamics? How do turbulence and waves in the upper troposphere influence the cross-tropopause mixing and stratospheric and upper tropospheric humidity? The models used in this study were: 2-D hydrostatic model with explicit microphysics that can account for 30 size bins for both the droplet and crystal size spectra. Notably, a new ice crystal nucleation scheme has been incorporated into the model. Parcel model with explicit microphysics, for developing and evaluating microphysical parameterizations. Single column model for testing bulk microphysics parameterizations

  7. Observation of Upper and Middle Tropospheric Clouds

    NASA Technical Reports Server (NTRS)

    Cox, Stephen K.

    1996-01-01

    The goal of this research has been to identify and describe the properties of climatically important cloud systems critically important to understanding their effects upon satellite remote sensing and the global climate. These goals have been pursued along several different but complementary lines of investigation: the design, construction, testing and application of instrumentation; the collection of data sets during Intensive Field Observation periods; the reduction and analysis of data collected during IFO's; and completion of research projects specifically designed to address important and timely research objectives. In the first year covered by this research proposal, three papers were authored in the refereed literature which reported completed analyses of FIRE 1 IFO studies initiated under the previous NASA funding of this topic area. microphysical and radiative properties of marine stratocumulus cloud systems deduced from tethered balloon observations were reported from the San Nicolas Island site of the first FIRE marine stratocumulus experiment. Likewise, in situ observations of radiation and dynamic properties of a cirrus cloud layer were reported from first FIRE cirrus IFO based from Madison, Wisconsin. In addition, application techniques were under development for monitoring cirrus cloud systems using a 403 MHz Doppler wind profiler system adapted with a RASS (Radio Acoustic Sounding System) and an infrared interferometer system; these instrument systems were used in subsequent deployments for the FIRE 2 Parsons, Kansas and FIRE 2 Porto Santo, ASTEX expeditions. In November 1991 and in June 1992, these two systems along with a complete complement of surface radiation and meteorology measurements were deployed to the two sites noted above as anchor points for the respective IFO'S. Subsequent research activity concentrated on the interpretation and integration of the IFO analyses in the context of the radiative properties of cloud systems and our ability to remotely observe radiative, thermodynamic and dynamic properties of these cloud systems.

  8. Clouds and the Earth's Radiant Energy System (CERES)

    NASA Technical Reports Server (NTRS)

    Carman, Stephen L.; Cooper, John E.; Miller, James; Harrison, Edwin F.; Barkstrom, Bruce R.

    1992-01-01

    The CERES (Clouds and the Earth's Radiant Energy System) experiment will play a major role in NASA's multi-platform Earth Observing System (EOS) program to observe and study the global climate. The CERES instruments will provide EOS scientists with a consistent data base of accurately known fields of radiation and of clouds. CERES will investigate the important question of cloud forcing and its influence on the radiative energy flow through the Earth's atmosphere. The CERES instrument is an improved version of the ERBE (Earth Radiation Budget Experiment) broadband scanning radiometer flown by NASA from 1984 through 1989. This paper describes the science of CERES, presents an overview of the instrument preliminary design, and outlines the issues related to spacecraft pointing and attitude control.

  9. Electrical and kinematic structure of an Oklahoma mesoscale convective system

    NASA Technical Reports Server (NTRS)

    Hunter, Steven M.; Schuur, Terry J.; Marshall, Thomas C.; Rust, W. D.

    1990-01-01

    The case study examines the dynamics and kinematics of a mesoscale convective system (MCS) by comparing its meteorological parameters with in situ electrical measurements. Conventional MCS characteristics are reported including a rear inflow jet, wake low, and a bipolar cloud-to-ground pattern, but some nonclassical conditions are also reported. Horizontally long cloud-to-ground electrical strikes are noted which demonstrate that cloud-to-ground electrical data alone cannot entirely characterize stratiform electrification in MCSs.

  10. Prototyping manufacturing in the cloud

    NASA Astrophysics Data System (ADS)

    Ciortea, E. M.

    2017-08-01

    This paper attempts a theoretical approach to cloud systems with impacts on production systems. I call systems as cloud computing because form a relatively new concept in the field of informatics, representing an overall distributed computing services, applications, access to information and data storage without the user to know the physical location and configuration of systems. The advantages of this approach are especially computing speed and storage capacity without investment in additional configurations, synchronizing user data, data processing using web applications. The disadvantage is that it wants to identify a solution for data security, leading to mistrust users. The case study is applied to a module of the system of production, because the system is complex.

  11. Ultra-clean Layers (UCLs) and Low Albedo Clouds ("gray clouds") in the Marine Boundary Layer - CSET aircraft data, 2-D bin spectral cloud parcel model, large eddy simulation and satellite observations from CALIPSO, MODIS and COSMIC

    NASA Astrophysics Data System (ADS)

    O, K. T.; Wood, R.; Bretherton, C. S.; Eastman, R. M.; Tseng, H. H.

    2016-12-01

    During the 2015 Cloud System Evolution in the Trades (CSET) field program (CSET, Jul-Aug 2015, subtropical NE Pacific), the NSF/NCAR G-V aircraft frequently encountered ultra clean layers (hereafter UCLs) with extremely low accumulation mode aerosol (i.e. diameter da> 100nm) concentration (hereafter Na), and low albedo ( 0.2) warm clouds (termed "gray clouds" in our study) with low droplet concentration (hereafter Nd). The analysis of CSET aircraft data shows that (1) UCLs and gray clouds are mostly commonly found at a height of 1.5-2km, typically close to the top of the MBL, (2) UCLs and gray cloud coverage as high as 40-60% between 135W and 155W (i.e. Sc-Cu transition region) but occur very infrequently east of 130W (i.e. shallow, near-coastal stratocumulus region), and (3) UCLs and gray clouds exhibit remarkably low turbulence compared with non-UCL clear sky and clouds. It should be noted that most previous aircraft sampling of low clouds occurred close to the Californian coast, so the prevalence of UCLs and gray clouds has not been previously noted. Based on the analysis of aircraft data, we hypothesize that gray clouds result from detrainment of cloud close to the top of precipitating trade cumuli, and UCLs are remnants of these layers when gray clouds evaporates. The simulations in our study are performed using 2-D bin spectral cloud parcel model and version 6.9 of the System for Atmospheric Modeling (SAM). Our idealized simulations suggest that collision-coalescence plays a crucial role in reducing Nd such that gray clouds can easily form via collision-coalescence in layers detrained from the cloud top at trade cumulus regime, but can not form at stratocumulus regime. Upon evaporation of gray clouds, only few accumulation mode aerosols are returned to the clear sky, leaving horizontally-extensive UCLs (i.e. clean clear sky). Analysis of CSET flight data and idealized model simulations both suggest cloud top/PBL height may play an important role in the formation of UCLs and gray clouds. In our satellite observation study, the comparison between PBL height (from COSMIC and MODIS) and fraction of low optical depth cloud (from MODIS and CALIPSO) at NEP trade cumulus regime (20-35N, 140-155W) also suggest a strong positive correlation.

  12. Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system

    NASA Astrophysics Data System (ADS)

    Zhou, C.; Zhang, X.; Gong, S.

    2015-12-01

    A comprehensive aerosol-cloud-precipitation interaction (ACI) scheme has been developed under CMA chemical weather modeling system GRAPES/CUACE. Calculated by a sectional aerosol activation scheme based on the information of size and mass from CUACE and the thermal-dynamic and humid states from the weather model GRAPES at each time step, the cloud condensation nuclei (CCN) is fed online interactively into a two-moment cloud scheme (WDM6) and a convective parameterization to drive the cloud physics and precipitation formation processes. The modeling system has been applied to study the ACI for January 2013 when several persistent haze-fog events and eight precipitation events occurred. The results show that interactive aerosols with the WDM6 in GRAPES/CUACE obviously increase the total cloud water, liquid water content and cloud droplet number concentrations while decrease the mean diameter of cloud droplets with varying magnitudes of the changes in each case and region. These interactive micro-physical properties of clouds improve the calculation of their collection growth rates in some regions and hence the precipitation rate and distributions in the model, showing 24% to 48% enhancements of TS scoring for 6-h precipitation in almost all regions. The interactive aerosols with the WDM6 also reduce the regional mean bias of temperature by 3 °C during certain precipitation events, but the monthly means bias is only reduced by about 0.3°C.

  13. The Oort cloud

    NASA Technical Reports Server (NTRS)

    Marochnik, Leonid S.; Mukhin, Lev M.; Sagdeev, Roald Z.

    1991-01-01

    Views of the large-scale structure of the solar system, consisting of the Sun, the nine planets and their satellites, changed when Oort demonstrated that a gigantic cloud of comets (the Oort cloud) is located on the periphery of the solar system. The following subject areas are covered: (1) the Oort cloud's mass; (2) Hill's cloud mass; (3) angular momentum distribution in the solar system; and (4) the cometary cloud around other stars.

  14. Backscatter-to-Extinction Ratios in the Top Layers of Tropical Mesoscale Convective Systems and in Isolated Cirrus from LITE Observations

    NASA Technical Reports Server (NTRS)

    Platt, C. M. R.; Winker, D. M.; Vaughan, M. A.; Miller, S. D.

    1999-01-01

    Cloud-integrated attenuated backscatter from observations with the Lidar In-Space Technology Experiment (LITE) was studied over a range of cirrus clouds capping some extensive mesoscale convective systems (MCSS) in the Tropical West Pacific. The integrated backscatter when the cloud is completely attenuating, and when corrected for multiple scattering, is a measure of the cloud particle backscatter phase function. Four different cases of MCS were studied. The first was very large, very intense, and fully attenuating, with cloud tops extending to 17 km and a maximum lidar pulse penetration of about 3 km. It also exhibited the highest integrated attenuated isotropic backscatter, with values in the 532-nm channel of up to 2.5 near the center of the system, falling to 0.6 near the edges. The second MCS had cloud tops that extended to 14.8 km. Although MCS2 was almost fully attenuating, the pulse penetration into the cloud was up to 7 km and the MCS2 had a more diffuse appearance than MCS1. The integrated backscatter values were much lower in this system but with some systematic variations between 0.44 and 0.75. The third MCS was Typhoon Melissa. Values of integrated backscatter in tt-ds case varied from 1.64 near the eye of the typhoon to between 0.44 and 1.0 in the areas of typhoon outflow and in the 532-nm channel. Mean pulse penetration through the cloud top was 2-3 km, the lowest penetration of any of the systems. The fourth MCS consisted of a region of outflow from Typhoon Melissa. The cloud was semitransparent for more than half of the image time. During that time, maximum cloud depth was about 7 km. The integrated backscatter varied from about 0.38 to 0.63 in the 532-nm channel when the cloud was fully attenuating. In some isolated cirrus between the main systems, a plot of integrated backscatter against one minus the two-way transmittance gave a linear dependence with a maximum value of 0.35 when the clouds were fully attenuating. The effective backscatter-to-extinction ratios, when allowing for different multiple-scattering factors from space, were often within the range of those observed with ground-based lidar. Exceptions occurred near the centers of the most intense convection, where values were measured that were considerably higher than those in cirrus observed from the surface. In this case, the values were more compatible with theoretical values for perfectly formed hexagonal columns or plates. The large range in theoretically calculated back- scatter-to-extinction ratio and integrated multiple-scattering factor precluded a closer interpretation in terms of cloud microphysics.

  15. Large-Scale, Multi-Sensor Atmospheric Data Fusion Using Hybrid Cloud Computing

    NASA Astrophysics Data System (ADS)

    Wilson, B. D.; Manipon, G.; Hua, H.; Fetzer, E. J.

    2015-12-01

    NASA's Earth Observing System (EOS) is an ambitious facility for studying global climate change. The mandate now is to combine measurements from the instruments on the "A-Train" platforms (AIRS, MODIS, MLS, and CloudSat) and other Earth probes to enable large-scale studies of climate change over decades. Moving to multi-sensor, long-duration presents serious challenges for large-scale data mining and fusion. For example, one might want to compare temperature and water vapor retrievals from one instrument (AIRS) to another (MODIS), and to a model (ECMWF), stratify the comparisons using a classification of the "cloud scenes" from CloudSat, and repeat the entire analysis over 10 years of data. HySDS is a Hybrid-Cloud Science Data System that has been developed and applied under NASA AIST, MEaSUREs, and ACCESS grants. HySDS uses the SciFlow workflow engine to partition analysis workflows into parallel tasks (e.g. segmenting by time or space) that are pushed into a durable job queue. The tasks are "pulled" from the queue by worker Virtual Machines (VM's) and executed in an on-premise Cloud (Eucalyptus or OpenStack) or at Amazon in the public Cloud or govCloud. In this way, years of data (millions of files) can be processed in a massively parallel way. Input variables (arrays) are pulled on-demand into the Cloud using OPeNDAP URLs or other subsetting services, thereby minimizing the size of the transferred data. We are using HySDS to automate the production of multiple versions of a ten-year A-Train water vapor climatology under a MEASURES grant. We will present the architecture of HySDS, describe the achieved "clock time" speedups in fusing datasets on our own nodes and in the Amazon Cloud, and discuss the Cloud cost tradeoffs for storage, compute, and data transfer. Our system demonstrates how one can pull A-Train variables (Levels 2 & 3) on-demand into the Amazon Cloud, and cache only those variables that are heavily used, so that any number of compute jobs can be executed "near" the multi-sensor data. Decade-long, multi-sensor studies can be performed without pre-staging data, with the researcher paying only his own Cloud compute bill.

  16. Military clouds: utilization of cloud computing systems at the battlefield

    NASA Astrophysics Data System (ADS)

    Süleyman, Sarıkürk; Volkan, Karaca; İbrahim, Kocaman; Ahmet, Şirzai

    2012-05-01

    Cloud computing is known as a novel information technology (IT) concept, which involves facilitated and rapid access to networks, servers, data saving media, applications and services via Internet with minimum hardware requirements. Use of information systems and technologies at the battlefield is not new. Information superiority is a force multiplier and is crucial to mission success. Recent advances in information systems and technologies provide new means to decision makers and users in order to gain information superiority. These developments in information technologies lead to a new term, which is known as network centric capability. Similar to network centric capable systems, cloud computing systems are operational today. In the near future extensive use of military clouds at the battlefield is predicted. Integrating cloud computing logic to network centric applications will increase the flexibility, cost-effectiveness, efficiency and accessibility of network-centric capabilities. In this paper, cloud computing and network centric capability concepts are defined. Some commercial cloud computing products and applications are mentioned. Network centric capable applications are covered. Cloud computing supported battlefield applications are analyzed. The effects of cloud computing systems on network centric capability and on the information domain in future warfare are discussed. Battlefield opportunities and novelties which might be introduced to network centric capability by cloud computing systems are researched. The role of military clouds in future warfare is proposed in this paper. It was concluded that military clouds will be indispensible components of the future battlefield. Military clouds have the potential of improving network centric capabilities, increasing situational awareness at the battlefield and facilitating the settlement of information superiority.

  17. Protostars and Disks

    NASA Technical Reports Server (NTRS)

    Ho, Paul

    1997-01-01

    The research concentrated on high angular resolution (arc-second scale) studies of molecular cloud cores associated with very young star formation. New ways to study disks and protoplanetary systems were explored. Findings from the areas studied are briefly summarized: (1) molecular clouds; (2) gravitational contraction; (3) jets, winds, and outflows; (4) Circumstellar Disks (5) Extrasolar Planetary Systems. A bibliography of publications and submitted papers produced during the grant period is included.

  18. Cloud based intelligent system for delivering health care as a service.

    PubMed

    Kaur, Pankaj Deep; Chana, Inderveer

    2014-01-01

    The promising potential of cloud computing and its convergence with technologies such as mobile computing, wireless networks, sensor technologies allows for creation and delivery of newer type of cloud services. In this paper, we advocate the use of cloud computing for the creation and management of cloud based health care services. As a representative case study, we design a Cloud Based Intelligent Health Care Service (CBIHCS) that performs real time monitoring of user health data for diagnosis of chronic illness such as diabetes. Advance body sensor components are utilized to gather user specific health data and store in cloud based storage repositories for subsequent analysis and classification. In addition, infrastructure level mechanisms are proposed to provide dynamic resource elasticity for CBIHCS. Experimental results demonstrate that classification accuracy of 92.59% is achieved with our prototype system and the predicted patterns of CPU usage offer better opportunities for adaptive resource elasticity. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Methods for Discerning Cloud Reflectivity Changes due to the Indirect Effect of Aerosol: A Pilot-study for Triana

    NASA Technical Reports Server (NTRS)

    Kinne, S.; Wiscombe, Warren; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Understanding the effect of aerosol on cloud systems is one of the major challenges in atmospheric and climate research. Local studies suggest a multitude of influences on cloud properties. Yet the overall effect on cloud albedo, a critical parameter in climate simulations, remains uncertain. NASA's Triana mission will provide, from its EPIC multi-spectral imager, simultaneous data on aerosol properties and cloud reflectivity. With Triana's unique position in space these data will be available not only globally but also over the entire daytime, well suited to accommodate the often short lifetimes of aerosol and investigations around diurnal cycles. This pilot study explores the ability to detect relationships between aerosol properties and cloud reflectivity with sophisticated statistical methods. Sample results using data from the EOS Terra platform to simulate Triana are presented.

  20. Georeferencing UAS Derivatives Through Point Cloud Registration with Archived Lidar Datasets

    NASA Astrophysics Data System (ADS)

    Magtalas, M. S. L. Y.; Aves, J. C. L.; Blanco, A. C.

    2016-10-01

    Georeferencing gathered images is a common step before performing spatial analysis and other processes on acquired datasets using unmanned aerial systems (UAS). Methods of applying spatial information to aerial images or their derivatives is through onboard GPS (Global Positioning Systems) geotagging, or through tying of models through GCPs (Ground Control Points) acquired in the field. Currently, UAS (Unmanned Aerial System) derivatives are limited to meter-levels of accuracy when their generation is unaided with points of known position on the ground. The use of ground control points established using survey-grade GPS or GNSS receivers can greatly reduce model errors to centimeter levels. However, this comes with additional costs not only with instrument acquisition and survey operations, but also in actual time spent in the field. This study uses a workflow for cloud-based post-processing of UAS data in combination with already existing LiDAR data. The georeferencing of the UAV point cloud is executed using the Iterative Closest Point algorithm (ICP). It is applied through the open-source CloudCompare software (Girardeau-Montaut, 2006) on a `skeleton point cloud'. This skeleton point cloud consists of manually extracted features consistent on both LiDAR and UAV data. For this cloud, roads and buildings with minimal deviations given their differing dates of acquisition are considered consistent. Transformation parameters are computed for the skeleton cloud which could then be applied to the whole UAS dataset. In addition, a separate cloud consisting of non-vegetation features automatically derived using CANUPO classification algorithm (Brodu and Lague, 2012) was used to generate a separate set of parameters. Ground survey is done to validate the transformed cloud. An RMSE value of around 16 centimeters was found when comparing validation data to the models georeferenced using the CANUPO cloud and the manual skeleton cloud. Cloud-to-cloud distance computations of CANUPO and manual skeleton clouds were obtained with values for both equal to around 0.67 meters at 1.73 standard deviation.

  1. ASTER cloud coverage reassessment using MODIS cloud mask products

    NASA Astrophysics Data System (ADS)

    Tonooka, Hideyuki; Omagari, Kunjuro; Yamamoto, Hirokazu; Tachikawa, Tetsushi; Fujita, Masaru; Paitaer, Zaoreguli

    2010-10-01

    In the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) Project, two kinds of algorithms are used for cloud assessment in Level-1 processing. The first algorithm based on the LANDSAT-5 TM Automatic Cloud Cover Assessment (ACCA) algorithm is used for a part of daytime scenes observed with only VNIR bands and all nighttime scenes, and the second algorithm based on the LANDSAT-7 ETM+ ACCA algorithm is used for most of daytime scenes observed with all spectral bands. However, the first algorithm does not work well for lack of some spectral bands sensitive to cloud detection, and the two algorithms have been less accurate over snow/ice covered areas since April 2008 when the SWIR subsystem developed troubles. In addition, they perform less well for some combinations of surface type and sun elevation angle. We, therefore, have developed the ASTER cloud coverage reassessment system using MODIS cloud mask (MOD35) products, and have reassessed cloud coverage for all ASTER archived scenes (>1.7 million scenes). All of the new cloud coverage data are included in Image Management System (IMS) databases of the ASTER Ground Data System (GDS) and NASA's Land Process Data Active Archive Center (LP DAAC) and used for ASTER product search by users, and cloud mask images are distributed to users through Internet. Daily upcoming scenes (about 400 scenes per day) are reassessed and inserted into the IMS databases in 5 to 7 days after each scene observation date. Some validation studies for the new cloud coverage data and some mission-related analyses using those data are also demonstrated in the present paper.

  2. Using PVDF to locate the debris cloud impact position

    NASA Astrophysics Data System (ADS)

    Pang, Baojun; Liu, Zhidong

    2010-03-01

    With the increase of space activities, space debris environment has deteriorated. Space debris impact shields of spacecraft creates debris cloud, the debris cloud is a threat to module wall. In order to conduct an assessment of spacecraft module wall damage impacted by debris cloud, the damage position must be known. In order to design a light weight location system, polyvinylidene fluoride (PVDF) has been studied. Hyper-velocity impact experiments were conducted using two-stage light gas gun, the experimental results indicate that: the virtual wave front location method can be extended to debris cloud impact location, PVDF can be used to locate the damage position effectively, the signals gathered by PVDF from debris cloud impact contain more high frequency components than the signals created by single projectile impact event. The results provide a reference for the development of the sensor systems to detect impacts on spacecraft.

  3. A Weibull distribution accrual failure detector for cloud computing

    PubMed Central

    Wu, Zhibo; Wu, Jin; Zhao, Yao; Wen, Dongxin

    2017-01-01

    Failure detectors are used to build high availability distributed systems as the fundamental component. To meet the requirement of a complicated large-scale distributed system, accrual failure detectors that can adapt to multiple applications have been studied extensively. However, several implementations of accrual failure detectors do not adapt well to the cloud service environment. To solve this problem, a new accrual failure detector based on Weibull Distribution, called the Weibull Distribution Failure Detector, has been proposed specifically for cloud computing. It can adapt to the dynamic and unexpected network conditions in cloud computing. The performance of the Weibull Distribution Failure Detector is evaluated and compared based on public classical experiment data and cloud computing experiment data. The results show that the Weibull Distribution Failure Detector has better performance in terms of speed and accuracy in unstable scenarios, especially in cloud computing. PMID:28278229

  4. Precipitation Processes developed during ARM (1997), TOGA COARE (1992), GATE (1974), SCSMEX (1998), and KWAJEX (1999), Consistent 2D, semi-3D and 3D Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Hou, A.; Atlas, R.; Starr, D.; Sud, Y.

    2003-01-01

    Real clouds and cloud systems are inherently three-dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D). A few 3D CRMs have been used to study the response of clouds to large-scale forcing. In these 3D simulations, the model domain was small, and the integration time was 6 hours. The major objectives of this paper are: (1) to assess the performance of the super-parameterization technique (i.e. is 2D or semi-3D CRM appropriate for the super-parameterization?); (2) calculate and examine the surface energy (especially radiation) and water budgets; (3) identify the differences and similarities in the organization and entrainment rates of convection between simulated 2D and 3D cloud systems.

  5. Combined observational and modeling efforts of aerosol-cloud-precipitation interactions over Southeast Asia

    NASA Astrophysics Data System (ADS)

    Loftus, Adrian; Tsay, Si-Chee; Nguyen, Xuan Anh

    2016-04-01

    Low-level stratocumulus (Sc) clouds cover more of the Earth's surface than any other cloud type rendering them critical for Earth's energy balance, primarily via reflection of solar radiation, as well as their role in the global hydrological cycle. Stratocumuli are particularly sensitive to changes in aerosol loading on both microphysical and macrophysical scales, yet the complex feedbacks involved in aerosol-cloud-precipitation interactions remain poorly understood. Moreover, research on these clouds has largely been confined to marine environments, with far fewer studies over land where major sources of anthropogenic aerosols exist. The aerosol burden over Southeast Asia (SEA) in boreal spring, attributed to biomass burning (BB), exhibits highly consistent spatiotemporal distribution patterns, with major variability due to changes in aerosol loading mediated by processes ranging from large-scale climate factors to diurnal meteorological events. Downwind from source regions, the transported BB aerosols often overlap with low-level Sc cloud decks associated with the development of the region's pre-monsoon system, providing a unique, natural laboratory for further exploring their complex micro- and macro-scale relationships. Compared to other locations worldwide, studies of springtime biomass-burning aerosols and the predominately Sc cloud systems over SEA and their ensuing interactions are underrepresented in scientific literature. Measurements of aerosol and cloud properties, whether ground-based or from satellites, generally lack information on microphysical processes; thus cloud-resolving models are often employed to simulate the underlying physical processes in aerosol-cloud-precipitation interactions. The Goddard Cumulus Ensemble (GCE) cloud model has recently been enhanced with a triple-moment (3M) bulk microphysics scheme as well as the Regional Atmospheric Modeling System (RAMS) version 6 aerosol module. Because the aerosol burden not only affects cloud droplet size and number concentration, but also the spectral width of the cloud droplet size distribution, the 3M scheme is well suited to simulate aerosol-cloud-precipitation interactions within a three-dimensional regional cloud model. Moreover, the additional variability predicted on the hydrometeor distributions provides beneficial input for forward models to link the simulated microphysical processes with observations as well as to assess both ground-based and satellite retrieval methods. In this presentation, we provide an overview of the 7 South East Asian Studies / Biomass-burning Aerosols and Stratocumulus Environment: Lifecycles and Interactions Experiment (7-SEAS/BASELInE) operations during the spring of 2013. Preliminary analyses of pre-monsoon Sc system lifecycles observed during the first-ever deployment of a ground-based cloud radar to northern Vietnam will be also be presented. Initial results from GCE model simulations of these Sc using double-moment and the new 3M bulk microphysics schemes under various aerosol loadings will be used to showcase the 3M scheme as well as provide insight into how the impact of aerosols on cloud and precipitation processes in stratocumulus over land may manifest themselves in simulated remote-sensing signals. Applications and future work involving ongoing 7-SEAS campaigns aimed at improving our understanding of aerosol-cloud-precipitation interactions of will also be discussed.

  6. The Segmentation of Point Clouds with K-Means and ANN (artifical Neural Network)

    NASA Astrophysics Data System (ADS)

    Kuçak, R. A.; Özdemir, E.; Erol, S.

    2017-05-01

    Segmentation of point clouds is recently used in many Geomatics Engineering applications such as the building extraction in urban areas, Digital Terrain Model (DTM) generation and the road or urban furniture extraction. Segmentation is a process of dividing point clouds according to their special characteristic layers. The present paper discusses K-means and self-organizing map (SOM) which is a type of ANN (Artificial Neural Network) segmentation algorithm which treats the segmentation of point cloud. The point clouds which generate with photogrammetric method and Terrestrial Lidar System (TLS) were segmented according to surface normal, intensity and curvature. Thus, the results were evaluated. LIDAR (Light Detection and Ranging) and Photogrammetry are commonly used to obtain point clouds in many remote sensing and geodesy applications. By photogrammetric method or LIDAR method, it is possible to obtain point cloud from terrestrial or airborne systems. In this study, the measurements were made with a Leica C10 laser scanner in LIDAR method. In photogrammetric method, the point cloud was obtained from photographs taken from the ground with a 13 MP non-metric camera.

  7. Climatology analysis of cirrus cloud in ARM site: South Great Plain

    NASA Astrophysics Data System (ADS)

    Olayinka, K.

    2017-12-01

    Cirrus cloud play an important role in the atmospheric energy balance and hence in the earth's climate system. The properties of optically thin clouds can be determined from measurements of transmission of the direct solar beam. The accuracy of cloud optical properties determined in this way is compromised by contamination of the direct transmission by light that is scattered into the sensors field of view. With the forward scattering correction method developed by Min et al., (2004), the accuracy of thin cloud retrievals from MFRSR has been improved. Our result shows over 30% of cirrus cloud present in the atmosphere are within optical depth between (1-2). In this study, we do statistics studies on cirrus clouds properties based on multi-years cirrus cloud measurements from MFRSR at ARM site from the South Great Plain (SGP) site due to its relatively easy accessibility, wide variability of climate cloud types and surface flux properties, large seasonal variation in temperature and specific humidity. Through the statistic studies, temporal and spatial variations of cirrus clouds are investigated. Since the presence of cirrus cloud increases the effect of greenhouse gases, we will retrieve the aerosol optical depth in all the cirrus cloud regions using a radiative transfer model for atmospheric correction. Calculate thin clouds optical depth (COD), and aerosol optical depth (AOD) using a radiative transfer model algorithm, e.g.: MODTRAN (MODerate resolution atmospheric TRANsmission)

  8. Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system

    NASA Astrophysics Data System (ADS)

    Zhou, C.; Zhang, X.; Gong, S.; Wang, Y.; Xue, M.

    2016-01-01

    A comprehensive aerosol-cloud-precipitation interaction (ACI) scheme has been developed under a China Meteorological Administration (CMA) chemical weather modeling system, GRAPES/CUACE (Global/Regional Assimilation and PrEdiction System, CMA Unified Atmospheric Chemistry Environment). Calculated by a sectional aerosol activation scheme based on the information of size and mass from CUACE and the thermal-dynamic and humid states from the weather model GRAPES at each time step, the cloud condensation nuclei (CCN) are interactively fed online into a two-moment cloud scheme (WRF Double-Moment 6-class scheme - WDM6) and a convective parameterization to drive cloud physics and precipitation formation processes. The modeling system has been applied to study the ACI for January 2013 when several persistent haze-fog events and eight precipitation events occurred.

    The results show that aerosols that interact with the WDM6 in GRAPES/CUACE obviously increase the total cloud water, liquid water content, and cloud droplet number concentrations, while decreasing the mean diameters of cloud droplets with varying magnitudes of the changes in each case and region. These interactive microphysical properties of clouds improve the calculation of their collection growth rates in some regions and hence the precipitation rate and distributions in the model, showing 24 to 48 % enhancements of threat score for 6 h precipitation in almost all regions. The aerosols that interact with the WDM6 also reduce the regional mean bias of temperature by 3 °C during certain precipitation events, but the monthly means bias is only reduced by about 0.3 °C.

  9. Relationship between Trustworthiness, Transparency, and Security in Cloud Computing Environments: A Regression Analysis

    ERIC Educational Resources Information Center

    Ibrahim, Sara

    2017-01-01

    The insider security threat causes new and dangerous dimensions in cloud computing. Those internal threats are originated from contractors or the business partners' input that have access to the systems. A study of trustworthiness and transparency might assist the organizations to monitor employees' activity more cautiously on cloud technologies…

  10. A Coupled GCM-Cloud Resolving Modeling System, and a Regional Scale Model to Study Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2007-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a superparameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1998 and 1999). Also, at Goddard, we have implemented several Goddard microphysical schemes (2ICE, several 31CE), Goddard radiation (including explicitly calculated cloud optical properties), and Goddard Land Information (LIS, that includes the CLM and NOAH land surface models) into a next generatio11 regional scale model, WRF. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications).

  11. A Coupled GCM-Cloud Resolving Modeling System, and A Regional Scale Model to Study Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2006-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1998 and 1999). Also, at Goddard, we have implemented several Goddard microphysical schemes (21CE, several 31CE), Goddard radiation (including explicitly calculated cloud optical properties), and Goddard Land Information (LIS, that includes the CLM and NOAH land surface models) into a next generation regional scale model, WRF. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications).

  12. Response of mixed-phase boundary layer clouds with rapid and slow ice nucleation processes to cloud-top temperature trend

    NASA Astrophysics Data System (ADS)

    Fridlind, A. M.; Avramov, A.; Ackerman, A. S.; Alpert, P. A.; Knopf, D. A.; DeMott, P. J.; Brooks, S. D.; Glen, A.

    2015-12-01

    It has been argued on the basis of some laboratory data sets, observed mixed-phase cloud systems, and numerical modeling studies that weakly active or slowly consumed ice forming nuclei (IFN) may be important to natural cloud systems. It has also been argued on the basis of field measurements that ice nucleation under mixed-phase conditions appears to occur predominantly via a liquid-phase mechanism, requiring the presence of liquid droplets prior to substantial ice nucleation. Here we analyze the response of quasi-Lagrangian large-eddy simulations of mixed-phase cloud layers to IFN operating via a liquid-phase mode using assumptions that result in either slow or rapid depletion of IFN from the cloudy boundary layer. Using several generalized case studies that do not exhibit riming or drizzle, based loosely on field campaign data, we vary environmental conditions such that the cloud-top temperature trend varies. One objective of this work is to identify differing patterns in ice formation intensity that may be distinguishable from ground-based or satellite platforms.

  13. Utilizing HDF4 File Content Maps for the Cloud

    NASA Technical Reports Server (NTRS)

    Lee, Hyokyung Joe

    2016-01-01

    We demonstrate a prototype study that HDF4 file content map can be used for efficiently organizing data in cloud object storage system to facilitate cloud computing. This approach can be extended to any binary data formats and to any existing big data analytics solution powered by cloud computing because HDF4 file content map project started as long term preservation of NASA data that doesn't require HDF4 APIs to access data.

  14. Identification of pixels with stray light and cloud shadow contaminations in the satellite ocean color data processing.

    PubMed

    Jiang, Lide; Wang, Menghua

    2013-09-20

    A new flag/masking scheme has been developed for identifying stray light and cloud shadow pixels that significantly impact the quality of satellite-derived ocean color products. Various case studies have been carried out to evaluate the performance of the new cloud contamination flag/masking scheme on ocean color products derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP). These include direct visual assessments, detailed quantitative case studies, objective statistic analyses, and global image examinations and comparisons. The National Oceanic and Atmospheric Administration (NOAA) Multisensor Level-1 to Level-2 (NOAA-MSL12) ocean color data processing system has been used in the study. The new stray light and cloud shadow identification method has been shown to outperform the current stray light flag in both valid data coverage and data quality of satellite-derived ocean color products. In addition, some cloud-related flags from the official VIIRS-SNPP data processing software, i.e., the Interface Data Processing System (IDPS), have been assessed. Although the data quality with the IDPS flags is comparable to that of the new flag implemented in the NOAA-MSL12 ocean color data processing system, the valid data coverage from the IDPS is significantly less than that from the NOAA-MSL12 using the new stray light and cloud shadow flag method. Thus, the IDPS flag/masking algorithms need to be refined and modified to reduce the pixel loss, e.g., the proposed new cloud contamination flag/masking can be implemented in IDPS VIIRS ocean color data processing.

  15. Distributed clinical data sharing via dynamic access-control policy transformation.

    PubMed

    Rezaeibagha, Fatemeh; Mu, Yi

    2016-05-01

    Data sharing in electronic health record (EHR) systems is important for improving the quality of healthcare delivery. Data sharing, however, has raised some security and privacy concerns because healthcare data could be potentially accessible by a variety of users, which could lead to privacy exposure of patients. Without addressing this issue, large-scale adoption and sharing of EHR data are impractical. The traditional solution to the problem is via encryption. Although encryption can be applied to access control, it is not applicable for complex EHR systems that require multiple domains (e.g. public and private clouds) with various access requirements. This study was carried out to address the security and privacy issues of EHR data sharing with our novel access-control mechanism, which captures the scenario of the hybrid clouds and need of access-control policy transformation, to provide secure and privacy-preserving data sharing among different healthcare enterprises. We introduce an access-control mechanism with some cryptographic building blocks and present a novel approach for secure EHR data sharing and access-control policy transformation in EHR systems for hybrid clouds. We propose a useful data sharing system for healthcare providers to handle various EHR users who have various access privileges in different cloud environments. A systematic study has been conducted on data sharing in EHR systems to provide a solution to the security and privacy issues. In conclusion, we introduce an access-control method for privacy protection of EHRs and EHR policy transformation that allows an EHR access-control policy to be transformed from a private cloud to a public cloud. This method has never been studied previously in the literature. Furthermore, we provide a protocol to demonstrate policy transformation as an application scenario. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. The potential of cloud point system as a novel two-phase partitioning system for biotransformation.

    PubMed

    Wang, Zhilong

    2007-05-01

    Although the extractive biotransformation in two-phase partitioning systems have been studied extensively, such as the water-organic solvent two-phase system, the aqueous two-phase system, the reverse micelle system, and the room temperature ionic liquid, etc., this has not yet resulted in a widespread industrial application. Based on the discussion of the main obstacles, an exploitation of a cloud point system, which has already been applied in a separation field known as a cloud point extraction, as a novel two-phase partitioning system for biotransformation, is reviewed by analysis of some topical examples. At the end of the review, the process control and downstream processing in the application of the novel two-phase partitioning system for biotransformation are also briefly discussed.

  17. Intercomparison of vertical structure of storms revealed by ground-based (NMQ) and spaceborne radars (CloudSat-CPR and TRMM-PR).

    PubMed

    Fall, Veronica M; Cao, Qing; Hong, Yang

    2013-01-01

    Spaceborne radars provide great opportunities to investigate the vertical structure of clouds and precipitation. Two typical spaceborne radars for such a study are the W-band Cloud Profiling Radar (CPR) and Ku-band Precipitation Radar (PR), which are onboard NASA's CloudSat and TRMM satellites, respectively. Compared to S-band ground-based radars, they have distinct scattering characteristics for different hydrometeors in clouds and precipitation. The combination of spaceborne and ground-based radar observations can help in the identification of hydrometeors and improve the radar-based quantitative precipitation estimation (QPE). This study analyzes the vertical structure of the 18 January, 2009 storm using data from the CloudSat CPR, TRMM PR, and a NEXRAD-based National Mosaic and Multisensor QPE (NMQ) system. Microphysics above, within, and below the melting layer are studied through an intercomparison of multifrequency measurements. Hydrometeors' type and their radar scattering characteristics are analyzed. Additionally, the study of the vertical profile of reflectivity (VPR) reveals the brightband properties in the cold-season precipitation and its effect on the radar-based QPE. In all, the joint analysis of spaceborne and ground-based radar data increases the understanding of the vertical structure of storm systems and provides a good insight into the microphysical modeling for weather forecasts.

  18. Intercomparison of Vertical Structure of Storms Revealed by Ground-Based (NMQ) and Spaceborne Radars (CloudSat-CPR and TRMM-PR)

    PubMed Central

    Fall, Veronica M.; Hong, Yang

    2013-01-01

    Spaceborne radars provide great opportunities to investigate the vertical structure of clouds and precipitation. Two typical spaceborne radars for such a study are the W-band Cloud Profiling Radar (CPR) and Ku-band Precipitation Radar (PR), which are onboard NASA's CloudSat and TRMM satellites, respectively. Compared to S-band ground-based radars, they have distinct scattering characteristics for different hydrometeors in clouds and precipitation. The combination of spaceborne and ground-based radar observations can help in the identification of hydrometeors and improve the radar-based quantitative precipitation estimation (QPE). This study analyzes the vertical structure of the 18 January, 2009 storm using data from the CloudSat CPR, TRMM PR, and a NEXRAD-based National Mosaic and Multisensor QPE (NMQ) system. Microphysics above, within, and below the melting layer are studied through an intercomparison of multifrequency measurements. Hydrometeors' type and their radar scattering characteristics are analyzed. Additionally, the study of the vertical profile of reflectivity (VPR) reveals the brightband properties in the cold-season precipitation and its effect on the radar-based QPE. In all, the joint analysis of spaceborne and ground-based radar data increases the understanding of the vertical structure of storm systems and provides a good insight into the microphysical modeling for weather forecasts. PMID:24459424

  19. Dynamical Structure and Turbulence in Cirrus Clouds: Aircraft Observations during FIRE.

    NASA Astrophysics Data System (ADS)

    Gultepe, I.; Starr, D. O'c.

    1995-12-01

    Aircraft data collected during the First International Satellite Cloud Climatology Project Regional Experiment (FIRE)I are used to examine dynamical processes operating in cirrus cloud systems observed on 19 and 28 October 1986. Measurements from Lagrangian spiral soundings and constant-altitude flight legs are analyzed. Comparisons are made with observations in clear air. Each cirrus case contained a statically stable layer, a conditionally unstable or neutrally stratified layer (ice pseudoadiabatic) in which convection was prevalent, and a neutral layer in which convection was intermittent. The analysis indicates that a mixture of phenomena occurred including small-scale convective cells, gravity waves (2-9 km), quasi-two-dimensional waves (10-20 km), and larger two-dimensional mesoscale waves (100 km). The intermediate-scale waves, observed both in clear air and in the cloud systems, likely played an important role in the development of the cloud systems given the magnitude of the associated vertical air velocity. The spectra of perturbations of wind components for layers where convection was prevalent were characterized by a 5/3 power law dependence, while a 2/4 dependence was found at other levels in the cloud systems. A steeper spectral slope (3) was found in the more stable cloud-base layer on 19 October. Samples in clear air also showed a (2.4) dependence. Flight-leg-averaged eddy potential heat fluxes (H=±8 W m2) were comparable to observations in marine stratocumulus clouds. Calculated turbulence dissipation rates agree with previously published studies, which indicate a general enhancement within cloud systems (106 to 103 m2 s3 in cloud versus values less than 0.5×106 m2 s3 in clear air).

  20. Title Requested

    NASA Astrophysics Data System (ADS)

    Ruzmaikina, T. V.

    2000-12-01

    Precise measurements of D/H in Halley and Hyakutake reveal larger excess of D than in Uranus and Neptune. This might imply that at least a fraction of Oort cloud comets have been accumulated in a cooler environment beyond the planetary system. This paper suggests that the scattering of planetesimals from the periphery of the protoplanetary disk by a passing star might have included them in the populating of the Oort cloud. The probability of the necessary close encounter is very small in the present Galactic environment of the solar system. However it might be relatively high if the solar system was formed in a denser environment, like the Rho Ophiuchus star-forming region or a small and dense cloud core which fragmented during the collapse to form a small group of stars. Outcomes of a passage of a star with mass 1 to 0.3 solar masses were studied numerically by Everhart method. Disk penetrating or disk grazing encounters revealed that planetesimals closest to the stellar trajectory can be ejected from the solar system or sent on highly eccentric bound orbits. Some planetesimals acquire orbits with perihelion distances larger than planet orbits, i.e., become immediate members of the Oort cloud. For others, external pertubations cause stochastic growth of perihelion distances and decoupling from the planetary system, transferring them into the Oort cloud. These Oort cloud bodies could be accumulated well beyond the planetary system, and preserve higher D/H, CO ice, etc.

  1. Relating large-scale subsidence to convection development in Arctic mixed-phase marine stratocumulus

    NASA Astrophysics Data System (ADS)

    Young, Gillian; Connolly, Paul J.; Dearden, Christopher; Choularton, Thomas W.

    2018-02-01

    Large-scale subsidence, associated with high-pressure systems, is often imposed in large-eddy simulation (LES) models to maintain the height of boundary layer (BL) clouds. Previous studies have considered the influence of subsidence on warm liquid clouds in subtropical regions; however, the relationship between subsidence and mixed-phase cloud microphysics has not specifically been studied. For the first time, we investigate how widespread subsidence associated with synoptic-scale meteorological features can affect the microphysics of Arctic mixed-phase marine stratocumulus (Sc) clouds. Modelled with LES, four idealised scenarios - a stable Sc, varied droplet (Ndrop) or ice (Nice) number concentrations, and a warming surface (representing motion southwards) - were subjected to different levels of subsidence to investigate the cloud microphysical response. We find strong sensitivities to large-scale subsidence, indicating that high-pressure systems in the ocean-exposed Arctic regions have the potential to generate turbulence and changes in cloud microphysics in any resident BL mixed-phase clouds.Increased cloud convection is modelled with increased subsidence, driven by longwave radiative cooling at cloud top and rain evaporative cooling and latent heating from snow growth below cloud. Subsidence strengthens the BL temperature inversion, thus reducing entrainment and allowing the liquid- and ice-water paths (LWPs, IWPs) to increase. Through increased cloud-top radiative cooling and subsequent convective overturning, precipitation production is enhanced: rain particle number concentrations (Nrain), in-cloud rain mass production rates, and below-cloud evaporation rates increase with increased subsidence.Ice number concentrations (Nice) play an important role, as greater concentrations suppress the liquid phase; therefore, Nice acts to mediate the strength of turbulent overturning promoted by increased subsidence. With a warming surface, a lack of - or low - subsidence allows for rapid BL turbulent kinetic energy (TKE) coupling, leading to a heterogeneous cloud layer, cloud-top ascent, and cumuli formation below the Sc cloud. In these scenarios, higher levels of subsidence act to stabilise the Sc layer, where the combination of these two forcings counteract one another to produce a stable, yet dynamic, cloud layer.

  2. Enhancing Security by System-Level Virtualization in Cloud Computing Environments

    NASA Astrophysics Data System (ADS)

    Sun, Dawei; Chang, Guiran; Tan, Chunguang; Wang, Xingwei

    Many trends are opening up the era of cloud computing, which will reshape the IT industry. Virtualization techniques have become an indispensable ingredient for almost all cloud computing system. By the virtual environments, cloud provider is able to run varieties of operating systems as needed by each cloud user. Virtualization can improve reliability, security, and availability of applications by using consolidation, isolation, and fault tolerance. In addition, it is possible to balance the workloads by using live migration techniques. In this paper, the definition of cloud computing is given; and then the service and deployment models are introduced. An analysis of security issues and challenges in implementation of cloud computing is identified. Moreover, a system-level virtualization case is established to enhance the security of cloud computing environments.

  3. Detecting Super-Thin Clouds With Polarized Light

    NASA Technical Reports Server (NTRS)

    Sun, Wenbo; Videen, Gorden; Mishchenko, Michael I.

    2014-01-01

    We report a novel method for detecting cloud particles in the atmosphere. Solar radiation backscattered from clouds is studied with both satellite data and a radiative transfer model. A distinct feature is found in the angle of linear polarization of solar radiation that is backscattered from clouds. The dominant backscattered electric field from the clear-sky Earth-atmosphere system is nearly parallel to the Earth surface. However, when clouds are present, this electric field can rotate significantly away from the parallel direction. Model results demonstrate that this polarization feature can be used to detect super-thin cirrus clouds having an optical depth of only 0.06 and super-thin liquid water clouds having an optical depth of only 0.01. Such clouds are too thin to be sensed using any current passive satellite instruments.

  4. Detecting Super-Thin Clouds with Polarized Sunlight

    NASA Technical Reports Server (NTRS)

    Sun, Wenbo; Videen, Gorden; Mishchenko, Michael I.

    2014-01-01

    We report a novel method for detecting cloud particles in the atmosphere. Solar radiation backscattered from clouds is studied with both satellite data and a radiative transfer model. A distinct feature is found in the angle of linear polarization of solar radiation that is backscattered from clouds. The dominant backscattered electric field from the clear-sky Earth-atmosphere system is nearly parallel to the Earth surface. However, when clouds are present, this electric field can rotate significantly away from the parallel direction. Model results demonstrate that this polarization feature can be used to detect super-thin cirrus clouds having an optical depth of only 0.06 and super-thin liquid water clouds having an optical depth of only 0.01. Such clouds are too thin to be sensed using any current passive satellite instruments.

  5. A New Way to Measure Cirrus Ice Water Content by Using Ice Raman Scatter with Raman Lidar

    NASA Technical Reports Server (NTRS)

    Wang, Zhien; Whiteman, David N.; Demoz, Belay; Veselovskii, Igor

    2004-01-01

    High and cold cirrus clouds mainly contain irregular ice crystals, such as, columns, hexagonal plates, bullet rosettes, and dendrites, and have different impacts on the climate system than low-level clouds, such as stratus, stratocumulus, and cumulus. The radiative effects of cirrus clouds on the current and future climate depend strongly on cirrus cloud microphysical properties including ice water content (IWC) and ice crystal sizes, which are mostly an unknown aspect of cinus clouds. Because of the natural complexity of cirrus clouds and their high locations, it is a challenging task to get them accurately by both remote sensing and in situ sampling. This study presents a new method to remotely sense cirrus microphysical properties by using ice Raman scatter with a Raman lidar. The intensity of Raman scattering is fundamentally proportional to the number of molecules involved. Therefore, ice Raman scattering signal provides a more direct way to measure IWC than other remote sensing methods. Case studies show that this method has the potential to provide essential information of cirrus microphysical properties to study cloud physical processes in cirrus clouds.

  6. A study of renal function influence by integrating cloud-based manometers and physician order entry systems.

    PubMed

    Lin, Yuh-Feng; Sheng, Li-Huei; Wu, Mei-Yi; Zheng, Cai-Mei; Chang, Tian-Jong; Li, Yu-Chuan; Huang, Yu-Hui; Lu, Hsi-Peng

    2014-12-01

    No evidence exists from randomized trials to support using cloud-based manometers integrated with available physician order entry systems for tracking patient blood pressure (BP) to assist in the control of renal function deterioration. We investigated how integrating cloud-based manometers with physician order entry systems benefits our outpatient chronic kidney disease patients compared with typical BP tracking systems. We randomly assigned 36 chronic kidney disease patients to use cloud-based manometers integrated with physician order entry systems or typical BP recording sheets, and followed the patients for 6 months. The composite outcome was that the patients saw improvement both in BP and renal function. We compared the systolic and diastolic BP (SBP and DBP), and renal function of our patients at 0 months, 3 months, and 6 months after using the integrated manometers and typical BP monitoring sheets. Nighttime SBP and DBP were significantly lower in the study group compared with the control group. Serum creatinine level in the study group improved significantly compared with the control group after the end of Month 6 (2.83 ± 2.0 vs. 4.38 ± 3.0, p = 0.018). Proteinuria improved nonsignificantly in Month 6 in the study group compared with the control group (1.05 ± 0.9 vs. 1.90 ± 1.3, p = 0.09). Both SBP and DBP during the nighttime hours improved significantly in the study group compared with the baseline. In pre-end-stage renal disease patients, regularly monitoring BP by integrating cloud-based manometers appears to result in a significant decrease in creatinine and improvement in nighttime BP control. Estimated glomerular filtration rate and proteinuria were found to be improved nonsignificantly, and thus, larger population and longer follow-up studies may be needed.

  7. Vertical Structures of Anvil Clouds of Tropical Mesoscale Convective Systems Observed by CloudSat

    NASA Technical Reports Server (NTRS)

    Hence, Deanna A.; Houze, Robert A.

    2011-01-01

    A global study of the vertical structures of the clouds of tropical mesoscale convective systems (MCSs) has been carried out with data from the CloudSat Cloud Profiling Radar. Tropical MCSs are found to be dominated by cloud-top heights greater than 10 km. Secondary cloud layers sometimes occur in MCSs, but outside their primary raining cores. The secondary layers have tops at 6 8 and 1 3 km. High-topped clouds extend outward from raining cores of MCSs to form anvil clouds. Closest to the raining cores, the anvils tend to have broader distributions of reflectivity at all levels, with the modal values at higher reflectivity in their lower levels. Portions of anvil clouds far away from the raining core are thin and have narrow frequency distributions of reflectivity at all levels with overall weaker values. This difference likely reflects ice particle fallout and therefore cloud age. Reflectivity histograms of MCS anvil clouds vary little across the tropics, except that (i) in continental MCS anvils, broader distributions of reflectivity occur at the uppermost levels in the portions closest to active raining areas; (ii) the frequency of occurrence of stronger reflectivity in the upper part of anvils decreases faster with increasing distance in continental MCSs; and (iii) narrower-peaked ridges are prominent in reflectivity histograms of thick anvil clouds close to the raining areas of connected MCSs (superclusters). These global results are consistent with observations at ground sites and aircraft data. They present a comprehensive test dataset for models aiming to simulate process-based upper-level cloud structure around the tropics.

  8. Vertical Structures of Anvil Clouds of Tropical Mesoscale Convective Systems Observed by CloudSat

    NASA Technical Reports Server (NTRS)

    Yuan, J.; Houze, R. A., Jr.; Heymsfield, A.

    2011-01-01

    A global study of the vertical structures of the clouds of tropical mesoscale convective systems (MCSs) has been carried out with data from the CloudSat Cloud Profiling Radar. Tropical MCSs are found to be dominated by cloud-top heights greater than 10 km. Secondary cloud layers sometimes occur in MCSs, but outside their primary raining cores. The secondary layers have tops at 6--8 and 1--3 km. High-topped clouds extend outward from raining cores of MCSs to form anvil clouds. Closest to the raining cores, the anvils tend to have broader distributions of reflectivity at all levels, with the modal values at higher reflectivity in their lower levels. Portions of anvil clouds far away from the raining core are thin and have narrow frequency distributions of reflectivity at all levels with overall weaker values. This difference likely reflects ice particle fallout and therefore cloud age. Reflectivity histograms of MCS anvil clouds vary little across the tropics, except that (i) in continental MCS anvils, broader distributions of reflectivity occur at the uppermost levels in the portions closest to active raining areas; (ii) the frequency of occurrence of stronger reflectivity in the upper part of anvils decreases faster with increasing distance in continental MCSs; and (iii) narrower-peaked ridges are prominent in reflectivity histograms of thick anvil clouds close to the raining areas of connected MCSs (superclusters). These global results are consistent with observations at ground sites and aircraft data. They present a comprehensive test dataset for models aiming to simulate process-based upper-level cloud structure around the tropics.

  9. BlueSky Cloud Framework: An E-Learning Framework Embracing Cloud Computing

    NASA Astrophysics Data System (ADS)

    Dong, Bo; Zheng, Qinghua; Qiao, Mu; Shu, Jian; Yang, Jie

    Currently, E-Learning has grown into a widely accepted way of learning. With the huge growth of users, services, education contents and resources, E-Learning systems are facing challenges of optimizing resource allocations, dealing with dynamic concurrency demands, handling rapid storage growth requirements and cost controlling. In this paper, an E-Learning framework based on cloud computing is presented, namely BlueSky cloud framework. Particularly, the architecture and core components of BlueSky cloud framework are introduced. In BlueSky cloud framework, physical machines are virtualized, and allocated on demand for E-Learning systems. Moreover, BlueSky cloud framework combines with traditional middleware functions (such as load balancing and data caching) to serve for E-Learning systems as a general architecture. It delivers reliable, scalable and cost-efficient services to E-Learning systems, and E-Learning organizations can establish systems through these services in a simple way. BlueSky cloud framework solves the challenges faced by E-Learning, and improves the performance, availability and scalability of E-Learning systems.

  10. A Coupled fcGCM-GCE Modeling System: A 3D Cloud Resolving Model and a Regional Scale Model

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2005-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and ore sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1998 and 1999). Also, at Goddard, we have implemented several Goddard microphysical schemes (21CE, several 31CE), Goddard radiation (including explicity calculated cloud optical properties), and Goddard Land Information (LIS, that includes the CLM and NOAH land surface models) into a next generation regional scale model, WRF. In this talk, I will present: (1) A Brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), (3) A discussion on the Goddard WRF version (its developments and applications), and (4) The characteristics of the four-dimensional cloud data sets (or cloud library) stored at Goddard.

  11. Progress towards MODIS and VIIRS Cloud Fraction Data Record Continuity

    NASA Astrophysics Data System (ADS)

    Ackerman, S. A.; Frey, R.; Holz, R.; Platnick, S. E.; Heidinger, A. K.

    2016-12-01

    Satellite-derived clear-sky vs. cloudy-sky discrimination at the pixel scale is an important input parameter used in many real-time applications. Cloud fractions, resulting from integrating over time and space, are also critical to the study of recent decadal climate changes. The NASA NPOESS Preparatory Project (NPP) has funded a science team to develop and study the ability to make continuous climate records from MODIS (2000-2020) and VIIRS (2012-2030). The MODAWG project, led by Dr. Steve Platnick of NASA/GSFC, combines elements of the MODIS processing system and the NOAA Algorithm Working Group (AWG) to achieve this goal. This presentation will focus on the cloud masking aspects of MODAWG, derived primarily from the MODIS cloud mask (MOD35). Challenges to continuity of cloud detection due to differences in instrument characteristics will be discussed. Cloud mask results from use of the same (continuity) algorithm will be shown for both MODIS and VIIRS, including comparisons to collocated CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) cloud data.

  12. Interactions between aerosol absorption, thermodynamics, dynamics, and microphysics and their impacts on a multiple-cloud system

    NASA Astrophysics Data System (ADS)

    Lee, Seoung Soo; Li, Zhanqing; Mok, Jungbin; Ahn, Myoung-Hwan; Kim, Byung-Gon; Choi, Yong-Sang; Jung, Chang-Hoon; Yoo, Hye Lim

    2017-12-01

    This study investigates how the increasing concentration of black carbon aerosols, which act as radiation absorbers as well as agents for the cloud-particle nucleation, affects stability, dynamics and microphysics in a multiple-cloud system using simulations. Simulations show that despite increases in stability due to increasing concentrations of black carbon aerosols, there are increases in the averaged updraft mass fluxes (over the whole simulation domain and period). This is because aerosol-enhanced evaporative cooling intensifies convergence near the surface. This increase in the intensity of convergence induces an increase in the frequency of updrafts with the low range of speeds, leading to the increase in the averaged updraft mass fluxes. The increase in the frequency of updrafts induces that in the number of condensation entities and this leads to more condensation and cloud liquid that acts to be a source of the accretion of cloud liquid by precipitation. Hence, eventually, there is more accretion that offsets suppressed autoconversion, which results in negligible changes in cumulative precipitation as aerosol concentrations increase. The increase in the frequency of updrafts with the low range of speeds alters the cloud-system organization (represented by cloud-depth spatiotemporal distributions and cloud-cell population) by supporting more low-depth clouds. The altered organization in turn alters precipitation spatiotemporal distributions by generating more weak precipitation events. Aerosol-induced reduction in solar radiation that reaches the surface induces more occurrences of small-value surface heat fluxes, which in turn supports the more low-depth clouds and weak precipitation together with the greater occurrence of low-speed updrafts.

  13. Aerosol indirect effect on the grid-scale clouds in the two-way coupled WRF-CMAQ: model description, development, evaluation and regional analysis

    EPA Science Inventory

    This study implemented first, second and glaciations aerosol indirect effects (AIE) on resolved clouds in the two-way coupled WRF-CMAQ modeling system by including parameterizations for both cloud drop and ice number concentrations on the basis of CMAQ predicted aerosol distribu...

  14. RACORO Continental Boundary Layer Cloud Investigations: 1. Case Study Development and Ensemble Large-Scale Forcings

    NASA Technical Reports Server (NTRS)

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; hide

    2015-01-01

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60 h case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in situ measurements from the Routine AAF (Atmospheric Radiation Measurement (ARM) Aerial Facility) CLOWD (Clouds with Low Optical Water Depth) Optical Radiative Observations (RACORO) field campaign and remote sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functions for concise representation in models. Values of the aerosol hygroscopicity parameter, kappa, are derived from observations to be approximately 0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing data sets are derived from the ARM variational analysis, European Centre for Medium-Range Weather Forecasts, and a multiscale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in "trial" large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.

  15. RACORO continental boundary layer cloud investigations: 1. Case study development and ensemble large-scale forcings

    NASA Astrophysics Data System (ADS)

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; Li, Zhijin; Xie, Shaocheng; Ackerman, Andrew S.; Zhang, Minghua; Khairoutdinov, Marat

    2015-06-01

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60 h case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in situ measurements from the Routine AAF (Atmospheric Radiation Measurement (ARM) Aerial Facility) CLOWD (Clouds with Low Optical Water Depth) Optical Radiative Observations (RACORO) field campaign and remote sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functions for concise representation in models. Values of the aerosol hygroscopicity parameter, κ, are derived from observations to be 0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing data sets are derived from the ARM variational analysis, European Centre for Medium-Range Weather Forecasts, and a multiscale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in "trial" large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.

  16. Vertical wind velocity measurements using a five-hole probe with remotely piloted aircraft to study aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Calmer, Radiance; Roberts, Gregory C.; Preissler, Jana; Sanchez, Kevin J.; Derrien, Solène; O'Dowd, Colin

    2018-05-01

    The importance of vertical wind velocities (in particular positive vertical wind velocities or updrafts) in atmospheric science has motivated the need to deploy multi-hole probes developed for manned aircraft in small remotely piloted aircraft (RPA). In atmospheric research, lightweight RPAs ( < 2.5 kg) are now able to accurately measure atmospheric wind vectors, even in a cloud, which provides essential observing tools for understanding aerosol-cloud interactions. The European project BACCHUS (impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) focuses on these specific interactions. In particular, vertical wind velocity at cloud base is a key parameter for studying aerosol-cloud interactions. To measure the three components of wind, a RPA is equipped with a five-hole probe, pressure sensors, and an inertial navigation system (INS). The five-hole probe is calibrated on a multi-axis platform, and the probe-INS system is validated in a wind tunnel. Once mounted on a RPA, power spectral density (PSD) functions and turbulent kinetic energy (TKE) derived from the five-hole probe are compared with sonic anemometers on a meteorological mast. During a BACCHUS field campaign at Mace Head Atmospheric Research Station (Ireland), a fleet of RPAs was deployed to profile the atmosphere and complement ground-based and satellite observations of physical and chemical properties of aerosols, clouds, and meteorological state parameters. The five-hole probe was flown on straight-and-level legs to measure vertical wind velocities within clouds. The vertical velocity measurements from the RPA are validated with vertical velocities derived from a ground-based cloud radar by showing that both measurements yield model-simulated cloud droplet number concentrations within 10 %. The updraft velocity distributions illustrate distinct relationships between vertical cloud fields in different meteorological conditions.

  17. Determination of ice water path in ice-over-water cloud systems using combined MODIS and AMSR-E measurements

    NASA Astrophysics Data System (ADS)

    Huang, Jianping; Minnis, Patrick; Lin, Bing; Yi, Yuhong; Fan, T.-F.; Sun-Mack, Sunny; Ayers, J. K.

    2006-11-01

    To provide more accurate ice cloud microphysical properties, the multi-layered cloud retrieval system (MCRS) is used to retrieve ice water path (IWP) in ice-over-water cloud systems globally over oceans using combined instrument data from Aqua. The liquid water path (LWP) of lower-layer water clouds is estimated from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) measurements. The properties of the upper-level ice clouds are then derived from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements by matching simulated radiances from a two-cloud-layer radiative transfer model. The results show that the MCRS can significantly improve the accuracy and reduce the over-estimation of optical depth and IWP retrievals for ice-over-water cloud systems. The mean daytime ice cloud optical depth and IWP for overlapped ice-over-water clouds over oceans from Aqua are 7.6 and 146.4 gm-2, respectively, down from the initial single-layer retrievals of 17.3 and 322.3 gm-2. The mean IWP for actual single-layer clouds is 128.2 gm-2.

  18. Synergistic use of MODIS cloud products and AIRS radiance measurements for retrieval of cloud parameters

    NASA Astrophysics Data System (ADS)

    Li, J.; Menzel, W.; Sun, F.; Schmit, T.

    2003-12-01

    The Moderate-Resolution Imaging Spectroradiometer (MODIS) and Atmospheric Infrared Sounder (AIRS) measurements from the Earth Observing System's (EOS) Aqua satellite will enable global monitoring of the distribution of clouds. MODIS is able to provide at high spatial resolution (1 ~ 5km) the cloud mask, surface and cloud types, cloud phase, cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size (CPS), and cloud water path (CWP). AIRS is able to provide CTP, ECA, CPS, and CWP within the AIRS footprint with much better accuracy using its greatly enhanced hyperspectral remote sensing capability. The combined MODIS / AIRS system offers the opportunity for cloud products improved over those possible from either system alone. The algorithm developed was applied to process the AIRS longwave cloudy radiance measurements; results are compared with MODIS cloud products, as well as with the Geostationary Operational Environmental Satellite (GOES) sounder cloud products, to demonstrate the advantage of synergistic use of high spatial resolution MODIS cloud products and high spectral resolution AIRS sounder radiance measurements for optimal cloud retrieval. Data from ground-based instrumentation at the Atmospheric Radiation Measurement (ARM) Program Cloud and Radiation Test Bed (CART) in Oklahoma were used for the validation; results show that AIRS improves the MODIS cloud products in certain cases such as low-level clouds.

  19. Efficient Redundancy Techniques in Cloud and Desktop Grid Systems using MAP/G/c-type Queues

    NASA Astrophysics Data System (ADS)

    Chakravarthy, Srinivas R.; Rumyantsev, Alexander

    2018-03-01

    Cloud computing is continuing to prove its flexibility and versatility in helping industries and businesses as well as academia as a way of providing needed computing capacity. As an important alternative to cloud computing, desktop grids allow to utilize the idle computer resources of an enterprise/community by means of distributed computing system, providing a more secure and controllable environment with lower operational expenses. Further, both cloud computing and desktop grids are meant to optimize limited resources and at the same time to decrease the expected latency for users. The crucial parameter for optimization both in cloud computing and in desktop grids is the level of redundancy (replication) for service requests/workunits. In this paper we study the optimal replication policies by considering three variations of Fork-Join systems in the context of a multi-server queueing system with a versatile point process for the arrivals. For services we consider phase type distributions as well as shifted exponential and Weibull. We use both analytical and simulation approach in our analysis and report some interesting qualitative results.

  20. Cyanide and isocyanide abundances in the cold, dark cloud TMC-1

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; Schloerb, F. P.

