Barta, András; Horváth, Gábor; Horváth, Ákos; Egri, Ádám; Blahó, Miklós; Barta, Pál; Bumke, Karl; Macke, Andreas
2015-02-10
Cloud cover estimation is an important part of routine meteorological observations. Cloudiness measurements are used in climate model evaluation, nowcasting solar radiation, parameterizing the fluctuations of sea surface insolation, and building energy transfer models of the atmosphere. Currently, the most widespread ground-based method to measure cloudiness is based on analyzing the unpolarized intensity and color distribution of the sky obtained by digital cameras. As a new approach, we propose that cloud detection can be aided by the additional use of skylight polarization measured by 180° field-of-view imaging polarimetry. In the fall of 2010, we tested such a novel polarimetric cloud detector aboard the research vessel Polarstern during expedition ANT-XXVII/1. One of our goals was to test the durability of the measurement hardware under the extreme conditions of a trans-Atlantic cruise. Here, we describe the instrument and compare the results of several different cloud detection algorithms, some conventional and some newly developed. We also discuss the weaknesses of our design and its possible improvements. The comparison with cloud detection algorithms developed for traditional nonpolarimetric full-sky imagers allowed us to evaluate the added value of polarimetric quantities. We found that (1) neural-network-based algorithms perform the best among the investigated schemes and (2) global information (the mean and variance of intensity), nonoptical information (e.g., sun-view geometry), and polarimetric information (e.g., the degree of polarization) improve the accuracy of cloud detection, albeit slightly.
NASA Astrophysics Data System (ADS)
Bolkas, Dimitrios; Martinez, Aaron
2018-01-01
Point-cloud coordinate information derived from terrestrial Light Detection And Ranging (LiDAR) is important for several applications in surveying and civil engineering. Plane fitting and segmentation of target-surfaces is an important step in several applications such as in the monitoring of structures. Reliable parametric modeling and segmentation relies on the underlying quality of the point-cloud. Therefore, understanding how point-cloud errors affect fitting of planes and segmentation is important. Point-cloud intensity, which accompanies the point-cloud data, often goes hand-in-hand with point-cloud noise. This study uses industrial particle boards painted with eight different colors (black, white, grey, red, green, blue, brown, and yellow) and two different sheens (flat and semi-gloss) to explore how noise and plane residuals vary with scanning geometry (i.e., distance and incidence angle) and target-color. Results show that darker colors, such as black and brown, can produce point clouds that are several times noisier than bright targets, such as white. In addition, semi-gloss targets manage to reduce noise in dark targets by about 2-3 times. The study of plane residuals with scanning geometry reveals that, in many of the cases tested, residuals decrease with increasing incidence angles, which can assist in understanding the distribution of plane residuals in a dataset. Finally, a scheme is developed to derive survey guidelines based on the data collected in this experiment. Three examples demonstrate that users should consider instrument specification, required precision of plane residuals, required point-spacing, target-color, and target-sheen, when selecting scanning locations. Outcomes of this study can aid users to select appropriate instrumentation and improve planning of terrestrial LiDAR data-acquisition.
Gedzelman, Stanley David
2017-07-01
Three scenarios that produce colored thunderstorms are simulated. In Scenario #1, the thunderstorm's sunlit face exhibits a color gradient from white or yellow at top to red at base when the sun is near the horizon. It is simulated with a second-order scattering model as a combination of sunlight and skylight reflected from the cloud face that is attenuated and reddened by Rayleigh and Mie scattering over the long optical path near sunset that increases from cloud top to base. In Scenario #2, the base of the precipitation shaft appears luminous green-blue when surrounded by a much darker arcus cloud. It is simulated as multiply scattered light transmitted through the precipitation shaft using a Monte Carlo model that includes absorption by liquid water and ice. The color occurs over a wide range of solar zenith angles with large liquid water content, but the precipitation shaft is only bright when hydrometeors are large. Attenuation of the light by Rayleigh and Mie scattering outside the precipitation shaft shifts the spectrum to green when viewed from a distance of several kilometers. In Scenario #3, the shaded cloud face exhibits a "sickly" yellow-green color. It is simulated with a second-order scattering model as the result of distant skylight that originates in the sunlit region beyond an opaque anvil of order 40 km wide but is attenuated by Rayleigh and Mie scattering in its path to the cloud and observer.
Ocular tracking responses to background motion gated by feature-based attention.
Souto, David; Kerzel, Dirk
2014-09-01
Involuntary ocular tracking responses to background motion offer a window on the dynamics of motion computations. In contrast to spatial attention, we know little about the role of feature-based attention in determining this ocular response. To probe feature-based effects of background motion on involuntary eye movements, we presented human observers with a balanced background perturbation. Two clouds of dots moved in opposite vertical directions while observers tracked a target moving in horizontal direction. Additionally, they had to discriminate a change in the direction of motion (±10° from vertical) of one of the clouds. A vertical ocular following response occurred in response to the motion of the attended cloud. When motion selection was based on motion direction and color of the dots, the peak velocity of the tracking response was 30% of the tracking response elicited in a single task with only one direction of background motion. In two other experiments, we tested the effect of the perturbation when motion selection was based on color, by having motion direction vary unpredictably, or on motion direction alone. Although the gain of pursuit in the horizontal direction was significantly reduced in all experiments, indicating a trade-off between perceptual and oculomotor tasks, ocular responses to perturbations were only observed when selection was based on both motion direction and color. It appears that selection by motion direction can only be effective for driving ocular tracking when the relevant elements can be segregated before motion onset. Copyright © 2014 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Pepe, M.; Ackermann, S.; Fregonese, L.; Achille, C.
2017-02-01
The paper describes a method for Point Clouds Color management and Integration obtained from Terrestrial Laser Scanner (TLS) and Image Based (IB) survey techniques. Especially in the Cultural Heritage (CH) environment, methods and techniques to improve the color quality of Point Clouds have a key role because a homogenous texture brings to a more accurate reconstruction of the investigated object and to a more pleasant perception of the color object as well. A color management method for point clouds can be useful in case of single data set acquired by TLS or IB technique as well as in case of chromatic heterogeneity resulting by merging different datasets. The latter condition can occur when the scans are acquired in different moments of the same day or when scans of the same object are performed in a period of weeks or months, and consequently with a different environment/lighting condition. In this paper, a procedure to balance the point cloud color in order to uniform the different data sets, to improve the chromatic quality and to highlight further details will be presented and discussed.
NASA Astrophysics Data System (ADS)
Arapi, A.; Wu, Y.; Moshary, F.; Blake, R.; Liou-Mark, J.
2017-12-01
Aerosol and cloud play important roles on the Earth's energy budget, which is an important component of climate research. The radiative effects of aerosol-cloud interaction are still highly uncertain and the accuracy of their representation in climate models depends on the accuracy of their measurements. This study evaluates the potential to determine the existence of hydrated aerosols near clouds based on a ground-based multiple-wavelength elastic-Raman lidar at 1064-532-355nm and satellite measurement in New York City area (NYC), east coast of US. The main goal of this study is to examine the variations of color-ratio (spectral or wavelength dependence of backscatter) and relative backscatter to identify patterns between aerosol and cloud. In this presentation, we show the time-height distribution and variation of lidar-measured relative backscatter and color-ratio for some case studies. Then, we employ an aerosol-cloud discrimination algorithm to separate aerosols and clouds according to the color-ratio differences. We demonstrate the significant variation of aerosol optical properties near the low-level clouds in summer, which indicates the potential interaction or transient zone between aerosols and clouds. Finally, we show the preliminary evaluation of the aerosol and cloud product from the satellite retrievals when the ground-lidar observes the transported smoke plumes in NYC area.
NASA Astrophysics Data System (ADS)
Jethva, H.; Torres, O.; Remer, L. A.; Bhartia, P. K.
2012-12-01
Light absorbing particles such as carbonaceous aerosols generated from biomass burning activities and windblown dust particles can exert a net warming effect on climate; the strength of which depends on the absorption capacity of the particles and brightness of the underlying reflecting background. When advected over low-level bright clouds, these aerosols absorb the cloud reflected radiation from ultra-violet (UV) to shortwave-IR (SWIR) and makes cloud scene darker-a phenomenon commonly known as "cloud darkening". The apparent "darkening" effect can be seen by eyes in satellite images as well as quantitatively in the spectral reflectance measurements made by space borne sensors over regions where light absorbing carbonaceous and dust aerosols overlay low-level cloud decks. Theoretical radiative transfer simulations support the observational evidence, and further reveal that the strength of the cloud darkening and its spectral signature (or color ratio) between measurements at two wavelengths are a bi-function of aerosol and cloud optical thickness (AOT and COT); both are measures of the total amount of light extinction caused by aerosols and cloud, respectively. Here, we developed a retrieval technique, named as the "color ratio method" that uses the satellite measurements at two channels, one at shorter wavelength in the visible and one at longer wavelength in the shortwave-IR for the simultaneous retrieval of AOT and COT. The present technique requires assumptions on the aerosol single-scattering albedo and aerosol-cloud separation which are supplemented by the Aerosol Robotic Network (AERONET) and space borne CALIOP lidar measurements. The retrieval technique has been tested making use of the near-UV and visible reflectance observations made by the Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer (MODIS) for distinct above-cloud smoke and dust aerosol events observed seasonally over the southeast and tropical Atlantic Ocean, respectively. This study constitutes the first attempt to use non-polarized and non-lidar reflectance observations-both of them shown to have above-cloud aerosols retrieval capability, to retrieve above-cloud AOT by a passive non-polarized sensor. The uncertainty analysis suggests that the present method should retrieve above-cloud AOT within -10% to 50% which mainly arises due to uncertainty associated with the single-scattering albedo assumption. Although, currently tested by making use of OMI and MODIS measurements, the present color ratio method can be equally applied to the other satellite measurements that carry similar or near-by channels in VIS region of the spectrum such as MISR and NPP/VIIRS. The capability of quantifying the above-cloud aerosol load will facilitate several aspects of cloud-aerosol interaction research such as estimation of the direct radiative forcing of aerosols above clouds; the sign of which can be opposite (warming) to cloud-free aerosol forcing (cooling), aerosol transport, indirect effects of aerosols on clouds, and hydrological cycle.
NASA Astrophysics Data System (ADS)
Li, Na; Gong, Xingyu; Li, Hongan; Jia, Pengtao
2018-01-01
For faded relics, such as Terracotta Army, the 2D-3D registration between an optical camera and point cloud model is an important part for color texture reconstruction and further applications. This paper proposes a nonuniform multiview color texture mapping for the image sequence and the three-dimensional (3D) model of point cloud collected by Handyscan3D. We first introduce nonuniform multiview calibration, including the explanation of its algorithm principle and the analysis of its advantages. We then establish transformation equations based on sift feature points for the multiview image sequence. At the same time, the selection of nonuniform multiview sift feature points is introduced in detail. Finally, the solving process of the collinear equations based on multiview perspective projection is given with three steps and the flowchart. In the experiment, this method is applied to the color reconstruction of the kneeling figurine, Tangsancai lady, and general figurine. These results demonstrate that the proposed method provides an effective support for the color reconstruction of the faded cultural relics and be able to improve the accuracy of 2D-3D registration between the image sequence and the point cloud model.
A critical look at spatial scale choices in satellite-based aerosol indirect effect studies
NASA Astrophysics Data System (ADS)
Grandey, B. S.; Stier, P.
2010-06-01
Analysing satellite datasets over large regions may introduce spurious relationships between aerosol and cloud properties due to spatial variations in aerosol type, cloud regime and synoptic regime climatologies. Using MODerate resolution Imaging Spectroradiometer data, we calculate relationships between aerosol optical depth τa, derived liquid cloud droplet effective number concentration Ne and liquid cloud droplet effective radius re at different spatial scales. Generally, positive values of dlnNe dlnτa are found for ocean regions, whilst negative values occur for many land regions. The spatial distribution of dlnre dlnτa shows approximately the opposite pattern, with generally postive values for land regions and negative values for ocean regions. We find that for region sizes larger than 4°×4°, spurious spatial variations in retrieved cloud and aerosol properties can introduce widespread significant errors to calculations of dlnNe dlnτa and dlnre dlnτa . For regions on the scale of 60°×60°, these methodological errors may lead to an overestimate in global cloud albedo effect radiative forcing of order 80%.
Subvisual-thin cirrus lidar dataset for satellite verification and climatological research
NASA Technical Reports Server (NTRS)
Sassen, Kenneth; Cho, Byung S.
1992-01-01
A polarization (0.694 microns wavelength) lidar dataset for subvisual and thin (bluish-colored) cirrus clouds is drawn from project FIRE (First ISCCP Regional Experiment) extended time observations. The clouds are characterized by their day-night visual appearance; base, top, and optical midcloud heights and temperatures; measured physical and estimated optical cloud thicknesses; integrated linear depolarization ratios; and derived k/2 eta ratios. A subset of the data supporting 30 NOAA polar-orbiting satellite overpasses is given in tabular form to provide investigators with the means to test cloud retrieval algorithms and establish the limits of cirrus detectability from satellite measurements under various conditions. Climatologically, subvisual-thin cirrus appear to be higher, colder, and more strongly depolarizing than previously reported multilatitude cirrus, although similar k/2 eta that decrease with height and temperature are found.
NASA Astrophysics Data System (ADS)
Herman, J. R.; Marshak, A.; Szabo, A.
2015-12-01
The DSCOVR mission was launched into a Sun-Earth Lagrange-1 orbit 1.5 million kilometers from earth in February 2015 onboard a SpaceX Falcon-9 rocket. The solar wind and earth science instruments were tested during the 4.5 month journey to L-1. The first data were obtained during the June-July commissioning phase, which included the first moderate resolution (10 km) color images of the entire sunlit earth, color images of the Moon, and scientific data from 10 narrow band filters (317.5, 325, 340, 388, 443, 551, 680, 687.75, 764, and 779.5 nm). Three of these filters were used to construct the color images (443, 551, 680 nm) based on the average eye response histogram of the sunlit earth. This talk will discuss some of the issues involved in deriving science quality data for global ozone, the aerosol index (dust, smoke, and volcanic ash), cloud amounts and reflectivity, and cloud height (measured from the O2 A- and B-bands). As with most new satellites, the science data are preliminary.
NASA Astrophysics Data System (ADS)
Kainulainen, J.; Juvela, M.; Alves, J.
2007-06-01
The giant molecular clouds (GMCs) of external galaxies can be mapped with sub-arcsecond resolution using multiband observations in the near-infrared. However, the interpretation of the observed reddening and attenuation of light, and their transformation into physical quantities, is greatly hampered by the effects arising from the unknown geometry and the scattering of light by dust particles. We examine the relation between the observed near-infrared reddening and the column density of the dust clouds. In this paper we particularly assess the feasibility of deriving the mass function of GMCs from near-infrared color excess data. We perform Monte Carlo radiative transfer simulations with 3D models of stellar radiation and clumpy dust distributions. We include the scattered light in the models and calculate near-infrared color maps from the simulated data. The color maps are compared with the true line-of-sight density distributions of the models. We extract clumps from the color maps and compare the observed mass function to the true mass function. For the physical configuration chosen in this study, essentially a face-on geometry, the observed mass function is a non-trivial function of the true mass function with a large number of parameters affecting its exact form. The dynamical range of the observed mass function is confined to 103.5dots 105.5 M_⊙ regardless of the dynamical range of the true mass function. The color maps are more sensitive in detecting the high-mass end of the mass function, and on average the masses of clouds are underestimated by a factor of ˜ 10 depending on the parameters describing the dust distribution. A significant fraction of clouds is expected to remain undetected at all masses. The simulations show that the cloud mass function derived from JHK color excess data using simple foreground screening geometry cannot be regarded as a one-to-one tracer of the underlying mass function.
NASA Astrophysics Data System (ADS)
Kim, Hye-Won; Yeom, Jong-Min; Shin, Daegeun; Choi, Sungwon; Han, Kyung-Soo; Roujean, Jean-Louis
2017-08-01
In this study, a new assessment of thin cloud detection with the application of bidirectional reflectance distribution function (BRDF) model-based background surface reflectance was undertaken by interpreting surface spectra characterized using the Geostationary Ocean Color Imager (GOCI) over a land surface area. Unlike cloud detection over the ocean, the detection of cloud over land surfaces is difficult due to the complicated surface scattering characteristics, which vary among land surface types. Furthermore, in the case of thin clouds, in which the surface and cloud radiation are mixed, it is difficult to detect the clouds in both land and atmospheric fields. Therefore, to interpret background surface reflectance, especially underneath cloud, the semiempirical BRDF model was used to simulate surface reflectance by reflecting solar angle-dependent geostationary sensor geometry. For quantitative validation, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data were used to make a comparison with the proposed cloud masking result. As a result, the new cloud masking scheme resulted in a high probability of detection (POD = 0.82) compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) (POD = 0.808) for all cloud cases. In particular, the agreement between the CALIPSO cloud product and new GOCI cloud mask was over 94% when detecting thin cloud (e.g., altostratus and cirrus) from January 2014 to June 2015. This result is relatively high in comparison with the result from the MODIS Collection 6 cloud mask product (MYD35).
A critical look at spatial scale choices in satellite-based aerosol indirect effect studies
NASA Astrophysics Data System (ADS)
Grandey, B. S.; Stier, P.
2010-12-01
Analysing satellite datasets over large regions may introduce spurious relationships between aerosol and cloud properties due to spatial variations in aerosol type, cloud regime and synoptic regime climatologies. Using MODerate resolution Imaging Spectroradiometer data, we calculate relationships between aerosol optical depth τa derived liquid cloud droplet effective number concentration Ne and liquid cloud droplet effective radius re at different spatial scales. Generally, positive values of dlnNedlnτa are found for ocean regions, whilst negative values occur for many land regions. The spatial distribution of dlnredlnτa shows approximately the opposite pattern, with generally postive values for land regions and negative values for ocean regions. We find that for region sizes larger than 4° × 4°, spurious spatial variations in retrieved cloud and aerosol properties can introduce widespread significant errors to calculations of dlnNedlnτa and dlnredlnτa. For regions on the scale of 60° × 60°, these methodological errors may lead to an overestimate in global cloud albedo effect radiative forcing of order 80% relative to that calculated for regions on the scale of 1° × 1°.
Cloud based, Open Source Software Application for Mitigating Herbicide Drift
NASA Astrophysics Data System (ADS)
Saraswat, D.; Scott, B.
2014-12-01
The spread of herbicide resistant weeds has resulted in the need for clearly marked fields. In response to this need, the University of Arkansas Cooperative Extension Service launched a program named Flag the Technology in 2011. This program uses color-coded flags as a visual alert of the herbicide trait technology within a farm field. The flag based program also serves to help avoid herbicide misapplication and prevent herbicide drift damage between fields with differing crop technologies. This program has been endorsed by Southern Weed Science Society of America and is attracting interest from across the USA, Canada, and Australia. However, flags have risk of misplacement or disappearance due to mischief or severe windstorms/thunderstorms, respectively. This presentation will discuss the design and development of a cloud-based, free application utilizing open-source technologies, called Flag the Technology Cloud (FTTCloud), for allowing agricultural stakeholders to color code their farm fields for indicating herbicide resistant technologies. The developed software utilizes modern web development practices, widely used design technologies, and basic geographic information system (GIS) based interactive interfaces for representing, color-coding, searching, and visualizing fields. This program has also been made compatible for a wider usability on different size devices- smartphones, tablets, desktops and laptops.
NASA Astrophysics Data System (ADS)
Kang, Sung-Ju; Kerton, C. R.
2014-01-01
KR 120 (Sh2-187) is a small Galactic HII region located at a distance of 1.4 kpc that shows evidence for triggered star formation in the surrounding molecular cloud. We present an analysis of the young stellar object (YSO) population of the molecular cloud as determined using a variety of classification techniques. YSO candidates are selected from the WISE all sky catalog and classified as Class I, Class II and Flat based on 1) spectral index, 2) color-color or color-magnitude plots, and 3) spectral energy distribution (SED) fits to radiative transfer models. We examine the discrepancies in YSO classification between the various techniques and explore how these discrepancies lead to uncertainty in such scientifically interesting quantities such as the ratio of Class I/Class II sources and the surface density of YSOs at various stages of evolution.
2015-05-08
Decades of satellite observations and astronaut photographs show that clouds dominate space-based views of Earth. One study based on nearly a decade of satellite data estimated that about 67 percent of Earth’s surface is typically covered by clouds. This is especially the case over the oceans, where other research shows less than 10 percent of the sky is completely clear of clouds at any one time. Over land, 30 percent of skies are completely cloud free. Earth’s cloudy nature is unmistakable in this global cloud fraction map, based on data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite. While MODIS collects enough data to make a new global map of cloudiness every day, this version of the map shows an average of all of the satellite’s cloud observations between July 2002 and April 2015. Colors range from dark blue (no clouds) to light blue (some clouds) to white (frequent clouds).
Quality Assessment and Comparison of Smartphone and Leica C10 Laser Scanner Based Point Clouds
NASA Astrophysics Data System (ADS)
Sirmacek, Beril; Lindenbergh, Roderik; Wang, Jinhu
2016-06-01
3D urban models are valuable for urban map generation, environment monitoring, safety planning and educational purposes. For 3D measurement of urban structures, generally airborne laser scanning sensors or multi-view satellite images are used as a data source. However, close-range sensors (such as terrestrial laser scanners) and low cost cameras (which can generate point clouds based on photogrammetry) can provide denser sampling of 3D surface geometry. Unfortunately, terrestrial laser scanning sensors are expensive and trained persons are needed to use them for point cloud acquisition. A potential effective 3D modelling can be generated based on a low cost smartphone sensor. Herein, we show examples of using smartphone camera images to generate 3D models of urban structures. We compare a smartphone based 3D model of an example structure with a terrestrial laser scanning point cloud of the structure. This comparison gives us opportunity to discuss the differences in terms of geometrical correctness, as well as the advantages, disadvantages and limitations in data acquisition and processing. We also discuss how smartphone based point clouds can help to solve further problems with 3D urban model generation in a practical way. We show that terrestrial laser scanning point clouds which do not have color information can be colored using smartphones. The experiments, discussions and scientific findings might be insightful for the future studies in fast, easy and low-cost 3D urban model generation field.
Three-dimensional reconstruction of indoor whole elements based on mobile LiDAR point cloud data
NASA Astrophysics Data System (ADS)
Gong, Yuejian; Mao, Wenbo; Bi, Jiantao; Ji, Wei; He, Zhanjun
2014-11-01
Ground-based LiDAR is one of the most effective city modeling tools at present, which has been widely used for three-dimensional reconstruction of outdoor objects. However, as for indoor objects, there are some technical bottlenecks due to lack of GPS signal. In this paper, based on the high-precision indoor point cloud data which was obtained by LiDAR, an international advanced indoor mobile measuring equipment, high -precision model was fulfilled for all indoor ancillary facilities. The point cloud data we employed also contain color feature, which is extracted by fusion with CCD images. Thus, it has both space geometric feature and spectral information which can be used for constructing objects' surface and restoring color and texture of the geometric model. Based on Autodesk CAD platform and with help of PointSence plug, three-dimensional reconstruction of indoor whole elements was realized. Specifically, Pointools Edit Pro was adopted to edit the point cloud, then different types of indoor point cloud data was processed, including data format conversion, outline extracting and texture mapping of the point cloud model. Finally, three-dimensional visualization of the real-world indoor was completed. Experiment results showed that high-precision 3D point cloud data obtained by indoor mobile measuring equipment can be used for indoor whole elements' 3-d reconstruction and that methods proposed in this paper can efficiently realize the 3 -d construction of indoor whole elements. Moreover, the modeling precision could be controlled within 5 cm, which was proved to be a satisfactory result.
Jiang, Lide; Wang, Menghua
2013-09-20
A new flag/masking scheme has been developed for identifying stray light and cloud shadow pixels that significantly impact the quality of satellite-derived ocean color products. Various case studies have been carried out to evaluate the performance of the new cloud contamination flag/masking scheme on ocean color products derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP). These include direct visual assessments, detailed quantitative case studies, objective statistic analyses, and global image examinations and comparisons. The National Oceanic and Atmospheric Administration (NOAA) Multisensor Level-1 to Level-2 (NOAA-MSL12) ocean color data processing system has been used in the study. The new stray light and cloud shadow identification method has been shown to outperform the current stray light flag in both valid data coverage and data quality of satellite-derived ocean color products. In addition, some cloud-related flags from the official VIIRS-SNPP data processing software, i.e., the Interface Data Processing System (IDPS), have been assessed. Although the data quality with the IDPS flags is comparable to that of the new flag implemented in the NOAA-MSL12 ocean color data processing system, the valid data coverage from the IDPS is significantly less than that from the NOAA-MSL12 using the new stray light and cloud shadow flag method. Thus, the IDPS flag/masking algorithms need to be refined and modified to reduce the pixel loss, e.g., the proposed new cloud contamination flag/masking can be implemented in IDPS VIIRS ocean color data processing.
Noctilucent cloud particle size determination based on multi-wavelength all-sky analysis
NASA Astrophysics Data System (ADS)
Ugolnikov, Oleg S.; Galkin, Alexey A.; Pilgaev, Sergey V.; Roldugin, Alexey V.
2017-10-01
The article deals with the analysis of color distribution in noctilucent clouds (NLC) in the sky based on multi-wavelength (RGB) CCD-photometry provided with the all-sky camera in Lovozero in the north of Russia (68.0°N, 35.1°E) during the bright expanded NLC performance in the night of August 12, 2016. Small changes in the NLC color across the sky are interpreted as the atmospheric absorption and extinction effects combined with the difference in the Mie scattering functions of NLC particles for the three color channels of the camera. The method described in this paper is used to find the effective monodisperse radius of particles about 55 nm. The result of these simple and cost-effective measurements is in good agreement with previous estimations of comparable accuracy. Non-spherical particles, Gaussian and lognormal distribution of the particle size are also considered.
CALIPSO Observations of Transatlantic Dust: Vertical Stratification and Effect of Clouds
NASA Technical Reports Server (NTRS)
Yang, Weidong; Marshak, Alexander; Varnai, Tamas; Kalashnikova, Olga V.; Kostinski, Alexander B.
2012-01-01
CALIOP nighttime measurements of lidar backscatter, color and depolarization ratios during the summer of 2007 are used to study transatlantic dust properties downwind of Saharan sources, and to examine the interaction of clouds and dust. We discuss the following findings: (1) while lidar backscatter doesn't change much with altitude in the Saharan Air Layer (SAL), depolarization and color ratios both increase with altitude in the SAL; (2) lidar backscatter and color ratio increase as dust is transported westward in the SAL; (3) the vertical lapse rate of dust depolarization ratio increases within SAL as plumes move westward; (4) nearby clouds barely affect the backscatter and color ratio of dust volumes within SAL but not so below SAL. Finally, (5) the odds of CALIOP finding dust below SAL next to clouds are about 2/3 of those far away from clouds. This feature, together with an apparent increase in depolarization ratio near clouds, indicates that particles in some dusty volumes lose asphericity in the humid air near clouds, and cannot be identified by CALIPSO as dust.
1988-08-08
A recent Hubble Space Telescope (HST) view reveals Uranus surrounded by its 4 major rings and 10 of its 17 known satellites. This false color image was generated by Erich Karoschka using data taken with Hubble's Near Infrared Camera and Multi-Object Spectrometer. The HST recently found about 20 clouds. The colors in the image indicate altitude. The green and blue regions show where the atmosphere is clear and can be penetrated by sunlight. In yellow and grey regions, the sunlight reflects from a higher haze or cloud layer. The orange and red colors indicate very high clouds, such as cirrus clouds on Earth.
Compression of 3D Point Clouds Using a Region-Adaptive Hierarchical Transform.
De Queiroz, Ricardo; Chou, Philip A
2016-06-01
In free-viewpoint video, there is a recent trend to represent scene objects as solids rather than using multiple depth maps. Point clouds have been used in computer graphics for a long time and with the recent possibility of real time capturing and rendering, point clouds have been favored over meshes in order to save computation. Each point in the cloud is associated with its 3D position and its color. We devise a method to compress the colors in point clouds which is based on a hierarchical transform and arithmetic coding. The transform is a hierarchical sub-band transform that resembles an adaptive variation of a Haar wavelet. The arithmetic encoding of the coefficients assumes Laplace distributions, one per sub-band. The Laplace parameter for each distribution is transmitted to the decoder using a custom method. The geometry of the point cloud is encoded using the well-established octtree scanning. Results show that the proposed solution performs comparably to the current state-of-the-art, in many occasions outperforming it, while being much more computationally efficient. We believe this work represents the state-of-the-art in intra-frame compression of point clouds for real-time 3D video.
HUBBLE FINDS MANY BRIGHT CLOUDS ON URANUS
NASA Technical Reports Server (NTRS)
2002-01-01
A recent Hubble Space Telescope view reveals Uranus surrounded by its four major rings and by 10 of its 17 known satellites. This false-color image was generated by Erich Karkoschka using data taken on August 8, 1998, with Hubble's Near Infrared Camera and Multi-Object Spectrometer. Hubble recently found about 20 clouds - nearly as many clouds on Uranus as the previous total in the history of modern observations. The orange-colored clouds near the prominent bright band circle the planet at more than 300 mph (500 km/h), according to team member Heidi Hammel (MIT). One of the clouds on the right-hand side is brighter than any other cloud ever seen on Uranus. The colors in the image indicate altitude. Team member Mark Marley (New Mexico State University) reports that green and blue regions show where the atmosphere is clear and sunlight can penetrate deep into Uranus. In yellow and grey regions the sunlight reflects from a higher haze or cloud layer. Orange and red colors indicate very high clouds, such as cirrus clouds on Earth. The Hubble image is one of the first images revealing the precession of the brightest ring with respect to a previous image [LINK to PRC97-36a]. Precession makes the fainter part of the ring (currently on the upper right-hand side) slide around Uranus once every nine months. The fading is caused by ring particles crowding and hiding each other on one side of their eight-hour orbit around Uranus. The blue, green and red components of this false-color image correspond to exposures taken at near-infrared wavelengths of 0.9, 1.1, and 1.7 micrometers. Thus, regions on Uranus appearing blue, for example, reflect more sunlight at 0.9 micrometer than at the longer wavelengths. Apparent colors on Uranus are caused by absorption of methane gas in its atmosphere, an effect comparable to absorption in our atmosphere which can make distant clouds appear red. Credit: Erich Karkoschka (University of Arizona) and NASA
- and Graph-Based Point Cloud Segmentation of 3d Scenes Using Perceptual Grouping Laws
NASA Astrophysics Data System (ADS)
Xu, Y.; Hoegner, L.; Tuttas, S.; Stilla, U.
2017-05-01
Segmentation is the fundamental step for recognizing and extracting objects from point clouds of 3D scene. In this paper, we present a strategy for point cloud segmentation using voxel structure and graph-based clustering with perceptual grouping laws, which allows a learning-free and completely automatic but parametric solution for segmenting 3D point cloud. To speak precisely, two segmentation methods utilizing voxel and supervoxel structures are reported and tested. The voxel-based data structure can increase efficiency and robustness of the segmentation process, suppressing the negative effect of noise, outliers, and uneven points densities. The clustering of voxels and supervoxel is carried out using graph theory on the basis of the local contextual information, which commonly conducted utilizing merely pairwise information in conventional clustering algorithms. By the use of perceptual laws, our method conducts the segmentation in a pure geometric way avoiding the use of RGB color and intensity information, so that it can be applied to more general applications. Experiments using different datasets have demonstrated that our proposed methods can achieve good results, especially for complex scenes and nonplanar surfaces of objects. Quantitative comparisons between our methods and other representative segmentation methods also confirms the effectiveness and efficiency of our proposals.
The Many Colors and Shapes of Cloud
NASA Astrophysics Data System (ADS)
Yeh, James T.
While many enterprises and business entities are deploying and exploiting Cloud Computing, the academic institutes and researchers are also busy trying to wrestle this beast and put a leash on this possible paradigm changing computing model. Many have argued that Cloud Computing is nothing more than a name change of Utility Computing. Others have argued that Cloud Computing is a revolutionary change of the computing architecture. So it has been difficult to put a boundary of what is in Cloud Computing, and what is not. I assert that it is equally difficult to find a group of people who would agree on even the definition of Cloud Computing. In actuality, may be all that arguments are not necessary, as Clouds have many shapes and colors. In this presentation, the speaker will attempt to illustrate that the shape and the color of the cloud depend very much on the business goals one intends to achieve. It will be a very rich territory for both the businesses to take the advantage of the benefits of Cloud Computing and the academia to integrate the technology research and business research.
Iridescent clouds and distorted coronas.
Laven, Philip
2017-07-01
Near-forward scattering of sunlight generates coronas and iridescence on clouds. Coronas are caused by diffraction, whereas iridescence is less easily explained. Iridescence often appears as bands of color aligned with the edges of clouds or as apparently random patches of color on clouds. This paper suggests that iridescence is due to interference between light that has been diffracted by a spherical droplet of water and light that has been transmitted through the same droplet.
NASA Astrophysics Data System (ADS)
Hess, M. R.; Petrovic, V.; Kuester, F.
2017-08-01
Digital documentation of cultural heritage structures is increasingly more common through the application of different imaging techniques. Many works have focused on the application of laser scanning and photogrammetry techniques for the acquisition of threedimensional (3D) geometry detailing cultural heritage sites and structures. With an abundance of these 3D data assets, there must be a digital environment where these data can be visualized and analyzed. Presented here is a feedback driven visualization framework that seamlessly enables interactive exploration and manipulation of massive point cloud data. The focus of this work is on the classification of different building materials with the goal of building more accurate as-built information models of historical structures. User defined functions have been tested within the interactive point cloud visualization framework to evaluate automated and semi-automated classification of 3D point data. These functions include decisions based on observed color, laser intensity, normal vector or local surface geometry. Multiple case studies are presented here to demonstrate the flexibility and utility of the presented point cloud visualization framework to achieve classification objectives.
Large Magellanic Cloud Near-infrared Synoptic Survey. V. Period–Luminosity Relations of Miras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Wenlong; Macri, Lucas M.; He, Shiyuan
We study the near-infrared properties of 690 Mira candidates in the central region of the Large Magellanic Cloud, based on time-series observations at JHK{sub s}. We use densely sampled I -band observations from the OGLE project to generate template light curves in the near-infrared and derive robust mean magnitudes at those wavelengths. We obtain near-infrared Period–Luminosity relations for oxygen-rich Miras with a scatter as low as 0.12 mag at K{sub s}. We study the Period–Luminosity–Color relations and the color excesses of carbon-rich Miras, which show evidence for a substantially different reddening law.
Atmospheric Motion in Jupiter Northern Hemisphere
2000-09-25
True-color (left) and false-color (right) mosaics of Jupiter's northern hemisphere between 10 and 50 degrees latitude. Jupiter's atmospheric motions are controlled by alternating eastward and westward bands of air between Jupiter's equator and polar regions. The direction and speed of these bands influences the color and texture of the clouds seen in this mosaic. The high and thin clouds are represented by light blue, deep clouds are reddish, and high and thick clouds are white. A high haze overlying a clear, deep atmosphere is represented by dark purple. This image was taken by NASA's Galileo spacecraft on April 3, 1997 at a distance of 1.4 million kilometers (.86 million miles). http://photojournal.jpl.nasa.gov/catalog/PIA03000
NASA Astrophysics Data System (ADS)
Bonduel, M.; Bassier, M.; Vergauwen, M.; Pauwels, P.; Klein, R.
2017-11-01
The use of Building Information Modeling (BIM) for existing buildings based on point clouds is increasing. Standardized geometric quality assessment of the BIMs is needed to make them more reliable and thus reusable for future users. First, available literature on the subject is studied. Next, an initial proposal for a standardized geometric quality assessment is presented. Finally, this method is tested and evaluated with a case study. The number of specifications on BIM relating to existing buildings is limited. The Levels of Accuracy (LOA) specification of the USIBD provides definitions and suggestions regarding geometric model accuracy, but lacks a standardized assessment method. A deviation analysis is found to be dependent on (1) the used mathematical model, (2) the density of the point clouds and (3) the order of comparison. Results of the analysis can be graphical and numerical. An analysis on macro (building) and micro (BIM object) scale is necessary. On macro scale, the complete model is compared to the original point cloud and vice versa to get an overview of the general model quality. The graphical results show occluded zones and non-modeled objects respectively. Colored point clouds are derived from this analysis and integrated in the BIM. On micro scale, the relevant surface parts are extracted per BIM object and compared to the complete point cloud. Occluded zones are extracted based on a maximum deviation. What remains is classified according to the LOA specification. The numerical results are integrated in the BIM with the use of object parameters.
Peering Deep into Jupiter Atmosphere
2013-03-14
The dark hot spot in this false-color image from NASA Cassini spacecraft is a window deep into Jupiter atmosphere. All around it are layers of higher clouds, with colors indicating which layer of the atmosphere the clouds are in.
1998-06-04
This processed color image of Jupiter was produced in 1990 by the U.S. Geological Survey from a Voyager image captured in 1979. Zones of light-colored, ascending clouds alternate with bands of dark, descending clouds. http://photojournal.jpl.nasa.gov/catalog/PIA00343
NASA Technical Reports Server (NTRS)
2002-01-01
In honor of NASA Hubble Space Telescope's eighth anniversary, we have GIFt wrapped Saturn in vivid colors. Actually, this image is courtesy of the new Near Infrared Camera and Multi-Object Spectrometer (NICMOS), which has taken its first peek at Saturn. The false-color image - taken Jan. 4, 1998 - shows the planet's reflected infrared light. This view provides detailed information on the clouds and hazes in Saturn's atmosphere. The blue colors indicate a clear atmosphere down to a main cloud layer. Different shadings of blue indicate variations in the cloud particles, in size or chemical composition. The cloud particles are believed to be ammonia ice crystals. Most of the northern hemisphere that is visible above the rings is relatively clear. The dark region around the south pole at the bottom indicates a big hole in the main cloud layer. The green and yellow colors indicate a haze above the main cloud layer. The haze is thin where the colors are green but thick where they are yellow. Most of the southern hemisphere (the lower part of Saturn) is quite hazy. These layers are aligned with latitude lines, due to Saturn's east-west winds. The red and orange colors indicate clouds reaching up high into the atmosphere. Red clouds are even higher than orange clouds. The densest regions of two storms near Saturn's equator appear white. On Earth, the storms with the highest clouds are also found in tropical latitudes. The smaller storm on the left is about as large as the Earth, and larger storms have been recorded on Saturn in 1990 and 1994. The rings, made up of chunks of ice, are as white as images of ice taken in visible light. However, in the infrared, water absorption causes various colorations. The most obvious is the brown color of the innermost ring. The rings cast their shadow onto Saturn. The bright line seen within this shadow is sunlight shining through the Cassini Division, the separation between the two bright rings. It is best observed on the left side, just above the rings. This view is possible due to a rare geometry during the observation. The next time this is observable from Earth will be in 2006. An accurate investigation of the ring's shadow also shows sunlight shining through the Encke Gap, a thin division very close to the outer edge of the ring system. Two of Saturn's satellites were recorded, Dione on the lower left and Tethys on the upper right. Tethys is just ending its transit across the disk of Saturn. They appear in different colors, yellow and green, indicating different conditions on their icy surfaces. Wavelengths: A color image consists of three exposures (or three film layers). For visible true-color images, the wavelengths of these three exposures are 0.4, 0.5, and 0.6 micrometers for blue, green, and red light, respectively. This Saturn image was taken at longer infrared wavelengths of 1.0, 1.8, and 2.1 micrometers, displayed as blue, green, and red. Reflected sunlight is seen at all these wavelengths, since Saturn's own heat glows only at wavelengths above 4 micrometers. Image credit: Erich Karkoschka (University of Arizona), and NASA
Simulating glories and cloudbows in color.
Gedzelman, Stanley D
2003-01-20
Glories and cloudbows are simulated in color by use of the Mie scattering theory of light upwelling from small-droplet clouds of finite optical thickness embedded in a Rayleigh scattering atmosphere. Glories are generally more distinct for clouds of droplets of as much as approximately 10 microm in radius. As droplet radius increases, the glory shrinks and becomes less prominent, whereas the cloudbow becomes more distinct and eventually colorful. Cloudbows typically consist of a broad, almost white band with a slightly orange outer edge and a dark inner band. Multiple light and dark bands that are related to supernumerary rainbows first appear inside the cloudbow as droplet radius increases above approximately 10 microm and gradually become more prominent when all droplets are the same size. Bright glories with multiple rings and high color purity are simulated when all droplets are the same size and every light beam is scattered just once. Color purity decreases and outer rings fade as the range of droplet sizes widens and when skylight, reflected light from the ground or background, and multiply scattered light from the cloud are included. Consequently, the brightest and most colorful glories and bows are seen when the observer is near a cloud or a rain swath with optical thickness of approximately 0.25 that consists of uniform-sized drops and when a dark or shaded background lies a short distance behind the cloud.
NASA Astrophysics Data System (ADS)
Jethva, Hiren; Torres, Omar; Remer, Lorraine; Redemann, Jens; Livingston, John; Dunagan, Stephen; Shinozuka, Yohei; Kacenelenbogen, Meloe; Segal Rosenheimer, Michal; Spurr, Rob
2016-10-01
We present the validation analysis of above-cloud aerosol optical depth (ACAOD) retrieved from the "color ratio" method applied to MODIS cloudy-sky reflectance measurements using the limited direct measurements made by NASA's airborne Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) sensors. A thorough search of the airborne database collection revealed a total of five significant events in which an airborne sun photometer, coincident with the MODIS overpass, observed partially absorbing aerosols emitted from agricultural biomass burning, dust, and wildfires over a low-level cloud deck during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS 2013 campaigns, respectively. The co-located satellite-airborne matchups revealed a good agreement (root-mean-square difference < 0.1), with most matchups falling within the estimated uncertainties associated the MODIS retrievals (about -10 to +50 %). The co-retrieved cloud optical depth was comparable to that of the MODIS operational cloud product for ACE-ASIA and SEAC4RS, however, higher by 30-50 % for the SAFARI-2000 case study. The reason for this discrepancy could be attributed to the distinct aerosol optical properties encountered during respective campaigns. A brief discussion on the sources of uncertainty in the satellite-based ACAOD retrieval and co-location procedure is presented. Field experiments dedicated to making direct measurements of aerosols above cloud are needed for the extensive validation of satellite-based retrievals.
NASA Technical Reports Server (NTRS)
Jethva, Hiren; Torres, Omar; Remer, Lorraine; Redemann, Jens; Livingston, John; Dunagan, Stephen; Shinozuka, Yohei; Kacenelenbogen, Meloe; Segal Rozenhaimer, Michal; Spurr, Rob
2016-01-01
We present the validation analysis of above-cloud aerosol optical depth (ACAOD) retrieved from the color ratio method applied to MODIS cloudy-sky reflectance measurements using the limited direct measurements made by NASAs airborne Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) sensors. A thorough search of the airborne database collection revealed a total of five significant events in which an airborne sun photometer, coincident with the MODIS overpass, observed partially absorbing aerosols emitted from agricultural biomass burning, dust, and wildfires over a low-level cloud deck during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS 2013 campaigns, respectively. The co-located satellite-airborne match ups revealed a good agreement (root-mean-square difference less than 0.1), with most match ups falling within the estimated uncertainties associated with the MODIS retrievals (about -10 to +50 ). The co-retrieved cloud optical depth was comparable to that of the MODIS operational cloud product for ACE-ASIA and SEAC4RS, however, higher by 30-50% for the SAFARI-2000 case study. The reason for this discrepancy could be attributed to the distinct aerosol optical properties encountered during respective campaigns. A brief discussion on the sources of uncertainty in the satellite-based ACAOD retrieval and co-location procedure is presented. Field experiments dedicated to making direct measurements of aerosols above cloud are needed for the extensive validation of satellite based retrievals.
Ammonium Hydrosulfide: Coloring Jupiter's Clouds
NASA Astrophysics Data System (ADS)
Loeffler, Mark J.; Hudson, Reggie L.; Chanover, Nancy J.; Simon, Amy A.
2015-11-01
The appearance and composition of Jupiter’s Great Red Spot (GRS) have been studied for over a century, yet there still is no consensus for what is causing the GRS’s color. As the GRS is believed to originate in tropospheric clouds, it seems likely that one or more cloud components may contribute to the GRS's color. Recently, we have begun to investigate whether either ammonium hydrosulfide (NH4SH), a predicted cloud component, or its radiation-chemical products can produce color and/or an ultraviolet-visible spectrum similar to what has been observed on Jupiter via remote sensing (e.g., Simon et al., 2015). Our initial experiments relied on infrared spectroscopy to quantify the radiolytic and thermal stability of NH4SH and to identify the new chemical products formed during MeV ion irradiation (Loeffler et al., 2015). This DPS presentation will cover some of our most recent results detailing the ultraviolet-visible spectral and color changes observed during irradiation and post-irradiation warming of NH4SH ices. This work is funded by NASA’s Outer Planets and Planetary Atmospheres programs.
Minimalist model of ice microphysics in mixed-phase stratiform clouds
NASA Astrophysics Data System (ADS)
Yang, F.; Ovchinnikov, M.; Shaw, R. A.
2013-12-01
The question of whether persistent ice crystal precipitation from supercooled layer clouds can be explained by time-dependent, stochastic ice nucleation is explored using an approximate, analytical model and a large-eddy simulation (LES) cloud model. The updraft velocity in the cloud defines an accumulation zone, where small ice particles cannot fall out until they are large enough, which will increase the residence time of ice particles in the cloud. Ice particles reach a quasi-steady state between growth by vapor deposition and fall speed at cloud base. The analytical model predicts that ice water content (wi) has a 2.5 power-law relationship with ice number concentration (ni). wi and ni from a LES cloud model with stochastic ice nucleation confirm the 2.5 power-law relationship, and initial indications of the scaling law are observed in data from the Indirect and Semi-Direct Aerosol Campaign. The prefactor of the power law is proportional to the ice nucleation rate and therefore provides a quantitative link to observations of ice microphysical properties. Ice water content (wi) and ice number concentration (ni) relationship from LES. a and c: Accumulation zone region; b and d: Selective accumulation zone region. Black lines in c and d are best fitted 2.5 slope lines. Colors in Figures a and b represent updraft velocity, while colors in c and d represent altitude. The cloud base and top are at about 600 m and 800 m, respectively. Ice water content (wi) and ice number concentration (ni) relationship for two ice nucleation rates. Blue points are from LES with low ice nucleation rate and red points with high ice nucleation rate. Solid and dashed lines are best fitted 2.5 slope lines.
2017-03-24
This enhanced-color image of a mysterious dark spot on Jupiter seems to reveal a Jovian "galaxy" of swirling storms. Juno acquired this JunoCam image on Feb. 2, 2017, at 5:13 a.m. PDT (8:13 a.m. EDT), at an altitude of 9,000 miles (14,500 kilometers) above the giant planet's cloud tops. This publicly selected target was simply titled "Dark Spot." In ground-based images it was difficult to tell that it is a dark storm. Citizen scientist Roman Tkachenko enhanced the color to bring out the rich detail in the storm and surrounding clouds. Just south of the dark storm is a bright, oval-shaped storm with high, bright, white clouds, reminiscent of a swirling galaxy. As a final touch, he rotated the image 90 degrees, turning the picture into a work of art. http://photojournal.jpl.nasa.gov/catalog/PIA21386
NASA Astrophysics Data System (ADS)
Krinitskiy, Mikhail; Sinitsyn, Alexey; Gulev, Sergey
2014-05-01
Cloud fraction is a critical parameter for the accurate estimation of short-wave and long-wave radiation - one of the most important surface fluxes over sea and land. Massive estimates of the total cloud cover as well as cloud amount for different layers of clouds are available from visual observations, satellite measurements and reanalyses. However, these data are subject of different uncertainties and need continuous validation against highly accurate in-situ measurements. Sky imaging with high resolution fish eye camera provides an excellent opportunity for collecting cloud cover data supplemented with additional characteristics hardly available from routine visual observations (e.g. structure of cloud cover under broken cloud conditions, parameters of distribution of cloud dimensions). We present operational automatic observational package which is based on fish eye camera taking sky images with high resolution (up to 1Hz) in time and a spatial resolution of 968x648px. This spatial resolution has been justified as an optimal by several sensitivity experiments. For the use of the package at research vessel when the horizontal positioning becomes critical, a special extension of the hardware and software to the package has been developed. These modules provide the explicit detection of the optimal moment for shooting. For the post processing of sky images we developed a software realizing the algorithm of the filtering of sunburn effect in case of small and moderate could cover and broken cloud conditions. The same algorithm accurately quantifies the cloud fraction by analyzing color mixture for each point and introducing the so-called "grayness rate index" for every pixel. The accuracy of the algorithm has been tested using the data collected during several campaigns in 2005-2011 in the North Atlantic Ocean. The collection of images included more than 3000 images for different cloud conditions supplied with observations of standard parameters. The system is fully autonomous and has a block for digital data collection at the hard disk. The system has been tested for a wide range of open ocean cloud conditions and we will demonstrate some pilot results of data processing and physical interpretation of fractional cloud cover estimation.
CALIPSO Observations of Transatlantic Dust: Vertical Stratification and Effect of Clouds
NASA Technical Reports Server (NTRS)
Yang, Weidong; Marshak, Alexander; Varnai, Tamas; Kalashnikova, Olga V.; Kostinski, Alexander B.
2014-01-01
We use CALIOP nighttime measurements of lidar backscatter, color and depolarization ratios, as well as particulate retrievals during the summer of 2007 to study transatlantic dust properties downwind of Saharan sources, and to examine the influence of nearby clouds on dust. Our analysis suggests that (1) under clear skies, while lidar backscatter and color ratio do not change much with altitude and longitude in the Saharan Air Layer (SAL), depolarization ratio increases with altitude and decreases westward in the SAL (2) the vertical lapse rate of dust depolarization ratio, introduced here, increases within SAL as plumes move westward (3) nearby clouds barely affect the backscatter and color ratio of dust volumes within SAL but not so below SAL. Moreover, the presence of nearby clouds tends to decrease the depolarization of dust volumes within SAL. Finally, (4) the odds of CALIOP finding dust below SAL next to clouds are about of those far away from clouds. This feature, together with an apparent increase in depolarization ratio near clouds, indicates that particles in some dust volumes loose asphericity in the humid air near clouds, and cannot be identified by CALIPSO as dust.
NASA Technical Reports Server (NTRS)
1998-01-01
In honor of NASA Hubble Space Telescope's eighth anniversary, we have gift wrapped Saturn in vivid colors. Actually, this image is courtesy of the new Near Infrared Camera and Multi-Object Spectrometer (NICMOS), which has taken its first peek at Saturn. The false-color image - taken Jan. 4, 1998 - shows the planet's reflected infrared light. This view provides detailed information on the clouds and hazes in Saturn's atmosphere.
The blue colors indicate a clear atmosphere down to a main cloud layer. Different shadings of blue indicate variations in the cloud particles, in size or chemical composition. The cloud particles are believed to be ammonia ice crystals. Most of the northern hemisphere that is visible above the rings is relatively clear. The dark region around the south pole at the bottom indicates a big hole in the main cloud layer.The green and yellow colors indicate a haze above the main cloud layer. The haze is thin where the colors are green but thick where they are yellow. Most of the southern hemisphere (the lower part of Saturn) is quite hazy. These layers are aligned with latitude lines, due to Saturn's east-west winds.The red and orange colors indicate clouds reaching up high into the atmosphere. Red clouds are even higher than orange clouds. The densest regions of two storms near Saturn's equator appear white. On Earth, the storms with the highest clouds are also found in tropical latitudes. The smaller storm on the left is about as large as the Earth, and larger storms have been recorded on Saturn in 1990 and 1994.The rings, made up of chunks of ice, are as white as images of ice taken in visible light. However, in the infrared, water absorption causes various colorations. The most obvious is the brown color of the innermost ring. The rings cast their shadow onto Saturn. The bright line seen within this shadow is sunlight shining through the Cassini Division, the separation between the two bright rings. It is best observed on the left side, just above the rings. This view is possible due to a rare geometry during the observation. The next time this observable from Earth will be in 2006. An accurate investigation of the ring's shadow also shows sunlight shining through the Encke Gap, a thin division very close to the outer edge of the ring system.Two of Saturn's satellites were recorded, Dione on the lower left and Tethys on the upper right. Tethys is just ending its transit across the disk of Saturn. They appear in different colors, yellow and green, indicating different conditions on their icy surfaces.Wavelengths: A color image consists of three exposures (or three film layers). For visible true-color images, the wavelengths of these three exposures are 0.4, 0.5, and 0.6 micrometers for blue, green, and red light, respectively. This Saturn image was taken at longer infrared wavelengths of 1.0, 1.8, and 2.1 micrometers, displayed as blue, green, and red. Reflected sunlight is seen at all these wavelengths, since Saturn's own heat glows only at wavelengths above 4 micrometers.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/NASA Technical Reports Server (NTRS)
Broekhoven-Fiene, Hannah; Matthews, Brenda C.; Harvey, Paul M.; Gutermuth, Robert A.; Huard, Tracy L.; Tothill, Nicholas F. H.; Nutter, David; Bourke, Tyler L.; DiFrancesco, James; Jorgensen, Jes K.;
2014-01-01
We present observations of the Auriga-California Molecular Cloud (AMC) at 3.6, 4.5, 5.8, 8.0, 24, 70 and 160 micrometers observed with the IRAC and MIPS detectors as part of the Spitzer Gould Belt Legacy Survey. The total mapped areas are 2.5 deg(exp 2) with IRAC and 10.47 deg2 with MIPS. This giant molecular cloud is one of two in the nearby Gould Belt of star-forming regions, the other being the Orion A Molecular Cloud (OMC). We compare source counts, colors and magnitudes in our observed region to a subset of the SWIRE data that was processed through our pipeline. Using color-magnitude and color-color diagrams, we find evidence for a substantial population of 166 young stellar objects (YSOs) in the cloud, many of which were previously unknown. Most of this population is concentrated around the LkH(alpha) 101 cluster and the filament extending from it. We present a quantitative description of the degree of clustering and discuss the fraction of YSOs in the region with disks relative to an estimate of the diskless YSO population. Although the AMC is similar in mass, size and distance to the OMC, it is forming about 15 - 20 times fewer stars.
1986-01-14
Range : 12.9 million miles (8.0 million miles) P-29468C This false color Voyager photograph of Uranus shows a discrete cloud seen as a bright streak near the planets limb. The cloud visible here is the most prominent feature seen in a series of Voyager images designed to track atmospheric motions. The occasional donut shaped features, including one at the bottom, are shadows cast by dust on the camera optics. The picture is a highly processed composite of three images. The processing necessary to bring out the faint features on the planet also brings out these camera blemishes. The three seperate images used where shot through violet, blue, and orange filters. Each color image showd the cloud to a different degree; because they were not exposed at the same time , the images were processed to provide a good spatial match. In a true color image, the cloud would be barely discernable; the false color helps to bring out additional details. The different colors imply variations in vertical structure, but as of yet it is not possible to be specific about such differences. One possiblity is that the uranian atmosphere may contain smog like constituents, in which case some color differences may represent differences in how these molecules are distributed.
NASA Technical Reports Server (NTRS)
2007-01-01
Thick haze collected over the Beijing region in late March 2007. Earlier that month, the BBC News reported that an international team of scientists had documented how increasing pollution in China led to decreasing rainfall over the region. The Moderate Resolution Imaging Spectroradiometer (MODIS) flying onboard the Aqua satellite captured these images of the Beijing region on March 22, 2007. The top image is a 'true-color' picture, similar to a digital photo. The bottom, 'false-color,' image uses a combination of visible and infrared light to more clearly show vegetation, water, and clouds. Even sparse vegetation appears bright green, while water appears deep blue (bright blue when tinged with sediment). Clouds dominated by water droplets appear white, while clouds made of ice crystals appear light blue. The false-color image highlights water bodies, perhaps aqua-culture ponds, that are all but invisible in the true-color image, especially along the shores of the Bo Hai. While vegetation and water show up more clearly in the false-color image, haze is much more transparent. Although dingy gray haze dominates the true-color picture, it is all but invisible in the false-color view. The haze 'disappears' in the infrared-enhanced image because tiny haze particles do not reflect longer-wavelength infrared light very well, making this type of image useful for distinguishing haze from clouds. The bank of clouds in the upper right corner shows up clearly in both pictures. As China industrializes, factories, power plants, and automobiles all contribute to pollution in the region. In examining pollutants and rainfall, the team of scientists examined records covering more than 50 years, concluding that pollution decreased precipitation at Mount Hua near Xi'an in central China. They concluded that when conditions are so hazy that visibility is reduced to less than 8 kilometers (5 miles), hilly precipitation can drop by 30 to 50 percent. When moist air passes over mountains, it usually cools and forms raindrops, but heavy pollutant concentrations cause the clouds to hang on to their moisture.
View of Earth from Apollo 10 taken from reproduction of tv transmission
NASA Technical Reports Server (NTRS)
1969-01-01
A cloud-covered earth from about 12,800 nautical miles away is seen in this color reproduction taken from the second TV transmission made by the color television camera onboard the Apollo 10 spacecraft. The United States and Mexico are located at right center. The more cloud-free area is the western and southwestern part of the U.S. and northern Mexico. Clouds cover the eastern half of the U.S.
2010-09-21
This graphic, constructed from data obtained by NASA Cassini spacecraft, shows the percentage of cloud coverage across the surface of Saturn moon Titan. The color scale from black to yellow signifies no cloud coverage to complete cloud coverage.
Improved ocean-color remote sensing in the Arctic using the POLYMER algorithm
NASA Astrophysics Data System (ADS)
Frouin, Robert; Deschamps, Pierre-Yves; Ramon, Didier; Steinmetz, François
2012-10-01
Atmospheric correction of ocean-color imagery in the Arctic brings some specific challenges that the standard atmospheric correction algorithm does not address, namely low solar elevation, high cloud frequency, multi-layered polar clouds, presence of ice in the field-of-view, and adjacency effects from highly reflecting surfaces covered by snow and ice and from clouds. The challenges may be addressed using a flexible atmospheric correction algorithm, referred to as POLYMER (Steinmetz and al., 2011). This algorithm does not use a specific aerosol model, but fits the atmospheric reflectance by a polynomial with a non spectral term that accounts for any non spectral scattering (clouds, coarse aerosol mode) or reflection (glitter, whitecaps, small ice surfaces within the instrument field of view), a spectral term with a law in wavelength to the power -1 (fine aerosol mode), and a spectral term with a law in wavelength to the power -4 (molecular scattering, adjacency effects from clouds and white surfaces). Tests are performed on selected MERIS imagery acquired over Arctic Seas. The derived ocean properties, i.e., marine reflectance and chlorophyll concentration, are compared with those obtained with the standard MEGS algorithm. The POLYMER estimates are more realistic in regions affected by the ice environment, e.g., chlorophyll concentration is higher near the ice edge, and spatial coverage is substantially increased. Good retrievals are obtained in the presence of thin clouds, with ocean-color features exhibiting spatial continuity from clear to cloudy regions. The POLYMER estimates of marine reflectance agree better with in situ measurements than the MEGS estimates. Biases are 0.001 or less in magnitude, except at 412 and 443 nm, where they reach 0.005 and 0.002, respectively, and root-mean-squared difference decreases from 0.006 at 412 nm to less than 0.001 at 620 and 665 nm. A first application to MODIS imagery is presented, revealing that the POLYMER algorithm is robust when pixels are contaminated by sea ice.
2.5D multi-view gait recognition based on point cloud registration.
Tang, Jin; Luo, Jian; Tjahjadi, Tardi; Gao, Yan
2014-03-28
This paper presents a method for modeling a 2.5-dimensional (2.5D) human body and extracting the gait features for identifying the human subject. To achieve view-invariant gait recognition, a multi-view synthesizing method based on point cloud registration (MVSM) to generate multi-view training galleries is proposed. The concept of a density and curvature-based Color Gait Curvature Image is introduced to map 2.5D data onto a 2D space to enable data dimension reduction by discrete cosine transform and 2D principle component analysis. Gait recognition is achieved via a 2.5D view-invariant gait recognition method based on point cloud registration. Experimental results on the in-house database captured by a Microsoft Kinect camera show a significant performance gain when using MVSM.
Web-based CERES Clouds QC Property Viewing Tool
NASA Astrophysics Data System (ADS)
Smith, R. A.; Chu, C.; Sun-Mack, S.; Chen, Y.; Heckert, E.; Minnis, P.
2014-12-01
This presentation will display the capabilities of a web-based CERES cloud property viewer. Terra data will be chosen for examples. It will demonstrate viewing of cloud properties in gridded global maps, histograms, time series displays, latitudinal zonal images, binned data charts, data frequency graphs, and ISCCP plots. Images can be manipulated by the user to narrow boundaries of the map as well as color bars and value ranges, compare datasets, view data values, and more. Other atmospheric studies groups will be encouraged to put their data into the underlying NetCDF data format and view their data with the tool. A laptop will hopefully be available to allow conference attendees to try navigating the tool.
NASA Technical Reports Server (NTRS)
2002-01-01
This spectacular Moderate Resolution Imaging Spectroradiometer (MODIS) 'blue marble' image is based on the most detailed collection of true-color imagery of the entire Earth to date. Using a collection of satellite-based observations, scientists and visualizers stitched together months of observations of the land surface, oceans, sea ice, and clouds into a seamless, true-color mosaic of every square kilometer (.386 square mile) of our planet. Most of the information contained in this image came from MODIS, illustrating MODIS' outstanding capacity to act as an integrated tool for observing a variety of terrestrial, oceanic, and atmospheric features of the Earth. The land and coastal ocean portions of this image is based on surface observations collected from June through September 2001 and combined, or composited, every eight days to compensate for clouds that might block the satellite's view on any single day. Global ocean color (or chlorophyll) data was used to simulate the ocean surface. MODIS doesn't measure 3-D features of the Earth, so the surface observations were draped over topographic data provided by the U.S. Geological Survey EROS Data Center. MODIS observations of polar sea ice were combined with observations of Antarctica made by the National Oceanic and Atmospheric Administration's AVHRR sensor-the Advanced Very High Resolution Radiometer. The cloud image is a composite of two days of MODIS imagery collected in visible light wavelengths and a third day of thermal infra-red imagery over the poles. A large collection of imagery based on the blue marble in a variety of sizes and formats, including animations and the full (1 km) resolution imagery, is available at the Blue Marble page. Image by Reto Stockli, Render by Robert Simmon. Based on data from the MODIS Science Team
Jupiter's Colorful Cloud Belts
2018-01-12
Colorful swirling cloud belts dominate Jupiter's southern hemisphere in this image captured by NASA's Juno spacecraft. Jupiter appears in this color-enhanced image as a tapestry of vibrant cloud bands and storms. The dark region in the far left is called the South Temperate Belt. Intersecting the belt is a ghost-like feature of slithering white clouds. This is the largest feature in Jupiter's low latitudes that's a cyclone (rotating with clockwise motion). This image was taken on Dec. 16, 2017 at 10:12 PST (1:12 p.m. EST), as Juno performed its tenth close flyby of Jupiter. At the time the image was taken, the spacecraft was about 8,453 miles (13,604 kilometers) from the tops of the clouds of the planet at a latitude of 27.9 degrees south. The spatial scale in this image is 5.6 miles/pixel (9.1 kilometers/pixel). Citizen scientist Kevin M. Gill processed this image using data from the JunoCam imager. https://photojournal.jpl.nasa.gov/catalog/PIA21974
NASA Technical Reports Server (NTRS)
Duda, James L.; Barth, Suzanna C
2005-01-01
The VIIRS sensor provides measurements for 22 Environmental Data Records (EDRs) addressing the atmosphere, ocean surface temperature, ocean color, land parameters, aerosols, imaging for clouds and ice, and more. That is, the VIIRS collects visible and infrared radiometric data of the Earth's atmosphere, ocean, and land surfaces. Data types include atmospheric, clouds, Earth radiation budget, land/water and sea surface temperature, ocean color, and low light imagery. This wide scope of measurements calls for the preparation of a multiplicity of Algorithm Theoretical Basis Documents (ATBDs), and, additionally, for intermediate products such as cloud mask, et al. Furthermore, the VIIRS interacts with three or more other sensors. This paper addresses selected and crucial elements of the process being used to convert and test an immense volume of a maturing and changing science code to the initial operational source code in preparation for launch of NPP. The integrity of the original science code is maintained and enhanced via baseline comparisons when re-hosted, in addition to multiple planned code performance reviews.
2009-06-03
Lots of clouds are visible in this infrared image of Saturn's moon Titan. These clouds form and move much like those on Earth, but in a much slower, more lingering fashion, new results from NASA's Cassini spacecraft show. Scientists have monitored Titan's atmosphere for three-and-a-half years, between July 2004 and December 2007, and observed more than 200 clouds. The way these clouds are distributed around Titan matches scientists' global circulation models. The only exception is timing—clouds are still noticeable in the southern hemisphere while fall is approaching. Three false-color images make up this mosaic and show the clouds at 40 to 50 degrees mid-latitude. The images were taken by Cassini's visual and infrared mapping spectrometer during a close flyby of Titan on Sept. 7, 2006, known as T17. For a similar view see PIA12005. Each image is a color composite, with red shown at the 2-micron wavelength, green at 1.6 microns, and blue at 2.8 microns. An infrared color mosaic is also used as a background (red at 5 microns, green at 2 microns and blue at 1.3 microns). The characteristic elongated mid-latitude clouds, which are easily visible in bright bluish tones are still active even late into 2006-2007. According to climate models, these clouds should have faded out since 2005. http://photojournal.jpl.nasa.gov/catalog/PIA12004
NASA Astrophysics Data System (ADS)
Li, Y. H.; Shinohara, T.; Satoh, T.; Tachibana, K.
2016-06-01
High-definition and highly accurate road maps are necessary for the realization of automated driving, and road signs are among the most important element in the road map. Therefore, a technique is necessary which can acquire information about all kinds of road signs automatically and efficiently. Due to the continuous technical advancement of Mobile Mapping System (MMS), it has become possible to acquire large number of images and 3d point cloud efficiently with highly precise position information. In this paper, we present an automatic road sign detection and recognition approach utilizing both images and 3D point cloud acquired by MMS. The proposed approach consists of three stages: 1) detection of road signs from images based on their color and shape features using object based image analysis method, 2) filtering out of over detected candidates utilizing size and position information estimated from 3D point cloud, region of candidates and camera information, and 3) road sign recognition using template matching method after shape normalization. The effectiveness of proposed approach was evaluated by testing dataset, acquired from more than 180 km of different types of roads in Japan. The results show a very high success in detection and recognition of road signs, even under the challenging conditions such as discoloration, deformation and in spite of partial occlusions.
Coloring Jupiter's clouds: Radiolysis of ammonium hydrosulfide (NH4SH)
NASA Astrophysics Data System (ADS)
Loeffler, Mark J.; Hudson, Reggie L.
2018-03-01
Here we present our recent studies on the color and spectral reflectance changes induced by ∼0.9 MeV proton irradiation of ammonium hydrosulfide, NH4SH, a compound predicted to be an important tropospheric cloud component of Jupiter and other giant planets. Ultraviolet-visible spectroscopy was used to observe and identify reaction products in the ice sample and digital photography was used to document the corresponding color changes at 10-160 K. Our experiments clearly show that the resulting color of the sample depends not only on the irradiation dose but also the irradiation temperature. Furthermore, unlike in our most recent studies of irradiation of NH4SH at 120 K, which showed that higher irradiation doses caused the sample to appear green, the lower temperature studies now show that the sample becomes red after irradiation. However, comparison of these lower temperature spectra over the entire spectral range observed by HST shows that even though the color and spectrum resemble the color and spectrum of the GRS, there is still enough difference to suggest that another component may be needed to adequately fit spectra of the GRS and other red regions of Jupiter's clouds. Regardless, the presence of NH4SH in the atmosphere of Jupiter and other gas giants, combined with this compound's clear alteration via radiolysis, suggests that its contribution to the ultraviolet-visible spectra of any of these object's clouds is significant.
NASA Astrophysics Data System (ADS)
Huang, Wei; Chen, Xiu; Wang, Yueyun
2018-03-01
Landsat data are widely used in various earth observations, but the clouds interfere with the applications of the images. This paper proposes a weighted variational gradient-based fusion method (WVGBF) for high-fidelity thin cloud removal of Landsat images, which is an improvement of the variational gradient-based fusion (VGBF) method. The VGBF method integrates the gradient information from the reference band into visible bands of cloudy image to enable spatial details and remove thin clouds. The VGBF method utilizes the same gradient constraints to the entire image, which causes the color distortion in cloudless areas. In our method, a weight coefficient is introduced into the gradient approximation term to ensure the fidelity of image. The distribution of weight coefficient is related to the cloud thickness map. The map is built on Independence Component Analysis (ICA) by using multi-temporal Landsat images. Quantitatively, we use R value to evaluate the fidelity in the cloudless regions and metric Q to evaluate the clarity in the cloud areas. The experimental results indicate that the proposed method has the better ability to remove thin cloud and achieve high fidelity.
An approach of point cloud denoising based on improved bilateral filtering
NASA Astrophysics Data System (ADS)
Zheng, Zeling; Jia, Songmin; Zhang, Guoliang; Li, Xiuzhi; Zhang, Xiangyin
2018-04-01
An omnidirectional mobile platform is designed for building point cloud based on an improved filtering algorithm which is employed to handle the depth image. First, the mobile platform can move flexibly and the control interface is convenient to control. Then, because the traditional bilateral filtering algorithm is time-consuming and inefficient, a novel method is proposed which called local bilateral filtering (LBF). LBF is applied to process depth image obtained by the Kinect sensor. The results show that the effect of removing noise is improved comparing with the bilateral filtering. In the condition of off-line, the color images and processed images are used to build point clouds. Finally, experimental results demonstrate that our method improves the speed of processing time of depth image and the effect of point cloud which has been built.
Clouds on Hot Jupiters Illustration
2016-10-18
Hot Jupiters are exoplanets that orbit their stars so tightly that their temperatures are extremely high, reaching over 2,400 degrees Fahrenheit (1600 Kelvin). They are also tidally locked, so one side of the planet always faces the sun and the other is in permanent darkness. Research suggests that the "dayside" is largely free of clouds, while the "nightside" is heavily clouded. This illustration represents how hot Jupiters of different temperatures and different cloud compositions might appear to a person flying over the dayside of these planets on a spaceship, based on computer modeling. Cooler planets are entirely cloudy, whereas hotter planets have morning clouds only. Clouds of different composition have different colors, whereas the clear sky is bluer than on Earth. For the hottest planets, the atmosphere is hot enough on the evening side to glow like a charcoal. Figure 1 shows an approximation of what various hot Jupiters might look like based on a combination of computer modeling and data from NASA's Kepler Space Telescope. From left to right it shows: sodium sulfide clouds (1000 to 1200 Kelvin), manganese sulfide clouds (1200 to 1600 Kelvin), magnesium silicate clouds (1600 to 1800 Kelvin), magnesium silicate and aluminum oxide clouds (1800 Kelvin) and clouds composed of magnesium silicate, aluminum oxide, iron and calcium titanate (1900 to 2200 Kelvin). http://photojournal.jpl.nasa.gov/catalog/PIA21074
CloudSat Overflight of Hurricane Bud
2006-07-13
The image at the top of figure 1 is from a geostationary imager. The colors relate to the temperature of the clouds. The higher the clouds, the lower the temperature. The highest, coldest clouds are located near the center of the hurricane.
D Point Cloud Model Colorization by Dense Registration of Digital Images
NASA Astrophysics Data System (ADS)
Crombez, N.; Caron, G.; Mouaddib, E.
2015-02-01
Architectural heritage is a historic and artistic property which has to be protected, preserved, restored and must be shown to the public. Modern tools like 3D laser scanners are more and more used in heritage documentation. Most of the time, the 3D laser scanner is completed by a digital camera which is used to enrich the accurate geometric informations with the scanned objects colors. However, the photometric quality of the acquired point clouds is generally rather low because of several problems presented below. We propose an accurate method for registering digital images acquired from any viewpoints on point clouds which is a crucial step for a good colorization by colors projection. We express this image-to-geometry registration as a pose estimation problem. The camera pose is computed using the entire images intensities under a photometric visual and virtual servoing (VVS) framework. The camera extrinsic and intrinsic parameters are automatically estimated. Because we estimates the intrinsic parameters we do not need any informations about the camera which took the used digital image. Finally, when the point cloud model and the digital image are correctly registered, we project the 3D model in the digital image frame and assign new colors to the visible points. The performance of the approach is proven in simulation and real experiments on indoor and outdoor datasets of the cathedral of Amiens, which highlight the success of our method, leading to point clouds with better photometric quality and resolution.
2.5D Multi-View Gait Recognition Based on Point Cloud Registration
Tang, Jin; Luo, Jian; Tjahjadi, Tardi; Gao, Yan
2014-01-01
This paper presents a method for modeling a 2.5-dimensional (2.5D) human body and extracting the gait features for identifying the human subject. To achieve view-invariant gait recognition, a multi-view synthesizing method based on point cloud registration (MVSM) to generate multi-view training galleries is proposed. The concept of a density and curvature-based Color Gait Curvature Image is introduced to map 2.5D data onto a 2D space to enable data dimension reduction by discrete cosine transform and 2D principle component analysis. Gait recognition is achieved via a 2.5D view-invariant gait recognition method based on point cloud registration. Experimental results on the in-house database captured by a Microsoft Kinect camera show a significant performance gain when using MVSM. PMID:24686727
Ocean Color Inferred from Radiometers on Low-Flying Aircraft.
Churnside, James H; Wilson, James J
2008-02-08
The color of sunlight reflected from the ocean to orbiting visible radiometers hasprovided a great deal of information about the global ocean, after suitable corrections aremade for atmospheric effects. Similar ocean-color measurements can be made from a lowflyingaircraft to get higher spatial resolution and to obtain measurements under clouds.A different set of corrections is required in this case, and we describe algorithms to correctfor clouds and sea-surface effects. An example is presented and errors in the correctionsdiscussed.
NASA Astrophysics Data System (ADS)
Jeon, Young-Beom; Nemec, James M.; Walker, Alistair R.; Kunder, Andrea M.
