Study of the thermodynamic phase of hydrometeors in convective clouds in the Amazon Basin
NASA Astrophysics Data System (ADS)
Ferreira, W. C.; Correia, A. L.; Martins, J.
2012-12-01
Aerosol-cloud interactions are responsible for large uncertainties in climatic models. One key fator when studying clouds perturbed by aerosols is determining the thermodynamic phase of hydrometeors as a function of temperature or height in the cloud. Conventional remote sensing can provide information on the thermodynamic phase of clouds over large areas, but it lacks the precision needed to understand how a single, real cloud evolves. Here we present mappings of the thermodynamic phase of droplets and ice particles in individual convective clouds in the Amazon Basin, by analyzing the emerging infrared radiance on cloud sides (Martins et al., 2011). In flights over the Amazon Basin with a research aircraft Martins et al. (2011) used imaging radiometers with spectral filters to record the emerging radiance on cloud sides at the wavelengths of 2.10 and 2.25 μm. Due to differential absorption and scattering of these wavelengths by hydrometeors in liquid or solid phases, the intensity ratio between images recorded at the two wavelengths can be used as proxy to the thermodynamic phase of these hydrometeors. In order to analyze the acquired dataset we used the MATLAB tools package, developing scripts to handle data files and derive the thermodynamic phase. In some cases parallax effects due to aircraft movement required additional data processing before calculating ratios. Only well illuminated scenes were considered, i.e. images acquired as close as possible to the backscatter vector from the incident solar radiation. It's important to notice that the intensity ratio values corresponding to a given thermodynamic phase can vary from cloud to cloud (Martins et al., 2011), however inside the same cloud the distinction between ice, water and mixed-phase is clear. Analyzing histograms of reflectance ratios 2.10/2.25 μm in selected cases, we found averages typically between 0.3 and 0.4 for ice phase hydrometeors, and between 0.5 and 0.7 for water phase droplets, consistent with the findings in Martins et al., (2011). Figure 1 shows an example of thermodynamic phase classification obtained with this technique. These experimental results can potentially be used in fast derivations of thermodynamic phase mappings in deep convective clouds, providing useful information for studies regarding aerosol-cloud interactions. Image of the ratio of reflectances at 2.10/2.25μm
An Imager Gaussian Process Machine Learning Methodology for Cloud Thermodynamic Phase classification
NASA Astrophysics Data System (ADS)
Marchant, B.; Platnick, S. E.; Meyer, K.
2017-12-01
The determination of cloud thermodynamic phase from MODIS and VIIRS instruments is an important first step in cloud optical retrievals, since ice and liquid clouds have different optical properties. To continue improving the cloud thermodynamic phase classification algorithm, a machine-learning approach, based on Gaussian processes, has been developed. The new proposed methodology provides cloud phase uncertainty quantification and improves the algorithm portability between MODIS and VIIRS. We will present new results, through comparisons between MODIS and CALIOP v4, and for VIIRS as well.
Determining Cloud Thermodynamic Phase from Micropulse Lidar Network Data
NASA Technical Reports Server (NTRS)
Lewis, Jasper R.; Campbell, James; Lolli, Simone; Tan, Ivy; Welton, Ellsworth J.
2017-01-01
Determining cloud thermodynamic phase is a critical factor in studies of Earth's radiation budget. Here we use observations from the NASA Micro Pulse Lidar Network (MPLNET) and thermodynamic profiles from the Goddard Earth Observing System, version 5 (GEOS-5) to distinguish liquid water, mixed-phase, and ice water clouds. The MPLNET provides sparse global, autonomous, and continuous measurements of clouds and aerosols which have been used in a number of scientific investigations to date. The use of a standardized instrument and a common suite of data processing algorithms with thorough uncertainty characterization allows for straightforward comparisons between sites. Lidars with polarization capabilities have recently been incorporated into the MPLNET project which allows, for the first time, the ability to infer a cloud thermodynamic phase. This presentation will look specifically at the occurrence of ice and mixed phase clouds in the temperature region of -10 C to -40 C for different climatological regions and seasons. We compare MPLNET occurrences of mixed-phase clouds to an historical climatology based on observations from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) spacecraft.
Determining cloud thermodynamic phase from Micropulse Lidar Network data
NASA Astrophysics Data System (ADS)
Lewis, J. R.; Campbell, J. R.; Lolli, S.; Tan, I.; Welton, E. J.
2017-12-01
Determining cloud thermodynamic phase is a critical factor in studies of Earth's radiation budget. Here we use observations from the NASA Micropulse Lidar Network (MPLNET) and thermodynamic profiles from the Goddard Earth Observing System, version 5 (GEOS-5) to distinguish liquid water, mixed-phase, and ice water clouds. The MPLNET provides sparse global, autonomous, and continuous measurements of clouds and aerosols which have been used in a number of scientific investigations to date. The use of a standardized instrument and a common suite of data processing algorithms with thorough uncertainty characterization allows for straightforward comparisons between sites. Lidars with polarization capabilities have recently been incorporated into the MPLNET project which allows, for the first time, the ability to infer a cloud thermodynamic phase. This presentation will look specifically at the occurrence of ice and mixed phase clouds in the temperature region of 0 °C to -40 °C for different climatological regions and seasons. We compare MPLNET occurrences of mixed-phase clouds to an historical climatology based on observations from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) spacecraft.
NASA Astrophysics Data System (ADS)
Thompson, D. R.; Kahn, B. H.; Green, R. O.; Chien, S.; Middleton, E.; Tran, D. Q.
2017-12-01
Clouds' variable ice and liquid content significantly influences their optical properties, evolution, and radiative forcing potential (Tan and Storelvmo, J. Atmos. Sci, 73, 2016). However, most remote measurements of thermodynamic phase have spatial resolutions of 1 km or more and are insensitive to mixed phases. This under-constrains important processes, such as spatial partitioning within mixed phase clouds, that carry outsize radiative forcing impacts. These uncertainties could shift Global Climate Model (GCM) predictions of future warming by over 1 degree Celsius (Tan et al., Science 352:6282, 2016). Imaging spectroscopy of reflected solar energy from the 1.4 - 1.8 μm shortwave infrared (SWIR) spectral range can address this observational gap. These observations can distinguish ice and water absorption, providing a robust and sensitive measurement of cloud top thermodynamic phase including mixed phases. Imaging spectrometers can resolve variations at scales of tens to hundreds of meters (Thompson et al., JGR-Atmospheres 121, 2016). We report the first such global high spatial resolution (30 m) survey, based on data from 2005-2015 acquired by the Hyperion imaging spectrometer onboard NASA's EO-1 spacecraft (Pearlman et al., Proc. SPIE 4135, 2001). Estimated seasonal and latitudinal distributions of cloud thermodynamic phase generally agree with observations made by other satellites such as the Atmospheric Infrared Sounder (AIRS). Variogram analyses reveal variability at different spatial scales. Our results corroborate previously observed zonal distributions, while adding insight into the spatial scales of processes governing cloud top thermodynamic phase. Figure: Thermodynamic phase retrievals. Top: Example of a cloud top thermodynamic phase map from the EO-1/Hyperion. Bottom: Latitudinal distributions of pure and mixed phase clouds, 2005-2015, showing Liquid Thickness Fraction (LTF). LTF=0 corresponds to pure ice absorption, while LTF=1 is pure liquid. The archive contains over 45,000 scenes. Copyright 2017, California Institute of Technology. Government Support Acknowledged.
NASA Astrophysics Data System (ADS)
Coddington, O. M.; Vukicevic, T.; Schmidt, K. S.; Platnick, S.
2017-08-01
We rigorously quantify the probability of liquid or ice thermodynamic phase using only shortwave spectral channels specific to the National Aeronautics and Space Administration's Moderate Resolution Imaging Spectroradiometer, Visible Infrared Imaging Radiometer Suite, and the notional future Plankton, Aerosol, Cloud, ocean Ecosystem imager. The results show that two shortwave-infrared channels (2135 and 2250 nm) provide more information on cloud thermodynamic phase than either channel alone; in one case, the probability of ice phase retrieval increases from 65 to 82% by combining 2135 and 2250 nm channels. The analysis is performed with a nonlinear statistical estimation approach, the GEneralized Nonlinear Retrieval Analysis (GENRA). The GENRA technique has previously been used to quantify the retrieval of cloud optical properties from passive shortwave observations, for an assumed thermodynamic phase. Here we present the methodology needed to extend the utility of GENRA to a binary thermodynamic phase space (i.e., liquid or ice). We apply formal information content metrics to quantify our results; two of these (mutual and conditional information) have not previously been used in the field of cloud studies.
NASA Technical Reports Server (NTRS)
Platnick, Steven; King, Michael D.; Wind, Gala; Holz, Robert E.; Ackerman, Steven A.; Nagle, Fred W.
2008-01-01
CALIPSO and CloudSat, launched in June 2006, provide global active remote sensing measurements of clouds and aerosols that can be used for validation of a variety of passive imager retrievals derived from instruments flying on the Aqua spacecraft and other A-Train platforms. The most recent processing effort for the MODIS Atmosphere Team, referred to as the "Collection 5" stream, includes a research-level multilayer cloud detection algorithm that uses both thermodynamic phase information derived from a combination of solar and thermal emission bands to discriminate layers of different phases, as well as true layer separation discrimination using a moderately absorbing water vapor band. The multilayer detection algorithm is designed to provide a means of assessing the applicability of 1D cloud models used in the MODIS cloud optical and microphysical product retrieval, which are generated at a 1 h resolution. Using pixel-level collocations of MODIS Aqua, CALIOP, and CloudSat radar measurements, we investigate the global performance of the thermodynamic phase and multilayer cloud detection algorithms.
Measuring cloud thermodynamic phase with shortwave infrared imaging spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, David R.; McCubbin, Ian; Gao, Bo Cai
Shortwave Infrared imaging spectroscopy enables accurate remote mapping of cloud thermodynamic phase at high spatial resolution. We describe a measurement strategy to exploit signatures of liquid and ice absorption in cloud top apparent reflectance spectra from 1.4 to 1.8 μm. This signal is generally insensitive to confounding factors such as solar angles, view angles, and surface albedo. We first evaluate the approach in simulation and then apply it to airborne data acquired in the Calwater-2/ACAPEX campaign of Winter 2015. Here NASA’s “Classic” Airborne Visible Infrared Imaging Spectrometer (AVIRIS-C) remotely observed diverse cloud formations while the U.S. Department of Energy ARMmore » Aerial Facility G-1 aircraft measured cloud integral and microphysical properties in situ. Finally, the coincident measurements demonstrate good separation of the thermodynamic phases for relatively homogeneous clouds.« less
Global spectroscopic survey of cloud thermodynamic phase at high spatial resolution, 2005-2015
NASA Astrophysics Data System (ADS)
Thompson, David R.; Kahn, Brian H.; Green, Robert O.; Chien, Steve A.; Middleton, Elizabeth M.; Tran, Daniel Q.
2018-02-01
The distribution of ice, liquid, and mixed phase clouds is important for Earth's planetary radiation budget, impacting cloud optical properties, evolution, and solar reflectivity. Most remote orbital thermodynamic phase measurements observe kilometer scales and are insensitive to mixed phases. This under-constrains important processes with outsize radiative forcing impact, such as spatial partitioning in mixed phase clouds. To date, the fine spatial structure of cloud phase has not been measured at global scales. Imaging spectroscopy of reflected solar energy from 1.4 to 1.8 µm can address this gap: it directly measures ice and water absorption, a robust indicator of cloud top thermodynamic phase, with spatial resolution of tens to hundreds of meters. We report the first such global high spatial resolution survey based on data from 2005 to 2015 acquired by the Hyperion imaging spectrometer onboard NASA's Earth Observer 1 (EO-1) spacecraft. Seasonal and latitudinal distributions corroborate observations by the Atmospheric Infrared Sounder (AIRS). For extratropical cloud systems, just 25 % of variance observed at GCM grid scales of 100 km was related to irreducible measurement error, while 75 % was explained by spatial correlations possible at finer resolutions.
NASA Technical Reports Server (NTRS)
Marchant, Benjamin; Platnick, Steven; Meyer, Kerry; Arnold, George Thomas; Riedi, Jerome
2016-01-01
Cloud thermodynamic phase (e.g., ice, liquid) classification is an important first step for cloud retrievals from passive sensors such as MODIS (Moderate-Resolution Imaging Spectroradiometer). Because ice and liquid phase clouds have very different scattering and absorbing properties, an incorrect cloud phase decision can lead to substantial errors in the cloud optical and microphysical property products such as cloud optical thickness or effective particle radius. Furthermore, it is well established that ice and liquid clouds have different impacts on the Earth's energy budget and hydrological cycle, thus accurately monitoring the spatial and temporal distribution of these clouds is of continued importance. For MODIS Collection 6 (C6), the shortwave-derived cloud thermodynamic phase algorithm used by the optical and microphysical property retrievals has been completely rewritten to improve the phase discrimination skill for a variety of cloudy scenes (e.g., thin/thick clouds, over ocean/land/desert/snow/ice surface, etc). To evaluate the performance of the C6 cloud phase algorithm, extensive granule-level and global comparisons have been conducted against the heritage C5 algorithm and CALIOP. A wholesale improvement is seen for C6 compared to C5.
NASA Technical Reports Server (NTRS)
Martins, J. V.; Marshak, A.; Remer, L. A.; Rosenfeld, D.; Kaufman, Y. J.; Fernandez-Borda, R.; Koren, I.; Correia, A. L.; Zubko, V.; Artaxo, P.
2011-01-01
Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil.
NASA Astrophysics Data System (ADS)
Tan, Ivy; Storelvmo, Trude
2015-04-01
Substantial improvements have been made to the cloud microphysical schemes used in the latest generation of global climate models (GCMs), however, an outstanding weakness of these schemes lies in the arbitrariness of their tuning parameters, which are also notoriously fraught with uncertainties. Despite the growing effort in improving the cloud microphysical schemes in GCMs, most of this effort has neglected to focus on improving the ability of GCMs to accurately simulate the present-day global distribution of thermodynamic phase partitioning in mixed-phase clouds. Liquid droplets and ice crystals not only influence the Earth's radiative budget and hence climate sensitivity via their contrasting optical properties, but also through the effects of their lifetimes in the atmosphere. The current study employs NCAR's CAM5.1, and uses observations of cloud phase obtained by NASA's CALIOP lidar over a 79-month period (November 2007 to June 2014) guide the accurate simulation of the global distribution of mixed-phase clouds in 20∘ latitudinal bands at the -10∘ C, -20∘C and -30∘C isotherms, by adjusting six relevant cloud microphysical tuning parameters in the CAM5.1 via Quasi-Monte Carlo sampling. Among the parameters include those that control the Wegener-Bergeron-Findeisen (WBF) timescale for the conversion of supercooled liquid droplets to ice and snow in mixed-phase clouds, the fraction of ice nuclei that nucleate ice in the atmosphere, ice crystal sedimentation speed, and wet scavenging in stratiform and convective clouds. Using a Generalized Linear Model as a variance-based sensitivity analysis, the relative contributions of each of the six parameters are quantified to gain a better understanding of the importance of their individual and two-way interaction effects on the liquid to ice proportion in mixed-phase clouds. Thus, the methodology implemented in the current study aims to search for the combination of cloud microphysical parameters in a GCM that produce the most accurate reproduction of observations of cloud thermodynamic phase, while simultaneously assessing the weaknesses of the parameterizations in the model. We find that the simulated proportion of liquid to ice in mixed-phase clouds is dominated by the fraction of active ice nuclei in the atmosphere and the WBF timescale. In a follow-up to this study, we apply these results to a fully-coupled GCM, CESM, and find that cloud thermodynamic phase has profound ramifications for the uncertainty associated with climate sensitivity estimates.
NASA Astrophysics Data System (ADS)
Kahn, B. H.; Yue, Q.; Davis, S. M.; Fetzer, E. J.; Schreier, M. M.; Tian, B.; Wong, S.
2016-12-01
We will quantify the time and space dependence of ice cloud effective radius (CER), optical thickness (COT), cloud top temperature (CTT), effective cloud fraction (ECF), and cloud thermodynamic phase (ice, liquid, or unknown) with the Version 6 Atmospheric Infrared Sounder (AIRS) satellite observational data set from September 2002 until present. We show that cloud frequency, CTT, COT, and ECF have substantially different responses to ENSO variations. Large-scale changes in ice CER are also observed with a several micron tropics-wide increase during the 2015-2016 El Niño and similar decreases during the La Niña phase. We show that the ice CER variations reflect fundamental changes in the spatial distributions and relative frequencies of different ice cloud types. Lastly, the high spatial and temporal resolution variability of the cloud fields are explored and we show that these data capture a multitude of convectively coupled tropical waves such as Kelvin, westward and eastward intertio-gravity, equatorial Rossby, and mixed Rossby-gravity waves.
Mixed phase clouds: observations and theoretical advances (overview)
NASA Astrophysics Data System (ADS)
Korolev, Alexei
2013-04-01
Mixed phase clouds play important role in precipitation formation and radiation budget of the Earth. The microphysical measurements in mixed phase clouds are notoriously difficult due to many technical challenges. The airborne instrumentation for characterization of the microstructure of mixed phase clouds is discussed. The results multiyear airborne observations and measurements of frequency of occurrence of mixed phase, characteristic spatial scales, humidity in mixed phase and ice clouds are presented. A theoretical framework describing the thermodynamics and phase transformation of a three phase component system consisting of ice particles, liquid droplets and water vapor is discussed. It is shown that the Wegener-Bergeron-Findeisen process plays different role in clouds with different dynamics. The problem of maintenance and longevity of mixed phase clouds is discussed.
Comparison of the MODIS Collection 5 Multilayer Cloud Detection Product with CALIPSO
NASA Technical Reports Server (NTRS)
Platnick, Steven; Wind, Gala; King, Michael D.; Holz, Robert E.; Ackerman, Steven A.; Nagle, Fred W.
2010-01-01
CALIPSO, launched in June 2006, provides global active remote sensing measurements of clouds and aerosols that can be used for validation of a variety of passive imager retrievals derived from instruments flying on the Aqua spacecraft and other A-Train platforms. The most recent processing effort for the MODIS Atmosphere Team, referred to as the Collection 5 scream, includes a research-level multilayer cloud detection algorithm that uses both thermodynamic phase information derived from a combination of solar and thermal emission bands to discriminate layers of different phases, as well as true layer separation discrimination using a moderately absorbing water vapor band. The multilayer detection algorithm is designed to provide a means of assessing the applicability of 1D cloud models used in the MODIS cloud optical and microphysical product retrieval, which are generated at a 1 km resolution. Using pixel-level collocations of MODIS Aqua, CALIOP, we investigate the global performance of multilayer cloud detection algorithms (and thermodynamic phase).
Influence of Arctic cloud thermodynamic phase on surface shortwave flux
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lubin, D.; Vogelmann, A.
2010-03-15
As part of the Indirect and Semi-Direct Aerosol Campaign (ISDAC) an Analytical Spectral Devices (ASD, Inc.) spectroradiometer was deployed at the Barrow NSA site during April and May of 2008, and in April-October of 2009. This instrument recorded one-minute averages of surface downwelling spectral flux in the wavelength interval 350-2200 nm, thus sampling the two major near infrared windows (1.6 and 2.2 microns) in which the flux is influenced by cloud microphysical properties including thermodynamic phase and effective particle size. Aircraft in situ measurements of cloud properties show mostly mixed-phase clouds over Barrow during the campaign, but with wide variabilitymore » in relative liquid versus ice water content. At fixed total optical depth, this variability in phase composition can yield of order 5-10 Watts per square meter in surface flux variability, with greater cloud attenuation of the surface flux usually occurring under higher ice water content. Thus our data show that changes in cloud phase properties, even within the 'mixed-phase' category, can affect the surface energy balance at the same order of magnitude as greenhouse gas increases. Analysis of this spectral radiometric data provides suggestions for testing new mixed-phase parameterizations in climate models.« less
NASA Technical Reports Server (NTRS)
Bartkus, Tadas P.; Struk, Peter M.; Tsao, Jen-Ching
2017-01-01
This paper builds on previous work that compares numerical simulations of mixed-phase icing clouds with experimental data. The model couples the thermal interaction between ice particles and water droplets of the icing cloud with the flowing air of an icing wind tunnel for simulation of NASA Glenn Research Centers (GRC) Propulsion Systems Laboratory (PSL). Measurements were taken during the Fundamentals of Ice Crystal Icing Physics Tests at the PSL tunnel in March 2016. The tests simulated ice-crystal and mixed-phase icing that relate to ice accretions within turbofan engines. Experimentally measured air temperature, humidity, total water content, liquid and ice water content, as well as cloud particle size, are compared with model predictions. The model showed good trend agreement with experimentally measured values, but often over-predicted aero-thermodynamic changes. This discrepancy is likely attributed to radial variations that this one-dimensional model does not address. One of the key findings of this work is that greater aero-thermodynamic changes occur when humidity conditions are low. In addition a range of mixed-phase clouds can be achieved by varying only the tunnel humidity conditions, but the range of humidities to generate a mixed-phase cloud becomes smaller when clouds are composed of smaller particles. In general, the model predicted melt fraction well, in particular with clouds composed of larger particle sizes.
NASA Technical Reports Server (NTRS)
Roberts, J. Brent; Robertson, Franklin R.; Clayson, Carol Anne; Taylor, Patrick
2014-01-01
The Madden-Julian Oscillation (MJO) represents a prominent mode of intraseasonal tropical variability. It is manifest by coherent large-scale changes in atmospheric circulation, convection, and thermodynamic processes. Preconditioning of the environment prior to the active phase of the MJO has been noted, but the balance of theorized mechanisms to accomplish this process remains unresolved. Further, there is a lack of consensus on the means by which primary initiation of an MJO event occurs. Observational and modeling efforts have recently been undertaken to advance our understanding of the physical underpinnings governing MJO development. However these intensive studies are often limited in space and/or time and are potentially subject to model deficiencies. Satellite observations, especially those providing vertical resolution of temperature and moisture, provide an opportunity to expand our knowledge of processes critical to MJO initiation and preconditioning. This work will provide an analysis of suppressed phase thermodynamics with an emphasis on the use of a complementary suite of satellite observations including AIRS/AMSU-A profiles, CERES radiative fluxes, and cloud properties observed by MODIS. Emphasis of this work will regard the distribution of cloud regimes, their radiative-convective effects, and their relationship to moist static energy during the recharge and suppressed stages of MJO initiation and eastward propagation. The analyses will make use of cloud regimes from MODIS observations to provide a compositing technique that enables the identification of systematic connections between different cloud regimes and the larger scale environment. Within these cloud regimes, the relationship between the associated cloud-radiative effects observed by CERES, vertically-resolved and vertically-integrated thermodynamics using AIRS/AMSU-A observations, and atmospheric boundary layer fluxes will be demonstrated.
NASA Technical Reports Server (NTRS)
Williams, E.; Mushtak, V.; Rosenfeld, D.; Goodman, S.; Boccippio, D.
2004-01-01
Satellite observations of lightning flash rate have been merged with proximal surface station thermodynamic observations toward improving the understanding of the response of the updraft and lightning activity in the tropical atmosphere to temperature. The tropical results have led in turn to an examination of thermodynamic climatology over the continental United States in summertime and its comparison with exceptional electrical conditions documented in earlier studies. The tropical and mid-latitude results taken together support an important role for cloud base height in regulating the transfer of Convective Available Potential Energy (CAPE) to updraft kinetic energy in thunderstorms. In the tropics, cloud base height is dominated by the dry bulb temperature over the wet bulb temperature as the lightning-regulating temperature in regions characterized by moist convection. In the extratropics, an elevated cloud base height may enable larger cloud water concentrations in the mixed phase region, a favorable condition for the positive charging of large ice particles that may result in thunderclouds with a reversed polarity of the main cloud dipole. The combined requirements of instability and cloud base height serve to confine the region of superlative electrification to the vicinity of the ridge in moist entropy in the western Great Plains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heiblum, Reuven H.; Altaratz, Orit; Koren, Ilan
We study the evolution of warm convective cloud fields using large eddy simulations of continental and trade cumulus. Individual clouds are tracked a posteriori from formation to dissipation using a 3D cloud tracking algorithm and results are presented in the phase- space of center of gravity altitude versus cloud liquid water mass (CvM space). The CvM space is shown to contain rich information on cloud field characteristics, cloud morphology, and common cloud development pathways, together facilitating a comprehensive understanding of the cloud field. In this part we show how the meteorological (thermodynamic) conditions that determine the cloud properties are projectedmore » on the CvM phase space and how changes in the initial conditions affect the clouds' trajectories in this space. This part sets the stage for a detailed microphysical analysis that will be shown in part II.« less
Characterization of Cloud Water-Content Distribution
NASA Technical Reports Server (NTRS)
Lee, Seungwon
2010-01-01
The development of realistic cloud parameterizations for climate models requires accurate characterizations of subgrid distributions of thermodynamic variables. To this end, a software tool was developed to characterize cloud water-content distributions in climate-model sub-grid scales. This software characterizes distributions of cloud water content with respect to cloud phase, cloud type, precipitation occurrence, and geo-location using CloudSat radar measurements. It uses a statistical method called maximum likelihood estimation to estimate the probability density function of the cloud water content.
NASA Technical Reports Server (NTRS)
Curran, R. J.; Salomonson, V. V.; Shenk, W. (Principal Investigator)
1975-01-01
The author has identified the following significant results. The major shortcoming of the data was the loss of the infrared radiances from the S191 spectrometer. The cloud thermodynamic phase determination procedure was derived and tested with the data collected by the S192 multispectral scanner. Results of the test indicate a large fraction of the data could be classified thermodynamically. An added bonus was the inclusion of snow in the classification approach. The conclusion to be drawn from this portion of the effort is that in most cases considered ice clouds, liquid water droplet clouds, and snow fields can be spectroscopically separated to a high degree of accuracy.
The influence of extratropical cloud phase and amount feedbacks on climate sensitivity
NASA Astrophysics Data System (ADS)
Frey, William R.; Kay, Jennifer E.
2018-04-01
Global coupled climate models have large long-standing cloud and radiation biases, calling into question their ability to simulate climate and climate change. This study assesses the impact of reducing shortwave radiation biases on climate sensitivity within the Community Earth System Model (CESM). The model is modified by increasing supercooled cloud liquid to better match absorbed shortwave radiation observations over the Southern Ocean while tuning to reduce a compensating tropical shortwave bias. With a thermodynamic mixed-layer ocean, equilibrium warming in response to doubled CO2 increases from 4.1 K in the control to 5.6 K in the modified model. This 1.5 K increase in equilibrium climate sensitivity is caused by changes in two extratropical shortwave cloud feedbacks. First, reduced conversion of cloud ice to liquid at high southern latitudes decreases the magnitude of a negative cloud phase feedback. Second, warming is amplified in the mid-latitudes by a larger positive shortwave cloud feedback. The positive cloud feedback, usually associated with the subtropics, arises when sea surface warming increases the moisture gradient between the boundary layer and free troposphere. The increased moisture gradient enhances the effectiveness of mixing to dry the boundary layer, which decreases cloud amount and optical depth. When a full-depth ocean with dynamics and thermodynamics is included, ocean heat uptake preferentially cools the mid-latitude Southern Ocean, partially inhibiting the positive cloud feedback and slowing warming. Overall, the results highlight strong connections between Southern Ocean mixed-phase cloud partitioning, cloud feedbacks, and ocean heat uptake in a climate forced by greenhouse gas changes.
Multi-sensor measurements of mixed-phase clouds above Greenland
NASA Astrophysics Data System (ADS)
Stillwell, Robert A.; Shupe, Matthew D.; Thayer, Jeffrey P.; Neely, Ryan R.; Turner, David D.
2018-04-01
Liquid-only and mixed-phase clouds in the Arctic strongly affect the regional surface energy and ice mass budgets, yet much remains unknown about the nature of these clouds due to the lack of intensive measurements. Lidar measurements of these clouds are challenged by very large signal dynamic range, which makes even seemingly simple tasks, such as thermodynamic phase classification, difficult. This work focuses on a set of measurements made by the Clouds Aerosol Polarization and Backscatter Lidar at Summit, Greenland and its retrieval algorithms, which use both analog and photon counting as well as orthogonal and non-orthogonal polarization retrievals to extend dynamic range and improve overall measurement quality and quantity. Presented here is an algorithm for cloud parameter retrievals that leverages enhanced dynamic range retrievals to classify mixed-phase clouds. This best guess retrieval is compared to co-located instruments for validation.
Observations of Co-variation in Cloud Properties and their Relationships with Atmospheric State
NASA Astrophysics Data System (ADS)
Sinclair, K.; van Diedenhoven, B.; Fridlind, A. M.; Arnold, T. G.; Yorks, J. E.; Heymsfield, G. M.; McFarquhar, G. M.; Um, J.
2017-12-01
Radiative properties of upper tropospheric ice clouds are generally not well represented in global and cloud models. Cloud top height, cloud thermodynamic phase, cloud optical thickness, cloud water path, particle size and ice crystal shape all serve as observational targets for models to constrain cloud properties. Trends or biases in these cloud properties could have profound effects on the climate since they affect cloud radiative properties. Better understanding of co-variation between these cloud properties and linkages with atmospheric state variables can lead to better representation of clouds in models by reducing biases in their micro- and macro-physical properties as well as their radiative properties. This will also enhance our general understanding of cloud processes. In this analysis we look at remote sensing, in situ and reanalysis data from the MODIS Airborne Simulator (MAS), Cloud Physics Lidar (CPL), Cloud Radar System (CRS), GEOS-5 reanalysis data and GOES imagery obtained during the Tropical Composition, Cloud and Climate Coupling (TC4) airborne campaign. The MAS, CPL and CRS were mounted on the ER-2 high-altitude aircraft during this campaign. In situ observations of ice size and shape were made aboard the DC8 and WB57 aircrafts. We explore how thermodynamic phase, ice effective radius, particle shape and radar reflectivity vary with altitude and also investigate how these observed cloud properties vary with cloud type, cloud top temperature, relative humidity and wind profiles. Observed systematic relationships are supported by physical interpretations of cloud processes and any unexpected differences are examined.
Effect of additives on the clouding and aggregation behavior of Triton X-100
NASA Astrophysics Data System (ADS)
Semwal, Divyam; Sen, Indrani Das; Jayaram, Radha V.
2018-04-01
The present study investigates the effect of additives such as CsNO3 and imidazolium ionic liquids on the cloud point (CP) of Triton X-100. Thermodynamic parameters of the clouding process were determined in order to understand the interactions. CP was found to increase with the increase in concentration of most of the ionic liquids studied. This increase of CP reflects the solubilization of the ionic liquids in the micellar phase1. The thermodynamic parameters on the introduction of CsNO3 in TX-100 - ionic liquid system helps in understanding the different interactions occurring in the system. All ΔG values for clouding were found to be positive and hence made the process non spontaneous.
Kalesse, Heike; de Boer, Gijs; Solomon, Amy; ...
2016-11-23
Understanding phase transitions in mixed-phase clouds is of great importance because the hydrometeor phase controls the lifetime and radiative effects of clouds. These cloud radiative effects have a crucial impact on the surface energy budget and thus on the evolution of the ice cover, in high altitudes. For a springtime low-level mixed-phase stratiform cloud case from Barrow, Alaska, a unique combination of instruments and retrieval methods is combined with multiple modeling perspectives to determine key processes that control cloud phase partitioning. The interplay of local cloud-scale versus large-scale processes is considered. Rapid changes in phase partitioning were found to bemore » caused by several main factors. Some major influences were the large-scale advection of different air masses with different aerosol concentrations and humidity content, cloud-scale processes such as a change in the thermodynamical coupling state, and local-scale dynamics influencing the residence time of ice particles. Other factors such as radiative shielding by a cirrus and the influence of the solar cycle were found to only play a minor role for the specific case study (11–12 March 2013). Furthermore, for an even better understanding of cloud phase transitions, observations of key aerosol parameters such as profiles of cloud condensation nucleus and ice nucleus concentration are desirable.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalesse, Heike; de Boer, Gijs; Solomon, Amy
Understanding phase transitions in mixed-phase clouds is of great importance because the hydrometeor phase controls the lifetime and radiative effects of clouds. These cloud radiative effects have a crucial impact on the surface energy budget and thus on the evolution of the ice cover, in high altitudes. For a springtime low-level mixed-phase stratiform cloud case from Barrow, Alaska, a unique combination of instruments and retrieval methods is combined with multiple modeling perspectives to determine key processes that control cloud phase partitioning. The interplay of local cloud-scale versus large-scale processes is considered. Rapid changes in phase partitioning were found to bemore » caused by several main factors. Some major influences were the large-scale advection of different air masses with different aerosol concentrations and humidity content, cloud-scale processes such as a change in the thermodynamical coupling state, and local-scale dynamics influencing the residence time of ice particles. Other factors such as radiative shielding by a cirrus and the influence of the solar cycle were found to only play a minor role for the specific case study (11–12 March 2013). Furthermore, for an even better understanding of cloud phase transitions, observations of key aerosol parameters such as profiles of cloud condensation nucleus and ice nucleus concentration are desirable.« less
GNSS Polarimetric Radio Occultations: Thermodynamical Structure of pecipitating clouds
NASA Astrophysics Data System (ADS)
De La Torre Juarez, M.; Padulles, R.; Cardellach, E.; Turk, F. J.; Tomás, S.; Ao, C. O.
2016-12-01
Recent analysis of changes in the hydrological sensitivity during a recent weakening of transient warming show that the representation of the processes linking the condensation of water vapor and the growth and invigoration of convective precipitation produce the greatest disparities between cloud resolving models and current observations of convective cloud systems. The temperature and moisture structure of a cloud environment is the main control on the thermodynamical processes leading to the development of precipitation. The surrounding environmental state acts as the broader sink and source for moisture exchange between clouds and their surroundings. As precipitation develops, water vapor condensation leads to an evolving 3D temperature and moisture structure in and near clouds different from the larger scale structure or the clear-sky environment. Yet there is a gap in existing space-based observations since conventional IR and microwave sounding data are degraded in the presence of clouds and precipitation. GNSS radio occultations (RO) are a low-cost approach to sounding the global atmosphere with high precision, accuracy and vertical resolution inside clouds and across land-ocean boundaries. GNSS provides reliable, sustained signal sources. While current RO provide no direct information on the associated precipitation state, a recently studied concept of Polarimetric RO (PRO) can characterize the moist thermodynamics within precipitating systems. Since precipitation-sized hydrometeors are non-spherically shaped, precipitation induces a cross-polarized component during propagation through clouds, recorded by a dual-channel RO receiver as a differential phase shift. Theoretical analysis performed using coincident TRMM Precipitation Radar and COSMIC observations shows that the polarimetric phase shift is sensitive to the path-integrated rain rate. Based on the expected signal-to-noise ratio (SNR) of simulated PRO measurements, the precision of the differential phase signal averaged over 1-sec has been estimated greater than 1.5 mm, with rain rates exceeding 5 mm hr-1 detectable above the instrument noise level 90% of the time. We present the technique and show analyses that prove its potential to characterize the lapse rate inside precipitating vs. non-precipitating clouds.
NASA Technical Reports Server (NTRS)
Lee, Joonsuk; Yang, Ping; Dessler, Andrew E.; Baum, Bryan A.; Platnick, Steven
2005-01-01
Cloud microphysical and optical properties are inferred from the bidirectional reflectances simulated for a single-layered cloud consisting of an external mixture of ice particles and liquid droplets. The reflectances are calculated with a rigorous discrete ordinates radiative transfer model and are functions of the cloud effective particle size, the cloud optical thickness, and the values of the ice fraction in the cloud (i.e., the ratio of ice water content to total water content). In the present light scattering and radiative transfer simulations, the ice fraction is assumed to be vertically homogeneous; the habit (shape) percentage as a function of ice particle size is consistent with that used for the Moderate Resolution Imaging Spectroradiometer (MODIS) operational (Collection 4 and earlier) cloud products; and the surface is assumed to be Lambertian with an albedo of 0.03. Furthermore, error analyses pertaining to the inference of the effective particle sizes and optical thicknesses of mixed-phase clouds are performed. Errors are calculated with respect to the assumption of a cloud containing solely liquid or ice phase particles. The analyses suggest that the effective particle size inferred for a mixed-phase cloud can be underestimated (or overestimated) if pure liquid phase (or pure ice phase) is assumed for the cloud, whereas the corresponding cloud optical thickness can be overestimated (or underestimated).
NASA Astrophysics Data System (ADS)
Yang, Fan
Ice particles in atmospheric clouds play an important role in determining cloud lifetime, precipitation and radiation. It is therefore important to understand the whole life cycle of ice particles in the atmosphere, e.g., where they come from (nucleation), how they evolve (growth), and where they go (precipitation). Ice nucleation is the crucial step for ice formation, and in this study, we will mainly focus on ice nucleation in the lab and its effect on mixed-phase stratiform clouds. In the first half of this study, we investigate the relevance of moving contact lines (i.e., the region where three or more phases meet) on the phenomenon of contact nucleation. High speed video is used to investigate heterogeneous ice nucleation in supercooled droplets resting on cold substrates under two different dynamic conditions: droplet electrowetting and droplet vibration. The results show that contact-line motion is not a sufficient condition to trigger ice nucleation, while locally curved contact lines that can result from contact-line motion are strongly related to ice nucleation. We propose that pressure perturbations due to locally curved contact lines can strongly enhance the ice nucleation rate, which gives another interpretation for the mechanism for contact nucleation. Corresponding theoretical results provide a quantitative connection between pressure perturbations and temperature, providing a useful tool for ice nucleation calculations in atmospheric models. In this second half of the study, we build a minimalist model for long lifetime mixed-phase stratiform clouds based on stochastic ice nucleation. Our result shows that there is a non-linear relationship between ice water contact and ice number concentration in the mixed-phase cloud, as long as the volume ice nucleation rate is constant. This statistical property may help identify the source of ice nuclei in mixed-phase clouds. In addition, results from Lagrangian ice particle tracking in time dependent fields show that long lifetime ice particles exist in mixed-phase stratiform clouds. We find that small ice particle can be trapped in eddy-like structures. Whether ice particles grow or sublimate depends on the thermodynamic field in the trapping region. This dynamic-thermodynamic coupling effect on the lifetime of ice particles might explain the fast phase-partition change observed in the mixed phase cloud.
Toward the Characterization of Mixed-Phase Clouds Using Remote Sensing
NASA Astrophysics Data System (ADS)
Andronache, C.
2015-12-01
Mixed-phase clouds consist of a mixture of ice particles and liquid droplets at temperatures below 0 deg C. They are present in all seasons in many regions of the world, account for about 30% of the global cloud coverage, and are linked to cloud electrification and aircraft icing. The mix of ice particles, liquid droplets, and water vapor is unstable, and such clouds are thought to have a short lifetime. A characteristic parameter is the phase composition of mixed-phase clouds. It affects the cloud life cycle and the rate of precipitation. This parameter is important for cloud parameters retrievals by radar, lidar, and satellite and is relevant for climate modeling. The phase transformation includes the remarkable Wegener-Bergeron-Findeisen (WBF) process. The direction and the rate of the phase transformations depend on the local thermodynamic and microphysical properties. Cloud condensation nuclei (CCN) and ice nuclei (IN) particles determine to a large extent cloud microstructure and the dynamic response of clouds to aerosols. The complexity of dynamics and microphysics involved in mixed-phase clouds requires a set of observational and modeling tools that continue to be refined. Among these techniques, the remote sensing methods provide an increasing number of parameters, covering large regions of the world. Thus, a series of studies were dedicated to stratiform mixed-phase clouds revealing longer lifetime than previously thought. Satellite data and aircraft in situ measurements in deep convective clouds suggest that highly supercooled water often occurs in vigorous continental convective storms. In this study, we use cases of convective clouds to discuss the feasibility of mixed-phase clouds characterization and potential advantages of remote sensing.
Aerosol-cloud interactions in mixed-phase convective clouds - Part 1: Aerosol perturbations
NASA Astrophysics Data System (ADS)
Miltenberger, Annette K.; Field, Paul R.; Hill, Adrian A.; Rosenberg, Phil; Shipway, Ben J.; Wilkinson, Jonathan M.; Scovell, Robert; Blyth, Alan M.
2018-03-01
Changes induced by perturbed aerosol conditions in moderately deep mixed-phase convective clouds (cloud top height ˜ 5 km) developing along sea-breeze convergence lines are investigated with high-resolution numerical model simulations. The simulations utilise the newly developed Cloud-AeroSol Interacting Microphysics (CASIM) module for the Unified Model (UM), which allows for the representation of the two-way interaction between cloud and aerosol fields. Simulations are evaluated against observations collected during the COnvective Precipitation Experiment (COPE) field campaign over the southwestern peninsula of the UK in 2013. The simulations compare favourably with observed thermodynamic profiles, cloud base cloud droplet number concentrations (CDNC), cloud depth, and radar reflectivity statistics. Including the modification of aerosol fields by cloud microphysical processes improves the correspondence with observed CDNC values and spatial variability, but reduces the agreement with observations for average cloud size and cloud top height. Accumulated precipitation is suppressed for higher-aerosol conditions before clouds become organised along the sea-breeze convergence lines. Changes in precipitation are smaller in simulations with aerosol processing. The precipitation suppression is due to less efficient precipitation production by warm-phase microphysics, consistent with parcel model predictions. In contrast, after convective cells organise along the sea-breeze convergence zone, accumulated precipitation increases with aerosol concentrations. Condensate production increases with the aerosol concentrations due to higher vertical velocities in the convective cores and higher cloud top heights. However, for the highest-aerosol scenarios, no further increase in the condensate production occurs, as clouds grow into an upper-level stable layer. In these cases, the reduced precipitation efficiency (PE) dominates the precipitation response and no further precipitation enhancement occurs. Previous studies of deep convective clouds have related larger vertical velocities under high-aerosol conditions to enhanced latent heating from freezing. In the presented simulations changes in latent heating above the 0°C are negligible, but latent heating from condensation increases with aerosol concentrations. It is hypothesised that this increase is related to changes in the cloud field structure reducing the mixing of environmental air into the convective core. The precipitation response of the deeper mixed-phase clouds along well-established convergence lines can be the opposite of predictions from parcel models. This occurs when clouds interact with a pre-existing thermodynamic environment and cloud field structural changes occur that are not captured by simple parcel model approaches.
NASA Technical Reports Server (NTRS)
Platnick, Steven; Meyer, Kerry G.; King, Michael D.; Wind, Galina; Amarasinghe, Nandana; Marchant, Benjamin G.; Arnold, G. Thomas; Zhang, Zhibo; Hubanks, Paul A.; Holz, Robert E.;
2016-01-01
The MODIS Level-2 cloud product (Earth Science Data Set names MOD06 and MYD06 for Terra and Aqua MODIS, respectively) provides pixel-level retrievals of cloud-top properties (day and night pressure, temperature, and height) and cloud optical properties(optical thickness, effective particle radius, and water path for both liquid water and ice cloud thermodynamic phases daytime only). Collection 6 (C6) reprocessing of the product was completed in May 2014 and March 2015 for MODIS Aqua and Terra, respectively. Here we provide an overview of major C6 optical property algorithm changes relative to the previous Collection 5 (C5) product. Notable C6 optical and microphysical algorithm changes include: (i) new ice cloud optical property models and a more extensive cloud radiative transfer code lookup table (LUT) approach, (ii) improvement in the skill of the shortwave-derived cloud thermodynamic phase, (iii) separate cloud effective radius retrieval datasets for each spectral combination used in previous collections, (iv) separate retrievals for partly cloudy pixels and those associated with cloud edges, (v) failure metrics that provide diagnostic information for pixels having observations that fall outside the LUT solution space, and (vi) enhanced pixel-level retrieval uncertainty calculations.The C6 algorithm changes collectively can result in significant changes relative to C5,though the magnitude depends on the dataset and the pixels retrieval location in the cloud parameter space. Example Level-2 granule and Level-3 gridded dataset differences between the two collections are shown. While the emphasis is on the suite of cloud opticalproperty datasets, other MODIS cloud datasets are discussed when relevant.
Platnick, Steven; Meyer, Kerry G; King, Michael D; Wind, Galina; Amarasinghe, Nandana; Marchant, Benjamin; Arnold, G Thomas; Zhang, Zhibo; Hubanks, Paul A; Holz, Robert E; Yang, Ping; Ridgway, William L; Riedi, Jérôme
2017-01-01
The MODIS Level-2 cloud product (Earth Science Data Set names MOD06 and MYD06 for Terra and Aqua MODIS, respectively) provides pixel-level retrievals of cloud-top properties (day and night pressure, temperature, and height) and cloud optical properties (optical thickness, effective particle radius, and water path for both liquid water and ice cloud thermodynamic phases-daytime only). Collection 6 (C6) reprocessing of the product was completed in May 2014 and March 2015 for MODIS Aqua and Terra, respectively. Here we provide an overview of major C6 optical property algorithm changes relative to the previous Collection 5 (C5) product. Notable C6 optical and microphysical algorithm changes include: (i) new ice cloud optical property models and a more extensive cloud radiative transfer code lookup table (LUT) approach, (ii) improvement in the skill of the shortwave-derived cloud thermodynamic phase, (iii) separate cloud effective radius retrieval datasets for each spectral combination used in previous collections, (iv) separate retrievals for partly cloudy pixels and those associated with cloud edges, (v) failure metrics that provide diagnostic information for pixels having observations that fall outside the LUT solution space, and (vi) enhanced pixel-level retrieval uncertainty calculations. The C6 algorithm changes collectively can result in significant changes relative to C5, though the magnitude depends on the dataset and the pixel's retrieval location in the cloud parameter space. Example Level-2 granule and Level-3 gridded dataset differences between the two collections are shown. While the emphasis is on the suite of cloud optical property datasets, other MODIS cloud datasets are discussed when relevant.
NASA Technical Reports Server (NTRS)
Starr, D. OC.; Cox, S. K.
1985-01-01
A simplified cirrus cloud model is presented which may be used to investigate the role of various physical processes in the life cycle of a cirrus cloud. The model is a two-dimensional, time-dependent, Eulerian numerical model where the focus is on cloud-scale processes. Parametrizations are developed to account for phase changes of water, radiative processes, and the effects of microphysical structure on the vertical flux of ice water. The results of a simulation of a thin cirrostratus cloud are given. The results of numerical experiments performed with the model are described in order to demonstrate the important role of cloud-scale processes in determining the cloud properties maintained in response to larger scale forcing. The effects of microphysical composition and radiative processes are considered, as well as their interaction with thermodynamic and dynamic processes within the cloud. It is shown that cirrus clouds operate in an entirely different manner than liquid phase stratiform clouds.
Vertical structure of atmospheric boundary layer over Ranchi during the summer monsoon season
NASA Astrophysics Data System (ADS)
Chandra, Sagarika; Srivastava, Nishi; Kumar, Manoj
2018-04-01
Thermodynamic structure and variability in the atmospheric boundary layer have been investigated with the help of balloon-borne GPS radiosonde over a monsoon trough station Ranchi (Lat. 23°45'N, Long. 85°43'E, India) during the summer monsoon season (June-September) for a period of 2011-2013. Virtual potential temperature gradient method is used for the determination of mixed layer height (MLH). The MLH has been found to vary in the range of 1000-1300 m during the onset, 600-900 m during the active and 1400-1750 m during the break phase of monsoon over this region. Inter-annual variations noticed in MLH could be associated with inter-annual variability in convection and rainfall prevailing over the region. Along with the MLH, the cloud layer heights are also derived from the thermodynamic profiles for the onset, active and break phases of monsoon. Cloud layer height varied a lot during different phases of the monsoon. For the determination of boundary-layer convection, thermodynamic parameter difference (δθ = θ es- θ e) between saturated equivalent potential temperature (θ es ) and equivalent potential temperature (θ e) is used. It is a good indicator of convection and indicates the intense and suppressed convection during different phases of monsoon.
Skylab near-infrared observations of clouds indicating supercooled liquid water droplets
NASA Technical Reports Server (NTRS)
Curran, R. J.; Wu, M.-L. C.
1982-01-01
Orographically-induced lee-wave clouds were observed over New Mexico by a multichannel scanning radiometer on Skylab during December 1973. Channels centered at 0.83, 1.61 and 2.125 microns were used to determine the cloud optical thickness, thermodynamic phase and effective particle size. An additional channel centered at 11.4 microns was used to determine cloud-top temperature, which was corroborated through comparison with the stereographically determined cloud top altitudes and conventional temperature soundings. Analysis of the measured near-infrared reflection functions at 1.61 and 2.125 microns are most easily interpreted as indicating the presence of liquid-phase water droplets. This interpretation is not conclusive even after considerable effort to understand possible sources for misinterpretation. However, if accepted the resulting phase determination is considered anomalous due to the inferred cloud-top temperatures being in the -32 to -47 C range. Theory for the homogeneous nucleation of pure supercooled liquid water droplets predicts very short lifetimes for the liquid phase at these cold temperatures. A possible explanation for the observations is that the wave-clouds are composed of solution droplets. Impurities in the cloud droplets could decrease the homogeneous freezing rate for these droplets, permitting them to exist for a longer time in the liquid phase, at the cold temperatures found.
Multichannel scanning radiometer for remote sensing cloud physical parameters
NASA Technical Reports Server (NTRS)
Curran, R. J.; Kyle, H. L.; Blaine, L. R.; Smith, J.; Clem, T. D.
1981-01-01
A multichannel scanning radiometer developed for remote observation of cloud physical properties is described. Consisting of six channels in the near infrared and one channel in the thermal infrared, the instrument can observe cloud physical parameters such as optical thickness, thermodynamic phase, cloud top altitude, and cloud top temperature. Measurement accuracy is quantified through flight tests on the NASA CV-990 and the NASA WB-57F, and is found to be limited by the harsh environment of the aircraft at flight altitude. The electronics, data system, and calibration of the instrument are also discussed.
The structure and phase of cloud tops as observed by polarization lidar
NASA Technical Reports Server (NTRS)
Spinhirne, J. D.; Hansen, M. Z.; Simpson, J.
1983-01-01
High-resolution observations of the structure of cloud tops have been obtained with polarization lidar operated from a high altitude aircraft. Case studies of measurements acquired from cumuliform cloud systems are presented, two from September 1979 observations in the area of Florida and adjacent waters and a third during the May 1981 CCOPE experiment in southeast Montana. Accurate cloud top height structure and relative density of hydrometers are obtained from the lidar return signal intensity. Correlation between the signal return intensity and active updrafts was noted. Thin cirrus overlying developing turrets was observed in some cases. Typical values of the observed backscatter cross section were 0.1-5 (km/sr) for cumulonimbus tops. The depolarization ratio of the lidar signals was a function of the thermodynamic phase of cloud top areas. An increase of the cloud top depolarization with decreasing temperature was found for temperatures above and below -40 C.
Modeling Cloud Phase Fraction Based on In-situ Observations in Stratiform Clouds
NASA Astrophysics Data System (ADS)
Boudala, F. S.; Isaac, G. A.
2005-12-01
Mixed-phase clouds influence weather and climate in several ways. Due to the fact that they exhibit very different optical properties as compared to ice or liquid only clouds, they play an important role in the earth's radiation balance by modifying the optical properties of clouds. Precipitation development in clouds is also enhanced under mixed-phase conditions and these clouds may contain large supercooled drops that freeze quickly in contact with aircraft surfaces that may be a hazard to aviation. The existence of ice and liquid phase clouds together in the same environment is thermodynamically unstable, and thus they are expected to disappear quickly. However, several observations show that mixed-phase clouds are relatively stable in the natural environment and last for several hours. Although there have been some efforts being made in the past to study the microphysical properties of mixed-phase clouds, there are still a number of uncertainties in modeling these clouds particularly in large scale numerical models. In most models, very simple temperature dependent parameterizations of cloud phase fraction are being used to estimate the fraction of ice or liquid phase in a given mixed-phase cloud. In this talk, two different parameterizations of ice fraction using in-situ aircraft measurements of cloud microphysical properties collected in extratropical stratiform clouds during several field programs will be presented. One of the parameterizations has been tested using a single prognostic equation developed by Tremblay et al. (1996) for application in the Canadian regional weather prediction model. The addition of small ice particles significantly increased the vapor deposition rate when the natural atmosphere is assumed to be water saturated, and thus this enhanced the glaciation of simulated mixed-phase cloud via the Bergeron-Findeisen process without significantly affecting the other cloud microphysical processes such as riming and particle sedimentation rates. After the water vapor pressure in mixed-phase cloud was modified based on the Lord et al. (1984) scheme by weighting the saturation water vapor pressure with ice fraction, it was possible to simulate more stable mixed-phase cloud. It was also noted that the ice particle concentration (L>100 μm) in mixed-phase cloud is lower on average by a factor 3 and as a result the parameterization should be corrected for this effect. After accounting for this effect, the parameterized ice fraction agreed well with observed mean ice fraction.
NASA Astrophysics Data System (ADS)
Zhang, G.; McFarquhar, G.; Poellot, M.; Verlinde, J.; Heymsfield, A.; Kok, G.
2005-12-01
Arctic stratus clouds play an important role in the energy balance of the Arctic region. Previous studies have suggested that Arctic stratus persist due to a balance among cloud top radiation cooling, latent heating, ice crystal fall out and large scale forcing. In this study, radiative heating profiles through Arctic stratus are computed using cloud, surface and thermodynamic observations obtained during the Mixed-Phase Arctic Cloud Experiment (M-PACE) as input to the radiative transfer model STREAMER. In particular, microphysical and macrophycial cloud properties such as phase, water content, effective particle size, particle shape, cloud height and cloud thickness were derived using data collected by in-situ sensors on the University of North Dakota (UND) Citation and ground-based remote sensors at Barrow and Oliktok Point. Temperature profiles were derived from radiosonde launches and a fresh snow surface was assumed. One series of sensitivity studies explored the dependence of the heating profile on the solar zenith angle. For smaller solar zenith angles, more incoming solar radiation is received at cloud top acting to counterbalance infrared cooling. As solar zenith angle in the Arctic is large compared to low latitudes, a large solar zenith angle may contribute to the longevity of these clouds.
Remote sensing of cloud radiation and microphysical parameters
NASA Technical Reports Server (NTRS)
Wu, M.-L. C.; Curran, R. J.
1983-01-01
Multispectral cloud radiometer (MCR) data, retrieved from a radiometer installed in a nadir viewing position on a high-altitude aircraft flying at 200 m/s and at an altitude of 60,000 ft above the mean sea level, are analyzed. The data discussed were obtained in the 0.754, 0.7609, 0.7634, 1.626, 2.125, and 11.38-micron channels, and are compared to lidar-derived profiles. Among the cloud parameters under consideration are the cloud scaled optical thickness, cloudtop altitude, scaled volume scattering coefficient, particle thermodynamic phase, mean particle size, and cloudtop temperature.
NASA Technical Reports Server (NTRS)
Meyer, Kerry; Yang, Yuekui; Platnick, Steven
2016-01-01
This paper presents an investigation of the expected uncertainties of a single channel cloud optical thickness (COT) retrieval technique, as well as a simple cloud-temperature-threshold-based thermodynamic phase approach, in support of the Deep Space Climate Observatory (DSCOVR) mission. DSCOVR cloud products will be derived from Earth Polychromatic Imaging Camera (EPIC) observations in the ultraviolet and visible spectra. Since EPIC is not equipped with a spectral channel in the shortwave or mid-wave infrared that is sensitive to cloud effective radius (CER), COT will be inferred from a single visible channel with the assumption of appropriate CER values for liquid and ice phase clouds. One month of Aqua MODIS daytime granules from April 2005 is selected for investigating cloud phase sensitivity, and a subset of these granules that has similar EPIC sun-view geometry is selected for investigating COT uncertainties. EPIC COT retrievals are simulated with the same algorithm as the operational MODIS cloud products (MOD06), except using fixed phase-dependent CER values. Uncertainty estimates are derived by comparing the single channel COT retrievals with the baseline bi-spectral MODIS retrievals. Results show that a single channel COT retrieval is feasible for EPIC. For ice clouds, single channel retrieval errors are minimal (less than 2 percent) due to the particle- size insensitivity of the assumed ice crystal (i.e., severely roughened aggregate of hexagonal columns) scattering properties at visible wavelengths, while for liquid clouds the error is mostly limited to within 10 percent, although for thin clouds (COT less than 2) the error can be higher. Potential uncertainties in EPIC cloud masking and cloud temperature retrievals are not considered in this study.
Meyer, Kerry; Yang, Yuekui; Platnick, Steven
2018-01-01
This paper presents an investigation of the expected uncertainties of a single channel cloud optical thickness (COT) retrieval technique, as well as a simple cloud temperature threshold based thermodynamic phase approach, in support of the Deep Space Climate Observatory (DSCOVR) mission. DSCOVR cloud products will be derived from Earth Polychromatic Imaging Camera (EPIC) observations in the ultraviolet and visible spectra. Since EPIC is not equipped with a spectral channel in the shortwave or mid-wave infrared that is sensitive to cloud effective radius (CER), COT will be inferred from a single visible channel with the assumption of appropriate CER values for liquid and ice phase clouds. One month of Aqua MODIS daytime granules from April 2005 is selected for investigating cloud phase sensitivity, and a subset of these granules that has similar EPIC sun-view geometry is selected for investigating COT uncertainties. EPIC COT retrievals are simulated with the same algorithm as the operational MODIS cloud products (MOD06), except using fixed phase-dependent CER values. Uncertainty estimates are derived by comparing the single channel COT retrievals with the baseline bi-spectral MODIS retrievals. Results show that a single channel COT retrieval is feasible for EPIC. For ice clouds, single channel retrieval errors are minimal (< 2%) due to the particle size insensitivity of the assumed ice crystal (i.e., severely roughened aggregate of hexagonal columns) scattering properties at visible wavelengths, while for liquid clouds the error is mostly limited to within 10%, although for thin clouds (COT < 2) the error can be higher. Potential uncertainties in EPIC cloud masking and cloud temperature retrievals are not considered in this study. PMID:29619116
Meyer, Kerry; Yang, Yuekui; Platnick, Steven
2016-01-01
This paper presents an investigation of the expected uncertainties of a single channel cloud optical thickness (COT) retrieval technique, as well as a simple cloud temperature threshold based thermodynamic phase approach, in support of the Deep Space Climate Observatory (DSCOVR) mission. DSCOVR cloud products will be derived from Earth Polychromatic Imaging Camera (EPIC) observations in the ultraviolet and visible spectra. Since EPIC is not equipped with a spectral channel in the shortwave or mid-wave infrared that is sensitive to cloud effective radius (CER), COT will be inferred from a single visible channel with the assumption of appropriate CER values for liquid and ice phase clouds. One month of Aqua MODIS daytime granules from April 2005 is selected for investigating cloud phase sensitivity, and a subset of these granules that has similar EPIC sun-view geometry is selected for investigating COT uncertainties. EPIC COT retrievals are simulated with the same algorithm as the operational MODIS cloud products (MOD06), except using fixed phase-dependent CER values. Uncertainty estimates are derived by comparing the single channel COT retrievals with the baseline bi-spectral MODIS retrievals. Results show that a single channel COT retrieval is feasible for EPIC. For ice clouds, single channel retrieval errors are minimal (< 2%) due to the particle size insensitivity of the assumed ice crystal (i.e., severely roughened aggregate of hexagonal columns) scattering properties at visible wavelengths, while for liquid clouds the error is mostly limited to within 10%, although for thin clouds (COT < 2) the error can be higher. Potential uncertainties in EPIC cloud masking and cloud temperature retrievals are not considered in this study.
NASA Astrophysics Data System (ADS)
Meyer, Kerry; Yang, Yuekui; Platnick, Steven
2016-04-01
This paper presents an investigation of the expected uncertainties of a single-channel cloud optical thickness (COT) retrieval technique, as well as a simple cloud-temperature-threshold-based thermodynamic phase approach, in support of the Deep Space Climate Observatory (DSCOVR) mission. DSCOVR cloud products will be derived from Earth Polychromatic Imaging Camera (EPIC) observations in the ultraviolet and visible spectra. Since EPIC is not equipped with a spectral channel in the shortwave or mid-wave infrared that is sensitive to cloud effective radius (CER), COT will be inferred from a single visible channel with the assumption of appropriate CER values for liquid and ice phase clouds. One month of Aqua MODerate-resolution Imaging Spectroradiometer (MODIS) daytime granules from April 2005 is selected for investigating cloud phase sensitivity, and a subset of these granules that has similar EPIC Sun-view geometry is selected for investigating COT uncertainties. EPIC COT retrievals are simulated with the same algorithm as the operational MODIS cloud products (MOD06), except using fixed phase-dependent CER values. Uncertainty estimates are derived by comparing the single-channel COT retrievals with the baseline bi-spectral MODIS retrievals. Results show that a single-channel COT retrieval is feasible for EPIC. For ice clouds, single-channel retrieval errors are minimal (< 2 %) due to the particle size insensitivity of the assumed ice crystal (i.e., severely roughened aggregate of hexagonal columns) scattering properties at visible wavelengths, while for liquid clouds the error is mostly limited to within 10 %, although for thin clouds (COT < 2) the error can be higher. Potential uncertainties in EPIC cloud masking and cloud temperature retrievals are not considered in this study.
Sound, infrasound, and sonic boom absorption by atmospheric clouds.
Baudoin, Michaël; Coulouvrat, François; Thomas, Jean-Louis
2011-09-01
This study quantifies the influence of atmospheric clouds on propagation of sound and infrasound, based on an existing model [Gubaidulin and Nigmatulin, Int. J. Multiphase Flow 26, 207-228 (2000)]. Clouds are considered as a dilute and polydisperse suspension of liquid water droplets within a mixture of dry air and water vapor, both considered as perfect gases. The model is limited to low and medium altitude clouds, with a small ice content. Four physical mechanisms are taken into account: viscoinertial effects, heat transfer, water phase changes (evaporation and condensation), and vapor diffusion. Physical properties of atmospheric clouds (altitude, thickness, water content and droplet size distribution) are collected, along with values of the thermodynamical coefficients. Different types of clouds have been selected. Quantitative evaluation shows that, for low audible and infrasound frequencies, absorption within clouds is several orders of magnitude larger than classical absorption. The importance of phase changes and vapor diffusion is outlined. Finally, numerical simulations for nonlinear propagation of sonic booms indicate that, for thick clouds, attenuation can lead to a very large decay of the boom at the ground level. © 2011 Acoustical Society of America
Spherical combustion clouds in explosions
NASA Astrophysics Data System (ADS)
Kuhl, A. L.; Bell, J. B.; Beckner, V. E.; Balakrishnan, K.; Aspden, A. J.
2013-05-01
This study explores the properties of spherical combustion clouds in explosions. Two cases are investigated: (1) detonation of a TNT charge and combustion of its detonation products with air, and (2) shock dispersion of aluminum powder and its combustion with air. The evolution of the blast wave and ensuing combustion cloud dynamics are studied via numerical simulations with our adaptive mesh refinement combustion code. The code solves the multi-phase conservation laws for a dilute heterogeneous continuum as formulated by Nigmatulin. Single-phase combustion (e.g., TNT with air) is modeled in the fast-chemistry limit. Two-phase combustion (e.g., Al powder with air) uses an induction time model based on Arrhenius fits to Boiko's shock tube data, along with an ignition temperature criterion based on fits to Gurevich's data, and an ignition probability model that accounts for multi-particle effects on cloud ignition. Equations of state are based on polynomial fits to thermodynamic calculations with the Cheetah code, assuming frozen reactants and equilibrium products. Adaptive mesh refinement is used to resolve thin reaction zones and capture the energy-bearing scales of turbulence on the computational mesh (ILES approach). Taking advantage of the symmetry of the problem, azimuthal averaging was used to extract the mean and rms fluctuations from the numerical solution, including: thermodynamic profiles, kinematic profiles, and reaction-zone profiles across the combustion cloud. Fuel consumption was limited to ˜ 60-70 %, due to the limited amount of air a spherical combustion cloud can entrain before the turbulent velocity field decays away. Turbulent kinetic energy spectra of the solution were found to have both rotational and dilatational components, due to compressibility effects. The dilatational component was typically about 1 % of the rotational component; both seemed to preserve their spectra as they decayed. Kinetic energy of the blast wave decayed due to the pressure field. Turbulent kinetic energy of the combustion cloud decayed due to enstrophy overline{ω 2} and dilatation overline{Δ 2}.
Cloud Chemistry of Fallout Formation
1968-01-31
SILICATES ....... 19 LEACHING STUDIES ..... ............................ 26 HIGH-TEMPERATURE MASS SPECTROMETRY ............... 31 Rare-Earth Oxide ...reactions between technetium oxides ................. 39 TABLES 1 . Small Boy particle size-weight fraction description (each particle size fraction...29 9. Rare-earth oxide thermodynamics (Reaction 15) ............... 32 10. Enthalpies for gas-phase reactions
NASA Technical Reports Server (NTRS)
Platnick, S.; Wind, G.
2004-01-01
In order to perform satellite retrievals of cloud properties, it is important to account for the effect of the above-cloud atmosphere on the observations. The solar bands used in the operational MODIS Terra and Aqua cloud optical and microphysical algorithms (visible, NIR, and SWIR spectral windows) are primarily affected by water vapor, and to a lesser extent by well-mixed gases. For water vapor, the above-cloud column amount, or precipitable water, provides adequate information for an atmospheric correction; details of the vertical vapor distribution are not typically necessary for the level of correction required. Cloud-top pressure has a secondary effect due to pressure broadening influences. For well- mixed gases, cloud-top pressure is also required for estimates of above-cloud abundances. We present a method for obtaining above-cloud precipitable water over dark Ocean surfaces using the MODIS 0.94 pm vapor absorption band. The retrieval includes an iterative procedure for establishing cloud-top temperature and pressure, and is useful for both single layer water and ice clouds. Knowledge of cloud thermodynamic phase is fundamental in retrieving cloud optical and microphysical properties. However, in cases of optically thin cirrus overlapping lower water clouds, the concept of a single unique phase is ill- defined and depends, at least, on the spectral region of interest. We will present a method for multi-layer and multi-phase cloud detection which uses above-cloud precipitable water retrievals along with several existing MODIS operational cloud products (cloud-top pressure derived from a C02 slicing algorithm, IR and SWIR phase retrievals). Results are catagorized by whether the radiative signature in the MODIS solar bands is primarily that of a water cloud with ice cloud contamination, or visa-versa. Examples in polar and mid-latitude regions will be shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrison, H.; Zuidema, Paquita; Ackerman, Andrew
2011-06-16
An intercomparison of six cloud-resolving and large-eddy simulation models is presented. This case study is based on observations of a persistent mixed-phase boundary layer cloud gathered on 7 May, 1998 from the Surface Heat Budget of Arctic Ocean (SHEBA) and First ISCCP Regional Experiment - Arctic Cloud Experiment (FIRE-ACE). Ice nucleation is constrained in the simulations in a way that holds the ice crystal concentration approximately fixed, with two sets of sensitivity runs in addition to the baseline simulations utilizing different specified ice nucleus (IN) concentrations. All of the baseline and sensitivity simulations group into two distinct quasi-steady states associatedmore » with either persistent mixed-phase clouds or all-ice clouds after the first few hours of integration, implying the existence of multiple equilibria. These two states are associated with distinctly different microphysical, thermodynamic, and radiative characteristics. Most but not all of the models produce a persistent mixed-phase cloud qualitatively similar to observations using the baseline IN/crystal concentration, while small increases in the IN/crystal concentration generally lead to rapid glaciation and conversion to the all-ice state. Budget analysis indicates that larger ice deposition rates associated with increased IN/crystal concentrations have a limited direct impact on dissipation of liquid in these simulations. However, the impact of increased ice deposition is greatly enhanced by several interaction pathways that lead to an increased surface precipitation flux, weaker cloud top radiative cooling and cloud dynamics, and reduced vertical mixing, promoting rapid glaciation of the mixed-phase cloud for deposition rates in the cloud layer greater than about 1-2x10-5 g kg-1 s-1. These results indicate the critical importance of precipitation-radiative-dynamical interactions in simulating cloud phase, which have been neglected in previous fixed-dynamical parcel studies of the cloud phase parameter space. Large sensitivity to the IN/crystal concentration also suggests the need for improved understanding of ice nucleation and its parameterization in models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giangrande, Scott E.; Feng, Zhe; Jensen, Michael P.
Routine cloud, precipitation and thermodynamic observations collected by the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) and Aerial Facility (AAF) during the 2-year US Department of Energy (DOE) ARM Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign are summarized. These observations quantify the diurnal to large-scale thermodynamic regime controls on the clouds and precipitation over the undersampled, climatically important Amazon basin region. The extended ground deployment of cloud-profiling instrumentation enabled a unique look at multiple cloud regimes at high temporal and vertical resolution. This longer-term ground deployment, coupled with two short-term aircraft intensive observing periods, allowed new opportunitiesmore » to better characterize cloud and thermodynamic observational constraints as well as cloud radiative impacts for modeling efforts within typical Amazon wet and dry seasons.« less
Giangrande, Scott E.; Feng, Zhe; Jensen, Michael P.; ...
2017-12-06
Routine cloud, precipitation and thermodynamic observations collected by the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) and Aerial Facility (AAF) during the 2-year US Department of Energy (DOE) ARM Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign are summarized. These observations quantify the diurnal to large-scale thermodynamic regime controls on the clouds and precipitation over the undersampled, climatically important Amazon basin region. The extended ground deployment of cloud-profiling instrumentation enabled a unique look at multiple cloud regimes at high temporal and vertical resolution. This longer-term ground deployment, coupled with two short-term aircraft intensive observing periods, allowed new opportunitiesmore » to better characterize cloud and thermodynamic observational constraints as well as cloud radiative impacts for modeling efforts within typical Amazon wet and dry seasons.« less
Validation of Cloud Properties From Multiple Satellites Using CALIOP Data
NASA Technical Reports Server (NTRS)
Yost, Christopher R.; Minnis, Patrick; Bedka, Kristopher M.; Heck, Patrick W.; Palikonda, Rabindra; Sun-Mack, Sunny; Trepte, Qing
2016-01-01
The NASA Langley Satellite ClOud and Radiative Property retrieval System (SatCORPS) is routinely applied to multispectral imagery from several geostationary and polar-orbiting imagers to retrieve cloud properties for weather and climate applications. Validation of the retrievals with independent datasets is continuously ongoing in order to understand differences caused by calibration, spatial resolution, viewing geometry, and other factors. The CALIOP instrument provides a decade of detailed cloud observations which can be used to evaluate passive imager retrievals of cloud boundaries, thermodynamic phase, cloud optical depth, and water path on a global scale. This paper focuses on comparisons of CALIOP retrievals to retrievals from MODIS, VIIRS, AVHRR, GOES, SEVIRI, and MTSAT. CALIOP is particularly skilled at detecting weakly-scattering cirrus clouds with optical depths less than approx. 0.5. These clouds are often undetected by passive imagers and the effect this has on the property retrievals is discussed.
Description of Mixed-Phase Clouds in Weather Forecast and Climate Models
2013-09-30
energy budget and thus the melting and freezing of sea ice , both at present and into the future. RELATED PROJECTS This project is a follow-up...Arctic sea - ice in late summer, Atmos. Chem. Phys. Discuss., 13, 13191-13244, doi: 10.5194/acpd-13-13191-2013. Sotiropoulou, G., M. Tjernström, J. Sedlar...common, by far the most common cloud type over the Arctic, when thermodynamic principles suggest that ice and liquid particles cannot coexist for
Platnick, Steven; Meyer, Kerry G.; King, Michael D.; Wind, Galina; Amarasinghe, Nandana; Marchant, Benjamin; Arnold, G. Thomas; Zhang, Zhibo; Hubanks, Paul A.; Holz, Robert E.; Yang, Ping; Ridgway, William L.; Riedi, Jérôme
2018-01-01
The MODIS Level-2 cloud product (Earth Science Data Set names MOD06 and MYD06 for Terra and Aqua MODIS, respectively) provides pixel-level retrievals of cloud-top properties (day and night pressure, temperature, and height) and cloud optical properties (optical thickness, effective particle radius, and water path for both liquid water and ice cloud thermodynamic phases–daytime only). Collection 6 (C6) reprocessing of the product was completed in May 2014 and March 2015 for MODIS Aqua and Terra, respectively. Here we provide an overview of major C6 optical property algorithm changes relative to the previous Collection 5 (C5) product. Notable C6 optical and microphysical algorithm changes include: (i) new ice cloud optical property models and a more extensive cloud radiative transfer code lookup table (LUT) approach, (ii) improvement in the skill of the shortwave-derived cloud thermodynamic phase, (iii) separate cloud effective radius retrieval datasets for each spectral combination used in previous collections, (iv) separate retrievals for partly cloudy pixels and those associated with cloud edges, (v) failure metrics that provide diagnostic information for pixels having observations that fall outside the LUT solution space, and (vi) enhanced pixel-level retrieval uncertainty calculations. The C6 algorithm changes collectively can result in significant changes relative to C5, though the magnitude depends on the dataset and the pixel’s retrieval location in the cloud parameter space. Example Level-2 granule and Level-3 gridded dataset differences between the two collections are shown. While the emphasis is on the suite of cloud optical property datasets, other MODIS cloud datasets are discussed when relevant. PMID:29657349
Feng, Zhe; Hagos, Samson; Rowe, Angela K.; ...
2015-04-03
This paper investigates the mechanisms of convective cloud organization by precipitation-driven cold pools over the warm tropical Indian Ocean during the 2011 Atmospheric Radiation Measurement (ARM) Madden-Julian Oscillation (MJO) Investigation Experiment / Dynamics of the MJO (AMIE/DYNAMO) field campaign. A high-resolution regional model simulation is performed using the Weather Research and Forecasting model during the transition from suppressed to active phases of the November 2011 MJO. The simulated cold pool lifetimes, spatial extent and thermodynamic properties agree well with the radar and ship-borne observations from the field campaign. The thermodynamic and dynamic structures of the outflow boundaries of isolated andmore » intersecting cold pools in the simulation and the associated secondary cloud populations are examined. Intersecting cold pools last more than twice as long, are twice as large, 41% more intense (measured by buoyancy), and 62% deeper than isolated cold pools. Consequently, intersecting cold pools trigger 73% more convective clouds than isolated ones. This is possibly due to stronger outflows that enhance secondary updraft velocities by up to 45%. However, cold pool-triggered convective clouds grow into deep convection not because of the stronger secondary updrafts at cloud base, but rather due to closer spacing (aggregation) between clouds and larger cloud clusters that formed along the cold pool boundaries when they intersect. The close spacing of large clouds moistens the local environment and reduces entrainment drying, allowing the clouds to further develop into deep convection. Implications to the design of future convective parameterization with cold pool-modulated entrainment rates are discussed.« less
Thermodynamics and Dynamics of Bose condensation in a quasi-homogeneous gas
NASA Astrophysics Data System (ADS)
Navon, Nir; Schmidutz, Tobias; Gotlibovych, Igor; Gaunt, Alexander; Robert-de-Saint-Vincent, Martin; Smith, Robert; Hadzibabic, Zoran
2014-05-01
We present an experimental study of the thermodynamics and dynamics of Bose-Einstein condensation (BEC) in an optical-box trap. We first characterize the critical point for BEC, and observe saturation of the thermal component in a partially condensed cloud, in agreement with Einstein's textbook picture of a purely statistical phase transition. We also observed the quantum Joule-Thomson effect, namely isoenthalpic cooling of a non-interacting gas. We then investigate the dynamics of Bose condensation in the box potential following a rapid temperature quench through the phase transition, and focus on the time-evolution of the condensed fraction, the coherence length and the mean-field shift, that we probe via Bragg spectroscopy.
NASA Technical Reports Server (NTRS)
Wu, M.-L.
1985-01-01
In order to develop the remote sensing techniques to infer cloud physical parameters, a multispectral cloud radiometer (MCR) was mounted on a NASA high-altitude aircraft in conjunction with the Cooperative Convective Precipitation Experiment in 1981. The MCR has seven spectral channels, of which three are centered near windows associated with water vapor bands in the near infrared, two are centered near the oxygen A band at 0.76 microns, one is centered at the 1.14-micron water vapor band, and one is centered in the thermal infrared. The reflectance and temperature measured on May 31, 1981, are presented together with theoretical calculations. The results indicate that the MCR produces quality measurements. Therefore several cloud parameters can be derived with good accuracy. The parameters are the cloud-scaled optical thickness, cloud top pressure, volume scattering coefficient, particle thermodynamic phase, effective mean particle size, and cloud-top temperature.
Ross, David S; Thurston, George M; Lutzer, Carl V
2008-08-14
In this paper we present a method for determining the free energies of ternary mixtures from light scattering data. We use an approximation that is appropriate for liquid mixtures, which we formulate as a second-order nonlinear partial differential equation. This partial differential equation (PDE) relates the Hessian of the intensive free energy to the efficiency of light scattering in the forward direction. This basic equation applies in regions of the phase diagram in which the mixtures are thermodynamically stable. In regions in which the mixtures are unstable or metastable, the appropriate PDE is the nonlinear equation for the convex hull. We formulate this equation along with continuity conditions for the transition between the two equations at cloud point loci. We show how to discretize this problem to obtain a finite-difference approximation to it, and we present an iterative method for solving the discretized problem. We present the results of calculations that were done with a computer program that implements our method. These calculations show that our method is capable of reconstructing test free energy functions from simulated light scattering data. If the cloud point loci are known, the method also finds the tie lines and tie triangles that describe thermodynamic equilibrium between two or among three liquid phases. A robust method for solving this PDE problem, such as the one presented here, can be a basis for optical, noninvasive means of characterizing the thermodynamics of multicomponent mixtures.
The Atmospheric Infrared Sounder Version 6 Cloud Products
NASA Technical Reports Server (NTRS)
Kahn, B. H.; Irion, F. W.; Dang, V. T.; Manning, E. M.; Nasiri, S. L.; Naud, C. M.; Blaisdell, J. M.; Schreier, M. M..; Yue, Q.; Bowman, K. W.;
2014-01-01
The version 6 cloud products of the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) instrument suite are described. The cloud top temperature, pressure, and height and effective cloud fraction are now reported at the AIRS field-of-view (FOV) resolution. Significant improvements in cloud height assignment over version 5 are shown with FOV-scale comparisons to cloud vertical structure observed by the CloudSat 94 GHz radar and the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP). Cloud thermodynamic phase (ice, liquid, and unknown phase), ice cloud effective diameter D(sub e), and ice cloud optical thickness (t) are derived using an optimal estimation methodology for AIRS FOVs, and global distributions for 2007 are presented. The largest values of tau are found in the storm tracks and near convection in the tropics, while D(sub e) is largest on the equatorial side of the midlatitude storm tracks in both hemispheres, and lowest in tropical thin cirrus and the winter polar atmosphere. Over the Maritime Continent the diurnal variability of tau is significantly larger than for the total cloud fraction, ice cloud frequency, and D(sub e), and is anchored to the island archipelago morphology. Important differences are described between northern and southern hemispheric midlatitude cyclones using storm center composites. The infrared-based cloud retrievals of AIRS provide unique, decadal-scale and global observations of clouds over portions of the diurnal and annual cycles, and capture variability within the mesoscale and synoptic scales at all latitudes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giangrande, Scott E.; Feng, Zhe; Jensen, Michael P.
Routine cloud, precipitation and thermodynamic observations collected by the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) and Aerial Facility (AAF) during the 2-year US Department of Energy (DOE) ARM Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign are summarized. These observations quantify the diurnal to large-scale thermodynamic regime controls on the clouds and precipitation over the undersampled, climatically important Amazon basin region. The extended ground deployment of cloud-profiling instrumentation enabled a unique look at multiple cloud regimes at high temporal and vertical resolution. This longer-term ground deployment, coupled with two short-term aircraft intensive observing periods, allowed new opportunitiesmore » to better characterize cloud and thermodynamic observational constraints as well as cloud radiative impacts for modeling efforts within typical Amazon wet and dry seasons.« less
NASA Astrophysics Data System (ADS)
Jensen, M. P.; Miller, M. A.; Wang, J.
2017-12-01
The first Intensive Observation Period of the DOE Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) took place from 21 June through 20 July 2017 involving the deployment of the ARM Gulfstream-159 (G-1) aircraft with a suite of in situ cloud and aerosol instrumentation in the vicinity of the ARM Climate Research Facility Eastern North Atlantic (ENA) site on Graciosa Island, Azores. Here we present preliminary analysis of the thermodynamic characteristics of the marine boundary layer and the variability of cloud properties for a mixed cloud field including both stratiform cloud layers and deeper cumulus elements. Analysis combines in situ atmospheric state observations from the G-1 with radiosonde profiles and surface meteorology from the ENA site in order to characterize the thermodynamic structure of the marine boundary layer including the coupling state and stability. Cloud/drizzle droplet size distributions measured in situ are combined with remote sensing observations from a scanning cloud radar, and vertically pointing cloud radar and lidar provide quantification of the macrophysical and microphysical properties of the mixed cloud field.
Global Multispectral Cloud Retrievals from MODIS
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Ackerman, Steven A.; Menzel, W. Paul; Riedi, Jerome C.; Baum, Bryan A.
2003-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18,1999 and Aqua spacecraft on May 4,2002. It achieved its final orbit and began Earth observations on February 24, 2000 for Terra and June 24, 2002 for Aqua. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate change studies, climate modeling, numerical weather prediction, as well as fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. We will describe the various cloud properties being analyzed on a global basis from both Terra and Aqua, and will show characteristics of cloud optical and microphysical properties as a function of latitude for land and ocean separately, and contrast the statistical properties of similar cloud types in various parts of the world.