    1984-01-01

    Cold, dark molecular clouds are particularly useful for the study of interstellar chemistry because their physical parameters are better understood than those of heterogeneous, complex giant molecular clouds. Another advantage is their relatively small distance from the solar system. The present investigaation has the objective to provide accurate abundance ratios for several cyanides and isocyanides in order to constrain models of dark cloud chemistry. The relative abundances of such related species can be particularly useful for the study of chemical processes. The cloud TMC-1 considered in the current study has a remarkably high abundance of acetylene and polyacetylene derivatives. Data at 3 mm, corresponding to the J = 1 to 0 transitions of HCN, H(C-13)N, HN(C-13), HC(N-15), and H(N-15)C were obtained.

  1. Cloud Microphysical Properties in Mesoscale Convective Systems: An Intercomparison of Three Tropical Locations

    NASA Astrophysics Data System (ADS)

    Fontaine, Emmanuel; Leroy, Delphine; Schwarzenboeck, Alfons; Coutris, Pierre; Delanoë, Julien; Protat, Alain; Dezitter, Fabien; Grandin, Alice; Strapp, John W.; Lilie, Lyle E.

    2017-04-01

    Mesoscale Convective Systems are complex cloud systems which are primarily the result of specific synoptic conditions associated with mesoscale instabilities leading to the development of cumulonimbus type clouds (Houze, 2004). These systems can last several hours and can affect human societies in various ways. In general, weather and climate models use simplistic schemes to describe ice hydrometeors' properties. However, MCS are complex cloud systems where the dynamic, radiative and precipitation processes depend on spatiotemporal location in the MCS (Houze, 2004). As a consequence, hydrometeor growth processes in MCS vary in space and time, thereby impacting shape and concentration of ice crystals and finally CWC. As a consequence, differences in the representation of ice properties in models (Li et al., 2007, 2005) lead to significant disagreements in the quantification of ice cloud effects on climate evolution (Intergovernmental Panel on Climate Change Fourth Assessment Report). An accurate estimation of the spatiotemporal CWC distribution is therefore a key parameter for evaluating and improving numerical weather prediction (Stephens et al., 2002). The main purpose of this study is to show ice microphysical properties of MCS observed in three different locations in the tropical atmosphere: West-African continent, Indian Ocean, and Northern Australia. An intercomparison study is performed in order to quantify how similar or different are the ice hydrometeors' properties in these three regions related to radar reflectivity factors and temperatures observed in respective MCS.

  2. Radiative Effect of Clouds on Tropospheric Chemistry in a Global Three-Dimensional Chemical Transport Model

    NASA Technical Reports Server (NTRS)

    Liu, Hongyu; Crawford, James H.; Pierce, Robert B.; Norris, Peter; Platnick, Steven E.; Chen, Gao; Logan, Jennifer A.; Yantosca, Robert M.; Evans, Mat J.; Kittaka, Chieko; hide

    2006-01-01

    Clouds exert an important influence on tropospheric photochemistry through modification of solar radiation that determines photolysis frequencies (J-values). We assess the radiative effect of clouds on photolysis frequencies and key oxidants in the troposphere with a global three-dimensional (3-D) chemical transport model (GEOS-CHEM) driven by assimilated meteorological observations from the Goddard Earth Observing System data assimilation system (GEOS DAS) at the NASA Global Modeling and Assimilation Office (GMAO). We focus on the year of 2001 with the GEOS-3 meteorological observations. Photolysis frequencies are calculated using the Fast-J radiative transfer algorithm. The GEOS-3 global cloud optical depth and cloud fraction are evaluated and generally consistent with the satellite retrieval products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the International Satellite Cloud Climatology Project (ISCCP). Results using the linear assumption, which assumes linear scaling of cloud optical depth with cloud fraction in a grid box, show global mean OH concentrations generally increase by less than 6% because of the radiative effect of clouds. The OH distribution shows much larger changes (with maximum decrease of approx.20% near the surface), reflecting the opposite effects of enhanced (weakened) photochemistry above (below) clouds. The global mean photolysis frequencies for J[O1D] and J[NO2] in the troposphere change by less than 5% because of clouds; global mean O3 concentrations in the troposphere increase by less than 5%. This study shows tropical upper tropospheric O3 to be less sensitive to the radiative effect of clouds than previously reported (approx.5% versus approx.20-30%). These results emphasize that the dominant effect of clouds is to influence the vertical redistribution of the intensity of photochemical activity while global average effects remain modest, again contrasting with previous studies. Differing vertical distributions of clouds may explain part, but not the majority, of these discrepancies between models. Using an approximate random overlap or a maximum-random overlap scheme to take account of the effect of cloud overlap in the vertical reduces the impact of clouds on photochemistry but does not significantly change our results with respect to the modest global average effect.

  3. Study on wet scavenging of atmospheric pollutants in south Brazil

    NASA Astrophysics Data System (ADS)

    Wiegand, Flavio; Pereira, Felipe Norte; Teixeira, Elba Calesso

    2011-09-01

    The present paper presents the study of in-cloud and below-cloud SO 2 and SO 42-scavenging processes by applying numerical models in the Candiota region, located in the state of Rio Grande do Sul, South Brazil. The BRAMS (Brazilian Regional Atmospheric Modeling System) model was applied to simulate the vertical structure of the clouds, and the B.V.2 (Below-Cloud Beheng Version 2) scavenging model was applied to simulate in-cloud and below-cloud scavenging processes of the pollutants SO 2 and SO 42-. Five events in 2004 were selected for this study and were sampled at the Candiota Airport station. The concentrations of SO 2 and SO 42- sampled in the air and the simulated meteorological parameters of rainfall episodes were used as input data in the B.V.2, which simulates raindrop interactions associated with the scavenging process. Results for the Candiota region showed that in-cloud scavenging processes were more significant than below-cloud scavenging processes for two of the five events studied, with a contribution of approximately 90-100% of SO 2 and SO 42- concentrations in rainwater. A few adjustments to the original version of B.V.2 were made to allow simulation of scavenging processes in several types of clouds, not only cumulus humilis and cumulus congestus.

  4. Retrievals of Thick Cloud Optical Depth from the Geoscience Laser Altimeter System (GLAS) by Calibration of Solar Background Signal

    NASA Technical Reports Server (NTRS)

    Yang, Yuekui; Marshak, Alexander; Chiu, J. Christine; Wiscombe, Warren J.; Palm, Stephen P.; Davis, Anthony B.; Spangenberg, Douglas A.; Nguyen, Louis; Spinhirne, James D.; Minnis, Patrick

    2008-01-01

    Laser beams emitted from the Geoscience Laser Altimeter System (GLAS), as well as other space-borne laser instruments, can only penetrate clouds to a limit of a few optical depths. As a result, only optical depths of thinner clouds (< about 3 for GLAS) are retrieved from the reflected lidar signal. This paper presents a comprehensive study of possible retrievals of optical depth of thick clouds using solar background light and treating GLAS as a solar radiometer. To do so we first calibrate the reflected solar radiation received by the photon-counting detectors of GLAS' 532 nm channel, which is the primary channel for atmospheric products. The solar background radiation is regarded as a noise to be subtracted in the retrieval process of the lidar products. However, once calibrated, it becomes a signal that can be used in studying the properties of optically thick clouds. In this paper, three calibration methods are presented: (I) calibration with coincident airborne and GLAS observations; (2) calibration with coincident Geostationary Operational Environmental Satellite (GOES) and GLAS observations of deep convective clouds; (3) calibration from the first principles using optical depth of thin water clouds over ocean retrieved by GLAS active remote sensing. Results from the three methods agree well with each other. Cloud optical depth (COD) is retrieved from the calibrated solar background signal using a one-channel retrieval. Comparison with COD retrieved from GOES during GLAS overpasses shows that the average difference between the two retrievals is 24%. As an example, the COD values retrieved from GLAS solar background are illustrated for a marine stratocumulus cloud field that is too thick to be penetrated by the GLAS laser. Based on this study, optical depths for thick clouds will be provided as a supplementary product to the existing operational GLAS cloud products in future GLAS data releases.

  5. The Incorporation and Initialization of Cloud Water/ice in AN Operational Forecast Model

    NASA Astrophysics Data System (ADS)

    Zhao, Qingyun

    Quantitative precipitation forecasts have been one of the weakest aspects of numerical weather prediction models. Theoretical studies show that the errors in precipitation calculation can arise from three sources: errors in the large-scale forecasts of primary variables, errors in the crude treatment of condensation/evaporation and precipitation processes, and errors in the model initial conditions. A new precipitation parameterization scheme has been developed to investigate the forecast value of improved precipitation physics via the introduction of cloud water and cloud ice into a numerical prediction model. The main feature of this scheme is the explicit calculation of cloud water and cloud ice in both the convective and stratiform precipitation parameterization. This scheme has been applied to the eta model at the National Meteorological Center. Four extensive tests have been performed. The statistical results showed a significant improvement in the model precipitation forecasts. Diagnostic studies suggest that the inclusion of cloud ice is important in transferring water vapor to precipitation and in the enhancement of latent heat release; the latter subsequently affects the vertical motion field significantly. Since three-dimensional cloud data is absent from the analysis/assimilation system for most numerical models, a method has been proposed to incorporate observed precipitation and nephanalysis data into the data assimilation system to obtain the initial cloud field for the eta model. In this scheme, the initial moisture and vertical motion fields are also improved at the same time as cloud initialization. The physical initialization is performed in a dynamical initialization framework that uses the Newtonian dynamical relaxation method to nudge the model's wind and mass fields toward analyses during a 12-hour data assimilation period. Results from a case study showed that a realistic cloud field was produced by this method at the end of the data assimilation period. Precipitation forecasts have been significantly improved as a result of the improved initial cloud, moisture and vertical motion fields.

  6. Understanding the Performance and Potential of Cloud Computing for Scientific Applications

    DOE PAGES

    Sadooghi, Iman; Martin, Jesus Hernandez; Li, Tonglin; ...

    2015-02-19

    In this paper, commercial clouds bring a great opportunity to the scientific computing area. Scientific applications usually require significant resources, however not all scientists have access to sufficient high-end computing systems, may of which can be found in the Top500 list. Cloud Computing has gained the attention of scientists as a competitive resource to run HPC applications at a potentially lower cost. But as a different infrastructure, it is unclear whether clouds are capable of running scientific applications with a reasonable performance per money spent. This work studies the performance of public clouds and places this performance in context tomore » price. We evaluate the raw performance of different services of AWS cloud in terms of the basic resources, such as compute, memory, network and I/O. We also evaluate the performance of the scientific applications running in the cloud. This paper aims to assess the ability of the cloud to perform well, as well as to evaluate the cost of the cloud running scientific applications. We developed a full set of metrics and conducted a comprehensive performance evlauation over the Amazon cloud. We evaluated EC2, S3, EBS and DynamoDB among the many Amazon AWS services. We evaluated the memory sub-system performance with CacheBench, the network performance with iperf, processor and network performance with the HPL benchmark application, and shared storage with NFS and PVFS in addition to S3. We also evaluated a real scientific computing application through the Swift parallel scripting system at scale. Armed with both detailed benchmarks to gauge expected performance and a detailed monetary cost analysis, we expect this paper will be a recipe cookbook for scientists to help them decide where to deploy and run their scientific applications between public clouds, private clouds, or hybrid clouds.« less

  7. Understanding the Performance and Potential of Cloud Computing for Scientific Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadooghi, Iman; Martin, Jesus Hernandez; Li, Tonglin

    In this paper, commercial clouds bring a great opportunity to the scientific computing area. Scientific applications usually require significant resources, however not all scientists have access to sufficient high-end computing systems, may of which can be found in the Top500 list. Cloud Computing has gained the attention of scientists as a competitive resource to run HPC applications at a potentially lower cost. But as a different infrastructure, it is unclear whether clouds are capable of running scientific applications with a reasonable performance per money spent. This work studies the performance of public clouds and places this performance in context tomore » price. We evaluate the raw performance of different services of AWS cloud in terms of the basic resources, such as compute, memory, network and I/O. We also evaluate the performance of the scientific applications running in the cloud. This paper aims to assess the ability of the cloud to perform well, as well as to evaluate the cost of the cloud running scientific applications. We developed a full set of metrics and conducted a comprehensive performance evlauation over the Amazon cloud. We evaluated EC2, S3, EBS and DynamoDB among the many Amazon AWS services. We evaluated the memory sub-system performance with CacheBench, the network performance with iperf, processor and network performance with the HPL benchmark application, and shared storage with NFS and PVFS in addition to S3. We also evaluated a real scientific computing application through the Swift parallel scripting system at scale. Armed with both detailed benchmarks to gauge expected performance and a detailed monetary cost analysis, we expect this paper will be a recipe cookbook for scientists to help them decide where to deploy and run their scientific applications between public clouds, private clouds, or hybrid clouds.« less

  8. Macrophysical and optical properties of midlatitude high-altitude clouds from 4 ground-based lidars and collocated CALIOP observations

    NASA Astrophysics Data System (ADS)

    Dupont, J. C.; Haeffelin, M.; Morille, Y.; Noel, V.; Keckhut, P.; Comstock, J.; Winker, D.; Chervet, P.; Roblin, A.

    2009-04-01

    Cirrus clouds not only play a major role in the energy budget of the Earth-Atmosphere system, but are also important in the hydrological cycle [Stephens et al., 1990; Webster, 1994]. According to satellite passive remote sensing, high-altitude clouds cover as much as 40% of the earth's surface on average (Liou 1986; Stubenrauch et al., 2006) and can reach 70% of cloud cover over the Tropics (Wang et al., 1996; Nazaryan et al., 2008). Hence, given their very large cloud cover, they have a major role in the climate system (Lynch et al. 2001). Cirrus clouds can be classified into three distinct families according to their optical thickness, namely subvisible clouds (OD<0.03), semi-transparent clouds (0.03

  9. The Clouds distributed operating system - Functional description, implementation details and related work

    NASA Technical Reports Server (NTRS)

    Dasgupta, Partha; Leblanc, Richard J., Jr.; Appelbe, William F.

    1988-01-01

    Clouds is an operating system in a novel class of distributed operating systems providing the integration, reliability, and structure that makes a distributed system usable. Clouds is designed to run on a set of general purpose computers that are connected via a medium-of-high speed local area network. The system structuring paradigm chosen for the Clouds operating system, after substantial research, is an object/thread model. All instances of services, programs and data in Clouds are encapsulated in objects. The concept of persistent objects does away with the need for file systems, and replaces it with a more powerful concept, namely the object system. The facilities in Clouds include integration of resources through location transparency; support for various types of atomic operations, including conventional transactions; advanced support for achieving fault tolerance; and provisions for dynamic reconfiguration.

  10. The Dependence of Cloud-SST Feedback on Circulation Regime and Timescale

    NASA Astrophysics Data System (ADS)

    Middlemas, E.; Clement, A. C.; Medeiros, B.

    2017-12-01

    Studies suggest cloud radiative feedback amplifies internal variability of Pacific sea surface temperature (SST) on interannual-and-longer timescales, though only a few modeling studies have tested the quantitative importance of this feedback (Bellomo et al. 2014b, Brown et al. 2016, Radel et al. 2016 Burgman et al. 2017). We prescribe clouds from a previous control run in the radiation module in Community Atmospheric Model (CAM5-slab), a method called "cloud-locking". By comparing this run to a control run, in which cloud radiative forcing can feedback on the climate system, we isolate the effect of cloud radiative forcing on SST variability. Cloud-locking prevents clouds from radiatively interacting with atmospheric circulation, water vapor, and SST, while maintaining a similar mean state to the control. On all timescales, cloud radiative forcing's influence on SST variance is modulated by the circulation regime. Cloud radiative forcing amplifies SST variance in subsiding regimes and dampens SST variance in convecting regimes. In this particular model, a tug of war between latent heat flux and cloud radiative forcing determines the variance of SST, and the winner depends on the timescale. On decadal-and-longer timescales, cloud radiative forcing plays a relatively larger role than on interannual-and-shorter timescales, while latent heat flux plays a smaller role. On longer timescales, the absence of cloud radiative feedback changes SST variance in a zonally asymmetric pattern in the Pacific Ocean that resembles an IPO-like pattern. We also present an analysis of cloud feedback's role on Pacific SST variability among preindustrial control CMIP5 models to test the model robustness of our results. Our results suggest that circulation plays a crucial role in cloud-SST feedbacks across the globe and cloud radiative feedbacks cannot be ignored when studying SST variability on decadal-and-longer timescales.

  11. Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles

    NASA Astrophysics Data System (ADS)

    Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.

    2010-01-01

    A cloud frequency of occurrence matrix is generated using merged cloud vertical profiles derived from the satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and cloud profiling radar. The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical profiles can be related by a cloud overlap matrix when the correlation length of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches random overlap with increasing distance separating cloud layers and that the probability of deviating from random overlap decreases exponentially with distance. One month of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat data (July 2006) support these assumptions, although the correlation length sometimes increases with separation distance when the cloud top height is large. The data also show that the correlation length depends on cloud top hight and the maximum occurs when the cloud top height is 8 to 10 km. The cloud correlation length is equivalent to the decorrelation distance introduced by Hogan and Illingworth (2000) when cloud fractions of both layers in a two-cloud layer system are the same. The simple relationships derived in this study can be used to estimate the top-of-atmosphere irradiance difference caused by cloud fraction, uppermost cloud top, and cloud thickness vertical profile differences.

  12. Determination of Ice Water Path in Ice-over-Water Cloud Systems Using Combined MODIS and AMSR-E Measurements

    NASA Technical Reports Server (NTRS)

    Huang, Jianping; Minnis, Patrick; Lin, Bing; Yi, Yuhong; Fan, T.-F.; Sun-Mack, Sunny; Ayers, J. K.

    2006-01-01

    To provide more accurate ice cloud properties for evaluating climate models, the updated version of multi-layered cloud retrieval system (MCRS) is used to retrieve ice water path (IWP) in ice-over-water cloud systems over global ocean using combined instrument data from the Aqua satellite. The liquid water path (LWP) of lower layer water clouds is estimated from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) measurements. With the lower layer LWP known, the properties of the upper-level ice clouds are then derived from Moderate Resolution Imaging Spectroradiometer measurements by matching simulated radiances from a two-cloud layer radiative transfer model. Comparisons with single-layer cirrus systems and surface-based radar retrievals show that the MCRS can significantly improve the accuracy and reduce the over-estimation of optical depth and ice water path retrievals for ice over-water cloud systems. During the period from December 2004 through February 2005, the mean daytime ice cloud optical depth and IWP for overlapped ice-over-water clouds over ocean from Aqua are 7.6 and 146.4 gm(sup -2), respectively, significantly less than the initial single layer retrievals of 17.3 and 322.3 gm(sup -2). The mean IWP for actual single-layer clouds was 128.2 gm(sup -2).

  13. Aerosol microphysical and radiative effects on continental cloud ensembles

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Vogel, Jonathan M.; Lin, Yun; Pan, Bowen; Hu, Jiaxi; Liu, Yangang; Dong, Xiquan; Jiang, Jonathan H.; Yung, Yuk L.; Zhang, Renyi

    2018-02-01

    Aerosol-cloud-radiation interactions represent one of the largest uncertainties in the current climate assessment. Much of the complexity arises from the non-monotonic responses of clouds, precipitation and radiative fluxes to aerosol perturbations under various meteorological conditions. In this study, an aerosol-aware WRF model is used to investigate the microphysical and radiative effects of aerosols in three weather systems during the March 2000 Cloud Intensive Observational Period campaign at the US Southern Great Plains. Three simulated cloud ensembles include a low-pressure deep convective cloud system, a collection of less-precipitating stratus and shallow cumulus, and a cold frontal passage. The WRF simulations are evaluated by several ground-based measurements. The microphysical properties of cloud hydrometeors, such as their mass and number concentrations, generally show monotonic trends as a function of cloud condensation nuclei concentrations. Aerosol radiative effects do not influence the trends of cloud microphysics, except for the stratus and shallow cumulus cases where aerosol semi-direct effects are identified. The precipitation changes by aerosols vary with the cloud types and their evolving stages, with a prominent aerosol invigoration effect and associated enhanced precipitation from the convective sources. The simulated aerosol direct effect suppresses precipitation in all three cases but does not overturn the aerosol indirect effect. Cloud fraction exhibits much smaller sensitivity (typically less than 2%) to aerosol perturbations, and the responses vary with aerosol concentrations and cloud regimes. The surface shortwave radiation shows a monotonic decrease by increasing aerosols, while the magnitude of the decrease depends on the cloud type.

  14. Contrasting cloud composition between coupled and decoupled marine boundary layer clouds

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Mora Ramirez, Marco; Dadashazar, Hossein; MacDonald, Alex B.; Crosbie, Ewan; Bates, Kelvin H.; Coggon, Matthew M.; Craven, Jill S.; Lynch, Peng; Campbell, James R.; Azadi Aghdam, Mojtaba; Woods, Roy K.; Jonsson, Haflidi; Flagan, Richard C.; Seinfeld, John H.; Sorooshian, Armin

    2016-10-01

    Marine stratocumulus clouds often become decoupled from the vertical layer immediately above the ocean surface. This study contrasts cloud chemical composition between coupled and decoupled marine stratocumulus clouds for dissolved nonwater substances. Cloud water and droplet residual particle composition were measured in clouds off the California coast during three airborne experiments in July-August of separate years (Eastern Pacific Emitted Aerosol Cloud Experiment 2011, Nucleation in California Experiment 2013, and Biological and Oceanic Atmospheric Study 2015). Decoupled clouds exhibited significantly lower air-equivalent mass concentrations in both cloud water and droplet residual particles, consistent with reduced cloud droplet number concentration and subcloud aerosol (Dp > 100 nm) number concentration, owing to detachment from surface sources. Nonrefractory submicrometer aerosol measurements show that coupled clouds exhibit higher sulfate mass fractions in droplet residual particles, owing to more abundant precursor emissions from the ocean and ships. Consequently, decoupled clouds exhibited higher mass fractions of organics, nitrate, and ammonium in droplet residual particles, owing to effects of long-range transport from more distant sources. Sodium and chloride dominated in terms of air-equivalent concentration in cloud water for coupled clouds, and their mass fractions and concentrations exceeded those in decoupled clouds. Conversely, with the exception of sea-salt constituents (e.g., Cl, Na, Mg, and K), cloud water mass fractions of all species examined were higher in decoupled clouds relative to coupled clouds. Satellite and Navy Aerosol Analysis and Prediction System-based reanalysis data are compared with each other, and the airborne data to conclude that limitations in resolving boundary layer processes in a global model prevent it from accurately quantifying observed differences between coupled and decoupled cloud composition.

  15. A Search for Binary Systems in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Brown, Cody; Nidever, David L.

    2018-06-01

    The Large and Small Magellanic Clouds are two of the closest dwarf galaxies to our Milky Way and offer an excellent laboratory to study the evolution of galaxies. The close proximity of these galaxies provide a chance to study individual stars in detail and learn about stellar properties and galactic formation of the Clouds. The Apache Point Observatory Galactic Evolution Experiment (APOGEE), part of the SDSS-IV, has gathered high quality, multi-epoch, spectroscopic data on a multitude of stars in the Magellanic Clouds. The time-series data can be used to detect and characterize binary stars and make the first spectroscopic measurements of the field binary fraction of the Clouds. I will present preliminary results from this project.

  16. Morphology and ionization of the interstellar cloud surrounding the solar system.

    PubMed

    Frisch, P C

    1994-09-02

    The first encounter between the sun and the surrounding interstellar cloud appears to have occurred 2000 to 8000 years ago. The sun and cloud space motions are nearly perpendicular, an indication that the sun is skimming the cloud surface. The electron density derived for the surrounding cloud from the carbon component of the anomalous cosmic ray population in the solar system and from the interstellar ratio of Mg(+) to Mg degrees toward Sirius support an equilibrium model for cloud ionization (an electron density of 0.22 to 0.44 per cubic centimeter). The upwind magnetic field direction is nearly parallel to the cloud surface. The relative sun-cloud motion indicates that the solar system has a bow shock.

  17. Validity of association rules extracted by healthcare-data-mining.

    PubMed

    Takeuchi, Hiroshi; Kodama, Naoki

    2014-01-01

    A personal healthcare system used with cloud computing has been developed. It enables a daily time-series of personal health and lifestyle data to be stored in the cloud through mobile devices. The cloud automatically extracts personally useful information, such as rules and patterns concerning the user's lifestyle and health condition embedded in their personal big data, by using healthcare-data-mining. This study has verified that the extracted rules on the basis of a daily time-series data stored during a half- year by volunteer users of this system are valid.

  18. Analysis of cloud-based solutions on EHRs systems in different scenarios.

    PubMed

    Fernández-Cardeñosa, Gonzalo; de la Torre-Díez, Isabel; López-Coronado, Miguel; Rodrigues, Joel J P C

    2012-12-01

    Nowadays with the growing of the wireless connections people can access all the resources hosted in the Cloud almost everywhere. In this context, organisms can take advantage of this fact, in terms of e-Health, deploying Cloud-based solutions on e-Health services. In this paper two Cloud-based solutions for different scenarios of Electronic Health Records (EHRs) management system are proposed. We have researched articles published between the years 2005 and 2011 about the implementation of e-Health services based on the Cloud in Medline. In order to analyze the best scenario for the deployment of Cloud Computing two solutions for a large Hospital and a network of Primary Care Health centers have been studied. Economic estimation of the cost of the implementation for both scenarios has been done via the Amazon calculator tool. As a result of this analysis two solutions are suggested depending on the scenario: To deploy a Cloud solution for a large Hospital a typical Cloud solution in which are hired just the needed services has been assumed. On the other hand to work with several Primary Care Centers it's suggested the implementation of a network, which interconnects these centers with just one Cloud environment. Finally it's considered the fact of deploying a hybrid solution: in which EHRs with images will be hosted in the Hospital or Primary Care Centers and the rest of them will be migrated to the Cloud.

  19. Clouds Aerosols Internal Affaires: Increasing Cloud Fraction and Enhancing the Convection

    NASA Technical Reports Server (NTRS)

    Koren, Ilan; Kaufman, Yoram; Remer, Lorraine; Rosenfeld, Danny; Rudich, Yinon

    2004-01-01

    Clouds developing in a polluted environment have more numerous, smaller cloud droplets that can increase the cloud lifetime and liquid water content. Such changes in the cloud droplet properties may suppress low precipitation allowing development of a stronger convection and higher freezing level. Delaying the washout of the cloud water (and aerosol), and the stronger convection will result in higher clouds with longer life time and larger anvils. We show these effects by using large statistics of the new, 1km resolution data from MODIS on the Terra satellite. We isolate the aerosol effects from meteorology by regression and showing that aerosol microphysical effects increases cloud fraction by average of 30 presents for all cloud types and increases convective cloud top pressure by average of 35mb. We analyze the aerosol cloud interaction separately for high pressure trade wind cloud systems and separately for deep convective cloud systems. The resultant aerosol radiative effect on climate for the high pressure cloud system is: -10 to -13 W/sq m at the top of the atmosphere (TOA) and -11 to -14 W/sq m at the surface. For deeper convective clouds the forcing is: -4 to -5 W/sq m at the TOA and -6 to -7 W/sq m at the surface.

  20. Precipitation Processes developed during ARM (1997), TOGA COARE(1992), GATE(1 974), SCSMEX(1998) and KWAJEX(1999): Consistent 2D and 3D Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Shie, C.-H.; Simpson, J.; Starr, D.; Johnson, D.; Sud, Y.

    2003-01-01

    Real clouds and clouds systems are inherently three dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D). A few 3D CRMs have been used to study the response of clouds to large-scale forcing. In these 3D simulations, the model domain was small, and the integration time was 6 hours. Only recently have 3D experiments been performed for multi-day periods for tropical cloud system with large horizontal domains at the National Center for Atmospheric Research. The results indicate that surface precipitation and latent heating profiles are very similar between the 2D and 3D simulations of these same cases. The reason for the strong similarity between the 2D and 3D CRM simulations is that the observed large-scale advective tendencies of potential temperature, water vapor mixing ratio, and horizontal momentum were used as the main forcing in both the 2D and 3D models. Interestingly, the 2D and 3D versions of the CRM used in CSU and U.K. Met Office showed significant differences in the rainfall and cloud statistics for three ARM cases. The major objectives of this project are to calculate and axamine: (1)the surface energy and water budgets, (2) the precipitation processes in the convective and stratiform regions, (3) the cloud upward and downward mass fluxes in the convective and stratiform regions; (4) cloud characteristics such as size, updraft intensity and lifetime, and (5) the entrainment and detrainment rates associated with clouds and cloud systems that developed in TOGA COARE, GATE, SCSMEX, ARM and KWAJEX. Of special note is that the analyzed (model generated) data sets are all produced by the same current version of the GCE model, i.e. consistent model physics and configurations. Trajectory analyse and inert tracer calculation will be conducted to identify the differences and similarities in the organization of convection between simulated 2D and 3D cloud systems.

  1. A cloud-based system for measuring radiation treatment plan similarity

    NASA Astrophysics Data System (ADS)

    Andrea, Jennifer

    PURPOSE: Radiation therapy is used to treat cancer using carefully designed plans that maximize the radiation dose delivered to the target and minimize damage to healthy tissue, with the dose administered over multiple occasions. Creating treatment plans is a laborious process and presents an obstacle to more frequent replanning, which remains an unsolved problem. However, in between new plans being created, the patient's anatomy can change due to multiple factors including reduction in tumor size and loss of weight, which results in poorer patient outcomes. Cloud computing is a newer technology that is slowly being used for medical applications with promising results. The objective of this work was to design and build a system that could analyze a database of previously created treatment plans, which are stored with their associated anatomical information in studies, to find the one with the most similar anatomy to a new patient. The analyses would be performed in parallel on the cloud to decrease the computation time of finding this plan. METHODS: The system used SlicerRT, a radiation therapy toolkit for the open-source platform 3D Slicer, for its tools to perform the similarity analysis algorithm. Amazon Web Services was used for the cloud instances on which the analyses were performed, as well as for storage of the radiation therapy studies and messaging between the instances and a master local computer. A module was built in SlicerRT to provide the user with an interface to direct the system on the cloud, as well as to perform other related tasks. RESULTS: The cloud-based system out-performed previous methods of conducting the similarity analyses in terms of time, as it analyzed 100 studies in approximately 13 minutes, and produced the same similarity values as those methods. It also scaled up to larger numbers of studies to analyze in the database with a small increase in computation time of just over 2 minutes. CONCLUSION: This system successfully analyzes a large database of radiation therapy studies and finds the one that is most similar to a new patient, which represents a potential step forward in achieving feasible adaptive radiation therapy replanning.

  2. The role of mountain precipitation as a drought buffer in Puerto Rico: Assessing natural systems' resilience to change

    NASA Astrophysics Data System (ADS)

    Scholl, M. A.; Clark, K. E.; Van Beusekom, A.; Shanley, J. B.; Torres-Sanchez, A.; Murphy, S. F.; Gonzalez, G.

    2017-12-01

    Like many island and coastal areas, the Luquillo Mountains of Puerto Rico receive orographic precipitation (rain and cloud water), maintaining headwater streamflow and allowing diverse forest ecosystems to thrive. Although rainfall from regional-scale convective systems is greater in volume, multiple lines of evidence (stable isotope tracers; precipitation amount, frequency, and intensity; cloud immersion; regional cloud dynamics; weather analysis) show that trade-wind orographic precipitation contributes significantly to streamflow, soil water, and shallow groundwater. Ceilometer data and time-lapse photography of cloud-immersed conditions at the mountain indicated a seasonally invariant, sustained overnight regime of cloud water precipitation, in addition to the abundant rainfall in the mountains. Rising ocean temperatures and a warming tropical climate lead to questions about persistence of the trade-wind associated orographic precipitation and the resilience of similar mountain ecosystems to change. Projections for Caribbean climate change include amplification of trade winds; less frequent, more intense large convective systems; and a warming ocean. These may have opposing effects on mountain precipitation, increasing uncertainty about processes that mitigate drought. Field studies provide insights regarding these questions. Ceilometer and satellite observations showed cloud base is higher over the mountains than in the surrounding Caribbean region; with the trade-wind inversion cap, further rise in cloud base may produce shallower clouds and reduced precipitation. We analyzed the February-October 2015 drought, characterized by strong El Niño conditions, an absence of tropical storm systems, and reduced convection in easterly waves. Combined δ2H, δ18O and d-excess signatures of streamflow indicated precipitation was derived from shallow convective systems, trade-wind showers and cloud water. During severe drought on the island, streamflow-sustaining rainfall at the mountain station at 640 m persisted, albeit with 19% lower frequency and 52% fewer large (>10 mm) rain events than the 20-year average. Clearly, resilience of the mountain forest ecosystem and of streamflow to drought periods depends on orographic precipitation.

  3. Boundary Conditions for the Paleoenvironment: Chemical and Physical Processes in Dense Interstellar Clouds: Summary of Research

    NASA Technical Reports Server (NTRS)

    Irvine, William M.

    1999-01-01

    The basic theme of this program was the study of molecular complexity and evolution for the biogenic elements and compounds in interstellar clouds and in primitive solar system objects. Research included the detection and study of new interstellar and cometary molecules and investigation of reaction pathways for astrochemistry from a comparison of theory and observed molecular abundances. The latter includes studies of cold, dark clouds in which ion-molecule chemistry should predominate, searches for the effects of interchange of material between the gas and solid phases in interstellar clouds, unbiased spectral surveys of particular sources, and systematic investigation of the interlinked chemistry and physics of dense interstellar clouds. In addition, the study of comets has allowed a comparison between the chemistry of such minimally thermally processed objects and that of interstellar clouds, shedding light on the evolution of the biogenic elements during the process of solar system formation. One PhD dissertation on this research was completed by a graduate student at the University of Massachusetts. An additional 4 graduate students at the University of Massachusetts and 5 graduate students from other institutions participated in research supported by this grant, with 6 of these thus far receiving PhD degrees from the University of Massachusetts or their home institutions. Four postdoctoral research associates at the University of Massachusetts also participated in research supported by this grant, receiving valuable training.

  4. Secure and robust cloud computing for high-throughput forensic microsatellite sequence analysis and databasing.

    PubMed

    Bailey, Sarah F; Scheible, Melissa K; Williams, Christopher; Silva, Deborah S B S; Hoggan, Marina; Eichman, Christopher; Faith, Seth A

    2017-11-01

    Next-generation Sequencing (NGS) is a rapidly evolving technology with demonstrated benefits for forensic genetic applications, and the strategies to analyze and manage the massive NGS datasets are currently in development. Here, the computing, data storage, connectivity, and security resources of the Cloud were evaluated as a model for forensic laboratory systems that produce NGS data. A complete front-to-end Cloud system was developed to upload, process, and interpret raw NGS data using a web browser dashboard. The system was extensible, demonstrating analysis capabilities of autosomal and Y-STRs from a variety of NGS instrumentation (Illumina MiniSeq and MiSeq, and Oxford Nanopore MinION). NGS data for STRs were concordant with standard reference materials previously characterized with capillary electrophoresis and Sanger sequencing. The computing power of the Cloud was implemented with on-demand auto-scaling to allow multiple file analysis in tandem. The system was designed to store resulting data in a relational database, amenable to downstream sample interpretations and databasing applications following the most recent guidelines in nomenclature for sequenced alleles. Lastly, a multi-layered Cloud security architecture was tested and showed that industry standards for securing data and computing resources were readily applied to the NGS system without disadvantageous effects for bioinformatic analysis, connectivity or data storage/retrieval. The results of this study demonstrate the feasibility of using Cloud-based systems for secured NGS data analysis, storage, databasing, and multi-user distributed connectivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Context-aware distributed cloud computing using CloudScheduler

    NASA Astrophysics Data System (ADS)

    Seuster, R.; Leavett-Brown, CR; Casteels, K.; Driemel, C.; Paterson, M.; Ring, D.; Sobie, RJ; Taylor, RP; Weldon, J.

    2017-10-01

    The distributed cloud using the CloudScheduler VM provisioning service is one of the longest running systems for HEP workloads. It has run millions of jobs for ATLAS and Belle II over the past few years using private and commercial clouds around the world. Our goal is to scale the distributed cloud to the 10,000-core level, with the ability to run any type of application (low I/O, high I/O and high memory) on any cloud. To achieve this goal, we have been implementing changes that utilize context-aware computing designs that are currently employed in the mobile communication industry. Context-awareness makes use of real-time and archived data to respond to user or system requirements. In our distributed cloud, we have many opportunistic clouds with no local HEP services, software or storage repositories. A context-aware design significantly improves the reliability and performance of our system by locating the nearest location of the required services. We describe how we are collecting and managing contextual information from our workload management systems, the clouds, the virtual machines and our services. This information is used not only to monitor the system but also to carry out automated corrective actions. We are incrementally adding new alerting and response services to our distributed cloud. This will enable us to scale the number of clouds and virtual machines. Further, a context-aware design will enable us to run analysis or high I/O application on opportunistic clouds. We envisage an open-source HTTP data federation (for example, the DynaFed system at CERN) as a service that would provide us access to existing storage elements used by the HEP experiments.

  6. Cloud structure evolution of heavy rain events from the East-West Pacific Ocean: a combined global observation analysis

    NASA Astrophysics Data System (ADS)

    Sekaranom, A. B.; Nurjani, E.; Pujiastuti, I.

    2018-04-01

    Heavy rain events are often associated with flood hazards as one of the most devastating events across the globe. It is therefore essential to identify the evolution of heavy rainfall cloud structures, primarily from global satellite observation, as a tool to provide better disaster early warning systems. To identify the mechanism of heavy rainfall systems and its relationship with cloud development, especially over The Pacific Ocean, we aim to study the westward evolution of the convective systems over this area. Several datasets from Tropical Rainfall Measuring Mission (TRMM), CloudSat GEOPROF product, and ECMWF-reanalysis (ERA) interim were utilized to characterize the evolution. Geolocation and orbital time-lag analysis of the three different datasets for more than 8 years (2006-2014) could provide information related to the evolution of cloud structures associated with heavy rain events. In the first step, a heavy rainfall database was generated from TRMM. The CloudSat coordinate and time position were then matched with TRMM coordinate and time position. All of the processes were programatically conducted in fortran programming language. The result shows a transition between East and West Pacific ocean for TMI data.

  7. Developing cloud applications using the e-Science Central platform.

    PubMed

    Hiden, Hugo; Woodman, Simon; Watson, Paul; Cala, Jacek

    2013-01-28

    This paper describes the e-Science Central (e-SC) cloud data processing system and its application to a number of e-Science projects. e-SC provides both software as a service (SaaS) and platform as a service for scientific data management, analysis and collaboration. It is a portable system and can be deployed on both private (e.g. Eucalyptus) and public clouds (Amazon AWS and Microsoft Windows Azure). The SaaS application allows scientists to upload data, edit and run workflows and share results in the cloud, using only a Web browser. It is underpinned by a scalable cloud platform consisting of a set of components designed to support the needs of scientists. The platform is exposed to developers so that they can easily upload their own analysis services into the system and make these available to other users. A representational state transfer-based application programming interface (API) is also provided so that external applications can leverage the platform's functionality, making it easier to build scalable, secure cloud-based applications. This paper describes the design of e-SC, its API and its use in three different case studies: spectral data visualization, medical data capture and analysis, and chemical property prediction.

  8. Developing cloud applications using the e-Science Central platform

    PubMed Central

    Hiden, Hugo; Woodman, Simon; Watson, Paul; Cala, Jacek

    2013-01-01

    This paper describes the e-Science Central (e-SC) cloud data processing system and its application to a number of e-Science projects. e-SC provides both software as a service (SaaS) and platform as a service for scientific data management, analysis and collaboration. It is a portable system and can be deployed on both private (e.g. Eucalyptus) and public clouds (Amazon AWS and Microsoft Windows Azure). The SaaS application allows scientists to upload data, edit and run workflows and share results in the cloud, using only a Web browser. It is underpinned by a scalable cloud platform consisting of a set of components designed to support the needs of scientists. The platform is exposed to developers so that they can easily upload their own analysis services into the system and make these available to other users. A representational state transfer-based application programming interface (API) is also provided so that external applications can leverage the platform's functionality, making it easier to build scalable, secure cloud-based applications. This paper describes the design of e-SC, its API and its use in three different case studies: spectral data visualization, medical data capture and analysis, and chemical property prediction. PMID:23230161

  9. Large Eddy Simulations of Continental Boundary Layer Clouds Observed during the RACORO Field Campaign

    NASA Astrophysics Data System (ADS)

    Endo, S.; Fridlind, A. M.; Lin, W.; Vogelmann, A. M.; Toto, T.; Liu, Y.

    2013-12-01

    Three cases of boundary layer clouds are analyzed in the FAst-physics System TEstbed and Research (FASTER) project, based on continental boundary-layer-cloud observations during the RACORO Campaign [Routine Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF) Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations] at the ARM Climate Research Facility's Southern Great Plains (SGP) site. The three 60-hour case study periods are selected to capture the temporal evolution of cumulus, stratiform, and drizzling boundary-layer cloud systems under a range of conditions, intentionally including those that are relatively more mixed or transitional in nature versus being of a purely canonical type. Multi-modal and temporally varying aerosol number size distribution profiles are derived from aircraft observations. Large eddy simulations (LESs) are performed for the three case study periods using the GISS Distributed Hydrodynamic Aerosol and Radiative Modeling Application (DHARMA) model and the WRF-FASTER model, which is the Weather Research and Forecasting (WRF) model implemented with forcing ingestion and other functions to constitute a flexible LES. The two LES models commonly capture the significant transitions of cloud-topped boundary layers in the three periods: diurnal evolution of cumulus layers repeating over multiple days, nighttime evolution/daytime diminution of thick stratus, and daytime breakup of stratus and stratocumulus clouds. Simulated transitions of thermodynamic structures of the cloud-topped boundary layers are examined by balloon-borne soundings and ground-based remote sensors. Aircraft observations are then used to statistically evaluate the predicted cloud droplet number size distributions under varying aerosol and cloud conditions. An ensemble approach is used to refine the model configuration for the combined use of observations with parallel LES and single-column model simulations. See Lin et al. poster for single-column model investigation.

  10. Autonomous, Full-Time Cloud Profiling at Arm Sites with Micro Pulse Lidar

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.; Campbell, James R.; Hlavka, Dennis L.; Scott, V. Stanley; Flynn, Connor J.

    2000-01-01

    Since the early 1990's technology advances permit ground based lidar to operate full time and profile all significant aerosol and cloud structure of the atmosphere up to the limit of signal attenuation. These systems are known as Micro Pulse Lidars (MPL), as referenced by Spinhirne (1993), and were first in operation at DOE Atmospheric Radiation Measurement (ARM) sites. The objective of the ARM program is to improve the predictability of climate change, particularly as it relates to cloud-climate feedback. The fundamental application of the MPL systems is towards the detection of all significant hydrometeor layers, to the limit of signal attenuation. The heating and cooling of the atmosphere are effected by the distribution and characteristics of clouds and aerosol concentration. Aerosol and cloud retrievals in several important areas can only be adequately obtained with active remote sensing by lidar. For cloud cover, the height and related emissivity of thin clouds and the distribution of base height for all clouds are basic parameters for the surface radiation budget, and lidar is essetial for accurate measurements. The ARM MPL observing network represents the first long-term, global lidar study known within the community. MPL systems are now operational at four ARM sites. A six year data set has been obtained at the original Oklahoma site, and there are several years of observations at tropical and artic sites. Observational results include cloud base height distributions and aerosol profiles. These expanding data sets offer a significant new resource for cloud, aerosol and atmospheric radiation analysis. The nature of the data sets, data processing algorithms, derived parameters and application results are presented.

  11. Coupled Aerosol-Cloud Systems over Northern Vietnam during 7-SEAS BASELInE: A Radar and Modeling Perspective

    NASA Technical Reports Server (NTRS)

    Loftus, Adrian M.; Tsay, Si-Chee; Pantina, Peter; Nguyen, Cuong; Gabriel, Philip M.; Nguyen, X. A.; Sayer, Andrew M.; Tao, Wei-Kuo; Matsui, Toshi

    2016-01-01

    The 2013 7-SEASBASELInE campaign over northern Southeast Asia (SEA) provided, for the first time ever, comprehensive ground-based W-band radar measurements of the low-level stratocumulus (Sc) systems that often exist during the spring over northern Vietnam in the presence of biomass-burning aerosols. Although spatially limited, ground-based remote sensing observations are generally free of the surface contamination and signal attenuation effects that often hinder space-borne measurements of these low-level cloud systems. Such observations permit detailed measurements of structures and lifecycles of these clouds as part of a broader effort to study potential impacts of these coupled aerosol-cloud systems on local and regional weather and air quality. Introductory analyses of the W-band radar data show these Sc systems generally follow a diurnal cycle, with peak occurrences during the nighttime and early morning hours, often accompanied by light precipitation. Preliminary results from idealized simulations of Sc development over land based on the observations reveal the familiar response of increased numbers and smaller sizes of cloud droplets, along with suppressed drizzle formation, as aerosol concentrations increase. Slight reductions in simulated W-band reflectivity values also are seen with increasing aerosol concentrations and result primarily from decreased droplet sizes. As precipitation can play a large role in removing aerosol from the atmosphere, and thereby improving air quality locally, quantifying feedbacks between aerosols and cloud systems over this region are essential, particularly given the negative impacts of biomass burning on human health in SEA. Such an endeavor should involve improved modeling capabilities along with comprehensive measurements of time-dependent aerosol and cloud profiles.

  12. Impacts and Opportunities for Engineering in the Era of Cloud Computing Systems

    DTIC Science & Technology

    2012-01-31

    2012 UNCLASSIFIED 1 of 58 Impacts and Opportunities for Engineering in the Era of Cloud Computing Systems A Report to the U.S. Department...2.1.7 Engineering of Computational Behavior .............................................................18 2.2 How the Cloud Will Impact Systems...58 Executive Summary This report discusses the impact of cloud computing and the broader revolution in computing on systems, on the disciplines of

  13. Influence of Meteorological Regimes on Cloud Microphysics Over Ross Island, Antarctica

    NASA Astrophysics Data System (ADS)

    Glennon, C.; Wang, S. H.; Scott, R. C.; Bromwich, D. H.; Lubin, D.

    2017-12-01

    The Antarctic provides a sharp contrast in cloud microphysics from the high Arctic, due to orographic lifting and resulting strong vertical motions induced by mountain ranges and other varying terrain on several spatial scales. The Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment (AWARE) deployed advanced cloud remote sensing equipment to Ross Island, Antarctica, from December 2015 until January 2016. This equipment included scanning and zenith radars operating in the Ka and X bands, a high spectral resolution lidar (HSRL), and a polarized micropulse lidar (MPL). A major AWARE objective is to provide state-of-the-art data for improving cloud microphysical parameterizations in climate models. To further this objective we have organized and classified the local Ross Island meteorology into distinct regimes using k-means clustering on ERA-Interim reanalysis data. We identify synoptic categories producing unique regimes of cloud cover and cloud microphysical properties over Ross Island. Each day of observations can then be associated with a specific meteorological regime, thus assisting modelers with identifying case studies. High-resolution (1 km) weather forecasts from the Antarctic Mesoscale Prediction System (AMPS) are sorted into these categories. AMPS-simulated anomalies of cloud fraction, near-surface air temperature, and vertical velocity at 500-mb are composited and compared with ground-based radar and lidar-derived cloud properties to identify mesoscale meteorological processes driving Antarctic cloud formation. Synoptic lows over the Ross and Amundsen Seas drive anomalously warm conditions at Ross Island by injecting marine air masses inland over the West Antarctic Ice Sheet (WAIS). This results in ice and mixed-phase orographic cloud systems arriving at Ross Island from the south to southeast along the Transantarctic Mountains. In contrast, blocking over the Amundsen Sea region brings classical liquid-dominated mixed-phase and thin liquid water clouds from the Southern Ocean. Low pressure systems over the Bellingshausen Sea produce outflow of cold, dry continental polar air, yielding predominantly tenuous ice cloud at Ross Island.

  14. The Cloud Top Distribution and Diurnal Variation of Clouds Over East Asia: Preliminary Results From Advanced Himawari Imager

    NASA Astrophysics Data System (ADS)

    Chen, Dandan; Guo, Jianping; Wang, Hongqing; Li, Jian; Min, Min; Zhao, Wenhui; Yao, Dan

    2018-04-01

    Clouds, as one of the most uncertain factors in climate system, have been intensively studied as satellites with advanced instruments emerged in recent years. However, few studies examine the vertical distributions of cloud top and their temporal variations over East Asia based on geostationary satellite data. In this study, the vertical structures of cloud top and its diurnal variations in summer of 2016 are analyzed using the Advanced Himawari Imager/Himawari-8 cloud products. Results show that clouds occur most frequently over the southern Tibetan Plateau and the Bay of Bengal. We find a steep gradient of cloud occurrence frequency extending from southwest to northeast China and low-value centers over the eastern Pacific and the Inner Mongolia Plateau. The vertical structures of cloud top are highly dependent on latitude, in addition to the nonnegligible roles of both terrain and land-sea thermal contrast. In terms of the diurnal cycle, clouds tend to occur more often in the afternoon, peaking around 1700 local time over land and ocean. The amplitude of cloud diurnal variation over ocean is much smaller than that over land, and complex terrain tends to be linked to larger amplitude. In vertical, the diurnal cycle of cloud frequency exhibits bimodal pattern over both land and ocean. The high-level peaks occur at almost the same altitude over land and ocean. In contrast, the low-level peaks over ocean mainly reside in the boundary layer, much lower than those over land, which could be indicative of the frequent occurrence of marine boundary layer clouds.

  15. Temporal variation of the cloud top height over the tropical Pacific observed by geostationary satellites

    NASA Astrophysics Data System (ADS)

    Nishi, N.; Hamada, A.

    2012-12-01

    Stratiform clouds (nimbostratus and cirriform clouds) in the upper troposphere accompanied with cumulonimbus activity cover large part of the tropical region and largely affect the radiation and water vapor budgets there. Recently new satellites (CloudSat and CALIPSO) can give us the information of cloud height and cloud ice amount even over the open ocean. However, their coverage is limited just below the satellite paths; it is difficult to capture the whole shape and to trace the lifecycle of each cloud system by using just these datasets. We made, as a complementary product, a dataset of cloud top height and visible optical thickness with one-hour resolution over the wide region, by using infrared split-window data of the geostationary satellites (AGU fall meeting 2011) and released on the internet (http://database.rish.kyoto-u.ac.jp/arch/ctop/). We made lookup tables for estimating cloud top height only with geostationary infrared observations by comparing them with the direct cloud observation by CloudSat (Hamada and Nishi, 2010, JAMC). We picked out the same-time observations by MTSAT and CloudSat and regressed the cloud top height observation of CloudSat back onto 11μm brightness temperature (Tb) and the difference between the 11μm Tb and 12μm Tb. We will call our estimated cloud top height as "CTOP" below. The area of our coverage is 85E-155W (MTSAT2) and 80E-160W(MTSAT1R), and 20S-20N. The accuracy of the estimation with the IR split-window observation is the best in the upper tropospheric height range. We analyzed the formation and maintenance of the cloud systems whose top height is in the upper troposphere with our CTOP analysis, CloudSat 2B-GEOPROF, and GSMaP (Global Satellite Mapping of Precipitation) precipitation data. Most of the upper tropospheric stratiform clouds have their cloud top within 13-15 km range. The cloud top height decreases slowly when dissipating but still has high value to the end. However, we sometimes observe that a little lower cloud top height (6-10 km) is kept within one-two days. A typical example is observed on 5 January 2011 in a dissipating cloud system with 1000-km scale. This cluster located between 0-10N just west of the International Date Line and moved westward with keeping relatively lower cloud top (6-10 km) over one day. This top height is lower than the ubiquitous upper-tropospheric stratiform clouds but higher than the so-called 'congestus cloud' whose top height is around 0C. CloudSat data show the presence of convective rainfall. It suggests that this cloud system continuously kept making new anvil clouds in a little lower height than usual. We examined the seasonal variation of the distribution of cloud systems with a little lower cloud top height (6-11 km) during 2010-11. The number of such cloud systems is not constant with seasons but frequently increased in some specific seasons. Over the equatorial ocean region (east of 150E), they were frequently observed during the northern winter.

  16. Southeast Atlantic Cloud Properties in a Multivariate Statistical Model - How Relevant is Air Mass History for Local Cloud Properties?

    NASA Astrophysics Data System (ADS)

    Fuchs, Julia; Cermak, Jan; Andersen, Hendrik

    2017-04-01

    This study aims at untangling the impacts of external dynamics and local conditions on cloud properties in the Southeast Atlantic (SEA) by combining satellite and reanalysis data using multivariate statistics. The understanding of clouds and their determinants at different scales is important for constraining the Earth's radiative budget, and thus prominent in climate-system research. In this study, SEA stratocumulus cloud properties are observed not only as the result of local environmental conditions but also as affected by external dynamics and spatial origins of air masses entering the study area. In order to assess to what extent cloud properties are impacted by aerosol concentration, air mass history, and meteorology, a multivariate approach is conducted using satellite observations of aerosol and cloud properties (MODIS, SEVIRI), information on aerosol species composition (MACC) and meteorological context (ERA-Interim reanalysis). To account for the often-neglected but important role of air mass origin, information on air mass history based on HYSPLIT modeling is included in the statistical model. This multivariate approach is intended to lead to a better understanding of the physical processes behind observed stratocumulus cloud properties in the SEA.

  17. Use of High-Resolution Satellite Observations to Evaluate Cloud and Precipitation Statistics from Cloud-Resolving Model Simulations

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Tao, W.; Hou, A. Y.; Zeng, X.; Shie, C.

    2007-12-01

    The cloud and precipitation statistics simulated by 3D Goddard Cumulus Ensemble (GCE) model for different environmental conditions, i.e., the South China Sea Monsoon Experiment (SCSMEX), CRYSTAL-FACE, and KAWJEX are compared with Tropical Rainfall Measuring Mission (TRMM) TMI and PR rainfall measurements and as well as cloud observations from the Earth's Radiant Energy System (CERES) and the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments. It is found that GCE is capable of simulating major convective system development and reproducing total surface rainfall amount as compared with rainfall estimated from the soundings. The model presents large discrepancies in rain spectrum and vertical hydrometer profiles. The discrepancy in the precipitation field is also consistent with the cloud and radiation observations. The study will focus on the effects of large scale forcing and microphysics to the simulated model- observation discrepancies.

  18. The effect of medication therapy management service combined with a national PharmaCloud system for polypharmacy patients.

    PubMed

    Chen, Chang-Ming; Kuo, Li-Na; Cheng, Kuei-Ju; Shen, Wan-Chen; Bai, Kuan-Jen; Wang, Chih-Chi; Chiang, Yi-Chun; Chen, Hsiang-Yin

    2016-10-01

    This study evaluated a medication therapy management service using the Taiwan National Health Insurance Administration's PharmaCloud system in a medical center in Taiwan. The new PharmaCloud System, launched in 2013, links a complete list of prescribed and dispensed medication from different hospitals, clinics, and pharmacies for all insured patients. The study included patients with polypharmacy (≥5 drugs) at a medication therapy management service from March 2013 to March 2014. A structured questionnaire was designed to collect patients' baseline data and record patients' knowledge, attitudes, and practice scores before and after the service intervention. Phone follow-ups for practice and adherence scores on medication use were performed after 3 months. There were 152 patients recruited in the study. Scores for medication use attitudes and practice significantly increased after the service (attitudes: 40.06 ± 0.26 to 43.07 ± 0.19, p <0.001; practice: 33.42 ± 0.30 to 40.37 ± 0.30, p <0.001). The scores for medication adherence also increased from 3.02 ± 0.07 to 3.92 ± 0.02 (p <0.001). The PharmaCloud system facilitates accurate and efficient medication reconciliation for pharmacists in the medication therapy management service. The model improved patients' attitudes and practice of the rational use of medications and adherence with medications. Further studies are warranted to evaluate human resources, executing costs, and the cost-benefit ratio of this medication therapy management service with the PharmaCloud system. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Vertical transport by convective clouds: Comparisons of three modeling approaches

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.; Thompson, Anne M.; Tao, Wei-Kuo; Rood, Richard B.; Mcnamara, Donna P.; Molod, Andrea M.

    1995-01-01

    A preliminary comparison of the GEOS-1 (Goddard Earth Observing System) data assimilation system convective cloud mass fluxes with fluxes from a cloud-resolving model (the Goddard Cumulus Ensemble Model, GCE) is reported. A squall line case study (10-11 June 1985 Oklahoma PRESTORM episode) is the basis of the comparison. Regional (central U. S.) monthly total convective mass flux for June 1985 from GEOS-1 compares favorably with estimates from a statistical/dynamical approach using GCE simulations and satellite-derived cloud observations. The GEOS-1 convective mass fluxes produce reasonable estimates of monthly-averaged regional convective venting of CO from the boundary layer at least in an urban-influenced continental region, suggesting that they can be used in tracer transport simulations.

  20. Cloud fluid models of gas dynamics and star formation in galaxies

    NASA Technical Reports Server (NTRS)

    Struck-Marcell, Curtis; Scalo, John M.; Appleton, P. N.

    1987-01-01

    The large dynamic range of star formation in galaxies, and the apparently complex environmental influences involved in triggering or suppressing star formation, challenges the understanding. The key to this understanding may be the detailed study of simple physical models for the dominant nonlinear interactions in interstellar cloud systems. One such model is described, a generalized Oort model cloud fluid, and two simple applications of it are explored. The first of these is the relaxation of an isolated volume of cloud fluid following a disturbance. Though very idealized, this closed box study suggests a physical mechanism for starbursts, which is based on the approximate commensurability of massive cloud lifetimes and cloud collisional growth times. The second application is to the modeling of colliding ring galaxies. In this case, the driving processes operating on a dynamical timescale interact with the local cloud processes operating on the above timescale. The results is a variety of interesting nonequilibrium behaviors, including spatial variations of star formation that do not depend monotonically on gas density.

  1. The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus

    DOE PAGES

    Solomon, Amy; Feingold, G.; Shupe, M. D.

    2015-09-25

    This study investigates the maintenance of cloud ice production in Arctic mixed-phase stratocumulus in large eddy simulations that include a prognostic ice nuclei (IN) formulation and a diurnal cycle. Balances derived from a mixed-layer model and phase analyses are used to provide insight into buffering mechanisms that maintain ice in these cloud systems. We find that, for the case under investigation, IN recycling through subcloud sublimation considerably prolongs ice production over a multi-day integration. This effective source of IN to the cloud dominates over mixing sources from above or below the cloud-driven mixed layer. Competing feedbacks between dynamical mixing andmore » recycling are found to slow the rate of ice lost from the mixed layer when a diurnal cycle is simulated. Furthermore, the results of this study have important implications for maintaining phase partitioning of cloud ice and liquid that determine the radiative forcing of Arctic mixed-phase clouds.« less

  2. The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, Amy; Feingold, G.; Shupe, M. D.

    This study investigates the maintenance of cloud ice production in Arctic mixed-phase stratocumulus in large eddy simulations that include a prognostic ice nuclei (IN) formulation and a diurnal cycle. Balances derived from a mixed-layer model and phase analyses are used to provide insight into buffering mechanisms that maintain ice in these cloud systems. We find that, for the case under investigation, IN recycling through subcloud sublimation considerably prolongs ice production over a multi-day integration. This effective source of IN to the cloud dominates over mixing sources from above or below the cloud-driven mixed layer. Competing feedbacks between dynamical mixing andmore » recycling are found to slow the rate of ice lost from the mixed layer when a diurnal cycle is simulated. Furthermore, the results of this study have important implications for maintaining phase partitioning of cloud ice and liquid that determine the radiative forcing of Arctic mixed-phase clouds.« less

  3. Enabling Earth Science Through Cloud Computing

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Riofrio, Andres; Shams, Khawaja; Freeborn, Dana; Springer, Paul; Chafin, Brian

    2012-01-01

    Cloud Computing holds tremendous potential for missions across the National Aeronautics and Space Administration. Several flight missions are already benefiting from an investment in cloud computing for mission critical pipelines and services through faster processing time, higher availability, and drastically lower costs available on cloud systems. However, these processes do not currently extend to general scientific algorithms relevant to earth science missions. The members of the Airborne Cloud Computing Environment task at the Jet Propulsion Laboratory have worked closely with the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to integrate cloud computing into their science data processing pipeline. This paper details the efforts involved in deploying a science data system for the CARVE mission, evaluating and integrating cloud computing solutions with the system and porting their science algorithms for execution in a cloud environment.

  4. Cloud Base Height Measurements at Manila Observatory: Initial Results from Constructed Paired Sky Imaging Cameras

    NASA Astrophysics Data System (ADS)

    Lagrosas, N.; Tan, F.; Antioquia, C. T.

    2014-12-01

    Fabricated all sky imagers are efficient and cost effective instruments for cloud detection and classification. Continuous operation of this instrument can result in the determination of cloud occurrence and cloud base heights for the paired system. In this study, a fabricated paired sky imaging system - consisting two commercial digital cameras (Canon Powershot A2300) enclosed in weatherproof containers - is developed in Manila Observatory for the purpose of determining cloud base heights at the Manila Observatory area. One of the cameras is placed on the rooftop of Manila Observatory and the other is placed on the rooftop of the university dormitory, 489m from the first camera. The cameras are programmed to simultaneously gather pictures every 5 min. Continuous operation of these cameras were implemented since the end of May of 2014 but data collection started end of October 2013. The data were processed following the algorithm proposed by Kassianov et al (2005). The processing involves the calculation of the merit function that determines the area of overlap of the two pictures. When two pictures are overlapped, the minimum of the merit function corresponds to the pixel column positions where the pictures have the best overlap. In this study, pictures of overcast sky prove to be difficult to process for cloud base height and were excluded from processing. The figure below shows the initial results of the hourly average of cloud base heights from data collected from November 2013 to July 2014. Measured cloud base heights ranged from 250m to 1.5km. These are the heights of cumulus and nimbus clouds that are dominant in this part of the world. Cloud base heights are low in the early hours of the day indicating low convection process during these times. However, the increase in the convection process in the atmosphere can be deduced from higher cloud base heights in the afternoon. The decrease of cloud base heights after 15:00 follows the trend of decreasing solar energy in the atmosphere after this time. The results show the potential of these instruments to determine cloud base heights on prolonged time intervals. The continuous operation of these instruments is implemented to gather seasonal variation of cloud base heights in this part of the world and to add to the much-needed dataset for future climate studies in Manila Observatory.

  5. Effects of Implementing Subgrid-Scale Cloud-Radiation Interactions in a Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Herwehe, J. A.; Alapaty, K.; Otte, T.; Nolte, C. G.

    2012-12-01

    Interactions between atmospheric radiation, clouds, and aerosols are the most important processes that determine the climate and its variability. In regional scale models, when used at relatively coarse spatial resolutions (e.g., larger than 1 km), convective cumulus clouds need to be parameterized as subgrid-scale clouds. Like many groups, our regional climate modeling group at the EPA uses the Weather Research & Forecasting model (WRF) as a regional climate model (RCM). One of the findings from our RCM studies is that the summertime convective systems simulated by the WRF model are highly energetic, leading to excessive surface precipitation. We also found that the WRF model does not consider the interactions between convective clouds and radiation, thereby omitting an important process that drives the climate. Thus, the subgrid-scale cloudiness associated with convective clouds (from shallow cumuli to thunderstorms) does not exist and radiation passes through the atmosphere nearly unimpeded, potentially leading to overly energetic convection. This also has implications for air quality modeling systems that are dependent upon cloud properties from the WRF model, as the failure to account for subgrid-scale cloudiness can lead to problems such as the underrepresentation of aqueous chemistry processes within clouds and the overprediction of ozone from overactive photolysis. In an effort to advance the climate science of the cloud-aerosol-radiation (CAR) interactions in RCM systems, as a first step we have focused on linking the cumulus clouds with the radiation processes. To this end, our research group has implemented into WRF's Kain-Fritsch (KF) cumulus parameterization a cloudiness formulation that is widely used in global earth system models (e.g., CESM/CAM5). Estimated grid-scale cloudiness and associated condensate are adjusted to account for the subgrid clouds and then passed to WRF's Rapid Radiative Transfer Model - Global (RRTMG) radiation schemes to affect the shortwave and longwave radiative processes. To evaluate the effects of implementing the subgrid-scale cloud-radiation interactions on WRF regional climate simulations, a three-year study period (1988-1990) was simulated over the CONUS using two-way nested domains with 108 km and 36 km horizontal grid spacing, without and with the cumulus feedbacks to radiation, and without and with some form of four dimensional data assimilation (FDDA). Initial and lateral boundary conditions (as well as data for the FDDA, when enabled) were supplied from downscaled NCEP-NCAR Reanalysis II (R2) data sets. Evaluation of the simulation results will be presented comparing regional surface precipitation and temperature statistics with North American Regional Reanalysis (NARR) data and Climate Forecast System Reanalysis (CFSR) data, respectively, as well as comparison with available surface radiation (SURFRAD) and satellite (CERES) observations. This research supports improvements in the EPA's WRF-CMAQ modeling system, leading to better predictions of present and future air quality and climate interactions in order to protect human health and the environment.