2014-06-01
Homogeneous B, V photometry is presented for 19,324 stars in and around 5 Magellanic Cloud globular clusters: NGC 1466, NGC 1841, NGC 2210, NGC 2257, and Reticulum. The photometry is derived from eight nights of CCD imaging with the Cerro Tololo Inter-American Observatory 0.9 m SMARTS telescope. Instrumental magnitudes were transformed to the Johnson B, V system using accurate calibration relations based on a large sample of Landolt-Stetson equatorial standard stars, which were observed on the same nights as the cluster stars. Residual analysis of the equatorial standards used for the calibration, and validation of the new photometry using Stetson's sample of secondary standards in the vicinities of the five Large Magellanic Cloud clusters, shows excellent agreement with our values in both magnitudes and colors. Color-magnitude diagrams reaching to the main-sequence turnoffs at V ~ 22 mag, sigma-magnitude diagrams, and various other summaries are presented for each cluster to illustrate the range and quality of the new photometry. The photometry should prove useful for future studies of the Magellanic Cloud globular clusters, particularly studies of their variable stars.
2015-05-08
Decades of satellite observations and astronaut photographs show that clouds dominate space-based views of Earth. One study based on nearly a decade of satellite data estimated that about 67 percent of Earth’s surface is typically covered by clouds. This is especially the case over the oceans, where other research shows less than 10 percent of the sky is completely clear of clouds at any one time. Over land, 30 percent of skies are completely cloud free. Earth’s cloudy nature is unmistakable in this global cloud fraction map, based on data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite. While MODIS collects enough data to make a new global map of cloudiness every day, this version of the map shows an average of all of the satellite’s cloud observations between July 2002 and April 2015. Colors range from dark blue (no clouds) to light blue (some clouds) to white (frequent clouds). Read more here: 1.usa.gov/1P6lbMU Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Nehrir, A. R.; Hoffman, D. S.; Repasky, K. S.; Todt, B.; Sharpe, T.; Half Red, C.; Carlsten, J. L.
2009-12-01
Coupled atmospheric components of the lower troposphere including aerosols and water vapor have a large affect on the chemical processes that drive the earth’s complex climate system. Aerosols can affect the earth’s global radiation budget directly by absorbing or reflecting incoming solar radiation, and indirectly by changing the microphysical properties of clouds by serving as cloud condensation nuclei (CCN). An increase in CCN results in higher cloud droplet concentration which has been shown to suppress drizzle formation and lead to more reflective clouds. The changes in the cloud microphysical structure due to the interaction of aerosols and water vapor result in more incoming solar radiation being reflected back into space, leading to a net negative radiative forcing in the global radiation budget. The uncertainty in this radiative forcing reflects the uncertainty in the understanding of the aerosol indirect effect and its role in the climate system. To better understand the aerosol direct and indirect effects, lidar measurements of aerosol properties and water vapor distributions can provide important information to enhance our understanding of the role of aerosols in the climate system. The LIDAR group at Montana State University has initiated a program to simultaneously study aerosols, water vapor, and cloud formation with high spatial and temporal resolution using both active and passive sensors. Aerosol distributions and radiative properties are currently being studied with a two-color LIDAR system at 1064 and 532 nm. In addition, a three color, high spectral resolution LIDAR system at 1064,532, and 355 nm has also been developed and is starting to take initial data. Daytime and nighttime boundary layer water vapor number density profiles are also currently being studied with an external cavity diode oscillator/diode amplifier based micro-pulsed differential absorption lidar (DIAL) instrument at the 830 nm water vapor absorption band. Cloud formation studies are being conducted by a simultaneous, spatially correlated digital sky imaging camera system where aerosol loading and water vapor distributions are monitored as a function of lateral distance to clouds. Furthermore, a commercially purchased sun/sky scanning solar radiometer (CIMEL 318) as part of the NASA run AERONET program is also being used to study aerosol loading and radiative transfer through the atmosphere. A brief description of these instruments will be presented as well as initial simultaneous results showing correlated data between lower tropospheric aerosols and boundary layer water vapor distributions over extended periods if time.
1989-08-21
This picture of Neptune was produced from images taken through the ultraviolet, violet and green filters of the Voyager 2 wide-angle camera. This 'false' color image has been made to show clearly details of the cloud structure and to paint clouds located at different altitudes with different colors. Dark, deeplying clouds tend to be masked in the ultraviolet wavelength since overlying air molecules are particularly effective in scattering sunlight there which brightens the sky above them. Such areas appear dark blue in this photo. The Great Dark Spot (GDS) and the high southern latitudes have a deep bluish cast in this image, indication they are regions where visible light (but not ultraviolet light) may penetrate to a deeper layer of dark cloud or haze in Neptune's atmosphere. Conversely, the pinkish clouds may be positioned at high altitudes.
Wide-field Survey of Emission-line Stars in IC 1396
NASA Astrophysics Data System (ADS)
Nakano, M.; Sugitani, K.; Watanabe, M.; Fukuda, N.; Ishihara, D.; Ueno, M.
2012-03-01
We have made an extensive survey of emission-line stars in the IC 1396 H II region to investigate the low-mass population of pre-main-sequence (PMS) stars. A total of 639 Hα emission-line stars were detected in an area of 4.2 deg2 and their i' photometry was measured. Their spatial distribution exhibits several aggregates near the elephant trunk globule (Rim A) and bright-rimmed clouds at the edge of the H II region (Rim B and SFO 37, 38, 39, 41), and near HD 206267, which is the main exciting star of the H II region. Based on the extinction estimated from the near-infrared color-color diagram, we have selected PMS star candidates associated with IC 1396. The age and mass were derived from the extinction-corrected color-magnitude diagram and theoretical PMS tracks. Most of our PMS candidates have ages of <3 Myr and masses of 0.2-0.6 M ⊙. Although it appears that only a few stars were formed in the last 1 Myr in the east region of the exciting star, the age difference among subregions in our surveyed area is not clear from the statistical test. Our results may suggest that massive stars were born after the continuous formation of low-mass stars for 10 Myr. The birth of the exciting star could be the late stage of slow but contiguous star formation in the natal molecular cloud. It may have triggered the formation of many low-mass stars at the dense inhomogeneity in and around the H II region by a radiation-driven implosion.
Mars Odyssey View of Morning Clouds in Canyon
2016-04-05
Light blue clouds fill Coprates Chasma on Mars, part of Valles Marineris, the vast Grand Canyon of Mars. The clouds are mostly ice crystals and they appear blue in color in this image from NASA Mars Odyssey.
Snow Storm Blankets Southeastern U.S.
NASA Technical Reports Server (NTRS)
2002-01-01
A new year's storm brought heavy snow to portions of the southeastern United States, with some regions receiving more than a foot in less than two days. By Friday, January 4, 2002, the skies had cleared, and MODIS captured this false-color image showing the extent of the snowfall. Snow cover is red, and extends all the way from Alabama (lower left), up through Georgia, South Carolina, North Carolina, Virginia, and Maryland, including the southern reaches of the Delmarva Peninsula (upper right). Beneath some clouds in West Virginia (top center), snow is also visible on the Allegheny Mountains and the Appalachian Plateau, although it did come from the same storm. Though red isn't the color we associate with snow, scientists often find 'false-color' images more useful than 'true-color' images in certain situations. True-color images are images in which the satellite data are made to look like what our eyes would see, using a combination of red, green, and blue. In a true-color image of this scene, cloud and snow would appear almost identical-both would be very bright white-and would be hard to distinguish from each other. However, at near-infrared wavelengths of light, snow cover absorbs sunlight and therefore appears much darker than clouds. So a false-color image in which one visible wavelength of the data is colored red, and different near-infrared wavelengths are colored green and blue helps show the snow cover most clearly.
NASA Astrophysics Data System (ADS)
Zdanavičius, K.; Zdanavičius, J.; Straižys, V.; Maskoliūnas, M.
The catalog contains magnitudes and color indices of 1304 stars down to ˜ 16.6 mag in V measured in the seven-color Vilnius photometric system in the area of 1.5 square degrees with the center at Galactic coordinates 102.4°, +15.5°, containing the dark cloud TGU 619 in the Cepheus Flare. For most of the stars spectral and luminosity classes determined from the photometric data are given.
Ocean Color Inferred from Radiometers on Low-Flying Aircraft
Churnside, James H.; Wilson, James J.
2008-01-01
The color of sunlight reflected from the ocean to orbiting visible radiometers has provided a great deal of information about the global ocean, after suitable corrections are made for atmospheric effects. Similar ocean-color measurements can be made from a low-flying aircraft to get higher spatial resolution and to obtain measurements under clouds. A different set of corrections is required in this case, and we describe algorithms to correct for clouds and sea-surface effects. An example is presented and errors in the corrections discussed. PMID:27879739
A smartphone application for psoriasis segmentation and classification (Conference Presentation)
NASA Astrophysics Data System (ADS)
Vasefi, Fartash; MacKinnon, Nicholas B.; Horita, Timothy; Shi, Kevin; Khan Munia, Tamanna Tabassum; Tavakolian, Kouhyar; Alhashim, Minhal; Fazel-Rezai, Reza
2017-02-01
Psoriasis is a chronic skin disease affecting approximately 125 million people worldwide. Currently, dermatologists monitor changes of psoriasis by clinical evaluation or by measuring psoriasis severity scores over time which lead to Subjective management of this condition. The goal of this paper is to develop a reliable assessment system to quantitatively assess the changes of erythema and intensity of scaling of psoriatic lesions. A smartphone deployable mobile application is presented that uses the smartphone camera and cloud-based image processing to analyze physiological characteristics of psoriasis lesions, identify the type and stage of the scaling and erythema. The application targets to automatically evaluate Psoriasis Area Severity Index (PASI) by measuring the severity and extent of psoriasis. The mobile application performs the following core functions: 1) it captures text information from user input to create a profile in a HIPAA compliant database. 2) It captures an image of the skin with psoriasis as well as image-related information entered by the user. 3) The application color correct the image based on environmental lighting condition using calibration process including calibration procedure by capturing Macbeth ColorChecker image. 4) The color-corrected image will be transmitted to a cloud-based engine for image processing. In cloud, first, the algorithm removes the non-skin background to ensure the psoriasis segmentation is only applied to the skin regions. Then, the psoriasis segmentation algorithm estimates the erythema and scaling boundary regions of lesion. We analyzed 10 images of psoriasis images captured by cellphone, determined PASI score for each subject during our pilot study, and correlated it with changes in severity scores given by dermatologists. The success of this work allows smartphone application for psoriasis severity assessment in a long-term treatment.
Simulating halos and coronas in their atmospheric environment.
David Gedzelman, Stanley
2008-12-01
Models are developed that simulate the light and color of the sky and of circular halos and coronas as a function of atmospheric pressure, cloud height, width, and optical depth, solar zenith angle, aerosol concentration and size, and ozone content. Halos, coronas, and skylight are treated as singly scattered sunbeams that are depleted in their passage through the atmosphere and cloud. Multiple scattering is included only for background cloud light. Halos produced by hexagonal crystal prisms and coronas produced by monodisperse droplets are visible for cloud optical depths in the range 0.0003
NASA Astrophysics Data System (ADS)
Thomas, G. E.; Bailey, S. M.; Merkel, A. W.; Baumgarten, G.; Rusch, D. W.
2006-12-01
The UV spectrum of scattering from mesospheric ice particles (Polar Mesospheric Clouds) contains information on particle size, and on the microphysics of the cold summertime mesopause region. Nearly identical Ultraviolet Spectrometers were flown on both the Solar Mesosphere Explorer (SME) and Student Nitric Oxide Explorer (SNOE) satellites, both in sun-synchronous orbits reaching deep within the cold polar regions where PMC occur. The instruments measured two wavelengths simultaneously (265 and 296 nm for SME, 215 and 237 nm for SNOE), and detected PMC over a grand total of twenty PMC seasons, each covering five year periods (1982-1986 for SME) and (1998-2002 for SNOE). Using the well well-known wavelength dependence of Rayleigh scattering from thje cloud-free mesosphere we calibrate the two channels with respect to each other . The resulting accurate color ratios are then analyzed taking the brightness of the clouds into account, etc. Previous studies of the available spectral data (Rapp et al., 2006) suggested that non-spherical particles of large aspect ratios are required for consistency with the data then available. We test their results on a much more extensive data set for a large number of PMC seasons. Through the use of modern scattering theory, and predictions of the size distribution from microphysical models, such as the CARMA model, we report particle size and shape regimes which are consistent with the color ratios, obtained with different scattering geometries in both northern and southern hemispheres.
Jupiter's Clouds of Many Colors
2017-06-15
NASA's Juno spacecraft was racing away from Jupiter following its seventh close pass of the planet when JunoCam snapped this image on May 19, 2017, from about 29,100 miles (46,900 kilometers) above the cloud tops. The spacecraft was over 65.9 degrees south latitude, with a lovely view of the south polar region of the planet. This image was processed to enhance color differences, showing the amazing variety in Jupiter's stormy atmosphere. The result is a surreal world of vibrant color, clarity and contrast. Four of the white oval storms known as the "String of Pearls" are visible near the top of the image. Interestingly, one orange-colored storm can be seen at the belt-zone boundary, while other storms are more of a cream color. https://photojournal.jpl.nasa.gov/catalog/PIA21392
NASA Astrophysics Data System (ADS)
Mekuria, Rufael; Cesar, Pablo; Doumanis, Ioannis; Frisiello, Antonella
2015-09-01
Compression of 3D object based video is relevant for 3D Immersive applications. Nevertheless, the perceptual aspects of the degradation introduced by codecs for meshes and point clouds are not well understood. In this paper we evaluate the subjective and objective degradations introduced by such codecs in a state of art 3D immersive virtual room. In the 3D immersive virtual room, users are captured with multiple cameras, and their surfaces are reconstructed as photorealistic colored/textured 3D meshes or point clouds. To test the perceptual effect of compression and transmission, we render degraded versions with different frame rates in different contexts (near/far) in the scene. A quantitative subjective study with 16 users shows that negligible distortion of decoded surfaces compared to the original reconstructions can be achieved in the 3D virtual room. In addition, a qualitative task based analysis in a full prototype field trial shows increased presence, emotion, user and state recognition of the reconstructed 3D Human representation compared to animated computer avatars.
NASA Astrophysics Data System (ADS)
Kim, H. W.; Yeom, J. M.; Woo, S. H.
2017-12-01
Over the thin cloud region, satellite can simultaneously detect the reflectance from thin clouds and land surface. Since the mixed reflectance is not the exact cloud information, the background surface reflectance should be eliminated to accurately distinguish thin cloud such as cirrus. In the previous research, Kim et al (2017) was developed the cloud masking algorithm using the Geostationary Ocean Color Imager (GOCI), which is one of significant instruments for Communication, Ocean, and Meteorology Satellite (COMS). Although GOCI has 8 spectral channels including visible and near infra-red spectral ranges, the cloud masking has quantitatively reasonable result when comparing with MODIS cloud mask (Collection 6 MYD35). Especially, we noticed that this cloud masking algorithm is more specialized in thin cloud detections through the validation with Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data. Because this cloud masking method was concentrated on eliminating background surface effects from the top-of-atmosphere (TOA) reflectance. Applying the difference between TOA reflectance and the bi-directional reflectance distribution function (BRDF) model-based background surface reflectance, cloud areas both thick cloud and thin cloud can be discriminated without infra-red channels which were mostly used for detecting clouds. Moreover, when the cloud mask result was utilized as the input data when simulating BRDF model and the optimized BRDF model-based surface reflectance was used for the optimized cloud masking, the probability of detection (POD) has higher value than POD of the original cloud mask. In this study, we examine the correlation between cloud optical depth (COD) and its cloud mask result. Cloud optical depths mostly depend on the cloud thickness, the characteristic of contents, and the size of cloud contents. COD ranges from less than 0.1 for thin clouds to over 1000 for the huge cumulus due to scattering by droplets. With the cloud optical depth of CALIPSO, the cloud masking result can be more improved since we can figure out how deep cloud is. To validate the cloud mask and the correlation result, the atmospheric retrieval will be computed to compare the difference between TOA reflectance and the simulated surface reflectance.
Morning Clouds Atop Martian Mountain
2015-06-19
Seen shortly after local Martian sunrise, clouds gather in the summit pit, or caldera, of Pavonis Mons, a giant volcano on Mars, in this image from the Thermal Emission Imaging System (THEMIS) on NASA's Mars Odyssey orbiter. The clouds are mostly made of ice crystals. They appear blue in the image because the cloud particles scatter blue light more strongly than other colors. Pavonis Mons stands about nine miles (14 kilometers) high, and the caldera spans about 29 miles (47 kilometers) wide. This image was made by THEMIS through three of its visual-light filters plus a near-infrared filter, and it is approximately true in color. THEMIS and other instruments on Mars Odyssey have been studying Mars from orbit since 2001. http://photojournal.jpl.nasa.gov/catalog/PIA19675
Classification of Aerial Photogrammetric 3d Point Clouds
NASA Astrophysics Data System (ADS)
Becker, C.; Häni, N.; Rosinskaya, E.; d'Angelo, E.; Strecha, C.
2017-05-01
We present a powerful method to extract per-point semantic class labels from aerial photogrammetry data. Labelling this kind of data is important for tasks such as environmental modelling, object classification and scene understanding. Unlike previous point cloud classification methods that rely exclusively on geometric features, we show that incorporating color information yields a significant increase in accuracy in detecting semantic classes. We test our classification method on three real-world photogrammetry datasets that were generated with Pix4Dmapper Pro, and with varying point densities. We show that off-the-shelf machine learning techniques coupled with our new features allow us to train highly accurate classifiers that generalize well to unseen data, processing point clouds containing 10 million points in less than 3 minutes on a desktop computer.
EXOPLANET ALBEDO SPECTRA AND COLORS AS A FUNCTION OF PLANET PHASE, SEPARATION, AND METALLICITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cahoy, Kerri L.; Marley, Mark S.; Fortney, Jonathan J., E-mail: kerri.l.cahoy@nasa.go
2010-11-20
First generation space-based optical coronagraphic telescopes will obtain images of cool gas- and ice-giant exoplanets around nearby stars. Exoplanets lying at planet-star separations larger than about 1 AU-where an exoplanet can be resolved from its parent star-have spectra that are dominated by reflected light to beyond 1 {mu}m and punctuated by molecular absorption features. Here, we consider how exoplanet albedo spectra and colors vary as a function of planet-star separation, metallicity, mass, and observed phase for Jupiter and Neptune analogs from 0.35 to 1 {mu}m. We model Jupiter analogs with 1x and 3x the solar abundance of heavy elements, andmore » Neptune analogs with 10x and 30x the solar abundance of heavy elements. Our model planets orbit a solar analog parent star at separations of 0.8 AU, 2 AU, 5 AU, and 10 AU. We use a radiative-convective model to compute temperature-pressure profiles. The giant exoplanets are found to be cloud-free at 0.8 AU, possess H{sub 2}O clouds at 2 AU, and have both NH{sub 3} and H{sub 2}O clouds at 5 AU and 10 AU. For each model planet we compute moderate resolution (R = {lambda}/{Delta}{lambda} {approx} 800) albedo spectra as a function of phase. We also consider low-resolution spectra and colors that are more consistent with the capabilities of early direct imaging capabilities. As expected, the presence and vertical structure of clouds strongly influence the albedo spectra since cloud particles not only affect optical depth but also have highly directional scattering properties. Observations at different phases also probe different volumes of atmosphere as the source-observer geometry changes. Because the images of the planets themselves will be unresolved, their phase will not necessarily be immediately obvious, and multiple observations will be needed to discriminate between the effects of planet-star separation, metallicity, and phase on the observed albedo spectra. We consider the range of these combined effects on spectra and colors. For example, we find that the spectral influence of clouds depends more on planet-star separation and hence atmospheric temperature than metallicity, and it is easier to discriminate between cloudy 1x and 3x Jupiters than between 10x and 30x Neptunes. In addition to alkalis and methane, our Jupiter models show H{sub 2}O absorption features near 0.94 {mu}m. While solar system giant planets are well separated by their broadband colors, we find that arbitrary giant exoplanets can have a large range of possible colors and that color alone cannot be relied upon to characterize planet types. We also predict that giant exoplanets receiving greater insolation than Jupiter will exhibit higher equator-to-pole temperature gradients than are found on Jupiter and thus may exhibit differing atmospheric dynamics. These results are useful for future interpretation of direct imaging exoplanet observations as well as for deriving requirements and designing filters for optical direct imaging instrumentation.« less
Mehmood, Irfan; Sajjad, Muhammad; Baik, Sung Wook
2014-01-01
Wireless capsule endoscopy (WCE) has great advantages over traditional endoscopy because it is portable and easy to use, especially in remote monitoring health-services. However, during the WCE process, the large amount of captured video data demands a significant deal of computation to analyze and retrieve informative video frames. In order to facilitate efficient WCE data collection and browsing task, we present a resource- and bandwidth-aware WCE video summarization framework that extracts the representative keyframes of the WCE video contents by removing redundant and non-informative frames. For redundancy elimination, we use Jeffrey-divergence between color histograms and inter-frame Boolean series-based correlation of color channels. To remove non-informative frames, multi-fractal texture features are extracted to assist the classification using an ensemble-based classifier. Owing to the limited WCE resources, it is impossible for the WCE system to perform computationally intensive video summarization tasks. To resolve computational challenges, mobile-cloud architecture is incorporated, which provides resizable computing capacities by adaptively offloading video summarization tasks between the client and the cloud server. The qualitative and quantitative results are encouraging and show that the proposed framework saves information transmission cost and bandwidth, as well as the valuable time of data analysts in browsing remote sensing data. PMID:25225874
Cell phones as imaging sensors
NASA Astrophysics Data System (ADS)
Bhatti, Nina; Baker, Harlyn; Marguier, Joanna; Berclaz, Jérôme; Süsstrunk, Sabine
2010-04-01
Camera phones are ubiquitous, and consumers have been adopting them faster than any other technology in modern history. When connected to a network, though, they are capable of more than just picture taking: Suddenly, they gain access to the power of the cloud. We exploit this capability by providing a series of image-based personal advisory services. These are designed to work with any handset over any cellular carrier using commonly available Multimedia Messaging Service (MMS) and Short Message Service (SMS) features. Targeted at the unsophisticated consumer, these applications must be quick and easy to use, not requiring download capabilities or preplanning. Thus, all application processing occurs in the back-end system (i.e., as a cloud service) and not on the handset itself. Presenting an image to an advisory service in the cloud, a user receives information that can be acted upon immediately. Two of our examples involve color assessment - selecting cosmetics and home décor paint palettes; the third provides the ability to extract text from a scene. In the case of the color imaging applications, we have shown that our service rivals the advice quality of experts. The result of this capability is a new paradigm for mobile interactions - image-based information services exploiting the ubiquity of camera phones.
Mehmood, Irfan; Sajjad, Muhammad; Baik, Sung Wook
2014-09-15
Wireless capsule endoscopy (WCE) has great advantages over traditional endoscopy because it is portable and easy to use, especially in remote monitoring health-services. However, during the WCE process, the large amount of captured video data demands a significant deal of computation to analyze and retrieve informative video frames. In order to facilitate efficient WCE data collection and browsing task, we present a resource- and bandwidth-aware WCE video summarization framework that extracts the representative keyframes of the WCE video contents by removing redundant and non-informative frames. For redundancy elimination, we use Jeffrey-divergence between color histograms and inter-frame Boolean series-based correlation of color channels. To remove non-informative frames, multi-fractal texture features are extracted to assist the classification using an ensemble-based classifier. Owing to the limited WCE resources, it is impossible for the WCE system to perform computationally intensive video summarization tasks. To resolve computational challenges, mobile-cloud architecture is incorporated, which provides resizable computing capacities by adaptively offloading video summarization tasks between the client and the cloud server. The qualitative and quantitative results are encouraging and show that the proposed framework saves information transmission cost and bandwidth, as well as the valuable time of data analysts in browsing remote sensing data.
NASA Astrophysics Data System (ADS)
Aijazi, A. K.; Malaterre, L.; Tazir, M. L.; Trassoudaine, L.; Checchin, P.
2016-06-01
This work presents a new method that automatically detects and analyzes surface defects such as corrosion spots of different shapes and sizes, on large ship hulls. In the proposed method several scans from different positions and viewing angles around the ship are registered together to form a complete 3D point cloud. The R, G, B values associated with each scan, obtained with the help of an integrated camera are converted into HSV space to separate out the illumination invariant color component from the intensity. Using this color component, different surface defects such as corrosion spots of different shapes and sizes are automatically detected, within a selected zone, using two different methods depending upon the level of corrosion/defects. The first method relies on a histogram based distribution whereas the second on adaptive thresholds. The detected corrosion spots are then analyzed and quantified to help better plan and estimate the cost of repair and maintenance. Results are evaluated on real data using different standard evaluation metrics to demonstrate the efficacy as well as the technical strength of the proposed method.
2018-06-14
This image captures the intensity of the jets and vortices in Jupiter's North North Temperate Belt. NASA's Juno spacecraft took this color-enhanced image at 10:31 p.m. PDT on May 23, 2018 (1:31 a.m. EDT on May 24), as Juno performed its 13th close flyby of Jupiter. At the time, the spacecraft was about 4,900 miles (7,900 kilometers) from the tops of the clouds of the gas giant planet at a northern latitude of about 41 degrees. The view is oriented with south on Jupiter toward upper left and north toward lower right. The North North Temperate Belt is the prominent reddish-orange band left of center. It rotates in the same direction as the planet and is predominantly cyclonic, which in the northern hemisphere means its features spin in a counter-clockwise direction. Within the belt are two gray-colored anticyclones. To the left of the belt is a brighter band (the North North Temperate Zone) with high clouds whose vertical relief is accentuated by the low angle of sunlight near the terminator. These clouds are likely made of ammonia-ice crystals, or possibly a combination of ammonia ice and water. Although the region as a whole appears chaotic, there is an alternating pattern of rotating, lighter-colored features on the zone's north and south sides. Scientists think the large-scale dark regions are places where the clouds are deeper, based on infrared observations made at the same time by Juno's JIRAM experiment and Earth-based supporting observations. Those observations show warmer, and thus deeper, thermal emission from these regions. To the right of the bright zone, and farther north on the planet, Jupiter's striking banded structure becomes less evident and a region of individual cyclones can be seen, interspersed with smaller, darker anticyclones. https://photojournal.jpl.nasa.gov/catalog/PIA22423
Makowski, Dale
2016-01-01
This paper sets out the basics for approaching the selection and implementation of a cloud-based communication system to support a business continuity programme, including: • consideration for how a cloud-based communication system can enhance a business continuity programme; • descriptions of some of the more popular features of a cloud-based communication system; • options to evaluate when selecting a cloud-based communication system; • considerations for how to design a system to be most effective for an organisation; • best practices for how to conduct the initial load of data to a cloud-based communication system; • best practices for how to conduct an initial validation of the data loaded to a cloud-based communication system; • considerations for how to keep contact information in the cloud-based communication system current and accurate; • best practices for conducting ongoing system testing; • considerations for how to conduct user training; • review of other potential uses of a cloud-based communication system; and • review of other tools and features many cloud-based communication systems may offer.
NASA Technical Reports Server (NTRS)
Morrison, R. B. (Principal Investigator)
1974-01-01
The author has identified the following significant results. Indexing and analysis of the SL 2, SL 3, and SL 4 photos of the project area has shown that S-190A coverage with less than 30% clouds totals about 123,000 sq km. The 70-mm unenlarged color, color-infrared, B/W red, and B/W green bands from S-190A are of good to excellent quality; the B/W IR bands from SL 2 are excessively grainy and have very low resolution; those from SL 3 are better but nevertheless have low resolution. The 5-inch unenlarged color transparencies from S-190B are generally of excellent photographic quality. However, where cloud cover is extensive, commonly the S-190A and S-190B color and color-IR photos are correctly exposed for the clouds but considerably underexposed for the ground. The 4X enlargements of all bands of S-190A photos taken by SL 2 are much fuzzier than they should be; evidently the enlarger was not focused properly. The 4X enlargements from SL 3 are much superior.
GOCI Level-2 Processing Improvements and Cloud Motion Analysis
NASA Technical Reports Server (NTRS)
Robinson, Wayne D.
2015-01-01
The Ocean Biology Processing Group has been working with the Korean Institute of Ocean Science and Technology (KIOST) to process geosynchronous ocean color data from the GOCI (Geostationary Ocean Color Instrument) aboard the COMS (Communications, Ocean and Meteorological Satellite). The level-2 processing program, l2gen has GOCI processing as an option. Improvements made to that processing are discussed here as well as a discussion about cloud motion effects.
E4 True and False Color Hot Spot Mosaic
1998-03-06
True and false color views of Jupiter from NASA's Galileo spacecraft show an equatorial "hotspot" on Jupiter. These images cover an area 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles). The top mosaic combines the violet and near infrared continuum filter images to create an image similar to how Jupiter would appear to human eyes. Differences in coloration are due to the composition and abundances of trace chemicals in Jupiter's atmosphere. The bottom mosaic uses Galileo's three near-infrared wavelengths displayed in red, green, and blue) to show variations in cloud height and thickness. Bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the deep cloud with an overlying thin haze. The light blue region to the left is covered by a very high haze layer. The multicolored region to the right has overlapping cloud layers of different heights. Galileo is the first spacecraft to distinguish cloud layers on Jupiter. North is at the top. The mosaic covers latitudes 1 to 10 degrees and is centered at longitude 336 degrees west. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers (about 930,000 miles) by the Solid State Imaging camera system aboard Galileo. http://photojournal.jpl.nasa.gov/catalog/PIA00602
Laser-based structural sensing and surface damage detection
NASA Astrophysics Data System (ADS)
Guldur, Burcu
Damage due to age or accumulated damage from hazards on existing structures poses a worldwide problem. In order to evaluate the current status of aging, deteriorating and damaged structures, it is vital to accurately assess the present conditions. It is possible to capture the in situ condition of structures by using laser scanners that create dense three-dimensional point clouds. This research investigates the use of high resolution three-dimensional terrestrial laser scanners with image capturing abilities as tools to capture geometric range data of complex scenes for structural engineering applications. Laser scanning technology is continuously improving, with commonly available scanners now capturing over 1,000,000 texture-mapped points per second with an accuracy of ~2 mm. However, automatically extracting meaningful information from point clouds remains a challenge, and the current state-of-the-art requires significant user interaction. The first objective of this research is to use widely accepted point cloud processing steps such as registration, feature extraction, segmentation, surface fitting and object detection to divide laser scanner data into meaningful object clusters and then apply several damage detection methods to these clusters. This required establishing a process for extracting important information from raw laser-scanned data sets such as the location, orientation and size of objects in a scanned region, and location of damaged regions on a structure. For this purpose, first a methodology for processing range data to identify objects in a scene is presented and then, once the objects from model library are correctly detected and fitted into the captured point cloud, these fitted objects are compared with the as-is point cloud of the investigated object to locate defects on the structure. The algorithms are demonstrated on synthetic scenes and validated on range data collected from test specimens and test-bed bridges. The second objective of this research is to combine useful information extracted from laser scanner data with color information, which provides information in the fourth dimension that enables detection of damage types such as cracks, corrosion, and related surface defects that are generally difficult to detect using only laser scanner data; moreover, the color information also helps to track volumetric changes on structures such as spalling. Although using images with varying resolution to detect cracks is an extensively researched topic, damage detection using laser scanners with and without color images is a new research area that holds many opportunities for enhancing the current practice of visual inspections. The aim is to combine the best features of laser scans and images to create an automatic and effective surface damage detection method, which will reduce the need for skilled labor during visual inspections and allow automatic documentation of related information. This work enables developing surface damage detection strategies that integrate existing condition rating criteria for a wide range damage types that are collected under three main categories: small deformations already existing on the structure (cracks); damage types that induce larger deformations, but where the initial topology of the structure has not changed appreciably (e.g., bent members); and large deformations where localized changes in the topology of the structure have occurred (e.g., rupture, discontinuities and spalling). The effectiveness of the developed damage detection algorithms are validated by comparing the detection results with the measurements taken from test specimens and test-bed bridges.
Cloud screening Coastal Zone Color Scanner images using channel 5
NASA Technical Reports Server (NTRS)
Eckstein, B. A.; Simpson, J. J.
1991-01-01
Clouds are removed from Coastal Zone Color Scanner (CZCS) data using channel 5. Instrumentation problems require pre-processing of channel 5 before an intelligent cloud-screening algorithm can be used. For example, at intervals of about 16 lines, the sensor records anomalously low radiances. Moreover, the calibration equation yields negative radiances when the sensor records zero counts, and pixels corrupted by electronic overshoot must also be excluded. The remaining pixels may then be used in conjunction with the procedure of Simpson and Humphrey to determine the CZCS cloud mask. These results plus in situ observations of phytoplankton pigment concentration show that pre-processing and proper cloud-screening of CZCS data are necessary for accurate satellite-derived pigment concentrations. This is especially true in the coastal margins, where pigment content is high and image distortion associated with electronic overshoot is also present. The pre-processing algorithm is critical to obtaining accurate global estimates of pigment from spacecraft data.
NASA Astrophysics Data System (ADS)
Nanni, Ambra; Marigo, Paola; Groenewegen, Martin A. T.; Aringer, Berhard; Girardi, Léo; Pastorelli, Giada; Bressan, Alessandro; Bladh, Sara
2016-07-01
We present our recent investigation aimed at constraining the typical size and optical properties of carbon dust grains in Circumstellar envelopes (CSEs) of carbon-rich stars (C-stars) in the Small Magellanic Cloud (SMC).We applied our recent dust growth model, coupled with a radiative transfer code, to the dusty CSEs of C-stars along the TP-AGB phase, for which we computed spectra and colors. We then compared our modeled colors in the Near and Mid Infrared (NIR and MIR) bands with the observed ones, testing different assumptions in our dust scheme and employing different optical constants data sets for carbon dust. We constrained the optical properties of carbon dust by identifying the combinations of typical grain size and optical constants data set which simultaneously reproduce several colors in the NIR and MIR wavelengths. In particular, the different choices of optical properties and grain size lead to differences in the NIR and MIR colors greater than two magnitudes in some cases. We concluded that the complete set of selected NIR and MIR colors are best reproduced by small grains, with sizes between 0.06 and 0.1 mum, rather than by large grains of 0.2-0.4 mum. The inability of large grains to reproduce NIR and MIR colors is found to be independent of the adopted optical data set and the deviations between models and observations tend to increase for increasing grain sizes. We also find a possible trend of the typical grain size with mss-loss and/or carbon-excess in the CSEs of these stars.The work presented is preparatory to future studies aimed at calibrating the TP-AGB phase through resolved stellar populations in the framework of the STARKEY project.
Bailey, James A; Casanova, Ruby S; Bufkin, Kim
2006-07-01
In using infrared or infrared-enhanced photography to examine gunshot residue (GSR) on dark-colored clothing, the GSR particles are microscopically examined directly on the fabric followed by the modified Griess test (MGT) for nitrites. In conducting the MGT, the GSR is transferred to treated photographic paper for visualization. A positive reaction yields an orange color on specially treated photographic paper. The examiner also evaluates the size of the powder pattern based on the distribution of nitrite reaction sites or density. A false-positive reaction can occur using the MGT due to contaminants or dyes that produce an orange cloud reaction as well. A method for enhancing visualization of the pattern produced by burned and partially unburned powder is by treatment of the fabric with a solution of sodium hypochlorite. In order to evaluate the results of sodium hypochlorite treatment for GSR visualization, the MGT was used as a reference pattern. Enhancing GSR patterns on dark or multicolored clothing was performed by treating the fabric with an application of 5.25% solution of sodium hypochlorite. Bleaching the dyes in the fabric enhances visualization of the GSR pattern by eliminating the background color. Some dyes are not affected by sodium hypochlorite; therefore, bleaching may not enhance the GSR patterns in some fabrics. Sodium hypochlorite provides the investigator with a method for enhancing GSR patterns directly on the fabric. However, this study is not intended to act as a substitute for the MGT or Sodium Rhodizonate test.
Horizontal branch stars, and galactic and magellanic cloud globular clusters
NASA Technical Reports Server (NTRS)
Deboer, K. S.
1981-01-01
Seven blue horizontal branch stars in the field were observed and a few HB stars were isolated in globular clusters. Energy distributions are compared to assess possible differences and also used in comparison with model atmospheres. Observed energy distributions of HB stars in NGC 6397 are used to estimate the total number of HB stars which produced the integrated fluxes as observed by ANS. Preliminary results are given for colors of globular clusters observed in the Magellanic Clouds and for their extent, based on the Washburn IUE extraction.
Web-based CERES Clouds QC Property Viewing Tool
NASA Astrophysics Data System (ADS)
Smith, R. A.
2015-12-01
Churngwei Chu1, Rita Smith1, Sunny Sun-Mack1, Yan Chen1, Elizabeth Heckert1, Patrick Minnis21 Science Systems and Applications, Inc., Hampton, Virginia2 NASA Langley Research Center, Hampton, Virginia This presentation will display the capabilities of a web-based CERES cloud property viewer. Aqua/Terra/NPP data will be chosen for examples. It will demonstrate viewing of cloud properties in gridded global maps, histograms, time series displays, latitudinal zonal images, binned data charts, data frequency graphs, and ISCCP plots. Images can be manipulated by the user to narrow boundaries of the map as well as color bars and value ranges, compare datasets, view data values, and more. Other atmospheric studies groups will be encouraged to put their data into the underlying NetCDF data format and view their data with the tool.
NASA Astrophysics Data System (ADS)
Marinas, Javier; Salgado, Luis; Arróspide, Jon; Camplani, Massimo
2012-01-01
In this paper we propose an innovative method for the automatic detection and tracking of road traffic signs using an onboard stereo camera. It involves a combination of monocular and stereo analysis strategies to increase the reliability of the detections such that it can boost the performance of any traffic sign recognition scheme. Firstly, an adaptive color and appearance based detection is applied at single camera level to generate a set of traffic sign hypotheses. In turn, stereo information allows for sparse 3D reconstruction of potential traffic signs through a SURF-based matching strategy. Namely, the plane that best fits the cloud of 3D points traced back from feature matches is estimated using a RANSAC based approach to improve robustness to outliers. Temporal consistency of the 3D information is ensured through a Kalman-based tracking stage. This also allows for the generation of a predicted 3D traffic sign model, which is in turn used to enhance the previously mentioned color-based detector through a feedback loop, thus improving detection accuracy. The proposed solution has been tested with real sequences under several illumination conditions and in both urban areas and highways, achieving very high detection rates in challenging environments, including rapid motion and significant perspective distortion.
Asian dust events of April 1998
Husar, R.B.; Tratt, D.M.; Schichtel, B.A.; Falke, S.R.; Li, F.; Jaffe, D.; Gasso, S.; Gill, T.; Laulainen, N.S.; Lu, F.; Reheis, M.C.; Chun, Y.; Westphal, D.; Holben, B.N.; Gueymard, C.; McKendry, I.; Kuring, N.; Feldman, G.C.; McClain, C.; Frouin, R.J.; Merrill, J.; DuBois, D.; Vignola, F.; Murayama, T.; Nickovic, S.; Wilson, W.E.; Sassen, K.; Sugimoto, N.; Malm, W.C.
2001-01-01
On April 15 and 19, 1998, two intense dust storms were generated over the Gobi desert by springtime low-pressure systems descending from the northwest. The windblown dust was detected and its evolution followed by its yellow color on SeaWiFS satellite images, routine surface-based monitoring, and through serendipitous observations. The April 15 dust cloud was recirculating, and it was removed by a precipitating weather system over east Asia. The April 19 dust cloud crossed the Pacific Ocean in 5 days, subsided to the surface along the mountain ranges between British Columbia and California, and impacted severely the optical and the concentration environments of the region. In east Asia the dust clouds increased the albedo over the cloudless ocean and land by up to 10-20%, but it reduced the near-UV cloud reflectance, causing a yellow coloration of all surfaces. The yellow colored backscattering by the dust eludes a plausible explanation using simple Mie theory with constant refractive index. Over the West Coast the dust layer has increased the spectrally uniform optical depth to about 0.4, reduced the direct solar radiation by 30-40%, doubled the diffuse radiation, and caused a whitish discoloration of the blue sky. On April 29 the average excess surface-level dust aerosol concentration over the valleys of the West Coast was about 20-50 ??g/m3 with local peaks >100 ??g/m3. The dust mass mean diameter was 2-3 ??m, and the dust chemical fingerprints were evident throughout the West Coast and extended to Minnesota. The April 1998 dust event has impacted the surface aerosol concentration 2-4 times more than any other dust event since 1988. The dust events were observed and interpreted by an ad hoc international web-based virtual community. It would be useful to set up a community-supported web-based infrastructure to monitor the global aerosol pattern for such extreme aerosol events, to alert and to inform the interested communities, and to facilitate collaborative analysis for improved air quality and disaster management. Copyright 2001 by the American Geophysical Union.
Tropical Storm Blas off the Pacific Coast of Mexico
2004-07-14
Tropical Storm Blas as observed by the Atmospheric Infrared Sounder AIRS onboard NASA Aqua in the year 2004. The major contribution to radiation (infrared light) that AIRS channels sense comes from different levels in the atmosphere, depending upon the channel wavelength. To create the movie, a set of AIRS channels were selected which probe the atmosphere at progressively deeper levels. If there were no clouds, the color in each frame would be nearly uniform until the Earth's surface is encountered. The tropospheric air temperature warms at a rate of 6 K (about 11 F) for each kilometer of descent toward the surface. Thus the colors would gradually change from cold to warm as the movie progresses. Clouds block the infrared radiation. Thus wherever there are clouds we can penetrate no deeper in infrared. The color remains fixed as the movie progresses, for that area of the image is "stuck" to the cloud top temperature. The coldest temperatures around 220 K (about -65 F) come from altitudes of about 10 miles. http://photojournal.jpl.nasa.gov/catalog/PIA00436
Automatic extraction of pavement markings on streets from point cloud data of mobile LiDAR
NASA Astrophysics Data System (ADS)
Gao, Yang; Zhong, Ruofei; Tang, Tao; Wang, Liuzhao; Liu, Xianlin
2017-08-01
Pavement markings provide an important foundation as they help to keep roads users safe. Accurate and comprehensive information about pavement markings assists the road regulators and is useful in developing driverless technology. Mobile light detection and ranging (LiDAR) systems offer new opportunities to collect and process accurate pavement markings’ information. Mobile LiDAR systems can directly obtain the three-dimensional (3D) coordinates of an object, thus defining spatial data and the intensity of (3D) objects in a fast and efficient way. The RGB attribute information of data points can be obtained based on the panoramic camera in the system. In this paper, we present a novel method process to automatically extract pavement markings using multiple attribute information of the laser scanning point cloud from the mobile LiDAR data. This method process utilizes a differential grayscale of RGB color, laser pulse reflection intensity, and the differential intensity to identify and extract pavement markings. We utilized point cloud density to remove the noise and used morphological operations to eliminate the errors. In the application, we tested our method process on different sections of roads in Beijing, China, and Buffalo, NY, USA. The results indicated that both correctness (p) and completeness (r) were higher than 90%. The method process of this research can be applied to extract pavement markings from huge point cloud data produced by mobile LiDAR.
NASA Technical Reports Server (NTRS)
1998-01-01
Color composite of condensate clouds over Tharsis made from red and blue images with a synthesized green channel. Mars Orbiter Camera wide angle frames from Orbit 48.
Figure caption from Science Magazine1990-02-14
Range : 1.7 million miles This photo of Venus was taken by the Galileo spacecraft's Solid State Imaging System. A high-pass spatial filter has been applied in order to emphasize the smaller-scale cloud features, and the rendition has been colorized to a bluish hue in order to emphasize the subtle contrasts in the cloud markings and to indicate how it was taken through a violet filter. The sulfuric acid clouds indicate considerable convective activity, in the equatorial regions of the planet to the left and downwind of the subsolar point (afternoon on Venus), They are analogous to 'fair weather clouds' on Earth. The filamentary dark features visible in the colorized image are here revealed to be composed of several dark nodules, like strings on a bead, each about 60 miles across.
False Color Mosaic Great Red Spot
NASA Technical Reports Server (NTRS)
1996-01-01
False color representation of Jupiter's Great Red Spot (GRS) taken through three different near-infrared filters of the Galileo imaging system and processed to reveal cloud top height. Images taken through Galileo's near-infrared filters record sunlight beyond the visible range that penetrates to different depths in Jupiter's atmosphere before being reflected by clouds. The Great Red Spot appears pink and the surrounding region blue because of the particular color coding used in this representation. Light reflected by Jupiter at a wavelength (886 nm) where methane strongly absorbs is shown in red. Due to this absorption, only high clouds can reflect sunlight in this wavelength. Reflected light at a wavelength (732 nm) where methane absorbs less strongly is shown in green. Lower clouds can reflect sunlight in this wavelength. Reflected light at a wavelength (757 nm) where there are essentially no absorbers in the Jovian atmosphere is shown in blue: This light is reflected from the deepest clouds. Thus, the color of a cloud in this image indicates its height. Blue or black areas are deep clouds; pink areas are high, thin hazes; white areas are high, thick clouds. This image shows the Great Red Spot to be relatively high, as are some smaller clouds to the northeast and northwest that are surprisingly like towering thunderstorms found on Earth. The deepest clouds are in the collar surrounding the Great Red Spot, and also just to the northwest of the high (bright) cloud in the northwest corner of the image. Preliminary modeling shows these cloud heights vary over 30 km in altitude. This mosaic, of eighteen images (6 in each filter) taken over a 6 minute interval during the second GRS observing sequence on June 26, 1996, has been map-projected to a uniform grid of latitude and longitude. North is at the top.
Launched in October 1989, Galileo entered orbit around Jupiter on December 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepoInhomogeneous models of the Venus clouds containing sulfur
NASA Technical Reports Server (NTRS)
Smith, S. M.; Pollack, J. B.; Giver, L. P.; Cuzzi, J. N.; Podolak, M.
1979-01-01
Based on the suggestion that elemental sulfur is responsible for the yellow color of Venus, calculations are compared at 3.4 microns of the reflectivity phase function of two sulfur containing inhomogeneous cloud models with that of a homogeneous model. Assuming reflectivity observations with 25% or less total error, comparison of the model calculations leads to a minimum detectable mass of sulfur equal to 7% of the mass of sulfuric acid for the inhomogeneous drop model. For the inhomogeneous cloud model the comparison leads to a minimum detectable mass of sulfur between 17% and 38% of the mass of the acid drops, depending upon the actual size of the large particles. It is concluded that moderately accurate 3.4 microns reflectivity observations are capable of detecting quite small amounts of elemental sulfur at the top of the Venus clouds.
2018-03-15
This image captures a close-up view of a storm with bright cloud tops in the northern hemisphere of Jupiter. NASA's Juno spacecraft took this color-enhanced image on Feb. 7 at 5:38 a.m. PST (8:38 a.m. EST) during its 11th close flyby of the gas giant planet. At the time, the spacecraft was 7,578 miles (12,195 kilometers) from the tops of Jupiter's clouds at 49.2 degrees north latitude. Citizen scientist Matt Brealey processed the image using data from the JunoCam imager. Citizen scientist Gustavo B C then adjusted colors and embossed Matt Brealey's processing of this storm. https://photojournal.jpl.nasa.gov/catalog/PIA21981
1998-03-13
Color composite of condensate clouds over Tharsis made from red and blue images with a synthesized green channel. Mars Orbiter Camera wide angle frames from Orbit 48. http://photojournal.jpl.nasa.gov/catalog/PIA00812
Colors of Alien Worlds from Direct Imaging Exoplanet Missions
NASA Astrophysics Data System (ADS)
Hu, Renyu
2016-01-01
Future direct-imaging exoplanet missions such as WFIRST will measure the reflectivity of exoplanets at visible wavelengths. Most of the exoplanets to be observed will be located further away from their parent stars than is Earth from the Sun. These "cold" exoplanets have atmospheric environments conducive for the formation of water and/or ammonia clouds, like Jupiter in the Solar System. I find the mixing ratio of methane and the pressure level of the uppermost cloud deck on these planets can be uniquely determined from their reflection spectra, with moderate spectral resolution, if the cloud deck is between 0.6 and 1.5 bars. The existence of this unique solution is useful for exoplanet direct imaging missions for several reasons. First, the weak bands and strong bands of methane enable the measurement of the methane mixing ratio and the cloud pressure, although an overlying haze layer can bias the estimate of the latter. Second, the cloud pressure, once derived, yields an important constraint on the internal heat flux from the planet, and thus indicating its thermal evolution. Third, water worlds having H2O-dominated atmospheres are likely to have water clouds located higher than the 10-3 bar pressure level, and muted spectral absorption features. These planets would occupy a confined phase space in the color-color diagrams, likely distinguishable from H2-rich giant exoplanets by broadband observations. Therefore, direct-imaging exoplanet missions may offer the capability to broadly distinguish H2-rich giant exoplanets versus H2O-rich super-Earth exoplanets, and to detect ammonia and/or water clouds and methane gas in their atmospheres.
Genes2WordCloud: a quick way to identify biological themes from gene lists and free text.
Baroukh, Caroline; Jenkins, Sherry L; Dannenfelser, Ruth; Ma'ayan, Avi
2011-10-13
Word-clouds recently emerged on the web as a solution for quickly summarizing text by maximizing the display of most relevant terms about a specific topic in the minimum amount of space. As biologists are faced with the daunting amount of new research data commonly presented in textual formats, word-clouds can be used to summarize and represent biological and/or biomedical content for various applications. Genes2WordCloud is a web application that enables users to quickly identify biological themes from gene lists and research relevant text by constructing and displaying word-clouds. It provides users with several different options and ideas for the sources that can be used to generate a word-cloud. Different options for rendering and coloring the word-clouds give users the flexibility to quickly generate customized word-clouds of their choice. Genes2WordCloud is a word-cloud generator and a word-cloud viewer that is based on WordCram implemented using Java, Processing, AJAX, mySQL, and PHP. Text is fetched from several sources and then processed to extract the most relevant terms with their computed weights based on word frequencies. Genes2WordCloud is freely available for use online; it is open source software and is available for installation on any web-site along with supporting documentation at http://www.maayanlab.net/G2W. Genes2WordCloud provides a useful way to summarize and visualize large amounts of textual biological data or to find biological themes from several different sources. The open source availability of the software enables users to implement customized word-clouds on their own web-sites and desktop applications.
Genes2WordCloud: a quick way to identify biological themes from gene lists and free text
2011-01-01
Background Word-clouds recently emerged on the web as a solution for quickly summarizing text by maximizing the display of most relevant terms about a specific topic in the minimum amount of space. As biologists are faced with the daunting amount of new research data commonly presented in textual formats, word-clouds can be used to summarize and represent biological and/or biomedical content for various applications. Results Genes2WordCloud is a web application that enables users to quickly identify biological themes from gene lists and research relevant text by constructing and displaying word-clouds. It provides users with several different options and ideas for the sources that can be used to generate a word-cloud. Different options for rendering and coloring the word-clouds give users the flexibility to quickly generate customized word-clouds of their choice. Methods Genes2WordCloud is a word-cloud generator and a word-cloud viewer that is based on WordCram implemented using Java, Processing, AJAX, mySQL, and PHP. Text is fetched from several sources and then processed to extract the most relevant terms with their computed weights based on word frequencies. Genes2WordCloud is freely available for use online; it is open source software and is available for installation on any web-site along with supporting documentation at http://www.maayanlab.net/G2W. Conclusions Genes2WordCloud provides a useful way to summarize and visualize large amounts of textual biological data or to find biological themes from several different sources. The open source availability of the software enables users to implement customized word-clouds on their own web-sites and desktop applications. PMID:21995939
NASA Technical Reports Server (NTRS)
Uthe, Edward E.
1990-01-01
SRI has assembled an airborne lidar/radiometric instrumentation suite for mapping cirrus cloud distribution and analyzing cirrus cloud optical properties. Operation of upward viewing infrared radiometers from an airborne platform provides the optimum method of measuring high altitude cold cloud radiative properties with minimum interference from the thermal emission by the earth's surface and lower atmospheric components. Airborne installed sensors can also operate over large regional areas including water, urban, and mountain surfaces and above lower atmospheric convective clouds and haze layers. Currently available sensors installed on the SRI Queen Air aircraft are illustrated. Lidar and radiometric data records are processed for real time viewing on a color video screen. A cirrus cloud data example is presented as a black and white reproduction of a color display of data at the aircraft altitude of 12,000 ft, the 8 to 14 micron atmospheric radiation background was equivalent to a blackbody temperature of about -60 C and, therefore, the radiometer did not respond strongly to low density cirrus cloud concentrations detected by the lidar. Cloud blackbody temperatures (observed by radiometer) are shown plotted against midcloud temperatures (derived from lidar observed cloud heights and supporting temperature profiles) for data collected on 30 June and 28 July.
[Web-based analysis of Stilling's color plates].
Kuchenbecker, J
2014-12-01
Color vision tests with pseudoisochromatic plates currently represent the most common procedure for the screening of congenital color vision deficiencies. By means of a web-based color vision test, new and old color plates can be tested for diagnostic quality without major effort. A total of 16 digitized Stilling's color plates of the 11th edition from 1907 were included in a web-based color vision test (http://www.farbsehtest.de). The χ(2)-test was used to check whether the Stilling color plates showed similar results to the nine previously evaluated Ishihara color plates. A total of 518 subjects including101 (19.5 %) female subjects with a mean age of 34.6 ± 17 years, took the web-based test with the 25 plates. For all participants the range for the correctly recognized plates was between 5.2 % (n = 27) and 97.7 % (n = 506) for the Stilling color plates and between 64.9 % (n = 336) and 100 % (n = 518) for the Ishihara color plates. For participants with more than 5 errors (n = 247), the range for correctly recognized plates was between 2.0 % (n = 5) and 98.0 % (n = 242) for the Stilling plates and between 42.5 % (n = 105) and 100 % (n = 247) for the Ishihara plates. Taking all color plates and all participants into account there was a significantly higher incidence of erroneous recognition of the Stilling color plates (3038 false and 5250 true answers) compared to the Ishihara color plates (1511 false and 3151 true answers) (p < 0.001, χ(2)-test). The diagnostic quality of the tested Stilling color pates was very variable. Some of the plates could be used for the test edition of the Velhagen/Broschmann/Kuchenbecker color plates from 2014. Overall, the Stilling color plates were recognized with a higher incidence of error by all participants in the web-based test compared to the utilized Ishihara color plates, which in most cases was attributable to ambiguity of some symbols.
2017-12-08
A vigorous summer fire season continued through July, 2013 as many large wildfires continued to burn in the forests of northern Canada. The high fire activity not only laid waste to thousands of hectares of boreal forest, but sent thick smoke billowing high into the atmosphere, where it was carried far across the Atlantic Ocean. On July 30, the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite captured this true-color image of a river of smoke spreading south across the Hudson Bay. The blue background is formed by the waters of Hudson Bay. In the southeast the green, forest-covered land of Quebec province peeks from under a large cloud bank. Another large bank of white cloud covers the water in the southwest, and a smaller cloud bank covers the territory of Nunavut in the northwest. A bit of Baffin Island can be seen near the top center of the image. Looking closely at the image, it appears that the gray smoke mixes with whiter cloud in the south, suggesting they may be at the same level in the atmosphere. In the northeast corner of the image, a ribbon of smoke appears to blow over a bank of popcorn clouds as well as over a few lower-lying clouds, causing some of the clouds to appear gray beneath the smoky veil. Where cloud meets smoke in the northeast, however, the line of the cloud bank remains sharp, while the smoke appears to continue traveling under the edge. Although these interpretations are somewhat subjective in this true-color image, the false-color image of the same scene (not shown here) lends strength to the interpretation. Data from other NASA instruments, designed to measure cloud height and characteristics, agree that clouds vary in height, and that smoke mingles with cloud in the south. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Hierarchical extraction of urban objects from mobile laser scanning data
NASA Astrophysics Data System (ADS)
Yang, Bisheng; Dong, Zhen; Zhao, Gang; Dai, Wenxia
2015-01-01
Point clouds collected in urban scenes contain a huge number of points (e.g., billions), numerous objects with significant size variability, complex and incomplete structures, and variable point densities, raising great challenges for the automated extraction of urban objects in the field of photogrammetry, computer vision, and robotics. This paper addresses these challenges by proposing an automated method to extract urban objects robustly and efficiently. The proposed method generates multi-scale supervoxels from 3D point clouds using the point attributes (e.g., colors, intensities) and spatial distances between points, and then segments the supervoxels rather than individual points by combining graph based segmentation with multiple cues (e.g., principal direction, colors) of the supervoxels. The proposed method defines a set of rules for merging segments into meaningful units according to types of urban objects and forms the semantic knowledge of urban objects for the classification of objects. Finally, the proposed method extracts and classifies urban objects in a hierarchical order ranked by the saliency of the segments. Experiments show that the proposed method is efficient and robust for extracting buildings, streetlamps, trees, telegraph poles, traffic signs, cars, and enclosures from mobile laser scanning (MLS) point clouds, with an overall accuracy of 92.3%.
NASA Technical Reports Server (NTRS)
2002-01-01
This spectacular, full-color image of the Earth is a composite of the first full day of data gathered by the Moderate-resolution Imaging Spectroradiometer (MODIS) aboard NASA's Terra spacecraft. MODIS collected the data for each wavelength of red, green, and blue light as Terra passed over the daylit side of the Earth on April 19, 2000. Terra is orbiting close enough to the Earth so that it cannot quite see the entire surface in a day, resulting in the narrow gaps around the equator. Although the sensor's visible channels were combined to form this true-color picture, MODIS collects data in a total of 36 wavelengths, ranging from visible to thermal infrared energy. Scientists use these data to measure regional and global-scale changes in marine and land-based plant life, sea and land surface temperatures, cloud properties, aerosols, fires, and land surface properties. Notice how cloudy the Earth is, and the large differences in brightness between clouds, deserts, oceans, and forests. The Antarctic, surrounded by clockwise swirls of cloud, is shrouded in darkness because the sun is north of the equator at this time of year. The tropical forests of Africa, Southeast Asia, and South America are shrouded by clouds. The bright Sahara and Arabian deserts stand out clearly. Green vegetation is apparent in the southeast United States, the Yucatan Peninsula, and Madagascar. Image by Mark Gray, MODIS Atmosphere Team, NASA GSFC
NASA Astrophysics Data System (ADS)
Orton, G.; Parrish, P.; Yanamandra-Fisher, P.; Baines, K.; Mousis, O.; Pantin, E.; Fujiyoshi, T.; Fuse, T.; Simon-Miller, A.
White Oval BA: Temperature structure and cloud properties G. Orton, P. Parrish, P. Yanamandra-Fisher, K. Baines (1), O. Mousis (2), E. Pantin (3), T. Fuse, T. Fujiyoshi (4), A. Simon-Miller (5) (1) Jet Propulsion Laboratory, Calif. Inst. of Technology, USA, (2) Obs. de Besancon, France, (3) C.E.A., France, (4) Subaru National Astron. Obs., Japan, (5) NASA Goddard Space Flight Center, USA. (Glenn.Orton@jpl.nasa.gov) White Oval BA, constituted from 3 predecessor vortices (known as Jupiter's "classical" White Ovals) after successive mergers in 1998 and 2000, became second-largest vortex in the atmosphere of Jupiter (and possibly the solar system) at the time of its formation. While it continues in this distinction, it required a name change after a 2005 December through 2006 February transformation which made it appear visually the same color as the Great Red Spot. Our campaign to understand the changes involved examination of the detailed color and wind field using Hubble Space Telescope instrumentation on several orbits in April. The field of temperatures, ammonia distribution and clouds were also examined using the mid-infrared VISIR camera/spectrometer on ESO's 8.2-m Very Large Telescope (3), the NASA Infrared telescope with the mid-infrared MIRSI instrument and the refurbished near-infrared facility camera NSFCam2. High-resolution images of the Oval were made before the color change with the COMICS mid-infrared facility on the Subaru telescope. We are using these data, and possibly others to be acquired during the summer, to characterize the extent to which changes in storm strength (vorticity, positive vertical motion) influenced (i) the depth from which colored cloud particles may have been "dredged up" from depth or (ii) the altitude to which particles may have been lofted and subject to high-energy UV radiation which caused a color change, as alternative explanations for the phenomenon. Clues to this will provide clues to the chemistry of Jupiter's cloud system and its well-known colors in general.
NASA Astrophysics Data System (ADS)
Antioquia, C. T.; Uy, S. N.; Caballa, K.; Lagrosas, N.
2014-12-01
Ground based sky imaging cameras have been used to measure cloud cover over an area to aid in radiation budget models. During daytime, certain clouds tend to help decrease atmospheric temperature by obstructing sunrays in the atmosphere. Thus, the detection of clouds plays an important role in the formulation of radiation budget in the atmosphere. In this study, a wide angled sky imager (GoPro Hero 2) was brought on board M/Y Vasco to detect and quantity cloud occurrence over sea during the 2nd 7SEAS field campaign. The camera is just a part of a number of scientific instruments used to measure weather, aerosol chemistry and solar radiation among others. The data collection started during the departure from Manila Bay on 05 September 2012 and went on until the end of the cruise (29 September 2012). The camera was placed in a weather-proof box that is then affixed on a steel mast where other instruments are also attached during the cruise. The data has a temporal resolution of 1 minute, and each image is 500x666 pixels in size. Fig. 1a shows the track of the ship during the cruise. The red, blue, hue, saturation, and value of the pixels are analysed for cloud occurrence. A pixel is considered to "contain" thick cloud if it passes all four threshold parameters (R-B, R/B, R-B/R+B, HSV; R is the red pixel color value, blue is the blue pixel color value, and HSV is the hue saturation value of the pixel) and considered thin cloud if it passes two or three parameters. Fig. 1b shows the daily analysis of cloud occurrence. Cloud occurrence here is quantified as the ratio of the pixels with cloud to the total number of pixels in the data image. The average cloud cover for the days included in this dataset is 87%. These measurements show a big contrast when compared to cloud cover over land (Manila Observatory) which is usually around 67%. During the duration of the cruise, only one day (September 6) has an average cloud occurrence below 50%; the rest of the days have averages of 66% or higher - 98% being the highest. This result would then give a general trend of how cloud occurrences over land and over sea differ in the South East Asian region. In this study, these cloud occurrences come from local convection and clouds brought about by Southwest Monsoon winds.
NASA Technical Reports Server (NTRS)
Tilton, James C.; Ramapriyan, H. K.
1989-01-01
A case study is presented where an image segmentation based compression technique is applied to LANDSAT Thematic Mapper (TM) and Nimbus-7 Coastal Zone Color Scanner (CZCS) data. The compression technique, called Spatially Constrained Clustering (SCC), can be regarded as an adaptive vector quantization approach. The SCC can be applied to either single or multiple spectral bands of image data. The segmented image resulting from SCC is encoded in small rectangular blocks, with the codebook varying from block to block. Lossless compression potential (LDP) of sample TM and CZCS images are evaluated. For the TM test image, the LCP is 2.79. For the CZCS test image the LCP is 1.89, even though when only a cloud-free section of the image is considered the LCP increases to 3.48. Examples of compressed images are shown at several compression ratios ranging from 4 to 15. In the case of TM data, the compressed data are classified using the Bayes' classifier. The results show an improvement in the similarity between the classification results and ground truth when compressed data are used, thus showing that compression is, in fact, a useful first step in the analysis.
Tracers of Stellar Mass-loss. II. Mid-IR Colors and Surface Brightness Fluctuations
NASA Astrophysics Data System (ADS)
González-Lópezlira, Rosa A.
2018-04-01
I present integrated colors and surface brightness fluctuation magnitudes in the mid-infrared (IR), derived from stellar population synthesis models that include the effects of the dusty envelopes around thermally pulsing asymptotic giant branch (TP-AGB) stars. The models are based on the Bruzual & Charlot CB* isochrones; they are single-burst, range in age from a few Myr to 14 Gyr, and comprise metallicities between Z = 0.0001 and Z = 0.04. I compare these models to mid-IR data of AGB stars and star clusters in the Magellanic Clouds, and study the effects of varying self-consistently the mass-loss rate, the stellar parameters, and the output spectra of the stars plus their dusty envelopes. I find that models with a higher than fiducial mass-loss rate are needed to fit the mid-IR colors of “extreme” single AGB stars in the Large Magellanic Cloud. Surface brightness fluctuation magnitudes are quite sensitive to metallicity for 4.5 μm and longer wavelengths at all stellar population ages, and powerful diagnostics of mass-loss rate in the TP-AGB for intermediate-age populations, between 100 Myr and 2–3 Gyr.
Direct Observations of Clouds on Brown Dwarfs: A Spitzer Study of Extreme Cases
NASA Astrophysics Data System (ADS)
Burgasser, Adam; Cruz, Kelle; Cushing, Michael; Kirkpatrick, J. Davy; Looper, Dagny; Lowrance, Patrick; Marley, Mark; Saumon, Didier
2008-03-01
Clouds play a fundamental role in the emergent spectral energy distributions and observed variability of very low mass stars and brown dwarfs, yet hey have only been studied indirectly thus far. Recent indications of a broad silicate grain absorption feature in the 8-11 micron spectra of mid-type L dwarfs, and evidence that the strength of this absorption varies according to broad-band near-infrared color, may finally allow the first direct studies of clouds and condensate grain properties in brown dwarf atmospheres. We propose to observe a sample of 18 ``extreme'' L dwarfs - objects with unusually blue and red near-infrared colors - with IRAC and IRS to study the 8-11 micron feature in detail (including grain size distributions and bulk compositions), and to constrain advanced condensate cloud atmosphere models currently in development. Our program provides a unique examination of the general processes of cloud formation by focusing on the relatively warm photospheres of late-type brown dwarfs.
2007-10-09
In this movie, put together from false-color images taken by the New Horizons Ralph instrument as the spacecraft flew past Jupiter in early 2007, show ammonia clouds appearing as bright blue areas as they form and disperse.
Snapshots of Titan North Polar Cloud
2012-02-23
This series of false-color images obtained by NASA Cassini spacecraft shows the dissolving cloud cover over the north pole of Saturn moon Titan, allowing scientists to see the underlying northern lakes and seas, including Kraken Mare.
Infrared Image of Low Clouds on Venus
NASA Technical Reports Server (NTRS)
1993-01-01
This false-color image is a near-infrared map of lower-level clouds on the night side of Venus, obtained by the Near Infrared Mapping Spectrometer aboard the Galileo spacecraft as it approached the planet's night side on February 10, 1990. Bright slivers of sunlit high clouds are visible above and below the dark, glowing hemisphere. The spacecraft is about 100,000 kilometers (60,000 miles) above the planet. An infrared wavelength of 2.3 microns (about three times the longest wavelength visible to the human eye) was used. The map shows the turbulent, cloudy middle atmosphere some 50-55 kilometers (30- 33 miles) above the surface, 10-16 kilometers or 6-10 miles below the visible cloudtops. The red color represents the radiant heat from the lower atmosphere (about 400 degrees Fahrenheit) shining through the sulfuric acid clouds, which appear as much as 10 times darker than the bright gaps between clouds. This cloud layer is at about -30 degrees Fahrenheit, at a pressure about 1/2 Earth's surface atmospheric pressure. Near the equator, the clouds appear fluffy and blocky; farther north, they are stretched out into East-West filaments by winds estimated at more than 150 mph, while the poles are capped by thick clouds at this altitude.
2009-06-03
This infrared image of Saturn's moon Titan shows a large burst of clouds in the moon's south polar region. These clouds form and move much like those on Earth, but in a much slower, more lingering fashion, new results from NASA's Cassini Spacecraft show. This image is a color composite, with red shown at a 5-micron wavelength, green at 2.7 microns, and blue at 2 microns. An infrared color mosaic is also used as a background image (red at 5 microns, green at 2 microns, blue at 1.3 microns). The images were taken by Cassini's visual and infrared mapping spectrometer during a flyby of Titan on March 26, 2007, known as T27. For a similar view see PIA12004. Titan's southern hemisphere still shows a very active meteorology (the cloud appears in white-reddish tones) even in 2007. According to climate models, these clouds should have faded out since 2005. Scientists have monitored Titan's atmosphere for three-and-a-half years, between July 2004 and December 2007, and observed more than 200 clouds. The way these clouds are distributed around Titan matches scientists' global circulation models. The only exception is timing—clouds are still noticeable in the southern hemisphere while fall is approaching. http://photojournal.jpl.nasa.gov/catalog/PIA12005
Assessing the Time Variability of Jupiter's Tropospheric Properties from 1996 to 2011
NASA Technical Reports Server (NTRS)
Orton, G. S.; Fletcher, L. N.; Yanamandra-Fisher, P. A.; Simon-Miller, A. A.; Greco, J.; Wakefield, L.
2012-01-01
We acquired and analyzed mid-infrared images of Jupiter's disk at selected wavelengths from NASA's Infrared Telescope Facility (IRTF) from 1996 to 2011, including a period of large-scale changes of cloud color and albedo. We derived the 100-300 mbar temperature structure, together with tracers of vertical motion: the thickness of a 600- mbar cloud layer, the 300-mbar abundance of the condensable gas NH3, and the 400- mbar para- vs. ortho-H2 ratio. The biggest visual change was detected in the normally dark South Equatorial Belt (SEB) that 'faded' to a light color in 2010, during which both cloud thickness and NH3 abundance rose; both returned to their pre-fade levels in 2011, as the SEB regained its normal dark color. The cloud thickness in Jupiter's North Temperate Belt (NTB) increased in 2002, coincident with its visible brightening, and its NH3 abundance spiked in 2002-2003. Jupiter's Equatorial Zone (EZ), a region marked by more subtle but widespread color and albedo change, showed high cloud thickness variability between 2007 and 2009. In Jupiter's North Equatorial Belt (NEB), the cloud thickened in 2005, then slowly decreased to a minimum value in 2010-2011. No temperature variations were associated with any of these changes, but we discovered temperature oscillations of approx.2-4 K in all regions, with 4- or 8-year periods and phasing that was dissimilar in the different regions. There was also no detectable change in the para- vs. ortho-H2 ratio over time, leading to the possibility that it is driven from much deeper atmospheric levels and may be time-invariant. Our future work will continue to survey the variability of these properties through the Juno mission, which arrives at Jupiter in 2016, and to connect these observations with those made using raster-scanned images from 1980 to 1993 (Orton et al. 1996 Science 265, 625).
NASA Astrophysics Data System (ADS)
Goudfrooij, Paul
2017-08-01
Recently, deep color-magnitude diagrams from HST data revealed that several massive intermediate-age star clusters in the Magellanic Clouds exhibit extended main-sequence turn-offs (eMSTOs). This discovery posed serious questions regarding the mechanisms responsible for the formation of massive globular clusters and their well-known multiple stellar populations. The nature of eMSTOs is a hotly debated topic of study. Several studies argued that the eMSTOs are caused by an age range of up to a few hundred Myr, while other studies indicate that eMSTOs can instead be caused by a coeval population in which the stars span a range of rotation velocities. Formal evidence to (dis-)prove either scenario still remains at large, in part because stellar tracks that incorporate the effects of rotation have so far only been available for masses > 1.7 Msun whereas the stars in the known eMSTOs of intermediate-age star clusters are less massive. In this proposal we aim to look for photometric signatures of fast rotators in eMSTO clusters that have been observed by HST in three passbands including (at least) F336W and F814W. We will study spreads in different stellar colors, testing against those predicted with the aid of von Zeipel's geometric study for a population of rotating stars with a significant spread in their inclination. Importantly, this spread due to the presence of rotation is predicted to occur along well-defined lines in color-color diagrams, in directions that are distinct from those in color-magnitude diagrams and distinct from the spread predicted for the age range scenario.
Colors of Alien Worlds from Direct Imaging Exoplanet Missions
NASA Astrophysics Data System (ADS)
Hu, Renyu
2015-08-01
Future direct-imaging exoplanet missions such as WFIRST/AFTA, Exo-C, and Exo-S will measure the reflectivity of exoplanets at visible wavelengths. Most of the exoplanets to be observed will be located further away from their parent stars than is Earth from the Sun. These “cold” exoplanets have atmospheric environments conducive for the formation of water and/or ammonia clouds, like Jupiter in the Solar System. I find the mixing ratio of methane and the pressure level of the uppermost cloud deck on these planets can be uniquely determined from their reflection spectra, with moderate spectral resolution, if the cloud deck is between 0.6 and 1.5 bars. The existence of this unique solution is useful for exoplanet direct imaging missions for several reasons. First, the weak bands and strong bands of methane enable the measurement of the methane mixing ratio and the cloud pressure, although an overlying haze layer can bias the estimate of the latter. Second, the cloud pressure, once derived, yields an important constraint on the internal heat flux from the planet, and thus indicating its thermal evolution. Third, water worlds having H2O-dominated atmospheres are likely to have water clouds located higher than the 10-3 bar pressure level, and muted spectral absorption features. These planets would occupy a confined phase space in the color-color diagrams, likely distinguishable from H2-rich giant exoplanets by broadband observations. Therefore, direct-imaging exoplanet missions may offer the capability to broadly distinguish H2-rich giant exoplanets versus H2O-rich super-Earth exoplanets, and to detect ammonia and/or water clouds and methane gas in their atmospheres.
E4 True and false color hot spot mosaic
NASA Technical Reports Server (NTRS)
1997-01-01
True and false color views of Jupiter from NASA's Galileo spacecraft show an equatorial 'hotspot' on Jupiter. These images cover an area 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles). The top mosaic combines the violet and near infrared continuum filter images to create an image similar to how Jupiter would appear to human eyes. Differences in coloration are due to the composition and abundances of trace chemicals in Jupiter's atmosphere. The bottom mosaic uses Galileo's three near-infrared wavelengths displayed in red, green, and blue) to show variations in cloud height and thickness. Bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the deep cloud with an overlying thin haze. The light blue region to the left is covered by a very high haze layer. The multicolored region to the right has overlapping cloud layers of different heights. Galileo is the first spacecraft to distinguish cloud layers on Jupiter.