Stable Low Cloud Phase II: Nocturnal Event Study
NASA Technical Reports Server (NTRS)
Bauman, William H., III; Barrett, Joe, III
2007-01-01
This report describes the work done by the Applied Meteorology Unit (AMU) in developing a database of nights that experienced rapid (< 90 minutes) low cloud formation in a stable atmosphere, resulting in ceilings at the Shuttle Landing Facility (TTS) that violated Space Shuttle Flight Rules (FR). This work is the second phase of a similar AMU task that examined the same phenomena during the day. In the first phase of this work, the meteorological conditions favoring the rapid formation of low ceilings include the presence of any inversion below 8000 ft, high relative humidity (RH) beneath the inversion and a clockwise turning of the winds from the surface to the middle troposphere (-15000 ft). The AMU compared and contrasted the atmospheric and thermodynamic conditions between nights with rapid low ceiling formation and nights with low ceilings resulting from other mechanisms. The AMU found that there was little to discern between the rapidly-forming ceiling nights and other low ceiling nights at TTS. When a rapid development occurred, the average RH below the inversions was 87% while non-events had an average RH of 79%. One key parameter appeared to be the vertical wind profile in the Cape Canaveral, FL radiosonde (XMR) sounding. Eighty-three percent of the rapid development events had veering winds with height from the surface to the middle troposphere (-15,000 ft) while 61% of the non-events had veering winds with height. Veering winds indicate a warm-advection regime, which supports large-scale rising motion and ultimately cloud formation in a moist environment. However, only six of the nights (out of 86 events examined) with low cloud ceilings had an occurrence of rapidly developing ceilings. Since only 7% rapid development events were observed in this dataset, it is likely that rapid low cloud development is not a common occurrence during the night, or at least not as common as during the day. In the AMU work on the daytime rapid low cloud development (Case and Wheeler 2005), nearly 30% of the low cloud ceiling cases investigated were identified as rapidly developing events. Forecasters at the Space Meteorology Group (SMG) issue 30 to 90 minute forecasts for low cloud ceilings at TTS to support Space Shuttle landings. Mission verification statistics have shown ceilings to be the number one forecast challenge. More specifically, forecasters at SMG are concerned with any rapidly developing clouds/ceilings below 8000 R in a stable, capped thermodynamic environment. Therefore, the AMU was tasked to examine archived events of rapid stable cloud formation resulting in ceilings below 8000 ft, and document the atmospheric regimes favoring this type of cloud development. The AMU examined the cool season months of November to March during the years of 1994-2005 for nights that had low-level inversions and rapid, stable low cloud formation that resulted in ceilings violating the Space Shuttle FR. The AMU wrote and modified existing code to identify inversions from the evening and morning XMR radiosonde during the cool season and output pertinent sounding information. They parsed all days with cloud ceilings below 8000 ft at TTS, forming a database of possible rapidly-developing low ceiling events. Nights with precipitation or noticeable fog burn-off situations were excluded from the database. Only the nighttime hours were examined for possible ceiling development events since the daytime events were examined in the first phase of this work. The report presents one sample case of rapidly-developing low cloud ceilings. The case depicts the representative meteorological and thermodynamic characteristics of such events. The case also illustrates how quickly the cloud decks can develop, sometimes forming in 30 minutes or less. The report also summarizes the composite meteorological conditions for 6 event nights with rapid low cloud ceiling formation and 80 non-events nights consisting of advection or widespread low cloud ceilings. The teorological conditions were quite similar for both the event and non-event nights, since both types of nights experienced low cloud ceilings. Both types of nights had a relatively moist environment beneath an inversion based below 8000 ft.
The global impact of mineral dust on cloud droplet number concentration
NASA Astrophysics Data System (ADS)
Karydis, V.; Tsimpidi, A.; Bacer, S.; Pozzer, A.; Nenes, A.; Lelieveld, J.
2016-12-01
This study assesses the importance of mineral dust for cloud droplet formation by taking into account i) the adsorption of water on the surface of insoluble dust particles, ii) the coating of soluble material on the surface of mineral particles which augments their cloud condensation nuclei activity, and iii) the effect of dust on the inorganic aerosol concentrations through thermodynamic interactions with mineral cations. Simulations are carried out with the EMAC chemistry climate model that calculates the global atmospheric aerosol composition using the ISORROPIA-II thermodynamic equilibrium model and considers the gas phase interactions with K+-Ca2+-Mg2+-NH4+-Na+-SO42-NO3-Cl-H2O particle components. Emissions of the inert mineral dust and the reactive dust aerosol components are calculated online by taking into account the soil particle size distribution and chemical composition of different deserts worldwide (Karydis et al., 2016). We have implemented the "unified dust activation parameterization" (Kumar et al., 2011; Karydis et al., 2011) to calculate the droplet number concentration by taking into account the inherent hydrophilicity from adsorption and the acquired hygroscopicity from soluble salts by dust particles. Our simulations suggest that mineral dust significantly increases the cloud droplet number concentration (CDNC) over the main deserts and the adjacent oceans. However, over polluted areas the CDNC decreases significantly in the presence of dust. Furthermore, we investigate the role of adsorption activation of insoluble aerosols and the mineral dust thermodynamic interactions with inorganic anions on the cloud droplet formation. The CDNC sensitivity to the emission load, chemical composition, and inherent hydrophilicity of mineral dust is also tested. ReferencesKarydis, et al. (2011). "On the effect of dust particles on global cloud condensation nuclei and cloud droplet number." J. Geophys. Res. Atmos. 116. Karydis, et al. (2016). "Effects of mineral dust on global atmospheric nitrate concentrations." Atmos. Chem. Phys. 16(3): 1491-1509. Kumar, et al. (2011). "Measurements of cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals." Atmos. Chem. Phys. Discuss. 11(4): 12561-12605.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Kuan-Man; Cheng, Anning
As revealed from studies using conventional general circulation models (GCMs), the thermodynamic contribution to the tropical cloud feedback dominates the dynamic contribution, but these models have difficulty in simulating the subsidence regimes in the tropics. In this study, we analyze the tropical cloud feedback from a 2 K sea surface temperature (SST) perturbation experiment performed with a multiscale modeling framework (MMF). The MMF explicitly represents cloud processes using 2-D cloud-resolving models with an advanced higher-order turbulence closure in each atmospheric column of the host GCM. We sort the monthly mean cloud properties and cloud radiative effects according to circulation andmore » stability regimes. Here, we find that the regime-sorted dynamic changes dominate the thermodynamic changes in terms of the absolute magnitude. The dynamic changes in the weak subsidence regimes exhibit strong negative cloud feedback due to increases in shallow cumulus and deep clouds while those in strongly convective and moderate-to-strong subsidence regimes have opposite signs, resulting in a small contribution to cloud feedback. On the other hand, the thermodynamic changes are large due to decreases in stratocumulus clouds in the moderate-to-strong subsidence regimes with small opposite changes in the weak subsidence and strongly convective regimes, resulting in a relatively large contribution to positive cloud feedback. The dynamic and thermodynamic changes contribute equally to positive cloud feedback and are relatively insensitive to stability in the moderate-to-strong subsidence regimes. But they are sensitive to stability changes from the SST increase in convective and weak subsidence regimes. Lastly, these results have implications for interpreting cloud feedback mechanisms.« less
Xu, Kuan-Man; Cheng, Anning
2016-11-15
As revealed from studies using conventional general circulation models (GCMs), the thermodynamic contribution to the tropical cloud feedback dominates the dynamic contribution, but these models have difficulty in simulating the subsidence regimes in the tropics. In this study, we analyze the tropical cloud feedback from a 2 K sea surface temperature (SST) perturbation experiment performed with a multiscale modeling framework (MMF). The MMF explicitly represents cloud processes using 2-D cloud-resolving models with an advanced higher-order turbulence closure in each atmospheric column of the host GCM. We sort the monthly mean cloud properties and cloud radiative effects according to circulation andmore » stability regimes. Here, we find that the regime-sorted dynamic changes dominate the thermodynamic changes in terms of the absolute magnitude. The dynamic changes in the weak subsidence regimes exhibit strong negative cloud feedback due to increases in shallow cumulus and deep clouds while those in strongly convective and moderate-to-strong subsidence regimes have opposite signs, resulting in a small contribution to cloud feedback. On the other hand, the thermodynamic changes are large due to decreases in stratocumulus clouds in the moderate-to-strong subsidence regimes with small opposite changes in the weak subsidence and strongly convective regimes, resulting in a relatively large contribution to positive cloud feedback. The dynamic and thermodynamic changes contribute equally to positive cloud feedback and are relatively insensitive to stability in the moderate-to-strong subsidence regimes. But they are sensitive to stability changes from the SST increase in convective and weak subsidence regimes. Lastly, these results have implications for interpreting cloud feedback mechanisms.« less
Phase equilibria of H2SO4, HNO3, and HCl hydrates and the composition of polar stratospheric clouds
NASA Technical Reports Server (NTRS)
Wooldridge, Paul J.; Zhang, Renyi; Molina, Mario J.
1995-01-01
Thermodynamic properties and phase equilibria behavior for the hydrates and coexisting pairs of hydrates of common acids which exist in the stratosphere are assembled from new laboratory measurements and standard literature data. The analysis focuses upon solid-vapor and solid-solid-vapor equilibria at temperatures around 200 K and includes new calorimetric and vapor pressure data. Calculated partial pressures versus 1/T slopes for the hydrates and coexisting hydrates agree well with experimental data where available.
Phase Equilibria of H2SO4, HNO3, and HCl Hydrates and the Composition of Polar Stratospheric Clouds
NASA Technical Reports Server (NTRS)
Wooldridge, Paul J.; Zhang, Renyi; Molina, Mario J.
1995-01-01
Thermodynamic properties and phase equilibria behavior for the hydrates and coexisting pairs of hydrates of common acids which exist in the stratosphere are assembled from new laboratory measurements and standard literature data. The analysis focuses upon solid-vapor and solid-solid-vapor equilibria at temperatures around 200 K and includes new calorimetric and vapor pressure data. Calculated partial pressures versus 1/T slopes for the hydrates and coexisting hydrates agree well with experimental data where available.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Yang, Ping; Arnold, G. Thomas; Gray, Mark A.; Riedi, Jerome C.; Ackerman, Steven A.; Liou, Kuo-Nan
2003-01-01
A multispectral scanning spectrometer was used to obtain measurements of the reflection function and brightness temperature of clouds, sea ice, snow, and tundra surfaces at 50 discrete wavelengths between 0.47 and 14.0 microns. These observations were obtained from the NASA ER-2 aircraft as part of the FIRE Arctic Clouds Experiment, conducted over a 1600 x 500 km region of the north slope of Alaska and surrounding Beaufort and Chukchi Seas between 18 May and 6 June 1998. Multispectral images of the reflection function and brightness temperature in 11 distinct bands of the MODIS Airborne Simulator (MAS) were used to derive a confidence in clear sky (or alternatively the probability of cloud), shadow, and heavy aerosol over five different ecosystems. Based on the results of individual tests run as part of the cloud mask, an algorithm was developed to estimate the phase of the clouds (water, ice, or undetermined phase). Finally, the cloud optical thickness and effective radius were derived for both water and ice clouds that were detected during one flight line on 4 June. This analysis shows that the cloud mask developed for operational use on MODIS, and tested using MAS data in Alaska, is quite capable of distinguishing clouds from bright sea ice surfaces during daytime conditions in the high Arctic. Results of individual tests, however, make it difficult to distinguish ice clouds over snow and sea ice surfaces, so additional tests were added to enhance the confidence in the thermodynamic phase of clouds over the Beaufort Sea. The cloud optical thickness and effective radius retrievals used 3 distinct bands of the MAS, with the newly developed 1.62 and 2.13 micron bands being used quite successfully over snow and sea ice surfaces. These results are contrasted with a MODIS-based algorithm that relies on spectral reflectance at 0.87 and 2.13 micron.
NASA Technical Reports Server (NTRS)
King, Michael D.
2005-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18, 1999 and Aqua spacecraft on May 4, 2002. It achieved its final orbit and began Earth observations on February 24, 2000 for Terra and June 24, 2002 for Aqua. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate change studies, climate modeling, numerical weather prediction, as well as fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. We will describe the various cloud properties being analyzed on a global basis from both Terra and Aqua. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the world.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven
2005-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18,1999 and Aqua spacecraft on May 4, 2002. It achieved its final orbit and began Earth observations on February 24, 2000 for Terra and June 24, 2002 for Aqua. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate change studies, climate modeling, numerical weather prediction, as well as fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. We will describe the various cloud properties being analyzed on a global basis from both Terra and Aqua. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the world.
Solubility of gas in confined systems. Nonextensive thermodynamics approach.
Letellier, Pierre; Turmine, Mireille
2013-02-15
The use of the concepts of the nonextensive thermodynamics allows reconsidering the equilibrium of bubble solubilization and more commonly of gaseous aggregates in supersaturated solutions of gas. The introduced relations are general and include as particular cases the equations usually used to describe these phenomena. These equations are discussed. Especially, we specified the domain of application of Kelvin's relation which was illustrated by the solubility of gases in fogs and clouds. Various possibilities of thoughts on the behavior of the gaseous aggregates and nano-systems are proposed. Thus, the introduced relations permit to consider the presence of gaseous aggregates in equilibrium with the solution even for under-saturated solution. Nonextensive thermodynamics admits the notion of negative pressure at the inner of confined phases (solid or liquid). Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Shea, Y.; Wielicki, B. A.; Sun-Mack, S.; Minnis, P.; Zelinka, M. D.
2016-12-01
Detecting trends in climate variables on global, decadal scales requires highly accurate, stable measurements and retrieval algorithms. Trend uncertainty depends on its magnitude, natural variability, and instrument and retrieval algorithm accuracy and stability. We applied a climate accuracy framework to quantify the impact of absolute calibration on cloud property trend uncertainty. The cloud properties studied were cloud fraction, effective temperature, optical thickness, and effective radius retrieved using the Clouds and the Earth's Radiant Energy System (CERES) Cloud Property Retrieval System, which uses Moderate-resolution Imaging Spectroradiometer measurements (MODIS). Modeling experiments from the fifth phase of the Climate Model Intercomparison Project (CMIP5) agree that net cloud feedback is likely positive but disagree regarding its magnitude, mainly due to uncertainty in shortwave cloud feedback. With the climate accuracy framework we determined the time to detect trends for instruments with various calibration accuracies. We estimated a relationship between cloud property trend uncertainty, cloud feedback, and Equilibrium Climate Sensitivity and also between effective radius trend uncertainty and aerosol indirect effect trends. The direct relationship between instrument accuracy requirements and climate model output provides the level of instrument absolute accuracy needed to reduce climate model projection uncertainty. Different cloud types have varied radiative impacts on the climate system depending on several attributes, such as their thermodynamic phase, altitude, and optical thickness. Therefore, we also conducted these studies by cloud types for a clearer understanding of instrument accuracy requirements needed to detect changes in their cloud properties. Combining this information with the radiative impact of different cloud types helps to prioritize among requirements for future satellite sensors and understanding the climate detection capabilities of existing sensors.
Extending MODIS Cloud Top and Infrared Phase Climate Records with VIIRS and CrIS
NASA Astrophysics Data System (ADS)
Heidinger, A. K.; Platnick, S. E.; Ackerman, S. A.; Holz, R.; Meyer, K.; Frey, R.; Wind, G.; Li, Y.; Botambekov, D.
2015-12-01
The MODIS imagers on the NASA EOS Terra and Aqua satellites have generated accurate and well-used cloud climate data records for 15 years. Both missions are expected to continue until the end of this decade and perhaps beyond. The Visible and Infrared Imaging Radiometer Suite (VIIRS) imagers on the Suomi-NPP (SNPP) mission (launched in October 2011) and future NOAA Joint Polar Satellite System (JPSS) platforms are the successors for imager-based cloud climate records from polar orbiting satellites after MODIS. To ensure product continuity across a broad suite of EOS products, NASA has funded a SNPP science team to develop EOS-like algorithms that can be use with SNPP and JPSS observations, including two teams to work on cloud products. Cloud data record continuity between MODIS and VIIRS is particularly challenging due to the lack of VIIRS CO2-slicing channels, which reduces information content for cloud detection and cloud-top property products, as well as down-stream cloud optical products that rely on both. Here we report on our approach to providing continuity specifically for the MODIS/VIIRS cloud-top and infrared-derived thermodynamic phase products by combining elements of the NASA MODIS science team (MOD) and the NOAA Algorithm Working Group (AWG) algorithms. The combined approach is referred to as the MODAWG processing package. In collaboration with the NASA Atmospheric SIPS located at the University of Wisconsin Space Science and Engineering Center, the MODAWG code has been exercised on one year of SNPP VIIRS data. In addition to cloud-top and phase, MODAWG provides a full suite of cloud products that are physically consistent with MODIS and have a similar data format. Further, the SIPS has developed tools to allow use of Cross-track Infrared Sounder (CrIS) observations in the MODAWG processing that can ameliorate the loss of the CO2 absorption channels on VIIRS. Examples will be given that demonstrate the positive impact that the CrIS data can provide when combined with VIIRS for cloud height and IR-phase retrievals.
A Web-Based Validation Tool for GEWEX
NASA Astrophysics Data System (ADS)
Smith, R. A.; Gibson, S.; Heckert, E.; Minnis, P.; Sun-Mack, S.; Chen, Y.; Stubenrauch, C.; Kinne, S. A.; Ackerman, S. A.; Baum, B. A.; Chepfer, H.; Di Girolamo, L.; Heidinger, A. K.; Getzewich, B. J.; Guignard, A.; Maddux, B. C.; Menzel, W. P.; Platnick, S. E.; Poulsen, C.; Raschke, E. A.; Riedi, J.; Rossow, W. B.; Sayer, A. M.; Walther, A.; Winker, D. M.
2011-12-01
The Global Energy and Water Cycle Experiment (GEWEX) Cloud assessment was initiated by the GEWEX Radiation Panel (GRP) in 2005 to evaluate the variability of available, global, long-term cloud data products. Since then, eleven cloud data records have been established from various instruments, mostly onboard polar orbiting satellites. Cloud properties under study include cloud amount, cloud pressure, cloud temperature, cloud infrared (IR) emissivity and visible (VIS) optical thickness, cloud thermodynamic phase, as well as bulk microphysical properties. The volume of data and variations in parameters, spatial, and temporal resolution for the different datasets constitute a significant challenge for understanding the differences and the value of having more than one dataset. To address this issue, this paper presents a NASA Langley web-based tool to facilitate comparisons among the different cloud data sets. With this tool, the operator can choose to view numeric or graphic presentations to allow comparison between products. Multiple records are displayed in time series graphs, global maps, or zonal plots. The tool has been made flexible so that additional teams can easily add their data sets to the record selection list for use in their own analyses. This tool has possible applications to other climate and weather datasets.
Haloing in bimodal magnetic colloids: The role of field-induced phase separation
NASA Astrophysics Data System (ADS)
Magnet, C.; Kuzhir, P.; Bossis, G.; Meunier, A.; Suloeva, L.; Zubarev, A.
2012-07-01
If a suspension of magnetic micrometer-sized and nanosized particles is subjected to a homogeneous magnetic field, the nanoparticles are attracted to the microparticles and form thick anisotropic halos (clouds) around them. Such clouds can hinder the approach of microparticles and result in effective repulsion between them [M. T. López-López, A. Yu. Zubarev, and G. Bossis, Soft Matter10.1039/c0sm00261e 6, 4346 (2010)]. In this paper, we present detailed experimental and theoretical studies of nanoparticle concentration profiles and of the equilibrium shapes of nanoparticle clouds around a single magnetized microsphere, taking into account interactions between nanoparticles. We show that at a strong enough magnetic field, the ensemble of nanoparticles experiences a gas-liquid phase transition such that a dense liquid phase is condensed around the magnetic poles of a microsphere while a dilute gas phase occupies the rest of the suspension volume. Nanoparticle accumulation around a microsphere is governed by two dimensionless parameters—the initial nanoparticle concentration (φ0) and the magnetic-to-thermal energy ratio (α)—and the three accumulation regimes are mapped onto a α-φ0 phase diagram. Our local thermodynamic equilibrium approach gives a semiquantitative agreement with the experiments on the equilibrium shapes of nanoparticle clouds. The results of this work could be useful for the development of the bimodal magnetorheological fluids and of the magnetic separation technologies used in bioanalysis and water purification systems.
Surface tension prevails over solute effect in organic-influenced cloud droplet activation.
Ovadnevaite, Jurgita; Zuend, Andreas; Laaksonen, Ari; Sanchez, Kevin J; Roberts, Greg; Ceburnis, Darius; Decesari, Stefano; Rinaldi, Matteo; Hodas, Natasha; Facchini, Maria Cristina; Seinfeld, John H; O' Dowd, Colin
2017-06-29
The spontaneous growth of cloud condensation nuclei (CCN) into cloud droplets under supersaturated water vapour conditions is described by classic Köhler theory. This spontaneous activation of CCN depends on the interplay between the Raoult effect, whereby activation potential increases with decreasing water activity or increasing solute concentration, and the Kelvin effect, whereby activation potential decreases with decreasing droplet size or increases with decreasing surface tension, which is sensitive to surfactants. Surface tension lowering caused by organic surfactants, which diminishes the Kelvin effect, is expected to be negated by a concomitant reduction in the Raoult effect, driven by the displacement of surfactant molecules from the droplet bulk to the droplet-vapour interface. Here we present observational and theoretical evidence illustrating that, in ambient air, surface tension lowering can prevail over the reduction in the Raoult effect, leading to substantial increases in cloud droplet concentrations. We suggest that consideration of liquid-liquid phase separation, leading to complete or partial engulfing of a hygroscopic particle core by a hydrophobic organic-rich phase, can explain the lack of concomitant reduction of the Raoult effect, while maintaining substantial lowering of surface tension, even for partial surface coverage. Apart from the importance of particle size and composition in droplet activation, we show by observation and modelling that incorporation of phase-separation effects into activation thermodynamics can lead to a CCN number concentration that is up to ten times what is predicted by climate models, changing the properties of clouds. An adequate representation of the CCN activation process is essential to the prediction of clouds in climate models, and given the effect of clouds on the Earth's energy balance, improved prediction of aerosol-cloud-climate interactions is likely to result in improved assessments of future climate change.
Influence of long-range anthropogenic transport on arctic cloud phase transition
NASA Astrophysics Data System (ADS)
Riedi, J.; Coopman, Q.; Garrett, T. J.; Finch, D.
2016-12-01
A decrease in precipitation during winter allows polluted air parcels from mid-latitudes to reach the Arctic. Low vertical mixing in the region concentrates aerosols and decreases scavenging. Aerosol impacts on cloud microphysical parameters remain poorly understood. However, cloud properties and pollution concentrations also vary with meteorological state, which poses the challenge of how to disentangle the impact of aerosols on clouds from that of natural thermodynamic variability. In this study we combine measurements from satellite instruments POLDER-3 and MODIS to temporally and spatially co-locate cloud properties over 65º in latitude with carbon monoxide concentrations, passive tracer of aerosol content, from GEOS-Chem between 2005 and 2010. We also add ERA-I reanalysis of meteorological parameters to stratify meteorological parameters, such as specific humidity and lower tropospheric stability. The goal is to determine the extent to which differences in cloud phase can be attributed to differences in aerosol content and not in meteorological parameters.We evaluated the amount of supercooling ΔT50 that is required for 50% of a chosen ensemble of low-level clouds to be in the ice phase. Consistent with Rangno & Hobbs (2001), our results suggest that small droplet effective radii are related to high values of ΔT50. Also, anthropogenic pollution plumes lower the degree of supercooling by approximately 5°C, independent of the decrease in effective radius and change of meteorological regime. This effect of anthropogenic aerosol on the transition temperature to freezing has not been reported before to our knowledge and lacks clear explanation. Rangno, A. L., & Hobbs, P. V. (2001). Ice particles in stratiform clouds in the Arctic and possible mechanisms for the production of high ice concentrations. Journal of geophysical research, 106, 15.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghate, Virendra P.; Miller, Mark
The overall goal of this project was to improve the understanding of marine boundary clouds by using data collected at the Atmospheric Radiation Measurement (ARM) sites, so that they can be better represented in global climate models (GCMs). Marine boundary clouds are observed regularly over the tropical and subtropical oceans. They are an important element of the Earth’s climate system because they have substantial impact on the radiation budget together with the boundary layer moisture, and energy transports. These clouds also have an impact on large-scale precipitation features like the Inter Tropical Convergence Zone (ITCZ). Because these clouds occur atmore » temporal and spatial scales much smaller than those relevant to GCMs, their effects and the associated processes need to be parameterized in GCM simulations aimed at predicting future climate and energy needs. Specifically, this project’s objectives were to (1) characterize the surface turbulent fluxes, boundary layer thermodynamics, radiation field, and cloudiness associated with cumulus-topped marine boundary layers; (2) explore the similarities and differences in cloudiness and boundary layer conditions observed in the tropical and trade-wind regions; and (3) understand similarities and differences by using a simple bulk boundary layer model. In addition to working toward achieving the project’s three objectives, we also worked on understanding the role played by different forcing mechanisms in maintaining turbulence within cloud-topped boundary layers We focused our research on stratocumulus clouds during the first phase of the project, and cumulus clouds during the rest of the project. Below is a brief description of manuscripts published in peer-reviewed journals that describe results from our analyses.« less
Statistical thermodynamics and the size distributions of tropical convective clouds.
NASA Astrophysics Data System (ADS)
Garrett, T. J.; Glenn, I. B.; Krueger, S. K.; Ferlay, N.
2017-12-01
Parameterizations for sub-grid cloud dynamics are commonly developed by using fine scale modeling or measurements to explicitly resolve the mechanistic details of clouds to the best extent possible, and then to formulating these behaviors cloud state for use within a coarser grid. A second is to invoke physical intuition and some very general theoretical principles from equilibrium statistical thermodynamics. This second approach is quite widely used elsewhere in the atmospheric sciences: for example to explain the heat capacity of air, blackbody radiation, or even the density profile or air in the atmosphere. Here we describe how entrainment and detrainment across cloud perimeters is limited by the amount of available air and the range of moist static energy in the atmosphere, and that constrains cloud perimeter distributions to a power law with a -1 exponent along isentropes and to a Boltzmann distribution across isentropes. Further, the total cloud perimeter density in a cloud field is directly tied to the buoyancy frequency of the column. These simple results are shown to be reproduced within a complex dynamic simulation of a tropical convective cloud field and in passive satellite observations of cloud 3D structures. The implication is that equilibrium tropical cloud structures can be inferred from the bulk thermodynamic structure of the atmosphere without having to analyze computationally expensive dynamic simulations.
A 3D Microphysical Model of Titan's Methane Cloud
NASA Astrophysics Data System (ADS)
Xiao, J.; Newman, C.; Inada, A.; Richardson, M.
2006-12-01
A time-dependent idealized 3D microphysical model for Titan's methane cloud is described. This new high resolution microphysical model nests in a Titan WRF GCM model. It assumes the vapor-liquid equilibria of methane-nitrogen mixtures which are based on the recent chemical experiments and thermodynamics models. In particular, the methane is condensed at a given temperature and pressure. Meanwhile nitrogen is dissolved in the methane liquid. The new model first uses the data from the thermodynamic model (Kouvaris et al. 1991), which involves saturation criteria, composition of condensate, and latent heat for a given pressure-temperature profile. For altitudes lower than 14 km, methane is saturated and condensed into liquid phase. However for altitudes from 14 km above to tropopause, methane is changed into supercooled liquid state. Then, we do some testing experiments with 1D model by varying the initial methane vapor mass mixing ratio profile and the initial mole fraction of methane in liquid phase. Based on the steady state results from 1D model, an idealized 3D microphysics model is developed to investigate the convection cloud in Titan's troposphere. Due to lower relative humidity at titan's surface (Samuelson et al. 1997) and the current estimated moist adiabatic lapse rate, convection is hardly to happen without lifting. For this reason, we apply a symmetry cosine ridge in a 100*100 grids box to force the air flow lifted at certain levels, which in turn drives the condensation of methane vapor. In addition to the abundance of methane clouds and its duration provided by the 3D model, our study demonstrates that vertical motion might be likely the major cause of convection clouds in Titan's troposphere. As the future work, we will further investigate size-resolved microphysical scheme to insight into the nature of methane cycle in Titan's atmosphere.
NASA Technical Reports Server (NTRS)
Platnick, Steven; King, Michael D.; Wind, Galina; Amarasinghe, Nandana; Marchant, Benjamin; Arnold, G. Thomas
2012-01-01
Operational Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals of cloud optical and microphysical properties (part of the archived products MOD06 and MYD06, for MODIS Terra and Aqua, respectively) are currently being reprocessed along with other MODIS Atmosphere Team products. The latest "Collection 6" processing stream, which is expected to begin production by summer 2012, includes updates to the previous cloud retrieval algorithm along with new capabilities. The 1 km retrievals, based on well-known solar reflectance techniques, include cloud optical thickness, effective particle radius, and water path, as well as thermodynamic phase derived from a combination of solar and infrared tests. Being both global and of high spatial resolution requires an algorithm that is computationally efficient and can perform over all surface types. Collection 6 additions and enhancements include: (i) absolute effective particle radius retrievals derived separately from the 1.6 and 3.7 !-lm bands (instead of differences relative to the standard 2.1 !-lm retrieval), (ii) comprehensive look-up tables for cloud reflectance and emissivity (no asymptotic theory) with a wind-speed interpolated Cox-Munk BRDF for ocean surfaces, (iii) retrievals for both liquid water and ice phases for each pixel, and a subsequent determination of the phase based, in part, on effective radius retrieval outcomes for the two phases, (iv) new ice cloud radiative models using roughened particles with a specified habit, (v) updated spatially-complete global spectral surface albedo maps derived from MODIS Collection 5, (vi) enhanced pixel-level uncertainty calculations incorporating additional radiative error sources including the MODIS L1 B uncertainty index for assessing band and scene-dependent radiometric uncertainties, (v) and use of a new 1 km cloud top pressure/temperature algorithm (also part of MOD06) for atmospheric corrections and low cloud non-unity emissivity temperature adjustments.
Initiation of secondary ice production in clouds
NASA Astrophysics Data System (ADS)
Sullivan, Sylvia C.; Hoose, Corinna; Kiselev, Alexei; Leisner, Thomas; Nenes, Athanasios
2018-02-01
Disparities between the measured concentrations of ice-nucleating particles (INPs) and in-cloud ice crystal number concentrations (ICNCs) have led to the hypothesis that mechanisms other than primary nucleation form ice in the atmosphere. Here, we model three of these secondary production mechanisms - rime splintering, frozen droplet shattering, and ice-ice collisional breakup - with a six-hydrometeor-class parcel model. We perform three sets of simulations to understand temporal evolution of ice hydrometeor number (Nice), thermodynamic limitations, and the impact of parametric uncertainty when secondary production is active. Output is assessed in terms of the number of primarily nucleated ice crystals that must exist before secondary production initiates (NINP(lim)) as well as the ICNC enhancement from secondary production and the timing of a 100-fold enhancement. Nice evolution can be understood in terms of collision-based nonlinearity and the phasedness
of the process, i.e., whether it involves ice hydrometeors, liquid ones, or both. Ice-ice collisional breakup is the only process for which a meaningful NINP(lim) exists (0.002 up to 0.15 L-1). For droplet shattering and rime splintering, a warm enough cloud base temperature and modest updraft are the more important criteria for initiation. The low values of NINP(lim) here suggest that, under appropriate thermodynamic conditions for secondary ice production, perturbations in cloud concentration nuclei concentrations are more influential in mixed-phase partitioning than those in INP concentrations.
Some physical and thermodynamic properties of rocket exhaust clouds measured with infrared scanners
NASA Technical Reports Server (NTRS)
Gomberg, R. I.; Kantsios, A. G.; Rosensteel, F. J.
1977-01-01
Measurements using infrared scanners were made of the radiation from exhaust clouds from liquid- and solid-propellant rocket boosters. Field measurements from four launches were discussed. These measurements were intended to explore the physical and thermodynamic properties of these exhaust clouds during their formation and subsequent dispersion. Information was obtained concerning the initial cloud's buoyancy, the stabilized cloud's shape and trajectory, the cloud volume as a function of time, and it's initial and stabilized temperatures. Differences in radiation intensities at various wavelengths from ambient and stabilized exhaust clouds were investigated as a method of distinguishing between the two types of clouds. The infrared remote sensing method used can be used at night when visible range cameras are inadequate. Infrared scanning techniques developed in this project can be applied directly to natural clouds, clouds containing certain radionuclides, or clouds of industrial pollution.
NASA Astrophysics Data System (ADS)
Muhlbauer, A.; Hashino, T.; Xue, L.; Teller, A.; Lohmann, U.; Rasmussen, R. M.; Geresdi, I.; Pan, Z.
2010-04-01
Anthropogenic aerosols serve as a source of both cloud condensation nuclei (CCN) and ice nuclei (IN) and affect microphysical properties of clouds. Increasing aerosol number concentrations is hypothesized to retard the cloud droplet collision/coalescence and the riming in mixed-phase clouds, thereby decreasing orographic precipitation. This study presents results from a model intercomparison of 2-D simulations of aerosol-cloud-precipitation interactions in stratiform orographic mixed-phase clouds. The sensitivity of orographic precipitation to changes in the aerosol number concentrations is analyzed and compared for various dynamical and thermodynamical situations. Furthermore, the sensitivities of microphysical processes such as collision/coalescence, aggregation and riming to changes in the aerosol number concentrations are evaluated and compared. The participating models are the Consortium for Small-Scale Modeling's (COSMO) model with bulk-microphysics, the Weather Research and Forecasting (WRF) model with bin-microphysics and the University of Wisconsin modeling system (UWNMS) with a spectral ice-habit prediction microphysics scheme. All models are operated on a cloud-resolving scale with 2 km horizontal grid spacing. The results of the model intercomparison suggest that the sensitivity of orographic precipitation to aerosol modifications varies greatly from case to case and from model to model. Neither a precipitation decrease nor a precipitation increase is found robustly in all simulations. Qualitative robust results can only be found for a subset of the simulations but even then quantitative agreement is scarce. Estimates of the second indirect aerosol effect on orographic precipitation are found to range from -19% to 0% depending on the simulated case and the model. Similarly, riming is shown to decrease in some cases and models whereas it increases in others which implies that a decrease in riming with increasing aerosol load is not a robust result. Furthermore, it is found that neither a decrease in cloud droplet coalescence nor a decrease in riming necessarily implies a decrease in precipitation due to compensation effects by other microphysical pathways. The simulations suggest that mixed-phase conditions play an important role in reducing the overall susceptibility of clouds and precipitation with respect to changes in the aerosols number concentrations. As a consequence the indirect aerosol effect on precipitation is suggested to be less pronounced or even inverted in regions with high terrain (e.g., the Alps or Rocky Mountains) or in regions where mixed-phase microphysics climatologically plays an important role for orographic precipitation.
NASA Astrophysics Data System (ADS)
Bateman, M.; Mach, D.; Lewis, S.; Dye, J.; Defer, E.; Grainger, C.; Willis, P.; Christian, H.; Merceret, F.
2003-12-01
Airborne measurements of electric fields and particle microphysics were made during a field program at NASA's Kennedy Space Center. The aircraft, a Cessna Citation II jet operated by the University of North Dakota, carried six rotating-vane style electric field mills, several microphysics instruments, and thermodynamic instruments. In addition to the aircraft measurements, we also have data from both the Eastern Test Range WSR-74C (Patrick AFB) and the U.S. National Weather Service WSR-88D radars (primarily Melbourne, FL). One specific goal of this program was to try to develop a radar-based rule for estimating the hazard that an in-cloud electric field would present to a vehicle launched into the cloud. Based on past experience, and our desire to quantify the mixed-phase region of the cloud in question, we have assessed several algorithms for integrating radar reflectivity data in and above the mixed-phase region as a proxy for electric field. A successful radar proxy is one that can accurately predict the presence or absence of significant electric fields. We have compared various proxies with the measured in-cloud electric field strength in an attempt to develop a radar rule for assessing launch hazard. Assessment of the best proxy is presented.
Reconciling biases and uncertainties of AIRS and MODIS ice cloud properties
NASA Astrophysics Data System (ADS)
Kahn, B. H.; Gettelman, A.
2015-12-01
We will discuss comparisons of collocated Atmospheric Infrared Sounder (AIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS) ice cloud optical thickness (COT), effective radius (CER), and cloud thermodynamic phase retrievals. The ice cloud comparisons are stratified by retrieval uncertainty estimates, horizontal inhomogeneity at the pixel-scale, vertical cloud structure, and other key parameters. Although an estimated 27% globally of all AIRS pixels contain ice cloud, only 7% of them are spatially uniform ice according to MODIS. We find that the correlations of COT and CER between the two instruments are strong functions of horizontal cloud heterogeneity and vertical cloud structure. The best correlations are found in single-layer, horizontally homogeneous clouds over the low-latitude tropical oceans with biases and scatter that increase with scene complexity. While the COT comparisons are unbiased in homogeneous ice clouds, a bias of 5-10 microns remains in CER within the most homogeneous scenes identified. This behavior is entirely consistent with known sensitivity differences in the visible and infrared bands. We will use AIRS and MODIS ice cloud properties to evaluate ice hydrometeor output from climate model output, such as the CAM5, with comparisons sorted into different dynamical regimes. The results of the regime-dependent comparisons will be described and implications for model evaluation and future satellite observational needs will be discussed.
NASA Astrophysics Data System (ADS)
Pitts, K.; Nasiri, S. L.; Smith, N.
2013-12-01
Global climate models have improved considerably over the years, yet clouds still represent a large factor of uncertainty for these models. Comparisons of model-simulated cloud variables with equivalent satellite cloud products are the best way to start diagnosing the differences between model output and observations. Gridded (level 3) cloud products from many different satellites and instruments are required for a full analysis, but these products are created by different science teams using different algorithms and filtering criteria to create similar, but not directly comparable, cloud products. This study makes use of a recently developed uniform space-time gridding algorithm to create a new set of gridded cloud products from each satellite instrument's level 2 data of interest which are each filtered using the same criteria, allowing for a more direct comparison between satellite products. The filtering is done via several variables such as cloud top pressure/height, thermodynamic phase, optical properties, satellite viewing angle, and sun zenith angle. The filtering criteria are determined based on the variable being analyzed and the science question at hand. Each comparison of different variables may require different filtering strategies as no single approach is appropriate for all problems. Beyond inter-satellite data comparison, these new sets of uniformly gridded satellite products can also be used for comparison with model-simulated cloud variables. Of particular interest to this study are the differences in the vertical distributions of ice and liquid water content between the satellite retrievals and model simulations, especially in the mid-troposphere where there are mixed-phase clouds to consider. This presentation will demonstrate the proof of concept through comparisons of cloud water path from Aqua MODIS retrievals and NASA GISS-E2-[R/H] model simulations archived in the CMIP5 data portal.
NASA Astrophysics Data System (ADS)
Coddington, Odele; Platnick, Steven; Pilewskie, Peter; Schmidt, Sebastian
2016-04-01
The NASA Pre-Aerosol, Cloud and ocean Ecosystem (PACE) Science Definition Team (SDT) report released in 2012 defined imager stability requirements for the Ocean Color Instrument (OCI) at the sub-percent level. While the instrument suite and measurement requirements are currently being determined, the PACE SDT report provided details on imager options and spectral specifications. The options for a threshold instrument included a hyperspectral imager from 350-800 nm, two near-infrared (NIR) channels, and three short wave infrared (SWIR) channels at 1240, 1640, and 2130 nm. Other instrument options include a variation of the threshold instrument with 3 additional spectral channels at 940, 1378, and 2250 nm and the inclusion of a spectral polarimeter. In this work, we present cloud retrieval information content studies of optical thickness, droplet effective radius, and thermodynamic phase to quantify the potential for continuing the low cloud climate data record established by the MOderate Resolution and Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) missions with the PACE OCI instrument (i.e., non-polarized cloud reflectances and in the absence of midwave and longwave infrared channels). The information content analysis is performed using the GEneralized Nonlinear Retrieval Analysis (GENRA) methodology and the Collection 6 simulated cloud reflectance data for the common MODIS/VIIRS algorithm (MODAWG) for Cloud Mask, Cloud-Top, and Optical Properties. We show that using both channels near 2 microns improves the probability of cloud phase discrimination with shortwave-only cloud reflectance retrievals. Ongoing work will extend the information content analysis, currently performed for dark ocean surfaces, to different land surface types.
Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds
NASA Astrophysics Data System (ADS)
Fan, Jiwen; Leung, L. Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru
2013-11-01
Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol's thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ∼27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3-5 Wṡm-2) and a surface cooling (-5 to -8 Wṡm-2). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments.
Fan, Jiwen; Leung, L Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru
2013-11-26
Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol's thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ~27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3-5 W m(-2)) and a surface cooling (-5 to -8 W m(-2)). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments.
The CM SAF CLAAS-2 cloud property data record
NASA Astrophysics Data System (ADS)
Benas, Nikos; Finkensieper, Stephan; Stengel, Martin; van Zadelhoff, Gerd-Jan; Hanschmann, Timo; Hollmann, Rainer; Fokke Meirink, Jan
2017-04-01
A new cloud property data record was lately released by the EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF), based on measurements from geostationary Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensors, spanning the period 2004-2015. The CLAAS-2 (Cloud property dAtAset using SEVIRI, Edition 2) data record includes cloud fractional coverage, thermodynamic phase, cloud top height, water path and corresponding optical thickness and particle effective radius separately for liquid and ice clouds. These variables are available at high resolution 15-minute, daily and monthly basis. In this presentation the main improvements in the retrieval algorithms compared to the first edition of the data record (CLAAS-1) are highlighted along with their impact on the quality of the data record. Subsequently, the results of extensive validation and inter-comparison efforts against ground observations, as well as active and passive satellite sensors are summarized. Overall good agreement is found, with similar spatial and temporal characteristics, along with small biases caused mainly by differences in retrieval approaches, spatial/temporal samplings and viewing geometries.
Multi-Spectral Cloud Retrievals from Moderate Image Spectrometer (MODIS)
NASA Technical Reports Server (NTRS)
Platnick, Steven
2004-01-01
MODIS observations from the NASA EOS Terra spacecraft (1030 local time equatorial sun-synchronous crossing) launched in December 1999 have provided a unique set of Earth observation data. With the launch of the NASA EOS Aqua spacecraft (1330 local time crossing! in May 2002: two MODIS daytime (sunlit) and nighttime observations are now available in a 24-hour period allowing some measure of diurnal variability. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate modeling, climate change studies, numerical weather prediction, as well as fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. An overview of the instrument and cloud algorithms will be presented along with various examples, including an initial analysis of several operational global gridded (Level-3) cloud products from the two platforms. Statistics of cloud optical and microphysical properties as a function of latitude for land and Ocean regions will be shown. Current algorithm research efforts will also be discussed.
Liquid-Vapor Equilibrium of Multicomponent Cryogenic Systems
NASA Technical Reports Server (NTRS)
Thompson, W. Reid; Calado, Jorge C. G.; Zollweg, John A.
1990-01-01
Liquid-vapor and solid-vapor equilibria at low to moderate pressures and low temperatures are important in many solar system environments, including the surface and clouds of Titan, the clouds of Uranus and Neptune, and the surfaces of Mars and Triton. The familiar cases of ideal behavior are limiting cases of a general thermodynamic representation for the vapor pressure of each component in a homogeneous multicomponent system. The fundamental connections of laboratory measurements to thermodynamic models are through the Gibbs-Duhem relation and the Gibbs-Helmholtz relation. Using laboratory measurements of the total pressure, temperature, and compositions of the liquid and vapor phases at equilibrium, the values of these parameters can be determined. The resulting model for vapor-liquid equilibrium can then conveniently and accurately be used to calculate pressures, compositions, condensation altitudes, and their dependencies on changing climatic conditions. A specific system being investigated is CH4-C2H6-N2, at conditions relevant to Titan's surface and atmosphere. Discussed are: the modeling of existing data on CH4-N2, with applications to the composition of Titan's condensate clouds; some new measurements on the CH4-C2H6 binary, using a high-precision static/volumetric system, and on the C2H6-N2 binary, using the volumetric system and a sensitive cryogenic flow calorimeter; and describe a new cryogenic phase-equilibrium vessel with which we are beginning a detailed, systematic study of the three constituent binaries and the ternary CH4-C2H6-N2 system at temperatures ranging from 80 to 105 K and pressures from 0.1 to 7 bar.
Aerosol effect on the evolution of the thermodynamic properties of warm convective cloud fields
Dagan, Guy; Koren, Ilan; Altaratz, Orit; Heiblum, Reuven H.
2016-01-01
Convective cloud formation and evolution strongly depend on environmental temperature and humidity profiles. The forming clouds change the profiles that created them by redistributing heat and moisture. Here we show that the evolution of the field’s thermodynamic properties depends heavily on the concentration of aerosol, liquid or solid particles suspended in the atmosphere. Under polluted conditions, rain formation is suppressed and the non-precipitating clouds act to warm the lower part of the cloudy layer (where there is net condensation) and cool and moisten the upper part of the cloudy layer (where there is net evaporation), thereby destabilizing the layer. Under clean conditions, precipitation causes net warming of the cloudy layer and net cooling of the sub-cloud layer (driven by rain evaporation), which together act to stabilize the atmosphere with time. Previous studies have examined different aspects of the effects of clouds on their environment. Here, we offer a complete analysis of the cloudy atmosphere, spanning the aerosol effect from instability-consumption to enhancement, below, inside and above warm clouds, showing the temporal evolution of the effects. We propose a direct measure for the magnitude and sign of the aerosol effect on thermodynamic instability. PMID:27929097
Aerosol effect on the evolution of the thermodynamic properties of warm convective cloud fields.
Dagan, Guy; Koren, Ilan; Altaratz, Orit; Heiblum, Reuven H
2016-12-08
Convective cloud formation and evolution strongly depend on environmental temperature and humidity profiles. The forming clouds change the profiles that created them by redistributing heat and moisture. Here we show that the evolution of the field's thermodynamic properties depends heavily on the concentration of aerosol, liquid or solid particles suspended in the atmosphere. Under polluted conditions, rain formation is suppressed and the non-precipitating clouds act to warm the lower part of the cloudy layer (where there is net condensation) and cool and moisten the upper part of the cloudy layer (where there is net evaporation), thereby destabilizing the layer. Under clean conditions, precipitation causes net warming of the cloudy layer and net cooling of the sub-cloud layer (driven by rain evaporation), which together act to stabilize the atmosphere with time. Previous studies have examined different aspects of the effects of clouds on their environment. Here, we offer a complete analysis of the cloudy atmosphere, spanning the aerosol effect from instability-consumption to enhancement, below, inside and above warm clouds, showing the temporal evolution of the effects. We propose a direct measure for the magnitude and sign of the aerosol effect on thermodynamic instability.
Analysis of Rapidly Developing Low Cloud Ceilings in a Stable Environment
NASA Technical Reports Server (NTRS)
Bauman, William H., III; Barrett, Joe H., III; Case, Jonathan L.; Wheeler, Mark M.; Baggett, G. Wayne
2006-01-01
Forecasters at the Space Meteorology Group (SMG) issue 30 to 90 minute forecasts for low cloud ceilings at the Space Shuttle Landing Facility (TTS) to support Space Shuttle landings. Mission verification statistics have shown ceilings to be the number one forecast challenge for SMG. More specifically, forecasters at SMG are concerned with any rapidly developing clouds/ceilings below 8000 ft in a stable, capped thermodynamic environment. Therefore, the Applied Meteorology Unit (AMU) was tasked to examine archived events of rapid stable cloud formation resulting in ceilings below 8000 ft, and document the atmospheric regimes favoring this type of cloud development. The AMU examined the cool season months of November to March during the years of 1993-2003 for days that had low-level inversions and rapid, stable low cloud formation that resulted in ceilings violating the Space Shuttle Flight Rules. The AMU wrote and modified existing code to identify inversions from the morning (-10 UTC) Cape Canaveral, FL rawinsonde (XMR) during the cool season and output pertinent sounding information. They parsed all days with cloud ceilings below 8000 ft at TTS, forming a database of possible rapidly-developing low ceiling events. Days with precipitation or noticeable fog burn-off situations were excluded from the database. In the first phase of this work, only the daytime hours were examined for possible ceiling development events since low clouds are easier to diagnose with visible satellite imagery. Phase II of this work includes expanding the database to include nighttime cases which is underway as this abstract is being written. For the nighttime cases, the AMU will analyze both the 00 UTC soundings and the 10 UTC soundings to examine those data for the presence of a low-level inversion. The 00 UTC soundings will probably not have a surface-based inversion, but the presence of inversions or "neutral" layers aloft and below 8,000 ft will most likely help define the stable regime, being a thermodynamically "capped" environment. Occurrences of elevated low-level inversions or stable layers will be highlighted in conjunction with nights that experienced a possible development or onset of cloud ceilings below 8,000 ft. Using these criteria to narrow down the database, the AMU will then use archived IR satellite imagery for these possible events. This presentation summarizes the composite meteorological conditions for 20 daytime event days with rapid low cloud ceiling formation and 48 non-events days consisting of advection or widespread low cloud ceilings and describes two sample cases of daytime rapidly-developing low cloud ceilings. The authors will also summarize the work from the nighttime cases and describe a representative sample case from this data set.
Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds
Fan, Jiwen; Leung, L. Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru
2013-01-01
Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol’s thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ∼27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3–5 W⋅m−2) and a surface cooling (−5 to −8 W⋅m−2). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments. PMID:24218569
NASA Astrophysics Data System (ADS)
Muhlbauer, A.; Hashino, T.; Xue, L.; Teller, A.; Lohmann, U.; Rasmussen, R. M.; Geresdi, I.; Pan, Z.
2010-09-01
Anthropogenic aerosols serve as a source of both cloud condensation nuclei (CCN) and ice nuclei (IN) and affect microphysical properties of clouds. Increasing aerosol number concentrations is hypothesized to retard the cloud droplet coalescence and the riming in mixed-phase clouds, thereby decreasing orographic precipitation. This study presents results from a model intercomparison of 2-D simulations of aerosol-cloud-precipitation interactions in stratiform orographic mixed-phase clouds. The sensitivity of orographic precipitation to changes in the aerosol number concentrations is analysed and compared for various dynamical and thermodynamical situations. Furthermore, the sensitivities of microphysical processes such as coalescence, aggregation, riming and diffusional growth to changes in the aerosol number concentrations are evaluated and compared. The participating numerical models are the model from the Consortium for Small-Scale Modeling (COSMO) with bulk microphysics, the Weather Research and Forecasting (WRF) model with bin microphysics and the University of Wisconsin modeling system (UWNMS) with a spectral ice habit prediction microphysics scheme. All models are operated on a cloud-resolving scale with 2 km horizontal grid spacing. The results of the model intercomparison suggest that the sensitivity of orographic precipitation to aerosol modifications varies greatly from case to case and from model to model. Neither a precipitation decrease nor a precipitation increase is found robustly in all simulations. Qualitative robust results can only be found for a subset of the simulations but even then quantitative agreement is scarce. Estimates of the aerosol effect on orographic precipitation are found to range from -19% to 0% depending on the simulated case and the model. Similarly, riming is shown to decrease in some cases and models whereas it increases in others, which implies that a decrease in riming with increasing aerosol load is not a robust result. Furthermore, it is found that neither a decrease in cloud droplet coalescence nor a decrease in riming necessarily implies a decrease in precipitation due to compensation effects by other microphysical pathways. The simulations suggest that mixed-phase conditions play an important role in buffering the effect of aerosol perturbations on cloud microphysics and reducing the overall susceptibility of clouds and precipitation to changes in the aerosol number concentrations. As a consequence the aerosol effect on precipitation is suggested to be less pronounced or even inverted in regions with high terrain (e.g., the Alps or Rocky Mountains) or in regions where mixed-phase microphysics is important for the climatology of orographic precipitation.
Ten Years of Cloud Optical and Microphysical Retrievals from MODIS
NASA Technical Reports Server (NTRS)
Platnick, Steven; King, Michael D.; Wind, Galina; Hubanks, Paul; Arnold, G. Thomas; Amarasinghe, Nandana
2010-01-01
The MODIS cloud optical properties algorithm (MOD06/MYD06 for Terra and Aqua MODIS, respectively) has undergone extensive improvements and enhancements since the launch of Terra. These changes have included: improvements in the cloud thermodynamic phase algorithm; substantial changes in the ice cloud light scattering look up tables (LUTs); a clear-sky restoral algorithm for flagging heavy aerosol and sunglint; greatly improved spectral surface albedo maps, including the spectral albedo of snow by ecosystem; inclusion of pixel-level uncertainty estimates for cloud optical thickness, effective radius, and water path derived for three error sources that includes the sensitivity of the retrievals to solar and viewing geometries. To improve overall retrieval quality, we have also implemented cloud edge removal and partly cloudy detection (using MOD35 cloud mask 250m tests), added a supplementary cloud optical thickness and effective radius algorithm over snow and sea ice surfaces and over the ocean, which enables comparison with the "standard" 2.1 11m effective radius retrieval, and added a multi-layer cloud detection algorithm. We will discuss the status of the MOD06 algorithm and show examples of pixellevel (Level-2) cloud retrievals for selected data granules, as well as gridded (Level-3) statistics, notably monthly means and histograms (lD and 2D, with the latter giving correlations between cloud optical thickness and effective radius, and other cloud product pairs).
Multilayer Cloud Detection with the MODIS Near-Infrared Water Vapor Absorption Band
NASA Technical Reports Server (NTRS)
Wind, Galina; Platnick, Steven; King, Michael D.; Hubanks, Paul A,; Pavolonis, Michael J.; Heidinger, Andrew K.; Yang, Ping; Baum, Bryan A.
2009-01-01
Data Collection 5 processing for the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the NASA Earth Observing System EOS Terra and Aqua spacecraft includes an algorithm for detecting multilayered clouds in daytime. The main objective of this algorithm is to detect multilayered cloud scenes, specifically optically thin ice cloud overlying a lower-level water cloud, that presents difficulties for retrieving cloud effective radius using single layer plane-parallel cloud models. The algorithm uses the MODIS 0.94 micron water vapor band along with CO2 bands to obtain two above-cloud precipitable water retrievals, the difference of which, in conjunction with additional tests, provides a map of where multilayered clouds might potentially exist. The presence of a multilayered cloud results in a large difference in retrievals of above-cloud properties between the CO2 and the 0.94 micron methods. In this paper the MODIS multilayered cloud algorithm is described, results of using the algorithm over example scenes are shown, and global statistics for multilayered clouds as observed by MODIS are discussed. A theoretical study of the algorithm behavior for simulated multilayered clouds is also given. Results are compared to two other comparable passive imager methods. A set of standard cloudy atmospheric profiles developed during the course of this investigation is also presented. The results lead to the conclusion that the MODIS multilayer cloud detection algorithm has some skill in identifying multilayered clouds with different thermodynamic phases
NASA Astrophysics Data System (ADS)
Wendisch, Manfred; Pöschl, Ulrich; Andreae, Meinrat O.; Machado, Luiz A. T.; Albrecht, Rachel; Schlager, Hans; Rosenfeld, Daniel; Krämer, Martina
2015-04-01
An extensive airborne/ground-based measurement campaign to study tropical convective clouds is introduced. It was performed in Brazil with focus on the Amazon rainforest from 1 September to 4 October 2014. The project combined the joint German-Brazilian ACRIDICON (Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems) and CHUVA (Machado et al.2014) projects. ACRIDICON aimed at the quantification of aerosol-cloud-precipitation interactions and their thermodynamic, dynamic and radiative effects in convective cloud systems by in-situ aircraft observations and indirect measurements (aircraft, satellite, and ground-based). The ACRIDICON-CHUVA campaign was conducted in cooperation with the second Intensive Operational Phase (IOP) of the GOAmazon (Green Ocean Amazon) program. The focus in this presentation is on the airborne observations within ACRIDICON-CHUVA. The German HALO (High Altitude and Long-Range Research Aircraft) was based in Manaus (Amazonas State); it carried out 14 research flights (96 flight hours in total). HALO was equipped with remote sensing and in-situ instrumentation for meteorological, trace gas, aerosol, cloud, and precipitation measurements. Five mission objectives were pursued: (1) cloud vertical evolution (cloud profiling), (2) aerosol processing (inflow and outflow), (3) satellite validation, (4) vertical transport and mixing (tracer experiment), and (5) clouds over forested and deforested areas. The five cloud missions collected data in clean atmospheric conditions and in contrasting polluted (urban and biomass burning) environments.
NASA Astrophysics Data System (ADS)
Shinozuka, Y.; Johnson, R. R.; LeBlanc, S. E.; Chang, C. S.; Redemann, J.
2016-12-01
We report on our recent airborne measurements of multi-wavelength aerosol optical depth and cloud-transmitted radiances over the North Atlantic. We ran the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) in November 2015 and the 14-channel Ames Airborne Tracking Sunphotometer (AATS-14) in May and June 2016, both aboard the NASA C-130 aircraft. These sunphotometers provide measurements of overlying cirrus and aerosol optical depths of up to about 0.5 and constrain ecosystem and aerosol retrievals from the accompanying nadir-viewing remote sensing instruments. In addition, 4STAR measures hyperspectral transmitted light, which enables the retrieval of cloud optical depth, effective radius, and thermodynamic phase from below cloud. Our measurements contribute to the science objectives of the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES), an interdisciplinary investigation resolving key processes controlling marine ecosystems and aerosols that are essential to our understanding of Earth system function and future change.
Spectral signatures of polar stratospheric clouds and sulfate aerosol
NASA Technical Reports Server (NTRS)
Massie, S. T.; Bailey, P. L.; Gille, J. C.; Lee, E. C.; Mergenthaler, J. L.; Roche, A. E.; Kumer, J. B.; Fishbein, E. F.; Waters, J. W.; Lahoz, W. A.
1994-01-01
Multiwavelength observations of Antarctic and midlatitude aerosol by the Cryogenic Limb Array Etalon Spectrometer (CLAES) experiment on the Upper Atmosphere Research Satellite (UARS) are used to demonstrate a technique that identifies the location of polar stratospheric clouds. The technique discussed uses the normalized area of the triangle formed by the aerosol extinctions at 925, 1257, and 1605/cm (10.8, 8.0, and 6.2 micrometers) to derive a spectral aerosol measure M of the aerosol spectrum. Mie calculations for spherical particles and T-matrix calculations for spheriodal particles are used to generate theoretical spectral extinction curves for sulfate and polar stratospheric cloud particles. The values of the spectral aerosol measure M for the sulfate and polar stratospheric cloud particles are shown to be different. Aerosol extinction data, corresponding to temperatures between 180 and 220 K at a pressure of 46 hPa (near 21-km altitude) for 18 August 1992, are used to demonstrate the technique. Thermodynamic calculations, based upon frost-point calculations and laboratory phase-equilibrium studies of nitric acid trihydrate, are used to predict the location of nitric acid trihydrate cloud particles.
NASA Astrophysics Data System (ADS)
DeSouza-Machado, Sergio; Larrabee Strow, L.; Tangborn, Andrew; Huang, Xianglei; Chen, Xiuhong; Liu, Xu; Wu, Wan; Yang, Qiguang
2018-01-01
One-dimensional variational retrievals of temperature and moisture fields from hyperspectral infrared (IR) satellite sounders use cloud-cleared radiances (CCRs) as their observation. These derived observations allow the use of clear-sky-only radiative transfer in the inversion for geophysical variables but at reduced spatial resolution compared to the native sounder observations. Cloud clearing can introduce various errors, although scenes with large errors can be identified and ignored. Information content studies show that, when using multilayer cloud liquid and ice profiles in infrared hyperspectral radiative transfer codes, there are typically only 2-4 degrees of freedom (DOFs) of cloud signal. This implies a simplified cloud representation is sufficient for some applications which need accurate radiative transfer. Here we describe a single-footprint retrieval approach for clear and cloudy conditions, which uses the thermodynamic and cloud fields from numerical weather prediction (NWP) models as a first guess, together with a simple cloud-representation model coupled to a fast scattering radiative transfer algorithm (RTA). The NWP model thermodynamic and cloud profiles are first co-located to the observations, after which the N-level cloud profiles are converted to two slab clouds (TwoSlab; typically one for ice and one for water clouds). From these, one run of our fast cloud-representation model allows an improvement of the a priori cloud state by comparing the observed and model-simulated radiances in the thermal window channels. The retrieval yield is over 90 %, while the degrees of freedom correlate with the observed window channel brightness temperature (BT) which itself depends on the cloud optical depth. The cloud-representation and scattering package is benchmarked against radiances computed using a maximum random overlap (RMO) cloud scheme. All-sky infrared radiances measured by NASA's Atmospheric Infrared Sounder (AIRS) and NWP thermodynamic and cloud profiles from the European Centre for Medium-Range Weather Forecasts (ECMWF) forecast model are used in this paper.
NASA Astrophysics Data System (ADS)
Huang, Yi-Chih; Wang, Pao K.
2017-01-01
Numerical modeling is conducted to study the hydrometeor partitioning and microphysical source and sink processes during a quasi-steady state of thunderstorms over the Pacific Warm Pool by utilizing the microphysical model WISCDYMM to simulate selected storm cases. The results show that liquid-phase hydrometeors dominate thunderstorm evolution over the Pacific Warm Pool. The ratio of ice-phase mass to liquid-phase mass is about 41%: 59%, indicating that ice-phase water is not as significant over the Pacific Warm Pool as the liquid water compared to the larger than 50% in the subtropics and 80% in the US High Plains in a previous study. Sensitivity tests support the dominance of liquid-phase hydrometeors over the Pacific Warm Pool. The major rain sources are the key hail sinks: melting of hail and shedding from hail; whereas the crucial rain sinks are evaporation and accretion by hail. The major snow sources are Bergeron-Findeisen process, transfer of cloud ice to snow and accretion of cloud water; whereas the foremost sink of snow is accretion by hail. The essential hail sources are accretions of rain, cloud water, and snow; whereas the critical hail sinks are melting of hail and shedding from hail. The contribution and ranking of sources and sinks of these precipitates are compared with the previous study. Hydrometeors have their own special microphysical processes in the development and depletion over the Pacific Warm Pool. Microphysical budgets depend on atmospheric dynamical and thermodynamical conditions which determine the partitioning of hydrometeors. This knowledge would benefit the microphysics parameterization in cloud models and cumulus parameterization in global circulation models.
The Shallow-to-Deep Transition in Convective Clouds During GoAmazon 2014/5
NASA Astrophysics Data System (ADS)
Jensen, M. P.; Gostic, C.; Giangrande, S. E.; Mechem, D. B.; Ghate, V. P.; Toto, T.
2016-12-01
Nearly two years of observations from the ARM Mobile Facility (AMF) deployed at Manacapuru, Brazil during the GOAmazon 2014/5 campaign are analyzed to investigate the environmental conditions controlling the transition from shallow to deep convective clouds. The Active Remote Sensing of Clouds (ARSCL) product, which combines radar and lidar observations to produce best estimates of cloud locations in the vertical column is used to qualitatively define four subsets of convective cloud conditions: 1,2) Transition cases (wet season, dry season), where a period of shallow convective clouds is followed by a period of deep convective clouds and 2) Non-transition cases (wet season, dry season), where shallow convective clouds persist without any subsequent development. For these subsets, observations of the time varying thermodynamic properties of the atmosphere, including the surface heat and radiative fluxes, the profiles of atmospheric state variables, and the ECMWF-derived large-scale advective tendencies, are composited to define averaged properties for each transition state. Initial analysis indicates that the transition state strongly depends on the pre-dawn free-tropospheric humidity, the convective inhibition and surface temperature and humidity with little dependence on the convective available potential energy and surface heat fluxes. The composited environmental thermodynamics are then used to force large-eddy simulations for the four transition states to further evaluate the sensitivity of the transition to the composite thermodynamics versus the importance of larger-scale forcing.
The interstellar chemistry of H2C3O isomers
Loison, Jean-Christophe; Agúndez, Marcelino; Marcelino, Núria; Wakelam, Valentine; Hickson, Kevin M.; Cernicharo, José; Gerin, Maryvonne; Roueff, Evelyne; Guélin, Michel
2016-01-01
We present the detection of two H2C3O isomers, propynal and cyclopropenone, toward various starless cores and molecular clouds, together with upper limits for the third isomer propadienone. We review the processes controlling the abundances of H2C3O isomers in interstellar media showing that the reactions involved are gas-phase ones. We show that the abundances of these species are controlled by kinetic rather than thermodynamic effects. PMID:27013768
NASA Technical Reports Server (NTRS)
Stubenrauch, C. J.; Rossow, W. B.; Kinne, S.; Ackerman, S.; Cesana, G.; Chepfer, H.; Getzewich, B.; Di Girolamo, L.; Guignard, A.; Heidinger, A.;
2012-01-01
Clouds cover about 70% of the Earth's surface and play a dominant role in the energy and water cycle of our planet. Only satellite observations provide a continuous survey of the state of the atmosphere over the whole globe and across the wide range of spatial and temporal scales that comprise weather and climate variability. Satellite cloud data records now exceed more than 25 years in length. However, climatologies compiled from different satellite datasets can exhibit systematic biases. Questions therefore arise as to the accuracy and limitations of the various sensors. The Global Energy and Water cycle Experiment (GEWEX) Cloud Assessment, initiated in 2005 by the GEWEX Radiation Panel, provided the first coordinated intercomparison of publically available, standard global cloud products (gridded, monthly statistics) retrieved from measurements of multi-spectral imagers (some with multiangle view and polarization capabilities), IR sounders and lidar. Cloud properties under study include cloud amount, cloud height (in terms of pressure, temperature or altitude), cloud radiative properties (optical depth or emissivity), cloud thermodynamic phase and bulk microphysical properties (effective particle size and water path). Differences in average cloud properties, especially in the amount of high-level clouds, are mostly explained by the inherent instrument measurement capability for detecting and/or identifying optically thin cirrus, especially when overlying low-level clouds. The study of long-term variations with these datasets requires consideration of many factors. A monthly, gridded database, in common format, facilitates further assessments, climate studies and the evaluation of climate models.
GEWEX cloud assessment: A review
NASA Astrophysics Data System (ADS)
Stubenrauch, Claudia; Rossow, William B.; Kinne, Stefan; Ackerman, Steve; Cesana, Gregory; Chepfer, Hélène; Di Girolamo, Larry; Getzewich, Brian; Guignard, Anthony; Heidinger, Andy; Maddux, Brent; Menzel, Paul; Minnis, Patrick; Pearl, Cindy; Platnick, Steven; Poulsen, Caroline; Riedi, Jérôme; Sayer, Andrew; Sun-Mack, Sunny; Walther, Andi; Winker, Dave; Zeng, Shen; Zhao, Guangyu
2013-05-01
Clouds cover about 70% of the Earth's surface and play a dominant role in the energy and water cycle of our planet. Only satellite observations provide a continuous survey of the state of the atmosphere over the entire globe and across the wide range of spatial and temporal scales that comprise weather and climate variability. Satellite cloud data records now exceed more than 25 years; however, climatologies compiled from different satellite datasets can exhibit systematic biases. Questions therefore arise as to the accuracy and limitations of the various sensors. The Global Energy and Water cycle Experiment (GEWEX) Cloud Assessment, initiated in 2005 by the GEWEX Radiation Panel, provides the first coordinated intercomparison of publicly available, global cloud products (gridded, monthly statistics) retrieved from measurements of multi-spectral imagers (some with multi-angle view and polarization capabilities), IR sounders and lidar. Cloud properties under study include cloud amount, cloud height (in terms of pressure, temperature or altitude), cloud radiative properties (optical depth or emissivity), cloud thermodynamic phase and bulk microphysical properties (effective particle size and water path). Differences in average cloud properties, especially in the amount of high-level clouds, are mostly explained by the inherent instrument measurement capability for detecting and/or identifying optically thin cirrus, especially when overlying low-level clouds. The study of long-term variations with these datasets requires consideration of many factors. The monthly, gridded database presented here facilitates further assessments, climate studies, and the evaluation of climate models.
An Examination of the Nature of Global MODIS Cloud Regimes
NASA Technical Reports Server (NTRS)
Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin; Kato, Seiji; Huffman, George J.
2014-01-01
We introduce global cloud regimes (previously also referred to as "weather states") derived from cloud retrievals that use measurements by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Aqua and Terra satellites. The regimes are obtained by applying clustering analysis on joint histograms of retrieved cloud top pressure and cloud optical thickness. By employing a compositing approach on data sets from satellites and other sources, we examine regime structural and thermodynamical characteristics. We establish that the MODIS cloud regimes tend to form in distinct dynamical and thermodynamical environments and have diverse profiles of cloud fraction and water content. When compositing radiative fluxes from the Clouds and the Earth's Radiant Energy System instrument and surface precipitation from the Global Precipitation Climatology Project, we find that regimes with a radiative warming effect on the atmosphere also produce the largest implied latent heat. Taken as a whole, the results of the study corroborate the usefulness of the cloud regime concept, reaffirm the fundamental nature of the regimes as appropriate building blocks for cloud system classification, clarify their association with standard cloud types, and underscore their distinct radiative and hydrological signatures.
Partitioning the primary ice formation modes in large eddy simulations of mixed-phase clouds
NASA Astrophysics Data System (ADS)
Hande, Luke B.; Hoose, Corinna
2017-11-01
State-of-the-art aerosol-dependent parameterisations describing each heterogeneous ice nucleation mode (contact, immersion, and deposition ice nucleation), as well as homogeneous nucleation, were incorporated into a large eddy simulation model. Several cases representing commonly occurring cloud types were simulated in an effort to understand which ice nucleation modes contribute the most to total concentrations of ice crystals. The cases include a completely idealised warm bubble, semi-idealised deep convection, an orographic cloud, and a stratiform case. Despite clear differences in thermodynamic conditions between the cases, the results are remarkably consistent between the different cloud types. In all the investigated cloud types and under normal aerosol conditions, immersion freezing dominates and contact freezing also contributes significantly. At colder temperatures, deposition nucleation plays only a small role, and homogeneous freezing is important. To some extent, the temporal evolution of the cloud determines the dominant freezing mechanism and hence the subsequent microphysical processes. Precipitation is not correlated with any one ice nucleation mode, instead occurring simultaneously when several nucleation modes are active. Furthermore, large variations in the aerosol concentration do affect the dominant ice nucleation mode; however, they have only a minor influence on the precipitation amount.
Analysis of Polder Polarization Measurements During Astex and Eucrex Experiments
NASA Technical Reports Server (NTRS)
Chen, Hui; Han, Qingyuan; Chou, Joyce; Welch, Ronald M.
1997-01-01
Polarization is more sensitive than intensity to cloud microstructure such as the particle size and shape, and multiple scattering does not wash out features in polarization as effectively as it does in the intensity. Polarization measurements, particularly in the near IR, are potentially a valuable tool for cloud identification and for studies of the microphysics of clouds. The POLDER instrument is designed to provide wide field of view bidirectional images in polarized light. During the ASTEX-SOFIA campaign on June 12th, 1992, over the Atlantic Ocean (near the Azores Islands), images of homogeneous thick stratocumulus cloud fields were acquired. During the EUCREX'94 (April, 1994) campaign, the POLDER instrument was flying over the region of Brittany (France), taking observations of cirrus clouds. This study involves model studies and data analysis of POLDER observations. Both models and data analysis show that POLDER can be used to detect cloud thermodynamic phases. Model results show that polarized reflection in the Lamda =0.86 micron band is sensitive to cloud droplet sizes but not to cloud optical thickness. Comparison between model and data analysis reveals that cloud droplet sizes during ASTEX are about 5 microns, which agrees very well with the results of in situ measurements (4-5 microns). Knowing the retrieved cloud droplet sizes, the total reflected intensity of the POLDER measurements then can be used to retrieve cloud optical thickness. The close agreement between data analysis and model results during ASTEX also suggests the homogeneity of the cloud layer during that campaign.
West Antarctic Ice Sheet cloud cover and surface radiation budget from NASA A-Train satellites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, Ryan C.; Lubin, Dan; Vogelmann, Andrew M.
Clouds are an essential parameter of the surface energy budget influencing the West Antarctic Ice Sheet (WAIS) response to atmospheric warming and net contribution to global sea-level rise. A four-year record of NASA A-Train cloud observations is combined with surface radiation measurements to quantify the WAIS radiation budget and constrain the three-dimensional occurrence frequency, thermodynamic phase partitioning, and surface radiative effect of clouds over West Antarctica (WA). The skill of satellite-modeled radiative fluxes is confirmed through evaluation against measurements at four Antarctic sites (WAIS Divide Ice Camp, Neumayer, Syowa, and Concordia Stations). And due to perennial high-albedo snow and icemore » cover, cloud infrared emission dominates over cloud solar reflection/absorption leading to a positive net all-wave cloud radiative effect (CRE) at the surface, with all monthly means and 99.15% of instantaneous CRE values exceeding zero. The annual-mean CRE at theWAIS surface is 34 W m -2, representing a significant cloud-induced warming of the ice sheet. Low-level liquid-containing clouds, including thin liquid water clouds implicated in radiative contributions to surface melting, are widespread and most frequent in WA during the austral summer. Clouds warm the WAIS by 26 W m -2, in summer, on average, despite maximum offsetting shortwave CRE. Glaciated cloud systems are strongly linked to orographic forcing, with maximum incidence on the WAIS continuing downstream along the Transantarctic Mountains.« less
West Antarctic Ice Sheet cloud cover and surface radiation budget from NASA A-Train satellites
Scott, Ryan C.; Lubin, Dan; Vogelmann, Andrew M.; ...
2017-04-26
Clouds are an essential parameter of the surface energy budget influencing the West Antarctic Ice Sheet (WAIS) response to atmospheric warming and net contribution to global sea-level rise. A four-year record of NASA A-Train cloud observations is combined with surface radiation measurements to quantify the WAIS radiation budget and constrain the three-dimensional occurrence frequency, thermodynamic phase partitioning, and surface radiative effect of clouds over West Antarctica (WA). The skill of satellite-modeled radiative fluxes is confirmed through evaluation against measurements at four Antarctic sites (WAIS Divide Ice Camp, Neumayer, Syowa, and Concordia Stations). And due to perennial high-albedo snow and icemore » cover, cloud infrared emission dominates over cloud solar reflection/absorption leading to a positive net all-wave cloud radiative effect (CRE) at the surface, with all monthly means and 99.15% of instantaneous CRE values exceeding zero. The annual-mean CRE at theWAIS surface is 34 W m -2, representing a significant cloud-induced warming of the ice sheet. Low-level liquid-containing clouds, including thin liquid water clouds implicated in radiative contributions to surface melting, are widespread and most frequent in WA during the austral summer. Clouds warm the WAIS by 26 W m -2, in summer, on average, despite maximum offsetting shortwave CRE. Glaciated cloud systems are strongly linked to orographic forcing, with maximum incidence on the WAIS continuing downstream along the Transantarctic Mountains.« less
NASA Technical Reports Server (NTRS)
Leblanc, S.; Redemann, Jens; Shinozuka, Yohei; Flynn, Connor J.; Segal Rozenhaimer, Michal; Kacenelenbogen, Meloe Shenandoah; Pistone, Kristina Marie Myers; Schmidt, Sebastian; Cochrane, Sabrina
2016-01-01
We present a first view of data collected during a recent field campaign aimed at measuring biomass burning aerosol above clouds from airborne platforms. The NASA ObseRvations of CLouds above Aerosols and their intEractionS (ORACLES) field campaign recently concluded its first deployment sampling clouds and overlying aerosol layer from the airborne platform NASA P3. We present results from the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR), in conjunction with the Solar Spectral Flux Radiometers (SSFR). During this deployment, 4STAR sampled transmitted solar light either via direct solar beam measurements and scattered light measurements, enabling the measurement of aerosol optical thickness and the retrieval of information on aerosol particles in addition to overlying cloud properties. We focus on the zenith-viewing scattered light measurements, which are used to retrieve cloud optical thickness, effective radius, and thermodynamic phase of clouds under a biomass burning layer. The biomass burning aerosol layer present above the clouds is the cause of potential bias in retrieved cloud optical depth and effective radius from satellites. We contrast the typical reflection based approach used by satellites to the transmission based approach used by 4STAR during ORACLES for retrieving cloud properties. It is suspected that these differing approaches will yield a change in retrieved properties since light transmitted through clouds is sensitive to a different cloud volume than reflected light at cloud top. We offer a preliminary view of the implications of these differences in sampling volumes to the calculation of cloud radiative effects (CRE).
NASA Astrophysics Data System (ADS)
Iwabuchi, Hironobu; Saito, Masanori; Tokoro, Yuka; Putri, Nurfiena Sagita; Sekiguchi, Miho
2016-12-01
Satellite remote sensing of the macroscopic, microphysical, and optical properties of clouds are useful for studying spatial and temporal variations of clouds at various scales and constraining cloud physical processes in climate and weather prediction models. Instead of using separate independent algorithms for different cloud properties, a unified, optimal estimation-based cloud retrieval algorithm is developed and applied to moderate resolution imaging spectroradiometer (MODIS) observations using ten thermal infrared bands. The model considers sensor configurations, background surface and atmospheric profile, and microphysical and optical models of ice and liquid cloud particles and radiative transfer in a plane-parallel, multilayered atmosphere. Measurement and model errors are thoroughly quantified from direct comparisons of clear-sky observations over the ocean with model calculations. Performance tests by retrieval simulations show that ice cloud properties are retrieved with high accuracy when cloud optical thickness (COT) is between 0.1 and 10. Cloud-top pressure is inferred with uncertainty lower than 10 % when COT is larger than 0.3. Applying the method to a tropical cloud system and comparing the results with the MODIS Collection 6 cloud product shows good agreement for ice cloud optical thickness when COT is less than about 5. Cloud-top height agrees well with estimates obtained by the CO2 slicing method used in the MODIS product. The present algorithm can detect optically thin parts at the edges of high clouds well in comparison with the MODIS product, in which these parts are recognized as low clouds by the infrared window method. The cloud thermodynamic phase in the present algorithm is constrained by cloud-top temperature, which tends not to produce results with an ice cloud that is too warm and liquid cloud that is too cold.
NASA Astrophysics Data System (ADS)
Wei, Wei; Li, Wenhong; Deng, Yi; Yang, Song; Jiang, Jonathan H.; Huang, Lei; Liu, W. Timothy
2018-04-01
This study investigates dynamical and thermodynamical coupling between the North Atlantic subtropical high (NASH), marine boundary layer (MBL) clouds, and the local sea surface temperatures (SSTs) over the North Atlantic in boreal summer for 1984-2009 using NCEP/DOE Reanalysis 2 dataset, various cloud data, and the Hadley Centre sea surface temperature. On interannual timescales, the summer mean subtropical MBL clouds to the southeast of the NASH is actively coupled with the NASH and local SSTs: a stronger (weaker) NASH is often accompanied with an increase (a decrease) of MBL clouds and abnormally cooler (warmer) SSTs along the southeast flank of the NASH. To understand the physical processes between the NASH and the MBL clouds, the authors conduct a data diagnostic analysis and implement a numerical modeling investigation using an idealized anomalous atmospheric general circulation model (AGCM). Results suggest that significant northeasterly anomalies in the southeast flank of the NASH associated with an intensified NASH tend to induce stronger cold advection and coastal upwelling in the MBL cloud region, reducing the boundary surface temperature. Meanwhile, warm advection associated with the easterly anomalies from the African continent leads to warming over the MBL cloud region at 700 hPa. Such warming and the surface cooling increase the atmospheric static stability, favoring growth of the MBL clouds. The anomalous diabatic cooling associated with the growth of the MBL clouds dynamically excites an anomalous anticyclone to its north and contributes to strengthening of the NASH circulation in its southeast flank. The dynamical and thermodynamical couplings and their associated variations in the NASH, MBL clouds, and SSTs constitute an important aspect of the summer climate variability over the North Atlantic.
Ten Years of Cloud Properties from MODIS: Global Statistics and Use in Climate Model Evaluation
NASA Technical Reports Server (NTRS)
Platnick, Steven E.
2011-01-01
The NASA Moderate Resolution Imaging Spectroradiometer (MODIS), launched onboard the Terra and Aqua spacecrafts, began Earth observations on February 24, 2000 and June 24,2002, respectively. Among the algorithms developed and applied to this sensor, a suite of cloud products includes cloud masking/detection, cloud-top properties (temperature, pressure), and optical properties (optical thickness, effective particle radius, water path, and thermodynamic phase). All cloud algorithms underwent numerous changes and enhancements between for the latest Collection 5 production version; this process continues with the current Collection 6 development. We will show example MODIS Collection 5 cloud climatologies derived from global spatial . and temporal aggregations provided in the archived gridded Level-3 MODIS atmosphere team product (product names MOD08 and MYD08 for MODIS Terra and Aqua, respectively). Data sets in this Level-3 product include scalar statistics as well as 1- and 2-D histograms of many cloud properties, allowing for higher order information and correlation studies. In addition to these statistics, we will show trends and statistical significance in annual and seasonal means for a variety of the MODIS cloud properties, as well as the time required for detection given assumed trends. To assist in climate model evaluation, we have developed a MODIS cloud simulator with an accompanying netCDF file containing subsetted monthly Level-3 statistical data sets that correspond to the simulator output. Correlations of cloud properties with ENSO offer the potential to evaluate model cloud sensitivity; initial results will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Shaocheng; Klein, Stephen A.; Yio, J. John
2006-03-11
European Centre for Medium-Range Weather Forecasts (ECMWF) analysis and model forecast data are evaluated using observations collected during the Atmospheric Radiation Measurement (ARM) October 2004 Mixed-Phase Arctic Cloud Experiment (M-PACE) at its North Slope of Alaska (NSA) site. It is shown that the ECMWF analysis reasonably represents the dynamic and thermodynamic structures of the large-scale systems that affected the NSA during M-PACE. The model-analyzed near-surface horizontal winds, temperature, and relative humidity also agree well with the M-PACE surface measurements. Given the well-represented large-scale fields, the model shows overall good skill in predicting various cloud types observed during M-PACE; however, themore » physical properties of single-layer boundary layer clouds are in substantial error. At these times, the model substantially underestimates the liquid water path in these clouds, with the concomitant result that the model largely underpredicts the downwelling longwave radiation at the surface and overpredicts the outgoing longwave radiation at the top of the atmosphere. The model also overestimates the net surface shortwave radiation, mainly because of the underestimation of the surface albedo. The problem in the surface albedo is primarily associated with errors in the surface snow prediction. Principally because of the underestimation of the surface downwelling longwave radiation at the times of single-layer boundary layer clouds, the model shows a much larger energy loss (-20.9 W m-2) than the observation (-9.6 W m-2) at the surface during the M-PACE period.« less
NASA Technical Reports Server (NTRS)
Ackerman, A.; Jensen, E.; Stevens, D.; Wang, D.; Heymsfield, A.; Miloshevich, L.; Twohy, C.; Poellot, M.; VanReken, T.; Fridland, Ann
2003-01-01
NASA's 2002 CRYSTAL-FACE field experiment focused on the formation and evolution of tropical cirrus cloud systems in southern Florida. Multiple aircraft extensively sampled cumulonimbus dynamical and microphysical properties, as well as characterizing ambient aerosol populations both inside and outside the full depth of the convective column. On July 18, unique measurements were taken when a powerful updraft was traversed directly by aircraft, providing a window into the primary source region of cumulonimbus anvil crystals. Observations of the updraft, entered at approximately l0 km altitude and -34 C, indicated more than 200 cloud particles per mL at vertical velocities exceeding 20 m/s and the presence of significant condensation nuclei and liquid water within the core. In this work, aerosol and cloud phase observations are integrated by simulating the updraft conditions using a large-eddy resolving model with 3 explicit multiphase microphysics, including treatment of size-resolved aerosol fields, aerosol activation and freezing, and evaporation of cloud particles back to the aerosol phase. Simulations were initialized with observed thermodynamic and aerosol size distributions profiles and convection was driven by surface fluxes assimilated from the ARPS forecast model. Model results are consistent with the conclusions that most crystals are homogeneously frozen droplets and that entrained free tropospheric aerosols may contribute a significant fraction of the crystals. Thus most anvil crystals appear to be formed aloft in updraft cores, well above cloud base. These conclusions are supported by observations of hydrometeor size distribution made while traversing the dore, as well as aerosol and cloud particle size distributions generally observed by aircraft below 4km and crystal properties generally observed by aircraft above 12km.