  6. Cloud microphysics modification with an online coupled COSMO-MUSCAT regional model

    NASA Astrophysics Data System (ADS)

    Sudhakar, D.; Quaas, J.; Wolke, R.; Stoll, J.; Muehlbauer, A. D.; Tegen, I.

    2015-12-01

    Abstract: The quantification of clouds, aerosols, and aerosol-cloud interactions in models, continues to be a challenge (IPCC, 2013). In this scenario two-moment bulk microphysical scheme is used to understand the aerosol-cloud interactions in the regional model COSMO (Consortium for Small Scale Modeling). The two-moment scheme in COSMO has been especially designed to represent aerosol effects on the microphysics of mixed-phase clouds (Seifert et al., 2006). To improve the model predictability, the radiation scheme has been coupled with two-moment microphysical scheme. Further, the cloud microphysics parameterization has been modified via coupling COSMO with MUSCAT (MultiScale Chemistry Aerosol Transport model, Wolke et al., 2004). In this study, we will be discussing the initial result from the online-coupled COSMO-MUSCAT model system with modified two-moment parameterization scheme along with COSP (CFMIP Observational Simulator Package) satellite simulator. This online coupled model system aims to improve the sub-grid scale process in the regional weather prediction scenario. The constant aerosol concentration used in the Seifert and Beheng, (2006) parameterizations in COSMO model has been replaced by aerosol concentration derived from MUSCAT model. The cloud microphysical process from the modified two-moment scheme is compared with stand-alone COSMO model. To validate the robustness of the model simulation, the coupled model system is integrated with COSP satellite simulator (Muhlbauer et al., 2012). Further, the simulations are compared with MODIS (Moderate Resolution Imaging Spectroradiometer) and ISCCP (International Satellite Cloud Climatology Project) satellite products.

  7. Overview of the CERES Edition-4 Multilayer Cloud Property Datasets

    NASA Astrophysics Data System (ADS)

    Chang, F. L.; Minnis, P.; Sun-Mack, S.; Chen, Y.; Smith, R. A.; Brown, R. R.

    2014-12-01

    Knowledge of the cloud vertical distribution is important for understanding the role of clouds on earth's radiation budget and climate change. Since high-level cirrus clouds with low emission temperatures and small optical depths can provide a positive feedback to a climate system and low-level stratus clouds with high emission temperatures and large optical depths can provide a negative feedback effect, the retrieval of multilayer cloud properties using satellite observations, like Terra and Aqua MODIS, is critically important for a variety of cloud and climate applications. For the objective of the Clouds and the Earth's Radiant Energy System (CERES), new algorithms have been developed using Terra and Aqua MODIS data to allow separate retrievals of cirrus and stratus cloud properties when the two dominant cloud types are simultaneously present in a multilayer system. In this paper, we will present an overview of the new CERES Edition-4 multilayer cloud property datasets derived from Terra as well as Aqua. Assessment of the new CERES multilayer cloud datasets will include high-level cirrus and low-level stratus cloud heights, pressures, and temperatures as well as their optical depths, emissivities, and microphysical properties.

  8. Long Term Cloud Property Datasets From MODIS and AVHRR Using the CERES Cloud Algorithm

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Bedka, Kristopher M.; Doelling, David R.; Sun-Mack, Sunny; Yost, Christopher R.; Trepte, Qing Z.; Bedka, Sarah T.; Palikonda, Rabindra; Scarino, Benjamin R.; Chen, Yan; hide

    2015-01-01

    Cloud properties play a critical role in climate change. Monitoring cloud properties over long time periods is needed to detect changes and to validate and constrain models. The Clouds and the Earth's Radiant Energy System (CERES) project has developed several cloud datasets from Aqua and Terra MODIS data to better interpret broadband radiation measurements and improve understanding of the role of clouds in the radiation budget. The algorithms applied to MODIS data have been adapted to utilize various combinations of channels on the Advanced Very High Resolution Radiometer (AVHRR) on the long-term time series of NOAA and MetOp satellites to provide a new cloud climate data record. These datasets can be useful for a variety of studies. This paper presents results of the MODIS and AVHRR analyses covering the period from 1980-2014. Validation and comparisons with other datasets are also given.

  9. Feedback mechanisms of shallow convective clouds in a warmer climate as demonstrated by changes in buoyancy

    NASA Astrophysics Data System (ADS)

    Dagan, G.; Koren, I.; Altaratz, O.; Feingold, G.

    2018-05-01

    Cloud feedbacks could influence significantly the overall response of the climate system to global warming. Here we study the response of warm convective clouds to a uniform temperature change under constant relative humidity (RH) conditions. We show that an increase in temperature drives competing effects at the cloud scale: a reduction in the thermal buoyancy term and an increase in the humidity buoyancy term. Both effects are driven by the increased contrast in the water vapor content between the cloud and its environment, under warming with constant RH. The increase in the moisture content contrast between the cloud and its environment enhances the evaporation at the cloud margins, increases the entrainment, and acts to cool the cloud. Hence, there is a reduction in the thermal buoyancy term, despite the fact that theoretically this term should increase.

  10. Radiation closure under broken cloud conditions at the BSRN site Payerne: A case study

    NASA Astrophysics Data System (ADS)

    Aebi, Christine; Gröbner, Julian; Kämpfer, Niklaus; Vuilleumier, Laurent

    2017-04-01

    Clouds have a substantial influence on the surface radiation budget and on the climate system. There are several studies showing the opposing effect of clouds on shortwave and longwave radiation and thus on the global energy budget. Wacker et al., 2013 show an agreement between radiation flux measurements and radiative transfer models (RTM) under clear sky conditions which is within the measurement uncertainty. Our current study combines radiation fluxes from surface-based observations with RTM under cloudy conditions. It is a case study with data from the BSRN (Baseline Surface Radiation Network) site Payerne (46.49˚ N, 6.56˚ E, 490 m asl). Observation data are retrieved from pyranometers and pyrgeometers and additional atmospheric parameters from radiosondes and a ceilometer. The cloud information is taken from visible all-sky cameras. In a first step observations and RTM are compared for cases with stratiform overcast cloud conditions. In a next step radiation fluxes are compared under broken cloud conditions. These analyses are performed for different cloud types. Wacker, S., J. Gröbner, and L. Vuilleumier (2014) A method to calculate cloud-free long-wave irradiance at the surface based on radiative transfer modeling and temperature lapse rate estimates, Theor. Appl. Climatol., 115, 551-561.

  11. 3D cloud detection and tracking system for solar forecast using multiple sky imagers

    DOE PAGES

    Peng, Zhenzhou; Yu, Dantong; Huang, Dong; ...

    2015-06-23

    We propose a system for forecasting short-term solar irradiance based on multiple total sky imagers (TSIs). The system utilizes a novel method of identifying and tracking clouds in three-dimensional space and an innovative pipeline for forecasting surface solar irradiance based on the image features of clouds. First, we develop a supervised classifier to detect clouds at the pixel level and output cloud mask. In the next step, we design intelligent algorithms to estimate the block-wise base height and motion of each cloud layer based on images from multiple TSIs. Thus, this information is then applied to stitch images together intomore » larger views, which are then used for solar forecasting. We examine the system’s ability to track clouds under various cloud conditions and investigate different irradiance forecast models at various sites. We confirm that this system can 1) robustly detect clouds and track layers, and 2) extract the significant global and local features for obtaining stable irradiance forecasts with short forecast horizons from the obtained images. Finally, we vet our forecasting system at the 32-megawatt Long Island Solar Farm (LISF). Compared with the persistent model, our system achieves at least a 26% improvement for all irradiance forecasts between one and fifteen minutes.« less

  12. Extractive biodecolorization of triphenylmethane dyes in cloud point system by Aeromonas hydrophila DN322p.

    PubMed

    Pan, Tao; Ren, Suizhou; Xu, Meiying; Sun, Guoping; Guo, Jun

    2013-07-01

    The biological treatment of triphenylmethane dyes is an important issue. Most microbes have limited practical application because they cannot completely detoxicate these dyes. In this study, the extractive biodecolorization of triphenylmethane dyes by Aeromonas hydrophila DN322p was carried out by introducing the cloud point system. The cloud point system is composed of a mixture of nonionic surfactants (20 g/L) Brij 30 and Tergitol TMN-3 in equal proportions. After the decolorization of crystal violet, a higher wet cell weight was obtained in the cloud point system than that of the control system. Based on the results of thin-layer chromatography, the residual crystal violet and its decolorized product, leuco crystal violet, preferred to partition into the coacervate phase. Therefore, the detoxification of the dilute phase was achieved, which indicated that the dilute phase could be discharged without causing dye pollution. The extractive biodecolorization of three other triphenylmethane dyes was also examined in this system. The decolorization of malachite green and brilliant green was similar to that of crystal violet. Only ethyl violet achieved a poor decolorization rate because DN322p decolorized it via adsorption but did not convert it into its leuco form. This study provides potential application of biological treatment in triphenylmethane dye wastewater.

  13. Integrated Geo Hazard Management System in Cloud Computing Technology

    NASA Astrophysics Data System (ADS)

    Hanifah, M. I. M.; Omar, R. C.; Khalid, N. H. N.; Ismail, A.; Mustapha, I. S.; Baharuddin, I. N. Z.; Roslan, R.; Zalam, W. M. Z.

    2016-11-01

    Geo hazard can result in reducing of environmental health and huge economic losses especially in mountainous area. In order to mitigate geo-hazard effectively, cloud computer technology are introduce for managing geo hazard database. Cloud computing technology and it services capable to provide stakeholder's with geo hazards information in near to real time for an effective environmental management and decision-making. UNITEN Integrated Geo Hazard Management System consist of the network management and operation to monitor geo-hazard disaster especially landslide in our study area at Kelantan River Basin and boundary between Hulu Kelantan and Hulu Terengganu. The system will provide easily manage flexible measuring system with data management operates autonomously and can be controlled by commands to collects and controls remotely by using “cloud” system computing. This paper aims to document the above relationship by identifying the special features and needs associated with effective geohazard database management using “cloud system”. This system later will use as part of the development activities and result in minimizing the frequency of the geo-hazard and risk at that research area.

  14. Evaluation of Passive Multilayer Cloud Detection Using Preliminary CloudSat and CALIPSO Cloud Profiles

    NASA Astrophysics Data System (ADS)

    Minnis, P.; Sun-Mack, S.; Chang, F.; Huang, J.; Nguyen, L.; Ayers, J. K.; Spangenberg, D. A.; Yi, Y.; Trepte, C. R.

    2006-12-01

    During the last few years, several algorithms have been developed to detect and retrieve multilayered clouds using passive satellite data. Assessing these techniques has been difficult due to the need for active sensors such as cloud radars and lidars that can "see" through different layers of clouds. Such sensors have been available only at a few surface sites and on aircraft during field programs. With the launch of the CALIPSO and CloudSat satellites on April 28, 2006, it is now possible to observe multilayered systems all over the globe using collocated cloud radar and lidar data. As part of the A- Train, these new active sensors are also matched in time ad space with passive measurements from the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer - EOS (AMSR-E). The Clouds and the Earth's Radiant Energy System (CERES) has been developing and testing algorithms to detect ice-over-water overlapping cloud systems and to retrieve the cloud liquid path (LWP) and ice water path (IWP) for those systems. One technique uses a combination of the CERES cloud retrieval algorithm applied to MODIS data and a microwave retrieval method applied to AMSR-E data. The combination of a CO2-slicing cloud retireval technique with the CERES algorithms applied to MODIS data (Chang et al., 2005) is used to detect and analyze such overlapped systems that contain thin ice clouds. A third technique uses brightness temperature differences and the CERES algorithms to detect similar overlapped methods. This paper uses preliminary CloudSat and CALIPSO data to begin a global scale assessment of these different methods. The long-term goals are to assess and refine the algorithms to aid the development of an optimal combination of the techniques to better monitor ice 9and liquid water clouds in overlapped conditions.

  15. Evaluation of Passive Multilayer Cloud Detection Using Preliminary CloudSat and CALIPSO Cloud Profiles

    NASA Astrophysics Data System (ADS)

    Minnis, P.; Sun-Mack, S.; Chang, F.; Huang, J.; Nguyen, L.; Ayers, J. K.; Spangenberg, D. A.; Yi, Y.; Trepte, C. R.

    2005-05-01

    During the last few years, several algorithms have been developed to detect and retrieve multilayered clouds using passive satellite data. Assessing these techniques has been difficult due to the need for active sensors such as cloud radars and lidars that can "see" through different layers of clouds. Such sensors have been available only at a few surface sites and on aircraft during field programs. With the launch of the CALIPSO and CloudSat satellites on April 28, 2006, it is now possible to observe multilayered systems all over the globe using collocated cloud radar and lidar data. As part of the A- Train, these new active sensors are also matched in time ad space with passive measurements from the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer - EOS (AMSR-E). The Clouds and the Earth's Radiant Energy System (CERES) has been developing and testing algorithms to detect ice-over-water overlapping cloud systems and to retrieve the cloud liquid path (LWP) and ice water path (IWP) for those systems. One technique uses a combination of the CERES cloud retrieval algorithm applied to MODIS data and a microwave retrieval method applied to AMSR-E data. The combination of a CO2-slicing cloud retireval technique with the CERES algorithms applied to MODIS data (Chang et al., 2005) is used to detect and analyze such overlapped systems that contain thin ice clouds. A third technique uses brightness temperature differences and the CERES algorithms to detect similar overlapped methods. This paper uses preliminary CloudSat and CALIPSO data to begin a global scale assessment of these different methods. The long-term goals are to assess and refine the algorithms to aid the development of an optimal combination of the techniques to better monitor ice 9and liquid water clouds in overlapped conditions.

  16. The diffusion approximation. An application to radiative transfer in clouds

    NASA Technical Reports Server (NTRS)

    Arduini, R. F.; Barkstrom, B. R.

    1976-01-01

    It is shown how the radiative transfer equation reduces to the diffusion equation. To keep the mathematics as simple as possible, the approximation is applied to a cylindrical cloud of radius R and height h. The diffusion equation separates in cylindrical coordinates and, in a sample calculation, the solution is evaluated for a range of cloud radii with cloud heights of 0.5 km and 1.0 km. The simplicity of the method and the speed with which solutions are obtained give it potential as a tool with which to study the effects of finite-sized clouds on the albedo of the earth-atmosphere system.

  17. [The Key Technology Study on Cloud Computing Platform for ECG Monitoring Based on Regional Internet of Things].

    PubMed

    Yang, Shu; Qiu, Yuyan; Shi, Bo

    2016-09-01

    This paper explores the methods of building the internet of things of a regional ECG monitoring, focused on the implementation of ECG monitoring center based on cloud computing platform. It analyzes implementation principles of automatic identifi cation in the types of arrhythmia. It also studies the system architecture and key techniques of cloud computing platform, including server load balancing technology, reliable storage of massive smalfi les and the implications of quick search function.

  18. Background Noises Versus Intraseasonal Variation Signals: Small vs. Large Convective Cloud Objects From CERES Aqua Observations

    NASA Technical Reports Server (NTRS)

    Xu, Kuan-Man

    2015-01-01

    During inactive phases of Madden-Julian Oscillation (MJO), there are plenty of deep but small convective systems and far fewer deep and large ones. During active phases of MJO, a manifestation of an increase in the occurrence of large and deep cloud clusters results from an amplification of large-scale motions by stronger convective heating. This study is designed to quantitatively examine the roles of small and large cloud clusters during the MJO life cycle. We analyze the cloud object data from Aqua CERES (Clouds and the Earth's Radiant Energy System) observations between July 2006 and June 2010 for tropical deep convective (DC) and cirrostratus (CS) cloud object types according to the real-time multivariate MJO index, which assigns the tropics to one of the eight MJO phases each day. The cloud object is a contiguous region of the earth with a single dominant cloud-system type. The criteria for defining these cloud types are overcast footprints and cloud top pressures less than 400 hPa, but DC has higher cloud optical depths (=10) than those of CS (<10). The size distributions, defined as the footprint numbers as a function of cloud object diameters, for particular MJO phases depart greatly from the combined (8-phase) distribution at large cloud-object diameters due to the reduced/increased numbers of cloud objects related to changes in the large-scale environments. The medium diameter corresponding to the combined distribution is determined and used to partition all cloud objects into "small" and "large" groups of a particular phase. The two groups corresponding to the combined distribution have nearly equal numbers of footprints. The medium diameters are 502 km for DC and 310 km for cirrostratus. The range of the variation between two extreme phases (typically, the most active and depressed phases) for the small group is 6-11% in terms of the numbers of cloud objects and the total footprint numbers. The corresponding range for the large group is 19-44%. In terms of the probability density functions of radiative and cloud physical properties, there are virtually no differences between the MJO phases for the small group, but there are significant differences for the large groups for both DC and CS types. These results suggest that the intreseasonal variation signals reside at the large cloud clusters while the small cloud clusters represent the background noises resulting from various types of the tropical waves with different wavenumbers and propagation speeds/directions.

  19. Point-Cloud Compression for Vehicle-Based Mobile Mapping Systems Using Portable Network Graphics

    NASA Astrophysics Data System (ADS)

    Kohira, K.; Masuda, H.

    2017-09-01

    A mobile mapping system is effective for capturing dense point-clouds of roads and roadside objects Point-clouds of urban areas, residential areas, and arterial roads are useful for maintenance of infrastructure, map creation, and automatic driving. However, the data size of point-clouds measured in large areas is enormously large. A large storage capacity is required to store such point-clouds, and heavy loads will be taken on network if point-clouds are transferred through the network. Therefore, it is desirable to reduce data sizes of point-clouds without deterioration of quality. In this research, we propose a novel point-cloud compression method for vehicle-based mobile mapping systems. In our compression method, point-clouds are mapped onto 2D pixels using GPS time and the parameters of the laser scanner. Then, the images are encoded in the Portable Networking Graphics (PNG) format and compressed using the PNG algorithm. In our experiments, our method could efficiently compress point-clouds without deteriorating the quality.

  20. Mass spectrometric airborne measurements of submicron aerosol and cloud residual composition in tropic deep convection during ACRIDICON-CHUVA

    NASA Astrophysics Data System (ADS)

    Schulz, Christiane; Schneider, Johannes; Mertes, Stephan; Kästner, Udo; Weinzierl, Bernadett; Sauer, Daniel; Fütterer, Daniel; Walser, Adrian; Borrmann, Stephan

    2015-04-01

    Airborne measurements of submicron aerosol and cloud particles were conducted in the region of Manaus (Amazonas, Brazil) during the ACRIDICON-CHUVA campaign in September 2014. ACRIDICON-CHUVA aimed at the investigation of convective cloud systems in order to get a better understanding and quantification of aerosol-cloud-interactions and radiative effects of convective clouds. For that, data from airborne measurements within convective cloud systems are combined with satellite and ground-based data. We used a C-ToF-AMS (Compact-Time-of-Flight-Aerosol-Mass-Spectrometer) to obtain information on aerosol composition and vertical profiles of different aerosol species, like organics, sulphate, nitrate, ammonium and chloride. The instrument was operated behind two different inlets: The HASI (HALO Aerosol Submicrometer Inlet) samples aerosol particles, whereas the CVI (Counterflow Virtual Impactor) samples cloud droplets and ice particles during in-cloud measurements, such that cloud residual particles can be analyzed. Differences in aerosol composition inside and outside of clouds and cloud properties over forested or deforested region were investigated. Additionally, the in- and outflow of convective clouds was sampled on dedicated cloud missions in order to study the evolution of the clouds and the processing of aerosol particles. First results show high organic aerosol mass concentrations (typically 15 μg/m3 and during one flight up to 25 μg/m3). Although high amounts of organic aerosol in tropic air over rainforest regions were expected, such high mass concentrations were not anticipated. Next to that, high sulphate aerosol mass concentrations (about 4 μg/m3) were measured at low altitudes (up to 5 km). During some flights organic and nitrate aerosol was observed with higher mass concentrations at high altitudes (10-12 km) than at lower altitudes, indicating redistribution of boundary layer particles by convection. The cloud residuals measured during in-cloud sampling through the CVI contained mainly organic material and, to a lesser extent, nitrate.

  1. CAUSES: Clouds Above the United States and Errors at the Surface

    NASA Astrophysics Data System (ADS)

    Ma, H. Y.; Klein, S. A.; Xie, S.; Morcrette, C. J.; Van Weverberg, K.; Zhang, Y.; Lo, M. H.

    2015-12-01

    The Clouds Above the United States and Errors at the Surface (CAUSES) is a new joint Global Atmospheric System Studies/Regional and Global Climate model/Atmospheric System Research (GASS/RGCM/ASR) intercomparison project to evaluate the central U.S. summertime surface warm biases seen in many weather and climate models. The main focus is to identify the role of cloud, radiation, and precipitation processes in contributing to surface air temperature biases. In this project, we use short-term hindcast approach and examine the growth of the error as a function of hindcast lead time. The study period covers from April 1 to August 31, 2011, which also covers the entire Midlatitude Continental Convective Clouds Experiment (MC3E) campaign. Preliminary results from several models will be presented. (http://portal.nersc.gov/project/capt/CAUSES/) (This study is funded by the RGCM and ASR programs of the U.S. Department of Energy as part of the Cloud-Associated Parameterizations Testbed. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-658017)

  2. CAUSES: Clouds Above the United States and Errors at the Surface

    NASA Astrophysics Data System (ADS)

    Ma, H. Y.; Klein, S. A.; Xie, S.; Zhang, Y.; Morcrette, C. J.; Van Weverberg, K.; Petch, J.; Lo, M. H.

    2014-12-01

    The Clouds Above the United States and Errors at the Surface (CAUSES) is a new joint Global Atmospheric System Studies/Regional and Global Climate model/Atmospheric System Research (GASS/RGCM/ASR) intercomparison project to evaluate the central U.S. summertime surface warm biases seen in many weather and climate models. The main focus is to identify the role of cloud, radiation, and precipitation processes in contributing to surface air temperature biases. In this project, we use short-term hindcast approach and examine the growth of the error as a function of hindcast lead time. The study period covers from April 1 to August 31, 2011, which also covers the entire Midlatitude Continental Convective Clouds Experiment (MC3E) campaign. Preliminary results from several models will be presented. (http://portal.nersc.gov/project/capt/CAUSES/) (This study is funded by the RGCM and ASR programs of the U.S. Department of Energy as part of the Cloud-Associated Parameterizations Testbed. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-658017)

  3. Study of Molecular Clouds, Variable Stars and Related Topics at NUU and UBAI

    NASA Astrophysics Data System (ADS)

    Hojaev, A. S.

    2017-07-01

    The search of young PMS stars made by our team at Maidanak, Lulin and Beijing observatories, especially in NGC 6820/23 area, as well as monitoring of a sample of open clusters will be described and results will be presented. We consider physical conditions in different star forming regions, particularly in TDC and around Vul OB1, estimate SFE and SFR, energy balance and instability processes in these regions. We also reviewed all data on molecular clouds in the Galaxy and in other galaxies where the clouds were observed to prepare general catalog of molecular clouds, to study physical conditions, unsteadiness and possible star formation in them, the formation and evolution of molecular cloud systems, to analyze their role in formation of different types of galaxies and structural features therein.

  4. Observational Study and Parameterization of Aerosol-fog Interactions

    NASA Astrophysics Data System (ADS)

    Duan, J.; Guo, X.; Liu, Y.; Fang, C.; Su, Z.; Chen, Y.

    2014-12-01

    Studies have shown that human activities such as increased aerosols affect fog occurrence and properties significantly, and accurate numerical fog forecasting depends on, to a large extent, parameterization of fog microphysics and aerosol-fog interactions. Furthermore, fogs can be considered as clouds near the ground, and enjoy an advantage of permitting comprehensive long-term in-situ measurements that clouds do not. Knowledge learned from studying aerosol-fog interactions will provide useful insights into aerosol-cloud interactions. To serve the twofold objectives of understanding and improving parameterizations of aerosol-fog interactions and aerosol-cloud interactions, this study examines the data collected from fogs, with a focus but not limited to the data collected in Beijing, China. Data examined include aerosol particle size distributions measured by a Passive Cavity Aerosol Spectrometer Probe (PCASP-100X), fog droplet size distributions measured by a Fog Monitor (FM-120), Cloud Condensation Nuclei (CCN), liquid water path measured by radiometers and visibility sensors, along with meteorological variables measured by a Tethered Balloon Sounding System (XLS-Ⅱ) and Automatic Weather Station (AWS). The results will be compared with low-level clouds for similarities and differences between fogs and clouds.

  5. Vulnerability of Space Station Freedom Modules: A Study of the Effects of Module Perforation on Crew and Equipment. Volume 2; Analytical Modeling of Internal Debris Cloud Effects

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Davenport, Quint

    1995-01-01

    In this part of the report, a first-principles based model is developed to predict the overpressure and temperature effects of a perforating orbital debris particle impact within a pressurized habitable module. While the effects of a perforating debris particles on crew and equipment can be severe, only a limited number of empirical studies focusing on space vehicles have been performed to date. Traditionally, crew loss or incapacitation due to a perforating impact has primarily been of interest to military organizations and as such have focused on military vehicles and systems. The module wall considered in this study is initially assumed to be a standard Whippletype dual-wall system in which the outer wall protects the module and its inhabitants by disrupting impacting particles. The model is developed in a way such that it sequentially characterizes the phenomena comprising the impact event, including the initial impact, the creation and motion of a debris cloud within the dual-wall system, the impact of the debris cloud on the inner wall, the creation and motion of the debris cloud that enters the module interior, and the effects of the debris cloud within the module on module pressure and temperature levels. This is accomplished through the application of elementary shock physics and thermodynamic theory.

  6. The Earth Observing System. [instrument investigations for flight on EOS-A satellite

    NASA Technical Reports Server (NTRS)

    Wilson, Stan; Dozier, Jeff

    1991-01-01

    The Earth Observing System (EOS), the centerpiece of NASA's Mission to Planet Earth, is to study the interactions of the atmosphere, land, oceans, and living organisms, using the perspective of space to observe the earth as a global environmental system. To better understand the role of clouds in global change, EOS will measure incoming and emitted radiation at the top of the atmosphere. Then, to study characteristics of the atmosphere that influence radiation transfer between the top of the atmosphere and the surface, EOS wil observe clouds, water vapor and cloud water, aerosols, temperature and humidity, and directional effects. To elucidate the role of anthropogenic greenhouse gas and terrestrial and marine plants as a source or sink for carbon, EOS will observe the biological productivity of lands and oceans. EOS will also study surface properties that affect biological productivity at high resolution spatially and spectrally.

  7. Cloud Response to Arctic Sea Ice Loss and Implications for Feedbacks in the CESM1 Climate Model

    NASA Astrophysics Data System (ADS)

    Morrison, A.; Kay, J. E.; Chepfer, H.; Guzman, R.; Bonazzola, M.

    2017-12-01

    Clouds have the potential to accelerate or slow the rate of Arctic sea ice loss through their radiative influence on the surface. Cloud feedbacks can therefore play into Arctic warming as clouds respond to changes in sea ice cover. As the Arctic moves toward an ice-free state, understanding how cloud - sea ice relationships change in response to sea ice loss is critical for predicting the future climate trajectory. From satellite observations we know the effect of present-day sea ice cover on clouds, but how will clouds respond to sea ice loss as the Arctic transitions to a seasonally open water state? In this study we use a lidar simulator to first evaluate cloud - sea ice relationships in the Community Earth System Model (CESM1) against present-day observations (2006-2015). In the current climate, the cloud response to sea ice is well-represented in CESM1: we see no summer cloud response to changes in sea ice cover, but more fall clouds over open water than over sea ice. Since CESM1 is credible for the current Arctic climate, we next assess if our process-based understanding of Arctic cloud feedbacks related to sea ice loss is relevant for understanding future Arctic clouds. In the future Arctic, summer cloud structure continues to be insensitive to surface conditions. As the Arctic warms in the fall, however, the boundary layer deepens and cloud fraction increases over open ocean during each consecutive decade from 2020 - 2100. This study will also explore seasonal changes in cloud properties such as opacity and liquid water path. Results thus far suggest that a positive fall cloud - sea ice feedback exists in the present-day and future Arctic climate.

  8. Investigating energy-saving potentials in the cloud.

    PubMed

    Lee, Da-Sheng

    2014-02-20

    Collecting webpage messages can serve as a sensor for investigating the energy-saving potential of buildings. Focusing on stores, a cloud sensor system is developed to collect data and determine their energy-saving potential. The owner of a store under investigation must register online, report the store address, area, and the customer ID number on the electric meter. The cloud sensor system automatically surveys the energy usage records by connecting to the power company website and calculating the energy use index (EUI) of the store. Other data includes the chain store check, company capital, location price, and the influence of weather conditions on the store; even the exposure frequency of store under investigation may impact the energy usage collected online. After collecting data from numerous stores, a multi-dimensional data array is constructed to determine energy-saving potential by identifying stores with similarity conditions. Similarity conditions refer to analyzed results that indicate that two stores have similar capital, business scale, weather conditions, and exposure frequency on web. Calculating the EUI difference or pure technical efficiency of stores, the energy-saving potential is determined. In this study, a real case study is performed. An 8-dimensional (8D) data array is constructed by surveying web data related to 67 stores. Then, this study investigated the savings potential of the 33 stores, using a site visit, and employed the cloud sensor system to determine the saving potential. The case study results show good agreement between the data obtained by the site visit and the cloud investigation, with errors within 4.17%. Among 33 the samples, eight stores have low saving potentials of less than 5%. The developed sensor on the cloud successfully identifies them as having low saving potential and avoids wasting money on the site visit.

  9. Investigating Energy-Saving Potentials in the Cloud

    PubMed Central

    Lee, Da-Sheng

    2014-01-01

    Collecting webpage messages can serve as a sensor for investigating the energy-saving potential of buildings. Focusing on stores, a cloud sensor system is developed to collect data and determine their energy-saving potential. The owner of a store under investigation must register online, report the store address, area, and the customer ID number on the electric meter. The cloud sensor system automatically surveys the energy usage records by connecting to the power company website and calculating the energy use index (EUI) of the store. Other data includes the chain store check, company capital, location price, and the influence of weather conditions on the store; even the exposure frequency of store under investigation may impact the energy usage collected online. After collecting data from numerous stores, a multi-dimensional data array is constructed to determine energy-saving potential by identifying stores with similarity conditions. Similarity conditions refer to analyzed results that indicate that two stores have similar capital, business scale, weather conditions, and exposure frequency on web. Calculating the EUI difference or pure technical efficiency of stores, the energy-saving potential is determined. In this study, a real case study is performed. An 8-dimensional (8D) data array is constructed by surveying web data related to 67 stores. Then, this study investigated the savings potential of the 33 stores, using a site visit, and employed the cloud sensor system to determine the saving potential. The case study results show good agreement between the data obtained by the site visit and the cloud investigation, with errors within 4.17%. Among 33 the samples, eight stores have low saving potentials of less than 5%. The developed sensor on the cloud successfully identifies them as having low saving potential and avoids wasting money on the site visit. PMID:24561405

  10. Raman Lidar Measurements During the International H2O Project. 2; Instrument Comparisons and Case Studies

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Demoz, B.; DiGirolamo, P.; Corner, J.; Veselovskii, I.; Evans, K.; Wang, Z.; Sabatino, D.; Schwemmer, G.; Gentry, B.

    2005-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) participated in the International H2O Project (IHOP) that occurred in May and June, 2002 in the midwestern part of the U. S. The SRL system configuration and methods of data analysis were described in part I of this paper. In this second part, comparisons of SRL water vapor measurements and those of chilled mirror radiosonde and LASE airborne water vapor lidar are performed. Two case studies are presented; one for daytime and one for nighttime. The daytime case study is of a convectively driven boundary layer event and is used to characterize the SRL water vapor random error characteristics. The nighttime case study is of a thunderstorm-generated cirrus cloud case that is studied in it s meteorological context. Upper tropospheric humidification due to precipitation from the cirrus cloud is quantified as is the cirrus cloud ice water content and particle depolarization ratio. These detailed cirrus cloud measurements are being used in a cirrus cloud modeling study.

  11. Using Cloud-based Storage Technologies for Earth Science Data

    NASA Astrophysics Data System (ADS)

    Michaelis, A.; Readey, J.; Votava, P.

    2016-12-01

    Cloud based infrastructure may offer several key benefits of scalability, built in redundancy and reduced total cost of ownership as compared with a traditional data center approach. However, most of the tools and software systems developed for NASA data repositories were not developed with a cloud based infrastructure in mind and do not fully take advantage of commonly available cloud-based technologies. Object storage services are provided through all the leading public (Amazon Web Service, Microsoft Azure, Google Cloud, etc.) and private (Open Stack) clouds, and may provide a more cost-effective means of storing large data collections online. We describe a system that utilizes object storage rather than traditional file system based storage to vend earth science data. The system described is not only cost effective, but shows superior performance for running many different analytics tasks in the cloud. To enable compatibility with existing tools and applications, we outline client libraries that are API compatible with existing libraries for HDF5 and NetCDF4. Performance of the system is demonstrated using clouds services running on Amazon Web Services.

  12. A pilot study of distributed knowledge management and clinical decision support in the cloud.

    PubMed

    Dixon, Brian E; Simonaitis, Linas; Goldberg, Howard S; Paterno, Marilyn D; Schaeffer, Molly; Hongsermeier, Tonya; Wright, Adam; Middleton, Blackford

    2013-09-01

    Implement and perform pilot testing of web-based clinical decision support services using a novel framework for creating and managing clinical knowledge in a distributed fashion using the cloud. The pilot sought to (1) develop and test connectivity to an external clinical decision support (CDS) service, (2) assess the exchange of data to and knowledge from the external CDS service, and (3) capture lessons to guide expansion to more practice sites and users. The Clinical Decision Support Consortium created a repository of shared CDS knowledge for managing hypertension, diabetes, and coronary artery disease in a community cloud hosted by Partners HealthCare. A limited data set for primary care patients at a separate health system was securely transmitted to a CDS rules engine hosted in the cloud. Preventive care reminders triggered by the limited data set were returned for display to clinician end users for review and display. During a pilot study, we (1) monitored connectivity and system performance, (2) studied the exchange of data and decision support reminders between the two health systems, and (3) captured lessons. During the six month pilot study, there were 1339 patient encounters in which information was successfully exchanged. Preventive care reminders were displayed during 57% of patient visits, most often reminding physicians to monitor blood pressure for hypertensive patients (29%) and order eye exams for patients with diabetes (28%). Lessons learned were grouped into five themes: performance, governance, semantic interoperability, ongoing adjustments, and usability. Remote, asynchronous cloud-based decision support performed reasonably well, although issues concerning governance, semantic interoperability, and usability remain key challenges for successful adoption and use of cloud-based CDS that will require collaboration between biomedical informatics and computer science disciplines. Decision support in the cloud is feasible and may be a reasonable path toward achieving better support of clinical decision-making across the widest range of health care providers. Published by Elsevier B.V.

  13. A numerical model characterizing the experimental performance of the Howard University Raman Lidar system

    NASA Astrophysics Data System (ADS)

    Connell, Rasheen M.

    At the Howard University Atmospheric Observatory in Beltsville, MD, a Raman Lidar System was developed to provide both daytime and nighttime measurements of water vapor, aerosols, and cirrus clouds with 60 s temporal and 7.5 m spatial resolution in the lower and upper troposphere. This system analyzes signals at three wavelengths associated with Rayleigh/Mie scattering for aerosols and cirrus clouds at 354.7 nm, Raman scattering for nitrogen at 386.7 nm, and water vapor at 407.5 nm. The transmitter is a triple harmonic Nd: YAG solid state laser. The receiver is a 40 cm Cassegrain telescope. The detector system consists of a multi-channel wavelength separator unit and data acquisition system. This thesis develops a numerical model to provide a realistic representation of the system behavior. The variants of the lidar equation in the model use system parameters to solve and determine the return signals for the lidar system. This dissertation describes four case studies being investigated: clear sky, polluted, wet, and cirrus cloud atmospheric conditions. The first simulations are based on a standard atmosphere, which assumes an unpolluted (aerosol-free) dry-air atmosphere. The second and third sets of simulations are based on polluted and cirrus cloud atmospheric conditions, where aerosols and cirrus clouds are added to Case Study I. The last set of simulations is based on a wet atmosphere, where the troposphere is comprised of the same mixture of gases in Case Study II, with the addition of atmospheric water vapor. Lidar signals are simulated over the altitude range covered by our measurements (up to 14 km). Results of our simulations show that the measured and modeled signals agree within 10% over an extended period of time when the system (i.e., such as alignment, filter tuning, etc.) has not changed.

  14. Precipitation Processes Developed During ARM (1997), TOGA COARE (1992) GATE (1974), SCSMEX (1998), and KWAJEX (1999): Consistent 3D, Semi-3D and 3D Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Hou, A.; Atlas, R.; Starr, D.; Sud, Y.

    2003-01-01

    Real clouds and cloud systems are inherently three-dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D) have been used to study the response of clouds to large-scale forcing. IN these 3D simulators, the model domain was small, and the integration time was 6 hours. Only recently have 3D experiments been performed for multi-day periods for tropical clouds systems with large horizontal domains at the National Center of Atmospheric Research (NCAR) and at NASA Goddard Space Center. At Goddard, a 3D cumulus Ensemble (GCE) model was used to simulate periods during TOGA COARE, GATE, SCSMEX, ARM, and KWAJEX using a 512 by 512 km domain (with 2-km resolution). The result indicate that surface precipitation and latent heating profiles are very similar between the 2D and 3D GCE model simulation. The major objective of this paper are: (1) to assess the performance of the super-parametrization technique, (2) calculate and examine the surface energy (especially radiation) and water budget, and (3) identify the differences and similarities in the organization and entrainment rates of convection between simulated 2D and 3D cloud systems.

  15. RACORO continental boundary layer cloud investigations. Part I: Case study development and ensemble large-scale forcings

    DOE PAGES

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; ...

    2015-06-19

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60-hour case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in-situ measurements from the RACORO field campaign and remote-sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functionsmore » for concise representation in models. Values of the aerosol hygroscopicity parameter, κ, are derived from observations to be ~0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing datasets are derived from the ARM variational analysis, ECMWF forecasts, and a multi-scale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in 'trial' large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.« less

  16. Uncertainties in Ice-Sheet Altimetry from a Spaceborne 1064-nm Single-Channel Lidar Due to Undetected Thin Clouds

    NASA Technical Reports Server (NTRS)

    Yang, Yuekui; Marshak, Alexander; Varnai, Tamas; Wiscombe, Warren; Yang, Ping

    2010-01-01

    In support of the Ice, Cloud, and land Elevation Satellite (ICESat)-II mission, this paper studies the bias in surface-elevation measurements caused by undetected thin clouds. The ICESat-II satellite may only have a 1064-nm single-channel lidar onboard. Less sensitive to clouds than the 532-nm channel, the 1064-nm channel tends to miss thin clouds. Previous studies have demonstrated that scattering by cloud particles increases the photon-path length, thus resulting in biases in ice-sheet-elevation measurements from spaceborne lidars. This effect is referred to as atmospheric path delay. This paper complements previous studies in the following ways: First, atmospheric path delay is estimated over the ice sheets based on cloud statistics from the Geoscience Laser Altimeter System onboard ICESat and the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua. Second, the effect of cloud particle size and shape is studied with the state-of-the-art phase functions developed for MODIS cirrus- cloud microphysical model. Third, the contribution of various orders of scattering events to the path delay is studied, and an analytical model of the first-order scattering contribution is developed. This paper focuses on the path delay as a function of telescope field of view (FOV). The results show that reducing telescope FOV can significantly reduce the expected path delay. As an example, the average path delays for FOV = 167 microrad (a 100-m-diameter circle on the surface) caused by thin undetected clouds by the 1064-nm channel over Greenland and East Antarctica are illustrated.

  17. On the Influence of Air Mass Origin on Low-Cloud Properties in the Southeast Atlantic

    NASA Astrophysics Data System (ADS)

    Fuchs, Julia; Cermak, Jan; Andersen, Hendrik; Hollmann, Rainer; Schwarz, Katharina

    2017-10-01

    This study investigates the impact of air mass origin and dynamics on cloud property changes in the Southeast Atlantic (SEA) during the biomass burning season. The understanding of clouds and their determinants at different scales is important for constraining the Earth's radiative budget and thus prominent in climate system research. In this study, the thermodynamically stable SEA stratocumulus cover is observed not only as the result of local environmental conditions but also as connected to large-scale meteorology by the often neglected but important role of spatial origins of air masses entering this region. In order to assess to what extent cloud properties are impacted by aerosol concentration, air mass history, and meteorology, a Hybrid Single-Particle Lagrangian Integrated Trajectory cluster analysis is conducted linking satellite observations of cloud properties (Spinning-Enhanced Visible and Infrared Imager), information on aerosol species (Monitoring Atmospheric Composition and Climate), and meteorological context (ERA-Interim reanalysis) to air mass clusters. It is found that a characteristic pattern of air mass origins connected to distinct synoptical conditions leads to marked cloud property changes in the southern part of the study area. Long-distance air masses are related to midlatitude weather disturbances that affect the cloud microphysics, especially in the southwestern subdomain of the study area. Changes in cloud effective radius are consistent with a boundary layer deepening and changes in lower tropospheric stability (LTS). In the southeastern subdomain cloud cover is controlled by a generally higher LTS, while air mass origin plays a minor role. This study leads to a better understanding of the dynamical drivers behind observed stratocumulus cloud properties in the SEA and frames potentially interesting conditions for aerosol-cloud interactions.

  18. The budget of biologically active ultraviolet radiation in the earth-atmosphere system

    NASA Technical Reports Server (NTRS)

    Frederick, John E.; Lubin, Dan

    1988-01-01

    This study applies the concept of a budget to describe the interaction of solar ultraviolet (UV) radiation with the earth-atmosphere system. The wavelength ranges of interest are the biologically relevant UV-B between 280 and 320 nm and the UV-A from 32000 to 400 nm. The Nimbus 7 solar backscattered ultraviolet (SBUV) instrument provides measurements of total column ozone and information concerning cloud cover which, in combination with a simple model of radiation transfer, define the fractions of incident solar irradiance absorbed in the atmosphere, reflected to space, and absorbed at the ground. Results for the month of July quantify the contribution of fractional cloud cover and cloud optical thickness to the radiation budget's three components. Scattering within a thick cloud layer makes the downward radiation field at the cloud base more isotropic than is the case for clear skies. For small solar zenith angles, typical of summer midday conditions, the effective pathlength of this diffuse irradiance through tropospheric ozone is greater than that under clear-sky conditions. The result is an enhanced absorption of UV-B radiation in the troposphere during cloud-covered conditions. Major changes in global cloud cover or cloud optical thicknesses could alter the ultraviolet radiation received by the biosphere by an amount comparable to that predicted for long-term trends in ozone.

  19. Lagrangian evolution of the marine boundary layer from the Cloud System Evolution in the Trades (CSET) campaign

    NASA Astrophysics Data System (ADS)

    Mohrmann, J.; Ghate, V. P.; McCoy, I. L.; Bretherton, C. S.; Wood, R.; Minnis, P.; Palikonda, R.

    2017-12-01

    The Cloud System Evolution in the Trades (CSET) field campaign took place July/August 2015 to study the evolution of clouds, precipitation, and aerosols in the stratocumulus-to-cumulus (Sc-Cu) transition region of the northeast Pacific marine boundary layer (MBL). Aircraft observations sampled across a wide range of cloud and aerosol conditions. The sampling strategy, where MBL airmasses were sampled with the NSF/NCAR Gulfstream-V (HIAPER) and resampled then at their advected location two days later, resulted in a dataset of 14 paired flights suitable for Lagrangian analysis. This analysis shows that Lagrangian coherence of long-lived species (namely CO and O3) across 48 hours are high, but that of subcloud aerosol, MBL depth, and cloud properties is limited. Geostationary satellite retrievals are compared against aircraft observations; these are combined with reanalysis data and HYSPLIT trajectories to document the Lagrangian evolution of cloud fraction, cloud droplet number concentration, liquid water path, estimated inversion strength (EIS), and MBL depth, which are used to expand upon and validate the aircraft-based analysis. Many of the trajectories sampled by the aircraft show a clear Sc-Cu transition. Although satellite cloud fraction and EIS were found to be strongly spatiotemporally correlated, changes in MBL cloud fraction along trajectories did not correlate with any measure of EIS forcing.

  20. Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds

    NASA Astrophysics Data System (ADS)

    Fan, Jiwen; Leung, L. Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

    2013-11-01

    Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol's thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ∼27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3-5 Wṡm-2) and a surface cooling (-5 to -8 Wṡm-2). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments.

  1. Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds.

    PubMed

    Fan, Jiwen; Leung, L Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

    2013-11-26

    Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol's thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ~27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3-5 W m(-2)) and a surface cooling (-5 to -8 W m(-2)). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments.

  2. Effects of instrument characteristics on cloud properties retrieved from satellite imagery data

    NASA Technical Reports Server (NTRS)

    Baldwin, D. G.; Coakley, J. A., Jr.; Zhang, M. S.

    1986-01-01

    The relationships between sensor resolution and derived cloud properties in satellite remote sensing were studied by comparisons of cloud characteristics determined by spatial coherence analysis of AVHRR and GOES data. The latter data were simulated from 11 microns AVHRR data and were assigned a resolution (8 sq km) half that of the AVHRR. Day and nighttime passes were considered for single-layer maritime cloud systems. Sample radiance vs local standard deviation plots of 1024 points are provided for the same area from AVHRR and GOES-East sensors, demonstrating a qualitative agreement.

  3. Ground-based Nighttime Cloud Detection Using a Commercial Digital Camera: Observations at Manila Observatory (14.64N, 121.07E)

    NASA Astrophysics Data System (ADS)

    Gacal, G. F. B.; Tan, F.; Antioquia, C. T.; Lagrosas, N.

    2014-12-01

    Cloud detection during nighttime poses a real problem to researchers because of a lack of optimum sensors that can specifically detect clouds during this time of the day. Hence, lidars and satellites are currently some of the instruments that are being utilized to determine cloud presence in the atmosphere. These clouds play a significant role in the night weather system for the reason that they serve as barriers of thermal radiation from the Earth and thereby reflecting this radiation back to the Earth. This effectively lowers the rate of decreasing temperature in the atmosphere at night. The objective of this study is to detect cloud occurrences at nighttime for the purpose of studying patterns of cloud occurrence and the effects of clouds on local weather. In this study, a commercial camera (Canon Powershot A2300) is operated continuously to capture nighttime clouds. The camera is situated inside a weather-proof box with a glass cover and is placed on the rooftop of the Manila Observatory building to gather pictures of the sky every 5min to observe cloud dynamics and evolution in the atmosphere. To detect pixels with clouds, the pictures are converted from its native JPEG to grayscale format. The pixels are then screened for clouds by looking at the values of pixels with and without clouds. In grayscale format, pixels with clouds have greater pixel values than pixels without clouds. Based on the observations, 0.34 of the maximum pixel value is enough to discern pixels with clouds from pixels without clouds. Figs. 1a & 1b are sample unprocessed pictures of cloudless night (May 22-23, 2014) and cloudy skies (May 23-24, 2014), respectively. Figs.1c and 1d show percentage of occurrence of nighttime clouds on May 22-23 and May 23-24, 2014, respectively. The cloud occurrence in a pixel is defined as the ratio of the number times when the pixel has clouds to the total number of observations. Fig. 1c shows less than 50% cloud occurrence while Fig. 1d shows cloud occurrence more than what is shown in Fig. 1c. These graphs show the capability of the camera to detect and measure the cloud occurrence at nighttime. Continuous collection of nighttime pictures is currently implemented. In regions where there is a dearth of scientific data, the measured nighttime cloud occurrence will serve as a baseline for future cloud studies in this part of the world.

  4. Cloud Optical Depth Measured with Ground-Based, Uncooled Infrared Imagers

    NASA Technical Reports Server (NTRS)

    Shaw, Joseph A.; Nugent, Paul W.; Pust, Nathan J.; Redman, Brian J.; Piazzolla, Sabino

    2012-01-01

    Recent advances in uncooled, low-cost, long-wave infrared imagers provide excellent opportunities for remotely deployed ground-based remote sensing systems. However, the use of these imagers in demanding atmospheric sensing applications requires that careful attention be paid to characterizing and calibrating the system. We have developed and are using several versions of the ground-based "Infrared Cloud Imager (ICI)" instrument to measure spatial and temporal statistics of clouds and cloud optical depth or attenuation for both climate research and Earth-space optical communications path characterization. In this paper we summarize the ICI instruments and calibration methodology, then show ICI-derived cloud optical depths that are validated using a dual-polarization cloud lidar system for thin clouds (optical depth of approximately 4 or less).

  5. Geo-spatial distribution of cloud cover and influence of cloud induced attenuation and noise temperature on satellite signal propagation over Nigeria

    NASA Astrophysics Data System (ADS)

    Ojo, Joseph Sunday

    2017-05-01

    The study of the influence of cloud cover on satellite propagation links is becoming more demanding due to the requirement of larger bandwidth for different satellite applications. Cloud attenuation is one of the major factors to consider for optimum performance of Ka/V and other higher frequency bands. In this paper, the geo-spatial distribution of cloud coverage over some chosen stations in Nigeria has been considered. The substantial scale spatial dispersion of cloud cover based on synoptic meteorological data and the possible impact on satellite communication links at higher frequency bands was also investigated. The investigation was based on 5 years (2008-2012) achieved cloud cover data collected by the Nigerian Meteorological Agency (NIMET) Federal Ministry of Aviation, Oshodi Lagos over four synoptic hours of the day covering day and night. The performances of satellite signals as they traverse through the cloud and cloud noise temperature at different seasons and over different hours of days at Ku/W-bands frequency are also examined. The overall result shows that the additional total atmospheric noise temperature due to the clear air effect and the noise temperature from the cloud reduces the signal-to-noise ratio of the satellite receiver systems, leading to more signal loss and if not adequately taken care of may lead to significant outage. The present results will be useful for Earth-space link budgeting, especially for the proposed multi-sensors communication satellite systems in Nigeria.

  6. Cloud and Aerosol Retrieval for the 2001 GLAS Satellite Lidar Mission

    NASA Technical Reports Server (NTRS)

    Hart, William D.; Palm, Stephen P.; Spinhirne, James D.

    2000-01-01

    The Geoscience Laser Altimeter System (GLAS) is scheduled for launch in July of 2001 aboard the Ice, Cloud and Land Elevation Satellite (ICESAT). In addition to being a precision altimeter for mapping the height of the Earth's icesheets, GLAS will be an atmospheric lidar, sensitive enough to detect gaseous, aerosol, and cloud backscatter signals, at horizontal and vertical resolutions of 175 and 75m, respectively. GLAS will be the first lidar to produce temporally continuous atmospheric backscatter profiles with nearly global coverage (94-degree orbital inclination). With a projected operational lifetime of five years, GLAS will collect approximately six billion lidar return profiles. The large volume of data dictates that operational analysis algorithms, which need to keep pace with the data yield of the instrument, must be efficient. So, we need to evaluate the ability of operational algorithms to detect atmospheric constituents that affect global climate. We have to quantify, in a statistical manner, the accuracy and precision of GLAS cloud and aerosol observations. Our poster presentation will show the results of modeling studies that are designed to reveal the effectiveness and sensitivity of GLAS in detecting various atmospheric cloud and aerosol features. The studies consist of analyzing simulated lidar returns. Simulation cases are constructed either from idealized renditions of atmospheric cloud and aerosol layers or from data obtained by the NASA ER-2 Cloud Lidar System (CLS). The fabricated renditions permit quantitative evaluations of operational algorithms to retrieve cloud and aerosol parameters. The use of observational data permits the evaluations of performance for actual atmospheric conditions. The intended outcome of the presentation is that climatology community will be able to use the results of these studies to evaluate and quantify the impact of GLAS data upon atmospheric modeling efforts.

  7. The origin of Halley-type comets: probing the inner Oort cloud

    NASA Astrophysics Data System (ADS)

    Levison, H.; Dones, L.; Duncan, M.

    2000-10-01

    We have integrated the orbits of 27,700 test particles initially entering the planetary system from the Oort cloud in order to study the origin of Halley-type comets (HTCs). We included the gravitational influence of the Sun, giant planets, passing stars, and galactic tides. We find that an isotropically distributed Oort cloud does not reproduce the observed orbital element distribution of the HTCs. In order to match the observations, the initial inclination distribution of the progenitors of the HTCs must be similar to the observed HTC inclination distribution. We can match the observations with an Oort cloud that consists of an isotropic outer cloud and a disk-like massive inner cloud. These idealized two-component models have inner disks with median inclinations that range from 10 to 50o. This analysis represents the first link between observations and the structure of the inner Oort cloud. HFL and LD gratefully acknowledges grants provided by the NASA Origins of Solar Systems and Planetary Geology and Geophysics Programs. MJD is grateful for the continuing financial support of the Natural Science and Engineering Research Council of Canada and for financial support for work done inthe U.S.from NASA Planetary Geology and Geophysics Programs.

  8. Are Cloud Environments Ready for Scientific Applications?

    NASA Astrophysics Data System (ADS)

    Mehrotra, P.; Shackleford, K.

    2011-12-01

    Cloud computing environments are becoming widely available both in the commercial and government sectors. They provide flexibility to rapidly provision resources in order to meet dynamic and changing computational needs without the customers incurring capital expenses and/or requiring technical expertise. Clouds also provide reliable access to resources even though the end-user may not have in-house expertise for acquiring or operating such resources. Consolidation and pooling in a cloud environment allow organizations to achieve economies of scale in provisioning or procuring computing resources and services. Because of these and other benefits, many businesses and organizations are migrating their business applications (e.g., websites, social media, and business processes) to cloud environments-evidenced by the commercial success of offerings such as the Amazon EC2. In this paper, we focus on the feasibility of utilizing cloud environments for scientific workloads and workflows particularly of interest to NASA scientists and engineers. There is a wide spectrum of such technical computations. These applications range from small workstation-level computations to mid-range computing requiring small clusters to high-performance simulations requiring supercomputing systems with high bandwidth/low latency interconnects. Data-centric applications manage and manipulate large data sets such as satellite observational data and/or data previously produced by high-fidelity modeling and simulation computations. Most of the applications are run in batch mode with static resource requirements. However, there do exist situations that have dynamic demands, particularly ones with public-facing interfaces providing information to the general public, collaborators and partners, as well as to internal NASA users. In the last few months we have been studying the suitability of cloud environments for NASA's technical and scientific workloads. We have ported several applications to multiple cloud environments including NASA's Nebula environment, Amazon's EC2, Magellan at NERSC, and SGI's Cyclone system. We critically examined the performance of the applications on these systems. We also collected information on the usability of these cloud environments. In this talk we will present the results of our study focusing on the efficacy of using clouds for NASA's scientific applications.

  9. Performance, Agility and Cost of Cloud Computing Services for NASA GES DISC Giovanni Application

    NASA Astrophysics Data System (ADS)

    Pham, L.; Chen, A.; Wharton, S.; Winter, E. L.; Lynnes, C.

    2013-12-01

    The NASA Goddard Earth Science Data and Information Services Center (GES DISC) is investigating the performance, agility and cost of Cloud computing for GES DISC applications. Giovanni (Geospatial Interactive Online Visualization ANd aNalysis Infrastructure), one of the core applications at the GES DISC for online climate-related Earth science data access, subsetting, analysis, visualization, and downloading, was used to evaluate the feasibility and effort of porting an application to the Amazon Cloud Services platform. The performance and the cost of running Giovanni on the Amazon Cloud were compared to similar parameters for the GES DISC local operational system. A Giovanni Time-Series analysis of aerosol absorption optical depth (388nm) from OMI (Ozone Monitoring Instrument)/Aura was selected for these comparisons. All required data were pre-cached in both the Cloud and local system to avoid data transfer delays. The 3-, 6-, 12-, and 24-month data were used for analysis on the Cloud and local system respectively, and the processing times for the analysis were used to evaluate system performance. To investigate application agility, Giovanni was installed and tested on multiple Cloud platforms. The cost of using a Cloud computing platform mainly consists of: computing, storage, data requests, and data transfer in/out. The Cloud computing cost is calculated based on the hourly rate, and the storage cost is calculated based on the rate of Gigabytes per month. Cost for incoming data transfer is free, and for data transfer out, the cost is based on the rate in Gigabytes. The costs for a local server system consist of buying hardware/software, system maintenance/updating, and operating cost. The results showed that the Cloud platform had a 38% better performance and cost 36% less than the local system. This investigation shows the potential of cloud computing to increase system performance and lower the overall cost of system management.

  10. Statistical Analyses of Satellite Cloud Object Data from CERES. Part III; Comparison with Cloud-Resolving Model Simulations of Tropical Convective Clouds

    NASA Technical Reports Server (NTRS)

    Luo, Yali; Xu, Kuan-Man; Wielicki, Bruce A.; Wong, Takmeng; Eitzen, Zachary A.

    2007-01-01

    The present study evaluates the ability of a cloud-resolving model (CRM) to simulate the physical properties of tropical deep convective cloud objects identified from a Clouds and the Earth s Radiant Energy System (CERES) data product. The emphasis of this study is the comparisons among the small-, medium- and large-size categories of cloud objects observed during March 1998 and between the large-size categories of cloud objects observed during March 1998 (strong El Ni o) and March 2000 (weak La Ni a). Results from the CRM simulations are analyzed in a way that is consistent with the CERES retrieval algorithm and they are averaged to match the scale of the CERES satellite footprints. Cloud physical properties are analyzed in terms of their summary histograms for each category. It is found that there is a general agreement in the overall shapes of all cloud physical properties between the simulated and observed distributions. Each cloud physical property produced by the CRM also exhibits different degrees of disagreement with observations over different ranges of the property. The simulated cloud tops are generally too high and cloud top temperatures are too low except for the large-size category of March 1998. The probability densities of the simulated top-of-the-atmosphere (TOA) albedos for all four categories are underestimated for high albedos, while those of cloud optical depth are overestimated at its lowest bin. These disagreements are mainly related to uncertainties in the cloud microphysics parameterization and inputs such as cloud ice effective size to the radiation calculation. Summary histograms of cloud optical depth and TOA albedo from the CRM simulations of the large-size category of cloud objects do not differ significantly between the March 1998 and 2000 periods, consistent with the CERES observations. However, the CRM is unable to reproduce the significant differences in the observed cloud top height while it overestimates the differences in the observed outgoing longwave radiation and cloud top temperature between the two periods. Comparisons between the CRM results and the observations for most parameters in March 1998 consistently show that both the simulations and observations have larger differences between the large- and small-size categories than between the large- and medium-size, or between the medium- and small-size categories. However, the simulated cloud properties do not change as much with size as observed. These disagreements are likely related to the spatial averaging of the forcing data and the mismatch in time and in space between the numerical weather prediction model from which the forcing data are produced and the CERES observed cloud systems.

  11. Large-Scale, Parallel, Multi-Sensor Atmospheric Data Fusion Using Cloud Computing

    NASA Astrophysics Data System (ADS)

    Wilson, B. D.; Manipon, G.; Hua, H.; Fetzer, E.

    2013-05-01

    NASA's Earth Observing System (EOS) is an ambitious facility for studying global climate change. The mandate now is to combine measurements from the instruments on the "A-Train" platforms (AIRS, AMSR-E, MODIS, MISR, MLS, and CloudSat) and other Earth probes to enable large-scale studies of climate change over decades. Moving to multi-sensor, long-duration analyses of important climate variables presents serious challenges for large-scale data mining and fusion. For example, one might want to compare temperature and water vapor retrievals from one instrument (AIRS) to another (MODIS), and to a model (ECMWF), stratify the comparisons using a classification of the "cloud scenes" from CloudSat, and repeat the entire analysis over 10 years of data. To efficiently assemble such datasets, we are utilizing Elastic Computing in the Cloud and parallel map/reduce-based algorithms. However, these problems are Data Intensive computing so the data transfer times and storage costs (for caching) are key issues. SciReduce is a Hadoop-like parallel analysis system, programmed in parallel python, that is designed from the ground up for Earth science. SciReduce executes inside VMWare images and scales to any number of nodes in the Cloud. Unlike Hadoop, SciReduce operates on bundles of named numeric arrays, which can be passed in memory or serialized to disk in netCDF4 or HDF5. Figure 1 shows the architecture of the full computational system, with SciReduce at the core. Multi-year datasets are automatically "sharded" by time and space across a cluster of nodes so that years of data (millions of files) can be processed in a massively parallel way. Input variables (arrays) are pulled on-demand into the Cloud using OPeNDAP URLs or other subsetting services, thereby minimizing the size of the cached input and intermediate datasets. We are using SciReduce to automate the production of multiple versions of a ten-year A-Train water vapor climatology under a NASA MEASURES grant. We will present the architecture of SciReduce, describe the achieved "clock time" speedups in fusing datasets on our own nodes and in the Cloud, and discuss the Cloud cost tradeoffs for storage, compute, and data transfer. We will also present a concept/prototype for staging NASA's A-Train Atmospheric datasets (Levels 2 & 3) in the Amazon Cloud so that any number of compute jobs can be executed "near" the multi-sensor data. Given such a system, multi-sensor climate studies over 10-20 years of data could be performed in an efficient way, with the researcher paying only his own Cloud compute bill.; Figure 1 -- Architecture.

  12. Large-Scale, Parallel, Multi-Sensor Atmospheric Data Fusion Using Cloud Computing

    NASA Astrophysics Data System (ADS)

    Wilson, B. D.; Manipon, G.; Hua, H.; Fetzer, E. J.

    2013-12-01

    NASA's Earth Observing System (EOS) is an ambitious facility for studying global climate change. The mandate now is to combine measurements from the instruments on the 'A-Train' platforms (AIRS, AMSR-E, MODIS, MISR, MLS, and CloudSat) and other Earth probes to enable large-scale studies of climate change over decades. Moving to multi-sensor, long-duration analyses of important climate variables presents serious challenges for large-scale data mining and fusion. For example, one might want to compare temperature and water vapor retrievals from one instrument (AIRS) to another (MODIS), and to a model (MERRA), stratify the comparisons using a classification of the 'cloud scenes' from CloudSat, and repeat the entire analysis over 10 years of data. To efficiently assemble such datasets, we are utilizing Elastic Computing in the Cloud and parallel map/reduce-based algorithms. However, these problems are Data Intensive computing so the data transfer times and storage costs (for caching) are key issues. SciReduce is a Hadoop-like parallel analysis system, programmed in parallel python, that is designed from the ground up for Earth science. SciReduce executes inside VMWare images and scales to any number of nodes in the Cloud. Unlike Hadoop, SciReduce operates on bundles of named numeric arrays, which can be passed in memory or serialized to disk in netCDF4 or HDF5. Figure 1 shows the architecture of the full computational system, with SciReduce at the core. Multi-year datasets are automatically 'sharded' by time and space across a cluster of nodes so that years of data (millions of files) can be processed in a massively parallel way. Input variables (arrays) are pulled on-demand into the Cloud using OPeNDAP URLs or other subsetting services, thereby minimizing the size of the cached input and intermediate datasets. We are using SciReduce to automate the production of multiple versions of a ten-year A-Train water vapor climatology under a NASA MEASURES grant. We will present the architecture of SciReduce, describe the achieved 'clock time' speedups in fusing datasets on our own compute nodes and in the public Cloud, and discuss the Cloud cost tradeoffs for storage, compute, and data transfer. We will also present a concept/prototype for staging NASA's A-Train Atmospheric datasets (Levels 2 & 3) in the Amazon Cloud so that any number of compute jobs can be executed 'near' the multi-sensor data. Given such a system, multi-sensor climate studies over 10-20 years of data could be performed in an efficient way, with the researcher paying only his own Cloud compute bill. SciReduce Architecture

  13. Basic and applied research related to the technology of space energy conversion systems

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.; Mattick, A. T.; Bruckner, A. P.

    1988-01-01

    The first six months' research effort on the Liquid Droplet Radiator (LDR) focussed on experimental and theoretical studies of radiation by an LDR droplet cloud. Improvements in the diagnostics for the radiation facility have been made which have permitted an accurate experimental test of theoretical predictions of LDR radiation over a wide range of optical depths, using a cloud of Dow silicone oil droplets. In conjunction with these measurements an analysis was made of the evolution of the cylindrical droplet cloud generated by a 2300-hole orifice plate. This analysis indicates that a considerable degree of agglomeration of droplets occurs over the first meter of travel. Theoretical studies have centered on developments of an efficient means of computing the angular scattering distribution from droplets in an LDR droplet cloud, so that a parameter study can be carried out for LDR radiative performance vs fluid optical properties and cloud geometry.

  14. Agile Development of Various Computational Power Adaptive Web-Based Mobile-Learning Software Using Mobile Cloud Computing

    ERIC Educational Resources Information Center

    Zadahmad, Manouchehr; Yousefzadehfard, Parisa

    2016-01-01

    Mobile Cloud Computing (MCC) aims to improve all mobile applications such as m-learning systems. This study presents an innovative method to use web technology and software engineering's best practices to provide m-learning functionalities hosted in a MCC-learning system as service. Components hosted by MCC are used to empower developers to create…

  15. A statistical approach to the life cycle analysis of cumulus clouds selected in a virtual reality environment

    NASA Astrophysics Data System (ADS)

    Heus, Thijs; Jonker, Harm J. J.; van den Akker, Harry E. A.; Griffith, Eric J.; Koutek, Michal; Post, Frits H.