North is at the top. The mosaic covers latitudes 1 to 10 degrees and is centered at longitude 336 degrees west. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers (about 930,000 miles) by the Solid State Imaging camera system aboard Galileo. The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at: http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at: http:/ /www.jpl.nasa.gov/galileo/sepo.Multi-layer Clouds Over the South Indian Ocean
NASA Technical Reports Server (NTRS)
2003-01-01
The complex structure and beauty of polar clouds are highlighted by these images acquired by the Multi-angle Imaging SpectroRadiometer (MISR) on April 23, 2003. These clouds occur at multiple altitudes and exhibit a noticeable cyclonic circulation over the Southern Indian Ocean, to the north of Enderbyland, East Antarctica.The image at left was created by overlying a natural-color view from MISR's downward-pointing (nadir) camera with a color-coded stereo height field. MISR retrieves heights by a pattern recognition algorithm that utilizes multiple view angles to derive cloud height and motion. The opacity of the height field was then reduced until the field appears as a translucent wash over the natural-color image. The resulting purple, cyan and green hues of this aesthetic display indicate low, medium or high altitudes, respectively, with heights ranging from less than 2 kilometers (purple) to about 8 kilometers (green). In the lower right corner, the edge of the Antarctic coastline and some sea ice can be seen through some thin, high cirrus clouds.The right-hand panel is a natural-color image from MISR's 70-degree backward viewing camera. This camera looks backwards along the path of Terra's flight, and in the southern hemisphere the Sun is in front of this camera. This perspective causes the cloud-tops to be brightly outlined by the sun behind them, and enhances the shadows cast by clouds with significant vertical structure. An oblique observation angle also enhances the reflection of light by atmospheric particles, and accentuates the appearance of polar clouds. The dark ocean and sea ice that were apparent through the cirrus clouds at the bottom right corner of the nadir image are overwhelmed by the brightness of these clouds at the oblique view.The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously from pole to pole, and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. These data products were generated from a portion of the imagery acquired during Terra orbit 17794. The panels cover an area of 335 kilometers x 605 kilometers, and utilize data from blocks 142 to 145 within World Reference System-2 path 155.MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.A new computer-based Farnsworth Munsell 100-hue test for evaluation of color vision.
Ghose, Supriyo; Parmar, Twinkle; Dada, Tanuj; Vanathi, Murugesan; Sharma, Sourabh
2014-08-01
To evaluate a computer-based Farnsworth-Munsell (FM) 100-hue test and compare it with a manual FM 100-hue test in normal and congenital color-deficient individuals. Fifty color defective subjects and 200 normal subjects with a best-corrected visual acuity ≥ 6/12 were compared using a standard manual FM 100-hue test and a computer-based FM 100-hue test under standard operating conditions as recommended by the manufacturer after initial trial testing. Parameters evaluated were total error scores (TES), type of defect and testing time. Pearson's correlation coefficient was used to determine the relationship between the test scores. Cohen's kappa was used to assess agreement of color defect classification between the two tests. A receiver operating characteristic curve was used to determine the optimal cut-off score for the computer-based FM 100-hue test. The mean time was 16 ± 1.5 (range 6-20) min for the manual FM 100-hue test and 7.4 ± 1.4 (range 5-13) min for the computer-based FM 100-hue test, thus reducing testing time to <50 % (p < 0.05). For grading color discrimination, Pearson's correlation coefficient for TES between the two tests was 0.91 (p < 0.001). For color defect classification, Cohen's agreement coefficient was 0.98 (p < 0.01). The computer-based FM 100-hue is an effective and rapid method for detecting, classifying and grading color vision anomalies.
2017-12-08
Like a ship carving its way through the sea, the South Georgia and South Sandwich Islands parted the clouds. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite acquired this natural-color image on February 2, 2017. The ripples in the clouds are known as gravity waves. NASA image by Jeff Schmaltz, LANCE/EOSDIS Rapid Response #nasagoddard
Abstract Art or Arbiters of Energy?
NASA Technical Reports Server (NTRS)
2002-01-01
More than just the idle stuff of daydreams, clouds help control the flow of radiant energy around our world. Clouds are plentiful and widespread throughout Earth's atmosphere-covering up to 75 percent of our planet at any given time-so they play a dominant role in determining how much sunlight reaches the surface, how much sunlight is reflected back into space, how and where warmth is spread around the globe, and how much heat escapes from the surface and atmosphere back into space. Clouds are also highly variable. Clouds' myriad variations through time and space make them one of the greatest areas of uncertainty in scientists' understanding and predictions of climate change. In short, they play a central role in our world's climate system. The false-color image above shows a one-month composite of cloud optical thickness measured by the Moderate-resolution Imaging Spectroradiometer (MODIS) and averaged globally for April 2001. Optical thickness is a measure of how much solar radiation is not allowed to travel through a column of atmosphere. Areas colored red and yellow indicate very cloudy skies, on average, while areas colored green and light blue show moderately cloudy skies. Dark blue regions show where there is little or no cloud cover. This data product is an important new tool for helping scientists understand the roles clouds play in our global climate system. MODIS gives scientists new capabilities for measuring the structure and composition of clouds. MODIS observes the entire Earth almost every day in 36 spectral bands ranging from visible to thermal infrared wavelengths, enabling it to quantify a wide suite of clouds' physical and radiative properties. Specifically, MODIS can determine whether a cloud is composed of ice or water particles (or some combination of the two), it can measure the effective radius of the particles within a cloud, it can determine the temperature and altitude of cloud tops, and it can observe how much sunlight passes through a cloud. MODIS is one of five sensors flying aboard NASA's Terra satellite, the flagship in NASA's Earth Observing System, launched in December 1999. For more information about this and other new MODIS products, read NASA Unveils Spectacular Suite of New Global Data Products from MODIS. Image courtesy MODIS Atmosphere Group, NASA GSFC
NASA Astrophysics Data System (ADS)
Orton, Glenn S.; Yanamandra-Fisher, P. A.; Parrish, P. D.; Mousis, O.; Pantin, E.; Fuse, T.; Fujiyoshi, T.; Simon-Miller, A.; Morales-Juberias, R.; Tollestrup, E.; Connelley, M.; Trujillo, C.; Hora, J.; Irwin, P.; Fletcher, L.; Hill, D.; Kollmansberger, S.
2006-09-01
White Oval BA, constituted from 3 predecessor vortices (known as Jupiter's "classical" White Ovals) after successive mergers in 1998 and 2000, became second-largest vortex in the atmosphere of Jupiter (and possibly the solar system) at the time of its formation. While it continues in this distinction,it required a name change after a 2005 December through 2006 February transformation which made it appear visually the same color as the Great Red Spot. Our campaign to understand the changes involved examination of the detailed color and wind field using Hubble Space Telescope instrumentation on several orbits in April. The field of temperatures, ammonia distribution and clouds were also examined using the mid-infrared VISIR camera/spectrometer on ESO's 8.2-m Very Large Telescope, the NASA Infrared telescope with the mid-infrared MIRSI instrument and the refurbished near-infrared facility camera NSFCam2. High-resolution images of the Oval were made before the color change with the COMICS mid-infrared facility on the 8.2-m Subaru telescope.We are using these images, togther with images acquired at the IRTF and with the Gemini/North NIRI near-infrared camera between January, 2005, and August, 2006, to characterize the extent to which changes in storm strength (vorticity, postive vertical motion) influenced (i) the depth from which colored cloud particles may have been "dredged up" from depth or (ii) the altitude to which particles may have been lofted and subject to high-energy UV radiation which caused a color change, as alternative explanations for the phenomenon. Clues to this will provide clues to the chemistry of Jupiter's cloud system and its well-known colors in general. The behavior of Oval BA, its interaction with the Great Red Spot in particular,are also being compared with dynamical models run with the EPIC code.
Daytime sea fog retrieval based on GOCI data: a case study over the Yellow Sea.
Yuan, Yibo; Qiu, Zhongfeng; Sun, Deyong; Wang, Shengqiang; Yue, Xiaoyuan
2016-01-25
In this paper, a new daytime sea fog detection algorithm has been developed by using Geostationary Ocean Color Imager (GOCI) data. Based on spectral analysis, differences in spectral characteristics were found over different underlying surfaces, which include land, sea, middle/high level clouds, stratus clouds and sea fog. Statistical analysis showed that the Rrc (412 nm) (Rayleigh Corrected Reflectance) of sea fog pixels is approximately 0.1-0.6. Similarly, various band combinations could be used to separate different surfaces. Therefore, three indices (SLDI, MCDI and BSI) were set to discern land/sea, middle/high level clouds and fog/stratus clouds, respectively, from which it was generally easy to extract fog pixels. The remote sensing algorithm was verified using coastal sounding data, which demonstrated that the algorithm had the ability to detect sea fog. The algorithm was then used to monitor an 8-hour sea fog event and the results were consistent with observational data from buoys data deployed near the Sheyang coast (121°E, 34°N). The goal of this study was to establish a daytime sea fog detection algorithm based on GOCI data, which shows promise for detecting fog separately from stratus.
The life cycle of a tornadic cloud as seen from a geosynchronous satellite
NASA Technical Reports Server (NTRS)
Hung, R. J.; Dodge, J. C.; Smith, R. E.
1983-01-01
The life span of a severe storm is on the order of a few hours. Rapid-scan infrared and visible observations from geosynchronous satellites can be useful for studying the life cycle of a severe convective storm. By using artificial colors for pixels representing blackbody temperatures of the cloud top, convective storms can be observed throughout their life cycles. In this paper clouds associated with a tornadic storm, the Ringwood, OK tornado on May 29, 1977, are compared with those without a tornadic storm to illustrate how the infrared and visible observations from a geosynchronous satellite can be used to study the differences in their life cycles. The instability of the air mass and the meteorological background are discussed based on balloon observations.
NASA Astrophysics Data System (ADS)
Zdanavičius, K.; Zdanavičius, J.; Straižys, V.; Maskoliūnas, M.
Interstellar extinction is investigated in a 1.5 square degree area in the direction of the reflection nebula NGC 7023 at ℓ = 104.1\\degr, b = +14.2\\degr. The study is based on photometric classification and the determination of interstellar extinctions and distances of 480 stars down to V = 16.5 mag from photometry in the Vilnius seven-color system published in Paper I (2008). The investigated area is divided into five smaller subareas with slightly different dependence of the extinction on distance. The distribution of reddened stars is in accordance with the presence of two dust clouds at 282 pc and 715 pc, however in some directions the dust distribution can be continuous or more clouds can be present.
MODIS Views Variations in Cloud Types
NASA Technical Reports Server (NTRS)
2002-01-01
This MODIS image, centered over the Great Lakes region in North America, shows a variety of cloud types. The clouds at the top of the image, colored pink, are cold, high-level snow and ice clouds, while the neon green clouds are lower-level water clouds. Because different cloud types reflect and emit radiant energy differently, scientists can use MODIS' unique data set to measure the sizes of cloud particles and distinguish between water, snow, and ice clouds. This scene was acquired on Feb. 24, 2000, and is a red, green, blue composite of bands 1, 6, and 31 (0.66, 1.6, and 11.0 microns, respectively). Image by Liam Gumley, Space Science and Engineering Center, University of Wisconsin-Madison
NASA Technical Reports Server (NTRS)
2007-01-01
[figure removed for brevity, see original site] Click on the image for movie of Ammonia Ice Clouds on Jupiter In this movie, put together from false-color images taken by the New Horizons Ralph instrument as the spacecraft flew past Jupiter in early 2007, show ammonia clouds (appearing as bright blue areas) as they form and disperse over five successive Jupiter 'days.' Scientists noted how the larger cloud travels along with a small, local deep hole.Hubble Tracks Clouds on Uranus
NASA Technical Reports Server (NTRS)
1997-01-01
Taking its first peek at Uranus, NASA Hubble Space Telescope's Near Infrared Camera and Multi-Object Spectrometer (NICMOS) has detected six distinct clouds in images taken July 28,1997.
The image on the right, taken 90 minutes after the left-hand image, shows the planet's rotation. Each image is a composite of three near-infrared images. They are called false-color images because the human eye cannot detect infrared light. Therefore, colors corresponding to visible light were assigned to the images. (The wavelengths for the 'blue,' 'green,' and 'red' exposures are 1.1, 1.6, and 1.9 micrometers, respectively.)At visible and near-infrared light, sunlight is reflected from hazes and clouds in the atmosphere of Uranus. However, at near-infrared light, absorption by gases in the Uranian atmosphere limits the view to different altitudes, causing intense contrasts and colors.In these images, the blue exposure probes the deepest atmospheric levels. A blue color indicates clear atmospheric conditions, prevalent at mid-latitudes near the center of the disk. The green exposure is sensitive to absorption by methane gas, indicating a clear atmosphere; but in hazy atmospheric regions, the green color is seen because sunlight is reflected back before it is absorbed. The green color around the south pole (marked by '+') shows a strong local haze. The red exposure reveals absorption by hydrogen, the most abundant gas in the atmosphere of Uranus. Most sunlight shows patches of haze high in the atmosphere. A red color near the limb (edge) of the disk indicates the presence of a high-altitude haze. The purple color to the right of the equator also suggests haze high in the atmosphere with a clear atmosphere below.The five clouds visible near the right limb rotated counterclockwise during the time between both images. They reach high into the atmosphere, as indicated by their red color. Features of such high contrast have never been seen before on Uranus. The clouds are almost as large as continents on Earth, such as Europe. Another cloud (which barely can be seen) rotated along the path shown by the black arrow. It is located at lower altitudes, as indicated by its green color.The rings of Uranus are extremely faint in visible light but quite prominent in the near infrared. The brightest ring, the epsilon ring, has a variable width around its circumference. Its widest and thus brightest part is at the top in this image. Two fainter, inner rings are visible next to the epsilon ring.Eight of the 10 small Uranian satellites, discovered by Voyager 2, can be seen in both images. Their sizes range from about 25 miles (40 kilometers) for Bianca to 100 miles (150 kilometers) for Puck. The smallest of these satellites have not been detected since the departure of Voyager 2 from Uranus in 1986. These eight satellites revolve around Uranus in less than a day. The inner ones are faster than the outer ones. Their motion in the 90 minutes between both images is marked in the right panel. The area outside the rings was slightly enhanced in brightness to improve the visibility of these faint satellites.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/HUBBLE TRACKS CLOUDS ON URANUS
NASA Technical Reports Server (NTRS)
2002-01-01
Taking its first peek at Uranus, NASA Hubble Space Telescope's Near Infrared Camera and Multi-Object Spectrometer (NICMOS) has detected six distinct clouds in images taken July 28,1997. The image on the right, taken 90 minutes after the left-hand image, shows the planet's rotation. Each image is a composite of three near-infrared images. They are called false-color images because the human eye cannot detect infrared light. Therefore, colors corresponding to visible light were assigned to the images. (The wavelengths for the 'blue,' 'green,' and 'red' exposures are 1.1, 1.6, and 1.9 micrometers, respectively.) At visible and near-infrared light, sunlight is reflected from hazes and clouds in the atmosphere of Uranus. However, at near-infrared light, absorption by gases in the Uranian atmosphere limits the view to different altitudes, causing intense contrasts and colors. In these images, the blue exposure probes the deepest atmospheric levels. A blue color indicates clear atmospheric conditions, prevalent at mid-latitudes near the center of the disk. The green exposure is sensitive to absorption by methane gas, indicating a clear atmosphere; but in hazy atmospheric regions, the green color is seen because sunlight is reflected back before it is absorbed. The green color around the south pole (marked by '+') shows a strong local haze. The red exposure reveals absorption by hydrogen, the most abundant gas in the atmosphere of Uranus. Most sunlight shows patches of haze high in the atmosphere. A red color near the limb (edge) of the disk indicates the presence of a high-altitude haze. The purple color to the right of the equator also suggests haze high in the atmosphere with a clear atmosphere below. The five clouds visible near the right limb rotated counterclockwise during the time between both images. They reach high into the atmosphere, as indicated by their red color. Features of such high contrast have never been seen before on Uranus. The clouds are almost as large as continents on Earth, such as Europe. Another cloud (which barely can be seen) rotated along the path shown by the black arrow. It is located at lower altitudes, as indicated by its green color. The rings of Uranus are extremely faint in visible light but quite prominent in the near infrared. The brightest ring, the epsilon ring, has a variable width around its circumference. Its widest and thus brightest part is at the top in this image. Two fainter, inner rings are visible next to the epsilon ring. Eight of the 10 small Uranian satellites, discovered by Voyager 2, can be seen in both images. Their sizes range from about 25 miles (40 kilometers) for Bianca to 100 miles (150 kilometers) for Puck. The smallest of these satellites have not been detected since the departure of Voyager 2 from Uranus in 1986. These eight satellites revolve around Uranus in less than a day. The inner ones are faster than the outer ones. Their motion in the 90 minutes between both images is marked in the right panel. The area outside the rings was slightly enhanced in brightness to improve the visibility of these faint satellites. Credits: Erich Karkoschka (University of Arizona), and NASA.
Sukič, Primož; Štumberger, Gorazd
2017-05-13
Clouds moving at a high speed in front of the Sun can cause step changes in the output power of photovoltaic (PV) power plants, which can lead to voltage fluctuations and stability problems in the connected electricity networks. These effects can be reduced effectively by proper short-term cloud passing forecasting and suitable PV power plant output power control. This paper proposes a low-cost Internet of Things (IoT)-based solution for intra-minute cloud passing forecasting. The hardware consists of a Raspberry PI Model B 3 with a WiFi connection and an OmniVision OV5647 sensor with a mounted wide-angle lens, a circular polarizing (CPL) filter and a natural density (ND) filter. The completely new algorithm for cloud passing forecasting uses the green and blue colors in the photo to determine the position of the Sun, to recognize the clouds, and to predict their movement. The image processing is performed in several stages, considering selectively only a small part of the photo relevant to the movement of the clouds in the vicinity of the Sun in the next minute. The proposed algorithm is compact, fast and suitable for implementation on low cost processors with low computation power. The speed of the cloud parts closest to the Sun is used to predict when the clouds will cover the Sun. WiFi communication is used to transmit this data to the PV power plant control system in order to decrease the output power slowly and smoothly.
Sukič, Primož; Štumberger, Gorazd
2017-01-01
Clouds moving at a high speed in front of the Sun can cause step changes in the output power of photovoltaic (PV) power plants, which can lead to voltage fluctuations and stability problems in the connected electricity networks. These effects can be reduced effectively by proper short-term cloud passing forecasting and suitable PV power plant output power control. This paper proposes a low-cost Internet of Things (IoT)-based solution for intra-minute cloud passing forecasting. The hardware consists of a Raspberry PI Model B 3 with a WiFi connection and an OmniVision OV5647 sensor with a mounted wide-angle lens, a circular polarizing (CPL) filter and a natural density (ND) filter. The completely new algorithm for cloud passing forecasting uses the green and blue colors in the photo to determine the position of the Sun, to recognize the clouds, and to predict their movement. The image processing is performed in several stages, considering selectively only a small part of the photo relevant to the movement of the clouds in the vicinity of the Sun in the next minute. The proposed algorithm is compact, fast and suitable for implementation on low cost processors with low computation power. The speed of the cloud parts closest to the Sun is used to predict when the clouds will cover the Sun. WiFi communication is used to transmit this data to the PV power plant control system in order to decrease the output power slowly and smoothly. PMID:28505078
A method for quantifying cloud immersion in a tropical mountain forest using time-lapse photography
Bassiouni, Maoya; Scholl, Martha A.; Torres-Sanchez, Angel J.; Murphy, Sheila F.
2017-01-01
Quantifying the frequency, duration, and elevation range of fog or cloud immersion is essential to estimate cloud water deposition in water budgets and to understand the ecohydrology of cloud forests. The goal of this study was to develop a low-cost and high spatial-coverage method to detect occurrence of cloud immersion within a mountain cloud forest by using time-lapse photography. Trail cameras and temperature/relative humidity sensors were deployed at five sites covering the elevation range from the assumed lifting condensation level to the mountain peaks in the Luquillo Mountains of Puerto Rico. Cloud-sensitive image characteristics (contrast, the coefficient of variation and the entropy of pixel luminance, and image colorfulness) were used with a k-means clustering approach to accurately detect cloud-immersed conditions in a time series of images from March 2014 to May 2016. Images provided hydrologically meaningful cloud-immersion information while temperature-relative humidity data were used to refine the image analysis using dew point information and provided temperature gradients along the elevation transect. Validation of the image processing method with human-judgment based classification generally indicated greater than 90% accuracy. Cloud-immersion frequency averaged 80% at sites above 900 m during nighttime hours and 49% during daytime hours, and was consistent with diurnal patterns of cloud immersion measured in a previous study. Results for the 617 m site demonstrated that cloud immersion in the Luquillo Mountains rarely occurs at the previously-reported cloud base elevation of about 600 m (11% during nighttime hours and 5% during daytime hours). The framework presented in this paper will be used to monitor at a low cost and high spatial resolution the long-term variability of cloud-immersion patterns in the Luquillo Mountains, and can be applied to ecohydrology research at other cloud-forest sites or in coastal ecosystems with advective sea fog.
A Jovian Hotspot in True and False Colors (Time set 3)
NASA Technical Reports Server (NTRS)
1997-01-01
True and false color views of an equatorial 'hotspot' on Jupiter. These images cover an area 34,000 kilometers by 11,000 kilometers. The top mosaic combines the violet (410 nanometers or nm) and near-infrared continuum (756 nm) filter images to create an image similar to how Jupiter would appear to human eyes. Differences in coloration are due to the composition and abundances of trace chemicals in Jupiter's atmosphere. The bottom mosaic uses Galileo's three near-infrared wavelengths (756 nm, 727 nm, and 889 nm displayed in red, green, and blue) to show variations in cloud height and thickness. Bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the deep cloud with an overlying thin haze. The light blue region to the left is covered by a very high haze layer. The multicolored region to the right has overlapping cloud layers of different heights. Galileo is the first spacecraft to distinguish cloud layers on Jupiter.
North is at the top. The mosaics cover latitudes 1 to 10 degrees and are centered at longitude 336 degrees West. The planetary limb runs along the right edge of the image. Cloud patterns appear foreshortened as they approach the limb. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepoNonphotosynthetic Pigments as Potential Biosignatures
Cockell, Charles S.; Meadows, Victoria S.
2015-01-01
Abstract Previous work on possible surface reflectance biosignatures for Earth-like planets has typically focused on analogues to spectral features produced by photosynthetic organisms on Earth, such as the vegetation red edge. Although oxygenic photosynthesis, facilitated by pigments evolved to capture photons, is the dominant metabolism on our planet, pigmentation has evolved for multiple purposes to adapt organisms to their environment. We present an interdisciplinary study of the diversity and detectability of nonphotosynthetic pigments as biosignatures, which includes a description of environments that host nonphotosynthetic biologically pigmented surfaces, and a lab-based experimental analysis of the spectral and broadband color diversity of pigmented organisms on Earth. We test the utility of broadband color to distinguish between Earth-like planets with significant coverage of nonphotosynthetic pigments and those with photosynthetic or nonbiological surfaces, using both 1-D and 3-D spectral models. We demonstrate that, given sufficient surface coverage, nonphotosynthetic pigments could significantly impact the disk-averaged spectrum of a planet. However, we find that due to the possible diversity of organisms and environments, and the confounding effects of the atmosphere and clouds, determination of substantial coverage by biologically produced pigments would be difficult with broadband colors alone and would likely require spectrally resolved data. Key Words: Biosignatures—Exoplanets—Halophiles—Pigmentation—Reflectance spectroscopy—Spectral models. Astrobiology 15, 341–361. PMID:25941875
2005-12-13
In visible light, the bulk of our Milky Way galaxy stars are eclipsed behind thick clouds of galactic dust and gas. But to the infrared eyes of NASA Spitzer Space Telescope, distant stars and dust clouds shine with unparalleled clarity and color.
Quantitative Analysis of Cotton Canopy Size in Field Conditions Using a Consumer-Grade RGB-D Camera.
Jiang, Yu; Li, Changying; Paterson, Andrew H; Sun, Shangpeng; Xu, Rui; Robertson, Jon
2017-01-01
Plant canopy structure can strongly affect crop functions such as yield and stress tolerance, and canopy size is an important aspect of canopy structure. Manual assessment of canopy size is laborious and imprecise, and cannot measure multi-dimensional traits such as projected leaf area and canopy volume. Field-based high throughput phenotyping systems with imaging capabilities can rapidly acquire data about plants in field conditions, making it possible to quantify and monitor plant canopy development. The goal of this study was to develop a 3D imaging approach to quantitatively analyze cotton canopy development in field conditions. A cotton field was planted with 128 plots, including four genotypes of 32 plots each. The field was scanned by GPhenoVision (a customized field-based high throughput phenotyping system) to acquire color and depth images with GPS information in 2016 covering two growth stages: canopy development, and flowering and boll development. A data processing pipeline was developed, consisting of three steps: plot point cloud reconstruction, plant canopy segmentation, and trait extraction. Plot point clouds were reconstructed using color and depth images with GPS information. In colorized point clouds, vegetation was segmented from the background using an excess-green (ExG) color filter, and cotton canopies were further separated from weeds based on height, size, and position information. Static morphological traits were extracted on each day, including univariate traits (maximum and mean canopy height and width, projected canopy area, and concave and convex volumes) and a multivariate trait (cumulative height profile). Growth rates were calculated for univariate static traits, quantifying canopy growth and development. Linear regressions were performed between the traits and fiber yield to identify the best traits and measurement time for yield prediction. The results showed that fiber yield was correlated with static traits after the canopy development stage ( R 2 = 0.35-0.71) and growth rates in early canopy development stages ( R 2 = 0.29-0.52). Multi-dimensional traits (e.g., projected canopy area and volume) outperformed one-dimensional traits, and the multivariate trait (cumulative height profile) outperformed univariate traits. The proposed approach would be useful for identification of quantitative trait loci (QTLs) controlling canopy size in genetics/genomics studies or for fiber yield prediction in breeding programs and production environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chengyuan; De Grijs, Richard; Deng, Licai, E-mail: joshuali@pku.edu.cn, E-mail: grijs@pku.edu.cn
2014-04-01
Using a combination of high-resolution Hubble Space Telescope/Wide-Field and Planetary Camera-2 observations, we explore the physical properties of the stellar populations in two intermediate-age star clusters, NGC 1831 and NGC 1868, in the Large Magellanic Cloud based on their color-magnitude diagrams. We show that both clusters exhibit extended main-sequence turn offs. To explain the observations, we consider variations in helium abundance, binarity, age dispersions, and the fast rotation of the clusters' member stars. The observed narrow main sequence excludes significant variations in helium abundance in both clusters. We first establish the clusters' main-sequence binary fractions using the bulk of themore » clusters' main-sequence stellar populations ≳ 1 mag below their turn-offs. The extent of the turn-off regions in color-magnitude space, corrected for the effects of binarity, implies that age spreads of order 300 Myr may be inferred for both clusters if the stellar distributions in color-magnitude space were entirely due to the presence of multiple populations characterized by an age range. Invoking rapid rotation of the population of cluster members characterized by a single age also allows us to match the observed data in detail. However, when taking into account the extent of the red clump in color-magnitude space, we encounter an apparent conflict for NGC 1831 between the age dispersion derived from that based on the extent of the main-sequence turn off and that implied by the compact red clump. We therefore conclude that, for this cluster, variations in stellar rotation rate are preferred over an age dispersion. For NGC 1868, both models perform equally well.« less
Near-Cloud Aerosol Properties from the 1 Km Resolution MODIS Ocean Product
NASA Technical Reports Server (NTRS)
Varnai, Tamas; Marshak, Alexander
2014-01-01
This study examines aerosol properties in the vicinity of clouds by analyzing high-resolution atmospheric correction parameters provided in the MODIS (Moderate Resolution Imaging Spectroradiometer) ocean color product. The study analyzes data from a 2 week long period of September in 10 years, covering a large area in the northeast Atlantic Ocean. The results indicate that on the one hand, the Quality Assessment (QA) flags of the ocean color product successfully eliminate cloud-related uncertainties in ocean parameters such as chlorophyll content, but on the other hand, using the flags introduces a sampling bias in atmospheric products such as aerosol optical thickness (AOT) and Angstrom exponent. Therefore, researchers need to select QA flags by balancing the risks of increased retrieval uncertainties and sampling biases. Using an optimal set of QA flags, the results reveal substantial increases in optical thickness near clouds-on average the increase is 50% for the roughly half of pixels within 5 km from clouds and is accompanied by a roughly matching increase in particle size. Theoretical simulations show that the 50% increase in 550nm AOT changes instantaneous direct aerosol radiative forcing by up to 8W/m2 and that the radiative impact is significantly larger if observed near-cloud changes are attributed to aerosol particles as opposed to undetected cloud particles. These results underline that accounting for near-cloud areas and understanding the causes of near-cloud particle changes are critical for accurate calculations of direct aerosol radiative forcing.
Automated Detection of Clouds in Satellite Imagery
NASA Technical Reports Server (NTRS)
Jedlovec, Gary
2010-01-01
Many different approaches have been used to automatically detect clouds in satellite imagery. Most approaches are deterministic and provide a binary cloud - no cloud product used in a variety of applications. Some of these applications require the identification of cloudy pixels for cloud parameter retrieval, while others require only an ability to mask out clouds for the retrieval of surface or atmospheric parameters in the absence of clouds. A few approaches estimate a probability of the presence of a cloud at each point in an image. These probabilities allow a user to select cloud information based on the tolerance of the application to uncertainty in the estimate. Many automated cloud detection techniques develop sophisticated tests using a combination of visible and infrared channels to determine the presence of clouds in both day and night imagery. Visible channels are quite effective in detecting clouds during the day, as long as test thresholds properly account for variations in surface features and atmospheric scattering. Cloud detection at night is more challenging, since only courser resolution infrared measurements are available. A few schemes use just two infrared channels for day and night cloud detection. The most influential factor in the success of a particular technique is the determination of the thresholds for each cloud test. The techniques which perform the best usually have thresholds that are varied based on the geographic region, time of year, time of day and solar angle.
Maps of the Magellanic clouds from combined South Pole Telescope and Planck data
Crawford, T. M.; Chown, R.; Holder, G. P.; ...
2016-12-09
Here, we present maps of the Large and Small Magellanic Clouds from combined South Pole Telescope (SPT) and Planck data. Both instruments are designed to make measurements of the cosmic microwave background but are sensitive to any source of millimeter-wave (mm-wave) emission. The Planck satellite observes in nine mm-wave bands, while the SPT data used in this work were taken with the three-band SPT-SZ camera. The SPT-SZ bands correspond closely to three of the nine Planck bands, namely those centered at 1.4, 2.1, and 3.0 mm. The angular resolution of the Planck data in these bands ranges from 5 tomore » 10 arcmin, while the SPT resolution in these bands ranges from 1.0 to 1.7 arcmin. The combined maps take advantage of the high resolution of the SPT data and the long-timescale stability of the space-based Planck observations to deliver high signal-to-noise and robust brightness measurements on scales from the size of the maps down to ~1 arcmin. In each of the three bands, we first calibrate and color-correct the SPT data to match the Planck data, then we use noise estimates from each instrument and knowledge of each instrument's beam, or point-spread function, to make the inverse-variance-weighted combination of the two instruments' data as a function of angular scale. Furthermore, we create maps assuming a range of underlying emission spectra (for the color correction) and at a range of final resolutions. We perform several consistency tests on the combined maps and estimate the expected noise in measurements of features in the maps. Finally, we compare the maps of the Large Magellanic Cloud (LMC) from this work to maps from the Herschel HERITAGE survey, finding general consistency between the datasets. Furthermore, the broad wavelength coverage provides evidence of different emission mechanisms at work in different environments in the LMC.« less
NASA Astrophysics Data System (ADS)
Popescu, Bogdan; Hanson, M. M.; Elmegreen, Bruce G.
2012-06-01
We present new age and mass estimates for 920 stellar clusters in the Large Magellanic Cloud (LMC) based on previously published broadband photometry and the stellar cluster analysis package, MASSCLEANage. Expressed in the generic fitting formula, d 2 N/dMdtvpropM α t β, the distribution of observed clusters is described by α = -1.5 to -1.6 and β = -2.1 to -2.2. For 288 of these clusters, ages have recently been determined based on stellar photometric color-magnitude diagrams, allowing us to gauge the confidence of our ages. The results look very promising, opening up the possibility that this sample of 920 clusters, with reliable and consistent age, mass, and photometric measures, might be used to constrain important characteristics about the stellar cluster population in the LMC. We also investigate a traditional age determination method that uses a χ2 minimization routine to fit observed cluster colors to standard infinite-mass limit simple stellar population models. This reveals serious defects in the derived cluster age distribution using this method. The traditional χ2 minimization method, due to the variation of U, B, V, R colors, will always produce an overdensity of younger and older clusters, with an underdensity of clusters in the log (age/yr) = [7.0, 7.5] range. Finally, we present a unique simulation aimed at illustrating and constraining the fading limit in observed cluster distributions that includes the complex effects of stochastic variations in the observed properties of stellar clusters.
3D change detection in staggered voxels model for robotic sensing and navigation
NASA Astrophysics Data System (ADS)
Liu, Ruixu; Hampshire, Brandon; Asari, Vijayan K.
2016-05-01
3D scene change detection is a challenging problem in robotic sensing and navigation. There are several unpredictable aspects in performing scene change detection. A change detection method which can support various applications in varying environmental conditions is proposed. Point cloud models are acquired from a RGB-D sensor, which provides the required color and depth information. Change detection is performed on robot view point cloud model. A bilateral filter smooths the surface and fills the holes as well as keeps the edge details on depth image. Registration of the point cloud model is implemented by using Random Sample Consensus (RANSAC) algorithm. It uses surface normal as the previous stage for the ground and wall estimate. After preprocessing the data, we create a point voxel model which defines voxel as surface or free space. Then we create a color model which defines each voxel that has a color by the mean of all points' color value in this voxel. The preliminary change detection is detected by XOR subtract on the point voxel model. Next, the eight neighbors for this center voxel are defined. If they are neither all `changed' voxels nor all `no changed' voxels, a histogram of location and hue channel color is estimated. The experimental evaluations performed to evaluate the capability of our algorithm show promising results for novel change detection that indicate all the changing objects with very limited false alarm rate.
NASA Technical Reports Server (NTRS)
2002-01-01
NASA's Hubble Space Telescope has provided images of Saturn in many colors, from black-and-white, to orange, to blue, green, and red. But in this picture, image processing specialists have worked to provide a crisp, extremely accurate view of Saturn, which highlights the planet's pastel colors. Bands of subtle color - yellows, browns, grays - distinguish differences in the clouds over Saturn, the second largest planet in the solar system. Saturn's high-altitude clouds are made of colorless ammonia ice. Above these clouds is a layer of haze or smog, produced when ultraviolet light from the sun shines on methane gas. The smog contributes to the planet's subtle color variations. One of Saturn's moons, Enceladus, is seen casting a shadow on the giant planet as it passes just above the ring system. The flattened disk swirling around Saturn is the planet's most recognizable feature, and this image displays it in sharp detail. This is the planet's ring system, consisting mostly of chunks of water ice. Although it appears as if the disk is composed of only a few rings, it actually consists of tens of thousands of thin 'ringlets.' This picture also shows the two classic divisions in the ring system. The narrow Encke Gap is nearest to the disk's outer edge; the Cassini division, is the wide gap near the center. Scientists study Saturn and its ring system to gain insight into the birth of our solar system. Credit: Hubble Heritage Team (AURA/STScI/NASA)
Ahn, M. H.; Han, D.; Won, H. Y.; ...
2015-02-03
For better utilization of the ground-based microwave radiometer, it is important to detect the cloud presence in the measured data. Here, we introduce a simple and fast cloud detection algorithm by using the optical characteristics of the clouds in the infrared atmospheric window region. The new algorithm utilizes the brightness temperature (Tb) measured by an infrared radiometer installed on top of a microwave radiometer. The two-step algorithm consists of a spectral test followed by a temporal test. The measured Tb is first compared with a predicted clear-sky Tb obtained by an empirical formula as a function of surface air temperaturemore » and water vapor pressure. For the temporal test, the temporal variability of the measured Tb during one minute compares with a dynamic threshold value, representing the variability of clear-sky conditions. It is designated as cloud-free data only when both the spectral and temporal tests confirm cloud-free data. Overall, most of the thick and uniform clouds are successfully detected by the spectral test, while the broken and fast-varying clouds are detected by the temporal test. The algorithm is validated by comparison with the collocated ceilometer data for six months, from January to June 2013. The overall proportion of correctness is about 88.3% and the probability of detection is 90.8%, which are comparable with or better than those of previous similar approaches. Two thirds of discrepancies occur when the new algorithm detects clouds while the ceilometer does not, resulting in different values of the probability of detection with different cloud-base altitude, 93.8, 90.3, and 82.8% for low, mid, and high clouds, respectively. Finally, due to the characteristics of the spectral range, the new algorithm is found to be insensitive to the presence of inversion layers.« less
NASA Technical Reports Server (NTRS)
Grund, Christian John; Eloranta, Edwin W.
1990-01-01
Cirrus clouds reflect incoming solar radiation and trap outgoing terrestrial radiation; therefore, accurate estimation of the global energy balance depends upon knowledge of the optical and physical properties of these clouds. Scattering and absorption by cirrus clouds affect measurements made by many satellite-borne and ground based remote sensors. Scattering of ambient light by the cloud, and thermal emissions from the cloud can increase measurement background noise. Multiple scattering processes can adversely affect the divergence of optical beams propagating through these clouds. Determination of the optical thickness and the vertical and horizontal extent of cirrus clouds is necessary to the evaluation of all of these effects. Lidar can be an effective tool for investigating these properties. During the FIRE cirrus IFO in Oct. to Nov. 1986, the High Spectral Resolution Lidar (HSRL) was operated from a rooftop site on the campus of the University of Wisconsin at Madison, Wisconsin. Approximately 124 hours of fall season data were acquired under a variety of cloud optical thickness conditions. Since the IFO, the HSRL data set was expanded by more than 63.5 hours of additional data acquired during all seasons. Measurements are presented for the range in optical thickness and backscattering phase function of the cirrus clouds, as well as contour maps of extinction corrected backscatter cross sections indicating cloud morphology. Color enhanced images of range-time indicator (RTI) displays a variety of cirrus clouds with approximately 30 sec time resolution are presented. The importance of extinction correction on the interpretation of cloud height and structure from lidar observations of optically thick cirrus are demonstrated.
Venus Cloud Patterns (colorized and filtered)
NASA Technical Reports Server (NTRS)
1990-01-01
This picture of Venus was taken by the Galileo spacecrafts Solid State Imaging System on February 14, 1990, at a range of almost 1.7 million miles from the planet. A highpass spatial filter has been applied in order to emphasize the smaller scale cloud features, and the rendition has been colorized to a bluish hue in order to emphasize the subtle contrasts in the cloud markings and to indicate that it was taken through a violet filter. The sulfuric acid clouds indicate considerable convective activity, in the equatorial regions of the planet to the left and downwind of the subsolar point (afternoon on Venus). They are analogous to 'fair weather clouds' on Earth. The filamentary dark features visible in the colorized image are here revealed to be composed of several dark nodules, like beads on a string, each about 60 miles across. The Galileo Project is managed for NASA's Office of Space Science and Applications by the Jet Propulsion Laboratory; its mission is to study Jupiter and its satellites and magnetosphere after multiple gravity assist flybys at Venus and Earth. These images of the Venus clouds were taken by Galileo's Solid State Imaging System February 13, 1990, at a range of about 1 million miles. The smallest detail visible is about 20 miles. The two right images show Venus in violet light, the top one at a time six hours later than the bottom one. They show the state of the clouds near the top of Venus's cloud deck. A right to left motion of the cloud features is evident and is consistent with westward winds of about 230 mph. The two left images show Venus in near infrared light, at the same times as the two right images. Sunlight penetrates through the clouds more deeply at the near infrared wavelengths, allowing a view near the bottom of the cloud deck. The westward motion of the clouds is slower (about 150 mph) at the lower altitude. The clouds are composed of sulfuric acid droplets and occupy a range of altitudes from 30 to 45 miles. The images have been spatially filtered to bring out small scale details and de-emphasize global shading. The filtering has introduced artifacts (wiggly lines running north/south) that are faintly visible in the infrared image. The Galileo Project is managed for NASA's Office of Space Science and Applications by the Jet Propulsion Laboratory; its mission is to study Jupiter and its satellites and magnetosphere after multiple gravity assist flybys at Venus and Earth.
Hazard mitigation with cloud model based rainfall and convective data
NASA Astrophysics Data System (ADS)
Gernowo, R.; Adi, K.; Yulianto, T.; Seniyatis, S.; Yatunnisa, A. A.
2018-05-01
Heavy rain in Semarang 15 January 2013 causes flood. It is related to dynamic of weather’s parameter, especially with convection process, clouds and rainfall data. In this case, weather condition analysis uses Weather Research and Forecasting (WRF) model used to analyze. Some weather’s parameters show significant result. Their fluctuations prove there is a strong convection that produces convective cloud (Cumulonimbus). Nesting and 2 domains on WRF model show good output to represent weather’s condition commonly. The results of this study different between output cloud cover rate of observation result and output of model around 6-12 hours is because spinning-up of processing. Satellite Images of MTSAT (Multifunctional Transport Satellite) are used as a verification data to prove the result of WRF. White color of satellite image is Coldest Dark Grey (CDG) that indicates there is cloud’s top. This image consolidates that the output of WRF is good enough to analyze Semarang’s condition when the case happened.
CloudSat Image of Tropical Thunderstorms Over Africa
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Figure 1 CloudSat image of a horizontal cross-section of tropical clouds and thunderstorms over east Africa. The red colors are indicative of highly reflective particles such as water (rain) or ice crystals, which the blue indicates thinner clouds (such as cirrus). The flat green/blue lines across the bottom represent the ground signal. The vertical scale on the CloudS at Cloud Profiling Radar image is approximately 30 kilometers (19 miles). The brown line below the image indicates the relative elevation of the land surface. The inset image shows the CloudSat track relative to a Moderate Resolution Imaging Spectroradiometer (MODIS) visible image taken at nearly the same time.NASA Technical Reports Server (NTRS)
Irwin, Patrick G. J.; Wong, Michael H.; Simon, Amy A.; Orton, G. S.; Toledo, Daniel
2017-01-01
In November 2014 Uranus was observed with the Wide Field Camera 3 (WFC3) instrument of the Hubble Space Telescope as part of the Hubble 2020: Outer Planet Atmospheres Legacy program, OPAL. OPAL annually maps Jupiter, Uranus and Neptune (and will also map Saturn from 2018) in several visible near- infrared wavelength filters. The Uranus 2014 OPAL observations were made on the 89th November at a time when a huge cloud complex, first observed by de Pater et al. (2015) and subsequently tracked by professional and amateur astronomers (Sayanagi et al., 2016), was present at 30-40deg N. We imaged the entire visible atmosphere, including the storm system, in seven filters spanning 467924 nm, capturing variations in the coloration of Uranus clouds and also vertical distribution due to wavelength dependent changes in Rayleigh scattering and methane absorption optical depth. Here we analyse these new HST observations with the NEMESIS radiative-transfer and retrieval code in multiple-scattering mode to determine the vertical cloud structure in and around the storm cloud system. The same storm system was also observed in the H-band (1.4-1.8 micrometers) with the SINFONI Integral Field Unit Spectrometer on the Very Large Telescope (VLT) on 31st October and 11th November, reported by Irwin et al. (2016, 10.1016j.icarus.2015.09.010). To constrain better the cloud particle sizes and scattering properties over a wide wavelength range we also conducted a limb-darkening analysis of the background cloud structure in the 30-40deg N latitude band by simultaneously fitting: a) these HSTOPAL observations at a range of zenith angles; b) the VLTSINFONI observations at a range of zenith angles; and c) IRTFSpeX observations of this latitude band made in 2009 at a single zenith angle of 23deg, spanning the wavelength range 0.8-1.8 micrometers (Irwin et al., 2015, 10.1016j.icarus.2014.12.020). We find that the HST observations, and the combined HSTVLTIRTF observations at all locations are well modelled with a three-component cloud comprised of: 1) a vertically thin, but optically thick deep tropospheric cloud at a pressure of approximately 2 bars; 2) a methane-ice cloud based at the methane-condensation level of approximately 1.23 bar, with variable vertical extent; and 3) a vertically extended tropospheric haze, also based at the methane-condensation level of 1.23 bar. We find that modelling both haze and tropospheric cloud with particles having an effective radius of approximately 0.1 micron provides a good fit the observations, although for the tropospheric cloud, particles with an effective radius as large as 1.0 micron provide a similarly good fit. We find that the particles in both the tropospheric cloud and haze are more scattering at short wave- lengths, giving them a blue color, but are more absorbing at longer wavelengths, especially for the tropospheric haze. We find that the spectra of the storm clouds are well modelled by localized thickening and vertical extension of the methane-ice cloud. For the particles in the storm clouds, which we assume to be composed of methane ice particles, we find that their mean radii must lie somewhere in the range 0. 1 1. 0 m. We find that the high clouds have low integrated opacity, and that streamers reminiscent of convective thunderstorm anvils are confined to levels deeper than 1 bar. These results argue against vigorous moist convective origins for the cloud features.
Generalized Intelligent Framework for Tutoring (GIFT) Cloud/Virtual Open Campus Quick-Start Guide
2016-03-01
distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT This document serves as the quick-start guide for GIFT Cloud, the web -based...to users with a GIFT Account at no cost. GIFT Cloud is a new implementation of GIFT. This web -based application allows learners, authors, and...distribution is unlimited. 3 3. Requirements for GIFT Cloud GIFT Cloud is accessed via a web browser. Officially, GIFT Cloud has been tested to work on
NASA Astrophysics Data System (ADS)
Coddington, Odele; Platnick, Steven; Pilewskie, Peter; Schmidt, Sebastian
2016-04-01
The NASA Pre-Aerosol, Cloud and ocean Ecosystem (PACE) Science Definition Team (SDT) report released in 2012 defined imager stability requirements for the Ocean Color Instrument (OCI) at the sub-percent level. While the instrument suite and measurement requirements are currently being determined, the PACE SDT report provided details on imager options and spectral specifications. The options for a threshold instrument included a hyperspectral imager from 350-800 nm, two near-infrared (NIR) channels, and three short wave infrared (SWIR) channels at 1240, 1640, and 2130 nm. Other instrument options include a variation of the threshold instrument with 3 additional spectral channels at 940, 1378, and 2250 nm and the inclusion of a spectral polarimeter. In this work, we present cloud retrieval information content studies of optical thickness, droplet effective radius, and thermodynamic phase to quantify the potential for continuing the low cloud climate data record established by the MOderate Resolution and Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) missions with the PACE OCI instrument (i.e., non-polarized cloud reflectances and in the absence of midwave and longwave infrared channels). The information content analysis is performed using the GEneralized Nonlinear Retrieval Analysis (GENRA) methodology and the Collection 6 simulated cloud reflectance data for the common MODIS/VIIRS algorithm (MODAWG) for Cloud Mask, Cloud-Top, and Optical Properties. We show that using both channels near 2 microns improves the probability of cloud phase discrimination with shortwave-only cloud reflectance retrievals. Ongoing work will extend the information content analysis, currently performed for dark ocean surfaces, to different land surface types.
Transition and Evaluation of RGB Imagery to WFOs and National Centers by NASA SPoRT
NASA Technical Reports Server (NTRS)
Fuell, Kevin K.; Molthan, Andrew L.
2012-01-01
MODIS Snow/Cloud and True Color RGB imagery has been used by SPoRT partners since 2004 to examine changes in surface features such as snow cover, vegetation, ocean color, fires, smoke plumes, and oil spills.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stull, R.B.; Tripoli, G.
1996-01-08
The authors developed single-column parameterizations for subgrid boundary-layer cumulus clouds. These give cloud onset time, cloud coverage, and ensemble distributions of cloud-base altitudes, cloud-top altitudes, cloud thickness, and the characteristics of cloudy and clear updrafts. They tested and refined the parameterizations against archived data from Spring and Summer 1994 and 1995 intensive operation periods (IOPs) at the Southern Great Plains (SGP) ARM CART site near Lamont, Oklahoma. The authors also found that: cloud-base altitudes are not uniform over a heterogeneous surface; tops of some cumulus clouds can be below the base-altitudes of other cumulus clouds; there is an overlap regionmore » near cloud base where clear and cloudy updrafts exist simultaneously; and the lognormal distribution of cloud sizes scales to the JFD of surface layer air and to the shape of the temperature profile above the boundary layer.« less
A Jovian Hotspot in True and False Colors (Time set 1)
NASA Technical Reports Server (NTRS)
1997-01-01
True and false color views of an equatorial 'hotspot' on Jupiter. These images cover an area 34,000 kilometers by 11,000 kilometers. The top mosaic combines the violet (410 nanometers or nm) and near-infrared continuum (756 nm) filter images to create an image similar to how Jupiter would appear to human eyes. Differences in coloration are due to the composition and abundances of trace chemicals in Jupiter's atmosphere. The bottom mosaic uses Galileo's three near-infrared wavelengths (756 nm, 727 nm, and 889 nm displayed in red, green, and blue) to show variations in cloud height and thickness. Bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the deep cloud with an overlying thin haze. The light blue region to the left is covered by a very high haze layer. The multicolored region to the right has overlapping cloud layers of different heights. Galileo is the first spacecraft to distinguish cloud layers on Jupiter.
North is at the top. The mosaics cover latitudes 1 to 10 degrees and are centered at longitude 336 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepoA Ten-Year Global Record of Absorbing Aerosols Above Clouds from OMI's Near-UV Observations
NASA Technical Reports Server (NTRS)
Jethva, Hiren; Torres, Omar; Ahn, Changwoo
2016-01-01
Aerosol-cloud interaction continues to be one of the leading uncertain components of climate models, primarily due to the lack of an adequate knowledge of the complex microphysical and radiative processes associated with the aerosol-cloud system. The situations when aerosols and clouds are found in the same atmospheric column, for instance, when light-absorbing aerosols such as biomass burning generated carbonaceous particles or wind-blown dust overlay low-level cloud decks, are commonly found over several regional of the world. Contrary to the cloud-free scenario over dark surface, for which aerosols are known to produce a net cooling effect (negative radiative forcing) on climate, the overlapping situation of absorbing aerosols over cloud can potentially exert a significant level of atmospheric absorption and produces a positive radiative forcing at top-of-atmosphere. The magnitude of direct radiative effects of aerosols above cloud depends directly on the aerosol loading, microphysical-optical properties of the aerosol layer and the underlying cloud deck, and geometric cloud fraction. We help in addressing this problem by introducing a novel product of optical depth of absorbing aerosols above clouds retrieved from near-UV observations made by the Ozone Monitoring Instrument (OMI) on board NASA's Aura platform. The presence of absorbing aerosols above cloud reduces the upwelling radiation reflected by cloud and produces a strong 'color ratio' effect in the near-UV region, which can be unambiguously detected in the OMI measurements. Physically based on this effect, the OMACA algorithm retrieves the optical depths of aerosols and clouds simultaneously under a prescribed state of atmosphere. The algorithm architecture and results from a ten-year global record including global climatology of frequency of occurrence and above-cloud aerosol optical depth, and a discussion on related future field campaigns are presented.
Odd cloud in the Ross Sea, Antarctica
NASA Technical Reports Server (NTRS)
2002-01-01
On January 28, 2002, MODIS captured this image of an interesting cloud formation in the boundary waters between Antarctica's Ross Sea and the Southern Ocean. A dragon? A snake? A fish? No, but it is an interesting example of the atmospheric physics of convection. The 'eye' of this dragon-looking cloud is likely a small spot of convection, the process by which hot moist air rises up into the atmosphere, often producing big, fluffy clouds as moisture in the air condenses as rises into the colder parts of the atmosphere. A false color analysis that shows different kinds of clouds in different colors reveals that the eye is composed of ice crystals while the 'body' is a liquid water cloud. This suggests that the eye is higher up in the atmosphere than the body. The most likely explanation for the eye feature is that the warm, rising air mass had enough buoyancy to punch through the liquid water cloud. As a convective parcel of air rises into the atmosphere, it pushes the colder air that is higher up out of its way. That cold air spills down over the sides of the convective air mass, and in this case has cleared away part of the liquid cloud layer below in the process. This spilling over of cold air from higher up in the atmosphere is the reason why thunderstorms are often accompanied by a cool breeze. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC
2015-11-02
Cloud vortices off Heard Island, south Indian Ocean. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite captured this true-color image of sea ice off Heard Island on Nov 2, 2015 at 5:02 AM EST (09:20 UTC). Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team
ASTER Images the Island of Hawaii
2000-04-26
These images of the Island of Hawaii were acquired on March 19, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. Data are shown from the short wavelength and thermal infrared spectral regions, illustrating how different and complementary information is contained in different parts of the spectrum. Left image: This false-color image covers an area 60 kilometers (37 miles) wide and 120 kilometers (75 miles) long in three bands of the short wavelength infrared region. While, much of the island was covered in clouds, the dominant central Mauna Loa volcano, rising to an altitude of 4115 meters (13,500 feet), is cloud-free. Lava flows can be seen radiating from the central crater in green and black tones. As they reach lower elevations, the flows become covered with vegetation, and their image color changes to yellow and orange. Mauna Kea volcano to the north of Mauna Loa has a thin cloud-cover, producing a bluish tone on the image. The ocean in the lower right appears brown due to the color processing. Right image: This image is a false-color composite of three thermal infrared bands. The brightness of the colors is proportional to the temperature, and the hues display differences in rock composition. Clouds are black, because they are the coldest objects in the scene. The ocean and thick vegetation appear dark green because they are colder than bare rock surfaces, and have no thermal spectral features. Lava flows are shades of magenta, green, pink and yellow, reflecting chemical changes due to weathering and relative age differences. http://photojournal.jpl.nasa.gov/catalog/PIA02604
1990-12-08
Range : 50,000 miles This multispectral map of Australia, and surrounding seas was obtained by the Galileo spacecraft's Near Infrared Mapping Spectrometer shortly after closest approach. The image shows various ocean, land and atmospheric cloud features as they appear in three of the 408 infrared colors or wavelengths sensed by the instrument. The wavelength of 0.873 micron, represented as blue in the photo, shows regions of enhanced liquid water absorption, i.e. the Pacific and Indian oceans. The 0.984-micron band, represented as red, shows areas of enhanced ground reflection as on the Australian continent. This wavelength is also s ensitive to the reflectivity of relatively thick clouds. The 0.939-micron wavelength, shown as green, is a strong water-vapor-absorbing band, and is used to accentuate clouds lying above the strongly absorbing lower atmosphere. When mixed with the red indicator of cloud reflection, the green produces a yellowish hue; this indicates thick clouds. The distinctive purplish color off the northeast coast marks the unusually shallow waters of the Great Barrier Reef and the Coral Sea. Here the blue denoting water absorption combines with the red denoting reflection from coral and surface marine organisms to produce thiss unusual color. The Near Infrared Mapping Spectrometer (NIMS) on the Galileo spacecraft is a combines mapping (imaging) and spectral instrument. It can sense 408 contiguous wavelengths from 0.7 micron (deep red) to 5.2 microns, and can construct a map or image by mechanical scanning. It can spectroscopically analyze atmospheres and surfaces and construct thermal and chemical maps.
Cloud Radiative Effect in dependence on Cloud Type
NASA Astrophysics Data System (ADS)
Aebi, Christine; Gröbner, Julian; Kämpfer, Niklaus; Vuilleumier, Laurent
2015-04-01
Radiative transfer of energy in the atmosphere and the influence of clouds on the radiation budget remain the greatest sources of uncertainty in the simulation of climate change. Small changes in cloudiness and radiation can have large impacts on the Earth's climate. In order to assess the opposing effects of clouds on the radiation budget and the corresponding changes, frequent and more precise radiation and cloud observations are necessary. The role of clouds on the surface radiation budget is studied in order to quantify the longwave, shortwave and the total cloud radiative forcing in dependence on the atmospheric composition and cloud type. The study is performed for three different sites in Switzerland at three different altitude levels: Payerne (490 m asl), Davos (1'560 m asl) and Jungfraujoch (3'580 m asl). On the basis of data of visible all-sky camera systems at the three aforementioned stations in Switzerland, up to six different cloud types are distinguished (Cirrus-Cirrostratus, Cirrocumulus-Altocumulus, Stratus-Altostratus, Cumulus, Stratocumulus and Cumulonimbus-Nimbostratus). These cloud types are classified with a modified algorithm of Heinle et al. (2010). This cloud type classifying algorithm is based on a set of statistical features describing the color (spectral features) and the texture of an image (textural features) (Wacker et al. (2015)). The calculation of the fractional cloud cover information is based on spectral information of the all-sky camera data. The radiation data are taken from measurements with pyranometers and pyrgeometers at the different stations. A climatology of a whole year of the shortwave, longwave and total cloud radiative effect and its sensitivity to integrated water vapor, cloud cover and cloud type will be calculated for the three above-mentioned stations in Switzerland. For the calculation of the shortwave and longwave cloud radiative effect the corresponding cloud-free reference models developed at PMOD/WRC will be used (Wacker et al. (2013)). References: Heinle, A., A. Macke and A. Srivastav (2010) Automatic cloud classification of whole sky images, Atmospheric Measurement Techniques. Wacker, S., J. Gröbner and L. Vuilleumier (2013) A method to calculate cloud-free long-wave irradiance at the surface based on radiative transfer modeling and temperature lapse rate estimates, Theoretical and Applied Climatology. Wacker, S., J. Gröbner, C. Zysset, L. Diener, P. Tzoumanikis, A. Kazantzidis, L. Vuilleumier, R. Stöckli, S. Nyeki, and N. Kämpfer (2015) Cloud observations in Switzerland using hemispherical sky cameras, Journal of Geophysical Research.
JPL HAMSR Takes Hurricane Matthew Temperature
2016-10-07
JPL's High-Altitude Monolithic Microwave Integrated Circuit Sounding Radiometer (HAMSR) instrument captured this look inside Hurricane Matthew's spiral clouds on Oct. 7, 2016, flying on a NASA Global Hawk unmanned aircraft. Red colors show cloud bands without precipitation; blues show rain bands. http://photojournal.jpl.nasa.gov/catalog/PIA21093
Close-Up Views of Jupiter North Pole
2016-09-02
Storm systems and weather activity unlike anything encountered in the solar system are on view in these color images of Jupiter's north polar region from NASA's Juno spacecraft. Two versions of the image have been contrast-enhanced differently to bring out detail near the dark terminator and near the bright limb. The JunoCam instrument took the images to create this color view on August 27, when the spacecraft was about 48,000 miles (78,000 kilometers) above the polar cloud tops. A wavy boundary is visible halfway between the grayish region at left (closer to the pole and the nightside shadow) and the lighter-colored area on the right. The wavy appearance of the boundary represents a Rossby wave -- a north-south meandering of a predominantly east-west flow in an atmospheric jet. This may be caused by a difference in temperature between air to the north and south of this boundary, as is often the case with such waves in Earth's atmosphere. The polar region is filled with a variety of discrete atmospheric features. Some of these are ovals, but the larger and brighter features have a "pinwheel" shape reminiscent of the shape of terrestrial hurricanes. Tracking the motion and evolution of these features across multiple orbits will provide clues about the dynamics of the Jovian atmosphere. This image also provides the first example of cloud shadowing on Jupiter: near the top of the image, a high cloud feature is seen past the normal boundary between day and night, illuminated above the cloud deck below. While subtle color differences are visible in the image, some of these are likely the result of scattered light within the JunoCam optics. Work is ongoing to characterize these effects. http://photojournal.jpl.nasa.gov/catalog/PIA21031
1990-02-10
Range : 60,000 miles This image is a false-color version of a near- infrared map of lower-level clouds on the night side of Venus, obtained by the Near Infrared Mapping Spectrometer aboard Galileo. Taken at an infrared wavelength of 2.3 microns (about three times the longest wavelength visible to the human eye) the map shows the turbulent, cloudy middle atmosphere some 30-33 miles above the surface, 6-10 miles below the visible cloudtops. The image shows the radiant heat from the lower atmosphere (about 400 degrees F) shining through the sulfuric acid clouds, which appear as much as 10 times darker than the bright gaps between clouds. The colors indicate relative cloud transparency; white and red show thin cloud regions, while black and blue represent relatively this clouds. This cloud layer is at about 170 degrees F., at a pressure about 1/2 Earth's atmospheric pressure. About 2/3 of the dark hemisphere is visible, centered on longitude 350 West, with bright slivers of daylit high clouds visible at top and bottom left. Near the equator, the clouds appear fluffy and blocky; farther north, they are stretched out into East-West filaments by winds estimated at more than 150 mph, while the poles are capped by thick clouds at this altitude. The Near Infrared Mapping Spectrometer (NIMS) on the Galileo is a combined mapping (imaging) and spectral instrument. It can sense 408 contiguous wavelengths from 0.7 microns (deep red) to 5.2 microns, and can construct a map or image by mechanical scanning. It can spectroscopic-ally analyze atmospheres and surfaces and construct thermal and chemical maps. Designed and operated by scientists and engineers at the JPL, NIMS involves 15 scientists in the US, England and France.
NASA Technical Reports Server (NTRS)
Davis, Richard E.; Maddalon, Dal V.; Wagner, Richard D.; Fisher, David F.; Young, Ronald
1989-01-01
Summary evaluations of the performance of laminar-flow control (LFC) leading edge test articles on a NASA JetStar aircraft are presented. Statistics, presented for the test articles' performance in haze and cloud situations, as well as in clear air, show a significant effect of cloud particle concentrations on the extent of laminar flow. The cloud particle environment was monitored by two instruments, a cloud particle spectrometer (Knollenberg probe) and a charging patch. Both instruments are evaluated as diagnostic aids for avoiding laminar-flow detrimental particle concentrations in future LFC aircraft operations. The data base covers 19 flights in the simulated airline service phase of the NASA Leading-Edge Flight-Test (LEFT) Program.
NASA Astrophysics Data System (ADS)
Scelsi, L.; Sacco, G.; Affer, L.; Argiroffi, C.; Pillitteri, I.; Maggio, A.; Micela, G.
2008-11-01
Aims: We have analyzed optical spectra of 25 X-ray sources identified as potential new members of the Taurus molecular cloud (TMC), in order to confirm their membership in this star-forming region. Methods: Fifty-seven candidate members were previously selected among the X-ray sources in the XEST survey, having a 2MASS counterpart compatible with a pre-main sequence star based on color-magnitude and color-color diagrams. We obtained high-resolution optical spectra for 7 of these candidates with the SARG spectrograph at the TNG telescope, which were used to search for lithium absorption and to measure the Hα line and the radial and rotational velocities. Then, 18 low-resolution optical spectra obtained with the instrument DOLORES for other candidate members were used for spectral classification, for Hα measurements, and to assess membership together with IR color-color and color-magnitude diagrams and additional information from the X-ray data. Results: We found that 3 sources show lithium absorption, with equivalent widths (EWs) of 500 mÅ, broad spectral line profiles, indicating rotational velocities of 20{-}40 km s-1, radial velocities consistent with those for known members, and Hα emission. Two of them are classified as new weak-lined T Tauri stars, while the EW ( -9 Å) of the Hα line and its broad asymmetric profile clearly indicate that the third star (XEST-26-062) is a classical T Tauri star. Fourteen sources observed with DOLORES are M-type stars. Fifteen sources show Hα emission. Six of them have spectra that indicate surface gravity lower than in main sequence stars, and their de-reddened positions in IR color-magnitude diagrams are consistent with their derived spectral type and with pre-main sequence models at the distance of the TMC. The K-type star XEST-11-078 is confirmed as a new member on the basis of the strength of the Hα emission line. Overall, we confirm membership to the TMC for 10 out of 25 X-ray sources observed in the optical. Three sources remain uncertain. Based on data collected with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Centro Galileo Galilei of INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque del los Muchachos of the Instituto de Astrofìsica de Canarias.
8. X15 ENGINE TESTING. A color print showing the engine ...
8. X-15 ENGINE TESTING. A color print showing the engine during test firing. View from the rear of the test stand looking northwest. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA
Reconstructing color images of astronomical objects using black and white spectroscopic emulsions
NASA Technical Reports Server (NTRS)
Dufour, R. I.; Martins, D. H.
1976-01-01
A color photograph of the peculiar elliptical galaxy NGC 5128 (Centaurus A) has been reconstructed from three Kodak 103a emulsion type photographs by projecting positives of the three B&W plates through appropriate filters onto a conventional color film. The resulting photograph shows color balance and latitude characteristics superior to color photographs of similar astronomical objects made with commercially available conventional color film. Similar results have been obtained for color reconstructed photographs of the Large and Small Magellanic Clouds. These and other results suggest that these projection-reconstruction techniques can be used to obtain high-quality color photographs of astronomical objects which overcome many of the problems associated with the use of conventional color film for the long exposures required in astronomy.
Jupiter in True and False Color
2001-01-23
These color composite frames of the mid-section of Jupiter were of narrow angle images acquired on December 31, 2000, a day after Cassini's closest approach to the planet. The smallest features in these frames are roughly ~ 60 kilometers. The left is natural color, composited to yield the color that Jupiter would have if seen by the naked eye. The right frame is composed of 3 images: two were taken through narrow band filters centered on regions of the spectrum where the gaseous methane in Jupiter's atmosphere absorbs light, and the third was taken in a red continuum region of the spectrum, where Jupiter has no absorptions. The combination yields an image whose colors denote the height of the clouds. Red regions are deep water clouds, bright blue regions are high haze (like the blue covering the Great Red Spot). Small, intensely bright white spots are energetic lightning storms which have penetrated high into the atmosphere where there is no opportunity for absorption of light: these high cloud systems reflect all light equally. The darkest blue regions -- for example, the long linear regions which border the northern part of the equatorial zone, are the very deep "hot spots', seen in earlier images, from which Jovian thermal emission is free to escape to space. This is the first time that global images of Jupiter in all the methane and attendant continuum filters have been acquired by a spacecraft. From images like these, the stratigraphy of Jupiter's dynamic atmosphere will be determined. http://photojournal.jpl.nasa.gov/catalog/PIA02877
New color vision tests to evaluate faulty color recognition.
Nakamura, Kaoru; Okajima, Osamu; Nishio, Yoshiteru; Kitahara, Kenji
2002-01-01
To develop and assess new color vision tests to be used in evaluating faulty color recognition. We developed new color vision tests to evaluate faulty color recognition. The two types of color vision tests, designed to assess faulty color recognition in color vision deficiencies, are based on principles that are different from those of the conventional color vision tests. In the first test plate, the subject is asked to choose either a red, green, or gray line from among 10 lines that are randomly colored red, green, gray, yellow, or blue. The score is the difference between the number of correct answers and the number of incorrect answers. In the second test plate, the subject is asked to identify a total of 10 red azalea blossoms, which are dispersed among numerous green leaves. Seventy-five persons with congenital color deficiencies and 20 subjects with normal color vision were examined using these new test plates. The scores differed significantly between dichromats and anomalous trichromats, and between anomalous trichromats and subjects with normal color vision. The new tests are easy to use, sensitive, and have good reproducibility for use in discriminating subjects with color vision anomalies. These tests reveal the faulty color recognition that occurs unconsciously in persons with color deficiencies, and are useful in judging the quantification of color vision required in their daily life and occupations.
NASA Astrophysics Data System (ADS)
Torres, O.; Jethva, H. T.; Ahn, C.
2016-12-01
Aerosol-cloud interaction continues to be one of the leading uncertain components of climate models, primarily due to the lack of an adequate knowledge of the complex microphysical and radiative processes of the aerosol-cloud system. The situations when aerosols and clouds are found in the same atmospheric column, for instance, when light-absorbing aerosols such as biomass burning generated carbonaceous particles or wind-blown dust overlay low-level cloud decks, are commonly found over several regions of the world. Contrary to the known cooling effects of these aerosols in cloud-free scenario over dark surface, the overlapping situation of absorbing aerosols over cloud can potentially exert a significant level of atmospheric absorption and produces a positive radiative forcing (warming) at top-of-atmosphere. The magnitude of direct radiative effects of aerosols above cloud directly depends on the aerosol loading, microphysical and optical properties of the aerosol layer and the underlying cloud deck, and geometric cloud fraction. We help in addressing this problem by introducing a novel product of above-cloud aerosol optical depth (ACAOD) of absorbing aerosols retrieved from near-UV observations made by the Ozone Monitoring Instrument (OMI) on board NASA's Aura platform. Physically based on the strong `color ratio' effect in the near-UV caused by the spectral absorption of aerosols above cloud, the algorithm, formally named as OMACA, retrieves the optical depths of aerosols and clouds simultaneously under a prescribed state of atmosphere. Here, we present the algorithm architecture and results from an 11-year global record (2005-2015) including global climatology of frequency of occurrence and ACAOD. The theoretical uncertainty analysis and planned validation activities using measurements from upcoming field campaigns are also discussed.
Chen, Guan-Hua; Chen, Wei-Yu; Yen, Yu-Chun; Wang, Chia-Wei; Chang, Huan-Tsung; Chen, Chien-Fu
2014-07-15
An on-field colorimetric sensing strategy employing gold nanoparticles (AuNPs) and a paper-based analytical platform was investigated for mercury ion (Hg(2+)) detection at water sources. By utilizing thymine-Hg(2+)-thymine (T-Hg(2+)-T) coordination chemistry, label-free detection oligonucleotide sequences were attached to unmodified gold nanoparticles to provide rapid mercury ion sensing without complicated and time-consuming thiolated or other costly labeled probe preparation processes. Not only is this strategy's sensing mechanism specific toward Hg(2+), rather than other metal ions, but also the conformational change in the detection oligonucleotide sequences introduces different degrees of AuNP aggregation that causes the color of AuNPs to exhibit a mixture variance. To eliminate the use of sophisticated equipment and minimize the power requirement for data analysis and transmission, the color variance of multiple detection results were transferred and concentrated on cellulose-based paper analytical devices, and the data were subsequently transmitted for the readout and storage of results using cloud computing via a smartphone. As a result, a detection limit of 50 nM for Hg(2+) spiked pond and river water could be achieved. Furthermore, multiple tests could be performed simultaneously with a 40 min turnaround time. These results suggest that the proposed platform possesses the capability for sensitive and high-throughput on-site mercury pollution monitoring in resource-constrained settings.
Probing the Dusty Stellar Populations of the Local Volume Galaxies with JWST/MIRI
NASA Astrophysics Data System (ADS)
Jones, Olivia C.; Meixner, Margaret; Justtanont, Kay; Glasse, Alistair
2017-05-01
The Mid-Infrared Instrument (MIRI) for the James Webb Space Telescope (JWST) will revolutionize our understanding of infrared stellar populations in the Local Volume. Using the rich Spitzer-IRS spectroscopic data set and spectral classifications from the Surveying the Agents of Galaxy Evolution (SAGE)-Spectroscopic survey of more than 1000 objects in the Magellanic Clouds, the Grid of Red Supergiant and Asymptotic Giant Branch Star Model (grams), and the grid of YSO models by Robitaille et al., we calculate the expected flux densities and colors in the MIRI broadband filters for prominent infrared stellar populations. We use these fluxes to explore the JWST/MIRI colors and magnitudes for composite stellar population studies of Local Volume galaxies. MIRI color classification schemes are presented; these diagrams provide a powerful means of identifying young stellar objects, evolved stars, and extragalactic background galaxies in Local Volume galaxies with a high degree of confidence. Finally, we examine which filter combinations are best for selecting populations of sources based on their JWST colors.
CloudSat Profiles Tropical Storm Andrea
2007-05-10
CloudSat's Cloud Profiling Radar captured a profile across Tropical Storm Andrea on Wednesday, May 9, 2007, near the South Carolina/Georgia/Florida Atlantic coast. The upper image shows an infrared view of Tropical Storm Andrea from the Moderate Resolution Imaging Spectroradiometer instrument on NASA's Aqua satellite, with CloudSat's ground track shown as a red line. The lower image is the vertical cross section of radar reflectivity along this path, where the colors indicate the intensity of the reflected radar energy. CloudSat orbits approximately one minute behind Aqua in a satellite formation known as the A-Train. http://photojournal.jpl.nasa.gov/catalog/PIA09379
NASA Technical Reports Server (NTRS)
1976-01-01
Color and spectral data from spectrometer observations and computerized analyses of asteroid spectra are discussed. Potential occultations of bright asteroids by the moon are summarized. Analysis of anisotropic scattering within Saturn's rings indicates that mineral contamination of the 120 particles cannot exceed 5 percent by weight, and that the rings formed from particle breakup rather than from particle condensation. Raman probe applications to Jupiter and Uranus atmospheres indicate the presence of aerosol particles. A review of Mariner 9 Mars cloud topography data establishes that most blue clouds are orographic uplift clouds composed of condensates, and that sporadic red clouds are associated with blue clouds or volcanoes and thus probably do not represent dust storm phenomena.
NASA Technical Reports Server (NTRS)
Adachi, Toru; Cohen, Morris; Li, Jingbo; Cummer, Steve; Blakeslee, Richard; Marshall, THomas; Stolzenberg, Maribeth; Karunarathne, Sumedhe; Hsu, Rue-Ron; Su, Han-Tzong;
2012-01-01
The present study aims at assessing a possible new way to reveal the properties of lightning flash, using spectrophotometric data obtained by FORMOSAT-2/ISUAL which is the first spaceborne multicolor lightning detector. The ISUAL data was analyzed in conjunction with ground ]based electromagnetic data obtained by Duke magnetic field sensors, NLDN, North Alabama Lightning Mapping Array (LMA), and Kennedy Space Center (KSC) electric field antennas. We first classified the observed events into cloud ]to ]ground (CG) and intra ]cloud (IC) lightning based on the Duke and NLDN measurements and analyzed ISUAL data to clarify their optical characteristics. It was found that the ISUAL optical waveform of CG lightning was strongly correlated with the current moment waveform, suggesting that it is possible to evaluate the electrical properties of lightning from satellite optical measurement to some extent. The ISUAL data also indicated that the color of CG lightning turned to red at the time of return stroke while the color of IC pulses remained unchanged. Furthermore, in one CG event which was simultaneously detected by ISUAL and LMA, the observed optical emissions slowly turned red as the altitude of optical source gradually decreased. All of these results indicate that the color of lightning flash depends on the source altitude and suggest that spaceborne optical measurement could be a new tool to discriminate CG and IC lightning. In the presentation, we will also show results on the comparison between the ISUAL and KSC electric field data to clarify characteristics of each lightning process such as preliminary breakdown, return stroke, and subsequent upward illumination.
Hubble Space Telescope Wide Field Planetary Camera 2 Observations of Neptune
NASA Technical Reports Server (NTRS)
1995-01-01
Two groups have recently used the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC 2) to acquire new high-resolution images of the planet Neptune. Members of the WFPC-2 Science Team, lead by John Trauger, acquired the first series of images on 27 through 29 June 1994. These were the highest resolution images of Neptune taken since the Voyager-2 flyby in August of 1989. A more comprehensive program is currently being conducted by Heidi Hammel and Wes Lockwood. These two sets of observations are providing a wealth of new information about the structure, composition, and meteorology of this distant planet's atmosphere.