Latent Heating Retrieval from TRMM Observations Using a Simplified Thermodynamic Model
NASA Technical Reports Server (NTRS)
Grecu, Mircea; Olson, William S.
2003-01-01
A procedure for the retrieval of hydrometeor latent heating from TRMM active and passive observations is presented. The procedure is based on current methods for estimating multiple-species hydrometeor profiles from TRMM observations. The species include: cloud water, cloud ice, rain, and graupel (or snow). A three-dimensional wind field is prescribed based on the retrieved hydrometeor profiles, and, assuming a steady-state, the sources and sinks in the hydrometeor conservation equations are determined. Then, the momentum and thermodynamic equations, in which the heating and cooling are derived from the hydrometeor sources and sinks, are integrated one step forward in time. The hydrometeor sources and sinks are reevaluated based on the new wind field, and the momentum and thermodynamic equations are integrated one more step. The reevalution-integration process is repeated until a steady state is reached. The procedure is tested using cloud model simulations. Cloud-model derived fields are used to synthesize TRMM observations, from which hydrometeor profiles are derived. The procedure is applied to the retrieved hydrometeor profiles, and the latent heating estimates are compared to the actual latent heating produced by the cloud model. Examples of procedure's applications to real TRMM data are also provided.
Thermodynamic control of anvil cloud amount
Bony, Sandrine; Stevens, Bjorn; Coppin, David; Becker, Tobias; Reed, Kevin A.; Voigt, Aiko
2016-01-01
General circulation models show that as the surface temperature increases, the convective anvil clouds shrink. By analyzing radiative–convective equilibrium simulations, we show that this behavior is rooted in basic energetic and thermodynamic properties of the atmosphere: As the climate warms, the clouds rise and remain at nearly the same temperature, but find themselves in a more stable atmosphere; this enhanced stability reduces the convective outflow in the upper troposphere and decreases the anvil cloud fraction. By warming the troposphere and increasing the upper-tropospheric stability, the clustering of deep convection also reduces the convective outflow and the anvil cloud fraction. When clouds are radiatively active, this robust coupling between temperature, high clouds, and circulation exerts a positive feedback on convective aggregation and favors the maintenance of strongly aggregated atmospheric states at high temperatures. This stability iris mechanism likely contributes to the narrowing of rainy areas as the climate warms. Whether or not it influences climate sensitivity requires further investigation. PMID:27412863
Thermodynamic control of anvil cloud amount
Bony, Sandrine; Stevens, Bjorn; Coppin, David; ...
2016-07-13
General circulation models show that as the surface temperature increases, the convective anvil clouds shrink. By analyzing radiative–convective equilibrium simulations, our work shows that this behavior is rooted in basic energetic and thermodynamic properties of the atmosphere: As the climate warms, the clouds rise and remain at nearly the same temperature, but find themselves in a more stable atmosphere; this enhanced stability reduces the convective outflow in the upper troposphere and decreases the anvil cloud fraction. By warming the troposphere and increasing the upper-tropospheric stability, the clustering of deep convection also reduces the convective outflow and the anvil cloud fraction.more » When clouds are radiatively active, this robust coupling between temperature, high clouds, and circulation exerts a positive feedback on convective aggregation and favors the maintenance of strongly aggregated atmospheric states at high temperatures. This stability iris mechanism likely contributes to the narrowing of rainy areas as the climate warms. Whether or not it influences climate sensitivity requires further investigation.« less
Global well-posedness for passively transported nonlinear moisture dynamics with phase changes
NASA Astrophysics Data System (ADS)
Hittmeir, Sabine; Klein, Rupert; Li, Jinkai; Titi, Edriss S.
2017-10-01
We study a moisture model for warm clouds that has been used by Klein and Majda (2006 Theor. Comput. Fluid Dyn. 20 525-551) as a basis for multiscale asymptotic expansions for deep convective phenomena. These moisture balance equations correspond to a bulk microphysics closure in the spirit of Kessler (1969 Meteorol. Monogr. 10 1-84) and Grabowski and Smolarkiewicz (1996 Mon. Weather Rev. 124 487-97), in which water is present in the gaseous state as water vapor and in the liquid phase as cloud water and rain water. It thereby contains closures for the phase changes condensation and evaporation, as well as the processes of autoconversion of cloud water into rainwater and the collection of cloud water by the falling rain droplets. Phase changes are associated with enormous amounts of latent heat and therefore provide a strong coupling to the thermodynamic equation. In this work we assume the velocity field to be given and prove rigorously the global existence and uniqueness of uniformly bounded solutions of the moisture model with viscosity, diffusion and heat conduction. To guarantee local well-posedness we first need to establish local existence results for linear parabolic equations, subject to the Robin boundary conditions on the cylindric type of domains under consideration. We then derive a priori estimates, for proving the maximum principle, using the Stampacchia method, as well as the iterative method by Alikakos (1979 J. Differ. Equ. 33 201-25) to obtain uniform boundedness. The evaporation term is of power law type, with an exponent in general less or equal to one and therefore making the proof of uniqueness more challenging. However, these difficulties can be circumvented by introducing new unknowns, which satisfy the required cancellation and monotonicity properties in the source terms.
The Influence of Sea Ice on Arctic Low Cloud Properties and Radiative Effects
NASA Technical Reports Server (NTRS)
Taylor, Patrick C.
2015-01-01
The Arctic is one of the most climatically sensitive regions of the Earth. Climate models robustly project the Arctic to warm 2-3 times faster than the global mean surface temperature, termed polar warming amplification (PWA), but also display the widest range of surface temperature projections in this region. The response of the Arctic to increased CO2 modulates the response in tropical and extra-tropical regions through teleconnections in the atmospheric circulation. An increased frequency of extreme precipitation events in the northern mid-latitudes, for example, has been linked to the change in the background equator-to-pole temperature gradient implied by PWA. Understanding the Arctic climate system is therefore important for predicting global climate change. The ice albedo feedback is the primary mechanism driving PWA, however cloud and dynamical feedbacks significantly contribute. These feedback mechanisms, however, do not operate independently. How do clouds respond to variations in sea ice? This critical question is addressed by combining sea ice, cloud, and radiation observations from satellites, including CERES, CloudSAT, CALIPSO, MODIS, and microwave radiometers, to investigate sea ice-cloud interactions at the interannual timescale in the Arctic. Cloud characteristics are strongly tied to the atmospheric dynamic and thermodynamic state. Therefore, the sensitivity of Arctic cloud characteristics, vertical distribution and optical properties, to sea ice anomalies is computed within atmospheric dynamic and thermodynamic regimes. Results indicate that the cloud response to changes in sea ice concentration differs significantly between atmospheric state regimes. This suggests that (1) the atmospheric dynamic and thermodynamic characteristics and (2) the characteristics of the marginal ice zone are important for determining the seasonal forcing by cloud on sea ice variability.
Grain formation in astronomical systems: A critical review of condensation processes
NASA Technical Reports Server (NTRS)
Donn, B.
1978-01-01
An analysis is presented of the assumption and the applicability of the three theoretical methods for calculating condensations in cosmic clouds where no pre-existing nuclei exist. The three procedures are: thermodynamic equilibrium calculations, nucleation theory, and a kinetic treatment which would take into account the characteristics of each individual collision. Thermodynamics provide detailed results on the composition temperature and composition of the condensate provided the system attains equilibrium. Because of the cosmic abundance mixture of elements, large supersaturations in some cases and low pressures, equilibrium is not expected in astronomical clouds. Nucleation theory, a combination of thermodynamics and kinetics, has the limitations of each scheme. Kinetics, not requiring equilibrium, avoids nearly all the thermodynamics difficulties but requires detailed knowledge of many reactions which thermodynamics avoids. It appears to be the only valid way to treat grain formation in space. A review of experimental studies is given.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Menzel, Paul; Ackerman, Steven A.
2006-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18,1999 and Aqua spacecraft on May 4, 2002. It achieved its final orbit and began Earth observations on February 24,2000 for Terra and June 24,2002 for Aqua. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate change studies, climate modeling, numerical weather prediction, and fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. Over the last year, extensive improvements and enhancements in the global cloud products have been implemented, and reprocessing of all MODIS data on Terra has commenced since first light in February 2000. In the cloud mask algorithm, the most extensive improvements were in distinguishing clouds at nighttime, including the challenging polar darkness regions of the world. Additional improvements have been made to properly distinguish sunglint from clouds in the tropical ocean regions, and to improve the identification of clouds from snow during daytime in Polar Regions. We will show global monthly mean cloud fraction for both Terra and Aqua, and show how similar the global daytime cloud fraction is from these morning and afternoon orbits, respectively. We will also show the zonal distribution of cloud fraction over land and ocean regions for both Terra and Aqua, and show the time series of global cloud fraction from July 2002 through June 2006.
The structure and statistics of interstellar turbulence
NASA Astrophysics Data System (ADS)
Kritsuk, A. G.; Ustyugov, S. D.; Norman, M. L.
2017-06-01
We explore the structure and statistics of multiphase, magnetized ISM turbulence in the local Milky Way by means of driven periodic box numerical MHD simulations. Using the higher order-accurate piecewise-parabolic method on a local stencil (PPML), we carry out a small parameter survey varying the mean magnetic field strength and density while fixing the rms velocity to observed values. We quantify numerous characteristics of the transient and steady-state turbulence, including its thermodynamics and phase structure, kinetic and magnetic energy power spectra, structure functions, and distribution functions of density, column density, pressure, and magnetic field strength. The simulations reproduce many observables of the local ISM, including molecular clouds, such as the ratio of turbulent to mean magnetic field at 100 pc scale, the mass and volume fractions of thermally stable Hi, the lognormal distribution of column densities, the mass-weighted distribution of thermal pressure, and the linewidth-size relationship for molecular clouds. Our models predict the shape of magnetic field probability density functions (PDFs), which are strongly non-Gaussian, and the relative alignment of magnetic field and density structures. Finally, our models show how the observed low rates of star formation per free-fall time are controlled by the multiphase thermodynamics and large-scale turbulence.
The dynamics behind Titan's methane clouds.
Mitchell, Jonathan L; Pierrehumbert, Raymond T; Frierson, Dargan M W; Caballero, Rodrigo
2006-12-05
We present results of an axisymmetric global circulation model of Titan with a simplified suite of atmospheric physics forced by seasonally varying insolation. The recent discovery of midlatitude tropospheric clouds on Titan has caused much excitement about the roles of surface sources of methane and the global circulation in forming clouds. Although localized surface sources, such as methane geysers or "cryovolcanoes," have been invoked to explain these clouds, we find in this work that clouds appear in regions of convergence by the mean meridional circulation and over the poles during solstices, where the solar forcing reaches its seasonal maximum. Other regions are inhibited from forming clouds because of dynamical transports of methane and strong subsidence. We find that for a variety of moist regimes, i.e., with the effect of methane thermodynamics included, the observed cloud features can be explained by the large-scale dynamics of the atmosphere. Clouds at the solsticial pole are found to be a robust feature of Titan's dynamics, whereas isolated midlatitude clouds are present exclusively in a variety of moist dynamical regimes. In all cases, even without including methane thermodynamics, our model ceases to produce polar clouds approximately 4-6 terrestrial years after solstices.
Thermodynamics of the formaldehyde-water and formaldehyde-ice systems for atmospheric applications.
Barret, Manuel; Houdier, Stephan; Domine, Florent
2011-01-27
Formaldehyde (HCHO) is a species involved in numerous key atmospheric chemistry processes that can significantly impact the oxidative capacity of the atmosphere. Since gaseous HCHO is soluble in water, the water droplets of clouds and the ice crystals of snow exchange HCHO with the gas phase and the partitioning of HCHO between the air, water, and ice phases must be known to understand its chemistry. This study proposes thermodynamic formulations for the partitioning of HCHO between the gas phase and the ice and liquid water phases. A reanalysis of existing data on the vapor-liquid equilibrium has shown the inadequacy of the Henry's law formulation, and we instead propose the following equation to predict the mole fraction of HCHO in liquid water at equilibrium, X(HCHO,liq), as a function of the partial pressure P(HCHO) (Pa) and temperature T (K): X(HCHO,liq) = 1.700 × 10(-15) e((8014/T))(P(HCHO))(1.105). Given the paucity of data on the gas-ice equilibrium, the solubility of HCHO and the diffusion coefficient (D(HCHO)) in ice were measured by exposing large single ice crystals to low P(HCHO). Our recommended value for D(HCHO) over the temperature range 243-266 K is D(HCHO) = 6 × 10(-12) cm(2) s(-1). The solubility of HCHO in ice follows the relationship X(HCHO,ice) = 9.898 × 10(-13) e((4072/T))(P(HCHO))(0.803). Extrapolation of these data yields the P(HCHO) versus 1/T phase diagram for the H(2)O-HCHO system. The comparison of our results to existing data on the partitioning of HCHO between the snow and the atmosphere in the high arctic highlights the interplay between thermodynamic equilibrium and kinetics processes in natural systems.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Hubanks, Paul; Pincus, Robert
2006-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18, 1999 and Aqua spacecraft on May 4, 2002. It achieved its final orbit and began Earth observations on February 24, 2000 for Terra and June 24, 2002 for Aqua. A comprehensive set of operational algorithms for the retrieval of cloud physical and optical properties (optical thickness, effective particle radius, water path, thermodynamic phase) have recently been updated and are being used in the new "Collection 5" processing stream being produced by the MODIS Adaptive Processing System (MODAPS) at NASA GSFC. All Terra and Aqua data are undergoing Collection 5 reprocessing with an expected completion date by the end of 2006. The archived products from these algorithms include 1 km pixel-level (Level-2) and global gridded Level-3 products. The cloud products have applications in climate change studies, climate modeling, numerical weather prediction, as well as fundamental atmospheric research. In this talk, we will summarize the available Level-3 cloud properties and their associated statistical data sets, and show preliminary Terra and Aqua results from the available Collection 5 reprocessing effort. Anticipated results include the latitudinal distribution of cloud optical and radiative properties for both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the world.
Rubens, P; Heremans, K
2000-12-01
The gelatinization of rice starch is reported as a function of temperature and pressure from the changes in the ir spectrum. The diagram that is observed is reminiscent of those obtained for the denaturation of proteins and the phase separation observed from the cloud point for several water soluble synthetic polymers. It is proposed that the reentrant shape of the diagram for starch is not only due to hydrogen bonding but also to the imperfect packing of amylose and amylopectin chains in the starch granule. The influence of pressure and temperature on thermodynamic parameters leading to this diagram is discussed. Copyright 2000 John Wiley & Sons, Inc.
Xie, Shaocheng; Klein, Stephen A.; Zhang, Minghua; ...
2006-10-05
[1] This study represents an effort to develop Single-Column Model (SCM) and Cloud-Resolving Model large-scale forcing data from a sounding array in the high latitudes. An objective variational analysis approach is used to process data collected from the Atmospheric Radiation Measurement Program (ARM) Mixed-Phase Arctic Cloud Experiment (M-PACE), which was conducted over the North Slope of Alaska in October 2004. In this method the observed surface and top of atmosphere measurements are used as constraints to adjust the sounding data from M-PACE in order to conserve column-integrated mass, heat, moisture, and momentum. Several important technical and scientific issues related tomore » the data analysis are discussed. It is shown that the analyzed data reasonably describe the dynamic and thermodynamic features of the Arctic cloud systems observed during M-PACE. Uncertainties in the analyzed forcing fields are roughly estimated by examining the sensitivity of those fields to uncertainties in the upper-air data and surface constraints that are used in the analysis. Impacts of the uncertainties in the analyzed forcing data on SCM simulations are discussed. Results from the SCM tests indicate that the bulk features of the observed Arctic cloud systems can be captured qualitatively well using the forcing data derived in this study, and major model errors can be detected despite the uncertainties that exist in the forcing data as illustrated by the sensitivity tests. Lastly, the possibility of using the European Center for Medium-Range Weather Forecasts analysis data to derive the large-scale forcing over the Arctic region is explored.« less
Vapour pressure of ammonium chloride aerosol: Effect of temperature and humidity
NASA Astrophysics Data System (ADS)
Pio, Casimiro A.; Harrison, Roy M.
The effect of relative humidity (RH) on the constant for dissociation of ammonium chloride into gaseous HCl and NH 3 has been estimated for different temperatures, using thermodynamic data. At RH over 75-85% the ammonium chloride aerosol exists in the liquid phase, with the dissociation constant two orders of magnitude lower at 98% RH than for solid aerosol at the same temperature. It is predicted that ammonium chloride aqueous aerosol forms predominantly in fogwater and cloud droplets, and in regions where local emissions of NH 3 are important.
NASA Astrophysics Data System (ADS)
LeBlanc, S. E.; Redemann, J.; Flynn, C. J.; Segal-Rosenhaimer, M.; Kacenelenbogen, M. S.; Shinozuka, Y.; Pistone, K.; Karol, Y.; Schmidt, S.; Cochrane, S.; Chen, H.; Meyer, K.; Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Hair, J. W.
2017-12-01
We present aerosol and cloud properties collected from airborne remote-sensing measurements in the southeast Atlantic during the recent NASA ObseRvations of CLouds above Aerosols and their intEractionS (ORACLES) field campaign. During the biomass burning seasons of September 2016 and August 2017, we sampled aerosol layers which overlaid marine stratocumulus clouds off the southwestern coast of Africa. We sampled these aerosol layers and the underlying clouds from the NASA P3 airborne platform with the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR). Aerosol optical depth (AOD), along with trace gas content in the atmospheric column (water vapor, NO2, and O3), is obtained from the attenuation in the sun's direct beam, measured at the altitude of the airborne platform. Using hyperspectral transmitted light measurements from 4STAR, in conjunction with hyperspectral hemispheric irradiance measurements from the Solar Spectral Flux Radiometers (SSFR), we also obtained aerosol intensive properties (asymmetry parameter, single scattering albedo), aerosol size distributions, cloud optical depth (COD), cloud particle effective radius, and cloud thermodynamic phase. Aerosol intensive properties are retrieved from measurements of angularly resolved skylight and flight level spectral albedo using the inversion used with measurements from AERONET (Aerosol Robotic Network) that has been modified for airborne use. The cloud properties are obtained from 4STAR measurements of scattered light below clouds. We show a favorable initial comparison of the above-cloud AOD measured by 4STAR to this same product retrieved from measurements by the MODIS instrument on board the TERRA and AQUA satellites. The layer AOD observed above clouds will also be compared to integrated aerosol extinction profile measurements from the High Spectral Resolution Lidar-2 (HSRL-2).
NASA Technical Reports Server (NTRS)
Churchill, Dean D.; Houze, Robert A., Jr.
1991-01-01
A twi-dimensional kinematic model has been used to diagnose the thermodynamic, water vapor, and hydrometeor fields of the stratiform clouds associated with a mesoscale tropical cloud cluster. The model incorporates ice- and water-cloud microphysics, visible and infrared radiation, and convective adjustment. It is intended to determine the relative contributions of radiation, mycrophysics, and turbulence to diabatic heating, and the effects that radiation has on the water budget of the cluster in the absence of dynamical interactions. The model has been initialized with thermodynamic fields and wind velocities diagnosed from a GATE tropical squall line. It is found that radiation does not directly affect the water budget of the stratiform region, and any radiative effect on hydrometeors must involve interaction with dynamics.
NASA Astrophysics Data System (ADS)
Wong, S.; Naud, C. M.; Kahn, B. H.; Wu, L.; Fetzer, E. J.
2017-12-01
Different sectors in extratropical cyclonic systems (ETCs) exhibit various patterns in atmospheric moisture transport and provide an excellent test bed for studying coupling between cloud processes and large-scale circulation. Large-scale atmospheric moisture transport diagnosed from the Modern-Era Retrospective analysis for Research and Applications Version 2 and cloud properties (cloud top pressure and optical depth, cloud effective radii and thermodynamic phase) from both the Moderate Resolution Imaging Spectroradiometer (MODIS) and Atmospheric Infrared Sounder (AIRS) will be composited around Northern Hemispheric ETCs over ocean according to their stages of development. Atmospheric diabatic heating rates (Q1) and moisture sinks (Q2) are also inferred from the reanalysis winds, temperature, and specific humidity. Across the warm fronts, elevated convection in the pre-warm front regime is associated with frequent stratiform clouds with middle-to-upper tropospheric heating and lower tropospheric cooling, while upright convection in the warm front regime has frequent deep convective clouds with free-tropospheric heating and strong boundary layer cooling. Thinner stratiform and cirrus clouds are evident in the warm sector with top-heavy profiles of rising motion and diabatic heating. Moisture advection exhibits a sharp gradient across the cold fronts, with convection in the pre-cold front regime highly dependent on the stage of the ETC development. Heating in the boundary layers of the cold sector, polar-air intrusion, and pre-warm sector regimes depends on the amount of low-level clouds, which is again modulated by the stage of the ETC development.
Linking the Climate and Thermal Phase Curve of 55 Cancri e
NASA Astrophysics Data System (ADS)
Hammond, Mark; Pierrehumbert, Raymond T.
2017-11-01
The thermal phase curve of 55 Cancri e is the first measurement of the temperature distribution of a tidally locked super-Earth, but raises a number of puzzling questions about the planet’s climate. The phase curve has a high amplitude and peak offset, suggesting that it has a significant eastward hot-spot shift as well as a large day-night temperature contrast. We use a general circulation model to model potential climates, and investigate the relation between bulk atmospheric composition and the magnitude of these seemingly contradictory features. We confirm theoretical models of tidally locked circulation are consistent with our numerical model of 55 Cnc e, and rule out certain atmospheric compositions based on their thermodynamic properties. Our best-fitting atmosphere has a significant hot-spot shift and day-night contrast, although these are not as large as the observed phase curve. We discuss possible physical processes that could explain the observations, and show that night-side cloud formation from species such as SiO from a day-side magma ocean could potentially increase the phase curve amplitude and explain the observations. We conclude that the observations could be explained by an optically thick atmosphere with a low mean molecular weight, a surface pressure of several bars, and a strong eastward circulation, with night-side cloud formation a possible explanation for the difference between our model and the observations.
NASA Astrophysics Data System (ADS)
Del Genio, A. D.; Platnick, S. E.; Bennartz, R.; Klein, S. A.; Marchand, R.; Oreopoulos, L.; Pincus, R.; Wood, R.
2016-12-01
Low clouds are central to leading-order questions in climate and subseasonal weather predictability, and are key to the NRC panel report's goals "to understand the signals of the Earth system under a changing climate" and "for improved models and model projections." To achieve both goals requires a mix of continuity observations to document the components of the changing climate and improvements in retrievals of low cloud and boundary layer dynamical/thermodynamic properties to ensure process-oriented observations that constrain the parameterized physics of the models. We discuss four climate/weather objectives that depend sensitively on understanding the behavior of low clouds: 1. Reduce uncertainty in GCM-inferred climate sensitivity by 50% by constraining subtropical low cloud feedbacks. 2. Eliminate the GCM Southern Ocean shortwave flux bias and its effect on cloud feedback and the position of the midlatitude storm track. 3. Eliminate the double Intertropical Convergence Zone bias in GCMs and its potential effects on tropical precipitation over land and the simulation and prediction of El Niño. 4. Increase the subseasonal predictability of tropical warm pool precipitation from 20 to 30 days. We envision advances in three categories of observations that would be highly beneficial for reaching these goals: 1. More accurate observations will facilitate more thorough evaluation of clouds in GCMs. 2. Better observations of the links between cloud properties and the environmental state will be used as the foundation for parameterization improvements. 3. Sufficiently long and higher quality records of cloud properties and environmental state will constrain low cloud feedback purely observationally. To accomplish this, the greatest need is to replace A-Train instruments, which are nearing end-of-life, with enhanced versions. The requirements are sufficient horizontal and vertical resolution to capture boundary layer cloud and thermodynamic spatial structure; more accurate determination of cloud condensate profiles and optical properties; near-coincident observations to permit multi-instrument retrievals and association with dynamic and thermodynamic structure; global coverage; and, for long-term monitoring, measurement and orbit stability and sufficient mission duration.
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Schluessel, Peter
2009-01-01
Surface and atmospheric thermodynamic parameters retrieved with advanced ultraspectral remote sensors aboard Earth observing satellites are critical to general atmospheric and Earth science research, climate monitoring, and weather prediction. Ultraspectral resolution infrared radiance obtained from nadir observations provide atmospheric, surface, and cloud information. Presented here is the global surface IR emissivity retrieved from Infrared Atmospheric Sounding Interferometer (IASI) measurements under "clear-sky" conditions. Fast radiative transfer models, applied to the cloud-free (or clouded) atmosphere, are used for atmospheric profile and surface parameter (or cloud parameter) retrieval. The inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral infrared sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface (or cloud microphysical) parameters. Rapidly produced surface emissivity is initially evaluated through quality control checks on the retrievals of other impacted atmospheric and surface parameters. Surface emissivity and surface skin temperature from the current and future operational satellites can and will reveal critical information on the Earth s ecosystem and land surface type properties, which can be utilized as part of long-term monitoring for the Earth s environment and global climate change.
Spatial and Temporal Distribution of Clouds Observed by MODIS Onboard the Terra and Aqua Satellites
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Menzel, W. Paul; Ackerman, Steven A.; Hubanks, Paul A.
2012-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched aboard the Terra spacecraft on December 18, 1999 and Aqua spacecraft on May 4, 2002. A comprehensive set of remote sensing algorithms for the retrieval of cloud physical and optical properties have enabled over twelve years of continuous observations of cloud properties from Terra and over nine years from Aqua. The archived products from these algorithms include 1 km pixel-level (Level-2) and global gridded Level-3 products. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. Results include the latitudinal distribution of cloud optical and radiative properties for both liquid water and ice clouds, as well as latitudinal distributions of cloud top pressure and cloud top temperature. MODIS finds the cloud fraction, as derived by the cloud mask, is nearly identical during the day and night, with only modest diurnal variation. Globally, the cloud fraction derived by the MODIS cloud mask is approx.67%, with somewhat more clouds over land during the afternoon and less clouds over ocean in the afternoon, with very little difference in global cloud cover between Terra and Aqua. Overall, cloud fraction over land is approx.55%, with a distinctive seasonal cycle, whereas the ocean cloudiness is much higher, around 72%, with much reduced seasonal variation. Cloud top pressure and temperature have distinct spatial and temporal patterns, and clearly reflect our understanding of the global cloud distribution. High clouds are especially prevalent over the northern hemisphere continents between 30 and 50 . Aqua and Terra have comparable zonal cloud top pressures, with Aqua having somewhat higher clouds (cloud top pressures lower by 100 hPa) over land due to afternoon deep convection. The coldest cloud tops (colder than 230 K) generally occur over Antarctica and the high clouds in the tropics (ITCZ and the deep convective clouds over the western tropical Pacific and Indian sub-continent).
Progress towards MODIS and VIIRS Cloud Optical Property Data Record Continuity
NASA Astrophysics Data System (ADS)
Meyer, K.; Platnick, S. E.; Wind, G.; Amarasinghe, N.; Holz, R.; Ackerman, S. A.; Heidinger, A. K.
2016-12-01
The launch of Suomi NPP in the fall of 2011 began the next generation of U.S. operational polar orbiting Earth observations, and its VIIRS imager provides an opportunity to extend the 15+ year climate data record of MODIS EOS. Similar to MODIS, VIIRS provides visible through IR observations at moderate spatial resolution with a 1330 LT equatorial crossing consistent with the MODIS on the Aqua platform. However, unlike MODIS, VIIRS lacks key water vapor and CO2 absorbing channels used for high cloud detection and cloud-top property retrievals, and there is a significant change in the spectral location of the 2.1μm shortwave-infrared channel used for cloud optical/microphysical retrievals and cloud thermodynamic phase. Given these instrument differences between MODIS EOS and VIIRS S-NPP/JPSS, we discuss our progress towards merging the MODIS observational record with VIIRS in order to generate cloud optical property climate data record continuity across the observing systems. The MODIS-VIIRS continuity algorithm for cloud optical property retrievals leverages heritage algorithms that produce the existing MODIS cloud optical and microphysical properties product (MOD06); the NOAA AWG/CLAVR-x cloud-top property algorithm and a common MODIS-VIIRS cloud mask feed into the optical property algorithm. To account for the different channel sets of MODIS and VIIRS, each algorithm nominally uses a subset of channels common to both imagers. Data granule and aggregated examples for the current version of the continuity algorithm (MODAWG) will be shown. In addition, efforts to reconcile apparent radiometric biases between analogous channels of the two imagers, a critical consideration for obtaining inter-sensor climate data record continuity, will be discussed.
The MSG-SEVIRI-based cloud property data record CLAAS-2
NASA Astrophysics Data System (ADS)
Benas, Nikos; Finkensieper, Stephan; Stengel, Martin; van Zadelhoff, Gerd-Jan; Hanschmann, Timo; Hollmann, Rainer; Fokke Meirink, Jan
2017-07-01
Clouds play a central role in the Earth's atmosphere, and satellite observations are crucial for monitoring clouds and understanding their impact on the energy budget and water cycle. Within the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Satellite Application Facility on Climate Monitoring (CM SAF), a new cloud property data record was derived from geostationary Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI) measurements for the time frame 2004-2015. The resulting CLAAS-2 (CLoud property dAtAset using SEVIRI, Edition 2) data record is publicly available via the CM SAF website (https://doi.org/10.5676/EUM_SAF_CM/CLAAS/V002). In this paper we present an extensive evaluation of the CLAAS-2 cloud products, which include cloud fractional coverage, thermodynamic phase, cloud top properties, liquid/ice cloud water path and corresponding optical thickness and particle effective radius. Data validation and comparisons were performed on both level 2 (native SEVIRI grid and repeat cycle) and level 3 (daily and monthly averages and histograms) with reference datasets derived from lidar, microwave and passive imager measurements. The evaluation results show very good overall agreement with matching spatial distributions and temporal variability and small biases attributed mainly to differences in sensor characteristics, retrieval approaches, spatial and temporal samplings and viewing geometries. No major discrepancies were found. Underpinned by the good evaluation results, CLAAS-2 demonstrates that it is fit for the envisaged applications, such as process studies of the diurnal cycle of clouds and the evaluation of regional climate models. The data record is planned to be extended and updated in the future.
Assessment of the Dehydration-Greenhouse Feedback Over the Arctic During Winter
NASA Astrophysics Data System (ADS)
Girard, E.; Stefanof, A.; Peltier-Champigny, M.; Munoz-Alpizar, R.; Dueymes, G.; Jean-Pierre, B.
2007-12-01
The effect of pollution-derived sulphuric acid aerosols on the aerosol-cloud-radiation interactions is investigated over the Arctic for February 1990. Observations suggest that acidic aerosols can decrease the heterogeneous nucleation rate of ice crystals and lower the homogeneous freezing temperature of haze droplets. Based on these observations, we hypothesize that the cloud thermodynamic phase is modified in polluted air mass (Arctic haze). Cloud ice number concentration is reduced, thus promoting further ice crystal growth by the Bergeron-Findeisen process. Hence, ice crystals reach larger sizes and low-level ice crystal precipitation from mixed-phase clouds increases. Enhanced dehydration of the lower troposphere contributes to decrease the water vapour greenhouse effect and cool the surface. A positive feedback is created between surface cooling and air dehydration, accelerating the cold air production. This process is referred to as the dehydration-greenhouse feedback (DGF). Simulations performed using an arctic regional climate model for February 1990, February and March 1985 and 1995 are used to assess the potential effect of the DGF on the Arctic climate. Results show that the DGF has an important effect over the Central and Eurasian Arctic, which is the coldest part of the Arctic with a surface cooling ranging between 0 and -3K. Moreover, the lower tropospheric cooling over the Eurasian and Central Arctic strengthens the atmospheric circulation at upper level, thus increasing the aerosol transport from the mid-latitudes and enhancing the DGF. Over warmer areas, the increased aerosol concentration (caused by the DGF) leads to longer cloud lifetime, which contributes to warm these areas. It is also shown that the maximum ice nuclei reduction must be of the order of 100 to get a significant effect.
Lagrangian condensation microphysics with Twomey CCN activation
NASA Astrophysics Data System (ADS)
Grabowski, Wojciech W.; Dziekan, Piotr; Pawlowska, Hanna
2018-01-01
We report the development of a novel Lagrangian microphysics methodology for simulations of warm ice-free clouds. The approach applies the traditional Eulerian method for the momentum and continuous thermodynamic fields such as the temperature and water vapor mixing ratio, and uses Lagrangian super-droplets
to represent condensed phase such as cloud droplets and drizzle or rain drops. In other applications of the Lagrangian warm-rain microphysics, the super-droplets outside clouds represent unactivated cloud condensation nuclei (CCN) that become activated upon entering a cloud and can further grow through diffusional and collisional processes. The original methodology allows for the detailed study of not only effects of CCN on cloud microphysics and dynamics, but also CCN processing by a cloud. However, when cloud processing is not of interest, a simpler and computationally more efficient approach can be used with super-droplets forming only when CCN is activated and no super-droplet existing outside a cloud. This is possible by applying the Twomey activation scheme where the local supersaturation dictates the concentration of cloud droplets that need to be present inside a cloudy volume, as typically used in Eulerian bin microphysics schemes. Since a cloud volume is a small fraction of the computational domain volume, the Twomey super-droplets provide significant computational advantage when compared to the original super-droplet methodology. Additional advantage comes from significantly longer time steps that can be used when modeling of CCN deliquescence is avoided. Moreover, other formulation of the droplet activation can be applied in case of low vertical resolution of the host model, for instance, linking the concentration of activated cloud droplets to the local updraft speed. This paper discusses the development and testing of the Twomey super-droplet methodology, focusing on the activation and diffusional growth. Details of the activation implementation, transport of super-droplets in the physical space, and the coupling between super-droplets and the Eulerian temperature and water vapor field are discussed in detail. Some of these are relevant to the original super-droplet methodology as well and to the ice phase modeling using the Lagrangian approach. As a computational example, the scheme is applied to an idealized moist thermal rising in a stratified environment, with the original super-droplet methodology providing a benchmark to which the new scheme is compared.
Diagnosing AIRS Sampling with CloudSat Cloud Classes
NASA Technical Reports Server (NTRS)
Fetzer, Eric; Yue, Qing; Guillaume, Alexandre; Kahn, Brian
2011-01-01
AIRS yield and sampling vary with cloud state. Careful utilization of collocated multiple satellite sensors is necessary. Profile differences between AIRS and ECMWF model analyses indicate that AIRS has high sampling and excellent accuracy for certain meteorological conditions. Cloud-dependent sampling biases may have large impact on AIRS L2 and L3 data in climate research. MBL clouds / lower tropospheric stability relationship is one example. AIRS and CloudSat reveal a reasonable climatology in the MBL cloud regime despite limited sampling in stratocumulus. Thermodynamic parameters such as EIS derived from AIRS data map these cloud conditions successfully. We are working on characterizing AIRS scenes with mixed cloud types.
The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Li, Xiaowen; Khain, Alexander; Matsui, Toshihisa; Lang, Stephen; Simpson, Joanne
2008-01-01
Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds [NRC, 2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path [Twomey, 1977] and the "semi-direct" effect on cloud coverage [e.g., Ackerman et al ., 2001]." Enhanced aerosol concentrations can also suppress warm rain processes by producing a narrow droplet spectrum that inhibits collision and coalescence processes [e.g., Squires and Twomey, 1961; Warner and Twomey, 1967; Warner, 1968; Rosenfeld, 19991. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect [Albrecht, 1989], is even more complex, especially for mixed-phase convective clouds. Table 1 summarizes the key observational studies identifying the microphysical properties, cloud characteristics, thermodynamics and dynamics associated with cloud systems from high-aerosol continental environments. For example, atmospheric aerosol concentrations can influence cloud droplet size distributions, warm-rain process, cold-rain process, cloud-top height, the depth of the mixed phase region, and occurrence of lightning. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing an enhanced source of cloud condensation nuclei (CCN). Hypotheses have been developed to explain the effect of urban regions on convection and precipitation [van den Heever and Cotton, 2007 and Shepherd, 2005]. Please see Tao et al. (2007) for more detailed description on aerosol impact on precipitation. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and summertime convection over a mid-latitude continent with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. The impact of atmospheric aerosol concentration on cloud and precipitation will be investigated.
Liu, Zheng; Muhlbauer, Andreas; Ackerman, Thomas
2015-11-05
In this paper, we evaluate high-level clouds in a cloud resolving model during two convective cases, ARM9707 and KWAJEX. The simulated joint histograms of cloud occurrence and radar reflectivity compare well with cloud radar and satellite observations when using a two-moment microphysics scheme. However, simulations performed with a single moment microphysical scheme exhibit low biases of approximately 20 dB. During convective events, two-moment microphysical overestimate the amount of high-level cloud and one-moment microphysics precipitate too readily and underestimate the amount and height of high-level cloud. For ARM9707, persistent large positive biases in high-level cloud are found, which are not sensitivemore » to changes in ice particle fall velocity and ice nuclei number concentration in the two-moment microphysics. These biases are caused by biases in large-scale forcing and maintained by the periodic lateral boundary conditions. The combined effects include significant biases in high-level cloud amount, radiation, and high sensitivity of cloud amount to nudging time scale in both convective cases. The high sensitivity of high-level cloud amount to the thermodynamic nudging time scale suggests that thermodynamic nudging can be a powerful ‘‘tuning’’ parameter for the simulated cloud and radiation but should be applied with caution. The role of the periodic lateral boundary conditions in reinforcing the biases in cloud and radiation suggests that reducing the uncertainty in the large-scale forcing in high levels is important for similar convective cases and has far reaching implications for simulating high-level clouds in super-parameterized global climate models such as the multiscale modeling framework.« less
Convection systems and associated cloudiness directly influence regional and local radiation budgets, and dynamics and thermodynamics through feedbacks. However, most subgrid-scale convective parameterizations in regional weather and climate models do not consider cumulus cloud ...
Dust in brown dwarfs. III. Formation and structure of quasi-static cloud layers
NASA Astrophysics Data System (ADS)
Woitke, P.; Helling, Ch.
2004-01-01
In this paper, first solutions of the dust moment equations developed in (Woitke & Helling \\cite{wh2003a}) for the description of dust formation and precipitation in brown dwarf and giant gas planet atmospheres are presented. We consider the special case of a static brown dwarf atmosphere, where dust particles continuously nucleate from the gas phase, grow by the accretion of molecules, settle gravitationally and re-evaporate thermally. Mixing by convective overshoot is assumed to replenish the atmosphere with condensable elements, which is necessary to counterbalance the loss of condensable elements by dust formation and gravitational settling (no dust without mixing). Applying a kinetic description of the relevant microphysical and chemical processes for TiO2-grains, the model makes predictions about the large-scale stratification of dust in the atmosphere, the depletion of molecules from the gas phase, the supersaturation of the gas in the atmosphere as well as the mean size and the mass fraction of dust grains as function of depth. Our results suggest that the presence of relevant amounts of dust is restricted to a layer, where the upper boundary (cloud deck) is related to the requirement of a minimum mixing activity (mixing time-scale τmix ≈ 10 6 s) and the lower boundary (cloud base) is determined by the thermodynamical stability of the grains. The nucleation occurs around the cloud deck where the gas is cool, strongly depleted, but nevertheless highly supersaturated (S ≫ 1). These particles settle gravitationally and populate the warmer layers below, where the in situ formation (nucleation) is ineffective or even not possible. During their descent, the particles grow and reach mean radii of ≈30 \\mum ... 400 \\mum at the cloud base, but the majority of the particles in the cloud layer remains much smaller. Finally, the dust grains sink into layers which are sufficiently hot to cause their thermal evaporation. Hence, an effective transport mechanism for condensable elements exists in brown dwarfs, which depletes the gas above and enriches the gas below the cloud base of a considered solid/liquid material. The dust-to-gas mass fraction in the cloud layer results to be approximately given by the mass fraction of condensable elements in the gas being mixed up. Only for artificially reduced mixing we find a self-regulation mechanism that approximately installs phase equilibrium (S ≈ 1) in a limited region around the cloud base.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawler, Michael J.; Winkler, Paul M.; Kim, Jaeseok
New particle formation driven by acid–base chemistry was initiated in the CLOUD chamber at CERN by introducing atmospherically relevant levels of gas-phase sulfuric acid and dimethylamine (DMA). Ammonia was also present in the chamber as a gas-phase contaminant from earlier experiments. The composition of particles with volume median diameters (VMDs) as small as 10 nm was measured by the Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS). Particulate ammonium-to-dimethylaminium ratios were higher than the gas-phase ammonia-to-DMA ratios, suggesting preferential uptake of ammonia over DMA for the collected 10–30 nm VMD particles. This behavior is not consistent with present nanoparticle physicochemical models,more » which predict a higher dimethylaminium fraction when NH 3 and DMA are present at similar gas-phase concentrations. Despite the presence in the gas phase of at least 100 times higher base concentrations than sulfuric acid, the recently formed particles always had measured base : acid ratios lower than 1 : 1. The lowest base fractions were found in particles below 15 nm VMD, with a strong size-dependent composition gradient. The reasons for the very acidic composition remain uncertain, but a plausible explanation is that the particles did not reach thermodynamic equilibrium with respect to the bases due to rapid heterogeneous conversion of SO 2 to sulfate. Furthermore, these results indicate that sulfuric acid does not require stabilization by ammonium or dimethylaminium as acid–base pairs in particles as small as 10 nm.« less
Lawler, Michael J.; Winkler, Paul M.; Kim, Jaeseok; ...
2016-11-03
New particle formation driven by acid–base chemistry was initiated in the CLOUD chamber at CERN by introducing atmospherically relevant levels of gas-phase sulfuric acid and dimethylamine (DMA). Ammonia was also present in the chamber as a gas-phase contaminant from earlier experiments. The composition of particles with volume median diameters (VMDs) as small as 10 nm was measured by the Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS). Particulate ammonium-to-dimethylaminium ratios were higher than the gas-phase ammonia-to-DMA ratios, suggesting preferential uptake of ammonia over DMA for the collected 10–30 nm VMD particles. This behavior is not consistent with present nanoparticle physicochemical models,more » which predict a higher dimethylaminium fraction when NH 3 and DMA are present at similar gas-phase concentrations. Despite the presence in the gas phase of at least 100 times higher base concentrations than sulfuric acid, the recently formed particles always had measured base : acid ratios lower than 1 : 1. The lowest base fractions were found in particles below 15 nm VMD, with a strong size-dependent composition gradient. The reasons for the very acidic composition remain uncertain, but a plausible explanation is that the particles did not reach thermodynamic equilibrium with respect to the bases due to rapid heterogeneous conversion of SO 2 to sulfate. Furthermore, these results indicate that sulfuric acid does not require stabilization by ammonium or dimethylaminium as acid–base pairs in particles as small as 10 nm.« less
A numerical cloud model for the support of laboratory experimentation
NASA Technical Reports Server (NTRS)
Hagen, D. E.
1979-01-01
A numerical cloud model is presented which can describe the evolution of a cloud starting from moist aerosol-laden air through the diffusional growth regime. The model is designed for the direct support of cloud chamber laboratory experimentation, i.e., experiment preparation, real-time control and data analysis. In the model the thermodynamics is uncoupled from the droplet growth processes. Analytic solutions for the cloud droplet growth equations are developed which can be applied in most laboratory situations. The model is applied to a variety of representative experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Fan; Ovchinnikov, Mikhail; Shaw, Raymond A.
Lagrangian ice particle tracking is applied in both a 3-D time dependent velocity field produced by a Large Eddy Simulation cloud model and in a 2-D idealized field. It is found that more than 10% of ice particles have lifetimes longer than 1.5 hours, much longer than the large eddy turnover time or the time for a crystal to fall through the depth of a non-turbulent cloud. An analysis of trajectories in a 2-D idealized field shows that there are two types of long lifetime ice particles: quasi-steady and recycled growth. For quasi-steady growth, ice particles are suspended in themore » updraft velocity region for a long time. For recycled growth, ice particles are trapped in the large-eddy structures, and whether ice particles grow or evaporate depends on the ice relative humidity profile within the boundary layer. Some ice particles can grow after each cycle in the trapping region, until they are too large to be trapped, and thus have long lifetimes. The relative contribution of the recycled ice particles to the cloud mean ice water content depends on both the dynamic and thermodynamic properties of the mixing layer. In particular, the total ice water content of a mixed phase cloud in a decoupled boundary layer can be much larger than that in a fully coupled boundary layer.« less
Drivers in the Scaling Between Precipitation and Cloud Radiative Impacts in Deep Convection
NASA Astrophysics Data System (ADS)
Rapp, A. D.; Sun, L.; Smalley, K.
2017-12-01
The coupling between changes in radiation and precipitation has been demonstrated by a number of studies and suggests an important link between cloud and precipitation processes for defining climate sensitivity. Precipitation and radiative fluxes from CloudSat/CALIPSO retrieval products are used to examine the relationship between precipitation and cloud radiative impacts through two dimensionless parameters. The surface radiative cooling impact, Rc, represents the ratio of the surface shortwave cloud radiative effect to latent heating (LH) from precipitation. The atmospheric radiative heating impact, Rh, represents the ratio of the atmospheric cloud radiative effect to LH from precipitation. Together, these parameters describe the relationship between precipitation processes and how efficiently clouds cools the surface or heats the atmosphere. Deep convective clouds are identified using the 2B-GEOPROF-LIDAR joint radar-lidar product and the cloud radiative impact parameters are calculated from the 2B-FLXHR-LIDAR fluxes and 2C-RAIN-PROFILE precipitation. Deep convective clouds will be sampled according to their dynamic and thermodynamic regimes to provide insights into the factors that control the scaling between precipitation and radiative impacts. Preliminary results from analysis of precipitating deep convective pixels indicates a strong increase (decrease) in the ratio of atmospheric heating (surface cooling) and precipitation with thermodynamic environment, especially increasing water vapor; however, it remains to be seen whether these results hold when integrated over an entire deep convective cloud system. Analysis of the dependence of Rc and Rh on the cloud horizontal and vertical structure is also planned, which should lead to a better understanding of the role of non-precipitating anvil characteristics in modulating the relationship between precipitation and surface and atmospheric radiative effects.
Physically-Retrieving Cloud and Thermodynamic Parameters from Ultraspectral IR Measurements
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Smith, William L., Sr.; Liu, Xu; Larar, Allen M.; Mango, Stephen A.; Huang, Hung-Lung
2007-01-01
A physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with relatively high accuracy (i.e., error < 1 km). NPOESS Airborne Sounder Testbed Interferometer (NAST-I) retrievals from the Atlantic-THORPEX Regional Campaign are compared with coincident observations obtained from dropsondes and the nadir-pointing Cloud Physics Lidar (CPL). This work was motivated by the need to obtain solutions for atmospheric soundings from infrared radiances observed for every individual field of view, regardless of cloud cover, from future ultraspectral geostationary satellite sounding instruments, such as the Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) and the Hyperspectral Environmental Suite (HES). However, this retrieval approach can also be applied to the ultraspectral sounding instruments to fly on Polar satellites, such as the Infrared Atmospheric Sounding Interferometer (IASI) on the European MetOp satellite, the Cross-track Infrared Sounder (CrIS) on the NPOESS Preparatory Project and the following NPOESS series of satellites.
Progress towards NASA MODIS and Suomi NPP Cloud Property Data Record Continuity
NASA Astrophysics Data System (ADS)
Platnick, S.; Meyer, K.; Holz, R.; Ackerman, S. A.; Heidinger, A.; Wind, G.; Platnick, S. E.; Wang, C.; Marchant, B.; Frey, R.
2017-12-01
The Suomi NPP VIIRS imager provides an opportunity to extend the 17+ year EOS MODIS climate data record into the next generation operational era. Similar to MODIS, VIIRS provides visible through IR observations at moderate spatial resolution with a 1330 LT equatorial crossing consistent with the MODIS on the Aqua platform. However, unlike MODIS, VIIRS lacks key water vapor and CO2 absorbing channels used for high cloud detection and cloud-top property retrievals. In addition, there is a significant mismatch in the spectral location of the 2.2 μm shortwave-infrared channels used for cloud optical/microphysical retrievals and cloud thermodynamic phase. Given these instrument differences between MODIS EOS and VIIRS S-NPP/JPSS, a merged MODIS-VIIRS cloud record to serve the science community in the coming decades requires different algorithm approaches than those used for MODIS alone. This new approach includes two parallel efforts: (1) Imager-only algorithms with only spectral channels common to VIIRS and MODIS (i.e., eliminate use of MODIS CO2 and NIR/IR water vapor channels). Since the algorithms are run with similar spectral observations, they provide a basis for establishing a continuous cloud data record across the two imagers. (2) Merged imager and sounder measurements (i.e.., MODIS-AIRS, VIIRS-CrIS) in lieu of higher-spatial resolution MODIS absorption channels absent on VIIRS. The MODIS-VIIRS continuity algorithm for cloud optical property retrievals leverages heritage algorithms that produce the existing MODIS cloud mask (MOD35), optical and microphysical properties product (MOD06), and the NOAA AWG Cloud Height Algorithm (ACHA). We discuss our progress towards merging the MODIS observational record with VIIRS in order to generate cloud optical property climate data record continuity across the observing systems. In addition, we summarize efforts to reconcile apparent radiometric biases between analogous imager channels, a critical consideration for obtaining inter-sensor climate data record continuity.
Global impact of mineral dust on cloud droplet number concentration
NASA Astrophysics Data System (ADS)
Karydis, Vlassis A.; Tsimpidi, Alexandra P.; Bacer, Sara; Pozzer, Andrea; Nenes, Athanasios; Lelieveld, Jos
2017-05-01
The importance of wind-blown mineral dust for cloud droplet formation is studied by considering (i) the adsorption of water on the surface of insoluble particles, (ii) particle coating by soluble material (atmospheric aging) which augments cloud condensation nuclei (CCN) activity, and (iii) the effect of dust on inorganic aerosol concentrations through thermodynamic interactions with mineral cations. The ECHAM5/MESSy Atmospheric Chemistry (EMAC) model is used to simulate the composition of global atmospheric aerosol, while the ISORROPIA-II thermodynamic equilibrium model treats the interactions of K+-Ca2+-Mg2+-NH4+-Na+-SO42--NO3--Cl--H2O aerosol with gas-phase inorganic constituents. Dust is considered a mixture of inert material with reactive minerals and its emissions are calculated online by taking into account the soil particle size distribution and chemical composition of different deserts worldwide. The impact of dust on droplet formation is treated through the unified dust activation parameterization
that considers the inherent hydrophilicity from adsorption and acquired hygroscopicity from soluble salts during aging. Our simulations suggest that the presence of dust increases cloud droplet number concentration (CDNC) over major deserts (e.g., up to 20 % over the Sahara and the Taklimakan desert) and decreases CDNC over polluted areas (e.g., up to 10 % over southern Europe and 20 % over northeastern Asia). This leads to a global net decrease in CDNC by 11 %. The adsorption activation of insoluble aerosols and the mineral dust chemistry are shown to be equally important for the cloud droplet formation over the main deserts; for example, these effects increase CDNC by 20 % over the Sahara. Remote from deserts the application of adsorption theory is critically important since the increased water uptake by the large aged dust particles (i.e., due to the added hydrophilicity by the soluble coating) reduce the maximum supersaturation and thus cloud droplet formation from the relatively smaller anthropogenic particles (e.g., CDNC decreases by 10 % over southern Europe and 20 % over northeastern Asia by applying adsorption theory). The global average CDNC decreases by 10 % by considering adsorption activation, while changes are negligible when accounting for the mineral dust chemistry. Sensitivity simulations indicate that CDNC is also sensitive to the mineral dust mass and inherent hydrophilicity, and not to the chemical composition of the emitted dust.
Chemistry in interstellar space. [environment characteristics influencing reaction dynamics
NASA Technical Reports Server (NTRS)
Donn, B.
1973-01-01
The particular characteristics of chemistry in interstellar space are determined by the unique environmental conditions involved. Interstellar matter is present at extremely low densities. Large deviations from thermodynamic equilibrium are, therefore, to be expected. A relatively intense ultraviolet radiation is present in many regions. The temperatures are in the range from 5 to 200 K. Data concerning the inhibiting effect of small activation energies in interstellar clouds are presented in a table. A summary of measured activation energies or barrier heights for exothermic exchange reactions is also provided. Problems of molecule formation are discussed, taking into account gas phase reactions and surface catalyzed processes.
Improving Mixed-phase Cloud Parameterization in Climate Model with the ACRF Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhien
Mixed-phase cloud microphysical and dynamical processes are still poorly understood, and their representation in GCMs is a major source of uncertainties in overall cloud feedback in GCMs. Thus improving mixed-phase cloud parameterizations in climate models is critical to reducing the climate forecast uncertainties. This study aims at providing improved knowledge of mixed-phase cloud properties from the long-term ACRF observations and improving mixed-phase clouds simulations in the NCAR Community Atmosphere Model version 5 (CAM5). The key accomplishments are: 1) An improved retrieval algorithm was developed to provide liquid droplet concentration for drizzling or mixed-phase stratiform clouds. 2) A new ice concentrationmore » retrieval algorithm for stratiform mixed-phase clouds was developed. 3) A strong seasonal aerosol impact on ice generation in Arctic mixed-phase clouds was identified, which is mainly attributed to the high dust occurrence during the spring season. 4) A suite of multi-senor algorithms was applied to long-term ARM observations at the Barrow site to provide a complete dataset (LWC and effective radius profile for liquid phase, and IWC, Dge profiles and ice concentration for ice phase) to characterize Arctic stratiform mixed-phase clouds. This multi-year stratiform mixed-phase cloud dataset provides necessary information to study related processes, evaluate model stratiform mixed-phase cloud simulations, and improve model stratiform mixed-phase cloud parameterization. 5). A new in situ data analysis method was developed to quantify liquid mass partition in convective mixed-phase clouds. For the first time, we reliably compared liquid mass partitions in stratiform and convective mixed-phase clouds. Due to the different dynamics in stratiform and convective mixed-phase clouds, the temperature dependencies of liquid mass partitions are significantly different due to much higher ice concentrations in convective mixed phase clouds. 6) Systematic evaluations of mixed-phase cloud simulations by CAM5 were performed. Measurement results indicate that ice concentrations control stratiform mixed-phase cloud properties. The improvement of ice concentration parameterization in the CAM5 was done in close collaboration with Dr. Xiaohong Liu, PNNL (now at University of Wyoming).« less
Atmospheric State, Cloud Microphysics and Radiative Flux
Mace, Gerald
2008-01-15
Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.
I predict that human-generated particles have modified clouds and cooled climate, somewhat masking the effect of greenhouse gases and that these particles have also modified the amount of sunlight reaching the ground, changing the thermodynamic cycles in the atmosphere. Wi...
SeReNA Project: studying aerosol interactions with cloud microphysics in the Amazon Basin
NASA Astrophysics Data System (ADS)
Correia, A. L.; Catandi, P. B.; Frigeri, F. F.; Ferreira, W. C.; Martins, J.; Artaxo, P.
2012-12-01
Cloud microphysics and its interaction with aerosols is a key atmospheric process for weather and climate. Interactions between clouds and aerosols can impact Earth's radiative balance, its hydrological and energetic cycles, and are responsible for a large fraction of the uncertainty in climatic models. On a planetary scale, the Amazon Basin is one of the most significant land sources of moisture and latent heat energy. Moreover, every year this region undergoes mearked seasonal shifts in its atmospheric state, transitioning from clean to heavily polluted conditions due to the occurrence of seasonal biomass burning fires, that emit large amounts of smoke to the atmosphere. These conditions make the Amazon Basin a special place to study aerosol-cloud interactions. The SeReNA Project ("Remote sensing of clouds and their interaction with aerosols", from the acronym in Portuguese, @SerenaProject on Twitter) is an ongoing effort to experimentally investigate the impact of aerosols upon cloud microphysics in Amazonia. Vertical profiles of droplet effective radius of water and ice particles, in single convective clouds, can be derived from measurements of the emerging radiation on cloud sides. Aerosol optical depth, cloud top properties, and meteorological parameters retrieved from satellites will be correlated with microphysical properties derived for single clouds. Maps of cloud brightness temperature will allow building temperature vs. effective radius profiles for hydrometeors in single clouds. Figure 1 shows an example extracted from Martins et al. (2011), illustrating a proof-of-concept for the kind of result expected within the framework for the SeReNA Project. The results to be obtained will help foster the quantitative knowledge about interactions between aerosols and clouds in a microphysical level. These interactions are a fundamental process in the context of global climatic changes, they are key to understanding basic processes within clouds and how aerosols can influence them. Reference: Martins et al. (2011) ACP, v.11, p.9485-9501. Available at: http://bit.ly/martinspaper Figure 1. Brightness temperature (left panel) and thermodynamic phase (right) of hydrometeors in the convective cloud shown in the middle panel. Extracted from Martins et al. (2011).
NASA Astrophysics Data System (ADS)
Voigtländer, Jens; Niedermeier, Dennis; Siebert, Holger; Shaw, Raymond; Schumacher, Jörg; Stratmann, Frank
2017-04-01
To improve the fundamental and quantitative understanding of the interactions between cloud microphysical and turbulent processes, the Leibniz Institute for Tropospheric Research (TROPOS) has built up a new humid wind tunnel (LACIS-T). LACIS-T allows for the investigation of cloud microphysical processes, such as cloud droplet activation and freezing, under-well defined thermodynamic and turbulent flow conditions. It therewith allows for the straight forward continuation, extension, and completion of the cloud microphysics related investigations carried out at the Leipzig Aerosol Cloud Interaction Simulator (LACIS) under laminar flow conditions. Characterization of the wind tunnel with respect to flow, thermodynamics, and droplet microphysics is carried out with probes mounted inside (pitot tube and hot-wire anemometer for mean velocity and fluctuations, Pt100 sensor for mean temperature, cold-wire sensor for temperature fluctuations is in progress, as well as a dew-point mirror for mean water vapor concentration, a Lyman-alpha sensor for water vapor fluctuations is in progress) the measurement section, and from outside with optical detection methods (a laser light sheet is available for cloud droplet visualization, a digital holography system for detection of cloud droplet size distributions will be installed for tests in February 2017), respectively. Computational fluid dynamics (CFD) simulations have been carried out for defining suitable experimental conditions and assisting the interpretation of the experimental data. In this work, LACIS-T, its fundamental operating principle, and first preliminary results from ongoing characterization efforts will be presented.
Microphysical Timescales in Clouds and their Application in Cloud-Resolving Modeling
NASA Technical Reports Server (NTRS)
Zeng, Xiping; Tao, Wei-Kuo; Simpson, Joanne
2007-01-01
Independent prognostic variables in cloud-resolving modeling are chosen on the basis of the analysis of microphysical timescales in clouds versus a time step for numerical integration. Two of them are the moist entropy and the total mixing ratio of airborne water with no contributions from precipitating particles. As a result, temperature can be diagnosed easily from those prognostic variables, and cloud microphysics be separated (or modularized) from moist thermodynamics. Numerical comparison experiments show that those prognostic variables can work well while a large time step (e.g., 10 s) is used for numerical integration.
Dynamics and thermodynamics of a tornado: Rotation effects
NASA Astrophysics Data System (ADS)
Ben-Amots, N.
2016-09-01
This paper investigates the relevant processes in the tornado including the dynamics of rotation and thermodynamics as well as condensation. The main novelty of this paper is the explanation of the phenomena occurring in the central downflow. The reduced pressure in the tornado's funnel sucks air and water vapor from the cloud above the tornado. The latent heat of condensation is released in the funnel. The centrifugal force drives the generated water drops out of the funnel. The latent heat of condensation released is also transferred out of the funnel, and supplies the helically ascending air flow surrounding the tornado with additional buoyancy energy. This process gives the tornado increased strength compared to the dust devil type of flow, thus explaining why tornadoes occur always under a cloud, and why the tornado pipe can reach a height of a kilometer and more. To sustain a tornado, the temperature of water vapor at the cloud's base should be higher than the surroundings by a certain minimal value. Remote infrared temperature measurements of clouds' bases may provide indications of the probability that a cloud can spawn a tornado, which may increase the lead time.
NASA Technical Reports Server (NTRS)
Blake, David F.; Chang, Sherwood (Technical Monitor)
1994-01-01
A great deal of recent laboratory work has focussed on the characterization of the nitric acid hydrates, thought to be present in type I Polar Stratospheric Clouds (PSCs). Phase relationships and vapor pressure measurements (1-3) and infrared characterizations (4-5) have been made. However, the observed properties of crystalline solids (composition, melting point, vapor pressure, surface reactivity, thermodynamic stability, extent of solid solution with other components, etc.) are controlled by their crystal structure. The only means of unequivocal structural identification for crystalline solids is diffraction (using electrons, X-rays, neutrons, etc.). Other observed properties of crystalline solids, such as their infrared spectra, their vapor pressure as a function of temperature, etc. yield only indirect information about what phases are present, their relative proportions, or whether they are crystalline or amorphous.
A High Resolution Hydrometer Phase Classifier Based on Analysis of Cloud Radar Doppler Spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luke,E.; Kollias, P.
2007-08-06
The lifecycle and radiative properties of clouds are highly sensitive to the phase of their hydrometeors (i.e., liquid or ice). Knowledge of cloud phase is essential for specifying the optical properties of clouds, or else, large errors can be introduced in the calculation of the cloud radiative fluxes. Current parameterizations of cloud water partition in liquid and ice based on temperature are characterized by large uncertainty (Curry et al., 1996; Hobbs and Rangno, 1998; Intriery et al., 2002). This is particularly important in high geographical latitudes and temperature ranges where both liquid droplets and ice crystal phases can exist (mixed-phasemore » cloud). The mixture of phases has a large effect on cloud radiative properties, and the parameterization of mixed-phase clouds has a large impact on climate simulations (e.g., Gregory and Morris, 1996). Furthermore, the presence of both ice and liquid affects the macroscopic properties of clouds, including their propensity to precipitate. Despite their importance, mixed-phase clouds are severely understudied compared to the arguably simpler single-phase clouds. In-situ measurements in mixed-phase clouds are hindered due to aircraft icing, difficulties distinguishing hydrometeor phase, and discrepancies in methods for deriving physical quantities (Wendisch et al. 1996, Lawson et al. 2001). Satellite-based retrievals of cloud phase in high latitudes are often hindered by the highly reflecting ice-covered ground and persistent temperature inversions. From the ground, the retrieval of mixed-phase cloud properties has been the subject of extensive research over the past 20 years using polarization lidars (e.g., Sassen et al. 1990), dual radar wavelengths (e.g., Gosset and Sauvageot 1992; Sekelsky and McIntosh, 1996), and recently radar Doppler spectra (Shupe et al. 2004). Millimeter-wavelength radars have substantially improved our ability to observe non-precipitating clouds (Kollias et al., 2007) due to their excellent sensitivity that enables the detection of thin cloud layers and their ability to penetrate several non-precipitating cloud layers. However, in mixed-phase clouds conditions, the observed Doppler moments are dominated by the highly reflecting ice crystals and thus can not be used to identify the cloud phase. This limits our ability to identify the spatial distribution of cloud phase and our ability to identify the conditions under which mixed-phase clouds form.« less
NASA Technical Reports Server (NTRS)
Matsui, Toshihisa; Masunaga, Hirohiko; Kreidenweis, Sonia M.; Pielke, Roger A., Sr.; Tao, Wei-Kuo; Chin, Mian; Kaufman, Yoram J.
2006-01-01
This study examines variability in marine low cloud properties derived from semi-global observations by the Tropical Rainfall Measuring Mission (TRMM) satellite, as linked to the aerosol index (AI) and lower-tropospheric stability (LTS). AI is derived from the Moderate Resolution Imaging Spectroradiometer (Terra MODIS) sensor and the Goddard Chemistry Aerosol Radiation and Transportation (GOCART) model, and is used to represent column-integrated aerosol concentrations. LTS is derived from the NCEP/NCAR reanalysis, and represents the background thermodynamic environment in which the clouds form. Global statistics reveal that cloud droplet size tends to be smallest in polluted (high-AI) and strong inversion (high-LTS) environments. Statistical quantification shows that cloud droplet size is better correlated with AI than it is with LTS. Simultaneously, the cloud liquid water path (CLWP) tends to decrease as AI increases. This correlation does not support the hypothesis or assumption that constant or increased CLWP is associated with high aerosol concentrations. Global variability in corrected cloud albedo (CCA), the product of cloud optical depth and cloud fraction, is very well explained by LTS, while both AI and LTS are needed to explain local variability in CCA. Most of the local correlations between AI and cloud properties are similar to the results from the global statistics, while weak anomalous aerosol-cloud correlations appear locally in the regions where simultaneous high (low) AI and low (high) LTS compensate each other. Daytime diurnal cycles explain additional variability in cloud properties. CCA has the largest diurnal cycle in high-LTS regions. Cloud droplet size and CLWP have weak diurnal cycles that differ between clean and polluted environments. The combined results suggest that investigations of marine low cloud radiative forcing and its relationship to hypothesized aerosol indirect effects must consider the combined effects of aerosols, thermodynamics, and the diurnal cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhien
2010-06-29
The project is mainly focused on the characterization of cloud macrophysical and microphysical properties, especially for mixed-phased clouds and middle level ice clouds by combining radar, lidar, and radiometer measurements available from the ACRF sites. First, an advanced mixed-phase cloud retrieval algorithm will be developed to cover all mixed-phase clouds observed at the ACRF NSA site. The algorithm will be applied to the ACRF NSA observations to generate a long-term arctic mixed-phase cloud product for model validations and arctic mixed-phase cloud processes studies. To improve the representation of arctic mixed-phase clouds in GCMs, an advanced understanding of mixed-phase cloud processesmore » is needed. By combining retrieved mixed-phase cloud microphysical properties with in situ data and large-scale meteorological data, the project aim to better understand the generations of ice crystals in supercooled water clouds, the maintenance mechanisms of the arctic mixed-phase clouds, and their connections with large-scale dynamics. The project will try to develop a new retrieval algorithm to study more complex mixed-phase clouds observed at the ACRF SGP site. Compared with optically thin ice clouds, optically thick middle level ice clouds are less studied because of limited available tools. The project will develop a new two wavelength radar technique for optically thick ice cloud study at SGP site by combining the MMCR with the W-band radar measurements. With this new algorithm, the SGP site will have a better capability to study all ice clouds. Another area of the proposal is to generate long-term cloud type classification product for the multiple ACRF sites. The cloud type classification product will not only facilitates the generation of the integrated cloud product by applying different retrieval algorithms to different types of clouds operationally, but will also support other research to better understand cloud properties and to validate model simulations. The ultimate goal is to improve our cloud classification algorithm into a VAP.« less
Cloud and boundary layer structure over San Nicolas Island during FIRE
NASA Technical Reports Server (NTRS)
Albrecht, Bruce A.; Fairall, Christopher W.; Syrett, William J.; Schubert, Wayne H.; Snider, Jack B.
1990-01-01
The temporal evolution of the structure of the marine boundary layer and of the associated low-level clouds observed in the vicinity of the San Nicolas Island (SNI) is defined from data collected during the First ISCCP Regional Experiment (FIRE) Marine Stratocumulus Intense Field Observations (IFO) (July 1 to 19). Surface, radiosonde, and remote-sensing measurements are used for this analysis. Sounding from the Island and from the ship Point Sur, which was located approximately 100 km northwest of SNI, are used to define variations in the thermodynamic structure of the lower-troposphere on time scales of 12 hours and longer. Time-height sections of potential temperature and equivalent potential temperature clearly define large-scale variations in the height and the strength of the inversion and periods where the conditions for cloud-top entrainment instability (CTEI) are met. Well defined variations in the height and the strength of the inversion were associated with a Cataline Eddy that was present at various times during the experiment and with the passage of the remnants of a tropical cyclone on July 18. The large-scale variations in the mean thermodynamic structure at SNI correlate well with those observed from the Point Sur. Cloud characteristics are defined for 19 days of the experiment using data from a microwave radiometer, a cloud ceilometer, a sodar, and longwave and shortwave radiometers. The depth of the cloud layer is estimated by defining inversion heights from the sodar reflectivity and cloud-base heights from a laser ceilometer. The integrated liquid water obtained from NOAA's microwave radiometer is compared with the adiabatic liquid water content that is calculated by lifting a parcel adiabatically from cloud base. In addition, the cloud structure is characterized by the variability in cloud-base height and in the integrated liquid water.
Pharmaceutical Perspective on Opalescence and Liquid-Liquid Phase Separation in Protein Solutions.
Raut, Ashlesha S; Kalonia, Devendra S
2016-05-02
Opalescence in protein solutions reduces aesthetic appeal of a formulation and can be an indicator of the presence of aggregates or precursor to phase separation in solution signifying reduced product stability. Liquid-liquid phase separation of a protein solution into a protein-rich and a protein-poor phase has been well-documented for globular proteins and recently observed for monoclonal antibody solutions, resulting in physical instability of the formulation. The present review discusses opalescence and liquid-liquid phase separation (LLPS) for therapeutic protein formulations. A brief discussion on theoretical concepts based on thermodynamics, kinetics, and light scattering is presented. This review also discusses theoretical concepts behind intense light scattering in the vicinity of the critical point termed as "critical opalescence". Both opalescence and LLPS are affected by the formulation factors including pH, ionic strength, protein concentration, temperature, and excipients. Literature reports for the effect of these formulation factors on attractive protein-protein interactions in solution as assessed by the second virial coefficient (B2) and the cloud-point temperature (Tcloud) measurements are also presented. The review also highlights pharmaceutical implications of LLPS in protein solutions.
Thermodynamic and cloud parameter retrieval using infrared spectral data
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Smith, William L., Sr.; Liu, Xu; Larar, Allen M.; Huang, Hung-Lung A.; Li, Jun; McGill, Matthew J.; Mango, Stephen A.
2005-01-01
High-resolution infrared radiance spectra obtained from near nadir observations provide atmospheric, surface, and cloud property information. A fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. The retrieval algorithm is presented along with its application to recent field experiment data from the NPOESS Airborne Sounding Testbed - Interferometer (NAST-I). The retrieval accuracy dependence on cloud properties is discussed. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with an accuracy of approximately 1.0 km. Preliminary NAST-I retrieval results from the recent Atlantic-THORPEX Regional Campaign (ATReC) are presented and compared with coincident observations obtained from dropsondes and the nadir-pointing Cloud Physics Lidar (CPL).
Collaborative Research: Cloudiness transitions within shallow marine clouds near the Azores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mechem, David B.; de Szoeke, Simon P.; Yuter, Sandra E.
Marine stratocumulus clouds are low, persistent, liquid phase clouds that cover large areas and play a significant role in moderating the climate by reflecting large quantities of incoming solar radiation. The deficiencies in simulating these clouds in global climate models are widely recognized. Much of the uncertainty arises from sub-grid scale variability in the cloud albedo that is not accurately parameterized in climate models. The Clouds, Aerosol and Precipitation in the Marine Boundary Layer (CAP–MBL) observational campaign and the ongoing ARM site measurements on Graciosa Island in the Azores aim to sample the Northeast Atlantic low cloud regime. These datamore » represent, the longest continuous research quality cloud radar/lidar/radiometer/aerosol data set of open-ocean shallow marine clouds in existence. Data coverage from CAP–MBL and the series of cruises to the southeast Pacific culminating in VOCALS will both be of sufficient length to contrast the two low cloud regimes and explore the joint variability of clouds in response to several environmental factors implicated in cloudiness transitions. Our research seeks to better understand cloud system processes in an underexplored but climatologically important maritime region. Our primary goal is an improved physical understanding of low marine clouds on temporal scales of hours to days. It is well understood that aerosols, synoptic-scale forcing, surface fluxes, mesoscale dynamics, and cloud microphysics all play a role in cloudiness transitions. However, the relative importance of each mechanism as a function of different environmental conditions is unknown. To better understand cloud forcing and response, we are documenting the joint variability of observed environmental factors and associated cloud characteristics. In order to narrow the realm of likely parameter ranges, we assess the relative importance of parameter conditions based primarily on two criteria: how often the condition occurs (frequency) and to what degree varying that condition within its typically observed range affects cloud characteristics (magnitude of impact given the condition). In this manner we will be able to address the relative importance of individual factors within a multivariate range of environmental conditions. We will determine the relative roles of the thermodynamic, aerosol, and synoptic environmental factors on low cloud and drizzle formation and lifetime.« less
NASA Astrophysics Data System (ADS)
Hu, Li; Zhang, Jing; Zhu, Chao; Pan, Hong-chun; Liu, Hong
2017-11-01
Herein we investigate the effect of different additives (electrolytes, amino acids, PEG, and sugars) on the cloud points (CP) of coenzyme Q10 (CoQ10) - Kolliphor HS15 (HS15) micelle aqueous solutions. The CP values were decreased with the increase of electrolytes and sugars, following: CPAl3+ < CPMg2+ < CPCa2+ < CPNa+ < CPK+ < CPNH4+; CPdisaccharide < CPmonosaccharide. The presences of Arginine and Tryptophan significantly increased the CP; while the other amino acids reduced the CP. A depression of CP for CoQ10-HS15 micelle solution with PEG was molecular weight of PEG dependent. The significant thermodynamic parameters were also evaluated and discussed.
Thermodynamics and Cloud Radiative Effect from the First Year of GoAmazon
NASA Technical Reports Server (NTRS)
Collow, Allie Marquardt; Miller, Mark; Trabachino, Lynne
2015-01-01
Deforestation is an ongoing concern for the Amazon Rainforest of Brazil and associated changes to the land surface have been hypothesized to alter the climate in the region. A comprehensive set of meteorological observations at the surface and within the lower troposphere above Manacapuru, Brazil and data from the Modern Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2) are used to evaluate the seasonal cycle of cloudiness, thermodynamics, and the radiation budget. While ample moisture is present in the Amazon Rainforest year round, the northward progression of the Hadley circulation during the dry season contributes to a drying of the middle troposphere and inhibits the formation of deep convection. This results in a reduction in cloudiness and precipitation as well as an increase in the height of the lifting condensation level, which is shown to have a negative correlation to the fraction of low clouds. Frequent cloudiness prevents solar radiation from reaching the surface and clouds are often reflective with high values of shortwave cloud radiative effect at the surface and top of the atmosphere. Cloud radiative effect is reduced during the dry season however the dry season surface shortwave cloud radiative effect is still double what is observed during the wet season in other tropical locations. Within the column, the impact of clouds on the radiation budget is more prevalent in the longwave part of the spectrum, with a net warming in the wet season.
NASA Technical Reports Server (NTRS)
Starr, David O. (Technical Monitor); Smith, Eric A.
2002-01-01
Comprehensive understanding of the microphysical nature of Mediterranean storms can be accomplished by a combination of in situ meteorological data analysis and radar-passive microwave data analysis, effectively integrated with numerical modeling studies at various scales, from synoptic scale down through the mesoscale, the cloud macrophysical scale, and ultimately the cloud microphysical scale. The microphysical properties of and their controls on severe storms are intrinsically related to meteorological processes under which storms have evolved, processes which eventually select and control the dominant microphysical properties themselves. This involves intense convective development, stratiform decay, orographic lifting, and sloped frontal lifting processes, as well as the associated vertical motions and thermodynamical instabilities governing physical processes that affect details of the size distributions and fall rates of the various types of hydrometeors found within the storm environment. Insofar as hazardous Mediterranean storms, highlighted in this study by three mountain storms producing damaging floods in northern Italy between 1992 and 2000, developing a comprehensive microphysical interpretation requires an understanding of the multiple phases of storm evolution and the heterogeneous nature of precipitation fields within a storm domain. This involves convective development, stratiform transition and decay, orographic lifting, and sloped frontal lifting processes. This also involves vertical motions and thermodynamical instabilities governing physical processes that determine details of the liquid/ice water contents, size disi:ributions, and fall rates of the various modes of hydrometeors found within hazardous storm environments.
NASA Astrophysics Data System (ADS)
Barros, A. P.; Duan, Y.
2017-12-01
A new cloud parcel model (CPM) including activation, condensation, collision-coalescence, and lateral entrainment processes is presented here to investigate aerosol-cloud interactions (ACI) in cumulus development prior to rainfall onset. The CPM was employed along with ground based radar and surface aerosol measurements to predict the vertical structure of cloud formation at early stages and evaluated against airborne observations of cloud microphysics and thermodynamic conditions during the Integrated Precipitation and Hydrology Experiment (IPHEx) over the Southern Appalachian Mountains. Further, the CPM was applied to explore the space of ACI physical parameters controlling cumulus congestus growth not available from measurements, and to examine how variations in aerosol properties and microphysical processes influence the evolution and thermodynamic state of clouds over complex terrain via sensitivity analysis. Modeling results indicate that simulated spectra with a low value of condensation coefficient (0.01) are in good agreement with IPHEx aircraft observations around the same altitude. This is in contrast with high values reported in previous studies assuming adiabatic conditions. Entrainment is shown to govern the vertical development of clouds and the change of droplet numbers with height, and the sensitivity analysis suggests that there is a trade-off between entrainment strength and condensation process. Simulated CDNC also exhibits high sensitivity to variations in initial aerosol concentration at cloud base, but weak sensitivity to aerosol hygroscopicity. Exploratory multiple-parcel simulations capture realistic time-scales of vertical development of cumulus congestus (deeper clouds and faster droplet growth). These findings provide new insights into determinant factors of mid-day cumulus congestus formation that can explain a large fraction of warm season rainfall in mountainous regions.
NASA Technical Reports Server (NTRS)
Azzam, R. M. A. (Editor); Coffeen, D. L.
1977-01-01
Instrumentation used in optical polarimetry is discussed with reference to high-resolution spectropolarimetry, an orbiter cloud photopolarimeter, X-ray polarimeters, and the design of a self-nulling ellipsometer. Consideration is given to surface and thin-film ellipsometry noting studies of electrochemical surface layers, surface anisotropy, polish layers on infrared window materials, and anodic films. Papers on biological, chemical, and physical polarimetry are presented including birefringence in biological materials, vibrational optical activity, and the optical determination of the thermodynamic phase diagram of a metamagnet. Remote sensing is discussed in terms of polarization imagery, the optical polarimetry of particulate surfaces, and techniques and applications of elliptical polarimetry in astronomy and atmospheric studies.
The Green Ocean Over the Amazon: Implications for Cloud Electrification
NASA Technical Reports Server (NTRS)
Williams, E.; Blakeslee, R.; Boccippio, D.; Arnold, James E. (Technical Monitor)
2001-01-01
A convective regime with distinct maritime characteristics (weak updraft, low CCN, prevalent coalescence and rainout, weak mixed phase reflectivity, low glaciation temperature, and little if any lightning) is documented over the Amazon basin of the South American continent, and dubbed the "green ocean". Radar, lightning, thermodynamic and AVHRR satellite observations are examined to shed light on the roles of updraft and aerosol in providing departures from the green ocean regime toward continental behavior. Extreme case studies are identified in which the updraft control is dominant and in which the aerosol control is dominant. The tentative conclusion gives importance to both updrafts and aerosol in shaping the electrification of tropical convection.
Comets, carbonaceous chondrites, and interstellar clouds: Condensation of carbon
NASA Technical Reports Server (NTRS)
Field, G. B.
1979-01-01
Comets, carbonaceous chondrites, and interstellar clouds are discussed in relation to information on interstellar dust. The formation and presence of carbon in stars, comets, and meteorites is investigated. The existence of graphite in the interstellar medium, though it is predicted from thermodynamic calculations, is questioned and the form of carbon contained in comets is considered.
Ship track observations of a reduced shortwave aerosol indirect effect in mixed-phase clouds
NASA Astrophysics Data System (ADS)
Christensen, M. W.; Suzuki, K.; Zambri, B.; Stephens, G. L.
2014-10-01
Aerosol influences on clouds are a major source of uncertainty to our understanding of forced climate change. Increased aerosol can enhance solar reflection from clouds countering greenhouse gas warming. Recently, this indirect effect has been extended from water droplet clouds to other types including mixed-phase clouds. Aerosol effects on mixed-phase clouds are important because of their fundamental role on sea ice loss and polar climate change, but very little is known about aerosol effects on these clouds. Here we provide the first analysis of the effects of aerosol emitted from ship stacks into mixed-phase clouds. Satellite observations of solar reflection in numerous ship tracks reveal that cloud albedo increases 5 times more in liquid clouds when polluted and persist 2 h longer than in mixed-phase clouds. These results suggest that seeding mixed-phase clouds via shipping aerosol is unlikely to provide any significant counterbalancing solar radiative cooling effects in warming polar regions.
The OpenCalphad thermodynamic software interface.