    2009-03-01

    In this study, a new method is developed to investigate the entire life cycle of shallow cumuli in large eddy simulations. Although trained observers have no problem in distinguishing the different life stages of a cloud, this process proves difficult to automate, because cloud-splitting and cloud-merging events complicate the distinction between a single system divided in several cloudy parts and two independent systems that collided. Because the human perception is well equipped to capture and to make sense of these time-dependent three-dimensional features, a combination of automated constraints and human inspection in a three-dimensional virtual reality environment is used to select clouds that are exemplary in their behavior throughout their entire life span. Three specific cases (ARM, BOMEX, and BOMEX without large-scale forcings) are analyzed in this way, and the considerable number of selected clouds warrants reliable statistics of cloud properties conditioned on the phase in their life cycle. The most dominant feature in this statistical life cycle analysis is the pulsating growth that is present throughout the entire lifetime of the cloud, independent of the case and of the large-scale forcings. The pulses are a self-sustained phenomenon, driven by a balance between buoyancy and horizontal convergence of dry air. The convective inhibition just above the cloud base plays a crucial role as a barrier for the cloud to overcome in its infancy stage, and as a buffer region later on, ensuring a steady supply of buoyancy into the cloud.

  16. Study on Diagnosing Three Dimensional Cloud Region

    NASA Astrophysics Data System (ADS)

    Cai, M., Jr.; Zhou, Y., Sr.

    2017-12-01

    Cloud mask and relative humidity (RH) provided by Cloudsat products from 2007 to 2008 are statistical analyzed to get RH Threshold between cloud and clear sky and its variation with height. A diagnosis method is proposed based on reanalysis data and applied to three-dimensional cloud field diagnosis of a real case. Diagnostic cloud field was compared to satellite, radar and other cloud precipitation observation. Main results are as follows. 1.Cloud region where cloud mask is bigger than 20 has a good space and time corresponding to the high value relative humidity region, which is provide by ECWMF AUX product. Statistical analysis of the RH frequency distribution within and outside cloud indicated that, distribution of RH in cloud at different height range shows single peak type, and the peak is near a RH value of 100%. Local atmospheric environment affects the RH distribution outside cloud, which leads to TH distribution vary in different region or different height. 2. RH threshold and its vertical distribution used for cloud diagnostic was analyzed from Threat Score method. The method is applied to a three dimension cloud diagnosis case study based on NCEP reanalysis data and th diagnostic cloud field is compared to satellite, radar and cloud precipitation observation on ground. It is found that, RH gradient is very big around cloud region and diagnosed cloud area by RH threshold method is relatively stable. Diagnostic cloud area has a good corresponding to updraft region. The cloud and clear sky distribution corresponds to satellite the TBB observations overall. Diagnostic cloud depth, or sum cloud layers distribution consists with optical thickness and precipitation on ground better. The cloud vertical profile reveals the relation between cloud vertical structure and weather system clearly. Diagnostic cloud distribution correspond to cloud observations on ground very well. 3. The method is improved by changing the vertical interval from altitude to temperature. The result shows that, the five factors , including TS score for clear sky, empty forecast, missed forecast, and especially TS score for cloud region and the accurate rate increased obviously. So, the RH threshold and its vertical distribution with temperature is better than with altitude. More tests and comparision should be done to assess the diagnosis method.

  17. Cloud statistics over the Indonesian Maritime Continent during the first and second CPEA campaigns

    NASA Astrophysics Data System (ADS)

    Marzuki; Vonnisa, Mutya; Rahayu, Aulya; Hashiguchi, Hiroyuki

    2017-06-01

    Improvement of precipitation prediction requires an understanding of the organization mechanism, such as the initiation and evolution of organized convective systems. This paper is a follow-up of a previous study on cloud propagation over the Indonesian Maritime Continent (IMC). Here, the infrared blackbody brightness temperature data is analyzed. A comprehensive cloud statistics model, including span, speed, duration, all possible directions, and size was estimated by applying the modified tracking reflectivity echoes by correlation (TREC) method to time-latitude-longitude space. Comparisons were made to cloud statistics during the first and second campaigns of Coupling Processes in the Equatorial Atmosphere, hereinafter called CPEA-I and CPEA-II. Although the two campaigns were conducted in different monsoon seasons, the cloud propagation directions during each campaign were similar. The cloud systems moved in most directions, except north and east, and preferred southwestward, westward and northwestward movements. Thus, westward-moving clouds were more dominant than eastward-moving clouds, in agreement with previous studies. This feature is consistent with the prevailing easterly wind in the middle and upper troposphere despite the difference in low-level wind during each campaign. The two campaign periods were different due to the phase of the Madden-Julian Oscillation (MJO). CPEA-I took place over the active MJO phase, with larger-sized clouds than CPEA-II. Thus, the MJO had an enormous impact on cloud size, but such an impact was not significantly observed in the speed, lifetime, span and direction of propagation. In the two campaigns, clouds moved with a speed of 3-30 m s-1 and in duration from a few hours to longer than one day. Clouds with long spans and high speeds were generally observed during the strong vertical shear of horizontal winds. In contrast, clouds with short spans and low speeds were found in the more varied environment of the IMC, but were dominant over land, which may have been associated with the diurnal heating cycle. Finally, the present results showed more complex behavior than a previous study in the Bay of Bengal, indicating precipitation mechanisms over the IMC including interactions between large-scale atmospheric phenomena (e.g., monsoon and MJO) with the diurnal precipitation cycles.

  18. 3D point cloud analysis of structured light registration in computer-assisted navigation in spinal surgeries

    NASA Astrophysics Data System (ADS)

    Gupta, Shaurya; Guha, Daipayan; Jakubovic, Raphael; Yang, Victor X. D.

    2017-02-01

    Computer-assisted navigation is used by surgeons in spine procedures to guide pedicle screws to improve placement accuracy and in some cases, to better visualize patient's underlying anatomy. Intraoperative registration is performed to establish a correlation between patient's anatomy and the pre/intra-operative image. Current algorithms rely on seeding points obtained directly from the exposed spinal surface to achieve clinically acceptable registration accuracy. Registration of these three dimensional surface point-clouds are prone to various systematic errors. The goal of this study was to evaluate the robustness of surgical navigation systems by looking at the relationship between the optical density of an acquired 3D point-cloud and the corresponding surgical navigation error. A retrospective review of a total of 48 registrations performed using an experimental structured light navigation system developed within our lab was conducted. For each registration, the number of points in the acquired point cloud was evaluated relative to whether the registration was acceptable, the corresponding system reported error and target registration error. It was demonstrated that the number of points in the point cloud neither correlates with the acceptance/rejection of a registration or the system reported error. However, a negative correlation was observed between the number of the points in the point-cloud and the corresponding sagittal angular error. Thus, system reported total registration points and accuracy are insufficient to gauge the accuracy of a navigation system and the operating surgeon must verify and validate registration based on anatomical landmarks prior to commencing surgery.

  19. Analysis of the Security and Privacy Requirements of Cloud-Based Electronic Health Records Systems

    PubMed Central

    Fernández, Gonzalo; López-Coronado, Miguel

    2013-01-01

    Background The Cloud Computing paradigm offers eHealth systems the opportunity to enhance the features and functionality that they offer. However, moving patients’ medical information to the Cloud implies several risks in terms of the security and privacy of sensitive health records. In this paper, the risks of hosting Electronic Health Records (EHRs) on the servers of third-party Cloud service providers are reviewed. To protect the confidentiality of patient information and facilitate the process, some suggestions for health care providers are made. Moreover, security issues that Cloud service providers should address in their platforms are considered. Objective To show that, before moving patient health records to the Cloud, security and privacy concerns must be considered by both health care providers and Cloud service providers. Security requirements of a generic Cloud service provider are analyzed. Methods To study the latest in Cloud-based computing solutions, bibliographic material was obtained mainly from Medline sources. Furthermore, direct contact was made with several Cloud service providers. Results Some of the security issues that should be considered by both Cloud service providers and their health care customers are role-based access, network security mechanisms, data encryption, digital signatures, and access monitoring. Furthermore, to guarantee the safety of the information and comply with privacy policies, the Cloud service provider must be compliant with various certifications and third-party requirements, such as SAS70 Type II, PCI DSS Level 1, ISO 27001, and the US Federal Information Security Management Act (FISMA). Conclusions Storing sensitive information such as EHRs in the Cloud means that precautions must be taken to ensure the safety and confidentiality of the data. A relationship built on trust with the Cloud service provider is essential to ensure a transparent process. Cloud service providers must make certain that all security mechanisms are in place to avoid unauthorized access and data breaches. Patients must be kept informed about how their data are being managed. PMID:23965254

  20. Analysis of the security and privacy requirements of cloud-based electronic health records systems.

    PubMed

    Rodrigues, Joel J P C; de la Torre, Isabel; Fernández, Gonzalo; López-Coronado, Miguel

    2013-08-21

    The Cloud Computing paradigm offers eHealth systems the opportunity to enhance the features and functionality that they offer. However, moving patients' medical information to the Cloud implies several risks in terms of the security and privacy of sensitive health records. In this paper, the risks of hosting Electronic Health Records (EHRs) on the servers of third-party Cloud service providers are reviewed. To protect the confidentiality of patient information and facilitate the process, some suggestions for health care providers are made. Moreover, security issues that Cloud service providers should address in their platforms are considered. To show that, before moving patient health records to the Cloud, security and privacy concerns must be considered by both health care providers and Cloud service providers. Security requirements of a generic Cloud service provider are analyzed. To study the latest in Cloud-based computing solutions, bibliographic material was obtained mainly from Medline sources. Furthermore, direct contact was made with several Cloud service providers. Some of the security issues that should be considered by both Cloud service providers and their health care customers are role-based access, network security mechanisms, data encryption, digital signatures, and access monitoring. Furthermore, to guarantee the safety of the information and comply with privacy policies, the Cloud service provider must be compliant with various certifications and third-party requirements, such as SAS70 Type II, PCI DSS Level 1, ISO 27001, and the US Federal Information Security Management Act (FISMA). Storing sensitive information such as EHRs in the Cloud means that precautions must be taken to ensure the safety and confidentiality of the data. A relationship built on trust with the Cloud service provider is essential to ensure a transparent process. Cloud service providers must make certain that all security mechanisms are in place to avoid unauthorized access and data breaches. Patients must be kept informed about how their data are being managed.

  1. An Estimate of Low-Cloud Feedbacks from Variations of Cloud Radiative and Physical Properties with Sea Surface Temperature on Interannual Time Scales

    NASA Technical Reports Server (NTRS)

    Eitzen, Zachary A.; Xu, Kuan-Man; Wong, Takmeng

    2011-01-01

    Simulations of climate change have yet to reach a consensus on the sign and magnitude of the changes in physical properties of marine boundary layer clouds. In this study, the authors analyze how cloud and radiative properties vary with SST anomaly in low-cloud regions, based on five years (March 2000 - February 2005) of Clouds and the Earth s Radiant Energy System (CERES) -- Terra monthly gridded data and matched European Centre for Medium-Range Weather Forecasts (ECMWF) meteorological reanalaysis data. In particular, this study focuses on the changes in cloud radiative effect, cloud fraction, and cloud optical depth with SST anomaly. The major findings are as follows. First, the low-cloud amount (-1.9% to -3.4% /K) and the logarithm of low-cloud optical depth (-0.085 to -0.100/K) tend to decrease while the net cloud radiative effect (3.86 W/m(exp 2)/ K) becomes less negative as SST anomalies increase. These results are broadly consistent with previous observational studies. Second, after the changes in cloud and radiative properties with SST anomaly are separated into dynamic, thermodynamic, and residual components, changes in the dynamic component (taken as the vertical velocity at 700 hPa) have relatively little effect on cloud and radiative properties. However, the estimated inversion strength decreases with increasing SST, accounting for a large portion of the measured decreases in cloud fraction and cloud optical depth. The residual positive change in net cloud radiative effect (1.48 W/m(exp 2)/ K) and small changes in low-cloud amount (-0.81% to 0.22% /K) and decrease in the logarithm of optical depth (-0.035 to -0.046/ K) with SST are interpreted as a positive cloud feedback, with cloud optical depth feedback being the dominant contributor. Last, the magnitudes of the residual changes differ greatly among the six low-cloud regions examined in this study, with the largest positive feedbacks (approximately 4 W/m(exp 2)/ K) in the southeast and northeast Atlantic regions and a slightly negative feedback (-0.2 W/m(exp 2)/ K) in the south-central Pacific region. Because the retrievals of cloud optical depth and/or cloud fraction are difficult in the presence of aerosols, the transport of heavy African continental aerosols may contribute to the large magnitudes of estimated cloud feedback in the two Atlantic regions.

  2. New Cloud Science from the New ARM Cloud Radar Systems (Invited)

    NASA Astrophysics Data System (ADS)

    Wiscombe, W. J.

    2010-12-01

    The DOE ARM Program is deploying over $30M worth of scanning polarimetric Doppler radars at its four fixed and two mobile sites, with the object of advancing cloud lifecycle science, and cloud-aerosol-precipitation interaction science, by a quantum leap. As of 2011, there will be 13 scanning radar systems to complement its existing array of profiling cloud radars: C-band for precipitation, X-band for drizzle and precipitation, and two-frequency radars for cloud droplets and drizzle. This will make ARM the world’s largest science user of, and largest provider of data from, ground-based cloud radars. The philosophy behind this leap is actually quite simple, to wit: dimensionality really does matter. Just as 2D turbulence is fundamentally different from 3D turbulence, so observing clouds only at zenith provides a dimensionally starved, and sometimes misleading, picture of real clouds. In particular, the zenith view can say little or nothing about cloud lifecycle and the second indirect effect, nor about aerosol-precipitation interactions. It is not even particularly good at retrieving the cloud fraction (no matter how that slippery quantity is defined). This talk will review the history that led to this development and then discuss the aspirations for how this will propel cloud-aerosol-precipitation science forward. The step by step plan for translating raw radar data into information that is useful to cloud and aerosol scientists and climate modelers will be laid out, with examples from ARM’s recent scanning cloud radar deployments in the Azores and Oklahoma . In the end, the new systems should allow cloud systems to be understood as 4D coherent entities rather than dimensionally crippled 2D or 3D entities such as observed by satellites and zenith-pointing radars.

  3. Infrared Cloud Imager Development for Atmospheric Optical Communication Characterization, and Measurements at the JPL Table Mountain Facility

    NASA Astrophysics Data System (ADS)

    Nugent, P. W.; Shaw, J. A.; Piazzolla, S.

    2013-02-01

    The continuous demand for high data return in deep space and near-Earth satellite missions has led NASA and international institutions to consider alternative technologies for high-data-rate communications. One solution is the establishment of wide-bandwidth Earth-space optical communication links, which require (among other things) a nearly obstruction-free atmospheric path. Considering the atmospheric channel, the most common and most apparent impairments on Earth-space optical communication paths arise from clouds. Therefore, the characterization of the statistical behavior of cloud coverage for optical communication ground station candidate sites is of vital importance. In this article, we describe the development and deployment of a ground-based, long-wavelength infrared cloud imaging system able to monitor and characterize the cloud coverage. This system is based on a commercially available camera with a 62-deg diagonal field of view. A novel internal-shutter-based calibration technique allows radiometric calibration of the camera, which operates without a thermoelectric cooler. This cloud imaging system provides continuous day-night cloud detection with constant sensitivity. The cloud imaging system also includes data-processing algorithms that calculate and remove atmospheric emission to isolate cloud signatures, and enable classification of clouds according to their optical attenuation. Measurements of long-wavelength infrared cloud radiance are used to retrieve the optical attenuation (cloud optical depth due to absorption and scattering) in the wavelength range of interest from visible to near-infrared, where the cloud attenuation is quite constant. This article addresses the specifics of the operation, calibration, and data processing of the imaging system that was deployed at the NASA/JPL Table Mountain Facility (TMF) in California. Data are reported from July 2008 to July 2010. These data describe seasonal variability in cloud cover at the TMF site, with cloud amount (percentage of cloudy pixels) peaking at just over 51 percent during February, of which more than 60 percent had optical attenuation exceeding 12 dB at wavelengths in the range from the visible to the near-infrared. The lowest cloud amount was found during August, averaging 19.6 percent, and these clouds were mostly optically thin, with low attenuation.

  4. Cloud Detection from Satellite Imagery: A Comparison of Expert-Generated and Automatically-Generated Decision Trees

    NASA Technical Reports Server (NTRS)

    Shiffman, Smadar

    2004-01-01

    Automated cloud detection and tracking is an important step in assessing global climate change via remote sensing. Cloud masks, which indicate whether individual pixels depict clouds, are included in many of the data products that are based on data acquired on- board earth satellites. Many cloud-mask algorithms have the form of decision trees, which employ sequential tests that scientists designed based on empirical astrophysics studies and astrophysics simulations. Limitations of existing cloud masks restrict our ability to accurately track changes in cloud patterns over time. In this study we explored the potential benefits of automatically-learned decision trees for detecting clouds from images acquired using the Advanced Very High Resolution Radiometer (AVHRR) instrument on board the NOAA-14 weather satellite of the National Oceanic and Atmospheric Administration. We constructed three decision trees for a sample of 8km-daily AVHRR data from 2000 using a decision-tree learning procedure provided within MATLAB(R), and compared the accuracy of the decision trees to the accuracy of the cloud mask. We used ground observations collected by the National Aeronautics and Space Administration Clouds and the Earth s Radiant Energy Systems S COOL project as the gold standard. For the sample data, the accuracy of automatically learned decision trees was greater than the accuracy of the cloud masks included in the AVHRR data product.

  5. First UAV Measurements of Entrainment Layer Fluxes with Coupled Cloud Property Measurements

    NASA Astrophysics Data System (ADS)

    Thomas, R. M.; Praveen, P. S.; Wilcox, E. M.; Pistone, K.; Bender, F.; Ramanathan, V.

    2012-12-01

    This study details entrainment flux measurements made from a lightweight unmanned aerial vehicle (UAV) containing turbulent water vapor flux instrumentation (Thomas et al., 2012). The system was flown for 26 flights during the Cloud, Aerosol, Radiative forcing, Dynamics EXperiment (CARDEX) in the Maldives in March 2012 to study interrelationships between entrainment, aerosols, water budget, cloud microphysics and radiative fluxes in a trade wind cumulus cloud regime. A major advantage of using this lightweight, precision autopiloted UAV system with scientific telemetry is the ability to target small-scale features in the boundary layer, such as an entrainment layer, with minimal aircraft induced disruption. Results are presented from two UAVs flown in stacked formation: one UAV situated in-cloud measuring cloud-droplet size distribution spectra and liquid water content, and another co-located 100m above measuring turbulent properties and entrainment latent heat flux (λEE). We also show latent heat flux and turbulence measurements routinely made at the entrainment layer base and altitudes from the surface up to 4kft. Ratios of λEE to corresponding surface tower values (λES) display a bimodal frequency distribution with ranges 0.22-0.53 and 0.79-1.5, with occasional events >7. Reasons for this distribution are discussed drawing upon boundary layer and free tropospheric dynamics and meteorology, turbulence length scales, surface conditions, and cloud interactions. Latent heat flux profiles are combined with in-cloud UAV Liquid Water Content (LWC) data and surface based Liquid Water Path (LWP) and Precipitable Water Vapor (PWV) measurements to produce observationally constrained vertical water budgets, providing insights into diurnal coupling of λEE and λES. Observed λEE, λES, water budgets, and cloud microphysical responses to entrainment are then contextualized with respect to measured aerosol loading profiles and airmass history.

  6. Experimental studies of aerosol- cloud droplet interactions at the puy de Dome observatory (France)

    NASA Astrophysics Data System (ADS)

    Laj, P.; Dupuy, R.; Sellegri, K.; Pichon, J.; Fournol, J.; Cortes, L.; Preunkert, S.; Legrand, M.

    2001-05-01

    The interactions between aerosol particles, gases and cloud droplets were studied at the puy de Dome cloud station (France, 1465 a.s.l.) during winter 2000. The partitioning of gas and aerosol species between interstitial and condensed phases is achieved using a series of instrumentation including a newly developed dual counter-flow virtual impactor (CVI)/ Round jet impactor (RJI) system. The RJI/CVI system, coupled with measurement of cloud microphysical properties, provided direct observation of number and mass partitioning of aerosols under different air mass conditions. Preliminary results from this field experiment allowed for the characterization of size segregated chemical composition of CCNs and of interstitial aerosols by means of gravimetric analysis and ion chromatography. It appears that CCNs are clearly enriched in soluble species as respect to interstitial aerosols. We found evidences of limited growth of Ca2+ - rich coarse particles (>1 μm) that did not form droplets larger than the 5 μm CVI cut-off. The number partitioning of aerosol particles between interstitial and condensed phases clearly depends upon cloud microphysics and aerosol properties and therefore undergoes different behaviour according to air mass origin. However, results cannot be fully explained by diffusion growth alone, in particular for high cloud LWC.

  7. Parameterization of Cirrus Cloud Vertical Profiles and Geometrical Thickness Using CALIPSO and CloudSat Data

    NASA Astrophysics Data System (ADS)

    Khatri, P.; Iwabuchi, H.; Saito, M.

    2017-12-01

    High-level cirrus clouds, which normally occur over more than 20% of the globe, are known to have profound impacts on energy budget and climate change. The scientific knowledge regarding the vertical structure of such high-level cirrus clouds and their geometrical thickness are relatively poorer compared to low-level water clouds. Knowledge regarding cloud vertical structure is especially important in passive remote sensing of cloud properties using infrared channels or channels strongly influenced by gaseous absorption when clouds are geometrically thick and optically thin. Such information is also very useful for validating cloud resolving numerical models. This study analyzes global scale data of ice clouds identified by Cloud profiling Radar (CPR) onboard CloudSat and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard CALIPSO to parameterize (i) vertical profiles of ice water content (IWC), cloud-particle effective radius (CER), and ice-particle number concentration for varying ice water path (IWP) values and (ii) the relation of cloud geometrical thickness (CGT) with IWP and CER for varying cloud top temperature (CTT) values. It is found that the maxima in IWC and CER profile shifts towards cloud base with the increase of IWP. Similarly, if the cloud properties remain same, CGT shows an increasing trend with the decrease of CTT. The implementation of such cloud vertical inhomogeneity parameterization in the forward model used in the Integrated Cloud Analysis System ICAS (Iwabuchi et al., 2016) generally shows increase of brightness temperatures in infrared channels compared to vertically homogeneous cloud assumption. The cloud vertical inhomogeneity is found to bring noticeable changes in retrieved cloud properties. Retrieved CER and cloud top height become larger for optically thick cloud. We will show results of comparison of cloud properties retrieved from infrared measurements and active remote sensing.

  8. Statistical Analyses of Satellite Cloud Object Data from CERES. Part II; Tropical Convective Cloud Objects During 1998 El Nino and Validation of the Fixed Anvil Temperature Hypothesis

    NASA Technical Reports Server (NTRS)

    Xu, Kuan-Man; Wong, Takmeng; Wielicki, Bruce a.; Parker, Lindsay; Lin, Bing; Eitzen, Zachary A.; Branson, Mark

    2006-01-01

    Characteristics of tropical deep convective cloud objects observed over the tropical Pacific during January-August 1998 are examined using the Tropical Rainfall Measuring Mission/ Clouds and the Earth s Radiant Energy System single scanner footprint (SSF) data. These characteristics include the frequencies of occurrence and statistical distributions of cloud physical properties. Their variations with cloud-object size, sea surface temperature (SST), and satellite precessing cycle are analyzed in detail. A cloud object is defined as a contiguous patch of the Earth composed of satellite footprints within a single dominant cloud-system type. It is found that statistical distributions of cloud physical properties are significantly different among three size categories of cloud objects with equivalent diameters of 100 - 150 km (small), 150 - 300 km (medium), and > 300 km (large), respectively, except for the distributions of ice particle size. The distributions for the larger-size category of cloud objects are more skewed towards high SSTs, high cloud tops, low cloud-top temperature, large ice water path, high cloud optical depth, low outgoing longwave (LW) radiation, and high albedo than the smaller-size category. As SST varied from one satellite precessing cycle to another, the changes in macrophysical properties of cloud objects over the entire tropical Pacific were small for the large-size category of cloud objects, relative to those of the small- and medium-size categories. This result suggests that the fixed anvil temperature hypothesis of Hartmann and Larson may be valid for the large-size category. Combining with the result that a higher percentage of the large-size category of cloud objects occurs during higher SST subperiods, this implies that macrophysical properties of cloud objects would be less sensitive to further warming of the climate. On the other hand, when cloud objects are classified according to SSTs where large-scale dynamics plays important roles, statistical characteristics of cloud microphysical properties, optical depth and albedo are not sensitive to the SST, but those of cloud macrophysical properties are strongly dependent upon the SST. Frequency distributions of vertical velocity from the European Center for Medium-range Weather Forecasts model that is matched to each cloud object are used to interpret some of the findings in this study.

  9. Comparing airborne and satellite retrievals of cloud optical thickness and particle effective radius using a spectral radiance ratio technique: two case studies for cirrus and deep convective clouds

    NASA Astrophysics Data System (ADS)

    Krisna, Trismono C.; Wendisch, Manfred; Ehrlich, André; Jäkel, Evelyn; Werner, Frank; Weigel, Ralf; Borrmann, Stephan; Mahnke, Christoph; Pöschl, Ulrich; Andreae, Meinrat O.; Voigt, Christiane; Machado, Luiz A. T.

    2018-04-01

    Solar radiation reflected by cirrus and deep convective clouds (DCCs) was measured by the Spectral Modular Airborne Radiation Measurement System (SMART) installed on the German High Altitude and Long Range Research Aircraft (HALO) during the Mid-Latitude Cirrus (ML-CIRRUS) and the Aerosol, Cloud, Precipitation, and Radiation Interaction and Dynamic of Convective Clouds System - Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modelling and to the Global Precipitation Measurement (ACRIDICON-CHUVA) campaigns. On particular flights, HALO performed measurements closely collocated with overpasses of the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Aqua satellite. A cirrus cloud located above liquid water clouds and a DCC topped by an anvil cirrus are analyzed in this paper. Based on the nadir spectral upward radiance measured above the two clouds, the optical thickness τ and particle effective radius reff of the cirrus and DCC are retrieved using a radiance ratio technique, which considers the cloud thermodynamic phase, the vertical profile of cloud microphysical properties, the presence of multilayer clouds, and the heterogeneity of the surface albedo. For the cirrus case, the comparison of τ and reff retrieved on the basis of SMART and MODIS measurements yields a normalized mean absolute deviation of up to 1.2 % for τ and 2.1 % for reff. For the DCC case, deviations of up to 3.6 % for τ and 6.2 % for reff are obtained. The larger deviations in the DCC case are mainly attributed to the fast cloud evolution and three-dimensional (3-D) radiative effects. Measurements of spectral upward radiance at near-infrared wavelengths are employed to investigate the vertical profile of reff in the cirrus. The retrieved values of reff are compared with corresponding in situ measurements using a vertical weighting method. Compared to the MODIS observations, measurements of SMART provide more information on the vertical distribution of particle sizes, which allow reconstructing the profile of reff close to the cloud top. The comparison between retrieved and in situ reff yields a normalized mean absolute deviation, which ranges between 1.5 and 10.3 %, and a robust correlation coefficient of 0.82.

  10. Tropical Oceanic Precipitation Processes over Warm Pool: 2D and 3D Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, W.- K.; Johnson, D.

    1998-01-01

    Rainfall is a key link in the hydrologic cycle as well as the primary heat source for the atmosphere, The vertical distribution of convective latent-heat release modulates the large-scale circulations of the tropics, Furthermore, changes in the moisture distribution at middle and upper levels of the troposphere can affect cloud distributions and cloud liquid water and ice contents. How the incoming solar and outgoing longwave radiation respond to these changes in clouds is a major factor in assessing climate change. Present large-scale weather and climate models simulate cloud processes only crudely, reducing confidence in their predictions on both global and regional scales. One of the most promising methods to test physical parameterizations used in General Circulation Models (GCMS) and climate models is to use field observations together with Cloud Resolving Models (CRMs). The CRMs use more sophisticated and physically realistic parameterizations of cloud microphysical processes, and allow for their complex interactions with solar and infrared radiative transfer processes. The CRMs can reasonably well resolve the evolution, structure, and life cycles of individual clouds and cloud systems, The major objective of this paper is to investigate the latent heating, moisture and momenti,im budgets associated with several convective systems developed during the TOGA COARE IFA - westerly wind burst event (late December, 1992). The tool for this study is the Goddard Cumulus Ensemble (CCE) model which includes a 3-class ice-phase microphysical scheme, The model domain contains 256 x 256 grid points (using 2 km resolution) in the horizontal and 38 grid points (to a depth of 22 km depth) in the vertical, The 2D domain has 1024 grid points. The simulations are performed over a 7 day time period. We will examine (1) the precipitation processes (i.e., condensation/evaporation) and their interaction with warm pool; (2) the heating and moisture budgets in the convective and stratiform regions; (3) the cloud (upward-downward) mass fluxes in convective and stratiform regions; (4) characteristics of clouds (such as cloud size, updraft intensity and cloud lifetime) and the comparison of clouds with Radar observations. Differences and similarities in organization of convection between simulated 2D and 3D cloud systems. Preliminary results indicated that there is major differences between 2D and 3D simulated stratiform rainfall amount and convective updraft and downdraft mass fluxes.

  11. Radiative Effects of African Dust and Smoke Observed from CERES and CALIOP Data

    NASA Technical Reports Server (NTRS)

    Yorks, John E.; McGill, Matt; Rodier, Sharon; Vaughan, Mark; Xu, Yongxiang; Hlavka, Dennis

    2009-01-01

    Cloud and aerosol effects have a significant impact on the atmospheric radiation budget in the Tropical Atlantic because of the spatial and temporal extent of desert dust and smoke from biomass burning in the atmosphere. The influences of African dust and smoke aerosols on cloud radiative properties over the Tropical Atlantic Ocean were analyzed for the month of July for three years (2006-2008) using collocated data collected by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Clouds and the Earth s Radiant Energy System (CERES) instruments on the CALIPSO and Aqua satellites. Aerosol layer height and type can be more accurately determined using CALIOP data, through parameters such as cloud and aerosol layer height, optical depth and depolarization ratio, than data from atmospheric imagers used in previous cloud-aerosol interaction studies. On average, clouds below 5 km had a daytime instantaneous shortwave (SW) radiative flux of 270.2 +/- 16.9 W/sq m and thin cirrus clouds had a SW radiative flux of 208.0 +/- 12.7 W/sq m. When dust aerosols interacted with clouds below 5 km, as determined from CALIPSO, the SW radiative flux decreased to 205.4 +/- 13.0 W/sq m. Similarly, smoke aerosols decreased the SW radiative flux of low clouds to a value of 240.0 +/- 16.6 W/sq m. These decreases in SW radiative flux were likely attributed to the aerosol layer height and changes in cloud microphysics. CALIOP lidar observations, which more accurately identify aerosol layer height than passive instruments, appear essential for better understanding of cloud-aerosol interactions, a major uncertainty in predicting the climate system.

  12. Automated cloud classification with a fuzzy logic expert system

    NASA Technical Reports Server (NTRS)

    Tovinkere, Vasanth; Baum, Bryan A.

    1993-01-01

    An unresolved problem in current cloud retrieval algorithms concerns the analysis of scenes containing overlapping cloud layers. Cloud parameterizations are very important both in global climate models and in studies of the Earth's radiation budget. Most cloud retrieval schemes, such as the bispectral method used by the International Satellite Cloud Climatology Project (ISCCP), have no way of determining whether overlapping cloud layers exist in any group of satellite pixels. One promising method uses fuzzy logic to determine whether mixed cloud and/or surface types exist within a group of pixels, such as cirrus, land, and water, or cirrus and stratus. When two or more class types are present, fuzzy logic uses membership values to assign the group of pixels partially to the different class types. The strength of fuzzy logic lies in its ability to work with patterns that may include more than one class, facilitating greater information extraction from satellite radiometric data. The development of the fuzzy logic rule-based expert system involves training the fuzzy classifier with spectral and textural features calculated from accurately labeled 32x32 regions of Advanced Very High Resolution Radiometer (AVHRR) 1.1-km data. The spectral data consists of AVHRR channels 1 (0.55-0.68 mu m), 2 (0.725-1.1 mu m), 3 (3.55-3.93 mu m), 4 (10.5-11.5 mu m), and 5 (11.5-12.5 mu m), which include visible, near-infrared, and infrared window regions. The textural features are based on the gray level difference vector (GLDV) method. A sophisticated new interactive visual image Classification System (IVICS) is used to label samples chosen from scenes collected during the FIRE IFO II. The training samples are chosen from predefined classes, chosen to be ocean, land, unbroken stratiform, broken stratiform, and cirrus. The November 28, 1991 NOAA overpasses contain complex multilevel cloud situations ideal for training and validating the fuzzy logic expert system.

  13. Serving ocean model data on the cloud

    USGS Publications Warehouse

    Meisinger, Michael; Farcas, Claudiu; Farcas, Emilia; Alexander, Charles; Arrott, Matthew; de La Beaujardiere, Jeff; Hubbard, Paul; Mendelssohn, Roy; Signell, Richard P.

    2010-01-01

    The NOAA-led Integrated Ocean Observing System (IOOS) and the NSF-funded Ocean Observatories Initiative Cyberinfrastructure Project (OOI-CI) are collaborating on a prototype data delivery system for numerical model output and other gridded data using cloud computing. The strategy is to take an existing distributed system for delivering gridded data and redeploy on the cloud, making modifications to the system that allow it to harness the scalability of the cloud as well as adding functionality that the scalability affords.

  14. Cloud point phenomena for POE-type nonionic surfactants in a model room temperature ionic liquid.

    PubMed

    Inoue, Tohru; Misono, Takeshi

    2008-10-15

    The cloud point phenomenon has been investigated for the solutions of polyoxyethylene (POE)-type nonionic surfactants (C(12)E(5), C(12)E(6), C(12)E(7), C(10)E(6), and C(14)E(6)) in 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF(4)), a typical room temperature ionic liquid (RTIL). The cloud point, T(c), increases with the elongation of the POE chain, while decreases with the increase in the hydrocarbon chain length. This demonstrates that the solvophilicity/solvophobicity of the surfactants in RTIL comes from POE chain/hydrocarbon chain. When compared with an aqueous system, the chain length dependence of T(c) is larger for the RTIL system regarding both POE and hydrocarbon chains; in particular, hydrocarbon chain length affects T(c) much more strongly in the RTIL system than in equivalent aqueous systems. In a similar fashion to the much-studied aqueous systems, the micellar growth is also observed in this RTIL solvent as the temperature approaches T(c). The cloud point curves have been analyzed using a Flory-Huggins-type model based on phase separation in polymer solutions.

  15. Mobile Documentation with Smartphone and Cloud in an Emergent Curriculum

    ERIC Educational Resources Information Center

    Lim, Seongmi

    2017-01-01

    The goal of this study was to explore the lived experience of kindergarten teachers with mobile documentation designed to support their tracking of children's learning activities in an emergent curriculum. A structure for mobile documentation was created with the smartphone and cloud system. The phenomenological approach used in this study showed…

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This 3-year project has studied how aerosol pollution influences glaciated clouds. The tool applied has been an 'aerosol-cloud model'. It is a type of Cloud-System Resolving Model (CSRM) modified to include 2-moment bulk microphysics and 7 aerosol species, as described by Phillips et al. (2009, 2013). The study has been done by, first, improving the model and then performing sensitivity studies with validated simulations of a couple of observed cases from ARM. These are namely the Tropical Warm Pool International Cloud Experiment (TWP-ICE) over the tropical west Pacific and the Cloud and Land Surface Interaction Campaign (CLASIC) over Oklahoma. Duringmore » the project, sensitivity tests with the model showed that in continental clouds, extra liquid aerosols (soluble aerosol material) from pollution inhibited warm rain processes for precipitation production. This promoted homogeneous freezing of cloud droplets and aerosols. Mass and number concentrations of cloud-ice particles were boosted. The mean sizes of cloud-ice particles were reduced by the pollution. Hence, the lifetime of glaciated clouds, especially ice-only clouds, was augmented due to inhibition of sedimentation and ice-ice aggregation. Latent heat released from extra homogeneous freezing invigorated convective updrafts, and raised their maximum cloud-tops, when aerosol pollution was included. In the particular cases simulated in the project, the aerosol indirect effect of glaciated clouds was twice than of (warm) water clouds. This was because glaciated clouds are higher in the troposphere than water clouds and have the first interaction with incoming solar radiation. Ice-only clouds caused solar cooling by becoming more extensive as a result of aerosol pollution. This 'lifetime indirect effect' of ice-only clouds was due to higher numbers of homogeneously nucleated ice crystals causing a reduction in their mean size, slowing the ice-crystal process of snow production and slowing sedimentation. In addition to the known indirect effects (glaciation, riming and thermodynamic), new indirect effects were discovered and quantified due to responses of sedimentation, aggregation and coalescence in glaciated clouds to changing aerosol conditions. In summary, the change in horizontal extent of the glaciated clouds ('lifetime indirect effects'), especially of ice-only clouds, was seen to be of higher importance in regulating aerosol indirect effects than changes in cloud properties ('cloud albedo indirect effects').« less

  17. Microphysical parameters of cirrus clouds using lidar at a tropical station, Gadanki, Tirupati (13.5° N, 79.2°E), India

    NASA Astrophysics Data System (ADS)

    Satyanarayana, M.; Radhakrishnan, S.-R.; Krishnakumar, V.; Mahadevan Pillai, V. P.; Raghunath, K.

    2008-12-01

    Cirrus clouds have been identified as one of the most uncertain component in the atmospheric research. It is known that cirrus clouds modulate the earth's climate through direct and indirect modification of radiation. The role of cirrus clouds depends mainly on their microphysical properties. To understand cirrus clouds better, we must observe and characterize their properties. In-situ observation of such clouds is a challenging experiment, as the clouds are located at high altitudes. Active remote sensing method based on lidar can detect high and thin cirrus clouds with good spatial and temporal resolution. We present the result obtained on the microphysical properties of the cirrus clouds at two Tropical stations namely Gadhanki, Tirupati (13.50 N, 79.20 E), India and Trivandrum (13.50 N, 770 E) Kerala, India from the ground based pulsed Nd: YAG lidar systems installed at the stations. A variant of the widely used Klett's lidar inversion method with range dependent scattering ratio is used for the present study for the retrieval of aerosol extinction and microphysical parameters of cirrus cloud.

  18. Shallow cumuli ensemble statistics for development of a stochastic parameterization

    NASA Astrophysics Data System (ADS)

    Sakradzija, Mirjana; Seifert, Axel; Heus, Thijs

    2014-05-01

    According to a conventional deterministic approach to the parameterization of moist convection in numerical atmospheric models, a given large scale forcing produces an unique response from the unresolved convective processes. This representation leaves out the small-scale variability of convection, as it is known from the empirical studies of deep and shallow convective cloud ensembles, there is a whole distribution of sub-grid states corresponding to the given large scale forcing. Moreover, this distribution gets broader with the increasing model resolution. This behavior is also consistent with our theoretical understanding of a coarse-grained nonlinear system. We propose an approach to represent the variability of the unresolved shallow-convective states, including the dependence of the sub-grid states distribution spread and shape on the model horizontal resolution. Starting from the Gibbs canonical ensemble theory, Craig and Cohen (2006) developed a theory for the fluctuations in a deep convective ensemble. The micro-states of a deep convective cloud ensemble are characterized by the cloud-base mass flux, which, according to the theory, is exponentially distributed (Boltzmann distribution). Following their work, we study the shallow cumulus ensemble statistics and the distribution of the cloud-base mass flux. We employ a Large-Eddy Simulation model (LES) and a cloud tracking algorithm, followed by a conditional sampling of clouds at the cloud base level, to retrieve the information about the individual cloud life cycles and the cloud ensemble as a whole. In the case of shallow cumulus cloud ensemble, the distribution of micro-states is a generalized exponential distribution. Based on the empirical and theoretical findings, a stochastic model has been developed to simulate the shallow convective cloud ensemble and to test the convective ensemble theory. Stochastic model simulates a compound random process, with the number of convective elements drawn from a Poisson distribution, and cloud properties sub-sampled from a generalized ensemble distribution. We study the role of the different cloud subtypes in a shallow convective ensemble and how the diverse cloud properties and cloud lifetimes affect the system macro-state. To what extent does the cloud-base mass flux distribution deviate from the simple Boltzmann distribution and how does it affect the results from the stochastic model? Is the memory, provided by the finite lifetime of individual clouds, of importance for the ensemble statistics? We also test for the minimal information given as an input to the stochastic model, able to reproduce the ensemble mean statistics and the variability in a convective ensemble. An important property of the resulting distribution of the sub-grid convective states is its scale-adaptivity - the smaller the grid-size, the broader the compound distribution of the sub-grid states.

  19. SSeCloud: Using secret sharing scheme to secure keys

    NASA Astrophysics Data System (ADS)

    Hu, Liang; Huang, Yang; Yang, Disheng; Zhang, Yuzhen; Liu, Hengchang

    2017-08-01

    With the use of cloud storage services, one of the concerns is how to protect sensitive data securely and privately. While users enjoy the convenience of data storage provided by semi-trusted cloud storage providers, they are confronted with all kinds of risks at the same time. In this paper, we present SSeCloud, a secure cloud storage system that improves security and usability by applying secret sharing scheme to secure keys. The system encrypts uploading files on the client side and splits encrypted keys into three shares. Each of them is respectively stored by users, cloud storage providers and the alternative third trusted party. Any two of the parties can reconstruct keys. Evaluation results of prototype system show that SSeCloud provides high security without too much performance penalty.

  20. Cloud and traditional videoconferencing technology for telemedicine and distance learning.

    PubMed

    Liu, Wei-Li; Zhang, Kai; Locatis, Craig; Ackerman, Michael

    2015-05-01

    Cloud-based videoconferencing versus traditional systems are described for possible use in telemedicine and distance learning. Differences between traditional and cloud-based videoconferencing systems are examined, and the methods for identifying and testing systems are explained. Findings are presented characterizing the cloud conferencing genre and its attributes versus traditional H.323 conferencing. Because the technology is rapidly evolving and needs to be evaluated in reference to local needs, it is strongly recommended that this or other reviews not be considered substitutes for personal hands-on experience. This review identifies key attributes of the technology that can be used to appraise the relevance of cloud conferencing technology and to determine whether migration from traditional technology to a cloud environment is warranted. An evaluation template is provided for assessing systems appropriateness.

  1. Wind estimates from cloud motions: Phase 1 of an in situ aircraft verification experiment

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Shenk, W. E.; Skillman, W.

    1974-01-01

    An initial experiment was conducted to verify geostationary satellite derived cloud motion wind estimates with in situ aircraft wind velocity measurements. Case histories of one-half hour to two hours were obtained for 3-10km diameter cumulus cloud systems on 6 days. Also, one cirrus cloud case was obtained. In most cases the clouds were discrete enough that both the cloud motion and the ambient wind could be measured with the same aircraft Inertial Navigation System (INS). Since the INS drift error is the same for both the cloud motion and wind measurements, the drift error subtracts out of the relative motion determinations. The magnitude of the vector difference between the cloud motion and the ambient wind at the cloud base averaged 1.2 m/sec. The wind vector at higher levels in the cloud layer differed by about 3 m/sec to 5 m/sec from the cloud motion vector.

  2. A Wing Pod-based Millimeter Wave Cloud Radar on HIAPER

    NASA Astrophysics Data System (ADS)

    Vivekanandan, Jothiram; Tsai, Peisang; Ellis, Scott; Loew, Eric; Lee, Wen-Chau; Emmett, Joanthan

    2014-05-01

    One of the attractive features of a millimeter wave radar system is its ability to detect micron-sized particles that constitute clouds with lower than 0.1 g m-3 liquid or ice water content. Scanning or vertically-pointing ground-based millimeter wavelength radars are used to study stratocumulus (Vali et al. 1998; Kollias and Albrecht 2000) and fair-weather cumulus (Kollias et al. 2001). Airborne millimeter wavelength radars have been used for atmospheric remote sensing since the early 1990s (Pazmany et al. 1995). Airborne millimeter wavelength radar systems, such as the University of Wyoming King Air Cloud Radar (WCR) and the NASA ER-2 Cloud Radar System (CRS), have added mobility to observe clouds in remote regions and over oceans. Scientific requirements of millimeter wavelength radar are mainly driven by climate and cloud initiation studies. Survey results from the cloud radar user community indicated a common preference for a narrow beam W-band radar with polarimetric and Doppler capabilities for airborne remote sensing of clouds. For detecting small amounts of liquid and ice, it is desired to have -30 dBZ sensitivity at a 10 km range. Additional desired capabilities included a second wavelength and/or dual-Doppler winds. Modern radar technology offers various options (e.g., dual-polarization and dual-wavelength). Even though a basic fixed beam Doppler radar system with a sensitivity of -30 dBZ at 10 km is capable of satisfying cloud detection requirements, the above-mentioned additional options, namely dual-wavelength, and dual-polarization, significantly extend the measurement capabilities to further reduce any uncertainty in radar-based retrievals of cloud properties. This paper describes a novel, airborne pod-based millimeter wave radar, preliminary radar measurements and corresponding derived scientific products. Since some of the primary engineering requirements of this millimeter wave radar are that it should be deployable on an airborne platform, occupy minimum cabin space and maximize scan coverage, a pod-based configuration was adopted. Currently, the radar system is capable of collecting observations between zenith and nadir in a fixed scanning mode. Measurements are corrected for aircraft attitude changes. The near-nadir and zenith pointing observations minimize the cross-track Doppler contamination in the radial velocity measurements. An extensive engineering monitoring mechanism is built into the recording system status such as temperature, pressure, various electronic components' status and receiver characteristics. Status parameters are used for real-time system stability estimates and correcting radar system parameters. The pod based radar system is mounted on a modified Gulfstream V aircraft, which is operated and maintained by the National Center for Atmospheric Research (NCAR) on behalf of the National Science Foundation (NSF). The aircraft is called the High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) (Laursen et al., 2006). It is also instrumented with high spectral resolution lidar (HSRL) and an array of in situ and remote sensors for atmospheric research. As part of the instrument suite for HIAPER, the NSF funded the development of the HIAPER Cloud Radar (HCR). The HCR is an airborne, millimeter-wavelength, dual-polarization, Doppler radar that serves the atmospheric science community by providing cloud remote sensing capabilities for the NSF/NCAR G-V (HIAPER) aircraft. An optimal radar configuration that is capable of maximizing the accuracy of both qualitative and quantitative estimated cloud microphysical and dynamical properties is the most attractive option to the research community. The Technical specifications of cloud radar are optimized for realizing the desired scientific performance for the pod-based configuration. The radar was both ground and flight tested and preliminary measurements of Doppler and polarization measurements were collected. HCR observed sensitivity as low as -37 dBZ at 1 km range and resolved linear depolarization ratio (LDR) signature better than -29 dB during its latest test flights. References: Kollias, P., and B. A. Albrecht, 2000: The turbulence structure in a continental stratocumulus cloud from millimeter wavelength radar observation. J. Atmos. Sci., 57, 2417-2434. Kollias, P., B.A. Albrecht, R. Lhermitte, and A. Savtchenko, 2001: Radar observations of updrafts, downdrafts, and turbulence in fair weather cumuli. J. Atmos. Sci. 58, 1750-1766. Laursen, K. K., D. P. Jorgensen, G. P. Brasseur, S. L. Ustin, and J. Hunning, 2006: HIAPER: The next generation NSF/NCAR research aircraft. Bulletin of the American Meteorological Society, 87, 896-909. Pazmany, A. L., R. E. McIntosh, R. Kelly, and V. G., 1994: An airborne 95-GHz dual-polarized radar for cloud studies. IEEE Trans. Geosci. Remote Sens., 32, 731-739. Vali, G., Kelly, R.D., French, J., Haimov, S., Leon, D., McIntosh, R., Pazmany, A., 1998. Fine-scale structure and microphysics of coastal stratus. J. Atmos. Sci. 55, 3540-3564.

  3. Clouds and the Earth's Radiant Energy System (CERES) Algorithm Theoretical Basis Document. Volume 3; Cloud Analyses and Determination of Improved Top of Atmosphere Fluxes (Subsystem 4)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The theoretical bases for the Release 1 algorithms that will be used to process satellite data for investigation of the Clouds and Earth's Radiant Energy System (CERES) are described. The architecture for software implementation of the methodologies is outlined. Volume 3 details the advanced CERES methods for performing scene identification and inverting each CERES scanner radiance to a top-of-the-atmosphere (TOA) flux. CERES determines cloud fraction, height, phase, effective particle size, layering, and thickness from high-resolution, multispectral imager data. CERES derives cloud properties for each pixel of the Tropical Rainfall Measuring Mission (TRMM) visible and infrared scanner and the Earth Observing System (EOS) moderate-resolution imaging spectroradiometer. Cloud properties for each imager pixel are convolved with the CERES footprint point spread function to produce average cloud properties for each CERES scanner radiance. The mean cloud properties are used to determine an angular distribution model (ADM) to convert each CERES radiance to a TOA flux. The TOA fluxes are used in simple parameterization to derive surface radiative fluxes. This state-of-the-art cloud-radiation product will be used to substantially improve our understanding of the complex relationship between clouds and the radiation budget of the Earth-atmosphere system.

  4. The structure of the clouds distributed operating system

    NASA Technical Reports Server (NTRS)

    Dasgupta, Partha; Leblanc, Richard J., Jr.

    1989-01-01

    A novel system architecture, based on the object model, is the central structuring concept used in the Clouds distributed operating system. This architecture makes Clouds attractive over a wide class of machines and environments. Clouds is a native operating system, designed and implemented at Georgia Tech. and runs on a set of generated purpose computers connected via a local area network. The system architecture of Clouds is composed of a system-wide global set of persistent (long-lived) virtual address spaces, called objects that contain persistent data and code. The object concept is implemented at the operating system level, thus presenting a single level storage view to the user. Lightweight treads carry computational activity through the code stored in the objects. The persistent objects and threads gives rise to a programming environment composed of shared permanent memory, dispensing with the need for hardware-derived concepts such as the file systems and message systems. Though the hardware may be distributed and may have disks and networks, the Clouds provides the applications with a logically centralized system, based on a shared, structured, single level store. The current design of Clouds uses a minimalist philosophy with respect to both the kernel and the operating system. That is, the kernel and the operating system support a bare minimum of functionality. Clouds also adheres to the concept of separation of policy and mechanism. Most low-level operating system services are implemented above the kernel and most high level services are implemented at the user level. From the measured performance of using the kernel mechanisms, we are able to demonstrate that efficient implementations are feasible for the object model on commercially available hardware. Clouds provides a rich environment for conducting research in distributed systems. Some of the topics addressed in this paper include distributed programming environments, consistency of persistent data and fault-tolerance.

  5. General analytic results for nonlinear waves and solitons in molecular clouds

    NASA Technical Reports Server (NTRS)

    Adams, Fred C.; Fatuzzo, Marco; Watkins, Richard

    1994-01-01

    We study nonlinear wave phenomena in self-gravitating fluid systems, with a particular emphasis on applications to molecular clouds. This paper presents analytical results for one spatial dimension. We show that a large class of physical systems can be described by theories with a 'charge density' q(rho); this quantity replaces the density on the right-hand side of the Poisson equation for the gravitational potential. We use this formulation to prove general results about nonlinear wave motions in self-gravitating systems. We show that in order for stationary waves to exist, the total charge (the integral of the charge density over the wave profile) must vanish. This 'no-charge' property for solitary waves is related to the capability of a system to be stable to gravitational perturbations for arbitrarily long wavelengths. We find necessary and sufficient conditions on the charge density for the existence of solitary waves and stationary waves. We study nonlinear wave motions for Jeans-type theories (where q(rho) = rho-rho(sub 0)) and find that nonlinear waves of large amplitude are confined to a rather narrow range of wavelengths. We also study wave motions for molecular clouds threaded by magnetic fields and show how the allowed range of wavelengths is affected by the field strength. Since the gravitational force in one spatial dimension does not fall off with distance, we consider two classes of models with more realistic gravity: Yukawa potentials and a pseudo two-dimensional treatment. We study the allowed types of wave behavior for these models. Finally, we discuss the implications of this work for molecular cloud structure. We argue that molecular clouds can support a wide variety of wave motions and suggest that stationary waves (such as those considered in this paper) may have already been observed.

  6. Lagrangian large eddy simulations of boundary layer clouds on ERA-Interim and ERA5 trajectories

    NASA Astrophysics Data System (ADS)

    Kazil, J.; Feingold, G.; Yamaguchi, T.

    2017-12-01

    This exploratory study examines Lagrangian large eddy simulations of boundary layer clouds along wind trajectories from the ERA-Interim and ERA5 reanalyses. The study is motivated by the need for statistically representative sets of high resolution simulations of cloud field evolution in realistic meteorological conditions. The study will serve as a foundation for the investigation of biomass burning effects on the transition from stratocumulus to shallow cumulus clouds in the South-East Atlantic. Trajectories that pass through a location with radiosonde data (St. Helena) and which exhibit a well-defined cloud structure and evolution were identified in satellite imagery, and sea surface temperature and atmospheric vertical profiles along the trajectories were extracted from the reanalysis data sets. The System for Atmospheric Modeling (SAM) simulated boundary layer turbulence and cloud properties along the trajectories. Mean temperature and moisture (in the free troposphere) and mean wind speed (at all levels) were nudged towards the reanalysis data. Atmospheric and cloud properties in the large eddy simulations were compared with those from the reanalysis products, and evaluated with satellite imagery and radiosonde data. Simulations using ERA-Interim data and the higher resolution ERA5 data are contrasted.

  7. Cloud Physics Test in the Space Power Chamber

    NASA Image and Video Library

    1975-09-21

    A researcher sets up equipment in the Space Power Chamber at National Aeronautics and Space Administration’s (NASA) Plum Brook Station to study the effects of contaminants on clouds. Drs. Rosa and Jorge Pena of Pennsylvania State University's Department of Meteorology initiated the program in an effort to develop methods of creating stable, long-lasting clouds in a test chamber in order to study their composition and formation. The researchers then wanted to use the artificially-created clouds to determine how they were affected by pollution. The 100-foot diameter and 122-foot high Space Power Chamber is the largest vacuum chamber in the world. The researchers covered the circular walls with muslin. A recirculating water system saturated the cloth. The facility engineers then reduced the chamber’s pressure which released the water from the muslin and generated a cloud. The researchers produced five different clouds in this first portion of this study. They discovered that they could not create stable clouds because of the heat generated by the water-pumping equipment. Nonetheless, they felt confident enough to commence planning the second phase of the program using a heat exchanger to cool the equipment.

  8. ARM/GCSS/SPARC TWP-ICE CRM Intercomparison Study

    NASA Technical Reports Server (NTRS)

    Fridlind, Ann; Ackerman, Andrew; Petch, Jon; Field, Paul; Hill, Adrian; McFarquhar, Greg; Xie, Shaocheng; Zhang, Minghua

    2010-01-01

    Specifications are provided for running a cloud-resolving model (CRM) and submitting results in a standardized format for inclusion in a n intercomparison study and archiving for public access. The simulated case study is based on measurements obtained during the 2006 Tropical Warm Pool - International Cloud Experiment (TWP-ICE) led by the U. S. department of Energy Atmospheric Radiation Measurement (ARM) program. The modeling intercomparison study is based on objectives developed in concert with the Stratospheric Processes And their Role in Climate (SPARC) program and the GEWEX cloud system study (GCSS) program. The Global Energy and Water Cycle Experiment (GEWEX) is a core project of the World Climate Research PRogramme (WCRP).

  9. Seasonally Transported Aerosol Layers Over Southeast Atlantic are Closer to Underlying Clouds than Previously Reported

    NASA Technical Reports Server (NTRS)

    Rajapakshe, Chamara; Zhang, Zhibo; Yorks, John E.; Yu, Hongbin; Tan, Qian; Meyer, Kerry; Platnick, Steven; Winker, David M.

    2017-01-01

    From June to October, low-level clouds in the southeast (SE) Atlantic often underlie seasonal aerosol layers transported from African continent. Previously, the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) 532 nm lidar observations have been used to estimate the relative vertical location of the above-cloud aerosols (ACA) to the underlying clouds. Here we show new observations from NASA's Cloud-Aerosol Transport System (CATS) lidar. Two seasons of CATS 1064 nm observations reveal that the bottom of the ACA layer is much lower than previously estimated based on CALIPSO 532 nm observations. For about 60% of CATS nighttime ACA scenes, the aerosol layer base is within 360 m distance to the top of the underlying cloud. Our results are important for future studies of the microphysical indirect and semidirect effects of ACA in the SE Atlantic region.

  10. Cloud detection algorithm comparison and validation for operational Landsat data products

    USGS Publications Warehouse

    Foga, Steven Curtis; Scaramuzza, Pat; Guo, Song; Zhu, Zhe; Dilley, Ronald; Beckmann, Tim; Schmidt, Gail L.; Dwyer, John L.; Hughes, MJ; Laue, Brady

    2017-01-01

    Clouds are a pervasive and unavoidable issue in satellite-borne optical imagery. Accurate, well-documented, and automated cloud detection algorithms are necessary to effectively leverage large collections of remotely sensed data. The Landsat project is uniquely suited for comparative validation of cloud assessment algorithms because the modular architecture of the Landsat ground system allows for quick evaluation of new code, and because Landsat has the most comprehensive manual truth masks of any current satellite data archive. Currently, the Landsat Level-1 Product Generation System (LPGS) uses separate algorithms for determining clouds, cirrus clouds, and snow and/or ice probability on a per-pixel basis. With more bands onboard the Landsat 8 Operational Land Imager (OLI)/Thermal Infrared Sensor (TIRS) satellite, and a greater number of cloud masking algorithms, the U.S. Geological Survey (USGS) is replacing the current cloud masking workflow with a more robust algorithm that is capable of working across multiple Landsat sensors with minimal modification. Because of the inherent error from stray light and intermittent data availability of TIRS, these algorithms need to operate both with and without thermal data. In this study, we created a workflow to evaluate cloud and cloud shadow masking algorithms using cloud validation masks manually derived from both Landsat 7 Enhanced Thematic Mapper Plus (ETM +) and Landsat 8 OLI/TIRS data. We created a new validation dataset consisting of 96 Landsat 8 scenes, representing different biomes and proportions of cloud cover. We evaluated algorithm performance by overall accuracy, omission error, and commission error for both cloud and cloud shadow. We found that CFMask, C code based on the Function of Mask (Fmask) algorithm, and its confidence bands have the best overall accuracy among the many algorithms tested using our validation data. The Artificial Thermal-Automated Cloud Cover Algorithm (AT-ACCA) is the most accurate nonthermal-based algorithm. We give preference to CFMask for operational cloud and cloud shadow detection, as it is derived from a priori knowledge of physical phenomena and is operable without geographic restriction, making it useful for current and future land imaging missions without having to be retrained in a machine-learning environment.

  11. Development of a cloud-based system for remote monitoring of a PVT panel

    NASA Astrophysics Data System (ADS)

    Saraiva, Luis; Alcaso, Adérito; Vieira, Paulo; Ramos, Carlos Figueiredo; Cardoso, Antonio Marques

    2016-10-01

    The paper presents a monitoring system developed for an energy conversion system based on the sun and known as thermophotovoltaic panel (PVT). The project was implemented using two embedded microcontrollers platforms (arduino Leonardo and arduino yún), wireless transmission systems (WI-FI and XBEE) and net computing ,commonly known as cloud (Google cloud). The main objective of the project is to provide remote access and real-time data monitoring (like: electrical current, electrical voltage, input fluid temperature, output fluid temperature, backward fluid temperature, up PV glass temperature, down PV glass temperature, ambient temperature, solar radiation, wind speed, wind direction and fluid mass flow). This project demonstrates the feasibility of using inexpensive microcontroller's platforms and free internet service in theWeb, to support the remote study of renewable energy systems, eliminating the acquisition of dedicated systems typically more expensive and limited in the kind of processing proposed.

  12. Entrainment and cloud evaporation deduced from the stable isotope chemistry of clouds during ORACLES

    NASA Astrophysics Data System (ADS)

    Noone, D.; Henze, D.; Rainwater, B.; Toohey, D. W.

    2017-12-01

    The magnitude of the influence of biomass burning aerosols on cloud and rain processes is controlled by a series of processes which are difficult to measure directly. A consequence of this limitation is the emergence of significant uncertainty in the representation of cloud-aerosol interactions in models and the resulting cloud radiative forcing. Interaction between cloud and the regional atmosphere causes evaporation, and the rate of evaporation at cloud top is controlled in part by entrainment of air from above which exposes saturated cloud air to drier conditions. Similarly, the size of cloud droplets also controls evaporation rates, which in turn is linked to the abundance of condensation nuclei. To quantify the dependence of cloud properties on biomass burning aerosols the dynamic relationship between evaporation, drop size and entrainment on aerosol state, is evaluated for stratiform clouds in the southeast Atlantic Ocean. These clouds are seasonally exposed to biomass burning plumes from agricultural fires in southern Africa. Measurements of the stable isotope ratios of cloud water and total water are used to deduce the disequilibrium responsible for evaporation within clouds. Disequilibrium is identified by the relationship between hydrogen and oxygen isotope ratios of water vapor and cloud water in and near clouds. To obtain the needed information, a custom-built, dual inlet system was deployed alongside isotopic gas analyzers on the NASA Orion aircraft as part of the Observations of Aerosols above Clouds and their Interactions (ORACLES) campaign. The sampling system obtains both total water and cloud liquid content for the population of droplets above 7 micrometer diameter. The thermodynamic modeling required to convert the observed equilibrium and kinetic isotopic is linked to evaporation and entrainment is described, and the performance of the measurement system is discussed.

  13. Dark Matter and Extragalactic Gas Clouds in the NGC 4532/DDO 137 System

    NASA Technical Reports Server (NTRS)

    Hoffman, G. L.; Lu, N. Y.; Salpeter, E. E.; Connell, B. M.

    1998-01-01

    H I synthesis mapping of NGC 4532 and DDO 137, a pair of Sm galaxies on the edge of the Virgo cluster, is used to determine rotation curves for each of the galaxies and to resolve the structure and kinematics of three extragalactic H I clouds embedded in an extended envelope of diffuse HI discovered in earlier Arecibo studies of the system.

  14. Wavelength dependence of coherent and incoherent satellite-based lidar measurements of wind velocity and aerosol backscatter

    NASA Technical Reports Server (NTRS)

    Kavaya, M. J.; Huffaker, R. M.

    1986-01-01

    The results are presented of a capability study of Earth orbiting lidar systems, at various wavelengths from 1.06 to 10.6 microns, for the measurement of wind velocity and aerosol backscatter, and for the detection of clouds. Both coherent and incoherent lidar systems were modeled and compared for the aerosol backscatter and cloud detection applications.

  15. Dynamic electronic institutions in agent oriented cloud robotic systems.

    PubMed

    Nagrath, Vineet; Morel, Olivier; Malik, Aamir; Saad, Naufal; Meriaudeau, Fabrice

    2015-01-01

    The dot-com bubble bursted in the year 2000 followed by a swift movement towards resource virtualization and cloud computing business model. Cloud computing emerged not as new form of computing or network technology but a mere remoulding of existing technologies to suit a new business model. Cloud robotics is understood as adaptation of cloud computing ideas for robotic applications. Current efforts in cloud robotics stress upon developing robots that utilize computing and service infrastructure of the cloud, without debating on the underlying business model. HTM5 is an OMG's MDA based Meta-model for agent oriented development of cloud robotic systems. The trade-view of HTM5 promotes peer-to-peer trade amongst software agents. HTM5 agents represent various cloud entities and implement their business logic on cloud interactions. Trade in a peer-to-peer cloud robotic system is based on relationships and contracts amongst several agent subsets. Electronic Institutions are associations of heterogeneous intelligent agents which interact with each other following predefined norms. In Dynamic Electronic Institutions, the process of formation, reformation and dissolution of institutions is automated leading to run time adaptations in groups of agents. DEIs in agent oriented cloud robotic ecosystems bring order and group intellect. This article presents DEI implementations through HTM5 methodology.

  16. Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds

    PubMed Central

    Fan, Jiwen; Leung, L. Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

    2013-01-01

    Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol’s thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ∼27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3–5 W⋅m−2) and a surface cooling (−5 to −8 W⋅m−2). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments. PMID:24218569

  17. Computer simulations of ions in radio-frequency traps

    NASA Technical Reports Server (NTRS)

    Williams, A.; Prestage, J. D.; Maleki, L.; Djomehri, J.; Harabetian, E.

    1990-01-01

    The motion of ions in a trapped-ion frequency standard affects the stability of the standard. In order to study the motion and structures of large ion clouds in a radio-frequency (RF) trap, a computer simulation of the system that incorporates the effect of thermal excitation of the ions was developed. Results are presented from the simulation for cloud sizes up to 512 ions, emphasizing cloud structures in the low-temperature regime.