Neptune is currently the most distant planet from the sun, with an orbital radius of 4.5 billion kilometers (2.8 billion miles, or 30 Astronomical Units). Even though its diameter is about four times that of the Earth (49,420 vs. 12,742 km), ground-based telescopes reveal a tiny blue disk that subtends less than 1/1200 of a degree (2.3 arc-seconds). Neptune has therefore been a particularly challenging object to study from the ground because its disk is badly blurred by the Earth's atmosphere. In spite of this, ground-based astronomers had learned a great deal about this planet since its position was first predicted by John C. Adams and Urbain Leverrier in 1845. For example, they had determined that Neptune was composed primarily of hydrogen and helium gas, and that its blue color caused by the presence of trace amounts of the gas methane, which absorbs red light. They had also detected bright cloud features whose brightness changed with time, and tracked these clouds to infer a rotation period between 17 and 22 hours.When the Voyager-2 spacecraft flew past the Neptune in 1989, its instruments revealed a surprising array of meteorological phenomena, including strong winds, bright, high-altitude clouds, and two large dark spots attributed to long-lived giant storm systems. These bright clouds and dark spots were tracked as they moved across the planet's disk, revealing wind speeds as large as 325 meters per second (730 miles per hour). The largest of the giant, dark storm systems, called the 'Great Dark Spot', received special attention because it resembled Jupiter's Great Red Spot, a storm that has persisted for more than three centuries. The lifetime of Neptune's Great Dark Spot could not be determined from the Voyager data alone, however, because the encounter was too brief. Its evolution was impossible to monitor with ground-based telescopes, because it could not be resolved on Neptune's tiny disk, and its contribution to the disk-integrated brightness of Neptune confused by the presence of a rapidly-varying bright cloud feature, called the 'Bright Companion' that usually accompanied the Great Dark spot.The repaired Hubble Space Telescope provides new opportunities to monitor these and other phenomena in the atmosphere of the most distant planet. Images taken with WFPC-2's Planetary Camera (PC) can resolve Neptune's disk as well as most ground-based telescopes can resolve the disk of Jupiter. The spatial resolution of the HST WFPC-2 images is not as high as that obtained by the Voyager-2 Narrow-Angle Camera during that spacecraft's closest approach to Neptune, but they have a number of other assets that enhance their scientific value, including improved ultra-violet and infrared sensitivity, better signal-to-noise, and, and greater photometric accuracy.The images of Neptune acquired by the WFPC-2 Science team in late June clearly demonstrate these capabilities. The side of the planet facing the Earth at the start of the program (11:36 Universal Time on July 27) was imaged in color filters spanning the ultraviolet (255 and 300-nm), visible (467, 588, 620, and 673- nm), and near-infrared (890-nm) parts of the spectrum. The planet then rotated 180 degrees in longitude, and the opposite hemisphere was imaged in a subset of these colors (300, 467, 588, 620, and 673-nm). The HST/WFPC-2 program more recently conducted by Hammel and Lockwood provides better longitude coverage, and a wider range of observing times, but uses a more restricted set of colors.The ultraviolet pictures show an almost featureless disk that is slightly darker near the edge. The observed contrast increases in the blue, green, red, and near-infrared images, which reveal many of the features seen by Voyager 2, including the dark band near 60 S latitude and several distinct bright cloud features. The bright cloud features are most obvious in the red and infrared parts of the spectrum where methane gas absorbs most strongly (619 and 890 nm). These bright clouds thought to be high above the main cloud deck, and above much of the absorbing methane gas. The edge of the planet's disk also appears somewhat bright in these colors, indicating the presence of a ubiquitous, high-altitude haze layer.The northern hemisphere is occupied by a single prominent cloud band centered near 30 N latitude. This planet-encircling feature may be the same bright cloud discovered last fall by ground-based observers. Northern hemisphere clouds were much less obvious at the time of the Voyager-2 encounter. The tropics are about 20 % darker than the disk average in the 890-nm images, and one of these images reveals a discrete bright cloud on the equator, near the edge of the disk. The southern hemisphere includes two broken bright bands. The largest and brightest is centered at 30 S latitude, and extends for least 40 degrees of longitude, like the Bright Companion to the Great Dark Spot. There is also a thin cloud band at 45 S latitude, which almost encircles the planet.One feature that is conspicuous by its absence is the storm system known as the Great Dark Spot. The second smaller dark spot, DS2, that was seen during the Voyager-2 encounter was also missing. The absence of these dark spots was one of the biggest surprises of this program. The WFPC-2 Science team initially assumed that the two storm systems might be near the edge of the planet's disk, where they would not be particularly obvious. An analysis of their longitude coverage revealed that less than 20 degrees of longitude had been missed in the colors where these spots had their greatest contrast (467 and 588 nm). The Great Dark Spot covered almost 40 degrees of longitude at the time of the Voyager-2 fly-by. Even if it were on the edge of the disk, it would appear as a 'bite' out of the limb. Because no such feature was detected, we concluded that these features had vanished. This conclusion was reinforced by the more recent observations by Hammel and Lockwood, which also show no evidence of discrete dark spots.These dramatic changes in the large-scale storm systems and planet-encircling clouds bands on Neptune are not yet completely understood, but they emphasize the dynamic nature of this planet's atmosphere, and the need for further monitoring. Additional HST WFPC-2 observations are planned for next summer. These two teams are continuing their analysis of these data sets to place improved constraints on these and other phenomena in Neptune's atmosphere.Figure Captions:These almost true-color pictures of Neptune were constructed from HST/WFPC2 images taken in blue (467-nm), green (588- nm), and red (673-nm) spectral filters. There is a bright cloud feature at the south pole, near the bottom right of the image. Bright cloud bands can be seen at 30S and 60S latitude. The northern hemisphere also includes a bright cloud band centered near 30N latitude. The second picture was compiled from images taken after the planet had rotated about 180 degrees of longitude (about 9 hours later) to show the opposite hemisphere.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/Sea Ice off the Princess Astrid Coast
2015-04-08
On April 5, 2015, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite acquired this natural-color image of sea ice off the coast of East Antarctica’s Princess Astrid Coast. White areas close to the continent are sea ice, while white areas in the northeast corner of the image are clouds. One way to better distinguish ice from clouds is with false-color imagery. In the false-color view of the scene here, ice is blue and clouds are white. The image was acquired after Antarctic sea ice had passed its annual minimum extent (reached on February 20, 2015), and had resumed expansion toward its maximum extent (usually reached in September). Credit: NASA image by Jeff Schmaltz, LANCE/EOSDIS Rapid Response. Caption by Kathryn Hansen via NASA's Earth Observatory Read more: www.nasa.gov/content/sea-ice-off-east-antarcticas-princes... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Phytoplankton and sediments in Yellow Sea
NASA Technical Reports Server (NTRS)
2002-01-01
Sediment and phytoplankton cloud the waters of the Yellow Sea in this true-color MODIS image acquired March 18, 2002. The swirls of sediment appear as a murky brownish blue color, while the phytoplankton are purely blue green and are concentrated around the small island in the lower right corner of the image.
"Special Delivery": Case Studies in Alternative Teacher Licensure Programs for Students of Color.
ERIC Educational Resources Information Center
Hasslen, Robin; Green, Les
St. Cloud State University's Teacher of Color project provides alternate licensure for degreed individuals needing only to complete their teacher education core and subject area coursework. It offers minority students on- and off-campus programs, financial support, flexible hours, and a compressed program. Researchers examined participating…
Pérez, María M; Ghinea, Razvan; Ugarte-Alván, Laura I; Pulgar, Rosa; Paravina, Rade D
2010-01-01
The purpose of this study was to determine the optical properties, color and translucency, of the new silorane-based resin composite and to compare it to universal dimethacrylate-based composites. Six dimethacrylate-based resin composites and one silorane-based resin composite (all A2 shade) were studied. Color of non-polymerized and polymerized composites was measured against white and black backgrounds using a spectroradiometer. Changes in color (ΔE*(ab)), translucency (ΔTP) and color coordinates (ΔL*, Δa* and Δb*) were calculated for each resin composite. Results were evaluated using a one-way ANOVA, a Tukey's test and a t-test. The polymerization-dependent ΔE*(ab) ranged from 4.7 to 9.1, with the smallest difference for the silorane-based resin composite. The color changes of silorane-based composite were due to the changes of coordinates Δa* and Δb*. However, for the dimethacrylate-based composites, the color changes mainly originated by ΔL*and Δb*. The silorane composite exhibited the smallest TP values. Tukey's test confirmed significant statistical differences (p<0.05) between mean TP values of Filtek Silorane and each brand of dimethacrylate-based composites before and after polymerization. The new silorane-based restorative system showed different optical properties compared to clinically successful dimethacrylate composites. The silorane composite exhibited better polymerization-dependent chromatic stability, and a lower translucency compared to other tested products. Copyright © 2010 Elsevier Ltd. All rights reserved.
Distinguishing Clouds from Ice over the East Siberian Sea, Russia
NASA Technical Reports Server (NTRS)
2002-01-01
As a consequence of its capability to retrieve cloud-top elevations, stereoscopic observations from the Multi-angle Imaging SpectroRadiometer (MISR) can discriminate clouds from snow and ice. The central portion of Russia's East Siberian Sea, including one of the New Siberian Islands, Novaya Sibir, are portrayed in these views from data acquired on May 28, 2002.The left-hand image is a natural color view from MISR's nadir camera. On the right is a height field retrieved using automated computer processing of data from multiple MISR cameras. Although both clouds and ice appear white in the natural color view, the stereoscopic retrievals are able to identify elevated clouds based on the geometric parallax which results when they are observed from different angles. Owing to their elevation above sea level, clouds are mapped as green and yellow areas, whereas land, sea ice, and very low clouds appear blue and purple. Purple, in particular, denotes elevations very close to sea level. The island of Novaya Sibir is located in the lower left of the images. It can be identified in the natural color view as the dark area surrounded by an expanse of fast ice. In the stereo map the island appears as a blue region indicating its elevation of less than 100 meters above sea level. Areas where the automated stereo processing failed due to lack of sufficient spatial contrast are shown in dark gray. The northern edge of the Siberian mainland can be found at the very bottom of the panels, and is located a little over 250 kilometers south of Novaya Sibir. Pack ice containing numerous fragmented ice floes surrounds the fast ice, and narrow areas of open ocean are visible.The East Siberian Sea is part of the Arctic Ocean and is ice-covered most of the year. The New Siberian Islands are almost always covered by snow and ice, and tundra vegetation is very scant. Despite continuous sunlight from the end of April until the middle of August, the ice between the island and the mainland typically remains until August or September.The Multi-angle Imaging SpectroRadiometer views almost the entire Earth every 9 days. These images were acquired during Terra orbit 12986 and cover an area of about 380 kilometers x 1117 kilometers. They utilize data from blocks 24 to 32 within World Reference System-2 path 117.MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.Jiao, Yang; Xu, Liang; Gao, Min-Guang; Feng, Ming-Chun; Jin, Ling; Tong, Jing-Jing; Li, Sheng
2012-07-01
Passive remote sensing by Fourier-transform infrared (FTIR) spectrometry allows detection of air pollution. However, for the localization of a leak and a complete assessment of the situation in the case of the release of a hazardous cloud, information about the position and the distribution of a cloud is essential. Therefore, an imaging passive remote sensing system comprising an interferometer, a data acquisition and processing software, scan system, a video system, and a personal computer has been developed. The remote sensing of SF6 was done. The column densities of all directions in which a target compound has been identified may be retrieved by a nonlinear least squares fitting algorithm and algorithm of radiation transfer, and a false color image is displayed. The results were visualized by a video image, overlaid by false color concentration distribution image. The system has a high selectivity, and allows visualization and quantification of pollutant clouds.
2018-01-04
NASA's Juno spacecraft was a little more than one Earth diameter from Jupiter when it captured this mind-bending, color-enhanced view of the planet's tumultuous atmosphere. Jupiter completely fills the image, with only a hint of the terminator (where daylight fades to night) in the upper right corner, and no visible limb (the curved edge of the planet). Juno took this image of colorful, turbulent clouds in Jupiter's northern hemisphere on Dec. 16, 2017 at 9:43 a.m. PST (12:43 p.m. EST) from 8,292 miles (13,345 kilometers) above the tops of Jupiter's clouds, at a latitude of 48.9 degrees. The spatial scale in this image is 5.8 miles/pixel (9.3 kilometers/pixel).. Citizen scientists Gerald Eichstädt and Seán Doran processed this image using data from the JunoCam imager. https://photojournal.jpl.nasa.gov/catalog/PIA21973
1990-02-14
Range : 1.7 million miles This colorized picture of Venus was taken about 6 days after Galileo's closest approach to the planet. It has been colorized to a bluish hue to emphasize subtle contrasts in the cloud markings and to indicate that it was taken through a violet filter. Features in the sulfuric acid clouds near the top of the planet's atmosphere are most prominent in violet and ultraviolet light. This image shows the east-to-west-trending cloud banding and the brighter polar hoods familiar from past studies of Venus. The features are embedded in winds that flow from east to west at about 230 mph. The smallest features visible are about 45 miles across. An intriguing filamentary dark pattern is seen immediately left of the bright region at the subsolar point (equatorial 'noon'). North is at the top and the evening terminator is to the left.
Zeng, Chen; Xu, Huiping; Fischer, Andrew M.
2016-01-01
Ocean color remote sensing significantly contributes to our understanding of phytoplankton distribution and abundance and primary productivity in the Southern Ocean (SO). However, the current SO in situ optical database is still insufficient and unevenly distributed. This limits the ability to produce robust and accurate measurements of satellite-based chlorophyll. Based on data collected on cruises around the Antarctica Peninsula (AP) on January 2014 and 2016, this research intends to enhance our knowledge of SO water and atmospheric optical characteristics and address satellite algorithm deficiency of ocean color products. We collected high resolution in situ water leaving reflectance (±1 nm band resolution), simultaneous in situ chlorophyll-a concentrations and satellite (MODIS and VIIRS) water leaving reflectance. Field samples show that clouds have a great impact on the visible green bands and are difficult to detect because NASA protocols apply the NIR band as a cloud contamination threshold. When compared to global case I water, water around the AP has lower water leaving reflectance and a narrower blue-green band ratio, which explains chlorophyll-a underestimation in high chlorophyll-a regions and overestimation in low chlorophyll-a regions. VIIRS shows higher spatial coverage and detection accuracy than MODIS. After coefficient improvement, VIIRS is able to predict chlorophyll a with 53% accuracy. PMID:27941596
Zeng, Chen; Xu, Huiping; Fischer, Andrew M
2016-12-07
Ocean color remote sensing significantly contributes to our understanding of phytoplankton distribution and abundance and primary productivity in the Southern Ocean (SO). However, the current SO in situ optical database is still insufficient and unevenly distributed. This limits the ability to produce robust and accurate measurements of satellite-based chlorophyll. Based on data collected on cruises around the Antarctica Peninsula (AP) on January 2014 and 2016, this research intends to enhance our knowledge of SO water and atmospheric optical characteristics and address satellite algorithm deficiency of ocean color products. We collected high resolution in situ water leaving reflectance (±1 nm band resolution), simultaneous in situ chlorophyll-a concentrations and satellite (MODIS and VIIRS) water leaving reflectance. Field samples show that clouds have a great impact on the visible green bands and are difficult to detect because NASA protocols apply the NIR band as a cloud contamination threshold. When compared to global case I water, water around the AP has lower water leaving reflectance and a narrower blue-green band ratio, which explains chlorophyll-a underestimation in high chlorophyll-a regions and overestimation in low chlorophyll-a regions. VIIRS shows higher spatial coverage and detection accuracy than MODIS. After coefficient improvement, VIIRS is able to predict chlorophyll a with 53% accuracy.
NASA Astrophysics Data System (ADS)
Remer, L. A.; Boss, E.; Ahmad, Z.; Cairns, B.; Chowdhary, J.; Coddington, O.; Davis, A. B.; Dierssen, H. M.; Diner, D. J.; Franz, B. A.; Frouin, R.; Gao, B. C.; Garay, M. J.; Heidinger, A.; Ibrahim, A.; Kalashnikova, O. V.; Knobelspiesse, K. D.; Levy, R. C.; Omar, A. H.; Meyer, K.; Platnick, S. E.; Seidel, F. C.; van Diedenhoven, B.; Werdell, J.; Xu, F.; Zhai, P.; Zhang, Z.
2017-12-01
NASA's Science Team for the Plankton, Aerosol, Clouds, ocean Ecosystem (PACE) mission is concluding three years of study exploring the science potential of expanded spectral, angular and polarization capability for space-based retrievals of water leaving radiance, aerosols and clouds. The work anticipates future development of retrievals to be applied to the PACE Ocean Color Instrument (OCI) and/or possibly a PACE Multi-Angle Polarimeter (MAP). In this presentation we will report on the Science Team's accomplishments associated with the atmosphere (significant efforts are also directed by the ST towards the ocean). Included in the presentation will be sensitivity studies that explore new OCI capabilities for aerosol and cloud layer height, aerosol absorption characterization, cloud property retrievals, and how we intend to move from heritage atmospheric correction algorithms to make use of and adjust to OCI's hyperspectral and UV wavelengths. We will then address how capabilities will improve with the PACE MAP, how these capabilities from both OCI and MAP correspond to specific societal benefits from the PACE mission, and what is still needed to close the gaps in our understanding before the PACE mission can realize its full potential.
Identity-Based Authentication for Cloud Computing
NASA Astrophysics Data System (ADS)
Li, Hongwei; Dai, Yuanshun; Tian, Ling; Yang, Haomiao
Cloud computing is a recently developed new technology for complex systems with massive-scale services sharing among numerous users. Therefore, authentication of both users and services is a significant issue for the trust and security of the cloud computing. SSL Authentication Protocol (SAP), once applied in cloud computing, will become so complicated that users will undergo a heavily loaded point both in computation and communication. This paper, based on the identity-based hierarchical model for cloud computing (IBHMCC) and its corresponding encryption and signature schemes, presented a new identity-based authentication protocol for cloud computing and services. Through simulation testing, it is shown that the authentication protocol is more lightweight and efficient than SAP, specially the more lightweight user side. Such merit of our model with great scalability is very suited to the massive-scale cloud.
Ages of intermediate-age Magellanic Cloud star clusters
NASA Technical Reports Server (NTRS)
Flower, P. J.
1984-01-01
Ages of intermediate-age Large Magellanic Cloud star clusters have been estimated without locating the faint, unevolved portion of cluster main sequences. Six clusters with established color-magnitude diagrams were selected for study: SL 868, NGC 1783, NGC 1868, NGC 2121, NGC 2209, and NGC 2231. Since red giant photometry is more accurate than the necessarily fainter main-sequence photometry, the distributions of red giants on the cluster color-magnitude diagrams were compared to a grid of 33 stellar evolutionary tracks, evolved from the main sequence through core-helium exhaustion, spanning the expected mass and metallicity range for Magellanic Cloud cluster red giants. The time-dependent behavior of the luminosity of the model red giants was used to estimate cluster ages from the observed cluster red giant luminosities. Except for the possibility of SL 868 being an old globular cluster, all clusters studied were found to have ages less than 10 to the 9th yr. It is concluded that there is currently no substantial evidence for a major cluster population of large, populous clusters greater than 10 to the 9th yr old in the Large Magellanic Cloud.
Hupbach, Almut; Melzer, André; Hardt, Oliver
2006-01-01
Priming effects in perceptual tests of implicit memory are assumed to be perceptually specific. Surprisingly, changing object colors from study to test did not diminish priming in most previous studies. However, these studies used implicit tests that are based on object identification, which mainly depends on the analysis of the object shape and therefore operates color-independently. The present study shows that color effects can be found in perceptual implicit tests when the test task requires the processing of color information. In Experiment 1, reliable color priming was found in a mere exposure design (preference test). In Experiment 2, the preference test was contrasted with a conceptually driven color-choice test. Altering the shape of object from study to test resulted in significant priming in the color-choice test but eliminated priming in the preference test. Preference judgments thus largely depend on perceptual processes. In Experiment 3, the preference and the color-choice test were studied under explicit test instructions. Differences in reaction times between the implicit and the explicit test suggest that the implicit test results were not an artifact of explicit retrieval attempts. In contrast with previous assumptions, it is therefore concluded that color is part of the representation that mediates perceptual priming.
NASA Astrophysics Data System (ADS)
Shih, Chihhsiong
2005-01-01
Two efficient workflow are developed for the reconstruction of a 3D full color building model. One uses a point wise sensing device to sample an unknown object densely and attach color textures from a digital camera separately. The other uses an image based approach to reconstruct the model with color texture automatically attached. The point wise sensing device reconstructs the CAD model using a modified best view algorithm that collects the maximum number of construction faces in one view. The partial views of the point clouds data are then glued together using a common face between two consecutive views. Typical overlapping mesh removal and coarsening procedures are adapted to generate a unified 3D mesh shell structure. A post processing step is then taken to combine the digital image content from a separate camera with the 3D mesh shell surfaces. An indirect uv mapping procedure first divide the model faces into groups within which every face share the same normal direction. The corresponding images of these faces in a group is then adjusted using the uv map as a guidance. The final assembled image is then glued back to the 3D mesh to present a full colored building model. The result is a virtual building that can reflect the true dimension and surface material conditions of a real world campus building. The image based modeling procedure uses a commercial photogrammetry package to reconstruct the 3D model. A novel view planning algorithm is developed to guide the photos taking procedure. This algorithm successfully generate a minimum set of view angles. The set of pictures taken at these view angles can guarantee that each model face shows up at least in two of the pictures set and no more than three. The 3D model can then be reconstructed with minimum amount of labor spent in correlating picture pairs. The finished model is compared with the original object in both the topological and dimensional aspects. All the test cases show exact same topology and reasonably low dimension error ratio. Again proving the applicability of the algorithm.
Cloud GIS Based Watershed Management
NASA Astrophysics Data System (ADS)
Bediroğlu, G.; Colak, H. E.
2017-11-01
In this study, we generated a Cloud GIS based watershed management system with using Cloud Computing architecture. Cloud GIS is used as SAAS (Software as a Service) and DAAS (Data as a Service). We applied GIS analysis on cloud in terms of testing SAAS and deployed GIS datasets on cloud in terms of DAAS. We used Hybrid cloud computing model in manner of using ready web based mapping services hosted on cloud (World Topology, Satellite Imageries). We uploaded to system after creating geodatabases including Hydrology (Rivers, Lakes), Soil Maps, Climate Maps, Rain Maps, Geology and Land Use. Watershed of study area has been determined on cloud using ready-hosted topology maps. After uploading all the datasets to systems, we have applied various GIS analysis and queries. Results shown that Cloud GIS technology brings velocity and efficiency for watershed management studies. Besides this, system can be easily implemented for similar land analysis and management studies.
NASA AIRS Examines Hurricane Matthew Cloud Top Temperatures
2016-10-07
At 11:29 p.m. PDT on Oct. 6 (2:29 a.m. EDT on Oct. 7), NASA's Atmospheric Infrared Sounder (AIRS) instrument on NASA's Aqua satellite produced this false-color infrared image of Matthew as the storm moved up Florida's central coast. The image shows the temperature of Matthew's cloud tops or the surface of Earth in cloud-free regions, with the most intense thunderstorms shown in purples and blues. http://photojournal.jpl.nasa.gov/catalog/PIA21097
THE YOUNG STELLAR OBJECT POPULATION IN THE VELA-D MOLECULAR CLOUD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strafella, F.; Maruccia, Y.; Maiolo, B.
2015-01-10
We investigate the young stellar population in the Vela Molecular Ridge, Cloud-D, a star-forming region observed by both the Spitzer/NASA and Herschel/ESA space telescopes. The point-source, band-merged, Spitzer-IRAC catalog complemented with MIPS photometry previously obtained is used to search for candidate young stellar objects (YSOs), also including sources detected in less than four IRAC bands. Bona fide YSOs are selected by using appropriate color-color and color-magnitude criteria aimed at excluding both Galactic and extragalactic contaminants. The derived star formation rate and efficiency are compared with the same quantities characterizing other star-forming clouds. Additional photometric data, spanning from the near-IR tomore » the submillimeter, are used to evaluate both bolometric luminosity and temperature for 33 YSOs located in a region of the cloud observed by both Spitzer and Herschel. The luminosity-temperature diagram suggests that some of these sources are representative of Class 0 objects with bolometric temperatures below 70 K and luminosities of the order of the solar luminosity. Far-IR observations from the Herschel/Hi-GAL key project for a survey of the Galactic plane are also used to obtain a band-merged photometric catalog of Herschel sources intended to independently search for protostars. We find 122 Herschel cores located on the molecular cloud, 30 of which are protostellar and 92 of which are starless. The global protostellar luminosity function is obtained by merging the Spitzer and Herschel protostars. Considering that 10 protostars are found in both the Spitzer and Herschel lists, it follows that in the investigated region we find 53 protostars and that the Spitzer-selected protostars account for approximately two-thirds of the total.« less
What's Old is New in the Large Magellanic Cloud
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Poster Version Large Magellanic Cloud This vibrant image from NASA's Spitzer Space Telescope shows the Large Magellanic Cloud, a satellite galaxy to our own Milky Way galaxy. The infrared image, a mosaic of 300,000 individual tiles, offers astronomers a unique chance to study the lifecycle of stars and dust in a single galaxy. Nearly one million objects are revealed for the first time in this Spitzer view, which represents about a 1,000-fold improvement in sensitivity over previous space-based missions. Most of the new objects are dusty stars of various ages populating the Large Magellanic Cloud; the rest are thought to be background galaxies. The blue color in the picture, seen most prominently in the central bar, represents starlight from older stars. The chaotic, bright regions outside this bar are filled with hot, massive stars buried in thick blankets of dust. The red color around these bright regions is from dust heated by stars, while the red dots scattered throughout the picture are either dusty, old stars or more distant galaxies. The greenish clouds contain cooler interstellar gas and molecular-sized dust grains illuminated by ambient starlight. Astronomers say this image allows them to quantify the process by which space dust -- the same stuff that makes up planets and even people -- is recycled in a galaxy. The picture shows dust at its three main cosmic hangouts: around the young stars, where it is being consumed (red-tinted, bright clouds); scattered about in the space between stars (greenish clouds); and in expelled shells of material from old stars (randomly-spaced red dots). The Large Magellanic Cloud, located 160,000 light-years from Earth, is one of a handful of dwarf galaxies that orbit our own Milky Way. It is approximately one-third as wide as the Milky Way, and, if it could be seen in its entirety, would cover the same amount of sky as a grid of about 480 full moons. About one-third of the entire galaxy can be seen in the Spitzer image. This picture is a composite of infrared light captured by Spitzer. Light with wavelengths of 3.6 (blue) and 8 (green) microns was captured by the telescope's infrared array camera; 24-micron light (red) was detected by the multiband imaging photometer.NASA Astrophysics Data System (ADS)
Jethva, H. T.; Torres, O.; Remer, L. A.; Redemann, J.; Dunagan, S. E.; Livingston, J. M.; Shinozuka, Y.; Kacenelenbogen, M. S.; Segal-Rosenhaimer, M.
2014-12-01
Absorbing aerosols produced from biomass burning and dust outbreaks are often found to overlay the lower level cloud decks as evident in the satellite images. In contrast to the cloud-free atmosphere, in which aerosols generally tend to cool the atmosphere, the presence of absorbing aerosols above cloud poses greater potential of exerting positive radiative effects (warming) whose magnitude directly depends on the aerosol loading above cloud, optical properties of clouds and aerosols, and cloud fraction. In recent years, development of algorithms that exploit satellite-based passive measurements of ultraviolet (UV), visible, and polarized light as well as lidar-based active measurements constitute a major breakthrough in the field of remote sensing of aerosols. While the unprecedented quantitative information on aerosol loading above cloud is now available from NASA's A-train sensors, a greater question remains ahead: How to validate the satellite retrievals of above-cloud aerosols (ACA)? Direct measurements of ACA such as carried out by the NASA Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) can be of immense help in validating ACA retrievals. In this study, we validate the ACA optical depth retrieved using the 'color ratio' (CR) method applied to the MODIS cloudy-sky reflectance by using the airborne AATS and 4STAR measurements. A thorough search of the historic AATS-4STAR database collected during different field campaigns revealed five events where biomass burning, dust, and wildfire-emitted aerosols were found to overlay lower level cloud decks observed during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS-2013, respectively. The co-located satellite-airborne measurements revealed a good agreement (root-mean-square-error<0.1 for Aerosol Optical Depth (AOD) at 500 nm) with most matchups falling within the estimated uncertainties in the MODIS retrievals (-10% to +50%). An extensive validation of satellite-based ACA retrievals requires equivalent field measurements particularly over the regions where ACA are often observed from satellites, i.e., south-eastern Atlantic Ocean, tropical Atlantic Ocean, northern Arabian Sea, South-East and North-East Asia.
NASA Technical Reports Server (NTRS)
Welton, Ellsworth J.; Spinhirne, James D.; Campbell, James R.; Berkoff, Timothy A.; Bates, David; Starr, David OC. (Technical Monitor)
2001-01-01
The determination of the vertical distribution of aerosols and clouds over the ocean is needed for accurate retrievals of ocean color from satellites observations. The presence of absorbing aerosol layers, especially at altitudes above the boundary layer, has been shown to influence the calculation of ocean color. Also, satellite data must be correctly screened for the presence of clouds, particularly cirrus, in order to measure ocean color. One instrument capable of providing this information is a lidar, which uses pulses of laser light to profile the vertical distribution of aerosol and cloud layers in the atmosphere. However, lidar systems prior to the 1990s were large, expensive, and not eye-safe which made them unsuitable for cruise deployments. During the 1990s the first small, autonomous, and eye-safe lidar system became available: the micro-pulse lidar, or MPL. The MPL is a compact and eye-safe lidar system capable of determining the range of aerosols and clouds by firing a short pulse of laser light (523 nm) and measuring the time-of-flight from pulse transmission to reception of a returned signal. The returned signal is a function of time, converted into range using the speed of light, and is proportional to the amount of light backscattered by atmospheric molecules (Rayleigh scattering), aerosols, and clouds. The MPL achieves ANSI eye-safe standards by sending laser pulses at low energy (micro-J) and expanding the beam to 20.32 cm in diameter. A fast pulse-repetition-frequency (2500 Hz) is used to achieve a good signal-to-noise, despite the low output energy. The MPL has a small field-of-view (< 100 micro-rad) and signals received with the instrument do not contain multiple scattering effects. The MPL has been used successfully at a number of long-term sites and also in several field experiments around the world.
NASA Technical Reports Server (NTRS)
2002-01-01
As the clouds allowed during the past two months, the Sea-viewing Wide field-of-View Sensor (SeaWiFS) recorded the changing colors of eastern U.S. and Canadian vegetation. This series of true-color images from the fall of 2000 shows the deciduous forests of the region change from dark green to bright red and orange, and begin to drop their leaves. Image provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE
NASA Technical Reports Server (NTRS)
Wier, C. E.; Wobber, F. J. (Principal Investigator); Russell, O. R.; Amato, R. V.
1972-01-01
The author has identified the following significant results. Various data compilation and analysis activities in support of ERTS-1 imagery interpretation are in progress or are completed. These include the compilation of mine accident data, areas of mine roof instability and the analysis of high altitude color infrared photography and low altitude color and color infrared photography which was acquired by NASA in support of the project. The photography reveals that many fracture lineaments are detectable through a varied thickness of glacial till. These data will be compiled on a series of 1:250,000 scale base maps and evaluated for a correlation between fracture zones and mine accidents and rooffalls. Due to high occurrence of cloud cover in the project area and to the delay in imagery shipments, little progress has been made in the analysis of ERTS-1 imagery.
Clouds and Ice of the Lambert-Amery System, East Antarctica
NASA Technical Reports Server (NTRS)
2002-01-01
These views from the Multi-angle Imaging SpectroRadiometer (MISR) illustrate ice surface textures and cloud-top heights over the Amery Ice Shelf/Lambert Glacier system in East Antarctica on October 25, 2002.The left-hand panel is a natural-color view from MISR's downward-looking (nadir) camera. The center panel is a multi-angular composite from three MISR cameras, in which color acts as a proxy for angular reflectance variations related to texture. Here, data from the red-band of MISR's 60o forward-viewing, nadir and 60o backward-viewing cameras are displayed as red, green and blue, respectively. With this display technique, surfaces which predominantly exhibit backward-scattering (generally rough surfaces) appear red/orange, while surfaces which predominantly exhibit forward-scattering (generally smooth surfaces) appear blue. Textural variation for both the grounded and sea ice are apparent. The red/orange pixels in the lower portion of the image correspond with a rough and crevassed region near the grounding zone, that is, the area where the Lambert and four other smaller glaciers merge and the ice starts to float as it forms the Amery Ice Shelf. In the natural-color view, this rough ice is spectrally blue in color.Clouds exhibit both forward and backward-scattering properties in the middle panel and thus appear purple, in distinct contrast with the underlying ice and snow. An additional multi-angular technique for differentiating clouds from ice is shown in the right-hand panel, which is a stereoscopically derived height field retrieved using automated pattern recognition involving data from multiple MISR cameras. Areas exhibiting insufficient spatial contrast for stereoscopic retrieval are shown in dark gray. Clouds are apparent as a result of their heights above the surface terrain. Polar clouds are an important factor in weather and climate. Inadequate characterization of cloud properties is currently responsible for large uncertainties in climate prediction models. Identification of polar clouds, mapping of their distributions, and retrieval of their heights provide information that will help to reduce this uncertainty.The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire Earth between 82 degrees north and 82 degrees south latitude. These data products were generated from a portion of the imagery acquired during Terra orbit 15171. The panels cover an area of 380 kilometers x 984 kilometers, and utilize data from blocks 145 to 151 within World Reference System-2 path 127.MISR was built and is managed by NASA's Jet Propulsion Laboratory,Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center,Greenbelt, MD. JPL is a division of the California Institute of Technology.Kuchenbecker, J; Blum, M; Paul, F
2016-03-01
In acute unilateral optic neuritis (ON) color vision defects combined with a decrease in visual acuity and contrast sensitivity frequently occur. This study investigated whether a web-based color vision test is a reliable detector of acquired color vision defects in ON and, if so, which charts are particularly suitable. In 12 patients with acute unilateral ON, a web-based color vision test ( www.farbsehtest.de ) with 25 color plates (16 Velhagen/Broschmann and 9 Ishihara color plates) was performed. For each patient the affected eye was tested first and then the unaffected eye. The mean best-corrected distance visual acuity (BCDVA) in the ON eye was 0.36 ± 0.20 and 1.0 ± 0.1 in the contralateral eye. The number of incorrectly read plates correlated with the visual acuity. For the ON eye a total of 134 plates were correctly identified and 166 plates were incorrectly identified, while for the disease-free fellow eye, 276 plates were correctly identified and 24 plates were incorrectly identified. Both of the blue/yellow plates were identified correctly 14 times and incorrectly 10 times using the ON eye and exclusively correctly (24 times) using the fellow eye. The Velhagen/Broschmann plates were incorrectly identified significantly more frequently in comparison with the Ishihara plates. In 4 out of 16 Velhagen/Broschmann plates and 5 out of 9 Ishihara plates, no statistically significant differences between the ON eye and the fellow eye could be detected. The number of incorrectly identified plates correlated with a decrease in visual acuity. Red/green and blue/yellow plates were incorrectly identified significantly more frequently with the ON eye, while the Velhagen/Broschmann color plates were incorrectly identified significantly more frequently than the Ishihara color plates. Thus, under defined test conditions the web-based color vision test can also be used to detect acquired color vision defects, such as those caused by ON. Optimization of the test by altering the combination of plates may be a useful next step.
NASA Astrophysics Data System (ADS)
Lee, Kwon-Ho; Kim, Wonkook
2017-04-01
The geostationary ocean color imager-II (GOCI-II), designed to be focused on the ocean environmental monitoring with better spatial (250m for local and 1km for full disk) and spectral resolution (13 bands) then the current operational mission of the GOCI-I. GOCI-II will be launched in 2018. This study presents currently developing algorithm for atmospheric correction and retrieval of surface reflectance over land to be optimized with the sensor's characteristics. We first derived the top-of-atmosphere radiances as the proxy data derived from the parameterized radiative transfer code in the 13 bands of GOCI-II. Based on the proxy data, the algorithm has been made with cloud masking, gas absorption correction, aerosol inversion, computation of aerosol extinction correction. The retrieved surface reflectances are evaluated by the MODIS level 2 surface reflectance products (MOD09). For the initial test period, the algorithm gave error of within 0.05 compared to MOD09. Further work will be progressed to fully implement the GOCI-II Ground Segment system (G2GS) algorithm development environment. These atmospherically corrected surface reflectance product will be the standard GOCI-II product after launch.
B- and A-Type Stars in the Taurus-Auriga Star-Forming Region
NASA Technical Reports Server (NTRS)
Mooley, Kunal; Hillenbrand, Lynne; Rebull, Luisa; Padgett, Deborah; Knapp, Gillian
2013-01-01
We describe the results of a search for early-type stars associated with the Taurus-Auriga molecular cloud complex, a diffuse nearby star-forming region noted as lacking young stars of intermediate and high mass. We investigate several sets of possible O, B, and early A spectral class members. The first is a group of stars for which mid-infrared images show bright nebulae, all of which can be associated with stars of spectral-type B. The second group consists of early-type stars compiled from (1) literature listings in SIMBAD, (2) B stars with infrared excesses selected from the Spitzer Space Telescope survey of the Taurus cloud, (3) magnitude- and color-selected point sources from the Two Micron All Sky Survey, and (4) spectroscopically identified early-type stars from the Sloan Digital Sky Survey coverage of the Taurus region. We evaluated stars for membership in the Taurus-Auriga star formation region based on criteria involving: spectroscopic and parallactic distances, proper motions and radial velocities, and infrared excesses or line emission indicative of stellar youth. For selected objects, we also model the scattered and emitted radiation from reflection nebulosity and compare the results with the observed spectral energy distributions to further test the plausibility of physical association of the B stars with the Taurus cloud. This investigation newly identifies as probable Taurus members three B-type stars: HR 1445 (HD 28929), t Tau (HD 29763), 72 Tau (HD 28149), and two A-type stars: HD 31305 and HD 26212, thus doubling the number of stars A5 or earlier associated with the Taurus clouds. Several additional early-type sources including HD 29659 and HD 283815 meet some, but not all, of the membership criteria and therefore are plausible, though not secure, members.
THE MAGNETIC FIELD OF L1544. I. NEAR-INFRARED POLARIMETRY AND THE NON-UNIFORM ENVELOPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clemens, Dan P.; Tassis, K.; Goldsmith, Paul F., E-mail: clemens@bu.edu, E-mail: tassis@physics.uoc.gr, E-mail: paul.f.goldsmith@jpl.nasa.gov
2016-12-20
The magnetic field ( B -field) of the starless dark cloud L1544 has been studied using near-infrared (NIR) background starlight polarimetry (BSP) and archival data in order to characterize the properties of the plane-of-sky B -field. NIR linear polarization measurements of over 1700 stars were obtained in the H band and 201 of these were also measured in the K band. The NIR BSP properties are correlated with reddening, as traced using the Rayleigh–Jeans color excess ( H – M ) method, and with thermal dust emission from the L1544 cloud and envelope seen in Herschel maps. The NIR polarizationmore » position angles change at the location of the cloud and exhibit their lowest dispersion there, offering strong evidence that NIR polarization traces the plane-of-sky B -field of L1544. In this paper, the uniformity of the plane-of-sky B -field in the envelope region of L1544 is quantitatively assessed. This allows evaluation of the approach of assuming uniform field geometry when measuring relative mass-to-flux ratios in the cloud envelope and core based on averaging of the radio Zeeman observations in the envelope, as done by Crutcher et al. In L1544, the NIR BSP shows the envelope B -field to be significantly non-uniform and likely not suitable for averaging Zeeman properties without treating intrinsic variations. Deeper analyses of the NIR BSP and related data sets, including estimates of the B -field strength and testing how it varies with position and gas density, are the subjects of later papers in this series.« less
Evaluation of the Waggoner Computerized Color Vision Test.
Ng, Jason S; Self, Eriko; Vanston, John E; Nguyen, Andrew L; Crognale, Michael A
2015-04-01
Clinical color vision evaluation has been based primarily on the same set of tests for the past several decades. Recently, computer-based color vision tests have been devised, and these have several advantages but are still not widely used. In this study, we evaluated the Waggoner Computerized Color Vision Test (CCVT), which was developed for widespread use with common computer systems. A sample of subjects with (n = 59) and without (n = 361) color vision deficiency (CVD) were tested on the CCVT, the anomaloscope, the Richmond HRR (Hardy-Rand-Rittler) (4th edition), and the Ishihara test. The CCVT was administered in two ways: (1) on a computer monitor using its default settings and (2) on one standardized to a correlated color temperature (CCT) of 6500 K. Twenty-four subjects with CVD performed the CCVT both ways. Sensitivity, specificity, and correct classification rates were determined. The screening performance of the CCVT was good (95% sensitivity, 100% specificity). The CCVT classified subjects as deutan or protan in agreement with anomaloscopy 89% of the time. It generally classified subjects as having a more severe defect compared with other tests. Results from 18 of the 24 subjects with CVD tested under both default and calibrated CCT conditions were the same, whereas the results from 6 subjects had better agreement with other test results when the CCT was set. The Waggoner CCVT is an adequate color vision screening test with several advantages and appears to provide a fairly accurate diagnosis of deficiency type. Used in conjunction with other color vision tests, it may be a useful addition to a color vision test battery.
Toward Millimagnitude Photometric Calibration (Abstract)
NASA Astrophysics Data System (ADS)
Dose, E.
2014-12-01
(Abstract only) Asteroid roation, exoplanet transits, and similar measurements will increasingly call for photometric precisions better than about 10 millimagnitudes, often between nights and ideally between distant observers. The present work applies detailed spectral simulations to test popular photometric calibration practices, and to test new extensions of these practices. Using 107 synthetic spectra of stars of diverse colors, detailed atmospheric transmission spectra computed by solar-energy software, realistic spectra of popular astronomy gear, and the option of three sources of noise added at realistic millimagnitude levels, we find that certain adjustments to current calibration practices can help remove small systematic errors, especially for imperfect filters, high airmasses, and possibly passing thin cirrus clouds.
NASA Technical Reports Server (NTRS)
2005-01-01
Here is the martian twilight sky at Gusev crater, as imaged by the panoramic camera on NASA's Mars Exploration Rover Spirit around 6:20 in the evening of the rover's 464th martian day, or sol (April 23, 2005). Spirit was commanded to stay awake briefly after sending that sol's data to Mars Odyssey at sunset. This small panorama of the western sky was obtained using camera's 750-nanometer, 530-nanometer and 430-nanometer color filters. This filter combination allows false color images to be generated that are similar to what a human would see, but with the colors exaggerated. In this image, the bluish glow in the sky above where the Sun had just set would be visible to us if we were there, but the redness of the sky farther from the sunset is exaggerated compared to the daytime colors of the martian sky. These kinds of images are beautiful and evocative, but they also have important scientific purposes. Specifically, twilight images are occasionally acquired by the science team to determine how high into the atmosphere the martian dust extends, and to look for dust or ice clouds. Other images have shown that the twilight glow remains visible, but increasingly fainter, for up to two hours before sunrise or after sunset. The long martian twilight compared to Earth's is caused by sunlight scattered around to the night side of the planet by abundant high altitude dust. Similar long twilights or extra-colorful sunrises and sunsets sometimes occur on Earth when tiny dust grains that are erupted from powerful volcanoes scatter light high in the atmosphere. These kinds of twilight images are also more sensitive to faint cloud structures, though none were detected when these images were acquired. Clouds have been rare at Gusev crater during Spirit's 16-month mission so far.Automatic Computer Mapping of Terrain
NASA Technical Reports Server (NTRS)
Smedes, H. W.
1971-01-01
Computer processing of 17 wavelength bands of visible, reflective infrared, and thermal infrared scanner spectrometer data, and of three wavelength bands derived from color aerial film has resulted in successful automatic computer mapping of eight or more terrain classes in a Yellowstone National Park test site. The tests involved: (1) supervised and non-supervised computer programs; (2) special preprocessing of the scanner data to reduce computer processing time and cost, and improve the accuracy; and (3) studies of the effectiveness of the proposed Earth Resources Technology Satellite (ERTS) data channels in the automatic mapping of the same terrain, based on simulations, using the same set of scanner data. The following terrain classes have been mapped with greater than 80 percent accuracy in a 12-square-mile area with 1,800 feet of relief; (1) bedrock exposures, (2) vegetated rock rubble, (3) talus, (4) glacial kame meadow, (5) glacial till meadow, (6) forest, (7) bog, and (8) water. In addition, shadows of clouds and cliffs are depicted, but were greatly reduced by using preprocessing techniques.
NASA Astrophysics Data System (ADS)
Kuji, M.; Hagiwara, M.; Hori, M.; Shiobara, M.
2017-12-01
Shipboard observations on cloud fraction were carried out along the round research cruise between East Asia and Antarctica from November 2015 to Aril 2016 using a whole-sky camera and a ceilometer onboard Research Vessel (R/V) Shirase. We retrieved cloud fraction from the whole-sky camera based on the brightness and color of the images, while we estimated cloud fraction from the ceilometer as a cloud frequency of occurrence. As a result, the average cloud fractions over outward open ocean, sea ice region, and returning openocean were approximately 56% (60%), 44% (64%), and 67% (72%), respectively, with the whole-sky camera (ceilometer). The comparison of the daily-averaged cloud fractions from the whole-sky camera and the ceilometer, it is found that the correlation coefficient was 0.73 for the 129 match-up dataset between East Asia and Antarctica including sea ice region as well as open ocean. The results are qualitatively consistent between the two observations as a whole, but there exists some underestimation with the whole-sky camera compared to the ceilometer. One of the reasons is possibly that the imager is apt to dismiss an optically thinner clouds that can be detected by the ceilometer. On the other hand, the difference of their view angles between the imager and the ceilometer possibly affects the estimation. Therefore, it is necessary to elucidate the cloud properties with detailed match-up analyses in future. Another future task is to compare the cloud fractions with satellite observation such as MODIS cloud products. Shipboard observations in themselves are very valuable for the validation of products from satellite observation, because we do not necessarily have many validation sites over Southern Ocean and sea ice region in particular.
Visible and Near-IR Imaging of Giant Planets: Outer Manifestations of Deeper Secrets
NASA Astrophysics Data System (ADS)
Hammel, Heidi B.
1996-09-01
Visible and near-infrared imaging of the giant planets -- Jupiter, Saturn, Uranus, and Neptune -- probes the outermost layers of clouds in these gaseous atmospheres. Not only are the images beautiful and striking in their color and diversity of detail, they also provide quantitative clues to the dynamical and chemical processes taking place both at the cloud tops and deeper in the interior: zonal wind profiles can be extracted; wavelength-dependent center-to-limb brightness variations yield valuable data for modeling vertical aerosol structure; the presence of planetary-scale atmospheric waves can sometimes be deduced; variations of cloud color and brightness with latitude provide insight into the underlying mechanisms driving circulation; development and evolution of discrete atmospheric features trace both exogenic and endogenic events. During the 1980's, our understanding of the giant planets was revolutionized by detailed visible-wavelength images taken by the Voyager spacecraft of these planets' atmospheres. However, those images were static: brief snapshots in time of four complex and dynamic atmospheric systems. In short, those images no longer represent the current appearance of these planets. Recently, our knowledge of the atmospheres of the gas giant planets has undergone major new advances, due in part to the excellent imaging capability and longer-term temporal sampling of the Hubble Space Telescope (HST) and the Galileo Mission to Jupiter. In this talk, I provide an update on our current understanding of the gas giants based on recent visible and near-infrared imaging, highlighting results from the collision of Comet Shoemaker-Levy 9 with Jupiter, Saturn's White Spots, intriguing changes in the atmosphere of Uranus, and Neptune's peripatetic clouds.
2004-08-30
This image shows Hurricane Frances in August 2004 as captured by instruments onboard two different NASA satellites: the AIRS infrared instrument onboard Aqua, and the SeaWinds scatterometer onboard QuikSCAT. Both are JPL-managed instruments. AIRS data are used to create global three-dimensional maps of temperature, humidity and clouds, while scatterometers measure surface wind speed and direction over the ocean. The red vectors in the image show Frances' surface winds as measured by SeaWinds on QuikSCAT. The background colors show the temperature of clouds and surface as viewed in the infrared by AIRS, with cooler areas pushing to purple and warmer areas are pushing to red. The color scale on the right gives the temperatures in degrees Kelvin. (The top of the scale, 320 degrees Kelvin, corresponds to 117 degrees Fahrenheit, and the bottom, 180 degrees K is -135 degrees F.) The powerful circulation of this storm is evident from the combined data as well as the development of a clearly-defined central "eye." The infrared signal does not penetrate through clouds, so the light blue areas reveal the cold clouds tops associated with strong thunderstorms embedded within the storm. In cloud-free areas the infrared signal comes from Earth's surface, revealing warmer temperatures. http://photojournal.jpl.nasa.gov/catalog/PIA00435
Mapping Directly Imaged Giant Exoplanets
NASA Astrophysics Data System (ADS)
Kostov, Veselin; Apai, Dániel
2013-01-01
With the increasing number of directly imaged giant exoplanets, the current atmosphere models are often not capable of fully explaining the spectra and luminosity of the sources. A particularly challenging component of the atmosphere models is the formation and properties of condensate cloud layers, which fundamentally impact the energetics, opacity, and evolution of the planets. Here we present a suite of techniques that can be used to estimate the level of rotational modulations these planets may show. We propose that the time-resolved observations of such periodic photometric and spectroscopic variations of extrasolar planets due to their rotation can be used as a powerful tool to probe the heterogeneity of their optical surfaces. In this paper, we develop simulations to explore the capabilities of current and next-generation ground- and space-based instruments for this technique. We address and discuss the following questions: (1) what planet properties can be deduced from the light curve and/or spectra, and in particular can we determine rotation periods, spot coverage, spot colors, and spot spectra?; (2) what is the optimal configuration of instrument/wavelength/temporal sampling required for these measurements?; and (3) can principal component analysis be used to invert the light curve and deduce the surface map of the planet? Our simulations describe the expected spectral differences between homogeneous (clear or cloudy) and patchy atmospheres, outline the significance of the dominant absorption features of H2O, CH4, and CO, and provide a method to distinguish these two types of atmospheres. Assuming surfaces with and without clouds for most currently imaged planets the current models predict the largest variations in the J band. Simulated photometry from current and future instruments is used to estimate the level of detectable photometric variations. We conclude that future instruments will be able to recover not only the rotation periods, cloud cover, cloud colors, and spectra but even cloud evolution. We also show that a longitudinal map of the planet's atmosphere can be deduced from its disk-integrated light curves.
Junocam: Juno's Outreach Camera
NASA Astrophysics Data System (ADS)
Hansen, C. J.; Caplinger, M. A.; Ingersoll, A.; Ravine, M. A.; Jensen, E.; Bolton, S.; Orton, G.
2017-11-01
Junocam is a wide-angle camera designed to capture the unique polar perspective of Jupiter offered by Juno's polar orbit. Junocam's four-color images include the best spatial resolution ever acquired of Jupiter's cloudtops. Junocam will look for convective clouds and lightning in thunderstorms and derive the heights of the clouds. Junocam will support Juno's radiometer experiment by identifying any unusual atmospheric conditions such as hotspots. Junocam is on the spacecraft explicitly to reach out to the public and share the excitement of space exploration. The public is an essential part of our virtual team: amateur astronomers will supply ground-based images for use in planning, the public will weigh in on which images to acquire, and the amateur image processing community will help process the data.
Human attention filters for single colors.
Sun, Peng; Chubb, Charles; Wright, Charles E; Sperling, George
2016-10-25
The visual images in the eyes contain much more information than the brain can process. An important selection mechanism is feature-based attention (FBA). FBA is best described by attention filters that specify precisely the extent to which items containing attended features are selectively processed and the extent to which items that do not contain the attended features are attenuated. The centroid-judgment paradigm enables quick, precise measurements of such human perceptual attention filters, analogous to transmission measurements of photographic color filters. Subjects use a mouse to locate the centroid-the center of gravity-of a briefly displayed cloud of dots and receive precise feedback. A subset of dots is distinguished by some characteristic, such as a different color, and subjects judge the centroid of only the distinguished subset (e.g., dots of a particular color). The analysis efficiently determines the precise weight in the judged centroid of dots of every color in the display (i.e., the attention filter for the particular attended color in that context). We report 32 attention filters for single colors. Attention filters that discriminate one saturated hue from among seven other equiluminant distractor hues are extraordinarily selective, achieving attended/unattended weight ratios >20:1. Attention filters for selecting a color that differs in saturation or lightness from distractors are much less selective than attention filters for hue (given equal discriminability of the colors), and their filter selectivities are proportional to the discriminability distance of neighboring colors, whereas in the same range hue attention-filter selectivity is virtually independent of discriminabilty.
NASA Technical Reports Server (NTRS)
Brubaker, N.; Jedlovec, G. J.
2004-01-01
With the preliminary release of AIRS Level 1 and 2 data to the scientific community, there is a growing need for an accurate AIRS cloud mask for data assimilation studies and in producing products derived from cloud free radiances. Current cloud information provided with the AIRS data are limited or based on simplified threshold tests. A multispectral cloud detection approach has been developed for AIRS that utilizes the hyper-spectral capabilities to detect clouds based on specific cloud signatures across the short wave and long wave infrared window regions. This new AIRS cloud mask has been validated against the existing AIRS Level 2 cloud product and cloud information derived from MODIS. Preliminary results for both day and night applications over the continental U.S. are encouraging. Details of the cloud detection approach and validation results will be presented at the conference.
Earth Limb taken by the Expedition 17 Crew
2008-07-22
ISS017-E-011603 (22 July 2008) --- Layers of Earth's atmosphere, brightly colored as the sun rises over central Asia, and Polar Mesospheric Clouds (also known as noctilucent clouds) are featured in this image photographed by an Expedition 17 crewmember on the International Space Station. The image was acquired in support of International Polar Year research.
CloudSat First Image of a Warm Front Storm Over the Norwegian Sea
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Figure 1 CloudSat's first image, of a warm front storm over the Norwegian Sea, was obtained on May 20, 2006. In this horizontal cross-section of clouds, warm air is seen rising over colder air as the satellite travels from right to left. The red colors are indicative of highly reflective particles such as water droplets (or rain) or larger ice crystals (or snow), while the blue indicates thinner clouds (such as cirrus). The flat green/blue lines across the bottom represent the ground signal. The vertical scale on the CloudSat Cloud Profiling Radar image is approximately 30 kilometers (19 miles). The blue line below the Cloud Profiling Radar image indicates that the data were taken over water. The inset image shows the CloudSat track relative to a Moderate Resolution Imaging Spectroradiometer (MODIS) infrared image taken at nearly the same time.CloudSat Image of a Polar Night Storm Near Antarctica
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Figure 1 CloudSat image of a horizontal cross-section of a polar night storm near Antarctica. Until now, clouds have been hard to observe in polar regions using remote sensing, particularly during the polar winter or night season. The red colors are indicative of highly reflective particles such as water (rain) or ice crystals, while the blue indicates thinner clouds (such as cirrus). The flat green/blue lines across the bottom represent the ground signal. The vertical scale on the CloudSat Cloud Profiling Radar image is approximately 30 kilometers (19 miles). The blue line below the Cloud Profiling Radar image indicates that the data were taken over water; the brown line below the image indicates the relative elevation of the land surface. The inset image shows the CloudSat track relative to a Moderate Resolution Imaging Spectroradiometer (MODIS) infrared image taken at nearly the same time.NASA Astrophysics Data System (ADS)
Madhusudhan, Nikku; Burrows, Adam; Currie, Thayne
2011-08-01
We have generated an extensive new suite of massive giant planet atmosphere models and used it to obtain fits to photometric data for the planets HR 8799b, c, and d. We consider a wide range of cloudy and cloud-free models. The cloudy models incorporate different geometrical and optical thicknesses, modal particle sizes, and metallicities. For each planet and set of cloud parameters, we explore grids in gravity and effective temperature, with which we determine constraints on the planet's mass and age. Our new models yield statistically significant fits to the data, and conclusively confirm that the HR 8799 planets have much thicker clouds than those required to explain data for typical L and T dwarfs. Both models with (1) physically thick forsterite clouds and a 60 μm modal particle size and (2) clouds made of 1 μm sized pure iron droplets and 1% supersaturation fit the data. Current data are insufficient to accurately constrain the microscopic cloud properties, such as composition and particle size. The range of best-estimated masses for HR 8799b, HR 8799c, and HR 8799d conservatively span 2-12 MJ , 6-13 MJ , and 3-11 MJ , respectively, and imply coeval ages between ~10 and ~150 Myr, consistent with previously reported stellar ages. The best-fit temperatures and gravities are slightly lower than values obtained by Currie et al. using even thicker cloud models. Finally, we use these models to predict the near-to-mid-IR colors of soon-to-be imaged planets. Our models predict that planet-mass objects follow a locus in some near-to-mid-IR color-magnitude diagrams that is clearly separable from the standard L/T dwarf locus for field brown dwarfs.
Hubble Captures Celestial Fireworks Within the Large Magellanic Cloud
NASA Technical Reports Server (NTRS)
2000-01-01
This is a color Hubble Space Telescope (HST) heritage image of supernova remnant N49, a neighboring galaxy, that was taken with Hubble's Wide Field Planetary Camera 2. Color filters were used to sample light emitted by sulfur, oxygen, and hydrogen. The color image was superimposed on a black and white image of stars in the same field also taken with Hubble. Resembling a fireworks display, these delicate filaments are actually sheets of debris from a stellar explosion.
Chetverikov, Andrey; Campana, Gianluca; Kristjánsson, Árni
2017-10-01
Colors are rarely uniform, yet little is known about how people represent color distributions. We introduce a new method for studying color ensembles based on intertrial learning in visual search. Participants looked for an oddly colored diamond among diamonds with colors taken from either uniform or Gaussian color distributions. On test trials, the targets had various distances in feature space from the mean of the preceding distractor color distribution. Targets on test trials therefore served as probes into probabilistic representations of distractor colors. Test-trial response times revealed a striking similarity between the physical distribution of colors and their internal representations. The results demonstrate that the visual system represents color ensembles in a more detailed way than previously thought, coding not only mean and variance but, most surprisingly, the actual shape (uniform or Gaussian) of the distribution of colors in the environment.
Visual generalization in honeybees: evidence of peak shift in color discrimination.
Martínez-Harms, J; Márquez, N; Menzel, R; Vorobyev, M
2014-04-01
In the present study, we investigated color generalization in the honeybee Apis mellifera after differential conditioning. In particular, we evaluated the effect of varying the position of a novel color along a perceptual continuum relative to familiar colors on response biases. Honeybee foragers were differentially trained to discriminate between rewarded (S+) and unrewarded (S-) colors and tested on responses toward the former S+ when presented against a novel color. A color space based on the receptor noise-limited model was used to evaluate the relationship between colors and to characterize a perceptual continuum. When S+ was tested against a novel color occupying a locus in the color space located in the same direction from S- as S+, but further away, the bees shifted their stronger response away from S- toward the novel color. These results reveal the occurrence of peak shift in the color vision of honeybees and indicate that honeybees can learn color stimuli in relational terms based on chromatic perceptual differences.
NASA Astrophysics Data System (ADS)
Kim, Hye-Won; Yeom, Jong-Min; Woo, Sun-Hee; Chae, Tae-Byeong
2016-04-01
COMS (Communication, Ocean, and Meteorological Satellite) was launched at French Guiana Kourou space center on 27 June 2010. Geostationary Ocean Color Imager (GOCI), which is the first ocean color geostationary satellite in the world for observing the ocean phenomena, is able to obtain the scientific data per an hour from 00UTC to 07UTC. Moreover, the spectral channels of GOCI would enable not only monitoring for the ocean, but for extracting the information of the land surface over the Korean Peninsula, Japan, and Eastern China. Since it is extremely important to utilize GOCI data accurately for the land application, cloud pixels over the surface have to be removed. Unfortunately, infra-red (IR) channels that can easily detect the water vapor with the cloud top temperature, are not included in the GOCI sensor. In this paper, the advanced cloud masking algorithm will be proposed with visible and near-IR (NIR) bands that are within GOCI bands. The main obstacle of cloud masking with GOCI is how to handle the high variable surface reflectance, which is mainly depending on the solar zenith angle. In this study, we use semi-empirical BRDF model to simulate the surface reflectance by using 16 day composite cloudy free image. When estimating the simulated surface reflectance, same geometry for GOCI observation was applied. The simulated surface reflectance is used to discriminate cloud areas especially for the thin cloud and shows more reasonable result than original threshold methods.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Yang, Ping; Arnold, G. Thomas; Gray, Mark A.; Riedi, Jerome C.; Ackerman, Steven A.; Liou, Kuo-Nan
2003-01-01
A multispectral scanning spectrometer was used to obtain measurements of the reflection function and brightness temperature of clouds, sea ice, snow, and tundra surfaces at 50 discrete wavelengths between 0.47 and 14.0 microns. These observations were obtained from the NASA ER-2 aircraft as part of the FIRE Arctic Clouds Experiment, conducted over a 1600 x 500 km region of the north slope of Alaska and surrounding Beaufort and Chukchi Seas between 18 May and 6 June 1998. Multispectral images of the reflection function and brightness temperature in 11 distinct bands of the MODIS Airborne Simulator (MAS) were used to derive a confidence in clear sky (or alternatively the probability of cloud), shadow, and heavy aerosol over five different ecosystems. Based on the results of individual tests run as part of the cloud mask, an algorithm was developed to estimate the phase of the clouds (water, ice, or undetermined phase). Finally, the cloud optical thickness and effective radius were derived for both water and ice clouds that were detected during one flight line on 4 June. This analysis shows that the cloud mask developed for operational use on MODIS, and tested using MAS data in Alaska, is quite capable of distinguishing clouds from bright sea ice surfaces during daytime conditions in the high Arctic. Results of individual tests, however, make it difficult to distinguish ice clouds over snow and sea ice surfaces, so additional tests were added to enhance the confidence in the thermodynamic phase of clouds over the Beaufort Sea. The cloud optical thickness and effective radius retrievals used 3 distinct bands of the MAS, with the newly developed 1.62 and 2.13 micron bands being used quite successfully over snow and sea ice surfaces. These results are contrasted with a MODIS-based algorithm that relies on spectral reflectance at 0.87 and 2.13 micron.
CALIPSO Observations of Near-Cloud Aerosol Properties as a Function of Cloud Fraction
NASA Technical Reports Server (NTRS)
Yang, Weidong; Marshak, Alexander; Varnai, Tamas; Wood, Robert
2015-01-01
This paper uses spaceborne lidar data to study how near-cloud aerosol statistics of attenuated backscatter depend on cloud fraction. The results for a large region around the Azores show that: (1) far-from-cloud aerosol statistics are dominated by samples from scenes with lower cloud fractions, while near-cloud aerosol statistics are dominated by samples from scenes with higher cloud fractions; (2) near-cloud enhancements of attenuated backscatter occur for any cloud fraction but are most pronounced for higher cloud fractions; (3) the difference in the enhancements for different cloud fractions is most significant within 5km from clouds; (4) near-cloud enhancements can be well approximated by logarithmic functions of cloud fraction and distance to clouds. These findings demonstrate that if variability in cloud fraction across the scenes used to composite aerosol statistics are not considered, a sampling artifact will affect these statistics calculated as a function of distance to clouds. For the Azores-region dataset examined here, this artifact occurs mostly within 5 km from clouds, and exaggerates the near-cloud enhancements of lidar backscatter and color ratio by about 30. This shows that for accurate characterization of the changes in aerosol properties with distance to clouds, it is important to account for the impact of changes in cloud fraction.
NASA Astrophysics Data System (ADS)
Xu, Y.; Sun, Z.; Boerner, R.; Koch, T.; Hoegner, L.; Stilla, U.
2018-04-01
In this work, we report a novel way of generating ground truth dataset for analyzing point cloud from different sensors and the validation of algorithms. Instead of directly labeling large amount of 3D points requiring time consuming manual work, a multi-resolution 3D voxel grid for the testing site is generated. Then, with the help of a set of basic labeled points from the reference dataset, we can generate a 3D labeled space of the entire testing site with different resolutions. Specifically, an octree-based voxel structure is applied to voxelize the annotated reference point cloud, by which all the points are organized by 3D grids of multi-resolutions. When automatically annotating the new testing point clouds, a voting based approach is adopted to the labeled points within multiple resolution voxels, in order to assign a semantic label to the 3D space represented by the voxel. Lastly, robust line- and plane-based fast registration methods are developed for aligning point clouds obtained via various sensors. Benefiting from the labeled 3D spatial information, we can easily create new annotated 3D point clouds of different sensors of the same scene directly by considering the corresponding labels of 3D space the points located, which would be convenient for the validation and evaluation of algorithms related to point cloud interpretation and semantic segmentation.
NASA Astrophysics Data System (ADS)
Hansen, C. J.; Ravine, M. A.; Caplinger, M. A.; Orton, G. S.; Ingersoll, A. P.; Jensen, E.; Lipkaman, L.; Krysak, D.; Zimdar, R.; Bolton, S. J.
2016-12-01
JunoCam is a visible imager on the Juno spacecraft in orbit around Jupiter. It is a wide angle camera (58 deg field of view) with 4 color filters: red, green and blue (RGB) and methane at 889 nm, designed for optimal imaging of Jupiter's poles. Juno's elliptical polar orbit will offer unique views of Jupiter's polar regions with a spatial scale of 50 km/pixel. At closest approach the images will have a spatial scale of 3 km/pixel. As a push-frame imager on a rotating spacecraft, JunoCam uses time-delayed integration to take advantage of the spacecraft spin to extend integration time to increase signal. Images of Jupiter's poles reveal a largely uncharted region of Jupiter, as nearly all earlier spacecraft have orbited or flown by in the equatorial plane. Most of the images of Jupiter will be acquired in the +/-2 hours surrounding closest approach. The polar vortex, polar cloud morphology, and winds will be investigated. RGB color images of the aurora will be acquired if detectable. Stereo images and images taken with the methane filter will allow us to estimate cloud-top heights. Images of the cloud-tops will aid in understanding the data collected by other instruments on Juno that probe deeper in the atmosphere. During the two months that Jupiter is too close to the sun for ground-based observers to collect data, JunoCam will take images routinely to monitor large-scale features. Occasional, opportunistic images of the Galilean moons will be acquired.
Participatory visualization with Wordle.
Viégas, Fernanda B; Wattenberg, Martin; Feinberg, Jonathan
2009-01-01
We discuss the design and usage of "Wordle," a web-based tool for visualizing text. Wordle creates tag-cloud-like displays that give careful attention to typography, color, and composition. We describe the algorithms used to balance various aesthetic criteria and create the distinctive Wordle layouts. We then present the results of a study of Wordle usage, based both on spontaneous behaviour observed in the wild, and on a large-scale survey of Wordle users. The results suggest that Wordles have become a kind of medium of expression, and that a "participatory culture" has arisen around them.
How "implicit" are implicit color effects in memory?
Zimmer, Hubert D; Steiner, Astrid; Ecker, Ullrich K H
2002-01-01
Processing colored pictures of objects results in a preference to choose the former color for a specific object in a subsequent color choice test (Wippich & Mecklenbräuker, 1998). We tested whether this implicit memory effect is independent of performances in episodic color recollection (recognition). In the study phase of Experiment 1, the color of line drawings was either named or its appropriateness was judged. We found only weak implicit memory effects for categorical color information. In Experiment 2, silhouettes were colored by subjects during the study phase. Performances in both the implicit and the explicit test were good. Selections of "old" colors in the implicit test, though, were almost completely confined to items for which the color was also remembered explicitly. In Experiment 3, we applied the opposition technique in order to check whether we could find any implicit effects regarding items for which no explicit color recollection was possible. This was not the case. We therefore draw the conclusion that implicit color preference effects are not independent of explicit recollection, and that they are probably based on the same episodic memory traces that are used in explicit tests.
Masses, Radii, and Cloud Properties of the HR 8799 Planets
NASA Technical Reports Server (NTRS)
Marley, Mark S.; Saumon, Didier; Cushing, Michael; Ackerman, Andrew S.; Fortney, Jonathan J.; Freedman, Richard
2012-01-01
The near-infrared colors of the planets directly imaged around the A star HR 8799 are much redder than most field brown dwarfs of the same effective temperature. Previous theoretical studies of these objects have compared the photometric and limited spectral data of the planets to the predictions of various atmosphere and evolution models and concluded that the atmospheres of planets b, c, and d are unusually cloudy or have unusual cloud properties. Most studies have also found that the inferred radii of some or all of the planets disagree with expectations of standard giant planet evolution models. Here we compare the available data to the predictions of our own set of atmospheric and evolution models that have been extensively tested against field L and T dwarfs, including the reddest L dwarfs. Unlike almost all previous studies we specify mutually self-consistent choices for effective temperature, gravity, cloud properties, and planetary radius. This procedure yields plausible and self-consistent values for the masses, effective temperatures, and cloud properties of all three planets. We find that the cloud properties of the HR 8799 planets are in fact not unusual but rather follow previously recognized trends including a gravity dependence on the temperature of the L to T spectral transition, some reasons for which we discuss. We find that the inferred mass of planet b is highly sensitive to the H and K band spectrum. Solutions for planets c and particularly d are less certain but are consistent with the generally accepted constraints on the age of the primary star and orbital dynamics. We also confirm that as for L and T dwarfs and solar system giant planets, non-equilibrium chemistry driven by atmospheric mixing is also important for these objects. Given the preponderance of data suggesting that the L to T spectral type transition is gravity dependent, we present a new evolution calculation that predicts cooling tracks on the near-infrared color-magnitude diagram. Finally we argue that the range of uncertainty conventionally quoted for the bolometric luminosity of all three planets is too small.
Validity of clinical color vision tests for air traffic control specialists.
DOT National Transportation Integrated Search
1992-10-01
An experiment on the relationship between aeromedical color vision screening test performance and performance on color-dependent tasks of Air Traffic Control Specialists was replicated to expand the data base supporting the job-related validity of th...
NASA Technical Reports Server (NTRS)
Carey, Sean J.; Shipman, R. F.; Clark, F. O.
1996-01-01
We present large scale images of the infrared emission of the region around the Pleiades using the ISSA data product from the IRAS mission. Residual Zodiacal background and a discontinuity in the image due to the scanning strategy of the satellite necessitated special background subtraction methods. The 60/100 color image clearly shows the heating of the ambient interstellar medium by the cluster. The 12/100 and 25/100 images peak on the cluster as expected for exposure of small dust grains to an enhanced UV radiation field; however, the 25/100 color declines to below the average interstellar value at the periphery of the cluster. Potential causes of the color deficit are discussed. A new method of identifying dense molecular material through infrared emission properties is presented. The difference between the 100 micron flux density and the 60 micron flux density scaled by the average interstellar 60/100 color ratio (Delta I(sub 100) is a sensitive diagnostic of material with embedded heating sources (Delta I(sub 100) less than 0) and cold, dense cores (Delta I(sub 100) greater than 0). The dense cores of the Taurus cloud complex as well as Lynds 1457 are clearly identified by this method, while the IR bright but diffuse Pleiades molecular cloud is virtually indistinguishable from the nearby infrared cirrus.
Glory over clouds off West Africa
2017-12-08
On April 23, 2013 NASA’s Terra satellite passed off the coast of West Africa, allowing the Moderate Resolution Imaging Spectroradiometer (MODIS) flying aboard to capture a curious phenomenon over the cloud deck below. The rainbow-like discoloration that can be seen streaking across the bank of marine cumulus clouds near the center of this image is known as a “glory”. A glory is caused by the scattering of sunlight by a cloud made of water droplets that are all roughly the same size, and is only produced when the light is just right. In order for a glory to be viewed, the observer’s anti-solar point must fall on the cloud deck below. In this case the observer is the Terra satellite, and the anti-solar point is where the sun is directly behind you – 180° from the MODIS line of sight. Water and ice particles in the cloud bend the light, breaking it into all its wavelengths, and the result is colorful flare, which may contain all of the colors of the rainbow. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Juno Close Look at the Little Red Spot
2017-01-25
The JunoCam imager on NASA's Juno spacecraft snapped this shot of Jupiter's northern latitudes on Dec. 11, 2016 at 8:47 a.m. PST (11:47 a.m. EST), as the spacecraft performed a close flyby of the gas giant planet. The spacecraft was at an altitude of 10,300 miles (16,600 kilometers) above Jupiter's cloud tops. This stunning view of the high north temperate latitudes fortuitously shows NN-LRS-1, a giant storm known as the Little Red Spot (lower left). This storm is the third largest anticyclonic reddish oval on the planet, which Earth-based observers have tracked for the last 23 years. An anticyclone is a weather phenomenon with large-scale circulation of winds around a central region of high atmospheric pressure. They rotate clockwise in the northern hemisphere, and counterclockwise in the southern hemisphere. The Little Red Spot shows very little color, just a pale brown smudge in the center. The color is very similar to the surroundings, making it difficult to see as it blends in with the clouds nearby. Citizen scientists Gerald Eichstaedt and John Rogers processed the image and drafted the caption. http://photojournal.jpl.nasa.gov/catalog/PIA21378
Comparison of modern icing cloud instruments
NASA Technical Reports Server (NTRS)
Takeuchi, D. M.; Jahnsen, L. J.; Callander, S. M.; Humbert, M. C.