Sundman, Bo; Kattner, Ursula R; Sigli, Christophe; Stratmann, Matthias; Le Tellier, Romain; Palumbo, Mauro; Fries, Suzana G
2016-12-01
Thermodynamic data are needed for all kinds of simulations of materials processes. Thermodynamics determines the set of stable phases and also provides chemical potentials, compositions and driving forces for nucleation of new phases and phase transformations. Software to simulate materials properties needs accurate and consistent thermodynamic data to predict metastable states that occur during phase transformations. Due to long calculation times thermodynamic data are frequently pre-calculated into "lookup tables" to speed up calculations. This creates additional uncertainties as data must be interpolated or extrapolated and conditions may differ from those assumed for creating the lookup table. Speed and accuracy requires that thermodynamic software is fully parallelized and the Open-Calphad (OC) software is the first thermodynamic software supporting this feature. This paper gives a brief introduction to computational thermodynamics and introduces the basic features of the OC software and presents four different application examples to demonstrate its versatility.
The OpenCalphad thermodynamic software interface
Sundman, Bo; Kattner, Ursula R; Sigli, Christophe; Stratmann, Matthias; Le Tellier, Romain; Palumbo, Mauro; Fries, Suzana G
2017-01-01
Thermodynamic data are needed for all kinds of simulations of materials processes. Thermodynamics determines the set of stable phases and also provides chemical potentials, compositions and driving forces for nucleation of new phases and phase transformations. Software to simulate materials properties needs accurate and consistent thermodynamic data to predict metastable states that occur during phase transformations. Due to long calculation times thermodynamic data are frequently pre-calculated into “lookup tables” to speed up calculations. This creates additional uncertainties as data must be interpolated or extrapolated and conditions may differ from those assumed for creating the lookup table. Speed and accuracy requires that thermodynamic software is fully parallelized and the Open-Calphad (OC) software is the first thermodynamic software supporting this feature. This paper gives a brief introduction to computational thermodynamics and introduces the basic features of the OC software and presents four different application examples to demonstrate its versatility. PMID:28260838
Effect of Cerium(III) and ionic liquids on the clouding behavior of Triton X-100 micelles
NASA Astrophysics Data System (ADS)
Sen, Indrani Das; Negi, Charu; Jayaram, Radha V.
2018-04-01
In the present study, the effect of Ce(III) on the clouding behavior of Triton X-100 has been investigated in the presence and absence of imidazolium based ionic liquids of varying chain length and counter ions. Thermodynamic parameters of clouding were calculated to comprehend the underlying interactions between the surfactant and the additives. The cloud point (CP) of Triton X-100 was found to increase with the concentration of Ce(III) and that of the ionic liquids studied. This increase of CP reflects the solubilization of the ionic liquids in the micellar solution1.
Subgrid-scale Condensation Modeling for Entropy-based Large Eddy Simulations of Clouds
NASA Astrophysics Data System (ADS)
Kaul, C. M.; Schneider, T.; Pressel, K. G.; Tan, Z.
2015-12-01
An entropy- and total water-based formulation of LES thermodynamics, such as that used by the recently developed code PyCLES, is advantageous from physical and numerical perspectives. However, existing closures for subgrid-scale thermodynamic fluctuations assume more traditional choices for prognostic thermodynamic variables, such as liquid potential temperature, and are not directly applicable to entropy-based modeling. Since entropy and total water are generally nonlinearly related to diagnosed quantities like temperature and condensate amounts, neglecting their small-scale variability can lead to bias in simulation results. Here we present the development of a subgrid-scale condensation model suitable for use with entropy-based thermodynamic formulations.
The sensitivities of in cloud and cloud top phase distributions to primary ice formation in ICON-LEM
NASA Astrophysics Data System (ADS)
Beydoun, H.; Karrer, M.; Tonttila, J.; Hoose, C.
2017-12-01
Mixed phase clouds remain a leading source of uncertainty in our attempt to quantify cloud-climate and aerosol-cloud climate interactions. Nevertheless, recent advances in parametrizing the primary ice formation process, high resolution cloud modelling, and retrievals of cloud phase distributions from satellite data offer an excellent opportunity to conduct closure studies on the sensitivity of the cloud phase to microphysical and dynamical processes. Particularly, the reliability of satellite data to resolve the phase at the top of the cloud provides a promising benchmark to compare model output to. We run large eddy simulations with the new ICOsahedral Non-hydrostatic atmosphere model (ICON) to place bounds on the sensitivity of in cloud and cloud top phase to the primary ice formation process. State of the art primary ice formation parametrizations in the form of the cumulative ice active site density ns are implemented in idealized deep convective cloud simulations. We exploit the ability of ICON-LEM to switch between a two moment microphysics scheme and the newly developed Predicted Particle Properties (P3) scheme by running our simulations in both configurations for comparison. To quantify the sensitivity of cloud phase to primary ice formation, cloud ice content is evaluated against order of magnitude changes in ns at variable convective strengths. Furthermore, we assess differences between in cloud and cloud top phase distributions as well as the potential impact of updraft velocity on the suppression of the Wegener-Bergeron-Findeisen process. The study aims to evaluate our practical understanding of primary ice formation in the context of predicting the structure and evolution of mixed phase clouds.
NASA Technical Reports Server (NTRS)
Smith, Laura D.; Vonder Haar, Thomas H.
1991-01-01
Simultaneously conducted observations of the earth radiation budget and the cloud amount estimates, taken during the June 1979 - May 1980 Nimbus 7 mission were used to show interactions between the cloud amount and raidation and to verify a long-term climate simulation obtained with the latest version of the NCAR Community Climate Model (CCM). The parameterization of the radiative, dynamic, and thermodynamic processes produced the mean radiation and cloud quantities that were in reasonable agreement with satellite observations, but at the expense of simulating their short-term fluctuations. The results support the assumption that the inclusion of the cloud liquid water (ice) variable would be the best mean to reduce the blinking of clouds in NCAR CCM.
Phases, phase equilibria, and phase rules in low-dimensional systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frolov, T., E-mail: timfrol@berkeley.edu; Mishin, Y., E-mail: ymishin@gmu.edu
2015-07-28
We present a unified approach to thermodynamic description of one, two, and three dimensional phases and phase transformations among them. The approach is based on a rigorous definition of a phase applicable to thermodynamic systems of any dimensionality. Within this approach, the same thermodynamic formalism can be applied for the description of phase transformations in bulk systems, interfaces, and line defects separating interface phases. For both lines and interfaces, we rigorously derive an adsorption equation, the phase coexistence equations, and other thermodynamic relations expressed in terms of generalized line and interface excess quantities. As a generalization of the Gibbs phasemore » rule for bulk phases, we derive phase rules for lines and interfaces and predict the maximum number of phases than may coexist in systems of the respective dimensionality.« less
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Chu, D. Allen; Moody, Eric G.
2001-01-01
MODIS is an earth-viewing cross-track scanning spectroradiometer launched on the Terra satellite in December 1999. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 microns with spatial resolutions of 250 m (two bands), 500 m (five bands) and 1000 m (29 bands). These bands have been carefully selected to enable advanced studies of land, ocean, and atmospheric processes. In this presentation we review the comprehensive set of remote sensing algorithms that have been developed for the remote sensing of atmospheric properties using MODIS data, placing primary emphasis on the principal atmospheric applications of (i) developing a cloud mask for distinguishing clear sky from clouds, (ii) retrieving global cloud radiative and microphysical properties, including cloud top pressure and temperature, effective emissivity, cloud optical thickness, thermodynamic phase, and effective radius, (iii) monitoring tropospheric aerosol optical thickness over the land and ocean and aerosol size distribution over the ocean, (iv) determining atmospheric profiles of moisture and temperature, and (v) estimating column water amount. The physical principles behind the determination of each of these atmospheric products will be described, together with an example of their application using MODIS observations to the east Asian region in Spring 2001. All products are archived into two categories: pixel-level retrievals (referred to as Level-2 products) and global gridded products at a latitude and longitude resolution of 1 degree (Level-3 products). An overview of the MODIS atmosphere algorithms and products, status, validation activities, and early level-2 and -3 results will be presented.
Remote Sensing of Cloud, Aerosol, and Water Vapor Properties from MODIS
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Menzel, W. Paul; Kaufman, Yoram J.; Ackerman, Steven A.; Tanre, Didier; Gao, Bo-Cai
2001-01-01
MODIS is an earth-viewing cross-track scanning spectroradiometer launched on the Terra satellite in December 1999. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar orbiting, sun-synchronous, platform at an altitude of 705 kilometers, and provides images in 36 spectral bands between 0.415 and 14.235 micrometers with spatial resolutions of 250 meters (2 bands), 500 meters (5 bands) and 1000 meters (29 bands). These bands have been carefully selected to enable advanced studies of land, ocean, and atmospheric processes. In this presentation we review the comprehensive set of remote sensing algorithms that have been developed for the remote sensing of atmospheric properties using MODIS data, placing primary emphasis on the principal atmospheric applications of (i) developing a cloud mask for distinguishing clear sky from clouds, (ii) retrieving global cloud radiative and microphysical properties, including cloud top pressure and temperature, effective emissivity, cloud optical thickness, thermodynamic phase, and effective radius, (iii) monitoring tropospheric aerosol optical thickness over the land and ocean and aerosol size distribution over the ocean, (iv) determining atmospheric profiles of moisture and temperature, and (v) estimating column water amount. The physical principles behind the determination of each of these atmospheric products will be described, together with an example of their application using MODIS observations. All products are archived into two categories: pixel-level retrievals (referred to as Level-2 products) and global gridded products at a latitude and longitude resolution of 1 degree (Level-3 products). An overview of the MODIS atmosphere algorithms and products, status, validation activities, and early level-2 and -3 results will be presented.
Meteorological and Aerosol effects on Marine Cloud Microphysical Properties
NASA Astrophysics Data System (ADS)
Sanchez, K. J.; Russell, L. M.; Modini, R. L.; Frossard, A. A.; Ahlm, L.; Roberts, G.; Hawkins, L. N.; Schroder, J. C.; Wang, Z.; Lee, A.; Abbatt, J.; Lin, J.; Nenes, A.; Wonaschuetz, A.; Sorooshian, A.; Noone, K.; Jonsson, H.; Albrecht, B. A.; Desiree, T. S.; Macdonald, A. M.; Seinfeld, J.; Zhao, R.
2015-12-01
Both meteorology and microphysics affect cloud formation and consequently their droplet distributions and shortwave reflectance. The Eastern Pacific Emitted Aerosol Cloud Experiment (EPEACE) and the Stratocumulus Observations of Los-Angeles Emissions Derived Aerosol-Droplets (SOLEDAD) studies provide detailed measurements in 6 case studies of both cloud thermodynamic properties and initial particle number distribution and composition, as well as the resulting cloud drop distribution and composition. This study uses simulations of a detailed chemical and microphysical aerosol-cloud parcel (ACP) model with explicit kinetic drop activation to reproduce the observed cloud droplet distribution and composition. Four of the cases examined had a sub-adiabatic lapse rate, which was shown to have fewer droplets due to decreased maximum supersaturation, lower LWC and higher cloud base height, consistent with previous findings. These detailed case studies provided measured thermodynamics and microphysics that constrained the simulated droplet size distribution sufficiently to match the droplet number within 6% and the size within 19% for 4 of the 6 cases, demonstrating "closure" or consistency of the measured composition with the measured CCN spectra and the inferred and modeled supersaturation. The contribution of organic components to droplet formation shows small effects on the droplet number and size in the 4 marine cases that had background aerosol conditions with varying amounts of coastal, ship or other non-biogenic sources. In contrast, the organic fraction and hygroscopicity increased the droplet number and size in the cases with generated smoke and cargo ship plumes that were freshly emitted and not yet internally mixed with the background particles. The simulation results show organic hygroscopicity causes small effects on cloud reflectivity (<0.7%) with the exception of the cargo ship plume and smoke plume which increased absolute cloud reflectivity fraction by 0.02 and 0.20 respectively. In addition, the ACP model simulations are compared to those from a numerical parameterization of cloud droplet activation that is suitable for GCMs and show droplet concentrations are comparable between the two methods.
NASA Astrophysics Data System (ADS)
Krisna, Trismono C.; Wendisch, Manfred; Ehrlich, André; Jäkel, Evelyn; Werner, Frank; Weigel, Ralf; Borrmann, Stephan; Mahnke, Christoph; Pöschl, Ulrich; Andreae, Meinrat O.; Voigt, Christiane; Machado, Luiz A. T.
2018-04-01
Solar radiation reflected by cirrus and deep convective clouds (DCCs) was measured by the Spectral Modular Airborne Radiation Measurement System (SMART) installed on the German High Altitude and Long Range Research Aircraft (HALO) during the Mid-Latitude Cirrus (ML-CIRRUS) and the Aerosol, Cloud, Precipitation, and Radiation Interaction and Dynamic of Convective Clouds System - Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modelling and to the Global Precipitation Measurement (ACRIDICON-CHUVA) campaigns. On particular flights, HALO performed measurements closely collocated with overpasses of the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Aqua satellite. A cirrus cloud located above liquid water clouds and a DCC topped by an anvil cirrus are analyzed in this paper. Based on the nadir spectral upward radiance measured above the two clouds, the optical thickness τ and particle effective radius reff of the cirrus and DCC are retrieved using a radiance ratio technique, which considers the cloud thermodynamic phase, the vertical profile of cloud microphysical properties, the presence of multilayer clouds, and the heterogeneity of the surface albedo. For the cirrus case, the comparison of τ and reff retrieved on the basis of SMART and MODIS measurements yields a normalized mean absolute deviation of up to 1.2 % for τ and 2.1 % for reff. For the DCC case, deviations of up to 3.6 % for τ and 6.2 % for reff are obtained. The larger deviations in the DCC case are mainly attributed to the fast cloud evolution and three-dimensional (3-D) radiative effects. Measurements of spectral upward radiance at near-infrared wavelengths are employed to investigate the vertical profile of reff in the cirrus. The retrieved values of reff are compared with corresponding in situ measurements using a vertical weighting method. Compared to the MODIS observations, measurements of SMART provide more information on the vertical distribution of particle sizes, which allow reconstructing the profile of reff close to the cloud top. The comparison between retrieved and in situ reff yields a normalized mean absolute deviation, which ranges between 1.5 and 10.3 %, and a robust correlation coefficient of 0.82.
Aerosol partitioning in natural mixed-phase clouds
NASA Astrophysics Data System (ADS)
Henning, S.; Bojinski, S.; Diehl, K.; Ghan, S.; Nyeki, S.; Weingartner, E.; Wurzler, S.; Baltensperger, U.
2004-03-01
In situ aerosol and cloud drop microphysical measurements at a high-alpine site are used to investigate aerosol partitioning between cloud and interstitial phases in natural, mid-latitude, mixed-phase clouds. Measurements indicate a decrease in the activated aerosol fraction (FN) for particle diameters dP > 100 nm with cloud temperature from FN ~ 0.54 in summer liquid-phase clouds to FN ~ 0.08 in winter mixed-phase clouds. The latter may be attributed to the Bergeron-Findeisen mechanism whereby ice crystals grow at the expense of liquid water drops, releasing formerly activated aerosols back into the interstitial phase. This provides a means to distinguish the indirect effects of aerosols on drops and ice crystals.
NASA Astrophysics Data System (ADS)
Cesana, G.; Waliser, D. E.; Jiang, X.; Li, J. L. F.
2014-12-01
The ubiquitous presence of clouds within the troposphere contributes to modulate the radiative balance of the earth-atmosphere system. Depending on their cloud phase, clouds may have different microphysical and macrophysical properties, and hence, different radiative effects. In this study, we took advantage of climate runs from the GASS-YoTC and AMIP multi-model experiments to document the differences associated to the cloud phase parameterizations of 16 GCMs. A particular emphasize has been put on the vertical structure of the transition between liquid and ice in clouds. A way to intercompare the models regardless of their cloud fraction is to study the ratio of the ice mass to the total mass of the condensed water. To address the challenge of evaluating the modeled cloud phase, we profited from the cloud phase climatology so called CALIPSO-GOCCP, which separates liquid clouds from ice clouds at global scale, with a high vertical resolution (480m), above all surfaces. We also used reanalysis data and GPCP satellite observations to investigate the influence of the temperature, the relative humidity, the vertical wind speed and the precipitations on the cloud phase transition. In 12 (of 16) models, there are too few super cooled liquid in clouds compared to observations, mostly in the high troposphere. We exhibited evidences of the link between the cloud phase transition and the humidity, the vertical wind speed as well as the precipitations. Some cloud phase schemes are more affected by the humidity and the vertical velocity and some other by the precipitations. Although a few models can reproduce the observe relation between cloud phase and temperature, humidity, vertical velocity or precipitations, none of them perform well for all the parameters. An important result of this study is that the T-dependent phase parameterizations do not allow simulating the complexity of the observed cloud phase transition. Unfortunately, more complex microphysics schemes do not succeed to reproduce all the processes neither. Finally, thanks to the combined use of CALIPSO-GOCCP and ECMWF water vapor pressure, we showed an updated version of the Clausius-Clapeyron water vapor phase diagram. This diagram represents a new tool to improve the simulation of the cloud phase transition in climate models.
NASA Astrophysics Data System (ADS)
Lambert, Alyn; Santee, Michelle L.
2018-02-01
We investigate the accuracy and precision of polar lower stratospheric temperatures (100-10 hPa during 2008-2013) reported in several contemporary reanalysis datasets comprising two versions of the Modern-Era Retrospective analysis for Research and Applications (MERRA and MERRA-2), the Japanese 55-year Reanalysis (JRA-55), the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-I), and the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (NCEP-CFSR). We also include the Goddard Earth Observing System model version 5.9.1 near-real-time analysis (GEOS-5.9.1). Comparisons of these datasets are made with respect to retrieved temperatures from the Aura Microwave Limb Sounder (MLS), Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) Global Positioning System (GPS) radio occultation (RO) temperatures, and independent absolute temperature references defined by the equilibrium thermodynamics of supercooled ternary solutions (STSs) and ice clouds. Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations of polar stratospheric clouds are used to determine the cloud particle types within the Aura MLS geometric field of view. The thermodynamic calculations for STS and the ice frost point use the colocated MLS gas-phase measurements of HNO3 and H2O. The estimated bias and precision for the STS temperature reference, over the 68 to 21 hPa pressure range, are 0.6-1.5 and 0.3-0.6 K, respectively; for the ice temperature reference, they are 0.4 and 0.3 K, respectively. These uncertainties are smaller than those estimated for the retrieved MLS temperatures and also comparable to GPS RO uncertainties (bias < 0.2 K, precision > 0.7 K) in the same pressure range. We examine a case study of the time-varying temperature structure associated with layered ice clouds formed by orographic gravity waves forced by flow over the Palmer Peninsula and compare how the wave amplitudes are reproduced by each reanalysis dataset. We find that the spatial and temporal distribution of temperatures below the ice frost point, and hence the potential to form ice polar stratospheric clouds (PSCs) in model studies driven by the reanalyses, varies significantly because of the underlying differences in the representation of mountain wave activity. High-accuracy COSMIC temperatures are used as a common reference to intercompare the reanalysis temperatures. Over the 68-21 hPa pressure range, the biases of the reanalyses with respect to COSMIC temperatures for both polar regions fall within the narrow range of -0.6 K to +0.5 K. GEOS-5.9.1, MERRA, MERRA-2, and JRA-55 have predominantly cold biases, whereas ERA-I has a predominantly warm bias. NCEP-CFSR has a warm bias in the Arctic but becomes substantially colder in the Antarctic. Reanalysis temperatures are also compared with the PSC reference temperatures. Over the 68-21 hPa pressure range, the reanalysis temperature biases are in the range -1.6 to -0.3 K with standard deviations ˜ 0.6 K for the CALIOP STS reference, and in the range -0.9 to +0.1 K with standard deviations ˜ 0.7 K for the CALIOP ice reference. Comparisons of MLS temperatures with the PSC reference temperatures reveal vertical oscillations in the MLS temperatures and a significant low bias in MLS temperatures of up to 3 K.
NASA Technical Reports Server (NTRS)
Mannucci, A.J.; Wu, D.L.; Teixeira, J.; Ao, C.O.; Xie, F.; Diner, D.J.; Wood, R.; Turk, Joe
2012-01-01
Objective: significant progress in understanding low-cloud boundary layer processes. This is the Single largest uncertainty in climate projections. Radio occultation has unique features suited to boundary layer remote sensing (1) Cloud penetrating (2) Very high vertical resolution (approximately 50m-100m) (3) Sensitivity to thermodynamic variables
Satellite-Observed Vertical Structures of Clouds over the Amazon Basin
NASA Astrophysics Data System (ADS)
Wu, M.; Lee, J. E.
2017-12-01
The long wet season of the Amazon basin currently plays a critical role in the terrestrial ecosystem, regulating carbon balance and supporting high biodiversity. It has been argued that the land surface processes are important in maintaining high precipitation; yet, how the land-atmosphere interactions modulate the atmospheric processes are not completely understood. As a first step toward solving this problem, here we examine the vertical structures of clouds and the thermodynamics of the atmosphere over the entire basin at the different time of the year. We combine the vertical distribution of cloud water content from CloudSat, and the atmospheric thermodynamic conditions from the ECMWF ERA-interim reanalysis to compare and contrast the atmospheric condition at different time of the year-the wet, dry, and dry-to-wet transition seasons-and in different regions-ever-wet evergreen broadleaf forests, wet evergreen broadleaf forests with a dry season, and dry wooded grasslands/woodlands-following water stress gradient. In the ever-wet and wet regions, a large amount of cloud ice water is present in the upper atmosphere (above 11km) and convective available potential energy (CAPE) is high during the transition season, supporting the claim that the convective activity is strongest during the transition season. In the dry region, there are more cloud water above 8km over woodlands than over wooded grasslands during the dry and transition seasons, indicating the influence of the land cover. We also classified our data following the large-scale circulation pattern, and the CloudSat data support more deep convective activities in the wet and dry regions when the wind blows from the east during the wet and transition seasons. As a next step, we will focus more on linking the cloud structure to the large-scale circulation and surface processes.
NASA Astrophysics Data System (ADS)
Kay, Jennifer E.; Bourdages, Line; Miller, Nathaniel B.; Morrison, Ariel; Yettella, Vineel; Chepfer, Helene; Eaton, Brian
2016-04-01
Spaceborne lidar observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite are used to evaluate cloud amount and cloud phase in the Community Atmosphere Model version 5 (CAM5), the atmospheric component of a widely used state-of-the-art global coupled climate model (Community Earth System Model). By embedding a lidar simulator within CAM5, the idiosyncrasies of spaceborne lidar cloud detection and phase assignment are replicated. As a result, this study makes scale-aware and definition-aware comparisons between model-simulated and observed cloud amount and cloud phase. In the global mean, CAM5 has insufficient liquid cloud and excessive ice cloud when compared to CALIPSO observations. Over the ice-covered Arctic Ocean, CAM5 has insufficient liquid cloud in all seasons. Having important implications for projections of future sea level rise, a liquid cloud deficit contributes to a cold bias of 2-3°C for summer daily maximum near-surface air temperatures at Summit, Greenland. Over the midlatitude storm tracks, CAM5 has excessive ice cloud and insufficient liquid cloud. Storm track cloud phase biases in CAM5 maximize over the Southern Ocean, which also has larger-than-observed seasonal variations in cloud phase. Physical parameter modifications reduce the Southern Ocean cloud phase and shortwave radiation biases in CAM5 and illustrate the power of the CALIPSO observations as an observational constraint. The results also highlight the importance of using a regime-based, as opposed to a geographic-based, model evaluation approach. More generally, the results demonstrate the importance and value of simulator-enabled comparisons of cloud phase in models used for future climate projection.
NASA Astrophysics Data System (ADS)
Douglas, A.; L'Ecuyer, T.
2017-12-01
Aerosol influences on cloud lifetime remain a poorly understood pathway of aerosol-cloud-radiation interaction with large margins of error according to the fifth IPCC report. Increases in cloud lifetime are attributed to changes in cloud extent due to the suppression of precipitation by increased aerosol concentrations. The dependence of changes in cloud fraction and probability of precipitation on aerosol perturbations for controlled cloud regimes will be investigated using A-Train measurements. CloudSat, MODIS, and AMSR-E measurements from 2006 to 2010 are sorted into regimes established using stability to describe local meteorology, and relative humidity and liquid water path to describe cloud morphology. Holding the thermodynamic and meteorological environments constant allows variations in precipitation and cloud extent owing to regime-specific cloud lifetime effects to be attributed to aerosol perturbations. The relationship between precipitation suppression, cloud extent, and liquid water path will be analyzed. The cloud lifetime effect will be constrained using regimes in the hopes of improving our understanding of precipitation-aerosol interactions.
NASA Astrophysics Data System (ADS)
Zhou, X.; Ackerman, A. S.; Fridlind, A. M.; Kollias, P.
2016-12-01
Large-eddy simulations are performed to study the mechanisms of stratocumulus organization. Precipitation tends to increase horizontal cloud scales, but is not required for cloud mesoscale organization. A study of the terms in the prognostic equation for total water mixing ratio variance shows the critical impact of vertical moisture gradient on cloud scale. For precipitating clouds, the organization originates from the negative moisture gradient in the boundary layer resulting from evaporation of precipitation. This hypothesis is supported by simulations in which thermodynamics profiles are nudged to their initial well-mixed state, which reduces cloud scales. Cold pools effect are surprisingly found to respond to rather than determine the cloud mesoscale variability. For non-precipitating clouds, organization results from turbulent transport of moisture variance originating primarily from cloud top, where dry air is entrained into the boundary layer through convection driven by cloud top longwave (LW) cooling. Both LW cooling and a moisture gradient above cloud top are essential for the growth of mesoscale fluctuations.
Examination of turbulent entrainment-mixing mechanisms using a combined approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, C.; Liu, Y.; Niu, S.
2011-10-01
Turbulent entrainment-mixing mechanisms are investigated by applying a combined approach to the aircraft measurements of three drizzling and two nondrizzling stratocumulus clouds collected over the U.S. Department of Energy's Atmospheric Radiation Measurement Southern Great Plains site during the March 2000 cloud Intensive Observation Period. Microphysical analysis shows that the inhomogeneous entrainment-mixing process occurs much more frequently than the homogeneous counterpart, and most cases of the inhomogeneous entrainment-mixing process are close to the extreme scenario, having drastically varying cloud droplet concentration but roughly constant volume-mean radius. It is also found that the inhomogeneous entrainment-mixing process can occur both near the cloudmore » top and in the middle level of a cloud, and in both the nondrizzling clouds and nondrizzling legs in the drizzling clouds. A new dimensionless number, the scale number, is introduced as a dynamical measure for different entrainment-mixing processes, with a larger scale number corresponding to a higher degree of homogeneous entrainment mixing. Further empirical analysis shows that the scale number that separates the homogeneous from the inhomogeneous entrainment-mixing process is around 50, and most legs have smaller scale numbers. Thermodynamic analysis shows that sampling average of filament structures finer than the instrumental spatial resolution also contributes to the dominance of inhomogeneous entrainment-mixing mechanism. The combined microphysical-dynamical-thermodynamic analysis sheds new light on developing parameterization of entrainment-mixing processes and their microphysical and radiative effects in large-scale models.« less
NASA Astrophysics Data System (ADS)
Liu, X.; Wang, Y.; Zhang, D.; Wang, Z.
2016-12-01
Mixed-phase clouds consisting of both liquid and ice water occur frequently at high-latitudes and in mid-latitude storm track regions. This type of clouds has been shown to play a critical role in the surface energy balance, surface air temperature, and sea ice melting in the Arctic. Cloud phase partitioning between liquid and ice water determines the cloud optical depth of mixed-phase clouds because of distinct optical properties of liquid and ice hydrometeors. The representation and simulation of cloud phase partitioning in state-of-the-art global climate models (GCMs) are associated with large biases. In this study, the cloud phase partition in mixed-phase clouds simulated from the NCAR Community Atmosphere Model version 5 (CAM5) is evaluated against satellite observations. Observation-based supercooled liquid fraction (SLF) is calculated from CloudSat, MODIS and CPR radar detected liquid and ice water paths for clouds with cloud-top temperatures between -40 and 0°C. Sensitivity tests with CAM5 are conducted for different heterogeneous ice nucleation parameterizations with respect to aerosol influence (Wang et al., 2014), different phase transition temperatures for detrained cloud water from shallow convection (Kay et al., 2016), and different CAM5 model configurations (free-run versus nudged winds and temperature, Zhang et al., 2015). A classical nucleation theory-based ice nucleation parameterization in mixed-phase clouds increases the SLF especially at temperatures colder than -20°C, and significantly improves the model agreement with observations in the Arctic. The change of transition temperature for detrained cloud water increases the SLF at higher temperatures and improves the SLF mostly over the Southern Ocean. Even with the improved SLF from the ice nucleation and shallow cumulus detrainment, the low SLF biases in some regions can only be improved through the improved circulation with the nudging technique. Our study highlights the challenges of representations of large-scale moisture transport, cloud microphysics, ice nucleation, and cumulus detrainment in order to improve the mixed-phase transition in GCMs.
Assessment of simulated aerosol effective radiative forcings in the terrestrial spectrum
NASA Astrophysics Data System (ADS)
Heyn, Irene; Block, Karoline; Mülmenstädt, Johannes; Gryspeerdt, Edward; Kühne, Philipp; Salzmann, Marc; Quaas, Johannes
2017-01-01
In its fifth assessment report (AR5), the Intergovernmental Panel on Climate Change provides a best estimate of the effective radiative forcing (ERF) due to anthropogenic aerosol at -0.9 W m-2. This value is considerably weaker than the estimate of -1.2 W m-2 in AR4. A part of the difference can be explained by an offset of +0.2 W m-2 which AR5 added to all published estimates that only considered the solar spectrum, in order to account for adjustments in the terrestrial spectrum. We find that, in the CMIP5 multimodel median, the ERF in the terrestrial spectrum is small, unless microphysical effects on ice- and mixed-phase clouds are parameterized. In the latter case it is large but accompanied by a very strong ERF in the solar spectrum. The total adjustments can be separated into microphysical adjustments (aerosol "effects") and thermodynamic adjustments. Using a kernel technique, we quantify the latter and find that the rapid thermodynamic adjustments of water vapor and temperature profiles are small. Observation-based constraints on these model results are urgently needed.
Thermodynamics and phase transition of charged AdS black holes with a global monopole
NASA Astrophysics Data System (ADS)
Deng, Gao-Ming; Fan, Jinbo; Li, Xinfei; Huang, Yong-Chang
2018-01-01
Thermodynamical properties of charged AdS black holes with a global monopole still remain obscure. In this paper, we investigate the thermodynamics and phase transition of the black holes in the extended phase space. It is shown that thermodynamical quantities of the black holes exhibit an interesting dependence on the internal global monopole, and they perfectly satisfy both the first law of thermodynamics and Smarr relation. Furthermore, analysis of the local and the global thermodynamical stability manifests that the charged AdS black hole undergoes an elegant phase transition at critical point. Of special interest, critical behaviors of the black holes resemble a Van der Waals liquid-gas system. Our results not only reveal the effect of a global monopole on thermodynamics of AdS black holes, but also further support that Van der Waals-like behavior of the black holes is a universal phenomenon.
Approaches to Observe Anthropogenic Aerosol-Cloud Interactions.
Quaas, Johannes
Anthropogenic aerosol particles exert an-quantitatively very uncertain-effective radiative forcing due to aerosol-cloud interactions via an immediate altering of cloud albedo on the one hand and via rapid adjustments by alteration of cloud processes and by changes in thermodynamic profiles on the other hand. Large variability in cloud cover and properties and the therefore low signal-to-noise ratio for aerosol-induced perturbations hamper the identification of effects in observations. Six approaches are discussed as a means to isolate the impact of anthropogenic aerosol on clouds from natural cloud variability to estimate or constrain the effective forcing. These are (i) intentional cloud modification, (ii) ship tracks, (iii) differences between the hemispheres, (iv) trace gases, (v) weekly cycles and (vi) trends. Ship track analysis is recommendable for detailed process understanding, and the analysis of weekly cycles and long-term trends is most promising to derive estimates or constraints on the effective radiative forcing.
Impact of cloud radiative heating on East Asian summer monsoon circulation
Guo, Zhun; Zhou, Tianjun; Wang, Minghuai; ...
2015-07-17
The impacts of cloud radiative heating on East Asian Summer Monsoon (EASM) over the southeastern China (105°-125°E, 20°-35°N) are explained by using the Community Atmosphere Model version 5 (CAM5). Sensitivity experiments demonstrate that the radiative heating of clouds leads to a positive effect on the local EASM circulation over southeastern China. Without the radiative heating of cloud, the EASM circulation and precipitation would be much weaker than that in the normal condition. The longwave heating of clouds dominates the changes of EASM circulation. The positive effect of clouds on EASM circulation is explained by the thermodynamic energy equation, i.e. themore » different heating rate between cloud base and cloud top enhances the convective instability over southeastern China, which enhances updraft consequently. The strong updraft would further result in a southward meridional wind above the center of the updraft through Sverdrup vorticity balance.« less
NASA Astrophysics Data System (ADS)
Yahya, K.; Wang, K.; Campbell, P.; Glotfelty, T.; He, J.; Zhang, Y.
2015-08-01
The Weather Research and Forecasting model with Chemistry (WRF/Chem) v3.6.1 with the Carbon Bond 2005 (CB05) gas-phase mechanism is evaluated for its first decadal application during 2001-2010 using the Representative Concentration Pathway (RCP 8.5) emissions to assess its capability and appropriateness for long-term climatological simulations. The initial and boundary conditions are downscaled from the modified Community Earth System Model/Community Atmosphere Model (CESM/CAM5) v1.2.2. The meteorological initial and boundary conditions are bias-corrected using the National Center for Environmental Protection's Final (FNL) Operational Global Analysis data. Climatological evaluations are carried out for meteorological, chemical, and aerosol-cloud-radiation variables against data from surface networks and satellite retrievals. The model performs very well for the 2 m temperature (T2) for the 10 year period with only a small cold bias of -0.3 °C. Biases in other meteorological variables including relative humidity at 2 m, wind speed at 10 m, and precipitation tend to be site- and season-specific; however, with the exception of T2, consistent annual biases exist for most of the years from 2001 to 2010. Ozone mixing ratios are slightly overpredicted at both urban and rural locations but underpredicted at rural locations. PM2.5 concentrations are slightly overpredicted at rural sites, but slightly underpredicted at urban/suburban sites. In general, the model performs relatively well for chemical and meteorological variables, and not as well for aerosol-cloud-radiation variables. Cloud-aerosol variables including aerosol optical depth, cloud water path, cloud optical thickness, and cloud droplet number concentration are generally underpredicted on average across the continental US. Overpredictions of several cloud variables over eastern US result in underpredictions of radiation variables and overpredictions of shortwave and longwave cloud forcing which are important climate variables. While the current performance is deemed to be acceptable, improvements to the bias-correction method for CESM downscaling and the model parameterizations of cloud dynamics and thermodynamics, as well as aerosol-cloud interactions can potentially improve model performance for long-term climate simulations.
A Tractable Disequilbrium Framework for Integrating Computational Thermodynamics and Geodynamics
NASA Astrophysics Data System (ADS)
Spiegelman, M. W.; Tweed, L. E. L.; Evans, O.; Kelemen, P. B.; Wilson, C. R.
2017-12-01
The consistent integration of computational thermodynamics and geodynamics is essential for exploring and understanding a wide range of processes from high-PT magma dynamics in the convecting mantle to low-PT reactive alteration of the brittle crust. Nevertheless, considerable challenges remain for coupling thermodynamics and fluid-solid mechanics within computationally tractable and insightful models. Here we report on a new effort, part of the ENKI project, that provides a roadmap for developing flexible geodynamic models of varying complexity that are thermodynamically consistent with established thermodynamic models. The basic theory is derived from the disequilibrium thermodynamics of De Groot and Mazur (1984), similar to Rudge et. al (2011, GJI), but extends that theory to include more general rheologies, multiple solid (and liquid) phases and explicit chemical reactions to describe interphase exchange. Specifying stoichiometric reactions clearly defines the compositions of reactants and products and allows the affinity of each reaction (A = -Δ/Gr) to be used as a scalar measure of disequilibrium. This approach only requires thermodynamic models to return chemical potentials of all components and phases (as well as thermodynamic quantities for each phase e.g. densities, heat capacity, entropies), but is not constrained to be in thermodynamic equilibrium. Allowing meta-stable phases mitigates some of the computational issues involved with the introduction and exhaustion of phases. Nevertheless, for closed systems, these problems are guaranteed to evolve to the same equilibria predicted by equilibrium thermodynamics. Here we illustrate the behavior of this theory for a range of simple problems (constructed with our open-source model builder TerraFERMA) that model poro-viscous behavior in the well understood Fo-Fa binary phase loop. Other contributions in this session will explore a range of models with more petrologically interesting phase diagrams as well as other rheologies.
NASA Astrophysics Data System (ADS)
Liu, X.; Zhang, M.; Zhang, D.; Wang, Z.; Wang, Y.
2017-12-01
Mixed-phase clouds are persistently observed over the Arctic and the phase partitioning between cloud liquid and ice hydrometeors in mixed-phase clouds has important impacts on the surface energy budget and Arctic climate. In this study, we test the NCAR Community Atmosphere Model Version 5 (CAM5) with the single-column and weather forecast configurations and evaluate the model performance against observation data from the DOE Atmospheric Radiation Measurement (ARM) Program's M-PACE field campaign in October 2004 and long-term ground-based multi-sensor remote sensing measurements. Like most global climate models, we find that CAM5 also poorly simulates the phase partitioning in mixed-phase clouds by significantly underestimating the cloud liquid water content. Assuming pocket structures in the distribution of cloud liquid and ice in mixed-phase clouds as suggested by in situ observations provides a plausible solution to improve the model performance by reducing the Wegner-Bergeron-Findeisen (WBF) process rate. In this study, the modification of the WBF process in the CAM5 model has been achieved with applying a stochastic perturbation to the time scale of the WBF process relevant to both ice and snow to account for the heterogeneous mixture of cloud liquid and ice. Our results show that this modification of WBF process improves the modeled phase partitioning in the mixed-phase clouds. The seasonal variation of mixed-phase cloud properties is also better reproduced in the model in comparison with the long-term ground-based remote sensing observations. Furthermore, the phase partitioning is insensitive to the reassignment time step of perturbations.
The relation between carbon monoxide emission and visual extinction in cloud L134
NASA Technical Reports Server (NTRS)
Tucker, K. D.; Dickman, R. L.; Encrenaz, P. J.; Kutner, M. L.
1976-01-01
Emission from the J = 1-0 transition of carbon monoxide has been mapped over an area of 40 by 55 arcmin in cloud L134, and visual extinctions over the entire cloud have been obtained by means of star counts. Line intensities of at least 2 K are observable down to an extinction level of about one magnitude. From observations of the J = 1-0 transition of the (C-13)O isotopic species at 18 locations in the cloud, a linear correlation is found between the local thermodynamic equilibrium (LTE) column densities of (C-13)O and magnitudes of visual extinction.
NASA Astrophysics Data System (ADS)
Zhang, Junhua; Lohmann, Ulrike
2003-08-01
The single column model of the Canadian Centre for Climate Modeling and Analysis (CCCma) climate model is used to simulate Arctic spring cloud properties observed during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment. The model is driven by the rawinsonde observations constrained European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis data. Five cloud parameterizations, including three statistical and two explicit schemes, are compared and the sensitivity to mixed phase cloud parameterizations is studied. Using the original mixed phase cloud parameterization of the model, the statistical cloud schemes produce more cloud cover, cloud water, and precipitation than the explicit schemes and in general agree better with observations. The mixed phase cloud parameterization from ECMWF decreases the initial saturation specific humidity threshold of cloud formation. This improves the simulated cloud cover in the explicit schemes and reduces the difference between the different cloud schemes. On the other hand, because the ECMWF mixed phase cloud scheme does not consider the Bergeron-Findeisen process, less ice crystals are formed. This leads to a higher liquid water path and less precipitation than what was observed.
Contact symmetries and Hamiltonian thermodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bravetti, A., E-mail: bravetti@correo.nucleares.unam.mx; Lopez-Monsalvo, C.S., E-mail: cesar.slm@correo.nucleares.unam.mx; Nettel, F., E-mail: Francisco.Nettel@roma1.infn.it
It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher’s Information Matrix. In this work we analyse several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendremore » symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production.« less
Improving Climate Projections by Understanding How Cloud Phase affects Radiation
NASA Technical Reports Server (NTRS)
Cesana, Gregory; Storelvmo, Trude
2017-01-01
Whether a cloud is predominantly water or ice strongly influences interactions between clouds and radiation coming down from the Sun or up from the Earth. Being able to simulate cloud phase transitions accurately in climate models based on observational data sets is critical in order to improve confidence in climate projections, because this uncertainty contributes greatly to the overall uncertainty associated with cloud-climate feedbacks. Ultimately, it translates into uncertainties in Earth's sensitivity to higher CO2 levels. While a lot of effort has recently been made toward constraining cloud phase in climate models, more remains to be done to document the radiative properties of clouds according to their phase. Here we discuss the added value of a new satellite data set that advances the field by providing estimates of the cloud radiative effect as a function of cloud phase and the implications for climate projections.
Vapor-liquid equilibrium thermodynamics of N2 + CH4 - Model and Titan applications
NASA Technical Reports Server (NTRS)
Thompson, W. R.; Zollweg, John A.; Gabis, David H.
1992-01-01
A thermodynamic model is presented for vapor-liquid equilibrium in the N2 + CH4 system, which is implicated in calculations of the Titan tropospheric clouds' vapor-liquid equilibrium thermodynamics. This model imposes constraints on the consistency of experimental equilibrium data, and embodies temperature effects by encompassing enthalpy data; it readily calculates the saturation criteria, condensate composition, and latent heat for a given pressure-temperature profile of the Titan atmosphere. The N2 content of condensate is about half of that computed from Raoult's law, and about 30 percent greater than that computed from Henry's law.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Zhun; Zhou, Tianjun; Wang, Minghuai
The impacts of cloud radiative heating on East Asian Summer Monsoon (EASM) over the southeastern China (105°-125°E, 20°-35°N) are explained by using the Community Atmosphere Model version 5 (CAM5). Sensitivity experiments demonstrate that the radiative heating of clouds leads to a positive effect on the local EASM circulation over southeastern China. Without the radiative heating of cloud, the EASM circulation and precipitation would be much weaker than that in the normal condition. The longwave heating of clouds dominates the changes of EASM circulation. The positive effect of clouds on EASM circulation is explained by the thermodynamic energy equation, i.e. themore » different heating rate between cloud base and cloud top enhances the convective instability over southeastern China, which enhances updraft consequently. The strong updraft would further result in a southward meridional wind above the center of the updraft through Sverdrup vorticity balance.« less
Ortho-para-hydrogen equilibration on Jupiter
NASA Technical Reports Server (NTRS)
Carlson, Barbara E.; Lacis, Andrew A.; Rossow, William B.
1992-01-01
Voyager IRIS observations reveal that the Jovian para-hydrogen fraction is not in thermodynamic equilibrium near the NH3 cloud top, implying that a vertical gradient exists between the high-temperature equilibrium value of 0.25 at depth and the cloud top values. The height-dependent para-hydrogen profile is obtained using an anisotropic multiple-scattering radiative transfer model. A vertical correlation is found to exist between the location of the para-hydrogen gradient and the NH3 cloud, strongly suggesting that paramagnetic conversion on NH3 cloud particle surfaces is the dominant equilibration mechanism. Below the NH3 cloud layer, the para fraction is constant with depth and equal to the high-temperature equilibrium value of 0.25. The degree of cloud-top equilibration appears to depend on the optical depth of the NH3 cloud layer. Belt-zone variations in the para-hydrogen profile seem to be due to differences in the strength of the vertical mixing.
NASA Astrophysics Data System (ADS)
Ghiorso, M. S.
2013-12-01
Internally consistent thermodynamic databases are critical resources that facilitate the calculation of heterogeneous phase equilibria and thereby support geochemical, petrological, and geodynamical modeling. These 'databases' are actually derived data/model systems that depend on a diverse suite of physical property measurements, calorimetric data, and experimental phase equilibrium brackets. In addition, such databases are calibrated with the adoption of various models for extrapolation of heat capacities and volumetric equations of state to elevated temperature and pressure conditions. Finally, these databases require specification of thermochemical models for the mixing properties of solid, liquid, and fluid solutions, which are often rooted in physical theory and, in turn, depend on additional experimental observations. The process of 'calibrating' a thermochemical database involves considerable effort and an extensive computational infrastructure. Because of these complexities, the community tends to rely on a small number of thermochemical databases, generated by a few researchers; these databases often have limited longevity and are universally difficult to maintain. ThermoFit is a software framework and user interface whose aim is to provide a modeling environment that facilitates creation, maintenance and distribution of thermodynamic data/model collections. Underlying ThermoFit are data archives of fundamental physical property, calorimetric, crystallographic, and phase equilibrium constraints that provide the essential experimental information from which thermodynamic databases are traditionally calibrated. ThermoFit standardizes schema for accessing these data archives and provides web services for data mining these collections. Beyond simple data management and interoperability, ThermoFit provides a collection of visualization and software modeling tools that streamline the model/database generation process. Most notably, ThermoFit facilitates the rapid visualization of predicted model outcomes and permits the user to modify these outcomes using tactile- or mouse-based GUI interaction, permitting real-time updates that reflect users choices, preferences, and priorities involving derived model results. This ability permits some resolution of the problem of correlated model parameters in the common situation where thermodynamic models must be calibrated from inadequate data resources. The ability also allows modeling constraints to be imposed using natural data and observations (i.e. petrologic or geochemical intuition). Once formulated, ThermoFit facilitates deployment of data/model collections by automated creation of web services. Users consume these services via web-, excel-, or desktop-clients. ThermoFit is currently under active development and not yet generally available; a limited capability prototype system has been coded for Macintosh computers and utilized to construct thermochemical models for H2O-CO2 mixed fluid saturation in silicate liquids. The longer term goal is to release ThermoFit as a web portal application client with server-based cloud computations supporting the modeling environment.
NASA Technical Reports Server (NTRS)
Cohen, Charles
1998-01-01
Deep cumulonimbus clouds are simulated using a model that makes accurate diagnoses of entrainment and detrainment rates and of the properties of entrained and detrained air. Clouds generated by a variety of initial thermodynamic soundings are compared. In the simulations, updraft entrainment rates are large near and above cloud base, through the entire depth of the conditionally unstable layer. Stronger updrafts in a more unstable environment are better able to entrain relatively undisturbed environmental air, while weaker updrafts can entrain only air that has been modified by the clouds. When the maximum buoyancy is large, the updraft includes parcels with a wide range of buoyancies, while weaker clouds are more horizontally uniform. Strong downdrafts originate from levels at which updrafts detrain, and their mass flux depends on the mass flux of the updraft. The magnitude of mixing between cloud and environment, not the entrainment rate, varies inversely with the cloud radius. How much of the mixed air is entrained depends on the buoyancy.
A cloud, precipitation and electrification modeling effort for COHMEX
NASA Technical Reports Server (NTRS)
Orville, Harold D.; Helsdon, John H.; Farley, Richard D.
1991-01-01
In mid-1987, the Modeling Group of the Institute of Atmospheric Sciences (IAS) began to simulate and analyze cloud runs that were made during the Cooperative Huntsville Meteorological Experiment (COHMEX) Project and later. The cloud model was run nearly every day during the summer 1986 COHMEX Project. The Modeling Group was then funded to analyze the results, make further modeling tests, and help explain the precipitation processes in the Southeastern United States. The main science objectives of COHMEX were: (1) to observe the prestorm environment and understand the physical mechanisms leading to the formation of small convective systems and processes controlling the production of precipitation; (2) to describe the structure of small convective systems producing precipitation including the large and small scale events in the environment surrounding the developing and mature convective system; (3) to understand the interrelationships between electrical activity within the convective system and the process of precipitation; and (4) to develop and test numerical models describing the boundary layer, tropospheric, and cloud scale thermodynamics and dynamics associated with small convective systems. The latter three of these objectives were addressed by the modeling activities of the IAS. A series of cloud modes were used to simulate the clouds that formed during the operational project. The primary models used to date on the project were a two dimensional bulk water model, a two dimensional electrical model, and to a lesser extent, a two dimensional detailed microphysical cloud model. All of the models are based on fully interacting microphysics, dynamics, thermodynamics, and electrical equations. Only the 20 July 1986 case was analyzed in detail, although all of the cases run during the summer were analyzed as to how well they did in predicting the characteristics of the convection for that day.
NASA Technical Reports Server (NTRS)
Xu, Kuan-Man; Cheng, Anning
2007-01-01
The effects of subgrid-scale condensation and transport become more important as the grid spacings increase from those typically used in large-eddy simulation (LES) to those typically used in cloud-resolving models (CRMs). Incorporation of these effects can be achieved by a joint probability density function approach that utilizes higher-order moments of thermodynamic and dynamic variables. This study examines how well shallow cumulus and stratocumulus clouds are simulated by two versions of a CRM that is implemented with low-order and third-order turbulence closures (LOC and TOC) when a typical CRM horizontal resolution is used and what roles the subgrid-scale and resolved-scale processes play as the horizontal grid spacing of the CRM becomes finer. Cumulus clouds were mostly produced through subgrid-scale transport processes while stratocumulus clouds were produced through both subgrid-scale and resolved-scale processes in the TOC version of the CRM when a typical CRM grid spacing is used. The LOC version of the CRM relied upon resolved-scale circulations to produce both cumulus and stratocumulus clouds, due to small subgrid-scale transports. The mean profiles of thermodynamic variables, cloud fraction and liquid water content exhibit significant differences between the two versions of the CRM, with the TOC results agreeing better with the LES than the LOC results. The characteristics, temporal evolution and mean profiles of shallow cumulus and stratocumulus clouds are weakly dependent upon the horizontal grid spacing used in the TOC CRM. However, the ratio of the subgrid-scale to resolved-scale fluxes becomes smaller as the horizontal grid spacing decreases. The subcloud-layer fluxes are mostly due to the resolved scales when a grid spacing less than or equal to 1 km is used. The overall results of the TOC simulations suggest that a 1-km grid spacing is a good choice for CRM simulation of shallow cumulus and stratocumulus.
NASA Astrophysics Data System (ADS)
Cantrell, W. H., II; Chang, K.; Ciochetto, D.; Niedermeier, D.; Bench, J.; Shaw, R. A.
2014-12-01
A detailed understanding of gas-aerosol-cloud interaction within the turbulent atmosphere is of prime importance for an accurate understanding of Earth's climate system. As one example: While every cloud droplet began as an aerosol particle, not every aerosol particle becomes a cloud droplet. The particle to droplet transformation requires that the particle be exposed to some critical concentration of water vapor, which differs for different combinations of particle size and chemical composition. Similarly, the formation of ice particles in mixed phase clouds is also catalyzed by aerosol particles. Even in the simplest scenarios it is challenging to gain a full understanding of the aerosol activation and ice nucleation processes. At least two other factors contribute significantly to the complexity observed in the atmosphere. First, aerosols and cloud particles are not static entities, but are continuously interacting with their chemical environment, and therefore changing in their properties. Second, clouds are ubiquitously turbulent, so thermodynamic and compositional variables, such as water vapor or other trace gas concentrations, fluctuate in space and time. Indeed, the coupling between turbulence and microphysical processes is one of the major research challenges in cloud physics. We have developed a multiphase, turbulent reaction chamber, (dubbed the Π Chamber, after the internal volume of 3.14 cubic meters) designed to address the problems outlined above. It is capable of pressures ranging from sea level to ~ 100 mbar, and can sustain temperatures of +40 to -55 ºC. We can independently control the temperatures on the surfaces of three heat transfer zones. This allows us to establish a temperature gradient between the floor and ceiling inducing Rayleigh-Benard convection and inducing a turbulent environment. Interior surfaces are electropolished stainless steel to facilitate cleaning before and after chemistry experiments. At present, supporting instrumentation includes a suite of aerosol generation and characterization techniques, a laser Doppler interferometer, and a holographic cloud particle imaging system.We will present detailed specifications, an overview of the supporting instrumentation, and initial characterization experiments from the Π chamber.
Classification of Arctic, midlatitude and tropical clouds in the mixed-phase temperature regime
NASA Astrophysics Data System (ADS)
Costa, Anja; Meyer, Jessica; Afchine, Armin; Luebke, Anna; Günther, Gebhard; Dorsey, James R.; Gallagher, Martin W.; Ehrlich, Andre; Wendisch, Manfred; Baumgardner, Darrel; Wex, Heike; Krämer, Martina
2017-10-01
The degree of glaciation of mixed-phase clouds constitutes one of the largest uncertainties in climate prediction. In order to better understand cloud glaciation, cloud spectrometer observations are presented in this paper, which were made in the mixed-phase temperature regime between 0 and -38 °C (273 to 235 K), where cloud particles can either be frozen or liquid. The extensive data set covers four airborne field campaigns providing a total of 139 000 1 Hz data points (38.6 h within clouds) over Arctic, midlatitude and tropical regions. We develop algorithms, combining the information on number concentration, size and asphericity of the observed cloud particles to classify four cloud types: liquid clouds, clouds in which liquid droplets and ice crystals coexist, fully glaciated clouds after the Wegener-Bergeron-Findeisen process and clouds where secondary ice formation occurred. We quantify the occurrence of these cloud groups depending on the geographical region and temperature and find that liquid clouds dominate our measurements during the Arctic spring, while clouds dominated by the Wegener-Bergeron-Findeisen process are most common in midlatitude spring. The coexistence of liquid water and ice crystals is found over the whole mixed-phase temperature range in tropical convective towers in the dry season. Secondary ice is found at midlatitudes at -5 to -10 °C (268 to 263 K) and at higher altitudes, i.e. lower temperatures in the tropics. The distribution of the cloud types with decreasing temperature is shown to be consistent with the theory of evolution of mixed-phase clouds. With this study, we aim to contribute to a large statistical database on cloud types in the mixed-phase temperature regime.
NASA Astrophysics Data System (ADS)
Hidayat, Taufiq; Shishin, Denis; Decterov, Sergei A.; Hayes, Peter C.; Jak, Evgueni
2017-01-01
Uncertainty in the metal price and competition between producers mean that the daily operation of a smelter needs to target high recovery of valuable elements at low operating cost. Options for the improvement of the plant operation can be examined and decision making can be informed based on accurate information from laboratory experimentation coupled with predictions using advanced thermodynamic models. Integrated high-temperature experimental and thermodynamic modelling research on phase equilibria and thermodynamics of copper-containing systems have been undertaken at the Pyrometallurgy Innovation Centre (PYROSEARCH). The experimental phase equilibria studies involve high-temperature equilibration, rapid quenching and direct measurement of phase compositions using electron probe X-ray microanalysis (EPMA). The thermodynamic modelling deals with the development of accurate thermodynamic database built through critical evaluation of experimental data, selection of solution models, and optimization of models parameters. The database covers the Al-Ca-Cu-Fe-Mg-O-S-Si chemical system. The gas, slag, matte, liquid and solid metal phases, spinel solid solution as well as numerous solid oxide and sulphide phases are included. The database works within the FactSage software environment. Examples of phase equilibria data and thermodynamic models of selected systems, as well as possible implementation of the research outcomes to selected copper making processes are presented.
A satellite observation test bed for cloud parameterization development
NASA Astrophysics Data System (ADS)
Lebsock, M. D.; Suselj, K.
2015-12-01
We present an observational test-bed of cloud and precipitation properties derived from CloudSat, CALIPSO, and the the A-Train. The focus of the test-bed is on marine boundary layer clouds including stratocumulus and cumulus and the transition between these cloud regimes. Test-bed properties include the cloud cover and three dimensional cloud fraction along with the cloud water path and precipitation water content, and associated radiative fluxes. We also include the subgrid scale distribution of cloud and precipitation, and radiaitive quantities, which must be diagnosed by a model parameterization. The test-bed further includes meterological variables from the Modern Era Retrospective-analysis for Research and Applications (MERRA). MERRA variables provide the initialization and forcing datasets to run a parameterization in Single Column Model (SCM) mode. We show comparisons of an Eddy-Diffusivity/Mass-FLux (EDMF) parameterization coupled to micorphsycis and macrophysics packages run in SCM mode with observed clouds. Comparsions are performed regionally in areas of climatological subsidence as well stratified by dynamical and thermodynamical variables. Comparisons demonstrate the ability of the EDMF model to capture the observed transitions between subtropical stratocumulus and cumulus cloud regimes.
NASA Astrophysics Data System (ADS)
Storelvmo, Trude; Sagoo, Navjit; Tan, Ivy
2016-04-01
Despite the growing effort in improving the cloud microphysical schemes in GCMs, most of this effort has not focused on improving the ability of GCMs to accurately simulate phase partitioning in mixed-phase clouds. Getting the relative proportion of liquid droplets and ice crystals in clouds right in GCMs is critical for the representation of cloud radiative forcings and cloud-climate feedbacks. Here, we first present satellite observations of cloud phase obtained by NASA's CALIOP instrument, and report on robust statistical relationships between cloud phase and several aerosols species that have been demonstrated to act as ice nuclei (IN) in laboratory studies. We then report on results from model intercomparison projects that reveal that GCMs generally underestimate the amount of supercooled liquid in clouds. For a selected GCM (NCAR 's CAM5), we thereafter show that the underestimate can be attributed to two main factors: i) the presence of IN in the mixed-phase temperature range, and ii) the Wegener-Bergeron-Findeisen process, which converts liquid to ice once ice crystals have formed. Finally, we show that adjusting these two processes such that the GCM's cloud phase is in agreement with the observed has a substantial impact on the simulated radiative forcing due to IN perturbations, as well as on the cloud-climate feedbacks and ultimately climate sensitivity simulated by the GCM.
Investigating mixed phase clouds using a synergy of ground based remote sensing measurements
NASA Astrophysics Data System (ADS)
Gierens, Rosa; Kneifel, Stefan; Löhnert, Ulrich
2017-04-01
Low level mixed phase clouds occur frequently in the Arctic, and can persist from hours to several days. However, the processes that lead to the commonality and persistence of these clouds are not well understood. The aim of our work is to get a more detailed understanding of the dynamics of and the processes in Arctic mixed phase clouds using a combination of instruments operating at the AWIPEV station in Svalbard. In addition, an aircraft campaign collecting in situ measurements inside mixed phase clouds above the station is planned for May-June 2017. The in situ data will be used for developing and validating retrievals for microphysical properties from Doppler cloud radar measurements. Once observational data for cloud properties is obtained, it can be used for evaluating model performance, for studies combining modeling and observational approaches, and eventually lead to developing model parameterizations of mixed phase microphysics. To describe the low-level mixed phase clouds, and the atmospheric conditions in which they occur, we present a case study of a persistent mixed phase cloud observed above the AWIPEV station. In the frame of the Arctic Amplification: Climate Relevant Atmospheric and Surface Processes and Feedback Mechanisms ((AC)3) -project, a millimeter wavelength cloud radar was installed at the site in June 2016. The high vertical (4 m in the lowest layer) and temporal (2.5 sec) resolution allows for a detailed description of the structure of the cloud. In addition to radar reflectivity and mean vertical velocity, we also utilize the higher moments of the Doppler spectra, such as skewness and kurtosis. To supplement the radar measurements, a ceilometer is used to detect liquid layers inside the cloud. Liquid water path and integrated water vapor are estimated using a microwave radiometer, which together with soundings can also provide temperature and humidity profiles in the lower troposphere. Moreover, a three-dimensional wind field is be obtained from a Doppler wind lidar. Furthermore, the Cloudnet scheme (www.cloud-net.org), that combines radar, lidar and microwave radiometer observations with a forecast model to provide a best estimate of cloud properties, is used for identifying mixed phase clouds. The continuous measurements carried out at AWIPEV make it possible to characterize the macro- and micro- physical properties of mixed-phase clouds on a long-term, statistical basis. The Arctic observations are compared to a 5-year observational data set from Jülich Observatory for Cloud Evolution (JOYCE) in Western Germany. The occurrence of different types of clouds (with focus on mixed-phase and super-cooled clouds), the distribution of ice and liquid within the clouds, the turbulent environment as well as the temperatures where the different phases are occurring are investigated.
Cloud Cavitation and Collective Bubble Dynamics.
1986-03-15
Fundamentals of Classical Thermodynamics, Second Edition, Wiley. Van Manen , J. D. (1963), "Bent Trailing Edges of Propeller Blades of High Powered...responsible since Van Manen’s (1963) work. This is supported experimentally by a very close correlation between the dynamics of these clouds and the...needed as guidance for future design and experimentation. To our knowledge, since the early work of Van Wijngaarden (1964) only a few publications by Morch
Process-model Simulations of Cloud Albedo Enhancement by Aerosols in the Arctic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kravitz, Benjamin S.; Wang, Hailong; Rasch, Philip J.
2014-11-17
A cloud-resolving model is used to simulate the effectiveness of Arctic marine cloud brightening via injection of cloud condensation nuclei (CCN). An updated cloud microphysical scheme is employed, with prognostic CCN and cloud particle numbers in both liquid and mixed-phase marine low clouds. Injection of CCN into the marine boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. Because nearly all of the albedo effects are in the liquid phase due to the removal of ice water by snowfall when ice processes are involved, albedo increases are stronger for pure liquid clouds than mixed-phase clouds.more » Liquid precipitation can be suppressed by CCN injection, whereas ice precipitation (snow) is affected less; thus the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. CCN injection into a clean regime results in a greater albedo increase than injection into a polluted regime, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, dynamical changes in circulation due to precipitation changes are small.« less
Moisture structure of tropical cloud systems as inferred from SSM/I
NASA Technical Reports Server (NTRS)
Robertson, Franklin R.
1989-01-01
The structure of tropical cloud systems was examined using data obtained by the Special Sensor Microwave/Imager on vertically-integrated vapor, ice, and liquid water (including precipitable water) in a cloud cluster associated with a Pacific easterly wave. The cloud cluster provided a sample of the varying signatures of bulk microphysical processes in organized tropical convection. Composition techniques were used to interpret this variability and its significance in terms of the response of convection to its thermodynamic environment. The relative intensities of the ice and liquid-water signatures should provide insight on the relative contribution of stratiform vs convective rain and the characteristics of the water budgets of mesoscale convective systems.
Simulations of arctic mixed-phase clouds in forecasts with CAM3 and AM2 for M-PACE
Xie, Shaocheng; Boyle, James; Klein, Stephen A.; ...
2008-02-27
[1] Simulations of mixed-phase clouds in forecasts with the NCAR Atmosphere Model version 3 (CAM3) and the GFDL Atmospheric Model version 2 (AM2) for the Mixed-Phase Arctic Cloud Experiment (M-PACE) are performed using analysis data from numerical weather prediction centers. CAM3 significantly underestimates the observed boundary layer mixed-phase cloud fraction and cannot realistically simulate the variations of liquid water fraction with temperature and cloud height due to its oversimplified cloud microphysical scheme. In contrast, AM2 reasonably reproduces the observed boundary layer cloud fraction while its clouds contain much less cloud condensate than CAM3 and the observations. The simulation of themore » boundary layer mixed-phase clouds and their microphysical properties is considerably improved in CAM3 when a new physically based cloud microphysical scheme is used (CAM3LIU). The new scheme also leads to an improved simulation of the surface and top of the atmosphere longwave radiative fluxes. Sensitivity tests show that these results are not sensitive to the analysis data used for model initialization. Increasing model horizontal resolution helps capture the subgrid-scale features in Arctic frontal clouds but does not help improve the simulation of the single-layer boundary layer clouds. AM2 simulated cloud fraction and LWP are sensitive to the change in cloud ice number concentrations used in the Wegener-Bergeron-Findeisen process while CAM3LIU only shows moderate sensitivity in its cloud fields to this change. Furthermore, this paper shows that the Wegener-Bergeron-Findeisen process is important for these models to correctly simulate the observed features of mixed-phase clouds.« less
Simulations of Arctic mixed-phase clouds in forecasts with CAM3 and AM2 for M-PACE
NASA Astrophysics Data System (ADS)
Xie, Shaocheng; Boyle, James; Klein, Stephen A.; Liu, Xiaohong; Ghan, Steven
2008-02-01
Simulations of mixed-phase clouds in forecasts with the NCAR Atmosphere Model version 3 (CAM3) and the GFDL Atmospheric Model version 2 (AM2) for the Mixed-Phase Arctic Cloud Experiment (M-PACE) are performed using analysis data from numerical weather prediction centers. CAM3 significantly underestimates the observed boundary layer mixed-phase cloud fraction and cannot realistically simulate the variations of liquid water fraction with temperature and cloud height due to its oversimplified cloud microphysical scheme. In contrast, AM2 reasonably reproduces the observed boundary layer cloud fraction while its clouds contain much less cloud condensate than CAM3 and the observations. The simulation of the boundary layer mixed-phase clouds and their microphysical properties is considerably improved in CAM3 when a new physically based cloud microphysical scheme is used (CAM3LIU). The new scheme also leads to an improved simulation of the surface and top of the atmosphere longwave radiative fluxes. Sensitivity tests show that these results are not sensitive to the analysis data used for model initialization. Increasing model horizontal resolution helps capture the subgrid-scale features in Arctic frontal clouds but does not help improve the simulation of the single-layer boundary layer clouds. AM2 simulated cloud fraction and LWP are sensitive to the change in cloud ice number concentrations used in the Wegener-Bergeron-Findeisen process while CAM3LIU only shows moderate sensitivity in its cloud fields to this change. This paper shows that the Wegener-Bergeron-Findeisen process is important for these models to correctly simulate the observed features of mixed-phase clouds.
Gas-phase kinetics modifies the CCN activity of a biogenic SOA.
Vizenor, A E; Asa-Awuku, A A
2018-02-28
Our current knowledge of cloud condensation nuclei (CCN) activity and the hygroscopicity of secondary organic aerosol (SOA) depends on the particle size and composition, explicitly, the thermodynamic properties of the aerosol solute and subsequent interactions with water. Here, we examine the CCN activation of 3 SOA systems (2 biogenic single precursor and 1 mixed precursor SOA system) in relation to gas-phase decay. Specifically, the relationship between time, gas-phase precursor decay and CCN activity of 100 nm SOA is studied. The studied SOA systems exhibit a time-dependent growth of CCN activity at an instrument supersaturation of ∼0.2%. As such, we define a critical activation time, t 50 , above which a 100 nm SOA particle will activate. The critical activation time for isoprene, longifolene and a mixture of the two precursor SOA is 2.01 hours, 2.53 hours and 3.17 hours, respectively. The activation times are then predicted with gas-phase kinetic data inferred from measurements of precursor decay. The gas-phase prediction of t 50 agrees well with CCN measured t 50 (within 0.05 hours of the actual critical times) and suggests that the gas-to-particle phase partitioning may be more significant for SOA CCN prediction than previously thought.
Shallow convection on day 261 of GATE - Mesoscale arcs
NASA Technical Reports Server (NTRS)
Warner, C.; Simpson, J.; Martin, D. W.; Suchman, D.; Mosher, F. R.; Reinking, R. F.
1979-01-01
Cloudy convection in the moist layer of a cloud cluster growing in the GATE ship array is examined. Analyses suggest that the moist layer was dominated by features of horizontal dimension roughly 40 km and lifetime roughly 2 h, with arc patterns triggered by dense downdraft air accompanying rainfall, and composed of many small cumulus clouds. Aircraft recorded data on thermodynamic quantities and winds, indicating that the arcs persisted as mesoscale circulations driven by the release of latent heat in the clouds, rather than being driven by the original density current at the surface. It is also suggested that the mesoscale cloud patterns of the moist layer play a primary role in heat transfer upward within this layer, and contribute to the forcing of showering midtropospheric clouds.
NASA Astrophysics Data System (ADS)
Betts, A. K.; Tawfik, A. B.; Desjardins, R. L.
2016-12-01
We use 600 station years of hourly data from 14 stations on the Canadian Prairies to map the warm season hydrometeorology. The months from April (after snowmelt) to September, have a very similar coupling between surface thermodynamics and opaque cloud cover, which has been calibrated to give cloud radiative forcing. We can derive both the mean diurnal ranges and the diurnal imbalances as a function of opaque cloud cover. For the monthly diurnal climate, we compute the coupling coefficients with opaque cloud cover and lagged precipitation. In April the diurnal cycle climate has memory of precipitation back to freeze-up in November. During the growing season months of June, July and August, there is memory of precipitation back to March. Monthly mean temperature depends strongly on cloud but little on precipitation, while monthly mean mixing ratio depends on precipitation, but rather little on cloud. The coupling coefficients to cloud and precipitation change with increasing monthly precipitation anomaly. This observational climate analysis provides a firm basis for model evaluation.
NASA Astrophysics Data System (ADS)
Wang, Zhen
Airborne aerosols are crucial atmospheric constituents that are involved in global climate change and human life qualities. Understanding the nature and magnitude of aerosol-cloud-precipitation interactions is critical in model predictions for atmospheric radiation budget and the water cycle. The interactions depend on a variety of factors including aerosol physicochemical complexity, cloud types, meteorological and thermodynamic regimes and data processing techniques. This PhD work is an effort to quantify the relationships among aerosol, clouds, and precipitation on both global and regional scales by using satellite retrievals and aircraft measurements. The first study examines spatial distributions of conversion rate of cloud water to rainwater in warm maritime clouds over the globe by using NASA A-Train satellite data. This study compares the time scale of the onset of precipitation with different aerosol categories defined by values of aerosol optical depth, fine mode fraction, and Angstrom Exponent. The results indicate that conversion time scales are actually quite sensitive to lower tropospheric static stability (LTSS) and cloud liquid water path (LWP), in addition to aerosol type. Analysis shows that tropical Pacific Ocean is dominated by the highest average conversion rate while subtropical warm cloud regions (far northeastern Pacific Ocean, far southeastern Pacific Ocean, Western Africa coastal area) exhibit the opposite result. Conversion times are mostly shorter for lower LTSS regimes. When LTSS condition is fixed, higher conversion rates coincide with higher LWP and lower aerosol index categories. After a general global view of physical property quantifications, the rest of the presented PhD studies is focused on regional airborne observations, especially bulk cloud water chemistry and aerosol aqueous-phase reactions during the summertime off the California coast. Local air mass origins are categorized into three distinct types (ocean, ships, and land) with their influences on cloud water composition examined and implications of wet deposition discussed. Chemical analysis of cloud water samples indicates a wide pH range between 2.92 and 7.58, with an average as 4.46. The highest pH values were observed north of San Francisco, coincident with the strongest land mass influence (e.g. Si, B, and Cs). Conversely, the lowest pH values were observed south of San Francisco where there is heavy ship traffic, resulting in the highest concentrations of sulfate, nitrate, V, Fe, Al, P, Cd, Ti, Sb, P, and Mn. The acidic cloud environment with influences from various air mass types can affect the California coastal aquatic ecosystem since it can promote the conversion of micronutrients to more soluble forms. Beyond characterization of how regional air mass sources affect cloud water composition, aircraft cloud water collection provides precious information on tracking cloud processing with specific species such as oxalic acid, which is the most abundant dicarboxylic acid in tropospheric aerosols. Particular attention is given to explore relationship between detected metals with oxalate aqueous-phase production mechanisms. A number of case flights show that oxalate concentrations drop by nearly an order of magnitude relative to samples in the same vicinity with similar environmental and cloud physical conditions. Such a unique feature was consistent with an inverse relationship between oxalate and Fe. In order to examine the hypothesis that oxalate decreasing is potentially related to existing of Fe, chemistry box model simulations were conducted. The prediction results show that the loss of oxalate due to the photolysis of iron oxalato complexes is likely a significant oxalate sink in the study region due to the ubiquity of oxalate precursors, clouds, and metal emissions from ships, the ocean, and continental sources.
NASA Astrophysics Data System (ADS)
Dagan, Guy; Koren, Ilan; Altaratz, Orit
2018-05-01
Better representation of cloud-aerosol interactions is crucial for an improved understanding of natural and anthropogenic effects on climate. Recent studies have shown that the overall aerosol effect on warm convective clouds is non-monotonic. Here, we reduce the system's dimensions to its center of gravity (COG), enabling distillation and simplification of the overall trend and its temporal evolution. Within the COG framework, we show that the aerosol effects are nicely reflected by the interplay of the system's characteristic vertical velocities, namely the updraft (w) and the effective terminal velocity (η). The system's vertical velocities can be regarded as a sensitive measure for the evolution of the overall trends with time. Using a bin-microphysics cloud-scale model, we analyze and follow the trends of the aerosol effect on the magnitude and timing of w and η, and therefore the overall vertical COG velocity. Large eddy simulation (LES) model runs are used to upscale the analyzed trends to the cloud-field scale and study how the aerosol effects on the temporal evolution of the field's thermodynamic properties are reflected by the interplay between the two velocities. Our results suggest that aerosol effects on air vertical motion and droplet mobility imply an effect on the way in which water is distributed along the atmospheric column. Moreover, the interplay between w and η predicts the overall trend of the field's thermodynamic instability. These factors have an important effect on the local energy balance.
NASA Astrophysics Data System (ADS)
Noone, D. C.; Raudzens Bailey, A.; Toohey, D. W.; Twohy, C. H.; Heymsfield, A.; Rella, C.; Van Pelt, A. D.
2011-12-01
Convective clouds play a significant role in the moisture and heat balance of the tropics. The dynamics of organized and isolated convection are a function of the background thermodynamic profile and wind shear, buoyancy sources near the surface and the latent heating inside convective updrafts. The stable oxygen and hydrogen isotope ratios in water vapor and condensate can be used to identify dominant moisture exchanges and aspects of the cloud microphysics that are otherwise difficult to observe. Both the precipitation efficiency and the dilution of cloud updrafts by entrainment can be estimated since the isotopic composition outside the plume is distinct from inside. Measurements of the 18O/16O and D/H isotope ratios were made in July 2011 on 13 research flights of the NCAR C130 aircraft during the ICE-T (Ice in Clouds Experiment - Tropical) field campaign near St Croix. Measurements were made using an instrument based on the Picarro Wave-Length Scanning Cavity Ring Down platform that includes a number of optical, hardware and software modifications to allow measurements to be made at 5 Hz for deployment on aircraft. The measurement system was optimized to make precise measurements of the isotope ratio of liquid and ice cloud condensate by coupling the gas analyzer to the NCAR Counter flow Virtual Impactor inlet. The inlet system provides a particle enhancement while rejecting vapor. Sample air is vigorously heated before flowing into the gas phase analyzer. We present statistics that demonstrate the performance and calibration of the instrument. Measured profiles show that environmental air exhibits significant layering showing controls from boundary layer processes, large scale horizontal advection and regional subsidence. Condensate in clouds is consistent with generally low precipitation efficiency, although there is significant variability in the isotope ratios suggesting heterogeneity within plumes and the stochastic nature of detrainment processes. Entrainment of air into the plume is seen as evaporation of condensate. In the plume between about -7 and -12C, the ice condensate fraction increases with height, and the isotope ratios are used to discern ice formation from deposition from ice formed from in situ freezing of cloud liquid. The observed profiles demonstrate a new capacity for cloud process studies and provide new insight into the water budget of clouds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hailong; Burleyson, Casey D.; Ma, Po-Lun
We use the long-term Atmospheric Radiation Measurement (ARM) datasets collected at the three Tropical Western Pacific (TWP) sites as a tropical testbed to evaluate the ability of the Community Atmosphere Model (CAM5) to simulate the various types of clouds, their seasonal and diurnal variations, and their impact on surface radiation. We conducted a series of CAM5 simulations at various horizontal grid spacing (around 2°, 1°, 0.5°, and 0.25°) with meteorological constraints from reanalysis. Model biases in the seasonal cycle of cloudiness are found to be weakly dependent on model resolution. Positive biases (up to 20%) in the annual mean totalmore » cloud fraction appear mostly in stratiform ice clouds. Higher-resolution simulations do reduce the positive bias in the frequency of ice clouds, but they inadvertently increase the negative biases in convective clouds and low-level liquid clouds, leading to a positive bias in annual mean shortwave fluxes at the sites, as high as 65 W m-2 in the 0.25° simulation. Such resolution-dependent biases in clouds can adversely lead to biases in ambient thermodynamic properties and, in turn, feedback on clouds. Both the CAM5 model and ARM observations show distinct diurnal cycles in total, stratiform and convective cloud fractions; however, they are out-of-phase by 12 hours and the biases vary by site. Our results suggest that biases in deep convection affect the vertical distribution and diurnal cycle of stratiform clouds through the transport of vapor and/or the detrainment of liquid and ice. We also found that the modelled gridmean surface longwave fluxes are systematically larger than site measurements when the grid that the ARM sites reside in is partially covered by ocean. The modeled longwave fluxes at such sites also lack a discernable diurnal cycle because the ocean part of the grid is warmer and less sensitive to radiative heating/cooling compared to land. Higher spatial resolution is more helpful is this regard. Our testbed approach can be easily adapted for the evaluation of new parameterizations being developed for CAM5 or other global or regional model simulations at high spatial resolutions.« less
GOES Cloud Detection at the Global Hydrology and Climate Center
NASA Technical Reports Server (NTRS)
Laws, Kevin; Jedlovec, Gary J.; Arnold, James E. (Technical Monitor)
2002-01-01
The bi-spectral threshold (BTH) for cloud detection and height assignment is now operational at NASA's Global Hydrology and Climate Center (GHCC). This new approach is similar in principle to the bi-spectral spatial coherence (BSC) method with improvements made to produce a more robust cloud-filtering algorithm for nighttime cloud detection and subsequent 24-hour operational cloud top pressure assignment. The method capitalizes on cloud and surface emissivity differences from the GOES 3.9 and 10.7-micrometer channels to distinguish cloudy from clear pixels. Separate threshold values are determined for day and nighttime detection, and applied to a 20-day minimum composite difference image to better filter background effects and enhance differences in cloud properties. A cloud top pressure is assigned to each cloudy pixel by referencing the 10.7-micrometer channel temperature to a thermodynamic profile from a locally -run regional forecast model. This paper and supplemental poster will present an objective validation of nighttime cloud detection by the BTH approach in comparison with previous methods. The cloud top pressure will be evaluated by comparing to the NESDIS operational CO2 slicing approach.
Magnetic clouds, helicity conservation, and intrinsic scale flux ropes
NASA Technical Reports Server (NTRS)
Kumar, A.; Rust, D. M.
1995-01-01
An intrinsic-scale flux-rope model for interplanetary magnetic clouds, incorporating conservation of magnetic helicity, flux and mass is found to adequately explain clouds' average thermodynamic and magnetic properties. In spite their continuous expansion as they balloon into interplanetary space, magnetic clouds maintain high temperatures. This is shown to be due to magnetic energy dissipation. The temperature of an expanding cloud is shown to pass through a maximum above its starting temperature if the initial plasma beta in the cloud is less than 2/3. Excess magnetic pressure inside the cloud is not an important driver of the expansion as it is almost balanced by the tension in the helical field lines. It is conservation of magnetic helicity and flux that requires that clouds expand radially as they move away from the Sun. Comparison with published data shows good agreement between measured cloud properties and theory. Parameters determined from theoretical fits to the data, when extended back to the Sun, are consistent with the origin of interplanetary magnetic clouds in solar filament eruptions. A possible extension of the heating mechanism discussed here to heating of the solar corona is discussed.
Cloud and Thermodynamic Parameters Retrieved from Satellite Ultraspectral Infrared Measurements
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Smith, William L.; Larar, Allen M.; Liu, Xu; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.
2008-01-01
Atmospheric-thermodynamic parameters and surface properties are basic meteorological parameters for weather forecasting. A physical geophysical parameter retrieval scheme dealing with cloudy and cloud-free radiance observed with satellite ultraspectral infrared sounders has been developed and applied to the Infrared Atmospheric Sounding Interferometer (IASI) and the Atmospheric InfraRed Sounder (AIRS). The retrieved parameters presented herein are from radiance data gathered during the Joint Airborne IASI Validation Experiment (JAIVEx). JAIVEx provided intensive aircraft observations obtained from airborne Fourier Transform Spectrometer (FTS) systems, in-situ measurements, and dedicated dropsonde and radiosonde measurements for the validation of the IASI products. Here, IASI atmospheric profile retrievals are compared with those obtained from dedicated dropsondes, radiosondes, and the airborne FTS system. The IASI examples presented here demonstrate the ability to retrieve fine-scale horizontal features with high vertical resolution from satellite ultraspectral sounder radiance spectra.
NASA Astrophysics Data System (ADS)
Shukla, Adarsh
In a thermodynamic system which contains several elements, the phase relationships among the components are usually very complex. Especially, systems containing oxides are generally very difficult to investigate owing to the very high experimental temperatures and corrosive action of slags. Due to such difficulties, large inconsistencies are often observed among the available experimental data. In order to investigate and understand the complex phase relationships effectively, it is very useful to develop thermodynamic databases containing optimized model parameters giving the thermodynamic properties of all phases as functions of temperature and composition. In a thermodynamic optimization, adjustable model parameters are calculated using, simultaneously, all available thermodynamic and phase-equilibrium data in order to obtain one set of model equations as functions of temperature and composition. Thermodynamic data, such as activities, can aid in the evaluation of the phase diagrams, and information on phase equilibria can be used to deduce thermodynamic properties. Thus, it is frequently possible to resolve discrepancies in the available data. From the model equations, all the thermodynamic properties and phase diagrams can be back-calculated, and interpolations and extrapolations can be made in a thermodynamically correct manner. The data are thereby rendered self-consistent and consistent with thermodynamic principles, and the available data are distilled into a small set of model parameters, ideal for computer storage. As part of a broader research project at the Centre de Recherche en Calcul Thermochimique (CRCT), Ecole Polytechnique to develop a thermodynamic database for multicomponent oxide systems, this thesis deals with the addition of components SrO and BaO to the existing multicomponent database of the SiO2-B2O3-Al2O 3-CaO-MgO system. Over the years, in collaboration with many industrial companies, a thermodynamic database for the SiO2-B2O 3-Al2O3-CaO-MgO system has been built quite satisfactorily. The aim of the present work was to improve the applicability of this five component database by adding SrO and BaO to it. The databases prepared in this work will be of special importance to the glass and steel industries. In the SiO2-B2O3-Al2O 3-CaO-MgO-BaO-SrO system there are 11 binary systems and 25 ternary systems which contain either BaO or SrO or both. For most of these binary systems, and for none of these ternary systems, is there a previous thermodynamic optimization available in the literature. In this thesis, thermodynamic evaluation and optimization for the 11 binary, 17 ternary and 5 quaternary BaO- and SrO- containing systems in the SiO2-B2O3-Al 2O3-CaO-MgO-BaO-SrO system is presented. All these thermodynamic optimizations were performed based on the experimental data available in the literature, except for the SrO-B2O3-SiO2 system. This latter system was optimized on the basis of a few experimental data points generated in the present work together with the data from the literature. In the present work, all the calculations were performed using the FactSage™ thermochemical software. The Modified Quasichemical Model (MQM), which is capable of taking short-range ordering into account, was used for the liquid phase. All the binary systems were critically evaluated and optimized using available phase equilibrium and thermodynamic data. The model parameters obtained as a result of this simultaneous optimization were used to represent the Gibbs energies of all phases as functions of temperature and composition. Optimized binary model parameters were used to estimate the thermodynamic properties of phases in the ternary systems. Proper “geometric” models were used for these estimations. Ternary phase diagram were calculated and compared with available experimental data. Wherever required, ternary interaction parameters were also added. The first part of this thesis comprises a general literature review on the subject of thermodynamic modeling and experimental techniques for phase diagram determination. The next chapters include the literature review and the thermodynamic optimizations of the various systems. The last part of the thesis is the presentation of experiments performed in the present work, by quenching and EPMA, in the SrO-B2O3-SiO2 system. The experiments were designed to generate the maximum amount of information with the minimum number of experiments using the thermodynamic optimization, based only on the data available in the literature, as a guide. These newly-obtained data improved the (preceding) thermodynamic optimization, based on the experimental data in the literature, of this ternary system.