  18. Evaluation of Cloud Physical Properties of ECMWF Analysis and Re-Analysis (ERA-40 and ERA Interim) against CERES Tropical Deep Convective Cloud Object Observations

    NASA Technical Reports Server (NTRS)

    Xu, Kuan-Man

    2008-01-01

    This study presents an approach that converts the vertical profiles of grid-averaged cloud properties from large-scale models to probability density functions (pdfs) of subgrid-cell cloud physical properties measured at satellite footprints. Cloud physical and radiative properties, rather than just cloud and precipitation occurrences, of assimilated cloud systems by the European Center for Medium-range Weather Forecasts (ECMWF) operational analysis (EOA) and ECMWF Re-Analyses (ERA-40 and ERA Interim) are validated against those obtained from Earth Observing System satellite cloud object data for January-August 1998 and March 2000 periods. These properties include ice water path (IWP), cloud-top height and temperature, cloud optical depth and solar and infrared radiative fluxes. Each cloud object, a contiguous region with similar cloud physical properties, is temporally and spatially matched with EOA and ERA-40 data. Results indicate that most pdfs of EOA and ERA-40 cloud physical and radiative properties agree with those of satellite observations of the tropical deep convective cloud-object type for the January-August 1998 period. There are, however, significant discrepancies in selected ranges of the cloud property pdfs such as the upper range of EOA cloud top height. A major discrepancy is that the dependence of the pdfs on the cloud object size for both EOA and ERA-40 is not as strong as in the observations. Modifications to the cloud parameterization in ECMWF that occurred in October 1999 eliminate the clouds near the tropopause but shift power of the pdf to lower cloud-top heights and greatly reduce the ranges of IWP and cloud optical depth pdfs. These features persist in ERA-40 due to the use of the same cloud parameterizations. The downgrade of data assimilation technique and the lack of snow water content information in ERA-40, not the coarser horizontal grid resolution, are also responsible for the disagreements with observed pdfs of cloud physical properties although the detection rates of cloud object occurrence are improved for small size categories. A possible improvement to the convective parameterization is to introduce a stronger dependence of updraft penetration heights with grid-cell dynamics. These conclusions will be rechecked using the ERA Interim data, due to recent changes in the ECMWF convective parameterization (Bechtold et al. 2004, 2008). Results from the ERA Interim will be presented at the meeting.

  19. Examination of the potential impacts of dust and pollution aerosol acting as cloud nucleating aerosol on water resources in the Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Jha, Vandana

    In this study we examine the cumulative effect of dust acting as cloud nucleating aerosol (cloud condensation nuclei (CCN), giant cloud condensation nuclei (GCCN), and ice nuclei (IN)) along with anthropogenic aerosol pollution acting primarily as CCN, over the entire Colorado Rocky Mountains from the months of October to April in the year 2004-2005; the snow year. This ˜6.5 months analysis provides a range of snowfall totals and variability in dust and anthropogenic aerosol pollution. The specific objectives of this research is to quantify the impacts of both dust and pollution aerosols on wintertime precipitation in the Colorado Mountains using the Regional Atmospheric Modeling System (RAMS). In general, dust enhances precipitation primarily by acting as IN, while aerosol pollution reduces water resources in the CRB via the so-called "spill-over" effect, by enhancing cloud droplet concentrations and reducing riming rates. Dust is more episodic and aerosol pollution is more pervasive throughout the winter season. Combined response to dust and aerosol pollution is a net reduction of water resources in the CRB. The question is by how much are those water resources affected? Our best estimate is that total winter-season precipitation loss for for the CRB the 2004-2005 winter season due to the combined influence of aerosol pollution and dust is 5,380,00 acre-feet of water. Sensitivity studies for different cases have also been run for the specific cases in 2004-2005 winter season to analyze the impact of changing dust and aerosol ratios on precipitation in the Colorado River Basin. The dust is varied from 3 to 10 times in the experiments and the response is found to be non monotonic and depends on various environmental factors. The sensitivity studies show that adding dust in a wet system increases precipitation when IN affects are dominant. For a relatively dry system high concentrations of dust can result in over-seeding the clouds and reductions in precipitation. However, when adding dust to a system with warmer cloud bases, the response is non-monotonical, and when CCN affects are dominant, reductions in precipitation are found.

  20. Remote measurement of cloud microphysics and its influence in predicting high impact weather events

    NASA Astrophysics Data System (ADS)

    Bipasha, Paul S.; Jinya, John

    2016-05-01

    Understanding the cloud microphysical processes and precise retrieval of parameters governing the same are crucial for weather and climate prediction. Advanced remote sensing sensors and techniques offer an opportunity for monitoring micro-level developments in cloud structure. . Using the observations from a visible and near-infrared lidar onboard CALIPSO satellite (part of A-train) , the spatial variation of cloud structure has been studied over the Tropical monsoon region . It is found that there is large variability in the cloud microphysical parameters manifesting in distinct precipitation regimes. In particular, the severe storms over this region are driven by processes which range from the synoptic to the microphysical scale. Using INSAT-3D data, retrieval of cloud microphysical parameters like effective radius (CER) and optical depth (COD) were carried out for tropical cyclone Phailine. It was observed that there is a general increase of CER in a top-down direction, characterizing the progressively increasing number and size of precipitation hydrometeors while approaching the cloud base. The distribution of CER relative to cloud top temperature for growing convective clouds has been investigated to reveal the evolution of the particles composing the clouds. It is seen that the relatively high concentration of large particles in the downdraft zone is closely related to the precipitation efficiency of the system. Similar study was also carried using MODIS observations for cyclones over Indian Ocean (2010-2013), in which we find that that the mean effective radius is 24 microns with standard deviation 4.56, mean optical depth is 21 with standard deviation 13.98, mean cloud fraction is 0.92 with standard deviation 0.13 and mainly ice phase is dominant. Thus the remote observations of microstructure of convective storms provide very crucial information about the maintenance and potential devastation likely to be associated with it. With the synergistic observations from A-Train , geostationary and futuristic imaging spectroscopic sensors, a multi-dimensional, and multi-scalar exploration of cloud systems is anticipated leading to accurate prediction of high impact weather events.

  1. Study of the Fine-Scale Structure of Cumulus Clouds.

    NASA Astrophysics Data System (ADS)

    Rodi, Alfred R.

    Small cumulus clouds are studied using data from an instrumented aircraft. Two aspects of the role of turbulence and mixing in these couds are examined: (1) the effect of mixing on the droplet size distribution, and (2) the effect of turbulence on the spread of ice crystal plumes artificially generated with cloud seeding agents. The data were collected in the course of the Bureau of Reclamation's High Plains Cooperative Experiment (HIPLEX) in Montana in the summers of 1978-80 by the University of Wyoming King Air aircraft. The shape of the cloud droplet spectrum as measured by the Particle Measuring Systems (PMS) Forward Scattering Spectrometer Probe (FSSP) is found to be very sensitive to entrainment of dry environmental air into the cloud. The narrowest cloud droplet spectra, the highest droplet concentrations, and the largest sized droplets are found in the cloud parcels which are least affected by entrainment. The most dilute regions of cloud exhibit the broadest spectra which are frequently bimodal. A procedure for measuring cloud inhomogeneity from FSSP is developed. The data shows that the clouds are extremely inhomogeneous in structure. Current models of inhomogeneous mixing are shown to be inadequate in explaining droplet spectrum effects. However, the inhomogeneous models characterize the data far better than classical models of droplet spectrum evolution. High resolution measurements of ice crystals from the PMS two dimensional imaging probe are used to characterize the spread of the ice crystal plume in seeded clouds. Plume spread is found to be a very complicated process which is in some cases dominated by organized motions in the cloud. As a result, classical diffusion theory is often inadequate to predict plume growth. The turbulent diffusion that occurs is shown to be best modeled using the relative diffusion concept of Richardson. Procedures for adapting aircraft data to the relative diffusion model are developed, including techniques for converting the aircraft Eulerian data into estimates of Lagrangian correlations. Predictions of the model are compared with observations of plume growth. A detailed analysis of errors in the air motion sensing system on the aircraft is presented. A procedure is developed to estimate the errors due to aircraft gyroscope sensitivity to horizontal accelerations.

  2. Continuous All-Sky Cloud Measurements: Cloud Fraction Analysis Based on a Newly Developed Instrument

    NASA Astrophysics Data System (ADS)

    Aebi, C.; Groebner, J.; Kaempfer, N.; Vuilleumier, L.

    2017-12-01

    Clouds play an important role in the climate system and are also a crucial parameter for the Earth's surface energy budget. Ground-based measurements of clouds provide data in a high temporal resolution in order to quantify its influence on radiation. The newly developed all-sky cloud camera at PMOD/WRC in Davos (Switzerland), the infrared cloud camera (IRCCAM), is a microbolometer sensitive in the 8 - 14 μm wavelength range. To get all-sky information the camera is located on top of a frame looking downward on a spherical gold-plated mirror. The IRCCAM has been measuring continuously (day and nighttime) with a time resolution of one minute in Davos since September 2015. To assess the performance of the IRCCAM, two different visible all-sky cameras (Mobotix Q24M and Schreder VIS-J1006), which can only operate during daytime, are installed in Davos. All three camera systems have different software for calculating fractional cloud coverage from images. Our study analyzes mainly the fractional cloud coverage of the IRCCAM and compares it with the fractional cloud coverage calculated from the two visible cameras. Preliminary results of the measurement accuracy of the IRCCAM compared to the visible camera indicate that 78 % of the data are within ± 1 octa and even 93 % within ± 2 octas. An uncertainty of 1-2 octas corresponds to the measurement uncertainty of human observers. Therefore, the IRCCAM shows similar performance in detection of cloud coverage as the visible cameras and the human observers, with the advantage that continuous measurements with high temporal resolution are possible.

  3. 23 Years of Cloud Statistics Using HIRS Over Australia

    NASA Astrophysics Data System (ADS)

    Chedzey, H. C.; Menzel, W. P.; Lynch, M. J.; McGann, B. T.

    2004-05-01

    Clouds are an integral factor in the Earth's water and radiation budgets. Observations and improvements to the accuracy of measurements of cloud properties are crucial in supporting global climate change studies. Regional studies are also of interest and analysis of regional climate variability provides an insight into local weather systems. HIRS is the High-Resolution Infrared Radiation Sounder aboard polar orbiting satellites operated by NOAA (National Oceanographic and Atmospheric Administration). An archive of HIRS data obtained between 1979 (NOAA-5) through to 2001 (NOAA-16) was made available by CIMSS (Cooperative Institute for Meteorological Satellite Studies) at the University of Wisconsin-Madison. The data is obtained from near nadir and frequencies of observations are converted into percentages based on total number of observations for each 1 by 1 degree cell. An assessment of cloud frequency percentages for a region including areas of the Indian Ocean and Australia (0\\deg - 60\\deg S; 80\\deg E - 170\\deg E) will be presented. Climate variability and possible associations with future work to be conducted into cloud frequency and rainfall of North West Cloud Bands using MODIS data will also be covered.

  4. The Systemic Proper Motions of the Magellanic Clouds and their Orbits around the Milky Way

    NASA Astrophysics Data System (ADS)

    Kallivayalil, N.; van der Marel, R. P.; Alcock, C.; Axelrod, T.; Cook, K. H.; Drake, A. J.; Geha, M.

    2005-12-01

    The interaction between the Large and Small Magellanic Clouds (LMC & SMC) and the Milky Way (MW) is thought to have played an important role in the dynamical evolution of the MW's outer parts. The Clouds probe the potential of the MW dark halo in places where other kinematic tracers are unavailable and thus the MW-MC system has been a major subject of study. In particular, the global dynamics of both Clouds need to be well prescribed before other evolutionary features of the system can be understood. The radial velocities of the clouds are more readily determined than the transverse velocities, which can only be estimated using proper motions. We undertook a project using two epochs of HST/ACS data to determine the systemic proper motions of the Clouds. The Magellanic Cloud fields are centered on background QSOs that were discovered from their optical variability in the MACHO database (Geha et al. 2003). The final sample consists of 21 QSOs behind the LMC and 5 behind the SMC, distributed homogeneously behind the central few degrees of both Clouds. With a ˜2 year baseline and the use of the High Resolution Camera, we have determined the proper motion of the LMC to better than 5 \\ μ N = 0.44 ± 0.05 mas/yr (Kallivayalil et al. 2005). This is the most accurate proper motion measurement for any MW satellite thus far. We will present this measurement, as well as our results for the SMC, and the conclusions we can draw about the Clouds' orbits around the MW. Our study shows that ground-based work on finding QSOs can be combined with high resolution HST data to get good measurements in a relatively short amount of time. When combined with HI data from the Magellanic Stream our measurements should provide new constraints on both the mass distribution of the Galactic Halo and models of the Stream. Support for this work was provided by NASA through grant numbers GO-09462 and GO-10130 from STScI. KHC's work was performed under the auspices of the U.S. DOE, NNSA, by the Univ. of California, LLNL under contract No. W-7405-Eng-48.

  5. Cloud Regimes as a Tool for Systematic Study of Various Aerosol-Cloud-Precipitation Interactions

    NASA Technical Reports Server (NTRS)

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin

    2016-01-01

    Systematic changes of clouds and precipitation are notoriously difficult to ascribe to aerosols. This presentation will showcase yet one more attempt to at least credibly detect the signal of aerosol-cloud-precipitation interactions. We surmise that the concept of cloud regimes (CRs) is appropriate to conduct such an investigation. Previous studies focused on what we call here dynamical CRs, and while we continue to adopt those too for our analysis, we have found that a different way of organizing cloud systems, namely via microphysical regimes is also promising. Our analysis relies on MODIS Collection 6 Level-3 data for clouds and aerosols, and TRMM-TMPA data for precipitation. The regimes are derived by applying clustering analysis on MODIS joint histograms, and once each grid cell is assigned a regime, aerosol and precipitation data can be spatiotemporally matched and composited by regime. The composites of various cloud and precipitation variables for high (upper quartile of distribution) and low (lower quartile) aerosol loadings can then be contrasted. We seek evidence of aerosol effects both in regimes with large fractions of deep ice-rich clouds, as well as regimes where low liquid phase clouds dominate. Signals can be seen, especially when the analysis is broken by land-ocean and when additional filters are applied, but there are of course caveats which will be discussed.

  6. The effect of cloud screening on MAX-DOAS aerosol retrievals.

    NASA Astrophysics Data System (ADS)

    Gielen, Clio; Van Roozendael, Michel; Hendrik, Francois; Fayt, Caroline; Hermans, Christian; Pinardi, Gaia; De Backer, Hugo; De Bock, Veerle; Laffineur, Quentin; Vlemmix, Tim

    2014-05-01

    In recent years, ground-based multi-axis differential absorption spectroscopy (MAX-DOAS) has shown to be ideally suited for the retrieval of tropospheric trace gases and deriving information on the aerosol properties. These measurements are invaluable to our understanding of the physics and chemistry of the atmospheric system, and the impact on the Earth's climate. Unfortunately, MAX-DOAS measurements are often performed under strong non-clear-sky conditions, causing strong data quality degradation and uncertainties on the retrievals. Here we present the result of our cloud-screening method, using the colour index (CI), on aerosol retrievals from MAX-DOAS measurements (AOD and vertical profiles). We focus on two large data sets, from the Brussels and Beijing area. Using the CI we define 3 different sky conditions: bad (=full thick cloud cover/extreme aerosols), mediocre (=thin clouds/aerosols) and good (=clear sky). We also flag the presence of broken/scattered clouds. We further compare our cloud-screening method with results from cloud-cover fractions derived from thermic infrared measurements. In general, our method shows good results to qualify the sky and cloud conditions of MAX-DOAS measurements, without the need for other external cloud-detection systems. Removing data under bad-sky and broken-cloud conditions results in a strongly improved agreement, in both correlation and slope, between the MAX-DOAS aerosol retrievals and data from other instruments (e.g. AERONET, Brewer). With the improved AOD retrievals, the seasonal and diurnal variations of the aerosol content and vertical distribution at both sites can be investigated in further detail. By combining with additional information derived by other instruments (Brewer, lidar, ...) operated at the stations, we will further study the observed aerosol characteristics, and their influence on and by meteorological conditions such as clouds and/or the boundary layer height.

  7. A Comparison of Cloud Microphysical and Optical Properties during TOGA-COARE

    NASA Technical Reports Server (NTRS)

    Strawa, A. W.; Pueschel, R. F.; Pilewskie, P.; Valero, F. P. J.; Gore, Warren J. (Technical Monitor)

    1996-01-01

    The impact of cirrus clouds on climate is an issue of research interest currently. Whether cirrus clouds heat or cool the Earth-atmosphere system depends on the cloud shortwave albedo and infrared reflectance and absorptance. These in turn are determined by the size distribution, phase, and composition of particles in the clouds. The TOGA-COARE campaign presented an excellent opportunity to study cirrus clouds and their influence on climate. In this campaign, a microphysics instrument package was flown aboard the DC-8 aircraft at medium altitudes in cirrus clouds. This package included a 2D Greyscale Cloud Particle Probe, a Forward Scattering Spectrometer Aerosol Probe, and an ice crystal replicator. At the same time the ER-2 equipped with a radiation measurement system flew coordinated flight tracks above the DC-8 at very high altitude. The radiation measurement made were short and long wave fluxes, as well as narrowband fluxes, both upwelling and downwelling. In addition LIDAR data is available. The existence of these data sets allows for a the comparison of radiation measurement with microphysical measurements. For example, the optical depth and effective radius retrieved from the ER-2 radiation measurements can be compared to the microphysical data. Conversely, the optical properties and fluxes produced by the clouds can be calculated from the microphysical measurements and compared to those measured aboard the ER-2. The assumptions required to make these comparisons are discussed. Typical microphysical results show a prevalence of micron-sized particles, in addition to the cloud particles that exceed 100 mm. The large number of small particles or "haze" cause the effective cloud radii to shift to smaller sizes, leading to changes in optical parameters.

  8. A study of marine stratocumulus using lidar and other FIRE aircraft observations

    NASA Technical Reports Server (NTRS)

    Jensen, Jorgen B.; Lenschow, Donald H.

    1990-01-01

    The National Center for Atmospheric Research (NCAR) airborne infrared lidar system (NAILS) used in the 1987 First ISCCP Regional Experiment (FIRE) off the coast of California is a 10.6 microns wavelength carbon dioxide lidar system constructed by Ron Schwiesow and co-workers at NCAR. The lidar is particularly well suited for detailed observations of cloud shapes; i.e., height of cloud top (when flying above cloud and looking down) and cloud base (when flying below cloud and looking up) along the flight path. A brief summary of the lidar design characteristics is given. The lidar height resolution of plus or minus 3 m allows for the distance between the aircraft and cloud edge to be determined with this accuracy; however, the duration of the emitted pulse is approximately 3 microseconds, which corresponds to a 500 m pulse length. Therefore, variations in backscatter intensities within the clouds can normally not be resolved. Hence the main parameter obtainable from the lidar is distance to cloud; in some cases the cloud depth can also be determined. During FIRE the lidar was operational on 7 of the 10 Electra flights, and data were taken when the distance between cloud and aircraft (minimum range) was at least 500 m. The lidar was usually operated at 8 Hz, which at a flight speed of 100 m s(-1) translates into a horizontal resolution of about 12 m. The backscatter as function of time (equivalent to distance) for each laser pulse is stored in digital form on magnetic tape. Currently, three independent variables are available to the investigators on the FIRE Electra data tapes: lidar range to cloud, strength of return (relative power), and pulse width of return, which is related to penetration depth.

  9. Cloud and Traditional Videoconferencing Technology for Telemedicine and Distance Learning

    PubMed Central

    Zhang, Kai; Locatis, Craig; Ackerman, Michael

    2015-01-01

    Abstract Introduction: Cloud-based videoconferencing versus traditional systems are described for possible use in telemedicine and distance learning. Materials and Methods: Differences between traditional and cloud-based videoconferencing systems are examined, and the methods for identifying and testing systems are explained. Findings are presented characterizing the cloud conferencing genre and its attributes versus traditional H.323 conferencing. Results: Because the technology is rapidly evolving and needs to be evaluated in reference to local needs, it is strongly recommended that this or other reviews not be considered substitutes for personal hands-on experience. Conclusions: This review identifies key attributes of the technology that can be used to appraise the relevance of cloud conferencing technology and to determine whether migration from traditional technology to a cloud environment is warranted. An evaluation template is provided for assessing systems appropriateness. PMID:25785761

  10. Design and Implementation of a Set-Top Box-Based Homecare System Using Hybrid Cloud.

    PubMed

    Lin, Bor-Shing; Hsiao, Pei-Chi; Cheng, Po-Hsun; Lee, I-Jung; Jan, Gene Eu

    2015-11-01

    Telemedicine has become a prevalent topic in recent years, and several telemedicine systems have been proposed; however, such systems are an unsuitable fit for the daily requirements of users. The system proposed in this study was developed as a set-top box integrated with the Android™ (Google, Mountain View, CA) operating system to provide a convenient and user-friendly interface. The proposed system can assist with family healthcare management, telemedicine service delivery, and information exchange among hospitals. To manage the system, a novel type of hybrid cloud architecture was also developed. Updated information is stored on a public cloud, enabling medical staff members to rapidly access information when diagnosing patients. In the long term, the stored data can be reduced to improve the efficiency of the database. The proposed design offers a robust architecture for storing data in a homecare system and can thus resolve network overload and congestion resulting from accumulating data, which are inherent problems in centralized architectures, thereby improving system efficiency.

  11. Beyond the Flipped Classroom: A Highly Interactive Cloud-Classroom (HIC) Embedded into Basic Materials Science Courses

    ERIC Educational Resources Information Center

    Liou, Wei-Kai; Bhagat, Kaushal Kumar; Chang, Chun-Yen

    2016-01-01

    The present study compares the highly interactive cloud-classroom (HIC) system with traditional methods of teaching materials science that utilize crystal structure picture or real crystal structure model, in order to examine its learning effectiveness across three dimensions: knowledge, comprehension and application. The aim of this study was to…

  12. Phase B: Final definition and preliminary design study for the initial Atmospheric Cloud Physics Laboratory (ACPL): A spacelab mission payload. Final review (DR-MA-03)

    NASA Technical Reports Server (NTRS)

    Clausen, O. W.

    1976-01-01

    Systems design for an initial atmospheric cloud physics laboratory to study microphysical processes in zero gravity is presented. Included are descriptions of the fluid, thermal, mechanical, control and data, and electrical distribution interfaces with Spacelab. Schedule and cost analysis are discussed.

  13. Feasibility of Cloud Computing Implementation for eLearning in Secondary Schools in Tanzania

    ERIC Educational Resources Information Center

    Mwakisole, Kennedy F.; Kissaka, Mussa M.; Mtebe, Joel S.

    2018-01-01

    This article assessed the feasibility of implementing eLearning systems in a cloud-based infrastructure for secondary schools in Tanzania. The study adopted questionnaire and document reviews as data collection tools. A total of 820 students successfully returned the questionnaire from seven secondary schools in Tanzania. The study found that 11%…

  14. Examination of Regional Trends in Cloud Properties over Surface Sites Derived from MODIS and AVHRR using the CERES Cloud Algorithm

    NASA Astrophysics Data System (ADS)

    Smith, W. L., Jr.; Minnis, P.; Bedka, K. M.; Sun-Mack, S.; Chen, Y.; Doelling, D. R.; Kato, S.; Rutan, D. A.

    2017-12-01

    Recent studies analyzing long-term measurements of surface insolation at ground sites suggest that decadal-scale trends of increasing (brightening) and decreasing (dimming) downward solar flux have occurred at various times over the last century. Regional variations have been reported that range from near 0 Wm-2/decade to as large as 9 Wm-2/decade depending on the location and time period analyzed. The more significant trends have been attributed to changes in overhead clouds and aerosols, although quantifying their relative impacts using independent observations has been difficult, owing in part to a lack of consistent long-term measurements of cloud properties. This paper examines new satellite based records of cloud properties derived from MODIS (2000-present) and AVHRR (1981- present) data to infer cloud property trends over a number of surface radiation sites across the globe. The MODIS cloud algorithm was developed for the NASA Clouds and the Earth's Radiant Energy System (CERES) project to provide a consistent record of cloud properties to help improve broadband radiation measurements and to better understand cloud radiative effects. The CERES-MODIS cloud algorithm has been modified to analyze other satellites including the AVHRR on the NOAA satellites. Compared to MODIS, obtaining consistent cloud properties over a long period from AVHRR is a much more significant challenge owing to the number of different satellites, instrument calibration uncertainties, orbital drift and other factors. Nevertheless, both the MODIS and AVHRR cloud properties will be analyzed to determine trends, and their level of consistency and correspondence with surface radiation trends derived from the ground-based radiometer data. It is anticipated that this initial study will contribute to an improved understanding of surface solar radiation trends and their relationship to clouds.

  15. Characterizing the Trade Space Between Capability and Complexity in Next Generation Cloud and Precipitation Observing Systems Using Markov Chain Monte Carlos Techniques

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Mace, G. G.; Posselt, D. J.

    2017-12-01

    As we begin to contemplate the next generation atmospheric observing systems, it will be critically important that we are able to make informed decisions regarding the trade space between scientific capability and the need to keep complexity and cost within definable limits. To explore this trade space as it pertains to understanding key cloud and precipitation processes, we are developing a Markov Chain Monte Carlo (MCMC) algorithm suite that allows us to arbitrarily define the specifications of candidate observing systems and then explore how the uncertainties in key retrieved geophysical parameters respond to that observing system. MCMC algorithms produce a more complete posterior solution space, and allow for an objective examination of information contained in measurements. In our initial implementation, MCMC experiments are performed to retrieve vertical profiles of cloud and precipitation properties from a spectrum of active and passive measurements collected by aircraft during the ACE Radiation Definition Experiments (RADEX). Focusing on shallow cumulus clouds observed during the Integrated Precipitation and Hydrology EXperiment (IPHEX), observing systems in this study we consider W and Ka-band radar reflectivity, path-integrated attenuation at those frequencies, 31 and 94 GHz brightness temperatures as well as visible and near-infrared reflectance. By varying the sensitivity and uncertainty of these measurements, we quantify the capacity of various combinations of observations to characterize the physical properties of clouds and precipitation.

  16. Cloud-based NEXRAD Data Processing and Analysis for Hydrologic Applications

    NASA Astrophysics Data System (ADS)

    Seo, B. C.; Demir, I.; Keem, M.; Goska, R.; Weber, J.; Krajewski, W. F.

    2016-12-01

    The real-time and full historical archive of NEXRAD Level II data, covering the entire United States from 1991 to present, recently became available on Amazon cloud S3. This provides a new opportunity to rebuild the Hydro-NEXRAD software system that enabled users to access vast amounts of NEXRAD radar data in support of a wide range of research. The system processes basic radar data (Level II) and delivers radar-rainfall products based on the user's custom selection of features such as space and time domain, river basin, rainfall product space and time resolution, and rainfall estimation algorithms. The cloud-based new system can eliminate prior challenges faced by Hydro-NEXRAD data acquisition and processing: (1) temporal and spatial limitation arising from the limited data storage; (2) archive (past) data ingestion and format conversion; and (3) separate data processing flow for the past and real-time Level II data. To enhance massive data processing and computational efficiency, the new system is implemented and tested for the Iowa domain. This pilot study begins by ingesting rainfall metadata and implementing Hydro-NEXRAD capabilities on the cloud using the new polarimetric features, as well as the existing algorithm modules and scripts. The authors address the reliability and feasibility of cloud computation and processing, followed by an assessment of response times from an interactive web-based system.

  17. Implementation of aerosol-cloud interactions in the regional atmosphere-aerosol model COSMO-MUSCAT(5.0) and evaluation using satellite data

    NASA Astrophysics Data System (ADS)

    Dipu, Sudhakar; Quaas, Johannes; Wolke, Ralf; Stoll, Jens; Mühlbauer, Andreas; Sourdeval, Odran; Salzmann, Marc; Heinold, Bernd; Tegen, Ina

    2017-06-01

    The regional atmospheric model Consortium for Small-scale Modeling (COSMO) coupled to the Multi-Scale Chemistry Aerosol Transport model (MUSCAT) is extended in this work to represent aerosol-cloud interactions. Previously, only one-way interactions (scavenging of aerosol and in-cloud chemistry) and aerosol-radiation interactions were included in this model. The new version allows for a microphysical aerosol effect on clouds. For this, we use the optional two-moment cloud microphysical scheme in COSMO and the online-computed aerosol information for cloud condensation nuclei concentrations (Cccn), replacing the constant Cccn profile. In the radiation scheme, we have implemented a droplet-size-dependent cloud optical depth, allowing now for aerosol-cloud-radiation interactions. To evaluate the models with satellite data, the Cloud Feedback Model Intercomparison Project Observation Simulator Package (COSP) has been implemented. A case study has been carried out to understand the effects of the modifications, where the modified modeling system is applied over the European domain with a horizontal resolution of 0.25° × 0.25°. To reduce the complexity in aerosol-cloud interactions, only warm-phase clouds are considered. We found that the online-coupled aerosol introduces significant changes for some cloud microphysical properties. The cloud effective radius shows an increase of 9.5 %, and the cloud droplet number concentration is reduced by 21.5 %.

  18. Satellite Remote Sensing of Aerosol Forcing

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine; Kaufman, Yoram; Ramaprasad, Jaya; Procopio, Aline; Levin, Zev

    1999-01-01

    Aerosol and cloud impacts on the earth's climate become a recent hot topic in climate studies. Having near future earth observing satellites, EOS-AM1 (Earth Observing System-AM1), ENVISAT (Environmental Satellites) and ADEOS-2 (Advanced Earth Observation Satellite-2), it will be a good timing to discuss how to obtain and use the microphysical parameters of aerosols and clouds for studying their climate impacts. Center for Climate System Research (CCSR) of the University of Tokyo invites you to 'Symposium on synergy between satellite-remote sensing and climate modeling in aerosol and cloud issues.' Here, we like to discuss the current and future issues in the remote sensing of aerosol and cloud microphysical parameters and their climate modeling studies. This workshop is also one of workshop series on aerosol remote sensing held in 1996, Washington D. C., and Meribel, France in 1999. It should be reminded that NASDA/ADEOS-1 & -2 (National Space Development Agency of Japan/Advanced Earth Observation Satellite-1 & -2) Workshop will be held in the following week (Dec. 6-10, 1999), so that this opportunity will be a perfect period for you to attend two meetings for satellite remote sensing in Japan. A weekend in Kyoto, the old capital of Japan, will add a nice memory to your visiting Japan. *Issues in the symposium: 1) most recent topics in aerosol and cloud remot sensing, and 2) utility of satellite products on climate modeling of cloud-aerosol effects.

  19. Cloud manufacturing: from concept to practice

    NASA Astrophysics Data System (ADS)

    Ren, Lei; Zhang, Lin; Tao, Fei; Zhao, Chun; Chai, Xudong; Zhao, Xinpei

    2015-02-01

    The concept of cloud manufacturing is emerging as a new promising manufacturing paradigm, as well as a business model, which is reshaping the service-oriented, highly collaborative, knowledge-intensive and eco-efficient manufacturing industry. However, the basic concepts about cloud manufacturing are still in discussion. Both academia and industry will need to have a commonly accepted definition of cloud manufacturing, as well as further guidance and recommendations on how to develop and implement cloud manufacturing. In this paper, we review some of the research work and clarify some fundamental terminologies in this field. Further, we developed a cloud manufacturing systems which may serve as an application example. From a systematic and practical perspective, the key requirements of cloud manufacturing platforms are investigated, and then we propose a cloud manufacturing platform prototype, MfgCloud. Finally, a public cloud manufacturing system for small- and medium-sized enterprises (SME) is presented. This paper presents a new perspective for cloud manufacturing, as well as a cloud-to-ground solution. The integrated solution proposed in this paper, including the terminology, MfgCloud, and applications, can push forward this new paradigm from concept to practice.

  20. Dynamical evolution of the Oort cloud

    NASA Technical Reports Server (NTRS)

    Weissman, P. R.

    1985-01-01

    New studies of the dynamical evolution of cometary orbits in the Oort cloud are made using a revised version of Weissman's (1982) Monte Carlo simulation model, which more accurately mimics the perturbation of comets by the giant planets. It is shown that perturbations by Saturn and Jupiter provide a substantial barrier to the diffusion of cometary perihelia into the inner solar system. Perturbations by Uranus and Neptune are rarely great enough to remove comets from the Oort cloud, but do serve to scatter the comets in the cloud in initial energy. The new model gives a population of 1.8 to 2.1 x 10 to the 12th comets for the present-day Oort cloud, and a mass of 7 to 8 earth masses. Perturbation of the Oort cloud by giant molecular clouds in the galaxy is discussed, as is evidence for a massive 'inner Oort cloud' internal to the observed one. The possibility of an unseen solar companion orbiting in the Oort cloud and causing periodic comet showers is shown to be dynamically plausible but unlikely, based on the observed cratering rate on the earth and moon.

  1. Star formation in evolving molecular clouds

    NASA Astrophysics Data System (ADS)

    Völschow, M.; Banerjee, R.; Körtgen, B.

    2017-09-01

    Molecular clouds are the principle stellar nurseries of our universe; they thus remain a focus of both observational and theoretical studies. From observations, some of the key properties of molecular clouds are well known but many questions regarding their evolution and star formation activity remain open. While numerical simulations feature a large number and complexity of involved physical processes, this plethora of effects may hide the fundamentals that determine the evolution of molecular clouds and enable the formation of stars. Purely analytical models, on the other hand, tend to suffer from rough approximations or a lack of completeness, limiting their predictive power. In this paper, we present a model that incorporates central concepts of astrophysics as well as reliable results from recent simulations of molecular clouds and their evolutionary paths. Based on that, we construct a self-consistent semi-analytical framework that describes the formation, evolution, and star formation activity of molecular clouds, including a number of feedback effects to account for the complex processes inside those objects. The final equation system is solved numerically but at much lower computational expense than, for example, hydrodynamical descriptions of comparable systems. The model presented in this paper agrees well with a broad range of observational results, showing that molecular cloud evolution can be understood as an interplay between accretion, global collapse, star formation, and stellar feedback.

  2. Cloud occurrences and cloud radiative effects (CREs) from CERES-CALIPSO-CloudSat-MODIS (CCCM) and CloudSat radar-lidar (RL) products

    NASA Astrophysics Data System (ADS)

    Ham, Seung-Hee; Kato, Seiji; Rose, Fred G.; Winker, David; L'Ecuyer, Tristan; Mace, Gerald G.; Painemal, David; Sun-Mack, Sunny; Chen, Yan; Miller, Walter F.

    2017-08-01

    Two kinds of cloud products obtained from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), CloudSat, and Moderate Resolution Imaging Spectroradiometer (MODIS) are compared and analyzed in this study: Clouds and the Earth's Radiant Energy System (CERES)-CALIPSO-CloudSat-MODIS (CCCM) product and CloudSat radar-lidar products such as GEOPROF-LIDAR and FLXHR-LIDAR. Compared to GEOPROF-LIDAR, low-level (<1 km) cloud occurrences in CCCM are larger over tropical oceans because the CCCM algorithm uses a more relaxed threshold of cloud-aerosol discrimination score for CALIPSO Vertical Feature Mask product. In contrast, midlevel (1-8 km) cloud occurrences in GEOPROF-LIDAR are larger than CCCM at high latitudes (>40°). The difference occurs when hydrometeors are detected by CALIPSO lidar but are undetected by CloudSat radar. In the comparison of cloud radiative effects (CREs), global mean differences between CCCM and FLXHR-LIDAR are mostly smaller than 5 W m-2, while noticeable regional differences are found. For example, CCCM shortwave (SW) and longwave (LW) CREs are larger than FXLHR-LIDAR along the west coasts of Africa and America because the GEOPROF-LIDAR algorithm misses shallow marine boundary layer clouds. In addition, FLXHR-LIDAR SW CREs are larger than the CCCM counterpart over tropical oceans away from the west coasts of America. Over midlatitude storm-track regions, CCCM SW and LW CREs are larger than the FLXHR-LIDAR counterpart.

  3. Multilayer Cloud Detection with the MODIS Near-Infrared Water Vapor Absorption Band

    NASA Technical Reports Server (NTRS)

    Wind, Galina; Platnick, Steven; King, Michael D.; Hubanks, Paul A,; Pavolonis, Michael J.; Heidinger, Andrew K.; Yang, Ping; Baum, Bryan A.

    2009-01-01

    Data Collection 5 processing for the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the NASA Earth Observing System EOS Terra and Aqua spacecraft includes an algorithm for detecting multilayered clouds in daytime. The main objective of this algorithm is to detect multilayered cloud scenes, specifically optically thin ice cloud overlying a lower-level water cloud, that presents difficulties for retrieving cloud effective radius using single layer plane-parallel cloud models. The algorithm uses the MODIS 0.94 micron water vapor band along with CO2 bands to obtain two above-cloud precipitable water retrievals, the difference of which, in conjunction with additional tests, provides a map of where multilayered clouds might potentially exist. The presence of a multilayered cloud results in a large difference in retrievals of above-cloud properties between the CO2 and the 0.94 micron methods. In this paper the MODIS multilayered cloud algorithm is described, results of using the algorithm over example scenes are shown, and global statistics for multilayered clouds as observed by MODIS are discussed. A theoretical study of the algorithm behavior for simulated multilayered clouds is also given. Results are compared to two other comparable passive imager methods. A set of standard cloudy atmospheric profiles developed during the course of this investigation is also presented. The results lead to the conclusion that the MODIS multilayer cloud detection algorithm has some skill in identifying multilayered clouds with different thermodynamic phases

  4. Application of the CloudSat and NEXRAD Radars Toward Improvements in High Resolution Operational Forecasts

    NASA Technical Reports Server (NTRS)

    Molthan, A. L.; Haynes, J. A.; Case, J. L.; Jedlovec, G. L.; Lapenta, W. M.

    2008-01-01

    As computational power increases, operational forecast models are performing simulations with higher spatial resolution allowing for the transition from sub-grid scale cloud parameterizations to an explicit forecast of cloud characteristics and precipitation through the use of single- or multi-moment bulk water microphysics schemes. investments in space-borne and terrestrial remote sensing have developed the NASA CloudSat Cloud Profiling Radar and the NOAA National Weather Service NEXRAD system, each providing observations related to the bulk properties of clouds and precipitation through measurements of reflectivity. CloudSat and NEXRAD system radars observed light to moderate snowfall in association with a cold-season, midlatitude cyclone traversing the Central United States in February 2007. These systems are responsible for widespread cloud cover and various types of precipitation, are of economic consequence, and pose a challenge to operational forecasters. This event is simulated with the Weather Research and Forecast (WRF) Model, utilizing the NASA Goddard Cumulus Ensemble microphysics scheme. Comparisons are made between WRF-simulated and observed reflectivity available from the CloudSat and NEXRAD systems. The application of CloudSat reflectivity is made possible through the QuickBeam radiative transfer model, with cautious application applied in light of single scattering characteristics and spherical target assumptions. Significant differences are noted within modeled and observed cloud profiles, based upon simulated reflectivity, and modifications to the single-moment scheme are tested through a supplemental WRF forecast that incorporates a temperature dependent snow crystal size distribution.

  5. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, Xiaowen; Khain, Alexander; Matsui, Toshihisa; Lang, Stephen; Simpson, Joanne

    2008-01-01

    Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds [NRC, 2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path [Twomey, 1977] and the "semi-direct" effect on cloud coverage [e.g., Ackerman et al ., 2001]." Enhanced aerosol concentrations can also suppress warm rain processes by producing a narrow droplet spectrum that inhibits collision and coalescence processes [e.g., Squires and Twomey, 1961; Warner and Twomey, 1967; Warner, 1968; Rosenfeld, 19991. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect [Albrecht, 1989], is even more complex, especially for mixed-phase convective clouds. Table 1 summarizes the key observational studies identifying the microphysical properties, cloud characteristics, thermodynamics and dynamics associated with cloud systems from high-aerosol continental environments. For example, atmospheric aerosol concentrations can influence cloud droplet size distributions, warm-rain process, cold-rain process, cloud-top height, the depth of the mixed phase region, and occurrence of lightning. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing an enhanced source of cloud condensation nuclei (CCN). Hypotheses have been developed to explain the effect of urban regions on convection and precipitation [van den Heever and Cotton, 2007 and Shepherd, 2005]. Please see Tao et al. (2007) for more detailed description on aerosol impact on precipitation. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and summertime convection over a mid-latitude continent with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. The impact of atmospheric aerosol concentration on cloud and precipitation will be investigated.

  6. The design of an m-Health monitoring system based on a cloud computing platform

    NASA Astrophysics Data System (ADS)

    Xu, Boyi; Xu, Lida; Cai, Hongming; Jiang, Lihong; Luo, Yang; Gu, Yizhi

    2017-01-01

    Compared to traditional medical services provided within hospitals, m-Health monitoring systems (MHMSs) face more challenges in personalised health data processing. To achieve personalised and high-quality health monitoring by means of new technologies, such as mobile network and cloud computing, in this paper, a framework of an m-Health monitoring system based on a cloud computing platform (Cloud-MHMS) is designed to implement pervasive health monitoring. Furthermore, the modules of the framework, which are Cloud Storage and Multiple Tenants Access Control Layer, Healthcare Data Annotation Layer, and Healthcare Data Analysis Layer, are discussed. In the data storage layer, a multiple tenant access method is designed to protect patient privacy. In the data annotation layer, linked open data are adopted to augment health data interoperability semantically. In the data analysis layer, the process mining algorithm and similarity calculating method are implemented to support personalised treatment plan selection. These three modules cooperate to implement the core functions in the process of health monitoring, which are data storage, data processing, and data analysis. Finally, we study the application of our architecture in the monitoring of antimicrobial drug usage to demonstrate the usability of our method in personal healthcare analysis.

  7. Mobile healthcare information management utilizing Cloud Computing and Android OS.

    PubMed

    Doukas, Charalampos; Pliakas, Thomas; Maglogiannis, Ilias

    2010-01-01

    Cloud Computing provides functionality for managing information data in a distributed, ubiquitous and pervasive manner supporting several platforms, systems and applications. This work presents the implementation of a mobile system that enables electronic healthcare data storage, update and retrieval using Cloud Computing. The mobile application is developed using Google's Android operating system and provides management of patient health records and medical images (supporting DICOM format and JPEG2000 coding). The developed system has been evaluated using the Amazon's S3 cloud service. This article summarizes the implementation details and presents initial results of the system in practice.

  8. A new task scheduling algorithm based on value and time for cloud platform

    NASA Astrophysics Data System (ADS)

    Kuang, Ling; Zhang, Lichen

    2017-08-01

    Tasks scheduling, a key part of increasing resource utilization and enhancing system performance, is a never outdated problem especially in cloud platforms. Based on the value density algorithm of the real-time task scheduling system and the character of the distributed system, the paper present a new task scheduling algorithm by further studying the cloud technology and the real-time system: Least Level Value Density First (LLVDF). The algorithm not only introduces some attributes of time and value for tasks, it also can describe weighting relationships between these properties mathematically. As this feature of the algorithm, it can gain some advantages to distinguish between different tasks more dynamically and more reasonably. When the scheme was used in the priority calculation of the dynamic task scheduling on cloud platform, relying on its advantage, it can schedule and distinguish tasks with large amounts and many kinds more efficiently. The paper designs some experiments, some distributed server simulation models based on M/M/C model of queuing theory and negative arrivals, to compare the algorithm against traditional algorithm to observe and show its characters and advantages.

  9. Capabilities and Advantages of Cloud Computing in the Implementation of Electronic Health Record.

    PubMed

    Ahmadi, Maryam; Aslani, Nasim

    2018-01-01

    With regard to the high cost of the Electronic Health Record (EHR), in recent years the use of new technologies, in particular cloud computing, has increased. The purpose of this study was to review systematically the studies conducted in the field of cloud computing. The present study was a systematic review conducted in 2017. Search was performed in the Scopus, Web of Sciences, IEEE, Pub Med and Google Scholar databases by combination keywords. From the 431 article that selected at the first, after applying the inclusion and exclusion criteria, 27 articles were selected for surveyed. Data gathering was done by a self-made check list and was analyzed by content analysis method. The finding of this study showed that cloud computing is a very widespread technology. It includes domains such as cost, security and privacy, scalability, mutual performance and interoperability, implementation platform and independence of Cloud Computing, ability to search and exploration, reducing errors and improving the quality, structure, flexibility and sharing ability. It will be effective for electronic health record. According to the findings of the present study, higher capabilities of cloud computing are useful in implementing EHR in a variety of contexts. It also provides wide opportunities for managers, analysts and providers of health information systems. Considering the advantages and domains of cloud computing in the establishment of HER, it is recommended to use this technology.

  10. Capabilities and Advantages of Cloud Computing in the Implementation of Electronic Health Record

    PubMed Central

    Ahmadi, Maryam; Aslani, Nasim

    2018-01-01

    Background: With regard to the high cost of the Electronic Health Record (EHR), in recent years the use of new technologies, in particular cloud computing, has increased. The purpose of this study was to review systematically the studies conducted in the field of cloud computing. Methods: The present study was a systematic review conducted in 2017. Search was performed in the Scopus, Web of Sciences, IEEE, Pub Med and Google Scholar databases by combination keywords. From the 431 article that selected at the first, after applying the inclusion and exclusion criteria, 27 articles were selected for surveyed. Data gathering was done by a self-made check list and was analyzed by content analysis method. Results: The finding of this study showed that cloud computing is a very widespread technology. It includes domains such as cost, security and privacy, scalability, mutual performance and interoperability, implementation platform and independence of Cloud Computing, ability to search and exploration, reducing errors and improving the quality, structure, flexibility and sharing ability. It will be effective for electronic health record. Conclusion: According to the findings of the present study, higher capabilities of cloud computing are useful in implementing EHR in a variety of contexts. It also provides wide opportunities for managers, analysts and providers of health information systems. Considering the advantages and domains of cloud computing in the establishment of HER, it is recommended to use this technology. PMID:29719309

  11. Various Numerical Applications on Tropical Convective Systems Using a Cloud Resolving Model

    NASA Technical Reports Server (NTRS)

    Shie, C.-L.; Tao, W.-K.; Simpson, J.

    2003-01-01

    In recent years, increasing attention has been given to cloud resolving models (CRMs or cloud ensemble models-CEMs) for their ability to simulate the radiative-convective system, which plays a significant role in determining the regional heat and moisture budgets in the Tropics. The growing popularity of CRM usage can be credited to its inclusion of crucial and physically relatively realistic features such as explicit cloud-scale dynamics, sophisticated microphysical processes, and explicit cloud-radiation interaction. On the other hand, impacts of the environmental conditions (for example, the large-scale wind fields, heat and moisture advections as well as sea surface temperature) on the convective system can also be plausibly investigated using the CRMs with imposed explicit forcing. In this paper, by basically using a Goddard Cumulus Ensemble (GCE) model, three different studies on tropical convective systems are briefly presented. Each of these studies serves a different goal as well as uses a different approach. In the first study, which uses more of an idealized approach, the respective impacts of the large-scale horizontal wind shear and surface fluxes on the modeled tropical quasi-equilibrium states of temperature and water vapor are examined. In this 2-D study, the imposed large-scale horizontal wind shear is ideally either nudged (wind shear maintained strong) or mixed (wind shear weakened), while the minimum surface wind speed used for computing surface fluxes varies among various numerical experiments. For the second study, a handful of real tropical episodes (TRMM Kwajalein Experiment - KWAJEX, 1999; TRMM South China Sea Monsoon Experiment - SCSMEX, 1998) have been simulated such that several major atmospheric characteristics such as the rainfall amount and its associated stratiform contribution, the Qlheat and Q2/moisture budgets are investigated. In this study, the observed large-scale heat and moisture advections are continuously applied to the 2-D model. The modeled cloud generated from such an approach is termed continuously forced convection or continuous large-scale forced convection. A third study, which focuses on the respective impact of atmospheric components on upper Ocean heat and salt budgets, will be presented in the end. Unlike the two previous 2-D studies, this study employs the 3-D GCE-simulated diabatic source terms (using TOGA COARE observations) - radiation (longwave and shortwave), surface fluxes (sensible and latent heat, and wind stress), and precipitation as input for the Ocean mixed-layer (OML) model.

  12. Monitoring Cirrus Clouds Using Lamp Observations in Association with Balloon-Borne Radiosonde Over Nainital: Few Case Studies

    NASA Astrophysics Data System (ADS)

    Solanki, R.; Singh, N.

    2012-12-01

    Upper tropospheric clouds such as cirrus have been identified as one of the important regulator of the radiation balance of the earth atmospheric-system. Though the satellite observation provide valuable information on cirrus clouds, they have limitations on spectral, temporal and spatial coverage, hence the need for local remote sensing, such as LiDAR a leading technique for studying the characteristics and properties of cirrus clouds. The upgraded version of a micro pulse LiDAR popularly known as LiDAR for Atmospheric Measurements and Probing (LAMP) developed by National Atmospheric Research Laboratory (NARL) is operational since October 2011, at ARIES Nainital (29.4oN, 79.5oE, ~2 km above the mean sea level) a high altitude location in the central Himalayas. Regular observations are being carried out in order to study the vertical distribution of aerosols, clouds and boundary layer structure etc. Altitude profiles of range corrected photon count and derived aerosol back scatter coefficients have depicted the occurrence of high altitude cirrus clouds/ ice clouds in an altitude range of 7 to 11 Km. Among the total observations in 27% of the cases the occurrence of cirrus clouds were detected. The corresponding cloud parameters such as temperature (-59 0C), horizontal wind speed (26 m/s), vertical wind speed (24 m/s), Relative Humidity (61%), at a height (~9 Km) were measured with Radiosonde observations. The prevailing region for cirrus cloud is found to be highly turbulent, indicating the region of divergence followed by a convergence, showing the favorable conditions for cirrus cloud formation. Optical and geometrical characteristics of Cirrus clouds have been analyzed using LiDAR and radiosonde measurements. The temperature and thickness dependence of optical properties have also been studied. The results will be further substantiated with CALIPSO satellite and details will be discussed during the presentation.

  13. Earlinet validation of CATS L2 product

    NASA Astrophysics Data System (ADS)

    Proestakis, Emmanouil; Amiridis, Vassilis; Kottas, Michael; Marinou, Eleni; Binietoglou, Ioannis; Ansmann, Albert; Wandinger, Ulla; Yorks, John; Nowottnick, Edward; Makhmudov, Abduvosit; Papayannis, Alexandros; Pietruczuk, Aleksander; Gialitaki, Anna; Apituley, Arnoud; Muñoz-Porcar, Constantino; Bortoli, Daniele; Dionisi, Davide; Althausen, Dietrich; Mamali, Dimitra; Balis, Dimitris; Nicolae, Doina; Tetoni, Eleni; Luigi Liberti, Gian; Baars, Holger; Stachlewska, Iwona S.; Voudouri, Kalliopi-Artemis; Mona, Lucia; Mylonaki, Maria; Rita Perrone, Maria; João Costa, Maria; Sicard, Michael; Papagiannopoulos, Nikolaos; Siomos, Nikolaos; Burlizzi, Pasquale; Engelmann, Ronny; Abdullaev, Sabur F.; Hofer, Julian; Pappalardo, Gelsomina

    2018-04-01

    The Cloud-Aerosol Transport System (CATS) onboard the International Space Station (ISS), is a lidar system providing vertically resolved aerosol and cloud profiles since February 2015. In this study, the CATS aerosol product is validated against the aerosol profiles provided by the European Aerosol Research Lidar Network (EARLINET). This validation activity is based on collocated CATS-EARLINET measurements and the comparison of the particle backscatter coefficient at 1064nm.

  14. NASA Update for Unidata Stratcomm

    NASA Technical Reports Server (NTRS)

    Lynnes, Chris

    2017-01-01

    The NASA representative to the Unidata Strategic Committee presented a semiannual update on NASAs work with and use of Unidata technologies. The talk updated Unidata on the program of cloud computing prototypes underway for the Earth Observing System Data and Information System (EOSDIS). Also discussed was a trade study on the use of the Open source Project for a Network Data Access Protocol (OPeNDAP) with Web Object Storage in the cloud.

  15. A Numerical Model of the Performance of the Howard University Raman Lidar System

    NASA Astrophysics Data System (ADS)

    Connell, Rasheen M.; Adam, Mariana; Venable, Demetrius

    2009-07-01

    At the Howard University Atmospheric Observatory in Beltsville, MD, a Raman Lidar system was developed to provide both daytime and nighttime measurements of water vapor, aerosols, and cirrus clouds with 1 min temporal and 7.5 m spatial resolution in the lower troposphere. Signals at three wavelengths associated with Rayleigh/Mie scattering for aerosols and cirrus clouds at 354.7 nm, Raman scattering for nitrogen at 386.7 nm, and water vapor at 407.5 nm are analyzed. The transmitter is a triple harmonic Nd: YAG solid state laser. The receiver is a 40 cm Cassegrain telescope. Our detector system consists of a multi-channel wavelength separator unit and data acquisition system. We are developing a numerical model to provide a realistic representation of the system behavior. The variants of the lidar equation in the model use system parameters and are solved to determine the return signals for our lidar system. In this paper, we report on two of the five case studies being investigated: clear sky and cirrus cloud covered molecular atmosphere. The first simulations are based on a standard atmosphere, which assumes an unpolluted (aerosol-free) dry air atmosphere. The second set of simulations is based on a cloudy atmosphere, where cirrus clouds are added to the conditions in case study I. Lidar signals are simulated over the altitude range covered by our measurements (up to 14 km). Results will show comparisons between the simulated and actual measurements when varying lidar and atmospheric optical parameters in the model.

  16. A Highly Scalable Data Service (HSDS) using Cloud-based Storage Technologies for Earth Science Data

    NASA Astrophysics Data System (ADS)

    Michaelis, A.; Readey, J.; Votava, P.; Henderson, J.; Willmore, F.

    2017-12-01

    Cloud based infrastructure may offer several key benefits of scalability, built in redundancy, security mechanisms and reduced total cost of ownership as compared with a traditional data center approach. However, most of the tools and legacy software systems developed for online data repositories within the federal government were not developed with a cloud based infrastructure in mind and do not fully take advantage of commonly available cloud-based technologies. Moreover, services bases on object storage are well established and provided through all the leading cloud service providers (Amazon Web Service, Microsoft Azure, Google Cloud, etc…) of which can often provide unmatched "scale-out" capabilities and data availability to a large and growing consumer base at a price point unachievable from in-house solutions. We describe a system that utilizes object storage rather than traditional file system based storage to vend earth science data. The system described is not only cost effective, but shows a performance advantage for running many different analytics tasks in the cloud. To enable compatibility with existing tools and applications, we outline client libraries that are API compatible with existing libraries for HDF5 and NetCDF4. Performance of the system is demonstrated using clouds services running on Amazon Web Services.

  17. A novel mobile-cloud system for capturing and analyzing wheelchair maneuvering data: A pilot study.

    PubMed

    Fu, Jicheng; Jones, Maria; Liu, Tao; Hao, Wei; Yan, Yuqing; Qian, Gang; Jan, Yih-Kuen

    2016-01-01

    The purpose of this pilot study was to provide a new approach for capturing and analyzing wheelchair maneuvering data, which are critical for evaluating wheelchair users' activity levels. We proposed a mobile-cloud (MC) system, which incorporated the emerging mobile and cloud computing technologies. The MC system employed smartphone sensors to collect wheelchair maneuvering data and transmit them to the cloud for storage and analysis. A k-nearest neighbor (KNN) machine-learning algorithm was developed to mitigate the impact of sensor noise and recognize wheelchair maneuvering patterns. We conducted 30 trials in an indoor setting, where each trial contained 10 bouts (i.e., periods of continuous wheelchair movement). We also verified our approach in a different building. Different from existing approaches that require sensors to be attached to wheelchairs' wheels, we placed the smartphone into a smartphone holder attached to the wheelchair. Experimental results illustrate that our approach correctly identified all 300 bouts. Compared to existing approaches, our approach was easier to use while achieving similar accuracy in analyzing the accumulated movement time and maximum period of continuous movement (p > 0.8). Overall, the MC system provided a feasible way to ease the data collection process and generated accurate analysis results for evaluating activity levels.

  18. A Novel Mobile-Cloud System for Capturing and Analyzing Wheelchair Maneuvering Data: A Pilot Study

    PubMed Central

    Fu, Jicheng; Jones, Maria; Liu, Tao; Hao, Wei; Yan, Yuqing; Qian, Gang; Jan, Yih-Kuen

    2016-01-01

    The purpose of this pilot study was to provide a new approach for capturing and analyzing wheelchair maneuvering data, which are critical for evaluating wheelchair users’ activity levels. We proposed a mobile-cloud (MC) system, which incorporated the emerging mobile and cloud computing technologies. The MC system employed smartphone sensors to collect wheelchair maneuvering data and transmit them to the cloud for storage and analysis. A K-Nearest-Neighbor (KNN) machine-learning algorithm was developed to mitigate the impact of sensor noise and recognize wheelchair maneuvering patterns. We conducted 30 trials in an indoor setting, where each trial contained 10 bouts (i.e., periods of continuous wheelchair movement). We also verified our approach in a different building. Different from existing approaches that require sensors to be attached to wheelchairs’ wheels, we placed the smartphone into a smartphone holder attached to the wheelchair. Experimental results illustrate that our approach correctly identified all 300 bouts. Compared to existing approaches, our approach was easier to use while achieving similar accuracy in analyzing the accumulated movement time and maximum period of continuous movement (p > 0.8). Overall, the MC system provided a feasible way to ease the data collection process, and generated accurate analysis results for evaluating activity levels. PMID:26479684

  19. Towards an Approach of Semantic Access Control for Cloud Computing

    NASA Astrophysics Data System (ADS)

    Hu, Luokai; Ying, Shi; Jia, Xiangyang; Zhao, Kai

    With the development of cloud computing, the mutual understandability among distributed Access Control Policies (ACPs) has become an important issue in the security field of cloud computing. Semantic Web technology provides the solution to semantic interoperability of heterogeneous applications. In this paper, we analysis existing access control methods and present a new Semantic Access Control Policy Language (SACPL) for describing ACPs in cloud computing environment. Access Control Oriented Ontology System (ACOOS) is designed as the semantic basis of SACPL. Ontology-based SACPL language can effectively solve the interoperability issue of distributed ACPs. This study enriches the research that the semantic web technology is applied in the field of security, and provides a new way of thinking of access control in cloud computing.

  20. Retrieval of radiative and microphysical properties of clouds from multispectral infrared measurements

    NASA Astrophysics Data System (ADS)

    Iwabuchi, Hironobu; Saito, Masanori; Tokoro, Yuka; Putri, Nurfiena Sagita; Sekiguchi, Miho

    2016-12-01

    Satellite remote sensing of the macroscopic, microphysical, and optical properties of clouds are useful for studying spatial and temporal variations of clouds at various scales and constraining cloud physical processes in climate and weather prediction models. Instead of using separate independent algorithms for different cloud properties, a unified, optimal estimation-based cloud retrieval algorithm is developed and applied to moderate resolution imaging spectroradiometer (MODIS) observations using ten thermal infrared bands. The model considers sensor configurations, background surface and atmospheric profile, and microphysical and optical models of ice and liquid cloud particles and radiative transfer in a plane-parallel, multilayered atmosphere. Measurement and model errors are thoroughly quantified from direct comparisons of clear-sky observations over the ocean with model calculations. Performance tests by retrieval simulations show that ice cloud properties are retrieved with high accuracy when cloud optical thickness (COT) is between 0.1 and 10. Cloud-top pressure is inferred with uncertainty lower than 10 % when COT is larger than 0.3. Applying the method to a tropical cloud system and comparing the results with the MODIS Collection 6 cloud product shows good agreement for ice cloud optical thickness when COT is less than about 5. Cloud-top height agrees well with estimates obtained by the CO2 slicing method used in the MODIS product. The present algorithm can detect optically thin parts at the edges of high clouds well in comparison with the MODIS product, in which these parts are recognized as low clouds by the infrared window method. The cloud thermodynamic phase in the present algorithm is constrained by cloud-top temperature, which tends not to produce results with an ice cloud that is too warm and liquid cloud that is too cold.

  1. The cloud-phase feedback in the Super-parameterized Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Burt, M. A.; Randall, D. A.

    2016-12-01

    Recent comparisons of observations and climate model simulations by I. Tan and colleagues have suggested that the Wegener-Bergeron-Findeisen (WBF) process tends to be too active in climate models, making too much cloud ice, and resulting in an exaggerated negative cloud-phase feedback on climate change. We explore the WBF process and its effect on shortwave cloud forcing in present-day and future climate simulations with the Community Earth System Model, and its super-parameterized counterpart. Results show that SP-CESM has much less cloud ice and a weaker cloud-phase feedback than CESM.

  2. Cloudbus Toolkit for Market-Oriented Cloud Computing

    NASA Astrophysics Data System (ADS)

    Buyya, Rajkumar; Pandey, Suraj; Vecchiola, Christian

    This keynote paper: (1) presents the 21st century vision of computing and identifies various IT paradigms promising to deliver computing as a utility; (2) defines the architecture for creating market-oriented Clouds and computing atmosphere by leveraging technologies such as virtual machines; (3) provides thoughts on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain SLA-oriented resource allocation; (4) presents the work carried out as part of our new Cloud Computing initiative, called Cloudbus: (i) Aneka, a Platform as a Service software system containing SDK (Software Development Kit) for construction of Cloud applications and deployment on private or public Clouds, in addition to supporting market-oriented resource management; (ii) internetworking of Clouds for dynamic creation of federated computing environments for scaling of elastic applications; (iii) creation of 3rd party Cloud brokering services for building content delivery networks and e-Science applications and their deployment on capabilities of IaaS providers such as Amazon along with Grid mashups; (iv) CloudSim supporting modelling and simulation of Clouds for performance studies; (v) Energy Efficient Resource Allocation Mechanisms and Techniques for creation and management of Green Clouds; and (vi) pathways for future research.

  3. Study of atmospheric parameters measurements using MM-wave radar in synergy with LITE-2

    NASA Technical Reports Server (NTRS)

    Andrawis, Madeleine Y.

    1994-01-01

    The Lidar In-Space Technology Experiment, (LITE), has been developed, designed, and built by NASA Langley Research Center, to be flown on the space shuttle 'Discovery' on September 9, 1994. Lidar, which stands for light detecting and ranging, is a radar system that uses short pulses of laser light instead of radio waves in the case of the common radar. This space-based lidar offers atmospheric measurements of stratospheric and tropospheric aerosols, the planetary boundary layer, cloud top heights, and atmospheric temperature and density in the 10-40 km altitude range. A study is being done on the use, advantages, and limitations of a millimeterwave radar to be utilized in synergy with the Lidar system, for the LITE-2 experiment to be flown on a future space shuttle mission. The lower atmospheric attenuation, compared to infrared and optical frequencies, permits the millimeter-wave signals to penetrate through the clouds and measure multi-layered clouds, cloud thickness, and cloud-base height. These measurements would provide a useful input to radiation computations used in the operational numerical weather prediction models, and for forecasting. High power levels, optimum modulation, data processing, and high antenna gain are used to increase the operating range, while space environment, radar tradeoffs, and power availability are considered. Preliminary, numerical calculations are made, using the specifications of an experimental system constructed at Georgia Tech. The noncoherent 94 GHz millimeter-wave radar system has a pulsed output with peak value of 1 kW. The backscatter cross section of the particles to be measured, that are present in the volume covered by the beam footprint, is also studied.

  4. A Lab Based Method for Exoplanet Cloud and Aerosol Characterization

    NASA Astrophysics Data System (ADS)

    Johnson, A. V.; Schneiderman, T. M.; Bauer, A. J. R.; Cziczo, D. J.

    2017-12-01

    The atmospheres of some smaller, cooler exoplanets, like GJ 1214b, lack strong spectral features. This may suggest the presence of a high, optically thick cloud layer and poses great challenges for atmospheric characterization, but there is hope. The study of extraterrestrial atmospheres with terrestrial based techniques has proven useful for understanding the cloud-laden atmospheres of our solar system. Here we build on this by leveraging laboratory-based, terrestrial cloud particle instrumentation to better understand the microphysical and radiative properties of proposed exoplanet cloud and aerosol particles. The work to be presented focuses on the scattering properties of single particles, that may be representative of those suspended in exoplanet atmospheres, levitated in an Electrodynamic Balance (EDB). I will discuss how we leverage terrestrial based cloud microphysics for exoplanet applications, the instruments for single and ensemble particle studies used in this work, our investigation of ammonium nitrate (NH4NO3) scattering across temperature dependent crystalline phase changes, and the steps we are taking toward the collection of scattering phase functions and polarization of scattered light for exoplanet cloud analogs. Through this and future studies we hope to better understand how upper level cloud and/or aerosol particles in exoplanet atmospheres interact with incoming radiation from their host stars and what atmospheric information may still be obtainable through remote observations when no spectral features are observed.

  5. Identifying Key Features, Cutting Edge Cloud Resources, and Artificial Intelligence Tools to Achieve User-Friendly Water Science in the Cloud

    NASA Astrophysics Data System (ADS)

    Pierce, S. A.