1983-01-01
Intercomparison tests with Particle Measuring Systems (PMS) were conducted. Cloud liquid water content (LWC) measurements were also taken with a Johnson and Williams (JW) hot-wire device and an icing rate device (Leigh IDS). Tests include varying cloud LWC (0.5 to 5 au gm), cloud median volume diameter (MVD) (15 to 26 microns), temperature (-29 to 20 C), and air speeds (50 to 285 mph). Comparisons were based upon evaluating probe estimates of cloud LWC and median volume diameter for given tunnel settings. Variations of plus or minus 10% and plus or minus 5% in LWC and MVD, respectively, were determined of spray clouds between test made at given tunnel settings (fixed LWC, MVD, and air speed) indicating cloud conditions were highly reproducible. Although LWC measurements from JW and Leigh devices were consistent with tunnel values, individual probe measurements either consistently over or underestimated tunnel values by factors ranging from about 0.2 to 2. Range amounted to a factor of 6 differences between LWC estimates of probes for given cloud conditions. For given cloud conditions, estimates of cloud MVD between probes were within plus or minus 3 microns and 93% of the test cases. Measurements overestimated tunnel values in the range between 10 to 20 microns. The need for improving currently used calibration procedures was indicated. Establishment of test facility (or facilities) such as an icing tunnel where instruments can be calibrated against known cloud standards would be a logical choice.
Design and deployment of an elastic network test-bed in IHEP data center based on SDN
NASA Astrophysics Data System (ADS)
Zeng, Shan; Qi, Fazhi; Chen, Gang
2017-10-01
High energy physics experiments produce huge amounts of raw data, while because of the sharing characteristics of the network resources, there is no guarantee of the available bandwidth for each experiment which may cause link congestion problems. On the other side, with the development of cloud computing technologies, IHEP have established a cloud platform based on OpenStack which can ensure the flexibility of the computing and storage resources, and more and more computing applications have been deployed on virtual machines established by OpenStack. However, under the traditional network architecture, network capability can’t be required elastically, which becomes the bottleneck of restricting the flexible application of cloud computing. In order to solve the above problems, we propose an elastic cloud data center network architecture based on SDN, and we also design a high performance controller cluster based on OpenDaylight. In the end, we present our current test results.
Evaluating the uniformity of color spaces and performance of color difference formulae
NASA Astrophysics Data System (ADS)
Lian, Yusheng; Liao, Ningfang; Wang, Jiajia; Tan, Boneng; Liu, Zilong
2010-11-01
Using small color difference data sets (Macadam ellipses dataset and RIT-DuPont suprathreshold color difference ellipses dataset), and large color difference data sets (Munsell Renovation Data and OSA Uniform Color Scales dataset), the uniformity of several color spaces and performance of color difference formulae based on these color spaces are evaluated. The color spaces used are CIELAB, DIN99d, IPT, and CIECAM02-UCS. It is found that the uniformity of lightness is better than saturation and hue. Overall, for all these color spaces, the uniformity in the blue area is inferior to the other area. The uniformity of CIECAM02-UCS is superior to the other color spaces for the whole color-difference range from small to large. The uniformity of CIELAB and IPT for the large color difference data sets is better than it for the small color difference data sets, but the DIN99d is opposite. Two common performance factors (PF/3 and STRESS) and the statistical F-test are calculated to test the performance of color difference formula. The results show that the performance of color difference formulae based on these four color spaces is consistent with the uniformity of these color spaces.
What Old is New in the Large Magellanic Cloud
2006-09-01
This vibrant image from NASA's Spitzer Space Telescope shows the Large Magellanic Cloud, a satellite galaxy to our own Milky Way galaxy. The infrared image, a mosaic of 300,000 individual tiles, offers astronomers a unique chance to study the lifecycle of stars and dust in a single galaxy. Nearly one million objects are revealed for the first time in this Spitzer view, which represents about a 1,000-fold improvement in sensitivity over previous space-based missions. Most of the new objects are dusty stars of various ages populating the Large Magellanic Cloud; the rest are thought to be background galaxies. The blue color in the picture, seen most prominently in the central bar, represents starlight from older stars. The chaotic, bright regions outside this bar are filled with hot, massive stars buried in thick blankets of dust. The red color around these bright regions is from dust heated by stars, while the red dots scattered throughout the picture are either dusty, old stars or more distant galaxies. The greenish clouds contain cooler interstellar gas and molecular-sized dust grains illuminated by ambient starlight. Astronomers say this image allows them to quantify the process by which space dust -- the same stuff that makes up planets and even people -- is recycled in a galaxy. The picture shows dust at its three main cosmic hangouts: around the young stars, where it is being consumed (red-tinted, bright clouds); scattered about in the space between stars (greenish clouds); and in expelled shells of material from old stars (randomly-spaced red dots). The Large Magellanic Cloud, located 160,000 light-years from Earth, is one of a handful of dwarf galaxies that orbit our own Milky Way. It is approximately one-third as wide as the Milky Way, and, if it could be seen in its entirety, would cover the same amount of sky as a grid of about 480 full moons. About one-third of the entire galaxy can be seen in the Spitzer image. This picture is a composite of infrared light captured by Spitzer. Light with wavelengths of 3.6 (blue) and 8 (green) microns was captured by the telescope's infrared array camera; 24-micron light (red) was detected by the multiband imaging photometer. http://photojournal.jpl.nasa.gov/catalog/PIA07137
Thermal infrared and optical photometry of Asteroidal Comet C/2002 CE10
NASA Astrophysics Data System (ADS)
Sekiguchi, Tomohiko; Miyasaka, Seidai; Dermawan, Budi; Mueller, Thomas; Takato, Naruhisa; Watanabe, Junichi; Boehnhardt, Hermann
2018-04-01
C/2002 CE10 is an object in a retrograde elliptical orbit with Tisserand parameter - 0.853 indicating a likely origin in the Oort Cloud. It appears to be a rather inactive comet since no coma and only a very weak tail was detected during the past perihelion passage. We present multi-color optical photometry, lightcurve and thermal mid-IR observations of the asteroidal comet. With the photometric analysis in BVRI, the surface color is found to be redder than asteroids, corresponding to cometary nuclei and TNOs/Centaurs. The time-resolved differential photometry supports a rotation period of 8.19 ± 0.05 h. The effective diameter and the geometric albedo are 17.9 ± 0.9 km and 0.03 ± 0.01, respectively, indicating a very dark reflectance of the surface. The dark and redder surface color of C/2002 CE10 may be attribute to devolatilized material by surface aging suffered from the irradiation by cosmic rays or from impact by dust particles in the Oort Cloud. Alternatively, C/2002 CE10 was formed of very dark refractory material originally like a rocky planetesimal. In both cases, this object lacks ices (on the surface at least). The dynamical and known physical characteristics of C/2002 CE10 are best compatible with those of the Damocloids population in the Solar System, that appear to be exhaust cometary nucleus in Halley-type orbits. The study of physical properties of rocky Oort cloud objects may give us a key for the formation of the Oort cloud and the solar system.
Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view to the northeast, from between the cloud layers and above the streaks in the lower cloud leading towards the hotspot. The upper haze layer has some features that match the lower cloud, such as the bright streak in the foreground of the frame. These are probably thick clouds that span several tens of vertical kilometers.Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on more sophisticated studies of Jupiter's cloud structure. The upper and lower clouds are separated in the rendering by an arbitrary amount, and the height variations are exaggerated by a factor of 25.The lower cloud is colored using the same false color scheme used in previously released image products, assigning red, green, and blue to the 756, 727, and 889 nanometer mosaics, respectively. Light bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the lower cloud with an overlying thin haze.The images used cover latitudes 1 to 10 degrees and are centered at longitude 336 degrees west. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers (about 930,000 miles) by the Solid State Imaging (CCD) system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view to the northeast, from between the cloud layers and above the streaks in the lower cloud leading towards the hotspot. The hotspot is clearly visible as a deep blue feature. The cloud streaks end near the hotspot, consistent with the idea that clouds traveling along these streak lines descend and evaporate as they approach the hotspot. The upper haze layer is slightly bowed upwards above the hotspot.Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on more sophisticated studies of Jupiter's cloud structure. The upper and lower clouds are separated in the rendering by an arbitrary amount, and the height variations are exaggerated by a factor of 25.The lower cloud is colored using the same false color scheme used in previously released image products, assigning red, green, and blue to the 756, 727, and 889 nanometer mosaics, respectively. Light bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the lower cloud with an overlying thin haze.The images used cover latitudes 1 to 10 degrees and are centered at longitude 336 degrees west. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers (about 930,000 miles) by the Solid State Imaging (CCD) system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.The Dust Cloud TGU H1192 (LDN 1525) in Auriga. II
NASA Astrophysics Data System (ADS)
Boyle, Richard P.; Janusz, Robert; Straizys, Vytautas; Zdanavicius, Kazimieras; Maskoliunas, Marius; Kazlauskas, Algirdas
2016-01-01
The results of a new investigation of interstellar extinction in the direction of the emission nebulae Sh2-231 and Sh2-235 are presented. The investigation is based on CCD photometry and photometric MK classification in seven areas of 12' by 12' size in the Vilnius seven-color photometric system down to V = 19 mag. Additionally, for the same task we applied 519 red clump giants identified in the surrounding 1.5 deg. by 1.5 deg. area using the results of photometry in the 2MASS and WISE surveys. The dependence of the extinction run with distance allows determining distances to dust clouds and their extinctions. We comparethese new more detailed results with the preliminary results described in our previous paper (V. Straizys et al. 2010, Baltic Astronomy, 19, 169) and the AAS communication at the AAS Meeting No. 219 (Austin), 349.12. The relation of the TGU H1192 dust cloud with the Auriga OB1 association is discussed.
2008-05-27
Bright puffs and ribbons of cloud drift lazily through Saturn's murky skies. In contrast to the bold red, orange and white clouds of Jupiter, Saturn's clouds are overlain by a thick layer of haze. The visible cloud tops on Saturn are deeper in its atmosphere due to the planet's cooler temperatures. This view looks toward the unilluminated side of the rings from about 18 degrees above the ringplane. Images taken using red, green and blue spectral filters were combined to create this natural color view. The images were acquired with the Cassini spacecraft wide-angle camera on April 15, 2008 at a distance of approximately 1.5 million kilometers (906,000 miles) from Saturn. Image scale is 84 kilometers (52 miles) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA09910
NASA Technical Reports Server (NTRS)
1997-01-01
On Sol 39 there were wispy blue clouds in the pre-dawn sky of Mars, as seen by the Imager for Mars Pathfinder (IMP). The color image was made by taking blue, green, and red images and then combining them into a single color image. The clouds appear to have a bluish side and a greenish side because they moved (in the wind from the northeast) between images. This picture was made an hour and twenty minutes before sunrise -- the sun is not shining directly on the water ice clouds, but they are illuminated by the dawn twilight.
Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.Polluted and turbid water masses in Osaka Bay and its vicinity revealed with ERTS-A imageries
NASA Technical Reports Server (NTRS)
Watanabe, K.
1973-01-01
ERTS-1 took very valuable MSS imageries of Osaka Bay and its vicinity on October 24, 1972. In the MSS-4 and MSS-5 imageries a complex grey pattern of water masses can be seen. Though some of grey colored patterns seen in black and white prints of the MSS-4 and MSS-5 imageries are easily identified from their shapes as cloud covers or polluted water masses characterized by their color tone in longer wavelengths in the visible region, any correct distribution pattern of polluted or turbid water masses can be hardly detected separately from thin cloud covers in a quick look analysis. In the present investigation, a simple photographic technique was applied using the fact that reflected sun light from cloud including smog and inclined water surfaces of wave have a certain component in the near infrared region, that MSS-7, whereas the light scattered from fine materials suspended in the sea water has nearly no component sensible in MSS-4 and MSS-5 channels.
Merida, Yucatan Peninsula, Mexico
NASA Technical Reports Server (NTRS)
1992-01-01
This rare cloud free view of the city of Merida (21.0N, 90.0W) on the Yucatan Peninsula of Mexico was taken as an experiment with color infrared film to determine the best applications of this unique film. Color film presents an image as it appears to the eye but color infrared film eliminates haze and better defines vegetation and its vitality by the shade of red or pink. Note that much of the native forests have been cut down for farm lands.
Probing the Dusty Stellar Populations of the Local Volume Galaxies with JWST /MIRI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Olivia C.; Meixner, Margaret; Justtanont, Kay
The Mid-Infrared Instrument (MIRI) for the James Webb Space Telescope ( JWST ) will revolutionize our understanding of infrared stellar populations in the Local Volume. Using the rich Spitzer -IRS spectroscopic data set and spectral classifications from the Surveying the Agents of Galaxy Evolution (SAGE)–Spectroscopic survey of more than 1000 objects in the Magellanic Clouds, the Grid of Red Supergiant and Asymptotic Giant Branch Star Model (grams), and the grid of YSO models by Robitaille et al., we calculate the expected flux densities and colors in the MIRI broadband filters for prominent infrared stellar populations. We use these fluxes tomore » explore the JWST /MIRI colors and magnitudes for composite stellar population studies of Local Volume galaxies. MIRI color classification schemes are presented; these diagrams provide a powerful means of identifying young stellar objects, evolved stars, and extragalactic background galaxies in Local Volume galaxies with a high degree of confidence. Finally, we examine which filter combinations are best for selecting populations of sources based on their JWST colors.« less
NASA Astrophysics Data System (ADS)
Zhang, Yuyan; Guo, Quanli; Wang, Zhenchun; Yang, Degong
2018-03-01
This paper proposes a non-contact, non-destructive evaluation method for the surface damage of high-speed sliding electrical contact rails. The proposed method establishes a model of damage identification and calculation. A laser scanning system is built to obtain the 3D point cloud data of the rail surface. In order to extract the damage region of the rail surface, the 3D point cloud data are processed using iterative difference, nearest neighbours search and a data registration algorithm. The curvature of the point cloud data in the damage region is mapped to RGB color information, which can directly reflect the change trend of the curvature of the point cloud data in the damage region. The extracted damage region is divided into three prism elements by a method of triangulation. The volume and mass of a single element are calculated by the method of geometric segmentation. Finally, the total volume and mass of the damage region are obtained by the principle of superposition. The proposed method is applied to several typical injuries and the results are discussed. The experimental results show that the algorithm can identify damage shapes and calculate damage mass with milligram precision, which are useful for evaluating the damage in a further research stage.
NASA Astrophysics Data System (ADS)
Wang, Zhenzhu; Liu, Dong; Wang, Yingjian; Wang, Bangxin; Zhong, Zhiqing; Xie, Chenbo; Wu, Decheng; Bo, Guangyu; Shao, Jie
2014-11-01
A Dual-wavelength Mie Polarization Raman Lidar has been developed for cloud and aerosol optical properties measurement. This idar system has built in Hefei and passed the performance assessment in 2012, and then moved to Jinhua city to carry out the long-term continuous measurements of vertical distribution of regional cloud and aerosol. A double wavelengths (532 and 1064 nm) Nd-YAG laser is employed as emitting source and four channels are used for detecting back-scattering signals from atmosphere aerosol and cloud including 1064 nm Mie, 607 nm N2 Raman, two 532 nm Orthogonal Polarization channels. The temporal and spatial resolutions for this system, which is operating with a continuing mode (24/7) automatically, are 30s and 7.5m, respectively. The measured data are used for investigating the aerosol and cloud vertical structure and cloud phase from combining of cloud signal intensity, polarization ratio and color ratio.
NASA Technical Reports Server (NTRS)
Remeer, Lorraine A.
2011-01-01
The MODIS aerosol cloud mask is based on a spatial variability test, using the assumption that aerosols are more homogeneous than clouds. On top of this first line of defense are a series of additional tests based on threshold values and ratios of various MODIS channels. The goal is to eliminate clouds and keep the aerosol. How well have we succeeded? There have been several studies showing cloud contamination in the MODIS aerosol product and several alternative cloud masks proposed. There are even "competing" MODIS aerosol products that offer an alternative "cloud free" world. Are these alternative products an improvement to the old standard product? We find there is a trade-off between retrieval availability and cloud contamination, and for many applications it is better to have a little bit of cloud in the product than to not have enough product. I will review the decisions that led us to the present MODIS cloud mask, and show how it is simultaneously too liberal and too conservative, some ideas on how to make it better and why in the end it doesn't matter. I hope to inspire a spirited discussion and will be very willing to take your complaints and suggestions.
NASA Astrophysics Data System (ADS)
Wan, Junwei; Chen, Hongyan; Zhao, Jing
2017-08-01
According to the requirements of real-time, reliability and safety for aerospace experiment, the single center cloud computing technology application verification platform is constructed. At the IAAS level, the feasibility of the cloud computing technology be applied to the field of aerospace experiment is tested and verified. Based on the analysis of the test results, a preliminary conclusion is obtained: Cloud computing platform can be applied to the aerospace experiment computing intensive business. For I/O intensive business, it is recommended to use the traditional physical machine.
Evaluation of Decision Trees for Cloud Detection from AVHRR Data
NASA Technical Reports Server (NTRS)
Shiffman, Smadar; Nemani, Ramakrishna
2005-01-01
Automated cloud detection and tracking is an important step in assessing changes in radiation budgets associated with global climate change via remote sensing. Data products based on satellite imagery are available to the scientific community for studying trends in the Earth's atmosphere. The data products include pixel-based cloud masks that assign cloud-cover classifications to pixels. Many cloud-mask algorithms have the form of decision trees. The decision trees employ sequential tests that scientists designed based on empirical astrophysics studies and simulations. Limitations of existing cloud masks restrict our ability to accurately track changes in cloud patterns over time. In a previous study we compared automatically learned decision trees to cloud masks included in Advanced Very High Resolution Radiometer (AVHRR) data products from the year 2000. In this paper we report the replication of the study for five-year data, and for a gold standard based on surface observations performed by scientists at weather stations in the British Islands. For our sample data, the accuracy of automatically learned decision trees was greater than the accuracy of the cloud masks p < 0.001.
NASA Technical Reports Server (NTRS)
Huning, J. R.; Logan, T. L.; Smith, J. H.
1982-01-01
The potential of using digital satellite data to establish a cloud cover data base for the United States, one that would provide detailed information on the temporal and spatial variability of cloud development are studied. Key elements include: (1) interfacing GOES data from the University of Wisconsin Meteorological Data Facility with the Jet Propulsion Laboratory's VICAR image processing system and IBIS geographic information system; (2) creation of a registered multitemporal GOES data base; (3) development of a simple normalization model to compensate for sun angle; (4) creation of a variable size georeference grid that provides detailed cloud information in selected areas and summarized information in other areas; and (5) development of a cloud/shadow model which details the percentage of each grid cell that is cloud and shadow covered, and the percentage of cloud or shadow opacity. In addition, comparison of model calculations of insolation with measured values at selected test sites was accomplished, as well as development of preliminary requirements for a large scale data base of cloud cover statistics.
Memory-Context Effects of Screen Color in Multiple-Choice and Fill-In Tests
ERIC Educational Resources Information Center
Prestera, Gustavo E.; Clariana, Roy; Peck, Andrew
2005-01-01
In this experimental study, 44 undergraduates completed five computer-based instructional lessons and either two multiplechoice tests or two fill-in-the-blank tests. Color-coded borders were displayed during the lesson, adjacent to the screen text and illustrations. In the experimental condition, corresponding border colors were shown at posttest.…
Operational Assessment of Color Vision
2016-06-20
evaluated in this study. 15. SUBJECT TERMS Color vision, aviation, cone contrast test, Colour Assessment & Diagnosis , color Dx, OBVA 16. SECURITY...symbologies are frequently used to aid or direct critical activities such as aircraft landing approaches or railroad right-of-way designations...computer-generated display systems have facilitated the development of computer-based, automated tests of color vision [14,15]. The United Kingdom’s
Human attention filters for single colors
Sun, Peng; Chubb, Charles; Wright, Charles E.; Sperling, George
2016-01-01
The visual images in the eyes contain much more information than the brain can process. An important selection mechanism is feature-based attention (FBA). FBA is best described by attention filters that specify precisely the extent to which items containing attended features are selectively processed and the extent to which items that do not contain the attended features are attenuated. The centroid-judgment paradigm enables quick, precise measurements of such human perceptual attention filters, analogous to transmission measurements of photographic color filters. Subjects use a mouse to locate the centroid—the center of gravity—of a briefly displayed cloud of dots and receive precise feedback. A subset of dots is distinguished by some characteristic, such as a different color, and subjects judge the centroid of only the distinguished subset (e.g., dots of a particular color). The analysis efficiently determines the precise weight in the judged centroid of dots of every color in the display (i.e., the attention filter for the particular attended color in that context). We report 32 attention filters for single colors. Attention filters that discriminate one saturated hue from among seven other equiluminant distractor hues are extraordinarily selective, achieving attended/unattended weight ratios >20:1. Attention filters for selecting a color that differs in saturation or lightness from distractors are much less selective than attention filters for hue (given equal discriminability of the colors), and their filter selectivities are proportional to the discriminability distance of neighboring colors, whereas in the same range hue attention-filter selectivity is virtually independent of discriminabilty. PMID:27791040
Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view from the southwest looking northeast, from an altitude just above the high haze layer. The streaks in the lower cloud leading towards the hotspot are visible. The upper haze layer is mostly flat, with notable small peaks that can be matched with features in the lower cloud. In reality, these areas may represent a continuous vertical cloud column.Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on more sophisticated studies of Jupiter's cloud structure. The upper and lower clouds are separated in the rendering by an arbitrary amount, and the height variations are exaggerated by a factor of 25.The lower cloud is colored using the same false color scheme used in previously released image products, assigning red, green, and blue to the 756, 727, and 889 nanometer mosaics, respectively. Light bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the lower cloud with an overlying thin haze.The images used cover latitudes 1 to 10 degrees and are centered at longitude 336 degrees west. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers (about 930,000 miles) by the Solid State Imaging (CCD) system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view to the southeast, from between the cloud layers and over the north center of the region. The tall white clouds in the lower cloud deck are probably much like large terrestrial thunderclouds. They may be regions where atmospheric water powers vertical convection over large horizontal distances.Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on more sophisticated studies of Jupiter's cloud structure. The upper and lower clouds are separated in the rendering by an arbitrary amount, and the height variations are exaggerated by a factor of 25.The lower cloud is colored using the same false color scheme used in previously released image products, assigning red, green, and blue to the 756, 727, and 889 nanometer mosaics, respectively. Light bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the lower cloud with an overlying thin haze.The images used cover latitudes 1 to 10 degrees and are centered at longitude 336 degrees west. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers (about 930,000 miles) by the Solid State Imaging (CCD) system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view to the west, from between the cloud layers and over the patchy white clouds to the east of the hotspot. This is probably an area where moist convection is occurring over large horizontal distances, similar to the atmosphere over the equatorial ocean on Earth. The clouds are high and thick, and are observed to change rapidly over short time scales.Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on more sophisticated studies of Jupiter's cloud structure. The upper and lower clouds are separated in the rendering by an arbitrary amount, and the height variations are exaggerated by a factor of 25.The lower cloud is colored using the same false color scheme used in previously released image products, assigning red, green, and blue to the 756, 727, and 889 nanometer mosaics, respectively. Light bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the lower cloud with an overlying thin haze.The images used cover latitudes 1 to 10 degrees and are centered at longitude 336 degrees west. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers (about 930,000 miles) by the Solid State Imaging (CCD) system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.Jupiter's Northern Hemisphere in False Color (Time Set 3)
NASA Technical Reports Server (NTRS)
1997-01-01
Mosaic of Jupiter's northern hemisphere between 10 and 50 degrees latitude. Jupiter's atmospheric circulation is dominated by alternating eastward and westward jets from equatorial to polar latitudes. The direction and speed of these jets in part determine the color and texture of the clouds seen in this mosaic. Also visible are several other common Jovian cloud features, including large white ovals, bright spots, dark spots, interacting vortices, and turbulent chaotic systems. The north-south dimension of each of the two interacting vortices in the upper half of the mosaic is about 3500 kilometers.
This mosaic uses the Galileo imaging camera's three near-infrared wavelengths (756 nanometers, 727 nanometers, and 889 nanometers displayed in red, green, and blue) to show variations in cloud height and thickness. Light blue clouds are high and thin, reddish clouds are deep, and white clouds are high and thick. The clouds and haze over the ovals are high, extending into Jupiter's stratosphere. Dark purple most likely represents a high haze overlying a clear deep atmosphere. Galileo is the first spacecraft to distinguish cloud layers on Jupiter.North is at the top. The images are projected on a sphere, with features being foreshortened towards the north. The planetary limb runs along the right edge of the mosaic. Cloud patterns appear foreshortened as they approach the limb. The smallest resolved features are tens of kilometers in size. These images were taken on April 3, 1997, at a range of 1.4 million kilometers by the Solid State Imaging system (CCD) on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepoPattern recognition of satellite cloud imagery for improved weather prediction
NASA Technical Reports Server (NTRS)
Gautier, Catherine; Somerville, Richard C. J.; Volfson, Leonid B.
1986-01-01
The major accomplishment was the successful development of a method for extracting time derivative information from geostationary meteorological satellite imagery. This research is a proof-of-concept study which demonstrates the feasibility of using pattern recognition techniques and a statistical cloud classification method to estimate time rate of change of large-scale meteorological fields from remote sensing data. The cloud classification methodology is based on typical shape function analysis of parameter sets characterizing the cloud fields. The three specific technical objectives, all of which were successfully achieved, are as follows: develop and test a cloud classification technique based on pattern recognition methods, suitable for the analysis of visible and infrared geostationary satellite VISSR imagery; develop and test a methodology for intercomparing successive images using the cloud classification technique, so as to obtain estimates of the time rate of change of meteorological fields; and implement this technique in a testbed system incorporating an interactive graphics terminal to determine the feasibility of extracting time derivative information suitable for comparison with numerical weather prediction products.
The extinction law from photometric data: linear regression methods
NASA Astrophysics Data System (ADS)
Ascenso, J.; Lombardi, M.; Lada, C. J.; Alves, J.
2012-04-01
Context. The properties of dust grains, in particular their size distribution, are expected to differ from the interstellar medium to the high-density regions within molecular clouds. Since the extinction at near-infrared wavelengths is caused by dust, the extinction law in cores should depart from that found in low-density environments if the dust grains have different properties. Aims: We explore methods to measure the near-infrared extinction law produced by dense material in molecular cloud cores from photometric data. Methods: Using controlled sets of synthetic and semi-synthetic data, we test several methods for linear regression applied to the specific problem of deriving the extinction law from photometric data. We cover the parameter space appropriate to this type of observations. Results: We find that many of the common linear-regression methods produce biased results when applied to the extinction law from photometric colors. We propose and validate a new method, LinES, as the most reliable for this effect. We explore the use of this method to detect whether or not the extinction law of a given reddened population has a break at some value of extinction. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (ESO programmes 069.C-0426 and 074.C-0728).
Mid-infrared Integrated-light Photometry Of LMC Star Clusters
NASA Astrophysics Data System (ADS)
Pessev, Peter; Goudfrooij, P.; Puzia, T.; Chandar, R.
2008-03-01
Massive star clusters (Galactic Globular Clusters and Populous Clusters in the Magellanic Clouds) are the best available approximation of Simple Stellar Populations (SSPs). Since the stellar populations in these nearby objects are studied in details, they provide fundamental age/metallicity templates for interpretation of the galaxy properties, testing and calibration of the SSP Models. Magellanic Cloud clusters are particularly important since they populate a region of the age/metallicity parameter space that is not easily accessible in our Galaxy. We present the first Mid-IR integrated-light measurements for six LMC clusters based on our Spitzer IRAC imaging program. Since we are targeting a specific group of intermediate-age clusters, our imaging goes deeper compared to SAGE-LMC survey data. We present a literature compilation of clusters' properties along with multi-wavelength integrated light photometry database spanning from the optical (Johnson U band) to the Mid-IR (IRAC Channel 4). This data provides an important empirical baseline for the interpretation of galaxy colors in the Mid-IR (especially high-z objects whose integrated-light is dominated by TP-AGB stars emission). It is also a valuable tool to check the SSP model predictions in the intermediate-age regime and provides calibration data for the next generation of SSP models.
Operational Based Vision Assessment Cone Contrast Test: Description and Operation
2016-06-02
Jun 2016. Report contains color . 14. ABSTRACT The work detailed in this report was conducted by the Operational Based Vision Assessment (OBVA...currently used by the Air Force for aircrew color vision screening. The new OBVA CCT is differentiated from the Rabin device primarily by hardware...test procedures, and analysis techniques. Like the Rabin CCT, the OBVA CCT uses colors that selectively stimulate the cone photoreceptors of the
A Community-Based IoT Personalized Wireless Healthcare Solution Trial.
Catherwood, Philip A; Steele, David; Little, Mike; Mccomb, Stephen; Mclaughlin, James
2018-01-01
This paper presents an advanced Internet of Things point-of-care bio-fluid analyzer; a LoRa/Bluetooth-enabled electronic reader for biomedical strip-based diagnostics system for personalized monitoring. We undertake test simulations (technology trial without patient subjects) to demonstrate potential of long-range analysis, using a disposable test 'key' and companion Android app to form a diagnostic platform suitable for remote point-of-care screening for urinary tract infection (UTI). The 868 MHz LoRaWAN-enabled personalized monitor demonstrated sound potential with UTI test results being correctly diagnosed and transmitted to a remote secure cloud server in every case. Tests ranged over distances of 1.1-6.0 Km with radio path losses from 119-141 dB. All tests conducted were correctly and robustly received at the base station and relayed to the secure server for inspection. The UTI test strips were visually inspected for correct diagnosis based on color change and verified as 100% accurate. Results from testing across a number of regions indicate that such an Internet of Things medical solution is a robust and simple way to deliver next generation community-based smart diagnostics and disease management to best benefit patients and clinical staff alike. This significant step can be applied to any type of home or region, particularly those lacking suitable mobile signals, broadband connections, or even landlines. It brings subscription-free long-range bio-telemetry to healthcare providers and offers savings on regular clinician home visits or frequent clinic visits by the chronically ill. This paper highlights practical hurdles in establishing an Internet of Medical Things network, assisting informed deployment of similar future systems.
A Community-Based IoT Personalized Wireless Healthcare Solution Trial
Steele, David; Little, Mike; Mccomb, Stephen; Mclaughlin, James
2018-01-01
This paper presents an advanced Internet of Things point-of-care bio-fluid analyzer; a LoRa/Bluetooth-enabled electronic reader for biomedical strip-based diagnostics system for personalized monitoring. We undertake test simulations (technology trial without patient subjects) to demonstrate potential of long-range analysis, using a disposable test ‘key’ and companion Android app to form a diagnostic platform suitable for remote point-of-care screening for urinary tract infection (UTI). The 868 MHz LoRaWAN-enabled personalized monitor demonstrated sound potential with UTI test results being correctly diagnosed and transmitted to a remote secure cloud server in every case. Tests ranged over distances of 1.1–6.0 Km with radio path losses from 119–141 dB. All tests conducted were correctly and robustly received at the base station and relayed to the secure server for inspection. The UTI test strips were visually inspected for correct diagnosis based on color change and verified as 100% accurate. Results from testing across a number of regions indicate that such an Internet of Things medical solution is a robust and simple way to deliver next generation community-based smart diagnostics and disease management to best benefit patients and clinical staff alike. This significant step can be applied to any type of home or region, particularly those lacking suitable mobile signals, broadband connections, or even landlines. It brings subscription-free long-range bio-telemetry to healthcare providers and offers savings on regular clinician home visits or frequent clinic visits by the chronically ill. This paper highlights practical hurdles in establishing an Internet of Medical Things network, assisting informed deployment of similar future systems. PMID:29888145
An Automated Cloud-edge Detection Algorithm Using Cloud Physics and Radar Data
NASA Technical Reports Server (NTRS)
Ward, Jennifer G.; Merceret, Francis J.; Grainger, Cedric A.
2003-01-01
An automated cloud edge detection algorithm was developed and extensively tested. The algorithm uses in-situ cloud physics data measured by a research aircraft coupled with ground-based weather radar measurements to determine whether the aircraft is in or out of cloud. Cloud edges are determined when the in/out state changes, subject to a hysteresis constraint. The hysteresis constraint prevents isolated transient cloud puffs or data dropouts from being identified as cloud boundaries. The algorithm was verified by detailed manual examination of the data set in comparison to the results from application of the automated algorithm.
Atmosphere Kits: Hands-On Learning Activities with a Foundation in NASA Earth Science Missions.
NASA Astrophysics Data System (ADS)
Teige, V.; McCrea, S.; Damadeo, K.; Taylor, J.; Lewis, P. M., Jr.; Chambers, L. H.
2016-12-01
The Science Directorate (SD) at NASA Langley Research Center provides many opportunities to involve students, faculty, researchers, and the citizen science community in real world science. The SD Education Team collaborates with the education community to bring authentic Earth science practices and real-world data into the classroom, provide the public with unique NASA experiences, engaging activities, and advanced technology, and provide products developed and reviewed by science and education experts. Our goals include inspiring the next generation of Science, Technology, Engineering and Mathematics (STEM) professionals and improving STEM literacy by providing innovative participation pathways for educators, students, and the public. The SD Education Team has developed Atmosphere activity kits featuring cloud and aerosol learning activities with a foundation in NASA Earth Science Missions, the Next Generation Science Standards, and The GLOBE Program's Elementary Storybooks. Through cloud kit activities, students will learn how to make estimates from observations and how to categorize and classify specific cloud properties, including cloud height, cloud cover, and basic cloud types. The purpose of the aerosol kit is to introduce students to aerosols and how they can affect the colors we see in the sky. Students will engage in active observation and reporting, explore properties of light, and model the effects of changing amounts/sizes or aerosols on sky color and visibility. Learning activity extensions include participation in ground data collection of environmental conditions and comparison and analysis to related NASA data sets, including but not limited to CERES, CALIPSO, CloudSat, and SAGE III on ISS. This presentation will provide an overview of multiple K-6 NASA Earth Science hands-on activities and free resources will be available.
Jupiter's Northern Hemisphere in Violet Light (Time Set 3)
NASA Technical Reports Server (NTRS)
1997-01-01
Mosaic of Jupiter's northern hemisphere between 10 and 50 degrees latitude. Jupiter's atmospheric circulation is dominated by alternating eastward and westward jets from equatorial to polar latitudes. The direction and speed of these jets in part determine the color and texture of the clouds seen in this mosaic. Also visible are several other common Jovian cloud features, including large white ovals, bright spots, dark spots, interacting vortices, and turbulent chaotic systems. The north-south dimension of each of the two interacting vortices in the upper half of the mosaic is about 3500 kilometers. Light at 410 nanometers is affected by the sizes and compositions of cloud particles, as well as the trace chemicals that give Jupiter's clouds their colors. This mosaic shows the features of Jupiter's main visible cloud deck and the hazy cloud layer above it.
North is at the top. The images are projected on a sphere, with features being foreshortened towards the north. The planetary limb runs along the right edge of the mosaic. Cloud patterns appear foreshortened as they approach the limb. The smallest resolved features are tens of kilometers in size. These images were taken on April 3, 1997, at a range of 1.4 million kilometers by the Solid State Imaging system (CCD) on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepoCloud-based Web Services for Near-Real-Time Web access to NPP Satellite Imagery and other Data
NASA Astrophysics Data System (ADS)
Evans, J. D.; Valente, E. G.
2010-12-01
We are building a scalable, cloud computing-based infrastructure for Web access to near-real-time data products synthesized from the U.S. National Polar-Orbiting Environmental Satellite System (NPOESS) Preparatory Project (NPP) and other geospatial and meteorological data. Given recent and ongoing changes in the the NPP and NPOESS programs (now Joint Polar Satellite System), the need for timely delivery of NPP data is urgent. We propose an alternative to a traditional, centralized ground segment, using distributed Direct Broadcast facilities linked to industry-standard Web services by a streamlined processing chain running in a scalable cloud computing environment. Our processing chain, currently implemented on Amazon.com's Elastic Compute Cloud (EC2), retrieves raw data from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) and synthesizes data products such as Sea-Surface Temperature, Vegetation Indices, etc. The cloud computing approach lets us grow and shrink computing resources to meet large and rapid fluctuations (twice daily) in both end-user demand and data availability from polar-orbiting sensors. Early prototypes have delivered various data products to end-users with latencies between 6 and 32 minutes. We have begun to replicate machine instances in the cloud, so as to reduce latency and maintain near-real time data access regardless of increased data input rates or user demand -- all at quite moderate monthly costs. Our service-based approach (in which users invoke software processes on a Web-accessible server) facilitates access into datasets of arbitrary size and resolution, and allows users to request and receive tailored and composite (e.g., false-color multiband) products on demand. To facilitate broad impact and adoption of our technology, we have emphasized open, industry-standard software interfaces and open source software. Through our work, we envision the widespread establishment of similar, derived, or interoperable systems for processing and serving near-real-time data from NPP and other sensors. A scalable architecture based on cloud computing ensures cost-effective, real-time processing and delivery of NPP and other data. Access via standard Web services maximizes its interoperability and usefulness.
Services for domain specific developments in the Cloud
NASA Astrophysics Data System (ADS)
Schwichtenberg, Horst; Gemuend, André
2015-04-01
We will discuss and demonstrate the possibilities of new Cloud Services where the complete development of code is in the Cloud. We will discuss the possibilities of such services where the complete development cycle from programing to testing is in the cloud. This can be also combined with dedicated research domain specific services and hide the burden of accessing available infrastructures. As an example, we will show a service that is intended to complement the services of the VERCE projects infrastructure, a service that utilizes Cloud resources to offer simplified execution of data pre- and post-processing scripts. It offers users access to the ObsPy seismological toolbox for processing data with the Python programming language, executed on virtual Cloud resources in a secured sandbox. The solution encompasses a frontend with a modern graphical user interface, a messaging infrastructure as well as Python worker nodes for background processing. All components are deployable in the Cloud and have been tested on different environments based on OpenStack and OpenNebula. Deployments on commercial, public Clouds will be tested in the future.
Mesoscale modeling of smoke radiative feedback over the Sahel region
NASA Astrophysics Data System (ADS)
Yang, Z.; Wang, J.; Ichoku, C. M.; Ellison, L.; Zhang, F.; Yue, Y.
2013-12-01
This study employs satellite observations and a fully-coupled meteorology-chemistry-aerosol model, Weather Research and Forecasting model with Chemistry (WRF-Chem) to study the smoke radative feedback on surface energy budget, boundary layer processes, and atmospheric lapse rate in February 2008 over the Sahel region. The smoke emission inventories we use come from various sources, including but not limited to the Fire Locating and Modeling of Burning Emissions (FLAMBE) developed by NRL and the Fire Energetic and Emissions Research (FEER) developed by NASA GSFC. Model performance is evaluated using numerous satellite and ground-based datasets: MODIS true color images, ground-based Aerosol Optical Depth (AOD) measurements from AERONET, MODIS AOD retrievals, and Cloud-Aerosol Lidar data with Orthogonal Polarization (CALIOP) atmospheric backscattering and extinction products. Specification of smoke injection height of 650 m in WRF-Chem yields aerosol vertical profiles that are most consistent with CALIOP observations of aerosol layer height. Statistically, 5% of the CALIPSO valid measurements of aerosols in February 2008 show aerosol layers either above the clouds or between the clouds, reinforcing the importance of the aerosol vertical distribution for quantifying aerosol impact on climate in the Sahel region. The results further show that the smoke radiative feedbacks are sensitive to assumptions of black carbon and organic carbon ratio in the particle emission inventory. Also investigated is the smoke semi-direct effect as a function of cloud fraction.
Jewel scarabs (Chrysina sp.) in Honduras: key species for cloud forest conservation monitoring?
Jocque, M; Vanhove, M P M; Creedy, T J; Burdekin, O; Nuñez-Miño, J M; Casteels, J
2013-01-01
Jewel scarabs, beetles in the genus Chrysina Kirby (Coleoptera: Rutelinae: Scarabaeidae), receive their name from the bright, often gold, green elytra that reflect light like a precious stone. Jewel scarabs are commonly observed at light traps in Mesoamerican cloud forests, and their association with mountain forests makes them potentially interesting candidates for cloud forest conservation monitoring. The absence of survey protocols and identification tools, and the little ecological information available are barriers. In the present study, collection of Chrysina species assembled during biodiversity surveys by Operation Wallacea in Cusuco National Park (CNP), Honduras, were studied. The aim of this overview is to provide an easy to use identification tool for in the field, hopefully stimulating data collection on these beetles. Based on the data associated with the collection localities, elevation distribution of the species in the park was analyzed. The limited data points available were complemented with potential distribution areas generated with distribution models based on climate and elevation data. This study is aimed at initializing the development of a survey protocol for Chrysina species that can be used in cloud forest conservation monitoring throughout Central America. A list of Chrysina species recorded from Honduras so far is provided. The six identified and one unidentified species recorded from CNP are easy to identify in the field based on color and straightforward morphological characteristics. Literature research revealed ten species currently recorded from Honduras. This low species richness in comparison with surrounding Central American countries indicates the poor knowledge of this genus in Honduras. Chrysina species richness in CNP increases with elevation, thereby making the genus one of a few groups of organisms where this correlation is observed, and rendering it a suitable invertebrate representative for cloud forest habitats in Central America.
Cloud cover determination in polar regions from satellite imagery
NASA Technical Reports Server (NTRS)
Barry, R. G.; Key, J.
1989-01-01
The objectives are to develop a suitable validation data set for evaluating the effectiveness of the International Satellite Cloud Climatology Project (ISCCP) algorithm for cloud retrieval in polar regions, to identify limitations of current procedures and to explore potential means to remedy them using textural classifiers, and to compare synoptic cloud data from model runs with observations. Toward the first goal, a polar data set consisting of visible, thermal, and passive microwave data was developed. The AVHRR and SMMR data were digitally merged to a polar stereographic projection with an effective pixel size of 5 sq km. With this data set, two unconventional methods of classifying the imagery for the analysis of polar clouds and surfaces were examined: one based on fuzzy sets theory and another based on a trained neural network. An algorithm for cloud detection was developed from an early test version of the ISCCP algorithm. This algorithm includes the identification of surface types with passive microwave, then temporal tests at each pixel location in the cloud detection phase. Cloud maps and clear sky radiance composites for 5 day periods are produced. Algorithm testing and validation was done with both actural AVHRR/SMMR data, and simulated imagery. From this point in the algorithm, groups of cloud pixels are examined for their spectral and textural characteristics, and a procedure is developed for the analysis of cloud patterns utilizing albedo, IR temperature, and texture. In a completion of earlier work, empirical analyses of arctic cloud cover were explored through manual interpretations of DMSP imagery and compared to U.S. Air Force 3D-nephanalysis. Comparisons of observed cloudiness from existing climatologies to patterns computed by the GISS climate model were also made.
Taking a 3-D Slice of Hurricane Maria's Cloud Structure
2017-09-20
NASA's CloudSat satellite flew over Hurricane Maria on Sept. 17, 2017, at 1:23 p.m. EDT (17:23 UTC) as the storm had just strengthened into a hurricane in the Atlantic Ocean. Hurricane Maria contained estimated maximum sustained winds of 75 miles per hour (65 knots) and had a minimum barometric pressure of 986 millibars. CloudSat flew over Maria through the center of the rapidly intensifying storm, directly through an overshooting cloud top (a dome-shaped protrusion that shoots out of the top of the anvil cloud of a thunderstorm). CloudSat reveals the vertical extent of the overshooting cloud top, showing the estimated height of the cloud to be 11 miles (18 kilometers). Areas of high reflectivity with deep red and pink colors extend well above 9 miles (15 kilometers) in height, showing large amounts of water being drawn upward high into the atmosphere. A movie is available at https://photojournal.jpl.nasa.gov/catalog/PIA21961
A Possibly Universal Red Chromophore for Jupiter
NASA Astrophysics Data System (ADS)
Sromovsky, Lawrence A.; Baines, Kevin; Fry, Patrick M.
2016-10-01
A new laboratory-generated chemical compound made from photodissociated ammonia (NH3) molecules reacting with acetylene (C2H2) was suggested as a possible coloring agent for Jupiter's Great Red Spot (GRS) by Carlson et al. (2016, Icarus 274, 106-115). Baines et al. (2016, AAS/DPS Meeting abstract) showed that the GRS spectrum measured by the visual channels of the Cassini VIMS instrument in 2000 could be accurately fit by a cloud model in which the chromophore appeared as small particles in a physically thin layer immediately above the main cloud layer of the GRS. Here we show that the same chromophore and similar layer structure can also provide close matches to the 0.4-1 micron spectra of many other cloud features on Jupiter, suggesting that this material may be a nearly universal chromophore responsible for the various degrees of red coloration on Jupiter. This is a robust conclusion, even for 12 percent changes in VIMS calibration and large uncertainties in the refractive index of the main cloud layer due to uncertain fractions of NH4SH and NH3 in its cloud particles. The chromophore layer can account for color variations among north and south equatorial belts, equatorial zone, and the Great Red Spot, by varying particle size from 0.12 to 0.29 micron and optical depth from 0.06 to 0.76. The total mass of the chromophore layer is much less variable than its optical depth, staying mainly within 6-10 micrograms/cm2 range, but is only about half that amount in the equatorial zone. We also found a depression of the ammonia volume mixing ratio in the two belt regions, which averaged 0.4-0.5 × 10-4 immediately below the ammonia condensation level, while the other regions averaged twice that value.LAS and PMF acknowledge support from NASA Grant NNX14AH40G.
Predicting Daily Insolation with Hourly Cloud Height and Coverage.
NASA Astrophysics Data System (ADS)
Meyers, T. P.; Dale, R. F.
1983-04-01
Solar radiation information is used in crop growth, boundary layer, entomological and plant pathological models, and in determining the potential use of active and passive solar energy systems. Yet solar radiation is among the least measured meteorological variables.A semi-physical model based on standard meteorological data was developed to estimate solar radiation received at the earth's surface. The radiation model includes the effects of Rayleigh scattering, absorption by water vapor and permanent gases, and absorption and scattering by aerosols and clouds. Cloud attenuation is accounted for by assigning transmission coefficients based on cloud height and amount. The cloud transmission coefficients for various heights and coverages were derived empirically from hourly observations of solar radiation in conjunction with corresponding cloud observations at West Lafayette, Indiana. The model was tested with independent data from West Lafayette and Indianapolis, Madison, WI, Omaha, NE, Columbia, MO, Nashville, TN, Seattle, WA, Los Angeles, CA, Phoenix, AZ, Lake Charles, LA, Miami, FL, and Sterling, VA. For each of these locations a 16% random sample of days was drawn within each of the 12 months in a year for testing the model. Excellent agreement between predicted and observed radiation values was obtained for all stations tested. Mean absolute errors ranged from 1.05 to 1.80 MJ m2 day1 and root-mean-square errors ranged from 1.31 to 2.32 MJ m2 day1. The model's performance judged by relative error was found to be independent of season and cloud amount for all locations tested.
NASA Technical Reports Server (NTRS)
Schepis, Joseph; Woodard, Timothy; Hakun, Claef; Bergandy, Konrad; Church, Joseph; Ward, Peter; Lee, Michael; Conti, Alfred; Guzek, Jeffrey
2018-01-01
A high precision, high-resolution Ocean Color Imaging (OCI) instrument is under development for the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission which requires a pair of medium speed mechanisms to scan the ocean surface continuously. The design of the rotating telescope (RT) mechanism operating at 360 RPM and the half-angle mirror (HAM) mechanism synchronized at 180 RPM was concern for maintaining pointing precision over the required life and continuous operations. An effort was undertaken with the manufacturer to design and analyze a special bearing configuration to minimize axial and radial runout, minimize torque, and maintain nominal contact stresses and stiffness over the operating temperature range and to maximize life. The bearing design, development effort, analysis and testing will be discussed as will the technical challenges that this specific design imposed upon the mechanism engineers. Bearing performance, runout as achieved and verified during encoder installation and operating torque will be described.
A simple biota removal algorithm for 35 GHz cloud radar measurements
NASA Astrophysics Data System (ADS)
Kalapureddy, Madhu Chandra R.; Sukanya, Patra; Das, Subrata K.; Deshpande, Sachin M.; Pandithurai, Govindan; Pazamany, Andrew L.; Ambuj K., Jha; Chakravarty, Kaustav; Kalekar, Prasad; Krishna Devisetty, Hari; Annam, Sreenivas
2018-03-01
Cloud radar reflectivity profiles can be an important measurement for the investigation of cloud vertical structure (CVS). However, extracting intended meteorological cloud content from the measurement often demands an effective technique or algorithm that can reduce error and observational uncertainties in the recorded data. In this work, a technique is proposed to identify and separate cloud and non-hydrometeor echoes using the radar Doppler spectral moments profile measurements. The point and volume target-based theoretical radar sensitivity curves are used for removing the receiver noise floor and identified radar echoes are scrutinized according to the signal decorrelation period. Here, it is hypothesized that cloud echoes are observed to be temporally more coherent and homogenous and have a longer correlation period than biota. That can be checked statistically using ˜ 4 s sliding mean and standard deviation value of reflectivity profiles. The above step helps in screen out clouds critically by filtering out the biota. The final important step strives for the retrieval of cloud height. The proposed algorithm potentially identifies cloud height solely through the systematic characterization of Z variability using the local atmospheric vertical structure knowledge besides to the theoretical, statistical and echo tracing tools. Thus, characterization of high-resolution cloud radar reflectivity profile measurements has been done with the theoretical echo sensitivity curves and observed echo statistics for the true cloud height tracking (TEST). TEST showed superior performance in screening out clouds and filtering out isolated insects. TEST constrained with polarimetric measurements was found to be more promising under high-density biota whereas TEST combined with linear depolarization ratio and spectral width perform potentially to filter out biota within the highly turbulent shallow cumulus clouds in the convective boundary layer (CBL). This TEST technique is promisingly simple in realization but powerful in performance due to the flexibility in constraining, identifying and filtering out the biota and screening out the true cloud content, especially the CBL clouds. Therefore, the TEST algorithm is superior for screening out the low-level clouds that are strongly linked to the rainmaking mechanism associated with the Indian Summer Monsoon region's CVS.
Aerial Images and Convolutional Neural Network for Cotton Bloom Detection.
Xu, Rui; Li, Changying; Paterson, Andrew H; Jiang, Yu; Sun, Shangpeng; Robertson, Jon S
2017-01-01
Monitoring flower development can provide useful information for production management, estimating yield and selecting specific genotypes of crops. The main goal of this study was to develop a methodology to detect and count cotton flowers, or blooms, using color images acquired by an unmanned aerial system. The aerial images were collected from two test fields in 4 days. A convolutional neural network (CNN) was designed and trained to detect cotton blooms in raw images, and their 3D locations were calculated using the dense point cloud constructed from the aerial images with the structure from motion method. The quality of the dense point cloud was analyzed and plots with poor quality were excluded from data analysis. A constrained clustering algorithm was developed to register the same bloom detected from different images based on the 3D location of the bloom. The accuracy and incompleteness of the dense point cloud were analyzed because they affected the accuracy of the 3D location of the blooms and thus the accuracy of the bloom registration result. The constrained clustering algorithm was validated using simulated data, showing good efficiency and accuracy. The bloom count from the proposed method was comparable with the number counted manually with an error of -4 to 3 blooms for the field with a single plant per plot. However, more plots were underestimated in the field with multiple plants per plot due to hidden blooms that were not captured by the aerial images. The proposed methodology provides a high-throughput method to continuously monitor the flowering progress of cotton.
NASA Technical Reports Server (NTRS)
Coddington, O. M.; Pilewskie, P.; Redemann, J.; Platnick, S.; Russell, P. B.; Schmidt, K. S.; Gore, W. J.; Livingston, J.; Wind, G.; Vukicevic, T.
2010-01-01
Haywood et al. (2004) show that an aerosol layer above a cloud can cause a bias in the retrieved cloud optical thickness and effective radius. Monitoring for this potential bias is difficult because space ]based passive remote sensing cannot unambiguously detect or characterize aerosol above cloud. We show that cloud retrievals from aircraft measurements above cloud and below an overlying aerosol layer are a means to test this bias. The data were collected during the Intercontinental Chemical Transport Experiment (INTEX-A) study based out of Portsmouth, New Hampshire, United States, above extensive, marine stratus cloud banks affected by industrial outflow. Solar Spectral Flux Radiometer (SSFR) irradiance measurements taken along a lower level flight leg above cloud and below aerosol were unaffected by the overlying aerosol. Along upper level flight legs, the irradiance reflected from cloud top was transmitted through an aerosol layer. We compare SSFR cloud retrievals from below ]aerosol legs to satellite retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) in order to detect an aerosol ]induced bias. In regions of small variation in cloud properties, we find that SSFR and MODIS-retrieved cloud optical thickness compares within the uncertainty range for each instrument while SSFR effective radius tend to be smaller than MODIS values (by 1-2 microns) and at the low end of MODIS uncertainty estimates. In regions of large variation in cloud properties, differences in SSFR and MODIS ]retrieved cloud optical thickness and effective radius can reach values of 10 and 10 microns, respectively. We include aerosols in forward modeling to test the sensitivity of SSFR cloud retrievals to overlying aerosol layers. We find an overlying absorbing aerosol layer biases SSFR cloud retrievals to smaller effective radii and optical thickness while nonabsorbing aerosols had no impact.
Cloud4Psi: cloud computing for 3D protein structure similarity searching.
Mrozek, Dariusz; Małysiak-Mrozek, Bożena; Kłapciński, Artur
2014-10-01
Popular methods for 3D protein structure similarity searching, especially those that generate high-quality alignments such as Combinatorial Extension (CE) and Flexible structure Alignment by Chaining Aligned fragment pairs allowing Twists (FATCAT) are still time consuming. As a consequence, performing similarity searching against large repositories of structural data requires increased computational resources that are not always available. Cloud computing provides huge amounts of computational power that can be provisioned on a pay-as-you-go basis. We have developed the cloud-based system that allows scaling of the similarity searching process vertically and horizontally. Cloud4Psi (Cloud for Protein Similarity) was tested in the Microsoft Azure cloud environment and provided good, almost linearly proportional acceleration when scaled out onto many computational units. Cloud4Psi is available as Software as a Service for testing purposes at: http://cloud4psi.cloudapp.net/. For source code and software availability, please visit the Cloud4Psi project home page at http://zti.polsl.pl/dmrozek/science/cloud4psi.htm. © The Author 2014. Published by Oxford University Press.
Cloud4Psi: cloud computing for 3D protein structure similarity searching
Mrozek, Dariusz; Małysiak-Mrozek, Bożena; Kłapciński, Artur
2014-01-01
Summary: Popular methods for 3D protein structure similarity searching, especially those that generate high-quality alignments such as Combinatorial Extension (CE) and Flexible structure Alignment by Chaining Aligned fragment pairs allowing Twists (FATCAT) are still time consuming. As a consequence, performing similarity searching against large repositories of structural data requires increased computational resources that are not always available. Cloud computing provides huge amounts of computational power that can be provisioned on a pay-as-you-go basis. We have developed the cloud-based system that allows scaling of the similarity searching process vertically and horizontally. Cloud4Psi (Cloud for Protein Similarity) was tested in the Microsoft Azure cloud environment and provided good, almost linearly proportional acceleration when scaled out onto many computational units. Availability and implementation: Cloud4Psi is available as Software as a Service for testing purposes at: http://cloud4psi.cloudapp.net/. For source code and software availability, please visit the Cloud4Psi project home page at http://zti.polsl.pl/dmrozek/science/cloud4psi.htm. Contact: dariusz.mrozek@polsl.pl PMID:24930141
Color film spectral properties test experiment for target simulation
NASA Astrophysics Data System (ADS)
Liu, Xinyue; Ming, Xing; Fan, Da; Guo, Wenji
2017-04-01
In hardware-in-loop test of the aviation spectra camera, the liquid crystal light valve and digital micro-mirror device could not simulate the spectrum characteristics of the landmark. A test system frame was provided based on the color film for testing the spectra camera; and the spectrum characteristics of the color film was test in the paper. The result of the experiment shows that difference was existed between the landmark and the film spectrum curse. However, the spectrum curse peak should change according to the color, and the curse is similar with the standard color traps. So, if the quantity value of error between the landmark and the film was calibrated and the error could be compensated, the film could be utilized in the hardware-in-loop test for the aviation spectra camera.
False Color Mosaic of Jupiter's Belt-Zone Boundary
NASA Technical Reports Server (NTRS)
1997-01-01
False-color mosaic of a belt-zone boundary near Jupiter's equator. The images that make up the four quadrants of this mosaic were taken within a few minutes of each other. Light at each of Galileo's three near-infrared wavelengths is displayed here mapped to the visible colors red, green, and blue. Light at 886 nanometers, strongly absorbed by atmospheric methane and scattered from clouds high in the atmosphere, is shown in red. Light at 732 nanometers, moderately absorbed by atmospheric methane, is shown in green. Light at 757 nanometers, scattered mostly from Jupiter's lower visible cloud deck, is shown in blue. The lower cloud deck appears bluish white, while the higher layer appears pinkish. The holes in the upper layer and their relationships to features in the lower cloud deck can be studied in the lower half of the mosaic. Galileo is the first spacecraft to image different layers in Jupiter's atmosphere.
North is at the top. The mosaic covers latitudes -13 to +3 degrees and is centered at longitude 282 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on November 5th, 1996, at a range of 1.2 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepoColor-magnitude distribution of face-on nearby galaxies in Sloan digital sky survey DR7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Shuo-Wen; Feng, Long-Long; Gu, Qiusheng
2014-05-20
We have analyzed the distributions in the color-magnitude diagram (CMD) of a large sample of face-on galaxies to minimize the effect of dust extinctions on galaxy color. About 300,000 galaxies with log (a/b) < 0.2 and redshift z < 0.2 are selected from the Sloan Digital Sky Survey DR7 catalog. Two methods are employed to investigate the distributions of galaxies in the CMD, including one-dimensional (1D) Gaussian fitting to the distributions in individual magnitude bins and two-dimensional (2D) Gaussian mixture model (GMM) fitting to galaxies as a whole. We find that in the 1D fitting, two Gaussians are not enoughmore » to fit galaxies with the excess present between the blue cloud and the red sequence. The fitting to this excess defines the center of the green valley in the local universe to be (u – r){sub 0.1} = –0.121M {sub r,} 0{sub .1} – 0.061. The fraction of blue cloud and red sequence galaxies turns over around M {sub r,} {sub 0.1} ∼ –20.1 mag, corresponding to stellar mass of 3 × 10{sup 10} M {sub ☉}. For the 2D GMM fitting, a total of four Gaussians are required, one for the blue cloud, one for the red sequence, and the additional two for the green valley. The fact that two Gaussians are needed to describe the distributions of galaxies in the green valley is consistent with some models that argue for two different evolutionary paths from the blue cloud to the red sequence.« less
Jeffrey Stephens; Luben Dimov; Callie Schweitzer; Wubishet Tadesse
2008-01-01
Light detection and ranging (Lidar) and color infrared imagery (CIR) were used to quantify forest structure and to distinguish deciduous from coniferous trees for selected stands on the William B. Bankhead National Forest in Alabama. Lidar bare ground and vegetation point clouds were used to determine tree heights and tree locations. Lidar accuracy was assessed by...
NASA Technical Reports Server (NTRS)
Abbott, M. R.; Zion, P. M.
1984-01-01
As part of the first Coastal Ocean Dynamics Experiment, images of ocean color were collected from late March until late July, 1981, by the Coastal Zone Color Scanner aboard Nimbus-7. Images that had sufficient cloud-free area to be of interest were processed to yield near-surface phytoplankton pigment concentrations. These images were then remapped to a fixed equal-area grid. This report contains photographs of the digital images and a brief description of the processing methods.
FINAL REPORT (DE-FG02-97ER62338): Single-column modeling, GCM parameterizations, and ARM data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard C. J. Somerville
2009-02-27
Our overall goal is the development of new and improved parameterizations of cloud-radiation effects and related processes, using ARM data at all three ARM sites, and the implementation and testing of these parameterizations in global models. To test recently developed prognostic parameterizations based on detailed cloud microphysics, we have compared SCM (single-column model) output with ARM observations at the SGP, NSA and TWP sites. We focus on the predicted cloud amounts and on a suite of radiative quantities strongly dependent on clouds, such as downwelling surface shortwave radiation. Our results demonstrate the superiority of parameterizations based on comprehensive treatments ofmore » cloud microphysics and cloud-radiative interactions. At the SGP and NSA sites, the SCM results simulate the ARM measurements well and are demonstrably more realistic than typical parameterizations found in conventional operational forecasting models. At the TWP site, the model performance depends strongly on details of the scheme, and the results of our diagnostic tests suggest ways to develop improved parameterizations better suited to simulating cloud-radiation interactions in the tropics generally. These advances have made it possible to take the next step and build on this progress, by incorporating our parameterization schemes in state-of-the-art three-dimensional atmospheric models, and diagnosing and evaluating the results using independent data. Because the improved cloud-radiation results have been obtained largely via implementing detailed and physically comprehensive cloud microphysics, we anticipate that improved predictions of hydrologic cycle components, and hence of precipitation, may also be achievable.« less
NASA Astrophysics Data System (ADS)
Miller, D. J.; Zhang, Z.; Platnick, S. E.; Ackerman, A. S.; Cornet, C.; Baum, B. A.
2013-12-01
A polarized cloud reflectance simulator was developed by coupling an LES cloud model with a polarized radiative transfer model to assess the capabilities of polarimetric cloud retrievals. With future remote sensing campaigns like NASA's Aerosols/Clouds/Ecosystems (ACE) planning to feature advanced polarimetric instruments it is important for the cloud remote sensing community to understand the retrievable information available and the related systematic/methodical limitations. The cloud retrieval simulator we have developed allows us to probe these important questions in a realistically relevant test bed. Our simulator utilizes a polarized adding-doubling radiative transfer model and an LES cloud field from a DHARMA simulation (Ackerman et al. 2004) with cloud properties based on the stratocumulus clouds observed during the DYCOMS-II field campaign. In this study we will focus on how the vertical structure of cloud microphysics can influence polarized cloud effective radius retrievals. Numerous previous studies have explored how retrievals based on total reflectance are affected by cloud vertical structure (Platnick 2000, Chang and Li 2002) but no such studies about the effects of vertical structure on polarized retrievals exist. Unlike the total cloud reflectance, which is predominantly multiply scattered light, the polarized reflectance is primarily the result of singly scattered photons. Thus the polarized reflectance is sensitive to only the uppermost region of the cloud (tau~<1) where photons can scatter once and still escape before being scattered again. This means that retrievals based on polarized reflectance have the potential to reveal behaviors specific to the cloud top. For example cloud top entrainment of dry air, a major influencer on the microphysical development of cloud droplets, can be potentially studied with polarimetric retrievals.
High-latitude dust clouds LDN 183 and LDN 169: distances and extinctions
NASA Astrophysics Data System (ADS)
Straižys, V.; Boyle, R. P.; Zdanavičius, J.; Janusz, R.; Corbally, C. J.; Munari, U.; Andersson, B.-G.; Zdanavičius, K.; Kazlauskas, A.; Maskoliūnas, M.; Černis, K.; Macijauskas, M.
2018-03-01
Interstellar extinction is investigated in a 2°× 2° area containing the dust and molecular clouds LDN 183 (MBM 37) and LDN 169, which are located at RA = 15h 54m, Dec = - 3°. The study is based on a photometric classification in spectral and luminosity classes of 782 stars selected from the catalogs of 1299 stars down to V = 20 mag observed in the Vilnius seven-color system. For control, the MK types for the 18 brightest stars with V between 8.5 and 12.8 mag were determined spectroscopically. For 14 stars, located closer than 200 pc, distances were calculated from trigonometric parallaxes taken from the Gaia Data Release 1. For about 70% of the observed stars, two-dimensional spectral types, interstellar extinctions AV, and distances were determined. Using 57 stars closer than 200 pc, we estimate that the front edge of the clouds begins at 105 ± 8 pc. The extinction layer in the vicinities of the clouds can be about 20 pc thick. In the outer parts of the clouds and between the clouds, the extinction is 0.5-2.0 mag. Behind the Serpens/Libra clouds, the extinction range does not increase; this means that the dust layer at 105 pc is a single extinction source. Full Tables 1 and 2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A9
NASA Astrophysics Data System (ADS)
Sproles, E. A.; Crumley, R. L.; Nolin, A. W.; Mar, E.; Lopez-Moreno, J. J.
2017-12-01
Streamflow in snowy mountain regions is extraordinarily challenging to forecast, and prediction efforts are hampered by the lack of timely snow data—particularly in data sparse regions. SnowCloud is a prototype web-based framework that integrates remote sensing, cloud computing, interactive mapping tools, and a hydrologic model to offer a new paradigm for delivering key data to water resource managers. We tested the skill of SnowCloud to forecast monthly streamflow with one month lead time in three snow-dominated headwaters. These watersheds represent a range of precipitation/runoff schemes: the Río Elqui in northern Chile (200 mm/yr, entirely snowmelt); the John Day River, Oregon, USA (635 mm/yr, primarily snowmelt); and the Río Aragon in the northern Spain (850 mm/yr, snowmelt dominated). Model skill corresponded to snowpack contribution with Nash-Sutcliffe Efficiencies of 0.86, 0.52, and 0.21 respectively. SnowCloud does not require the user to possess advanced programming skills or proprietary software. We access NASA's MOD10A1 snow cover product to calculate the snow metrics globally using Google Earth Engine's geospatial analysis and cloud computing service. The analytics and forecast tools are provided through a web-based portal that requires only internet access and minimal training. To test the efficacy of SnowCloud we provided the tools and a series of tutorials in English and Spanish to water resource managers in Chile, Spain, and the United States. Participants assessed their user experience and provided feedback, and the results of our multi-cultural assessment are also presented. While our results focus on SnowCloud, they outline methods to develop cloud-based tools that function effectively across cultures and languages. Our approach also addresses the primary challenges of science-based computing; human resource limitations, infrastructure costs, and expensive proprietary software. These challenges are particularly problematic in developing countries.
GAS CLOUDS RAINING STAR STUFF ONTO MILKY WAY GALAXY
NASA Technical Reports Server (NTRS)
2002-01-01
This composite radio light image and rendition of our galaxy as seen in visible light shows enigmatic 'high-velocity clouds' of gas high above the plane of the Milky Way which rain gas into the galaxy, seeding it with the stuff of stars. The cloud outlined, and possibly others too, is now known to have low heavy element content and to be raining down onto the Milky Way disk, seeding it with material for star birth. Identifying this infalling gas helps in solving a long-standing mystery of galactic evolution by revealing a source of the low-metallicity gas required to explain the observed chemical composition of stars near the Sun. In this all-sky projection, the edge-on plane of our galaxy appears as a white horizontal strip. The false-color orange-yellow 'clouds' are regions containing neutral hydrogen, which glows in 21-centimeter radiation. Hubble Space Telescope's spectrograph was aimed at one of the clouds (encircled) to measure its detailed composition and velocity. This discovery is based on a combination of data from NASA's Hubble Space Telescope, three radio telescopes (at Effelsberg in Germany, and Dwingeloo and Westerbork in the Netherlands), the William Herschel Telescope on the island of La Palma and the Wisconsin H-alpha Mapper at NOAO's Kitt Peak Observatory. Photo Credits: Image composite by Ingrid Kallick of Possible Designs, Madison Wisconsin. The background Milky Way image is a drawing made at Lund Observatory. High-velocity clouds are from the survey done at Dwingeloo Observatory (Hulsbosch and Wakker, 1988).
NASA Astrophysics Data System (ADS)
Sanchez-Lavega, A.; Hueso, R.; Perez-Hoyos, S.; Iñurrigarro, P.; Mendikoa, I.; Rojas, J. F.
2016-12-01
We present the results of a long term campaign between September 2015 and August 2016 of imaging of Jupiter's cloud morphology and zonal winds in the 0.38 - 1.7 μm wavelength spectral range. We use PlanetCam lucky imaging camera at the 2.2m telescope at Calar Alto Observatory in Spain, and for the optical range, the contribution of a network of observers to the Planetary Virtual Observatory Laboratory database (PVOL-IOPW at http://pvol.ehu.eus). We have complemented the study with Hubble Space Telescope WFC3 camera images taken in the 0.275 - 0.89 μm wavelength spectral range during the OPAL program on 9 February 2016. The PlanetCam images have been calibrated in radiance using spectrophotometric standard stars providing absolute reflectivity across the disk in a large series of broadband and narrowband filters sensitive to the altitude distribution and size of aerosols above the ammonia cloud level, and to the spectral dependence of the chromophore coloring agents. The cloud morphology evolution has been studied with an horizontal resolution ranging from 150 to 1000 km. Zonal wind profiles have been retrieved along the whole observing period from tracking cloud motions that span the latitude range from -80° to +77º. Combining all these results we characterized the 3D-dynamical state and cloud and haze distribution in Jupiter's atmosphere in the altitude range between 10 mbar and 1.5 bar before and during Juno initial exploration.
NASA Astrophysics Data System (ADS)
Borovoi, Anatoli; Reichardt, Jens; Görsdorf, Ulrich; Wolf, Veronika; Konoshonkin, Alexander; Shishko, Victor; Kustova, Natalia
2018-04-01
To develop a microphysical model of cirrus clouds, data obtained by Raman lidar RAMSES and a tilted ceilometer are studied synergistically. The measurements are interpreted by use of a data archive containing the backscattering matrixes as well as the depolarization, color and lidar ratios of ice crystals of different shapes, sizes and spatial orientations calculated within the physical-optics approximation.
SeaWiFS: The Western United States and Mexico
NASA Technical Reports Server (NTRS)
2002-01-01
The linear patterns in the clouds over the Pacific suggest contrail origins. Subtle variations in cloud density reveal vortex street downwind (southeast) of Mexico's Guadalupe Island. The Great Salt Lake in Utah is divided into two very different colored bodies of water by a railroad causeway. The southern Gulf of California continues to bloom brightly. Credit: Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE
Characterizing the Hercules Thick Disk Cloud
2009-01-01
merger. Key Words: Astronomy , Hercules Thick Disk Cloud, Galaxy, Star Count, Color, Photometric Parallax 2 Contents Chapter 1... Astronomy : Structure and Kinematics, 2nd ed., New York: W. H. Freeman and Company, 1981, pp 4. 5 Henbest, Guide, pp 10. 6 Mihalas, Galactic, pp 209...studies of astronomy later in his life, he focused on binary star systems and concluded that not all stars have the same absolute magnitude, thus
NASA Technical Reports Server (NTRS)
Feng, Lian; Hu, Chuanmin; Barnes, Brian B.; Mannino, Antonio; Heidinger, Andrew K.; Strabala, Kathleen; Iraci, Laura T.
2017-01-01
Knowledge of cloud cover, frequency, and duration is not only important to study cloud dynamics, but also critical in determining when and where to take ocean measurements from geostationary orbits such as the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission due to the challenges in achieving complete hemispheric coverage of coastal oceans, estuaries, and inland waters at hourly frequency. Using GOES hourly measurements at 4 km nadir resolution between 2006 and 2011, the number of cloud-free hourly observations per day (N(sub cf)) for solar zenith angle Theta(sub 0) less than 80 degrees was estimated for each 0.1 degree location of the Intra-Americas Sea. The number of Sun-glint-affected hourly observations per day [Ns(sub sg)] was also calculated based on the planned GEO-CAPE observation geometry and realistic wind speed. High-latitude and equatorial oceans showed the lowest N(sub cf) (less than 2.4) in all climatological months, and highest N(sub cf) was observed in the Gulf of Mexico (GoM) and Caribbean (greater than 4.5). Different regions showed differences in seasonality of cloud-free conditions and also showed differences in the hour of a day at which the satellite observations would have the maximal cloud-free and glint-free probability (Temperature maximum). Cloud cover from Moderate Resolution Imaging Spectroradiometer (MODIS) 1 km measurements are greater than 10 degrees higher than those from the MODIS 250 m measurements, supporting ocean color missions at subkilometer resolutions to enhance both spatial coverage and temporal frequency. These findings provide valuable information for GEO-CAPE mission planning to maximize its science value through minimizing the impacts of clouds and Sun glint.
NASA Astrophysics Data System (ADS)
Feng, Lian; Hu, Chuanmin; Barnes, Brian B.; Mannino, Antonio; Heidinger, Andrew K.; Strabala, Kathleen; Iraci, Laura T.
2017-02-01
Knowledge of cloud cover, frequency, and duration is not only important to study cloud dynamics, but also critical in determining when and where to take ocean measurements from geostationary orbits such as the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission due to the challenges in achieving complete hemispheric coverage of coastal oceans, estuaries, and inland waters at hourly frequency. Using GOES hourly measurements at 4 km nadir resolution between 2006 and 2011, the number of cloud-free hourly observations per day (Ncf) for solar zenith angle θo < 80° was estimated for each 0.1° location of the Intra-Americas Sea. The number of Sun-glint-affected hourly observations per day (Nsg) was also calculated based on the planned GEO-CAPE observation geometry and realistic wind speed. High-latitude and equatorial oceans showed the lowest Ncf (<2.4) in all climatological months, and highest Ncf was observed in the Gulf of Mexico (GoM) and Caribbean (>4.5). Different regions showed differences in seasonality of cloud-free conditions and also showed differences in the hour of a day at which the satellite observations would have the maximal cloud-free and glint-free probability (Tmax). Cloud cover from Moderate Resolution Imaging Spectroradiometer (MODIS) 1 km measurements are >10% higher than those from the MODIS 250 m measurements, supporting ocean color missions at subkilometer resolutions to enhance both spatial coverage and temporal frequency. These findings provide valuable information for GEO-CAPE mission planning to maximize its science value through minimizing the impacts of clouds and Sun glint.
Jupiter's Northern Hemisphere in False Color (Time Set 2)
NASA Technical Reports Server (NTRS)
1997-01-01
Mosaic of Jupiter's northern hemisphere between 10 and 50 degrees latitude. Jupiter's atmospheric circulation is dominated by alternating eastward and westward jets from equatorial to polar latitudes. The direction and speed of these jets in part determine the color and texture of the clouds seen in this mosaic. Also visible are several other common Jovian cloud features, including large white ovals, bright spots, dark spots, interacting vortices, and turbulent chaotic systems. The north-south dimension of each of the two interacting vortices in the upper half of the mosaic is about 3500 kilometers.