NASA Technical Reports Server (NTRS)
Xu, Kuan-Man
2015-01-01
During inactive phases of Madden-Julian Oscillation (MJO), there are plenty of deep but small convective systems and far fewer deep and large ones. During active phases of MJO, a manifestation of an increase in the occurrence of large and deep cloud clusters results from an amplification of large-scale motions by stronger convective heating. This study is designed to quantitatively examine the roles of small and large cloud clusters during the MJO life cycle. We analyze the cloud object data from Aqua CERES (Clouds and the Earth's Radiant Energy System) observations between July 2006 and June 2010 for tropical deep convective (DC) and cirrostratus (CS) cloud object types according to the real-time multivariate MJO index, which assigns the tropics to one of the eight MJO phases each day. The cloud object is a contiguous region of the earth with a single dominant cloud-system type. The criteria for defining these cloud types are overcast footprints and cloud top pressures less than 400 hPa, but DC has higher cloud optical depths (=10) than those of CS (<10). The size distributions, defined as the footprint numbers as a function of cloud object diameters, for particular MJO phases depart greatly from the combined (8-phase) distribution at large cloud-object diameters due to the reduced/increased numbers of cloud objects related to changes in the large-scale environments. The medium diameter corresponding to the combined distribution is determined and used to partition all cloud objects into "small" and "large" groups of a particular phase. The two groups corresponding to the combined distribution have nearly equal numbers of footprints. The medium diameters are 502 km for DC and 310 km for cirrostratus. The range of the variation between two extreme phases (typically, the most active and depressed phases) for the small group is 6-11% in terms of the numbers of cloud objects and the total footprint numbers. The corresponding range for the large group is 19-44%. In terms of the probability density functions of radiative and cloud physical properties, there are virtually no differences between the MJO phases for the small group, but there are significant differences for the large groups for both DC and CS types. These results suggest that the intreseasonal variation signals reside at the large cloud clusters while the small cloud clusters represent the background noises resulting from various types of the tropical waves with different wavenumbers and propagation speeds/directions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bony, Sandrine; Stevens, Bjorn; Coppin, David
General circulation models show that as the surface temperature increases, the convective anvil clouds shrink. By analyzing radiative–convective equilibrium simulations, our work shows that this behavior is rooted in basic energetic and thermodynamic properties of the atmosphere: As the climate warms, the clouds rise and remain at nearly the same temperature, but find themselves in a more stable atmosphere; this enhanced stability reduces the convective outflow in the upper troposphere and decreases the anvil cloud fraction. By warming the troposphere and increasing the upper-tropospheric stability, the clustering of deep convection also reduces the convective outflow and the anvil cloud fraction.more » When clouds are radiatively active, this robust coupling between temperature, high clouds, and circulation exerts a positive feedback on convective aggregation and favors the maintenance of strongly aggregated atmospheric states at high temperatures. This stability iris mechanism likely contributes to the narrowing of rainy areas as the climate warms. Whether or not it influences climate sensitivity requires further investigation.« less
Performance of greenhouse gas profiling by infrared-laser and microwave occultation in cloudy air
NASA Astrophysics Data System (ADS)
Proschek, V.; Kirchengast, G.; Emde, C.; Schweitzer, S.
2012-12-01
ACCURATE is a proposed future satellite mission enabling simultaneous measurements of greenhouse gases (GHGs), wind and thermodynamic variables from Low Earth Orbit (LEO). The measurement principle is a combination of LEO-LEO infrared-laser occultation (LIO) and microwave occultation (LMO), the LMIO method, where the LIO signals are very sensitive to clouds. The GHG retrieval will therefore be strongly influenced by clouds in parts of the troposphere. The IR-laser signals, at wavelengths within 2--2.5μ m, are chosen to measure six GHGs (H2O, CO2, CH4, N2O, O3, CO; incl.~key isotopes 13CO2, C18OO, HDO). The LMO signals enable to co-measure the thermodynamic variables. In this presentation we introduce the algorithm to retrieve GHG profiles under cloudy-air conditions by using quasi-realistic forward simulations, including also influence of Rayleigh scattering, scintillations and aerosols. Data from CALIPSO--Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations--with highest vertical resolution of about 60 m and horizontal resolution of about 330 m were used for simulation of clouds. The IR-laser signals consist for each GHG of a GHG-sensitive and a close-by reference signal. The key process, ``differencing'' of these two signals, removes the atmospheric ``broadband'' effects, resulting in a pure GHG transmission profile. Very thin ice clouds, like sub-visible cirrus, are fairly transparent to the IR-laser signals, thicker and liquid water clouds block the signals. The reference signal is used to produce a cloud layering profile from zero to blocking clouds and is smoothed in a preprocess to suppress scintillations. Sufficiently small gaps, of width <2 km in the cloud layering profile, are found to enable a decent retrieval of entire GHG profiles over the UTLS under broken cloudiness and are therefore bridged by interpolation. Otherwise in case of essentially continuous cloudiness the profiles are found to terminate at cloud top level. The accuracy of retrieved GHG profiles is found better than 1% to 4% for single profiles in the UTLS region outside clouds and through broken cloudiness, and the profiles are essentially unbiased. Cloud gap-interpolation increases the tropospheric penetration of GHG profiles for scientific applications. The associated cloud layering profile provides quality-control information on cloud gap-interpolations, if they occured, and on cloud-top altitude for cloud blocking cases. The LMIO technique shows promising prospects for GHG monitoring even under cloudy-air conditions.
Critical evaluation and thermodynamic optimization of the Iron-Rare-Earth systems
NASA Astrophysics Data System (ADS)
Konar, Bikram
Rare-Earth elements by virtue of its typical magnetic, electronic and chemical properties are gaining importance in power, electronics, telecommunications and sustainable green technology related industries. The Magnets from RE-alloys are more powerful than conventional magnets which have more longevity and high temperature workability. The dis-equilibrium in the Rare-Earth element supply and demand has increased the importance of recycling and extraction of REE's from used permanent Magnets. However, lack of the thermodynamic data on RE alloys has made it difficult to design an effective extraction and recycling process. In this regard, Computational Thermodynamic calculations can serve as a cost effective and less time consuming tool to design a waste magnet recycling process. The most common RE permanent magnet is Nd magnet (Nd 2Fe14B). Various elements such as Dy, Tb, Pr, Cu, Co, Ni, etc. are also added to increase its magnetic and mechanical properties. In order to perform reliable thermodynamic calculations for the RE recycling process, accurate thermodynamic database for RE and related alloys are required. The thermodynamic database can be developed using the so-called CALPHAD method. The database development based on the CALPHAD method is essentially the critical evaluation and optimization of all available thermodynamic and phase diagram data. As a results, one set of self-consistent thermodynamic functions for all phases in the given system can be obtained, which can reproduce all reliable thermodynamic and phase diagram data. The database containing the optimized Gibbs energy functions can be used to calculate complex chemical reactions for any high temperature processes. Typically a Gibbs energy minimization routine, such as in FactSage software, can be used to obtain the accurate thermodynamic equilibrium in multicomponent systems. As part of a large thermodynamic database development for permanent magnet recycling and Mg alloy design, all thermodynamic and phase diagram data in the literature for the fourteen Fe-RE binary systems: Fe-La, Fe-Ce, Fe-Pr, Fe-Nd, Fe-Sm, Fe-Gd, Fe-Tb, Fe-Dy, Fe-Ho, Fe-Er, Fe-Tm, Fe-Lu, Fe-Sc and Fe-Y are critically evaluated and optimized to obtain thermodynamic model parameters. The model parameters can be used to calculate phase diagrams and Gibbs energies of all phases as functions of temperature and composition. This database can be incorporated with the present thermodynamic database in FactSage software to perform complex chemical reactions and phase diagram calculations for RE magnet recycling process.
Black hole chemistry: thermodynamics with Lambda
NASA Astrophysics Data System (ADS)
Kubizňák, David; Mann, Robert B.; Teo, Mae
2017-03-01
We review recent developments on the thermodynamics of black holes in extended phase space, where the cosmological constant is interpreted as thermodynamic pressure and treated as a thermodynamic variable in its own right. In this approach, the mass of the black hole is no longer regarded as internal energy, rather it is identified with the chemical enthalpy. This leads to an extended dictionary for black hole thermodynamic quantities; in particular a notion of thermodynamic volume emerges for a given black hole spacetime. This volume is conjectured to satisfy the reverse isoperimetric inequality—an inequality imposing a bound on the amount of entropy black hole can carry for a fixed thermodynamic volume. New thermodynamic phase transitions naturally emerge from these identifications. Namely, we show that black holes can be understood from the viewpoint of chemistry, in terms of concepts such as Van der Waals fluids, reentrant phase transitions, and triple points. We also review the recent attempts at extending the AdS/CFT dictionary in this setting, discuss the connections with horizon thermodynamics, applications to Lifshitz spacetimes, and outline possible future directions in this field.
NASA Astrophysics Data System (ADS)
Sun, Xinjun; Liu, Changdong; Guo, Yongliang; Sun, Deyan; Ke, Xuezhi
2018-03-01
The structural and thermodynamic properties of titanium nitride (TiN) have been investigated by merging first-principles calculations and particle-swarm algorithm. The three phases are identified for TiN, including the B1, the P63 / mmc, and the B2 phases. A new phase of anti-TiP structure with the space group P63 / mmc has been predicted. The calculated phase transition from the B1 to the P63 / mmc occurs at 270 GPa. The vibrational, elastic, and thermodynamic properties for the three phases have been calculated and discussed.
NASA Technical Reports Server (NTRS)
Lau, K-M.; Wu, H-T.
2010-01-01
This study investigates the evolution of cloud and rainfall structures associated with Madden Julian oscillation (MJO) using Tropical Rainfall Measuring Mission (TRMM) data. Two complementary indices are used to define MJO phases. Joint probability distribution functions (PDFs) of cloud-top temperature and radar echo-top height are constructed for each of the eight MJO phases. The genesis stage of MJO convection over the western Pacific (phases 1 and 2) features a bottom-heavy PDF, characterized by abundant warm rain, low clouds, suppressed deep convection, and higher sea surface temperature (SST). As MJO convection develops (phases 3 and 4), a transition from the bottom-heavy to top-heavy PDF occurs. The latter is associated with the development of mixed-phase rain and middle-to-high clouds, coupled with rapid SST cooling. At the MJO convection peak (phase 5), a top-heavy PDF contributed by deep convection with mixed-phase and ice-phase rain and high echo-top heights (greater than 5 km) dominates. The decaying stage (phases 6 and 7) is characterized by suppressed SST, reduced total rain, increased contribution from stratiform rain, and increased nonraining high clouds. Phase 7, in particular, signals the beginning of a return to higher SST and increased warm rain. Phase 8 completes the MJO cycle, returning to a bottom-heavy PDF and SST conditions similar to phase 1. The structural changes in rain and clouds at different phases of MJO are consistent with corresponding changes in derived latent heating profiles, suggesting the importance of a diverse mix of warm, mixed-phase, and ice-phase rain associated with low-level, congestus, and high clouds in constituting the life cycle and the time scales of MJO.
NASA Astrophysics Data System (ADS)
NOH, Y. J.; Miller, S. D.; Heidinger, A. K.
2015-12-01
Many studies have demonstrated the utility of multispectral information from satellite passive radiometers for detecting and retrieving the properties of cloud globally, which conventionally utilizes shortwave- and thermal-infrared bands. However, the satellite-derived cloud information comes mainly from cloud top or represents a vertically integrated property. This can produce a large bias in determining cloud phase characteristics, in particular for mixed-phase clouds which are often observed to have supercooled liquid water at cloud top but a predominantly ice phase residing below. The current satellite retrieval algorithms may report these clouds simply as supercooled liquid without any further information regarding the presence of a sub-cloud-top ice phase. More accurate characterization of these clouds is very important for climate models and aviation applications. In this study, we present a physical basis and preliminary results for the algorithm development of supercooled liquid-topped mixed-phase cloud detection using satellite radiometer observations. The detection algorithm is based on differential absorption properties between liquid and ice particles in the shortwave-infrared bands. Solar reflectance data in narrow bands at 1.6 μm and 2.25 μm are used to optically probe below clouds for distinction between supercooled liquid-topped clouds with and without an underlying mixed phase component. Varying solar/sensor geometry and cloud optical properties are also considered. The spectral band combination utilized for the algorithm is currently available on Suomi NPP Visible/Infrared Imaging Radiometer Suite (VIIRS), Himawari-8 Advanced Himawari Imager (AHI), and the future GOES-R Advance Baseline Imager (ABI). When tested on simulated cloud fields from WRF model and synthetic ABI data, favorable results were shown with reasonable threat scores (0.6-0.8) and false alarm rates (0.1-0.2). An ARM/NSA case study applied to VIIRS data also indicated promising potential of the algorithm.
NASA Astrophysics Data System (ADS)
Nomokonova, Tatiana; Ebell, Kerstin; Löhnert, Ulrich; Maturilli, Marion
2017-04-01
Clouds are one of the crucial components of the hydrological and energy cycles and thus affecting the global climate. Their special importance in Arctic regions is defined by cloud's influence on the radiation budget. Arctic clouds usually occur at low altitudes and often contain highly concentrated tiny liquid drops. During winter, spring, and autumn periods such clouds tend to conserve the long-wave radiation in the atmosphere and, thus, produce warming of the Arctic climate. In summer though clouds efficiently scatter the solar radiation back to space and, therefore, induce a cooling effect. An accurate characterization of the net effect of clouds on the Arctic climate requires long-term and precise observations. However, only a few measurement sites exist which perform continuous, vertically resolved observations of clouds in the Arctic, e.g. in Alaska, Canada, and Greenland. These sites typically make use of a combination of different ground-based remote sensing instruments, e.g. cloud radar, ceilometer and microwave radiometer in order to characterize clouds. Within the Transregional Collaborative Research Center (TR 172) "Arctic Amplification: Climate Relevant Atmospheric and Surface Processes, and Feedback Mechanisms (AC)3" comprehensive observations of the atmospheric column are performed at the German-French Research Station AWIPEV at Ny-Ålesund, Svalbard. Ny-Ålesund is located in the warmest part of the Arctic where climate is significantly influenced by adiabatic heating from the warm ocean. Thus, measurements at Ny-Ålesund will complement our understanding of cloud formation and development in the Arctic. This particular study is devoted to the characterization of the cloud macro- and microphysical properties at Ny-Ålesund and of the atmospheric conditions, under which these clouds form and develop. To this end, the information of the various instrumentation at the AWIPEV observatory is synergistically analysed: information about the thermodynamic structure of the atmosphere is obtained from long-term radiosonde launches. In addition, continuous vertical profiles of temperature and humidity are provided by the microwave radiometer HATPRO. A set of active remote sensing instruments performs cloud observations at Ny-Ålesund: a ceilometer and a Doppler lidar operating since 2011 and 2013, respectively, are now complemented with a novel 94 GHz FMCW cloud radar. As a first step, the CLOUDNET algorithms, including a target categorization and classification, are applied to the observations. In this study, we will present a first analysis of cloud properties at Ny-Ålesund including for example cloud occurrence, cloud geometry (cloud base, cloud top, and thickness) and cloud type (liquid, ice, mixed-phase). The different types of clouds are set into context to the environmental conditions such as temperature, amount of water vapour, and liquid water. We also expect that the cloud properties strongly depend on the wind direction. The first results of this analysis will be also shown.
NASA Astrophysics Data System (ADS)
Andreea, Boscornea; Sabina, Stefan; Sorin-Nicolae, Vajaiac; Mihai, Cimpuieru
2015-04-01
One cloud type for which the formation and evolution process is not well-understood is the mixed-phase type. In general mixed-phase clouds consist of liquid droplets and ice crystals. The temperature interval within both liquid droplets and ice crystals can potentially coexist is limited to 0 °C and - 40 °C. Mixed-phase clouds account for 20% to 30% of the global cloud coverage. The need to understand the microphysical characteristics of mixed-phase clouds to improve numerical forecast modeling and radiative transfer calculation is of major interest in the atmospheric community. In the past, studies of cloud phase composition have been significantly limited by a lack of aircraft instruments capable of discriminating between the ice and liquid phase for a wide range of particle sizes. Presently, in situ airborne measurements provide the most accurate information about cloud microphysical characteristics. This information can be used for verification of both numerical models and cloud remote-sensing techniques. The knowledge of the temperature and pressure variation during the airborne measurements is crucial in order to understand their influence on the cloud dynamics and also their role in the cloud formation processes like accretion and coalescence. Therefore, in this paper is presented a comprehensive study of cloud microphysical properties in mixed-phase clouds in focus of the influence of temperature and pressure variation on both, cloud dynamics and the cloud formation processes, using measurements performed with the ATMOSLAB - Airborne Laboratory for Environmental Atmospheric Research in property of the National Institute for Aerospace Research "Elie Carafoli" (INCAS). The airborne laboratory equipped for special research missions is based on a Hawker Beechcraft - King Air C90 GTx aircraft and is equipped with a sensors system CAPS - Cloud, Aerosol and Precipitation Spectrometer (30 bins, 0.51-50 µm) and a HAWKEYE cloud probe. The analyzed data in this work is acquired during 2 flight hours on the 23th of October 2014 in mixed clouds formations over Romania ( Craiova, Lat 44°19', Lon 23°48' ). The temperature variation during the cloud sounding was between -14 °C and -2 °C, with a maximum altitude in the cloud of 4863 m and a minimum altitude of 3353 m. In total 6 horizontal lines of 10 minutes each where performed recording ice crystal number concentrations (using the CIP - Cloud Imaging Probe) between 10 to 20 particles/cm3 outside the cloud layer and over 100 particles/cm3 inside the cloud layer and a number concentration of small droplets, aerosol and small ice crystals (using the CAS - Cloud Aerosol Spectrometer) between 150 particles/cm3 outside the cloud layer and 1600 particles/cm3 inside the cloud layer, this values confirms also the presence of IN (ice nuclei) in the atmosphere between the cloud layers. The results in respect with size distribution of cloud's particles and LWC show to be controlled by the temperature and pressure variations.
Thermodynamic phase transition of a black hole in rainbow gravity
NASA Astrophysics Data System (ADS)
Feng, Zhong-Wen; Yang, Shu-Zheng
2017-09-01
In this letter, using the rainbow functions that were proposed by Magueijo and Smolin, we investigate the thermodynamics and the phase transition of rainbow Schwarzschild black hole. First, we calculate the rainbow gravity corrected Hawking temperature. From this modification, we then derive the local temperature, free energy, and other thermodynamic quantities in an isothermal cavity. Finally, we analyze the critical behavior, thermodynamic stability, and phase transition of the rainbow Schwarzschild black hole. The results show that the rainbow gravity can stop the Hawking radiation in the final stages of black holes' evolution and lead to the remnants of black holes. Furthermore, one can observe that the rainbow Schwarzschild black hole has one first-order phase transition, two second-order phase transitions, and three Hawking-Page-type phase transitions in the framework of rainbow gravity theory.
Observational constraints on mixed-phase clouds imply higher climate sensitivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Ivy; Storelvmo, Trude; Zelinka, Mark D.
Global climate model (GCM) estimates of the equilibrium global mean surface temperature response to a doubling of atmospheric CO 2, measured by the equilibrium climate sensitivity (ECS), range from 2.0° to 4.6°C. Clouds are among the leading causes of this uncertainty. Here, in this paper, we show that the ECS can be up to 1.3°C higher in simulations where mixed-phase clouds consisting of ice crystals and supercooled liquid droplets are constrained by global satellite observations. The higher ECS estimates are directly linked to a weakened cloud-phase feedback arising from a decreased cloud glaciation rate in a warmer climate. Finally, wemore » point out the need for realistic representations of the supercooled liquid fraction in mixed-phase clouds in GCMs, given the sensitivity of the ECS to the cloud-phase feedback.« less
Observational constraints on mixed-phase clouds imply higher climate sensitivity
Tan, Ivy; Storelvmo, Trude; Zelinka, Mark D.
2016-04-08
Global climate model (GCM) estimates of the equilibrium global mean surface temperature response to a doubling of atmospheric CO 2, measured by the equilibrium climate sensitivity (ECS), range from 2.0° to 4.6°C. Clouds are among the leading causes of this uncertainty. Here, in this paper, we show that the ECS can be up to 1.3°C higher in simulations where mixed-phase clouds consisting of ice crystals and supercooled liquid droplets are constrained by global satellite observations. The higher ECS estimates are directly linked to a weakened cloud-phase feedback arising from a decreased cloud glaciation rate in a warmer climate. Finally, wemore » point out the need for realistic representations of the supercooled liquid fraction in mixed-phase clouds in GCMs, given the sensitivity of the ECS to the cloud-phase feedback.« less
Observational constraints on mixed-phase clouds imply higher climate sensitivity.
Tan, Ivy; Storelvmo, Trude; Zelinka, Mark D
2016-04-08
Global climate model (GCM) estimates of the equilibrium global mean surface temperature response to a doubling of atmospheric CO2, measured by the equilibrium climate sensitivity (ECS), range from 2.0° to 4.6°C. Clouds are among the leading causes of this uncertainty. Here we show that the ECS can be up to 1.3°C higher in simulations where mixed-phase clouds consisting of ice crystals and supercooled liquid droplets are constrained by global satellite observations. The higher ECS estimates are directly linked to a weakened cloud-phase feedback arising from a decreased cloud glaciation rate in a warmer climate. We point out the need for realistic representations of the supercooled liquid fraction in mixed-phase clouds in GCMs, given the sensitivity of the ECS to the cloud-phase feedback. Copyright © 2016, American Association for the Advancement of Science.
Universalities of thermodynamic signatures in topological phases
Kempkes, S. N.; Quelle, A.; Smith, C. Morais
2016-01-01
Topological insulators (superconductors) are materials that host symmetry-protected metallic edge states in an insulating (superconducting) bulk. Although they are well understood, a thermodynamic description of these materials remained elusive, firstly because the edges yield a non-extensive contribution to the thermodynamic potential, and secondly because topological field theories involve non-local order parameters, and cannot be captured by the Ginzburg-Landau formalism. Recently, this challenge has been overcome: by using Hill thermodynamics to describe the Bernevig-Hughes-Zhang model in two dimensions, it was shown that at the topological phase transition the thermodynamic potential does not scale extensively due to boundary effects. Here, we extend this approach to different topological models in various dimensions (the Kitaev chain and Su-Schrieffer-Heeger model in one dimension, the Kane-Mele model in two dimensions and the Bernevig-Hughes-Zhang model in three dimensions) at zero temperature. Surprisingly, all models exhibit the same universal behavior in the order of the topological-phase transition, depending on the dimension. Moreover, we derive the topological phase diagram at finite temperature using this thermodynamic description, and show that it displays a good agreement with the one calculated from the Uhlmann phase. Our work reveals unexpected universalities and opens the path to a thermodynamic description of systems with a non-local order parameter. PMID:27929041
Universalities of thermodynamic signatures in topological phases.
Kempkes, S N; Quelle, A; Smith, C Morais
2016-12-08
Topological insulators (superconductors) are materials that host symmetry-protected metallic edge states in an insulating (superconducting) bulk. Although they are well understood, a thermodynamic description of these materials remained elusive, firstly because the edges yield a non-extensive contribution to the thermodynamic potential, and secondly because topological field theories involve non-local order parameters, and cannot be captured by the Ginzburg-Landau formalism. Recently, this challenge has been overcome: by using Hill thermodynamics to describe the Bernevig-Hughes-Zhang model in two dimensions, it was shown that at the topological phase transition the thermodynamic potential does not scale extensively due to boundary effects. Here, we extend this approach to different topological models in various dimensions (the Kitaev chain and Su-Schrieffer-Heeger model in one dimension, the Kane-Mele model in two dimensions and the Bernevig-Hughes-Zhang model in three dimensions) at zero temperature. Surprisingly, all models exhibit the same universal behavior in the order of the topological-phase transition, depending on the dimension. Moreover, we derive the topological phase diagram at finite temperature using this thermodynamic description, and show that it displays a good agreement with the one calculated from the Uhlmann phase. Our work reveals unexpected universalities and opens the path to a thermodynamic description of systems with a non-local order parameter.
Insights into low-latitude cloud feedbacks from high-resolution models.
Bretherton, Christopher S
2015-11-13
Cloud feedbacks are a leading source of uncertainty in the climate sensitivity simulated by global climate models (GCMs). Low-latitude boundary-layer and cumulus cloud regimes are particularly problematic, because they are sustained by tight interactions between clouds and unresolved turbulent circulations. Turbulence-resolving models better simulate such cloud regimes and support the GCM consensus that they contribute to positive global cloud feedbacks. Large-eddy simulations using sub-100 m grid spacings over small computational domains elucidate marine boundary-layer cloud response to greenhouse warming. Four observationally supported mechanisms contribute: 'thermodynamic' cloudiness reduction from warming of the atmosphere-ocean column, 'radiative' cloudiness reduction from CO2- and H2O-induced increase in atmospheric emissivity aloft, 'stability-induced' cloud increase from increased lower tropospheric stratification, and 'dynamical' cloudiness increase from reduced subsidence. The cloudiness reduction mechanisms typically dominate, giving positive shortwave cloud feedback. Cloud-resolving models with horizontal grid spacings of a few kilometres illuminate how cumulonimbus cloud systems affect climate feedbacks. Limited-area simulations and superparameterized GCMs show upward shift and slight reduction of cloud cover in a warmer climate, implying positive cloud feedbacks. A global cloud-resolving model suggests tropical cirrus increases in a warmer climate, producing positive longwave cloud feedback, but results are sensitive to subgrid turbulence and ice microphysics schemes. © 2015 The Author(s).
NASA Technical Reports Server (NTRS)
Xu, Kuan-Man
2016-01-01
During inactive phases of Madden-Julian oscillation (MJO), there are plenty of deep but small convective systems and far fewer deep and large ones. During active phases of MJO, a manifestation of an increase in the occurrence of large and deep cloud clusters results from an amplification of large-scale motions by stronger convective heating. This study is designed to quantitatively examine the roles of small and large cloud clusters during the MJO life cycle. We analyze the cloud object data from Aqua CERES observations for tropical deep convective (DC) and cirrostratus (CS) cloud object types according to the real-time multivariate MJO index. The cloud object is a contiguous region of the earth with a single dominant cloud-system type. The size distributions, defined as the footprint numbers as a function of cloud object diameters, for particular MJO phases depart greatly from the combined (8-phase) distribution at large cloud-object diameters due to the reduced/increased numbers of cloud objects related to changes in the large-scale environments. The medium diameter corresponding to the combined distribution is determined and used to partition all cloud objects into "small" and "large" groups of a particular phase. The two groups corresponding to the combined distribution have nearly equal numbers of footprints. The medium diameters are 502 km for DC and 310 km for cirrostratus. The range of the variation between two extreme phases (typically, the most active and depressed phases) for the small group is 6-11% in terms of the numbers of cloud objects and the total footprint numbers. The corresponding range for the large group is 19-44%. In terms of the probability density functions of radiative and cloud physical properties, there are virtually no differences between the MJO phases for the small group, but there are significant differences for the large groups for both DC and CS types. These results suggest that the intreseasonal variation signals reside at the large cloud clusters while the small cloud clusters represent the background noises resulting from various types of the tropical waves with different wavenumbers and propagation directions/speeds.
Remote Sensing of Cloud, Aerosol, and Water Vapor Properties from MODIS
NASA Technical Reports Server (NTRS)
King, Michael D.
2001-01-01
MODIS is an earth-viewing cross-track scanning spectroradiometer launched on the Terra satellite in December 1999. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands from 0.415 to 14.235 microns with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). These bands have been carefully selected to enable advanced studies of land, ocean, and atmospheric processes. In this presentation I will review the comprehensive set of remote sensing algorithms that have been developed for the remote sensing of atmospheric properties using MODIS data, placing primary emphasis on the principal atmospheric applications of: (1) developing a cloud mask for distinguishing clear sky from clouds, (2) retrieving global cloud radiative and microphysical properties, including cloud top pressure and temperature, effective emissivity, cloud optical thickness, thermodynamic phase, and effective radius, (3) monitoring tropospheric aerosol optical thickness over the land and ocean and aerosol size distribution over the ocean, (4) determining atmospheric profiles of moisture and temperature, and (5) estimating column water amount. The physical principles behind the determination of each of these atmospheric products will be described, together with an example of their application using MODIS observations. All products are archived into two categories: pixel-level retrievals (referred to as Level-2 products) and global gridded products at a latitude and longitude resolution of 1 deg (Level-3 products). An overview of the MODIS atmosphere algorithms and products, status, validation activities, and early level-2 and -3 results will be presented. Finally, I will present some highlights from the land and ocean algorithms developed for processing global MODIS observations, including: (1) surface reflectance, (2) vegetation indices, leaf area index, and FPAR, (3) albedo and nadir BRDF-adjusted reflectance, (4) normalized water-leaving radiance, (5) chlorophyll-a concentration, and (6) sea surface temperature.
Atmospheric Science Data Center
2018-06-20
... V1 Level: L2 Platform: DEEP SPACE CLIMATE OBSERVATORY Instrument: Enhanced Polychromatic ... assuming ice phase Cloud Optical Thickness – assuming liquid phase EPIC Cloud Mask Oxygen A-band Cloud Effective Height (in ...
Probing exoplanet clouds with optical phase curves.
Muñoz, Antonio García; Isaak, Kate G
2015-11-03
Kepler-7b is to date the only exoplanet for which clouds have been inferred from the optical phase curve--from visible-wavelength whole-disk brightness measurements as a function of orbital phase. Added to this, the fact that the phase curve appears dominated by reflected starlight makes this close-in giant planet a unique study case. Here we investigate the information on coverage and optical properties of the planet clouds contained in the measured phase curve. We generate cloud maps of Kepler-7b and use a multiple-scattering approach to create synthetic phase curves, thus connecting postulated clouds with measurements. We show that optical phase curves can help constrain the composition and size of the cloud particles. Indeed, model fitting for Kepler-7b requires poorly absorbing particles that scatter with low-to-moderate anisotropic efficiency, conclusions consistent with condensates of silicates, perovskite, and silica of submicron radii. We also show that we are limited in our ability to pin down the extent and location of the clouds. These considerations are relevant to the interpretation of optical phase curves with general circulation models. Finally, we estimate that the spherical albedo of Kepler-7b over the Kepler passband is in the range 0.4-0.5.
NASA Astrophysics Data System (ADS)
Breed, D.; Bruintjes, R.; Jensen, T.; Salazar, V.; Fowler, T.
2005-12-01
During the winter and summer seasons of 2001 and 2002, data were collected to assess the efficacy of cloud seeding to enhance precipitation in the United Arab Emirates (UAE). The results of the feasibility study concluded: 1) that winter clouds in the UAE rarely produced conditions amenable to hygroscopic cloud seeding; 2) that summer convective clouds developed often enough, particularly over the Oman Mountains (e.g., the Hajar Mountains along the eastern UAE border and into Oman) to justify a randomized seeding experiment; 3) that collecting quantitative radar observations continues to be a complex but essential part of evaluating a cloud seeding experiment; 4) that successful flight operations would require solving several logistical issues; and 5) that several scientific questions would need to be studied in order to fully evaluate the efficacy and feasibility of hygroscopic cloud seeding, including cloud physical responses, radar-derived rainfall estimates as related to rainfall at the ground, and hydrological impacts. Based on these results, the UAE program proceeded through the design and implemention of a randomized hygroscopic cloud seeding experiment during the summer seasons to statistically quantify the potential for cloud seeding to enhance rainfall, specifically over the UAE and Oman Mountains, while collecting concurrent and separate physical measurements to support the statistical results and provide substantiation for the physical hypothesis. The randomized seeding experiment was carried out over the summers of 2003 and 2004, and a total of 134 cases were treated over the two summer seasons, of which 96 met the analysis criteria established in the experimental design of the program. The statistical evaluation of these cases yielded largely inconclusive results. Evidence will show that the thermodynamic profile had a large influence on storm characteristics and on precipitation development. This in turn provided a confounding factor in the conduct of the seeding experiment, particularly in the lateness of treatment in the storm cycle. The prevalence of capping inversions and the sensitivity of clouds to the level of the inversions as well as to wind shear will be shown using several data sets (soundings, aircraft, radar, numerical models). Concurrent physical measurements with the randomized experiment provided new insights into the physical processes of precipitation that developed in summertime convective clouds over the UAE that in turn helped in the interpretation of the statistical results.
Pan, Tao; Liu, Chunyan; Zeng, Xinying; Xin, Qiao; Xu, Meiying; Deng, Yangwu; Dong, Wei
2017-06-01
A recent work has shown that hydrophobic organic compounds solubilized in the micelle phase of some nonionic surfactants present substrate toxicity to microorganisms with increasing bioavailability. However, in cloud point systems, biotoxicity is prevented, because the compounds are solubilized into a coacervate phase, thereby leaving a fraction of compounds with cells in a dilute phase. This study extends the understanding of the relationship between substrate toxicity and bioavailability of hydrophobic organic compounds solubilized in nonionic surfactant micelle phase and cloud point system. Biotoxicity experiments were conducted with naphthalene and phenanthrene in the presence of mixed nonionic surfactants Brij30 and TMN-3, which formed a micelle phase or cloud point system at different concentrations. Saccharomyces cerevisiae, unable to degrade these compounds, was used for the biotoxicity experiments. Glucose in the cloud point system was consumed faster than in the nonionic surfactant micelle phase, indicating that the solubilized compounds had increased toxicity to cells in the nonionic surfactant micelle phase. The results were verified by subsequent biodegradation experiments. The compounds were degraded faster by PAH-degrading bacterium in the cloud point system than in the micelle phase. All these results showed that biotoxicity of the hydrophobic organic compounds increases with bioavailability in the surfactant micelle phase but remains at a low level in the cloud point system. These results provide a guideline for the application of cloud point systems as novel media for microbial transformation or biodegradation.
On the potential influence of ice nuclei on surface-forced marine stratocumulus cloud dynamics
NASA Astrophysics Data System (ADS)
Harrington, Jerry Y.; Olsson, Peter Q.
2001-11-01
The mixed phase cloudy boundary layer that occurs during off-ice flow in the marine Arctic was simulated in an environment with a strong surface heat flux (nearly 800 W m-2). A two-dimensional, eddy-resolving model coupled to a detailed cloud microphysical model was used to study both liquid phase and mixed phase stratocumulus clouds and boundary layer (BL) dynamics in this environment. Since ice precipitation may be important to BL dynamics, and ice nuclei (IN) concentrations modulate ice precipitation rates, the role of IN in cloud and BL development was explored. The results of several simulations illustrate how mixed phase microphysical processes affect the evolution of the cloudy BL in this environment. In agreement with past studies, BLs with mixed phase clouds had weaker convection, shallower BL depths, and smaller cloud fractions than BLs with clouds restricted to the liquid phase only. It is shown that the weaker BL convection is due to strong ice precipitation. Ice precipitation reduces convective strength directly by stabilizing downdrafts and more indirectly by sensibly heating the BL and inhibiting vertical mixing of momentum thereby reducing surface heat fluxes by as much as 80 W m-2. This feedback between precipitation and surface fluxes was found to have a significant impact on cloud/BL morphology, producing oscillations in convective strength and cloud fraction that did not occur if surface fluxes were fixed at constant values. Increases in IN concentrations in mixed phase clouds caused a more rapid Bergeron-Findeisen process leading to larger precipitation fluxes, reduced convection and lower cloud fraction. When IN were removed from the BL through precipitation, fewer crystals were nucleated at later simulation times leading to progressively weaker precipitation rates, greater cloud fraction, and stronger convective BL eddies.
Thermodynamic Optimization of the Ag-Bi-Cu-Ni Quaternary System: Part I, Binary Subsystems
NASA Astrophysics Data System (ADS)
Wang, Jian; Cui, Senlin; Rao, Weifeng
2018-07-01
A comprehensive literature review and thermodynamic optimization of the phase diagrams and thermodynamic properties of the Ag-Bi, Ag-Cu, Ag-Ni, Bi-Cu, and Bi-Ni binary systems are presented. CALculation of PHAse Diagrams (CALPHAD)-type thermodynamic optimization was carried out to reproduce all available and reliable experimental phase equilibrium and thermodynamic data. The modified quasichemical model was used to model the liquid solution. The compound energy formalism was utilized to describe the Gibbs energies of all terminal solid solutions and intermetallic compounds. A self-consistent thermodynamic database for the Ag-Bi, Ag-Cu, Ag-Ni, Bi-Cu, and Bi-Ni binary subsystems of the Ag-Bi-Cu-Ni quaternary system was developed. This database can be used as a guide for research and development of lead-free solders.
Thermodynamic Optimization of the Ag-Bi-Cu-Ni Quaternary System: Part I, Binary Subsystems
NASA Astrophysics Data System (ADS)
Wang, Jian; Cui, Senlin; Rao, Weifeng
2018-05-01
A comprehensive literature review and thermodynamic optimization of the phase diagrams and thermodynamic properties of the Ag-Bi, Ag-Cu, Ag-Ni, Bi-Cu, and Bi-Ni binary systems are presented. CALculation of PHAse Diagrams (CALPHAD)-type thermodynamic optimization was carried out to reproduce all available and reliable experimental phase equilibrium and thermodynamic data. The modified quasichemical model was used to model the liquid solution. The compound energy formalism was utilized to describe the Gibbs energies of all terminal solid solutions and intermetallic compounds. A self-consistent thermodynamic database for the Ag-Bi, Ag-Cu, Ag-Ni, Bi-Cu, and Bi-Ni binary subsystems of the Ag-Bi-Cu-Ni quaternary system was developed. This database can be used as a guide for research and development of lead-free solders.
Nishio, Kazunori; Hwang, Harold Y.; Hikita, Yasuyuki
2016-03-10
We demonstrate the selective fabrication of Ruddlesden-Popper (RP) type SrIrO 3, Sr 3Ir 2O 7, and Sr 2IrO 4 epitaxialthin films from a single SrIrO 3 target using pulsed laser deposition(PLD). We identified that the growth conditions stabilizing each phase directly map onto the phase diagram expected from thermodynamic equilibria. This approach allows precise cation stoichiometry control as evidenced by the stabilization of single phase Sr 3Ir 2O 7 for the first time, overcoming the close thermodynamic stability between neighboring RP phases. Furthermore, despite the non-equilibrium nature of PLD, these results highlight the importance of thermodynamic guiding principles to strategicallymore » synthesize the targeted phase in complex oxide thin films.« less
The thermodynamic scale of inorganic crystalline metastability
Sun, Wenhao; Dacek, Stephen T.; Ong, Shyue Ping; Hautier, Geoffroy; Jain, Anubhav; Richards, William D.; Gamst, Anthony C.; Persson, Kristin A.; Ceder, Gerbrand
2016-01-01
The space of metastable materials offers promising new design opportunities for next-generation technological materials, such as complex oxides, semiconductors, pharmaceuticals, steels, and beyond. Although metastable phases are ubiquitous in both nature and technology, only a heuristic understanding of their underlying thermodynamics exists. We report a large-scale data-mining study of the Materials Project, a high-throughput database of density functional theory–calculated energetics of Inorganic Crystal Structure Database structures, to explicitly quantify the thermodynamic scale of metastability for 29,902 observed inorganic crystalline phases. We reveal the influence of chemistry and composition on the accessible thermodynamic range of crystalline metastability for polymorphic and phase-separating compounds, yielding new physical insights that can guide the design of novel metastable materials. We further assert that not all low-energy metastable compounds can necessarily be synthesized, and propose a principle of ‘remnant metastability’—that observable metastable crystalline phases are generally remnants of thermodynamic conditions where they were once the lowest free-energy phase. PMID:28138514
Equilibrium p-T Phase Diagram of Boron: Experimental Study and Thermodynamic Analysis
Solozhenko, Vladimir L.; Kurakevych, Oleksandr O.
2013-01-01
Solid-state phase transformations and melting of high-purity crystalline boron have been in situ and ex situ studied at pressures to 20 GPa in the 1500–2500 K temperature range where diffusion processes become fast and lead to formation of thermodynamically stable phases. The equilibrium phase diagram of boron has been constructed based on thermodynamic analysis of experimental and literature data. The high-temperature part of the diagram contains p-T domains of thermodynamic stability of rhombohedral β-B106, orthorhombic γ-B28, pseudo-cubic (tetragonal) t'-B52, and liquid boron (L). The positions of two triple points have been experimentally estimated, i.e. β–t'–L at ~ 8.0 GPa and ~ 2490 K; and β–γ–t' at ~ 9.6 GPa and ~ 2230 K. Finally, the proposed phase diagram explains all thermodynamic aspects of boron allotropy and significantly improves our understanding of the fifth element. PMID:23912523
Microphysical processing of aerosol particles in orographic clouds
NASA Astrophysics Data System (ADS)
Pousse-Nottelmann, S.; Zubler, E. M.; Lohmann, U.
2015-01-01
An explicit and detailed treatment of cloud-borne particles allowing for the consideration of aerosol cycling in clouds has been implemented in the regional weather forecast and climate model COSMO. The effects of aerosol scavenging, cloud microphysical processing and regeneration upon cloud evaporation on the aerosol population and on subsequent cloud formation are investigated. For this, two-dimensional idealized simulations of moist flow over two bell-shaped mountains were carried out varying the treatment of aerosol scavenging and regeneration processes for a warm-phase and a mixed-phase orographic cloud. The results allowed to identify different aerosol cycling mechanisms. In the simulated non-precipitating warm-phase cloud, aerosol mass is incorporated into cloud droplets by activation scavenging and released back to the atmosphere upon cloud droplet evaporation. In the mixed-phase cloud, a first cycle comprises cloud droplet activation and evaporation via the Wegener-Bergeron-Findeisen process. A second cycle includes below-cloud scavenging by precipitating snow particles and snow sublimation and is connected to the first cycle via the riming process which transfers aerosol mass from cloud droplets to snow flakes. In the simulated mixed-phase cloud, only a negligible part of the total aerosol mass is incorporated into ice crystals. Sedimenting snow flakes reaching the surface remove aerosol mass from the atmosphere. The results show that aerosol processing and regeneration lead to a vertical redistribution of aerosol mass and number. However, the processes not only impact the total aerosol number and mass, but also the shape of the aerosol size distributions by enhancing the internally mixed/soluble accumulation mode and generating coarse mode particles. Concerning subsequent cloud formation at the second mountain, accounting for aerosol processing and regeneration increases the cloud droplet number concentration with possible implications for the ice crystal number concentration.
Analysis of the Glass-Forming Ability of Fe-Er Alloys, Based on Thermodynamic Modeling
NASA Astrophysics Data System (ADS)
Arutyunyan, N. A.; Zaitsev, A. I.; Dunaev, S. F.; Kalmykov, K. B.; El'nyakov, D. D.; Shaposhnikov, N. G.
2018-05-01
The Fe-Er phase diagram and thermodynamic properties of all its phases are assessed by means of self-consistent analysis. To refine the data on phase equilibria in the Fe-Er system, an investigation is performed in the 10-40 at % range of Er concentrations. The temperature-concentration dependences of the thermodynamic properties of a melt are presented using the model of ideal associated solutions. Thermodynamic parameters of each phase are obtained, and the calculated results are in agreement with available experimental data. The correlation between the thermodynamic properties of liquid Fe-Er alloys and their tendency toward amorphization are studied. It is shown that compositions of amorphous alloys prepared by melt quenching coincide with the ranges of concentration with the predominance of Fe3Er and FeEr2 associative groups that have large negative entropies of formation.
NASA Astrophysics Data System (ADS)
Hwang, Nong M.; Yoon, Duk Y.
1996-03-01
In spite of the critical handicap from the thermodynamic point of view, the atomic hydrogen hypothesis is strongly supported by experimental observations of diamond deposition with simultaneous graphite etching. Thermodynamic analysis of the CH system showed that at ˜ 1500 K, carbon solubility in the gas phase is minimal and thus, the equilibrium fraction of solid carbon is maximal. Depending on whether gas phase nucleation takes place or not, the driving force is for deposition or for etching of solid carbon below ˜ 1500 K for the input gas of the typical mixture of 1% CH 499% H 2. The previous observation of etching of the graphite substrate is not expected unless solid carbon precipitated in the gas phase. By rigorous thermodynamic analysis of the previous experimental observations of diamond deposition with simultaneous graphite etching, we suggested that the previous implicit assumption that diamond deposits by an atomic unit should be the weakest point leading to the thermodynamic paradox. The experimental observations could be successfully explained without violating thermodynamics by assuming that the diamond phase had nucleated in the gas phase as fine clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. Dartevelle
2005-09-05
The objective of this manuscript is to fully derive a geophysical multiphase model able to ''accommodate'' different multiphase turbulence approaches; viz., the Reynolds Averaged Navier-Stokes (RANS), the Large Eddy Simulation (LES), or hybrid RANSLES. This manuscript is the first part of a larger geophysical multiphase project--lead by LANL--that aims to develop comprehensive modeling tools for large-scale, atmospheric, transient-buoyancy dusty jets and plume (e.g., plinian clouds, nuclear ''mushrooms'', ''supercell'' forest fire plumes) and for boundary-dominated geophysical multiphase gravity currents (e.g., dusty surges, diluted pyroclastic flows, dusty gravity currents in street canyons). LES is a partially deterministic approach constructed on either amore » spatial- or a temporal-separation between the large and small scales of the flow, whereas RANS is an entirely probabilistic approach constructed on a statistical separation between an ensemble-averaged mean and higher-order statistical moments (the so-called ''fluctuating parts''). Within this specific multiphase context, both turbulence approaches are built up upon the same phasic binary-valued ''function of presence''. This function of presence formally describes the occurrence--or not--of any phase at a given position and time and, therefore, allows to derive the same basic multiphase Navier-Stokes model for either the RANS or the LES frameworks. The only differences between these turbulence frameworks are the closures for the various ''turbulence'' terms involving the unknown variables from the fluctuating (RANS) or from the subgrid (LES) parts. Even though the hydrodynamic and thermodynamic models for RANS and LES have the same set of Partial Differential Equations, the physical interpretations of these PDEs cannot be the same, i.e., RANS models an averaged field, while LES simulates a filtered field. In this manuscript, we also demonstrate that this multiphase model fully fulfills the second law of thermodynamics and fulfills the necessary requirements for a well-posed initial-value problem. In the next manuscripts, we will further develop specific closures for multiphase RANS, LES, and hybrid-LES.« less
Riihimaki, Laura D.; Comstock, Jennifer M.; Anderson, Kevin K.; ...
2016-06-10
Knowledge of cloud phase (liquid, ice, mixed, etc.) is necessary to describe the radiative impact of clouds and their lifetimes, but is a property that is difficult to simulate correctly in climate models. One step towards improving those simulations is to make observations of cloud phase with sufficient accuracy to help constrain model representations of cloud processes. In this study, we outline a methodology using a basic Bayesian classifier to estimate the probabilities of cloud-phase class from Atmospheric Radiation Measurement (ARM) vertically pointing active remote sensors. The advantage of this method over previous ones is that it provides uncertainty informationmore » on the phase classification. We also test the value of including higher moments of the cloud radar Doppler spectrum than are traditionally used operationally. Using training data of known phase from the Mixed-Phase Arctic Cloud Experiment (M-PACE) field campaign, we demonstrate a proof of concept for how the method can be used to train an algorithm that identifies ice, liquid, mixed phase, and snow. Over 95 % of data are identified correctly for pure ice and liquid cases used in this study. Mixed-phase and snow cases are more problematic to identify correctly. When lidar data are not available, including additional information from the Doppler spectrum provides substantial improvement to the algorithm. As a result, this is a first step towards an operational algorithm and can be expanded to include additional categories such as drizzle with additional training data.« less
NASA Astrophysics Data System (ADS)
Riihimaki, Laura D.; Comstock, Jennifer M.; Anderson, Kevin K.; Holmes, Aimee; Luke, Edward
2016-06-01
Knowledge of cloud phase (liquid, ice, mixed, etc.) is necessary to describe the radiative impact of clouds and their lifetimes, but is a property that is difficult to simulate correctly in climate models. One step towards improving those simulations is to make observations of cloud phase with sufficient accuracy to help constrain model representations of cloud processes. In this study, we outline a methodology using a basic Bayesian classifier to estimate the probabilities of cloud-phase class from Atmospheric Radiation Measurement (ARM) vertically pointing active remote sensors. The advantage of this method over previous ones is that it provides uncertainty information on the phase classification. We also test the value of including higher moments of the cloud radar Doppler spectrum than are traditionally used operationally. Using training data of known phase from the Mixed-Phase Arctic Cloud Experiment (M-PACE) field campaign, we demonstrate a proof of concept for how the method can be used to train an algorithm that identifies ice, liquid, mixed phase, and snow. Over 95 % of data are identified correctly for pure ice and liquid cases used in this study. Mixed-phase and snow cases are more problematic to identify correctly. When lidar data are not available, including additional information from the Doppler spectrum provides substantial improvement to the algorithm. This is a first step towards an operational algorithm and can be expanded to include additional categories such as drizzle with additional training data.
Chapter 3: Evaluating the impacts of carbonaceous aerosols on clouds and climate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menon, Surabi; Del Genio, Anthony D.
Any attempt to reconcile observed surface temperature changes within the last 150 years to changes simulated by climate models that include various atmospheric forcings is sensitive to the changes attributed to aerosols and aerosol-cloud-climate interactions, which are the main contributors that may well balance the positive forcings associated with greenhouse gases, absorbing aerosols, ozone related changes, etc. These aerosol effects on climate, from various modeling studies discussed in Menon (2004), range from +0.8 to -2.4 W m{sup -2}, with an implied value of -1.0 W m{sup -2} (range from -0.5 to -4.5 W m{sup -2}) for the aerosol indirect effects.more » Quantifying the contribution of aerosols and aerosol-cloud interactions remain complicated for several reasons some of which are related to aerosol distributions and some to the processes used to represent their effects on clouds. Aerosol effects on low lying marine stratocumulus clouds that cover much of the Earth's surface (about 70%) have been the focus of most of prior aerosol-cloud interaction effect simulations. Since cumulus clouds (shallow and deep convective) are short lived and cover about 15 to 20% of the Earth's surface, they are not usually considered as radiatively important. However, the large amount of latent heat released from convective towers, and corresponding changes in precipitation, especially in biomass regions due to convective heating effects (Graf et al. 2004), suggest that these cloud systems and aerosol effects on them, must be examined more closely. The radiative heating effects for mature deep convective systems can account for 10-30% of maximum latent heating effects and thus cannot be ignored (Jensen and Del Genio 2003). The first study that isolated the sensitivity of cumulus clouds to aerosols was from Nober et al. (2003) who found a reduction in precipitation in biomass burning regions and shifts in circulation patterns. Aerosol effects on convection have been included in other models as well (cf. Jacobson, 2002) but the relative impacts on convective and stratiform processes were not separated. Other changes to atmospheric stability and thermodynamical quantities due to aerosol absorption are also known to be important in modifying cloud macro/micro properties. Linkages between convection and boreal biomass burning can also impact the upper troposphere and lower stratosphere, radiation and cloud microphysical properties via transport of tropospheric aerosols to the lower stratosphere during extreme convection (Fromm and Servranckx 2003). Relevant questions regarding the impact of biomass aerosols on convective cloud properties include the effects of vertical transport of aerosols, spatial and temporal distribution of rainfall, vertical shift in latent heat release, phase shift of precipitation, circulation and their impacts on radiation. Over land surfaces, a decrease in surface shortwave radiation ({approx} 3-6 W m{sup -2} per decade) has been observed between 1960 to 1990, whereas, increases of 0.4 K in land temperature during the same period that occurred have resulted in speculations that evaporation and precipitation should also have decreased (Wild et al. 2004). However, precipitation records for the same period over land do not indicate any significant trend (Beck et al. 2005). The changes in precipitation are thought to be related to increased moisture advection from the oceans (Wild et al. 2004), which may well have some contributions from aerosol-radiation-convection coupling that could modify circulation patterns and hence moisture advection in specific regions. Other important aspects of aerosol effects, besides the direct, semi-direct, microphysical and thermodynamical impacts include alteration of surface albedos, especially snow and ice covered surfaces, due to absorbing aerosols. These effects are uncertain (Jacobson, 2004) but may produce as much as 0.3 W m{sup -2} forcing in the Northern hemisphere that could contribute to melting of ice and permafrost and change in the length of the season (e.g. early arrival of Spring) (Hansen and Nazarenko, 2004). Besides the impacts of aerosols on the surface albedos in the polar regions, and the thermodynamical impacts of Arctic haze (composed of water soluble sulfates, nitrates, organic and black carbon (BC)), the dynamical response to Arctic haze (through the radiation-circulation feedbacks that cause changes in pressure patterns) is thought to have the potential to modify the mode and strength of large-scale teleconnection patterns such as the Barrents Sea Oscillation that could affect other climate regimes (mainly Europe) (Rinke et al. 2004). Additionally, via the Asian monsoon, wind patterns over the eastern Mediterranean and lower stratospheric pollution at higher latitudes (Lelieveld et al. 2002) are thought to be linked to the pollutants found in Asia, indicating the distant climate impacts of aerosols.« less
NASA Astrophysics Data System (ADS)
Kalesse, Heike; de Boer, Gijs; Solomon, Amy; Oue, Mariko; Ahlgrimm, Maike; Zhang, Damao; Shupe, Matthew; Luke, Edward; Protat, Alain
2016-04-01
In the Arctic, a region particularly sensitive to climate change, mixed-phase clouds occur as persistent single or multiple stratiform layers. For many climate models, the correct partitioning of hydrometeor phase (liquid vs. ice) remains a challenge. However, this phase partitioning plays an important role for precipitation processes and the radiation budget. To better understand the partitioning of phase in Arctic clouds, observations using a combination of surface-based remote sensors are useful. In this study, the focus is on a persistent low-level single-layer stratiform Arctic mixed-phase cloud observed during March 11-12, 2013 at the US Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) permanent site in Barrow, Alaska. This case is of particular interest due to two significant shifts in observed precipitation intensity over a 36 hour period. For the first 12 hours of this case, the observed liquid portion of the cloud cover featured a stable cloud top height with a gradually descending liquid cloud base and continuous ice precipitation. Then the ice precipitation intensity significantly decreased. A second decrease in ice precipitation intensity was observed a few hours later coinciding with the advection of a cirrus over the site. Through analysis of the data collected by extensive ground-based remote-sensing and in-situ observing systems as well as Nested Weather Research and Forecasting (WRF) simulations and ECMWF radiation scheme simulations, we try to shed light on the processes responsible for these rapid changes in precipitation rates. A variety of parameters such as the evolution of the internal dynamics and microphysics of the low-level mixed-phase cloud and the influence of the cirrus cloud are evaluated.
Cloud Computing for Complex Performance Codes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Appel, Gordon John; Hadgu, Teklu; Klein, Brandon Thorin
This report describes the use of cloud computing services for running complex public domain performance assessment problems. The work consisted of two phases: Phase 1 was to demonstrate complex codes, on several differently configured servers, could run and compute trivial small scale problems in a commercial cloud infrastructure. Phase 2 focused on proving non-trivial large scale problems could be computed in the commercial cloud environment. The cloud computing effort was successfully applied using codes of interest to the geohydrology and nuclear waste disposal modeling community.
West Antarctica as a Natural Laboratory for Single- and Mixed-Phase Cloud Microphysics
NASA Astrophysics Data System (ADS)
Wilson, A.; Scott, R. C.; Lubin, D.
2016-12-01
As part of the ARM West Antarctic Radiation Experiment (AWARE), a micropulse lidar (MPL) and a shortwave spectroradiometer were deployed to the West Antarctic Ice Sheet (WAIS) Divide Ice Camp during December 2015 and January 2016. Contrasting meteorological conditions gave rise to several distinct episodes of mixed-phase clouds, liquid water clouds, and entirely glaciated clouds. These phases were readily distinguished in the polarization signature from the MPL. The spectroradiometer measured downwelling hemispheric irradiance in the wavelength interval 0.35-2.2 microns, with 3-nanometer resolution at visible and 10-nanometer resolution at near-infrared wavelengths. Under overcast sky conditions, this measured irradiance is sensitive to total cloud optical depth for wavelengths shorter than 1.1 microns, and is sensitive at both cloud phase and effective particle size in the 1.6-micron window. For single-phase clouds, the spectral irradiance in the 1.6-micron window shows marked contrasts between liquid and ice water. For mixed phase clouds, this spectral dependence of the 1.6-micron irradiance is consistent with the prevailing phase, but in all cases the irradiance is small than that under a liquid water cloud having the same total optical depth. Radiative transfer retrievals of effective particle size from the 1.6-micron irradiance data reveal liquid water effective radii typically 2 microns smaller than found in the spring and summertime high Arctic. Most of the clouds sampled here were within 2 km of the surface, and there are comprehensive ancillary data including sondes four times daily, additional microwave radiometer data, and broadband radiometry. This AWARE data set from WAIS Divide provides a unique opportunity for testing and improving cloud microphysical parameterizations in extreme cold and pristine conditions.
The cloud-phase feedback in the Super-parameterized Community Earth System Model
NASA Astrophysics Data System (ADS)
Burt, M. A.; Randall, D. A.
2016-12-01
Recent comparisons of observations and climate model simulations by I. Tan and colleagues have suggested that the Wegener-Bergeron-Findeisen (WBF) process tends to be too active in climate models, making too much cloud ice, and resulting in an exaggerated negative cloud-phase feedback on climate change. We explore the WBF process and its effect on shortwave cloud forcing in present-day and future climate simulations with the Community Earth System Model, and its super-parameterized counterpart. Results show that SP-CESM has much less cloud ice and a weaker cloud-phase feedback than CESM.
Calculating phase diagrams using PANDAT and panengine
NASA Astrophysics Data System (ADS)
Chen, S.-L.; Zhang, F.; Xie, F.-Y.; Daniel, S.; Yan, X.-Y.; Chang, Y. A.; Schmid-Fetzer, R.; Oates, W. A.
2003-12-01
Knowledge of phase equilibria or phase diagrams and thermodynamic properties is important in alloy design and materials-processing simulation. In principle, stable phase equilibrium is uniquely determined by the thermodynamic properties of the system, such as the Gibbs energy functions of the phases. PANDAT, a new computer software package for multicomponent phase-diagram calculation, was developed under the guidance of this principle.
Simulating mixed-phase Arctic stratus clouds: sensitivity to ice initiation mechanisms
NASA Astrophysics Data System (ADS)
Sednev, I.; Menon, S.; McFarquhar, G.
2008-06-01
The importance of Arctic mixed-phase clouds on radiation and the Arctic climate is well known. However, the development of mixed-phase cloud parameterization for use in large scale models is limited by lack of both related observations and numerical studies using multidimensional models with advanced microphysics that provide the basis for understanding the relative importance of different microphysical processes that take place in mixed-phase clouds. To improve the representation of mixed-phase cloud processes in the GISS GCM we use the GISS single-column model coupled to a bin resolved microphysics (BRM) scheme that was specially designed to simulate mixed-phase clouds and aerosol-cloud interactions. Using this model with the microphysical measurements obtained from the DOE ARM Mixed-Phase Arctic Cloud Experiment (MPACE) campaign in October 2004 at the North Slope of Alaska, we investigate the effect of ice initiation processes and Bergeron-Findeisen process (BFP) on glaciation time and longevity of single-layer stratiform mixed-phase clouds. We focus on observations taken during 9th-10th October, which indicated the presence of a single-layer mixed-phase clouds. We performed several sets of 12-h simulations to examine model sensitivity to different ice initiation mechanisms and evaluate model output (hydrometeors' concentrations, contents, effective radii, precipitation fluxes, and radar reflectivity) against measurements from the MPACE Intensive Observing Period. Overall, the model qualitatively simulates ice crystal concentration and hydrometeors content, but it fails to predict quantitatively the effective radii of ice particles and their vertical profiles. In particular, the ice effective radii are overestimated by at least 50%. However, using the same definition as used for observations, the effective radii simulated and that observed were more comparable. We find that for the single-layer stratiform mixed-phase clouds simulated, process of ice phase initiation due to freezing of supercooled water in both saturated and undersaturated (w.r.t. water) environments is as important as primary ice crystal origination from water vapor. We also find that the BFP is a process mainly responsible for the rates of glaciation of simulated clouds. These glaciation rates cannot be adequately represented by a water-ice saturation adjustment scheme that only depends on temperature and liquid and solid hydrometeors' contents as is widely used in bulk microphysics schemes and are better represented by processes that also account for supersaturation changes as the hydrometeors grow.
Simulating mixed-phase Arctic stratus clouds: sensitivity to ice initiation mechanisms
NASA Astrophysics Data System (ADS)
Sednev, I.; Menon, S.; McFarquhar, G.
2009-07-01
The importance of Arctic mixed-phase clouds on radiation and the Arctic climate is well known. However, the development of mixed-phase cloud parameterization for use in large scale models is limited by lack of both related observations and numerical studies using multidimensional models with advanced microphysics that provide the basis for understanding the relative importance of different microphysical processes that take place in mixed-phase clouds. To improve the representation of mixed-phase cloud processes in the GISS GCM we use the GISS single-column model coupled to a bin resolved microphysics (BRM) scheme that was specially designed to simulate mixed-phase clouds and aerosol-cloud interactions. Using this model with the microphysical measurements obtained from the DOE ARM Mixed-Phase Arctic Cloud Experiment (MPACE) campaign in October 2004 at the North Slope of Alaska, we investigate the effect of ice initiation processes and Bergeron-Findeisen process (BFP) on glaciation time and longevity of single-layer stratiform mixed-phase clouds. We focus on observations taken during 9-10 October, which indicated the presence of a single-layer mixed-phase clouds. We performed several sets of 12-h simulations to examine model sensitivity to different ice initiation mechanisms and evaluate model output (hydrometeors' concentrations, contents, effective radii, precipitation fluxes, and radar reflectivity) against measurements from the MPACE Intensive Observing Period. Overall, the model qualitatively simulates ice crystal concentration and hydrometeors content, but it fails to predict quantitatively the effective radii of ice particles and their vertical profiles. In particular, the ice effective radii are overestimated by at least 50%. However, using the same definition as used for observations, the effective radii simulated and that observed were more comparable. We find that for the single-layer stratiform mixed-phase clouds simulated, process of ice phase initiation due to freezing of supercooled water in both saturated and subsaturated (w.r.t. water) environments is as important as primary ice crystal origination from water vapor. We also find that the BFP is a process mainly responsible for the rates of glaciation of simulated clouds. These glaciation rates cannot be adequately represented by a water-ice saturation adjustment scheme that only depends on temperature and liquid and solid hydrometeors' contents as is widely used in bulk microphysics schemes and are better represented by processes that also account for supersaturation changes as the hydrometeors grow.
The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus
Solomon, Amy; Feingold, G.; Shupe, M. D.
2015-09-25
This study investigates the maintenance of cloud ice production in Arctic mixed-phase stratocumulus in large eddy simulations that include a prognostic ice nuclei (IN) formulation and a diurnal cycle. Balances derived from a mixed-layer model and phase analyses are used to provide insight into buffering mechanisms that maintain ice in these cloud systems. We find that, for the case under investigation, IN recycling through subcloud sublimation considerably prolongs ice production over a multi-day integration. This effective source of IN to the cloud dominates over mixing sources from above or below the cloud-driven mixed layer. Competing feedbacks between dynamical mixing andmore » recycling are found to slow the rate of ice lost from the mixed layer when a diurnal cycle is simulated. Furthermore, the results of this study have important implications for maintaining phase partitioning of cloud ice and liquid that determine the radiative forcing of Arctic mixed-phase clouds.« less
The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solomon, Amy; Feingold, G.; Shupe, M. D.
This study investigates the maintenance of cloud ice production in Arctic mixed-phase stratocumulus in large eddy simulations that include a prognostic ice nuclei (IN) formulation and a diurnal cycle. Balances derived from a mixed-layer model and phase analyses are used to provide insight into buffering mechanisms that maintain ice in these cloud systems. We find that, for the case under investigation, IN recycling through subcloud sublimation considerably prolongs ice production over a multi-day integration. This effective source of IN to the cloud dominates over mixing sources from above or below the cloud-driven mixed layer. Competing feedbacks between dynamical mixing andmore » recycling are found to slow the rate of ice lost from the mixed layer when a diurnal cycle is simulated. Furthermore, the results of this study have important implications for maintaining phase partitioning of cloud ice and liquid that determine the radiative forcing of Arctic mixed-phase clouds.« less
Self-aggregation of clouds in conditionally unstable moist convection
Pauluis, Olivier; Schumacher, Jörg
2011-01-01
The behavior of moist Rayleigh–Bénard convection is investigated using a Boussinesq model with a simplified thermodynamics for phase transitions. This idealized configuration makes the problem accessible to high-resolution three-dimensional direct numerical simulations without small-scale parameterizations of the turbulence for extended layers with aspect ratios up to 64. Our study is focused on the frequently observed conditionally unstable environment that is stably stratified for unsaturated air, but is unstable for cloudy air. We find that no sharp threshold for the transition to convective turbulence exists, a situation similar to wall-bounded shear flows. Rather, the transition depends on the amplitude of the initial perturbation of the quiescent equilibrium and on the aspect ratio of the convective domain. In contrast to the classical dry Rayleigh–Bénard case, convection is highly asymmetric with respect to the vertical direction. Moist upwelling air inside turbulent cloud aggregates is surrounded by ambient regions of slowly descending unsaturated air. It is also found that conditionally unstable moist convection is inefficient at transporting energy. Our study suggests that there is an upper bound on the Nusselt number in moist convection that is lower than that of the classical dry case. PMID:21768333
Cool neutral hydrogen in the direction of an anonymous OB association
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bania, T.M.
1983-08-01
H I self-absorption is seen in the direction l = 55./sup 0/6 probably physically associated with an anonymous OB association which has the Cepheid GY Sagittae as a member. The cool H I is in two clouds at least 15 pc in diameter located 3.25 kpc from the Sun. If their temperature is approx. =50 K, the cloud masses are approx. =10/sup 3/ M/sub sun/. The neutral atomic hydrogen clouds are probably warm envelopes surrounding cold molecular cloud cores because CO observations in this region show two molecular clouds nearly coincident with the absorbing H i gas. Since the OBmore » association is only approx. =10/sup 7/ years old, these clouds are likely to be part of the original cloud complex from which the stellar cluster formed. The H i clouds are part of the larger Arecibo survey of self-absorption which suggests that many of the Arecibo clouds are associated with heretofore unidentified star clusters. Even if this is generally not the case, the Arecibo objects have accurate kinematic distances and thus provide a new sample of cool H I clouds whose thermodynamic properties can be studied.« less
Probing exoplanet clouds with optical phase curves
Muñoz, Antonio García; Isaak, Kate G.
2015-01-01
Kepler-7b is to date the only exoplanet for which clouds have been inferred from the optical phase curve—from visible-wavelength whole-disk brightness measurements as a function of orbital phase. Added to this, the fact that the phase curve appears dominated by reflected starlight makes this close-in giant planet a unique study case. Here we investigate the information on coverage and optical properties of the planet clouds contained in the measured phase curve. We generate cloud maps of Kepler-7b and use a multiple-scattering approach to create synthetic phase curves, thus connecting postulated clouds with measurements. We show that optical phase curves can help constrain the composition and size of the cloud particles. Indeed, model fitting for Kepler-7b requires poorly absorbing particles that scatter with low-to-moderate anisotropic efficiency, conclusions consistent with condensates of silicates, perovskite, and silica of submicron radii. We also show that we are limited in our ability to pin down the extent and location of the clouds. These considerations are relevant to the interpretation of optical phase curves with general circulation models. Finally, we estimate that the spherical albedo of Kepler-7b over the Kepler passband is in the range 0.4–0.5. PMID:26489652
North Pacific Cloud Feedbacks Inferred from Synoptic-Scale Dynamic and Thermodynamic Relationships
NASA Technical Reports Server (NTRS)
Norris, Joel R.; Iacobellis, Sam F.
2005-01-01
This study analyzed daily satellite cloud observations and reanalysis dynamical parameters to determine how mid-tropospheric vertical velocity and advection over the sea surface temperature gradient control midlatitude North Pacific cloud properties. Optically thick clouds with high tops are generated by synoptic ascent, but two different cloud regimes occur under synoptic descent. When vertical motion is downward during summer, extensive stratocumulus cloudiness is associated with near surface northerly wind, while frequent cloudless pixels occur with southerly wind. Examinations of ship-reported cloud types indicates that midlatitude stratocumulus breaks up as the the boundary level decouples when it is advected equatorward over warmer water. Cumulus is prevalent under conditions of synoptic descent and cold advection during winter. Poleward advection of subtropical air over colder water causes stratification of the near-surface layer that inhibits upward mixing of moisture and suppresses cloudiness until a fog eventually forms. Averaging of cloud and radiation data into intervals of 500-hPa vertical velocity and advection over the SST gradient enables the cloud response to changes in temperature and the stratification of the lower troposphere to be investigated independent of the dynamics.
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, William L.; Yang, Ping; Schluessel, Peter; Strow, Larrabee
2007-01-01
An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. This physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multivariable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. This retrieval algorithm is applied to the MetOp satellite Infrared Atmospheric Sounding Interferometer (IASI) launched on October 19, 2006. IASI possesses an ultra-spectral resolution of 0.25 cm(exp -1) and a spectral coverage from 645 to 2760 cm(exp -1). Preliminary retrievals of atmospheric soundings, surface properties, and cloud optical/microphysical properties with the IASI measurements are obtained and presented.
Thermodynamic and radiative structure of stratocumulus-topped boundary layers*
Ghate, Virendra P.; Miller, Mark A.; Albrecht, Bruce A.; ...
2015-01-05
Stratocumulus Topped Boundary Layers (STBL) observed in three different regions with distinctive environments are described in the context of their thermodynamic and radiative properties. Here, the primary data set consisted of 131 soundings from the South East Pacific (SEP), 90 soundings from the island of Graciosa (GRW) in the North Atlantic and 83 soundings from the US Southern Great Plains (SGP). A new technique that preserves the depths of the sub-layers within a STBL is proposed for averaging the profiles of thermodynamic and radiative variables. The STBL was deepest over SEP and had the strongest radiative cooling rates near cloudmore » top among the three locations. Although the radiative cooling rates were comparable over GRW and SGP, the STBL was deeper over GRW compared to that over SGP. On average the STBL inversion was strongest over SEP (11.7 k and -5.43 g kg -1) and weakest over the SGP (6.89 k and -0.41 g kg -1). Significantly larger liquid water path, integrated water vapor, and variability in these two properties was found over GRW and evidence presented suggests that conditions at cloud top may play a lesser role in determining the resident cloud structure over GRW than over SEP. A modal analysis revealed ~26% of the STBL to be well-mixed, ~20% of STBL to be stable and ~30% STBL having a stable layer in-between a surface mixed layer and the cloud layer. Over all the three locations, the STBL was shallowest in well-mixed mode and deepest in the stable mode.« less
Observation of Sea Ice Surface Thermal States Under Cloud Cover
NASA Technical Reports Server (NTRS)
Nghiem, S. V.; Perovich, D. K.; Gow, A. J.; Kwok, R.; Barber, D. G.; Comiso, J. C.; Zukor, Dorothy J. (Technical Monitor)
2001-01-01
Clouds interfere with the distribution of short-wave and long-wave radiations over sea ice, and thereby strongly affect the surface energy balance in polar regions. To evaluate the overall effects of clouds on climatic feedback processes in the atmosphere-ice-ocean system, the challenge is to observe sea ice surface thermal states under both clear sky and cloudy conditions. From laboratory experiments, we show that C-band radar (transparent to clouds) backscatter is very sensitive to the surface temperature of first-year sea ice. The effect of sea ice surface temperature on the magnitude of backscatter change depends on the thermal regimes of sea ice thermodynamic states. For the temperature range above the mirabilite (Na2SO4.10H20) crystallization point (-8.2 C), C-band data show sea ice backscatter changes by 8-10 dB for incident angles from 20 to 35 deg at both horizontal and vertical polarizations. For temperatures below the mirabilite point but above the crystallization point of MgCl2.8H2O (-18.0 C), relatively strong backwater changes between 4-6 dB are observed. These backscatter changes correspond to approximately 8 C change in temperature for both cases. The backscattering mechanism is related to the temperature which determines the thermodynamic distribution of brine volume in the sea ice surface layer. The backscatter is positively correlated to temperature and the process is reversible with thermodynamic variations such as diurnal insolation effects. From two different dates in May 1993 with clear and overcast conditions determined by the Advanced Very High Resolution Radiometer (AVHRR), concurrent Earth Resources Satellite 1 (ERS-1) C-band ice observed with increases in backscatter over first-year sea ice, and verified by increases in in-situ sea ice surface temperatures measured at the Collaborative-Interdisciplinary Cryosphere Experiment (C-ICE) site.
NASA Technical Reports Server (NTRS)
Shie, C.-L.; Tao, W.-K.; Simpson, J.; Sui, C.-H.; Starr, David OC. (Technical Monitor)
2001-01-01
A series of long-term integrations using the two-dimensional Goddard Cumulus Ensemble (GCE) model were performed by altering imposed environmental components to produce various quasi-equilibrium thermodynamic states. Model results show that the genesis of a warm/wet quasi-equilibrium state is mainly due to either strong vertical wind shear (from nudging) or large surface fluxes (from strong surface winds), while a cold/dry quasi-equilibrium state is attributed to a remarkably weakened mixed-wind shear (from vertical mixing due to deep convection) along with weak surface winds. In general, latent heat flux and net large-scale temperature forcing, the two dominant physical processes, dominate in the beginning stage of the simulated convective systems, then considerably weaken in the final stage, which leads to quasi-equilibrium states. A higher thermodynamic regime is found to produce a larger rainfall amount, as convective clouds are the leading source of rainfall over stratiform clouds even though the former occupy much less area. Moreover, convective clouds are more likely to occur in the presence of strong surface winds (latent heat flux), while stratiform clouds (especially the well-organized type) are favored in conditions with strong wind shear (large-scale forcing). The convective systems, which consist of distinct cloud types due to the variation in horizontal winds, are also found to propagate differently. Accordingly, convective systems with mixed-wind shear generally propagate in the direction of shear, while the system with strong (multidirectional) wind shear propagates in a more complex way. Based on the results from the temperature (Q1) and moisture (Q2) budgets, cloud-scale eddies are found to act as a hydrodynamic 'vehicle' that cascades the heat and moisture vertically. Several other specific features such as atmospheric stability, CAPE, and mass fluxes are also investigated and found to be significantly different between diverse quasi-equilibrium states. Detailed comparisons between the various states are presented.
Numerical simulation of airborne cloud seeding over Greece, using a convective cloud model
NASA Astrophysics Data System (ADS)
Spiridonov, Vlado; Karacostas, Theodore; Bampzelis, Dimitrios; Pytharoulis, Ioannis
2015-02-01
An extensive work has been done by the Department of Meteorology and Climatology at Aristotle University of Thessaloniki and others using a three-dimensional cloud resolving model to simulate AgI seeding by aircraft of three distinct hailstorm cases occurred over Greece in period 2007-2009. The seeding criterion for silver iodide glaciogenic seeding from air is based on the beneficial competition mechanism. According to thermodynamic analysis and classification proposed by Marwitz (1972a, b, and c) and based on their structural and evolutionary properties we classified them in three groups as singlecell, multicell and supercell hailstorms. The seeding optimization for each selected case is conducted by analysis of the thermodynamic characteristics of the meteorological environment as well as radar reflectivity fields observed by the state of the art Thunderstorm Identification, Tracking, Analysis and Nowcasting (TITAN) software applied in the Greek National Hail Suppression Program (GNHSP). Results of this comprehensive study have shown positive effects with respect to hailfall decrease after successful seeding as our primarily objective. All three cases have illustrated 15-20% decrease in accumulated hailfall at the ground Seeded clouds have exhibited earlier development of precipitation and slight dynamical enhancement of the updraft and rainfall increase of ~10- 12.5%. The results have emphasized a strong interaction between cloud dynamics and microphysics, especially the subgrid scale processes that have impact on agent transport and diffusion in a complex environment. Comparisons between modelled and observed radar reflectivity also show a relatively good agreement. Simulated cloud seeding follows the operational aircraft seeding for hail suppression. The ability of silver-iodide particles to act as ice nuclei has been used to perform airborne cloud seeding, under controlled conditions of temperature and humidity. The seeding effects depend upon applying the seeding methodology in proper seeding time, right placement and agent dose rate.
NASA Astrophysics Data System (ADS)
Diao, M.; Jensen, J. B.
2017-12-01
Mixed-phase and ice clouds play very important roles in regulating the atmospheric radiation over the Southern Ocean. Previously, in-situ observations over this remote region are limited, and a few of the available observation-based analyses mainly focused on the cloud microphysical properties. The relationship between macroscopic and microphysical properties for both mixed-phase and ice clouds have not been thoroughly investigated based on in-situ observations. In this work, the aircraft-based observations from the NSF O2/N2 Ratio and CO2 Airborne Southern Ocean (ORCAS) field campaign (Jan - Feb 2016) will be used to analyze the cloud macroscopic properties on the microscale to mesoscale, including the distributions of cloud chord length, the patchiness of clouds, and the spatial ratios of adjacent cloud segments in mixed phase and pure ice phase. In addition, these macroscopic properties will be analyzed in relation to the relative humidity (RH) background, such as the average and maximum RH inside clouds, as well as the probability density function (PDF) of in-cloud RH. We found that the clouds with larger horizontal scales are often associated with larger magnitudes of average and maximum in-cloud RH values. In addition, when decomposing the contributions from the spatial variabilities of water vapor and temperature to the variability of RH, the water vapor heterogeneities are found to have the most dominant impact on RH variability. Sensitivities of the cloud macroscopic and microphysical properties to the horizontal resolutions of the observations will be shown, including the impacts on the patchiness of clouds, cloud fraction, frequencies of ice supersaturation, and the PDFs of RH. These sensitivity analyses will provide useful information on the comparisons among multi-scale observations and simulations.
A Hamiltonian approach to Thermodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldiotti, M.C., E-mail: baldiotti@uel.br; Fresneda, R., E-mail: rodrigo.fresneda@ufabc.edu.br; Molina, C., E-mail: cmolina@usp.br
In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensivelymore » used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.« less
NASA Astrophysics Data System (ADS)
Storelvmo, T.
2015-12-01
Substantial improvements have been made to the cloud microphysical schemes used in the latest generation of global climate models (GCMs), however, an outstanding weakness of these schemes lies in the arbitrariness of their tuning parameters. Despite the growing effort in improving the cloud microphysical schemes in GCMs, most of this effort has not focused on improving the ability of GCMs to accurately simulate phase partitioning in mixed-phase clouds. Getting the relative proportion of liquid droplets and ice crystals in clouds right in GCMs is critical for the representation of cloud radiative forcings and cloud-climate feedbacks. Here, we first present satellite observations of cloud phase obtained by NASA's CALIOP instrument, and report on robust statistical relationships between cloud phase and several aerosols species that have been demonstrated to act as ice nuclei (IN) in laboratory studies. We then report on results from model intercomparison projects that reveal that GCMs generally underestimate the amount of supercooled liquid in clouds. For a selected GCM (NCAR 's CAM5), we thereafter show that the underestimate can be attributed to two main factors: i) the presence of IN in the mixed-phase temperature range, and ii) the Wegener-Bergeron-Findeisen process, which converts liquid to ice once ice crystals have formed. Finally, we show that adjusting these two processes such that the GCM's cloud phase is in agreement with the observed has a substantial impact on the simulated radiative forcing due to IN perturbations, as well as on the cloud-climate feedbacks and ultimately climate sensitivity simulated by the GCM.
NASA Astrophysics Data System (ADS)
Riihimaki, L. D.; Comstock, J. M.; Luke, E.; Thorsen, T. J.; Fu, Q.
2017-07-01
To understand the microphysical processes that impact diabatic heating and cloud lifetimes in convection, we need to characterize the spatial distribution of supercooled liquid water. To address this observational challenge, ground-based vertically pointing active sensors at the Darwin Atmospheric Radiation Measurement site are used to classify cloud phase within a deep convective cloud. The cloud cannot be fully observed by a lidar due to signal attenuation. Therefore, we developed an objective method for identifying hydrometeor classes, including mixed-phase conditions, using k-means clustering on parameters that describe the shape of the Doppler spectra from vertically pointing Ka-band cloud radar. This approach shows that multiple, overlapping mixed-phase layers exist within the cloud, rather than a single region of supercooled liquid. Diffusional growth calculations show that the conditions for the Wegener-Bergeron-Findeisen process exist within one of these mixed-phase microstructures.
Scavenging of black carbon in mixed phase clouds at the high alpine site Jungfraujoch
NASA Astrophysics Data System (ADS)
Cozic, J.; Verheggen, B.; Mertes, S.; Connolly, P.; Bower, K.; Petzold, A.; Baltensperger, U.; Weingartner, E.