    2017-12-01

    Decision making for groundwater systems is becoming increasingly important, as shifting water demands increasingly impact aquifers. As buffer systems, aquifers provide room for resilient responses and augment the actual timeframe for hydrological response. Yet the pace impacts, climate shifts, and degradation of water resources is accelerating. To meet these new drivers, groundwater science is transitioning toward the emerging field of Integrated Water Resources Management, or IWRM. IWRM incorporates a broad array of dimensions, methods, and tools to address problems that tend to be complex. Computational tools and accessible cyberinfrastructure (CI) are needed to cross the chasm between science and society. Fortunately cloud computing environments, such as the new Jetstream system, are evolving rapidly. While still targeting scientific user groups systems such as, Jetstream, offer configurable cyberinfrastructure to enable interactive computing and data analysis resources on demand. The web-based interfaces allow researchers to rapidly customize virtual machines, modify computing architecture and increase the usability and access for broader audiences to advanced compute environments. The result enables dexterous configurations and opening up opportunities for IWRM modelers to expand the reach of analyses, number of case studies, and quality of engagement with stakeholders and decision makers. The acute need to identify improved IWRM solutions paired with advanced computational resources refocuses the attention of IWRM researchers on applications, workflows, and intelligent systems that are capable of accelerating progress. IWRM must address key drivers of community concern, implement transdisciplinary methodologies, adapt and apply decision support tools in order to effectively support decisions about groundwater resource management. This presentation will provide an overview of advanced computing services in the cloud using integrated groundwater management case studies to highlight how Cloud CI streamlines the process for setting up an interactive decision support system. Moreover, advances in artificial intelligence offer new techniques for old problems from integrating data to adaptive sensing or from interactive dashboards to optimizing multi-attribute problems. The combination of scientific expertise, flexible cloud computing solutions, and intelligent systems opens new research horizons.

  6. Large-Scale, Multi-Sensor Atmospheric Data Fusion Using Hybrid Cloud Computing

    NASA Astrophysics Data System (ADS)

    Wilson, Brian; Manipon, Gerald; Hua, Hook; Fetzer, Eric

    2014-05-01

    NASA's Earth Observing System (EOS) is an ambitious facility for studying global climate change. The mandate now is to combine measurements from the instruments on the "A-Train" platforms (AIRS, AMSR-E, MODIS, MISR, MLS, and CloudSat) and other Earth probes to enable large-scale studies of climate change over decades. Moving to multi-sensor, long-duration analyses of important climate variables presents serious challenges for large-scale data mining and fusion. For example, one might want to compare temperature and water vapor retrievals from one instrument (AIRS) to another (MODIS), and to a model (ECMWF), stratify the comparisons using a classification of the "cloud scenes" from CloudSat, and repeat the entire analysis over 10 years of data. To efficiently assemble such datasets, we are utilizing Elastic Computing in the Cloud and parallel map-reduce-based algorithms. However, these problems are Data Intensive computing so the data transfer times and storage costs (for caching) are key issues. SciReduce is a Hadoop-like parallel analysis system, programmed in parallel python, that is designed from the ground up for Earth science. SciReduce executes inside VMWare images and scales to any number of nodes in a hybrid Cloud (private eucalyptus & public Amazon). Unlike Hadoop, SciReduce operates on bundles of named numeric arrays, which can be passed in memory or serialized to disk in netCDF4 or HDF5. Multi-year datasets are automatically "sharded" by time and space across a cluster of nodes so that years of data (millions of files) can be processed in a massively parallel way. Input variables (arrays) are pulled on-demand into the Cloud using OPeNDAP URLs or other subsetting services, thereby minimizing the size of the cached input and intermediate datasets. We are using SciReduce to automate the production of multiple versions of a ten-year A-Train water vapor climatology under a NASA MEASURES grant. We will present the architecture of SciReduce, describe the achieved "clock time" speedups in fusing datasets on our own nodes and in the Cloud, and discuss the Cloud cost tradeoffs for storage, compute, and data transfer. We will also present a concept and prototype for staging NASA's A-Train Atmospheric datasets (Levels 2 & 3) in the Amazon Cloud so that any number of compute jobs can be executed "near" the multi-sensor data. Given such a system, multi-sensor climate studies over 10-20 years of data could be perform

  7. Simulations of Infrared Radiances Over a Deep Convective Cloud System Observed During TC4: Potential for Enhancing Nocturnal Ice Cloud Retrievals

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Hong, Gang; Ayers, Kirk; Smith, William L., Jr.; Yost, Christopher R.; Heymsfield, Andrew J.; Heymsfield, Gerald M.; Hlavka, Dennis L.; King, Michael D.; Korn, Errol; hide

    2012-01-01

    Retrievals of ice cloud properties using infrared measurements at 3.7, 6.7, 7.3, 8.5, 10.8, and 12.0 microns can provide consistent results regardless of solar illumination, but are limited to cloud optical thicknesses tau < approx.6. This paper investigates the variations in radiances at these wavelengths over a deep convective cloud system for their potential to extend retrievals of tau and ice particle size D(sub e) to optically thick clouds. Measurements from the Moderate Resolution Imaging Spectroradiometer Airborne Simulator--ASTER, the Scanning High-resolution Interferometer Sounder, the Cloud Physics Lidar (CPL), and the Cloud Radar System (CRS) aboard the NASA ER-2 aircraft during the NASA TC4 (Tropical Composition, Cloud and Climate Coupling) experiment flight during 5 August 2007, are used to examine the retrieval capabilities of infrared radiances over optically thick ice clouds. Simulations based on coincident in-situ measurements and combined cloud tau from CRS and CPL measurements are comparable to the observations. They reveal that brightness temperatures at these bands and their differences (BTD) are sensitive to tau up to approx.20 and that for ice clouds having tau > 20, the 3.7 - 10.8 microns and 3.7 - 6.7 microns BTDs are the most sensitive to D(sub e). Satellite imagery appears consistent with these results. Keywords: clouds; optical depth; particle size; satellite; TC4; multispectral thermal infrared

  8. Simulations of Infrared Radiances Over a Deep Convective Cloud System Observed During TC4- Potential for Enhancing Nocturnal Ice Cloud Retrievals

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Hong, Gang; Ayers, Jeffrey Kirk; Smith, William L.; Yost, Christopher R.; Heymsfield, Andrew J.; Heymsfield, Gerald M.; Hlavka, Dennis L.; King, Michael D.; Korn, Errol M.; hide

    2012-01-01

    Retrievals of ice cloud properties using infrared measurements at 3.7, 6.7, 7.3, 8.5, 10.8, and 12.0 microns can provide consistent results regardless of solar illumination, but are limited to cloud optical thicknesses tau < approx.6. This paper investigates the variations in radiances at these wavelengths over a deep convective cloud system for their potential to extend retrievals of tau and ice particle size D(sub e) to optically thick clouds. Measurements from the Moderate Resolution Imaging Spectroradiometer Airborne Simulator--ASTER, the Scanning High-resolution Interferometer Sounder, the Cloud Physics Lidar (CPL), and the Cloud Radar System (CRS) aboard the NASA ER-2 aircraft during the NASA TC4 (Tropical Composition, Cloud and Climate Coupling) experiment flight during 5 August 2007, are used to examine the retrieval capabilities of infrared radiances over optically thick ice clouds. Simulations based on coincident in-situ measurements and combined cloud tau from CRS and CPL measurements are comparable to the observations. They reveal that brightness temperatures at these bands and their differences (BTD) are sensitive to tau up to approx.20 and that for ice clouds having tau > 20, the 3.7 - 10.8 microns and 3.7 - 6.7 microns BTDs are the most sensitive to D(sub e). Satellite imagery appears consistent with these results. Keywords: clouds; optical depth; particle size; satellite; TC4; multispectral thermal infrared

  9. Coastal Jets, Oceanic Upwelling, Mesoscale Eddies, and Clouds in the Southeast Pacific

    NASA Astrophysics Data System (ADS)

    Hong, X.; Wang, S.; Jiang, Q.; O'Neill, L. W.; Hodur, R.; Chen, S.; Martin, P.; Cummings, J. A.

    2009-12-01

    Coastal jets, oceanic upwelling, mesoscale eddies, and clouds in the Southeast Pacific (SEP) are studied using the two-way-coupled COAMPS/NCOM system with the NCODA for the ocean data assimilation. The coupled system was run for the period of the VAMOS Ocean-Cloud-Atmosphere-Land Study (VOCALS) field campaign from 20 October to 30 November, 2008. The investigation of the feedback between the atmosphere and the ocean is focused on the periods of the strong and the weak coastal jets. During the strong coastal jet period, colder and drier air along the coast results in larger surface heat fluxes and increased boundary layer height. More extensive and organized clouds are generated in the strongly unstable conditions in the atmospheric boundary layer. The oceanic upwelling is stronger and the upwelled cold water extends further offshore. During the weak coastal jet period, the cyclonic and anti-cyclonic oceanic eddies propagate westward more significantly. The inertial oscillations induced by the variations of the wind stress also increase in strength with stronger phase shifts between the oscillations in the upper and the lower layers of the ocean. In addition, the model results from the coupled system were evaluated with available observations from the VOCALS field campaign.

  10. A cloud-based system for automatic glaucoma screening.

    PubMed

    Fengshou Yin; Damon Wing Kee Wong; Ying Quan; Ai Ping Yow; Ngan Meng Tan; Gopalakrishnan, Kavitha; Beng Hai Lee; Yanwu Xu; Zhuo Zhang; Jun Cheng; Jiang Liu

    2015-08-01

    In recent years, there has been increasing interest in the use of automatic computer-based systems for the detection of eye diseases including glaucoma. However, these systems are usually standalone software with basic functions only, limiting their usage in a large scale. In this paper, we introduce an online cloud-based system for automatic glaucoma screening through the use of medical image-based pattern classification technologies. It is designed in a hybrid cloud pattern to offer both accessibility and enhanced security. Raw data including patient's medical condition and fundus image, and resultant medical reports are collected and distributed through the public cloud tier. In the private cloud tier, automatic analysis and assessment of colour retinal fundus images are performed. The ubiquitous anywhere access nature of the system through the cloud platform facilitates a more efficient and cost-effective means of glaucoma screening, allowing the disease to be detected earlier and enabling early intervention for more efficient intervention and disease management.

  11. Small vs. Large Convective Cloud Objects from CERES Aqua Observations: Where are the Intraseasonal Variation Signals?

    NASA Technical Reports Server (NTRS)

    Xu, Kuan-Man

    2016-01-01

    During inactive phases of Madden-Julian oscillation (MJO), there are plenty of deep but small convective systems and far fewer deep and large ones. During active phases of MJO, a manifestation of an increase in the occurrence of large and deep cloud clusters results from an amplification of large-scale motions by stronger convective heating. This study is designed to quantitatively examine the roles of small and large cloud clusters during the MJO life cycle. We analyze the cloud object data from Aqua CERES observations for tropical deep convective (DC) and cirrostratus (CS) cloud object types according to the real-time multivariate MJO index. The cloud object is a contiguous region of the earth with a single dominant cloud-system type. The size distributions, defined as the footprint numbers as a function of cloud object diameters, for particular MJO phases depart greatly from the combined (8-phase) distribution at large cloud-object diameters due to the reduced/increased numbers of cloud objects related to changes in the large-scale environments. The medium diameter corresponding to the combined distribution is determined and used to partition all cloud objects into "small" and "large" groups of a particular phase. The two groups corresponding to the combined distribution have nearly equal numbers of footprints. The medium diameters are 502 km for DC and 310 km for cirrostratus. The range of the variation between two extreme phases (typically, the most active and depressed phases) for the small group is 6-11% in terms of the numbers of cloud objects and the total footprint numbers. The corresponding range for the large group is 19-44%. In terms of the probability density functions of radiative and cloud physical properties, there are virtually no differences between the MJO phases for the small group, but there are significant differences for the large groups for both DC and CS types. These results suggest that the intreseasonal variation signals reside at the large cloud clusters while the small cloud clusters represent the background noises resulting from various types of the tropical waves with different wavenumbers and propagation directions/speeds.

  12. Improvement in thin cirrus retrievals using an emissivity-adjusted CO2 slicing algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Menzel, W. Paul

    2002-09-01

    CO2 slicing has been generally accepted as a useful algorithm for determining cloud top pressure (CTP) and effective cloud amount (ECA) for tropospheric clouds above 600 hPa. To date, the technique has assumed that the surface emissivity is that of a blackbody in the long-wavelength infrared radiances and that the cloud emissivities in spectrally close bands are approximately equal. The modified CO2 slicing algorithm considers adjustments of both surface emissivity and cloud emissivity ratio. Surface emissivity is adjusted according to the surface types. The ratio of cloud emissivities in spectrally close bands is adjusted away from unity according to radiative transfer calculations. The new CO2 slicing algorithm is examined with Moderate Resolution Imaging Spectroradiometer (MODIS) Airborne Simulator (MAS) CO2 band radiance measurements over thin clouds and validated against Cloud Lidar System (CLS) measurements of the same clouds; it is also applied to Geostationary Operational Environmental Satellite (GOES) Sounder data to study the overall impact on cloud property determinations. For high thin clouds an improved product emerges, while for thick and opaque clouds there is little change. For very thin clouds, the CTP increases by about 10-20 hPa and RMS (root mean square bias) difference is approximately 50 hPa; for thin clouds, the CTP increase is about 10 hPa bias and RMS difference is approximately 30 hPa. The new CO2 slicing algorithm places the clouds lower in the troposphere.

  13. The 29 July 1994 Merritt Island, Fl Microburst: A Case Study Intercomparing Kennedy Space Center Three-Dimensional Lightning Data (LDAR) and WSR-88D Radar Data

    NASA Technical Reports Server (NTRS)

    Hoffert, Steven G.; Pearce, Matt L.

    1996-01-01

    Many researchers have shown that the development and evolution of electrical discharges within convective clouds is fundamentally related to the growth and dynamics of precipitation particles aloft. In the presence of strong updrafts above the freezing level collisions among mixed-phase particles (i.e., hail. ice, supercooled water) promote the necessary charge separation needed to initiate intra-cloud lightning. A precipitation core that descends below the freezing level is often accompanied by a change in the electrical structure of the cloud. Consequently, more Cloud-to-Ground (CG) than Intra-Cloud (IC) lightning flashes appear. Descending precipitation cores can also play a significant role in the evolution of mesoscale features at the surface (e.g., microbursts, downbursts) because of latent heat and mass loading effects of water and ice. For this reason, some believe that lightning and microbursts are fundamentally linked by the presence of ice particles in thunderstorms. Several radar and lightning studies of microburst thunderstorms from COHMEX in 1986 showed that the peak IC lightning systematically occurred ten minutes before the onset of a microburst. In contrast, most CG lightning occurred at the time of the microburst. Many of the preceding studies have been done using high-resolution research radars and experimental lightning detection systems in focused field projects. In addition, these studies could only determine the vertical origin or occurrence of IC lightning, and not a true three-dimensional representation. Currently, the WSR-88D radar system and a real-time, state-of-the-art lightning system (LDAR) at the Kennedy Space Center (KSC) in Florida provide an opportunity to extend these kinds of studies in a more meaningful operational setting.

  14. Ice Cloud Properties in Ice-Over-Water Cloud Systems Using TRMM VIRS and TMI Data

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Huang, Jianping; Lin, Bing; Yi, Yuhong; Arduini, Robert F.; Fan, Tai-Fang; Ayers, J. Kirk; Mace, Gerald G.

    2007-01-01

    A multi-layered cloud retrieval system (MCRS) is updated and used to estimate ice water path in maritime ice-over-water clouds using Visible and Infrared Scanner (VIRS) and TRMM Microwave Imager (TMI) measurements from the Tropical Rainfall Measuring Mission spacecraft between January and August 1998. Lookup tables of top-of-atmosphere 0.65- m reflectance are developed for ice-over-water cloud systems using radiative transfer calculations with various combinations of ice-over-water cloud layers. The liquid and ice water paths, LWP and IWP, respectively, are determined with the MCRS using these lookup tables with a combination of microwave (MW), visible (VIS), and infrared (IR) data. LWP, determined directly from the TMI MW data, is used to define the lower-level cloud properties to select the proper lookup table. The properties of the upper-level ice clouds, such as optical depth and effective size, are then derived using the Visible Infrared Solar-infrared Split-window Technique (VISST), which matches the VIRS IR, 3.9- m, and VIS data to the multilayer-cloud lookup table reflectances and a set of emittance parameterizations. Initial comparisons with surface-based radar retrievals suggest that this enhanced MCRS can significantly improve the accuracy and decrease the IWP in overlapped clouds by 42% and 13% compared to using the single-layer VISST and an earlier simplified MW-VIS-IR (MVI) differencing method, respectively, for ice-over-water cloud systems. The tropical distribution of ice-over-water clouds is the same as derived earlier from combined TMI and VIRS data, but the new values of IWP and optical depth are slightly larger than the older MVI values, and exceed those of single-layered layered clouds by 7% and 11%, respectively. The mean IWP from the MCRS is 8-14% greater than that retrieved from radar retrievals of overlapped clouds over two surface sites and the standard deviations of the differences are similar to those for single-layered clouds. Examples of a method for applying the MCRS over land without microwave data yield similar differences with the surface retrievals. By combining the MCRS with other techniques that focus primarily on optically thin cirrus over low water clouds, it will be possible to more fully assess the IWP in all conditions over ocean except for precipitating systems.

  15. AstroCloud, a Cyber-Infrastructure for Astronomy Research: Cloud Computing Environments

    NASA Astrophysics Data System (ADS)

    Li, C.; Wang, J.; Cui, C.; He, B.; Fan, D.; Yang, Y.; Chen, J.; Zhang, H.; Yu, C.; Xiao, J.; Wang, C.; Cao, Z.; Fan, Y.; Hong, Z.; Li, S.; Mi, L.; Wan, W.; Wang, J.; Yin, S.

    2015-09-01

    AstroCloud is a cyber-Infrastructure for Astronomy Research initiated by Chinese Virtual Observatory (China-VO) under funding support from NDRC (National Development and Reform commission) and CAS (Chinese Academy of Sciences). Based on CloudStack, an open source software, we set up the cloud computing environment for AstroCloud Project. It consists of five distributed nodes across the mainland of China. Users can use and analysis data in this cloud computing environment. Based on GlusterFS, we built a scalable cloud storage system. Each user has a private space, which can be shared among different virtual machines and desktop systems. With this environments, astronomer can access to astronomical data collected by different telescopes and data centers easily, and data producers can archive their datasets safely.

  16. [Development of a System to Use Patient's Information Which is Required at the Radiological Department].

    PubMed

    Satoh, Akihiro

    2016-04-01

    The purpose of this study is to develop a new system to get and share some data of a patient which are required for a radiological examination not using an electronic medical chart or a radiological information system (RIS), and also to demonstrate that this system is operated on cloud technology. I used Java Enterprise Edition (Java EE) as a programing language and MySQL as a server software, and I used two laptops as hardware for client computer and server computer. For cloud computing, I hired a server of Google App Engine for Java (GAE). As a result, I could get some data of the patient required at his/her examination instantly using this system. This system also helps to improve the efficiency of examination. For example, it has been useful when I want to decide radiographic condition or to create CT images such as multi-planar reconstruction (MPR) or volume rendering (VR). When it comes to cloud computing, the GAE was used experimentally due to some legal restrictions. From the above points it is clear that this system has played an important role in radiological examinations, but there has been still few things which I have to resolve for cloud computing.

  17. An Evaluation of Northern Hemisphere Merged Cloud Analyses from the United States Air Force Cloud Depiction Forecasting System II

    DTIC Science & Technology

    2013-03-01

    layering and typing to provide a vertical stratification of the cloud-filled pixels detected in Level 2. Level 3 output is remapped to the standard AFWA...analyses are compared to one another to see if the most recent analysis also has the lowest estimated error. Optimum interpolation (OI) occurs when...NORTHERN HEMISPHERE MERGED CLOUD ANALYSES FROM THE UNITED STATES AIR FORCE CLOUD DEPICTION FORECASTING SYSTEM II by Chandra M. Pasillas March

  18. Research approach and first results on agglomerate compaction in protoplanetary dust simulation in the Cloud Manipulation System

    NASA Astrophysics Data System (ADS)

    Vedernikov, Andrei; Blum, Jurgen; Ingo Von Borstel, Olaf; Schraepler, Rainer; Balapanov, Daniyar; Cecere, Anselmo

    2016-07-01

    Nanometre and micrometre-sized solid particles are ubiquitous in space and on Earth - from galaxies, interstellar space, protoplanetary and debris disks to planetary rings and atmospheres, planetary surfaces, comets, interplanetary space, Earth's atmosphere. Apparently, the most intriguing problem in the picture of the formation of planets is the transition from individual microscopic dust grains to kilometre-sized planetesimals. Revealing the mechanisms of this transition is one of the main tasks of the European Space Agency's project Interaction in Cosmic and Atmospheric Particle Systems (ICAPS). It was found that Brownian motion driven agglomeration could not provide the transition within reasonable time scale. As a result, at this stage top scientific goals shifted towards forced agglomeration and concentration of particles, targeting revealing the onset of compaction, experimental study of the evolution of fractal dimensions, size and mass distribution, occurrence of bouncing. The main tasks comprise 1) development of the rapid agglomeration model 2) development of the experimental facilities creating big fractal-type agglomerates from 10 to 1000 μm from a cloud of micrometre-size grains; 3) experimental realization of the rapid agglomeration in microgravity and ground conditions; and 4) in situ investigation of the morphology, mobility, mechanical and optical properties of the free-floating agglomerates, including investigation of thermophoresis, photophoresis of the agglomerates and of the two-phase flow phenomena. To solve the experimental part of the tasks we developed a Cloud Manipulation System, realized as a breadboard (CMS BB) for long duration microgravity platforms and a simplified laboratory version (CMS LV) mostly oriented on short duration microgravity and ground tests. The new system is based on the use of thermophoresis, most favourable for cloud manipulation without creating additional particle-particle forces in the cloud with a possibility of growing single agglomerate out of the whole cloud. The cloud manipulation system additionally provides temperature stabilization or, on the contrary, high temperature variation in the observation volume; formation of controlled temperature gradients, intensive three-dimensional periodic shear flow or three-dimensional gas density pulsations of the contraction-expansion type; application of electrostatic gradients including electro dynamic balancing; imposing of photophoretic force, etc. Their choice and/or combination depend upon particular experimental task. Experiments on forced agglomeration in short duration microgravity conditions of the Bremen drop tower succeeded in rapid growth of extended agglomerates, formation of complex three-dimensional cloud patterns, allowed observing controlled cloud displacement, cloud trapping, particle separation with respect to their electrical charge. The breadboard (CMS BB) and the laboratory version of the Cloud Manipulation System (CMS LV) are new types of scientific instrument with high scientific potential. ESA PRODEX program, the Belgian Federal Science Policy Office, DLR project 50WM1223, ZARM Drop Tower Operation and Service Company Ltd. are greatly acknowledged.

  19. Assessment of NASA GISS CMIP5 and Post-CMIP5 Simulated Clouds and TOA Radiation Budgets Using Satellite Observations

    NASA Astrophysics Data System (ADS)

    Stanfield, R. E.; Dong, X.; Xi, B.; Kennedy, A. D.; Del Genio, A. D.; Minnis, P.; Loeb, N. G.; Doelling, D.

    2013-05-01

    Marine Boundary Layer (MBL) Clouds are an extremely important part of the climate system. Their treatment in climate models is a large source of uncertainty that will harm future projection of the Earth's climate. Zhang et al. (2005, CMIP3) compared the GCMs simulated cloud fractions (CF) with NASA CERES and ISCCP results and found that most GCMs underestimated mid-latitude MBL clouds but overestimated their optical depth. The underestimated CF and overestimated cloud optical thickness in the models offset each other when calculating TOA radiation budgets. Recent studies (Jiang et al. 2012; Stanfield et al. 2013; and Dolinar et al. 2013) have found there has not been much improvement from CMIP3 to CMIP5 for MBL clouds. Most GCMs still simulate fewer mid-latitude MBL clouds. In this study, we compare the NASA GISS CMIP5 and Post-CMIP5 results with NASA CERES cloud properties (SYN1deg) and TOA radiation budgets (EBAF), as well as CloudSat-CALIPSO cloud products. Special attention has been paid over the Southern mid-latitudes (~ 30-60 °S) where the total cloud fractions can reach up to 80-90% with MBL clouds being the dominant cloud type. Comparisons have shown that the globally averaged total CFs and TOA radiation budgets from CMIP5 agreed well with satellite observations, however, there are significant regional differences. For example, most CMIP5 models underestimated MBL clouds over the Southern mid-latitudes, including the GISS GCM, resulting in less reflected (or more absorbed) shortwave flux at TOA. The preliminary results from NASA GISS post-CMIP5 have made many improvements, and agree much better with satellite observations. These improvements are attributed to a new PBL parameterization, where more/less clouds can be simulated when the PBL gets deeper/shallower. This update has a large effect on radiation and clouds.

  20. Sensitivity of the southern West African mean atmospheric state to variations in low-level cloud cover as simulated by ICON

    NASA Astrophysics Data System (ADS)

    Kniffka, Anke; Knippertz, Peter; Fink, Andreas

    2017-04-01

    This contribution presents first results of numerical sensitivity experiments that are carried out in the framework of the project DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa). DACCIWA aims to investigate the impact of the drastic increase in anthropogenic emissions in West Africa on the local weather and climate, for example through cloud-aerosol interactions or impacts on radiation and stability. DACCIWA organised a major international field campaign in West Africa in June-July 2016 and involves a wide range of modelling activities. Several studies have shown - and first results of the DACCIWA campaign confirm - that extensive ultra-low stratus clouds form in the southern parts of West Africa (8°W-8°E, 5-10°N) at night in connection with strong nocturnal low-level jets. The clouds persist long after sunrise and have therefore a substantial impact on the surface radiation budget and consequently on the diurnal evolution of the daytime, convectively mixed boundary layer. The objective of this study is to investigate the sensitivity of the West African monsoon system and its diurnal cycle to the radiative effects of these low clouds. The study is based on a series of daily 5-day sensitivity simulations using ICON, the operational numerical weather prediction model of the German Weather Service during the months July - September 2006. In these simulations, low clouds are made transparent, by artificially lowering the optical thickness information passed on to the model's radiation scheme. Results reveal a noticeable influence of the low-level cloud cover on the atmospheric mean state of our region of interest and beyond. Also the diurnal development of the convective boundary layer is influenced by the cloud modification. In the transparent-cloud experiments, the cloud deck tends to break up later in the day and is shifted to a higher altitude, thereby causing a short-lived intensification around 11 LT. The average rainfall patterns are modified as well, though no conclusion on the long-term impact on rainfall can be made due to the forced initial conditions in the presented experiment. In the future, the impact on the development of the West African monsoon system will be assessed.

  1. An OAIS-Based Hospital Information System on the Cloud: Analysis of a NoSQL Column-Oriented Approach.

    PubMed

    Celesti, Antonio; Fazio, Maria; Romano, Agata; Bramanti, Alessia; Bramanti, Placido; Villari, Massimo

    2018-05-01

    The Open Archive Information System (OAIS) is a reference model for organizing people and resources in a system, and it is already adopted in care centers and medical systems to efficiently manage clinical data, medical personnel, and patients. Archival storage systems are typically implemented using traditional relational database systems, but the relation-oriented technology strongly limits the efficiency in the management of huge amount of patients' clinical data, especially in emerging cloud-based, that are distributed. In this paper, we present an OAIS healthcare architecture useful to manage a huge amount of HL7 clinical documents in a scalable way. Specifically, it is based on a NoSQL column-oriented Data Base Management System deployed in the cloud, thus to benefit from a big tables and wide rows available over a virtual distributed infrastructure. We developed a prototype of the proposed architecture at the IRCCS, and we evaluated its efficiency in a real case of study.

  2. Covariability in the Monthly Mean Convective and Radiative Diurnal Cycles in the Amazon

    NASA Technical Reports Server (NTRS)

    Dodson, Jason B.; Taylor, Patrick C.

    2015-01-01

    The diurnal cycle of convective clouds greatly influences the radiative energy balance in convectively active regions of Earth, through both direct presence, and the production of anvil and stratiform clouds. Previous studies show that the frequency and properties of convective clouds can vary on monthly timescales as a result of variability in the monthly mean atmospheric state. Furthermore, the radiative budget in convectively active regions also varies by up to 7 Wm-2 in convectively active regions. These facts suggest that convective clouds connect atmospheric state variability and radiation variability beyond clear sky effects alone. Previous research has identified monthly covariability between the diurnal cycle of CERES-observed top-of-atmosphere radiative fluxes and multiple atmospheric state variables from reanalysis over the Amazon region. ASVs that enhance (reduce) deep convection, such as CAPE (LTS), tend to shift the daily OLR and cloud albedo maxima earlier (later) in the day by 2-3 hr. We first test the analysis method using multiple reanalysis products for both the dry and wet seasons to further investigate the robustness of the preliminary results. We then use CloudSat data as an independent cloud observing system to further evaluate the relationships of cloud properties to variability in radiation and atmospheric states. While CERES can decompose OLR variability into clear sky and cloud effects, it cannot determine what variability in cloud properties lead to variability in the radiative cloud effects. Cloud frequency, cloud top height, and cloud microphysics all contribute to the cloud radiative effect, all of which are observable by CloudSat. In addition, CloudSat can also observe the presence and variability of deep convective cores responsible for the production of anvil clouds. We use these capabilities to determine the covariability of convective cloud properties and the radiative diurnal cycle.

  3. The Application of a Cloud-Based Student, Teacher, and Parent Platform in English as a Foreign Language Education

    ERIC Educational Resources Information Center

    Chiu, Fu-Yuan

    2014-01-01

    This study constructed a cloud-based student, teacher, and parent platform (CSTPP) in collaboration with a Taiwanese textbook publisher. Junior high school students' attitudes to learning English using the developed system were subsequently examined. The study participants were divided into 3 groups: Those in Group A employed the CSTPP with…

  4. Preliminary aerosol generator design studies

    NASA Technical Reports Server (NTRS)

    Stampfer, J. F., Jr.

    1976-01-01

    The design and construction of a prototype vaporization generator for highly dispersed sodium chloride aerosols is described. The aerosol generating system is to be used in the Science Simulator of the Cloud Physics Laboratory Project and as part of the Cloud Physics Laboratory payload to be flown on the shuttle/spacelab.

  5. An Overview of Cloud Computing in Distributed Systems

    NASA Astrophysics Data System (ADS)

    Divakarla, Usha; Kumari, Geetha

    2010-11-01

    Cloud computing is the emerging trend in the field of distributed computing. Cloud computing evolved from grid computing and distributed computing. Cloud plays an important role in huge organizations in maintaining huge data with limited resources. Cloud also helps in resource sharing through some specific virtual machines provided by the cloud service provider. This paper gives an overview of the cloud organization and some of the basic security issues pertaining to the cloud.

  6. Scientific Data Storage for Cloud Computing

    NASA Astrophysics Data System (ADS)

    Readey, J.

    2014-12-01

    Traditionally data storage used for geophysical software systems has centered on file-based systems and libraries such as NetCDF and HDF5. In contrast cloud based infrastructure providers such as Amazon AWS, Microsoft Azure, and the Google Cloud Platform generally provide storage technologies based on an object based storage service (for large binary objects) complemented by a database service (for small objects that can be represented as key-value pairs). These systems have been shown to be highly scalable, reliable, and cost effective. We will discuss a proposed system that leverages these cloud-based storage technologies to provide an API-compatible library for traditional NetCDF and HDF5 applications. This system will enable cloud storage suitable for geophysical applications that can scale up to petabytes of data and thousands of users. We'll also cover other advantages of this system such as enhanced metadata search.

  7. CANFAR+Skytree: A Cloud Computing and Data Mining System for Astronomy

    NASA Astrophysics Data System (ADS)

    Ball, N. M.

    2013-10-01

    This is a companion Focus Demonstration article to the CANFAR+Skytree poster (Ball 2013, this volume), demonstrating the usage of the Skytree machine learning software on the Canadian Advanced Network for Astronomical Research (CANFAR) cloud computing system. CANFAR+Skytree is the world's first cloud computing system for data mining in astronomy.

  8. New Icing Cloud Simulation System at the NASA Glenn Research Center Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Irvine, Thomas B.; Oldenburg, John R.; Sheldon, David W.

    1999-01-01

    A new spray bar system was designed, fabricated, and installed in the NASA Glenn Research Center's Icing Research Tunnel (IRT). This system is key to the IRT's ability to do aircraft in-flight icing cloud simulation. The performance goals and requirements levied on the design of the new spray bar system included increased size of the uniform icing cloud in the IRT test section, faster system response time, and increased coverage of icing conditions as defined in Appendix C of the Federal Aviation Regulation (FAR), Part 25 and Part 29. Through significant changes to the mechanical and electrical designs of the previous-generation spray bar system, the performance goals and requirements were realized. Postinstallation aerodynamic and icing cloud calibrations were performed to quantify the changes and improvements made to the IRT test section flow quality and icing cloud characteristics. The new and improved capability to simulate aircraft encounters with in-flight icing clouds ensures that the 1RT will continue to provide a satisfactory icing ground-test simulation method to the aeronautics community.

  9. Cloud and aerosol studies using combined CPL and MAS data

    NASA Astrophysics Data System (ADS)

    Vaughan, Mark A.; Rodier, Sharon; Hu, Yongxiang; McGill, Matthew J.; Holz, Robert E.

    2004-11-01

    Current uncertainties in the role of aerosols and clouds in the Earth's climate system limit our abilities to model the climate system and predict climate change. These limitations are due primarily to difficulties of adequately measuring aerosols and clouds on a global scale. The A-train satellites (Aqua, CALIPSO, CloudSat, PARASOL, and Aura) will provide an unprecedented opportunity to address these uncertainties. The various active and passive sensors of the A-train will use a variety of measurement techniques to provide comprehensive observations of the multi-dimensional properties of clouds and aerosols. However, to fully achieve the potential of this ensemble requires a robust data analysis framework to optimally and efficiently map these individual measurements into a comprehensive set of cloud and aerosol physical properties. In this work we introduce the Multi-Instrument Data Analysis and Synthesis (MIDAS) project, whose goal is to develop a suite of physically sound and computationally efficient algorithms that will combine active and passive remote sensing data in order to produce improved assessments of aerosol and cloud radiative and microphysical properties. These algorithms include (a) the development of an intelligent feature detection algorithm that combines inputs from both active and passive sensors, and (b) identifying recognizable multi-instrument signatures related to aerosol and cloud type derived from clusters of image pixels and the associated vertical profile information. Classification of these signatures will lead to the automated identification of aerosol and cloud types. Testing of these new algorithms is done using currently existing and readily available active and passive measurements from the Cloud Physics Lidar and the MODIS Airborne Simulator, which simulate, respectively, the CALIPSO and MODIS A-train instruments.

  10. Comparing the cloud vertical structure derived from several methods based on radiosonde profiles and ground-based remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Costa-Surós, M.; Calbó, J.; González, J. A.; Long, C. N.

    2014-08-01

    The cloud vertical distribution and especially the cloud base height, which is linked to cloud type, are important characteristics in order to describe the impact of clouds on climate. In this work, several methods for estimating the cloud vertical structure (CVS) based on atmospheric sounding profiles are compared, considering the number and position of cloud layers, with a ground-based system that is taken as a reference: the Active Remote Sensing of Clouds (ARSCL). All methods establish some conditions on the relative humidity, and differ in the use of other variables, the thresholds applied, or the vertical resolution of the profile. In this study, these methods are applied to 193 radiosonde profiles acquired at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site during all seasons of the year 2009 and endorsed by Geostationary Operational Environmental Satellite (GOES) images, to confirm that the cloudiness conditions are homogeneous enough across their trajectory. The perfect agreement (i.e., when the whole CVS is estimated correctly) for the methods ranges between 26 and 64%; the methods show additional approximate agreement (i.e., when at least one cloud layer is assessed correctly) from 15 to 41%. Further tests and improvements are applied to one of these methods. In addition, we attempt to make this method suitable for low-resolution vertical profiles, like those from the outputs of reanalysis methods or from the World Meteorological Organization's (WMO) Global Telecommunication System. The perfect agreement, even when using low-resolution profiles, can be improved by up to 67% (plus 25% of the approximate agreement) if the thresholds for a moist layer to become a cloud layer are modified to minimize false negatives with the current data set, thus improving overall agreement.

  11. Comparing the cloud vertical structure derived from several methods based on measured atmospheric profiles and active surface measurements

    NASA Astrophysics Data System (ADS)

    Costa-Surós, M.; Calbó, J.; González, J. A.; Long, C. N.

    2014-04-01

    The cloud vertical distribution and especially the cloud base height, which is linked to cloud type, is an important characteristic in order to describe the impact of clouds on climate. In this work several methods to estimate the cloud vertical structure (CVS) based on atmospheric sounding profiles are compared, considering number and position of cloud layers, with a ground based system which is taken as a reference: the Active Remote Sensing of Clouds (ARSCL). All methods establish some conditions on the relative humidity, and differ on the use of other variables, the thresholds applied, or the vertical resolution of the profile. In this study these methods are applied to 193 radiosonde profiles acquired at the ARM Southern Great Plains site during all seasons of year 2009 and endorsed by GOES images, to confirm that the cloudiness conditions are homogeneous enough across their trajectory. The perfect agreement (i.e. when the whole CVS is correctly estimated) for the methods ranges between 26-64%; the methods show additional approximate agreement (i.e. when at least one cloud layer is correctly assessed) from 15-41%. Further tests and improvements are applied on one of these methods. In addition, we attempt to make this method suitable for low resolution vertical profiles, like those from the outputs of reanalysis methods or from the WMO's Global Telecommunication System. The perfect agreement, even when using low resolution profiles, can be improved up to 67% (plus 25% of approximate agreement) if the thresholds for a moist layer to become a cloud layer are modified to minimize false negatives with the current data set, thus improving overall agreement.

  12. Cloud Macroscopic Organization: Order Emerging from Randomness

    NASA Technical Reports Server (NTRS)

    Yuan, Tianle

    2011-01-01

    Clouds play a central role in many aspects of the climate system and their forms and shapes are remarkably diverse. Appropriate representation of clouds in climate models is a major challenge because cloud processes span at least eight orders of magnitude in spatial scales. Here we show that there exists order in cloud size distribution of low-level clouds, and that it follows a power-law distribution with exponent gamma close to 2. gamma is insensitive to yearly variations in environmental conditions, but has regional variations and land-ocean contrasts. More importantly, we demonstrate this self-organizing behavior of clouds emerges naturally from a complex network model with simple, physical organizing principles: random clumping and merging. We also demonstrate symmetry between clear and cloudy skies in terms of macroscopic organization because of similar fundamental underlying organizing principles. The order in the apparently complex cloud-clear field thus has its root in random local interactions. Studying cloud organization with complex network models is an attractive new approach that has wide applications in climate science. We also propose a concept of cloud statistic mechanics approach. This approach is fully complementary to deterministic models, and the two approaches provide a powerful framework to meet the challenge of representing clouds in our climate models when working in tandem.

  13. Verification of NWP Cloud Properties using A-Train Satellite Observations

    NASA Astrophysics Data System (ADS)

    Kucera, P. A.; Weeks, C.; Wolff, C.; Bullock, R.; Brown, B.

    2011-12-01

    Recently, the NCAR Model Evaluation Tools (MET) has been enhanced to incorporate satellite observations for the verification of Numerical Weather Prediction (NWP) cloud products. We have developed tools that match fields spatially (both in the vertical and horizontal dimensions) to compare NWP products with satellite observations. These matched fields provide diagnostic evaluation of cloud macro attributes such as vertical distribution of clouds, cloud top height, and the spatial and seasonal distribution of cloud fields. For this research study, we have focused on using CloudSat, CALIPSO, and MODIS observations to evaluate cloud fields for a variety of NWP fields and derived products. We have selected cases ranging from large, mid-latitude synoptic systems to well-organized tropical cyclones. For each case, we matched the observed cloud field with gridded model and/or derived product fields. CloudSat and CALIPSO observations and model fields were matched and compared in the vertical along the orbit track. MODIS data and model fields were matched and compared in the horizontal. We then use MET to compute the verification statistics to quantify the performance of the models in representing the cloud fields. In this presentation we will give a summary of our comparison and show verification results for both synoptic and tropical cyclone cases.

  14. Populations and history in the outer limits of the Magellanic System

    NASA Astrophysics Data System (ADS)

    Brondel, Brian J.

    The Magellanic Clouds (MCs) are two small galaxies that are among the nearest to the Milky Way. Because they are nearby, the Clouds are well suited to careful examination by measurement of resolved stellar populations and other techniques, yet the scientific under- standing of the Clouds is only beginning to come into focus. Now, study of the Magellanic Clouds is particularly timely, in part because of the recent realization that the Clouds are only recently entering the halo of the Milky Way. Close examination of the structure and history of the Clouds has the potential to offer insights in the nature of hierarchical merging of galaxies, and study of the dynamics of the MCs and their passage through the halo of the Galaxy may yield hints about the nature of the dark matter halos generally, currently an important area of research in astronomy. The Clouds present a unique opportunity for study of stellar populations, because they are near enough that individual stars can be re- solved to depths well past the main sequence turnoff. This permits analysis of stellar age and metallicity with common distance determinable by independent means. In 2005 - 2011, Saha et al. conducted observations for the Outer Limits Survey (OLS) of the Magellanic Clouds, an extensive survey designed to probe the outskirts of these galaxies to fainter limits than any previous survey. In collaboration with the OLS team I have developed methodology for obtaining high precision photometry from OLS data, and deriving star formation history and age-metallicity relations from the measurements. Detailed determination of the star formation history and age-metallicity relation in these fields requires synthesis of artificial stars and CMD fitting, and these processes will be discussed in this thesis. I present the star formation history of fields in the OLS project and confront predictions from current models of the Magellanic System.

  15. The influence of aerosol particle number and hygroscopicity on the evolution of convective cloud systems and their precipitation

    NASA Astrophysics Data System (ADS)

    Planche, C.; Flossmann, A. I.; Wobrock, W.

    2009-04-01

    A 3D cloud model with detailed microphysics for ice, water and aerosol particles (AP) is used to study the role of AP on the evolution of summertime convective mixed phase clouds and the subsequent precipitation. The model couples the dynamics of the NCAR Clark-Hall cloud scale model (Clark et al., 1996) with the detailed scavenging model (DESCAM) of Flossmann and Pruppacher (1988) and the ice phase module of Leroy et al. (2007). The microphysics follows the evolution of AP, drop, and ice crystal spectra each with 39 bins. Aerosol mass in drops and ice crystals is also predicted by two distribution functions to close the aerosol budget. The simulated cases are compared with radar observations over the northern Vosges mountains and the Rhine valley which were performed on 12 and 13 August 2007 during the COPS field campaign. Using a 3D grid resolution of 250m, our model, called DESCAM-3D, is able to simulate very well the dynamical, cloud and precipitation features observed for the two different cloud systems. The high horizontal grid resolution provides new elements for the understanding of the formation of orographic convection. In addition the fine numerical scale compares well with the high resolved radar observation given by the LaMP X-band radar and Poldirad. The prediction of the liquid and ice hydrometeor spectra allows a detailed calculation of the cloud radar reflectivity. Sensitivity studies realized by the use of different mass-diameter relationships for ice crystals demonstrate the role of the crystal habits on the simulated reflectivities. In order to better understand the role of AP on cloud evolution and precipitation formation several sensitivity studies were performed by modifying not only aerosol number concentration but also their physico-chemical properties. The numerical results show a strong influence of the aerosol number concentration on the precipitation intensity but no effect of the aerosol particle solubility on the rain formation can be found.

  16. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, X.; Khain, A.; Simpson, S.

    2004-01-01

    Cloud microphysics are inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles (i.e., pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail). Each type is described by a special size distribution function containing many categories (i.e. 33 bins). Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep cloud systems in the west Pacific warm pool region, in the sub-tropics (Florida) and in the mid-latitude using identical thermodynamic conditions but with different concentrations of CCN: a low 'clean' concentration and a high 'dirty' concentration.

  17. Coupling of Clouds and Moisture Transport in Extratropical Cyclonic Systems and the Associated Atmospheric Heating (Q1) and Moisture Sink (Q2)

    NASA Astrophysics Data System (ADS)

    Wong, S.; Naud, C. M.; Kahn, B. H.; Wu, L.; Fetzer, E. J.

    2017-12-01

    Different sectors in extratropical cyclonic systems (ETCs) exhibit various patterns in atmospheric moisture transport and provide an excellent test bed for studying coupling between cloud processes and large-scale circulation. Large-scale atmospheric moisture transport diagnosed from the Modern-Era Retrospective analysis for Research and Applications Version 2 and cloud properties (cloud top pressure and optical depth, cloud effective radii and thermodynamic phase) from both the Moderate Resolution Imaging Spectroradiometer (MODIS) and Atmospheric Infrared Sounder (AIRS) will be composited around Northern Hemispheric ETCs over ocean according to their stages of development. Atmospheric diabatic heating rates (Q1) and moisture sinks (Q2) are also inferred from the reanalysis winds, temperature, and specific humidity. Across the warm fronts, elevated convection in the pre-warm front regime is associated with frequent stratiform clouds with middle-to-upper tropospheric heating and lower tropospheric cooling, while upright convection in the warm front regime has frequent deep convective clouds with free-tropospheric heating and strong boundary layer cooling. Thinner stratiform and cirrus clouds are evident in the warm sector with top-heavy profiles of rising motion and diabatic heating. Moisture advection exhibits a sharp gradient across the cold fronts, with convection in the pre-cold front regime highly dependent on the stage of the ETC development. Heating in the boundary layers of the cold sector, polar-air intrusion, and pre-warm sector regimes depends on the amount of low-level clouds, which is again modulated by the stage of the ETC development.

  18. Cloud-based BP system integrated with CPOE improves self-management of the hypertensive patients: A randomized controlled trial.

    PubMed

    Lee, Peisan; Liu, Ju-Chi; Hsieh, Ming-Hsiung; Hao, Wen-Rui; Tseng, Yuan-Teng; Liu, Shuen-Hsin; Lin, Yung-Kuo; Sung, Li-Chin; Huang, Jen-Hung; Yang, Hung-Yu; Ye, Jong-Shiuan; Zheng, He-Shun; Hsu, Min-Huei; Syed-Abdul, Shabbir; Lu, Richard; Nguyen, Phung-Anh; Iqbal, Usman; Huang, Chih-Wei; Jian, Wen-Shan; Li, Yu-Chuan Jack

    2016-08-01

    Less than 50% of patients with hypertensive disease manage to maintain their blood pressure (BP) within normal levels. The aim of this study is to evaluate whether cloud BP system integrated with computerized physician order entry (CPOE) can improve BP management as compared with traditional care. A randomized controlled trial done on a random sample of 382 adults recruited from 786 patients who had been diagnosed with hypertension and receiving treatment for hypertension in two district hospitals in the north of Taiwan. Physicians had access to cloud BP data from CPOE. Neither patients nor physicians were blinded to group assignment. The study was conducted over a period of seven months. At baseline, the enrollees were 50% male with a mean (SD) age of 58.18 (10.83) years. The mean sitting BP of both arms was no different. The proportion of patients with BP control at two, four and six months was significantly greater in the intervention group than in the control group. The average capture rates of blood pressure in the intervention group were also significantly higher than the control group in all three check-points. Cloud-based BP system integrated with CPOE at the point of care achieved better BP control compared to traditional care. This system does not require any technical skills and is therefore suitable for every age group. The praise and assurance to the patients from the physicians after reviewing the Cloud BP records positively reinforced both BP measuring and medication adherence behaviors. Copyright © 2016. Published by Elsevier Ireland Ltd.

  19. Combining In-situ Measurements, Passive Satellite Imagery, and Active Radar Retrievals for the Detection of High Ice Water Content

    NASA Astrophysics Data System (ADS)

    Yost, C. R.; Minnis, P.; Bedka, K. M.; Nguyen, L.; Palikonda, R.; Spangenberg, D.; Strapp, J. W.; Delanoë, J.; Protat, A.

    2016-12-01

    At least one hundred jet engine power loss events since the 1990s have been attributed to the phenomenon known as ice crystal icing (ICI). Ingestion of high concentrations of ice particles into aircraft engines is thought to cause these events, but it is clear that the use of current on-board weather radar systems alone is insufficient for detecting conditions that might cause ICI. Passive radiometers in geostationary orbit are valuable for monitoring systems that produce high ice water content (HIWC) and will play an important role in nowcasting, but are incapable of making vertically resolved measurements of ice particle concentration, i.e., ice water content (IWC). Combined radar, lidar, and in-situ measurements are essential for developing a skilled satellite-based HIWC nowcasting technique. The High Altitude Ice Crystals - High Ice Water Content (HAIC-HIWC) field campaigns in Darwin, Australia, and Cayenne, French Guiana, have produced a valuable dataset of in-situ total water content (TWC) measurements with which to study conditions that produce HIWC. The NASA Langley Satellite ClOud and Radiative Property retrieval System (SatCORPS) was used to derive cloud physical and optical properties such cloud top height, temperature, optical depth, and ice water path from multi-spectral satellite imagery acquired throughout the HAIC-HIWC campaigns. These cloud properties were collocated with the in-situ TWC measurements in order to characterize cloud properties in the vicinity of HIWC. Additionally, a database of satellite-derived overshooting cloud top (OT) detections was used to identify TWC measurements in close proximity to convective cores likely producing large concentrations of ice crystals. Certain cloud properties show some sensitivity to increasing TWC and a multivariate probabilistic indicator of HIWC was developed from these datasets. This paper describes the algorithm development and demonstrates the HIWC indicator with imagery from the HAIC-HIWC campaigns. Vertically resolved IWC retrievals from active sensors such as the Cloud Profiling Radar (CPR) on CloudSat and the Doppler Radar System Airborne (RASTA) provide IWC profiles with which to validate and potentially enhance the satellite-based HIWC indicator.

  20. Improved Arctic Cloud and Aerosol Research and Model Parameterizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenneth Sassen

    2007-03-01

    In this report are summarized our contributions to the Atmospheric Measurement (ARM) program supported by the Department of Energy. Our involvement commenced in 1990 during the planning stages of the design of the ARM Cloud and Radiation Testbed (CART) sites. We have worked continuously (up to 2006) on our ARM research objectives, building on our earlier findings to advance our knowledge in several areas. Below we summarize our research over this period, with an emphasis on the most recent work. We have participated in several aircraft-supported deployments at the SGP and NSA sites. In addition to deploying the Polarization Diversitymore » Lidar (PDL) system (Sassen 1994; Noel and Sassen 2005) designed and constructed under ARM funding, we have operated other sophisticated instruments W-band polarimetric Doppler radar, and midinfrared radiometer for intercalibration and student training purposes. We have worked closely with University of North Dakota scientists, twice co-directing the Citation operations through ground-to-air communications, and serving as the CART ground-based mission coordinator with NASA aircraft during the 1996 SUCCESS/IOP campaign. We have also taken a leading role in initiating case study research involving a number of ARM coinvestigators. Analyses of several case studies from these IOPs have been reported in journal articles, as we show in Table 1. The PDL has also participated in other major field projects, including FIRE II and CRYSTAL-FACE. In general, the published results of our IOP research can be divided into two categories: comprehensive cloud case study analyses to shed light on fundamental cloud processes using the unique CART IOP measurement capabilities, and the analysis of in situ data for the testing of remote sensing cloud retrieval algorithms. One of the goals of the case study approach is to provide sufficiently detailed descriptions of cloud systems from the data-rich CART environment to make them suitable for application to cloud modeling groups, such as the GEWEX Cloud Simulation Study (GCSS) Cirrus Working Groups. In this paper we summarize our IOP-related accomplishments.« less

  1. Comparison of global cloud liquid water path derived from microwave measurements with CERES-MODIS

    NASA Astrophysics Data System (ADS)

    Yi, Y.; Minnis, P.; Huang, J.; Lin, B.; Ayers, K.; Sun-Mack, S.; Fan, A.

    Cloud liquid water path LWP is a crucial parameter for climate studies due to the link that it provides between the atmospheric hydrological and radiative budgets Satellite-based visible infrared techniques such as the Visible Infrared Solar Split-Window Technique VISST can retrieve LWP for water clouds assumes single-layer over a variety of surfaces If the water clouds are overlapped by ice clouds the LWP of the underlying clouds can not be retrieved by such techniques However microwave techniques may be used to retrieve the LWP underneath ice clouds due to the microwave s insensitivity to cloud ice particles LWP is typically retrieved from satellite-observed microwave radiances only over ocean due to variations of land surface temperature and emissivity Recently Deeter and Vivekanandan 2006 developed a new technique for retrieving LWP over land In order to overcome the sensitivity to land surface temperature and emissivity their technique is based on a parameterization of microwave polarization-difference signals In this study a similar regression-based technique for retrieving LWP over land and ocean using Advanced Microwave Scanning Radiometer - EOS AMSR-E measurements is developed Furthermore the microwave surface emissivities are also derived using clear-sky fields of view based on the Clouds and Earth s Radiant Energy System Moderate-resolution Imaging Spectroradiometer CERES-MODIS cloud mask These emissivities are used in an alternate form of the technique The results are evaluated using independent measurements such

  2. A Multi-Model Analysis of the Cloud Phase Transition in 16 GCMs Using Satellite Observations (CALIPSO/GPCP) and Reanalysis Data (ECMWF/MERRA).

    NASA Astrophysics Data System (ADS)

    Cesana, G.; Waliser, D. E.; Jiang, X.; Li, J. L. F.

    2014-12-01

    The ubiquitous presence of clouds within the troposphere contributes to modulate the radiative balance of the earth-atmosphere system. Depending on their cloud phase, clouds may have different microphysical and macrophysical properties, and hence, different radiative effects. In this study, we took advantage of climate runs from the GASS-YoTC and AMIP multi-model experiments to document the differences associated to the cloud phase parameterizations of 16 GCMs. A particular emphasize has been put on the vertical structure of the transition between liquid and ice in clouds. A way to intercompare the models regardless of their cloud fraction is to study the ratio of the ice mass to the total mass of the condensed water. To address the challenge of evaluating the modeled cloud phase, we profited from the cloud phase climatology so called CALIPSO-GOCCP, which separates liquid clouds from ice clouds at global scale, with a high vertical resolution (480m), above all surfaces. We also used reanalysis data and GPCP satellite observations to investigate the influence of the temperature, the relative humidity, the vertical wind speed and the precipitations on the cloud phase transition. In 12 (of 16) models, there are too few super cooled liquid in clouds compared to observations, mostly in the high troposphere. We exhibited evidences of the link between the cloud phase transition and the humidity, the vertical wind speed as well as the precipitations. Some cloud phase schemes are more affected by the humidity and the vertical velocity and some other by the precipitations. Although a few models can reproduce the observe relation between cloud phase and temperature, humidity, vertical velocity or precipitations, none of them perform well for all the parameters. An important result of this study is that the T-dependent phase parameterizations do not allow simulating the complexity of the observed cloud phase transition. Unfortunately, more complex microphysics schemes do not succeed to reproduce all the processes neither. Finally, thanks to the combined use of CALIPSO-GOCCP and ECMWF water vapor pressure, we showed an updated version of the Clausius-Clapeyron water vapor phase diagram. This diagram represents a new tool to improve the simulation of the cloud phase transition in climate models.

  3. Toward Realistic Simulation of low-Level Clouds Using a Multiscale Modeling Framework With a Third-Order Turbulence Closure in its Cloud-Resolving Model Component

    NASA Technical Reports Server (NTRS)

    Xu, Kuan-Man; Cheng, Anning

    2010-01-01

    This study presents preliminary results from a multiscale modeling framework (MMF) with an advanced third-order turbulence closure in its cloud-resolving model (CRM) component. In the original MMF, the Community Atmosphere Model (CAM3.5) is used as the host general circulation model (GCM), and the System for Atmospheric Modeling with a first-order turbulence closure is used as the CRM for representing cloud processes in each grid box of the GCM. The results of annual and seasonal means and diurnal variability are compared between the modified and original MMFs and the CAM3.5. The global distributions of low-level cloud amounts and precipitation and the amounts of low-level clouds in the subtropics and middle-level clouds in mid-latitude storm track regions in the modified MMF show substantial improvement relative to the original MMF when both are compared to observations. Some improvements can also be seen in the diurnal variability of precipitation.

  4. Image-Based Airborne LiDAR Point Cloud Encoding for 3d Building Model Retrieval

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Chen; Lin, Chao-Hung

    2016-06-01

    With the development of Web 2.0 and cyber city modeling, an increasing number of 3D models have been available on web-based model-sharing platforms with many applications such as navigation, urban planning, and virtual reality. Based on the concept of data reuse, a 3D model retrieval system is proposed to retrieve building models similar to a user-specified query. The basic idea behind this system is to reuse these existing 3D building models instead of reconstruction from point clouds. To efficiently retrieve models, the models in databases are compactly encoded by using a shape descriptor generally. However, most of the geometric descriptors in related works are applied to polygonal models. In this study, the input query of the model retrieval system is a point cloud acquired by Light Detection and Ranging (LiDAR) systems because of the efficient scene scanning and spatial information collection. Using Point clouds with sparse, noisy, and incomplete sampling as input queries is more difficult than that by using 3D models. Because that the building roof is more informative than other parts in the airborne LiDAR point cloud, an image-based approach is proposed to encode both point clouds from input queries and 3D models in databases. The main goal of data encoding is that the models in the database and input point clouds can be consistently encoded. Firstly, top-view depth images of buildings are generated to represent the geometry surface of a building roof. Secondly, geometric features are extracted from depth images based on height, edge and plane of building. Finally, descriptors can be extracted by spatial histograms and used in 3D model retrieval system. For data retrieval, the models are retrieved by matching the encoding coefficients of point clouds and building models. In experiments, a database including about 900,000 3D models collected from the Internet is used for evaluation of data retrieval. The results of the proposed method show a clear superiority over related methods.

  5. The structure and phase of cloud tops as observed by polarization lidar

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Hansen, M. Z.; Simpson, J.

    1983-01-01

    High-resolution observations of the structure of cloud tops have been obtained with polarization lidar operated from a high altitude aircraft. Case studies of measurements acquired from cumuliform cloud systems are presented, two from September 1979 observations in the area of Florida and adjacent waters and a third during the May 1981 CCOPE experiment in southeast Montana. Accurate cloud top height structure and relative density of hydrometers are obtained from the lidar return signal intensity. Correlation between the signal return intensity and active updrafts was noted. Thin cirrus overlying developing turrets was observed in some cases. Typical values of the observed backscatter cross section were 0.1-5 (km/sr) for cumulonimbus tops. The depolarization ratio of the lidar signals was a function of the thermodynamic phase of cloud top areas. An increase of the cloud top depolarization with decreasing temperature was found for temperatures above and below -40 C.

  6. Tropical Oceanic Precipitation Processes Over Warm Pool: 2D and 3D Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Johnson, D.; Simpson, J.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Rainfall is a key link in the hydrologic cycle as well as the primary heat source for the atmosphere. The vertical distribution of convective latent-heat release modulates the large-scale circulations of the topics. Furthermore, changes in the moisture distribution at middle and upper levels of the troposphere can affect cloud distributions and cloud liquid water and ice contents. How the incoming solar and outgoing longwave radiation respond to these changes in clouds is a major factor in assessing climate change. Present large-scale weather and climate model simulate processes only crudely, reducing confidence in their predictions on both global and regional scales. One of the most promising methods to test physical parameterizations used in General Circulation Models (GCMs) and climate models is to use field observations together with Cloud Resolving Models (CRMs). The CRMs use more sophisticated and physically realistic parameterizations of cloud microphysical processes, and allow for their complex interactions with solar and infrared radiative transfer processes. The CRMs can reasonably well resolve the evolution, structure, and life cycles of individual clouds and clouds systems. The major objective of this paper is to investigate the latent heating, moisture and momentum budgets associated with several convective systems developed during the TOGA COARE IFA - westerly wind burst event (late December, 1992). The tool for this study is the Goddard Cumulus Ensemble (GCE) model which includes a 3-class ice-phase microphysics scheme.

  7. Statistical Evaluation of CRM-Simulated Cloud and Precipitation Structures Using Multi- sensor TRMM Measurements and Retrievals

    NASA Astrophysics Data System (ADS)

    Posselt, D.; L'Ecuyer, T.; Matsui, T.

    2009-05-01

    Cloud resolving models are typically used to examine the characteristics of clouds and precipitation and their relationship to radiation and the large-scale circulation. As such, they are not required to reproduce the exact location of each observed convective system, much less each individual cloud. Some of the most relevant information about clouds and precipitation is provided by instruments located on polar-orbiting satellite platforms, but these observations are intermittent "snapshots" in time, making assessment of model performance challenging. In contrast to direct comparison, model results can be evaluated statistically. This avoids the requirement for the model to reproduce the observed systems, while returning valuable information on the performance of the model in a climate-relevant sense. The focus of this talk is a model evaluation study, in which updates to the microphysics scheme used in a three-dimensional version of the Goddard Cumulus Ensemble (GCE) model are evaluated using statistics of observed clouds, precipitation, and radiation. We present the results of multiday (non-equilibrium) simulations of organized deep convection using single- and double-moment versions of a the model's cloud microphysical scheme. Statistics of TRMM multi-sensor derived clouds, precipitation, and radiative fluxes are used to evaluate the GCE results, as are simulated TRMM measurements obtained using a sophisticated instrument simulator suite. We present advantages and disadvantages of performing model comparisons in retrieval and measurement space and conclude by motivating the use of data assimilation techniques for analyzing and improving model parameterizations.

  8. SPARCCS - Smartphone-Assisted Readiness, Command and Control System

    DTIC Science & Technology

    2012-06-01

    and database needs. By doing this SPARCCS takes advantage of all the capabilities cloud computing has to offer, especially that of disbursed data...40092829/ Microsoft. (2011). Cloud Computing . Retrieved September 24, 2011, http ://www.microsoft.com/industry/government/guides/cloud_computing/2...Command, and Control System) to address these issues. We use smartphones in conjunction with cloud computing to extend the benefits of collaborative

  9. Workflow as a Service in the Cloud: Architecture and Scheduling Algorithms.

    PubMed

    Wang, Jianwu; Korambath, Prakashan; Altintas, Ilkay; Davis, Jim; Crawl, Daniel

    2014-01-01

    With more and more workflow systems adopting cloud as their execution environment, it becomes increasingly challenging on how to efficiently manage various workflows, virtual machines (VMs) and workflow execution on VM instances. To make the system scalable and easy-to-extend, we design a Workflow as a Service (WFaaS) architecture with independent services. A core part of the architecture is how to efficiently respond continuous workflow requests from users and schedule their executions in the cloud. Based on different targets, we propose four heuristic workflow scheduling algorithms for the WFaaS architecture, and analyze the differences and best usages of the algorithms in terms of performance, cost and the price/performance ratio via experimental studies.

  10. Observational Constraints on Cloud Feedbacks: The Role of Active Satellite Sensors

    NASA Astrophysics Data System (ADS)

    Winker, David; Chepfer, Helene; Noel, Vincent; Cai, Xia

    2017-11-01

    Cloud profiling from active lidar and radar in the A-train satellite constellation has significantly advanced our understanding of clouds and their role in the climate system. Nevertheless, the response of clouds to a warming climate remains one of the largest uncertainties in predicting climate change and for the development of adaptions to change. Both observation of long-term changes and observational constraints on the processes responsible for those changes are necessary. We review recent progress in our understanding of the cloud feedback problem. Capabilities and advantages of active sensors for observing clouds are discussed, along with the importance of active sensors for deriving constraints on cloud feedbacks as an essential component of a global climate observing system.

  11. Annual Cycle of Cloud Forcing of Surface Radiation Budget

    NASA Technical Reports Server (NTRS)

    Wilber, Anne C.; Smith, G. Louis; Stackhouse, Paul W., Jr.; Gupta, Shashi K.

    2006-01-01

    The climate of the Earth is determined by its balance of radiation. The incoming and outgoing radiation fluxes are strongly modulated by clouds, which are not well understood. The Earth Radiation Budget Experiment (Barkstrom and Smith, 1986) provided data from which the effects of clouds on radiation at the top of the atmosphere (TOA) could be computed (Ramanathan, 1987). At TOA, clouds increase the reflected solar radiation, tending to cool the planet, and decrease the OLR, causing the planet to retain its heat (Ramanathan et al., 1989; Harrison et al., 1990). The effects of clouds on radiation fluxes are denoted cloud forcing. These shortwave and longwave forcings counter each other to various degrees, so that in the tropics the result is a near balance. Over mid and polar latitude oceans, cloud forcing at TOA results in large net loss of radiation. Here, there are large areas of stratus clouds and cloud systems associated with storms. These systems are sensitive to surface temperatures and vary strongly with the annual cycle. During winter, anticyclones form over the continents and move to the oceans during summer. This movement of major cloud systems causes large changes of surface radiation, which in turn drives the surface temperature and sensible and latent heat released to the atmosphere.

  12. Satellite-derived attributes of cloud vortex systems and their application to climate studies

    NASA Technical Reports Server (NTRS)

    Carleton, Andrew M.