This mosaic uses the Galileo imaging camera's three near-infrared wavelengths (756 nanometers, 727 nanometers, and 889 nanometers displayed in red, green, and blue) to show variations in cloud height and thickness. Light blue clouds are high and thin, reddish clouds are deep, and white clouds are high and thick. The clouds and haze over the ovals are high, extending into Jupiter's stratosphere. Dark purple most likely represents a high haze overlying a clear deep atmosphere. Galileo is the first spacecraft to distinguish cloud layers on Jupiter.North is at the top. The images are projected on a sphere, with features being foreshortened towards the north. The smallest resolved features are tens of kilometers in size. These images were taken on April 3, 1997, at a range of 1.4 million kilometers by the Solid State Imaging system (CCD) on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepoERIC Educational Resources Information Center
Gilliland, Hap
The oral Red Cloud Reading Test provides a complete analysis of reading level and skills for American Indian students in grades 1-7 or for high school and adult students reading at or below high school levels. The test determines the basic and recreational reading levels, identifies reading problems, determines reading speeds, and analyzes the…
2018-04-06
See intricate cloud patterns in the northern hemisphere of Jupiter in this new view taken by NASA's Juno spacecraft. The color-enhanced image was taken on April 1, 2018 at 2:32 a.m. PST (5:32 a.m. EST), as Juno performed its twelfth close flyby of Jupiter. At the time the image was taken, the spacecraft was about 7,659 miles (12,326 kilometers) from the tops of the clouds of the planet at a northern latitude of 50.2 degrees. Citizen scientist Kevin M. Gill processed this image using data from the JunoCam imager. https://photojournal.jpl.nasa.gov/catalog/PIA21984
Jupiter's Swirling Cloud Formations
2018-02-15
See swirling cloud formations in the northern area of Jupiter's north temperate belt in this new view taken by NASA's Juno spacecraft. The color-enhanced image was taken on Feb. 7 at 5:42 a.m. PST (8:42 a.m. EST), as Juno performed its eleventh close flyby of Jupiter. At the time the image was taken, the spacecraft was about 5,086 miles (8,186 kilometers) from the tops of the clouds of the planet at a latitude of 39.9 degrees. Citizen scientist Kevin M. Gill processed this image using data from the JunoCam imager. https://photojournal.jpl.nasa.gov/catalog/PIA21978
NASA Technical Reports Server (NTRS)
Liu, Zhaoyan; Vaughan, Mark A.; Winker, Davd M.; Hostetler, Chris A.; Poole, Lamont R.; Hlavka, Dennis; Hart, William; McGill, Mathew
2004-01-01
In this paper we describe the algorithm hat will be used during the upcoming Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission for discriminating between clouds and aerosols detected in two wavelength backscatter lidar profiles. We first analyze single-test and multiple-test classification approaches based on one-dimensional and multiple-dimensional probability density functions (PDFs) in the context of a two-class feature identification scheme. From these studies we derive an operational algorithm based on a set of 3-dimensional probability distribution functions characteristic of clouds and aerosols. A dataset acquired by the Cloud Physics Lidar (CPL) is used to test the algorithm. Comparisons are conducted between the CALIPSO algorithm results and the CPL data product. The results obtained show generally good agreement between the two methods. However, of a total of 228,264 layers analyzed, approximately 5.7% are classified as different types by the CALIPSO and CPL algorithm. This disparity is shown to be due largely to the misclassification of clouds as aerosols by the CPL algorithm. The use of 3-dimensional PDFs in the CALIPSO algorithm is found to significantly reduce this type of error. Dust presents a special case. Because the intrinsic scattering properties of dust layers can be very similar to those of clouds, additional algorithm testing was performed using an optically dense layer of Saharan dust measured during the Lidar In-space Technology Experiment (LITE). In general, the method is shown to distinguish reliably between dust layers and clouds. The relatively few erroneous classifications occurred most often in the LITE data, in those regions of the Saharan dust layer where the optical thickness was the highest.
Near-infrared reddening of extra-galactic giant molecular clouds in a face-on geometry
NASA Astrophysics Data System (ADS)
Kainulainen, J.; Juvela, M.; Alves, J.
2008-04-01
Aims: We describe the near-infrared reddening signature of giant molecular clouds (GMCs) in external galaxies. In particular, we examine the EJ-H and EH-K color excesses and the effective extinction law observed in discrete GMC regions. We also study the effect of the relative scale height of the GMC distribution to the color excesses, and to the observed mass function of GMCs when the masses are derived using color excess as a linear estimator of mass. Methods: We performed Monte Carlo radiative transfer simulations with 3D models of stellar radiation and clumpy dust distributions, resembling a face-on geometry. The scattered light is included in the models, and near-infrared color maps were calculated from the simulated data. We performed the simulations with different scale heights of GMCs and compared the color excesses and attenuation of light in different geometries. We extracted GMCs from the simulated color maps and compared the mass functions to the input mass functions. Results: The effective near-infrared reddening law, i.e. the ratio EJ-H/EH-K, has a value close to unity in GMC regions. The ratio depends significantly on the relative scale height of GMCs, ξ, and for ξ values 0.1...0.75, we find the typical ratios of 0.6...1.1. The effective extinction law turns out to be very flat in GMC regions. We find the ratios of apparent extinctions of AH^a/AKa = 1.35...1.55 and AJ^a/AHa = 1.15. The effect of the scattered flux on the effective reddening law, as well as on the effective extinction law, is significant. Regarding the GMC mass function, we find no correlation between the input and observed slopes of the mass functions. Instead, the observed slope reflects the parameter ξ and the dynamical range of the mass function. As the observed slope depends on the geometric parameters, which are not known, it is not possible to constrain the slope of the mass function using this technique. We estimate that only a fraction of 10...20% of the total mass of GMCs is recovered, if the observed color excess values are transformed to masses using the Galactic reddening law. In the case of individual clouds, the fraction can vary between ~0...50%.
NASA Astrophysics Data System (ADS)
Jackson-Booth, N.
2016-12-01
Artificial Ionospheric Modification (AIM) attempts to modify the ionosphere in order to alter the propagation environment. It can be achieved through injecting the ionosphere with aerosols, chemicals or radio signals. The effects of any such release can be detected through the deployment of sensors, including ground based high frequency (HF) sounders. During the Metal Oxide Space Clouds (MOSC) experiment (undertaken in April/May 2013 in the Kwajalein Atoll, part of the Marshall Islands) several oblique ionograms were recorded from a ground based HF system. These ionograms were collected over multiple geometries and allowed the effects on the HF propagation environment to be understood. These ionograms have subsequently been used in the ClOud Reflection Algorithm (CORA) to attempt to model the evolution of the cloud following release. This paper describes the latest validation results from CORA, both from testing against ionograms, but also other independent models of cloud evolution from MOSC. For all testing the various cloud models (including that generated by CORA) were incorporated into a background ionosphere through which a 3D numerical ray trace was run to produce synthetic ionograms that could be compared with the ionograms recorded during MOSC.
The Q Continuum: Encounter with the Cloud Mask
NASA Astrophysics Data System (ADS)
Ackerman, S. A.; Frey, R.; Holz, R.; Philips, C.; Dutcher, S.
2017-12-01
We are developing a common cloud mask for MODIS and VIIRS observations, referred to as the MODIS VIIRS Continuity Mask (MVCM). Our focus is on extending the MODIS-heritage cloud detection approach in order to generate appropriate climate data records for clouds and climate studies. The MVCM is based on heritage from the MODIS cloud mask (MOD35 and MYD35) and employs a series of tests on MODIS reflectances and brightness temperatures. Cloud detection is based on contrasts (i.e., cloud versus background surface) at pixel resolution. The MVCM follows the same approach. These cloud masks use multiple cloud detection tests to indicate the confidence level that the observation is of a clear-sky scene. The outcome of a test ranges from 0 (cloudy) to 1 (clear-sky scene). Because of overlap in the sensitivities of the various spectral tests to the type of cloud, each test is considered in one of several groups. The final cloud mask is determined from the product of the minimum confidence of each group and is referred to as the Q value as defined in Ackerman et al (1998). In MOD35 and MYD35 processing, the Q value is not output, rather predetermined Q values determine the result: If Q ≥ .99 the scene is clear; .95 ≤ Q < .99 the pixel is probably a clear scene, .66 ≤ Q < .95 is probably cloudy and Q < .66 is cloudy. Thus representing Q discretely and not as a continuum. For the MVCM, the numerical value of the Q is output along with the classification of clear, probably clear, probably cloudy, and cloudy. Through comparisons with collocated CALIOP and MODIS observations, we will assess the categorization of the Q values as a function of scene type ). While validation studies have indicated the utility and statistical correctness of the cloud mask approach, the algorithm does not possess immeasurable power and perfection. This comparison will assess the time and space dependence of Q and assure that the laws of physics are followed, at least according to normal human notions. Using CALIOP as representing truth, a receiver operating characteristic curve (ROC) will be analyzed to determine the optimum Q for various scenes and seasons, thus providing a continuum of discriminating thresholds.
2005-03-23
Data from a portion of the imagery acquired by NASA Terra spacecraft during 2000-2002 were combined to create this cloud-free natural-color mosaic of southwestern Europe and northwestern Morocco and Algeria.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Wind, Galina; Arnold, George T.; Ackerman, Steven A.; Frey, Richard
2007-01-01
The MODIS Airborne Simulator (MAS) and MODIS/ASTER Airborne Simulator (MASTER) were used to obtain measurements of the bidirectional reflectance and brightness temperature of clouds at 50 discrete wavelengths between 0.47 and 14.3 (12.9 m for MASTER). These observations were obtained from the NASA ER-2 aircraft as part of the Tropical Composition, Clouds and Climate Coupling Experiment (TC4) conducted over Central America and surrounding Pacific and Atlantic Oceans between July 17 and August 8, 2007. Multispectral images in eight distinct bands were used to derive a confidence in clear sky (or alternatively the probability of cloud) over land and ocean ecosystems. Based on the results of individual tests run as part of this cloud mask, an algorithm was developed to estimate the phase of the clouds (liquid water, ice, or undetermined phase). Finally, the cloud optical thickness and effective radius were derived for both liquid water and ice clouds that were detected during each flight, using a nearly identical algorithm as that implemented operationally to process MODIS cloud data from the Aqua and Terra satellites (Collection 5). This analysis shows that the cloud mask developed for operational use on MODIS, and tested using MAS and MASTER date in TC4, is quite capable of distinguishing both liquid water and ice clouds during daytime conditions over both land and ocean. The cloud optical thickness and effective radius retrievals used three distinct bands of the MAS (or MASTER), and these results were compared with nearly simultaneous retrievals of MODIS on the Terra spacecraft. Finally, this MODIS-based algorithm was adapted to MISR data to infer the cloud optical thickness of liquid water clouds from MISR. Results of this analysis will be presented and discussed.
NASA Technical Reports Server (NTRS)
Welch, Ronald M.
1996-01-01
The ASTER polar cloud mask algorithm is currently under development. Several classification techniques have been developed and implemented. The merits and accuracy of each are being examined. The classification techniques under investigation include fuzzy logic, hierarchical neural network, and a pairwise histogram comparison scheme based on sample histograms called the Paired Histogram Method. Scene adaptive methods also are being investigated as a means to improve classifier performance. The feature, arctan of Band 4 and Band 5, and the Band 2 vs. Band 4 feature space are key to separating frozen water (e.g., ice/snow, slush/wet ice, etc.) from cloud over frozen water, and land from cloud over land, respectively. A total of 82 Landsat TM circumpolar scenes are being used as a basis for algorithm development and testing. Numerous spectral features are being tested and include the 7 basic Landsat TM bands, in addition to ratios, differences, arctans, and normalized differences of each combination of bands. A technique for deriving cloud base and top height is developed. It uses 2-D cross correlation between a cloud edge and its corresponding shadow to determine the displacement of the cloud from its shadow. The height is then determined from this displacement, the solar zenith angle, and the sensor viewing angle.
Single-Column Modeling, GCM Parameterizations and Atmospheric Radiation Measurement Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somerville, R.C.J.; Iacobellis, S.F.
2005-03-18
Our overall goal is identical to that of the Atmospheric Radiation Measurement (ARM) Program: the development of new and improved parameterizations of cloud-radiation effects and related processes, using ARM data at all three ARM sites, and the implementation and testing of these parameterizations in global and regional models. To test recently developed prognostic parameterizations based on detailed cloud microphysics, we have first compared single-column model (SCM) output with ARM observations at the Southern Great Plains (SGP), North Slope of Alaska (NSA) and Topical Western Pacific (TWP) sites. We focus on the predicted cloud amounts and on a suite of radiativemore » quantities strongly dependent on clouds, such as downwelling surface shortwave radiation. Our results demonstrate the superiority of parameterizations based on comprehensive treatments of cloud microphysics and cloud-radiative interactions. At the SGP and NSA sites, the SCM results simulate the ARM measurements well and are demonstrably more realistic than typical parameterizations found in conventional operational forecasting models. At the TWP site, the model performance depends strongly on details of the scheme, and the results of our diagnostic tests suggest ways to develop improved parameterizations better suited to simulating cloud-radiation interactions in the tropics generally. These advances have made it possible to take the next step and build on this progress, by incorporating our parameterization schemes in state-of-the-art 3D atmospheric models, and diagnosing and evaluating the results using independent data. Because the improved cloud-radiation results have been obtained largely via implementing detailed and physically comprehensive cloud microphysics, we anticipate that improved predictions of hydrologic cycle components, and hence of precipitation, may also be achievable. We are currently testing the performance of our ARM-based parameterizations in state-of-the--art global and regional models. One fruitful strategy for evaluating advances in parameterizations has turned out to be using short-range numerical weather prediction as a test-bed within which to implement and improve parameterizations for modeling and predicting climate variability. The global models we have used to date are the CAM atmospheric component of the National Center for Atmospheric Research (NCAR) CCSM climate model as well as the National Centers for Environmental Prediction (NCEP) numerical weather prediction model, thus allowing testing in both climate simulation and numerical weather prediction modes. We present detailed results of these tests, demonstrating the sensitivity of model performance to changes in parameterizations.« less
HUBBLE SPACE TELESCOPE RESOLVES VOLCANOES ON IO
NASA Technical Reports Server (NTRS)
2002-01-01
This picture is a composite of a black and white near infrared image of Jupiter and its satellite Io and a color image of Io at shorter wavelengths taken at almost the same time on March 5, 1994. These are the first images of a giant planet or its satellites taken by NASA's Hubble Space Telescope (HST) since the repair mission in December 1993. Io is too small for ground-based telescopes to see the surface details. The moon's angular diameter of one arc second is at the resolution limit of ground based telescopes. Many of these markings correspond to volcanoes that were first revealed in 1979 during the Voyager spacecraft flyby of Jupiter. Several of the volcanoes periodically are active because Io is heated by tides raised by Jupiter's powerful gravity. The volcano Pele appears as a dark spot surrounded by an irregular orange oval in the lower part of the image. The orange material has been ejected from the volcano and spread over a huge area. Though the volcano was first discovered by Voyager, the distinctive orange color of the volcanic deposits is a new discovery in these HST images. (Voyager missed it because its cameras were not sensitive to the near-infrared wavelengths where the color is apparent). The sulfur and sulfur dioxide that probably dominate Io's surface composition cannot produce this orange color, so the Pele volcano must be generating material with a more unusual composition, possibly rich in sodium. The Jupiter image, taken in near-infrared light, was obtained with HST's Wide Field and Planetary Camera in wide field mode. High altitude ammonia crystal clouds are bright in this image because they reflect infrared light before it is absorbed by methane in Jupiter's atmosphere. The most prominent feature is the Great Red Spot, which is conspicuous because of its high clouds. A cap of high-altitude haze appears at Jupiter's south pole. The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science. Credit: John Spencer, Lowell Observatory; NASA
Porwal, Anand; Khandelwal, Meenakshi; Punia, Vikas; Sharma, Vivek
2017-01-01
Aim: The purpose of this study was to evaluate the effect of different denture cleansers on the color stability, surface hardness, and roughness of different denture base resins. Materials and Methods: Three denture base resin materials (conventional heat cure resin, high impact resin, and polyamide denture base resin) were immersed for 180 days in commercially available two denture cleansers (sodium perborate and sodium hypochlorite). Color, surface roughness, and hardness were measured for each sample before and after immersion procedure. Statistical Analysis: One-way analysis of variance and Tukey's post hoc honestly significant difference test were used to evaluate color, surface roughness, and hardness data before and after immersion in denture cleanser (α =0.05). Results: All denture base resins tested exhibited a change in color, surface roughness, and hardness to some degree in both denture cleansers. Polyamides resin immersed in sodium perborate showed a maximum change in color after immersion for 180 days. Conventional heat cure resin immersed in sodium hypochlorite showed a maximum change in surface roughness and conventional heat cure immersed in sodium perborate showed a maximum change in hardness. Conclusion: Color changes of all denture base resins were within the clinically accepted range for color difference. Surface roughness change of conventional heat cure resin was not within the clinically accepted range of surface roughness. The choice of denture cleanser for different denture base resins should be based on the chemistry of resin and cleanser, denture cleanser concentration, and duration of immersion. PMID:28216847
Cloud layer thicknesses from a combination of surface and upper-air observations
NASA Technical Reports Server (NTRS)
Poore, Kirk D.; Wang, Junhong; Rossow, William B.
1995-01-01
Cloud layer thicknesses are derived from base and top altitudes by combining 14 years (1975-1988) of surface and upper-air observations at 63 sites in the Northern Hemisphere. Rawinsonde observations are employed to determine the locations of cloud-layer top and base by testing for dewpoint temperature depressions below some threshold value. Surface observations serve as quality checks on the rawinsonde-determined cloud properties and provide cloud amount and cloud-type information. The dataset provides layer-cloud amount, cloud type, high, middle, or low height classes, cloud-top heights, base heights and layer thicknesses, covering a range of latitudes from 0 deg to 80 deg N. All data comes from land sites: 34 are located in continental interiors, 14 are near coasts, and 15 are on islands. The uncertainties in the derived cloud properties are discussed. For clouds classified by low-, mid-, and high-top altitudes, there are strong latitudinal and seasonal variations in the layer thickness only for high clouds. High-cloud layer thickness increases with latitude and exhibits different seasonal variations in different latitude zones: in summer, high-cloud layer thickness is a maximum in the Tropics but a minimum at high latitudes. For clouds classified into three types by base altitude or into six standard morphological types, latitudinal and seasonal variations in layer thickness are very small. The thickness of the clear surface layer decreases with latitude and reaches a summer minimum in the Tropics and summer maximum at higher latitudes over land, but does not vary much over the ocean. Tropical clouds occur in three base-altitude groups and the layer thickness of each group increases linearly with top altitude. Extratropical clouds exhibit two groups, one with layer thickness proportional to their cloud-top altitude and one with small (less than or equal to 1000 m) layer thickness independent of cloud-top altitude.
NASA Astrophysics Data System (ADS)
Suzuki, H.; Yamashita, R.
2017-12-01
It is important to quantify amplitude of turbulent motion to understand the energy and momentum budgets and distribution of minor constituents in the upper mesosphere. In particular, to know the eddy diffusion coefficient of minor constituents which are locally and impulsively produced by energetic particle precipitations in the polar mesopause is one of the most important subjects in the upper atmospheric science. One of the straight methods to know the amplitude of the eddy motion is to measure the wind field with both spatial and temporal domain. However, observation technique satisfying such requirements is limited in this region. In this study, derivation of the horizontal wind field in the polar mesopause region by tracking the motion of noctilucent clouds (NLCs) is performed. NLC is the highest cloud in the Earth which appears in a mesopause region during summer season in both polar regions. Since the vertical structure of the NLC is sufficiently thin ( within several hundred meters in typical), the apparent horizontal motion observed from ground can be regarded as the result of transportation by the horizontal winds at a single altitude. In this presentation, initial results of wind field derivation by tracking a motion of noctilucent clouds (NLC) observed by a ground-based color digital camera in Iceland is reported. The procedure for wind field estimation consists with 3 steps; (1) projects raw images to a geographical map (2) enhances NLC structures by using FFT method (3) determines horizontal velocity vectors by applying template matching method to two sequential images. In this talk, a result of the wind derivation by using successive images of NLC with 3 minutes interval and 1.5h duration observed on the night of Aug 1st, 2013 will be reported as a case study.
Rod-cone based color vision in seals under photopic conditions.
Oppermann, Daniela; Schramme, Jürgen; Neumeyer, Christa
2016-08-01
Marine mammals have lost the ability to express S-cone opsin, and possess only one type of M/L-cone in addition to numerous rods. As they are cone monochromats they should be color blind. However, early behavioral experiments with fur seals and sea lions indicated discrimination ability between many shades of grey and blue or green. On the other hand, most recent training experiments with harbor seals under "mesopic" conditions demonstrated rod based color blindness (Scholtyssek et al., 2015). In our experiments we trained two harbor seals (Phoca vitulina) and two South African fur seals (Arctocephalus pusillus) with surface colors under photopic conditions. The seals had to detect a triangle on grey background shown on one of three test fields while the other two test fields were homogeneously grey. In a first series of experiments we determined brightness detection. We found a luminance contrast of >3% sufficient for correctly choosing the triangle. In the tests for color vision the triangle was blue, green or yellow in grey surround. The results show that the animals could see the colored triangle despite minimal or zero brightness contrast. Thus, seals have color vision based on the contribution of cones and rods even in bright daylight. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effectiveness of a Classroom Mindfulness Coloring Activity for Test Anxiety in Children
ERIC Educational Resources Information Center
Carsley, Dana; Heath, Nancy L.; Fajnerova, Sophia
2015-01-01
To evaluate the effectiveness of mindfulness-based structured versus unstructured coloring on test anxiety, 52 participants (53.8% female; M[subscript age] = 10.92 years, SD = 0.82) were randomly assigned to either a structured mandala (n = 26) or free coloring condition (n = 26), and completed a standardized anxiety measure to assess anxiety…
Aerosol-Forming Reactions of Glyoxal, Methylglyoxal and Amino Acids in Clouds
NASA Astrophysics Data System (ADS)
de Haan, D. O.; Smith, K. W.; Stroik, D. R.; Corrigan, A. L.; Lee, F. E.; Phan, J. T.; Conley, A. C.
2008-12-01
Glyoxal and methylglyoxal are two common aldehydes present in fog and cloud water. Amino acids are present in clouds at similar concentrations. Here we present bulk and aerosol mass spectroscopic data demonstrating that irreversible reactions between glyoxal and amino acids, triggered by droplet evaporation, produce N-derivatized imidazole compounds along with deeply colored Maillard reaction products. These reactions can occur in the dark and in the absence of oxidants. Reactions between methylglyoxal and amino acids produce analogous methylated products plus oligomers with masses up to m/z = 1000. These reactions, which go to completion on the 10-min-timescale of cloud processing, could be significant sources of secondary organic aerosol and humic-like substances (HULIS or brown carbon).
A Local Index of Cloud Immersion in Tropical Forests Using Time-Lapse Photography
NASA Astrophysics Data System (ADS)
Bassiouni, M.; Scholl, M. A.
2015-12-01
Data on the frequency, duration and elevation of cloud immersion is essential to improve estimates of cloud water deposition in water budgets in cloud forests. Here, we present a methodology to detect local cloud immersion in remote tropical forests using time-lapse photography. A simple approach is developed to detect cloudy conditions in photographs within the canopy where image depth during clear conditions may be less than 10 meters and moving leaves and branches and changes in lighting are unpredictable. A primary innovation of this study is that cloudiness is determined from images without using a reference clear image and without minimal threshold value determination or human judgment for calibration. Five sites ranging from 600 to 1000 meters elevation along a ridge in the Luquillo Critical Zone Observatory, Puerto Rico were each equipped with a trail camera programmed to take an image every 30 minutes since March 2014. Images were classified using four selected cloud-sensitive image characteristics (SCICs) computed for small image regions: contrast, the coefficient of variation and the entropy of the luminance of each image pixel, and image colorfulness. K-means clustering provided reasonable results to discriminate cloudy from clear conditions. Preliminary results indicate that 79-94% (daytime) and 85-93% (nighttime) of validation images were classified accurately at one open and two closed canopy sites. The euclidian distances between SCICs vectors of images during cloudy conditions and the SCICs vector of the centroid of the cluster of clear images show potential to quantify cloud density in addition to immersion. The classification method will be applied to determine spatial and temporal patterns of cloud immersion in the study area. The presented approach offers promising applications to increase observations of low-lying clouds at remote mountain sites where standard instruments to measure visibility and cloud base may not be practical.
Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view from above and to the south of the visualized area, showing the entire model. The entire region is overlain by a thin, transparent haze. In places the haze is high and thick, especially to the east (to the right of) the hotspot.Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on more sophisticated studies of Jupiter's cloud structure. The upper and lower clouds are separated in the rendering by an arbitrary amount, and the height variations are exaggerated by a factor of 25.The lower cloud is colored using the same false color scheme used in previously released image products, assigning red, green, and blue to the 756, 727, and 889 nanometer mosaics, respectively. Light bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the lower cloud with an overlying thin haze.The images used cover latitudes 1 to 10 degrees and are centered at longitude 336 degrees west. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers (about 930,000 miles) by the Solid State Imaging (CCD) system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.NASA Technical Reports Server (NTRS)
El-Baz, F. (Editor)
1979-01-01
Information is given on earth photographs obtained by the Apollo astronauts during the Apollo Soyuz Test Project. The data are arranged in three sections. A map index shows the boundaries of each photograph and is used for a quick survey of the coverage for a given geographical area. A tabular index provides the following data: list of photographs by serial number, description of geographic location, latitude and longitude of the center point of the photograph, date when photograph was taken, ground elapsed time, revolution number of Apollo spacecraft, approximate spacecraft altitude, tilt, sun angle, camera, and lens. The photographic index provides same size black and white prints made from the original color negatives.
Cloud and traditional videoconferencing technology for telemedicine and distance learning.
Liu, Wei-Li; Zhang, Kai; Locatis, Craig; Ackerman, Michael
2015-05-01
Cloud-based videoconferencing versus traditional systems are described for possible use in telemedicine and distance learning. Differences between traditional and cloud-based videoconferencing systems are examined, and the methods for identifying and testing systems are explained. Findings are presented characterizing the cloud conferencing genre and its attributes versus traditional H.323 conferencing. Because the technology is rapidly evolving and needs to be evaluated in reference to local needs, it is strongly recommended that this or other reviews not be considered substitutes for personal hands-on experience. This review identifies key attributes of the technology that can be used to appraise the relevance of cloud conferencing technology and to determine whether migration from traditional technology to a cloud environment is warranted. An evaluation template is provided for assessing systems appropriateness.
HUBBLE SPOTS NORTHERN HEMISPHERIC CLOUDS ON URANUS
NASA Technical Reports Server (NTRS)
2002-01-01
Using visible light, astronomers for the first time this century have detected clouds in the northern hemisphere of Uranus. The newest images, taken July 31 and Aug. 1, 1997 with NASA Hubble Space Telescope's Wide Field and Planetary Camera 2, show banded structure and multiple clouds. Using these images, Dr. Heidi Hammel (Massachusetts Institute of Technology) and colleagues Wes Lockwood (Lowell Observatory) and Kathy Rages (NASA Ames Research Center) plan to measure the wind speeds in the northern hemisphere for the first time. Uranus is sometimes called the 'sideways' planet, because its rotation axis is tipped more than 90 degrees from the planet's orbit around the Sun. The 'year' on Uranus lasts 84 Earth years, which creates extremely long seasons - winter in the northern hemisphere has lasted for nearly 20 years. Uranus has also been called bland and boring, because no clouds have been detectable in ground-based images of the planet. Even to the cameras of the Voyager spacecraft in 1986, Uranus presented a nearly uniform blank disk, and discrete clouds were detectable only in the southern hemisphere. Voyager flew over the planet's cloud tops near the dead of northern winter (when the northern hemisphere was completely shrouded in darkness). Spring has finally come to the northern hemisphere of Uranus. The newest images, both the visible-wavelength ones described here and those taken a few days earlier with the Near Infrared and Multi-Object Spectrometer (NICMOS) by Erich Karkoschka (University of Arizona), show a planet with banded structure and detectable clouds. Two images are shown here. The 'aqua' image (on the left) is taken at 5,470 Angstroms, which is near the human eye's peak response to wavelength. Color has been added to the image to show what a person on a spacecraft near Uranus might see. Little structure is evident at this wavelength, though with image-processing techniques, a small cloud can be seen near the planet's northern limb (rightmost edge). The 'red' image (on the right) is taken at 6,190 Angstroms, and is sensitive to absorption by methane molecules in the planet's atmosphere. The banded structure of Uranus is evident, and the small cloud near the northern limb is now visible. Scientists are expecting that the discrete clouds and banded structure may become even more pronounced as Uranus continues in its slow pace around the Sun. 'Some parts of Uranus haven't seen the Sun in decades,' says Dr. Hammel, 'and historical records suggest that we may see the development of more banded structure and patchy clouds as the planet's year progresses.' Some scientists have speculated that the winds of Uranus are not symmetric around the planet's equator, but no clouds were visible to test those theories. The new data will provide the opportunity to measure the northern winds. Hammel and colleagues expect to have results soon. Credits: Heidi Hammel (Massachusetts Institute of Technology), and NASA.
2017-08-14
Clouds on Saturn take on the appearance of strokes from a cosmic brush thanks to the wavy way that fluids interact in Saturn's atmosphere. Neighboring bands of clouds move at different speeds and directions depending on their latitudes. This generates turbulence where bands meet and leads to the wavy structure along the interfaces. Saturn's upper atmosphere generates the faint haze seen along the limb of the planet in this image. This false color view is centered on 46 degrees north latitude on Saturn. The images were taken with the Cassini spacecraft narrow-angle camera on May 18, 2017 using a combination of spectral filters which preferentially admit wavelengths of near-infrared light. The image filter centered at 727 nanometers was used for red in this image; the filter centered at 750 nanometers was used for blue. (The green color channel was simulated using an average of the two filters.) The view was obtained at a distance of approximately 750,000 miles (1.2 million kilometers) from Saturn. Image scale is about 4 miles (7 kilometers) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA21341
NASA Technical Reports Server (NTRS)
Darzi, Michael; Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor)
1992-01-01
Methods for detecting and screening cloud contamination from satellite derived visible and infrared data are reviewed in this document. The methods are applicable to past, present, and future polar orbiting satellite radiometers. Such instruments include the Coastal Zone Color Scanner (CZCS), operational from 1978 through 1986; the Advanced Very High Resolution Radiometer (AVHRR); the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), scheduled for launch in August 1993; and the Moderate Resolution Imaging Spectrometer (IMODIS). Constant threshold methods are the least demanding computationally, and often provide adequate results. An improvement to these methods are the least demanding computationally, and often provide adequate results. An improvement to these methods is to determine the thresholds dynamically by adjusting them according to the areal and temporal distributions of the surrounding pixels. Spatial coherence methods set thresholds based on the expected spatial variability of the data. Other statistically derived methods and various combinations of basic methods are also reviewed. The complexity of the methods is ultimately limited by the computing resources. Finally, some criteria for evaluating cloud screening methods are discussed.
NASA Astrophysics Data System (ADS)
Veselovskii, I.; Goloub, P.; Podvin, T.; Tanre, D.; Ansmann, A.; Korenskiy, M.; Borovoi, A.; Hu, Q.; Whiteman, D. N.
2017-11-01
The existing models predict that corner reflection (CR) of laser radiation by simple ice crystals of perfect shape, such as hexagonal columns or plates, can provide a significant contribution to the ice cloud backscattering. However in real clouds the CR effect may be suppressed due to crystal deformation and surface roughness. In contrast to the extinction coefficient, which is spectrally independent, consideration of diffraction associated with CR results in a spectral dependence of the backscattering coefficient. Thus measuring the spectral dependence of the cloud backscattering coefficient, the contribution of CR can be identified. The paper presents the results of profiling of backscattering coefficient (β) and particle depolarization ratio (δ) of ice and mixed-phase clouds over West Africa by means of a two-wavelength polarization Mie-Raman lidar operated at 355 nm and 532 nm during the SHADOW field campaign. The lidar observations were performed at a slant angle of 43 degree off zenith, thus CR from both randomly oriented crystals and oriented plates could be analyzed. For the most of the observations the cloud backscatter color ratio β355/β532 was close to 1.0, and no spectral features that might indicate the presence of CR of randomly oriented crystals were revealed. Still, in two measurement sessions we observed an increase of backscatter color ratio to a value of nearly 1.3 simultaneously with a decrease of the spectral depolarization ratio δ355/δ532 ratio from 1.0 to 0.8 inside the layers containing precipitating ice crystals. We attribute these changes in optical properties to corner reflections by horizontally oriented ice plates.
Lohitha, K; Prakash, M; Gopinadh, A; Sai Sankar, A J; Sandeep, C H; Sreedevi, B
2016-01-01
Regular usage of denture cleansers is recommended in complete denture wearers for effective plaque control, and these cleansers alter the physical properties of acrylic resin over a period of time. Thus, an in vitro study was carried out to assess the effect of denture cleansers on the color stability of heat-cure denture base resin. The aim of the present study was to evaluate the effect of commercially available fast-acting denture cleansers on the color stability of heat-cure denture base resin at different time intervals. Thirty-six heat-cure acrylic resin (Ivoclar Triplex Hot-V) specimens are randomly allocated into four groups - Group A (distilled water as control); Group B (polident - 3 min); Group C (fixodent scope plus); and Group D (stain away plus) comprising of nine samples each. After recording the baseline values, the specimens were immersed in their respective cleansing solutions for a prescribed time interval. This procedure was repeated daily, and the color change (ΔE) was evaluated after 90 and 180 days interval using a colorimeter in a standard "Commission International de l'Eclairage" color system. Paired t -test and Dunnett's T3 test. All the groups exhibited a variable color change (ΔE) for an immersion period of 90 days. However, significant color differences ( P = 0.001) were noticed among the test groups after 180 days. The color change of denture base resin was greater for Group D followed by Groups B, C, and A respectively after 180 days of immersion. The ΔE values of all test groups increased with time.
NASA Astrophysics Data System (ADS)
Stillinger, T.; Dozier, J.; Phares, N.; Rittger, K.
2015-12-01
Discrimination between snow and clouds poses a serious but tractable challenge to the consistent delivery of high-quality information on mountain snow from remote sensing. Clouds obstruct the surface from the sensor's view, and the similar optical properties of clouds and snow make accurate discrimination difficult. We assess the performance of the current Landsat 8 operational snow and cloud mask products (LDCM CCA and CFmask), along with a new method, using over one million manually identified snow and clouds pixels in Landsat 8 scenes. The new method uses physically based scattering models to generate spectra in each Landsat 8 band, at that scene's solar illumination, for snow and cloud particle sizes that cover the plausible range for each. The modeled spectra are compared to pixels' spectra via several independent ways to identify snow and clouds. The results are synthesized to create a final snow/cloud mask, and the method can be applied to any multispectral imager with bands covering the visible, near-infrared, and shortwave-infrared regions. Each algorithm we tested misidentifies snow and clouds in both directions to varying degrees. We assess performance with measures of Precision, Recall, and the F statistic, which are based on counts of true and false positives and negatives. Tests for significance in differences between spectra in the measured and modeled values among incorrectly identified pixels help ascertain reasons for misidentification. A cloud mask specifically designed to separate snow from clouds is a valuable tool for those interested in remotely sensing snow cover. Given freely available remote sensing datasets and computational tools to feasibly process entire mission histories for an area of interest, enabling researchers to reliably identify and separate snow and clouds increases the usability of the data for hydrological and climatological studies.
Research on cloud-based remote measurement and analysis system
NASA Astrophysics Data System (ADS)
Gao, Zhiqiang; He, Lingsong; Su, Wei; Wang, Can; Zhang, Changfan
2015-02-01
The promising potential of cloud computing and its convergence with technologies such as cloud storage, cloud push, mobile computing allows for creation and delivery of newer type of cloud service. Combined with the thought of cloud computing, this paper presents a cloud-based remote measurement and analysis system. This system mainly consists of three parts: signal acquisition client, web server deployed on the cloud service, and remote client. This system is a special website developed using asp.net and Flex RIA technology, which solves the selective contradiction between two monitoring modes, B/S and C/S. This platform supplies customer condition monitoring and data analysis service by Internet, which was deployed on the cloud server. Signal acquisition device is responsible for data (sensor data, audio, video, etc.) collection and pushes the monitoring data to the cloud storage database regularly. Data acquisition equipment in this system is only conditioned with the function of data collection and network function such as smartphone and smart sensor. This system's scale can adjust dynamically according to the amount of applications and users, so it won't cause waste of resources. As a representative case study, we developed a prototype system based on Ali cloud service using the rotor test rig as the research object. Experimental results demonstrate that the proposed system architecture is feasible.
ERIC Educational Resources Information Center
Spielberg, Freya; Kurth, Ann; Reidy, William; McKnight, Teka; Dikobe, Wame; Wilson, Charles
2011-01-01
This article highlights findings from an evaluation that explored the impact of mobile versus clinic-based testing, rapid versus central-lab based testing, incentives for testing, and the use of a computer counseling program to guide counseling and automate evaluation in a mobile program reaching people of color at risk for HIV. The program's…
STS-43 Earth observation of a colorful sunrise
1991-08-11
STS-43 Earth observation taken aboard Atlantis, Orbiter Vehicle (OV) 104, captures the Earth's limb at sunrise with unusual cloud patterns silhouetted by the sunlight and rising into the terminator lines.
Overhead Projector Demonstrations.
ERIC Educational Resources Information Center
Kolb, Doris, Ed.
1989-01-01
Included are demonstrations using the overhead projector to show change in optical rotation with wavelength and aromatic pi cloud availability, and formation of colored charge-transfer complexes. Instructional techniques unique to these topics are discussed. (CW)
Ghosh, Soumen; Alam, Md Akhtarul; Ganguly, Aniruddha; Guchhait, Nikhil
2015-01-01
A series of Schiff bases synthesized by the condensation of benzohydrazide and -NO2 substituted benzaldehyde have been used as selective fluoride ion sensor. Test paper coated with these synthetic Schiff bases (test kits) can detect fluoride ion selectively with a drastic color change and detection can be achieved by just using the naked-eye without the help of any optical instrument. Interestingly, the position of -NO2 group in the amido Schiff bases has an effect on the sensitivity as well as on the change of color of species. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jethva, H. T.; Torres, O.; Waquet, F.; Chand, D.
2013-12-01
Atmospheric aerosols are known to produce a net cooling effect in the cloud-free conditions. However, when present over the reflective cloud decks, absorbing aerosols such as biomass burning generated smoke and wind-blown dust can potentially exert a large positive forcing through enhanced atmospheric heating resulting from cloud-aerosol radiative interactions. The interest on this aspect of aerosol science has grown significantly in the recent years. Particularly, development of the satellite-based retrieval techniques and unprecedented knowledge on the above-cloud aerosol optical depth (ACAOD) is of great relevance. A direct validation of satellite ACAOD is a difficult task primarily due to lack of ample in situ and/or remote sensing measurements of aerosols above cloud. In these circumstances, a comparative analysis on the inter-satellite ACAOD retrievals can be performed for the sack of consistency check. Here, we inter-compare the ACAOD of biomass burning plumes observed from different A-train sensors, i.e., MODIS [Jethva et al., 2013], CALIOP [Chand et al., 2008], POLDER [Waquet et al., 2009], and OMI [Torres et al., 2012]. These sensors have been shown to acquire sensitivity and independent capabilities to detect and retrieve aerosol loading above marine stratocumulus clouds--a kind of situation often found over the southeastern Atlantic Ocean during dry burning season. A systematic one-to-one comparison reveals that, in general, all passive sensors and CALIOP-based research methods retrieve comparable ACAOD over homogeneous cloud fields. The high-resolution sensors (MODIS and CALIOP) are able to retrieve aerosols over thin clouds but with larger discrepancies. Given the different types of sensor measurements processed with different algorithms, a reasonable agreement between them is encouraging. A direct validation of satellite-based ACAOD remains an open challenge for which dedicated field measurements over the region of frequent aerosol/cloud overlap are a prime requirement. Jethva, H., O. Torres, L. A. Remer, P. K. Bhartia (2013), A Color Ratio Method for Simultaneous Retrieval of Aerosol and Cloud Optical Thickness of Above-Cloud Absorbing Aerosols From Passive Sensors: Application to MODIS Measurements, Geoscience and Remote Sensing, IEEE Transactions on, 51(7), pp. 3862-3870, doi: 10.1109/TGRS.2012.2230008. Chand, D., T. L. Anderson, R. Wood, R. J. Charlson, Y. Hu, Z. Liu, and M. Vaughan (2008), Quantifying above-cloud aerosol using spaceborne lidar for improved understanding of cloudy-sky direct climate forcing, J. Geophys. Res., 113, D13206, doi:10.1029/2007JD009433. Waquet, F., J. Riedi, L. C. Labonnote, P. Goloub, B. Cairns, J.-L. Deuzeand, and D. Tanre (2009), Aerosol remote sensing over clouds using a-train observations, J. Atmos. Sci., 66(8), 2468-2480, doi: http://dx.doi.org/10.1175/2009JAS3026.1 Torres, O., H. Jethva, and P. K. Bhartia (2012), Retrieval of aerosol optical depth above clouds from OMI observations: Sensitivity analysis and case studies, J. Atmos. Sci., 69(3), 1037-1053, doi: http://dx.doi.org/10.1175/JAS-D-11-0130.
Ground-based cloud classification by learning stable local binary patterns
NASA Astrophysics Data System (ADS)
Wang, Yu; Shi, Cunzhao; Wang, Chunheng; Xiao, Baihua
2018-07-01
Feature selection and extraction is the first step in implementing pattern classification. The same is true for ground-based cloud classification. Histogram features based on local binary patterns (LBPs) are widely used to classify texture images. However, the conventional uniform LBP approach cannot capture all the dominant patterns in cloud texture images, thereby resulting in low classification performance. In this study, a robust feature extraction method by learning stable LBPs is proposed based on the averaged ranks of the occurrence frequencies of all rotation invariant patterns defined in the LBPs of cloud images. The proposed method is validated with a ground-based cloud classification database comprising five cloud types. Experimental results demonstrate that the proposed method achieves significantly higher classification accuracy than the uniform LBP, local texture patterns (LTP), dominant LBP (DLBP), completed LBP (CLTP) and salient LBP (SaLBP) methods in this cloud image database and under different noise conditions. And the performance of the proposed method is comparable with that of the popular deep convolutional neural network (DCNN) method, but with less computation complexity. Furthermore, the proposed method also achieves superior performance on an independent test data set.
Barta, András; Horváth, Gábor; Meyer-Rochow, Victor Benno
2005-06-01
In the late 1960s it was hypothesized that Vikings had been able to navigate the open seas, even when the sun was occluded by clouds or below the sea horizon, by using the angle of polarization of skylight. To detect the direction of skylight polarization, they were thought to have made use of birefringent crystals, called "sun-stones," and a large part of the scientific community still firmly believe that Vikings were capable of polarimetric navigation. However, there are some critics who treat the usefulness of skylight polarization for orientation under partly cloudy or twilight conditions with extreme skepticism. One of their counterarguments has been the assumption that solar positions or solar azimuth directions could be estimated quite accurately by the naked eye, even if the sun was behind clouds or below the sea horizon. Thus under partly cloudy or twilight conditions there might have been no serious need for a polarimetric method to determine the position of the sun. The aim of our study was to test quantitatively the validity of this qualitative counterargument. In our psychophysical laboratory experiments, test subjects were confronted with numerous 180 degrees field-of-view color photographs of partly cloudy skies with the sun occluded by clouds or of twilight skies with the sun below the horizon. The task of the subjects was to guess the position or the azimuth direction of the invisible sun with the naked eye. We calculated means and standard deviations of the estimated solar positions and azimuth angles to characterize the accuracy of the visual sun location. Our data do not support the common belief that the invisible sun can be located quite accurately from the celestial brightness and/or color patterns under cloudy or twilight conditions. Although our results underestimate the accuracy of visual sun location by experienced Viking navigators, the mentioned counterargument cannot be taken seriously as a valid criticism of the theory of the alleged polarimetric Viking navigation. Our results, however, do not bear on the polarimetric theory itself.
NASA Astrophysics Data System (ADS)
Barta, András; Horváth, Gábor; Benno Meyer-Rochow, Victor
2005-06-01
In the late 1960s it was hypothesized that Vikings had been able to navigate the open seas, even when the sun was occluded by clouds or below the sea horizon, by using the angle of polarization of skylight. To detect the direction of skylight polarization, they were thought to have made use of birefringent crystals, called "sunstones," and a large part of the scientific community still firmly believe that Vikings were capable of polarimetric navigation. However, there are some critics who treat the usefulness of skylight polarization for orientation under partly cloudy or twilight conditions with extreme skepticism. One of their counterarguments has been the assumption that solar positions or solar azimuth directions could be estimated quite accurately by the naked eye, even if the sun was behind clouds or below the sea horizon. Thus under partly cloudy or twilight conditions there might have been no serious need for a polarimetric method to determine the position of the sun. The aim of our study was to test quantitatively the validity of this qualitative counterargument. In our psychophysical laboratory experiments, test subjects were confronted with numerous 180° field-of-view color photographs of partly cloudy skies with the sun occluded by clouds or of twilight skies with the sun below the horizon. The task of the subjects was to guess the position or the azimuth direction of the invisible sun with the naked eye. We calculated means and standard deviations of the estimated solar positions and azimuth angles to characterize the accuracy of the visual sun location. Our data do not support the common belief that the invisible sun can be located quite accurately from the celestial brightness and/or color patterns under cloudy or twilight conditions. Although our results underestimate the accuracy of visual sun location by experienced Viking navigators, the mentioned counterargument cannot be taken seriously as a valid criticism of the theory of the alleged polarimetric Viking navigation. Our results, however, do not bear on the polarimetric theory itself.
NASA Technical Reports Server (NTRS)
1997-01-01
Clouds and hazes at various altitudes within the dynamic Jovian atmosphere are revealed by multi-color imaging taken by the Near-Infrared Mapping Spectrometer (NIMS) onboard the Galileo spacecraft. These images were taken during the second orbit (G2) on September 5, 1996 from an early-morning vantage point 2.1 million kilometers (1.3 million miles) above Jupiter. They show the planet's appearance as viewed at various near-infrared wavelengths, with distinct differences due primarily to variations in the altitudes and opacities of the cloud systems. The top left and right images, taken at 1.61 microns and 2.73 microns respectively, show relatively clear views of the deep atmosphere, with clouds down to a level about three times the atmospheric pressure at the Earth's surface.
By contrast, the middle image in top row, taken at 2.17 microns, shows only the highest altitude clouds and hazes. This wavelength is severely affected by the absorption of light by hydrogen gas, the main constituent of Jupiter's atmosphere. Therefore, only the Great Red Spot, the highest equatorial clouds, a small feature at mid-northern latitudes, and thin, high photochemical polar hazes can be seen. In the lower left image, at 3.01 microns, deeper clouds can be seen dimly against gaseous ammonia and methane absorption. In the lower middle image, at 4.99 microns, the light observed is the planet's own indigenous heat from the deep, warm atmosphere.The false color image (lower right) succinctly shows various cloud and haze levels seen in the Jovian atmosphere. This image indicates the temperature and altitude at which the light being observed is produced. Thermally-rich red areas denote high temperatures from photons in the deep atmosphere leaking through minimal cloud cover; green denotes cool temperatures of the tropospheric clouds; blue denotes cold of the upper troposphere and lower stratosphere. The polar regions appear purplish, because small-particle hazes allow leakage and reflectivity, while yellowish regions at temperate latitudes may indicate tropospheric clouds with small particles which also allow leakage. A mix of high and low-altitude aerosols causes the aqua appearance of the Great Red Spot and equatorial region.The Jet Propulsion Laboratory manages the Galileo mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web Galileo mission home page at http://galileo.jpl.nasa.gov.Westfall, Alexandra; Giusti, Mónica
Cosmetics, such as lipstick, can affect an individual's perception of attractiveness and morale. Consumer concern with the safety of synthetic colorants has made the need for alternative natural color sources increasingly urgent. Our goal was to evaluate the feasibility of anthocyanin (ACN) extracts as colorants in lipstick formulations. Lipstick formulations were colored with ACN-rich materials. Accelerated environmental testing typical of the cosmetic industry were used: incubation at 20°, 37°, and 45°C for 12 weeks and temperature abuse cycles between 20°/37°C or -20°/20°C. Color (CIELab) and total monomeric ACN (pH-differential) changes were monitored to determine shelf stability of the product. All formulations exhibited acceptable color for lipsticks. Shelf stability was determined to exceed 2 year based on the accelerated testing conditions. Formulations containing cyanidin as their main ACN were the most stable (elderberry, purple corn, and purple sweet potato). ACNs could be used as suitable alternatives to synthetic colorants in lipid-based topical formulations.
Searching for Young Stars in Cepheus C
NASA Astrophysics Data System (ADS)
Evans, Sam; Rebull, Luisa; Rutherford, Thomas; Stalnaker, Olivia; Taylor, John; Efsits, Gabriel; Harl, Linda; Keil, Shayna; Learman, Duncan; Leonard, Liam; Russell, Aaron
2018-01-01
We used archival Herschel Space Observatory data to search for young stellar objects (YSOs) in the Cepheus C region of the molecular cloud Cepheus OB3. Previous work by Gutermuth et al. (2009) identified 114 YSO candidates in this region based on Spitzer/IRAC data. Work by Orr et al. (2016) refined a list of approximately 300 young star candidates to 245 likely YSOs. Our initial search focused on longer infrared wavelength data – Herschel (70, 160, 250, 350, 500 μm) archival data and SCUBA (450, 850 μm) data from the literature (DiFrancesco et al. 2008). Through image inspection and catalog matching, we assembled a list of 54 candidate YSOs detected at wavelengths longer than 22 μm. For each source, we constructed a spectral energy distribution (SED) by aggregating available shorter wavelength data from the literature and assembling photometry from released PACS catalogs, preliminary SPIRE catalogs, and our own photometric measurements. We also created color-color and color-magnitude diagrams to see how these sources compared to each other, other populations of YSOs, and objects in extragalactic regions. Each source was then classified based on its SED shape and its locations on color-color and color-magnitude diagrams. From the initial list of 54 candidates, we suspect all are likely YSOs, some of which are very embedded; ~40% are likely SED Class I or 0. Approximately 20% of the 54 sources have not been previously identified. By beginning the investigation of YSOs in this region, we are adding to the body of YSO knowledge which can be used to understand the process of star formation. This research was made possible through the NASA/IPAC Teacher Archive Research Program (NITARP) and was funded by NASA Astrophysics Data Program.
A robust threshold-based cloud mask for the HRV channel of MSG SEVIRI
NASA Astrophysics Data System (ADS)
Bley, S.; Deneke, H.
2013-03-01
A robust threshold-based cloud mask for the high-resolution visible (HRV) channel (1 × 1 km2) of the METEOSAT SEVIRI instrument is introduced and evaluated. It is based on operational EUMETSAT cloud mask for the low resolution channels of SEVIRI (3 × 3 km2), which is used for the selection of suitable thresholds to ensure consistency with its results. The aim of using the HRV channel is to resolve small-scale cloud structures which cannot be detected by the low resolution channels. We find that it is of advantage to apply thresholds relative to clear-sky reflectance composites, and to adapt the threshold regionally. Furthermore, the accuracy of the different spectral channels for thresholding and the suitability of the HRV channel are investigated for cloud detection. The case studies show different situations to demonstrate the behaviour for various surface and cloud conditions. Overall, between 4 and 24% of cloudy low-resolution SEVIRI pixels are found to contain broken clouds in our test dataset depending on considered region. Most of these broken pixels are classified as cloudy by EUMETSAT's cloud mask, which will likely result in an overestimate if the mask is used as estimate of cloud fraction.
A shape-based segmentation method for mobile laser scanning point clouds
NASA Astrophysics Data System (ADS)
Yang, Bisheng; Dong, Zhen
2013-07-01
Segmentation of mobile laser point clouds of urban scenes into objects is an important step for post-processing (e.g., interpretation) of point clouds. Point clouds of urban scenes contain numerous objects with significant size variability, complex and incomplete structures, and holes or variable point densities, raising great challenges for the segmentation of mobile laser point clouds. This paper addresses these challenges by proposing a shape-based segmentation method. The proposed method first calculates the optimal neighborhood size of each point to derive the geometric features associated with it, and then classifies the point clouds according to geometric features using support vector machines (SVMs). Second, a set of rules are defined to segment the classified point clouds, and a similarity criterion for segments is proposed to overcome over-segmentation. Finally, the segmentation output is merged based on topological connectivity into a meaningful geometrical abstraction. The proposed method has been tested on point clouds of two urban scenes obtained by different mobile laser scanners. The results show that the proposed method segments large-scale mobile laser point clouds with good accuracy and computationally effective time cost, and that it segments pole-like objects particularly well.
Approach for Text Classification Based on the Similarity Measurement between Normal Cloud Models
Dai, Jin; Liu, Xin
2014-01-01
The similarity between objects is the core research area of data mining. In order to reduce the interference of the uncertainty of nature language, a similarity measurement between normal cloud models is adopted to text classification research. On this basis, a novel text classifier based on cloud concept jumping up (CCJU-TC) is proposed. It can efficiently accomplish conversion between qualitative concept and quantitative data. Through the conversion from text set to text information table based on VSM model, the text qualitative concept, which is extraction from the same category, is jumping up as a whole category concept. According to the cloud similarity between the test text and each category concept, the test text is assigned to the most similar category. By the comparison among different text classifiers in different feature selection set, it fully proves that not only does CCJU-TC have a strong ability to adapt to the different text features, but also the classification performance is also better than the traditional classifiers. PMID:24711737
Atmospheric Science Data Center
2013-04-22
... play geographical detective! This natural-color image from the Multi-angle Imaging SpectroRadiometer (MISR) instrument on the Terra ... type of clouds pictured here are often associated with lightning and sustained rainstorms lasting several hours or more. 5. ...
Estimating dust production rate of carbon-rich stars in the Small Magellanic Cloud
NASA Astrophysics Data System (ADS)
Nanni, A.; Marigo, P.; Groenewegen, M. A. T.; Aringer, B.; Pastorelli, G.; Rubele, S.; Girardi, L.; Bressan, A.; Bladh, S.
We compute a grid of spectra describing dusty Circumstellar Envelopes of Thermally Pulsing Asymptotic Giant Branch carbon-rich stars by employing a physically grounded description for dust growth. The optical constants for carbon dust have been selected in order to reproduce simultaneously the most important color-color diagrams in the Near and Mid Infrared bands. We fit the Spectral Energy Distribution of ≈2000 carbon-rich in the Small Magellanic Cloud and we compute their total dust production rate. We compare our results with the ones in the literature. Different choices of the dust-to-gas ratio and outflow expansion velocity adopted in different works, yield, in some cases, a total dust budget about three times lower than the one derived from our scheme, with the same optical data set for carbon dust.
NASA Technical Reports Server (NTRS)
2007-01-01
This is a montage of New Horizons images of Jupiter and its volcanic moon Io, taken during the spacecraft's Jupiter flyby in early 2007. The Jupiter image is an infrared color composite taken by the spacecraft's near-infrared imaging spectrometer, the Linear Etalon Imaging Spectral Array (LEISA) at 1:40 UT on Feb. 28, 2007. The infrared wavelengths used (red: 1.59 um, green: 1.94 um, blue: 1.85 um) highlight variations in the altitude of the Jovian cloud tops, with blue denoting high-altitude clouds and hazes, and red indicating deeper clouds. The prominent bluish-white oval is the Great Red Spot. The observation was made at a solar phase angle of 75 degrees but has been projected onto a crescent to remove distortion caused by Jupiter's rotation during the scan. The Io image, taken at 00:25 UT on March 1st 2007, is an approximately true-color composite taken by the panchromatic Long-Range Reconnaissance Imager (LORRI), with color information provided by the 0.5 um ('blue') and 0.9 um ('methane') channels of the Multispectral Visible Imaging Camera (MVIC). The image shows a major eruption in progress on Io's night side, at the northern volcano Tvashtar. Incandescent lava glows red beneath a 330-kilometer high volcanic plume, whose uppermost portions are illuminated by sunlight. The plume appears blue due to scattering of light by small particles in the plume This montage appears on the cover of the Oct. 12, 2007, issue of Science magazine.NASA Astrophysics Data System (ADS)
Toledo, D.; Rannou, P.; Pommereau, J.-P.; Foujols, T.
2016-08-01
A lightweight and sophisticated optical depth sensor (ODS) able to measure alternatively scattered flux at zenith and the sum of the direct flux and the scattered flux in blue and red has been developed to work in martian environment. The principal goals of ODS are to perform measurements of the daily mean dust opacity and to retrieve the altitude and optical depth of high altitude clouds at twilight, crucial parameters in the understanding of martian meteorology. The retrieval procedure of dust opacity is based on the use of radiative transfer simulations reproducing observed changes in the solar flux during the day as a function of 4 free parameters: dust opacity in blue and red, and effective radius and effective width of dust size distribution. The detection of clouds is undertaken by looking at the time variation of the color index (CI), defined as the ratio between red and blue ODS channels, at twilight. The retrieval of altitude and optical depth of clouds is carried out using a radiative transfer model in spherical geometry to simulate the CI time variation at twilight. Here the different retrieval procedures to analyze ODS signals, as well as the results obtained in different sensitivity analysis are presented and discussed.
A New View on Jupiter's North Pole
2018-03-07
This computer-generated image is based on an infrared image of Jupiter's north polar region that was acquired on February 2, 2017, by the Jovian Infrared Auroral Mapper (JIRAM) instrument aboard Juno during the spacecraft's fourth pass over Jupiter. The image shows the structure of the cyclonic pattern observed over Jupiter's North pole: a central cyclone surrounded by eight circumpolar cyclones with diameters ranging from 2,500 to 2,900 miles (4,000 to 4,600 kilometers) across. JIRAM is able to collect images in the infrared wavelengths around 5 micrometers (µm) by measuring the intensity of the heat coming out of the planet. The heat from a planet that is radiated into space is called the radiance. This image is an enhancement of the original JIRAM image. In order to give the picture a 3-D shape, the enhancement starts from the idea that where the radiance has its highest value, there are no clouds and JIRAM can see deeper into the atmosphere. Consequently, all the other areas of the image are originally shaded more or less by clouds of different thickness. Then, to create these pictures, the originals have been inverted to give the thicker clouds the whitish color and the third dimension as the clouds we normally see here in the Earth's atmosphere. https://photojournal.jpl.nasa.gov/catalog/PIA22336
Testing pigeon memory in a change detection task.
Wright, Anthony A; Katz, Jeffrey S; Magnotti, John; Elmore, L Caitlin; Babb, Stephanie; Alwin, Sarah
2010-04-01
Six pigeons were trained in a change detection task with four colors. They were shown two colored circles on a sample array, followed by a test array with the color of one circle changed. The pigeons learned to choose the changed color and transferred their performance to four unfamiliar colors, suggesting that they had learned a generalized concept of color change. They also transferred performance to test delays several times their 50-msec training delay without prior delay training. The accurate delay performance of several seconds suggests that their change detection was memory based, as opposed to a perceptual attentional capture process. These experiments are the first to show that an animal species (pigeons, in this case) can learn a change detection task identical to ones used to test human memory, thereby providing the possibility of directly comparing short-term memory processing across species.
GPU-Based Point Cloud Superpositioning for Structural Comparisons of Protein Binding Sites.
Leinweber, Matthias; Fober, Thomas; Freisleben, Bernd
2018-01-01
In this paper, we present a novel approach to solve the labeled point cloud superpositioning problem for performing structural comparisons of protein binding sites. The solution is based on a parallel evolution strategy that operates on large populations and runs on GPU hardware. The proposed evolution strategy reduces the likelihood of getting stuck in a local optimum of the multimodal real-valued optimization problem represented by labeled point cloud superpositioning. The performance of the GPU-based parallel evolution strategy is compared to a previously proposed CPU-based sequential approach for labeled point cloud superpositioning, indicating that the GPU-based parallel evolution strategy leads to qualitatively better results and significantly shorter runtimes, with speed improvements of up to a factor of 1,500 for large populations. Binary classification tests based on the ATP, NADH, and FAD protein subsets of CavBase, a database containing putative binding sites, show average classification rate improvements from about 92 percent (CPU) to 96 percent (GPU). Further experiments indicate that the proposed GPU-based labeled point cloud superpositioning approach can be superior to traditional protein comparison approaches based on sequence alignments.
Statistical analysis of multivariate atmospheric variables. [cloud cover
NASA Technical Reports Server (NTRS)
Tubbs, J. D.
1979-01-01
Topics covered include: (1) estimation in discrete multivariate distributions; (2) a procedure to predict cloud cover frequencies in the bivariate case; (3) a program to compute conditional bivariate normal parameters; (4) the transformation of nonnormal multivariate to near-normal; (5) test of fit for the extreme value distribution based upon the generalized minimum chi-square; (6) test of fit for continuous distributions based upon the generalized minimum chi-square; (7) effect of correlated observations on confidence sets based upon chi-square statistics; and (8) generation of random variates from specified distributions.
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Moreira, M. A.; Assuncao, G. V.; Novaes, R. A.; Mendoza, A. A. B.; Bauer, C. A.; Ritter, I. T.; Barros, J. A. I.; Perez, J. E.; Thedy, J. L. O.
1983-01-01
The objective was to test the feasibility of the application of MSS-LANDSAT data to irrigated rice crop identification and area evaluation, within four rice growing regions of the Rio Grande do Sul state, in order to extend the methodology for the whole state. The applied methodology was visual interpretation of the following LANDSAT products: channels 5 and 7 black and white imageries and color infrared composite imageries all at the scale of 1:250.000. For crop identification and evaluation, the multispectral criterion and the seasonal variation were utilized. Based on the results it was possible to conclude that: (1) the satellite data were efficient for crop area identification and evaluation; (2) the utilization of the multispectral criterion, allied to the seasonal variation of the rice crop areas from the other crops and, (3) the large cloud cover percentage found in the satellite data made it impossible to realize a rice crop spectral monitoring and, therefore, to define the best dates for such data acquisition for rice crop assessment.
The VMC Survey. XIX. Classical Cepheids in the Small Magellanic Cloud
NASA Astrophysics Data System (ADS)
Ripepi, V.; Marconi, M.; Moretti, M. I.; Clementini, G.; Cioni, M.-R. L.; de Grijs, R.; Emerson, J. P.; Groenewegen, M. A. T.; Ivanov, V. D.; Piatti, A. E.
2016-06-01
The “VISTA near-infrared YJK s survey of the Magellanic Clouds System” (VMC) is collecting deep K s-band time-series photometry of pulsating variable stars hosted by the two Magellanic Clouds and their connecting Bridge. In this paper, we present Y, J, K s light curves for a sample of 4172 Small Magellanic Cloud (SMC) Classical Cepheids (CCs). These data, complemented with literature V values, allowed us to construct a variety of period-luminosity (PL), period-luminosity-color (PLC), and period-Wesenheit (PW) relationships, which are valid for Fundamental (F), First Overtone (FO), and Second Overtone (SO) pulsators. The relations involving the V, J, K s bands are in agreement with their counterparts in the literature. As for the Y band, to our knowledge, we present the first CC PL, PW, and PLC relations ever derived using this filter. We also present the first near-infrared PL, PW, and PLC relations for SO pulsators to date. We used PW(V, K s) to estimate the relative SMC-LMC distance and, in turn, the absolute distance to the SMC. For the former quantity, we find a value of Δμ = 0.55 ± 0.04 mag, which is in rather good agreement with other evaluations based on CCs, but significantly larger than the results obtained from older population II distance indicators. This discrepancy might be due to the different geometric distributions of young and old tracers in both Clouds. As for the absolute distance to the SMC, our best estimates are μ SMC = 19.01 ± 0.05 mag and μ SMC = 19.04 ± 0.06 mag, based on two distance measurements to the LMC which rely on accurate CC and eclipsing Cepheid binary data, respectively.
NASA Astrophysics Data System (ADS)
Delipetrev, Blagoj
2016-04-01
Presently, most of the existing software is desktop-based, designed to work on a single computer, which represents a major limitation in many ways, starting from limited computer processing, storage power, accessibility, availability, etc. The only feasible solution lies in the web and cloud. This abstract presents research and development of a cloud computing geospatial application for water resources based on free and open source software and open standards using hybrid deployment model of public - private cloud, running on two separate virtual machines (VMs). The first one (VM1) is running on Amazon web services (AWS) and the second one (VM2) is running on a Xen cloud platform. The presented cloud application is developed using free and open source software, open standards and prototype code. The cloud application presents a framework how to develop specialized cloud geospatial application that needs only a web browser to be used. This cloud application is the ultimate collaboration geospatial platform because multiple users across the globe with internet connection and browser can jointly model geospatial objects, enter attribute data and information, execute algorithms, and visualize results. The presented cloud application is: available all the time, accessible from everywhere, it is scalable, works in a distributed computer environment, it creates a real-time multiuser collaboration platform, the programing languages code and components are interoperable, and it is flexible in including additional components. The cloud geospatial application is implemented as a specialized water resources application with three web services for 1) data infrastructure (DI), 2) support for water resources modelling (WRM), 3) user management. The web services are running on two VMs that are communicating over the internet providing services to users. The application was tested on the Zletovica river basin case study with concurrent multiple users. The application is a state-of-the-art cloud geospatial collaboration platform. The presented solution is a prototype and can be used as a foundation for developing of any specialized cloud geospatial applications. Further research will be focused on distributing the cloud application on additional VMs, testing the scalability and availability of services.
2017-05-25
Waves of clouds at 37.8 degrees latitude dominate this three-dimensional Jovian cloudscape, courtesy of NASA's Juno spacecraft. JunoCam obtained this enhanced-color picture on May 19, 2017, at 5:50 UTC from an altitude of 5,500 miles (8,900 kilometers). Details as small as 4 miles (6 kilometers) across can be identified in this image. The small bright high clouds are about 16 miles (25 kilometers) across and in some areas appear to form "squall lines" (a narrow band of high winds and storms associated with a cold front). On Jupiter, clouds this high are almost certainly composed of water and/or ammonia ice. https://photojournal.jpl.nasa.gov/catalog/PIA21646
A physiologically-based model for simulation of color vision deficiency.
Machado, Gustavo M; Oliveira, Manuel M; Fernandes, Leandro A F
2009-01-01
Color vision deficiency (CVD) affects approximately 200 million people worldwide, compromising the ability of these individuals to effectively perform color and visualization-related tasks. This has a significant impact on their private and professional lives. We present a physiologically-based model for simulating color vision. Our model is based on the stage theory of human color vision and is derived from data reported in electrophysiological studies. It is the first model to consistently handle normal color vision, anomalous trichromacy, and dichromacy in a unified way. We have validated the proposed model through an experimental evaluation involving groups of color vision deficient individuals and normal color vision ones. Our model can provide insights and feedback on how to improve visualization experiences for individuals with CVD. It also provides a framework for testing hypotheses about some aspects of the retinal photoreceptors in color vision deficient individuals.
Cloud and Traditional Videoconferencing Technology for Telemedicine and Distance Learning
Zhang, Kai; Locatis, Craig; Ackerman, Michael
2015-01-01
Abstract Introduction: Cloud-based videoconferencing versus traditional systems are described for possible use in telemedicine and distance learning. Materials and Methods: Differences between traditional and cloud-based videoconferencing systems are examined, and the methods for identifying and testing systems are explained. Findings are presented characterizing the cloud conferencing genre and its attributes versus traditional H.323 conferencing. Results: Because the technology is rapidly evolving and needs to be evaluated in reference to local needs, it is strongly recommended that this or other reviews not be considered substitutes for personal hands-on experience. Conclusions: This review identifies key attributes of the technology that can be used to appraise the relevance of cloud conferencing technology and to determine whether migration from traditional technology to a cloud environment is warranted. An evaluation template is provided for assessing systems appropriateness. PMID:25785761
Shallow cumuli ensemble statistics for development of a stochastic parameterization
NASA Astrophysics Data System (ADS)
Sakradzija, Mirjana; Seifert, Axel; Heus, Thijs
2014-05-01
According to a conventional deterministic approach to the parameterization of moist convection in numerical atmospheric models, a given large scale forcing produces an unique response from the unresolved convective processes. This representation leaves out the small-scale variability of convection, as it is known from the empirical studies of deep and shallow convective cloud ensembles, there is a whole distribution of sub-grid states corresponding to the given large scale forcing. Moreover, this distribution gets broader with the increasing model resolution. This behavior is also consistent with our theoretical understanding of a coarse-grained nonlinear system. We propose an approach to represent the variability of the unresolved shallow-convective states, including the dependence of the sub-grid states distribution spread and shape on the model horizontal resolution. Starting from the Gibbs canonical ensemble theory, Craig and Cohen (2006) developed a theory for the fluctuations in a deep convective ensemble. The micro-states of a deep convective cloud ensemble are characterized by the cloud-base mass flux, which, according to the theory, is exponentially distributed (Boltzmann distribution). Following their work, we study the shallow cumulus ensemble statistics and the distribution of the cloud-base mass flux. We employ a Large-Eddy Simulation model (LES) and a cloud tracking algorithm, followed by a conditional sampling of clouds at the cloud base level, to retrieve the information about the individual cloud life cycles and the cloud ensemble as a whole. In the case of shallow cumulus cloud ensemble, the distribution of micro-states is a generalized exponential distribution. Based on the empirical and theoretical findings, a stochastic model has been developed to simulate the shallow convective cloud ensemble and to test the convective ensemble theory. Stochastic model simulates a compound random process, with the number of convective elements drawn from a Poisson distribution, and cloud properties sub-sampled from a generalized ensemble distribution. We study the role of the different cloud subtypes in a shallow convective ensemble and how the diverse cloud properties and cloud lifetimes affect the system macro-state. To what extent does the cloud-base mass flux distribution deviate from the simple Boltzmann distribution and how does it affect the results from the stochastic model? Is the memory, provided by the finite lifetime of individual clouds, of importance for the ensemble statistics? We also test for the minimal information given as an input to the stochastic model, able to reproduce the ensemble mean statistics and the variability in a convective ensemble. An important property of the resulting distribution of the sub-grid convective states is its scale-adaptivity - the smaller the grid-size, the broader the compound distribution of the sub-grid states.
Point Cloud Based Relative Pose Estimation of a Satellite in Close Range
Liu, Lujiang; Zhao, Gaopeng; Bo, Yuming
2016-01-01
Determination of the relative pose of satellites is essential in space rendezvous operations and on-orbit servicing missions. The key problems are the adoption of suitable sensor on board of a chaser and efficient techniques for pose estimation. This paper aims to estimate the pose of a target satellite in close range on the basis of its known model by using point cloud data generated by a flash LIDAR sensor. A novel model based pose estimation method is proposed; it includes a fast and reliable pose initial acquisition method based on global optimal searching by processing the dense point cloud data directly, and a pose tracking method based on Iterative Closest Point algorithm. Also, a simulation system is presented in this paper in order to evaluate the performance of the sensor and generate simulated sensor point cloud data. It also provides truth pose of the test target so that the pose estimation error can be quantified. To investigate the effectiveness of the proposed approach and achievable pose accuracy, numerical simulation experiments are performed; results demonstrate algorithm capability of operating with point cloud directly and large pose variations. Also, a field testing experiment is conducted and results show that the proposed method is effective. PMID:27271633
Siefferman, Lynn; Hill, Geoffrey E
2005-08-01
Although the function of ornamental traits in males has been the focus of intensive research for decades, expression of such traits in females has received much less study. Eastern bluebirds (Sialia sialis) display structurally based ultraviolet/blue and melanin-based chestnut plumage, and in males this plumage coloration is related to both reproductive success and competitive ability. Compared to males, female bluebirds show a subdued expression of blue and chestnut ornamental coloration, and we used a combination of an aviary nutritional-stress experiment and four years of field data to test the hypothesis that coloration functions as a signal of female quality. First, we tested the effect of food intake on expression of structural and melanin coloration in female eastern bluebirds to determine whether structural or melanin coloration are condition-dependent traits. Females that were given ad libitum access to food displayed more ornamented structural coloration than females on a food-restricted diet, but there was no effect of the experiment on melanin ornamentation. Second, we used field data to assess whether female ornamentation correlated with measures of mate quality and parental effort. The structural coloration of females predicted first egg date, maternal provisioning rates, and measures of reproductive success. These data indicate that structural coloration is dependent on nutritional condition and suggest that sexual selection is acting on structurally based plumage coloration in female eastern bluebirds.
Motion-Compensated Compression of Dynamic Voxelized Point Clouds.
De Queiroz, Ricardo L; Chou, Philip A
2017-05-24
Dynamic point clouds are a potential new frontier in visual communication systems. A few articles have addressed the compression of point clouds, but very few references exist on exploring temporal redundancies. This paper presents a novel motion-compensated approach to encoding dynamic voxelized point clouds at low bit rates. A simple coder breaks the voxelized point cloud at each frame into blocks of voxels. Each block is either encoded in intra-frame mode or is replaced by a motion-compensated version of a block in the previous frame. The decision is optimized in a rate-distortion sense. In this way, both the geometry and the color are encoded with distortion, allowing for reduced bit-rates. In-loop filtering is employed to minimize compression artifacts caused by distortion in the geometry information. Simulations reveal that this simple motion compensated coder can efficiently extend the compression range of dynamic voxelized point clouds to rates below what intra-frame coding alone can accommodate, trading rate for geometry accuracy.
2017-02-24
NASA Juno spacecraft skimmed the upper wisps of Jupiter atmosphere when JunoCam snapped this image on Feb. 2, 2017. from an altitude of about 9,000 miles 14,500 kilometers above the giant planet swirling cloudtops. Streams of clouds spin off a rotating oval-shaped cloud system in the Jovian southern hemisphere. Citizen scientist Roman Tkachenko reconstructed the color and cropped the image to draw viewers' eyes to the storm and the turbulence around it. http://photojournal.jpl.nasa.gov/catalog/PIA21383
1996-01-20
STS072-727-085 (11-20 Jan. 1996) --- The northern third of the Great Barrier Reef stretches 650 kilometers (km) along the coast of Queensland from south of Cairns to past Princess Charlotte Bay at the base of the Cape York Peninsula. The predominant westerly waves of the ocean create shallower (lighter-colored) convex-eastward rims to coral atolls along the outer edge of the barrier reef. In contrast, islands within the lagoon show the effect of predominant southerly, more-or-less offshore winds. Arcuate clouds suggest that winds were offshore at the time the photograph was taken.
Effect of thermal treatment on the quality of cloudy apple juice.