2006-11-01
The scavenging of black carbon (BC) in liquid and mixed phase clouds was investigated during intensive experiments in winter 2004, summer 2004 and winter 2005 at the high alpine research station Jungfraujoch (3580 m a.s.l., Switzerland). Aerosol residuals were sampled behind two well characterized inlets; a total inlet which collected cloud particles (drops and ice particles) as well as interstitial aerosol particles; an interstitial inlet which collected only interstitial (unactivated) aerosol particles. BC concentrations were measured behind each of these inlets along with the submicrometer aerosol number size distribution, from which a volume concentration was derived. These measurements were complemented by in-situ measurements of cloud microphysical parameters. BC was found to be scavenged into the cloud phase to the same extent as the bulk aerosol, which suggests that BC was covered with soluble material through aging processes, rendering it more hygroscopic. The scavenged fraction of BC (FScav,BC), defined as the fraction of BC that is incorporated into cloud droplets and ice crystals, decreases with increasing cloud ice mass fraction (IMF) from FScav,BC=60% in liquid phase clouds to FScav,BC~10% in mixed-phase clouds with IMF>0.2. This is explained by the evaporation of liquid droplets in the presence of ice crystals (Wegener-Bergeron-Findeisen process), releasing BC containing cloud condensation nuclei back into the interstitial phase. In liquid clouds, the scavenged BC fraction is found to decrease with decreasing cloud liquid water content. The scavenged BC fraction is also found to decrease with increasing BC mass concentration since there is an increased competition for the available water vapour.
To Which Extent can Aerosols Affect Alpine Mixed-Phase Clouds?
NASA Astrophysics Data System (ADS)
Henneberg, O.; Lohmann, U.
2017-12-01
Aerosol-cloud interactions constitute a high uncertainty in regional climate and changing weather patterns. Such uncertainties are due to the multiple processes that can be triggered by aerosol especially in mixed-phase clouds. Mixed-phase clouds most likely result in precipitation due to the formation of ice crystals, which can grow to precipitation size. Ice nucleating particles (INPs) determine how fast these clouds glaciate and form precipitation. The potential for INP to transfer supercooled liquid clouds to precipitating clouds depends on the available humidity and supercooled liquid. Those conditions are determined by dynamics. Moderately high updraft velocities result in persistent mixed-phase clouds in the Swiss Alps [1], which provide an ideal testbed to investigate the effect of aerosol on precipitation in mixed-phase clouds. To address the effect of aerosols in orographic winter clouds under different dynamic conditions, we run a number of real case ensembles with the regional climate model COSMO on a horizontal resolution of 1.1 km. Simulations with different INP concentrations within the range observed at the GAW research station Jungfraujoch in the Swiss Alps are conducted and repeated within the ensemble. Microphysical processes are described with a two-moment scheme. Enhanced INP concentrations enhance the precipitation rate of a single precipitation event up to 20%. Other precipitation events of similar strength are less affected by the INP concentration. The effect of CCNs is negligible for precipitation from orographic winter clouds in our case study. There is evidence for INP to change precipitation rate and location more effectively in stronger dynamic regimes due to the enhanced potential to transfer supercooled liquid to ice. The classification of the ensemble members according to their dynamics will quantify the interaction of aerosol effects and dynamics. Reference [1] Lohmann et al, 2016: Persistence of orographic mixed-phase clouds, GRL
Thermodynamics and Phase Transition from Regular Bardeen Black Hole Surrounded by Quintessence
NASA Astrophysics Data System (ADS)
Saleh, Mahamat; Thomas, Bouetou Bouetou; Kofane, Timoleon Crepin
2018-05-01
In this paper, thermodynamics and phase transition are investigated for the regular Bardeen black hole surrounded by quintessence. Considering the metric of the Bardeen spacetime surrounded by quintessence, we derived the Unruh-Verlinde temperature. Using the first law of thermodynamics, we derived the expressions of the Hawking temperature as well as the specific heat for the black hole. Explicitly, their behaviors were plotted. It results that the magnetic monopole charge β as well as the presence of quintessence decrease the temperature and induce a thermodynamics phase transition in the spacetime. Moreover, when increasing the density of quintessence, the transition point moves to lower entropies.
Optimization of binary thermodynamic and phase diagram data
NASA Astrophysics Data System (ADS)
Bale, Christopher W.; Pelton, A. D.
1983-03-01
An optimization technique based upon least squares regression is presented to permit the simultaneous analysis of diverse experimental binary thermodynamic and phase diagram data. Coefficients of polynomial expansions for the enthalpy and excess entropy of binary solutions are obtained which can subsequently be used to calculate the thermodynamic properties or the phase diagram. In an interactive computer-assisted analysis employing this technique, one can critically analyze a large number of diverse data in a binary system rapidly, in a manner which is fully self-consistent thermodynamically. Examples of applications to the Bi-Zn, Cd-Pb, PbCl2-KCl, LiCl-FeCl2, and Au-Ni binary systems are given.
NASA Astrophysics Data System (ADS)
Gladkov, Svyatoslav; Kochmann, Julian; Reese, Stefanie; Hütter, Markus; Svendsen, Bob
2016-04-01
The purpose of the current work is the comparison of thermodynamic model formulations for chemically and structurally inhomogeneous solids at finite deformation based on "standard" non-equilibrium thermodynamics [SNET: e. g. S. de Groot and P. Mazur, Non-equilibrium Thermodynamics, North Holland, 1962] and the general equation for non-equilibrium reversible-irreversible coupling (GENERIC) [H. C. Öttinger, Beyond Equilibrium Thermodynamics, Wiley Interscience, 2005]. In the process, non-isothermal generalizations of standard isothermal conservative [e. g. J. W. Cahn and J. E. Hilliard, Free energy of a non-uniform system. I. Interfacial energy. J. Chem. Phys. 28 (1958), 258-267] and non-conservative [e. g. S. M. Allen and J. W. Cahn, A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27 (1979), 1085-1095; A. G. Khachaturyan, Theory of Structural Transformations in Solids, Wiley, New York, 1983] diffuse interface or "phase-field" models [e. g. P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Modern Phys. 49 (1977), 435-479; N. Provatas and K. Elder, Phase Field Methods in Material Science and Engineering, Wiley-VCH, 2010.] for solids are obtained. The current treatment is consistent with, and includes, previous works [e. g. O. Penrose and P. C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions, Phys. D 43 (1990), 44-62; O. Penrose and P. C. Fife, On the relation between the standard phase-field model and a "thermodynamically consistent" phase-field model. Phys. D 69 (1993), 107-113] on non-isothermal systems as a special case. In the context of no-flux boundary conditions, the SNET- and GENERIC-based approaches are shown to be completely consistent with each other and result in equivalent temperature evolution relations.
Cloud deposition of PAHs at Mount Lushan in southern China.
Wang, Ruixia; Wang, Yan; Li, Hongli; Yang, Minmin; Sun, Lei; Wang, Tao; Wang, Wenxing
2015-09-01
Cloud water samples were collected from Mount Lushan, a high alpine area of southern China, and analyzed using GC-MS to investigate the concentration levels, seasonal variations, particle-dissolved phase partitioning, ecological risk of PAHs and its relationship to the atmosphere and rainwater. The average concentration of total (dissolved+particle) PAHs in cloud water was 819.90 ng/L, which ranged from 2.30 ng/L for DbA to 295.38 ng/L for PhA. PhA (33.11%) contributed the most individual PAHs, followed by Flu (28.24%). Distinct seasonal variations in the total PAHs measured in this research had a higher concentration during the spring and a lower concentration during the summer. When cloud events occurred, the concentration of the atmospheric PAHs of the two phases decreased. The contribution from the gaseous phase of total PAHs in the air to the dissolved phase in cloud water was up to 60.43%, but the particulate phase in the air only contributed 39.57% to the total scavenging. The contribution of total PAHs from the atmosphere to clouds is higher in the gaseous phase than in the particulate phase. A comparative study of the concentrations of cloud water and the closest rain water revealed that the PAH concentration in rainwater was 1.80 times less than that of cloud water and that the dominant individual compounds in cloud water and rainwater were PhA and Flu. A total of 81.27% of the PAHs in cloud samples and 72.21% of the PAHs in rain samples remained in the dissolved phase. Ecological risk assessment indicated that PAHs in cloud water in spring and summer caused a certain degree of ecosystem risk and the mean ecosystem risk in spring was higher than that in summer. Copyright © 2015 Elsevier B.V. All rights reserved.
Kirkpatrick, T R; Belitz, D
2015-07-10
The third law of thermodynamics constrains the phase diagram of systems with a first-order quantum phase transition. For a zero conjugate field, the coexistence curve has an infinite slope at T=0. If a tricritical point exists at T>0, then the associated tricritical wings are perpendicular to the T=0 plane, but not to the zero-field plane. These results are based on the third law and basic thermodynamics only, and are completely general. As an explicit example we consider the ferromagnetic quantum phase transition in clean metals, where a first-order quantum phase transition is commonly observed.
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Liu, Xu; Larar, Allen M.
2008-01-01
Ultraspectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. The intent of the measurement of tropospheric thermodynamic state and trace abundances is the initialization of climate models and the monitoring of air quality. The NPOESS Airborne Sounder Testbed-Interferometer (NAST-I), designed to support the development of future satellite temperature and moisture sounders, aboard high altitude aircraft has been collecting data throughout many field campaigns. An advanced retrieval algorithm developed with NAST-I is now applied to satellite data collected with the Atmospheric InfraRed Sounder (AIRS) on the Aqua satellite launched on 4 May 2002 and the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite launched on October 19, 2006. These instruments possess an ultra-spectral resolution, for example, both IASI and NAST-I have 0.25 cm-1 and a spectral coverage from 645 to 2760 cm-1. The retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. The physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with relatively high accuracy (i.e., error less than 1 km). Retrievals of atmospheric soundings, surface properties, and cloud microphysical properties with the AIRS and IASI observations are obtained and presented. These retrievals are further inter-compared with those obtained from airborne FTS system, such as the NPOESS Airborne Sounder Testbed? Interferometer (NAST I), dedicated dropsondes, radiosondes, and ground based Raman Lidar. The capabilities of satellite ultra-spectral sounder such as the AIRS and IASI are investigated. These advanced satellite ultraspectral infrared instruments are now playing an important role in satellite meteorological observation for numerical weather prediction.
Influence of cirrus clouds on weather and climate processes A global perspective
NASA Technical Reports Server (NTRS)
Liou, K.-N.
1986-01-01
Current understanding and knowledge of the composition and structure of cirrus clouds are reviewed and documented in this paper. In addition, the radiative properties of cirrus clouds as they relate to weather and climate processes are described in detail. To place the relevance and importance of cirrus composition, structure and radiative properties into a global perspective, pertinent results derived from simulation experiments utilizing models with varying degrees of complexity are presented; these have been carried out for the investigation of the influence of cirrus clouds on the thermodynamics and dynamics of the atmosphere. In light of these reviews, suggestions are outlined for cirrus-radiation research activities aimed toward the development and improvement of weather and climate models for a physical understanding of cause and effect relationships and for prediction purposes.
NASA Technical Reports Server (NTRS)
Mcdougal, David S. (Editor); Wagner, H. Scott (Editor)
1990-01-01
FIRE (First ISCCP Regional Experiment) is a U.S. cloud-radiation program that seeks to address the issues of a basic understanding and parameterizations of cirrus and marine stratocumulus cloud systems and ISCCP data products. The papers describe research analysis of data collected at the 1986 Cirrus Intensive Field Observations (IFO), the 1987 Marine Stratocumulus IFO, and the Extended Time Observations. The papers are grouped into sessions on satellite studies, lidar/radiative properties/microphysical studies, radiative properties, thermodynamic and dynamic properties, case studies, and large scale environment and modeling studies.
NASA Astrophysics Data System (ADS)
Boone, E.; Laskin, J.; Laskin, A.; Wirth, C.; Shepson, P. B.; Stirm, B. H.; Pratt, K.
2014-12-01
Organic compounds comprise a significant mass fraction of submicron atmospheric particles with considerable contribution from secondary organic aerosol (SOA), a large fraction of which is formed from the oxidation of biogenic volatile organic compounds. Aqueous-phase reactions in particles and cloud droplets are suggested to increase SOA mass and change the chemical composition the particles following cloud evaporation. Aqueous-phase processing may also explain discrepancies between measurements and models. To gain a better understanding of these processes, cloud water and below-cloud atmospheric particles were collected onboard a research aircraft during the Southeast Oxidants and Aerosol Study (SOAS) over Alabama in June 2013. Nanospray desorption electrospray ionization (nano-DESI) and direct electrospray ionization (ESI) coupled with high resolution mass spectrometry were utilized to compare the organic molecular composition of the particle and cloud water samples, respectively. Several hundred unique compounds have been identified in the particle and cloud water samples, allowing possible aqueous-phase reactions to be examined. Hydrolysis of organosulfate compounds, aqueous-phase formation of nitrogen-containing compounds, and possible fragmentation of oligomeric compounds will be discussed, with comparisons to previous laboratory studies. This study provides insights into aqueous-phase reactions in ambient cloud droplets.
NASA Astrophysics Data System (ADS)
Kim, Young-Min; Jung, In-Ho
2015-06-01
A complete literature review, critical evaluation, and thermodynamic optimization of phase equilibrium and thermodynamic properties of all available oxide phases in the MnO-B2O3 and MnO-B2O3-SiO2 systems at 1 bar pressure are presented. Due to the lack of the experimental data in these systems, the systematic trend of CaO- and MgO-containing systems were taken into account in the optimization. The molten oxide phase is described by the Modified Quasichemical Model. A set of optimized model parameters of all phases is obtained which reproduces all available and reliable thermodynamic and phase equilibrium data. The unexplored binary and ternary phase diagrams of the MnO-B2O3 and MnO-B2O3-SiO2 systems have been predicted for the first time. The thermodynamic calculations relevant to the oxidation of advanced high-strength steels containing boron were performed to find that B can form liquid B2O3-SiO2-rich phase in the annealing furnace under reducing N2-H2 atmosphere, which can significantly influence the wetting behavior of liquid Zn in Zn galvanizing process.
Fateen, Seif-Eddeen K.; Bonilla-Petriciolet, Adrian
2014-01-01
The search for reliable and efficient global optimization algorithms for solving phase stability and phase equilibrium problems in applied thermodynamics is an ongoing area of research. In this study, we evaluated and compared the reliability and efficiency of eight selected nature-inspired metaheuristic algorithms for solving difficult phase stability and phase equilibrium problems. These algorithms are the cuckoo search (CS), intelligent firefly (IFA), bat (BA), artificial bee colony (ABC), MAKHA, a hybrid between monkey algorithm and krill herd algorithm, covariance matrix adaptation evolution strategy (CMAES), magnetic charged system search (MCSS), and bare bones particle swarm optimization (BBPSO). The results clearly showed that CS is the most reliable of all methods as it successfully solved all thermodynamic problems tested in this study. CS proved to be a promising nature-inspired optimization method to perform applied thermodynamic calculations for process design. PMID:24967430
Fateen, Seif-Eddeen K; Bonilla-Petriciolet, Adrian
2014-01-01
The search for reliable and efficient global optimization algorithms for solving phase stability and phase equilibrium problems in applied thermodynamics is an ongoing area of research. In this study, we evaluated and compared the reliability and efficiency of eight selected nature-inspired metaheuristic algorithms for solving difficult phase stability and phase equilibrium problems. These algorithms are the cuckoo search (CS), intelligent firefly (IFA), bat (BA), artificial bee colony (ABC), MAKHA, a hybrid between monkey algorithm and krill herd algorithm, covariance matrix adaptation evolution strategy (CMAES), magnetic charged system search (MCSS), and bare bones particle swarm optimization (BBPSO). The results clearly showed that CS is the most reliable of all methods as it successfully solved all thermodynamic problems tested in this study. CS proved to be a promising nature-inspired optimization method to perform applied thermodynamic calculations for process design.
NASA Astrophysics Data System (ADS)
Clayson, C. A.; Roberts, J.
2016-02-01
The Madden-Julian Oscillation (MJO) represents a prominent mode of intraseasonal tropical variability as manifest by coherent large-scale changes in atmospheric circulation, convection, and thermodynamic processes. Its impacts are far-reaching with influences on monsoons, flooding, droughts, and tropical storms. The characteristic timescale of the MJO is positioned in a gap between synoptic forecasting and longer range seasonal to interannual predictions, but has been shown to be dependent on diurnally-varying sea surface temperature (SST). In this work, we leverage a wide suite of satellite products with in situ oceanographic data over the 2002-2012 period to investigate the rectification effects of strong ocean diurnal warming onto the development of intraseasonal SST variability, and whether there a detectable influence on the diurnal cycle of cloud-radiative effects in the suppressed phase of the MJO. Diurnally-varying SST is used as a conditional sampling parameter, along with AIRS/AMSU-A temperature and moisture profiles, surface winds, radiative and turbulent surface fluxes, and precipitation. We use composite daily average atmospheric BL depths, changes in lower-tropospheric stability, and moist static energy to evaluate changes in convective inhibition based on the diurnal variability of surface parcel characteristics due to turbulent heat fluxes, and compare with diurnal changes in cloud-radiative effects and precipitation. Argo floats and ocean modeling experiments are used to examine the upper ocean response. An ensemble of MJO simulations are generated using Argo profiles and satellite-derived surface forcing from which the systematic impacts of diurnal variability on the generation of the intraseasonal SST warming are evaluated. These simulations inform the importance of diurnal variations in surface boundary forcing to upper ocean mixing and the integrated contribution to SST warming over the typical duration of a suppressed phase of the MJO.
Microphysical processing of aerosol particles in orographic clouds
NASA Astrophysics Data System (ADS)
Pousse-Nottelmann, S.; Zubler, E. M.; Lohmann, U.
2015-08-01
An explicit and detailed treatment of cloud-borne particles allowing for the consideration of aerosol cycling in clouds has been implemented into COSMO-Model, the regional weather forecast and climate model of the Consortium for Small-scale Modeling (COSMO). The effects of aerosol scavenging, cloud microphysical processing and regeneration upon cloud evaporation on the aerosol population and on subsequent cloud formation are investigated. For this, two-dimensional idealized simulations of moist flow over two bell-shaped mountains were carried out varying the treatment of aerosol scavenging and regeneration processes for a warm-phase and a mixed-phase orographic cloud. The results allowed us to identify different aerosol cycling mechanisms. In the simulated non-precipitating warm-phase cloud, aerosol mass is incorporated into cloud droplets by activation scavenging and released back to the atmosphere upon cloud droplet evaporation. In the mixed-phase cloud, a first cycle comprises cloud droplet activation and evaporation via the Wegener-Bergeron-Findeisen (WBF) process. A second cycle includes below-cloud scavenging by precipitating snow particles and snow sublimation and is connected to the first cycle via the riming process which transfers aerosol mass from cloud droplets to snowflakes. In the simulated mixed-phase cloud, only a negligible part of the total aerosol mass is incorporated into ice crystals. Sedimenting snowflakes reaching the surface remove aerosol mass from the atmosphere. The results show that aerosol processing and regeneration lead to a vertical redistribution of aerosol mass and number. Thereby, the processes impact the total aerosol number and mass and additionally alter the shape of the aerosol size distributions by enhancing the internally mixed/soluble Aitken and accumulation mode and generating coarse-mode particles. Concerning subsequent cloud formation at the second mountain, accounting for aerosol processing and regeneration increases the cloud droplet number concentration with possible implications for the ice crystal number concentration.
Hemingway, B.S.
1982-01-01
Thermodynamic values for 110 uranium-bearing phases and 28 aqueous uranium solution species (298.15 K and l bar) are tabulated based upon evaluated experimental data (largely from calorimetric experiments) and estimated values. Molar volume data are given for most of the solid phases. Thermodynamic values for 16 uranium-bearing phases are presented for higher temperatures in the form of and as a supplement to U.S. Geological Survey Bulletin 1452 (Robie et al., 1979). The internal consistency of the thermodynamic values reported herein is dependent upon the reliability of the experimental results for several uranium phases that have been used as secondary calorimetric reference phases. The data for the reference phases and for those phases evaluated with respect to the secondary reference phases are discussed. A preliminary model for coffinite formation has been proposed together with an estimate of the free energy of formation of coffinite. Free energy values are estimated for several other uranium-bearing silicate phases that have been reported as secondary uranium phases associated with uranium ore deposits and that could be expected to develop wherever uranium is leached by groundwaters.
NASA Astrophysics Data System (ADS)
Maheskumar, R. S.; Padmakumari, B.; Konwar, Mahen; Morwal, S. B.; Deshpande, C. G.
2018-06-01
In-situ observations of cloud microphysical properties, carried out over different parts of Indian sub-continent using an instrumented research aircraft during Phase-I of Cloud Aerosol Interaction and Precipitation Enhancement EXperiment (CAIPEEX) from June to September 2009, were studied. Different cloud probes were used to characterize the hydrometeor and precipitation types in the monsoon clouds. The results revealed that all liquid phase hydrometeors were present at temperatures -12 °C to 15 °C. Most of the presence of rain drops were found in the liquid water content (LWC) range from 0.5 to 2 g/m3. In general, rain drops are initiated when the droplet effective radius (Re) exceeded 12 μm. Rain dominated at the tops of young growing convective clouds even at temperatures colder than -10 °C. Mixed phase hydrometeors were present at temperatures from -2 °C to -18 °C. The cases where mixed phase precipitation occurred at temperatures warmer than about -7 °C were associated with influx of transported dust aerosol at the upper (supercooled) region of these cloud systems. Ice only hydrometeors were found at temperatures extending from -10 °C to -22 °C. Most of the monsoon rain is produced by warm and cold cloud/mixed-phase processes in the cloud. The combined Re from two different cloud probes is useful for validation of satellite derived cloud microphysical parameter.
NASA Astrophysics Data System (ADS)
Moussa, Chantal; Berche, Alexandre; Barbosa, José; Pasturel, Mathieu; Stepnik, Bertrand; Tougait, Olivier
2018-02-01
The phase relations in the binary U-Ga and ternary U-Al-Ga systems were established as an isopleth section and two isothermal sections at 900 K and 1150 K for the whole concentration range, respectively. They were experimentally determined by means of powder and single crystal XRD, SEM-EDS analyses on both as-cast and heat-treated samples and DTA measurements. Both systems were thermodynamically assessed using the Calphad method based on the available data, i.e. phase relations and thermodynamic properties. The new description of the U-Ga phase diagram improves the composition-temperature description for most of invariant reactions. The U-Al-Ga system is characterized by large ternary extensions of the binary phases and the absence of ternary intermediate phase at both 900 K and 1150 K. These experimental results are nicely reproduced by the Calphad assessment, allowing to extract the thermodynamic parameters further used to calculate the liquidus projection and the invariant reactions along with their temperature.
Modeling the partitioning of organic chemical species in cloud phases with CLEPS (1.1)
NASA Astrophysics Data System (ADS)
Rose, Clémence; Chaumerliac, Nadine; Deguillaume, Laurent; Perroux, Hélène; Mouchel-Vallon, Camille; Leriche, Maud; Patryl, Luc; Armand, Patrick
2018-02-01
The new detailed aqueous-phase mechanism Cloud Explicit Physico-chemical Scheme (CLEPS 1.0), which describes the oxidation of isoprene-derived water-soluble organic compounds, is coupled with a warm microphysical module simulating the activation of aerosol particles into cloud droplets. CLEPS 1.0 was then extended to CLEPS 1.1 to include the chemistry of the newly added dicarboxylic acids dissolved from the particulate phase. The resulting coupled model allows the prediction of the aqueous-phase concentrations of chemical compounds originating from particle scavenging, mass transfer from the gas-phase and in-cloud aqueous chemical reactivity. The aim of the present study was more particularly to investigate the effect of particle scavenging on cloud chemistry. Several simulations were performed to assess the influence of various parameters on model predictions and to interpret long-term measurements conducted at the top of Puy de Dôme (PUY, France) in marine air masses. Specific attention was paid to carboxylic acids, whose predicted concentrations are on average in the lower range of the observations, with the exception of formic acid, which is rather overestimated in the model. The different sensitivity runs highlight the fact that formic and acetic acids mainly originate from the gas phase and have highly variable aqueous-phase reactivity depending on the cloud acidity, whereas C3-C4 carboxylic acids mainly originate from the particulate phase and are supersaturated in the cloud.
NASA Astrophysics Data System (ADS)
Smirnyagina, N. N.; Khaltanova, V. M.; Lapina, A. E.; Dasheev, D. E.
2017-01-01
Composite layers on the basis of carbides and borides the titan and silicon on titanic alloy VT-1 are generated at diffused saturation in vacuum. Formation in a composite of MAX phase Ti3SiC2 is shown. Thermodynamic research of phase equilibrium in systems Ti-Si-C and Ti-B-C in the conditions of high vacuum is executed. The thermodynamics, formation mechanisms of superfirm layers borides and carbides of the titan and silicon are investigated.
NASA Technical Reports Server (NTRS)
Platnick, Steven; Fontenla, Juan M.
2006-01-01
Since the launch of the first Advanced Very High Resolution Radiometer (AVHRR) instrument aboard TIROS-N, measurements in the 3.7 micron atmospheric window have been exploited for use in cloud detection and screening, cloud thermodynamic phase and surface snow/ice discrimination, and quantitative cloud particle size retrievals. The utility of the band has led to the incorporation of similar channels on a number of existing satellite imagers and future operational imagers. Daytime observations in the band include both reflected solar and thermal emission energy. Since 3.7 micron channels are calibrated to a radiance scale (via onboard blackbodies), knowledge of the top-of-atmosphere solar irradiance in the spectral region is required to infer reflectance. Despite the ubiquity of 3.7 micron channels, absolute solar spectral irradiance data comes from either a single measurement campaign (Thekaekara et al. 1969) or synthetic spectra. In this study, we compare historical 3.7 micron band spectral irradiance data sets with the recent semi-empirical solar model of the quiet-Sun by Fontenla et al. (2006). The model has expected uncertainties of about 2 % in the 3.7 pm spectral region. We find that channel-averaged spectral irradiances using the observations reported by Thekaekara et al. are 3.2-4.1% greater than those derived from the Fontenla et al. model for MODIS and AVHRR instrument bandpasses; the Kurucz spectrum (1995) as included in the MODTRAN4 distribution, gives channel-averaged irradiances 1.2-1.5 % smaller than the Fontenla model. For the MODIS instrument, these solar irradiance uncertainties result in cloud microphysical retrievals uncertainties comparable with other fundamental reflectance error sources.
Scavenging of black carbon in mixed phase clouds at the high alpine site Jungfraujoch
NASA Astrophysics Data System (ADS)
Cozic, J.; Verheggen, B.; Mertes, S.; Connolly, P.; Bower, K.; Petzold, A.; Baltensperger, U.; Weingartner, E.
2007-04-01
The scavenging of black carbon (BC) in liquid and mixed phase clouds was investigated during intensive experiments in winter 2004, summer 2004 and winter 2005 at the high alpine research station Jungfraujoch (3580 m a.s.l., Switzerland). Aerosol residuals were sampled behind two well characterized inlets; a total inlet which collected cloud particles (droplets and ice particles) as well as interstitial (unactivated) aerosol particles; an interstitial inlet which collected only interstitial aerosol particles. BC concentrations were measured behind each of these inlets along with the submicrometer aerosol number size distribution, from which a volume concentration was derived. These measurements were complemented by in-situ measurements of cloud microphysical parameters. BC was found to be scavenged into the condensed phase to the same extent as the bulk aerosol, which suggests that BC was covered with soluble material through aging processes, rendering it more hygroscopic. The scavenged fraction of BC (FScav,BC), defined as the fraction of BC that is incorporated into cloud droplets and ice crystals, decreases with increasing cloud ice mass fraction (IMF) from FScav,BC=60% in liquid phase clouds to FScav,BC~5-10% in mixed-phase clouds with IMF>0.2. This can be explained by the evaporation of liquid droplets in the presence of ice crystals (Wegener-Bergeron-Findeisen process), releasing BC containing cloud condensation nuclei back into the interstitial phase. In liquid clouds, the scavenged BC fraction is found to decrease with decreasing cloud liquid water content. The scavenged BC fraction is also found to decrease with increasing BC mass concentration since there is an increased competition for the available water vapour.
Phase-partitioning in mixed-phase clouds - An approach to characterize the entire vertical column
NASA Astrophysics Data System (ADS)
Kalesse, H.; Luke, E. P.; Seifert, P.
2017-12-01
The characterization of the entire vertical profile of phase-partitioning in mixed-phase clouds is a challenge which can be addressed by synergistic profiling measurements with ground-based polarization lidars and cloud radars. While lidars are sensitive to small particles and can thus detect supercooled liquid (SCL) layers, cloud radar returns are dominated by larger particles (like ice crystals). The maximum lidar observation height is determined by complete signal attenuation at a penetrated optical depth of about three. In contrast, cloud radars are able to penetrate multiple liquid layers and can thus be used to expand the identification of cloud phase to the entire vertical column beyond the lidar extinction height, if morphological features in the radar Doppler spectrum can be related to the existence of SCL. Relevant spectral signatures such as bimodalities and spectral skewness can be related to cloud phase by training a neural network appropriately in a supervised learning scheme, with lidar measurements functioning as supervisor. The neural network output (prediction of SCL location) derived using cloud radar Doppler spectra can be evaluated with several parameters such as liquid water path (LWP) detected by microwave radiometer (MWR) and (liquid) cloud base detected by ceilometer or Raman lidar. The technique has been previously tested on data from Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) instruments in Barrow, Alaska and is in this study utilized for observations from the Leipzig Aerosol and Cloud Remote Observations System (LACROS) during the Analysis of the Composition of Clouds with Extended Polarization Techniques (ACCEPT) field experiment in Cabauw, Netherlands in Fall 2014. Comparisons to supercooled-liquid layers as classified by CLOUDNET are provided.
Atmospheric Science Data Center
2013-05-20
... Surface Emissivity Cloud Area Fraction Cloud Effective Pressure Cloud Effective Temperature Cloud Effective Height Cloud Top Pressure Cloud Base Pressure Cloud Particle Phase Liquid Water Path Ice Water Path Water Particle Radius Ice Particle ...
Fine-scale Horizontal Structure of Arctic Mixed-Phase Clouds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rambukkange,M.; Verlinde, J.; Elorante, E.
2006-07-10
Recent in situ observations in stratiform clouds suggest that mixed phase regimes, here defined as limited cloud volumes containing both liquid and solid water, are constrained to narrow layers (order 100 m) separating all-liquid and fully glaciated volumes (Hallett and Viddaurre, 2005). The Department of Energy Atmospheric Radiation Measurement Program's (DOE-ARM, Ackerman and Stokes, 2003) North Slope of Alaska (NSA) ARM Climate Research Facility (ACRF) recently started collecting routine measurement of radar Doppler velocity power spectra from the Millimeter Cloud Radar (MMCR). Shupe et al. (2004) showed that Doppler spectra has potential to separate the contributions to the total reflectivitymore » of the liquid and solid water in the radar volume, and thus to investigate further Hallett and Viddaurre's findings. The Mixed-Phase Arctic Cloud Experiment (MPACE) was conducted along the NSA to investigate the properties of Arctic mixed phase clouds (Verlinde et al., 2006). We present surface based remote sensing data from MPACE to discuss the fine-scale structure of the mixed-phase clouds observed during this experiment.« less
The sensitivity of tropospheric chemistry to cloud interactions
NASA Technical Reports Server (NTRS)
Jonson, Jan E.; Isaksen, Ivar S. A.
1994-01-01
Clouds, although only occupying a relatively small fraction of the troposphere volume, can have a substantial impact on the chemistry of the troposphere. In newly formed clouds, or in clouds with air rapidly flowing through, the chemistry is expected to be far more active than in aged clouds with stagnant air. Thus, frequent cycling of air through shortlived clouds, i.e. cumulus clouds, is likely to be a much more efficient media for altering the composition of the atmosphere than an extensive cloud cover i.e. frontal cloud systems. The impact of clouds is tested out in a 2-D channel model encircling the globe in a latitudinal belt from 30 to 60 deg N. The model contains a detailed gas phase chemistry. In addition physiochemical interactions between the gas and aqueous phases are included. For species as H2O2, CH2O, O3, and SO2, Henry's law equilibria are assumed, whereas HNO3 and H2SO4 are regarded as completed dissolved in the aqueous phase. Absorption of HO2 and OH is assumed to be mass-transport limited. The chemistry of the aqueous phase is characterized by rapid cycling of odd hydrogen, (H2O2, HO2, and OH). O2(-) (produced through dissociation of HO2) reacting with dissolved O3 is a major source of OH in the aqueous phase. This reaction can be a significant sink for O3 in the troposphere. In the interstitial cloud air, odd hydrogen is depleted, whereas NO(x) remains in the gas phase, thus reducing ozone production due to the reaction between NO and HO2. Our calculations give markedly lower ozone levels when cloud interactions are included. This may in part explain the overpredictions of ozone levels often experienced in models neglecting cloud chemical interactions. In the present study, the existence of clouds, cloud types, and their lifetimes are modeled as pseudo random variables. Such pseudo random sequences are in reality deterministic and may, given the same starting values, be reproduced. The effects of cloud interactions on the overall chemistry of the troposphere are discussed. In particular, tests are performed to determine the sensitivity of cloud frequencies and cloud types.
NASA Astrophysics Data System (ADS)
Cook, Ryan D.; Lin, Ying-Hsuan; Peng, Zhuoyu; Boone, Eric; Chu, Rosalie K.; Dukett, James E.; Gunsch, Matthew J.; Zhang, Wuliang; Tolic, Nikola; Laskin, Alexander; Pratt, Kerri A.
2017-12-01
Organic aerosol formation and transformation occurs within aqueous aerosol and cloud droplets, yet little is known about the composition of high molecular weight organic compounds in cloud water. Cloud water samples collected at Whiteface Mountain, New York, during August-September 2014 were analyzed by ultra-high-resolution mass spectrometry to investigate the molecular composition of dissolved organic carbon, with a focus on sulfur- and nitrogen-containing compounds. Organic molecular composition was evaluated in the context of cloud water inorganic ion concentrations, pH, and total organic carbon concentrations to gain insights into the sources and aqueous-phase processes of the observed high molecular weight organic compounds. Cloud water acidity was positively correlated with the average oxygen : carbon ratio of the organic constituents, suggesting the possibility for aqueous acid-catalyzed (prior to cloud droplet activation or during/after cloud droplet evaporation) and/or radical (within cloud droplets) oxidation processes. Many tracer compounds recently identified in laboratory studies of bulk aqueous-phase reactions were identified in the cloud water. Organosulfate compounds, with both biogenic and anthropogenic volatile organic compound precursors, were detected for cloud water samples influenced by air masses that had traveled over forested and populated areas. Oxidation products of long-chain (C10-12) alkane precursors were detected during urban influence. Influence of Canadian wildfires resulted in increased numbers of identified sulfur-containing compounds and oligomeric species, including those formed through aqueous-phase reactions involving methylglyoxal. Light-absorbing aqueous-phase products of syringol and guaiacol oxidation were observed in the wildfire-influenced samples, and dinitroaromatic compounds were observed in all cloud water samples (wildfire, biogenic, and urban-influenced). Overall, the cloud water molecular composition depended on air mass source influence and reflected aqueous-phase reactions involving biogenic, urban, and biomass burning precursors.
Atmospheric Science Data Center
2013-05-20
... Surface Albedo Cloud Area Fraction Cloud Effective Pressure Cloud Effective Temperature Cloud Effective Height Cloud Top Pressure Cloud Base Pressure Cloud Particle Phase Liquid Water Path Ice Water Path Water Particle Radius Ice Particle ...
Atmospheric Science Data Center
2013-05-17
... Flux - Down Cloud Area Fraction Cloud Effective Pressure Cloud Effective Temperature Cloud Effective Height Cloud Top Pressure Cloud Base Pressure Cloud Particle Phase Liquid Water Path Ice Water Path Water Particle Radius Ice Particle ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Jiwen; Leung, L. Ruby; Rosenfeld, Daniel
How orographic mixed-phase clouds respond to the change in cloud condensation nuclei (CCN) and ice nucleating particles (INPs) are highly uncertain. The main snow production mechanism in warm and cold mixed-phase orographic clouds (referred to as WMOCs and CMOCs, respectively, distinguished here as those having cloud tops warmer and colder than -20°C) could be very different. We quantify the CCN and INP impacts on supercooled water content, cloud phases, and precipitation for a WMOC case and a CMOC case, with sensitivity tests using the same CCN and INP concentrations between the WMOC and CMOC cases. It was found that depositionmore » plays a more important role than riming for forming snow in the CMOC case, while the role of riming is dominant in the WMOC case. As expected, adding CCN suppresses precipitation, especially in WMOCs and low INPs. However, this reverses strongly for CCN of 1000 cm -3 and larger. We found a new mechanism through which CCN can invigorate mixed-phase clouds over the Sierra Nevada and drastically intensify snow precipitation when CCN concentrations are high (1000 cm -3 or higher). In this situation, more widespread shallow clouds with a greater amount of cloud water form in the Central Valley and foothills west of the mountain range. The increased latent heat release associated with the formation of these clouds strengthens the local transport of moisture to the windward slope, invigorating mixed-phase clouds over the mountains, and thereby producing higher amounts of snow precipitation. Under all CCN conditions, increasing the INPs leads to decreased riming and mixed-phase fraction in the CMOC as a result of liquid-limited conditions, but has the opposite effects in the WMOC as a result of ice-limited conditions. However, precipitation in both cases is increased by increasing INPs due to an increase in deposition for the CMOC but enhanced riming and deposition in the WMOC. Increasing the INPs dramatically reduces supercooled water content and increases the cloud glaciation temperature, while increasing CCN has the opposite effect with much smaller significance.« less
Fan, Jiwen; Leung, L. Ruby; Rosenfeld, Daniel; ...
2017-01-23
How orographic mixed-phase clouds respond to the change in cloud condensation nuclei (CCN) and ice nucleating particles (INPs) are highly uncertain. The main snow production mechanism in warm and cold mixed-phase orographic clouds (referred to as WMOCs and CMOCs, respectively, distinguished here as those having cloud tops warmer and colder than -20°C) could be very different. We quantify the CCN and INP impacts on supercooled water content, cloud phases, and precipitation for a WMOC case and a CMOC case, with sensitivity tests using the same CCN and INP concentrations between the WMOC and CMOC cases. It was found that depositionmore » plays a more important role than riming for forming snow in the CMOC case, while the role of riming is dominant in the WMOC case. As expected, adding CCN suppresses precipitation, especially in WMOCs and low INPs. However, this reverses strongly for CCN of 1000 cm -3 and larger. We found a new mechanism through which CCN can invigorate mixed-phase clouds over the Sierra Nevada and drastically intensify snow precipitation when CCN concentrations are high (1000 cm -3 or higher). In this situation, more widespread shallow clouds with a greater amount of cloud water form in the Central Valley and foothills west of the mountain range. The increased latent heat release associated with the formation of these clouds strengthens the local transport of moisture to the windward slope, invigorating mixed-phase clouds over the mountains, and thereby producing higher amounts of snow precipitation. Under all CCN conditions, increasing the INPs leads to decreased riming and mixed-phase fraction in the CMOC as a result of liquid-limited conditions, but has the opposite effects in the WMOC as a result of ice-limited conditions. However, precipitation in both cases is increased by increasing INPs due to an increase in deposition for the CMOC but enhanced riming and deposition in the WMOC. Increasing the INPs dramatically reduces supercooled water content and increases the cloud glaciation temperature, while increasing CCN has the opposite effect with much smaller significance.« less
Atmospheric Science Data Center
2013-05-17
... Surface Albedo Cloud Area Fraction Cloud Effective Pressure Cloud Effective Temperature Cloud Effective Height Cloud Top Pressure Cloud Base Pressure Cloud Particle Phase Liquid Water Path Ice Water Path Water Particle Radius Ice Particle ...
Liu, Xuan L; Gheno, Thomas; Lindahl, Bonnie B; Lindwall, Greta; Gleeson, Brian; Liu, Zi-Kui
2015-01-01
The phase relations and thermodynamic properties of the condensed Al-Co-Cr ternary alloy system are investigated using first-principles calculations based on density functional theory (DFT) and phase-equilibria experiments that led to X-ray diffraction (XRD) and electron probe micro-analysis (EPMA) measurements. A thermodynamic description is developed by means of the calculations of phase diagrams (CALPHAD) method using experimental and computational data from the present work and the literature. Emphasis is placed on modeling the bcc-A2, B2, fcc-γ, and tetragonal-σ phases in the temperature range of 1173 to 1623 K. Liquid, bcc-A2 and fcc-γ phases are modeled using substitutional solution descriptions. First-principles special quasirandom structures (SQS) calculations predict a large bcc-A2 (disordered)/B2 (ordered) miscibility gap, in agreement with experiments. A partitioning model is then used for the A2/B2 phase to effectively describe the order-disorder transitions. The critically assessed thermodynamic description describes all phase equilibria data well. A2/B2 transitions are also shown to agree well with previous experimental findings.
Laboratory studies of stratospheric aerosol chemistry
NASA Technical Reports Server (NTRS)
Molina, Mario J.
1996-01-01
In this report we summarize the results of the two sets of projects funded by the NASA grant NAG2-632, namely investigations of various thermodynamic and nucleation properties of the aqueous acid system which makes up stratospheric aerosols, and measurements of reaction probabilities directly on ice aerosols with sizes corresponding to those of polar stratospheric cloud particles. The results of these investigations are of importance for the assessment of the potential stratospheric effects of future fleets of supersonic aircraft. In particular, the results permit to better estimate the effects of increased amounts of water vapor and nitric acid (which forms from nitrogen oxides) on polar stratospheric clouds and on the chemistry induced by these clouds.
Modeling of the Wegener Bergeron Findeisen process—implications for aerosol indirect effects
NASA Astrophysics Data System (ADS)
Storelvmo, T.; Kristjánsson, J. E.; Lohmann, U.; Iversen, T.; Kirkevåg, A.; Seland, Ø.
2008-10-01
A new parameterization of the Wegener-Bergeron-Findeisen (WBF) process has been developed, and implemented in the general circulation model CAM-Oslo. The new parameterization scheme has important implications for the process of phase transition in mixed-phase clouds. The new treatment of the WBF process replaces a previous formulation, in which the onset of the WBF effect depended on a threshold value of the mixing ratio of cloud ice. As no observational guidance for such a threshold value exists, the previous treatment added uncertainty to estimates of aerosol effects on mixed-phase clouds. The new scheme takes subgrid variability into account when simulating the WBF process, allowing for smoother phase transitions in mixed-phase clouds compared to the previous approach. The new parameterization yields a model state which gives reasonable agreement with observed quantities, allowing for calculations of aerosol effects on mixed-phase clouds involving a reduced number of tunable parameters. Furthermore, we find a significant sensitivity to perturbations in ice nuclei concentrations with the new parameterization, which leads to a reversal of the traditional cloud lifetime effect.
NASA Astrophysics Data System (ADS)
Fridlind, A. M.; Avramov, A.; Ackerman, A. S.; Alpert, P. A.; Knopf, D. A.; DeMott, P. J.; Brooks, S. D.; Glen, A.
2015-12-01
It has been argued on the basis of some laboratory data sets, observed mixed-phase cloud systems, and numerical modeling studies that weakly active or slowly consumed ice forming nuclei (IFN) may be important to natural cloud systems. It has also been argued on the basis of field measurements that ice nucleation under mixed-phase conditions appears to occur predominantly via a liquid-phase mechanism, requiring the presence of liquid droplets prior to substantial ice nucleation. Here we analyze the response of quasi-Lagrangian large-eddy simulations of mixed-phase cloud layers to IFN operating via a liquid-phase mode using assumptions that result in either slow or rapid depletion of IFN from the cloudy boundary layer. Using several generalized case studies that do not exhibit riming or drizzle, based loosely on field campaign data, we vary environmental conditions such that the cloud-top temperature trend varies. One objective of this work is to identify differing patterns in ice formation intensity that may be distinguishable from ground-based or satellite platforms.
NASA Astrophysics Data System (ADS)
Fan, Jiwen; Ghan, Steven; Ovchinnikov, Mikhail; Liu, Xiaohong; Rasch, Philip J.; Korolev, Alexei
2011-01-01
Two types of Arctic mixed-phase clouds observed during the ISDAC and M-PACE field campaigns are simulated using a 3-dimensional cloud-resolving model (CRM) with size-resolved cloud microphysics. The modeled cloud properties agree reasonably well with aircraft measurements and surface-based retrievals. Cloud properties such as the probability density function (PDF) of vertical velocity (w), cloud liquid and ice, regimes of cloud particle growth, including the Wegener-Bergeron-Findeisen (WBF) process, and the relationships among properties/processes in mixed-phase clouds are examined to gain insights for improving their representation in General Circulation Models (GCMs). The PDF of the simulated w is well represented by a Gaussian function, validating, at least for arctic clouds, the subgrid treatment used in GCMs. The PDFs of liquid and ice water contents can be approximated by Gamma functions, and a Gaussian function can describe the total water distribution, but a fixed variance assumption should be avoided in both cases. The CRM results support the assumption frequently used in GCMs that mixed phase clouds maintain water vapor near liquid saturation. Thus, ice continues to grow throughout the stratiform cloud but the WBF process occurs in about 50% of cloud volume where liquid and ice co-exist, predominantly in downdrafts. In updrafts, liquid and ice particles grow simultaneously. The relationship between the ice depositional growth rate and cloud ice strongly depends on the capacitance of ice particles. The simplified size-independent capacitance of ice particles used in GCMs could lead to large deviations in ice depositional growth.
Riihimaki, Laura D.; Comstock, J. M.; Luke, E.; ...
2017-07-12
To understand the microphysical processes that impact diabatic heating and cloud lifetimes in convection, we need to characterize the spatial distribution of supercooled liquid water. To address this observational challenge, ground-based vertically pointing active sensors at the Darwin Atmospheric Radiation Measurement site are used to classify cloud phase within a deep convective cloud. The cloud cannot be fully observed by a lidar due to signal attenuation. Therefore, we developed an objective method for identifying hydrometeor classes, including mixed-phase conditions, using k-means clustering on parameters that describe the shape of the Doppler spectra from vertically pointing Ka-band cloud radar. Furthermore, thismore » approach shows that multiple, overlapping mixed-phase layers exist within the cloud, rather than a single region of supercooled liquid. Diffusional growth calculations show that the conditions for the Wegener-Bergeron-Findeisen process exist within one of these mixed-phase microstructures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riihimaki, Laura D.; Comstock, J. M.; Luke, E.
To understand the microphysical processes that impact diabatic heating and cloud lifetimes in convection, we need to characterize the spatial distribution of supercooled liquid water. To address this observational challenge, ground-based vertically pointing active sensors at the Darwin Atmospheric Radiation Measurement site are used to classify cloud phase within a deep convective cloud. The cloud cannot be fully observed by a lidar due to signal attenuation. Therefore, we developed an objective method for identifying hydrometeor classes, including mixed-phase conditions, using k-means clustering on parameters that describe the shape of the Doppler spectra from vertically pointing Ka-band cloud radar. Furthermore, thismore » approach shows that multiple, overlapping mixed-phase layers exist within the cloud, rather than a single region of supercooled liquid. Diffusional growth calculations show that the conditions for the Wegener-Bergeron-Findeisen process exist within one of these mixed-phase microstructures.« less
Thermodynamic output of single-atom quantum optical amplifiers and their phase-space fingerprint
NASA Astrophysics Data System (ADS)
Perl, Y.; Band, Y. B.; Boukobza, E.
2017-05-01
We analyze a resonant single-atom two-photon quantum optical amplifier both dynamically and thermodynamically. A detailed thermodynamic analysis shows that the nonlinear amplifier is thermodynamically equivalent to the linear amplifier. However, by calculating the Wigner quasiprobability distribution for various initial field states, we show that unique quantum features in optical phase space, absent in the linear amplifier, are retained for extended times, despite the fact that dissipation tends to wash out dynamical features observed at early evolution times. These features are related to the discrete nature of the two-photon matter-field interaction and fingerprint the initial field state at thermodynamic times.
Atmospheric environment for Space Shuttle (STS-11) launch
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Hill, C. K.; Batts, G. W.
1984-01-01
Atmospheric conditions observed near Space Shuttle STS-11 launch time on February 3, 1984, at Kennedy Space Center, Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles are reported. Wind and thermodynamic parameters representative of surface and aloft conditions in the SRB descent/impact ocean area are presented. Meteorological tapes, which consist of wind and thermodynamic parameters vesus altitude, for STS-11 vehicle ascent and SRB descent/impact were constructed.
NASA Astrophysics Data System (ADS)
Kuang, Zhiming; Bretherton, Christopher S.
2006-07-01
In this paper, an idealized, high-resolution simulation of a gradually forced transition from shallow, nonprecipitating to deep, precipitating cumulus convection is described; how the cloud and transport statistics evolve as the convection deepens is explored; and the collected statistics are used to evaluate assumptions in current cumulus schemes. The statistical analysis methodologies that are used do not require tracing the history of individual clouds or air parcels; instead they rely on probing the ensemble characteristics of cumulus convection in the large model dataset. They appear to be an attractive way for analyzing outputs from cloud-resolving numerical experiments. Throughout the simulation, it is found that 1) the initial thermodynamic properties of the updrafts at the cloud base have rather tight distributions; 2) contrary to the assumption made in many cumulus schemes, nearly undiluted air parcels are too infrequent to be relevant to any stage of the simulated convection; and 3) a simple model with a spectrum of entraining plumes appears to reproduce most features of the cloudy updrafts, but significantly overpredicts the mass flux as the updrafts approach their levels of zero buoyancy. A buoyancy-sorting model was suggested as a potential remedy. The organized circulations of cold pools seem to create clouds with larger-sized bases and may correspondingly contribute to their smaller lateral entrainment rates. Our results do not support a mass-flux closure based solely on convective available potential energy (CAPE), and are in general agreement with a convective inhibition (CIN)-based closure. The general similarity in the ensemble characteristics of shallow and deep convection and the continuous evolution of the thermodynamic structure during the transition provide justification for developing a single unified cumulus parameterization that encompasses both shallow and deep convection.
Observed Aerosol Influence on Ice Water Content of Arctic Mixed-Phase Clouds
NASA Astrophysics Data System (ADS)
Norgren, M.; de Boer, G.; Shupe, M.
2016-12-01
The response of ice water content (IWC) in Arctic mixed-phase stratocumulus to atmospheric aerosols is observed. IWC retrievals from ground based radars operated by the Atmospheric Radiation Measurement (ARM) program in Barrow, Alaska are used to construct composite profiles of cloud IWC from a 9-year radar record starting in January of 2000. The IWC profiles for high (polluted) and low (clean) aerosol loadings are compared. Generally, we find that clean clouds exhibit statistically significant higher levels of IWC than do polluted clouds by a factor of 2-4 at cloud base. For springtime clouds, with a maximum relative humidity with respect to ice (RHI) above 110% in the cloud layer, the IWC at cloud base was a factor of 3.25 times higher in clean clouds than it was in polluted clouds. We infer that the aerosol loading of the cloud environment alters the liquid drop size distribution within the cloud, with larger drops being more frequent in clean clouds. Larger cloud drops promote riming within the cloud layer, which is one explanation for the higher IWC levels in clean clouds. The drop size distribution may also be a significant control of ice nucleation events within mixed-phase clouds. Whether the high IWC levels in clean clouds are due to increased riming or nucleation events is unclear at this time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riihimaki, Laura D.; Comstock, Jennifer M.; Luke, Edward
To understand the microphysical processes that impact diabatic heating and cloud lifetimes in convection, we need to characterize the spatial distribution of supercooled liquid water. To address this observational challenge, vertically pointing active sensors at the Darwin Atmospheric Radiation Measurement (ARM) site are used to classify cloud phase within a deep convective cloud in a shallow to deep convection transitional case. The cloud cannot be fully observed by a lidar due to signal attenuation. Thus we develop an objective method for identifying hydrometeor classes, including mixed-phase conditions, using k-means clustering on parameters that describe the shape of the Doppler spectramore » from vertically pointing Ka band cloud radar. This approach shows that multiple, overlapping mixed-phase layers exist within the cloud, rather than a single region of supercooled liquid, indicating complexity to how ice growth and diabatic heating occurs in the vertical structure of the cloud.« less
NASA Astrophysics Data System (ADS)
Zhu, Jun
Ru and Pt are candidate additional component for improving the high temperature properties of Ni-base superalloys. A thermodynamic description of the Ni-Al-Cr-Ru-Pt system, serving as an essential knowledge base for better alloy design and processing control, was developed in the present study by means of thermodynamic modeling coupled with experimental investigations of phase equilibria. To deal with the order/disorder transition occurring in the Ni-base superalloys, a physical sound model, Cluster/Site Approximation (CSA) was used to describe the fcc phases. The CSA offers computational advantages, without loss of accuracy, over the Cluster Variation Method (CVM) in the calculation of multicomponent phase diagrams. It has been successfully applied to fcc phases in calculating technologically important Ni-Al-Cr phase diagrams. Our effort in this study focused on the two key ternary systems: Ni-Al-Ru and Ni-Al-Pt. The CSA calculated Ni-Al-Ru ternary phase diagrams are in good agreement with the experimental results in the literature and from the current study. A thermodynamic description of quaternary Ni-Al-Cr-Ru was obtained based on the descriptions of the lower order systems and the calculated results agree with experimental data available in literature and in the current study. The Ni-Al-Pt system was thermodynamically modeled based on the limited experimental data available in the literature and obtained from the current study. With the help of the preliminary description, a number of alloy compositions were selected for further investigation. The information obtained was used to improve the current modeling. A thermodynamic description of the Ni-Al-Cr-Pt quaternary was then obtained via extrapolation from its constituent lower order systems. The thermodynamic description for Ni-base superalloy containing Al, Cr, Ru and Pt was obtained via extrapolation. It is believed to be reliable and useful to guide the alloy design and further experimental investigation.
Aerosol partitioning between the interstitial and the condensed phase in mixed-phase clouds
NASA Astrophysics Data System (ADS)
Verheggen, Bart; Cozic, Julie; Weingartner, Ernest; Bower, Keith; Mertes, Stephan; Connolly, Paul; Gallagher, Martin; Flynn, Michael; Choularton, Tom; Baltensperger, Urs
2007-12-01
The partitioning of aerosol particles between the cloud and the interstitial phase (i.e., unactivated aerosol) has been investigated during several Cloud and Aerosol Characterization Experiments (CLACE-3, CLACE-3? and CLACE-4) conducted in winter and summer 2004 and winter 2005 at the high alpine research station Jungfraujoch (3580 m altitude, Switzerland). Ambient air was sampled using different inlets in order to determine the activated fraction of aerosol particles, FN, defined as the fraction of the total aerosol number concentration (with particle diameter dp > 100 nm) that has been incorporated into cloud particles. The liquid and ice water content of mixed-phase clouds were characterized by analyzing multiple cloud probes. The dependence of the activated fraction on several environmental factors is discussed on the basis of more than 900 h of in-cloud observations and parameterizations for key variables are given. FN is found to increase with increasing liquid water content and to decrease with increasing particle number concentration in liquid clouds. FN also decreases with increasing cloud ice mass fraction and with decreasing temperature from 0 to -25°C. The Wegener-Bergeron-Findeisen process probably contributed to this trend, since the presence of ice crystals causes liquid droplets to evaporate, thus releasing the formerly activated particles back into the interstitial phase. Ice nucleation could also have prevented additional cloud condensation nuclei from activating. The observed activation behavior has significant implications for our understanding of the indirect effect of aerosols on climate.
NASA Astrophysics Data System (ADS)
Few, A. A.
2010-12-01
It is widely recognized that lightning activity in thunderstorm clouds is associated with ice in the clouds. In volcanic plumes the lower electrical discharges near the vent are clearly not associated with ice; however, the electrical discharges from the upper volcanic clouds very likely are associated with ice. There is ample water in volcanic plumes and clouds. The explosive volcanic eruption is produced by volatile components in the rising magma. Researchers estimate that the water content of the volatiles is up to 99% by mole; other gases are mainly sulfur and chlorine species. These volatiles carry with them a wide range of hot magma melts and solids, importantly silicate particles and tephra. The more massive components fall out near the vent carrying with them much of the heat from the plume; these large components are not in thermodynamic equilibrium with the gases, ash, and lapilli; thus the heat removed does not lower the temperature of the materials carried aloft in the plume. Upward motion is initially provided by the thrust from the volcanic eruption, then by buoyancy of the hot plume. The rising plume is cooled by entrainment of environmental air, which contains water, and by adiabatic expansion; the plume transitions into a volcanic cloud. Further lifting and cooling produces supercooled water droplets (T ~ -5 C) in a limited zone (z ~ 9 km) before the fast updraft (~ 60 m/s) rapidly transforms them into ice. Computer models of volcanic clouds that include water and ice microphysics indicate that the latent heat of condensation is not significant in cloud dynamics because it occurs in a region where buoyancy is provided by the original hot plume material. The latent heat of ice formation occurs at higher and colder levels and seems to contribute to the final lifting of the cloud top by ~1.5km. Laboratory results indicate that the fine silicate ash particles, which are abundant, are good ice nuclei, IN. Because of the abundance of the silicate ash, modelers conclude that there are many small ice particles in a volcanic clouds compared to thunderstorm clouds where the scarcity of IN produce fewer but larger ice particles. Another microphysical difference is that in the water phase (drops or ice surface) adsorption of sulfur and chlorine gases is enhanced and the freezing temperature lowered. During diffusion growth of ice particles sulfur dioxide can be incorporated in the ice. The sulfur dioxide sequestered by the ice can be converted to sulfate and transported into the stratosphere and released when the ice sublimates. Do these microphysical differences significantly alter the electrical charging mechanisms that exist in thunderstorm clouds? Observations of the lightning discharges associated with the upper regions of volcanic clouds seem to indicate that the charging mechanisms are essentially the same.
Cloud Chemistry in the United States: Problems and Prospects
NASA Astrophysics Data System (ADS)
Carlton, A. G.; Barth, M. C.; Lance, S.; Fahey, K.; McNeill, V. F.; Weber, R. J.
2017-12-01
Clouds cover 60% of the Earth's surface at a given time and are the primary means by which atmospheric trace species are lofted from the polluted boundary layer to the free troposphere. Clouds also play an important role as atmospheric aqueous phase reactors, scavenging soluble gas phase precursors and providing a medium for oxidation reactions that yield lower volatility products that contribute to increased aerosol mass when cloud drops evaporate. On a global average, most sulfate particles are formed during cloud processing, and organic particles known to form through aqueous phase pathways are found above clouds. However, atmospheric chemistry observations are generally biased for clear sky conditions. For example, aircraft field deployments typically avoid clouds. Satellite retrievals impacted by clouds are often screened from the final data products. This hinders knowledge of cloud chemistry and the impacts on tropospheric composition. In this work, we explore temporal and geospatial trends in trace species related to cloud processing in the U.S. with a focus on organic chemistry. We apply 3-dimensional and 0-dimensional models to recent campaigns and mountaintop cloud sampling sites, and compare to measurements.
NASA Technical Reports Server (NTRS)
Sharon, Tarah M.; Albrecht, Bruce A.; Jonsson, Haflidi H.; Minnis, Patrick; Khaiyer, Mandana M.; Van Reken, Timothy; Seinfeld, John; Flagan, Rick
2008-01-01
A cloud rift is characterized as a large-scale, persistent area of broken, low reflectivity stratocumulus clouds usually surrounded by a solid deck of stratocumulus. A rift observed off the coast of Monterey Bay, California on 16 July 1999 was studied to compare the aerosol and cloud microphysical properties in the rift with those of the surrounding solid stratus deck. Variables measured from an instrumented aircraft included temperature, water vapor, and cloud liquid water. These measurements characterized the thermodynamic properties of the solid deck and rift areas. Microphysical measurements made included aerosol, cloud drop and drizzle drop concentrations and cloud condensation nuclei (CCN) concentrations. The microphysical characteristics in a solid stratus deck differ substantially from those of a broken, cellular rift where cloud droplet concentrations are a factor of 2 lower than those in the solid cloud. Further, CCN concentrations were found to be about 3 times greater in the solid cloud area compared with those in the rift and aerosol concentrations showed a similar difference as well. Although drizzle was observed near cloud top in parts of the solid stratus cloud, the largest drizzle rates were associated with the broken clouds within the rift area. In addition to marked differences in particle concentrations, evidence of a mesoscale circulation near the solid cloud rift boundary is presented. This mesoscale circulation provides a mechanism for maintaining a rift, but further study is required to understand the initiation of a rift and the conditions that may cause it to fill.
Spectral measurements of the cosmic microwave background
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kogut, A.J.
1989-04-01
Three experiments have measured the intensity of the Cosmic Microwave Background (CMB) at wavelengths 4.0, 3.0, and 0.21 cm. The measurement at 4.0 cm used a direct-gain total-power radiometer to measure the difference in power between the zenith sky and a large cryogenic reference target. Foreground signals are measured with the same instrument and subtracted from the zenith signal, leaving the CMB as the residual. The reference target consists of a large open-mouth cryostat with a microwave absorber submerged in liquid helium; thin windows block the radiative heat load and prevent condensation atmospheric gases within the cryostat. The thermodynamic temperaturemore » of the CMB at 4.0 cm is 2.59 +- 0.07 K. The measurement at 3.0 cm used a superheterodyne Dicke-switched radiometer with a similar reference target to measure the zenith sky temperature. A rotating mirror allowed one of the antenna beams to be redirected to a series of zenith angles, permitting automated atmospheric measurements without moving the radiometer. A weighted average of 5 years of data provided the thermodynamic temperature of the CMB at 3.0 cm of 2.62 +- 0.06 K. The measurement at 0.21 cm used Very Large Array observations of interstellar ortho-formaldehyde to determine the CMB intensity in molecular clouds toward the giant HII region W51A (G49.5-0.4). Solutions of the radiative transfer problem in the context of a large velocity gradient model provided estimates of the CMB temperature within the foreground clouds. Collisional excitation from neutral hydrogen molecules within the clouds limited the precision of the result. The thermodynamic temperature of the CMB at 0.21 cm is 3.2 +- 0.9 K. 72 refs., 27 figs., 38 tabs.« less
AIRS Subpixel Cloud Characterization Using MODIS Cloud Products.
NASA Astrophysics Data System (ADS)
Li, Jun; Menzel, W. Paul; Sun, Fengying; Schmit, Timothy J.; Gurka, James
2004-08-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) measurements from the Earth Observing System's (EOS's) Aqua satellite enable improved global monitoring of the distribution of clouds. MODIS is able to provide, at high spatial resolution (1 5 km), a cloud mask, surface and cloud types, cloud phase, cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size (CPS), and cloud optical thickness (COT). AIRS is able to provide CTP, ECA, CPS, and COT at coarser spatial resolution (13.5 km at nadir) but with much better accuracy using its high-spectral-resolution measurements. The combined MODIS AIRS system offers the opportunity for improved cloud products over those possible from either system alone. The key steps for synergistic use of imager and sounder radiance measurements are 1) collocation in space and time and 2) imager cloud amount, type, and phase determination within the sounder pixel. The MODIS and AIRS measurements from the EOS Aqua satellite provide the opportunity to study the synergistic use of advanced imager and sounder measurements. As the first step, the MODIS classification procedure is applied to identify various surface and cloud types within an AIRS footprint. Cloud-layer information (lower, midlevel, or high clouds) and phase information (water, ice, or mixed-phase clouds) within the AIRS footprint are sorted and characterized using MODIS 1-km-spatial-resolution data. The combined MODIS and AIRS data for various scenes are analyzed to study the utility of the synergistic use of high-spatial-resolution imager products and high-spectral-resolution sounder radiance measurements. There is relevance to the optimal use of data from the Advanced Baseline Imager (ABI) and Hyperspectral Environmental Suite (HES) systems, which are to fly on the Geostationary Operational Environmental Satellite (GOES)-R.
NASA Astrophysics Data System (ADS)
Hoose, C.; Lohmann, U.; Stier, P.; Verheggen, B.; Weingartner, E.; Herich, H.
2007-12-01
The global aerosol-climate model ECHAM5-HAM (Stier et al., 2005) has been extended by an explicit treatment of cloud-borne particles. Two additional modes for in-droplet and in-crystal particles are introduced, which are coupled to the number of cloud droplet and ice crystal concentrations simulated by the ECHAM5 double-moment cloud microphysics scheme (Lohmann et al., 2007). Transfer, production and removal of cloud-borne aerosol number and mass by cloud droplet activation, collision scavenging, aqueous-phase sulfate production, freezing, melting, evaporation, sublimation and precipitation formation are taken into account. The model performance is demonstrated and validated with observations of the evolution of total and interstitial aerosol concentrations and size distributions during three different mixed-phase cloud events at the alpine high-altitude research station Jungfraujoch (Switzerland) (Verheggen et al, 2007). Although the single-column simulations can not be compared one-to-one with the observations, the governing processes in the evolution of the cloud and aerosol parameters are captured qualitatively well. High scavenged fractions are found during the presence of liquid water, while the release of particles during the Bergeron-Findeisen process results in low scavenged fractions after cloud glaciation. The observed coexistence of liquid and ice, which might be related to cloud heterogeneity at subgrid scales, can only be simulated in the model when forcing non-equilibrium conditions. References: U. Lohmann et al., Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM, Atmos. Chem. Phys. 7, 3425-3446 (2007) P. Stier et al., The aerosol-climate model ECHAM5-HAM, Atmos. Chem. Phys. 5, 1125-1156 (2005) B. Verheggen et al., Aerosol partitioning between the interstitial and the condensed phase in mixed-phase clouds, Accepted for publication in J. Geophys. Res. (2007)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Ryan D.; Lin, Ying-Hsuan; Peng, Zhuoyu
Organic aerosol formation and transformation occurs within aqueous aerosol and cloud droplets, yet little is known about the composition of high molecular weight organic compounds in cloud water. Cloud water samples collected at Whiteface Mountain, New York, during August-September 2014 were analyzed by ultra-high-resolution mass spectrometry to investigate the molecular composition of dissolved organic carbon, with a focus on sulfur- and nitrogen-containing compounds. Organic molecular composition was evaluated in the context of cloud water inorganic ion concentrations, pH, and total organic carbon concentrations to gain insights into the sources and aqueous-phase processes of the observed high molecular weight organic compounds.more » Cloud water acidity was positively correlated with the average oxygen : carbon ratio of the organic constituents, suggesting the possibility for aqueous acid-catalyzed (prior to cloud droplet activation or during/after cloud droplet evaporation) and/or radical (within cloud droplets) oxidation processes. Many tracer compounds recently identified in laboratory studies of bulk aqueous-phase reactions were identified in the cloud water. Organosulfate compounds, with both biogenic and anthropogenic volatile organic compound precursors, were detected for cloud water samples influenced by air masses that had traveled over forested and populated areas. Oxidation products of long-chain (C 10-12) alkane precursors were detected during urban influence. Influence of Canadian wildfires resulted in increased numbers of identified sulfur-containing compounds and oligomeric species, including those formed through aqueous-phase reactions involving methylglyoxal. Light-absorbing aqueous-phase products of syringol and guaiacol oxidation were observed in the wildfire-influenced samples, and dinitroaromatic compounds were observed in all cloud water samples (wildfire, biogenic, and urban-influenced). Overall, the cloud water molecular composition depended on air mass source influence and reflected aqueous-phase reactions involving biogenic, urban, and biomass burning precursors.« less
Thermal fluctuations of dilaton black holes in gravity's rainbow
NASA Astrophysics Data System (ADS)
Dehghani, M.
2018-06-01
In this work, thermodynamics and phase transition of some new dilaton black hole solutions have been explored in the presence of the rainbow functions. By introducing an energy dependent space time, the dilaton potential has been obtained as the linear combination of two Liouville-type potentials and three new classes of black hole solutions have been constructed. The conserved and thermodynamic quantities of the new dilaton black holes have been calculated in the energy dependent space times. It has been shown that, even if some of the thermodynamic quantities are affected by the rainbow functions, the thermodynamical first law still remains valid. Also, the impacts of rainbow functions on the stability or phase transition of the new black hole solutions have been investigated. Finally, the quantum gravitational effects on the thermodynamics and phase transition of the solutions have been studied through consideration of the thermal fluctuations.
Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate
NASA Technical Reports Server (NTRS)
Jacob, D. J.
1986-01-01
The chemistry of OH in nonprecipitating tropospheric clouds was studied using a coupled gas phase/aqueous phase chemical model. The simulation takes into account the radial dependence of the concentrations of short lived aqueous phase species, in particular, O3(aq) OH(aq). Formic acid is shown to be rapidly produced by the aqueous phase reaction between H2C(OH)2 and OH, but HCOO(-) and OH, but HCOO(-) is in turn rapidly oxidized by OH(aq). The HCOOH concentration in cloud is shown to be strongly dependent on the pH of the cloud water; clouds with pH greater than 5 are not efficient HCOOH sources. A novel mechanism is proposed for the oxidation of S(IV) by OH(aq), with the main product predicted to be peroxymonosulfate, HSO5(-). The latter could contribute significantly to total cloud water sulfur.
Thermodynamic Description of the Quaternary Ag-Bi-Cu-Sn System
NASA Astrophysics Data System (ADS)
Gierlotka, Wojciech
2018-01-01
Lead-free soldering is an important part of electronic devices production. New lead-free solders that replace classical Sn-37Pb solder are still under development. Thermodynamic modeling makes the development process faster, cheaper and more environmentally friendly due to predictions of phases stabilities and phases transformations. In this work, the thermodynamic description of quaternary Ag-Bi-Cu-Sn system is presented. The thermodynamic assessment of promising lead-free quaternary solder was prepared using the Calphad approach. A good agreement between available experimental data and calculation was found.
Factors Controlling the Properties of Multi-Phase Arctic Stratocumulus Clouds
NASA Technical Reports Server (NTRS)
Fridlind, Ann; Ackerman, Andrew; Menon, Surabi
2005-01-01
The 2004 Multi-Phase Arctic Cloud Experiment (M-PACE) IOP at the ARM NSA site focused on measuring the properties of autumn transition-season arctic stratus and the environmental conditions controlling them, including concentrations of heterogeneous ice nuclei. Our work aims to use a large-eddy simulation (LES) code with embedded size-resolved aerosol and cloud microphysics to identify factors controlling multi-phase arctic stratus. Our preliminary simulations of autumn transition-season clouds observed during the 1994 Beaufort and Arctic Seas Experiment (BASE) indicated that low concentrations of ice nuclei, which were not measured, may have significantly lowered liquid water content and thereby stabilized cloud evolution. However, cloud drop concentrations appeared to be virtually immune to changes in liquid water content, indicating an active Bergeron process with little effect of collection on drop number concentration. We will compare these results with preliminary simulations from October 8-13 during MPACE. The sensitivity of cloud properties to uncertainty in other factors, such as large-scale forcings and aerosol profiles, will also be investigated. Based on the LES simulations with M-PACE data, preliminary results from the NASA GlSS single-column model (SCM) will be used to examine the sensitivity of predicted cloud properties to changing cloud drop number concentrations for multi-phase arctic clouds. Present parametrizations assumed fixed cloud droplet number concentrations and these will be modified using M-PACE data.
NASA Astrophysics Data System (ADS)
Chirkin, V. A.; Karpov, S. I.; Selemenev, V. F.
2012-12-01
The thermodynamics of the sorption of certain water-soluble vitamins on a C18 reverse phase from water-acetonitrile solutions of different compositions is studied. The thermodynamic characteristics of the investigated chromatographic systems are calculated. The dependences of standard molar enthalpy and changes in entropy when the sorbate transfers from the bulk solution to the surface layer on the concentration of the organic component in the mobile phase are analyzed. The boundaries for applying the main retention models describing the sorption of the investigated compounds are discussed.
H2-rich interstellar grain mantles: An equilibrium description
NASA Technical Reports Server (NTRS)
Dissly, Richard W.; Allen, Mark; Anicich, Vincent G.
1994-01-01
Experiments simulating the codeposition of molecular hydrogen and water ice on interstellar grains demonstrate that amorphous water ice at 12 K can incorporate a substantial amount of H2, up to a mole ratio of H2/H2O = 0.53. We find that the physical behavior of approximately 80% of the hydrogen can be explained satisfactorily in terms of an equilibrium population, thermodynamically governed by a wide distribution of binding site energies. Such a description predicts that gas phase accretion could lead to mole fractions of H2 in interstellar grain mantles of nearly 0.3; for the probable conditions of WL5 in the rho Ophiuchi cloud, an H2 mole fraction of between 0.05 and 0.3 is predicted, in possible agreement with the observed abundance reported by Sandford, Allamandola, & Geballe. Accretion of gas phase H2 onto grain mantles, rather than photochemical production of H2 within the ice, could be a general explanation for frozen H2 in interstellar ices. We speculate on the implications of such a composition for grain mantle chemistry and physics.
NASA Astrophysics Data System (ADS)
Halbach, Heiner; Chatterjee, Niranjan D.
1984-11-01
The technique of linear parametric programming has been applied to derive sets of internally consistent thermodynamic data for 21 condensed phases of the quaternary system CaO-Al2O3-SiO2-H2O (CASH) (Table 4). This was achieved by simultaneously processing: a) calorimetric data for 16 of these phases (Table 1), and b) experimental phase equilibria reversal brackets for 27 reactions (Table 3) involving these phases. Calculation of equilibrium P-T curves of several arbitrarily picked reactions employing the preferred set of internally consistent thermodynamic data from Table 4 shows that the input brackets are invariably satisfied by the calculations (Fig. 2a). By contrast, the same equilibria calculated on the basis of a set of thermodynamic data derived by applying statistical methods to a large body of comparable input data (Haas et al. 1981; Hemingway et al. 1982) do not necessarily agree with the experimental reversal brackets. Prediction of some experimentally investigated phase relations not included into the linear programming input database also appears to be remarkably successful. Indications are, therefore, that the thermodynamic data listed in Table 4 may be used with confidence to predict geologic phase relations in the CASH system with considerable accuracy. For such calculated phase diagrams and their petrological implications, the reader's attention is drawn to the paper by Chatterjee et al. (1984).
Relating large-scale subsidence to convection development in Arctic mixed-phase marine stratocumulus
NASA Astrophysics Data System (ADS)
Young, Gillian; Connolly, Paul J.; Dearden, Christopher; Choularton, Thomas W.
2018-02-01
Large-scale subsidence, associated with high-pressure systems, is often imposed in large-eddy simulation (LES) models to maintain the height of boundary layer (BL) clouds. Previous studies have considered the influence of subsidence on warm liquid clouds in subtropical regions; however, the relationship between subsidence and mixed-phase cloud microphysics has not specifically been studied. For the first time, we investigate how widespread subsidence associated with synoptic-scale meteorological features can affect the microphysics of Arctic mixed-phase marine stratocumulus (Sc) clouds. Modelled with LES, four idealised scenarios - a stable Sc, varied droplet (Ndrop) or ice (Nice) number concentrations, and a warming surface (representing motion southwards) - were subjected to different levels of subsidence to investigate the cloud microphysical response. We find strong sensitivities to large-scale subsidence, indicating that high-pressure systems in the ocean-exposed Arctic regions have the potential to generate turbulence and changes in cloud microphysics in any resident BL mixed-phase clouds.Increased cloud convection is modelled with increased subsidence, driven by longwave radiative cooling at cloud top and rain evaporative cooling and latent heating from snow growth below cloud. Subsidence strengthens the BL temperature inversion, thus reducing entrainment and allowing the liquid- and ice-water paths (LWPs, IWPs) to increase. Through increased cloud-top radiative cooling and subsequent convective overturning, precipitation production is enhanced: rain particle number concentrations (Nrain), in-cloud rain mass production rates, and below-cloud evaporation rates increase with increased subsidence.Ice number concentrations (Nice) play an important role, as greater concentrations suppress the liquid phase; therefore, Nice acts to mediate the strength of turbulent overturning promoted by increased subsidence. With a warming surface, a lack of - or low - subsidence allows for rapid BL turbulent kinetic energy (TKE) coupling, leading to a heterogeneous cloud layer, cloud-top ascent, and cumuli formation below the Sc cloud. In these scenarios, higher levels of subsidence act to stabilise the Sc layer, where the combination of these two forcings counteract one another to produce a stable, yet dynamic, cloud layer.
NASA Astrophysics Data System (ADS)
Yahya, Khairunnisa; Wang, Kai; Campbell, Patrick; Glotfelty, Timothy; He, Jian; Zhang, Yang
2016-02-01
The Weather Research and Forecasting model with Chemistry (WRF/Chem) v3.6.1 with the Carbon Bond 2005 (CB05) gas-phase mechanism is evaluated for its first decadal application during 2001-2010 using the Representative Concentration Pathway 8.5 (RCP 8.5) emissions to assess its capability and appropriateness for long-term climatological simulations. The initial and boundary conditions are downscaled from the modified Community Earth System Model/Community Atmosphere Model (CESM/CAM5) v1.2.2. The meteorological initial and boundary conditions are bias-corrected using the National Center for Environmental Protection's Final (FNL) Operational Global Analysis data. Climatological evaluations are carried out for meteorological, chemical, and aerosol-cloud-radiation variables against data from surface networks and satellite retrievals. The model performs very well for the 2 m temperature (T2) for the 10-year period, with only a small cold bias of -0.3 °C. Biases in other meteorological variables including relative humidity at 2 m, wind speed at 10 m, and precipitation tend to be site- and season-specific; however, with the exception of T2, consistent annual biases exist for most of the years from 2001 to 2010. Ozone mixing ratios are slightly overpredicted at both urban and rural locations with a normalized mean bias (NMB) of 9.7 % but underpredicted at rural locations with an NMB of -8.8 %. PM2.5 concentrations are moderately overpredicted with an NMB of 23.3 % at rural sites but slightly underpredicted with an NMB of -10.8 % at urban/suburban sites. In general, the model performs relatively well for chemical and meteorological variables, and not as well for aerosol-cloud-radiation variables. Cloud-aerosol variables including aerosol optical depth, cloud water path, cloud optical thickness, and cloud droplet number concentration are generally underpredicted on average across the continental US. Overpredictions of several cloud variables over the eastern US result in underpredictions of radiation variables (such as net shortwave radiation - GSW - with a mean bias - MB - of -5.7 W m-2) and overpredictions of shortwave and longwave cloud forcing (MBs of ˜ 7 to 8 W m-2), which are important climate variables. While the current performance is deemed to be acceptable, improvements to the bias-correction method for CESM downscaling and the model parameterizations of cloud dynamics and thermodynamics, as well as aerosol-cloud interactions, can potentially improve model performance for long-term climate simulations.
Cloudiness over the Amazon rainforest: Meteorology and thermodynamics
NASA Astrophysics Data System (ADS)
Collow, Allison B. Marquardt; Miller, Mark A.; Trabachino, Lynne C.
2016-07-01
Comprehensive meteorological observations collected during GOAmazon2014/15 using the Atmospheric Radiation Measurement Mobile Facility no. 1 and assimilated observations from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 are used to document the seasonal cycle of cloudiness, thermodynamics, and precipitation above the Amazon rainforest. The reversal of synoptic-scale vertical motions modulates the transition between the wet and dry seasons. Ascending moist air during the wet season originates near the surface of the Atlantic Ocean and is advected into the Amazon rainforest, where it experiences convergence and, ultimately, precipitates. The dry season is characterized by weaker winds and synoptic-scale subsidence with little or no moisture convergence accompanying moisture advection. This combination results in the drying of the midtroposphere during June through October as indicated by a decrease in liquid water path, integrated water, and the vertical profile of water vapor mixing ratio. The vertical profile of cloud fraction exhibits a relatively consistent decline in cloud fraction from the lifting condensation level (LCL) to the freezing level where a minimum is observed, unlike many other tropical regions. Coefficients of determination between the LCL and cloud fractional coverage suggest a relatively robust relationship between the LCL and cloudiness beneath 5 km during the dry season (R2 = 0.42) but a weak relationship during the wet season (0.12).
Impact of Antarctic mixed-phase clouds on climate.
Lawson, R Paul; Gettelman, Andrew
2014-12-23
Precious little is known about the composition of low-level clouds over the Antarctic Plateau and their effect on climate. In situ measurements at the South Pole using a unique tethered balloon system and ground-based lidar reveal a much higher than anticipated incidence of low-level, mixed-phase clouds (i.e., consisting of supercooled liquid water drops and ice crystals). The high incidence of mixed-phase clouds is currently poorly represented in global climate models (GCMs). As a result, the effects that mixed-phase clouds have on climate predictions are highly uncertain. We modify the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM) GCM to align with the new observations and evaluate the radiative effects on a continental scale. The net cloud radiative effects (CREs) over Antarctica are increased by +7.4 Wm(-2), and although this is a significant change, a much larger effect occurs when the modified model physics are extended beyond the Antarctic continent. The simulations show significant net CRE over the Southern Ocean storm tracks, where recent measurements also indicate substantial regions of supercooled liquid. These sensitivity tests confirm that Southern Ocean CREs are strongly sensitive to mixed-phase clouds colder than -20 °C.