    1987-01-01

    Defense Meteorological Satellite Program (DMSP) visible and infrared mosaics are analyzed in conjunction with synoptic meteorological observations of sea level pressure (SLP) and upper-air height to derive composite patterns of cyclonic cloud vortices for the Northern Hemisphere. The patterns reveal variations in the structure and implied dynamics of cyclonic systems at different stages of development that include: (1) increasing vertical symmetry of the lower-level and upper-air circulations and (2) decreasing lower-tropospheric thicknesses and temperature advection, associated with increasing age of the vortex. Cloud vortices are more intense in winter than in summer and typically reach maximum intensity in the short-lived prespiral signature stage. There are major structural differences among frontal wave, polar air, and 'instant occlusion' cyclogenesis types. Cyclones in the dissipation stage may reintensify (deepen), as denoted by the appearance in the imagery of an asymmetric cloud band or a tightened spiral vortex. The satellite-derived statistics on cloud vortex intensity, which are seasonal- and latitude- as well as type-dependent, are applied to a preliminary examination of the synoptic manifestations of seasonal climate variability. An apparently close relationship is found, for two winter and spring seasons, between Northern Hemisphere cyclonic activity and variations in cryosphere variables, particularly the extent of Arctic sea ice. The results may indicate that increased snow and ice extent accompany a southward displacement of cyclonic activity and/or a predominance of deeper systems. However, there is also a strong regional dependence to the ice-synoptics feedback. This study demonstrates the utility of high resolution meteorological satellite imagery for studies of climate variations (climate dynamics).

  13. Global Variability of Mesoscale Convective System Anvil Structure from A-Train Satellite Data

    NASA Technical Reports Server (NTRS)

    Yuan, Jian; Houze, Robert A.

    2010-01-01

    Mesoscale convective systems (MCSs) in the tropics produce extensive anvil clouds, which significantly affect the transfer of radiation. This study develops an objective method to identify MCSs and their anvils by combining data from three A-train satellite instruments: Moderate Resolution Imaging Spectroradiometer (MODIS) for cloud-top size and coldness, Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) for rain area size and intensity, and CloudSat for horizontal and vertical dimensions of anvils. The authors distinguish three types of MCSs: small and large separated MCSs and connected MCSs. The latter are MCSs sharing a contiguous rain area. Mapping of the objectively identified MCSs shows patterns of MCSs that are consistent with previous studies of tropical convection, with separated MCSs dominant over Africa and the Amazon regions and connected MCSs favored over the warm pool of the Indian and west Pacific Oceans. By separating the anvil from the raining regions of MCSs, this study leads to quantitative global maps of anvil coverage. These maps are consistent with the MCS analysis, and they lay the foundation for estimating the global radiative effects of anvil clouds. CloudSat radar data show that the modal thickness of MCS anvils is about 4-5 km. Anvils are mostly confined to within 1.5-2 times the equivalent radii of the primary rain areas of the MCSs. Over the warm pool, they may extend out to about 5 times the rain area radii. The warm ocean MCSs tend to have thicker non-raining and lightly raining anvils near the edges

  14. IBM Cloud Computing Powering a Smarter Planet

    NASA Astrophysics Data System (ADS)

    Zhu, Jinzy; Fang, Xing; Guo, Zhe; Niu, Meng Hua; Cao, Fan; Yue, Shuang; Liu, Qin Yu

    With increasing need for intelligent systems supporting the world's businesses, Cloud Computing has emerged as a dominant trend to provide a dynamic infrastructure to make such intelligence possible. The article introduced how to build a smarter planet with cloud computing technology. First, it introduced why we need cloud, and the evolution of cloud technology. Secondly, it analyzed the value of cloud computing and how to apply cloud technology. Finally, it predicted the future of cloud in the smarter planet.

  15. Cloud property datasets retrieved from AVHRR, MODIS, AATSR and MERIS in the framework of the Cloud_cci project

    NASA Astrophysics Data System (ADS)

    Stengel, Martin; Stapelberg, Stefan; Sus, Oliver; Schlundt, Cornelia; Poulsen, Caroline; Thomas, Gareth; Christensen, Matthew; Carbajal Henken, Cintia; Preusker, Rene; Fischer, Jürgen; Devasthale, Abhay; Willén, Ulrika; Karlsson, Karl-Göran; McGarragh, Gregory R.; Proud, Simon; Povey, Adam C.; Grainger, Roy G.; Fokke Meirink, Jan; Feofilov, Artem; Bennartz, Ralf; Bojanowski, Jedrzej S.; Hollmann, Rainer

    2017-11-01

    New cloud property datasets based on measurements from the passive imaging satellite sensors AVHRR, MODIS, ATSR2, AATSR and MERIS are presented. Two retrieval systems were developed that include components for cloud detection and cloud typing followed by cloud property retrievals based on the optimal estimation (OE) technique. The OE-based retrievals are applied to simultaneously retrieve cloud-top pressure, cloud particle effective radius and cloud optical thickness using measurements at visible, near-infrared and thermal infrared wavelengths, which ensures spectral consistency. The retrieved cloud properties are further processed to derive cloud-top height, cloud-top temperature, cloud liquid water path, cloud ice water path and spectral cloud albedo. The Cloud_cci products are pixel-based retrievals, daily composites of those on a global equal-angle latitude-longitude grid, and monthly cloud properties such as averages, standard deviations and histograms, also on a global grid. All products include rigorous propagation of the retrieval and sampling uncertainties. Grouping the orbital properties of the sensor families, six datasets have been defined, which are named AVHRR-AM, AVHRR-PM, MODIS-Terra, MODIS-Aqua, ATSR2-AATSR and MERIS+AATSR, each comprising a specific subset of all available sensors. The individual characteristics of the datasets are presented together with a summary of the retrieval systems and measurement records on which the dataset generation were based. Example validation results are given, based on comparisons to well-established reference observations, which demonstrate the good quality of the data. In particular the ensured spectral consistency and the rigorous uncertainty propagation through all processing levels can be considered as new features of the Cloud_cci datasets compared to existing datasets. In addition, the consistency among the individual datasets allows for a potential combination of them as well as facilitates studies on the impact of temporal sampling and spatial resolution on cloud climatologies.

    For each dataset a digital object identifier has been issued:

    Cloud_cci AVHRR-AM: https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-AM/V002

    Cloud_cci AVHRR-PM: https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-PM/V002

    Cloud_cci MODIS-Terra: https://doi.org/10.5676/DWD/ESA_Cloud_cci/MODIS-Terra/V002

    Cloud_cci MODIS-Aqua: https://doi.org/10.5676/DWD/ESA_Cloud_cci/MODIS-Aqua/V002

    Cloud_cci ATSR2-AATSR: https://doi.org/10.5676/DWD/ESA_Cloud_cci/ATSR2-AATSR/V002

    Cloud_cci MERIS+AATSR: https://doi.org/10.5676/DWD/ESA_Cloud_cci/MERIS+AATSR/V002

  16. Possible external sources of terrestrial cloud cover variability: the solar wind

    NASA Astrophysics Data System (ADS)

    Voiculescu, Mirela; Usoskin, Ilya; Condurache-Bota, Simona

    2014-05-01

    Cloud cover plays an important role in the terrestrial radiation budget. The possible influence of the solar activity on cloud cover is still an open question with contradictory answers. An extraterrestrial factor potentially affecting the cloud cover is related to fields associated with solar wind. We focus here on a derived quantity, the interplanetary electric field (IEF), defined as the product between the solar wind speed and the meridional component, Bz, of the interplanetary magnetic field (IMF) in the Geocentric Solar Magnetospheric (GSM) system. We show that cloud cover at mid-high latitudes systematically correlates with positive IEF, which has a clear energetic input into the atmosphere, but not with negative IEF, in general agreement with predictions of the global electric circuit (GEC)-related mechanism. Since the IEF responds differently to solar activity than, for instance, cosmic ray flux or solar irradiance, we also show that such a study allows distinguishing one solar-driven mechanism of cloud evolution, via the GEC, from others. We also present results showing that the link between cloud cover and IMF varies depending on composition and altitude of clouds.

  17. Investigation of the effects of the macrophysical and microphysical properties of cirrus clouds on the retrieval of optical properties: Results for FIRE 2

    NASA Technical Reports Server (NTRS)

    Stackhouse, Paul W., Jr.; Stephens, Graeme L.

    1993-01-01

    Due to the prevalence and persistence of cirrus cloudiness across the globe, cirrus clouds are believed to have an important effect on the climate. Stephens et al., (1990) among others have shown that the important factor determining how cirrus clouds modulate the climate is the balance between the albedo and emittance effect of the cloud systems. This factor was shown to depend in part upon the effective sizes of the cirrus cloud particles. Since effective sizes of cirrus cloud microphysical distributions are used as a basis of parameterizations in climate models, it is crucial that the relationships between effective sizes and radiative properties be clearly established. In this preliminary study, the retrieval of cirrus cloud effective sizes are examined using a two dimensional radiative transfer model for a cirrus cloud case sampled during FIRE Cirrus 11. The purpose of this paper is to present preliminary results from the SHSG model demonstrating the sensitivity of the bispectral relationships of reflected radiances and thus the retrieval of effective sizes to phase function and dimensionality.

  18. Two Years of Global Cirrus Cloud Statistics Using HIRS

    NASA Technical Reports Server (NTRS)

    Wylie, Donald; Menzel, W. Paul; Woolf, H. M.

    1991-01-01

    A climatology of upper tropospheric semi-transparent cirrus clouds has been compiled using HIRS multispectral infrared data, sensitive to CO2 absorption, from the NOAA polar orbiting satellites. This is a report on the two years of data analyzed (June 1989 - May 1991). Semi-transparent clouds were found in 36% of the observations. Large seasonal changes were found in these clouds in many geographical areas; large changes occur in areas dominated by the ITCZ, the sub-tropical high pressure systems, and the mid-latitude storm belts. Semi-transparent clouds associated with these features move latitudinally with the seasons. These clouds also are more frequent in the summer hemisphere than the winter hemisphere. They appear to be linked to convective cloud development and the mid-latitudinal frontal weather systems. However, very thin semi-transparent cirrus has less seasonal movement than other cloud forms.

  19. Assessment of observed fog/low-cloud trends in central Taiwan

    NASA Astrophysics Data System (ADS)

    Lai, Yen-Jen; Lin, Po-Hsiung

    2017-04-01

    Xitou region, as the epitome of mid-elevation cloud forest ecosystems in Taiwan, it possesses a rich diversity of flora and fauna. It is also a popular forest recreation area. Due to rapid development of the local tourist industry, where tourist numbers increased from 0.3 million/year in 2000 to 2 million/year in 2015, the microclimate has changed continually. Global warming and landscape changes would be also the most likely factors. This study reports findings of monitoring systems including 4 visibility observed sites at different altitude, a self-developed atmospheric profile observation system carried by unmanned aerial vehicle (UAV) and a high temporal cloud base height observation system by a ceilometer. Besides this, the cloud top height of MODIS cloud product is evaluated as well. The results indicated the foggy day ratio in 2015 was 24% lower than that in 2005 around the district of the nursery. The foggy day ratio raised along with the increase of altitude and the sharpest increasing range happened in the summer time. The UAV-observed results showed the top heights of the nighttime atmospheric boundary layer (ABL) usually happened under 1300m a.s.l. (250m above ground) and the top heights of daytime ABL rose to 1500m - 2100m a.s.l. Unfortunately, it was difficult to observe the inversion layer/ABL in summer due to the fly height limitation of UAV. The ceilometer-observed results indicated the highest foggy ratio happened around 17:00 (local standard time). The daytime cloudy based height ratio was higher than nighttime and the cloud based height was usually located during 1150m - 1750m a.s.l. which was under the top heights of ABL. In addition, the higher cloud-based-heights-happened ratios were found at 1200m - 1250m a.s.l. and 1350m - 1400m a.s.l.. These results indicated the cloud based height uplifted from ground to at least 150m above ground-level causing the foggy ratio decrease. The MODIS cloud product showed the top height of low cloud uplifted or even became clear sky along with the increase of Xitou tourist numbers. Both ceilometer and MODIS data suggested the low cloud was uplifting. In order to clarify the seasonal characters of cloud thickness, the validation of MODIS cloud top height by atmospheric profiles are on-going. Furthermore, an adapted land-atmospheric model (WRF model is now under testing) will be implemented in order to discover the major factors causing the decrease of foggy ratio and assess the impacts on cloud forest.

  20. UV Raman lidar measurements of relative humidity for the characterization of cirrus cloud microphysical properties

    NASA Astrophysics Data System (ADS)

    di Girolamo, P.; Summa, D.; Lin, R.-F.; Maestri, T.; Rizzi, R.; Masiello, G.

    2009-11-01

    Raman lidar measurements performed in Potenza by the Raman lidar system BASIL in the presence of cirrus clouds are discussed. Measurements were performed on 6 September 2004 in the frame of the Italian phase of the EAQUATE Experiment. The major feature of BASIL is represented by its capability to perform high-resolution and accurate measurements of atmospheric temperature and water vapour, and consequently relative humidity, both in daytime and night-time, based on the application of the rotational and vibrational Raman lidar techniques in the UV. BASIL is also capable to provide measurements of the particle backscatter and extinction coefficient, and consequently lidar ratio (at the time of these measurements, only at one wavelength), which are fundamental to infer geometrical and microphysical properties of clouds. A case study is discussed in order to assess the capability of Raman lidars to measure humidity in presence of cirrus clouds, both below and inside the cloud. While air inside the cloud layers is observed to be always under-saturated with respect to water, both ice super-saturation and under-saturation conditions are found inside these clouds. Upper tropospheric moistening is observed below the lower cloud layer. The synergic use of the data derived from the ground based Raman Lidar and of spectral radiances measured by the NAST-I Airborne Spectrometer allows the determination of the temporal evolution of the atmospheric cooling/heating rates due to the presence of the cirrus cloud. Lidar measurements beneath the cirrus cloud layer have been interpreted using a 1-D cirrus cloud model with explicit microphysics. The 1-D simulations indicate that sedimentation-moistening has contributed significantly to the moist anomaly, but other mechanisms are also contributing. This result supports the hypothesis that the observed mid-tropospheric humidification is a real feature which is strongly influenced by the sublimation of precipitating ice crystals. Results illustrated in this study demonstrate that Raman lidars, like the one used in this study, can resolve the spatial and temporal scales required for the study of cirrus cloud microphysical processes and appear sensitive enough to reveal and quantify upper tropospheric humidification associated with cirrus cloud sublimation.

  1. UV Raman lidar measurements of relative humidity for the characterization of cirrus cloud microphysical properties

    NASA Astrophysics Data System (ADS)

    di Girolamo, P.; Summa, D.; Lin, R.-F.; Maestri, T.; Rizzi, R.; Masiello, G.

    2009-07-01

    Raman lidar measurements performed in Potenza by the Raman lidar system BASIL in the presence of cirrus clouds are discussed. Measurements were performed on 6 September 2004 in the frame of Italian phase of the EAQUATE Experiment. The major feature of BASIL is represented by its capability to perform high-resolution and accurate measurements of atmospheric temperature and water vapour, and consequently relative humidity, both in daytime and night-time, based on the application of the rotational and vibrational Raman lidar techniques in the UV. BASIL is also capable to provide measurements of the particle backscatter and extinction coefficient, and consequently lidar ratio (at the time of these measurements only at one wavelength), which are fundamental to infer geometrical and microphysical properties of clouds. A case study is discussed in order to assess the capability of Raman lidars to measure humidity in presence of cirrus clouds, both below and inside the cloud. While air inside the cloud layers is observed to be always under-saturated with respect to water, both ice super-saturation and under-saturation conditions are found inside these clouds. Upper tropospheric moistening is observed below the lower cloud layer. The synergic use of the data derived from the ground based Raman Lidar and of spectral radiances measured by the NAST-I Airborne Spectrometer allows to determine the temporal evolution of the atmospheric cooling/heating rates due to the presence of the cirrus cloud anvil. Lidar measurements beneath the cirrus cloud layer have been interpreted using a 1-D cirrus cloud model with explicit microphysics. The 1-D simulations indicates that sedimentation-moistening has contributed significantly to the moist anomaly, but other mechanisms are also contributing. This result supports the hypothesis that the observed mid-tropospheric humidification is a real feature which is strongly influenced by the sublimation of precipitating ice crystals. Results illustrated in this study demonstrate that Raman lidars, like the one used in this study, can resolve the spatial and temporal scales required for the study of cirrus cloud microphysical processes and appears sensitive enough to reveal and quantify upper tropospheric humidification associated with cirrus cloud sublimation.

  2. Influence of inland aerosol loading on the monsoon over Indian subcontinent

    NASA Astrophysics Data System (ADS)

    Satyanarayana, M.; Krishnakumar, V.; Mahadevan Pillai, V. P.; Radhakrishnan, S. R.; Raghunath, K.

    2008-12-01

    The monsoon water cycle is the lifeline to over 60% of the world's population. The study on the behavioral change of Indian monsoon due to aerosol loading will help for the better understanding of Indian Monsoon. Aerosol system influences the atmosphere in two ways; it affects directly the radiation budget and indirectly provides condensation nuclei required for the clouds. The precipitation of the clouds in the monsoon season depends on the microphysical properties of the clouds. The effect of aerosol on cirrus clouds is being looked into through this work as an effort to study the role of aerosol on Indian Monsoon. The microphysical properties of high altitude clouds were obtained from the ground based lidar experiments at a low latitude station in the Indian subcontinent. Measurements during the Indian monsoon period from the inland station National Atmospheric Research Laboratory (NARL) Gadanki (13.5_ N, 79.2_ E), Tirupati, India were used for the investigation. The depolarization characteristics of the cirrus clouds were measured and the correlation between the depolarization and the precipitation characteristics were studied. The results obtained over a period of one year from January 1998 to December 1998 were presented.

  3. Cloud, Aerosol, and Volcanic Ash Retrievals Using ASTR and SLSTR with ORAC

    NASA Astrophysics Data System (ADS)

    McGarragh, Gregory; Poulsen, Caroline; Povey, Adam; Thomas, Gareth; Christensen, Matt; Sus, Oliver; Schlundt, Cornelia; Stapelberg, Stefan; Stengel, Martin; Grainger, Don

    2015-12-01

    The Optimal Retrieval of Aerosol and Cloud (ORAC) is a generalized optimal estimation system that retrieves cloud, aerosol and volcanic ash parameters using satellite imager measurements in the visible to infrared. Use of the same algorithm for different sensors and parameters leads to consistency that facilitates inter-comparison and interaction studies. ORAC currently supports ATSR, AVHRR, MODIS and SEVIRI. In this proceeding we discuss the ORAC retrieval algorithm applied to ATSR data including the retrieval methodology, the forward model, uncertainty characterization and discrimination/classification techniques. Application of ORAC to SLSTR data is discussed including the additional features that SLSTR provides relative to the ATSR heritage. The ORAC level 2 and level 3 results are discussed and an application of level 3 results to the study of cloud/aerosol interactions is presented.

  4. How do changes in warm-phase microphysics affect deep convective clouds?

    NASA Astrophysics Data System (ADS)

    Chen, Qian; Koren, Ilan; Altaratz, Orit; Heiblum, Reuven H.; Dagan, Guy; Pinto, Lital

    2017-08-01

    Understanding aerosol effects on deep convective clouds and the derived effects on the radiation budget and rain patterns can largely contribute to estimations of climate uncertainties. The challenge is difficult in part because key microphysical processes in the mixed and cold phases are still not well understood. For deep convective clouds with a warm base, understanding aerosol effects on the warm processes is extremely important as they set the initial and boundary conditions for the cold processes. Therefore, the focus of this study is the warm phase, which can be better resolved. The main question is: How do aerosol-derived changes in the warm phase affect the properties of deep convective cloud systems? To explore this question, we used a weather research and forecasting (WRF) model with spectral bin microphysics to simulate a deep convective cloud system over the Marshall Islands during the Kwajalein Experiment (KWAJEX). The model results were validated against observations, showing similarities in the vertical profile of radar reflectivity and the surface rain rate. Simulations with larger aerosol loading resulted in a larger total cloud mass, a larger cloud fraction in the upper levels, and a larger frequency of strong updrafts and rain rates. Enlarged mass both below and above the zero temperature level (ZTL) contributed to the increase in cloud total mass (water and ice) in the polluted runs. Increased condensation efficiency of cloud droplets governed the gain in mass below the ZTL, while both enhanced condensational and depositional growth led to increased mass above it. The enhanced mass loading above the ZTL acted to reduce the cloud buoyancy, while the thermal buoyancy (driven by the enhanced latent heat release) increased in the polluted runs. The overall effect showed an increased upward transport (across the ZTL) of liquid water driven by both larger updrafts and larger droplet mobility. These aerosol effects were reflected in the larger ratio between the masses located above and below the ZTL in the polluted runs. When comparing the net mass flux crossing the ZTL in the clean and polluted runs, the difference was small. However, when comparing the upward and downward fluxes separately, the increase in aerosol concentration was seen to dramatically increase the fluxes in both directions, indicating the aerosol amplification effect of the convection and the affected cloud system properties, such as cloud fraction and rain rate.

  5. The EOS CERES Global Cloud Mask

    NASA Technical Reports Server (NTRS)

    Berendes, T. A.; Welch, R. M.; Trepte, Q.; Schaaf, C.; Baum, B. A.

    1996-01-01

    To detect long-term climate trends, it is essential to produce long-term and consistent data sets from a variety of different satellite platforms. With current global cloud climatology data sets, such as the International Satellite Cloud Climatology Experiment (ISCCP) or CLAVR (Clouds from Advanced Very High Resolution Radiometer), one of the first processing steps is to determine whether an imager pixel is obstructed between the satellite and the surface, i.e., determine a cloud 'mask.' A cloud mask is essential to studies monitoring changes over ocean, land, or snow-covered surfaces. As part of the Earth Observing System (EOS) program, a series of platforms will be flown beginning in 1997 with the Tropical Rainfall Measurement Mission (TRMM) and subsequently the EOS-AM and EOS-PM platforms in following years. The cloud imager on TRMM is the Visible/Infrared Sensor (VIRS), while the Moderate Resolution Imaging Spectroradiometer (MODIS) is the imager on the EOS platforms. To be useful for long term studies, a cloud masking algorithm should produce consistent results between existing (AVHRR) data, and future VIRS and MODIS data. The present work outlines both existing and proposed approaches to detecting cloud using multispectral narrowband radiance data. Clouds generally are characterized by higher albedos and lower temperatures than the underlying surface. However, there are numerous conditions when this characterization is inappropriate, most notably over snow and ice of the cloud types, cirrus, stratocumulus and cumulus are the most difficult to detect. Other problems arise when analyzing data from sun-glint areas over oceans or lakes over deserts or over regions containing numerous fires and smoke. The cloud mask effort builds upon operational experience of several groups that will now be discussed.

  6. Studying the influence of temperature and pressure on microphysical properties of mixed-phase clouds using airborne measurements

    NASA Astrophysics Data System (ADS)

    Andreea, Boscornea; Sabina, Stefan; Sorin-Nicolae, Vajaiac; Mihai, Cimpuieru

    2015-04-01

    One cloud type for which the formation and evolution process is not well-understood is the mixed-phase type. In general mixed-phase clouds consist of liquid droplets and ice crystals. The temperature interval within both liquid droplets and ice crystals can potentially coexist is limited to 0 °C and - 40 °C. Mixed-phase clouds account for 20% to 30% of the global cloud coverage. The need to understand the microphysical characteristics of mixed-phase clouds to improve numerical forecast modeling and radiative transfer calculation is of major interest in the atmospheric community. In the past, studies of cloud phase composition have been significantly limited by a lack of aircraft instruments capable of discriminating between the ice and liquid phase for a wide range of particle sizes. Presently, in situ airborne measurements provide the most accurate information about cloud microphysical characteristics. This information can be used for verification of both numerical models and cloud remote-sensing techniques. The knowledge of the temperature and pressure variation during the airborne measurements is crucial in order to understand their influence on the cloud dynamics and also their role in the cloud formation processes like accretion and coalescence. Therefore, in this paper is presented a comprehensive study of cloud microphysical properties in mixed-phase clouds in focus of the influence of temperature and pressure variation on both, cloud dynamics and the cloud formation processes, using measurements performed with the ATMOSLAB - Airborne Laboratory for Environmental Atmospheric Research in property of the National Institute for Aerospace Research "Elie Carafoli" (INCAS). The airborne laboratory equipped for special research missions is based on a Hawker Beechcraft - King Air C90 GTx aircraft and is equipped with a sensors system CAPS - Cloud, Aerosol and Precipitation Spectrometer (30 bins, 0.51-50 µm) and a HAWKEYE cloud probe. The analyzed data in this work is acquired during 2 flight hours on the 23th of October 2014 in mixed clouds formations over Romania ( Craiova, Lat 44°19', Lon 23°48' ). The temperature variation during the cloud sounding was between -14 °C and -2 °C, with a maximum altitude in the cloud of 4863 m and a minimum altitude of 3353 m. In total 6 horizontal lines of 10 minutes each where performed recording ice crystal number concentrations (using the CIP - Cloud Imaging Probe) between 10 to 20 particles/cm3 outside the cloud layer and over 100 particles/cm3 inside the cloud layer and a number concentration of small droplets, aerosol and small ice crystals (using the CAS - Cloud Aerosol Spectrometer) between 150 particles/cm3 outside the cloud layer and 1600 particles/cm3 inside the cloud layer, this values confirms also the presence of IN (ice nuclei) in the atmosphere between the cloud layers. The results in respect with size distribution of cloud's particles and LWC show to be controlled by the temperature and pressure variations.

  7. Evolution of Precipitation Particle Size Distributions within MC3E Systems and its Impact on Aerosol-Cloud-Precipitation Interactions: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kollias, Pavlos

    2017-08-08

    This is a multi-institutional, collaborative project using observations and modeling to study the evolution (e.g. formation and growth) of hydrometeors in continental convective clouds. Our contribution was in data analysis for the generation of high-value cloud and precipitation products and derive cloud statistics for model validation. There are two areas in data analysis that we contributed: i) the development of novel, state-of-the-art dual-wavelength radar algorithms for the retrieval of cloud microphysical properties and ii) the evaluation of large domain, high-resolution models using comprehensive multi-sensor observations. Our research group developed statistical summaries from numerous sensors and developed retrievals of vertical airmore » motion in deep convection.« less

  8. Development of the Large-Scale Forcing Data to Support MC3E Cloud Modeling Studies

    NASA Astrophysics Data System (ADS)

    Xie, S.; Zhang, Y.

    2011-12-01

    The large-scale forcing fields (e.g., vertical velocity and advective tendencies) are required to run single-column and cloud-resolving models (SCMs/CRMs), which are the two key modeling frameworks widely used to link field data to climate model developments. In this study, we use an advanced objective analysis approach to derive the required forcing data from the soundings collected by the Midlatitude Continental Convective Cloud Experiment (MC3E) in support of its cloud modeling studies. MC3E is the latest major field campaign conducted during the period 22 April 2011 to 06 June 2011 in south-central Oklahoma through a joint effort between the DOE ARM program and the NASA Global Precipitation Measurement Program. One of its primary goals is to provide a comprehensive dataset that can be used to describe the large-scale environment of convective cloud systems and evaluate model cumulus parameterizations. The objective analysis used in this study is the constrained variational analysis method. A unique feature of this approach is the use of domain-averaged surface and top-of-the atmosphere (TOA) observations (e.g., precipitation and radiative and turbulent fluxes) as constraints to adjust atmospheric state variables from soundings by the smallest possible amount to conserve column-integrated mass, moisture, and static energy so that the final analysis data is dynamically and thermodynamically consistent. To address potential uncertainties in the surface observations, an ensemble forcing dataset will be developed. Multi-scale forcing will be also created for simulating various scale convective systems. At the meeting, we will provide more details about the forcing development and present some preliminary analysis of the characteristics of the large-scale forcing structures for several selected convective systems observed during MC3E.

  9. Confidentiality Protection of Digital Health Records in Cloud Computing.

    PubMed

    Chen, Shyh-Wei; Chiang, Dai Lun; Liu, Chia-Hui; Chen, Tzer-Shyong; Lai, Feipei; Wang, Huihui; Wei, Wei

    2016-05-01

    Electronic medical records containing confidential information were uploaded to the cloud. The cloud allows medical crews to access and manage the data and integration of medical records easily. This data system provides relevant information to medical personnel and facilitates and improve electronic medical record management and data transmission. A structure of cloud-based and patient-centered personal health record (PHR) is proposed in this study. This technique helps patients to manage their health information, such as appointment date with doctor, health reports, and a completed understanding of their own health conditions. It will create patients a positive attitudes to maintain the health. The patients make decision on their own for those whom has access to their records over a specific span of time specified by the patients. Storing data in the cloud environment can reduce costs and enhance the share of information, but the potential threat of information security should be taken into consideration. This study is proposing the cloud-based secure transmission mechanism is suitable for multiple users (like nurse aides, patients, and family members).

  10. Influence of carbon dioxide clouds on early martian climate.

    PubMed

    Mischna, M A; Kasting, J F; Pavlov, A; Freedman, R

    2000-06-01

    Recent studies have shown that clouds made of carbon dioxide ice may have warmed the surface of early Mars by reflecting not only incoming solar radiation but upwelling IR radiation as well. However, these studies have not treated scattering self-consistently in the thermal IR. Our own calculations, which treat IR scattering properly, confirm these earlier calculations but show that CO2 clouds can also cool the surface, especially if they are low and optically thick. Estimating the actual effect of CO2 clouds on early martian climate will require three-dimensional models in which cloud location, height, and optical depth, as well as surface temperature and pressure, are determined self-consistently. Our calculations further confirm that CO2 clouds should extend the outer boundary of the habitable zone around a star but that there is still a finite limit beyond which above-freezing surface temperatures cannot be maintained by a CO2-H2O atmosphere. For our own Solar System, the absolute outer edge of the habitable zone is at approximately 2.4 AU.

  11. Interstellar C2, CH, and CN in translucent molecular clouds

    NASA Technical Reports Server (NTRS)

    Black, John H.; Van Dishoeck, Ewine F.

    1989-01-01

    Optical absorption-line techniques have been applied to the study of a number of translucent molecular clouds in which the total column densities are large enough that substantial molecular abundances can be maintained. Results are presented for a survey of absorption lines of interstellar C2, CH, and CN. Detections of CN through the A 2Pi-X 2Sigma(+) (1,O) and (2,O) bands of the red system are reported and compared with observations of the violet system for one line of sight. The population distributions in C2 provide diagnostic information on temperature and density. The measured column densities of the three species can be used to test details of the theory of molecule formation in clouds where photoprocesses still play a significant role. The C2 and CH column densities are strongly correlated with each other and probably also with the H2 column density. In contrast, the CN column densities are found to vary greatly from cloud to cloud. The observations are discussed with reference to detailed theoretical models.

  12. Offline GCSS Intercomparison of Cloud-Radiation Interaction and Surface Fluxes

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Johnson, D.; Krueger, S.; Zulauf, M.; Donner, L.; Seman, C.; Petch, J.; Gregory, J.

    2004-01-01

    Simulations of deep tropical clouds by both cloud-resolving models (CRMs) and single-column models (SCMs) in the GEWEX Cloud System Study (GCSS) Working Group 4 (WG4; Precipitating Convective Cloud Systems), Case 2 (19-27 December 1992, TOGA-COARE IFA) have produced large differences in the mean heating and moistening rates (-1 to -5 K and -2 to 2 grams per kilogram respectively). Since the large-scale advective temperature and moisture "forcing" are prescribed for this case, a closer examination of two of the remaining external types of "forcing", namely radiative heating and air/sea hear and moisture transfer, are warranted. This paper examines the current radiation and surface flux of parameterizations used in the cloud models participating in the GCSS WG4, be executing the models "offline" for one time step (12 s) for a prescribed atmospheric state, then examining the surface and radiation fluxes from each model. The dynamic, thermodynamic, and microphysical fluids are provided by the GCE-derived model output for Case 2 during a period of very active deep convection (westerly wind burst). The surface and radiation fluxes produced from the models are then divided into prescribed convective, stratiform, and clear regions in order to examine the role that clouds play in the flux parameterizations. The results suggest that the differences between the models are attributed more to the surface flux parameterizations than the radiation schemes.

  13. A Novel Cost Based Model for Energy Consumption in Cloud Computing

    PubMed Central

    Horri, A.; Dastghaibyfard, Gh.

    2015-01-01

    Cloud data centers consume enormous amounts of electrical energy. To support green cloud computing, providers also need to minimize cloud infrastructure energy consumption while conducting the QoS. In this study, for cloud environments an energy consumption model is proposed for time-shared policy in virtualization layer. The cost and energy usage of time-shared policy were modeled in the CloudSim simulator based upon the results obtained from the real system and then proposed model was evaluated by different scenarios. In the proposed model, the cache interference costs were considered. These costs were based upon the size of data. The proposed model was implemented in the CloudSim simulator and the related simulation results indicate that the energy consumption may be considerable and that it can vary with different parameters such as the quantum parameter, data size, and the number of VMs on a host. Measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment. Also, measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment. PMID:25705716

  14. Determining Cloud Thermodynamic Phase from Micropulse Lidar Network Data

    NASA Technical Reports Server (NTRS)

    Lewis, Jasper R.; Campbell, James; Lolli, Simone; Tan, Ivy; Welton, Ellsworth J.

    2017-01-01

    Determining cloud thermodynamic phase is a critical factor in studies of Earth's radiation budget. Here we use observations from the NASA Micro Pulse Lidar Network (MPLNET) and thermodynamic profiles from the Goddard Earth Observing System, version 5 (GEOS-5) to distinguish liquid water, mixed-phase, and ice water clouds. The MPLNET provides sparse global, autonomous, and continuous measurements of clouds and aerosols which have been used in a number of scientific investigations to date. The use of a standardized instrument and a common suite of data processing algorithms with thorough uncertainty characterization allows for straightforward comparisons between sites. Lidars with polarization capabilities have recently been incorporated into the MPLNET project which allows, for the first time, the ability to infer a cloud thermodynamic phase. This presentation will look specifically at the occurrence of ice and mixed phase clouds in the temperature region of -10 C to -40 C for different climatological regions and seasons. We compare MPLNET occurrences of mixed-phase clouds to an historical climatology based on observations from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) spacecraft.

  15. The Effect of Asian Dust Aerosols on Cloud Properties and Radiative Forcing from MODIS and CERES

    NASA Technical Reports Server (NTRS)

    Huang, Jianping; Minnis, Patrick; Lin, Bing; Wang, Tianhe; Yi, Yuhong; Hu, Yongxiang; Sun-Mack, Sunny; Ayers, Kirk

    2005-01-01

    The effects of dust storms on cloud properties and radiative forcing are analyzed over northwestern China from April 2001 to June 2004 using data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) instruments on the Aqua and Terra satellites. On average, ice cloud effective particle diameter, optical depth and ice water path of the cirrus clouds under dust polluted conditions are 11%, 32.8%, and 42% less, respectively, than those derived from ice clouds in dust-free atmospheric environments. The humidity differences are larger in the dusty region than in the dust-free region, and may be caused by removal of moisture by wet dust precipitation. Due to changes in cloud microphysics, the instantaneous net radiative forcing is reduced from -71.2 W/m2 for dust contaminated clouds to -182.7 W/m2 for dust-free clouds. The reduced cooling effects of dusts may lead to a net warming of 1 W/m2, which, if confirmed, would be the strongest aerosol forcing during later winter and early spring dust storm seasons over the studied region.

  16. A novel cost based model for energy consumption in cloud computing.

    PubMed

    Horri, A; Dastghaibyfard, Gh

    2015-01-01

    Cloud data centers consume enormous amounts of electrical energy. To support green cloud computing, providers also need to minimize cloud infrastructure energy consumption while conducting the QoS. In this study, for cloud environments an energy consumption model is proposed for time-shared policy in virtualization layer. The cost and energy usage of time-shared policy were modeled in the CloudSim simulator based upon the results obtained from the real system and then proposed model was evaluated by different scenarios. In the proposed model, the cache interference costs were considered. These costs were based upon the size of data. The proposed model was implemented in the CloudSim simulator and the related simulation results indicate that the energy consumption may be considerable and that it can vary with different parameters such as the quantum parameter, data size, and the number of VMs on a host. Measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment. Also, measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment.

  17. Determining cloud thermodynamic phase from Micropulse Lidar Network data

    NASA Astrophysics Data System (ADS)

    Lewis, J. R.; Campbell, J. R.; Lolli, S.; Tan, I.; Welton, E. J.

    2017-12-01

    Determining cloud thermodynamic phase is a critical factor in studies of Earth's radiation budget. Here we use observations from the NASA Micropulse Lidar Network (MPLNET) and thermodynamic profiles from the Goddard Earth Observing System, version 5 (GEOS-5) to distinguish liquid water, mixed-phase, and ice water clouds. The MPLNET provides sparse global, autonomous, and continuous measurements of clouds and aerosols which have been used in a number of scientific investigations to date. The use of a standardized instrument and a common suite of data processing algorithms with thorough uncertainty characterization allows for straightforward comparisons between sites. Lidars with polarization capabilities have recently been incorporated into the MPLNET project which allows, for the first time, the ability to infer a cloud thermodynamic phase. This presentation will look specifically at the occurrence of ice and mixed phase clouds in the temperature region of 0 °C to -40 °C for different climatological regions and seasons. We compare MPLNET occurrences of mixed-phase clouds to an historical climatology based on observations from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) spacecraft.

  18. Detecting Aerosol Effect on Deep Precipitation Systems: A Modeling Study

    NASA Astrophysics Data System (ADS)

    Li, X.; Tao, W.; Khain, A.; Kummerow, C.; Simpson, J.

    2006-05-01

    Urban cities produce high concentrations of anthropogenic aerosols. These aerosols are generally hygroscopic and may serve as Cloud Condensation Nuclei (CCN). This study focuses on the aerosol indirect effect on the deep convective systems over the land. These deep convective systems contribute to the majority of the summer time rainfall and are important for local hydrological cycle and weather forecast. In a companion presentation (Tao et al.) in this session, the mechanisms of aerosol-cloud-precipitation interactions in deep convective systems are explored using cloud-resolving model simulations. Here these model results will be analyzed to provide guidance to the detection of the impact of aerosols as CCN on summer time, deep convections using the currently available observation methods. The two-dimensional Goddard Cumulus Ensemble (GCE) model with an explicit microphysical scheme has been used to simulate the aerosol effect on deep precipitation systems. This model simulates the size distributions of aerosol particles, as well as cloud, rain, ice crystals, snow, graupel, and hail explicitly. Two case studies are analyzed: a midlatitude summer time squall in Oklahoma, and a sea breeze convection in Florida. It is shown that increasing the CCN number concentration does not affect the rainfall structure and rain duration in these two cases. The total surface rainfall rate is reduced in the squall case, but remains essentially the same in the sea breeze case. For the long-lived squall system with a significant portion of the stratiform rain, the surface rainfall PDF (probability density function) distribution is more sensitive to the change of the initial CCN concentrations compared with the total surface rainfall. The possibility of detecting the aerosol indirect effect in deep precipitation systems from the space is also studied in this presentation. The hydrometeors fields from the GCE model simulations are used as inputs to a microwave radiative transfer model. It is found that Tb at higher frequencies (35 GHz and 85 GHz) are quite sensitive to the CCN concentration variations. This is because the higher frequency brightness temperatures are sensitive to large, ice-phase particles. In a clean environment, the deep convections produce larger cloud particles. When these cloud particles are transported above the freezing level by strong updrafts, they form larger precipitable ice particles (snow, graupel and hail) compared with dirty environment simulations. These larger ice particles result in significantly colder brightness temperatures at high frequencies in the clean scenario simulations.

  19. Characteristics of the fractional cloud cover and its altitude distribution over the Indian Ocean region derived from NOAA14-AVHRR

    NASA Astrophysics Data System (ADS)

    Suresh Raju, C.; Rajeev, K.; Parameswaran, K.

    The climatic impact of clouds and their role in energy and radiation budget of earth-atmosphere system largely depends on the cloud properties and its altitude of occurrence. The quantitative estimates of spatio-temporal variations of cloud fraction and cloud properties are limited over the tropical Indian Oceanic region. Cloudiness and its radiative properties over this region is significantly different from other tropical regions indicating the need for their detailed studies. This has an important role in the Indian summer monsoon which is also a part of the global climate system. Daily, monthly, seasonal and yearly mean frequency of occurrence of total and high altitude clouds are derived from the brightness temperature (TB) obtained from NOAA14-AVHRR data during the period of 1996-1999, and their spatio-temporal variations are investigated. The inversion algorithm used here is similar to the CLIVAR algorithm applied by ISCCP. All clouds with TB quad < 250 K are classified as high clouds, as their altitude of occurrence will be above ˜ 6 km. The clouds above ˜ 10 km (with TB<220K) are also classified separately to study the deep convective events. The geographical distribution of monthly, seasonal and annual mean frequency of occurrence of total cloud (Ftot) and high cloud (Fh) are remarkably consistent from year to year, though the absolute magnitude of the frequency of occurrence can vary by as much as 30%. The highest annual variations in Ftot and Fh are observed near the eastern parts of Bay of Bengal. The average amplitude of the annual cycle in Ftot in this region is ˜ 40%. During the south-west monsoon season, the monthly mean of Ftot shows very large spatial gradients in the western Arabian Sea. In July, the Ftot varies from less than 20% near Arabian coastal regions to more than 75% at a location 10 degrees east of the Arabian coast. Similar gradients in Ftot are also observed between the equator and 10 S. One of the very striking features in Ftot during this period is the minimum cloudiness observed around Srilanka during the Indian summer monsoon season, which is more discernable in high clouds. The cloud occurrence over the Indian subcontinent is less than 20% during the period of December to March. The presence of double inter tropical convergence zone (ITCZ), characterized by large cloud bands that are confined in latitude and elongated in longitude, are observed over Indian Ocean during November to March period, though the frequency of occurrence of such events is very small.

  20. Quantifying the effect of aerosol on vertical velocity and effective terminal velocity in warm convective clouds

    NASA Astrophysics Data System (ADS)

    Dagan, Guy; Koren, Ilan; Altaratz, Orit

    2018-05-01

    Better representation of cloud-aerosol interactions is crucial for an improved understanding of natural and anthropogenic effects on climate. Recent studies have shown that the overall aerosol effect on warm convective clouds is non-monotonic. Here, we reduce the system's dimensions to its center of gravity (COG), enabling distillation and simplification of the overall trend and its temporal evolution. Within the COG framework, we show that the aerosol effects are nicely reflected by the interplay of the system's characteristic vertical velocities, namely the updraft (w) and the effective terminal velocity (η). The system's vertical velocities can be regarded as a sensitive measure for the evolution of the overall trends with time. Using a bin-microphysics cloud-scale model, we analyze and follow the trends of the aerosol effect on the magnitude and timing of w and η, and therefore the overall vertical COG velocity. Large eddy simulation (LES) model runs are used to upscale the analyzed trends to the cloud-field scale and study how the aerosol effects on the temporal evolution of the field's thermodynamic properties are reflected by the interplay between the two velocities. Our results suggest that aerosol effects on air vertical motion and droplet mobility imply an effect on the way in which water is distributed along the atmospheric column. Moreover, the interplay between w and η predicts the overall trend of the field's thermodynamic instability. These factors have an important effect on the local energy balance.

  1. The Surface Energy Budget and Precipitation Efficiency for Convective Systems During TOGA, COARE, GATE, SCSMEX and ARM: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Shie, C.-L.; Johnson, D; Simpson, J.; Starr, David OC. (Technical Monitor)

    2002-01-01

    A two-dimensional version of the Goddard Cumulus Ensemble (GCE) Model is used to simulate convective systems that developed in various geographic locations. Observed large-scale advective tendencies for potential temperature, water vapor mixing ratio, and horizontal momentum derived from field campaigns are used as the main forcing. By examining the surface energy budgets, the model results show that the two largest terms are net condensation (heating/drying) and imposed large-scale forcing (cooling/moistening) for tropical oceanic cases. These two terms arc opposite in sign, however. The contributions by net radiation and latent heat flux to the net condensation vary in these tropical cases, however. For cloud systems that developed over the South China Sea and eastern Atlantic, net radiation (cooling) accounts for about 20% or more of the net condensation. However, short-wave heating and long-wave cooling are in balance with each other for cloud systems over the West Pacific region such that the net radiation is very small. This is due to the thick anvil clouds simulated in the cloud systems over the Pacific region. Large-scale cooling exceeds large-scale moistening in the Pacific and Atlantic cases. For cloud systems over the South China Sea, however, there is more large-scale moistening than cooling even though the cloud systems developed in a very moist environment. though For three cloud systems that developed over a mid-latitude continent, the net radiation and sensible and latent heat fluxes play a much more important role. This means the accurate measurement of surface fluxes and radiation is crucial for simulating these mid-latitude cases.

  2. Evaluating and improving cloud phase in the Community Atmosphere Model version 5 using spaceborne lidar observations

    NASA Astrophysics Data System (ADS)

    Kay, Jennifer E.; Bourdages, Line; Miller, Nathaniel B.; Morrison, Ariel; Yettella, Vineel; Chepfer, Helene; Eaton, Brian

    2016-04-01

    Spaceborne lidar observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite are used to evaluate cloud amount and cloud phase in the Community Atmosphere Model version 5 (CAM5), the atmospheric component of a widely used state-of-the-art global coupled climate model (Community Earth System Model). By embedding a lidar simulator within CAM5, the idiosyncrasies of spaceborne lidar cloud detection and phase assignment are replicated. As a result, this study makes scale-aware and definition-aware comparisons between model-simulated and observed cloud amount and cloud phase. In the global mean, CAM5 has insufficient liquid cloud and excessive ice cloud when compared to CALIPSO observations. Over the ice-covered Arctic Ocean, CAM5 has insufficient liquid cloud in all seasons. Having important implications for projections of future sea level rise, a liquid cloud deficit contributes to a cold bias of 2-3°C for summer daily maximum near-surface air temperatures at Summit, Greenland. Over the midlatitude storm tracks, CAM5 has excessive ice cloud and insufficient liquid cloud. Storm track cloud phase biases in CAM5 maximize over the Southern Ocean, which also has larger-than-observed seasonal variations in cloud phase. Physical parameter modifications reduce the Southern Ocean cloud phase and shortwave radiation biases in CAM5 and illustrate the power of the CALIPSO observations as an observational constraint. The results also highlight the importance of using a regime-based, as opposed to a geographic-based, model evaluation approach. More generally, the results demonstrate the importance and value of simulator-enabled comparisons of cloud phase in models used for future climate projection.

  3. The CREW intercomparison of SEVIRI cloud retrievals

    NASA Astrophysics Data System (ADS)

    Hamann, U.; Walther, A.; Bennartz, R.; Thoss, A.; Meirink, J. M.; Roebeling, R.

    2012-12-01

    About 70% of the earth's surface is covered with clouds. They strongly influence the radiation balance and the water cycle of the earth. Hence the detailed monitoring of cloud properties - such as cloud fraction, cloud top temperature, cloud particle size, and cloud water path - is important to understand the role of clouds in the weather and the climate system. The remote sensing with passive sensors is an essential mean for the global observation of the cloud parameters, but is nevertheless challenging. This presentation focuses on the inter-comparison and validation of cloud physical properties retrievals from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard METEOSAT. For this study we use retrievals from 12 state-of-art algorithms (Eumetsat, KNMI, NASA Langley, NASA Goddard, University Madison/Wisconsin, DWD, DLR, Meteo-France, KMI, FU Berlin, UK MetOffice) that are made available through the common database of the CREW (Cloud Retrieval Evaluation Working) group. Cloud detection, cloud top phase, height, and temperature, as well as optical properties and water path are validated with CLOUDSAT, CALIPSO, MISR, and AMSR-E measurements. Special emphasis is given to challenging retrieval conditions. Semi-transparent clouds over the earth's surface or another cloud layer modify the measured brightness temperature and increase the retrieval uncertainty. The consideration of the three-dimensional radiative effects is especially important for large viewing angles and broken cloud fields. Aerosols might be misclassified as cloud and may increase the retrieval uncertainty, too. Due to the availability of the high number of sophisticated retrieval datasets, the advantages of different retrieval approaches can be examined and suggestions for future retrieval developments can be made. We like to thank Eumetsat for sponsoring the CREW project including this work.nstitutes that participate in the CREW project.

  4. An Initial Study of the Fundamentals of Ice Crystal Icing Physics in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Struk, Peter; Bartkus, Tadas; Tsao, Jen-Ching; Bencic, Timothy; King, Michael; Ratvasky, Thomas; Van Zante, Judith

    2017-01-01

    This presentation shows results from an initial study of the fundamental physics of ice-crystal ice accretion using the NASA Propulsion Systems Lab (PSL). Ice accretion due to the ingestion of ice-crystals is being attributed to numerous jet-engine power-loss events. The NASA PSL is an altitude jet-engine test facility which has recently added a capability to inject ice particles into the flow. NASA is evaluating whether this facility, in addition to full-engine and motor-driven-rig tests, can be used for more fundamental ice-accretion studies that simulate the different mixed-phase icing conditions along the core flow passage of a turbo-fan engine compressor. The data from such fundamental accretion tests will be used to help develop and validate models of the accretion process. The present study utilized a NACA0012 airfoil. The mixed-phase conditions were generated by partially freezing the liquid-water droplets ejected from the spray bars. This presentation shows data regarding (1) the freeze out characteristics of the cloud, (2) changes in aerothermal conditions due to the presence of the cloud, and (3) the ice accretion characteristics observed on the airfoil model. The primary variable in this test was the PSL plenum humidity which was systematically varied for two duct-exit-plane velocities (85 and 135 ms) as well as two particle size clouds (15 and 50 m MVDi). The observed clouds ranged from fully glaciated to fully liquid, where the liquid clouds were at least partially supercooled. The air total temperature decreased at the test section when the cloud was activated due to evaporation. The ice accretions observed ranged from sharp arrow-like accretions, characteristic of ice-crystal erosion, to cases with double-horn shapes, characteristic of supercooled water accretions.

  5. An Initial Study of the Fundamentals of Ice Crystal Icing Physics in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Ratvasky, Thomas P.; Bencic, Timothy J.; Van Zante, Judith F.; King, Michael C.; Tsao, Jen-Ching; Bartkus, Tadas P.

    2017-01-01

    This paper presents results from an initial study of the fundamental physics of ice-crystal ice accretion using the NASA Propulsion Systems Lab (PSL). Ice accretion due to the ingestion of ice-crystals is being attributed to numerous jet-engine power-loss events. The NASA PSL is an altitude jet-engine test facility which has recently added a capability to inject ice particles into the flow. NASA is evaluating whether this facility, in addition to full-engine and motor-driven-rig tests, can be used for more fundamental ice-accretion studies that simulate the different mixed-phase icing conditions along the core flow passage of a turbo-fan engine compressor. The data from such fundamental accretion tests will be used to help develop and validate models of the accretion process. The present study utilized a NACA0012 airfoil. The mixed-phase conditions were generated by partially freezing the liquid-water droplets ejected from the spray bars. This paper presents data regarding (1) the freeze out characteristics of the cloud, (2) changes in aerothermal conditions due to the presence of the cloud, and (3) the ice accretion characteristics observed on the airfoil model. The primary variable in this test was the PSL plenum humidity which was systematically varied for two duct-exit-plane velocities (85 and 135 ms) as well as two particle size clouds (15 and 50 m MVDi). The observed clouds ranged from fully glaciated to fully liquid, where the liquid clouds were at least partially supercooled. The air total temperature decreased at the test section when the cloud was activated due to evaporation. The ice accretions observed ranged from sharp arrow-like accretions, characteristic of ice-crystal erosion, to cases with double-horn shapes, characteristic of supercooled water accretions.

  6. A Diagnostic PDF Cloud Scheme to Improve Subtropical Low Clouds in NCAR Community Atmosphere Model (CAM5)

    NASA Astrophysics Data System (ADS)

    Qin, Yi; Lin, Yanluan; Xu, Shiming; Ma, Hsi-Yen; Xie, Shaocheng

    2018-02-01

    Low clouds strongly impact the radiation budget of the climate system, but their simulation in most GCMs has remained a challenge, especially over the subtropical stratocumulus region. Assuming a Gaussian distribution for the subgrid-scale total water and liquid water potential temperature, a new statistical cloud scheme is proposed and tested in NCAR Community Atmospheric Model version 5 (CAM5). The subgrid-scale variance is diagnosed from the turbulent and shallow convective processes in CAM5. The approach is able to maintain the consistency between cloud fraction and cloud condensate and thus alleviates the adjustment needed in the default relative humidity-based cloud fraction scheme. Short-term forecast simulations indicate that low cloud fraction and liquid water content, including their diurnal cycle, are improved due to a proper consideration of subgrid-scale variance over the southeastern Pacific Ocean region. Compared with the default cloud scheme, the new approach produced the mean climate reasonably well with improved shortwave cloud forcing (SWCF) due to more reasonable low cloud fraction and liquid water path over regions with predominant low clouds. Meanwhile, the SWCF bias over the tropical land regions is also alleviated. Furthermore, the simulated marine boundary layer clouds with the new approach extend further offshore and agree better with observations. The new approach is able to obtain the top of atmosphere (TOA) radiation balance with a slightly alleviated double ITCZ problem in preliminary coupled simulations. This study implies that a close coupling of cloud processes with other subgrid-scale physical processes is a promising approach to improve cloud simulations.

  7. multi-dimensional Cloud-aERosol Exploratory Study using RPAS (mCERES): Bottom-up and top-down closure of aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Roberts, Greg; Calmer, Radiance; Sanchez, Kevin; Cayez, Grégoire; Nicoll, Kerianne; Hashimshoni, Eyal; Rosenfeld, Daniel; Ansmann, Albert; Sciare, Jean; Ovadneite, Jurgita; Bronz, Murat; Hattenberger, Gautier; Preissler, Jana; Buehl, Johannes; Ceburnis, Darius; O'Dowd, Colin

    2016-04-01

    Clouds are omnipresent in earth's atmosphere and constitute an important role in regulating the radiative budget of the planet. However, the response of clouds to climate change remains uncertain, in particular, with respect to aerosol-cloud interactions and feedback mechanisms between the biosphere and atmosphere. Aerosol-cloud interactions and their feedbacks are the main themes of the European project FP7 BACCHUS (Impact of Biogenic versus Anthropogenic Emissions on Clouds and Climate: towards a Holistic Understanding). The National Center for Meteorological Research (CNRM-GAME, Toulouse, France) conducted airborne experiments in Cyprus and Ireland in March and August 2015 respectively to link ground-based and satellite observations. Multiple RPAS (remotely piloted aircraft systems) were instrumented for a specific scientific focus to characterize the vertical distribution of aerosol, cloud microphysical properties, radiative fluxes, 3D wind vectors and meteorological state parameters. Flights below and within clouds were coordinated with satellite overpasses to perform 'top-down' closure of cloud micro-physical properties. Measurements of cloud condensation nuclei spectra at the ground-based site have been used to determine cloud microphyical properties using wind vectors and meteorological parameters measured by the RPAS at cloud base. These derived cloud properties have been validated by in-situ RPAS measurements in the cloud and compared to those derived by the Suomi-NPP satellite. In addition, RPAS profiles in Cyprus observed the layers of dust originating from the Arabian Peninsula and the Sahara Desert. These profiles generally show a well-mixed boundary layer and compare well with ground-based LIDAR observations.

  8. D Modeling of Components of a Garden by Using Point Cloud Data

    NASA Astrophysics Data System (ADS)

    Kumazakia, R.; Kunii, Y.

    2016-06-01

    Laser measurement is currently applied to several tasks such as plumbing management, road investigation through mobile mapping systems, and elevation model utilization through airborne LiDAR. Effective laser measurement methods have been well-documented in civil engineering, but few attempts have been made to establish equally effective methods in landscape engineering. By using point cloud data acquired through laser measurement, the aesthetic landscaping of Japanese gardens can be enhanced. This study focuses on simple landscape simulations for pruning and rearranging trees as well as rearranging rocks, lanterns, and other garden features by using point cloud data. However, such simulations lack concreteness. Therefore, this study considers the construction of a library of garden features extracted from point cloud data. The library would serve as a resource for creating new gardens and simulating gardens prior to conducting repairs. Extracted garden features are imported as 3ds Max objects, and realistic 3D models are generated by using a material editor system. As further work toward the publication of a 3D model library, file formats for tree crowns and trunks should be adjusted. Moreover, reducing the size of created models is necessary. Models created using point cloud data are informative because simply shaped garden features such as trees are often seen in the 3D industry.

  9. Cloud evaluation using satellite simulators and cloud changes for global nonhydrostatic simulations with NICAM

    NASA Astrophysics Data System (ADS)

    Satoh, M.; Noda, A. T.; Kodama, C.; Yamada, Y.; Hashino, T.

    2012-12-01

    Global cloud distributions and properties simulated by the global nonhydrostatic model, NICAM (Nonhydrostatic Icosahedral Atmospheric Model), are evaluated and their future changes are discussed. First, we evaluated the simulated cloud properties produced by a case study of the 3.5km mesh experiment of NICAM using the satellite simulator package (the Joint-simulator) with cloud microphysics oriented approach (Hashino et al. 2012). Then, we analyzed future cloud changes using various sets of simulations under the present and the future global warming conditions. The results show that the zonal averaged ice water path (IWP) generally decreases or marginally unchanged in the tropics, while IWP in the extra-tropics increases. The upper cloud fraction increases both in the tropics and in the extra-tropics in general. We further analyzed contributions of cloud systems such as cloud clusters, tropical cyclones (TCs), and storm-tracks to these changes. Probability distribution of the larger cloud clusters decreases, while that of the smaller ones increases, consistent with the decrease in the number of tropical cyclones in the future climate. Average liquid water path (LWP) and IWP associated with each tropical cyclone are diagnosed, and it is found that both the associated LWP and IWP increase under the warmer condition. Even though, since the number of the intensive cloud systems decrease, the average IWP decreases. It should be remarked that the change in TC tracks largely contribute to the change in the horizontal distribution of clouds. The NICAM simulations also show that the storm-tracks shift poleward, and the storms become less frequent and stronger in the extra-tropics, similar to the results of other general circulation models. Both LWP and IWP associated with the storms also increase in the warmer climate in the NICAM simulations. This results in increase in the upper clouds under the warmer climate condition, as described by Miura et al. (2005). References: Hashino, T., Satoh, M., Hagihara, Y., Kubota, T., Matsui, T., Nasuno, T., and Okamoto, H. (2012), Evaluating Global Cloud Distribution and Microphysics from the NICAM against CloudSat and CALIPSO, J. Geophys. Res., submitted. Miura, H., Tomita,H., Nasuno,T., Iga, S., Satoh,M., and Matsuno, T. (2005), A climate sensitivity test using a global cloud resolving model under an aqua planet condition, Geophys. Res. Lett., 32, L19717, doi:10.1029/2005GL023672.

  10. Cloud-ECG for real time ECG monitoring and analysis.

    PubMed

    Xia, Henian; Asif, Irfan; Zhao, Xiaopeng

    2013-06-01

    Recent advances in mobile technology and cloud computing have inspired numerous designs of cloud-based health care services and devices. Within the cloud system, medical data can be collected and transmitted automatically to medical professionals from anywhere and feedback can be returned to patients through the network. In this article, we developed a cloud-based system for clients with mobile devices or web browsers. Specially, we aim to address the issues regarding the usefulness of the ECG data collected from patients themselves. Algorithms for ECG enhancement, ECG quality evaluation and ECG parameters extraction were implemented in the system. The system was demonstrated by a use case, in which ECG data was uploaded to the web server from a mobile phone at a certain frequency and analysis was performed in real time using the server. The system has been proven to be functional, accurate and efficient. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Bootstrapping and Maintaining Trust in the Cloud

    DTIC Science & Technology

    2016-12-01

    proliferation and popularity of infrastructure-as-a- service (IaaS) cloud computing services such as Amazon Web Services and Google Compute Engine means...IaaS trusted computing system: • Secure Bootstrapping – the system should enable the tenant to securely install an initial root secret into each cloud ...elastically instantiated and terminated. Prior cloud trusted computing solutions address a subset of these features, but none achieve all. Excalibur [31] sup

  12. Design and Implementation of a Set-Top Box–Based Homecare System Using Hybrid Cloud

    PubMed Central

    Lin, Bor-Shing; Hsiao, Pei-Chi; Cheng, Po-Hsun; Jan, Gene Eu

    2015-01-01

    Abstract Introduction: Telemedicine has become a prevalent topic in recent years, and several telemedicine systems have been proposed; however, such systems are an unsuitable fit for the daily requirements of users. Materials and Methods: The system proposed in this study was developed as a set-top box integrated with the Android™ (Google, Mountain View, CA) operating system to provide a convenient and user-friendly interface. The proposed system can assist with family healthcare management, telemedicine service delivery, and information exchange among hospitals. To manage the system, a novel type of hybrid cloud architecture was also developed. Results: Updated information is stored on a public cloud, enabling medical staff members to rapidly access information when diagnosing patients. In the long term, the stored data can be reduced to improve the efficiency of the database. Conclusions: The proposed design offers a robust architecture for storing data in a homecare system and can thus resolve network overload and congestion resulting from accumulating data, which are inherent problems in centralized architectures, thereby improving system efficiency. PMID:26075333

  13. Estimation of Microphysical and Radiative Parameters of Precipitating Cloud Systems Using mm-Wavelength Radars

    NASA Astrophysics Data System (ADS)

    Matrosov, Sergey Y.

    2009-03-01

    A remote sensing approach is described to retrieve cloud and rainfall parameters within the same precipitating system. This approach is based on mm-wavelength radar signal attenuation effects which are observed in a layer of liquid precipitation containing clouds and rainfall. The parameters of ice clouds in the upper part of startiform precipitating systems are then retrieved using the absolute measurements of radar reflectivity. In case of the ground-based radar location, these measurements are corrected for attenuation in the intervening layer of liquid hydrometers.

  14. Application of the SRI cloud-tracking technique to rapid-scan GOES observations

    NASA Technical Reports Server (NTRS)

    Wolf, D. E.; Endlich, R. M.

    1980-01-01

    An automatic cloud tracking system was applied to multilayer clouds associated with severe storms. The method was tested using rapid scan observations of Hurricane Eloise obtained by the GOES satellite on 22 September 1975. Cloud tracking was performed using clustering based either on visible or infrared data. The clusters were tracked using two different techniques. The data of 4 km and 8 km resolution of the automatic system yielded comparable in accuracy and coverage to those obtained by NASA analysts using the Atmospheric and Oceanographic Information Processing System.

  15. Insitu aircraft verification of the quality of satellite cloud winds over oceanic regions

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Skillman, W. C.

    1979-01-01

    A five year aircraft experiment to verify the quality of satellite cloud winds over oceans using in situ aircraft inertial navigation system wind measurements is presented. The final results show that satellite measured cumulus cloud motions are very good estimators of the cloud base wind for trade wind and subtropical high regions. The average magnitude of the vector differences between the cloud motion and the cloud base wind is given. For cumulus clouds near frontal regions, the cloud motion agreed best with the mean cloud layer wind. For a very limited sample, cirrus cloud motions also most closely followed the mean wind in the cloud layer.

  16. The South African Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Topics discussed in the Overview of Year 1988 include the following: Supernova in the Large Magellanic Cloud; Galaxies; Ground based observations of celestial x ray sources; the Magellanic Clouds; Pulsating variables; Galactic structure; Binary star phenomena; The provision of photometric standards; Nebulae and interstellar matter; Stellar astrophysics; Astrometry; Solar system studies; Visitors programs; Publications; and General matters.

  17. Galaxy and the solar system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smoluchowski, R.; Bahcall, J.M.; Matthews, M.S.

    1986-01-01

    The solar-Galactic neighborhood, massive interstellar clouds and other Galactic features, the Oort cloud, perturbations of the solar system, and the existence and stability of a solar companion star are examined in chapters based on contributions to a conference held in Tucson, AZ during January 1985. The individual topics addressed include: the Galactic environment of the solar system; stars within 25 pc of the sun; the path of the sun in 100 million years; the local velocity field in the last billion years; interstellar clouds near the sun; and evidence for a local recent supernova. Also considered are: dynamic influence ofmore » Galactic tides and molecular clouds on the Oort cloud; cometary evidence for a solar companion; dynamical interactions between the Oort cloud and the Galaxy; geological periodicities and the Galaxy; giant comets and the Galaxy; dynamical evidence for Planet X; evolution of the solar system in the presence of a solar companion star; mass extinctions, crater ages, and comet showers; evidence for Nemesis, a solar companion star.« less

  18. Detecting Abnormal Machine Characteristics in Cloud Infrastructures

    NASA Technical Reports Server (NTRS)

    Bhaduri, Kanishka; Das, Kamalika; Matthews, Bryan L.