Krapfenbauer, Gottfried; Kinner, Mathias; Gössinger, Manfred; Schönlechner, Regine; Berghofer, Emmerich
2006-07-26
Apple juice from eight different varieties of apples was heated at high-temperature (60-90 degrees C) and short-time (20-100 s) (HTST) combinations. To determine the effect of heating conditions on enzymatic browning and cloud stability in apple juices, the activity of polyphenol oxidase and pectinesterase was analyzed and correlated with the thermal treatment conditions and the quality of the juice. Additional investigations included the measurement of pH value, soluble solid content, titratable acidity, color, and turbidity after 3 and 6 months. The results showed that HTST treatment at 80 degrees C already inactivated polyphenol oxidase, whereas pectinesterase activity was reduced to half and could even at 90 degrees C not be inactivated completely. In fact, highest residual pectinesterase activity was found at 60 degrees C. Heating at 70 degrees C caused stable pectinesterase activity and even a slight increase for 50 and 100 s heating times. Turbidity and lightness increased after HTST treatment. In particular, differences in cloud stability between the varieties were measured. HTST parameters did not correlate with the residual cloud stability after 6 months. The sensory evaluation revealed that only a few combinations were distinguishable. The best stability of cloud and color in relation to heat impact was achieved by HTST treatment between 70 degrees C/100 s and 80 degrees C/20 s.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Wind, Galina; Arnold, G. Thomas; Dominguez, Roseanne T.
2010-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) Airborne Simulator (MAS) and MODIS/Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Airborne Simulator (MASTER) were used to obtain measurements of the bidirectional reflectance and brightness temperature of clouds at 50 discrete wavelengths between 0.47 and 14.2 microns (12.9 microns for MASTER). These observations were obtained from the NASA ER-2 aircraft as part of the Tropical Composition, Cloud and Climate Coupling (TC4) experiment conducted over Central America and surrounding Pacific and Atlantic Oceans between 17 July and 8 August 2007. Multispectral images in eleven distinct bands were used to derive a confidence in clear sky (or alternatively the probability Of cloud) over land and ocean ecosystems. Based on the results of individual tests run as part of the cloud mask, an algorithm was developed to estimate the phase of the clouds (liquid water, ice, or undetermined phase). The cloud optical thickness and effective radius were derived for both liquid water and ice clouds that were detected during each flight, using a nearly identical algorithm to that implemented operationally to process MODIS Cloud data from the Aqua and Terra satellites (Collection 5). This analysis shows that the cloud mask developed for operational use on MODIS, and tested using MAS and MASTER data in TC(sup 4), is quite capable of distinguishing both liquid water and ice clouds during daytime conditions over both land and ocean. The cloud optical thickness and effective radius retrievals use five distinct bands of the MAS (or MASTER), and these results were compared with nearly simultaneous retrievals of marine liquid water clouds from MODIS on the Terra spacecraft. Finally, this MODIS-based algorithm was adapted to Multiangle Imaging SpectroRadiometer (MISR) data to infer the cloud optical thickness Of liquid water clouds from MISR. Results of this analysis are compared and contrasted.
NASA Astrophysics Data System (ADS)
Gallagher, Frank Woolsey, III
Many people around the world have observed green light apparently emanating from severe thunderstorms, but until recently there has been no scientific study of the phenomenon. Green thunderstorms have been observed from time to time in association with deep convection or severe weather events. Some skeptics who have not personally observed a green thunderstorm suggest that they are some kind of illusion. The existence of green thunderstorms has been objectively demonstrated by recording spectra of light from thunderstorms using a handheld spectrophotometer. During the spring and summer of 1995 and the spring of 1996 numerous storms were observed and spectra of the light emanating from these storms were recorded. Observations were made both at the ground and aboard research aircraft. Furthermore, time series of spectra were recorded as the observed color of some storms changed from dark blue to a bluish-green. Several hypotheses have been advanced to explain the occurrence of green light in connection with severe storms. Fankhauser gave some observational support to the belief that green light from thunderstorms is possible and believed that the source of the light is from the blue sky penetrating thin regions in the clouds. Fraser believes that light from the setting sun, in combination with the process of scattering by atmospheric molecules, creates the green light associated with severe weather and the thunderstorm acts only as a black backdrop. Unfortunately, no cloud illuminated by the sun is black and the green airlight produced by the Fraser theory is in reality overwhelmed by light reflected by the cloud. Often the unusual coloration has been attributed to hail or to reflection of light from foliage on the ground. The quantitative measurements made during the observation period fail to support these assumptions. We have observed thunderstorms to be green over ground that was not green and we have observed blue thunderstorms over ground that was green. Finally, Bohren believes that reddened sunlight in combination with filtering done by naturally blue-colored water creates green light. Given our observations, this is the most likely explanation for the green light. Our observations and calculations indicate that, depending on the microphysical parameters of the cloud, sunlight transmitted by the cloud may appear green.
NASA Technical Reports Server (NTRS)
Xiang, Xuwu; Smith, Eric A.; Tripoli, Gregory J.
1992-01-01
A hybrid statistical-physical retrieval scheme is explored which combines a statistical approach with an approach based on the development of cloud-radiation models designed to simulate precipitating atmospheres. The algorithm employs the detailed microphysical information from a cloud model as input to a radiative transfer model which generates a cloud-radiation model database. Statistical procedures are then invoked to objectively generate an initial guess composite profile data set from the database. The retrieval algorithm has been tested for a tropical typhoon case using Special Sensor Microwave/Imager (SSM/I) data and has shown satisfactory results.
Calibration Image of Earth by Mars Color Imager
NASA Technical Reports Server (NTRS)
2005-01-01
Three days after the Mars Reconnaissance Orbiter's Aug. 12, 2005, launch, the NASA spacecraft was pointed toward Earth and the Mars Color Imager camera was powered up to acquire a suite of color and ultraviolet images of Earth and the Moon. When it gets to Mars, the Mars Color Imager's main objective will be to obtain daily global color and ultraviolet images of the planet to observe martian meteorology by documenting the occurrence of dust storms, clouds, and ozone. This camera will also observe how the martian surface changes over time, including changes in frost patterns and surface brightness caused by dust storms and dust devils. The purpose of acquiring an image of Earth and the Moon just three days after launch was to help the Mars Color Imager science team obtain a measure, in space, of the instrument's sensitivity, as well as to check that no contamination occurred on the camera during launch. Prior to launch, the team determined that, three days out from Earth, the planet would only be about 4.77 pixels across, and the Moon would be less than one pixel in size, as seen from the Mars Color Imager's wide-angle perspective. If the team waited any longer than three days to test the camera's performance in space, Earth would be too small to obtain meaningful results. The images were acquired by turning Mars Reconnaissance Orbiter toward Earth, then slewing the spacecraft so that the Earth and Moon would pass before each of the five color and two ultraviolet filters of the Mars Color Imager. The distance to Earth was about 1,170,000 kilometers (about 727,000 miles). This image shows a color composite view of Mars Color Imager's image of Earth. As expected, it covers only five pixels. This color view has been enlarged five times. The Sun was illuminating our planet from the left, thus only one quarter of Earth is seen from this perspective. North America was in daylight and facing toward the camera at the time the picture was taken; the data from the camera were being transmitted in real time to the Deep Space Network antennas in Goldstone, California.Khosravi, Mahmood; Esmaeili, Behnaz; Nikzad, Forough; Khafri, Soraya
2016-01-01
Objectives: This study aimed to evaluate the effects of chlorhexidine mouthrinses on color stability of nanofilled and micro-hybrid resin-based composites. Materials and Methods: In this in-vitro study, 160 disc-shaped specimens (7x2mm) were fabricated of Filtek Z250 and Filtek Z350XT Enamel (A2 shade). The samples of each group were randomly divided into eight subgroups (n=10). The specimens were incubated in artificial saliva at 37°C for 24 hours. The baseline color values (L*, a*, b*) of each specimen were measured according to CIE LAB system using a reflection spectrophotometer. After baseline color measurements, the control samples were immersed in saliva and the test groups were immersed in Kin (Cosmodent), Vi-One (Rozhin), Epimax (Emad), Hexodine (Donyaye Behdasht), Chlorhexidine (Shahrdaru), Najo (Najo) and Behsa (Behsa) mouthrinses once a day for two minutes. The specimens were then immersed again in saliva. This process was repeated for two weeks. Color measurements were made on days seven and 14. Two-way and one-way ANOVA and Tukey's post hoc test, t-test and paired t-test were used to analyze data at a significance level of 0.05. Results: All specimens displayed color change after immersion in the mouthrinses. Significant interactions were found between the effects of materials and mouthrinses on color change. Conclusions: All composite resins tested showed acceptable color change after immersion in different mouthrinses. Filtek Z350XT showed less color change than Filtek Z250. Mouthrinses containing alcohol (Behsa and Najo) and citric acid (Vi-One) caused greater discoloration of composites. PMID:27928240
Atmosphere, Ocean, Land, and Solar Irradiance Data Sets
NASA Technical Reports Server (NTRS)
Johnson, James; Ahmad, Suraiya
2003-01-01
The report present the atmosphere, ocean color, land and solar irradiation data sets. The data presented: total ozone, aerosol, cloud optical and physical parameters, temperature and humidity profiles, radiances, rain fall, drop size distribution.
Aerosol Type Constraints Required for Ocean Color Atmospheric Correction
NASA Technical Reports Server (NTRS)
Kahn, R.; Ahmad, Z.; Franz, B.; Massie, S.; Sayer, A.
2014-01-01
Organizers of the Aerosol Cloud Ecosystem (ACE) Science Working Group held a workshop at Goddard Space Flight Center June 16-18, 2014; speaker presentations will be made available on the ACE public website.
ManiWordle: providing flexible control over Wordle.
Koh, Kyle; Lee, Bongshin; Kim, Bohyoung; Seo, Jinwook
2010-01-01
Among the multifarious tag-clouding techniques, Wordle stands out to the community by providing an aesthetic layout, eliciting the emergence of the participatory culture and usage of tag-clouding in the artistic creations. In this paper, we introduce ManiWordle, a Wordle-based visualization tool that revamps interactions with the layout by supporting custom manipulations. ManiWordle allows people to manipulate typography, color, and composition not only for the layout as a whole, but also for the individual words, enabling them to have better control over the layout result. We first describe our design rationale along with the interaction techniques for tweaking the layout. We then present the results both from the preliminary usability study and from the comparative study between ManiWordle and Wordle. The results suggest that ManiWordle provides higher user satisfaction and an efficient method of creating the desired "art work," harnessing the power behind the ever-increasing popularity of Wordle.
Mäthger, Lydia M; Barbosa, Alexandra; Miner, Simon; Hanlon, Roger T
2006-05-01
We tested color perception based upon a robust behavioral response in which cuttlefish (Sepia officinalis) respond to visual stimuli (a black and white checkerboard) with a quantifiable, neurally controlled motor response (a body pattern). In the first experiment, we created 16 checkerboard substrates in which 16 grey shades (from white to black) were paired with one green shade (matched to the maximum absorption wavelength of S. officinalis' sole visual pigment, 492 nm), assuming that one of the grey shades would give a similar achromatic signal to the tested green. In the second experiment, we created a checkerboard using one blue and one yellow shade whose intensities were matched to the cuttlefish's visual system. In both assays it was tested whether cuttlefish would show disruptive coloration on these checkerboards, indicating their ability to distinguish checkers based solely on wavelength (i.e., color). Here, we show clearly that cuttlefish must be color blind, as they showed non-disruptive coloration on the checkerboards whose color intensities were matched to the Sepia visual system, suggesting that the substrates appeared to their eyes as uniform backgrounds. Furthermore, we show that cuttlefish are able to perceive objects in their background that differ in contrast by approximately 15%. This study adds support to previous reports that S. officinalis is color blind, yet the question of how cuttlefish achieve "color-blind camouflage" in chromatically rich environments still remains.
[Porting Radiotherapy Software of Varian to Cloud Platform].
Zou, Lian; Zhang, Weisha; Liu, Xiangxiang; Xie, Zhao; Xie, Yaoqin
2017-09-30
To develop a low-cost private cloud platform of radiotherapy software. First, a private cloud platform which was based on OpenStack and the virtual GPU hardware was builded. Then on the private cloud platform, all the Varian radiotherapy software modules were installed to the virtual machine, and the corresponding function configuration was completed. Finally the software on the cloud was able to be accessed by virtual desktop client. The function test results of the cloud workstation show that a cloud workstation is equivalent to an isolated physical workstation, and any clients on the LAN can use the cloud workstation smoothly. The cloud platform transplantation in this study is economical and practical. The project not only improves the utilization rates of radiotherapy software, but also makes it possible that the cloud computing technology can expand its applications to the field of radiation oncology.
Toothguide Trainer tests with color vision deficiency simulation monitor.
Borbély, Judit; Varsányi, Balázs; Fejérdy, Pál; Hermann, Péter; Jakstat, Holger A
2010-01-01
The aim of this study was to evaluate whether simulated severe red and green color vision deficiency (CVD) influenced color matching results and to investigate whether training with Toothguide Trainer (TT) computer program enabled better color matching results. A total of 31 color normal dental students participated in the study. Every participant had to pass the Ishihara Test. Participants with a red/green color vision deficiency were excluded. A lecture on tooth color matching was given, and individual training with TT was performed. To measure the individual tooth color matching results in normal and color deficient display modes, the TT final exam was displayed on a calibrated monitor that served as a hardware-based method of simulating protanopy and deuteranopy. Data from the TT final exams were collected in normal and in severe red and green CVD-simulating monitor display modes. Color difference values for each participant in each display mode were computed (∑ΔE(ab)(*)), and the respective means and standard deviations were calculated. The Student's t-test was used in statistical evaluation. Participants made larger ΔE(ab)(*) errors in severe color vision deficient display modes than in the normal monitor mode. TT tests showed significant (p<0.05) difference in the tooth color matching results of severe green color vision deficiency simulation mode compared to normal vision mode. Students' shade matching results were significantly better after training (p=0.009). Computer-simulated severe color vision deficiency mode resulted in significantly worse color matching quality compared to normal color vision mode. Toothguide Trainer computer program improved color matching results. Copyright © 2010 Elsevier Ltd. All rights reserved.
A-Train Based Observational Metrics for Model Evaluation in Extratropical Cyclones
NASA Technical Reports Server (NTRS)
Naud, Catherine M.; Booth, James F.; Del Genio, Anthony D.; van den Heever, Susan C.; Posselt, Derek J.
2015-01-01
Extratropical cyclones contribute most of the precipitation in the midlatitudes, i.e. up to 70 during winter in the northern hemisphere, and can generate flooding, extreme winds, blizzards and have large socio-economic impacts. As such, it is important that general circulation models (GCMs) accurately represent these systems so their evolution in a warming climate can be understood. However, there are still uncertainties on whether warming will increase their frequency of occurrence, their intensity and how much rain or snow they bring. Part of the issue is that models have trouble representing their strength, but models also have biases in the amount of clouds and precipitation they produce. This is caused by potential issues in various aspects of the models: convection, boundary layer, and cloud scheme to only mention a few. In order to pinpoint which aspects of the models need improvement for a better representation of extratropical cyclone precipitation and cloudiness, we will present A-train based observational metrics: cyclone-centered, warm and cold frontal composites of cloud amount and type, precipitation rate and frequency of occurrence. Using the same method to extract similar fields from the model, we will present an evaluation of the GISS-ModelE2 and the IPSL-LMDZ-5B models, based on their AR5 and more recent versions. The AR5 version of the GISS model underestimates cloud cover in extratropical cyclones while the IPSL AR5 version overestimates it. In addition, we will show how the observed CloudSat-CALIPSO cloud vertical distribution across cold fronts changes with moisture amount and cyclone strength, and test if the two models successfully represent these changes. We will also show how CloudSat-CALIPSO derived cloud type (i.e. convective vs. stratiform) evolves across warm fronts as cyclones age, and again how this is represented in the models. Our third process-based analysis concerns cumulus clouds in the post-cold frontal region and how their amount relates to the stability of the boundary layer. This test uses Aqua cloud and vertical atmospheric profiles and when applied to the model output can help assess the accuracy of the convection, boundary layer and cloud scheme.
Clustering document fragments using background color and texture information
NASA Astrophysics Data System (ADS)
Chanda, Sukalpa; Franke, Katrin; Pal, Umapada
2012-01-01
Forensic analysis of questioned documents sometimes can be extensively data intensive. A forensic expert might need to analyze a heap of document fragments and in such cases to ensure reliability he/she should focus only on relevant evidences hidden in those document fragments. Relevant document retrieval needs finding of similar document fragments. One notion of obtaining such similar documents could be by using document fragment's physical characteristics like color, texture, etc. In this article we propose an automatic scheme to retrieve similar document fragments based on visual appearance of document paper and texture. Multispectral color characteristics using biologically inspired color differentiation techniques are implemented here. This is done by projecting document color characteristics to Lab color space. Gabor filter-based texture analysis is used to identify document texture. It is desired that document fragments from same source will have similar color and texture. For clustering similar document fragments of our test dataset we use a Self Organizing Map (SOM) of dimension 5×5, where the document color and texture information are used as features. We obtained an encouraging accuracy of 97.17% from 1063 test images.
NASA Technical Reports Server (NTRS)
2002-01-01
These views of Hurricane Isidore were acquired by the Multi-angle Imaging SpectroRadiometer (MISR) on September 20, 2002. After bringing large-scale flooding to western Cuba, Isidore was upgraded (on September 21) from a tropical storm to a category 3hurricane. Sweeping westward to Mexico's Yucatan Peninsula, the hurricane caused major destruction and left hundreds of thousands of people homeless. Although weakened after passing over the Yucatan landmass, Isidore regained strength as it moved northward over the Gulf of Mexico.
At left is a colorful visualization of cloud extent that superimposes MISR's radiometric camera-by-camera cloud mask (RCCM) over natural-color radiance imagery, both derived from data acquired with the instrument's vertical-viewing (nadir) camera. Using brightness and statistical metrics, the RCCM is one of several techniques MISR uses to determine whether an area is clear or cloudy. In this rendition, the RCCM has been color-coded, and purple = cloudy with high confidence, blue = cloudy with low confidence, green = clear with low confidence, and red = clear with high confidence.In addition to providing information on meteorological events, MISR's data products are designed to help improve our understanding of the influences of clouds on climate. Cloud heights and albedos are among the variables that govern these influences. (Albedo is the amount of sunlight reflected back to space divided by the amount of incident sunlight.) The center panel is the cloud-top height field retrieved using automated stereoscopic processing of data from multiple MISR cameras. Areas where heights could not be retrieved are shown in dark gray. In some areas, such as the southern portion of the image, the stereo retrieval was able to detect thin, high clouds that were not picked up by the RCCM's nadir view. Retrieved local albedo values for Isidore are shown at right. Generation of the albedo product is dependent upon observed cloud radiances as a function of viewing angle as well as the height field. Note that over the short distances (2.2 kilometers) that the local albedo product is generated, values can be greater than 1.0 due to contributions from cloud sides. Areas where albedo could not be retrieved are shown in dark gray.The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously from pole to pole, and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. These data products were generated from a portion of the imagery acquired during Terra orbit 14669. The panels cover an area of about 380 kilometers x 704 kilometers, and utilize data from blocks 70 to 79within World Reference System-2 path 17.MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.Statistic analyses of the color experience according to the age of the observer.
Hunjet, Anica; Parac-Osterman, Durdica; Vucaj, Edita
2013-04-01
Psychological experience of color is a real state of the communication between the environment and color, and it will depend on the source of the light, angle of the view, and particular on the observer and his health condition. Hering's theory or a theory of the opponent processes supposes that cones, which are situated in the retina of the eye, are not sensible on the three chromatic domains (areas, fields, zones) (red, green and purple-blue), but they produce a signal based on the principle of the opposed pairs of colors. A reason of this theory depends on the fact that certain disorders of the color eyesight, which include blindness to certain colors, cause blindness to pairs of opponent colors. This paper presents a demonstration of the experience of blue and yellow tone according to the age of the observer. For the testing of the statistically significant differences in the omission in the color experience according to the color of the background we use following statistical tests: Mann-Whitnney U Test, Kruskal-Wallis ANOVA and Median test. It was proven that the differences are statistically significant in the elderly persons (older than 35 years).
Building perceptual color maps for visualizing interval data
NASA Astrophysics Data System (ADS)
Kalvin, Alan D.; Rogowitz, Bernice E.; Pelah, Adar; Cohen, Aron
2000-06-01
In visualization, a 'color map' maps a range of data values onto a scale of colors. However, unless a color map is e carefully constructed, visual artifacts can be produced. This problem has stimulated considerable interest in creating perceptually based color maps, that is, color maps where equal steps in data value are perceived as equal steps in the color map [Robertson (1988); Pizer (1981); Green (1992); Lefkowitz and Herman, 1992)]. In Rogowitz and Treinish, (1996, 1998) and in Bergman, Treinish and Rogowitz, (1995), we demonstrated that color maps based on luminance or saturation could be good candidates for satisfying this requirement. This work is based on the seminal work of S.S. Stevens (1966), who measured the perceived magnitude of different magnitudes of physical stimuli. He found that for many physical scales, including luminance (cd/m2) and saturation (the 'redness' of a long-wavelength light source), equal ratios in stimulus value produced equal ratios in perceptual magnitude. He interpreted this as indicating that there exists in human cognition a common scale for representing magnitude, and we scale the effects of different physical stimuli to this internal scale. In Rogowitz, Kalvin, Pelahb and Cohen (1999), we used a psychophysical technique to test this hypothesis as it applies to the creation of perceptually uniform color maps. We constructed color maps as trajectories through three-color spaces, a common computer graphics standard (uncalibrated HSV), a common perceptually-based engineering standard for creating visual stimuli (L*a*b*), and a space commonly used in the graphic arts (Munsell). For each space, we created color scales that varied linearly in hue, saturation, or luminance and measured the detectability of increments in hue, saturation or luminance for each of these color scales. We measured the amplitude of the just-detectable Gaussian increments at 20 different values along the range of each color map. For all three color spaces, we found that luminance-based color maps provided the most perceptually- uniform representations of the data. The just-detectable increment was constant at all points in the color map, with the exception of the lowest-luminance values, where a larger increment was required. The saturation-based color maps provided less sensitivity than the luminance-based color maps, requiring much larger increments for detection. For the hue- based color maps, the size of the increment required for detection varied across the range. For example, for the standard 'rainbow' color map (uncalibrated HSV, hue-varying map), a step in the 'green' region required an increment 16 times the size of the increment required in the 'cyan' part of the range. That is, the rainbow color map would not successfully represent changes in the data in the 'green' region of this color map. In this paper, we extend this research by studying the detectability of spatially-modulated Gabor targets based on these hue, saturation and luminance scales. Since, in visualization, the user is called upon to detect and identify patterns that vary in their spatial characteristics, it is important to study how different types of color maps represent data with varying spatial properties. To do so, we measured modulation thresholds for low-(0.2 c/deg) and high-spatial frequency (4.0 c/deg) Gabor patches and compared them with the Gaussian results. As before, we measured increment thresholds for hue, saturation, and luminance modulations. These color scales were constructed as trajectories along the three perceptual dimensions of color (hue, saturation, and luminance) in two color spaces, uncalibrated HSV and calibrated L*a*b. This allowed us to study how the three perceptual dimensions represent magnitude information for test patterns varying in spatial frequency. This design also allowed us to test the hypothesis that the luminance channel best carries high-spatial frequency information while the saturation channel best represents low spatial-frequency information (Mullen 1985; DeValois and DeValois 1988).
Bhavani, Selvaraj Rani; Senthilkumar, Jagatheesan; Chilambuchelvan, Arul Gnanaprakasam; Manjula, Dhanabalachandran; Krishnamoorthy, Ramasamy; Kannan, Arputharaj
2015-03-27
The Internet has greatly enhanced health care, helping patients stay up-to-date on medical issues and general knowledge. Many cancer patients use the Internet for cancer diagnosis and related information. Recently, cloud computing has emerged as a new way of delivering health services but currently, there is no generic and fully automated cloud-based self-management intervention for breast cancer patients, as practical guidelines are lacking. We investigated the prevalence and predictors of cloud use for medical diagnosis among women with breast cancer to gain insight into meaningful usage parameters to evaluate the use of generic, fully automated cloud-based self-intervention, by assessing how breast cancer survivors use a generic self-management model. The goal of this study was implemented and evaluated with a new prototype called "CIMIDx", based on representative association rules that support the diagnosis of medical images (mammograms). The proposed Cloud-Based System Support Intelligent Medical Image Diagnosis (CIMIDx) prototype includes two modules. The first is the design and development of the CIMIDx training and test cloud services. Deployed in the cloud, the prototype can be used for diagnosis and screening mammography by assessing the cancers detected, tumor sizes, histology, and stage of classification accuracy. To analyze the prototype's classification accuracy, we conducted an experiment with data provided by clients. Second, by monitoring cloud server requests, the CIMIDx usage statistics were recorded for the cloud-based self-intervention groups. We conducted an evaluation of the CIMIDx cloud service usage, in which browsing functionalities were evaluated from the end-user's perspective. We performed several experiments to validate the CIMIDx prototype for breast health issues. The first set of experiments evaluated the diagnostic performance of the CIMIDx framework. We collected medical information from 150 breast cancer survivors from hospitals and health centers. The CIMIDx prototype achieved high sensitivity of up to 99.29%, and accuracy of up to 98%. The second set of experiments evaluated CIMIDx use for breast health issues, using t tests and Pearson chi-square tests to assess differences, and binary logistic regression to estimate the odds ratio (OR) for the predictors' use of CIMIDx. For the prototype usage statistics for the same 150 breast cancer survivors, we interviewed 114 (76.0%), through self-report questionnaires from CIMIDx blogs. The frequency of log-ins/person ranged from 0 to 30, total duration/person from 0 to 1500 minutes (25 hours). The 114 participants continued logging in to all phases, resulting in an intervention adherence rate of 44.3% (95% CI 33.2-55.9). The overall performance of the prototype for the good category, reported usefulness of the prototype (P=.77), overall satisfaction of the prototype (P=.31), ease of navigation (P=.89), user friendliness evaluation (P=.31), and overall satisfaction (P=.31). Positive evaluations given by 100 participants via a Web-based questionnaire supported our hypothesis. The present study shows that women felt favorably about the use of a generic fully automated cloud-based self- management prototype. The study also demonstrated that the CIMIDx prototype resulted in the detection of more cancers in screening and diagnosing patients, with an increased accuracy rate.
Color vision deficiency in Zahedan, Iran: lower than expected.
Momeni-Moghaddam, Hamed; Ng, Jason S; Robabi, Hassan; Yaghubi, Farshid
2014-11-01
To estimate the prevalence of congenital red-green color vision defects in the elementary school students of Zahedan in 2012. In this cross-sectional study, 1000 students with a mean (±SD) age of 9.0 (±1.4) years were selected randomly from a large primary school population. Color vision was evaluated using the Ishihara pseudoisochromatic color plates (38-plate edition). A daylight fluorescent tube was used as an illuminant C equivalent (i.e., 860 lux, color rendering index greater than 92, and color temperature = 6500 K). Having more than three misreadings on the test was considered a failing criterion. Data were analyzed in SPSS version 17 software using χ2 tests. Nine students (0.9%) made more than three errors on the Ishihara test. Based on this criterion, the prevalence of red-green color vision deficiency in girls and boys was 0.2 and 1.6% (p = 0.02), respectively. The prevalence of red-green color vision deficiency was found to be significantly lower in Zahedan than comparable reports in the literature.
NASA Astrophysics Data System (ADS)
Okamura, Rintaro; Iwabuchi, Hironobu; Schmidt, K. Sebastian
2017-12-01
Three-dimensional (3-D) radiative-transfer effects are a major source of retrieval errors in satellite-based optical remote sensing of clouds. The challenge is that 3-D effects manifest themselves across multiple satellite pixels, which traditional single-pixel approaches cannot capture. In this study, we present two multi-pixel retrieval approaches based on deep learning, a technique that is becoming increasingly successful for complex problems in engineering and other areas. Specifically, we use deep neural networks (DNNs) to obtain multi-pixel estimates of cloud optical thickness and column-mean cloud droplet effective radius from multispectral, multi-pixel radiances. The first DNN method corrects traditional bispectral retrievals based on the plane-parallel homogeneous cloud assumption using the reflectances at the same two wavelengths. The other DNN method uses so-called convolutional layers and retrieves cloud properties directly from the reflectances at four wavelengths. The DNN methods are trained and tested on cloud fields from large-eddy simulations used as input to a 3-D radiative-transfer model to simulate upward radiances. The second DNN-based retrieval, sidestepping the bispectral retrieval step through convolutional layers, is shown to be more accurate. It reduces 3-D radiative-transfer effects that would otherwise affect the radiance values and estimates cloud properties robustly even for optically thick clouds.
The Spitzer-IRAC Point-source Catalog of the Vela-D Cloud
NASA Astrophysics Data System (ADS)
Strafella, F.; Elia, D.; Campeggio, L.; Giannini, T.; Lorenzetti, D.; Marengo, M.; Smith, H. A.; Fazio, G.; De Luca, M.; Massi, F.
2010-08-01
This paper presents the observations of Cloud D in the Vela Molecular Ridge, obtained with the Infrared Array Camera (IRAC) camera on board the Spitzer Space Telescope at the wavelengths λ = 3.6, 4.5, 5.8, and 8.0 μm. A photometric catalog of point sources, covering a field of approximately 1.2 deg2, has been extracted and complemented with additional available observational data in the millimeter region. Previous observations of the same region, obtained with the Spitzer MIPS camera in the photometric bands at 24 μm and 70 μm, have also been reconsidered to allow an estimate of the spectral slope of the sources in a wider spectral range. A total of 170,299 point sources, detected at the 5σ sensitivity level in at least one of the IRAC bands, have been reported in the catalog. There were 8796 sources for which good quality photometry was obtained in all four IRAC bands. For this sample, a preliminary characterization of the young stellar population based on the determination of spectral slope is discussed; combining this with diagnostics in the color-magnitude and color-color diagrams, the relative population of young stellar objects (YSOs) in different evolutionary classes has been estimated and a total of 637 candidate YSOs have been selected. The main differences in their relative abundances have been highlighted and a brief account for their spatial distribution is given. The star formation rate has also been estimated and compared with the values derived for other star-forming regions. Finally, an analysis of the spatial distribution of the sources by means of the two-point correlation function shows that the younger population, constituted by the Class I and flat-spectrum sources, is significantly more clustered than the Class II and III sources.
Thundercloud: Domain specific information security training for the smart grid
NASA Astrophysics Data System (ADS)
Stites, Joseph
In this paper, we describe a cloud-based virtual smart grid test bed: ThunderCloud, which is intended to be used for domain-specific security training applicable to the smart grid environment. The test bed consists of virtual machines connected using a virtual internal network. ThunderCloud is remotely accessible, allowing students to undergo educational exercises online. We also describe a series of practical exercises that we have developed for providing the domain-specific training using ThunderCloud. The training exercises and attacks are designed to be realistic and to reflect known vulnerabilities and attacks reported in the smart grid environment. We were able to use ThunderCloud to offer practical domain-specific security training for smart grid environment to computer science students at little or no cost to the department and no risk to any real networks or systems.
NASA Astrophysics Data System (ADS)
Miller, D. J.; Zhang, Z.; Ackerman, A. S.; Platnick, S. E.; Cornet, C.
2016-12-01
A remote sensing cloud retrieval simulator, created by coupling an LES cloud model with vector radiative transfer (RT) models is the ideal framework for assessing cloud remote sensing techniques. This simulator serves as a tool for understanding bi-spectral and polarimetric retrievals by comparing them directly to LES cloud properties (retrieval closure comparison) and for comparing the retrieval techniques to one another. Our simulator utilizes the DHARMA LES [Ackerman et al., 2004] with cloud properties based on marine boundary layer (MBL) clouds observed during the DYCOMS-II and ATEX field campaigns. The cloud reflectances are produced by the vectorized RT models based on polarized doubling adding and monte carlo techniques (PDA, MCPOL). Retrievals are performed utilizing techniques as similar as possible to those implemented on their corresponding well known instruments; polarimetric retrievals are based on techniques implemented for polarimeters (POLDER, AirMSPI, and RSP) and bi-spectral retrievals are performed using the Nakajima-King LUT method utilized on a number of spectral instruments (MODIS and VIIRS). Retrieval comparisons focus on cloud droplet effective radius (re), effective variance (ve), and cloud optical thickness (τ). This work explores the sensitivities of these two retrieval techniques to various observation limitations, such as spatial resolution/cloud inhomogeneity, impact of 3D radiative effects, and angular resolution requirements. With future remote sensing missions like NASA's Aerosols/Clouds/Ecosystems (ACE) planning to feature advanced polarimetric instruments it is important to understand how these retrieval techniques compare to one another. The cloud retrieval simulator we've developed allows us to probe these important questions in a realistically relevant test bed.
HammerCloud: A Stress Testing System for Distributed Analysis
NASA Astrophysics Data System (ADS)
van der Ster, Daniel C.; Elmsheuser, Johannes; Úbeda García, Mario; Paladin, Massimo
2011-12-01
Distributed analysis of LHC data is an I/O-intensive activity which places large demands on the internal network, storage, and local disks at remote computing facilities. Commissioning and maintaining a site to provide an efficient distributed analysis service is therefore a challenge which can be aided by tools to help evaluate a variety of infrastructure designs and configurations. HammerCloud is one such tool; it is a stress testing service which is used by central operations teams, regional coordinators, and local site admins to (a) submit arbitrary number of analysis jobs to a number of sites, (b) maintain at a steady-state a predefined number of jobs running at the sites under test, (c) produce web-based reports summarizing the efficiency and performance of the sites under test, and (d) present a web-interface for historical test results to both evaluate progress and compare sites. HammerCloud was built around the distributed analysis framework Ganga, exploiting its API for grid job management. HammerCloud has been employed by the ATLAS experiment for continuous testing of many sites worldwide, and also during large scale computing challenges such as STEP'09 and UAT'09, where the scale of the tests exceeded 10,000 concurrently running and 1,000,000 total jobs over multi-day periods. In addition, HammerCloud is being adopted by the CMS experiment; the plugin structure of HammerCloud allows the execution of CMS jobs using their official tool (CRAB).
Fuzzy-based simulation of real color blindness.
Lee, Jinmi; dos Santos, Wellington P
2010-01-01
About 8% of men are affected by color blindness. That population is at a disadvantage since they cannot perceive a substantial amount of the visual information. This work presents two computational tools developed to assist color blind people. The first one tests color blindness and assess its severity. The second tool is based on Fuzzy Logic, and implements a method proposed to simulate real red and green color blindness in order to generate synthetic cases of color vision disturbance in a statistically significant amount. Our purpose is to develop correction tools and obtain a deeper understanding of the accessibility problems faced by people with chromatic visual impairment.
Highway pavement performance test for colored thin anti-skidding layers
NASA Astrophysics Data System (ADS)
Gao, Wei; Cui, Wei; Xu, Ming
2018-03-01
Based on the actual service condition of highway pavement colored thin anti-skidding layers, with materials of color quartz sand and two-component acrylic resin as basis, we designed such tests as the bond strength, shearing strength, tear strength, fatigue performance and aggregate polished value, and included the freeze-thaw cycle and de-icing salt and other factors in the experiment, connecting with the climate characteristics of circumpolar latitude and low altitude in Heilongjiang province. Through the pavement performance test, it is confirmed that the colored thin anti-skidding layers can adapt to cold and humid climate conditions, and its physical mechanical properties are good.
Cloud Imagers Offer New Details on Earth's Health
NASA Technical Reports Server (NTRS)
2009-01-01
A stunning red sunset or purple sunrise is an aesthetic treat with a scientific explanation: The colors are a direct result of the absorption or reflectance of solar radiation by atmospheric aerosols, minute particles (either solid or liquid) in the Earth s atmosphere that occur both naturally and because of human activity. At the beginning or end of the day, the Sun s rays travel farther through the atmosphere to reach an observer s eyes and more green and yellow light is scattered, making the Sun appear red. Sunset and sunrise are especially colorful when the concentration of atmospheric particles is high. This ability of aerosols to absorb and reflect sunlight is not just pretty; it also determines the amount of radiation and heat that reaches the Earth s surface, and can profoundly affect climate. In the atmosphere, aerosols are also important as nuclei for the condensation of water droplets and ice crystals. Clouds with fewer aerosols cannot form as many water droplets (called cloud particles), and consequently, do not scatter light well. In this case, more sunlight reaches the Earth s surface. When aerosol levels in clouds are high, however, more nucleation points can form small liquid water droplets. These smaller cloud particles can reflect up to 90 percent of visible radiation to space, keeping the heat from ever reaching Earth s surface. The tendency for these particles to absorb or reflect the Sun s energy - called extinction by astronomers - depends on a number of factors, including chemical composition and the humidity and temperature in the surrounding air; because cloud particles are so small, they are affected quickly by minute changes in the atmosphere. Because of this sensitivity, atmospheric scientists study cloud particles to anticipate patterns and shifts in climate. Until recently, NASA s study of atmospheric aerosols and cloud particles has been focused primarily on satellite images, which, while granting large-scale atmospheric analysis, limited scientists ability to acquire detailed information about individual particles. Now, experiments with specialized equipment can be flown on standard jets, making it possible for researchers to monitor and more accurately anticipate changes in Earth s atmosphere and weather patterns.
Ages of Extragalactic Intermediate-Age Star Clusters
NASA Technical Reports Server (NTRS)
Flower, P. J.
1983-01-01
A dating technique for faint, distant star clusters observable in the local group of galaxies with the space telescope is discussed. Color-magnitude diagrams of Magellanic Cloud clusters are mentioned along with the metallicity of star clusters.
Io Sodium Cloud Green-yellow Filter
1997-12-18
This image of Jupiter moon Io and its surrounding sky is shown in false color. This image was taken on Nov. 9, 1996 through the green-yellow filter of the solid state imaging CCD system aboard NASA Galileo spacecraft.
Dark Reflections in the Southern Cross
2010-10-27
NASA Wide-field Infrared Survey Explorer captured this colorful image of the reflection nebula IRAS 12116-6001. This cloud of interstellar dust cannot be seen directly in visible light, but WISE detectors observed the nebula at infrared wavelengths.
1997-12-18
This image of Jupiter moon Io and its surrounding sky is shown in false color. It was taken at 5 hours 30 minutes Universal Time on Nov. 9, 1996 by the solid state imaging CCD system aboard NASA Galileo spacecraft,
[Two new species of Phrynopus (Anura: Leptodactylidae) from the Bolivian cloud forests].
Aguayo Vedia, C R; Harvey, M B
2001-03-01
We describe two new species of Phrynopus from cloud forests in Cochabamba, Bolivia. The new species are assigned to the P. peruanus group and are characterized by the presence of basal webbing, distinctive coloration, and by having the first finger shorter than the second. The first of these new species was collected near Montepunko in Parque Nacional Carrasco and is known from eight males and six females. Among its distinctive characteristics are round cream-colored glands on its flanks. A second species is known from one male and one female collected near "Zona de Aguirre" near the northwest border of the park. V and X-shaped blotches and a dorsum that is smooth except for dorsolateral and scapular folds characterize this species. Musculature has rarely been described for species of Phrynopus. The species from Montepunko has unusual gular and thigh musculature that is quite unlike other species of the genus.
The Landsat Image Mosaic of Antarctica
Bindschadler, Robert; Vornberger, P.; Fleming, A.; Fox, A.; Mullins, J.; Binnie, D.; Paulsen, S.J.; Granneman, Brian J.; Gorodetzky, D.
2008-01-01
The Landsat Image Mosaic of Antarctica (LIMA) is the first true-color, high-spatial-resolution image of the seventh continent. It is constructed from nearly 1100 individually selected Landsat-7 ETM+ scenes. Each image was orthorectified and adjusted for geometric, sensor and illumination variations to a standardized, almost seamless surface reflectance product. Mosaicing to avoid clouds produced a high quality, nearly cloud-free benchmark data set of Antarctica for the International Polar Year from images collected primarily during 1999-2003. Multiple color composites and enhancements were generated to illustrate additional characteristics of the multispectral data including: the true appearance of the surface; discrimination between snow and bare ice; reflectance variations within bright snow; recovered reflectance values in regions of sensor saturation; and subtle topographic variations associated with ice flow. LIMA is viewable and individual scenes or user defined portions of the mosaic are downloadable at http://lima.usgs.gov. Educational materials associated with LIMA are available at http://lima.nasa.gov.
2015-04-08
The cloud cover over the Southern Ocean occasionally parts as it did on January 1, 2015 just west of the Drake Passage where the VIIRS instrument on the Suomi NPP satellite glimpsed the above collection of ocean-color delineated eddies which have diameters ranging from a couple of kilometers to a couple of hundred kilometers. Recent studies indicate that eddy activity has been increasing in the Southern Ocean with possible implications for climate change. Credit: NASA's OceanColor/Suomi NPP/VIIRS
Automatic Cloud Classification from Multi-Spectral Satellite Data Over Oceanic Regions
1992-01-14
parameters the first two colors used are, blue for low values and dark green for high parameter values. If a third class is identified, the intermediate...intermediate yellow and high dark green classes. The color sequence blue-yellow-light green- dark green, then characterizes the low to high parameter value...to light green then to dark green correspond to superpixels of increasing (from low to high) variability in their altitude, (see Table V.3). When the
Cloud Properties Derived from Surface-Based Near-Infrared Spectral Transmission
NASA Technical Reports Server (NTRS)
Pilewskie, Peter; Twomey, S.; Gore, Warren J. Y. (Technical Monitor)
1996-01-01
Surface based near-infrared cloud spectral transmission measurements from a recent precipitation/cloud physics field study are used to determine cloud physical properties and relate them to other remote sensing and in situ measurements. Asymptotic formulae provide an effective means of closely approximating the qualitative and quantitative behavior of transmission computed by more laborious detailed methods. Relationships derived from asymptotic formulae are applied to measured transmission spectra to test objectively the internal consistency of data sets acquired during the field program and they confirmed the quality of the measurements. These relationships appear to be very useful in themselves, not merely as a quality control measure, but also a potentially valuable remote-sensing technique in its own right. Additional benefits from this analysis have been the separation of condensed water (cloud) transmission and water vapor transmission and the development of a method to derive cloud liquid water content.
The Aerosol/Cloud/Ecosystems Mission (ACE)
NASA Technical Reports Server (NTRS)
Schoeberl, Mark
2008-01-01
The goals and measurement strategy of the Aerosol/Cloud/Ecosystems Mission (ACE) are described. ACE will help to answer fundamental science questions associated with aerosols, clouds, air quality and global ocean ecosystems. Specifically, the goals of ACE are: 1) to quantify aerosol-cloud interactions and to assess the impact of aerosols on the hydrological cycle and 2) determine Ocean Carbon Cycling and other ocean biological processes. It is expected that ACE will: narrow the uncertainty in aerosol-cloud-precipitation interaction and quantify the role of aerosols in climate change; measure the ocean ecosystem changes and precisely quantify ocean carbon uptake; and, improve air quality forecasting by determining the height and type of aerosols being transported long distances. Overviews are provided of the aerosol-cloud community measurement strategy, aerosol and cloud observations over South Asia, and ocean biology research goals. Instruments used in the measurement strategy of the ACE mission are also highlighted, including: multi-beam lidar, multiwavelength high spectra resolution lidar, the ocean color instrument (ORCA)--a spectroradiometer for ocean remote sensing, dual frequency cloud radar and high- and low-frequency micron-wave radiometer. Future steps for the ACE mission include refining measurement requirements and carrying out additional instrument and payload studies.
Star counts and visual extinctions in dark nebulae
NASA Technical Reports Server (NTRS)
Dickman, R. L.
1978-01-01
Application of star count techniques to the determination of visual extinctions in compact, fairly high-extinction dark nebulae is discussed. Particular attention is devoted to the determination of visual extinctions for a cloud having a possibly anomalous ratio of total to selective extinction. The techniques discussed are illustrated in application at two colors to four well-known compact dust clouds or Bok globules: Barnard 92, B 133, B 134, and B 335. Minimum masses and lower limits to the central extinction of these objects are presented.
NASA Technical Reports Server (NTRS)
1989-01-01
Activity of the Earth Science and Application Division in 1989 is reported. On overview of the work of Division is presented, and the main changes in previously announced flight schedules are noted. The following subject areas are covered: the Earth Observing System; studies of the stratospheric ozone; U.S.-U.S.S.R. collaboration in Earth sciences; cloud climatology and the radiation budget; studies of ocean color; global tropospheric chemistry studies; first ISLSCP (International Satellite Cloud Climatology Project) field experiment; and solid Earth science research plan.
Hybrid Cloud Computing Environment for EarthCube and Geoscience Community
NASA Astrophysics Data System (ADS)
Yang, C. P.; Qin, H.
2016-12-01
The NSF EarthCube Integration and Test Environment (ECITE) has built a hybrid cloud computing environment to provides cloud resources from private cloud environments by using cloud system software - OpenStack and Eucalyptus, and also manages public cloud - Amazon Web Service that allow resource synchronizing and bursting between private and public cloud. On ECITE hybrid cloud platform, EarthCube and geoscience community can deploy and manage the applications by using base virtual machine images or customized virtual machines, analyze big datasets by using virtual clusters, and real-time monitor the virtual resource usage on the cloud. Currently, a number of EarthCube projects have deployed or started migrating their projects to this platform, such as CHORDS, BCube, CINERGI, OntoSoft, and some other EarthCube building blocks. To accomplish the deployment or migration, administrator of ECITE hybrid cloud platform prepares the specific needs (e.g. images, port numbers, usable cloud capacity, etc.) of each project in advance base on the communications between ECITE and participant projects, and then the scientists or IT technicians in those projects launch one or multiple virtual machines, access the virtual machine(s) to set up computing environment if need be, and migrate their codes, documents or data without caring about the heterogeneity in structure and operations among different cloud platforms.
Postpartum unconscious dynamics emerging from the Lüscher color test in Ethiopian women.
Zanardo, Vincenzo; Gabrieli, Catia; Volpe, Francesca; Savio, Francesca; Straface, Gianluca; Soldera, Gino
2017-06-01
The aim of this study was to explore the feasibility of the Lüscher color test (LCT), a psychological instrument based on theory that colors are selected in unconscious way and that the color sensory perception of color is objective and universal. The research has involved 24 Ethiopian women, which delivered at the Getche Health Center in Gurage. It seemed to be relevant for the majority of Ethiopian women identify the rejected color (58.66%), the gray, than the favorite color, the yellow 33.33%). The yellow color suggests that they better express their personality in a physical context, while the gray color indicates that they want to live this experience intensely. This exploratory work lays the foundations for further studies in disadvantaged women, both in developing low-income Countries as well as in industrialized Countries characterized by an high level of emigration, and for clinical applications by the complete LCT version.
NASA Astrophysics Data System (ADS)
Dahl, E.; Chanover, N.; Voelz, D.; Kuehn, D.; Strycker, P.
2016-12-01
Jupiter's upper atmosphere is a highly dynamic system in which clouds and storms change color, shape, and size on variable timescales. The exact mechanism by which the deep atmosphere affects these changes in the uppermost cloud deck is still unknown. However, with Juno's arrival in July 2016, it is now possible to take detailed observations of the deep atmosphere with the spacecraft's Microwave Radiometer. By taking detailed optical measurements of Jupiter's uppermost cloud deck in conjunction with these microwave observations, we can provide a context in which to better understand these observations. Ultimately, we can utilize these two complementary datasets in order to thoroughly characterize Jupiter's atmosphere in terms of its vertical cloud structure, color distribution, and dynamical state throughout the Juno era. These optical data will also provide a complement to the near-IR sensitivity of the Jovian InfraRed Auroral Mapper and will expand on the limited spectral coverage of JunoCam. In order to obtain high spectral resolution images of Jupiter's atmosphere in the optical regime we use the New Mexico State University Acousto-optic Imaging Camera (NAIC). NAIC's acousto-optic tunable filter allows us to take hyperspectral image cubes of Jupiter from 450-950 nm at an average spectral resolution (λ/dλ) of 242. We present a preliminary analysis of two datasets obtained with NAIC at the Apache Point Observatory 3.5-m telescope: one pre-Juno dataset from March 2016 and the other from November 2016. From these data we derive low-resolution optical spectra of the Great Red Spot and a representative belt and zone to compare with previous work and laboratory measurements of candidate chromophore materials. Additionally, we compare these two datasets to inspect how the atmosphere has changed since before Juno arrived at Jupiter. NASA supported this work through award number NNX15AP34A.
False Color Mosaic of Jupiter's Belt-Zone Boundary
NASA Technical Reports Server (NTRS)
1997-01-01
This false color mosaic shows a belt-zone boundary near Jupiter's equator. The images that make up the four quadrants of this mosaic were taken within a few minutes of each other. Light at each of Galileo's three near-infrared wavelengths is displayed here in the visible colors red, green and blue. Light at 886 nanometers, strongly absorbed by atmospheric methane and scattered from clouds high in the atmosphere, is shown in red. Light at 732 nanometers, moderately absorbed by atmospheric methane, is shown in green. Light at 757 nanometers, scattered mostly from Jupiter's lower visible cloud deck, is shown in blue. The lower cloud deck appears bluish white, while the higher layer appears pinkish. The holes in the upper layer and their relationships to features in the lower cloud deck can be studied in the lower half of the mosaic. Galileo is the first spacecraft to image different layers in Jupiter's atmosphere.
The edge of the planet runs along the right side of the mosaic. North is at the top. The mosaic covers latitudes -13 to +3 degrees and is centered at longitude 280 degrees west. The smallest resolved features are tens of kilometers in size. These images were taken on Nov. 5, 1996, at a range of 1.2 million kilometers by the solid state imaging (CCD) system aboard NASA's Galileo spacecraft.Launched in October 1989, Galileo entered orbit around Jupiter on Dec. 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA, manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web Galileo mission home page at http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at http://www.jpl.nasa.gov/galileo/sepo.A Cloud-Based Simulation Architecture for Pandemic Influenza Simulation
Eriksson, Henrik; Raciti, Massimiliano; Basile, Maurizio; Cunsolo, Alessandro; Fröberg, Anders; Leifler, Ola; Ekberg, Joakim; Timpka, Toomas
2011-01-01
High-fidelity simulations of pandemic outbreaks are resource consuming. Cluster-based solutions have been suggested for executing such complex computations. We present a cloud-based simulation architecture that utilizes computing resources both locally available and dynamically rented online. The approach uses the Condor framework for job distribution and management of the Amazon Elastic Computing Cloud (EC2) as well as local resources. The architecture has a web-based user interface that allows users to monitor and control simulation execution. In a benchmark test, the best cost-adjusted performance was recorded for the EC2 H-CPU Medium instance, while a field trial showed that the job configuration had significant influence on the execution time and that the network capacity of the master node could become a bottleneck. We conclude that it is possible to develop a scalable simulation environment that uses cloud-based solutions, while providing an easy-to-use graphical user interface. PMID:22195089
PSC and volcanic aerosol routine observations in Antarctica by UV-visible ground-based spectrometry
NASA Technical Reports Server (NTRS)
Sarkissian, A.; Pommereau, J. P.; Goutail, F.
1994-01-01
Polar statospheric clouds (PSC) and stratospheric aerosol can be observed by ground-based UV-visible spectrometry by looking at the variation of the color of the sky during twilight. A radiative transfer model shows that reddenings are caused by high altitude (22-28 km) thin layers of scatterers, while low altitude (12-20 km) thick ones result in blueings. The color index method applied on 4 years of observations at Dumont d'Urville (67 deg S), from 1988 to 1991, shows that probably because the station is located at the edge of the vortex, dense PSC are uncommon. More unexpected is the existence of a systematic seasonal variation of the color of the twilight sky - bluer at spring - which reveals the formation of a dense scattering layer at or just above the tropopause at the end of the winter. Large scattering layers are reported above the station in 1991, first in August around 12-14 km, later in September at 22-24 km. They are attributed to volcanic aerosol from Mt Hudson and Mt Pinatubo respectively, which erupted in 1991. Inspection of the data shows that the lowest entered rapidly into the polar vortex but not the highest which remained outside, demonstrating that the vortex was isolated at 22-26 km.
Earth and Moon as viewed from Mars
NASA Technical Reports Server (NTRS)
2003-01-01
MGS MOC Release No. MOC2-368, 22 May 2003
[figure removed for brevity, see original site] Globe diagram illustrates the Earth's orientation as viewed from Mars (North and South America were in view). Earth/Moon: This is the first image of Earth ever taken from another planet that actually shows our home as a planetary disk. Because Earth and the Moon are closer to the Sun than Mars, they exhibit phases, just as the Moon, Venus, and Mercury do when viewed from Earth. As seen from Mars by MGS on 8 May 2003 at 13:00 GMT (6:00 AM PDT), Earth and the Moon appeared in the evening sky. The MOC Earth/Moon image has been specially processed to allow both Earth (with an apparent magnitude of -2.5) and the much darker Moon (with an apparent magnitude of +0.9) to be visible together. The bright area at the top of the image of Earth is cloud cover over central and eastern North America. Below that, a darker area includes Central America and the Gulf of Mexico. The bright feature near the center-right of the crescent Earth consists of clouds over northern South America. The image also shows the Earth-facing hemisphere of the Moon, since the Moon was on the far side of Earth as viewed from Mars. The slightly lighter tone of the lower portion of the image of the Moon results from the large and conspicuous ray system associated with the crater Tycho.A note about the coloring process: The MGS MOC high resolution camera only takes grayscale (black-and-white) images. To 'colorize' the image, a Mariner 10 Earth/Moon image taken in 1973 was used to color the MOC Earth and Moon picture. The procedure used was as follows: the Mariner 10 image was converted from 24-bit color to 8-bit color using a JPEG to GIF conversion program. The 8-bit color image was converted to 8-bit grayscale and an associated lookup table mapping each gray value of the image to a red-green-blue color triplet (RGB). Each color triplet was root-sum-squared (RSS), and sorted in increasing RSS value. These sorted lists were brightness-to-color maps for the images. Each brightness-to-color map was then used to convert the 8-bit grayscale MOC image to an 8-bit color image. This 8-bit color image was then converted to a 24-bit color image. The color image was edited to return the background to black.Cloud computing task scheduling strategy based on improved differential evolution algorithm
NASA Astrophysics Data System (ADS)
Ge, Junwei; He, Qian; Fang, Yiqiu
2017-04-01
In order to optimize the cloud computing task scheduling scheme, an improved differential evolution algorithm for cloud computing task scheduling is proposed. Firstly, the cloud computing task scheduling model, according to the model of the fitness function, and then used improved optimization calculation of the fitness function of the evolutionary algorithm, according to the evolution of generation of dynamic selection strategy through dynamic mutation strategy to ensure the global and local search ability. The performance test experiment was carried out in the CloudSim simulation platform, the experimental results show that the improved differential evolution algorithm can reduce the cloud computing task execution time and user cost saving, good implementation of the optimal scheduling of cloud computing tasks.
Rohmer, Kai; Jendersie, Johannes; Grosch, Thorsten
2017-11-01
Augmented Reality offers many applications today, especially on mobile devices. Due to the lack of mobile hardware for illumination measurements, photorealistic rendering with consistent appearance of virtual objects is still an area of active research. In this paper, we present a full two-stage pipeline for environment acquisition and augmentation of live camera images using a mobile device with a depth sensor. We show how to directly work on a recorded 3D point cloud of the real environment containing high dynamic range color values. For unknown and automatically changing camera settings, a color compensation method is introduced. Based on this, we show photorealistic augmentations using variants of differential light simulation techniques. The presented methods are tailored for mobile devices and run at interactive frame rates. However, our methods are scalable to trade performance for quality and can produce quality renderings on desktop hardware.
Image visualization of hyperspectral spectrum for LWIR
NASA Astrophysics Data System (ADS)
Chong, Eugene; Jeong, Young-Su; Lee, Jai-Hoon; Park, Dong Jo; Kim, Ju Hyun
2015-07-01
The image visualization of a real-time hyperspectral spectrum in the long-wave infrared (LWIR) range of 900-1450 cm-1 by a color-matching function is addressed. It is well known that the absorption spectra of main toxic industrial chemical (TIC) and chemical warfare agent (CWA) clouds are detected in this spectral region. Furthermore, a significant spectral peak due to various background species and unknown targets are also present. However, those are dismissed as noise, resulting in utilization limit. Herein, we applied a color-matching function that uses the information from hyperspectral data, which is emitted from the materials and surfaces of artificial or natural backgrounds in the LWIR region. This information was used to classify and differentiate the background signals from the targeted substances, and the results were visualized as image data without additional visual equipment. The tristimulus value based visualization information can quickly identify the background species and target in real-time detection in LWIR.
MASSCLEANage—Stellar Cluster Ages from Integrated Colors
NASA Astrophysics Data System (ADS)
Popescu, Bogdan; Hanson, M. M.
2010-11-01
We present the recently updated and expanded MASSCLEANcolors, a database of 70 million Monte Carlo models selected to match the properties (metallicity, ages, and masses) of stellar clusters found in the Large Magellanic Cloud (LMC). This database shows the rather extreme and non-Gaussian distribution of integrated colors and magnitudes expected with different cluster age and mass and the enormous age degeneracy of integrated colors when mass is unknown. This degeneracy could lead to catastrophic failures in estimating age with standard simple stellar population models, particularly if most of the clusters are of intermediate or low mass, like in the LMC. Utilizing the MASSCLEANcolors database, we have developed MASSCLEANage, a statistical inference package which assigns the most likely age and mass (solved simultaneously) to a cluster based only on its integrated broadband photometric properties. Finally, we use MASSCLEANage to derive the age and mass of LMC clusters based on integrated photometry alone. First, we compare our cluster ages against those obtained for the same seven clusters using more accurate integrated spectroscopy. We find improved agreement with the integrated spectroscopy ages over the original photometric ages. A close examination of our results demonstrates the necessity of solving simultaneously for mass and age to reduce degeneracies in the cluster ages derived via integrated colors. We then selected an additional subset of 30 photometric clusters with previously well-constrained ages and independently derive their age using the MASSCLEANage with the same photometry with very good agreement. The MASSCLEANage program is freely available under GNU General Public License.
The brightest high-latitude 12-micron IRAS sources
NASA Technical Reports Server (NTRS)
Hacking, P.; Beichman, C.; Chester, T.; Neugebauer, G.; Emerson, J.
1985-01-01
The Infrared Astronomical Satellite (IRAS) Point Source catalog was searched for sources brighter than 28 Jy (0 mag) at 12 microns with absolute galactic latitude greater than 30 deg excluding the Large Magellanic Cloud. The search resulted in 269 sources, two of which are the galaxies NGC 1068 and M82. The remaining 267 sources are identified with, or have infrared color indices consistent with late-type stars some of which show evidence of circumstellar dust shells. Seven sources are previously uncataloged stars. K and M stars without circumstellar dust shells, M stars with circumstellar dust shells, and carbon stars occupy well-defined regions of infrared color-color diagrams.
Westley, Peter A H; Stanley, Ryan; Fleming, Ian A
2013-01-01
The success of invasive species is frequently attributed to phenotypic plasticity, which facilitates persistence in novel environments. Here we report on experimental tests to determine whether the intensity of cryptic coloration patterns in a global invader (brown trout, Salmo trutta) was primarily the result of plasticity or heritable variation. Juvenile F1 offspring were created through experimental crosses of wild-caught parents and reared for 30 days in the laboratory in a split-brood design on either light or dark-colored gravel substrate. Skin and fin coloration quantified with digital photography and image analysis indicated strong plastic effects in response to substrate color; individuals reared on dark substrate had both darker melanin-based skin color and carotenoid-based fin colors than other members of their population reared on light substrate. Slopes of skin and fin color reaction norms were parallel between environments, which is not consistent with heritable population-level plasticity to substrate color. Similarly, we observed weak differences in population-level color within an environment, again suggesting little genetic control on the intensity of skin and fin colors. Taken as whole, our results are consistent with the hypothesis that phenotypic plasticity may have facilitated the success of brown trout invasions and suggests that plasticity is the most likely explanation for the variation in color intensity observed among these populations in nature.
3. SOUTH TEST STAND WITH X15 IN PLACE. A color ...
3. SOUTH TEST STAND WITH X-15 IN PLACE. A color photograph taken from a lift boom or from atop a truck, looking northwest to NASA hangars in the far distance. Also shows the shop building at left, and two observation bunkers with hatches open; one at right (Bldg. 1933) and the other in front of Liquid Oxygen tank truck at left (Bldg. 1934). - Edwards Air Force Base, X-15 Engine Test Complex, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA
NASA Astrophysics Data System (ADS)
Ouyang, Qin; Liu, Yan; Chen, Quansheng; Zhang, Zhengzhu; Zhao, Jiewen; Guo, Zhiming; Gu, Hang
2017-06-01
Instrumental test of black tea samples instead of human panel test is attracting massive attention recently. This study focused on an investigation of the feasibility for estimation of the color sensory quality of black tea samples using the VIS-NIR spectroscopy technique, comparing the performances of models based on the spectra and color information. In model calibration, the variables were first selected by genetic algorithm (GA); then the nonlinear back propagation-artificial neural network (BPANN) models were established based on the optimal variables. In comparison with the other models, GA-BPANN models from spectra data information showed the best performance, with the correlation coefficient of 0.8935, and the root mean square error of 0.392 in the prediction set. In addition, models based on the spectra information provided better performance than that based on the color parameters. Therefore, the VIS-NIR spectroscopy technique is a promising tool for rapid and accurate evaluation of the sensory quality of black tea samples.
Ouyang, Qin; Liu, Yan; Chen, Quansheng; Zhang, Zhengzhu; Zhao, Jiewen; Guo, Zhiming; Gu, Hang
2017-06-05
Instrumental test of black tea samples instead of human panel test is attracting massive attention recently. This study focused on an investigation of the feasibility for estimation of the color sensory quality of black tea samples using the VIS-NIR spectroscopy technique, comparing the performances of models based on the spectra and color information. In model calibration, the variables were first selected by genetic algorithm (GA); then the nonlinear back propagation-artificial neural network (BPANN) models were established based on the optimal variables. In comparison with the other models, GA-BPANN models from spectra data information showed the best performance, with the correlation coefficient of 0.8935, and the root mean square error of 0.392 in the prediction set. In addition, models based on the spectra information provided better performance than that based on the color parameters. Therefore, the VIS-NIR spectroscopy technique is a promising tool for rapid and accurate evaluation of the sensory quality of black tea samples. Copyright © 2017 Elsevier B.V. All rights reserved.
BLUE STRAGGLER EVOLUTION CAUGHT IN THE ACT IN THE LARGE MAGELLANIC CLOUD GLOBULAR CLUSTER HODGE 11
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Chengyuan; De Grijs, Richard; Liu Xiangkun
High-resolution Hubble Space Telescope imaging observations show that the radial distribution of the field-decontaminated sample of 162 'blue straggler' stars (BSs) in the 11.7{sup +0.2}{sub -0.1} Gyr old Large Magellanic Cloud cluster Hodge 11 exhibits a clear bimodality. In combination with their distinct loci in color-magnitude space, this offers new evidence in support of theoretical expectations that suggest different BS formation channels as a function of stellar density. In the cluster's color-magnitude diagram, the BSs in the inner 15'' (roughly corresponding to the cluster's core radius) are located more closely to the theoretical sequence resulting from stellar collisions, while thosemore » in the periphery (at radii between 85'' and 100'') are preferentially found in the region expected to contain objects formed through binary mass transfer or coalescence. In addition, the objects' distribution in color-magnitude space provides us with the rare opportunity in an extragalactic environment to quantify the evolution of the cluster's collisionally induced BS population and the likely period that has elapsed since their formation epoch, which we estimate to have occurred {approx}4-5 Gyr ago.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blum, R. D.; Srinivasan, S.; Kemper, F.
2014-11-01
K-band spectra are presented for a sample of 39 Spitzer Infrared Spectrograph (IRS) SAGE-Spec sources in the Large Magellanic Cloud. The spectra exhibit characteristics in very good agreement with their positions in the near-infrared—Spitzer color-magnitude diagrams and their properties as deduced from the Spitzer IRS spectra. Specifically, the near-infrared spectra show strong atomic and molecular features representative of oxygen-rich and carbon-rich asymptotic giant branch stars, respectively. A small subset of stars was chosen from the luminous and red extreme ''tip'' of the color-magnitude diagram. These objects have properties consistent with dusty envelopes but also cool, carbon-rich ''stellar'' cores. Modest amountsmore » of dust mass loss combine with the stellar spectral energy distribution to make these objects appear extreme in their near-infrared and mid-infrared colors. One object in our sample, HV 915, a known post-asymptotic giant branch star of the RV Tau type, exhibits CO 2.3 μm band head emission consistent with previous work that demonstrates that the object has a circumstellar disk.« less
TRIDEC Cloud - a Web-based Platform for Tsunami Early Warning tested with NEAMWave14 Scenarios
NASA Astrophysics Data System (ADS)
Hammitzsch, Martin; Spazier, Johannes; Reißland, Sven; Necmioglu, Ocal; Comoglu, Mustafa; Ozer Sozdinler, Ceren; Carrilho, Fernando; Wächter, Joachim
2015-04-01
In times of cloud computing and ubiquitous computing the use of concepts and paradigms introduced by information and communications technology (ICT) have to be considered even for early warning systems (EWS). Based on the experiences and the knowledge gained in research projects new technologies are exploited to implement a cloud-based and web-based platform - the TRIDEC Cloud - to open up new prospects for EWS. The platform in its current version addresses tsunami early warning and mitigation. It merges several complementary external and in-house cloud-based services for instant tsunami propagation calculations and automated background computation with graphics processing units (GPU), for web-mapping of hazard specific geospatial data, and for serving relevant functionality to handle, share, and communicate threat specific information in a collaborative and distributed environment. The TRIDEC Cloud can be accessed in two different modes, the monitoring mode and the exercise-and-training mode. The monitoring mode provides important functionality required to act in a real event. So far, the monitoring mode integrates historic and real-time sea level data and latest earthquake information. The integration of sources is supported by a simple and secure interface. The exercise and training mode enables training and exercises with virtual scenarios. This mode disconnects real world systems and connects with a virtual environment that receives virtual earthquake information and virtual sea level data re-played by a scenario player. Thus operators and other stakeholders are able to train skills and prepare for real events and large exercises. The GFZ German Research Centre for Geosciences (GFZ), the Kandilli Observatory and Earthquake Research Institute (KOERI), and the Portuguese Institute for the Sea and Atmosphere (IPMA) have used the opportunity provided by NEAMWave14 to test the TRIDEC Cloud as a collaborative activity based on previous partnership and commitments at the European scale. The TRIDEC Cloud has not been involved officially in Part B of the NEAMWave14 scenarios. However, the scenarios have been used by GFZ, KOERI, and IPMA for testing in exercise runs on October 27-28, 2014. Additionally, the Greek NEAMWave14 scenario has been tested in an exercise run by GFZ only on October 29, 2014 (see ICG/NEAMTWS-XI/13). The exercise runs demonstrated that operators in warning centres and stakeholders of other involved parties just need a standard web browser to access a full-fledged TEWS. The integration of GPU accelerated tsunami simulation computations have been an integral part to foster early warning with on-demand tsunami predictions based on actual source parameters. Thus tsunami travel times, estimated times of arrival and estimated wave heights are available immediately for visualization and for further analysis and processing. The generation of warning messages is based on internationally agreed message structures and includes static and dynamic information based on earthquake information, instant computations of tsunami simulations, and actual measurements. Generated messages are served for review, modification, and addressing in one simple form for dissemination via Cloud Messages, Shared Maps, e-mail, FTP/GTS, SMS, and FAX. Cloud Messages and Shared Maps are complementary channels and integrate interactive event and simulation data. Thus recipients are enabled to interact dynamically with a map and diagrams beyond traditional text information.
NASA Technical Reports Server (NTRS)
Lockwood, H. E.
1975-01-01
A color film with a sensitivity and color balance equal to SO-368, Kodak MS Ektachrome (Estar thin base) was required for use on the Apollo-Soyuz test project (ASTP). A Wratten 2A filter was required for use with the film to reduce short wavelength effects which frequently produce a blue color balance in aerial photographs. The background regarding a special emulsion which was produced with a 2A filter equivalent as an integral part of an SO-368 film manufactured by Eastman Kodak, the cost for production of the special film, and the results of a series of tests made within PTD to certify the film for ASTP use are documented. The tests conducted and documented were physical inspection, process compatibility, effective sensitivity, color balance, cross section analysis, resolution, spectral sensitivity, consistency of results, and picture sample analysis.
Analysis of Cloud-Based Database Systems
2015-06-01
EU) citizens under the Patriot Act [3]. Unforeseen virtualization bugs have caused wide-reaching outages [4], leaving customers helpless to assist...collected from SQL Server Profiler traces. We analyze the trace results captured from our test bed both before and after increasing system resources...cloud test- bed . A. DATA COLLECTION, PARSING, AND ORGANIZATION Once we finished collecting the trace data, we knew we needed to have as close a
NASA Astrophysics Data System (ADS)
Ke, Fa-wei; Huang, Jie; Wen, Xue-zhong; Ma, Zhao-xia; Liu, Sen
2016-10-01
In order to study the cracking and intercepting mechanism of stuffed layer configuration on the debris cloud and to develop stuffed layer configuration with better performance, the hypervelocity impact tests on shielding configurations with stuffed layer were carried out. Firstly, the hypervelocity impact tests on the shielding configuration with stuffed layer of 3 layer ceramic fibre and 3 layer aramid fibre were finished, the study results showed that the debris cloud generated by the aluminum sphere impacting bumper at the velocity of about 6.2 km/s would be racked and intercepted by the stuffed layer configuration efficiently when the ceramic fibre layers and aramid fibre layers were jointed together, however, the shielding performance would be declined when the ceramic fibre layers and aramid fibre layers were divided by some distance. The mechanism of stuffed layer racking and intercepting the debris cloud was analyzed according to the above test results. Secondly, based on the mechanism of the stuffed layer cracking and intercepint debirs cloud the hypervelocity impact tests on the following three stuffed layer structures with the equivalent areal density to the 1 mm-thick aluminum plate were also carried out to compare their performance of cracking and intercepting debris cloud. The mechanisms of stuffed layer racking and intercepting the debris cloud were validated by the test result. Thirdly, the influence of the stuffed layer position on the shielding performance was studied by the test, too. The test results would provide reference for the design of better performance shielding configuration with stuffed layer.
Photographer : JPL Range : 12 million km. ( 7.56 million miles) P-23057C & BW This Voyager 1
NASA Technical Reports Server (NTRS)
1980-01-01
Photographer : JPL Range : 12 million km. ( 7.56 million miles) P-23057C & BW This Voyager 1 photograph of Titan, the largest of Saturn's 14 known satellites, shows little more than the upper layers of clouds covering the moon. The orange colored haze, is believed to be composed of photochemically produced hydrocarbons, hides Titan's solid surface from Voyager's camera. Some weak shadings in the clouds are becoming visible. However, note that the satellite's southern, lower, hemisphere is brighter than the northern. It is not known whether these subtle shadings are on the surface or are due to clouds below a high haze layer.
A computer-controlled color vision test for children based on the Cambridge Colour Test.
Goulart, Paulo R K; Bandeira, Marcio L; Tsubota, Daniela; Oiwa, Nestor N; Costa, Marcelo F; Ventura, Dora F
2008-01-01
The present study aimed at providing conditions for the assessment of color discrimination in children using a modified version of the Cambridge Colour Test (CCT, Cambridge Research Systems Ltd., Rochester, UK). Since the task of indicating the gap of the Landolt C used in that test proved counterintuitive and/or difficult for young children to understand, we changed the target stimulus to a patch of color approximately the size of the Landolt C gap (about 7 degrees of visual angle at 50 cm from the monitor). The modifications were performed for the CCT Trivector test which measures color discrimination for the protan, deutan and tritan confusion lines. Experiment 1 sought to evaluate the correspondence between the CCT and the child-friendly adaptation with adult subjects (n = 29) with normal color vision. Results showed good agreement between the two test versions. Experiment 2 tested the child-friendly software with children 2 to 7 years old (n = 25) using operant training techniques for establishing and maintaining the subjects' performance. Color discrimination thresholds were progressively lower as age increased within the age range tested (2 to 30 years old), and the data--including those obtained for children--fell within the range of thresholds previously obtained for adults with the CCT. The protan and deutan thresholds were consistently lower than tritan thresholds, a pattern repeatedly observed in adults tested with the CCT. The results demonstrate that the test is fit for assessment of color discrimination in young children and may be a useful tool for the establishment of color vision thresholds during development.
ERIC Educational Resources Information Center
Diawati, Chansyanah; Liliasari; Setiabudi, Agus; Buchari
2018-01-01
Students learned the principles and practice of photometry through project-based learning. They addressed the challenge of measuring the unknown concentration of a colored substance using a photometer they were required to design, build, and test. Then, they used that instrument to carry out the experiment and fulfill the challenge. A photometer…
NASA Astrophysics Data System (ADS)
Choi, Myungje; Kim, Jhoon; Lee, Jaehwa; Kim, Mijin; Park, Young-Je; Holben, Brent; Eck, Thomas F.; Li, Zhengqiang; Song, Chul H.
2018-01-01
The Geostationary Ocean Color Imager (GOCI) Yonsei aerosol retrieval (YAER) version 1 algorithm was developed to retrieve hourly aerosol optical depth at 550 nm (AOD) and other subsidiary aerosol optical properties over East Asia. The GOCI YAER AOD had accuracy comparable to ground-based and other satellite-based observations but still had errors because of uncertainties in surface reflectance and simple cloud masking. In addition, near-real-time (NRT) processing was not possible because a monthly database for each year encompassing the day of retrieval was required for the determination of surface reflectance. This study describes the improved GOCI YAER algorithm version 2 (V2) for NRT processing with improved accuracy based on updates to the cloud-masking and surface-reflectance calculations using a multi-year Rayleigh-corrected reflectance and wind speed database, and inversion channels for surface conditions. The improved GOCI AOD τG is closer to that of the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) AOD than was the case for AOD from the YAER V1 algorithm. The V2 τG has a lower median bias and higher ratio within the MODIS expected error range (0.60 for land and 0.71 for ocean) compared with V1 (0.49 for land and 0.62 for ocean) in a validation test against Aerosol Robotic Network (AERONET) AOD τA from 2011 to 2016. A validation using the Sun-Sky Radiometer Observation Network (SONET) over China shows similar results. The bias of error (τG - τA) is within -0.1 and 0.1, and it is a function of AERONET AOD and Ångström exponent (AE), scattering angle, normalized difference vegetation index (NDVI), cloud fraction and homogeneity of retrieved AOD, and observation time, month, and year. In addition, the diagnostic and prognostic expected error (PEE) of τG are estimated. The estimated PEE of GOCI V2 AOD is well correlated with the actual error over East Asia, and the GOCI V2 AOD over South Korea has a higher ratio within PEE than that over China and Japan.