Impact of Antarctic mixed-phase clouds on climate
Lawson, R. Paul; Gettelman, Andrew
2014-01-01
Precious little is known about the composition of low-level clouds over the Antarctic Plateau and their effect on climate. In situ measurements at the South Pole using a unique tethered balloon system and ground-based lidar reveal a much higher than anticipated incidence of low-level, mixed-phase clouds (i.e., consisting of supercooled liquid water drops and ice crystals). The high incidence of mixed-phase clouds is currently poorly represented in global climate models (GCMs). As a result, the effects that mixed-phase clouds have on climate predictions are highly uncertain. We modify the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM) GCM to align with the new observations and evaluate the radiative effects on a continental scale. The net cloud radiative effects (CREs) over Antarctica are increased by +7.4 Wm−2, and although this is a significant change, a much larger effect occurs when the modified model physics are extended beyond the Antarctic continent. The simulations show significant net CRE over the Southern Ocean storm tracks, where recent measurements also indicate substantial regions of supercooled liquid. These sensitivity tests confirm that Southern Ocean CREs are strongly sensitive to mixed-phase clouds colder than −20 °C. PMID:25489069
NASA Astrophysics Data System (ADS)
Kang, Youn-Bae; Jung, In-Ho
2017-06-01
A critical evaluation and thermodynamic modeling for thermodynamic properties of all oxide phases and phase diagrams in the Fe-Mn-Si-O system (MnO-Mn2O3-SiO2 and FeO-Fe2O3-MnO-Mn2O3-SiO2 systems) are presented. Optimized Gibbs energy parameters for the thermodynamic models of the oxide phases were obtained which reproduce all available and reliable experimental data within error limits from 298 K (25°C) to above the liquidus temperatures at all compositions covering from known oxide phases, and oxygen partial pressure from metal saturation to 0.21 bar. The optimized thermodynamic properties and phase diagrams are believed to be the best estimates presently available. Slag (molten oxide) was modeled using the modified quasichemical model in the pair approximation. Olivine (Fe2SiO4-Mn2SiO4) was modeled using two-sublattice model in the framework of the compound energy formalism (CEF), while rhodonite (MnSiO3-FeSiO3) and braunite (Mn7SiO_{12} with excess Mn2O3) were modeled as simple Henrian solutions. It is shown that the already developed models and databases of two spinel phases (cubic- and tetragonal-(Fe, Mn)3O4) using CEF [Kang and Jung, J. Phys. Chem. Solids (2016), vol. 98, pp. 237-246] can successfully be integrated into a larger thermodynamic database to be used in practically important higher order system such as silicate. The database of the model parameters can be used along with a software for Gibbs energy minimization in order to calculate any type of phase diagram section and thermodynamic properties.
Process-model simulations of cloud albedo enhancement by aerosols in the Arctic.
Kravitz, Ben; Wang, Hailong; Rasch, Philip J; Morrison, Hugh; Solomon, Amy B
2014-12-28
A cloud-resolving model is used to simulate the effectiveness of Arctic marine cloud brightening via injection of cloud condensation nuclei (CCN), either through geoengineering or other increased sources of Arctic aerosols. An updated cloud microphysical scheme is employed, with prognostic CCN and cloud particle numbers in both liquid and mixed-phase marine low clouds. Injection of CCN into the marine boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. Albedo increases are stronger for pure liquid clouds than mixed-phase clouds. Liquid precipitation can be suppressed by CCN injection, whereas ice precipitation (snow) is affected less; thus, the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. CCN injection into a clean regime results in a greater albedo increase than injection into a polluted regime, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, dynamical changes in circulation owing to precipitation changes are small. According to these results, which are dependent upon the representation of ice nucleation processes in the employed microphysical scheme, Arctic geoengineering is unlikely to be effective as the sole means of altering the global radiation budget but could have substantial local radiative effects. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Process-model simulations of cloud albedo enhancement by aerosols in the Arctic
Kravitz, Ben; Wang, Hailong; Rasch, Philip J.; Morrison, Hugh; Solomon, Amy B.
2014-01-01
A cloud-resolving model is used to simulate the effectiveness of Arctic marine cloud brightening via injection of cloud condensation nuclei (CCN), either through geoengineering or other increased sources of Arctic aerosols. An updated cloud microphysical scheme is employed, with prognostic CCN and cloud particle numbers in both liquid and mixed-phase marine low clouds. Injection of CCN into the marine boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. Albedo increases are stronger for pure liquid clouds than mixed-phase clouds. Liquid precipitation can be suppressed by CCN injection, whereas ice precipitation (snow) is affected less; thus, the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. CCN injection into a clean regime results in a greater albedo increase than injection into a polluted regime, consistent with current knowledge about aerosol–cloud interactions. Unlike previous studies investigating warm clouds, dynamical changes in circulation owing to precipitation changes are small. According to these results, which are dependent upon the representation of ice nucleation processes in the employed microphysical scheme, Arctic geoengineering is unlikely to be effective as the sole means of altering the global radiation budget but could have substantial local radiative effects. PMID:25404677
Cloud Microphysics Budget in the Tropical Deep Convective Regime
NASA Technical Reports Server (NTRS)
Li, Xiao-Fan; Sui, C.-H.; Lau, K.-M.; Einaudi, Franco (Technical Monitor)
2001-01-01
Cloud microphysics budgets in the tropical deep convective regime are analyzed based on a 2-D cloud resolving simulation. The model is forced by the large-scale vertical velocity and zonal wind and large-scale horizontal advections derived from TOGA COARE for a 20-day period. The role of cloud microphysics is first examined by analyzing mass-weighted mean heat budget and column-integrated moisture budget. Hourly budgets show that local changes of mass-weighted mean temperature and column-integrated moisture are mainly determined by the residuals between vertical thermal advection and latent heat of condensation and between vertical moisture advection and condensation respectively. Thus, atmospheric thermodynamics depends on how cloud microphysical processes are parameterized. Cloud microphysics budgets are then analyzed for raining conditions. For cloud-vapor exchange between cloud system and its embedded environment, rainfall and evaporation of raindrop are compensated by the condensation and deposition of supersaturated vapor. Inside the cloud system, the condensation of supersaturated vapor balances conversion from cloud water to raindrop, snow, and graupel through collection and accretion processes. The deposition of supersaturated vapor balances conversion from cloud ice to snow through conversion and riming processes. The conversion and riming of cloud ice and the accretion of cloud water balance conversion from snow to graupel through accretion process. Finally, the collection of cloud water and the melting of graupel increase raindrop to compensate the loss of raindrop due to rainfall and the evaporation of raindrop.
An interactive computer lab of the galvanic cell for students in biochemistry.
Ahlstrand, Emma; Buetti-Dinh, Antoine; Friedman, Ran
2018-01-01
We describe an interactive module that can be used to teach basic concepts in electrochemistry and thermodynamics to first year natural science students. The module is used together with an experimental laboratory and improves the students' understanding of thermodynamic quantities such as Δ r G, Δ r H, and Δ r S that are calculated but not directly measured in the lab. We also discuss how new technologies can substitute some parts of experimental chemistry courses, and improve accessibility to course material. Cloud computing platforms such as CoCalc facilitate the distribution of computer codes and allow students to access and apply interactive course tools beyond the course's scope. Despite some limitations imposed by cloud computing, the students appreciated the approach and the enhanced opportunities to discuss study questions with their classmates and instructor as facilitated by the interactive tools. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):58-65, 2018. © 2017 The International Union of Biochemistry and Molecular Biology.
The free radical chemistry of cloud droplets and its impact upon the composition of rain
NASA Technical Reports Server (NTRS)
Chameides, W. L.; Davis, D. D.
1982-01-01
Calculations are presented that simulate the free radical chemistries of the gas phase and aqueous phase within a warm cloud during midday. It is demonstrated that in the presence of midday solar fluxes, the heterogeneous scavenging of OH and HO2 from the gas phase by cloud droplets can represent a major source of free radicals to cloud water, provided the accommodation or sticking coefficient for these species impinging upon water droplets is not less than 0.0001. The aqueous-phase of HO2 radicals are found to be converted to H2O2 by aqueous-phase chemical reactions at a rate that suggests that this mechanism could produce a significant fraction of the H2O2 found in cloud droplets. The rapid oxidation of sulfur species dissolved in cloudwater by this free-radical-produced H2O2 as well as by aqueous-phase OH radicals could conceivably have a significant impact upon the chemical composition of rain.
Phase transition and entropy inequality of noncommutative black holes in a new extended phase space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, Yan-Gang; Xu, Zhen-Ming, E-mail: miaoyg@nankai.edu.cn, E-mail: xuzhenm@mail.nankai.edu.cn
We analyze the thermodynamics of the noncommutative high-dimensional Schwarzschild-Tangherlini AdS black hole with the non-Gaussian smeared matter distribution by regarding a noncommutative parameter as an independent thermodynamic variable named as the noncommutative pressure . In the new extended phase space that includes this noncommutative pressure and its conjugate variable, we reveal that the noncommutative pressure and the original thermodynamic pressure related to the negative cosmological constant make the opposite effects in the phase transition of the noncommutative black hole, i.e. the former dominates the UV regime while the latter does the IR regime, respectively. In addition, by means of themore » reverse isoperimetric inequality, we indicate that only the black hole with the Gaussian smeared matter distribution holds the maximum entropy for a given thermodynamic volume among the noncommutative black holes with various matter distributions.« less
NASA Astrophysics Data System (ADS)
McCoy, Isabel L.; Wood, Robert; Fletcher, Jennifer K.
2017-11-01
Mesoscale cellular convective (MCC) clouds occur in large-scale patterns over the ocean and have important radiative effects on the climate system. An examination of time-varying meteorological conditions associated with satellite-observed open and closed MCC clouds is conducted to illustrate the influence of large-scale meteorological conditions. Marine cold air outbreaks (MCAO) influence the development of open MCC clouds and the transition from closed to open MCC clouds. MCC neural network classifications on Moderate Resolution Imaging Spectroradiometer (MODIS) data for 2008 are collocated with Clouds and the Earth's Radiant Energy System (CERES) data and ERA-Interim reanalysis to determine the radiative effects of MCC clouds and their thermodynamic environments. Closed MCC clouds are found to have much higher albedo on average than open MCC clouds for the same cloud fraction. Three meteorological control metrics are tested: sea-air temperature difference (ΔT), estimated inversion strength (EIS), and a MCAO index (M). These predictive metrics illustrate the importance of atmospheric surface forcing and static stability for open and closed MCC cloud formation. Predictive sigmoidal relations are found between M and MCC cloud frequency globally and regionally: negative for closed MCC cloud and positive for open MCC cloud. The open MCC cloud seasonal cycle is well correlated with M, while the seasonality of closed MCC clouds is well correlated with M in the midlatitudes and EIS in the tropics and subtropics. M is found to best distinguish open and closed MCC clouds on average over shorter time scales. The possibility of a MCC cloud feedback is discussed.
NASA Astrophysics Data System (ADS)
Rizwan, C. L. Ahmed; Vaid, Deepak
2018-05-01
We study holographic superconductivity in low-energy stringy Garfinkle-Horowitz-Strominger (GHS) dilaton black hole background. We finds that superconducting properties are much similar to s-wave superconductors. We show that the second-order phase transition indicated from thermodynamic geometry is not different from superconducting phase transition.
Thermodynamics aspects of noise-induced phase synchronization
NASA Astrophysics Data System (ADS)
Pinto, Pedro D.; Oliveira, Fernando A.; Penna, André L. A.
2016-05-01
In this article, we present an approach for the thermodynamics of phase oscillators induced by an internal multiplicative noise. We analytically derive the free energy, entropy, internal energy, and specific heat. In this framework, the formulation of the first law of thermodynamics requires the definition of a synchronization field acting on the phase oscillators. By introducing the synchronization field, we have consistently obtained the susceptibility and analyzed its behavior. This allows us to characterize distinct phases in the system, which we have denoted as synchronized and parasynchronized phases, in analogy with magnetism. The system also shows a rich complex behavior, exhibiting ideal gas characteristics for low temperatures and susceptibility anomalies that are similar to those present in complex fluids such as water.
Thermodynamics aspects of noise-induced phase synchronization.
Pinto, Pedro D; Oliveira, Fernando A; Penna, André L A
2016-05-01
In this article, we present an approach for the thermodynamics of phase oscillators induced by an internal multiplicative noise. We analytically derive the free energy, entropy, internal energy, and specific heat. In this framework, the formulation of the first law of thermodynamics requires the definition of a synchronization field acting on the phase oscillators. By introducing the synchronization field, we have consistently obtained the susceptibility and analyzed its behavior. This allows us to characterize distinct phases in the system, which we have denoted as synchronized and parasynchronized phases, in analogy with magnetism. The system also shows a rich complex behavior, exhibiting ideal gas characteristics for low temperatures and susceptibility anomalies that are similar to those present in complex fluids such as water.
Thermodynamic assessment of the Sn-Co lead-free solder system
NASA Astrophysics Data System (ADS)
Liu, Libin; Andersson, Cristina; Liu, Johan
2004-09-01
The Sn-Co-Cu eutectic alloy can be a less expensive alternative for the Sn-Ag-Cu alloy. In order to find the eutectic solder composition of the Sn-Co-Cu system, the Sn-Co binary system has been thoroughly assessed with the calculation of phase diagram (CALPHAD) method. The liquid phase, the FCC and HCP Co-rich solid solution, and the BCT Sn-rich solid solution have been described by the Redlich-Kister model. The Hillert-Jarl-Inden model has been used to describe the magnetic contributions to Gibbs energy in FCC and HCP. The CoSn2, CoSn, Co3Sn2_β, and Co3Sn2_α phases have been treated as stoichiometric phases. A series of thermodynamic parameters have been obtained. The calculated phase diagram and thermodynamic properties are in good agreement with the experimental data. The obtained thermodynamic data was used to extrapolate the ternary Sn-Co-Cu phase diagram. The composition of the Sn-rich eutectic point of the Sn-Co-Cu system was found to be 224°C, 0.4% Co, and 0.7% Cu.
Classification of Arctic, Mid-Latitude and Tropical Clouds in the Mixed-Phase Temperature Regime
NASA Astrophysics Data System (ADS)
Costa, Anja; Afchine, Armin; Luebke, Anna; Meyer, Jessica; Dorsey, James R.; Gallagher, Martin W.; Ehrlich, André; Wendisch, Manfred; Krämer, Martina
2016-04-01
The degree of glaciation and the sizes and habits of ice particles formed in mixed-phase clouds remain not fully understood. However, these properties define the mixed clouds' radiative impact on the Earth's climate and thus a correct representation of this cloud type in global climate models is of importance for an improved certainty of climate predictions. This study focuses on the occurrence and characteristics of two types of clouds in the mixed-phase temperature regime (238-275K): coexistence clouds (Coex), in which both liquid drops and ice crystals exist, and fully glaciated clouds that develop in the Wegener-Bergeron-Findeisen regime (WBF clouds). We present an extensive dataset obtained by the Cloud and Aerosol Particle Spectrometer NIXE-CAPS, covering Arctic, mid-latitude and tropical regions. In total, we spent 45.2 hours within clouds in the mixed-phase temperature regime during five field campaigns (Arctic: VERDI, 2012 and RACEPAC, 2014 - Northern Canada; mid-latitude: COALESC, 2011 - UK and ML-Cirrus, 2014 - central Europe; tropics: ACRIDICON, 2014 - Brazil). We show that WBF and Coex clouds can be identified via cloud particle size distributions. The classified datasets are used to analyse temperature dependences of both cloud types as well as range and frequencies of cloud particle concentrations and sizes. One result is that Coex clouds containing supercooled liquid drops are found down to temperatures of -40 deg C only in tropical mixed clouds, while in the Arctic and mid-latitudes no liquid drops are observed below about -20 deg C. In addition, we show that the cloud particles' aspherical fractions - derived from polarization signatures of particles with diameters between 20 and 50 micrometers - differ significantly between WBF and Coex clouds. In Coex clouds, the aspherical fraction of cloud particles is generally very low, but increases with decreasing temperature. In WBF clouds, where all cloud particles are ice, about 20-40% of the cloud particles are nevertheless classified as spherical for all temperatures, possibly indicating columnar ice crystals (see Järvinen et al, submitted to JAS 2016).
Magnetic flux rope versus the spheromak as models for interplanetary magnetic clouds
NASA Technical Reports Server (NTRS)
Farrugia, C. J.; Osherovich, V. A.; Burlaga, L. F.
1995-01-01
Magnetic clouds form a subset of interplanetary ejecta with well-defined magnetic and thermodynamic properties. Observationally, it is well established that magnetic clouds expand as they propagate antisunward. The aim of this paper is to compare and contrast two models which have been proposed for the global magnetic field line topology of magnetic clouds: a magnetic flux tube geometry, on the one hand, and a spheromak geometry (including possible higher multiples), on the other. Traditionally, the magnetic structure of magnetic clouds has been modeled by force-free configurations. In a first step, we therefore analyze the ability of static force-free models to account for the asymmetries observed in the magnetic field profiles of magnetic clouds. For a cylindrical flux tube the magnetic field remains symmetric about closest approach to the magnetic axis on all spacecraft orbits intersecting it, whereas in a spheromak geometry one can have asymmetries in the magnetic field signatures along some spacecraft trajectories. The duration of typical magnetic cloud encounters at 1 AU (1 to 2 days) is comparable to their travel time from the Sun to 1 AU and thus magnetic clouds should be treated as strongly nonstationary objects. In a second step, therefore, we abandon the static approach and model magnetic clouds as self-similarly evolving MHD configurations. In our theory, the interaction of the expanding magnetic cloud with the ambient plasma is taken into account by a drag force proportional to the density and the velocity of expansion. Solving rigorously the full set of MHD equations, we demonstrate that the asymmetry in the magnetic signature may arise solely as a result of expansion. Using asymptotic solutions of the MHD equations, we least squares fit both theoretical models to interplanetary data. We find that while the central part of the magnetic cloud is adequately described by both models, the 'edges' of the cloud data are modeled better by the magnetic flux tube. Further comparisons of the two models necessarily involve thermodynamic properties, since real magnetic configurations are never exactly force-free and gas pressure plays an essential role. We consider a polytropic gas. Our theoretical analysis shows that the self-similar expansion of a magnetic flux tube requires the polytropic index gamma to be less than unity. For the spheromak, however, self-similar, radially expanding solutions are known only for gamma equal to 4/3. This difference, therefore, yields a good way of distinguishing between the two geometries. It has been shown recently that the polytropic relationship is applicable to magnetic clouds and that the corresponding polytropic index is approximately 0.5. This observational result is consistent with the self-similar model of the magnetic flux rope but is in conflict with the self-similar spheromak model.
Evidence for Natural Variability in Marine Stratocumulus Cloud Properties Due to Cloud-Aerosol
NASA Technical Reports Server (NTRS)
Albrecht, Bruce; Sharon, Tarah; Jonsson, Haf; Minnis, Patrick; Minnis, Patrick; Ayers, J. Kirk; Khaiyer, Mandana M.
2004-01-01
In this study, aircraft observations from the Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter are used to characterize the variability in drizzle, cloud, and aerosol properties associated with cloud rifts and the surrounding solid clouds observed off the coast of California. A flight made on 16 July 1999 provided measurements directly across an interface between solid and rift cloud conditions. Aircraft instrumentation allowed for measurements of aerosol, cloud droplet, and drizzle spectra. CCN concentrations were measured in addition to standard thermodynamic variables and the winds. A Forward Scatter Spectrometer Probe (FSSP) measured size distribution of cloud-sized droplets. A Cloud Imaging Probe (CIP) was used to measure distributions of drizzle-sized droplets. Aerosol distributions were obtained from a Cloud Aerosol Scatterprobe (CAS). The CAS probe measured aerosols, cloud droplets and drizzle-sized drops; for this study. The CAS probe was used to measure aerosols in the size range of 0.5 micron - 1 micron. Smaller aerosols were characterized using an Ultrafine Condensation Particle Counter (CPC) sensor. The CPC was used to measure particles with diameters greater than 0.003 micron. By subtracting different count concentrations measured with the CPC, this probe was capable of identifying ultrafine particles those falling in the size range of 3 nanometers - 7 nanometers that are believed to be associated with new particle production.
A 15 year legacy of cloud and atmosphere observations in Barrow, Alaska
NASA Astrophysics Data System (ADS)
Shupe, M.
2012-12-01
For the past 15 years, the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program has operated the North Slope of Alaska (NSA) atmospheric observatory in Barrow, Alaska. Barrow offers many valuable perspectives on the Arctic environment that complement observations at lower latitudes. Unique features of the Arctic region include cold and dry atmospheric conditions, strong annual variability in sun light, a seasonally high-reflective surface, and persistent clouds that involve mixed-phase processes. ARM's ultimate objective with its flagship observatory at the northernmost point in U.S. territory is to provide measurements that can be used to improve the understanding of these atmospheric physical and radiative properties and processes such that they can be better represented in climate models. The NSA is the most detailed and long-lasting cloud-radiation-atmosphere observatory in the Arctic, providing continuous, sophisticated measurements of climate-relevant parameters. Instrument suites include active radars and lidars at various frequencies, passive radiometers monitoring radiation in microwave, infrared, visible and ultraviolet wavelengths, meteorological towers, and sounding systems. Together these measurements are used to characterize many of the important properties of clouds, aerosols, atmospheric radiation, dynamics, thermodynamics, and the surface. The coordinated nature of these measurements offers important multi-dimensional insight into many fundamental processes linking these different elements of the climate system. Moreover, the continuous operations of the facility support these observations over the full diurnal cycle and in all seasons of the year. This presentation will highlight a number of important studies and key findings that have been facilitated by the NSA observations during the first 15 years in operation. Some of these include: a thorough documentation of clouds, their occurrence frequency, phase, microphysical properties, and impacts on surface radiation; the indirect effect of aerosols on the surface longwave radiative effects of Arctic clouds; improved measurements of low amounts of atmospheric water vapor and their impacts on atmospheric radiation; dynamical and microphysical processes that are responsible for long-lived Arctic stratiform clouds; evaluation of satellite observations in extreme and observationally-difficult regimes; and assessment of model performance for models ranging from very high resolution to climate model simulations in the Arctic. The observational legacy at Barrow continues as ARM works to expand and enhance its impact. Plans are underway to install observational capabilities at a sister location in Oliktok Point to the east of Barrow, including enhanced capabilities of tethered balloon profiling and flying unmanned aerial vehicles over the adjacent Arctic Ocean. A new set of scanning cloud and precipitation radars have recently come online at Barrow that will allow for new insights on the spatial context of measurements at Barrow, including important information on the variability of atmospheric processes associated with the coastline. And lastly, there are many opportunities for the intensive observations at Barrow to inform important regional research on permafrost and sea-ice loss, while also serving as an unmatched, long-term record for evaluating atmospheric processes in regional and global climate models.
Polar winter cloud depolarization measurements with the CANDAC Rayleigh-Mie-Raman Lidar
NASA Astrophysics Data System (ADS)
McCullough, E. M.; Nott, G. J.; Duck, T. J.; Sica, R. J.; Doyle, J. G.; Pike-thackray, C.; Drummond, J. R.
2011-12-01
Clouds introduce a significant positive forcing to the Arctic radiation budget and this is strongest during the polar winter when shortwave radiation is absent (Intrieri et al., 2002). The amount of forcing depends on the occurrence probability and optical depth of the clouds as well as the cloud particle phase (Ebert and Curry 1992). Mixed-phase clouds are particularly complex as they involve interactions between three phases of water (vapour, liquid and ice) coexisting in the same cloud. Although significant progress has been made in characterizing wintertime Arctic clouds (de Boer et al., 2009 and 2011), there is considerable variability in the relative abundance of particles of each phase, in the morphology of solid particles, and in precipitation rates depending on the meteorology at the time. The Canadian Network for the Detection of Atmospheric Change (CANDAC) Rayleigh-Mie-Raman Lidar (CRL) was installed in the Canadian High Arctic at Eureka, Nunavut (80°N, 86°W) in 2008-2009. The remotely-operated system began with measurement capabilities for multi-wavelength aerosol extinction, water vapour mixing ratio, and tropospheric temperature profiles, as well as backscatter cross section coefficient and colour ratio. In 2010, a new depolarization channel was added. The capability to measure the polarization state of the return signal allows the characterization of the cloud in terms of liquid and ice water content, enabling the lidar to probe all three phases of water in these clouds. Lidar depolarization results from 2010 and 2011 winter clouds at Eureka will be presented, with a focus on differences in downwelling radiation between mixed phase clouds and ice clouds. de Boer, G., E.W. Eloranta, and M.D. Shupe (2009), Arctic mixed-phase stratiform cloud properties from multiple years of surface-based measurements at two high-latitude locations, Journal of Atmospheric Sciences, 66 (9), 2874-2887. de Boer, G., H. Morrison, M. D. Shupe, and R. Hildner (2011), Evidence of liquid dependent ice nucleation in high-latitude stratiform clouds from surface remote sensors, Geophysical Research Letters, 38, L01803. Ebert, EE and J.A .Curry (1992), A parameterization of ice cloud optical properties for climate models, Journal of Geophysical Research 97:3831-3836. Intrieri JM, Fairall CW, Shupe MD, Persson POG, Andreas EL, Guest PS, Moritz RE. 2002. An annual cycle of Arctic surface cloud forcing at SHEBA. Journal of Geophysical Research 107 NO. C10, 8039 . Noel, V., H. Chepfer, M. Haeffelin, and Y. Morille (2006), Classification of ice crystal shapes in midlatitude ice clouds from three years of lidar observations over the SIRTA observatory. Journal of the Atmospheric Sciences, 63:2978 - 2991.
The Molybdenum titanium Phase Diagram Evaluated from Ab initio Calculations
2016-10-07
thermodynamic properties of this binary system are not well known and two conflicting descriptions of the β-phase stability have been presented in the...computational thermodynamics CALPHAD approach [13] and the Thermo-Calc software [14]. These studies led to two conflicting descriptions of the stability of...energy calculations, with an energy cutoff separating core and valence states of -6 Ry. 2.2. Thermodynamic modeling The formation enthalpy of a
Thermodynamics of rock forming crystalline solutions
NASA Technical Reports Server (NTRS)
Saxena, S. K.
1971-01-01
Analysis of phase diagrams and cation distributions within crystalline solutions as means of obtaining thermodynamic data on rock forming crystalline solutions is discussed along with some aspects of partitioning of elements in coexisting phases. Crystalline solutions, components in a silicate mineral, and chemical potentials of these components were defined. Examples were given for calculating thermodynamic mixing functions in the CaW04-SrW04, olivine-chloride solution, and orthopyroxene systems.
An automated cirrus classification
NASA Astrophysics Data System (ADS)
Gryspeerdt, Edward; Quaas, Johannes; Sourdeval, Odran; Goren, Tom
2017-04-01
Cirrus clouds play an important role in determining the radiation budget of the earth, but our understanding of the lifecycle and controls on cirrus clouds remains incomplete. Cirrus clouds can have very different properties and development depending on their environment, particularly during their formation. However, the relevant factors often cannot be distinguished using commonly retrieved satellite data products (such as cloud optical depth). In particular, the initial cloud phase has been identified as an important factor in cloud development, but although back-trajectory based methods can provide information on the initial cloud phase, they are computationally expensive and depend on the cloud parametrisations used in re-analysis products. In this work, a classification system (Identification and Classification of Cirrus, IC-CIR) is introduced. Using re-analysis and satellite data, cirrus clouds are separated in four main types: frontal, convective, orographic and in-situ. The properties of these classes show that this classification is able to provide useful information on the properties and initial phase of cirrus clouds, information that could not be provided by instantaneous satellite retrieved cloud properties alone. This classification is designed to be easily implemented in global climate models, helping to improve future comparisons between observations and models and reducing the uncertainty in cirrus clouds properties, leading to improved cloud parametrisations.
Theory of phase diagrams described by thermodynamic potentials with T d symmetry
NASA Astrophysics Data System (ADS)
Mukovnin, A. A.; Talanov, V. M.
2014-09-01
Phase diagrams of crystals induced by irreducible representations with symmetry group ( T d ) are constructed within the phenomenological theory of second-order phase transitions. A model of the Landau thermodynamic potential is studied, state equations of all symmetry-conditioned phases are obtained, and general conditions for their thermodynamic stability are formulated. Equations for the boundaries of phase areas and lines of phase transitions are obtained for the fourth order of expansion of the potential via components of the order parameter. Some types of the collapse of the multicritical point of the phase diagram for the eighth order of potential expansion are studied using computer calculations. The possible existence of phase diagrams that contain one or more triple points and areas of existence of three and four phases is shown for the first time for the potentials with the above symmetry. Examples are given of crystals that undergo phase transitions in the considered symmetry of the order parameter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Damao; Wang, Zhien; Kollias, Pavlos
In this study, collocated A-Train CloudSat radar and CALIPSO lidar measurements between 2006 and 2010 are analyzed to study primary ice particle production characteristics in mid-level stratiform mixed-phase clouds on a global scale. For similar clouds in terms of cloud top temperature and liquid water path, Northern Hemisphere latitude bands have layer-maximum radar reflectivity (ZL) that is ~1 to 8 dBZ larger than their counterparts in the Southern Hemisphere. The systematically larger ZL under similar cloud conditions suggests larger ice number concentrations in mid-level stratiform mixed-phase clouds over the Northern Hemisphere, which is possibly related to higher background aerosol loadings.more » Furthermore, we show that springtime northern mid- and high latitudes have ZL that is larger by up to 6 dBZ (a factor of 4 higher ice number concentration) than other seasons, which might be related to more dust events that provide effective ice nucleating particles. Our study suggests that aerosol-dependent ice number concentration parameterizations are required in climate models to improve mixed-phase cloud simulations, especially over the Northern Hemisphere.« less
Zhang, Damao; Wang, Zhien; Kollias, Pavlos; ...
2018-03-28
In this study, collocated A-Train CloudSat radar and CALIPSO lidar measurements between 2006 and 2010 are analyzed to study primary ice particle production characteristics in mid-level stratiform mixed-phase clouds on a global scale. For similar clouds in terms of cloud top temperature and liquid water path, Northern Hemisphere latitude bands have layer-maximum radar reflectivity (ZL) that is ~1 to 8 dBZ larger than their counterparts in the Southern Hemisphere. The systematically larger ZL under similar cloud conditions suggests larger ice number concentrations in mid-level stratiform mixed-phase clouds over the Northern Hemisphere, which is possibly related to higher background aerosol loadings.more » Furthermore, we show that springtime northern mid- and high latitudes have ZL that is larger by up to 6 dBZ (a factor of 4 higher ice number concentration) than other seasons, which might be related to more dust events that provide effective ice nucleating particles. Our study suggests that aerosol-dependent ice number concentration parameterizations are required in climate models to improve mixed-phase cloud simulations, especially over the Northern Hemisphere.« less
Optimization of the thermodynamic properties and phase diagrams of P2O5-containing systems
NASA Astrophysics Data System (ADS)
Hudon, Pierre; Jung, In-Ho
2014-05-01
P2O5 is an important oxide component in the late stage products of numerous igneous rocks such as granites and pegmatites. Typically, P2O5 combines with CaO and crystallizes in the form of apatite, while in volatile-free conditions, Ca-whitlockite is formed. In spite of their interest, the thermodynamic properties and phase diagrams of P2O5-containg systems are not well known yet. In the case of the pure P2O5 for example, no experimental thermodynamic data are available for the liquid and the O and O' solid phases. As a result, we re-evaluated all the thermodynamic and phase diagram data of the P2O5 unary system [1]. Optimization of the thermodynamic properties and phase diagrams of the binary P2O5 systems was then performed including the Li2O-, Na2O-, MgO-, CaO-, BaO-, MnO-, FeO-, Fe2O3-, ZnO-, Al2O3-, and SiO2-P2O5 [2] systems. All available thermodynamic and phase equilibrium data were simultaneously reproduced in order to obtain a set of model equations for the Gibbs energies of all phases as functions of temperature and composition. In particular, the Gibbs energy of the liquid solution was described using the Modified Quasichemical Model [3-5] implemented in the FactSage software [6]. Thermodynamic modeling of the Li2O-Na2O-K2O-MgO-CaO-FeO-Fe2O3-Al2O3-SiO2 system, which include many granite-forming minerals such as nepheline, leucite, pyroxene, melilite, feldspar and spinel is currently in progress. [1] Jung, I.-H., Hudon, P. (2012) Thermodynamic assessment of P2O5. J. Am. Ceram. Soc., 95 (11), 3665-3672. [2] Rahman, M., Hudon, P. and Jung, I.-H. (2013) A coupled experimental study and thermodynamic modeling of the SiO2-P2O5 system. Metall. Mater. Trans. B, 44 (4), 837-852. [3] Pelton, A.D. and Blander, M. (1984) Computer-assisted analysis of the thermodynamic properties and phase diagrams of slags. Proc. AIME Symp. Metall. Slags Fluxes, TMS-AIME, 281-294. [4] Pelton, A.D. and Blander, M. (1986) Thermodynamic analysis of ordered liquid solutions by a modified quasichemical approach application to silicate slags. Metall. Trans. B, 17, 805-815. [5] A.D. Pelton, S.A. Decterov, G. Eriksson, C. Robelin and Y. Dessureault (2000) The modified quasichemical model - I Binary solutions. Metall. Mater. Trans. B, 31, 651-660. [6] C.W. Bale, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melançon, A.D. Pelton and S. Petersen. (2002) FactSage Thermochemical Software and Databases. Calphad, 26, 189-228.
Parametric behaviors of CLUBB in simulations of low clouds in the Community Atmosphere Model (CAM)
Guo, Zhun; Wang, Minghuai; Qian, Yun; ...
2015-07-03
In this study, we investigate the sensitivity of simulated low clouds to 14 selected tunable parameters of Cloud Layers Unified By Binormals (CLUBB), a higher order closure (HOC) scheme, and 4 parameters of the Zhang-McFarlane (ZM) deep convection scheme in the Community Atmosphere Model version 5 (CAM5). A quasi-Monte Carlo (QMC) sampling approach is adopted to effectively explore the high-dimensional parameter space and a generalized linear model is applied to study the responses of simulated cloud fields to tunable parameters. Our results show that the variance in simulated low-cloud properties (cloud fraction and liquid water path) can be explained bymore » the selected tunable parameters in two different ways: macrophysics itself and its interaction with microphysics. First, the parameters related to dynamic and thermodynamic turbulent structure and double Gaussians closure are found to be the most influential parameters for simulating low clouds. The spatial distributions of the parameter contributions show clear cloud-regime dependence. Second, because of the coupling between cloud macrophysics and cloud microphysics, the coefficient of the dissipation term in the total water variance equation is influential. This parameter affects the variance of in-cloud cloud water, which further influences microphysical process rates, such as autoconversion, and eventually low-cloud fraction. Furthermore, this study improves understanding of HOC behavior associated with parameter uncertainties and provides valuable insights for the interaction of macrophysics and microphysics.« less
Cook, Ryan D.; Lin, Ying-Hsuan; Peng, Zhuoyu; ...
2017-12-21
Organic aerosol formation and transformation occurs within aqueous aerosol and cloud droplets, yet little is known about the composition of high molecular weight organic compounds in cloud water. Cloud water samples collected at Whiteface Mountain, New York, during August-September 2014 were analyzed by ultra-high-resolution mass spectrometry to investigate the molecular composition of dissolved organic carbon, with a focus on sulfur- and nitrogen-containing compounds. Organic molecular composition was evaluated in the context of cloud water inorganic ion concentrations, pH, and total organic carbon concentrations to gain insights into the sources and aqueous-phase processes of the observed high molecular weight organic compounds.more » Cloud water acidity was positively correlated with the average oxygen : carbon ratio of the organic constituents, suggesting the possibility for aqueous acid-catalyzed (prior to cloud droplet activation or during/after cloud droplet evaporation) and/or radical (within cloud droplets) oxidation processes. Many tracer compounds recently identified in laboratory studies of bulk aqueous-phase reactions were identified in the cloud water. Organosulfate compounds, with both biogenic and anthropogenic volatile organic compound precursors, were detected for cloud water samples influenced by air masses that had traveled over forested and populated areas. Oxidation products of long-chain (C 10-12) alkane precursors were detected during urban influence. Influence of Canadian wildfires resulted in increased numbers of identified sulfur-containing compounds and oligomeric species, including those formed through aqueous-phase reactions involving methylglyoxal. Light-absorbing aqueous-phase products of syringol and guaiacol oxidation were observed in the wildfire-influenced samples, and dinitroaromatic compounds were observed in all cloud water samples (wildfire, biogenic, and urban-influenced). Overall, the cloud water molecular composition depended on air mass source influence and reflected aqueous-phase reactions involving biogenic, urban, and biomass burning precursors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Ryan D.; Lin, Ying-Hsuan; Peng, Zhuoyu
Organic aerosol formation and transformation occurs within aqueous aerosol and cloud droplets, yet little is known about the composition of high molecular weight organic compounds in cloud water. Cloud water samples collected at Whiteface Mountain, New York, during August-September 2014 were analyzed by ultra-high-resolution mass spectrometry to investigate the molecular composition of dissolved organic carbon, with a focus on sulfur- and nitrogen-containing compounds. Organic molecular composition was evaluated in the context of cloud water inorganic ion concentrations, pH, and total organic carbon concentrations to gain insights into the sources and aqueous-phase processes of the observed high molecular weight organic compounds.more » Cloud water acidity was positively correlated with the average oxygen : carbon ratio of the organic constituents, suggesting the possibility for aqueous acid-catalyzed (prior to cloud droplet activation or during/after cloud droplet evaporation) and/or radical (within cloud droplets) oxidation processes. Many tracer compounds recently identified in laboratory studies of bulk aqueous-phase reactions were identified in the cloud water. Organosulfate compounds, with both biogenic and anthropogenic volatile organic compound precursors, were detected for cloud water samples influenced by air masses that had traveled over forested and populated areas. Oxidation products of long-chain (C 10-12) alkane precursors were detected during urban influence. Influence of Canadian wildfires resulted in increased numbers of identified sulfur-containing compounds and oligomeric species, including those formed through aqueous-phase reactions involving methylglyoxal. Light-absorbing aqueous-phase products of syringol and guaiacol oxidation were observed in the wildfire-influenced samples, and dinitroaromatic compounds were observed in all cloud water samples (wildfire, biogenic, and urban-influenced). Overall, the cloud water molecular composition depended on air mass source influence and reflected aqueous-phase reactions involving biogenic, urban, and biomass burning precursors.« less
NASA Astrophysics Data System (ADS)
Cecchini, Micael A.; Machado, Luiz A. T.; Wendisch, Manfred; Costa, Anja; Krämer, Martina; Andreae, Meinrat O.; Afchine, Armin; Albrecht, Rachel I.; Artaxo, Paulo; Borrmann, Stephan; Fütterer, Daniel; Klimach, Thomas; Mahnke, Christoph; Martin, Scot T.; Minikin, Andreas; Molleker, Sergej; Pardo, Lianet H.; Pöhlker, Christopher; Pöhlker, Mira L.; Pöschl, Ulrich; Rosenfeld, Daniel; Weinzierl, Bernadett
2017-12-01
The behavior of tropical clouds remains a major open scientific question, resulting in poor representation by models. One challenge is to realistically reproduce cloud droplet size distributions (DSDs) and their evolution over time and space. Many applications, not limited to models, use the gamma function to represent DSDs. However, even though the statistical characteristics of the gamma parameters have been widely studied, there is almost no study dedicated to understanding the phase space of this function and the associated physics. This phase space can be defined by the three parameters that define the DSD intercept, shape, and curvature. Gamma phase space may provide a common framework for parameterizations and intercomparisons. Here, we introduce the phase space approach and its characteristics, focusing on warm-phase microphysical cloud properties and the transition to the mixed-phase layer. We show that trajectories in this phase space can represent DSD evolution and can be related to growth processes. Condensational and collisional growth may be interpreted as pseudo-forces that induce displacements in opposite directions within the phase space. The actually observed movements in the phase space are a result of the combination of such pseudo-forces. Additionally, aerosol effects can be evaluated given their significant impact on DSDs. The DSDs associated with liquid droplets that favor cloud glaciation can be delimited in the phase space, which can help models to adequately predict the transition to the mixed phase. We also consider possible ways to constrain the DSD in two-moment bulk microphysics schemes, in which the relative dispersion parameter of the DSD can play a significant role. Overall, the gamma phase space approach can be an invaluable tool for studying cloud microphysical evolution and can be readily applied in many scenarios that rely on gamma DSDs.
Turbulent Mixing at the Edge of a Cloud
NASA Astrophysics Data System (ADS)
Shaw, Raymond; Beals, Matthew; Fugal, Jacob; Kumar, Bipin; Lu, Jiang; Schumacher, Joerg; Stith, Jeffrey
2013-11-01
Numerical and field experiments have been brought to bear on the question of how atmospheric clouds respond when they experience turbulent mixing with their environment. Simply put, we ask when a cloud is diluted, do all droplets evaporate uniformly (homogeneous mixing) or does a subset of droplets evaporate completely, leaving the remaining droplets unaffected (inhomogeneous mixing)? First, the entrainment of clear air and its subsequent mixing with a filament of cloudy air is studied in DNS that combine the Eulerian description of the turbulent velocity, temperature and vapor fields with a Lagrangian cloud droplet ensemble. The simulations provide guidance on the proper definition of the thermodynamic response time for the Damkoehler number, and demonstrate the transition from inhomogeneous to homogeneous mixing as mixing progresses within the inertial subrange. Second, an airborne digital holographic instrument (Holodec) shows that cloud edges are inhomogeneous at the centimeter scales. In local cloud volumes the droplet size distribution fluctuates strongly in number density but with a nearly unchanging mean droplet diameter, until the fluctuations finally cascade to the centimeter scale, when the droplet diameter begins to respond.
Thermodynamic constraint on the depth of the global tropospheric circulation.
Thompson, David W J; Bony, Sandrine; Li, Ying
2017-08-01
The troposphere is the region of the atmosphere characterized by low static stability, vigorous diabatic mixing, and widespread condensational heating in clouds. Previous research has argued that in the tropics, the upper bound on tropospheric mixing and clouds is constrained by the rapid decrease with height of the saturation water vapor pressure and hence radiative cooling by water vapor in clear-sky regions. Here the authors contend that the same basic physics play a key role in constraining the vertical structure of tropospheric mixing, tropopause temperature, and cloud-top temperature throughout the globe. It is argued that radiative cooling by water vapor plays an important role in governing the depth and amplitude of large-scale dynamics at extratropical latitudes.
Aerosol and Cloud Experiments in Eastern North Atlantic (ACE-ENA) Science Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jian; Dong, Xiquan; Wood, Robert
With their extensive coverage, low clouds greatly impact global climate. Presently, low clouds are poorly represented in global climate models (GCMs), and the response of low clouds to changes in atmospheric greenhouse gases and aerosols remains the major source of uncertainty in climate simulations. The poor representations of low clouds in GCMs are in part due to inadequate observations of their microphysical and macrophysical structures, radiative effects, and the associated aerosol distribution and budget in regions where the aerosol impact is the greatest. The Eastern North Atlantic (ENA) is a region of persistent but diverse subtropical marine boundary-layer (MBL) clouds,more » whose albedo and precipitation are highly susceptible to perturbations in aerosol properties. Boundary-layer aerosol in the ENA region is influenced by a variety of sources, leading to strong variations in cloud condensation nuclei (CCN) concentration and aerosol optical properties. Recently a permanent ENA site was established by the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility on Graciosa Island in the Azores, providing invaluable information on MBL aerosol and low clouds. At the same time, the vertical structures and horizontal variabilities of aerosol, trace gases, cloud, drizzle, and atmospheric thermodynamics are critically needed for understanding and quantifying the budget of MBL aerosol, the radiative properties, precipitation efficiency, and lifecycle of MBL clouds, and the cloud response to aerosol perturbations. Much of this data can be obtained only through aircraft-based measurements. In addition, the interconnected aerosol and cloud processes are best investigated by a study involving simultaneous in situ aerosol, cloud, and thermodynamics measurements. Furthermore, in situ measurements are also necessary for validating and improving ground-based retrieval algorithms at the ENA site. This project is motivated by the need for comprehensive in situ characterizations of boundary-layer structure, and associated vertical distributions and horizontal variabilities of low clouds and aerosol over the Azores. ARM Aerial Facility (AAF) Gulfstream-1 (G-1) aircraft will be deployed at the ENA site during two intensive operational periods (IOPs) of early summer (June to July) of 2017 and winter (January to February) of 2018, respectively. Deployments during both seasons allow for examination of key aerosol and cloud processes under a variety of representative meteorological and cloud conditions. The science themes for the deployments include: 1) Budget of MBL CCN and its seasonal variation; 2) Effects of aerosol on cloud and precipitation; 3) Cloud microphysical and macrophysical structures, and entrainment mixing; 4) Advancing retrievals of turbulence, cloud, and drizzle; and 5) Model evaluation and processes studies. A key advantage of the deployments is the strong synergy between the measurements onboard the G-1 and the routine measurements at the ENA site, including state-of-the-art profiling and scanning radars. The 3D cloud structures provided by the scanning radars will put the detailed in situ measurements into mesoscale and cloud lifecycle contexts. On the other hand, high quality in situ measurements will enable validation and improvements of ground-based retrieval algorithms at the ENA site, leading to high-quality and statistically robust data sets from the routine measurements. The deployments, combined with the routine measurements at the ENA site, will have a long lasting impact on the research and modeling of low clouds and aerosols in the remote marine environment.« less
The Mixed-Phase Arctic Cloud Experiment (M-PACE)
NASA Technical Reports Server (NTRS)
Verlinde, J.; Harrington, J. Y.; McFarquhar, G. M.; Yannuzzi, V. T.; Avramov, A.; Greenberg, S.; Johnson, N.; Zhang, G.; Poellot, M. R.; Mather, J. H.;
2007-01-01
The Mixed-Phase Arctic Cloud Experiment (M-PACE) was conducted September 27 through October 22, 2004 on the North Slope of Alaska. The primary objective was to collect a data set suitable to study interactions between microphysics, dynamics and radiative transfer in mixed-phase Arctic clouds. Observations taken during the 1997/1998 Surface Heat and Energy Budget of the Arctic (SHEBA) experiment revealed that Arctic clouds frequently consist of one (or more) liquid layers precipitating ice. M-PACE sought to investigate the physical processes of these clouds utilizing two aircraft (an in situ aircraft to characterize the microphysical properties of the clouds and a remote sensing aircraft to constraint the upwelling radiation) over the Department of Energy s Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) on the North Slope of Alaska. The measurements successfully documented the microphysical structure of Arctic mixed-phase clouds, with multiple in situ profiles collected in both single-layer and multi-layer clouds over two ground-based remote sensing sites. Liquid was found in clouds with temperatures down to -30 C, the coldest cloud top temperature below -40 C sampled by the aircraft. Remote sensing instruments suggest that ice was present in low concentrations, mostly concentrated in precipitation shafts, although there are indications of light ice precipitation present below the optically thick single-layer clouds. The prevalence of liquid down to these low temperatures could potentially be explained by the relatively low measured ice nuclei concentrations.
C60+ - looking for the bucky-ball in interstellar space
NASA Astrophysics Data System (ADS)
Galazutdinov, G. A.; Shimansky, V. V.; Bondar, A.; Valyavin, G.; Krełowski, J.
2017-03-01
The laboratory gas-phase spectrum recently published by Campbell et al. has reinvigorated attempts to confirm the presence of the C_{60}^+ cation in the interstellar medium, through an analysis of the spectra of hot, reddened stars. This search is hindered by at least two issues that need to be addressed: (I) the wavelength range of interest is severely polluted by strong water-vapour lines coming from the Earth's atmosphere; (II) one of the major bands attributed to C_{60}^+, at 9633 Å, is blended with the stellar Mg II line, which is susceptible to non-local thermodynamic equilibrium effects in hot stellar atmospheres. Both these issues are carefully considered here for the first time, based on high-resolution and high signal-to-noise ratio echellé spectra for 19 lines of sight. The result is that the presence of C_{60}^+ in interstellar clouds is brought into question.
NASA Technical Reports Server (NTRS)
Charnley, Steven B.
2011-01-01
The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions 0-, OH-, C-, CH- and CN- have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu (Chaizy et al. 1991). Organic molecular anions are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been explored. We present details of the first attempt to model the chemistry of anions in cometary comae. Based on the combined chemical and hydro dynamical model of Rodgers & Charnley (2002), we investigate the role of large carbon-chain anions in cometary coma chemistry. We calculate the effects of these anions on coma thermodynamics, charge balance and examine their impact on molecule formation.
NASA Astrophysics Data System (ADS)
Li, Yang; Barth, Mary C.; Patton, Edward G.; Steiner, Allison L.
2017-10-01
We investigate the impacts of cloud aqueous processes on the chemistry and transport of biogenic volatile organic compounds (BVOC) using the National Center for Atmospheric Research's large-eddy simulation code with an updated chemical mechanism that includes both gas- and aqueous-phase reactions. We simulate transport and chemistry for a meteorological case with a diurnal pattern of nonprecipitating cumulus clouds from the Baltimore-Washington area DISCOVER-AQ campaign. We evaluate two scenarios with and without aqueous-phase chemical reactions. In the cloud layer (2-3 km), the addition of aqueous phase reactions decreases HCHO by 18% over the domain due to its solubility and the fast depletion from aqueous reactions, resulting in a corresponding decrease in radical oxidants (e.g., 18% decrease in OH). The decrease of OH increases the mixing ratios of isoprene and methacrolein (MACR) (100% and 15%, respectively) in the cloud layer because the reaction rate is lower. Aqueous-phase reactions can modify the segregation between OH and BVOC by changing the sign of the segregation intensity, causing up to 55% reduction in the isoprene-OH reaction rate and 40% reduction for the MACR-OH reaction when clouds are present. Analysis of the isoprene-OH covariance budget shows the chemistry term is the primary driver of the strong segregation in clouds, triggered by the decrease in OH. All organic acids except acetic acid are formed only through aqueous-phase reactions. For acids formed in the aqueous phase, turbulence mixes these compounds on short time scales, with the near-surface mixing ratios of these acids reaching 20% of the mixing ratios in the cloud layer within 1 h of cloud formation.
NASA Astrophysics Data System (ADS)
Cheng, Stephen Z. D.; Keller, Andrew
1998-08-01
Polymer phases can be described in the same way as phases in other condensed matter using a number density operator and its correlation functions. This description requires the understanding of symmetry operations and order at different atomic and molecular levels. Statistical mechanics provides a link between the microscopic description of the structure and motion and the macroscopic thermodynamic properties. Within the limits of the laws of thermodynamics, polymers exhibit a rich variety of phase transition behaviors. By definition, a first-order phase transition describes a transformation that involves a sudden change of thermodynamic properties at its transition temperature, whereas higher-order phase transitions are classified as critical phenomena. Of special interest is the role of metastability in phase and phase transition behaviors. Although a metastable state possesses a local free energy minimum, it is not at the global equilibrium. Furthermore, metastable states can also be associated with phase sizes. Metastable behavior is also observed in phase transformations that are impeded by kinetic limitations along the pathway to thermodynamic equilibrium. This is illustrated in structural and morphological investigations of crystallization and mesophase transitions, liquid-liquid phase separation, vitrification, and gel formation, as well as combinations of transformation processes. In these cases, the metastable state often becomes the dominant state for the entire system and is observed over a range of time and size scales. This review describes the general principles of metastability in polymer phases and phase transitions and provides illustrations from current experimental works in selected areas.
Thermodynamic Modeling of the YO(l.5)-ZrO2 System
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Liu, Zi-Kui; Kaufman, Larry; Zhang, Fan
2003-01-01
The YO1.5-ZrO2 system consists of five solid solutions, one liquid solution, and one intermediate compound. A thermodynamic description of this system is developed, which allows calculation of the phase diagram and thermodynamic properties. Two different solution models are used-a neutral species model with YO1.5 and ZrO2 as the components and a charged species model with Y(+3), Zr(+4), O(-2), and vacancies as components. For each model, regular and sub-regular solution parameters are derived fiom selected equilibrium phase and thermodynamic data.
Global model comparison of heterogeneous ice nucleation parameterizations in mixed phase clouds
NASA Astrophysics Data System (ADS)
Yun, Yuxing; Penner, Joyce E.
2012-04-01
A new aerosol-dependent mixed phase cloud parameterization for deposition/condensation/immersion (DCI) ice nucleation and one for contact freezing are compared to the original formulations in a coupled general circulation model and aerosol transport model. The present-day cloud liquid and ice water fields and cloud radiative forcing are analyzed and compared to observations. The new DCI freezing parameterization changes the spatial distribution of the cloud water field. Significant changes are found in the cloud ice water fraction and in the middle cloud fractions. The new DCI freezing parameterization predicts less ice water path (IWP) than the original formulation, especially in the Southern Hemisphere. The smaller IWP leads to a less efficient Bergeron-Findeisen process resulting in a larger liquid water path, shortwave cloud forcing, and longwave cloud forcing. It is found that contact freezing parameterizations have a greater impact on the cloud water field and radiative forcing than the two DCI freezing parameterizations that we compared. The net solar flux at top of atmosphere and net longwave flux at the top of the atmosphere change by up to 8.73 and 3.52 W m-2, respectively, due to the use of different DCI and contact freezing parameterizations in mixed phase clouds. The total climate forcing from anthropogenic black carbon/organic matter in mixed phase clouds is estimated to be 0.16-0.93 W m-2using the aerosol-dependent parameterizations. A sensitivity test with contact ice nuclei concentration in the original parameterization fit to that recommended by Young (1974) gives results that are closer to the new contact freezing parameterization.
On the relationships among cloud cover, mixed-phase partitioning, and planetary albedo in GCMs
McCoy, Daniel T.; Tan, Ivy; Hartmann, Dennis L.; ...
2016-05-06
In this study, it is shown that CMIP5 global climate models (GCMs) that convert supercooled water to ice at relatively warm temperatures tend to have a greater mean-state cloud fraction and more negative cloud feedback in the middle and high latitude Southern Hemisphere. We investigate possible reasons for these relationships by analyzing the mixed-phase parameterizations in 26 GCMs. The atmospheric temperature where ice and liquid are equally prevalent (T5050) is used to characterize the mixed-phase parameterization in each GCM. Liquid clouds have a higher albedo than ice clouds, so, all else being equal, models with more supercooled liquid water wouldmore » also have a higher planetary albedo. The lower cloud fraction in these models compensates the higher cloud reflectivity and results in clouds that reflect shortwave radiation (SW) in reasonable agreement with observations, but gives clouds that are too bright and too few. The temperature at which supercooled liquid can remain unfrozen is strongly anti-correlated with cloud fraction in the climate mean state across the model ensemble, but we know of no robust physical mechanism to explain this behavior, especially because this anti-correlation extends through the subtropics. A set of perturbed physics simulations with the Community Atmospheric Model Version 4 (CAM4) shows that, if its temperature-dependent phase partitioning is varied and the critical relative humidity for cloud formation in each model run is also tuned to bring reflected SW into agreement with observations, then cloud fraction increases and liquid water path (LWP) decreases with T5050, as in the CMIP5 ensemble.« less
Satellite Remote Sensing of the Liquid Water Sensitivity in Water Clouds
NASA Technical Reports Server (NTRS)
Han, Qing-Yuan; Rossow, William B.; Welch, Ronald; Zeng, Jane; Jansen, James E. (Technical Monitor)
2001-01-01
In estimation of the aerosol indirect effect, cloud liquid water path is considered either constant (Twomey effect) or increasing with enhanced droplet number concentrations (drizzle-suppression effect, or Albrecht effect) if cloud microphysics is the prevailing mechanism during the aerosol-cloud interactions. On the other hand, if cloud thermodynamics and dynamics are considered, the cloud liquid water path may be decreased with increasing droplet number concentration, which is predicted by model calculations and observed in ship-track and urban influence studies. This study is to examine the different responses of cloud liquid water path to changes of cloud droplet number concentration. Satellite data (January, April, July and October 1987) are used to retrieve the cloud liquid water sensitivity, defined as the changes of liquid water path versus changes of column droplet number concentrations. The results of a global survey reveal that 1) in at least one third of the cases the cloud liquid water sensitivity is negative, and the regional and seasonal variations of the negative liquid water sensitivity are consistent with other observations; 2) cloud droplet sizes are always inversely proportional to column droplet number concentrations. Our results suggest that an increase of cloud droplet number concentration leads to reduced cloud droplet size and enhanced evaporation, which weakens the coupling between water clouds and boundary layer in warm zones, decreases water supply from surface and desiccates cloud liquid water. Our results also suggest that the current evaluations of negative aerosol indirect forcing by global climate models (GCM), which are based on Twomey effect or Albrecht effect, may be overestimated.
Thermodynamics of charged Lovelock: AdS black holes
NASA Astrophysics Data System (ADS)
Prasobh, C. B.; Suresh, Jishnu; Kuriakose, V. C.
2016-04-01
We investigate the thermodynamic behavior of maximally symmetric charged, asymptotically AdS black hole solutions of Lovelock gravity. We explore the thermodynamic stability of such solutions by the ordinary method of calculating the specific heat of the black holes and investigating its divergences which signal second-order phase transitions between black hole states. We then utilize the methods of thermodynamic geometry of black hole spacetimes in order to explain the origin of these points of divergence. We calculate the curvature scalar corresponding to a Legendre-invariant thermodynamic metric of these spacetimes and find that the divergences in the black hole specific heat correspond to singularities in the thermodynamic phase space. We also calculate the area spectrum for large black holes in the model by applying the Bohr-Sommerfeld quantization to the adiabatic invariant calculated for the spacetime.
NASA Astrophysics Data System (ADS)
Lacher, Larissa; Lohmann, Ulrike; Boose, Yvonne; Zipori, Assaf; Herrmann, Erik; Bukowiecki, Nicolas; Steinbacher, Martin; Kanji, Zamin A.
2017-12-01
In this work we describe the Horizontal Ice Nucleation Chamber (HINC) as a new instrument to measure ambient ice-nucleating particle (INP) concentrations for conditions relevant to mixed-phase clouds. Laboratory verification and validation experiments confirm the accuracy of the thermodynamic conditions of temperature (T) and relative humidity (RH) in HINC with uncertainties in T of ±0.4 K and in RH with respect to water (RHw) of ±1.5 %, which translates into an uncertainty in RH with respect to ice (RHi) of ±3.0 % at T > 235 K. For further validation of HINC as a field instrument, two measurement campaigns were conducted in winters 2015 and 2016 at the High Altitude Research Station Jungfraujoch (JFJ; Switzerland, 3580 m a. s. l. ) to sample ambient INPs. During winters 2015 and 2016 the site encountered free-tropospheric conditions 92 and 79 % of the time, respectively. We measured INP concentrations at 242 K at water-subsaturated conditions (RHw = 94 %), relevant for the formation of ice clouds, and in the water-supersaturated regime (RHw = 104 %) to represent ice formation occurring under mixed-phase cloud conditions. In winters 2015 and 2016 the median INP concentrations at RHw = 94 % was below the minimum detectable concentration. At RHw = 104 %, INP concentrations were an order of magnitude higher, with median concentrations in winter 2015 of 2.8 per standard liter (std L-1; normalized to standard T of 273 K and pressure, p, of 1013 hPa) and 4.7 std L-1 in winter 2016. The measurements are in agreement with previous winter measurements obtained with the Portable Ice Nucleation Chamber (PINC) of 2.2 std L-1 at the same location. During winter 2015, two events caused the INP concentrations at RHw = 104 % to significantly increase above the campaign average. First, an increase to 72.1 std L-1 was measured during an event influenced by marine air, arriving at the JFJ from the North Sea and the Norwegian Sea. The contribution from anthropogenic or other sources can thereby not be ruled out. Second, INP concentrations up to 146.2 std L-1 were observed during a Saharan dust event. To our knowledge this is the first time that a clear enrichment in ambient INP concentration in remote regions of the atmosphere is observed during a time of marine air mass influence, suggesting the importance of marine particles on ice nucleation in the free troposphere.
Rao, Wenwei; Wang, Yun; Han, Juan; Wang, Lei; Chen, Tong; Liu, Yan; Ni, Liang
2015-06-25
The cloud point of thermosensitive triblock polymer L61, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO), was determined in the presence of various electrolytes (K2HPO4, (NH4)3C6H5O7, and K3C6H5O7). The cloud point of L61 was lowered by the addition of electrolytes, and the cloud point of L61 decreased linearly with increasing electrolyte concentration. The efficacy of electrolytes on reducing cloud point followed the order: K3C6H5O7 > (NH4)3C6H5O7 > K2HPO4. With the increase in salt concentration, aqueous two-phase systems exhibited a phase inversion. In addition, increasing the temperature reduced the concentration of salt needed that could promote phase inversion. The phase diagrams and liquid-liquid equilibrium data of the L61-K2HPO4/(NH4)3C6H5O7/K3C6H5O7 aqueous two-phase systems (before the phase inversion but also after phase inversion) were determined at T = (25, 30, and 35) °C. Phase diagrams of aqueous two-phase systems were fitted to a four-parameter empirical nonlinear expression. Moreover, the slopes of the tie-lines and the area of two-phase region in the diagram have a tendency to rise with increasing temperature. The capacity of different salts to induce aqueous two-phase system formation was the same order as the ability of salts to reduce the cloud point.
Entrainment and cloud evaporation deduced from the stable isotope chemistry of clouds during ORACLES
NASA Astrophysics Data System (ADS)
Noone, D.; Henze, D.; Rainwater, B.; Toohey, D. W.
2017-12-01
The magnitude of the influence of biomass burning aerosols on cloud and rain processes is controlled by a series of processes which are difficult to measure directly. A consequence of this limitation is the emergence of significant uncertainty in the representation of cloud-aerosol interactions in models and the resulting cloud radiative forcing. Interaction between cloud and the regional atmosphere causes evaporation, and the rate of evaporation at cloud top is controlled in part by entrainment of air from above which exposes saturated cloud air to drier conditions. Similarly, the size of cloud droplets also controls evaporation rates, which in turn is linked to the abundance of condensation nuclei. To quantify the dependence of cloud properties on biomass burning aerosols the dynamic relationship between evaporation, drop size and entrainment on aerosol state, is evaluated for stratiform clouds in the southeast Atlantic Ocean. These clouds are seasonally exposed to biomass burning plumes from agricultural fires in southern Africa. Measurements of the stable isotope ratios of cloud water and total water are used to deduce the disequilibrium responsible for evaporation within clouds. Disequilibrium is identified by the relationship between hydrogen and oxygen isotope ratios of water vapor and cloud water in and near clouds. To obtain the needed information, a custom-built, dual inlet system was deployed alongside isotopic gas analyzers on the NASA Orion aircraft as part of the Observations of Aerosols above Clouds and their Interactions (ORACLES) campaign. The sampling system obtains both total water and cloud liquid content for the population of droplets above 7 micrometer diameter. The thermodynamic modeling required to convert the observed equilibrium and kinetic isotopic is linked to evaporation and entrainment is described, and the performance of the measurement system is discussed.
Impact of Antarctic mixed-phase clouds on climate
Lawson, R. Paul; Gettelman, Andrew
2014-12-08
Precious little is known about the composition of low-level clouds over the Antarctic Plateau and their effect on climate. In situ measurements at the South Pole using a unique tethered balloon system and ground-based lidar reveal a much higher than anticipated incidence of low-level, mixed-phase clouds (i.e., consisting of supercooled liquid water drops and ice crystals). The high incidence of mixed-phase clouds is currently poorly represented in global climate models (GCMs). As a result, the effects that mixed-phase clouds have on climate predictions are highly uncertain. In this paper, we modify the National Center for Atmospheric Research (NCAR) Community Earthmore » System Model (CESM) GCM to align with the new observations and evaluate the radiative effects on a continental scale. The net cloud radiative effects (CREs) over Antarctica are increased by +7.4 Wm –2, and although this is a significant change, a much larger effect occurs when the modified model physics are extended beyond the Antarctic continent. The simulations show significant net CRE over the Southern Ocean storm tracks, where recent measurements also indicate substantial regions of supercooled liquid. Finally, these sensitivity tests confirm that Southern Ocean CREs are strongly sensitive to mixed-phase clouds colder than –20 °C.« less
Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals
Shupe, Matthew
2013-05-22
Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.
Lin, Yun; Wang, Yuan; Pan, Bowen; ...
2016-08-26
In this study, a continental cloud complex, consisting of shallow cumuli, a deep convective cloud (DCC), and stratus, is simulated by a cloud-resolving Weather Research and Forecasting Model to investigate the aerosol microphysical effect (AME) and aerosol radiative effect (ARE) on the various cloud regimes and their transitions during the Department of Energy Routine Atmospheric Radiation Measurement Aerial Facility Clouds with Low Optical Water Depths Optical Radiative Observations (RACORO) campaign. Under an elevated aerosol loading with AME only, a reduced cloudiness for the shallow cumuli and stratus resulted from more droplet evaporation competing with suppressed precipitation, but an enhanced cloudinessmore » for the DCC is attributed to more condensation. With the inclusion of ARE, the shallow cumuli are suppressed owing to the thermodynamic effects of light-absorbing aerosols. The responses of DCC and stratus to aerosols are monotonic with AME only but nonmonotonic with both AME and ARE. The DCC is invigorated because of favorable convection and moisture conditions at night induced by daytime ARE, via the so-called aerosol-enhanced conditional instability mechanism. Finally, the results reveal that the overall aerosol effects on the cloud complex are distinct from the individual cloud types, highlighting that the aerosol–cloud interactions for diverse cloud regimes and their transitions need to be evaluated to assess the regional and global climatic impacts.« less
Mechem, David B.; Giangrande, Scott E.
2018-03-01
Here, the controls on precipitation onset and the transition from shallow cumulus to congestus are explored using a suite of 16 large–eddy simulations based on the 25 May 2011 event from the Midlatitude Continental Convective Clouds Experiment (MC3E). The thermodynamic variables in the model are relaxed at various timescales to observationally constrained temperature and moisture profiles in order to better reproduce the observed behavior of precipitation onset and total precipitation. Three of the simulations stand out as best matching the precipitation observations and also perform well for independent comparisons of cloud fraction, precipitation area fraction, and evolution of cloud topmore » occurrence. All three simulations exhibit a destabilization over time, which leads to a transition to deeper clouds, but the evolution of traditional stability metrics by themselves is not able to explain differences in the simulations. Conditionally sampled cloud properties (in particular, mean cloud buoyancy), however, do elicit differences among the simulations. The inability of environmental profiles alone to discern subtle differences among the simulations and the usefulness of conditionally sampled model quantities argue for hybrid observational/modeling approaches. These combined approaches enable a more complete physical understanding of cloud systems by combining observational sampling of time–varying three–dimensional meteorological quantities and cloud properties, along with detailed representation of cloud microphysical and dynamical processes from numerical models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mechem, David B.; Giangrande, Scott E.
Here, the controls on precipitation onset and the transition from shallow cumulus to congestus are explored using a suite of 16 large–eddy simulations based on the 25 May 2011 event from the Midlatitude Continental Convective Clouds Experiment (MC3E). The thermodynamic variables in the model are relaxed at various timescales to observationally constrained temperature and moisture profiles in order to better reproduce the observed behavior of precipitation onset and total precipitation. Three of the simulations stand out as best matching the precipitation observations and also perform well for independent comparisons of cloud fraction, precipitation area fraction, and evolution of cloud topmore » occurrence. All three simulations exhibit a destabilization over time, which leads to a transition to deeper clouds, but the evolution of traditional stability metrics by themselves is not able to explain differences in the simulations. Conditionally sampled cloud properties (in particular, mean cloud buoyancy), however, do elicit differences among the simulations. The inability of environmental profiles alone to discern subtle differences among the simulations and the usefulness of conditionally sampled model quantities argue for hybrid observational/modeling approaches. These combined approaches enable a more complete physical understanding of cloud systems by combining observational sampling of time–varying three–dimensional meteorological quantities and cloud properties, along with detailed representation of cloud microphysical and dynamical processes from numerical models.« less
NASA Astrophysics Data System (ADS)
Mechem, David B.; Giangrande, Scott E.
2018-03-01
Controls on precipitation onset and the transition from shallow cumulus to congestus are explored using a suite of 16 large-eddy simulations based on the 25 May 2011 event from the Midlatitude Continental Convective Clouds Experiment (MC3E). The thermodynamic variables in the model are relaxed at various timescales to observationally constrained temperature and moisture profiles in order to better reproduce the observed behavior of precipitation onset and total precipitation. Three of the simulations stand out as best matching the precipitation observations and also perform well for independent comparisons of cloud fraction, precipitation area fraction, and evolution of cloud top occurrence. All three simulations exhibit a destabilization over time, which leads to a transition to deeper clouds, but the evolution of traditional stability metrics by themselves is not able to explain differences in the simulations. Conditionally sampled cloud properties (in particular, mean cloud buoyancy), however, do elicit differences among the simulations. The inability of environmental profiles alone to discern subtle differences among the simulations and the usefulness of conditionally sampled model quantities argue for hybrid observational/modeling approaches. These combined approaches enable a more complete physical understanding of cloud systems by combining observational sampling of time-varying three-dimensional meteorological quantities and cloud properties, along with detailed representation of cloud microphysical and dynamical processes from numerical models.
NASA Astrophysics Data System (ADS)
Wiacek, A.; Peter, T.; Lohmann, U.
2010-02-01
This modelling study explores the availability of mineral dust particles as ice nuclei for interactions with ice, mixed-phase and liquid water clouds, also tracking the particles' history of cloud-processing. We performed 61 320 one-week forward trajectory calculations originating near the surface of major dust emitting regions in Africa and Asia using high-resolution meteorological analysis fields for the year 2007. Without explicitly modelling dust emission and deposition processes, dust-bearing trajectories were assumed to be those coinciding with known dust emission seasons. We found that dust emissions from Asian deserts lead to a higher potential for interactions with high clouds, despite being the climatologically much smaller dust emission source. This is due to Asian regions experiencing significantly more ascent than African regions, with strongest ascent in the Asian Taklimakan desert at ~25%, ~40% and 10% of trajectories ascending to 300 hPa in spring, summer and fall, respectively. The specific humidity at each trajectory's starting point was transported in a Lagrangian manner and relative humidities with respect to water and ice were calculated in 6-h steps downstream, allowing us to estimate the formation of liquid, mixed-phase and ice clouds. Practically none of the simulated air parcels reached regions where homogeneous ice nucleation can take place (T≲-40 °C) along trajectories that have not experienced water saturation first. By far the largest fraction of cloud forming trajectories entered conditions of mixed-phase clouds, where mineral dust will potentially exert the biggest influence. The majority of trajectories also passed through regions supersaturated with respect to ice but subsaturated with respect to water, where "warm" (T≳-40 °C) ice clouds may form prior to supercooled water or mixed-phase clouds. The importance of "warm" ice clouds and the general influence of dust in the mixed-phase cloud region are highly uncertain due to considerable scatter in recent laboratory data from ice nucleation experiments, which we briefly review in this work. For "classical" cirrus-forming temperatures, our results show that only mineral dust IN that underwent mixed-phase cloud-processing previously are likely to be relevant, and, therefore, we recommend further systematic studies of immersion mode ice nucleation on mineral dust suspended in atmospherically relevant coatings.
NASA Technical Reports Server (NTRS)
Gong, J.; Wu, D. L.
2014-01-01
Ice water path (IWP) and cloud top height (ht) are two of the key variables in determining cloud radiative and thermodynamical properties in climate models. Large uncertainty remains among IWP measurements from satellite sensors, in large part due to the assumptions made for cloud microphysics in these retrievals. In this study, we develop a fast algorithm to retrieve IWP from the 157, 183.3+/-3 and 190.3 GHz radiances of the Microwave Humidity Sounder (MHS) such that the MHS cloud ice retrieval is consistent with CloudSat IWP measurements. This retrieval is obtained by constraining the empirical forward models between collocated and coincident measurements of CloudSat IWP and MHS cloud-induced radiance depression (Tcir) at these channels. The empirical forward model is represented by a lookup table (LUT) of Tcir-IWP relationships as a function of ht and the frequency channel.With ht simultaneously retrieved, the IWP is found to be more accurate. The useful range of the MHS IWP retrieval is between 0.5 and 10 kg/sq m, and agrees well with CloudSat in terms of the normalized probability density function (PDF). Compared to the empirical model, current operational radiative transfer models (RTMs) still have significant uncertainties in characterizing the observed Tcir-IWP relationships. Therefore, the empirical LUT method developed here remains an effective approach to retrieving ice cloud properties from the MHS-like microwave channels.
Atmospheric environment for Space Shuttle (STS-3) launch
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Brown, S. C.; Batts, G. W.
1982-01-01
Selected atmospheric conditions observed near Space Shuttle STS-3 launch time on March 22, 1982, at Kennedy Space Center, Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prlaunch Jimsphere measured vertical wind profiles and the wind and thermodynamic parameters measured at the surface and aloft in the SRB descent/impact ocean area are presented. Final meteorological tapes, which consist of wind and thermodynamic parameters versus altitude, for STS-3 vehicle ascent and SRB descent were constructed. The STS-3 ascent meteorological data tape is constructed.
Analysis of Rapidly Developing Low Cloud Ceilings in a Stable Environment
NASA Technical Reports Server (NTRS)
Wheeler, Mark M.; Case, Jonathan L.
2005-01-01
This report describes the work done by the Applied Meteorology Unit (AMU) in developing a database of days that experienced rapid (< 90 minutes) low cloud formation in a stable atmosphere, resulting in ceilings at the Shuttle Landing Facility (TTS) that violated Space Shuttle Flight Rules (FR). The meteorological conditions favoring the rapid formation of low ceilings include the presence of any inversion below 8000 ft, high relative humidity beneath the inversion, and a clockwise turning of the winds from the surface to the middle troposphere (approx. 15000 ft). The AMU compared and contrasted the atmospheric and thermodynamic conditions between days with rapid low ceiling formation and days with low ceiling resulting from other mechanism. The AMU found that the vertical wind profile is the probable discerning factor between the rapidly-forming ceiling days and other low ceiling days at TTS. Most rapidly-developing low ceiling days had a clockwise turning of the winds with height, whereas other low ceiling days typically had a counter-clockwise turning of the winds with height or negligible vertical wind shear. Forecasters at the Space Meteorology Group (SMG) issue 30 to 90 minute forecasts for low cloud ceilings at TTS to support Space Shuttle landings. Mission verification statistics have shown ceilings to be the number one forecast challenge. More specifically, forecasters at SMG are concerned with any rapidly developing clouds ceilings below 8000 ft in a stable, capped thermodynamic environment, Therefore, the AMU was tasked to examine archived events of rapid stable cloud formation resulting in ceilings below 8000 ft, and document the atmospheric regimes favoring this type of cloud development. The AMU examined the cool season months of November to March during the years of 1993-2003 for days that had low-level inversions and rapid, stable low cloud formation that resulted in ceilings violating the Space Shuttle FR. The AMU wrote and modified existing code to identify inversions from the morning Cape Canaveral, FL rawinsonde (XMR) during the cool season and output pertinent sounding information. They parsed all days with cloud ceilings below 8000 ft at TTS, forming a database of possible rapidly-developing low ceiling events. Days with precipitation or noticeable fog bum-off situations were excluded from the database. Only the daytime hours were examined for possible ceiling development events since low clouds are easier to diagnose with visible satellite imagery. Follow-on work would expand the database to include nighttime cases, using a special enhancement of the infrared imagery for identifying areas of low clouds. The report presents two sample cases of rapidly-developing low cloud ceilings. These cases depict the representative meteorological and thermodynamic characteristics of such events. The cases also illustrate how quickly the cloud decks can develop, sometimes forming in 30 minutes or less. The report also summarizes the composite meteorological conditions for 20 event days with rapid low cloud ceiling formation and 48 non-events days consisting of advection or widespread low cloud ceilings. The meteorological conditions were quite similar for both the event and non-event days, since both types of days experienced low cloud ceilings. Both types of days had a relatively moist environment beneath the inversion based below 8000 ft. In the 20 events identified, de onset of low ceilings occurred between 1200-1800 UTC in every instance. The distinguishing factor between the event and non-event days appears to be the vertical wind profile in the XMR sounding. Eighty-five percent of the event days had a clockwise turning of the winds with height in the lower to middle troposphere whereas 83% of the non-events had a counter-clockwise turning of the winds with height or negligible vertical wind shear. A clockwise turning of the winds with height indicates a warm advection regime, which supports large-scale rising motn and possible cloud formation. Meanwhile, a counter-clockwise turning of the winds with height indicates cold advection or sinking motion in a post-cold frontal environment.
Direct Observations of Isoprene Secondary Organic Aerosol Formation in Ambient Cloud Droplets
NASA Astrophysics Data System (ADS)
Zelenyuk, A.; Bell, D.; Thornton, J. A.; Fast, J. D.; Shrivastava, M. B.; Berg, L. K.; Imre, D. G.; Mei, F.; Shilling, J.; Suski, K. J.; Liu, J.; Tomlinson, J. M.; Wang, J.
2017-12-01
Multiphase chemistry of isoprene photooxidation products has been shown to be one of the major sources of secondary organic aerosol (SOA) in the atmosphere. A number of recent studies indicate that aqueous aerosol phase provides a medium for reactive uptake of isoprene photooxidation products, and in particular, isomeric isoprene epoxydiols (IEPOX), with reaction rates and yields being dependent on aerosol acidity, water content, sulfate concentration, and organic coatings. However, very few studies focused on chemistry occurring within actual cloud droplets. We will present data acquired during recent Holistic Interactions of Shallow Clouds, Aerosols, and Land Ecosystems (HI-SCALE) Campaign, which provide direct evidence for IEPOX-SOA formation in cloud droplets. Single particle mass spectrometer, miniSPLAT, and a high-resolution, time-of-flight aerosol mass spectrometer were used to characterize the composition of aerosol particles and cloud droplet residuals, while a high-resolution, time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) was used to characterize gas-phase compounds. We find that the composition of cloud droplet residuals was markedly different than that of aerosol particles sampled outside the cloud. Cloud droplet residuals were comprised of individual particles with high relative fractions of sulfate and nitrate and significant fraction of particles with mass spectra that are nearly identical to those of laboratory-generated IEPOX-SOA particles. The observed cloud-induced formation of IEPOX-SOA was accompanied by simultaneous decrease in measured concentrations of IEPOX and other gas-phase isoprene photooxidation products. Ultimately, the combined cloud, aerosol, and gas-phase measurements conducted during HI-SCALE will be used to develop and evaluate model treatments of aqueous-phase isoprene SOA formation.
Mass-independent area (or entropy) and thermodynamic volume products in conformal gravity
NASA Astrophysics Data System (ADS)
Pradhan, Parthapratim
2017-06-01
In this work, we investigate the thermodynamic properties of conformal gravity in four dimensions. We compute the area (or entropy) functional relation for this black hole (BH). We consider both de Sitter (dS) and anti-de Sitter (AdS) cases. We derive the Cosmic-Censorship-Inequality which is an important relation in general relativity that relates the total mass of a spacetime to the area of all the BH horizons. Local thermodynamic stability is studied by computing the specific heat. The second-order phase transition occurs at a certain condition. Various types of second-order phase structure have been given for various values of a and the cosmological constant Λ in the Appendix. When a = 0, one obtains the result of Schwarzschild-dS and Schwarzschild-AdS cases. In the limit aM ≪ 1, one obtains the result of Grumiller spacetime, where a is nontrivial Rindler parameter or Rindler acceleration and M is the mass parameter. The thermodynamic volume functional relation is derived in the extended phase space, where the cosmological constant is treated as a thermodynamic pressure and its conjugate variable as a thermodynamic volume. The mass-independent area (or entropy) functional relation and thermodynamic volume functional relation that we have derived could turn out to be a universal quantity.
NASA Astrophysics Data System (ADS)
Das, Subrata Kumar; Golhait, R. B.; Uma, K. N.
2017-01-01
The CloudSat spaceborne radar and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) space-borne lidar measurements, provide opportunities to understand the intriguing behavior of the vertical structure of monsoon clouds. The combined CloudSat-CALIPSO data products have been used for the summer season (June-August) of 2006-2010 to present the statistics of cloud macrophysical (such as cloud occurrence frequency, distribution of cloud top and base heights, geometrical thickness and cloud types base on occurrence height), and microphysical (such as ice water content, ice water path, and ice effective radius) properties of the Northern Hemisphere (NH) monsoon region. The monsoon regions considered in this work are the North American (NAM), North African (NAF), Indian (IND), East Asian (EAS), and Western North Pacific (WNP). The total cloud fraction over the IND (mostly multiple-layered cloud) appeared to be more frequent as compared to the other monsoon regions. Three distinctive modes of cloud top height distribution are observed over all the monsoon regions. The high-level cloud fraction is comparatively high over the WNP and IND. The ice water content and ice water path over the IND are maximum compared to the other monsoon regions. We found that the ice water content has little variations over the NAM, NAF, IND, and WNP as compared to their macrophysical properties and thus give an impression that the regional differences in dynamics and thermodynamics properties primarily cause changes in the cloud frequency or coverage and only secondary in the cloud ice properties. The background atmospheric dynamics using wind and relative humidity from the ERA-Interim reanalysis data have also been investigated which helps in understanding the variability of the cloud properties over the different monsoon regions.
NASA Technical Reports Server (NTRS)
Smith, William L., Jr.; Minnis, Patrick; Alvarez, Joseph M.; Uttal, Taneil; Intrieri, Janet M.; Ackerman, Thomas P.; Clothiaux, Eugene
1993-01-01
Cloud-top height is a major factor determining the outgoing longwave flux at the top of the atmosphere. The downwelling radiation from the cloud strongly affects the cooling rate within the atmosphere and the longwave radiation incident at the surface. Thus, determination of cloud-base temperature is important for proper calculation of fluxes below the cloud. Cloud-base altitude is also an important factor in aircraft operations. Cloud-top height or temperature can be derived in a straightforward manner using satellite-based infrared data. Cloud-base temperature, however, is not observable from the satellite, but is related to the height, phase, and optical depth of the cloud in addition to other variables. This study uses surface and satellite data taken during the First ISCCP Regional Experiment (FIRE) Phase-2 Intensive Field Observation (IFO) period (13 Nov. - 7 Dec. 1991, to improve techniques for deriving cloud-base height from conventional satellite data.
NASA Astrophysics Data System (ADS)
Dong, S.
2018-05-01
We present a reduction-consistent and thermodynamically consistent formulation and an associated numerical algorithm for simulating the dynamics of an isothermal mixture consisting of N (N ⩾ 2) immiscible incompressible fluids with different physical properties (densities, viscosities, and pair-wise surface tensions). By reduction consistency we refer to the property that if only a set of M (1 ⩽ M ⩽ N - 1) fluids are present in the system then the N-phase governing equations and boundary conditions will exactly reduce to those for the corresponding M-phase system. By thermodynamic consistency we refer to the property that the formulation honors the thermodynamic principles. Our N-phase formulation is developed based on a more general method that allows for the systematic construction of reduction-consistent formulations, and the method suggests the existence of many possible forms of reduction-consistent and thermodynamically consistent N-phase formulations. Extensive numerical experiments have been presented for flow problems involving multiple fluid components and large density ratios and large viscosity ratios, and the simulation results are compared with the physical theories or the available physical solutions. The comparisons demonstrate that our method produces physically accurate results for this class of problems.