    2011-01-01

    In the cloud computing environment resources are accessed as services rather than as a product. Monitoring this system for performance is crucial because of typical pay-peruse packages bought by the users for their jobs. With the huge number of machines currently in the cloud system, it is often extremely difficult for system administrators to keep track of all machines using distributed monitoring programs such as Ganglia1 which lacks system health assessment and summarization capabilities. To overcome this problem, we propose a technique for automated anomaly detection using machine performance data in the cloud. Our algorithm is entirely distributed and runs locally on each computing machine on the cloud in order to rank the machines in order of their anomalous behavior for given jobs. There is no need to centralize any of the performance data for the analysis and at the end of the analysis, our algorithm generates error reports, thereby allowing the system administrators to take corrective actions. Experiments performed on real data sets collected for different jobs validate the fact that our algorithm has a low overhead for tracking anomalous machines in a cloud infrastructure.

  19. A Modeling Study of the Spatial Structure of Electric Fields Generated by Electrified Clouds with Screening Layers

    NASA Astrophysics Data System (ADS)

    Biagi, C. J.; Cummins, K. L.

    2015-12-01

    The growing possibility of inexpensive airborne observations of electric fields using one or more small UAVs increases the importance of understanding what can be determined about cloud electrification and associated electric fields outside cloud boundaries. If important information can be inferred from carefully selected flight paths outside of a cloud, then the aircraft and its instrumentation will be much cheaper to develop and much safer to operate. These facts have led us to revisit this long-standing topic using quasi-static, finite-element modeling inside and outside arbitrarily shaped clouds with a variety of internal charge distributions. In particular, we examine the effect of screening layers on electric fields outside of electrified clouds by comparing modeling results for charged clouds having electrical conductivities that are both equal to and lower than the surrounding clear air. The comparisons indicate that the spatial structure of the electric field is approximately the same regardless of the difference in the conductivities between the cloud and clear air and the formation of a screening layer, even for altitude-dependent electrical conductivities. This result is consistent with the numerical modeling results reported by Driscoll et al [1992]. The similarity of the spatial structure of the electric field outside of clouds with and without a screening layer suggests that "bulk" properties related to cloud electrification might be determined using measurements of the electric field at multiple locations in space outside the cloud, particularly at altitude. Finally, for this somewhat simplified model, the reduction in electric field magnitude outside the cloud due to the presence of a screening layer exhibits a simple dependence on the difference in conductivity between the cloud and clear air. These results are particularly relevant for studying clouds that are not producing lightning, such as developing thunderstorms and decaying anvils associated with mature storm systems.Driscoll K.T., R.J. Blakeslee, M.E. Baginski, 1992, A modeling study of the time-averaged electric currents in the vicinity of isolated thunderstorms, J. Geophys. Res., 97, D11, pp 11535-11551.

  20. Physical Characteristics of Arctic Clouds from Ground-based Remote-sensing with a Polarized Micro-Pulse Lidar and a 95-GHz Cloud Radar in Ny-Ålesund, Svalbard

    NASA Astrophysics Data System (ADS)

    Shiobara, M.; Takano, T.; Okamoto, H.; Yabuki, M.

    2015-12-01

    Clouds and aerosols are key elements having a potential to change climate by their radiative effects on the energy balance in the global climate system. In the Arctic, we have been continuing ground-based remote-sensing measurements for clouds and aerosols using a sky-radiometer, a micro-pulse lidar (MPL) and an all-sky camera in Ny-Ålesund (78.9N, 11.9E), Svalbard since early 2000's. In addition to such regular operations, several new measurements have been performed with a polarization MPL since August 2013, a 95GHz Doppler cloud radar since September 2013, and a dual frequency microwave radiometer since June 2014. An intensive field experiment for cloud-aerosol-radiation interaction study named A-CARE (PI: J. Ukita) was conducted for water clouds in the period of 23 June - 13 July 2014 and for mixed phase clouds in the period of 30 March - 23 April 2015 in Ny-Alesund. The experiment consisted of ground-based remote-sensing and in-situ cloud microphysics measurements. In this paper, preliminary results from these remote-sensing measurements will be presented, particularly in regard to physical characteristics of Arctic clouds based on radar-lidar collocated observation in Ny-Ålesund.

  1. Comparison of Cloud Properties from CALIPSO-CloudSat and Geostationary Satellite Data

    NASA Technical Reports Server (NTRS)

    Nguyen, L.; Minnis, P.; Chang, F.; Winker, D.; Sun-Mack, S.; Spangenberg, D.; Austin, R.

    2007-01-01

    Cloud properties are being derived in near-real time from geostationary satellite imager data for a variety of weather and climate applications and research. Assessment of the uncertainties in each of the derived cloud parameters is essential for confident use of the products. Determination of cloud amount, cloud top height, and cloud layering is especially important for using these real -time products for applications such as aircraft icing condition diagnosis and numerical weather prediction model assimilation. Furthermore, the distribution of clouds as a function of altitude has become a central component of efforts to evaluate climate model cloud simulations. Validation of those parameters has been difficult except over limited areas where ground-based active sensors, such as cloud radars or lidars, have been available on a regular basis. Retrievals of cloud properties are sensitive to the surface background, time of day, and the clouds themselves. Thus, it is essential to assess the geostationary satellite retrievals over a variety of locations. The availability of cloud radar data from CloudSat and lidar data from CALIPSO make it possible to perform those assessments over each geostationary domain at 0130 and 1330 LT. In this paper, CloudSat and CALIPSO data are matched with contemporaneous Geostationary Operational Environmental Satellite (GOES), Multi-functional Transport Satellite (MTSAT), and Meteosat-8 data. Unlike comparisons with cloud products derived from A-Train imagers, this study considers comparisons of nadir active sensor data with off-nadir retrievals. These matched data are used to determine the uncertainties in cloud-top heights and cloud amounts derived from the geostationary satellite data using the Clouds and the Earth s Radiant Energy System (CERES) cloud retrieval algorithms. The CERES multi-layer cloud detection method is also evaluated to determine its accuracy and limitations in the off-nadir mode. The results will be useful for constraining the use of the passive retrieval data in models and for improving the accuracy of the retrievals.

  2. Comparison of CERES-MODIS cloud microphysical properties with surface observations over Loess Plateau

    NASA Astrophysics Data System (ADS)

    Yan, Hongru; Huang, Jianping; Minnis, Patrick; Yi, Yuhong; Sun-Mack, Sunny; Wang, Tianhe; Nakajima, Takashi Y.

    2015-03-01

    To enhance the utility of satellite-derived cloud properties for studying the role of clouds in climate change and the hydrological cycle in semi-arid areas, it is necessary to know their uncertainties. This paper estimates the uncertainties of several cloud properties by comparing those derived over the China Loess Plateau from the MODerate-resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua by the Clouds and Earth's Radiant Energy System (CERES) with surface observations at the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL). The comparisons use data from January 2008 to June 2010 limited to single layer and overcast stratus conditions during daytime. Cloud optical depths (τ) and liquid water paths (LWP) from both Terra and Aqua generally track the variation of the surface counterparts with modest correlation, while cloud effective radius (re) is only weakly correlated with the surface retrievals. The mean differences between Terra and the SACOL retrievals are -4.7±12.9, 2.1±3.2 μm and 30.2±85.3 g m-2 for τ, re and LWP, respectively. The corresponding differences for Aqua are 2.1±8.4, 1.2±2.9 μm and 47.4±79.6 g m-2, respectively. Possible causes for biases of satellite retrievals are discussed through statistical analysis and case studies. Generally, the CERES-MODIS cloud properties have a bit larger biases over the Loess Plateau than those in previous studies over other locations.

  3. Mash-up of techniques between data crawling/transfer, data preservation/stewardship and data processing/visualization technologies on a science cloud system designed for Earth and space science: a report of successful operation and science projects of the NICT Science Cloud

    NASA Astrophysics Data System (ADS)

    Murata, K. T.

    2014-12-01

    Data-intensive or data-centric science is 4th paradigm after observational and/or experimental science (1st paradigm), theoretical science (2nd paradigm) and numerical science (3rd paradigm). Science cloud is an infrastructure for 4th science methodology. The NICT science cloud is designed for big data sciences of Earth, space and other sciences based on modern informatics and information technologies [1]. Data flow on the cloud is through the following three techniques; (1) data crawling and transfer, (2) data preservation and stewardship, and (3) data processing and visualization. Original tools and applications of these techniques have been designed and implemented. We mash up these tools and applications on the NICT Science Cloud to build up customized systems for each project. In this paper, we discuss science data processing through these three steps. For big data science, data file deployment on a distributed storage system should be well designed in order to save storage cost and transfer time. We developed a high-bandwidth virtual remote storage system (HbVRS) and data crawling tool, NICTY/DLA and Wide-area Observation Network Monitoring (WONM) system, respectively. Data files are saved on the cloud storage system according to both data preservation policy and data processing plan. The storage system is developed via distributed file system middle-ware (Gfarm: GRID datafarm). It is effective since disaster recovery (DR) and parallel data processing are carried out simultaneously without moving these big data from storage to storage. Data files are managed on our Web application, WSDBank (World Science Data Bank). The big-data on the cloud are processed via Pwrake, which is a workflow tool with high-bandwidth of I/O. There are several visualization tools on the cloud; VirtualAurora for magnetosphere and ionosphere, VDVGE for google Earth, STICKER for urban environment data and STARStouch for multi-disciplinary data. There are 30 projects running on the NICT Science Cloud for Earth and space science. In 2003 56 refereed papers were published. At the end, we introduce a couple of successful results of Earth and space sciences using these three techniques carried out on the NICT Sciences Cloud. [1] http://sc-web.nict.go.jp

  4. Research on the application in disaster reduction for using cloud computing technology

    NASA Astrophysics Data System (ADS)

    Tao, Liang; Fan, Yida; Wang, Xingling

    Cloud Computing technology has been rapidly applied in different domains recently, promotes the progress of the domain's informatization. Based on the analysis of the state of application requirement in disaster reduction and combining the characteristics of Cloud Computing technology, we present the research on the application of Cloud Computing technology in disaster reduction. First of all, we give the architecture of disaster reduction cloud, which consists of disaster reduction infrastructure as a service (IAAS), disaster reduction cloud application platform as a service (PAAS) and disaster reduction software as a service (SAAS). Secondly, we talk about the standard system of disaster reduction in five aspects. Thirdly, we indicate the security system of disaster reduction cloud. Finally, we draw a conclusion the use of cloud computing technology will help us to solve the problems for disaster reduction and promote the development of disaster reduction.

  5. Analysis of Meteorological Data Obtained During Flight in a Supercooled Stratiform Cloud of High Liquid-Water Content

    NASA Technical Reports Server (NTRS)

    Perkins, Porter J.; Kline, Dwight B.

    1951-01-01

    Flight icing-rate data obtained in a dense and. abnormally deep supercooled stratiform cloud system indicated the existence of liquid-water contents generally exceeding values in amount and extent previously reported over the midwestern sections of the United States. Additional information obtained during descent through a part of the cloud system indicated liquid-water contents that significantly exceeded theoretical values, especially near the middle of the cloud layer.. The growth of cloud droplets to sizes that resulted in sedimentation from the upper portions of the cloud is considered to be a possible cause of the high water contents near the center of the cloud layer. Flight measurements of the vertical temperature distribution in the cloud layer indicated a rate of change of temperature with altitude exceeding that of the moist adiabatic lapse rate. This excessive rate of change is considered to have contributed to the severity of the condition.

  6. Subject-enabled analytics model on measurement statistics in health risk expert system for public health informatics.

    PubMed

    Chung, Chi-Jung; Kuo, Yu-Chen; Hsieh, Yun-Yu; Li, Tsai-Chung; Lin, Cheng-Chieh; Liang, Wen-Miin; Liao, Li-Na; Li, Chia-Ing; Lin, Hsueh-Chun

    2017-11-01

    This study applied open source technology to establish a subject-enabled analytics model that can enhance measurement statistics of case studies with the public health data in cloud computing. The infrastructure of the proposed model comprises three domains: 1) the health measurement data warehouse (HMDW) for the case study repository, 2) the self-developed modules of online health risk information statistics (HRIStat) for cloud computing, and 3) the prototype of a Web-based process automation system in statistics (PASIS) for the health risk assessment of case studies with subject-enabled evaluation. The system design employed freeware including Java applications, MySQL, and R packages to drive a health risk expert system (HRES). In the design, the HRIStat modules enforce the typical analytics methods for biomedical statistics, and the PASIS interfaces enable process automation of the HRES for cloud computing. The Web-based model supports both modes, step-by-step analysis and auto-computing process, respectively for preliminary evaluation and real time computation. The proposed model was evaluated by computing prior researches in relation to the epidemiological measurement of diseases that were caused by either heavy metal exposures in the environment or clinical complications in hospital. The simulation validity was approved by the commercial statistics software. The model was installed in a stand-alone computer and in a cloud-server workstation to verify computing performance for a data amount of more than 230K sets. Both setups reached efficiency of about 10 5 sets per second. The Web-based PASIS interface can be used for cloud computing, and the HRIStat module can be flexibly expanded with advanced subjects for measurement statistics. The analytics procedure of the HRES prototype is capable of providing assessment criteria prior to estimating the potential risk to public health. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. ORPHANED PROTOSTARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reipurth, Bo; Connelley, Michael; Mikkola, Seppo

    2010-12-10

    We explore the origin of a population of distant companions ({approx}1000-5000 AU) to Class I protostellar sources recently found by Connelley and coworkers, who noted that the companion fraction diminished as the sources evolved. Here, we present N-body simulations of unstable triple systems embedded in dense cloud cores. Many companions are ejected into unbound orbits and quickly escape, but others are ejected with insufficient momentum to climb out of the potential well of the cloud core and associated binary. These loosely bound companions reach distances of many thousands of AU before falling back and eventually being ejected into escapes asmore » the cloud cores gradually disappear. We use the term orphans to denote protostellar objects that are dynamically ejected from their placental cloud cores, either escaping or for a time being tenuously bound at large separations. Half of all triple systems are found to disintegrate during the protostellar stage, so if multiple systems are a frequent outcome of the collapse of a cloud core, then orphans should be common. Bound orphans are associated with embedded close protostellar binaries, but escaping orphans can travel as far as {approx}0.2 pc during the protostellar phase. The steep climb out of a potential well ensures that orphans are not kinematically distinct from young stars born with a less violent pre-history. The identification of orphans outside their heavily extincted cloud cores will allow the detailed study of protostars high up on their Hayashi tracks at near-infrared and in some cases even at optical wavelengths.« less

  8. Satellite Cloud and Radiative Property Processing and Distribution System on the NASA Langley ASDC OpenStack and OpenShift Cloud Platform

    NASA Astrophysics Data System (ADS)

    Nguyen, L.; Chee, T.; Palikonda, R.; Smith, W. L., Jr.; Bedka, K. M.; Spangenberg, D.; Vakhnin, A.; Lutz, N. E.; Walter, J.; Kusterer, J.

    2017-12-01

    Cloud Computing offers new opportunities for large-scale scientific data producers to utilize Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) IT resources to process and deliver data products in an operational environment where timely delivery, reliability, and availability are critical. The NASA Langley Research Center Atmospheric Science Data Center (ASDC) is building and testing a private and public facing cloud for users in the Science Directorate to utilize as an everyday production environment. The NASA SatCORPS (Satellite ClOud and Radiation Property Retrieval System) team processes and derives near real-time (NRT) global cloud products from operational geostationary (GEO) satellite imager datasets. To deliver these products, we will utilize the public facing cloud and OpenShift to deploy a load-balanced webserver for data storage, access, and dissemination. The OpenStack private cloud will host data ingest and computational capabilities for SatCORPS processing. This paper will discuss the SatCORPS migration towards, and usage of, the ASDC Cloud Services in an operational environment. Detailed lessons learned from use of prior cloud providers, specifically the Amazon Web Services (AWS) GovCloud and the Government Cloud administered by the Langley Managed Cloud Environment (LMCE) will also be discussed.

  9. Eye-Safe Lidar System for Pesticide Spray Drift Measurement

    PubMed Central

    Gregorio, Eduard; Rocadenbosch, Francesc; Sanz, Ricardo; Rosell-Polo, Joan R.

    2015-01-01

    Spray drift is one of the main sources of pesticide contamination. For this reason, an accurate understanding of this phenomenon is necessary in order to limit its effects. Nowadays, spray drift is usually studied by using in situ collectors which only allow time-integrated sampling of specific points of the pesticide clouds. Previous research has demonstrated that the light detection and ranging (lidar) technique can be an alternative for spray drift monitoring. This technique enables remote measurement of pesticide clouds with high temporal and distance resolution. Despite these advantages, the fact that no lidar instrument suitable for such an application is presently available has appreciably limited its practical use. This work presents the first eye-safe lidar system specifically designed for the monitoring of pesticide clouds. Parameter design of this system is carried out via signal-to-noise ratio simulations. The instrument is based on a 3-mJ pulse-energy erbium-doped glass laser, an 80-mm diameter telescope, an APD optoelectronic receiver and optomechanically adjustable components. In first test measurements, the lidar system has been able to measure a topographic target located over 2 km away. The instrument has also been used in spray drift studies, demonstrating its capability to monitor the temporal and distance evolution of several pesticide clouds emitted by air-assisted sprayers at distances between 50 and 100 m. PMID:25658395

  10. Electromagnetic Methods of Lightning Detection

    NASA Astrophysics Data System (ADS)

    Rakov, V. A.

    2013-11-01

    Both cloud-to-ground and cloud lightning discharges involve a number of processes that produce electromagnetic field signatures in different regions of the spectrum. Salient characteristics of measured wideband electric and magnetic fields generated by various lightning processes at distances ranging from tens to a few hundreds of kilometers (when at least the initial part of the signal is essentially radiation while being not influenced by ionospheric reflections) are reviewed. An overview of the various lightning locating techniques, including magnetic direction finding, time-of-arrival technique, and interferometry, is given. Lightning location on global scale, when radio-frequency electromagnetic signals are dominated by ionospheric reflections, is also considered. Lightning locating system performance characteristics, including flash and stroke detection efficiencies, percentage of misclassified events, location accuracy, and peak current estimation errors, are discussed. Both cloud and cloud-to-ground flashes are considered. Representative examples of modern lightning locating systems are reviewed. Besides general characterization of each system, the available information on its performance characteristics is given with emphasis on those based on formal ground-truth studies published in the peer-reviewed literature.

  11. Development of Two-Moment Cloud Microphysics for Liquid and Ice Within the NASA Goddard Earth Observing System Model (GEOS-5)

    NASA Technical Reports Server (NTRS)

    Barahona, Donifan; Molod, Andrea M.; Bacmeister, Julio; Nenes, Athanasios; Gettelman, Andrew; Morrison, Hugh; Phillips, Vaughan,; Eichmann, Andrew F.

    2013-01-01

    This work presents the development of a two-moment cloud microphysics scheme within the version 5 of the NASA Goddard Earth Observing System (GEOS-5). The scheme includes the implementation of a comprehensive stratiform microphysics module, a new cloud coverage scheme that allows ice supersaturation and a new microphysics module embedded within the moist convection parameterization of GEOS-5. Comprehensive physically-based descriptions of ice nucleation, including homogeneous and heterogeneous freezing, and liquid droplet activation are implemented to describe the formation of cloud particles in stratiform clouds and convective cumulus. The effect of preexisting ice crystals on the formation of cirrus clouds is also accounted for. A new parameterization of the subgrid scale vertical velocity distribution accounting for turbulence and gravity wave motion is developed. The implementation of the new microphysics significantly improves the representation of liquid water and ice in GEOS-5. Evaluation of the model shows agreement of the simulated droplet and ice crystal effective and volumetric radius with satellite retrievals and in situ observations. The simulated global distribution of supersaturation is also in agreement with observations. It was found that when using the new microphysics the fraction of condensate that remains as liquid follows a sigmoidal increase with temperature which differs from the linear increase assumed in most models and is in better agreement with available observations. The performance of the new microphysics in reproducing the observed total cloud fraction, longwave and shortwave cloud forcing, and total precipitation is similar to the operational version of GEOS-5 and in agreement with satellite retrievals. However the new microphysics tends to underestimate the coverage of persistent low level stratocumulus. Sensitivity studies showed that the simulated cloud properties are robust to moderate variation in cloud microphysical parameters. However significant sensitivity in ice cloud properties was found to variation in the dispersion of the ice crystal size distribution and the critical size for ice autoconversion. The implementation of the new microphysics leads to a more realistic representation of cloud processes in GEOS-5 and allows the linkage of cloud properties to aerosol emissions.

  12. Outcome of the third cloud retrieval evaluation workshop

    NASA Astrophysics Data System (ADS)

    Roebeling, Rob; Baum, Bryan; Bennartz, Ralf; Hamann, Ulrich; Heidinger, Andy; Thoss, Anke; Walther, Andi

    2013-05-01

    Accurate measurements of global distributions of cloud parameters and their diurnal, seasonal, and interannual variations are needed to improve understanding of the role of clouds in the weather and climate system, and to monitor their time-space variations. Cloud properties retrieved from satellite observations, such as cloud vertical placement, cloud water path and cloud particle size, play an important role for such studies. In order to give climate and weather researchers more confidence in the quality of these retrievals their validity needs to be determined and their error characteristics must be quantified. The purpose of the Cloud Retrieval Evaluation Workshop (CREW), held from 15-18 Nov. 2011 in Madison, Wisconsin, USA, is to enhance knowledge on state-of-art cloud properties retrievals from passive imaging satellites, and pave the path towards optimizing these retrievals for climate monitoring as well as for the analysis of cloud parameterizations in climate and weather models. CREW also seeks to observe and understand methods used to prepare daily and monthly cloud parameter climatologies. An important workshop component is discussion on results of the algorithm and sensor comparisons and validation studies. Hereto a common database with about 12 different cloud properties retrievals from passive imagers (MSG, MODIS, AVHRR, POLDER and/or AIRS), complemented with cloud measurements that serve as a reference (CLOUDSAT, CALIPSO, AMSU, MISR), was prepared for a number of "golden days". The passive imager cloud property retrievals were inter-compared and validated against Cloudsat, Calipso and AMSU observations. In our presentation we summarize the outcome of the inter-comparison and validation work done in the framework of CREW, and elaborate on reasons for observed differences. More in depth discussions were held on retrieval principles and validation, and utilization of cloud parameters for climate research. This was done in parallel breakout sessions on cloud vertical placement, cloud physical properties, and cloud climatologies. We present the recommendations of these sessions, propose a way forward to establish international partnerships on cloud research, and summarize actions defined to tailor CREW activities to missions of international programs, such as the Global Energy and Water Cycle Experiment (GEWEX) and Sustained, Co-Ordinated Processing of Environmental Satellite Data for Climate Monitoring (SCOPE-CM). Finally, attention is given to increase the traceability and uniformity of different longterm and homogeneous records of cloud parameters.

  13. Sensitivity of Photolysis Frequencies and Key Tropospheric Oxidants in a Global Model to Cloud Vertical Distributions and Optical Properties

    NASA Technical Reports Server (NTRS)

    Liu, Hongyu; Crawford, James H.; Considine, David B.; Platnick, Steven; Norris, Peter M.; Duncan, Bryan N.; Pierce, Robert B.; Chen, Gao; Yantosca, Robert M.

    2009-01-01

    Clouds affect tropospheric photochemistry through modification of solar radiation that determines photolysis frequencies. As a follow-up study to our recent assessment of the radiative effects of clouds on tropospheric chemistry, this paper presents an analysis of the sensitivity of such effects to cloud vertical distributions and optical properties (cloud optical depths (CODs) and cloud single scattering albedo), in a global 3-D chemical transport model (GEOS-Chem). GEOS-Chem was driven with a series of meteorological archives (GEOS1- STRAT, GEOS-3 and GEOS-4) generated by the NASA Goddard Earth Observing System data assimilation system. Clouds in GEOS1-STRAT and GEOS-3 have more similar vertical distributions (with substantially smaller CODs in GEOS1-STRAT) while those in GEOS-4 are optically much thinner in the tropical upper troposphere. We find that the radiative impact of clouds on global photolysis frequencies and hydroxyl radical (OH) is more sensitive to the vertical distribution of clouds than to the magnitude of column CODs. With random vertical overlap for clouds, the model calculated changes in global mean OH (J(O1D), J(NO2)) due to the radiative effects of clouds in June are about 0.0% (0.4%, 0.9%), 0.8% (1.7%, 3.1%), and 7.3% (4.1%, 6.0%), for GEOS1-STRAT, GEOS-3 and GEOS-4, respectively; the geographic distributions of these quantities show much larger changes, with maximum decrease in OH concentrations of approx.15-35% near the midlatitude surface. The much larger global impact of clouds in GEOS-4 reflects the fact that more solar radiation is able to penetrate through the optically thin upper-tropospheric clouds, increasing backscattering from low-level clouds. Model simulations with each of the three cloud distributions all show that the change in the global burden of ozone due to clouds is less than 5%. Model perturbation experiments with GEOS-3, where the magnitude of 3-D CODs are progressively varied from -100% to 100%, predict only modest changes (<5%) in global mean OH concentrations. J(O1D), J(NO2) and OH3 concentrations show the strongest sensitivity for small CODs and become insensitive at large CODs due to saturation effects. Caution should be exercised not to use in photochemical models a value for cloud single scattering albedo lower than about 0.999 in order to be consistent with the current knowledge of cloud absorption at the ultraviolet wavelengths.

  14. The Cloudsat Mission and the EOS Constellation: A New Dimension of Space-Based Observation of Clouds and Precipitation

    NASA Technical Reports Server (NTRS)

    Stephens, Graeme L.; Vane, Deborah G.; Boain, Ronald; Mace, Gerald; Sassen, Kenneth; Wang, Zhien; Illingworth, Anthony; OConnor, Ewan; Rossow, William; Durden, Stephen L.; hide

    2001-01-01

    CloudSat is a satellite experiment designed to measure the vertical structure of clouds from space. The expected launch of CloudSat is planned for 2004 and, once launched, CloudSat will orbit in formation as part of a constellation of satellites including NASA's Aqua and Aura satellites, a NASA-CNES lidar satellite (P-C) and a CNES satellite carrying a polarimeter (PARASOL). A unique feature that CloudSat brings to this constellation is the ability to fly a precise orbit enabling the fields of view of the CloudSat radar to be overlapped with the P-C lidar footprint and the other measurements of the EOS constellation. The precision of this overlap creates a unique multi-satellite observing system for studying the atmospheric processes essential to the hydrological cycle. The vertical profile of cloud properties provided by CloudSat fills a critical gap in the investigation of feedback mechanisms linking clouds to climate. Measuring the vertical profile of cloud properties requires a combination of active and passive instruments, and this will be achieved by combining the radar data of CloudSat with active and passive data from other sensors of the constellation. This paper describes the underpinning science, and gives an overview of the mission, and provides some idea of the expected products and anticipated application of these products. Notably, the CloudSat mission is expected to provide new knowledge about global cloudiness, stimulating new areas of research on clouds including data assimilation and cloud parameterization. The mission also provides an important opportunity to demonstrate active sensor technology for future scientific and tactical applications. The CloudSat mission is a partnership between NASA/JPL, the Canadian Space Agency, Colorado State University, the US Air Force, and the US Department of Energy.

  15. Properties of CIRRUS Overlapping Clouds as Deduced from the GOES-12 Imagery Data

    NASA Technical Reports Server (NTRS)

    Chang, Fu-Lung; Minnis, Patrick; Lin, Bing; Sun-Mack, Sunny; Khaiyer, Mandana

    2006-01-01

    Understanding the impact of cirrus clouds on modifying both the solar reflected and terrestrial emitted radiations is crucial for climate studies. Unlike most boundary layer stratus and stratocumulus clouds that have a net cooling effect on the climate, high-level thin cirrus clouds can have a warming effect on our climate. Many research efforts have been devoted to retrieving cirrus cloud properties due to their ubiquitous presence. However, using satellite observations to detect and/or retrieve cirrus cloud properties faces two major challenges. First, they are often semitransparent at visible to infrared wavelengths; and secondly, they often occur over a lower cloud system. The overlapping of high-level cirrus and low-level stratus cloud poses a difficulty in determining the individual cloud top altitudes and optical properties, especially when the signals from cirrus clouds are overwhelmed by the signals of stratus clouds. Moreover, the operational satellite retrieval algorithms, which often assume only single layer cloud in the development of cloud retrieval techniques, cannot resolve the cloud overlapping situation properly. The new geostationary satellites, starting with the Twelfth Geostationary Operational Environmental Satellite (GOES-12), are providing a new suite of imager bands that have replaced the conventional 12-micron channel with a 13.3-micron CO2 absorption channel. The replacement of the 13.3-micron channel allows for the application of a CO2-slicing retrieval technique (Chahine et al. 1974; Smith and Platt 1978), which is one of the important passive satellite methods for remote sensing the altitudes of mid to high-level clouds. Using the CO2- slicing technique is more effective in detecting semitransparent cirrus clouds than using the conventional infrared-window method.

  16. Impact of natural and anthropogenic aerosols on stratocumulus and precipitation in the Southeast Pacific: a regional modelling study using WRF-Chem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Q.; Gustafson, W. I.; Fast, J. D.

    2012-09-28

    Cloud-system resolving simulations with the chemistry version of the Weather Research and Forecasting (WRF-Chem) model are used to quantify the relative impacts of regional anthropogenic and oceanic emissions on changes in aerosol properties, cloud macro- and microphysics, and cloud radiative forcing over the Southeast Pacific (SEP) during the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) (15 October–16 November 2008). Two distinct regions are identified. The near-coast polluted region is characterized by low surface precipitation rates, the strong suppression of non-sea-salt particle activation due to sea-salt particles, a predominant albedo effect in aerosol indirect effects, and limited impact of aerosols associated withmore » anthropogenic emissions on clouds. Opposite sensitivities to natural marine and anthropogenic aerosol perturbations are seen in cloud properties (e.g., cloud optical depth and cloud-top and cloud-base heights), precipitation, and the top-of-atmosphere and surface shortwave fluxes over this region. The relatively clean remote region is characterized by large contributions of aerosols from non-regional sources (lateral boundaries) and much stronger drizzle at the surface. Under a scenario of five-fold increase in regional anthropogenic emissions, this relatively clean region shows large cloud responses, for example, a 13% increase in cloud-top height and a 9% increase in albedo in response to a moderate increase (25% of the reference case) in cloud condensation nuclei (CCN) concentration. The reduction of precipitation due to this increase in anthropogenic aerosols more than doubles the aerosol lifetime in the clean marine boundary layer. Therefore, the aerosol impacts on precipitation are amplified by the positive feedback of precipitation on aerosol, which ultimately alters the cloud micro- and macro-physical properties, leading to strong aerosol-cloud-precipitation interactions. The high sensitivity is also related to an increase in cloud-top entrainment rate (by 16% at night) due to the increased anthropogenic aerosols. The simulated aerosol-cloud-precipitation interactions due to the increased anthropogenic aerosols have a stronger diurnal cycle over the clean region compared to the near-coast region with stronger interactions at night. During the day, solar heating results in more frequent decoupling of the cloud and sub-cloud layers, thinner clouds, reduced precipitation, and reduced sensitivity to the increase in anthropogenic emissions. This study shows the importance of natural aerosols in accurately quantifying anthropogenic forcing within a regional modeling framework. Finally, the results of this study also imply that the energy balance perturbations from increased anthropogenic emissions are larger in the more susceptible clean environment than in already polluted environment and are larger than possible from the first indirect effect alone.« less

  17. Big Data, Internet of Things and Cloud Convergence--An Architecture for Secure E-Health Applications.

    PubMed

    Suciu, George; Suciu, Victor; Martian, Alexandru; Craciunescu, Razvan; Vulpe, Alexandru; Marcu, Ioana; Halunga, Simona; Fratu, Octavian

    2015-11-01

    Big data storage and processing are considered as one of the main applications for cloud computing systems. Furthermore, the development of the Internet of Things (IoT) paradigm has advanced the research on Machine to Machine (M2M) communications and enabled novel tele-monitoring architectures for E-Health applications. However, there is a need for converging current decentralized cloud systems, general software for processing big data and IoT systems. The purpose of this paper is to analyze existing components and methods of securely integrating big data processing with cloud M2M systems based on Remote Telemetry Units (RTUs) and to propose a converged E-Health architecture built on Exalead CloudView, a search based application. Finally, we discuss the main findings of the proposed implementation and future directions.

  18. New Satellite Estimates of Mixed-Phase Cloud Properties: A Synergistic Approach for Application to Global Satellite Imager Data

    NASA Astrophysics Data System (ADS)

    Smith, W. L., Jr.; Spangenberg, D.; Fleeger, C.; Sun-Mack, S.; Chen, Y.; Minnis, P.

    2016-12-01

    Determining accurate cloud properties horizontally and vertically over a full range of time and space scales is currently next to impossible using data from either active or passive remote sensors or from modeling systems. Passive satellite imagers provide horizontal and temporal resolution of clouds, but little direct information on vertical structure. Active sensors provide vertical resolution but limited spatial and temporal coverage. Cloud models embedded in NWP can produce realistic clouds but often not at the right time or location. Thus, empirical techniques that integrate information from multiple observing and modeling systems are needed to more accurately characterize clouds and their impacts. Such a strategy is employed here in a new cloud water content profiling technique developed for application to satellite imager cloud retrievals based on VIS, IR and NIR radiances. Parameterizations are developed to relate imager retrievals of cloud top phase, optical depth, effective radius and temperature to ice and liquid water content profiles. The vertical structure information contained in the parameterizations is characterized climatologically from cloud model analyses, aircraft observations, ground-based remote sensing data, and from CloudSat and CALIPSO. Thus, realistic cloud-type dependent vertical structure information (including guidance on cloud phase partitioning) circumvents poor assumptions regarding vertical homogeneity that plague current passive satellite retrievals. This paper addresses mixed phase cloud conditions for clouds with glaciated tops including those associated with convection and mid-latitude storm systems. Novel outcomes of our approach include (1) simultaneous retrievals of ice and liquid water content and path, which are validated with active sensor, microwave and in-situ data, and yield improved global cloud climatologies, and (2) new estimates of super-cooled LWC, which are demonstrated in aviation safety applications and validated with icing PIREPS. The initial validation is encouraging for single-layer cloud conditions. More work is needed to test and refine the method for global application in a wider range of cloud conditions. A brief overview of our current method, applications, verification, and plans for future work will be presented.

  19. A vital signs telemonitoring system - interoperability supported by a personal health record systema and a cloud service.

    PubMed

    Gutiérrez, Miguel F; Cajiao, Alejandro; Hidalgo, José A; Cerón, Jesús D; López, Diego M; Quintero, Víctor M; Rendón, Alvaro

    2014-01-01

    This article presents the development process of an acquisition and data storage system managing clinical variables through a cloud storage service and a Personal Health Record (PHR) System. First, the paper explains how a Wireless Body Area Network (WBAN) that captures data from two sensors corresponding to arterial pressure and heart rate is designed. Second, this paper illustrates how data collected by the WBAN are transmitted to a cloud storage service. It is worth mentioning that this cloud service allows the data to be stored in a persistent way on an online database system. Finally, the paper describes, how the data stored in the cloud service are sent to the Indivo PHR System, where they are registered and charted for future revision by health professionals. The research demonstrated the feasibility of implementing WBAN networks for the acquisition of clinical data, and particularly for the use of Web technologies and standards to provide interoperability with PHR Systems at technical and syntactic levels.

  20. Studies of Disks Around the Sun and Other Stars

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan (Principal Investigator)

    1996-01-01

    We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. This area holds promise for also improving our understanding of outer solar system formation, the bombardment history of the planets, the transport of volatiles and organics from the outer solar system to the inner planets, and to the ultimate fate of comet clouds around the Sun and other stars. According to 'standard' theory, both the Kuiper Disk and the Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Therefore, searches for comet disks and clouds orbiting other stars offer a new method for inferring the presence of planetary systems. This two-element program consists modeling collisions in the Kuiper Disk and the dust disks around other stars. The modeling effort focuses on moving from our simple, first-generation, Kuiper disk collision rate model, to a time-dependent, second-generation model that incorporates physical collisions, velocity evolution, dynamical erosion, and various dust transport mechanisms. This second generation model will be used to study the evolution of surface mass density and the object-size spectrum in the disk. The observational effort focuses on obtaining submm/mm-wave flux density measurements of 25-30 IR excess stars in order to better constrain the masses, spatial extents and structure of their dust ensembles.

  1. A CERES-like Cloud Property Climatology Using AVHRR Data

    NASA Astrophysics Data System (ADS)

    Minnis, P.; Bedka, K. M.; Yost, C. R.; Trepte, Q.; Bedka, S. T.; Sun-Mack, S.; Doelling, D.

    2015-12-01

    Clouds affect the climate system by modulating the radiation budget and distributing precipitation. Variations in cloud patterns and properties are expected to accompany changes in climate. The NASA Clouds and the Earth's Radiant Energy System (CERES) Project developed an end-to-end analysis system to measure broadband radiances from a radiometer and retrieve cloud properties from collocated high-resolution MODerate-resolution Imaging Spectroradiometer (MODIS) data to generate a long-term climate data record of clouds and clear-sky properties and top-of-atmosphere radiation budget. The first MODIS was not launched until 2000, so the current CERES record is only 15 years long at this point. The core of the algorithms used to retrieve the cloud properties from MODIS is based on the spectral complement of the Advanced Very High Resolution Radiometer (AVHRR), which has been aboard a string of satellites since 1978. The CERES cloud algorithms were adapted for application to AVHRR data and have been used to produce an ongoing CERES-like cloud property and surface temperature product that includes an initial narrowband-based radiation budget. This presentation will summarize this new product, which covers nearly 37 years, and its comparability with cloud parameters from CERES, CALIPSO, and other satellites. Examples of some applications of this dataset are given and the potential for generating a long-term radiation budget CDR is also discussed.

  2. Evaluating the Influence of the Client Behavior in Cloud Computing.

    PubMed

    Souza Pardo, Mário Henrique; Centurion, Adriana Molina; Franco Eustáquio, Paulo Sérgio; Carlucci Santana, Regina Helena; Bruschi, Sarita Mazzini; Santana, Marcos José

    2016-01-01

    This paper proposes a novel approach for the implementation of simulation scenarios, providing a client entity for cloud computing systems. The client entity allows the creation of scenarios in which the client behavior has an influence on the simulation, making the results more realistic. The proposed client entity is based on several characteristics that affect the performance of a cloud computing system, including different modes of submission and their behavior when the waiting time between requests (think time) is considered. The proposed characterization of the client enables the sending of either individual requests or group of Web services to scenarios where the workload takes the form of bursts. The client entity is included in the CloudSim, a framework for modelling and simulation of cloud computing. Experimental results show the influence of the client behavior on the performance of the services executed in a cloud computing system.

  3. Applications integration in a hybrid cloud computing environment: modelling and platform

    NASA Astrophysics Data System (ADS)

    Li, Qing; Wang, Ze-yuan; Li, Wei-hua; Li, Jun; Wang, Cheng; Du, Rui-yang

    2013-08-01

    With the development of application services providers and cloud computing, more and more small- and medium-sized business enterprises use software services and even infrastructure services provided by professional information service companies to replace all or part of their information systems (ISs). These information service companies provide applications, such as data storage, computing processes, document sharing and even management information system services as public resources to support the business process management of their customers. However, no cloud computing service vendor can satisfy the full functional IS requirements of an enterprise. As a result, enterprises often have to simultaneously use systems distributed in different clouds and their intra enterprise ISs. Thus, this article presents a framework to integrate applications deployed in public clouds and intra ISs. A run-time platform is developed and a cross-computing environment process modelling technique is also developed to improve the feasibility of ISs under hybrid cloud computing environments.

  4. Integration of hybrid wireless networks in cloud services oriented enterprise information systems

    NASA Astrophysics Data System (ADS)

    Li, Shancang; Xu, Lida; Wang, Xinheng; Wang, Jue

    2012-05-01

    This article presents a hybrid wireless network integration scheme in cloud services-based enterprise information systems (EISs). With the emerging hybrid wireless networks and cloud computing technologies, it is necessary to develop a scheme that can seamlessly integrate these new technologies into existing EISs. By combining the hybrid wireless networks and computing in EIS, a new framework is proposed, which includes frontend layer, middle layer and backend layers connected to IP EISs. Based on a collaborative architecture, cloud services management framework and process diagram are presented. As a key feature, the proposed approach integrates access control functionalities within the hybrid framework that provide users with filtered views on available cloud services based on cloud service access requirements and user security credentials. In future work, we will implement the proposed framework over SwanMesh platform by integrating the UPnP standard into an enterprise information system.

  5. Evaluating the Influence of the Client Behavior in Cloud Computing

    PubMed Central

    Centurion, Adriana Molina; Franco Eustáquio, Paulo Sérgio; Carlucci Santana, Regina Helena; Bruschi, Sarita Mazzini; Santana, Marcos José

    2016-01-01

    This paper proposes a novel approach for the implementation of simulation scenarios, providing a client entity for cloud computing systems. The client entity allows the creation of scenarios in which the client behavior has an influence on the simulation, making the results more realistic. The proposed client entity is based on several characteristics that affect the performance of a cloud computing system, including different modes of submission and their behavior when the waiting time between requests (think time) is considered. The proposed characterization of the client enables the sending of either individual requests or group of Web services to scenarios where the workload takes the form of bursts. The client entity is included in the CloudSim, a framework for modelling and simulation of cloud computing. Experimental results show the influence of the client behavior on the performance of the services executed in a cloud computing system. PMID:27441559

  6. Protection of electronic health records (EHRs) in cloud.

    PubMed

    Alabdulatif, Abdulatif; Khalil, Ibrahim; Mai, Vu

    2013-01-01

    EHR technology has come into widespread use and has attracted attention in healthcare institutions as well as in research. Cloud services are used to build efficient EHR systems and obtain the greatest benefits of EHR implementation. Many issues relating to building an ideal EHR system in the cloud, especially the tradeoff between flexibility and security, have recently surfaced. The privacy of patient records in cloud platforms is still a point of contention. In this research, we are going to improve the management of access control by restricting participants' access through the use of distinct encrypted parameters for each participant in the cloud-based database. Also, we implement and improve an existing secure index search algorithm to enhance the efficiency of information control and flow through a cloud-based EHR system. At the final stage, we contribute to the design of reliable, flexible and secure access control, enabling quick access to EHR information.

  7. Extinction coefficients from lidar observations in ice clouds compared to in-situ measurements from the Cloud Integrating Nephelometer during CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Noel, Vincent; Winker, D. M.; Garrett, T. J.; McGill, M.

    2005-01-01

    This paper presents a comparison of volume extinction coefficients in tropical ice clouds retrieved from two instruments : the 532-nm Cloud Physics Lidar (CPL), and the in-situ probe Cloud Integrating Nephelometer (CIN). Both instruments were mounted on airborne platforms during the CRYSTAL-FACE campaign and took measurements in ice clouds up to 17km. Coincident observations from three cloud cases are compared : one synoptically-generated cirrus cloud of low optical depth, and two ice clouds located on top of convective systems. Emphasis is put on the vertical variability of the extinction coefficient. Results show small differences on small spatial scales (approx. 100m) in retrievals from both instruments. Lidar retrievals also show higher extinction coefficients in the synoptic cirrus case, while the opposite tendency is observed in convective cloud systems. These differences are generally variations around the average profile given by the CPL though, and general trends on larger spatial scales are usually well reproduced. A good agreement exists between the two instruments, with an average difference of less than 16% on optical depth retrievals.

  8. Development of a Global Multilayered Cloud Retrieval System

    NASA Technical Reports Server (NTRS)

    Huang, J.; Minnis, P.; Lin, B.; Yi, Y.; Ayers, J. K.; Khaiyer, M. M.; Arduini, R.; Fan, T.-F

    2004-01-01

    A more rigorous multilayered cloud retrieval system has been developed to improve the determination of high cloud properties in multilayered clouds. The MCRS attempts a more realistic interpretation of the radiance field than earlier methods because it explicitly resolves the radiative transfer that would produce the observed radiances. A two-layer cloud model was used to simulate multilayered cloud radiative characteristics. Despite the use of a simplified two-layer cloud reflectance parameterization, the MCRS clearly produced a more accurate retrieval of ice water path than simple differencing techniques used in the past. More satellite data and ground observation have to be used to test the MCRS. The MCRS methods are quite appropriate for interpreting the radiances when the high cloud has a relatively large optical depth (tau(sub I) greater than 2). For thinner ice clouds, a more accurate retrieval might be possible using infrared methods. Selection of an ice cloud retrieval and a variety of other issues must be explored before a complete global application of this technique can be implemented. Nevertheless, the initial results look promising.

  9. Integration of Satellite-Derived Cloud Phase, Cloud Top Height, and Liquid Water Path into an Operational Aircraft Icing Nowcasting System

    NASA Technical Reports Server (NTRS)

    Haggerty, Julie; McDonough, Frank; Black, Jennifer; Landott, Scott; Wolff, Cory; Mueller, Steven; Minnis, Patrick; Smith, William, Jr.

    2008-01-01

    Operational products used by the U.S. Federal Aviation Administration to alert pilots of hazardous icing provide nowcast and short-term forecast estimates of the potential for the presence of supercooled liquid water and supercooled large droplets. The Current Icing Product (CIP) system employs basic satellite-derived information, including a cloud mask and cloud top temperature estimates, together with multiple other data sources to produce a gridded, three-dimensional, hourly depiction of icing probability and severity. Advanced satellite-derived cloud products developed at the NASA Langley Research Center (LaRC) provide a more detailed description of cloud properties (primarily at cloud top) compared to the basic satellite-derived information used currently in CIP. Cloud hydrometeor phase, liquid water path, cloud effective temperature, and cloud top height as estimated by the LaRC algorithms are into the CIP fuzzy logic scheme and a confidence value is determined. Examples of CIP products before and after the integration of the LaRC satellite-derived products will be presented at the conference.

  10. Advanced Optical Diagnostics for Ice Crystal Cloud Measurements in the NASA Glenn Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J.; Fagan, Amy; Van Zante, Judith F.; Kirkegaard, Jonathan P.; Rohler, David P.; Maniyedath, Arjun; Izen, Steven H.

    2013-01-01

    A light extinction tomography technique has been developed to monitor ice water clouds upstream of a direct connected engine in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center (GRC). The system consists of 60 laser diodes with sheet generating optics and 120 detectors mounted around a 36-inch diameter ring. The sources are pulsed sequentially while the detectors acquire line-of-sight extinction data for each laser pulse. Using computed tomography algorithms, the extinction data are analyzed to produce a plot of the relative water content in the measurement plane. To target the low-spatial-frequency nature of ice water clouds, unique tomography algorithms were developed using filtered back-projection methods and direct inversion methods that use Gaussian basis functions. With the availability of a priori knowledge of the mean droplet size and the total water content at some point in the measurement plane, the tomography system can provide near real-time in-situ quantitative full-field total water content data at a measurement plane approximately 5 feet upstream of the engine inlet. Results from ice crystal clouds in the PSL are presented. In addition to the optical tomography technique, laser sheet imaging has also been applied in the PSL to provide planar ice cloud uniformity and relative water content data during facility calibration before the tomography system was available and also as validation data for the tomography system. A comparison between the laser sheet system and light extinction tomography resulting data are also presented. Very good agreement of imaged intensity and water content is demonstrated for both techniques. Also, comparative studies between the two techniques show excellent agreement in calculation of bulk total water content averaged over the center of the pipe.

  11. Evaluating the Performance of the Goddard Multi-Scale Modeling Framework against GPM, TRMM and CloudSat/CALIPSO Products

    NASA Astrophysics Data System (ADS)

    Chern, J. D.; Tao, W. K.; Lang, S. E.; Matsui, T.; Mohr, K. I.

    2014-12-01

    Four six-month (March-August 2014) experiments with the Goddard Multi-scale Modeling Framework (MMF) were performed to study the impacts of different Goddard one-moment bulk microphysical schemes and large-scale forcings on the performance of the MMF. Recently a new Goddard one-moment bulk microphysics with four-ice classes (cloud ice, snow, graupel, and frozen drops/hail) has been developed based on cloud-resolving model simulations with large-scale forcings from field campaign observations. The new scheme has been successfully implemented to the MMF and two MMF experiments were carried out with this new scheme and the old three-ice classes (cloud ice, snow graupel) scheme. The MMF has global coverage and can rigorously evaluate microphysics performance for different cloud regimes. The results show MMF with the new scheme outperformed the old one. The MMF simulations are also strongly affected by the interaction between large-scale and cloud-scale processes. Two MMF sensitivity experiments with and without nudging large-scale forcings to those of ERA-Interim reanalysis were carried out to study the impacts of large-scale forcings. The model simulated mean and variability of surface precipitation, cloud types, cloud properties such as cloud amount, hydrometeors vertical profiles, and cloud water contents, etc. in different geographic locations and climate regimes are evaluated against GPM, TRMM, CloudSat/CALIPSO satellite observations. The Goddard MMF has also been coupled with the Goddard Satellite Data Simulation Unit (G-SDSU), a system with multi-satellite, multi-sensor, and multi-spectrum satellite simulators. The statistics of MMF simulated radiances and backscattering can be directly compared with satellite observations to assess the strengths and/or deficiencies of MMF simulations and provide guidance on how to improve the MMF and microphysics.

  12. EDITORIAL: Focus on Cloud Physics FOCUS ON CLOUD PHYSICS

    NASA Astrophysics Data System (ADS)

    Falkovich, Gregory; Malinowski, Szymon P.

    2008-07-01

    Cloud physics has for a long time been an important segment of atmospheric science. It is common knowledge that clouds are crucial for our understanding of weather and climate. Clouds are also interesting by themselves (not to mention that they are beautiful). Complexity is hidden behind the common picture of these beautiful and interesting objects. The typical school textbook definition that a cloud is 'a set of droplets or particles suspended in the atmosphere' is not adequate. Clouds are complicated phenomena in which dynamics, turbulence, microphysics, thermodynamics and radiative transfer interact on a wide range of scales, from sub-micron to kilometres. Some of these interactions are subtle and others are more straightforward. Large and small-scale motions lead to activation of cloud condensation nuclei, condensational growth and collisions; small changes in composition and concentration of atmospheric aerosol lead to significant differences in radiative properties of the clouds and influence rainfall formation. It is justified to look at a cloud as a composite, nonlinear system which involves many interactions and feedback. This system is actively linked into a web of atmospheric, oceanic and even cosmic interactions. Due to the complexity of the cloud system, present-day descriptions of clouds suffer from simplifications, inadequate parameterizations, and omissions. Sometimes the most fundamental physics hidden behind these simplifications and parameterizations is not known, and a wide scope of view can sometimes prevent a 'microscopic', deep insight into the detail. Only the expertise offered by scientists focused on particular elementary processes involved in this complicated pattern of interactions allows us to shape elements of the puzzle from which a general picture of clouds can be created. To be useful, every element of the puzzle must be shaped precisely. This often creates problems in communication between the sciences responsible for shaping elements of the puzzle, and those which combine them. Scales, assumptions and the conditions used in order to describe a particular single process of interest must be consistent with the conditions in clouds. The papers in this focus issue of New Journal of Physics collectively demonstrate (i) the variation in scientific approaches towards investigating cloud processes, (ii) the various stages of shaping elements of the puzzle, and (iii) some attempts to put the pieces together. These papers present just a small subset of loosely arranged elements in an initial stage of puzzle creation. Addressed by this issue is one of the important problems in our understanding of cloud processes—the interaction between cloud particles and turbulence. There is currently a gap between the cloud physics community and scientists working in wind tunnels, on turbulence theory and particle interactions. This collection is intended to narrow this gap by bringing together work by theoreticians, modelers, laboratory experimentalists and those who measure and observe actual processes in clouds. It forms a collage of contributions showing various approaches to cloud processes including: • theoretical works with possible applications to clouds (Bistagnino and Boffetta, Gustavsson et al), • an attempt to construct a phenomenological description of clouds and rain (Lovejoy and Schertzer), • simplified models designed to parameterize turbulence micro- and macro-effects (Celani et al, Derevyanko et al), • focused theoretical research aimed at particular cloud processes (Ayala et al, parts I and II, Wang et al), • laboratory and modeling studies of complex cloud processes (Malinowski et al). This collage is far from being complete but, hopefully, should give the reader a representative impression of the current state of knowledge in the field. We hope it will be useful to all scientists whose work is inspired by cloud processes. Focus on Cloud Physics Contents The equivalent size of cloud condensation nuclei Antonio Celani, Andrea Mazzino and Marco Tizzi Laboratory and modeling studies of cloud-clear air interfacial mixing: anisotropy of small-scale turbulence due to evaporative cooling Szymon P Malinowski, Miroslaw Andrejczuk, Wojciech W Grabowski, Piotr Korczyk, Tomasz A Kowalewski and Piotr K Smolarkiewicz Evolution of non-uniformly seeded warm clouds in idealized turbulent conditions Stanislav Derevyanko, Gregory Falkovich and Sergei Turitsyn Lagrangian statistics in two-dimensional free turbulent convection A Bistagnino and G Boffetta Turbulence, raindrops and the l1/2 number density law S Lovejoy and D Schertzer Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 2. Theory and parameterization Orlando Ayala, Bogdan Rosa and Lian-Ping Wang Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 1. Results from direct numerical simulation Orlando Ayala, Bogdan Rosa, Lian-Ping Wang and Wojciech W Grabowski Collisions of particles advected in random flows K Gustavsson, B Mehlig and M Wilkinson Turbulent collision efficiency of heavy particles relevant to cloud droplets Lian-Ping Wang, Orlando Ayala, Bogdan Rosa and Wojciech W Grabowski

  13. Numerical Coupling and Simulation of Point-Mass System with the Turbulent Fluid Flow

    NASA Astrophysics Data System (ADS)

    Gao, Zheng

    A computational framework that combines the Eulerian description of the turbulence field with a Lagrangian point-mass ensemble is proposed in this dissertation. Depending on the Reynolds number, the turbulence field is simulated using Direct Numerical Simulation (DNS) or eddy viscosity model. In the meanwhile, the particle system, such as spring-mass system and cloud droplets, are modeled using the ordinary differential system, which is stiff and hence poses a challenge to the stability of the entire system. This computational framework is applied to the numerical study of parachute deceleration and cloud microphysics. These two distinct problems can be uniformly modeled with Partial Differential Equations (PDEs) and Ordinary Differential Equations (ODEs), and numerically solved in the same framework. For the parachute simulation, a novel porosity model is proposed to simulate the porous effects of the parachute canopy. This model is easy to implement with the projection method and is able to reproduce Darcy's law observed in the experiment. Moreover, the impacts of using different versions of k-epsilon turbulence model in the parachute simulation have been investigated and conclude that the standard and Re-Normalisation Group (RNG) model may overestimate the turbulence effects when Reynolds number is small while the Realizable model has a consistent performance with both large and small Reynolds number. For another application, cloud microphysics, the cloud entrainment-mixing problem is studied in the same numerical framework. Three sets of DNS are carried out with both decaying and forced turbulence. The numerical result suggests a new way parameterize the cloud mixing degree using the dynamical measures. The numerical experiments also verify the negative relationship between the droplets number concentration and the vorticity field. The results imply that the gravity has fewer impacts on the forced turbulence than the decaying turbulence. In summary, the proposed framework can be used to solve a physics problem that involves turbulence field and point-mass system, and therefore has a broad application.

  14. Students as Ground Observers for Satellite Cloud Retrieval Validation

    NASA Technical Reports Server (NTRS)

    Chambers, Lin H.; Costulis, P. Kay; Young, David F.; Rogerson, Tina M.

    2004-01-01

    The Students' Cloud Observations On-Line (S'COOL) Project was initiated in 1997 to obtain student observations of clouds coinciding with the overpass of the Clouds and the Earth's Radiant Energy System (CERES) instruments on NASA's Earth Observing System satellites. Over the past seven years we have accumulated more than 9,000 cases worldwide where student observations are available within 15 minutes of a CERES observation. This paper reports on comparisons between the student and satellite data as one facet of the validation of the CERES cloud retrievals. Available comparisons include cloud cover, cloud height, cloud layering, and cloud visual opacity. The large volume of comparisons allows some assessment of the impact of surface cover, such as snow and ice, reported by the students. The S'COOL observation database, accessible via the Internet at http://scool.larc.nasa.gov, contains over 32,000 student observations and is growing by over 700 observations each month. Some of these observations may be useful for assessment of other satellite cloud products. In particular, some observing sites have been making hourly observations of clouds during the school day to learn about the diurnal cycle of cloudiness.

  15. Coherent Radiation in Atomic Systems

    NASA Astrophysics Data System (ADS)

    Sutherland, Robert Tyler

    Over the last century, quantum mechanics has dramatically altered our understanding of light and matter. Impressively, exploring the relationship between the two continues to provide important insights into the physics of many-body systems. In this thesis, we add to this still growing field of study. Specifically, we discuss superradiant line-broadening and cooperative dipole-dipole interactions for cold atom clouds in the linear-optics regime. We then discuss how coherent radiation changes both the photon scattering properties and the excitation distribution of atomic arrays. After that, we explore the nature of superradiance in initially inverted clouds of multi-level atoms. Finally, we explore the physics of clouds with degenerate Zeeman ground states, and show that this creates quantum effects that fundamentally change the photon scattering of atomic ensembles.

  16. Workflow as a Service in the Cloud: Architecture and Scheduling Algorithms

    PubMed Central

    Wang, Jianwu; Korambath, Prakashan; Altintas, Ilkay; Davis, Jim; Crawl, Daniel

    2017-01-01

    With more and more workflow systems adopting cloud as their execution environment, it becomes increasingly challenging on how to efficiently manage various workflows, virtual machines (VMs) and workflow execution on VM instances. To make the system scalable and easy-to-extend, we design a Workflow as a Service (WFaaS) architecture with independent services. A core part of the architecture is how to efficiently respond continuous workflow requests from users and schedule their executions in the cloud. Based on different targets, we propose four heuristic workflow scheduling algorithms for the WFaaS architecture, and analyze the differences and best usages of the algorithms in terms of performance, cost and the price/performance ratio via experimental studies. PMID:29399237

  17. Identifying Meteorological Controls on Open and Closed Mesoscale Cellular Convection Associated with Marine Cold Air Outbreaks

    NASA Astrophysics Data System (ADS)

    McCoy, Isabel L.; Wood, Robert; Fletcher, Jennifer K.

    2017-11-01

    Mesoscale cellular convective (MCC) clouds occur in large-scale patterns over the ocean and have important radiative effects on the climate system. An examination of time-varying meteorological conditions associated with satellite-observed open and closed MCC clouds is conducted to illustrate the influence of large-scale meteorological conditions. Marine cold air outbreaks (MCAO) influence the development of open MCC clouds and the transition from closed to open MCC clouds. MCC neural network classifications on Moderate Resolution Imaging Spectroradiometer (MODIS) data for 2008 are collocated with Clouds and the Earth's Radiant Energy System (CERES) data and ERA-Interim reanalysis to determine the radiative effects of MCC clouds and their thermodynamic environments. Closed MCC clouds are found to have much higher albedo on average than open MCC clouds for the same cloud fraction. Three meteorological control metrics are tested: sea-air temperature difference (ΔT), estimated inversion strength (EIS), and a MCAO index (M). These predictive metrics illustrate the importance of atmospheric surface forcing and static stability for open and closed MCC cloud formation. Predictive sigmoidal relations are found between M and MCC cloud frequency globally and regionally: negative for closed MCC cloud and positive for open MCC cloud. The open MCC cloud seasonal cycle is well correlated with M, while the seasonality of closed MCC clouds is well correlated with M in the midlatitudes and EIS in the tropics and subtropics. M is found to best distinguish open and closed MCC clouds on average over shorter time scales. The possibility of a MCC cloud feedback is discussed.

  18. Venus Cloud Patterns (colorized and filtered)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This picture of Venus was taken by the Galileo spacecrafts Solid State Imaging System on February 14, 1990, at a range of almost 1.7 million miles from the planet. A highpass spatial filter has been applied in order to emphasize the smaller scale cloud features, and the rendition has been colorized to a bluish hue in order to emphasize the subtle contrasts in the cloud markings and to indicate that it was taken through a violet filter. The sulfuric acid clouds indicate considerable convective activity, in the equatorial regions of the planet to the left and downwind of the subsolar point (afternoon on Venus). They are analogous to 'fair weather clouds' on Earth. The filamentary dark features visible in the colorized image are here revealed to be composed of several dark nodules, like beads on a string, each about 60 miles across. The Galileo Project is managed for NASA's Office of Space Science and Applications by the Jet Propulsion Laboratory; its mission is to study Jupiter and its satellites and magnetosphere after multiple gravity assist flybys at Venus and Earth. These images of the Venus clouds were taken by Galileo's Solid State Imaging System February 13, 1990, at a range of about 1 million miles. The smallest detail visible is about 20 miles. The two right images show Venus in violet light, the top one at a time six hours later than the bottom one. They show the state of the clouds near the top of Venus's cloud deck. A right to left motion of the cloud features is evident and is consistent with westward winds of about 230 mph. The two left images show Venus in near infrared light, at the same times as the two right images. Sunlight penetrates through the clouds more deeply at the near infrared wavelengths, allowing a view near the bottom of the cloud deck. The westward motion of the clouds is slower (about 150 mph) at the lower altitude. The clouds are composed of sulfuric acid droplets and occupy a range of altitudes from 30 to 45 miles. The images have been spatially filtered to bring out small scale details and de-emphasize global shading. The filtering has introduced artifacts (wiggly lines running north/south) that are faintly visible in the infrared image. The Galileo Project is managed for NASA's Office of Space Science and Applications by the Jet Propulsion Laboratory; its mission is to study Jupiter and its satellites and magnetosphere after multiple gravity assist flybys at Venus and Earth.

  19. A Study of the Response of Deep Tropical Clouds to Mesoscale Processes. Part 1; Modeling Strategies and Simulations of TOGA-COARE Convective Systems

    NASA Technical Reports Server (NTRS)

    Johnson, Daniel E.; Tao, W.-K.; Simpson, J.; Sui, C.-H.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Interactions between deep tropical clouds over the western Pacific warm pool and the larger-scale environment are key to understanding climate change. Cloud models are an extremely useful tool in simulating and providing statistical information on heat and moisture transfer processes between cloud systems and the environment, and can therefore be utilized to substantially improve cloud parameterizations in climate models. In this paper, the Goddard Cumulus Ensemble (GCE) cloud-resolving model is used in multi-day simulations of deep tropical convective activity over the Tropical Ocean-Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE). Large-scale temperature and moisture advective tendencies, and horizontal momentum from the TOGA-COARE Intensive Flux Array (IFA) region, are applied to the GCE version which incorporates cyclical boundary conditions. Sensitivity experiments show that grid domain size produces the largest response to domain-mean temperature and moisture deviations, as well as cloudiness, when compared to grid horizontal or vertical resolution, and advection scheme. It is found that a minimum grid-domain size of 500 km is needed to adequately resolve the convective cloud features. The control experiment shows that the atmospheric heating and moistening is primarily a response to cloud latent processes of condensation/evaporation, and deposition/sublimation, and to a lesser extent, melting of ice particles. Air-sea exchange of heat and moisture is found to be significant, but of secondary importance, while the radiational response is small. The simulated rainfall and atmospheric heating and moistening, agrees well with observations, and performs favorably to other models simulating this case.

  20. Cloud Height Estimation with a Single Digital Camera and Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Carretas, Filipe; Janeiro, Fernando M.

    2014-05-01

    Clouds influence the local weather, the global climate and are an important parameter in the weather prediction models. Clouds are also an essential component of airplane safety when visual flight rules (VFR) are enforced, such as in most small aerodromes where it is not economically viable to install instruments for assisted flying. Therefore it is important to develop low cost and robust systems that can be easily deployed in the field, enabling large scale acquisition of cloud parameters. Recently, the authors developed a low-cost system for the measurement of cloud base height using stereo-vision and digital photography. However, due to the stereo nature of the system, some challenges were presented. In particular, the relative camera orientation requires calibration and the two cameras need to be synchronized so that the photos from both cameras are acquired simultaneously. In this work we present a new system that estimates the cloud height between 1000 and 5000 meters. This prototype is composed by one digital camera controlled by a Raspberry Pi and is installed at Centro de Geofísica de Évora (CGE) in Évora, Portugal. The camera is periodically triggered to acquire images of the overhead sky and the photos are downloaded to the Raspberry Pi which forwards them to a central computer that processes the images and estimates the cloud height in real time. To estimate the cloud height using just one image requires a computer model that is able to learn from previous experiences and execute pattern recognition. The model proposed in this work is an Artificial Neural Network (ANN) that was previously trained with cloud features at different heights. The chosen Artificial Neural Network is a three-layer network, with six parameters in the input layer, 12 neurons in the hidden intermediate layer, and an output layer with only one output. The six input parameters are the average intensity values and the intensity standard deviation of each RGB channel. The output parameter in the output layer is the cloud height estimated by the ANN. The training procedure was performed, using the back-propagation method, in a set of 260 different clouds with heights in the range [1000, 5000] m. The training of the ANN has resulted in a correlation ratio of 0.74. This trained ANN can therefore be used to estimate the cloud height. The previously described system can also measure the wind speed and direction at cloud height by measuring the displacement, in pixels, of a cloud feature between consecutively acquired photos. Also, the geographical north direction can be estimated using this setup through sequential night images with high exposure times. A further advantage of this single camera system is that no camera calibration or synchronization is needed. This significantly reduces the cost and complexity of field deployment of cloud height measurement systems based on digital photography.

Top