WISE Catches the Lagoon Nebula in Center of Action
2011-01-06
This colorful picture is a mosaic of Messier 8, or the Lagoon nebula, taken by NASA Wide-field Infrared Survey Explorer. This nebula is composed of clouds of gas and dust in which new stars are forming.
Performance testing of 3D point cloud software
NASA Astrophysics Data System (ADS)
Varela-González, M.; González-Jorge, H.; Riveiro, B.; Arias, P.
2013-10-01
LiDAR systems are being used widely in recent years for many applications in the engineering field: civil engineering, cultural heritage, mining, industry and environmental engineering. One of the most important limitations of this technology is the large computational requirements involved in data processing, especially for large mobile LiDAR datasets. Several software solutions for data managing are available in the market, including open source suites, however, users often unknown methodologies to verify their performance properly. In this work a methodology for LiDAR software performance testing is presented and four different suites are studied: QT Modeler, VR Mesh, AutoCAD 3D Civil and the Point Cloud Library running in software developed at the University of Vigo (SITEGI). The software based on the Point Cloud Library shows better results in the loading time of the point clouds and CPU usage. However, it is not as strong as commercial suites in working set and commit size tests.
Massive star-forming regions across the galaxy
NASA Astrophysics Data System (ADS)
Rygl, Kazi Lucie Jessica
2010-04-01
Star-forming regions trace the spiral structure of the Galaxy. They are regions of increased column density and therefore traced well by the extinction in the mid-infrared based on the Spitzer/GLIMPSE 3.6-4.5 micron color excess maps. A sample of 25 high extinction clouds (HECs) was studied in the 1.2 mm dust continuum emission, and followed up by observations of ammonia plus several other molecules using the Effelsberg 100m, IRAM 30m and APEX telescopes. With these data we want to investigate the most early stages of massive star formation, which are currently still largely unknown. Three cloud classes were defined from their morphology in the 1.2 mm continuum maps: the early diffuse HECs, with a low contrast between the clump and cloud emission; the peaked HECs, with an increased contrast; the late multiply peaked HECs, with more than one clump and a high contrast between the clump and the cloud emission. The clouds are cold (T 16 K) and massive (M 800 M_sun) and contain dense clumps (n 10^5 cm^{-3}) of 0.3 pc in size. These clumps were investigated for evidence of gravitational collapse or expansion, for high velocity outflows, and for the presence of young stellar objects. Based on these results we interpret the three cloud classes as an evolutionary sequence of star-forming clouds. Accurate distances are a crucial parameter for establishing the mass, size, and luminosity of an object. Also, for understanding the spiral structure of the Galaxy trustworthy distances are necessary. The most accurate method to measure these is the trigonometric parallax. Using the European Very Large Baseline Interferometry Network of radio antennas we measured, for the first time, parallaxes of 6.7 GHz methanol masers. This transition belongs to the strongest maser species in the Galaxy, it is stable and observed toward numerous massive star-forming regions. We measured distances and proper motions toward L 1287, L 1206, NGC 281-W, ON 1 and S 255, and obtained their 3-dimensional space velocities. Similar to previous studies, these star-forming regions rotate slower than Galactic rotation.
NASA Astrophysics Data System (ADS)
Sedano, Fernando; Kempeneers, Pieter; Strobl, Peter; Kucera, Jan; Vogt, Peter; Seebach, Lucia; San-Miguel-Ayanz, Jesús
2011-09-01
This study presents a novel cloud masking approach for high resolution remote sensing images in the context of land cover mapping. As an advantage to traditional methods, the approach does not rely on thermal bands and it is applicable to images from most high resolution earth observation remote sensing sensors. The methodology couples pixel-based seed identification and object-based region growing. The seed identification stage relies on pixel value comparison between high resolution images and cloud free composites at lower spatial resolution from almost simultaneously acquired dates. The methodology was tested taking SPOT4-HRVIR, SPOT5-HRG and IRS-LISS III as high resolution images and cloud free MODIS composites as reference images. The selected scenes included a wide range of cloud types and surface features. The resulting cloud masks were evaluated through visual comparison. They were also compared with ad-hoc independently generated cloud masks and with the automatic cloud cover assessment algorithm (ACCA). In general the results showed an agreement in detected clouds higher than 95% for clouds larger than 50 ha. The approach produced consistent results identifying and mapping clouds of different type and size over various land surfaces including natural vegetation, agriculture land, built-up areas, water bodies and snow.
Probing Storm Activity on Jupiter
NASA Technical Reports Server (NTRS)
2007-01-01
Scientists assume Jupiter's clouds are composed primarily of ammonia, but only about 1% of the cloud area displays the characteristic spectral fingerprint of ammonia. This composite of infrared images taken by the New Horizons Linear Etalon Infrared Spectral Imager (LEISA) captures several eruptions of this relatively rare breed of ammonia cloud and follows the evolution of the clouds over two Jovian days. (One day on Jupiter is approximately 10 hours, which is how long it takes Jupiter to make one complete rotation about its axis.) The New Horizons spacecraft was still closing in on the giant planet when it made these observations: Jupiter was 3.4 million kilometers (2.1 million miles) from the New Horizons spacecraft for the LEISA image taken at 19:35 Universal Time on February 26, 2007, and the distance decreased to 2.5 million kilometers (1.6 million miles) for the last image shown. LEISA's spatial resolution scale varied from approximately 210 kilometers (130 miles) for the first image to 160 kilometers (100 miles) for the last one. New Horizons scientists originally targeted the region slightly northwest (up and to the left) of the Great Red Spot to search for these special ammonia clouds because that's where they were most easily seen during infrared spectral observations made by the Galileo spacecraft. But unlike the churning, turbulent cloud structures seen near the Great Red Spot during the Galileo era, this region has been quieting down during the past several months and was unusually tranquil when New Horizons passed by. Nevertheless, LEISA managed to find other regions of fresh, upwelling ammonia clouds, and the temporal evolution of one such region is displayed in this figure. In the first image, a fresh ammonia cloud (the blue region) sprouts from between white clouds and a dark elongated region. This blue cloud subsequently stretches along the white-dark border in the next two images. These fresh ammonia clouds trace the strong upwelling of gases from the largely hidden depths of Jupiter to higher altitudes. Presumably, water is also being dragged up from below, and the subsequent condensation of that water, which is far more abundant than ammonia in Jupiter's atmosphere, into cloud droplets energizes the lower troposphere. LEISA produces images at infrared wavelengths, which is heat radiation that cannot be sensed by the human eye. These 'false color' images were produced by putting images of Jupiter at wavelengths of 1.99 micrometers, 1.94 micrometers and 2.04 micrometers into the red, green and blue channels, respectively, of the image display. Ammonia has an absorption feature at 1.99 microns, and when the colors are combined in this way the fresh ammonia clouds take on a bluish hue.NASA Astrophysics Data System (ADS)
Dai, Mengyan; Liu, Jianghai; Cui, Jianlin; Chen, Chunsheng; Jia, Peng
2017-10-01
In order to solve the problem of the quantitative test of spectrum and color of aerosol, the measurement method of spectrum of aerosol based on human visual system was proposed. The spectrum characteristics and color parameters of three different aerosols were tested, and the color differences were calculated according to the CIE1976-L*a*b* color difference formula. Three tested powders (No 1# No 2# and No 3# ) were dispersed in a plexglass box and turned into aerosol. The powder sample was released by an injector with different dosages in each experiment. The spectrum and color of aerosol were measured by the PRO 6500 Fiber Optic Spectrometer. The experimental results showed that the extinction performance of aerosol became stronger and stronger with the increase of concentration of aerosol. While the chromaticity value differences of aerosols in the experiment were so small, luminance was verified to be the main influence factor of human eye visual perception and contributed most in the three factors of the color difference calculation. The extinction effect of No 3# aerosol was the strongest of all and caused the biggest change of luminance and color difference which would arouse the strongest human visual perception. According to the sensation level of chromatic color by Chinese, recognition color difference would be produced when the dosage of No 1# powder was more than 0.10 gram, the dosage of No 2# powder was more than 0.15 gram, and the dosage of No 3# powder was more than 0.05 gram.
Earth Observations taken by the Expedition 23 Crew
2010-05-25
ISS023-E-057948 (25 May 2010) --- A sunset on the Indian Ocean is featured in this image photographed by an Expedition 23 crew member on the International Space Station (ISS). The image presents an edge-on, or limb view, of Earth’s atmosphere as seen from orbit. The Earth’s curvature is visible along the horizon line, or limb, that extends across the image from center left to lower right. Above the darkened surface of Earth, a brilliant sequence of colors roughly denotes several layers of the atmosphere. Deep oranges and yellows are visible in the troposphere that extends from Earth’s surface to 6-20 kilometers high. This layer contains over 80 percent of the mass of the atmosphere and almost all of the water vapor, clouds, and precipitation – several dark cloud layers are visible within this layer. Variations in the colors are due mainly to varying concentrations of either clouds or aerosols (airborne particles or droplets). The pink to white region above the clouds appears to be the stratosphere; this atmospheric layer generally has little or no clouds and extends up to approximately 50 kilometers above Earth’s surface. Above the stratosphere blue layers mark the upper atmosphere (including the mesosphere, thermosphere, ionosphere, and exosphere) as it gradually fades into the blackness of outer space. The ISS was located over the southern Indian Ocean when this image was taken, with the observer looking towards the west. Crew members aboard the space station see 16 sunrises and sunsets per day due to their high orbital velocity (greater than 28,000 kilometers per hour). The multiple chances for photography are fortunate, as at that speed each sunrise/sunset event only lasts a few seconds.
NASA Astrophysics Data System (ADS)
Guo, Rui; Hao, Cai-Na; Xia, X. Y.; Mao, Shude; Shi, Yong
2016-07-01
With the aim of exploring the fast evolutionary path from the blue cloud of star-forming galaxies to the red sequence of quiescent galaxies in the local universe, we select a local advanced merging infrared luminous and ultraluminous galaxy (adv-merger (U)LIRGs) sample and perform careful dust extinction corrections to investigate their positions in the star formation rate-M *, u - r, and NUV - r color-mass diagrams. The sample consists of 89 (U)LIRGs at the late merger stage, obtained from cross-correlating the Infrared Astronomical Satellite Point Source Catalog Redshift Survey and 1 Jy ULIRGs samples with the Sloan Digital Sky Survey DR7 database. Our results show that 74 % +/- 5 % of adv-merger (U)LIRGs are localized above the 1σ line of the local star-forming galaxy main sequence. We also find that all adv-merger (U)LIRGs are more massive than and as blue as the blue cloud galaxies after corrections for Galactic and internal dust extinctions, with 95 % +/- 2 % and 81 % +/- 4 % of them outside the blue cloud on the u - r and NUV - r color-mass diagrams, respectively. These results, combined with the short timescale for exhausting the molecular gas reservoir in adv-merger (U)LIRGs (3× {10}7 to 3× {10}8 years), imply that the adv-merger (U)LIRGs are likely at the starting point of the fast evolutionary track previously proposed by several groups. While the number density of adv-merger (U)LIRGs is only ˜ 0.1 % of the blue cloud star-forming galaxies in the local universe, this evolutionary track may play a more important role at high redshift.
Discovery of Extended Main-sequence Turnoffs in Four Young Massive Clusters in the Magellanic Clouds
NASA Astrophysics Data System (ADS)
Li, Chengyuan; de Grijs, Richard; Deng, Licai; Milone, Antonino P.
2017-08-01
An increasing number of young massive clusters (YMCs) in the Magellanic Clouds have been found to exhibit bimodal or extended main sequences (MSs) in their color-magnitude diagrams (CMDs). These features are usually interpreted in terms of a coeval stellar population with different stellar rotational rates, where the blue and red MS stars are populated by non- (or slowly) and rapidly rotating stellar populations, respectively. However, some studies have shown that an age spread of several million years is required to reproduce the observed wide turnoff regions in some YMCs. Here we present the ultraviolet-visual CMDs of four Large and Small Magellanic Cloud YMCs, NGC 330, NGC 1805, NGC 1818, and NGC 2164, based on high-precision Hubble Space Telescope photometry. We show that they all exhibit extended main-sequence turnoffs (MSTOs). The importance of age spreads and stellar rotation in reproducing the observations is investigated. The observed extended MSTOs cannot be explained by stellar rotation alone. Adopting an age spread of 35-50 Myr can alleviate this difficulty. We conclude that stars in these clusters are characterized by ranges in both their ages and rotation properties, but the origin of the age spread in these clusters remains unknown.
Atmospheres of the Giant Planets
NASA Technical Reports Server (NTRS)
Ingersoll, Andrew P.
2002-01-01
The giant planets, Jupiter, Saturn, Uranus, and Neptune, are fluid objects. They have no solid surfaces because the light elements constituting them do not condense at solar-system temperatures. Instead, their deep atmospheres grade downward until the distinction between gas and liquid becomes meaningless. The preceding chapter delved into the hot, dark interiors of the Jovian planets. This one focuses on their atmospheres, especially the observable layers from the base of the clouds to the edge of space. These veneers arc only a few hundred kilometers thick, less than one percent of each planet's radius, but they exhibit an incredible variety of dynamic phenomena. The mixtures of elements in these outer layers resemble a cooled-down piece of the Sun. Clouds precipitate out of this gaseous soup in a variety of colors. The cloud patterns are organized by winds, which are powered by heat derived from sunlight (as on Earth) and by internal heat left over from planetary formation. Thus the atmospheres of the Jovian planets are distinctly different both compositionally and dynamically from those of the terrestrial planets. Such differences make them fascinating objects for study, providing clues about the origin and evolution of the planets and the formation of the solar system.
NASA Astrophysics Data System (ADS)
Costa-Surós, M.; Calbó, J.; González, J. A.; Long, C. N.
2013-06-01
The cloud vertical distribution and especially the cloud base height, which is linked to cloud type, is an important characteristic in order to describe the impact of clouds in a changing climate. In this work several methods to estimate the cloud vertical structure (CVS) based on atmospheric sounding profiles are compared, considering number and position of cloud layers, with a ground based system which is taken as a reference: the Active Remote Sensing of Clouds (ARSCL). All methods establish some conditions on the relative humidity, and differ on the use of other variables, the thresholds applied, or the vertical resolution of the profile. In this study these methods are applied to 125 radiosonde profiles acquired at the ARM Southern Great Plains site during all seasons of year 2009 and endorsed by GOES images, to confirm that the cloudiness conditions are homogeneous enough across their trajectory. The overall agreement for the methods ranges between 44-88%; four methods produce total agreements around 85%. Further tests and improvements are applied on one of these methods. In addition, we attempt to make this method suitable for low resolution vertical profiles, which could be useful in atmospheric modeling. The total agreement, even when using low resolution profiles, can be improved up to 91% if the thresholds for a moist layer to become a cloud layer are modified to minimize false negatives with the current data set, thus improving overall agreement.
Expedition Seven Takes Breathtaking Photo of Earth's Atmosphere
NASA Technical Reports Server (NTRS)
2003-01-01
This Expedition Seven image, taken while aboard the International Space Station (ISS), shows the limb of the Earth at the bottom transitioning into the orange-colored stratosphere, the lowest and most dense portion of the Earth's atmosphere. The troposphere ends abruptly at the tropopause, which appears in the image as the sharp boundary between the orange- and blue-colored atmosphere. The silvery blue noctilucent clouds extend far above the Earth's troposphere. The silver of the setting moon is visible at upper right.
Children's Book Color Preferences as Related to Their Favorite Color.
ERIC Educational Resources Information Center
Locke, Jill L.
Because young children disregard writing on the spine of a book, researchers chose to run a test on color preferences in books. In a library situation young children see most books from a spine-out angle; thus when allowed to select a book by themselves, the first characteristics noticed are size and color. This study is based on the hypothesis…
NASA Astrophysics Data System (ADS)
Bley, S.; Deneke, H.
2013-10-01
A threshold-based cloud mask for the high-resolution visible (HRV) channel (1 × 1 km2) of the Meteosat SEVIRI (Spinning Enhanced Visible and Infrared Imager) instrument is introduced and evaluated. It is based on operational EUMETSAT cloud mask for the low-resolution channels of SEVIRI (3 × 3 km2), which is used for the selection of suitable thresholds to ensure consistency with its results. The aim of using the HRV channel is to resolve small-scale cloud structures that cannot be detected by the low-resolution channels. We find that it is of advantage to apply thresholds relative to clear-sky reflectance composites, and to adapt the threshold regionally. Furthermore, the accuracy of the different spectral channels for thresholding and the suitability of the HRV channel are investigated for cloud detection. The case studies show different situations to demonstrate the behavior for various surface and cloud conditions. Overall, between 4 and 24% of cloudy low-resolution SEVIRI pixels are found to contain broken clouds in our test data set depending on considered region. Most of these broken pixels are classified as cloudy by EUMETSAT's cloud mask, which will likely result in an overestimate if the mask is used as an estimate of cloud fraction. The HRV cloud mask aims for small-scale convective sub-pixel clouds that are missed by the EUMETSAT cloud mask. The major limit of the HRV cloud mask is the minimum cloud optical thickness (COT) that can be detected. This threshold COT was found to be about 0.8 over ocean and 2 over land and is highly related to the albedo of the underlying surface.
Non-destructive evaluation of laboratory scale hydraulic fracturing using acoustic emission
NASA Astrophysics Data System (ADS)
Hampton, Jesse Clay
The primary objective of this research is to develop techniques to characterize hydraulic fractures and fracturing processes using acoustic emission monitoring based on laboratory scale hydraulic fracturing experiments. Individual microcrack AE source characterization is performed to understand the failure mechanisms associated with small failures along pre-existing discontinuities and grain boundaries. Individual microcrack analysis methods include moment tensor inversion techniques to elucidate the mode of failure, crack slip and crack normal direction vectors, and relative volumetric deformation of an individual microcrack. Differentiation between individual microcrack analysis and AE cloud based techniques is studied in efforts to refine discrete fracture network (DFN) creation and regional damage quantification of densely fractured media. Regional damage estimations from combinations of individual microcrack analyses and AE cloud density plotting are used to investigate the usefulness of weighting cloud based AE analysis techniques with microcrack source data. Two granite types were used in several sample configurations including multi-block systems. Laboratory hydraulic fracturing was performed with sample sizes ranging from 15 x 15 x 25 cm3 to 30 x 30 x 25 cm 3 in both unconfined and true-triaxially confined stress states using different types of materials. Hydraulic fracture testing in rock block systems containing a large natural fracture was investigated in terms of AE response throughout fracture interactions. Investigations of differing scale analyses showed the usefulness of individual microcrack characterization as well as DFN and cloud based techniques. Individual microcrack characterization weighting cloud based techniques correlated well with post-test damage evaluations.
Karaman, Emel; Tuncer, Duygu; Firat, Esra; Ozdemir, Oguz Suleyman; Karahan, Sevilay
2014-05-01
To investigate the influence of different staining beverages on color stability, surface roughness and microhardness of silorane and methacrylate-based composite resins. Three different composite resins (Filtek Silorane, Filtek P60, Filtek Supreme XT) were tested. Thirty cylindrical specimens (10 × 2 mm) per material were prepared and polished with a series of aluminum-oxide polishing disks. Each group was then randomly subdivided into three groups according to the test beverages: distilled water (control), cola and coffee. The samples were immersed into different beverages for 15 days. Color, surface roughness and microhardness values were measured by a spectrophotometer, prophylometer and Vickers hardness device respectively, at baseline and after 15 days. The data were subjected to statistical analysis. Immersion in coffee resulted in a significant discoloration for all the composites tested, although the color change was lower in Filtek Silorane than that of MBCs (p < 0.05). All the composites tested showed similar surface roughness changes after immersion in different beverages (p > 0.05). Besides coffee caused more roughness change than others. Immersion in coffee caused highest microhardness change in Filtek Supreme XT (p < 0.05). Cola and coffee altered, to some degree, the color, surface roughness and/or microhardness of the tested resin composites, depending on the characteristics of the materials.
NASA Astrophysics Data System (ADS)
Costa-Surós, M.; Calbó, J.; González, J. A.; Long, C. N.
2014-08-01
The cloud vertical distribution and especially the cloud base height, which is linked to cloud type, are important characteristics in order to describe the impact of clouds on climate. In this work, several methods for estimating the cloud vertical structure (CVS) based on atmospheric sounding profiles are compared, considering the number and position of cloud layers, with a ground-based system that is taken as a reference: the Active Remote Sensing of Clouds (ARSCL). All methods establish some conditions on the relative humidity, and differ in the use of other variables, the thresholds applied, or the vertical resolution of the profile. In this study, these methods are applied to 193 radiosonde profiles acquired at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site during all seasons of the year 2009 and endorsed by Geostationary Operational Environmental Satellite (GOES) images, to confirm that the cloudiness conditions are homogeneous enough across their trajectory. The perfect agreement (i.e., when the whole CVS is estimated correctly) for the methods ranges between 26 and 64%; the methods show additional approximate agreement (i.e., when at least one cloud layer is assessed correctly) from 15 to 41%. Further tests and improvements are applied to one of these methods. In addition, we attempt to make this method suitable for low-resolution vertical profiles, like those from the outputs of reanalysis methods or from the World Meteorological Organization's (WMO) Global Telecommunication System. The perfect agreement, even when using low-resolution profiles, can be improved by up to 67% (plus 25% of the approximate agreement) if the thresholds for a moist layer to become a cloud layer are modified to minimize false negatives with the current data set, thus improving overall agreement.
Discrete post-processing of total cloud cover ensemble forecasts
NASA Astrophysics Data System (ADS)
Hemri, Stephan; Haiden, Thomas; Pappenberger, Florian
2017-04-01
This contribution presents an approach to post-process ensemble forecasts for the discrete and bounded weather variable of total cloud cover. Two methods for discrete statistical post-processing of ensemble predictions are tested. The first approach is based on multinomial logistic regression, the second involves a proportional odds logistic regression model. Applying them to total cloud cover raw ensemble forecasts from the European Centre for Medium-Range Weather Forecasts improves forecast skill significantly. Based on station-wise post-processing of raw ensemble total cloud cover forecasts for a global set of 3330 stations over the period from 2007 to early 2014, the more parsimonious proportional odds logistic regression model proved to slightly outperform the multinomial logistic regression model. Reference Hemri, S., Haiden, T., & Pappenberger, F. (2016). Discrete post-processing of total cloud cover ensemble forecasts. Monthly Weather Review 144, 2565-2577.
2015-01-01
Background The Internet has greatly enhanced health care, helping patients stay up-to-date on medical issues and general knowledge. Many cancer patients use the Internet for cancer diagnosis and related information. Recently, cloud computing has emerged as a new way of delivering health services but currently, there is no generic and fully automated cloud-based self-management intervention for breast cancer patients, as practical guidelines are lacking. Objective We investigated the prevalence and predictors of cloud use for medical diagnosis among women with breast cancer to gain insight into meaningful usage parameters to evaluate the use of generic, fully automated cloud-based self-intervention, by assessing how breast cancer survivors use a generic self-management model. The goal of this study was implemented and evaluated with a new prototype called “CIMIDx”, based on representative association rules that support the diagnosis of medical images (mammograms). Methods The proposed Cloud-Based System Support Intelligent Medical Image Diagnosis (CIMIDx) prototype includes two modules. The first is the design and development of the CIMIDx training and test cloud services. Deployed in the cloud, the prototype can be used for diagnosis and screening mammography by assessing the cancers detected, tumor sizes, histology, and stage of classification accuracy. To analyze the prototype’s classification accuracy, we conducted an experiment with data provided by clients. Second, by monitoring cloud server requests, the CIMIDx usage statistics were recorded for the cloud-based self-intervention groups. We conducted an evaluation of the CIMIDx cloud service usage, in which browsing functionalities were evaluated from the end-user’s perspective. Results We performed several experiments to validate the CIMIDx prototype for breast health issues. The first set of experiments evaluated the diagnostic performance of the CIMIDx framework. We collected medical information from 150 breast cancer survivors from hospitals and health centers. The CIMIDx prototype achieved high sensitivity of up to 99.29%, and accuracy of up to 98%. The second set of experiments evaluated CIMIDx use for breast health issues, using t tests and Pearson chi-square tests to assess differences, and binary logistic regression to estimate the odds ratio (OR) for the predictors’ use of CIMIDx. For the prototype usage statistics for the same 150 breast cancer survivors, we interviewed 114 (76.0%), through self-report questionnaires from CIMIDx blogs. The frequency of log-ins/person ranged from 0 to 30, total duration/person from 0 to 1500 minutes (25 hours). The 114 participants continued logging in to all phases, resulting in an intervention adherence rate of 44.3% (95% CI 33.2-55.9). The overall performance of the prototype for the good category, reported usefulness of the prototype (P=.77), overall satisfaction of the prototype (P=.31), ease of navigation (P=.89), user friendliness evaluation (P=.31), and overall satisfaction (P=.31). Positive evaluations given by 100 participants via a Web-based questionnaire supported our hypothesis. Conclusions The present study shows that women felt favorably about the use of a generic fully automated cloud-based self- management prototype. The study also demonstrated that the CIMIDx prototype resulted in the detection of more cancers in screening and diagnosing patients, with an increased accuracy rate. PMID:25830608
Application of the SRI cloud-tracking technique to rapid-scan GOES observations
NASA Technical Reports Server (NTRS)
Wolf, D. E.; Endlich, R. M.
1980-01-01
An automatic cloud tracking system was applied to multilayer clouds associated with severe storms. The method was tested using rapid scan observations of Hurricane Eloise obtained by the GOES satellite on 22 September 1975. Cloud tracking was performed using clustering based either on visible or infrared data. The clusters were tracked using two different techniques. The data of 4 km and 8 km resolution of the automatic system yielded comparable in accuracy and coverage to those obtained by NASA analysts using the Atmospheric and Oceanographic Information Processing System.
Hubble Space Telescope Resolves Volcanoes on Io
NASA Technical Reports Server (NTRS)
1994-01-01
This picture is a composite of a black and white near infrared image of Jupiter and its satellite Io and a color image of Io at shorter wavelengths taken at almost the same time on March 5, 1994. These are the first images of a giant planet or its satellites taken by NASA's Hubble Space Telescope (HST) since the repair mission in December 1993.
Io is too small for ground-based telescopes to see the surface details. The moon's angular diameter of one arc second is at the resolution limit of ground based telescopes.Many of these markings correspond to volcanoes that were first revealed in 1979 during the Voyager spacecraft flyby of Jupiter. Several of the volcanoes periodically are active because Io is heated by tides raised by Jupiter's powerful gravity.The volcano Pele appears as a dark spot surrounded by an irregular orange oval in the lower part of the image. The orange material has been ejected from the volcano and spread over a huge area. Though the volcano was first discovered by Voyager, the distinctive orange color of the volcanic deposits is a new discovery in these HST images. (Voyager missed it because its cameras were not sensitive to the near-infrared wavelengths where the color is apparent). The sulfur and sulfur dioxide that probably dominate Io's surface composition cannot produce this orange color, so the Pele volcano must be generating material with a more unusual composition, possibly rich in sodium.The Jupiter image, taken in near-infrared light, was obtained with HST's Wide Field and Planetary Camera in wide field mode. High altitude ammonia crystal clouds are bright in this image because they reflect infrared light before it is absorbed by methane in Jupiter's atmosphere. The most prominent feature is the Great Red Spot, which is conspicuous because of its high clouds. A cap of high-altitude haze appears at Jupiter's south pole.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/de Azevedo Cubas, Gloria Beatriz; Camacho, Guilherme Brião; Demarco, Flávio Fernando; Pereira-Cenci, Tatiana
2011-01-01
Objectives: The aim of this study was to assess the influence of various ceramic thicknesses and luting agents on color variation in five ceramic systems. Methods: Fifteen disc-shaped ceramic specimens (11 mm diameter; shade A3) were fabricated with each of the six veneering ceramics tested, with 1, 1.5, or 2 mm thickness (n=5). Resin composite discs (Z-250, shade C4) were used as bases to simulate a chromatic background. The cementation of the veneers was carried out with an opaque resin-based cement (Enforce, shade C4), a resin-based cement (Enforce, shade A3), or without cement (C4, control group). Color differences (ΔE*) were determined using a colorimeter. Three-way ANOVA was used to analyze the data, followed by a Tukey post-hoc test (α=.05). Results: The L*a*b* values of the ceramic systems were affected by both the luting agent and the ceramic thickness (P<.05). In general, there was no difference between the control group and the group using the resin-based cement. The use of an opaque luting agent resulted in an increase of the color coordinates a*, b*, L*, producing differences in ΔE* values for all ceramics tested, regardless of the thickness (P<.05). For the 2-mm thick veneers, higher values in the color parameters were obtained for all ceramics and were independent of the luting agent used. Conclusions: The association of 2-mm thickness with opaque cement presented the strongest masking ability of a dark colored background when compared to a non- opaque luting agent and the other thicknesses tested. PMID:21769264
2017-12-08
Visualization Date 2003-12-18 Clouds ripple over Ireland and Scotland in a wave pattern, similar to the pattern of waves along a seashore. The similarity is not coincidental — the atmosphere behaves like a fluid, so when it encounters an obstacle, it must move around it. This movement forms a wave, and the wave movement can continue for long distances. In this case, the waves were caused by the air moving over and around the mountains of Scotland and Ireland. As the air crested a wave, it cooled, and clouds formed. Then, as the air sank into the trough, the air warmed, and clouds did not form. This pattern repeated itself, with clouds appearing at the peak of every wave. Other types of clouds are also visible in the scene. Along the northwestern and southwestern edges of this true-color image from December 17, 2003, are normal mid-altitude clouds with fairly uniform appearances. High altitude cirrus-clouds float over these, casting their shadows on the lower clouds. Open- and closed-cell clouds formed off the coast of northwestern France, and thin contrail clouds are visible just east of these. Contrail clouds form around the particles carried in airplane exhaust. Fog is also visible in the valleys east of the Cambrian Mountains, along the border between northern/central Wales and England. This is an Aqua MODIS image. Sensor Aqua/MODIS Credit Jacques Descloitres, MODIS Rapid Response Team, NASA/GSFC For more information go to: visibleearth.nasa.gov/view_rec.php?id=6146
NASA Technical Reports Server (NTRS)
Oliver, Michael J.
2014-01-01
The Propulsion Systems Laboratory (PSL) is an existing altitude simulation jet engine test facility located at NASA Glenn Research Center in Cleveland, OH. It was modified in 2012 with the integration of an ice crystal cloud generation system. This paper documents the inaugural ice crystal cloud test in PSL--the first ever full scale, high altitude ice crystal cloud turbofan engine test to be conducted in a ground based facility. The test article was a Lycoming ALF502-R5 high bypass turbofan engine, serial number LF01. The objectives of the test were to validate the PSL ice crystal cloud calibration and engine testing methodologies by demonstrating the capability to calibrate and duplicate known flight test events that occurred on the same LF01 engine and to generate engine data to support fundamental and computational research to investigate and better understand the physics of ice crystal icing in a turbofan engine environment while duplicating known revenue service events and conducting test points while varying facility and engine parameters. During PSL calibration testing it was discovered than heated probes installed through tunnel sidewalls experienced ice buildup aft of their location due to ice crystals impinging upon them, melting and running back. Filtered city water was used in the cloud generation nozzle system to provide ice crystal nucleation sites. This resulted in mineralization forming on flow path hardware that led to a chronic degradation of performance during the month long test. Lacking internal flow path cameras, the response of thermocouples along the flow path was interpreted as ice building up. Using this interpretation, a strong correlation between total water content (TWC) and a weaker correlation between median volumetric diameter (MVD) of the ice crystal cloud and the rate of ice buildup along the instrumented flow path was identified. For this test article the engine anti-ice system was required to be turned on before ice crystal icing would occur. The ice crystal icing event, an uncommanded reduction in thrust, was able to be turned on and off by manipulating cloud TWC. A flight test point where no ice crystal icing event occurred was also duplicated in PSL. Physics based computational tools were successfully used to predict tunnel settings to induce ice buildup along the low pressure compression system flow path for several test points at incrementally lower altitudes, demonstrating that development of ice crystal icing scaling laws is potentially feasible. Analysis of PSL test data showed that uncommanded reduction in thrust occurs during ice crystal cloud on operation prior to fan speed reduction. This supports previous findings that the reduction of thrust for this test article is due to ice buildup leading to a restricted airflow from either physical or aerodynamic blockage in the engine core flow path.
NASA Technical Reports Server (NTRS)
Oliver, Michael J.
2014-01-01
The Propulsion Systems Laboratory (PSL) is an existing altitude simulation jet engine test facility located at NASA Glenn Research Center in Clevleand, OH. It was modified in 2012 with the integration of an ice crystal cloud generation system. This paper documents the inaugural ice crystal cloud test in PSLthe first ever full scale, high altitude ice crystal cloud turbofan engine test to be conducted in a ground based facility. The test article was a Lycoming ALF502-R5 high bypass turbofan engine, serial number LF01. The objectives of the test were to validate the PSL ice crystal cloud calibration and engine testing methodologies by demonstrating the capability to calibrate and duplicate known flight test events that occurred on the same LF01 engine and to generate engine data to support fundamental and computational research to investigate and better understand the physics of ice crystal icing in a turbofan engine environment while duplicating known revenue service events and conducting test points while varying facility and engine parameters. During PSL calibration testing it was discovered than heated probes installed through tunnel sidewalls experienced ice buildup aft of their location due to ice crystals impinging upon them, melting and running back. Filtered city water was used in the cloud generation nozzle system to provide ice crystal nucleation sites. This resulted in mineralization forming on flow path hardware that led to a chronic degradation of performance during the month long test. Lacking internal flow path cameras, the response of thermocouples along the flow path was interpreted as ice building up. Using this interpretation, a strong correlation between total water content (TWC) and a weaker correlation between median volumetric diameter (MVD) of the ice crystal cloud and the rate of ice buildup along the instrumented flow path was identified. For this test article the engine anti-ice system was required to be turned on before ice crystal icing would occur. The ice crystal icing event, an uncommanded reduction in thrust, was able to be turned on and off by manipulating cloud TWC. A flight test point where no ice crystal icing event occurred was also duplicated in PSL. Physics based computational tools were successfully used to predict tunnel settings to induce ice buildup along the low pressure compression system flow path for several test points at incrementally lower altitudes, demonstrating that development of ice crystal icing scaling laws is potentially feasible. Analysis of PSL test data showed that uncommanded reduction in thrust occurs during ice crystal cloud on operation prior to fan speed reduction. This supports previous findings that the reduction of thrust for this test article is due to ice buildup leading to a restricted airflow from either physical or aerodynamic blockage in the engine core flow path.
New T Tauri stars in Chamaeleon I and Chamaeleon II
NASA Technical Reports Server (NTRS)
Hartigan, Patrick
1993-01-01
A new objective prism survey of the entire Chamaeleon I dark cloud and 2/3 of the Chamaeleon II cloud has uncovered 26 new H-alpha emission line objects that were missed by previous H-alpha plate surveys. The new H-alpha emission line objects have similar IR colors and spatial distributions to the known T Tauri stars in these dark clouds, and could represent the very low mass end of the stellar population in these clouds or an older, less active component to the usual classical T Tauri star population. The new H-alpha survey identified 70 percent of the total known Young Stellar Objects (YSOs) in Cha I, compared with 35 percent for IRAS, and 25 percent from the Einstein X-ray survey. Ten of the new objects are weak-lined stars, with H-alpha equivalent widths less than 10 A. Weak-lined T Tauri stars make up about half of the total population of young stars in the Chamaeleon I cloud, a proportion similar to the Taurus-Auriga cloud. Presented are coordinates, finding charts, and optical and IR photometry of the new emission-line objects.
Cloud Detection by Fusing Multi-Scale Convolutional Features
NASA Astrophysics Data System (ADS)
Li, Zhiwei; Shen, Huanfeng; Wei, Yancong; Cheng, Qing; Yuan, Qiangqiang
2018-04-01
Clouds detection is an important pre-processing step for accurate application of optical satellite imagery. Recent studies indicate that deep learning achieves best performance in image segmentation tasks. Aiming at boosting the accuracy of cloud detection for multispectral imagery, especially for those that contain only visible and near infrared bands, in this paper, we proposed a deep learning based cloud detection method termed MSCN (multi-scale cloud net), which segments cloud by fusing multi-scale convolutional features. MSCN was trained on a global cloud cover validation collection, and was tested in more than ten types of optical images with different resolution. Experiment results show that MSCN has obvious advantages over the traditional multi-feature combined cloud detection method in accuracy, especially when in snow and other areas covered by bright non-cloud objects. Besides, MSCN produced more detailed cloud masks than the compared deep cloud detection convolution network. The effectiveness of MSCN make it promising for practical application in multiple kinds of optical imagery.
a Cloud Boundary Detection Scheme Combined with Aslic and Cnn Using ZY-3, GF-1/2 Satellite Imagery
NASA Astrophysics Data System (ADS)
Guo, Z.; Li, C.; Wang, Z.; Kwok, E.; Wei, X.
2018-04-01
Remote sensing optical image cloud detection is one of the most important problems in remote sensing data processing. Aiming at the information loss caused by cloud cover, a cloud detection method based on convolution neural network (CNN) is presented in this paper. Firstly, a deep CNN network is used to extract the multi-level feature generation model of cloud from the training samples. Secondly, the adaptive simple linear iterative clustering (ASLIC) method is used to divide the detected images into superpixels. Finally, the probability of each superpixel belonging to the cloud region is predicted by the trained network model, thereby generating a cloud probability map. The typical region of GF-1/2 and ZY-3 were selected to carry out the cloud detection test, and compared with the traditional SLIC method. The experiment results show that the average accuracy of cloud detection is increased by more than 5 %, and it can detected thin-thick cloud and the whole cloud boundary well on different imaging platforms.
Mechanisms and Model Diversity of Trade-Wind Shallow Cumulus Cloud Feedbacks: A Review.
Vial, Jessica; Bony, Sandrine; Stevens, Bjorn; Vogel, Raphaela
2017-01-01
Shallow cumulus clouds in the trade-wind regions are at the heart of the long standing uncertainty in climate sensitivity estimates. In current climate models, cloud feedbacks are strongly influenced by cloud-base cloud amount in the trades. Therefore, understanding the key factors controlling cloudiness near cloud-base in shallow convective regimes has emerged as an important topic of investigation. We review physical understanding of these key controlling factors and discuss the value of the different approaches that have been developed so far, based on global and high-resolution model experimentations and process-oriented analyses across a range of models and for observations. The trade-wind cloud feedbacks appear to depend on two important aspects: (1) how cloudiness near cloud-base is controlled by the local interplay between turbulent, convective and radiative processes; (2) how these processes interact with their surrounding environment and are influenced by mesoscale organization. Our synthesis of studies that have explored these aspects suggests that the large diversity of model responses is related to fundamental differences in how the processes controlling trade cumulus operate in models, notably, whether they are parameterized or resolved. In models with parameterized convection, cloudiness near cloud-base is very sensitive to the vigor of convective mixing in response to changes in environmental conditions. This is in contrast with results from high-resolution models, which suggest that cloudiness near cloud-base is nearly invariant with warming and independent of large-scale environmental changes. Uncertainties are difficult to narrow using current observations, as the trade cumulus variability and its relation to large-scale environmental factors strongly depend on the time and/or spatial scales at which the mechanisms are evaluated. New opportunities for testing physical understanding of the factors controlling shallow cumulus cloud responses using observations and high-resolution modeling on large domains are discussed.
Mechanisms and Model Diversity of Trade-Wind Shallow Cumulus Cloud Feedbacks: A Review
NASA Astrophysics Data System (ADS)
Vial, Jessica; Bony, Sandrine; Stevens, Bjorn; Vogel, Raphaela
2017-11-01
Shallow cumulus clouds in the trade-wind regions are at the heart of the long standing uncertainty in climate sensitivity estimates. In current climate models, cloud feedbacks are strongly influenced by cloud-base cloud amount in the trades. Therefore, understanding the key factors controlling cloudiness near cloud-base in shallow convective regimes has emerged as an important topic of investigation. We review physical understanding of these key controlling factors and discuss the value of the different approaches that have been developed so far, based on global and high-resolution model experimentations and process-oriented analyses across a range of models and for observations. The trade-wind cloud feedbacks appear to depend on two important aspects: (1) how cloudiness near cloud-base is controlled by the local interplay between turbulent, convective and radiative processes; (2) how these processes interact with their surrounding environment and are influenced by mesoscale organization. Our synthesis of studies that have explored these aspects suggests that the large diversity of model responses is related to fundamental differences in how the processes controlling trade cumulus operate in models, notably, whether they are parameterized or resolved. In models with parameterized convection, cloudiness near cloud-base is very sensitive to the vigor of convective mixing in response to changes in environmental conditions. This is in contrast with results from high-resolution models, which suggest that cloudiness near cloud-base is nearly invariant with warming and independent of large-scale environmental changes. Uncertainties are difficult to narrow using current observations, as the trade cumulus variability and its relation to large-scale environmental factors strongly depend on the time and/or spatial scales at which the mechanisms are evaluated. New opportunities for testing physical understanding of the factors controlling shallow cumulus cloud responses using observations and high-resolution modeling on large domains are discussed.
Mechanisms and Model Diversity of Trade-Wind Shallow Cumulus Cloud Feedbacks: A Review
NASA Astrophysics Data System (ADS)
Vial, Jessica; Bony, Sandrine; Stevens, Bjorn; Vogel, Raphaela
Shallow cumulus clouds in the trade-wind regions are at the heart of the long standing uncertainty in climate sensitivity estimates. In current climate models, cloud feedbacks are strongly influenced by cloud-base cloud amount in the trades. Therefore, understanding the key factors controlling cloudiness near cloud-base in shallow convective regimes has emerged as an important topic of investigation. We review physical understanding of these key controlling factors and discuss the value of the different approaches that have been developed so far, based on global and high-resolution model experimentations and process-oriented analyses across a range of models and for observations. The trade-wind cloud feedbacks appear to depend on two important aspects: (1) how cloudiness near cloud-base is controlled by the local interplay between turbulent, convective and radiative processes; (2) how these processes interact with their surrounding environment and are influenced by mesoscale organization. Our synthesis of studies that have explored these aspects suggests that the large diversity of model responses is related to fundamental differences in how the processes controlling trade cumulus operate in models, notably, whether they are parameterized or resolved. In models with parameterized convection, cloudiness near cloud-base is very sensitive to the vigor of convective mixing in response to changes in environmental conditions. This is in contrast with results from high-resolution models, which suggest that cloudiness near cloud-base is nearly invariant with warming and independent of large-scale environmental changes. Uncertainties are difficult to narrow using current observations, as the trade cumulus variability and its relation to large-scale environmental factors strongly depend on the time and/or spatial scales at which the mechanisms are evaluated. New opportunities for testing physical understanding of the factors controlling shallow cumulus cloud responses using observations and highresolution modeling on large domains are discussed.
NASA EO-1 Spacecraft Images Chile Volcanic Eruption
2011-06-17
On June 14, 2011, NASA Earth Observing-1 EO-1 spacecraft obtained this image showing ash-rich volcanic plume billowing out of the vent, punching through a low cloud layer. The plume grey color is a reflection of its ash content.
ERIC Educational Resources Information Center
Kaufmann, William
1984-01-01
Presents a chapter from an introductory college-level astronomy textbook in which full-color photographs and numerous diagrams highlight an extensive description of the planet Jupiter. Topics include Jupiter's geology, rotation, magnetic field, atmosphere (including clouds and winds), and the Great Red Spot. (DH)
Multiple Stellar Populations in Star Clusters
NASA Astrophysics Data System (ADS)
Piotto, G.
2013-09-01
For half a century it had been astronomical dogma that a globular cluster (GC) consists of stars born at the same time out of the same material, and this doctrine has borne rich fruits. In recent years, high resolution spectroscopy and high precision photometry (from space and ground-based observations) have shattered this paradigm, and the study of GC populations has acquired a new life that is now moving it in new directions. Evidence of multiple stellar populations have been identified in the color-magnitude diagrams of several Galactic and Magellanic Cloud GCs where they had never been imagined before.
Components of reward-driven attentional capture.
Sha, Li Z; Jiang, Yuhong V
2016-02-01
Recent research reported that task-irrelevant colors captured attention if these colors previously served as search targets and received high monetary reward. We showed that both monetary reward and value-independent mechanisms influenced selective attention. Participants searched for two potential target colors among distractor colors in the training phase. Subsequently, they searched for a shape singleton in a testing phase. Experiment 1 found that participants were slower in the testing phase if a distractor of a previous target color was present rather than absent. Such slowing was observed even when no monetary reward was used during training. Experiment 2 associated monetary rewards with the target colors during the training phase. Participants were faster finding the target associated with higher monetary reward. However, reward training did not yield value-dependent attentional capture in the testing phase. Attentional capture by the previous target colors was not significantly greater for the previously high-reward color than the previously low or no-reward color. These findings revealed both the power and limitations of monetary reward on attention. Although monetary reward can increase attentional priority for the high-reward target during training, subsequent attentional capture effects may not be reward-based, but reflect, in part, attentional capture by previous targets.
Powerful Hurricane Irma Seen in 3D by NASA's CloudSat
2017-09-08
NASA's CloudSat satellite flew over Hurricane Irma on Sept. 6, 2017 at 1:45 p.m. EDT (17:45 UTC) as the storm was approaching Puerto Rico in the Atlantic Ocean. Hurricane Irma contained estimated maximum sustained winds of 185 miles per hour (160 knots) with a minimum pressure of 918 millibars. CloudSat transected the eastern edge of Hurricane Irma's eyewall, revealing details of the storm's cloud structure beneath its thick canopy of cirrus clouds. The CloudSat Cloud Profiling Radar excels in detecting the organization and placement of cloud layers beneath a storm's cirrus canopy, which are not readily detected by other satellite sensors. The CloudSat overpass reveals the inner details beneath the cloud tops of this large system; intense areas of convection with moderate to heavy rainfall (deep red and pink colors), cloud-free areas (moats) in between the inner and outer cloud bands of Hurricane Irma and cloud top heights averaging around 9 to 10 miles (15 to 16 kilometers). Lower values of reflectivity (areas of green and blue) denote smaller-sized ice and water particle sizes typically located at the top of a storm system (in the anvil area). The Cloud Profiling Radar loses signal at around 3 miles (5 kilometers) in height (in the melting layer) due to water (ice) particles larger than 0.12 inches (3 millimeters) in diameter. Moderate to heavy rainfall occurs in these areas where signal weakening is detectable. Smaller cumulus and cumulonimbus cloud types are evident as CloudSat moves farther south, beneath the thick cirrus canopy. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA21947
Usability evaluation of cloud-based mapping tools for the display of very large datasets
NASA Astrophysics Data System (ADS)
Stotz, Nicole Marie
The elasticity and on-demand nature of cloud services have made it easier to create web maps. Users only need access to a web browser and the Internet to utilize cloud based web maps, eliminating the need for specialized software. To encourage a wide variety of users, a map must be well designed; usability is a very important concept in designing a web map. Fusion Tables, a new product from Google, is one example of newer cloud-based distributed GIS services. It allows for easy spatial data manipulation and visualization, within the Google Maps framework. ESRI has also introduced a cloud based version of their software, called ArcGIS Online, built on Amazon's EC2 cloud. Utilizing a user-centered design framework, two prototype maps were created with data from the San Diego East County Economic Development Council. One map was built on Fusion Tables, and another on ESRI's ArcGIS Online. A usability analysis was conducted and used to compare both map prototypes in term so of design and functionality. Load tests were also ran, and performance metrics gathered on both map prototypes. The usability analysis was taken by 25 geography students, and consisted of time based tasks and questions on map design and functionality. Survey participants completed the time based tasks for the Fusion Tables map prototype quicker than those of the ArcGIS Online map prototype. While response was generally positive towards the design and functionality of both prototypes, overall the Fusion Tables map prototype was preferred. For the load tests, the data set was broken into 22 groups for a total of 44 tests. While the Fusion Tables map prototype performed more efficiently than the ArcGIS Online prototype, differences are almost unnoticeable. A SWOT analysis was conducted for each prototype. The results from this research point to the Fusion Tables map prototype. A redesign of this prototype would incorporate design suggestions from the usability survey, while some functionality would need to be dropped. This is a free product and would therefore be the best option if cost is an issue, but this map may not be supported in the future.
Alcohol-containing mouthwasheses: effect on composite color.
Settembrini, L; Penugonda, B; Scherer, W; Strassler, H; Hittelman, E
1995-01-01
This study investigated whether commercially available mouthwashes could affect or change the color of a hybrid composite resin. Twenty-four disks were fabricated and divided into eight equal groups for testing. At baseline, six colorimetric recordings and color parameters (L*, a*, b*) were recorded for each grouping of disks using a Chroma Meter CR-300 in reflectance mode. The groups of disks were immersed in their respective mouthwashes for 2 minutes a day in a vibratory fashion over a 6-month period. At the end of 6 months, color differences, delta E, were calculated between the base line and test recordings. The results indicate that rinsing with mouthwashes for 6 months can cause a hybrid resin to undergo color variations. Except for one product the color variations were not clinically significant.
NASA Technical Reports Server (NTRS)
Vacca, William D.; Torres-Dodgen, Ana V.
1990-01-01
A new method of determining the color excesses of WR stars in the Galaxy and the LMC has been developed and is used to determine the excesses for 44 Galactic and 32 LMC WR stars. The excesses are combined with line-free, narrow-band spectrophotometry to derive intrinsic colors of the WR stars of nearly all spectral subtypes. No correlation of UV spectral index or intrinsic colors with spectral subtype is found for the samples of single WN or WC stars. There is evidence that early WN stars in the LMC have flatter UV continua and redder intrinsic colors than early WN stars in the Galaxy. No separation is found between the values derived for Galactic WC stars and those obtained for LMC WC stars. The intrinsic colors are compared with those calculated from model atmospheres of WR stars and generally good agreement is found. Absolute magnitudes are derived for WR stars in the LMC and for those Galactic WR stars located in clusters and associations for which there are reliable distance estimates.
Object-color-signal prediction using wraparound Gaussian metamers.
Mirzaei, Hamidreza; Funt, Brian
2014-07-01
Alexander Logvinenko introduced an object-color atlas based on idealized reflectances called rectangular metamers in 2009. For a given color signal, the atlas specifies a unique reflectance that is metameric to it under the given illuminant. The atlas is complete and illuminant invariant, but not possible to implement in practice. He later introduced a parametric representation of the object-color atlas based on smoother "wraparound Gaussian" functions. In this paper, these wraparound Gaussians are used in predicting illuminant-induced color signal changes. The method proposed in this paper is based on computationally "relighting" that reflectance to determine what its color signal would be under any other illuminant. Since that reflectance is in the metamer set the prediction is also physically realizable, which cannot be guaranteed for predictions obtained via von Kries scaling. Testing on Munsell spectra and a multispectral image shows that the proposed method outperforms the predictions of both those based on von Kries scaling and those based on the Bradford transform.
Retrieval of Aerosol Absorption Properties from Satellite Observations
NASA Technical Reports Server (NTRS)
Torres, Omar; Bhartia, Pawan K.; Jethva, H.; Ahn, Chang-Woo
2012-01-01
The Angstrom Absorption Exponent (AAE) is a parameter commonly used to characterize the wavelength-dependence of aerosol absorption optical depth (AAOD). It is closely related to aerosol composition. Black carbon (BC) containing aerosols yield AAE values near unity whereas Organic carbon (OC) aerosol particles are associated with values larger than 2. Even larger AAE values have been reported for desert dust aerosol particles. Knowledge of spectral AAOD is necessary for the calculation of direct radiative forcing effect of aerosols and for inferring aerosol composition. We have developed a satellitebased method of determining the spectral AAOD of absorbing aerosols. The technique uses multi-spectral measurements of upwelling radiation from scenes where absorbing aerosols lie above clouds as indicated by the UV Aerosol Index. For those conditions, the satellite measurement can be explained, using an approximations of Beer's Law (BL), as the upwelling reflectance at the cloud top attenuated by the absorption effects of the overlying aerosol layer. The upwelling reflectance at the cloud-top in an aerosol-free atmospheric column is mainly a function of cloud optical depth (COD). In the proposed method of AAE derivation, the first step is determining COD which is retrieved using a previously developed color-ratio based approach. In the second step, corrections for molecular scattering effects are applied to both the observed ad the calculated cloud reflectance terms, and the spectral AAOD is then derived by an inversion of the BL approximation. The proposed technique will be discussed in detail and application results making use of OMI multi-spectral measurements in the UV-Vis. will be presented.
Exoplanet Meteorology: Characterizing the Atmospheres of Directly Imaged Sub-Stellar Objects
NASA Astrophysics Data System (ADS)
Rajan, Abhijith; Gemini Planet Imager, Extrasolar Planets and Systems Imaging Group
2018-01-01
I study the structure, composition and dynamic evolution of directly imaged exoplanet and brown dwarf atmospheres, using spectrophotometric data collected from a range of ground and space based instrumentation. As part of my dissertation, I led studies exploring the atmospheres of brown dwarfs to search for weather variations, and characterized the near and mid infrared SEDs of imaged exoplanets to estimate their fundamental parameters. To understand the evolution of weather on brown dwarfs we conducted a multi-epoch study monitoring of 4 ultracool, T5 - Y0, brown dwarfs in the J-band to search for photometric variability. These cool brown dwarfs are predicted to have salt and sulfide clouds condensing in their upper atmosphere. The study found that cool brown dwarfs, fit with higher opacity clouds, were more likely to be variable. Through data taken with the Hubble Space Telescope and Gemini telescope we characterized the atmospheres of directly imaged exoplanets. For HR 8799, in near IR wavelengths unobservable from the ground, we constrained the presence of clouds in the outer planets. As a member of the Gemini Planet Imager Exoplanet Survey team, I analyzed archival HST data and examined the near-infrared colors of HD 106906b as seen with GPI, concluding that the companion shows weak evidence of a circumplanetary dust disk or cloud. Finally, by combining data spanning 1 - 5 um for the low mass Jupiter-like exoplanet, 51 Eri b, we found a cool effective temperature best fit by a patchy cloud atmosphere. This makes the planet an excellent candidate for future variability studies with the James Webb Space Telescope.
[Aging of silorane- and methacrylate-based composite resins: effects on color and translucency].
Liu, Chang; Pan, Jie; Lin, Hong; Shen, Song
2015-10-01
To evaluate the color stability and translucency of silorane-based low shrinkage composite after in vitro aging procedures of thermal cycling and water storage respectively, and to compare with those of conventional methacrylate-based posterior composite. Three light-cured composite resins, dimethacrylate-based composite A (Filtek™ Z350), B (Filtek™ P60) and silorane-based composite C (Filtek™ P90), were tested in this study. Ten specimens (10 mm in diameter, 1 mm in height) of each composite were prepared. The ten specimens in each group were then divided into two subgroups (n = 5). One subgroup underwent thermal cycling [(5.0 ± 0.5)~(55.0 ± 1.0) °C, 10 000 cycles] and the other was stored in 37 C° distilled water for 180 days. With a spectrophotometer, the CIE L * a * b * parameters of the specimens were tested before and after artificial aging against white, medium grey and black backgrounds, respectively. △E, TP and △TP were calculated and data were analyzed using independent-samples t test and partial analysis (P < 0.05). With regard to color stability, silorane-based composite showed color alteration above the clinically acceptable levels (△E > 3.3), and also showed higher △E with a statistically significant difference in comparison with the other composites (B and C) (P < 0.05) after artificial aging. With regard to translucency, composite C showed more alteration compared with composite B (P < 0.05) after thermal cycling. It may be concluded that the silorane-based composite underwent greater alteration with regard to color stability and translucency.
Satellite Ocean Biology: Past, Present, Future
NASA Technical Reports Server (NTRS)
McClain, Charles R.
2012-01-01
Since 1978 when the first satellite ocean color proof-of-concept sensor, the Nimbus-7 Coastal Zone Color Scanner, was launched, much progress has been made in refining the basic measurement concept and expanding the research applications of global satellite time series of biological and optical properties such as chlorophyll-a concentrations. The seminar will review the fundamentals of satellite ocean color measurements (sensor design considerations, on-orbit calibration, atmospheric corrections, and bio-optical algorithms), scientific results from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate resolution Imaging Spectroradiometer (MODIS) missions, and the goals of future NASA missions such as PACE, the Aerosol, Cloud, Ecology (ACE), and Geostationary Coastal and Air Pollution Events (GeoCAPE) missions.
Providing Diurnal Sky Cover Data at ARM Sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klebe, Dimitri I.
2015-03-06
The Solmirus Corporation was awarded two-year funding to perform a comprehensive data analysis of observations made during Solmirus’ 2009 field campaign (conducted from May 21 to July 27, 2009 at the ARM SGP site) using their All Sky Infrared Visible Analyzer (ASIVA) instrument. The objective was to develop a suite of cloud property data products for the ASIVA instrument that could be implemented in real time and tailored for cloud modelers. This final report describes Solmirus’ research and findings enabled by this grant. The primary objective of this award was to develop a diurnal sky cover (SC) data product utilizingmore » the ASIVA’s infrared (IR) radiometrically-calibrated data and is described in detail. Other data products discussed in this report include the sky cover derived from ASIVA’s visible channel and precipitable water vapor, cloud temperature (both brightness and color), and cloud height inferred from ASIVA’s IR channels.« less
First results from the THOR experiment imaging thunderstorm activity from the ISS.
NASA Astrophysics Data System (ADS)
Chanrion, Olivier; Neubert, Torsten; Mogensen, Andreas; Yair, Yoav; Stendel, Martin; Larsen, Niels
2016-04-01
Video imaging from the THOR experiment conducted on International Space Station by the Danish astronaut Andreas Mogensen has been analyzed. The observations we report in this paper were taken with a color camera from the vantage point of the Cupola, tracking thunderstorm activity over the Bay of Bengal. Among many lightning, the observations contain a sprite, a blue jet and numerous small blue discharge regions at the top of a tall cumulonimbus cloud. The latter are interpreted as electric discharges between layers at the uppermost layers of the cloud and to the screening layer formed at the very edge between the cloud and the surrounding atmosphere. The observations are the first of their kind and give new insights into the charge structure at the top of clouds in the tropical tropopause regions, a region that is difficult to observe and to access.
NASA Astrophysics Data System (ADS)
Simarski, Lynn Teo
Research reported at an AGU session on Galileo's Earth/Moon flyby refined the spacecraft's distinctive portrait of the Earth-Moon system. The Galileo team presented dramatic new views of the Earth and Moon taken last December. Andrew P. Ingersoll showed a color movie of the rotating Earth, made through spectral filters with which Galileo viewed the Earth almost continuously for 25 hours.Galileo also made finely tuned observations of vegetation and clouds, using three very closely spaced spectral wavelengths in the near-infrared, explained W. Reid Thompson. In the resulting images, Argentinian grassland and Brazilian rain forest are clearly distinguished, demonstrating the applicability of this technique for routine monitoring of deforestation, shifts in vegetation due to climate, and other phenomena. Thompson suggested that this capability could be used on the Earth Observing System. One of the spectral bands may also have potential for monitoring cloud condensation, as it appears to differentiate actively condensing, vapor-heavy clouds from higher and drier clouds.
Wearable Improved Vision System for Color Vision Deficiency Correction
Riccio, Daniel; Di Perna, Luigi; Sanniti Di Baja, Gabriella; De Nino, Maurizio; Rossi, Settimio; Testa, Francesco; Simonelli, Francesca; Frucci, Maria
2017-01-01
Color vision deficiency (CVD) is an extremely frequent vision impairment that compromises the ability to recognize colors. In order to improve color vision in a subject with CVD, we designed and developed a wearable improved vision system based on an augmented reality device. The system was validated in a clinical pilot study on 24 subjects with CVD (18 males and 6 females, aged 37.4 ± 14.2 years). The primary outcome was the improvement in the Ishihara Vision Test score with the correction proposed by our system. The Ishihara test score significantly improved (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$p = 0.03$ \\end{document}) from 5.8 ± 3.0 without correction to 14.8 ± 5.0 with correction. Almost all patients showed an improvement in color vision, as shown by the increased test scores. Moreover, with our system, 12 subjects (50%) passed the vision color test as normal vision subjects. The development and preliminary validation of the proposed platform confirm that a wearable augmented-reality device could be an effective aid to improve color vision in subjects with CVD. PMID:28507827
Color model and method for video fire flame and smoke detection using Fisher linear discriminant
NASA Astrophysics Data System (ADS)
Wei, Yuan; Jie, Li; Jun, Fang; Yongming, Zhang
2013-02-01
Video fire detection is playing an increasingly important role in our life. But recent research is often based on a traditional RGB color model used to analyze the flame, which may be not the optimal color space for fire recognition. It is worse when we research smoke simply using gray images instead of color ones. We clarify the importance of color information for fire detection. We present a fire discriminant color (FDC) model for flame or smoke recognition based on color images. The FDC models aim to unify fire color image representation and fire recognition task into one framework. With the definition of between-class scatter matrices and within-class scatter matrices of Fisher linear discriminant, the proposed models seek to obtain one color-space-transform matrix and a discriminate projection basis vector by maximizing the ratio of these two scatter matrices. First, an iterative basic algorithm is designed to get one-component color space transformed from RGB. Then, a general algorithm is extended to generate three-component color space for further improvement. Moreover, we propose a method for video fire detection based on the models using the kNN classifier. To evaluate the recognition performance, we create a database including flame, smoke, and nonfire images for training and testing. The test experiments show that the proposed model achieves a flame verification rate receiver operating characteristic (ROC I) of 97.5% at a false alarm rate (FAR) of 1.06% and a smoke verification rate (ROC II) of 91.5% at a FAR of 1.2%, and lots of fire video experiments demonstrate that our method reaches a high accuracy for fire recognition.
Cloud Environment Automation: from infrastructure deployment to application monitoring
NASA Astrophysics Data System (ADS)
Aiftimiei, C.; Costantini, A.; Bucchi, R.; Italiano, A.; Michelotto, D.; Panella, M.; Pergolesi, M.; Saletta, M.; Traldi, S.; Vistoli, C.; Zizzi, G.; Salomoni, D.
2017-10-01
The potential offered by the cloud paradigm is often limited by technical issues, rules and regulations. In particular, the activities related to the design and deployment of the Infrastructure as a Service (IaaS) cloud layer can be difficult to apply and time-consuming for the infrastructure maintainers. In this paper the research activity, carried out during the Open City Platform (OCP) research project [1], aimed at designing and developing an automatic tool for cloud-based IaaS deployment is presented. Open City Platform is an industrial research project funded by the Italian Ministry of University and Research (MIUR), started in 2014. It intends to research, develop and test new technological solutions open, interoperable and usable on-demand in the field of Cloud Computing, along with new sustainable organizational models that can be deployed for and adopted by the Public Administrations (PA). The presented work and the related outcomes are aimed at simplifying the deployment and maintenance of a complete IaaS cloud-based infrastructure.
Optical tests for using smartphones inside medical devices
NASA Astrophysics Data System (ADS)
Bernat, Amir S.; Acobas, Jennifer K.; Phang, Ye Shang; Hassan, David; Bolton, Frank J.; Levitz, David
2018-02-01
Smartphones are currently used in many medical applications and are more frequently being integrated into medical imaging devices. The regulatory requirements in existence today however, particularly the standardization of smartphone imaging through validation and verification testing, only partially cover imaging characteristics with a smartphone. Specifically, it has been shown that smartphone camera specifications are of sufficient quality for medical imaging, and there are devices which comply with the FDA's regulatory requirements for a medical device such as a device's field of view, direction of viewing and optical resolution and optical distortion. However, these regulatory requirements do not call specifically for color testing. Images of the same object using automatic settings or different light sources can show different color composition. Experimental results showing such differences are presented. Under some circumstances, such differences in color composition could potentially lead to incorrect diagnoses. It is therefore critical to control the smartphone camera and illumination parameters properly. This paper examines different smartphone camera settings that affect image quality and color composition. To test and select the correct settings, a test methodology is proposed. It aims at evaluating and testing image color correctness and white balance settings for mobile phones and LED light sources. Emphasis is placed on color consistency and deviation from gray values, specifically by evaluating the ΔC values based on the CIEL*a*b* color space. Results show that such standardization minimizes differences in color composition and thus could reduce the risk of a wrong diagnosis.
2017-05-18
This enhanced color view of Jupiter's cloud tops was processed by citizen scientist Bjorn Jonsson using data from the JunoCam instrument on NASA's Juno spacecraft. The image highlights a massive counterclockwise rotating storm that appears as a white oval in the gas giant's southern hemisphere. Juno acquired this image on Feb. 2, 2017, at 6:13 a.m. PDT (9:13 a.m. EDT), as the spacecraft performed a close flyby of Jupiter. When the image was taken, the spacecraft was about 9,000 miles (14,500 kilometers) from the planet. https://photojournal.jpl.nasa.gov/catalog/PIA21391
Jupiter Pearl and Swirling Cloud Tops
2017-01-19
This amateur-processed image was taken on Dec. 11, 2016, at 9:27 a.m. PST (12:27 p.m. EST), as NASA's Juno spacecraft performed its third close flyby of Jupiter. At the time the image was taken, the spacecraft was about 15,200 miles (24,400 kilometers) from the gas giant planet. The citizen scientist (Eric Jorgensen) cropped the JunoCam image and enhanced the color to draw attention to Jupiter's swirling clouds southeast of the "pearl." The "pearl" is one of eight massive rotating storms at 40 degrees south latitude on Jupiter, known colloquially as the "string of pearls." The processing of this image highlights the turbulence of the clouds in the south temperate belt of the planet. http://photojournal.jpl.nasa.gov/catalog/PIA21377
NASA Technical Reports Server (NTRS)
Eslinger, David L.; O'Brien, James J.; Iverson, Richard L.
1989-01-01
Empirical-orthogonal-function (EOF) analyses were carried out on 36 images of the Mid-Atlantic Bight and the Gulf of Maine, obtained by the CZCS aboard Nimbus 7 for the time period from February 28 through July 9, 1979, with the purpose of determining pigment concentrations in coastal waters. The EOF procedure was modified so as to include images with significant portions of data missing due to cloud obstruction, making it possible to estimate pigment values in areas beneath clouds. The results of image analyses explained observed variances in pigment concentrations and showed a south-to-north pattern corresponding to an April Mid-Atlantic Bight bloom and a June bloom over Nantucket Shoals and Platts Bank.
Cross-modal Associations between Real Tastes and Colors.
Saluja, Supreet; Stevenson, Richard J
2018-06-02
People make reliable and consistent matches between taste and color. However, in contrast to other cross-modal correspondences, all of the research to date has used only taste words (and often color words too), potentially limiting our understanding of how taste-color matches arise. Here, participants sampled the five basic tastes, at three concentration steps, and selected their best matching color from a color-wheel. This test was repeated, and in addition, participants evaluated the valence of the taste and their color choice, as well as the qualities/intensities of the taste stimuli. Participants were then presented with taste names and asked to generate the best matching color name, as well as reporting how they made their earlier choices. Color selections were reliable and consistent, and closely followed those based on taste word matches obtained in this and prior studies. Most participants reported basing their color choices on their associated taste-object (often foods). There was marked similarity in valence between taste and color choices, and the saturation of color choices was related to tastant concentration. We discuss what drives color-taste pairings, with learning suggested as one possible mechanism.
Improved eye- and skin-color prediction based on 8 SNPs.
Hart, Katie L; Kimura, Shey L; Mushailov, Vladimir; Budimlija, Zoran M; Prinz, Mechthild; Wurmbach, Elisa
2013-06-01
To improve the 7-plex system to predict eye and skin color by increasing precision and detailed phenotypic descriptions. Analysis of an eighth single nucleotide polymorphism (SNP), rs12896399 (SLC24A4), showed a statistically significant association with human eye color (P=0.007) but a rather poor strength of agreement (κ=0.063). This SNP was added to the 7-plex system (rs12913832 at HERC2, rs1545397 at OCA2, rs16891982 at SLC45A2, rs1426654 at SLC24A5, rs885479 at MC1R, rs6119471 at ASIP, and rs12203592 at IRF4). Further, the instruction guidelines on the interpretation of genotypes were changed to create a new 8-plex system. This was based on the analysis of an 803-sample training set of various populations. The newly developed 8-plex system can predict the eye colors brown, green, and blue, and skin colors light, not dark, and not light. It is superior to the 7-plex system with its additional ability to predict blue eye and light skin color. The 8-plex system was tested on an additional 212 samples, the test set. Analysis showed that the number of positive descriptions for eye colors as being brown, green, or blue increased significantly (P=6.98e-15, z-score: -7.786). The error rate for eye-color prediction was low, at approximately 5%, while the skin color prediction showed no error in the test set (1% in training set). We can conclude that the new 8-plex system for the prediction of eye and skin color substantially enhances its former version.
Self-consistency tests of large-scale dynamics parameterizations for single-column modeling
Edman, Jacob P.; Romps, David M.
2015-03-18
Large-scale dynamics parameterizations are tested numerically in cloud-resolving simulations, including a new version of the weak-pressure-gradient approximation (WPG) introduced by Edman and Romps (2014), the weak-temperature-gradient approximation (WTG), and a prior implementation of WPG. We perform a series of self-consistency tests with each large-scale dynamics parameterization, in which we compare the result of a cloud-resolving simulation coupled to WTG or WPG with an otherwise identical simulation with prescribed large-scale convergence. In self-consistency tests based on radiative-convective equilibrium (RCE; i.e., no large-scale convergence), we find that simulations either weakly coupled or strongly coupled to either WPG or WTG are self-consistent, butmore » WPG-coupled simulations exhibit a nonmonotonic behavior as the strength of the coupling to WPG is varied. We also perform self-consistency tests based on observed forcings from two observational campaigns: the Tropical Warm Pool International Cloud Experiment (TWP-ICE) and the ARM Southern Great Plains (SGP) Summer 1995 IOP. In these tests, we show that the new version of WPG improves upon prior versions of WPG by eliminating a potentially troublesome gravity-wave resonance.« less
NASA Astrophysics Data System (ADS)
Zhong, Bo; Chen, Wuhan; Wu, Shanlong; Liu, Qinhuo
2016-10-01
Cloud detection of satellite imagery is very important for quantitative remote sensing research and remote sensing applications. However, many satellite sensors don't have enough bands for a quick, accurate, and simple detection of clouds. Particularly, the newly launched moderate to high spatial resolution satellite sensors of China, such as the charge-coupled device on-board the Chinese Huan Jing 1 (HJ-1/CCD) and the wide field of view (WFV) sensor on-board the Gao Fen 1 (GF-1), only have four available bands including blue, green, red, and near infrared bands, which are far from the requirements of most could detection methods. In order to solve this problem, an improved and automated cloud detection method for Chinese satellite sensors called OCM (Object oriented Cloud and cloud-shadow Matching method) is presented in this paper. It firstly modified the Automatic Cloud Cover Assessment (ACCA) method, which was developed for Landsat-7 data, to get an initial cloud map. The modified ACCA method is mainly based on threshold and different threshold setting produces different cloud map. Subsequently, a strict threshold is used to produce a cloud map with high confidence and large amount of cloud omission and a loose threshold is used to produce a cloud map with low confidence and large amount of commission. Secondly, a corresponding cloud-shadow map is also produced using the threshold of near-infrared band. Thirdly, the cloud maps and cloud-shadow map are transferred to cloud objects and cloud-shadow objects. Cloud and cloud-shadow are usually in pairs; consequently, the final cloud and cloud-shadow maps are made based on the relationship between cloud and cloud-shadow objects. OCM method was tested using almost 200 HJ-1/CCD images across China and the overall accuracy of cloud detection is close to 90%.
Gujjari, Anil K; Bhatnagar, Vishrut M; Basavaraju, Ravi M
2013-01-01
To evaluate the color stability and flexural strength of poly (methyl methacrylate) (PMMA) and bis-acrylic composite based provisional crown and bridge auto-polymerizing resins exposed to tea, coffee, cola, and food dye. Two provisional crown and bridge resins, one DPI self-cure tooth molding powder (PMMA) (Group A), and one Protemp 4 Temporization Material (bis-acrylic composite) (Group B) were used. Disk-shaped specimens for color stability testing (n = 30 for each material) and bar-shaped specimens for flexural strength testing (n = 30 for each material) were fabricated using a metal mold. The specimens were immersed in artificial saliva, artificial saliva + tea, artificial saliva + coffee, artificial saliva + cola, and artificial saliva + food dye solutions and stored in an incubator at 37°C. Color measurements were taken before immersion, and then after 3 and 7 days of immersion. Flexural strength was evaluated after 7 days of immersion. Group A showed significantly higher color stability as compared to Group B, and artificial saliva + coffee solution had the most staining capacity for the resins. Test solutions had no effect on the flexural strength of Group A, but Group B specimens immersed in artificial saliva + cola showed significantly lower flexural strength values as compared to the control group. The findings of the study showed that for materials used in the study, PMMA was more color stable than bis-acrylic composite based resin. Also, material based on PMMA was more resistant to damage from dietary beverages as compared to bis-acrylic composite based provisional crown and bridge resin.
NASA Technical Reports Server (NTRS)
Shiffman, Smadar
2004-01-01
Automated cloud detection and tracking is an important step in assessing global climate change via remote sensing. Cloud masks, which indicate whether individual pixels depict clouds, are included in many of the data products that are based on data acquired on- board earth satellites. Many cloud-mask algorithms have the form of decision trees, which employ sequential tests that scientists designed based on empirical astrophysics studies and astrophysics simulations. Limitations of existing cloud masks restrict our ability to accurately track changes in cloud patterns over time. In this study we explored the potential benefits of automatically-learned decision trees for detecting clouds from images acquired using the Advanced Very High Resolution Radiometer (AVHRR) instrument on board the NOAA-14 weather satellite of the National Oceanic and Atmospheric Administration. We constructed three decision trees for a sample of 8km-daily AVHRR data from 2000 using a decision-tree learning procedure provided within MATLAB(R), and compared the accuracy of the decision trees to the accuracy of the cloud mask. We used ground observations collected by the National Aeronautics and Space Administration Clouds and the Earth s Radiant Energy Systems S COOL project as the gold standard. For the sample data, the accuracy of automatically learned decision trees was greater than the accuracy of the cloud masks included in the AVHRR data product.