Cantera and Cantera Electrolyte Thermodynamics Objects
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Hewson, Harry Moffat
Cantera is a suite of object-oriented software tools for problems involving chemical kinetics, thermodynamics, and/or transport processes. It is a multi-organizational effort to create and formulate high quality 0D and 1D constitutive modeling tools for reactive transport codes.Institutions involved with the effort include Sandia, MIT, Colorado School of Mines, U. Texas, NASA, and Oak Ridge National Labs. Specific to Sandia's contributions, the Cantera Electrolyte Thermo Objects (CETO) packages is comprised of add-on routines for Cantera that handle electrolyte thermochemistry and reactions within the overall Cantera package. Cantera is a C++ Cal Tech code that handles gas phase species transport, reaction,more » and thermodynamics. With this addition, Cantera can be extended to handle problems involving liquid phase reactions and transport in electrolyte systems, and phase equilibrium problemsinvolving concentrated electrolytes and gas/solid phases. A full treatment of molten salt thermodynamics and transport has also been implemented in CETO. The routines themselves consist of .cpp and .h files containing C++ objects that are derived from parent Cantera objects representing thermodynamic functions. They are linked unto the main Cantera libraries when requested by the user. As an addendum to the main thermodynamics objects, several utility applications are provided. The first is multiphase Gibbs free energy minimizer based on the vcs algorithm, called vcs_cantera. This code allows for the calculation of thermodynamic equilibrium in multiple phases at constant temperature and pressure. Note, a similar code capability exists already in Cantera. This version follows the same algorithm, but gas a different code-base starting point, and is used as a research tool for algorithm development. The second program, cttables, prints out tables of thermodynamic and kinetic information for thermodynamic and kinetic objects within Cantera. This program serves as a "Get the numbers out" utility for Cantera, and as such it is very useful as a verification tool. These add-on utilities are encapsulated into a directory structure named cantera_apps, whose installation uses autoconf and also utilizes Cantera's application environment (i.e., they utilize Cantera as a library).« less
A computational investigation of the thermodynamics and structure in colloid and polymer mixtures
NASA Astrophysics Data System (ADS)
Mahynski, Nathan Alexander
In this dissertation I use computational tools to study the structure and thermodynamics of colloid-polymer mixtures. I show that fluid-fluid phase separation in mixtures of colloids and linear polymers cannot be universally reduced using polymer-based scaling principles since these assume the binodals exist in a single scaling regime, whereas accurate simulations clearly demonstrate otherwise. I show that rethinking these solutions in terms of multiple length scales is necessary to properly explain the thermodynamic stability and structure of these fluid phases, and produce phase diagrams in nearly quantitative agreement with experimental results. I then extend this work to encompass more geometrically complex "star" polymers revealing how the phase behavior for many of these binary mixtures may be mapped onto that of mixtures containing only linear polymers. I further consider the depletion-driven crystallization of athermal colloidal hard spheres induced by polymers. I demonstrate how the partitioning of a finite amount of polymer into the colloidal crystal phase implies that the polymer's architecture can be tailored to interact with the internal void structure of different crystal polymorphs uniquely, thus providing a direct route to thermodynamically stabilizing one arbitrarily chosen structure over another, e.g., the hexagonal close-packed crystal over the face-centered cubic. I then begin to generalize this result by considering the consequences of thermal interactions and complex polymer architectures. These principles lay the groundwork for intelligently engineering co-solute additives in crystallizing colloidal suspensions that can be used to thermodynamically isolate single crystal morphologies. Finally, I examine the competition between self-assembly and phase separation in polymer-grafted nanoparticle systems by comparing and contrasting the validity of two different models for grafted nanoparticles: "nanoparticle amphiphiles" versus "patchy particles." The latter suggests these systems have some utility in forming novel "equilibrium gel" phases, however, I find that considering grafted nanoparticles as amphiphiles provides a qualitatively accurate description of their thermodynamics revealing either first-order phase separation into two isotropic phases or continuous self-assembly. I find no signs of empty liquid formation, suggesting that these nanoparticles do not provide a route to such phases.
Phase transformation of mixed-phase clouds
NASA Astrophysics Data System (ADS)
Korolev, Alexei; Isaac, George
2003-01-01
The glaciation time of a mixed-phase cloud due to the Wegener-Bergeron-Findeisen mechanism is calculated using an adiabatic one-dimensional numerical model for the cases of zero, ascending, descending and oscillating vertical velocities. The characteristic values of the glaciation time are obtained for different concentrations of ice particles and liquid-water content. Steady state is not possible for the ice-water content/total water content ratio in a uniformly vertically moving mixed-phase parcel. The vertical oscillation of a cloud parcel may result in a periodic evaporation and activation of liquid droplets in the presence of ice particles during infinite time. After a certain time, the average ice-water content and liquid-water content reach a steady state. This phenomenon may explain the existence of long-lived mixed-phase stratiform layers. The obtained results are important for understanding the mechanisms of formation and life cycle of mixed-phase clouds.
NASA Astrophysics Data System (ADS)
Hu, L.; Montzka, S. A.; Godwin, D.; Andrews, A. E.; Thoning, K. W.; Miller, B. R.; Sweeney, C.; Miller, J. B.; Lehman, S.; Siso, C.; Mondeel, D. J.; Hall, B. D.; Nance, J. D.; Tans, P. P.; Elkins, J. W.
2016-12-01
Biomass burning (BB) plumes can significantly impact stratocumulus clouds (Sc), the dominant cloud type by global area, by altering their microphysical properties. The California (CA) coast is home to one of the three major semi-permanent stratocumulus (Sc) cloud decks in the world and BB emissions are of growing concern in the western United States, owing to both a warmer climate and fire-control strategies over recent decades. The thickness and vertical position of BB plumes, especially relative to clouds, is critical to understand how the aerosol will affect the thermodynamic structure of the atmosphere, cloud properties, and radiative forcing. This study reports on the characterization of the vertical, spatial, and temporal nature of BB aerosol over coastal CA, based on airborne data collected in the months of July and August for 2013 and 2016. Results from over 100 soundings indicate that multiple BB plume layers exist above clouds, with the thickness of BB plumes and their vertical position relative to cloud top varying significantly as a function of distance from coastline. Comparison of soundings at a given location at two different times of day reveals significant variation in BB characteristics. Intercomparisons for BB plume characteristics are explored between the field data, NAAPS, and CALIPSO.
NASA Astrophysics Data System (ADS)
Hossein Mardi, A.; MacDonald, A. B.; Dadashazar, H.; Crosbie, E.; WANG, Z.; Lynch, P.; Campbell, J. R.; Jonsson, H.; Sorooshian, A.
2017-12-01
Biomass burning (BB) plumes can significantly impact stratocumulus clouds (Sc), the dominant cloud type by global area, by altering their microphysical properties. The California (CA) coast is home to one of the three major semi-permanent stratocumulus (Sc) cloud decks in the world and BB emissions are of growing concern in the western United States, owing to both a warmer climate and fire-control strategies over recent decades. The thickness and vertical position of BB plumes, especially relative to clouds, is critical to understand how the aerosol will affect the thermodynamic structure of the atmosphere, cloud properties, and radiative forcing. This study reports on the characterization of the vertical, spatial, and temporal nature of BB aerosol over coastal CA, based on airborne data collected in the months of July and August for 2013 and 2016. Results from over 100 soundings indicate that multiple BB plume layers exist above clouds, with the thickness of BB plumes and their vertical position relative to cloud top varying significantly as a function of distance from coastline. Comparison of soundings at a given location at two different times of day reveals significant variation in BB characteristics. Intercomparisons for BB plume characteristics are explored between the field data, NAAPS, and CALIPSO.
Spectral absorption of marine stratocumulus clouds derived from in situ cloud radiation measurements
NASA Technical Reports Server (NTRS)
King, Michael D.; Radke, Lawrence F.; Hobbs, Peter V.
1990-01-01
A multiwavelength scanning radiometer was used to measure the angular distribution of scattered radiation deep within a cloud layer at discrete wavelengths between 0.5 and 2.3 microns. The relative angular distribution of the intensity field at each wavelength is used to determine the similarity parameter, and hence single scattering albedo, of the cloud at that wavelength using the diffusion domain method. In addition to the spectral similarity parameter, the analysis provides a good estimate of the optical thickness of the cloud beneath the aircraft. In addition to the radiation measurements, microphysical and thermodynamic measurements were obtained from which the expected similarity parameter spectrum was calculated using accepted values of the refractive index of liquid water and the transmission function of water vapor. An analysis is presented for the results obtained for a 50 km section of clean marine stratocumulus clouds on 10 July 1987. These observations were obtained off the coast of California from the University of Washington Convair C-131A aircraft as part of the First ISCCP Regional Experiment (FIRE). A comparison of the experimentally-derived similarity parameter spectrum with that expected theoretically from the cloud droplet size distribution measured simultaneously from the aircraft is presented. The measurements and theory are in very close agreement for this case of clean maritime clouds.
The influence of mixed and phase clouds on surface shortwave irradiance during the Arctic spring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lubin D.; Vogelmann A.
2011-10-13
The influence of mixed-phase stratiform clouds on the surface shortwave irradiance is examined using unique spectral shortwave irradiance measurements made during the Indirect and Semi-Direct Aerosol Campaign (ISDAC), supported by the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program. An Analytical Spectral Devices (ASD, Inc.) spectroradiometer measured downwelling spectral irradiance from 350 to 2200 nm in one-minute averages throughout April-May 2008 from the ARM Climate Research Facility's North Slope of Alaska (NSA) site at Barrow. This study examines spectral irradiance measurements made under single-layer, overcast cloud decks having geometric thickness < 3000 m. Cloud optical depth is retrieved frommore » irradiance in the interval 1022-1033 nm. The contrasting surface radiative influences of mixed-phase clouds and liquid-water clouds are discerned using irradiances in the 1.6-{micro}m window. Compared with liquid-water clouds, mixed-phase clouds during the Arctic spring cause a greater reduction of shortwave irradiance at the surface. At fixed conservative-scattering optical depth (constant optical depth for wavelengths {lambda} < 1100 nm), the presence of ice water in cloud reduces the near-IR surface irradiance by an additional several watts-per-meter-squared. This additional reduction, or supplemental ice absorption, is typically {approx}5 W m{sup -2} near solar noon over Barrow, and decreases with increasing solar zenith angle. However, for some cloud decks this additional absorption can be as large as 8-10 W m{sup -2}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zi-Kui; Gleeson, Brian; Shang, Shunli
This project developed computational tools that can complement and support experimental efforts in order to enable discovery and more efficient development of Ni-base structural materials and coatings. The project goal was reached through an integrated computation-predictive and experimental-validation approach, including first-principles calculations, thermodynamic CALPHAD (CALculation of PHAse Diagram), and experimental investigations on compositions relevant to Ni-base superalloys and coatings in terms of oxide layer growth and microstructure stabilities. The developed description included composition ranges typical for coating alloys and, hence, allow for prediction of thermodynamic properties for these material systems. The calculation of phase compositions, phase fraction, and phase stabilities,more » which are directly related to properties such as ductility and strength, was a valuable contribution, along with the collection of computational tools that are required to meet the increasing demands for strong, ductile and environmentally-protective coatings. Specifically, a suitable thermodynamic description for the Ni-Al-Cr-Co-Si-Hf-Y system was developed for bulk alloy and coating compositions. Experiments were performed to validate and refine the thermodynamics from the CALPHAD modeling approach. Additionally, alloys produced using predictions from the current computational models were studied in terms of their oxidation performance. Finally, results obtained from experiments aided in the development of a thermodynamic modeling automation tool called ESPEI/pycalphad - for more rapid discovery and development of new materials.« less
NASA Astrophysics Data System (ADS)
Diao, M.; D'Alessandro, J.; Wu, C.; Liu, X.; Jensen, J. B.
2016-12-01
Large spatial coverage of ice and mixed-phase clouds is frequently observed in the higher latitudinal regions, especially over the Arctic and Antarctica. However, because the microphysical properties in the ice and mixed-phase clouds are highly variable in space, major challenges still remain in understanding the characteristics of ice and mixed-phase clouds on the microscale, as well as representing the sub-grid scale variabilities of relative humidity in the General Circulation Models. In this work, we use the in-situ, airborne observations from the NSF O2/N2 Ratio and CO2 Airborne Southern Ocean (ORCAS) Study (January - February 2016) to analyze the microphysical and macrophysical characteristics of ice and mixed-phase clouds over the Southern Ocean. A total of 18 flights onboard the NSF Gulfstream-V research aircraft are used to quantify the cloud properties and relative humidity distributions at various temperatures, pressures and aerosol background. New QC/QA water vapor data of the Vertical Cavity Surface Emitting Laser based on the laboratory calibration in summer 2016 will be presented. The statistical distributions of cloud microphysical properties and relative humidity with respect to ice (RHi) derived from in-situ observations will be compared with the NCAR Community Atmospheric Model Version 5 (CAM5). The horizontal extent of ice and mixed-phase clouds, and their formation and evolution will be derived based on the method of Diao et al. (2013). The occurrence frequency of ice supersaturation (i.e., RHi > 100%) will be examined in relation to various chemical tracers (i.e., O3 and CO) and total aerosol number concentrations (e.g., aerosols > 0.1 μm and > 0.5 μm) at clear-sky and in-cloud conditions. We will quantify whether these characteristics of ISS are scale-dependent from the microscale to the mesoscale. Overall, our work will evaluate the spatial variabilities of RHi inside/outside of ice and mixed-phase clouds, the frequency and magnitude of ice supersaturation, as well as the correlations between ice water content and liquid water content in the CAM5 simulations.
Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations
NASA Astrophysics Data System (ADS)
Liu, Xiaohong; Xie, Shaocheng; Boyle, James; Klein, Stephen A.; Shi, Xiangjun; Wang, Zhien; Lin, Wuyin; Ghan, Steven J.; Earle, Michael; Liu, Peter S. K.; Zelenyuk, Alla
2011-01-01
Arctic clouds simulated by the National Center for Atmospheric Research (NCAR) Community Atmospheric Model version 5 (CAM5) are evaluated with observations from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Indirect and Semi-Direct Aerosol Campaign (ISDAC) and Mixed-Phase Arctic Cloud Experiment (M-PACE), which were conducted at its North Slope of Alaska site in April 2008 and October 2004, respectively. Model forecasts for the Arctic spring and fall seasons performed under the Cloud-Associated Parameterizations Testbed framework generally reproduce the spatial distributions of cloud fraction for single-layer boundary-layer mixed-phase stratocumulus and multilayer or deep frontal clouds. However, for low-level stratocumulus, the model significantly underestimates the observed cloud liquid water content in both seasons. As a result, CAM5 significantly underestimates the surface downward longwave radiative fluxes by 20-40 W m-2. Introducing a new ice nucleation parameterization slightly improves the model performance for low-level mixed-phase clouds by increasing cloud liquid water content through the reduction of the conversion rate from cloud liquid to ice by the Wegener-Bergeron-Findeisen process. The CAM5 single-column model testing shows that changing the instantaneous freezing temperature of rain to form snow from -5°C to -40°C causes a large increase in modeled cloud liquid water content through the slowing down of cloud liquid and rain-related processes (e.g., autoconversion of cloud liquid to rain). The underestimation of aerosol concentrations in CAM5 in the Arctic also plays an important role in the low bias of cloud liquid water in the single-layer mixed-phase clouds. In addition, numerical issues related to the coupling of model physics and time stepping in CAM5 are responsible for the model biases and will be explored in future studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webber, Matthew W.; Lewis, Nikole K.; Cahoy, Kerri
2015-05-10
We use a planetary albedo model to investigate variations in visible wavelength phase curves of exoplanets. Thermal and cloud properties for these exoplanets are derived using one-dimensional radiative-convective and cloud simulations. The presence of clouds on these exoplanets significantly alters their planetary albedo spectra. We confirm that non-uniform cloud coverage on the dayside of tidally locked exoplanets will manifest as changes to the magnitude and shift of the phase curve. In this work, we first investigate a test case of our model using a Jupiter-like planet, at temperatures consistent to 2.0 AU insolation from a solar type star, to considermore » the effect of H{sub 2}O clouds. We then extend our application of the model to the exoplanet Kepler-7b and consider the effect of varying cloud species, sedimentation efficiency, particle size, and cloud altitude. We show that, depending on the observational filter, the largest possible shift of the phase curve maximum will be ∼2°–10° for a Jupiter-like planet, and up to ∼30° (∼0.08 in fractional orbital phase) for hot-Jupiter exoplanets at visible wavelengths as a function of dayside cloud distribution with a uniformly averaged thermal profile. The models presented in this work can be adapted for a variety of planetary cases at visible wavelengths to include variations in planet–star separation, gravity, metallicity, and source-observer geometry. Finally, we tailor our model for comparison with, and confirmation of, the recent optical phase-curve observations of Kepler-7b with the Kepler space telescope. The average planetary albedo can vary between 0.1 and 0.6 for the 1300 cloud scenarios that were compared to the observations. Many of these cases cannot produce a high enough albedo to match the observations. We observe that smaller particle size and increasing cloud altitude have a strong effect on increasing albedo. In particular, we show that a set of models where Kepler-7b has roughly half of its dayside covered in small-particle clouds high in the atmosphere, made of bright minerals like MgSiO{sub 3} and Mg{sub 2}SiO{sub 4,} provide the best fits to the observed offset and magnitude of the phase-curve, whereas Fe clouds are found to be too dark to fit the observations.« less
NASA Technical Reports Server (NTRS)
Betancourt, R. Morales; Lee, D.; Oreopoulos, L.; Sud, Y. C.; Barahona, D.; Nenes, A.
2012-01-01
The salient features of mixed-phase and ice clouds in a GCM cloud scheme are examined using the ice formation parameterizations of Liu and Penner (LP) and Barahona and Nenes (BN). The performance of LP and BN ice nucleation parameterizations were assessed in the GEOS-5 AGCM using the McRAS-AC cloud microphysics framework in single column mode. Four dimensional assimilated data from the intensive observation period of ARM TWP-ICE campaign was used to drive the fluxes and lateral forcing. Simulation experiments where established to test the impact of each parameterization in the resulting cloud fields. Three commonly used IN spectra were utilized in the BN parameterization to described the availability of IN for heterogeneous ice nucleation. The results show large similarities in the cirrus cloud regime between all the schemes tested, in which ice crystal concentrations were within a factor of 10 regardless of the parameterization used. In mixed-phase clouds there are some persistent differences in cloud particle number concentration and size, as well as in cloud fraction, ice water mixing ratio, and ice water path. Contact freezing in the simulated mixed-phase clouds contributed to transfer liquid to ice efficiently, so that on average, the clouds were fully glaciated at T approximately 260K, irrespective of the ice nucleation parameterization used. Comparison of simulated ice water path to available satellite derived observations were also performed, finding that all the schemes tested with the BN parameterization predicted 20 average values of IWP within plus or minus 15% of the observations.
Thermodynamic assessments and inter-relationships between systems involving Al, Am, Ga, Pu, and U
NASA Astrophysics Data System (ADS)
Perron, A.; Turchi, P. E. A.; Landa, A.; Oudot, B.; Ravat, B.; Delaunay, F.
2016-12-01
A newly developed self-consistent CALPHAD thermodynamic database involving Al, Am, Ga, Pu, and U is presented. A first optimization of the slightly characterized Am-Al and completely unknown Am-Ga phase diagrams is proposed. To this end, phase diagram features as crystal structures, stoichiometric compounds, solubility limits, and melting temperatures have been studied along the U-Al → Pu-Al → Am-Al, and U-Ga → Pu-Ga → Am-Ga series, and the thermodynamic assessments involving Al and Ga alloying are compared. In addition, two distinct optimizations of the Pu-Al phase diagram are proposed to account for the low temperature and Pu-rich region controversy. The previously assessed thermodynamics of the other binary systems (Am-Pu, Am-U, Pu-U, and Al-Ga) is also included in the database and is briefly described in the present work. Finally, predictions on phase stability of ternary and quaternary systems of interest are reported to check the consistency of the database.
Thermodynamic assessments and inter-relationships between systems involving Al, Am, Ga, Pu, and U
Perron, A.; Turchi, P. E. A.; Landa, A.; ...
2016-12-01
We present a newly developed self-consistent CALPHAD thermodynamic database involving Al, Am, Ga, Pu, and U. A first optimization of the slightly characterized Am-Al and completely unknown Am-Ga phase diagrams is proposed. To this end, phase diagram features as crystal structures, stoichiometric compounds, solubility limits, and melting temperatures have been studied along the U-Al → Pu-Al → Am-Al, and U-Ga → Pu-Ga → Am-Ga series, and the thermodynamic assessments involving Al and Ga alloying are compared. In addition, two distinct optimizations of the Pu-Al phase diagram are proposed to account for the low temperature and Pu-rich region controversy. We includedmore » the previously assessed thermodynamics of the other binary systems (Am-Pu, Am-U, Pu-U, and Al-Ga) in the database and is briefly described in the present work. In conclusion, predictions on phase stability of ternary and quaternary systems of interest are reported to check the consistency of the database.« less
Processes that generate and deplete liquid water and snow in thin midlevel mixed-phase clouds
NASA Astrophysics Data System (ADS)
Smith, Adam J.; Larson, Vincent E.; Niu, Jianguo; Kankiewicz, J. Adam; Carey, Lawrence D.
2009-06-01
This paper uses a numerical model to investigate microphysical, radiative, and dynamical processes in mixed-phase altostratocumulus clouds. Three cloud cases are chosen for study, each of which was observed by aircraft during the fifth or ninth Complex Layered Cloud Experiment (CLEX). These three clouds are numerically modeled using large-eddy simulation (LES). The observed and modeled clouds consist of a mixed-phase layer with a quasi-adiabatic profile of liquid, and a virga layer below that consists of snow. A budget of cloud (liquid) water mixing ratio is constructed from the simulations. It shows that large-scale ascent/descent, radiative cooling/heating, turbulent transport, and microphysical processes are all significant. Liquid is depleted indirectly via depositional growth of snow (the Bergeron-Findeisen process). This process is more influential than depletion of liquid via accretional growth of snow. Also constructed is a budget of snow mixing ratio, which turns out to be somewhat simpler. It shows that snow grows by deposition in and below the liquid (mixed-phase) layer, and sublimates in the remainder of the virga region below. The deposition and sublimation are balanced primarily by sedimentation, which transports the snow from the growth region to the sublimation region below. In our three clouds, the vertical extent of the virga layer is influenced more by the profile of saturation ratio below the liquid (mixed-phase) layer than by the mixing ratio of snow at the top of the virga layer.
Contribution to the thermodynamic description of the corium - The U-Zr-O system
NASA Astrophysics Data System (ADS)
Quaini, A.; Guéneau, C.; Gossé, S.; Dupin, N.; Sundman, B.; Brackx, E.; Domenger, R.; Kurata, M.; Hodaj, F.
2018-04-01
In order to understand the stratification process that may occur in the late phase of the fuel degradation during a severe accident in a PWR, the thermodynamic knowledge of the U-Zr-O system is crucial. The presence of a miscibility gap in the U-Zr-O liquid phase may lead to a stratified configuration, which will impact the accidental scenario management. The aim of this work was to obtain new experimental data in the U-Zr-O liquid miscibility gap. New tie-line data were provided at 2567 ± 25 K. The related thermodynamic models were reassessed using present data and literature values. The reassessed model will be implemented in the TAF-ID international database. The composition and density of phases potentially formed during stratification will be predicted by coupling current thermodynamic model with thermal-hydraulics codes.
Towards a thermodynamics of active matter.
Takatori, S C; Brady, J F
2015-03-01
Self-propulsion allows living systems to display self-organization and unusual phase behavior. Unlike passive systems in thermal equilibrium, active matter systems are not constrained by conventional thermodynamic laws. A question arises, however, as to what extent, if any, can concepts from classical thermodynamics be applied to nonequilibrium systems like active matter. Here we use the new swim pressure perspective to develop a simple theory for predicting phase separation in active matter. Using purely mechanical arguments we generate a phase diagram with a spinodal and critical point, and define a nonequilibrium chemical potential to interpret the "binodal." We provide a generalization of thermodynamic concepts like the free energy and temperature for nonequilibrium active systems. Our theory agrees with existing simulation data both qualitatively and quantitatively and may provide a framework for understanding and predicting the behavior of nonequilibrium active systems.
NASA Astrophysics Data System (ADS)
Smith, W. L., Jr.; Spangenberg, D.; Fleeger, C.; Sun-Mack, S.; Chen, Y.; Minnis, P.
2016-12-01
Determining accurate cloud properties horizontally and vertically over a full range of time and space scales is currently next to impossible using data from either active or passive remote sensors or from modeling systems. Passive satellite imagers provide horizontal and temporal resolution of clouds, but little direct information on vertical structure. Active sensors provide vertical resolution but limited spatial and temporal coverage. Cloud models embedded in NWP can produce realistic clouds but often not at the right time or location. Thus, empirical techniques that integrate information from multiple observing and modeling systems are needed to more accurately characterize clouds and their impacts. Such a strategy is employed here in a new cloud water content profiling technique developed for application to satellite imager cloud retrievals based on VIS, IR and NIR radiances. Parameterizations are developed to relate imager retrievals of cloud top phase, optical depth, effective radius and temperature to ice and liquid water content profiles. The vertical structure information contained in the parameterizations is characterized climatologically from cloud model analyses, aircraft observations, ground-based remote sensing data, and from CloudSat and CALIPSO. Thus, realistic cloud-type dependent vertical structure information (including guidance on cloud phase partitioning) circumvents poor assumptions regarding vertical homogeneity that plague current passive satellite retrievals. This paper addresses mixed phase cloud conditions for clouds with glaciated tops including those associated with convection and mid-latitude storm systems. Novel outcomes of our approach include (1) simultaneous retrievals of ice and liquid water content and path, which are validated with active sensor, microwave and in-situ data, and yield improved global cloud climatologies, and (2) new estimates of super-cooled LWC, which are demonstrated in aviation safety applications and validated with icing PIREPS. The initial validation is encouraging for single-layer cloud conditions. More work is needed to test and refine the method for global application in a wider range of cloud conditions. A brief overview of our current method, applications, verification, and plans for future work will be presented.
NASA Astrophysics Data System (ADS)
Gautam, R.; Gatebe, C. K.; Varnai, T.; Singh, M.; Poudyal, R.
2016-12-01
Clouds in the presence of absorbing aerosols results in their apparent darkening, observed at the Top of Atmosphere (TOA), which is associated with the radiative effects of aerosol absorption. Owing to the warming/darkening effect and potential impacts on regional climate via semidirect and thermodynamic pathways, above-cloud aerosols have been characterized in recent satellite-based studies. While satellite data are particularly useful in showing the radiative impact of above-cloud aerosols at the TOA, retrievals of aerosol and cloud properties are affected by large uncertainties when they co-occur. In this study, we present radiative characteristics of clouds in the presence of wildfire smoke using airborne data primarily from NASA's Cloud Absorption Radiometer (CAR), collected during the ARCTAS and SAFARI campaigns in Canada and southern Africa, respectively. Scattered cumulus clouds embedded in dense smoke over land (Canada) as well as smoke aerosols above marine stratocumulus clouds (southeast Atlantic) show characteristic spectral gradient across the UV-visible-NIR spectrum using CAR data. In general, clouds in the presence of smoke are impacted by absorbing aerosol-induced darkening at the shorter wavelengths (e.g. UV and blue bands), as opposed to an (expected) negative gradient for cloud-free smoke and a flat spectrum for smoke-free cloud cover. The circular and spiral flights not only allowed the complete characterization of the angular distribution of smoke-cloud radiative interactions, but also provided the vertical distribution of smoke and clouds. Overall, the observational-based smoke-cloud radiative interactions were found to be physically consistent with theoretical 1D and 3D radiation calculations. These airborne observations are also complemented by satellite data from MODIS reflectances and CERES shortwave fluxes, providing a synergistic radiative impact assessment of clouds in the presence of smoke. http://car.gsfc.nasa.gov/
NASA Astrophysics Data System (ADS)
Williams, E.
2012-12-01
Lightning is of interest in the domain of climate change for several reasons: (1) thunderstorms are extreme forms of moist convection, and lightning flash rate is a sensitive measure of that extremity, (2) thunderstorms are deep conduits for delivering water substance from the boundary layer to the upper troposphere and stratosphere, and (3) global lightning can be monitored continuously and inexpensively within a natural framework (the Earth-ionosphere waveguide and Schumann resonances). Lightning and temperature, and lightning and upper tropospheric water vapor, are positively correlated on weather-related time scales (diurnal, semiannual, and annual) with a lightning temperature sensitivity of order 10% per oC. Lightning also follows temperature variations on the ENSO time scale, both locally and globally. The response of lightning in some of its extreme forms (exceptional flash rates and the prevalence of sprite-producing mesoscale lightning, for example) to temperature variations will be addressed. Consistently obtained records of lightning activity on longer time scales are scarce as stable detection networks are uncommon. As a consequence, thunder day data have been used to extend the lightning record for climate studies, with evidence for increases over decades in urban areas. Global records of lightning following Schumann resonance intensity and from space-based optical sensors (OTD and LIS) are consistent with the record of ionospheric potential representing the global electrical circuit in showing flat behavior over the few decades. This flatness is not well understood, though the majority of all lightning flashes are found in the tropics, the most closely regulated portion of the atmosphere. Other analysis of frequency variations of Schumann resonances in recent decades shows increased lightning in the northern hemisphere, where the global warming is most pronounced. The quantity more fundamental than temperature for lightning control is cloud buoyancy as this forces the updraft in thunderstorm convection and strongly influences the ice phase microphysics on which the charge separation and lightning depends. The vertical integration of cloud buoyancy is Convective Available Potential Energy (CAPE), a rather delicate quantity. Though many GCM results show evidence for an extended tail in distributions of CAPE in a warmer world, its real variation over the last century is not well established. The CCN component of aerosol is now recognized to influence the cloud water content and thereby the profile of cloud buoyancy, and so the response of lightning to climate is not entirely a thermodynamic one. Key evidence here is the recent finding of a weekend effect in lightning activity. A number of contrasting phenomena between land and ocean (and between urban and rural environments), including the dramatic continental dominance of lightning (and the urban dominance of lightning), and in upper level cirrus cloud and in warm rain production, have explanations in both thermodynamics and in aerosol-modulated microphysics. Sorting out these contributions has proven to be a challenging task. The prevailing view is that lightning responds to climate change. Another perspective is that cloud electrification and lightning can cause changes in climate, either by influencing chemistry or large scale dynamics. These issues will also be addressed.
Duong, Thien C.; Hackenberg, Robert E.; Landa, Alex; ...
2016-09-20
In this paper, thermodynamic and kinetic diffusivities of uranium–niobium (U–Nb) are re-assessed by means of the CALPHAD (CALculation of PHAse Diagram) methodology. In order to improve the consistency and reliability of the assessments, first-principles calculations are coupled with CALPHAD. In particular, heats of formation of γ -U–Nb are estimated and verified using various density-functional theory (DFT) approaches. These thermochemistry data are then used as constraints to guide the thermodynamic optimization process in such a way that the mutual-consistency between first-principles calculations and CALPHAD assessment is satisfactory. In addition, long-term aging experiments are conducted in order to generate new phase equilibriamore » data at the γ 2/α+γ 2 boundary. These data are meant to verify the thermodynamic model. Assessment results are generally in good agreement with experiments and previous calculations, without showing the artifacts that were observed in previous modeling. The mutual-consistent thermodynamic description is then used to evaluate atomic mobility and diffusivity of γ-U–Nb. Finally, Bayesian analysis is conducted to evaluate the uncertainty of the thermodynamic model and its impact on the system's phase stability.« less
Thermodynamics of phase-separating nanoalloys: Single particles and particle assemblies
NASA Astrophysics Data System (ADS)
Fèvre, Mathieu; Le Bouar, Yann; Finel, Alphonse
2018-05-01
The aim of this paper is to investigate the consequences of finite-size effects on the thermodynamics of nanoparticle assemblies and isolated particles. We consider a binary phase-separating alloy with a negligible atomic size mismatch, and equilibrium states are computed using off-lattice Monte Carlo simulations in several thermodynamic ensembles. First, a semi-grand-canonical ensemble is used to describe infinite assemblies of particles with the same size. When decreasing the particle size, we obtain a significant decrease of the solid/liquid transition temperatures as well as a growing asymmetry of the solid-state miscibility gap related to surface segregation effects. Second, a canonical ensemble is used to analyze the thermodynamic equilibrium of finite monodisperse particle assemblies. Using a general thermodynamic formulation, we show that a particle assembly may split into two subassemblies of identical particles. Moreover, if the overall average canonical concentration belongs to a discrete spectrum, the subassembly concentrations are equal to the semi-grand-canonical equilibrium ones. We also show that the equilibrium of a particle assembly with a prescribed size distribution combines a size effect and the fact that a given particle size assembly can adopt two configurations. Finally, we have considered the thermodynamics of an isolated particle to analyze whether a phase separation can be defined within a particle. When studying rather large nanoparticles, we found that the region in which a two-phase domain can be identified inside a particle is well below the bulk phase diagram, but the concentration of the homogeneous core remains very close to the bulk solubility limit.
Lin, Shiang-Tai; Maiti, Prabal K; Goddard, William A
2010-06-24
Presented here is the two-phase thermodynamic (2PT) model for the calculation of energy and entropy of molecular fluids from the trajectory of molecular dynamics (MD) simulations. In this method, the density of state (DoS) functions (including the normal modes of translation, rotation, and intramolecular vibration motions) are determined from the Fourier transform of the corresponding velocity autocorrelation functions. A fluidicity parameter (f), extracted from the thermodynamic state of the system derived from the same MD, is used to partition the translation and rotation modes into a diffusive, gas-like component (with 3Nf degrees of freedom) and a nondiffusive, solid-like component. The thermodynamic properties, including the absolute value of entropy, are then obtained by applying quantum statistics to the solid component and applying hard sphere/rigid rotor thermodynamics to the gas component. The 2PT method produces exact thermodynamic properties of the system in two limiting states: the nondiffusive solid state (where the fluidicity is zero) and the ideal gas state (where the fluidicity becomes unity). We examine the 2PT entropy for various water models (F3C, SPC, SPC/E, TIP3P, and TIP4P-Ew) at ambient conditions and find good agreement with literature results obtained based on other simulation techniques. We also validate the entropy of water in the liquid and vapor phases along the vapor-liquid equilibrium curve from the triple point to the critical point. We show that this method produces converged liquid phase entropy in tens of picoseconds, making it an efficient means for extracting thermodynamic properties from MD simulations.
Thermodynamic phase transitions for Pomeau-Manneville maps
NASA Astrophysics Data System (ADS)
Venegeroles, Roberto
2012-08-01
We study phase transitions in the thermodynamic description of Pomeau-Manneville intermittent maps from the point of view of infinite ergodic theory, which deals with diverging measure dynamical systems. For such systems, we use a distributional limit theorem to provide both a powerful tool for calculating thermodynamic potentials as also an understanding of the dynamic characteristics at each instability phase. In particular, topological pressure and Rényi entropy are calculated exactly for such systems. Finally, we show the connection of the distributional limit theorem with non-Gaussian fluctuations of the algorithmic complexity proposed by Gaspard and Wang [Proc. Natl. Acad. Sci. USA10.1073/pnas.85.13.4591 85, 4591 (1988)].
NASA Technical Reports Server (NTRS)
Misra, Ajay K.
1988-01-01
Chemical compatibility of several reinforcement materials with beta phase NiAl alloys within the concentration range 40 to 50 at. percent Al have been analyzed from thermodynamic considerations at 1373 and 1573 K. The reinforcement materials considered in this study include carbides, borides, oxides, nitrides, beryllides, and silicides. Thermodynamic data for NiAl alloys have been reviewed and activity of Ni and Al in the beta phase have been derived at 1373 and 1573 K. Criteria for chemical compatibility between the reinforcement material and the matrix have been defined and several chemically compatible reinforcement materials have been defined.
Evaluation of ERA-interim and MERRA Cloudiness in the Southern Oceans
NASA Technical Reports Server (NTRS)
Naud, Catherine M.; Booth, James F.; Del Genio, Anthony D.
2014-01-01
The Southern Ocean cloud cover modeled by the Interim ECMWF Re-Analysis (ERA-Interim) and Modern- Era Retrospective Analysis for Research and Applications (MERRA) reanalyses are compared against Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR) observations. ERA-Interim monthly mean cloud amounts match the observations within 5%, while MERRA significantly underestimates the cloud amount. For a compositing analysis of clouds in warm season extratropical cyclones, both reanalyses show a low bias in cloud cover. They display a larger bias to the west of the cyclones in the region of subsidence behind the cold fronts. This low bias is larger for MERRA than for ERA-Interim. Both MODIS and MISR retrievals indicate that the clouds in this sector are at a low altitude, often composed of liquid, and of a broken nature. The combined CloudSat-Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) cloud profiles confirm these passive observations, but they also reveal that low-level clouds in other parts of the cyclones are also not properly represented in the reanalyses. The two reanalyses are in fairly good agreement for the dynamic and thermodynamic characteristics of the cyclones, suggesting that the cloud, convection, or boundary layer schemes are the problem instead. An examination of the lower-tropospheric stability distribution in the cyclones from both reanalyses suggests that the parameterization of shallow cumulus clouds may contribute in a large part to the problem. However, the differences in the cloud schemes and in particular in the precipitation processes, which may also contribute, cannot be excluded.
Dilatonic BTZ black holes with power-law field
NASA Astrophysics Data System (ADS)
Hendi, S. H.; Eslam Panah, B.; Panahiyan, S.; Sheykhi, A.
2017-04-01
Motivated by low energy effective action of string theory and numerous applications of BTZ black holes, we will consider minimal coupling between dilaton and nonlinear electromagnetic fields in three dimensions. The main goal is studying thermodynamical structure of black holes in this set up. Temperature and heat capacity of these black holes are investigated and a picture regarding their phase transitions is given. In addition, the role and importance of studying the mass of black holes is highlighted. We will see how different parameters modify thermodynamical quantities, hence thermodynamical structure of these black holes. In addition, geometrical thermodynamics is used to investigate thermodynamical properties of these black holes. In this regard, the successful method is presented and the nature of interaction around bound and phase transition points is studied.
Computer-Generated Phase Diagrams for Binary Mixtures.
ERIC Educational Resources Information Center
Jolls, Kenneth R.; And Others
1983-01-01
Computer programs that generate projections of thermodynamic phase surfaces through computer graphics were used to produce diagrams representing properties of water and steam and the pressure-volume-temperature behavior of most of the common equations of state. The program, program options emphasizing thermodynamic features of interest, and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Qing; Kahn, Brian; Xiao, Heng
2013-08-16
Cloud top entrainment instability (CTEI) is a hypothesized positive feedback between entrainment mixing and evaporative cooling near the cloud top. Previous theoretical and numerical modeling studies have shown that the persistence or breakup of marine boundary layer (MBL) clouds may be sensitive to the CTEI parameter. Collocated thermodynamic profile and cloud observations obtained from the Atmospheric Infrared Sounder (AIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS) instruments are used to quantify the relationship between the CTEI parameter and the cloud-topped MBL transition from stratocumulus to trade cumulus in the northeastern Pacific Ocean. Results derived from AIRS and MODIS are compared withmore » numerical results from the UCLA large eddy simulation (LES) model for both well-mixed and decoupled MBLs. The satellite and model results both demonstrate a clear correlation between the CTEI parameter and MBL cloud fraction. Despite fundamental differences between LES steady state results and the instantaneous snapshot type of observations from satellites, significant correlations for both the instantaneous pixel-scale observations and the long-term averaged spatial patterns between the CTEI parameter and MBL cloud fraction are found from the satellite observations and are consistent with LES results. This suggests the potential of using AIRS and MODIS to quantify global and temporal characteristics of the cloud-topped MBL transition.« less
The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Li, X.; Khain, A.; Simpson, S.
2004-01-01
Cloud microphysics are inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles (i.e., pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail). Each type is described by a special size distribution function containing many categories (i.e. 33 bins). Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep cloud systems in the west Pacific warm pool region, in the sub-tropics (Florida) and in the mid-latitude using identical thermodynamic conditions but with different concentrations of CCN: a low 'clean' concentration and a high 'dirty' concentration.
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Young, David F.; Heck, Patrick W.; Liou, Kuo-Nan; Takano, Yoshihide
1992-01-01
The First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment (FIRE) Phase II Intensive Field Observations (IFO) were taken over southeastern Kansas between November 13 and December 7,1991, to determine cirrus cloud properties. The observations include in situ microphysical data; surface, aircraft, and satellite remote sensing; and measurements of divergence over meso- and smaller-scale areas using wind profilers. Satellite remote sensing of cloud characteristics is an essential aspect for understanding and predicting the role of clouds in climate variations. The objectives of the satellite cloud analysis during FIRE are to validate cloud property retrievals, develop advanced methods for extracting cloud information from satellite-measured radiances, and provide multiscale cloud data for cloud process studies and for verification of cloud generation models. This paper presents the initial results of cloud property analyses during FIRE-II using Geostationary Operational Environmental Satellite (GOES) data and NOAA Advanced Very High Resolution Radiometer (AVHRR) radiances.
Development of a Knowledge Base of Ti-Alloys From First-Principles and Thermodynamic Modeling
NASA Astrophysics Data System (ADS)
Marker, Cassie
An aging population with an active lifestyle requires the development of better load-bearing implants, which have high levels of biocompatibility and a low elastic modulus. Titanium alloys, in the body centered cubic phase, are great implant candidates, due to their mechanical properties and biocompatibility. The present work aims at investigating the thermodynamic and elastic properties of bcc Tialloys, using the integrated first-principles based on Density Functional Theory (DFT) and the CALculation of PHAse Diagrams (CALPHAD) method. The use of integrated first-principles calculations based on DFT and CALPHAD modeling has greatly reduced the need for trial and error metallurgy, which is ineffective and costly. The phase stability of Ti-alloys has been shown to greatly affect their elastic properties. Traditionally, CALPHAD modeling has been used to predict the equilibrium phase formation, but in the case of Ti-alloys, predicting the formation of two metastable phases o and alpha" is of great importance as these phases also drastically effect the elastic properties. To build a knowledge base of Ti-alloys, for biomedical load-bearing implants, the Ti-Mo-Nb-Sn-Ta-Zr system was studied because of the biocompatibility and the bcc stabilizing effects of some of the elements. With the focus on bcc Ti-rich alloys, a database of thermodynamic descriptions of each phase for the pure elements, binary and Ti-rich ternary alloys was developed in the present work. Previous thermodynamic descriptions for the pure elements were adopted from the widely used SGTE database for global compatibility. The previous binary and ternary models from the literature were evaluated for accuracy and new thermodynamic descriptions were developed when necessary. The models were evaluated using available experimental data, as well as the enthalpy of formation of the bcc phase obtained from first-principles calculations based on DFT. The thermodynamic descriptions were combined into a database ensuring that the sublattice models are compatible with each other. For subsystems, such as the Sn-Ta system, where no thermodynamic description had been evaluated and minimal experimental data was available, first-principles calculations based on DFT were used. The Sn-Ta system has two intermetallic phases, TaSn2 and Ta3Sn, with three solution phases: bcc, body centered tetragonal (bct) and diamond. First-principles calculations were completed on the intermetallic and solution phases. Special quasirandom structures (SQS) were used to obtain information about the solution phases across the entire composition range. The Debye-Gruneisen approach, as well as the quasiharmonic phonon method, were used to obtain the finite-temperature data. Results from the first-principles calculations and experiments were used to complete the thermodynamic description. The resulting phase diagram reproduced the first-principles calculations and experimental data accurately. In order to determine the effect of alloying on the elastic properties, first-principles calculations based on DFT were systematically done on the pure elements, five Ti-X binary systems and Ti-X-Y ternary systems (X ≠ Y = Mo, Nb, Sn, Ta Zr) in the bcc phase. The first-principles calculations predicted the single crystal elastic stiffness constants cij 's. Correspondingly, the polycrystalline aggregate properties were also estimated from the cij's, including bulk modulus B, shear modulus G and Young's modulus E. The calculated results showed good agreement with experimental results. The CALPHAD method was then adapted to assist in the database development of the elastic properties as a function of composition. On average, the database predicted the elastic properties of higher order Ti-alloys within 5 GPa of the experimental results. Finally, the formation of the metastable phases, o and alpha" was studied in the Ti-Ta and Ti-Nb systems. The formation energy of these phases, calculated from first-principles at 0 K, showed that the phases have similar formation energies to the bcc and hcp phases. Inelastic neutron scattering was completed on four different Ti-Nb compositions to study the entropy of the phases as well as the transformations occurring when the phases form and the phase fractions. Ongoing work is being done to use the experimental information to introduce thermodynamic descriptions for these two phases in the Ti-Nb system in order to be able to predict the formation and phase fractions. DFT based first-principles were used to predict the effect these phases have on the elastic properties and a rule of mixtures was used to determine the elastic properties of multi-phase alloys. The results were compared with experiments and showed that if the ongoing modeling can predict the phase fraction, the elastic database can accurately predict the elastic properties of the o and alpha" phases. This thesis provides a knowledge base of the thermodynamic and elastic properties of Ti-alloys from computational thermodynamics. The databases created will impact research activities on Ti-alloys and specifically efforts focused on Ti-alloys for biomedical applications.
Venus: Halide cloud condensation and volatile element inventories
NASA Technical Reports Server (NTRS)
Lewis, J. S.; Fegley, B., Jr.
1982-01-01
Several Venus cloud condensates, including A12C16 as well as halides, oxides and sulfides of arsenic and antimony, are assessed for their thermodynamic and geochemical plausibility. Aluminum chloride can confidently be ruled out, and condensation of arsenic sulfides on the surface will cause arsenic compounds to be too rare to produce the observed clouds. Antimony may conceivably be sufficiently volatile, but the expected molecular form is gaseous SbS, not the chloride. Arsenic and antimony compounds in the atmosphere will be regulated at very low levels by sulfide precipitation, irrespective of the planetary inventory of As and Sb. Thus the arguments for a volatile-deficient origin for Venus based on the depletion of water and mercury (relative to Earth) cannot be tested by a search for atmospheric arsenic or antimony.
Vapor pressures of solid hydrates of nitric acid - Implications for polar stratospheric clouds
NASA Technical Reports Server (NTRS)
Worsnop, Douglas R.; Fox, Lewis E.; Zahniser, Mark S.; Wofsy, Steven C.
1993-01-01
Thermodynamic data are presented for hydrates of nitric acid: HNO3.H2O, HNO3.2H2O, HNO3.3H2O, and a higher hydrate. Laboratory data indicate that nucleation and persistence of metastable HNO3.2H2O may be favored in polar stratospheric clouds over the slightly more stable HNO3.3H2O. Atmospheric observations indicate that some polar stratospheric clouds may be composed of HNO3.2H2O and HNO3.3H2O. Vapor transfer from HNO3.2H2O to HNO3.3H2O could be a key step in the sedimentation of HNO3, which plays an important role in the depletion of polar ozone.
Cloud of strings in {{f}}({{R}}) gravity
NASA Astrophysics Data System (ADS)
Morais Graça, J. P.; Lobo, Iarley P.; Salako, Ines G.
2018-05-01
We derive the solution for a spherically symmetric string cloud configuration in a d-dimensional spacetime in the framework of f(R) theories of gravity. We also analyze some thermodynamic properties of the joint black hole - cloud of strings solution. For its Hawking temperature, we found that the dependence of the mass with the horizon is significantly different in both theories. For the interaction of a black hole with thermal radiation, we found that the shapes of the curves are similar, but shifted. Our analysis generalizes some known results in the literature. IPL is Supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brazil) (150384/2017-3), JPMG and IPL thank Coordenaç ao de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for Financial Support
Mostafa, Ahmad; Medraj, Mamoun
2017-01-01
Fabrication of solar and electronic silicon wafers involves direct contact between solid, liquid and gas phases at near equilibrium conditions. Understanding of the phase diagrams and thermochemical properties of the Si-dopant binary systems is essential for providing processing conditions and for understanding the phase formation and transformation. In this work, ten Si-based binary phase diagrams, including Si with group IIIA elements (Al, B, Ga, In and Tl) and with group VA elements (As, Bi, N, P and Sb), have been reviewed. Each of these systems has been critically discussed on both aspects of phase diagram and thermodynamic properties. The available experimental data and thermodynamic parameters in the literature have been summarized and assessed thoroughly to provide consistent understanding of each system. Some systems were re-calculated to obtain a combination of the best evaluated phase diagram and a set of optimized thermodynamic parameters. As doping levels of solar and electronic silicon are of high technological importance, diffusion data has been presented to serve as a useful reference on the properties, behavior and quantities of metal impurities in silicon. This paper is meant to bridge the theoretical understanding of phase diagrams with the research and development of solar-grade silicon production, relying on the available information in the literature and our own analysis. PMID:28773034
Vibrational contributions to the phase stability of PbS-PbTe alloys
NASA Astrophysics Data System (ADS)
Doak, Jeff W.; Wolverton, C.; OzoliĆš, Vidvuds
2015-11-01
The thermoelectric figure of merit (Z T ) of semiconductors such as PbTe can be improved by forming nanostructures within the bulk of these materials. Alloying PbTe with PbS causes PbS-rich nanostructures to precipitate from the solid solution, scattering phonons and increasing Z T . Understanding the thermodynamics of this process is crucial to optimizing the efficiency gains of this technique. Previous calculations of the thermodynamics of PbS-PbTe alloys [(J. W. Doak and C. Wolverton, Phys. Rev. B 86, 144202 (2012), 10.1103/PhysRevB.86.144202] found that mixing energetics alone were not sufficient to quantitatively explain the thermodynamic driving force for phase separation in these materials: first-principles calculations of the thermodynamics of phase separation overestimate the thermodynamic driving force for precipitation of PbS-rich nanostructures from PbS-PbTe alloys. In this work, we re-examine the thermodynamics of PbS-PbTe, including the effects of vibrational entropy in the free energy through frozen-phonon calculations of special quasirandom structures (SQS) to explain this discrepancy between first-principles and experimental phase stability. We find that vibrational entropy of mixing reduces the calculated maximum miscibility gap temperature TG of PbS-PbTe by 470 K, bringing the error between calculated and experimental TG down from 700 to 230 K. Our calculated vibrational spectra of PbS-PbTe SQS exhibit dynamic instabilities of S ions that corroborate reports of low-T ferroelectriclike phase transitions in solid solutions of PbS and PbTe, which are not present in either of the constituent compounds. We use our calculated vibrational spectra to obtain phase transition temperatures, which are in qualitative agreement with experimental results for PbTe-rich alloys, as well as to predict the existence of a low-T displacive phase transition in PbS-rich PbS-PbTe, which has not yet been experimentally investigated.
NASA Technical Reports Server (NTRS)
Luo, Yali; Xu, Kuan-Man; Morrison, Hugh; McFarquhar, Greg M.; Wang, Zhien; Zhang, Gong
2007-01-01
A cloud-resolving model (CRM) is used to simulate the multiple-layer mixed-phase stratiform (MPS) clouds that occurred during a three-and-a-half day subperiod of the Department of Energy-Atmospheric Radiation Measurement Program s Mixed-Phase Arctic Cloud Experiment (M-PACE). The CRM is implemented with an advanced two-moment microphysics scheme, a state-of-the-art radiative transfer scheme, and a complicated third-order turbulence closure. Concurrent meteorological, aerosol, and ice nucleus measurements are used to initialize the CRM. The CRM is prescribed by time-varying large-scale advective tendencies of temperature and moisture and surface turbulent fluxes of sensible and latent heat. The CRM reproduces the occurrences of the single- and double-layer MPS clouds as revealed by the M-PACE observations. However, the simulated first cloud layer is lower and the second cloud layer thicker compared to observations. The magnitude of the simulated liquid water path agrees with that observed, but its temporal variation is more pronounced than that observed. As in an earlier study of single-layer cloud, the CRM also captures the major characteristics in the vertical distributions and temporal variations of liquid water content (LWC), total ice water content (IWC), droplet number concentration and ice crystal number concentration (nis) as suggested by the aircraft observations. However, the simulated mean values differ significantly from the observed. The magnitude of nis is especially underestimated by one order of magnitude. Sensitivity experiments suggest that the lower cloud layer is closely related to the surface fluxes of sensible and latent heat; the upper cloud layer is probably initialized by the large-scale advective cooling/moistening and maintained through the strong longwave (LW) radiative cooling near the cloud top which enhances the dynamical circulation; artificially turning off all ice-phase microphysical processes results in an increase in LWP by a factor of 3 due to interactions between the excessive LW radiative cooling and extra cloud water; heating caused by phase change of hydrometeors could affect the LWC and cloud top height by partially canceling out the LW radiative cooling. It is further shown that the resolved dynamical circulation appears to contribute more greatly to the evolution of the MPS cloud layers than the parameterized subgrid-scale circulation.
Aerosol-cloud interactions in Arctic mixed-phase stratocumulus
NASA Astrophysics Data System (ADS)
Solomon, A.
2017-12-01
Reliable climate projections require realistic simulations of Arctic cloud feedbacks. Of particular importance is accurately simulating Arctic mixed-phase stratocumuli (AMPS), which are ubiquitous and play an important role in regional climate due to their impact on the surface energy budget and atmospheric boundary layer structure through cloud-driven turbulence, radiative forcing, and precipitation. AMPS are challenging to model due to uncertainties in ice microphysical processes that determine phase partitioning between ice and radiatively important cloud liquid water. Since temperatures in AMPS are too warm for homogenous ice nucleation, ice must form through heterogeneous nucleation. In this presentation we discuss a relatively unexplored source of ice production-recycling of ice nuclei in regions of ice subsaturation. AMPS frequently have ice-subsaturated air near the cloud-driven mixed-layer base where falling ice crystals can sublimate, leaving behind IN. This study provides an idealized framework to understand feedbacks between dynamics and microphysics that maintain phase-partitioning in AMPS. In addition, the results of this study provide insight into the mechanisms and feedbacks that may maintain cloud ice in AMPS even when entrainment of IN at the mixed-layer boundaries is weak.
Phase transition thermodynamics of bisphenols.
Costa, José C S; Dávalos, Juan Z; Santos, Luís M N B F
2014-10-16
Herein we have studied, presented, and analyzed the phase equilibria thermodynamics of a bisphenols (BP-A, BP-E, BP-F, BP-AP, and BP-S) series. In particular, the heat capacities, melting temperatures, and vapor pressures at different temperatures as well as the standard enthalpies, entropies, and Gibbs energies of phase transition (fusion and sublimation) were experimentally determined. Also, we have presented the phase diagrams of each bisphenol derivative and investigated the key parameters related to the thermodynamic stability of the condensed phases. When all the bisphenol derivatives are compared at the same conditions, solids BP-AP and BP-S present lower volatilities (higher Gibbs energy of sublimation) and high melting temperatures due to the higher stability of their solid phases. Solids BP-A and BP-F present similar stabilities, whereas BP-E is more volatile. The introduction of -CH3 groups in BP-F (giving BP-E and BP-A) leads an entropic differentiation in the solid phase, whereas in the isotropic liquids the enthalpic and entropic differentiations are negligible.
NASA Astrophysics Data System (ADS)
Wang, H.; Kravitz, B.; Rasch, P. J.; Morrison, H.; Solomon, A.
2014-12-01
Previous process-oriented modeling studies have highlighted the dependence of effectiveness of cloud brightening by aerosols on cloud regimes in warm marine boundary layer. Cloud microphysical processes in clouds that contain ice, and hence the mechanisms that drive aerosol-cloud interactions, are more complicated than in warm clouds. Interactions between ice particles and liquid drops add additional levels of complexity to aerosol effects. A cloud-resolving model is used to study aerosol-cloud interactions in the Arctic triggered by strong aerosol emissions, through either geoengineering injection or concentrated sources such as shipping and fires. An updated cloud microphysical scheme with prognostic aerosol and cloud particle numbers is employed. Model simulations are performed in pure super-cooled liquid and mixed-phase clouds, separately, with or without an injection of aerosols into either a clean or a more polluted Arctic boundary layer. Vertical mixing and cloud scavenging of particles injected from the surface is still quite efficient in the less turbulent cold environment. Overall, the injection of aerosols into the Arctic boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. The pure liquid clouds are more susceptible to the increase in aerosol number concentration than the mixed-phase clouds. Rain production processes are more effectively suppressed by aerosol injection, whereas ice precipitation (snow) is affected less; thus the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. Aerosol injection into a clean boundary layer results in a greater cloud albedo increase than injection into a polluted one, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, the impact of dynamical feedback due to precipitation changes is small. According to these results, which are dependent upon the representation of ice nucleation processes in the employed microphysical scheme, Arctic geoengineering/shipping could have substantial local radiative effects, but is unlikely to be effective as the sole means of counterbalancing warming due to climate change.
NASA Astrophysics Data System (ADS)
Hoose, C.; Lohmann, U.; Stier, P.; Verheggen, B.; Weingartner, E.
2008-04-01
The global aerosol-climate model ECHAM5-HAM has been extended by an explicit treatment of cloud-borne particles. Two additional modes for in-droplet and in-crystal particles are introduced, which are coupled to the number of cloud droplet and ice crystal concentrations simulated by the ECHAM5 double-moment cloud microphysics scheme. Transfer, production, and removal of cloud-borne aerosol number and mass by cloud droplet activation, collision scavenging, aqueous-phase sulfate production, freezing, melting, evaporation, sublimation, and precipitation formation are taken into account. The model performance is demonstrated and validated with observations of the evolution of total and interstitial aerosol concentrations and size distributions during three different mixed-phase cloud events at the alpine high-altitude research station Jungfraujoch (Switzerland). Although the single-column simulations cannot be compared one-to-one with the observations, the governing processes in the evolution of the cloud and aerosol parameters are captured qualitatively well. High scavenged fractions are found during the presence of liquid water, while the release of particles during the Bergeron-Findeisen process results in low scavenged fractions after cloud glaciation. The observed coexistence of liquid and ice, which might be related to cloud heterogeneity at subgrid scales, can only be simulated in the model when assuming nonequilibrium conditions.
Critical evaluation and thermodynamic assessment of the ZrPb system
NASA Astrophysics Data System (ADS)
Arias, D.; Abriata, J.; Gribaudo, L.
1996-04-01
In the present work we have critically evaluated the existing experimental information regarding phase stabilities in the ZrPb system. From this, the ZrPb phase diagram has been assessed up to 50 at.% Pb. The proposed diagram has been further supported by a thermodynamic model calculation.
NASA Technical Reports Server (NTRS)
Grund, C. J.; Eloranta, E. W.
1996-01-01
During the First ISCCP Region Experiment (FIRE) cirrus intensive field observation (IFO) the High Spectral Resolution Lidar was operated from a roof top site on the University of Wisconsin-Madison campus. Because the HSRL technique separately measures the molecular and cloud particle backscatter components of the lidar return, the optical thickness is determined independent of particle backscatter. This is accomplished by comparing the known molecular density distribution to the observed decrease in molecular backscatter signal with altitude. The particle to molecular backscatter ratio yields calibrated measurements of backscatter cross sections that can be plotted ro reveal cloud morphology without distortion due to attenuation. Changes in cloud particle size, shape, and phase affect the backscatter to extinction ratio (backscatter-phase function). The HSRL independently measures cloud particle backscatter phase function. This paper presents a quantitative analysis of the HSRL cirrus cloud data acquired over an approximate 33 hour period of continuous near zenith observations. Correlations between small scale wind structure and cirrus cloud morphology have been observed. These correlations can bias the range averaging inherent in wind profiling lidars of modest vertical resolution, leading to increased measurement errors at cirrus altitudes. Extended periods of low intensity backscatter were noted between more strongly organized cirrus cloud activity. Optical thicknesses ranging from 0.01-1.4, backscatter phase functions between 0.02-0.065 sr (exp -1) and backscatter cross sections spanning 4 orders of magnitude were observed. the altitude relationship between cloud top and bottom boundaries and the cloud optical center altitude was dependent on the type of formation observed Cirrus features were observed with characteristic wind drift estimated horizontal sizes of 5-400 km. The clouds frequently exhibited cellular structure with vertical to horizontal dimension ratios of 1:5-1:1.
Experimental study of phase equilibria and thermodynamic optimization of the Fe-Zn-O system
NASA Astrophysics Data System (ADS)
Degterov, Sergei A.; Pelton, Arthur D.; Jak, Evgueni; Hayes, Peter C.
2001-08-01
The Fe-Zn-O phase diagram in air was studied over the temperature range from 900 °C to 1500 °C. The compositions of the phases in quenched samples were obtained by electron probe X-ray microanalysis (EPMA). This experimental technique is not affected by zinc losses resulting from vaporization of zinc at high temperatures. The model for the spinel solid solution was developed within the framework of the compound-energy formalism (CEF). The choice of parameters of the CEF and the sequence of their optimization can have a major influence on the predictions in multicomponent phases. These choices can only be made rationally by reference to the specific model being represented in the CEF. This is discussed for the case of the two-sublattice spinel model. In the limiting case, the proposed model reduces to the model by O’Neill and Navrotsky for spinels. When the CEF is used in combination with the equation of Hillert and Jarl to describe the magnetic contribution to thermodynamic functions of a solution, it is necessary to assign certain values of magnetic properties to all pseudocomponents and to magnetic interaction parameters to obtain the most reasonable approximation of the magnetic properties of a solution. It was shown how this can be done based on very limited experimental data. The same equations can be used when the Murnaghan or the Birch-Murnaghan equation is combined with the CEF to describe the pressure dependence of thermodynamic functions. The polynomial model was used to describe the properties of wustite and zincite, and the modified quasichemical model was used for the liquid slag. All thermodynamic and phase-equilibria data on the Fe-O and Fe-Zn-O systems were critically evaluated, and parameters of the models were optimized to give a self-consistent set of thermodynamic functions of the phases in these systems. All experimental data are reproduced within experimental error limits. These include the thermodynamic properties of phases (such as specific heat, heat content, entropy, enthalpy, and Gibbs energy); the cation distribution between octahedral and tetrahedral sites in spinel; the oxygen partial pressure over single-phase, two-phase, and three-phase regions; the phase boundaries (liquidus, solidus, and subsolidus); and the tie-lines.
Multiple reentrant phase transitions and triple points in Lovelock thermodynamics
NASA Astrophysics Data System (ADS)
Frassino, Antonia M.; Kubizňák, David; Mann, Robert B.; Simovic, Fil
2014-09-01
We investigate the effects of higher curvature corrections from Lovelock gravity on the phase structure of asymptotically AdS black holes, treating the cosmological constant as a thermodynamic pressure. We examine how various thermodynamic phenomena, such as Van der Waals behaviour, reentrant phase transitions (RPT), and tricritical points are manifest for U(1) charged black holes in Gauss-Bonnet and 3rd-order Lovelock gravities. We furthermore observe a new phenomenon of `multiple RPT' behaviour, in which for fixed pressure the small/large/small/large black hole phase transition occurs as the temperature of the system increases. We also find that when the higher-order Lovelock couplings are related in a particular way, a peculiar isolated critical point emerges for hyperbolic black holes and is characterized by non-standard critical exponents.
Characteristics Associated with the Madden-Julian Oscillation at Manus Island
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Liping; McFarlane, Sally A.; Flaherty, Julia E.
2013-05-15
Ground-based high temporal and vertical resolution datasets from 2002 to 2008 of observations at the Atmospheric Radiation Measurement (ARM) Tropical Western Pacific (TWP) site on Manus Island, Papua New Guinea are used to examine the evolution of clouds and rainfall associated with the MJO life cycle. A composite MJO event is developed based on the NOAA MJO Index 4 using 13 events. The analysis shows that the cloud evolution during the composited MJO life cycle depicts a two-phase structure consisting of a development phase and a mature phase. During the development phase, congestus is the most important cloud type; duringmore » the mature phase, deep convection is the dominant cloud type. Consistent with this two-phase structure, the heavy rainfall frequency also shows a two-peak structure during the MJO life cycle. Light rainfall does not show a clear relation to the MJO life cycle, but shows variability on shorter time scales. From the development phase to the mature phase, the MJO structure shifts from the Type I to Type II structure, showing a different phase relationship between convection and dynamic fields (or wave motion) in the development and mature phases. During the shift, mid-level clouds play an important role in moving moisture to the mid-troposphere and preparing the atmosphere for the following deep convection. The discharge-recharge theory explains some of observed features of the MJO evolution at the ARM TWP Manus Island site.« less
Intensification of convective extremes driven by cloud-cloud interaction
NASA Astrophysics Data System (ADS)
Moseley, Christopher; Hohenegger, Cathy; Berg, Peter; Haerter, Jan O.
2016-10-01
In a changing climate, a key role may be played by the response of convective-type cloud and precipitation to temperature changes. Yet, it is unclear if convective precipitation intensities will increase mainly due to thermodynamic or dynamical processes. Here we perform large eddy simulations of convection by imposing a realistic diurnal cycle of surface temperature. We find convective events to gradually self-organize into larger cloud clusters and those events occurring late in the day to produce the highest precipitation intensities. Tracking rain cells throughout their life cycles, we show that events which result from collisions respond strongly to changes in boundary conditions, such as temperature changes. Conversely, events not resulting from collisions remain largely unaffected by the boundary conditions. Increased surface temperature indeed leads to more interaction between events and stronger precipitation extremes. However, comparable intensification occurs when leaving temperature unchanged but simply granting more time for self-organization. These findings imply that the convective field as a whole acquires a memory of past precipitation and inter-cloud dynamics, driving extremes. For global climate model projections, our results suggest that the interaction between convective clouds must be incorporated to simulate convective extremes and the diurnal cycle more realistically.
The Rossby Centre Regional Atmospheric Climate Model part II: application to the Arctic climate.
Jones, Colin G; Wyser, Klaus; Ullerstig, Anders; Willén, Ulrika
2004-06-01
The Rossby Centre regional climate model (RCA2) has been integrated over the Arctic Ocean as part of the international ARCMIP project. Results have been compared to observations derived from the SHEBA data set. The standard RCA2 model overpredicts cloud cover and downwelling longwave radiation, during the Arctic winter. This error was improved by introducing a new cloud parameterization, which significantly improves the annual cycle of cloud cover. Compensating biases between clear sky downwelling longwave radiation and longwave radiation emitted from cloud base were identified. Modifications have been introduced to the model radiation scheme that more accurately treat solar radiation interaction with ice crystals. This leads to a more realistic representation of cloud-solar radiation interaction. The clear sky portion of the model radiation code transmits too much solar radiation through the atmosphere, producing a positive bias at the top of the frequent boundary layer clouds. A realistic treatment of the temporally evolving albedo, of both sea-ice and snow, appears crucial for an accurate simulation of the net surface energy budget. Likewise, inclusion of a prognostic snow-surface temperature seems necessary, to accurately simulate near-surface thermodynamic processes in the Arctic.
Toscani, S
2002-05-01
In this communication, an application of classical thermodynamics to crystalline solid state polymorphism is shown to allow stability p, T domains and stability hierarchy among crystalline phases of a polymorph to be defined by constructing the unary p, T phase diagram. The three topological rules upon which this construction is founded are presented; the first one is a straight consequence of the least vapour pressure criterion by Ostwald. Calculation of triple point co-ordinates and of two-phase equilibrium curves is based upon using both thermodynamic and crystallographic data obtained at ordinary pressure. Clapeyron equation allows the slopes of the straight lines representing equilibria between condensed phases to be calculated and, hence, triple points situated at high or negative pressure to be determined. On the other hand, the hierarchy among the thermodynamic stability degrees of the crystalline varieties may be inferred from the location of the sublimation curves, by merely acknowledging inequalities among vapour pressures at each temperature on the whole T-range. These building-up processes are pointed out by outlining the achievement of a phase diagram related to the tetramorphism of fananserine, an anxiolytic drug. Three out four crystalline forms, namely phases II, III and IV, possess their own stability domain, although those belonging to phases II and III are limited at high pressure by that of phase IV. Conversely, phase I is overall metastable and exhibits a whole monotropic behaviour.
NASA Technical Reports Server (NTRS)
Li, Xiao-Fan; Sui, C.-H.; Lau, K.-M.; Tao, W.-K.
2004-01-01
Prognostic cloud schemes are increasingly used in weather and climate models in order to better treat cloud-radiation processes. Simplifications are often made in such schemes for computational efficiency, like the scheme being used in the National Centers for Environment Prediction models that excludes some microphysical processes and precipitation-radiation interaction. In this study, sensitivity tests with a 2D cloud resolving model are carried out to examine effects of the excluded microphysical processes and precipitation-radiation interaction on tropical thermodynamics and cloud properties. The model is integrated for 10 days with the imposed vertical velocity derived from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment. The experiment excluding the depositional growth of snow from cloud ice shows anomalous growth of cloud ice and more than 20% increase of fractional cloud cover, indicating that the lack of the depositional snow growth causes unrealistically large mixing ratio of cloud ice. The experiment excluding the precipitation-radiation interaction displays a significant cooling and drying bias. The analysis of heat and moisture budgets shows that the simulation without the interaction produces more stable upper troposphere and more unstable mid and lower troposphere than does the simulation with the interaction. Thus, the suppressed growth of ice clouds in upper troposphere and stronger radiative cooling in mid and lower troposphere are responsible for the cooling bias, and less evaporation of rain associated with the large-scale subsidence induces the drying in mid and lower troposphere.
Evaluation of AIRS cloud properties using MPACE data
NASA Astrophysics Data System (ADS)
Wu, Xuebao; Li, Jun; Menzel, W. Paul; Huang, Allen; Baggett, Kevin; Revercomb, Henry
2005-12-01
Retrieval of cloud properties from the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite has been investigated. The cloud products from the collocated MODerate resolution Imaging Spectroradiometer (MODIS) data are used to characterize the AIRS sub-pixel cloud information such as cloud phase, cloud coverage, and cloud layer information. A Minimum Residual (MR) approach is used to retrieve cloud microphysical properties once the cloud top pressure (CTP) and effective cloud amount (ECA) are determined from AIRS CO2 absorption channels between 720 and 790 cm-1. The cloud microphysical properties can be retrieved by minimizing the differences between the observations and the calculations using AIRS longwave window channels between 790 and 1130 cm-1. AIRS is used to derive cloud properties during the Mixed Phase Arctic Cloud Experiment (MPACE) field campaign. Comparison with measurements obtained from lidar data is made for a test day, showing that AIRS cloud property retrievals agree with in situ lidar observations. Due to the large solar zenith angle, the MODIS operational retrieval approach is not able to provide cloud microphysics north of Barrow, Alaska; however, AIRS provides cloud microphysical properties with its high spectral resolution IR measurements.
NASA Astrophysics Data System (ADS)
Wong, Michael H.; Atreya, Sushil K.; Kuhn, William R.; Romani, Paul N.; Mihalka, Kristen M.
2015-01-01
Models of cloud condensation under thermodynamic equilibrium in planetary atmospheres are useful for several reasons. These equilibrium cloud condensation models (ECCMs) calculate the wet adiabatic lapse rate, determine saturation-limited mixing ratios of condensing species, calculate the stabilizing effect of latent heat release and molecular weight stratification, and locate cloud base levels. Many ECCMs trace their heritage to Lewis (Lewis, J.S. [1969]. Icarus 10, 365-378) and Weidenschilling and Lewis (Weidenschilling, S.J., Lewis, J.S. [1973]. Icarus 20, 465-476). Calculation of atmospheric structure and gas mixing ratios are correct in these models. We resolve errors affecting the cloud density calculation in these models by first calculating a cloud density rate: the change in cloud density with updraft length scale. The updraft length scale parameterizes the strength of the cloud-forming updraft, and converts the cloud density rate from the ECCM into cloud density. The method is validated by comparison with terrestrial cloud data. Our parameterized updraft method gives a first-order prediction of cloud densities in a “fresh” cloud, where condensation is the dominant microphysical process. Older evolved clouds may be better approximated by another 1-D method, the diffusive-precipitative Ackerman and Marley (Ackerman, A.S., Marley, M.S. [2001]. Astrophys. J. 556, 872-884) model, which represents a steady-state equilibrium between precipitation and condensation of vapor delivered by turbulent diffusion. We re-evaluate observed cloud densities in the Galileo Probe entry site (Ragent, B. et al. [1998]. J. Geophys. Res. 103, 22891-22910), and show that the upper and lower observed clouds at ∼0.5 and ∼3 bars are consistent with weak (cirrus-like) updrafts under conditions of saturated ammonia and water vapor, respectively. The densest observed cloud, near 1.3 bar, requires unexpectedly strong updraft conditions, or higher cloud density rates. The cloud density rate in this layer may be augmented by a composition with non-NH4SH components (possibly including adsorbed NH3).
NASA Astrophysics Data System (ADS)
Boeke, R.; Taylor, P. C.; Li, Y.
2017-12-01
Arctic cloud amount as simulated in CMIP5 models displays large intermodel spread- models disagree on the processes important for cloud formation as well as the radiative impact of clouds. The radiative response to cloud forcing can be better assessed when the drivers of Arctic cloud formation are known. Arctic cloud amount (CA) is a function of both atmospheric and surface conditions, and it is crucial to separate the influences of unique processes to understand why the models are different. This study uses a multilinear regression methodology to determine cloud changes using 3 variables as predictors: lower tropospheric stability (LTS), 500-hPa vertical velocity (ω500), and sea ice concentration (SIC). These three explanatory variables were chosen because their effects on clouds can be attributed to unique climate processes: LTS is a thermodynamic indicator of the relationship between clouds and atmospheric stability, SIC determines the interaction between clouds and the surface, and ω500 is a metric for dynamical change. Vertical, seasonal profiles of necessary variables are obtained from the Coupled Model Intercomparison Project 5 (CMIP5) historical simulation, an ocean-atmosphere couple model forced with the best-estimate natural and anthropogenic radiative forcing from 1850-2005, and statistical significance tests are used to confirm the regression equation. A unique heuristic model will be constructed for each climate model and for observations, and models will be tested by their ability to capture the observed cloud amount and behavior. Lastly, the intermodel spread in Arctic cloud amount will be attributed to individual processes, ranking the relative contributions of each factor to shed light on emergent constraints in the Arctic cloud radiative effect.
A Bayesian Interpretation of First-Order Phase Transitions
NASA Astrophysics Data System (ADS)
Davis, Sergio; Peralta, Joaquín; Navarrete, Yasmín; González, Diego; Gutiérrez, Gonzalo
2016-03-01
In this work we review the formalism used in describing the thermodynamics of first-order phase transitions from the point of view of maximum entropy inference. We present the concepts of transition temperature, latent heat and entropy difference between phases as emergent from the more fundamental concept of internal energy, after a statistical inference analysis. We explicitly demonstrate this point of view by making inferences on a simple game, resulting in the same formalism as in thermodynamical phase transitions. We show that analogous quantities will inevitably arise in any problem of inferring the result of a yes/no question, given two different states of knowledge and information in the form of expectation values. This exposition may help to clarify the role of these thermodynamical quantities in the context of different first-order phase transitions such as the case of magnetic Hamiltonians (e.g. the Potts model).
NASA Astrophysics Data System (ADS)
Kim, Jaeheon; Kim, Hyun-Goo; Kim, Sang Joon; Zhang, Bo
2017-12-01
We present the results of mapping observations and stability analyses toward the filamentary dark cloud GF 6. We investigate the internal structures of a typical filamentary dark cloud GF 6 to know whether the filamentary dark cloud will form stars. We perform radio observations with both 12CO (J=1-0) and 13CO (J=1-0) emission lines to examine the mass distribution and its evolutionary status. The 13CO gas column density map shows eight subclumps in the GF 6 region with sizes on a sub-pc scale. The resulting local thermodynamic equilibrium masses of all the subclumps are too low to form stars against the turbulent dissipation. We also investigate the properties of embedded infrared point sources to know whether they are newly formed stars. The infrared properties also indicate that these point sources are not related to star forming activities associated with GF 6. Both radio and infrared properties indicate that the filamentary dark cloud GF 6 is too light to contract gravitationally and will eventually be dissipated away.
Thermodynamics of manganese oxides: Sodium, potassium, and calcium birnessite and cryptomelane
Birkner, Nancy; Navrotsky, Alexandra
2017-01-01
Manganese oxides with layer and tunnel structures occur widely in nature and inspire technological applications. Having variable compositions, these structures often are found as small particles (nanophases). This study explores, using experimental thermochemistry, the role of composition, oxidation state, structure, and surface energy in the their thermodynamic stability. The measured surface energies of cryptomelane, sodium birnessite, potassium birnessite and calcium birnessite are all significantly lower than those of binary manganese oxides (Mn3O4, Mn2O3, and MnO2), consistent with added stabilization of the layer and tunnel structures at the nanoscale. Surface energies generally decrease with decreasing average manganese oxidation state. A stabilizing enthalpy contribution arises from increasing counter-cation content. The formation of cryptomelane from birnessite in contact with aqueous solution is favored by the removal of ions from the layered phase. At large surface area, surface-energy differences make cryptomelane formation thermodynamically less favorable than birnessite formation. In contrast, at small to moderate surface areas, bulk thermodynamics and the energetics of the aqueous phase drive cryptomelane formation from birnessite, perhaps aided by oxidation-state differences. Transformation among birnessite phases of increasing surface area favors compositions with lower surface energy. These quantitative thermodynamic findings explain and support qualitative observations of phase-transformation patterns gathered from natural and synthetic manganese oxides. PMID:28130549
Cloud chemistry in eastern China: Observations from Mt. Tai
NASA Astrophysics Data System (ADS)
Collett, J. L.; Shen, X.; Lee, T.; Wang, X.; Li, Y.; Wang, W.; Wang, T.
2010-07-01
Until recently, studies of fog and cloud chemistry in China have been rare - even though the fate of China’s large sulfur dioxide emissions depends, in part, on the ability of regional clouds to support rapid aqueous oxidation to sulfate. Sulfur dioxide oxidized in regional clouds is more likely to be removed by wet deposition while sulfur dioxide that undergoes slower gas phase oxidation is expected to survive longer in the atmosphere and be transported over a much broader spatial scale. Two 2008 field campaigns conducted at Mt. Tai, an isolated peak on the NE China plain, provide insight into the chemical composition of regional clouds and the importance of various aqueous phase sulfur oxidation pathways. Single and two-stage Caltech Active Strand Cloudwater Collectors were used to collect bulk and drop size-resolved samples of cloudwater. Collected cloudwater was analyzed for key species that influence in-cloud sulfate production, including pH, S(IV), H2O2, Fe and Mn. Other major cloud solutes, including inorganic ions, total organic carbon (TOC), formaldehyde, and organic acids were also analyzed, as were gas phase concentrations of SO2, O3, and H2O2. A wide range of cloud pH was observed, from below 3 to above 6. High concentrations of cloudwater sulfate were consistent with abundant sulfur dioxide emissions in the region. Sampled clouds were also found to contain high concentrations of ammonium, nitrate, and organic carbon. Peak TOC concentrations reached approximately 200 ppmC, among the highest concentrations ever measured in cloudwater. Hydrogen peroxide was found to be the dominant aqueous phase S(IV) oxidant when cloud pH was less than approximately 5.4. Despite its fast reaction with sulfur dioxide in cloud droplets, high concentrations of residual hydrogen peroxide were measured in some clouds implying a substantial additional capacity for sulfate production. Ozone was found to be an important S(IV) oxidant when cloud pH was high. Oxidation of S(IV) by oxygen, catalyzed by Fe (III) and Mn(II) was generally the second or third fastest pathway for sulfate production. Differences between the pH and trace metal concentrations of small and large cloud droplets were observed, giving rise to aqueous phase sulfate production rates that were drop size-dependent for the ozone and metal-catalyzed pathways.
NASA Astrophysics Data System (ADS)
Mendonça, João M.; Malik, Matej; Demory, Brice-Olivier; Heng, Kevin
2018-04-01
Recently acquired Hubble and Spitzer phase curves of the short-period hot Jupiter WASP-43b make it an ideal target for confronting theory with data. On the observational front, we re-analyze the 3.6 and 4.5 μm Spitzer phase curves and demonstrate that our improved analysis better removes residual red noise due to intra-pixel sensitivity, which leads to greater fluxes emanating from the nightside of WASP-43b, thus reducing the tension between theory and data. On the theoretical front, we construct cloud-free and cloudy atmospheres of WASP-43b using our Global Circulation Model (GCM), THOR, which solves the non-hydrostatic Euler equations (compared to GCMs that typically solve the hydrostatic primitive equations). The cloud-free atmosphere produces a reasonable fit to the dayside emission spectrum. The multi-phase emission spectra constrain the cloud deck to be confined to the nightside and have a finite cloud-top pressure. The multi-wavelength phase curves are naturally consistent with our cloudy atmospheres, except for the 4.5 μm phase curve, which requires the presence of enhanced carbon dioxide in the atmosphere of WASP-43b. Multi-phase emission spectra at higher spectral resolution, as may be obtained using the James Webb Space Telescope, and a reflected-light phase curve at visible wavelengths would further constrain the properties of clouds in WASP-43b.
Impact of Aerosol Processing on Orographic Clouds
NASA Astrophysics Data System (ADS)
Pousse-Nottelmann, Sara; Zubler, Elias M.; Lohmann, Ulrike
2010-05-01
Aerosol particles undergo significant modifications during their residence time in the atmosphere. Physical processes like coagulation, coating and water uptake, and aqueous surface chemistry alter the aerosol size distribution and composition. At this, clouds play a primary role as physical and chemical processing inside cloud droplets contributes considerably to the changes in aerosol particles. A previous study estimates that on global average atmospheric particles are cycled three times through a cloud before being removed from the atmosphere [1]. An explicit and detailed treatment of cloud-borne particles has been implemented in the regional weather forecast and climate model COSMO-CLM. The employed model version includes a two-moment cloud microphysical scheme [2] that has been coupled to the aerosol microphysical scheme M7 [3] as described by Muhlbauer and Lohmann, 2008 [4]. So far, the formation, transfer and removal of cloud-borne aerosol number and mass were not considered in the model. Following the parameterization for cloud-borne particles developed by Hoose et al., 2008 [5], distinction between in-droplet and in-crystal particles is made to more physically account for processes in mixed-phase clouds, such as the Wegener-Bergeron-Findeisen process and contact and immersion freezing. In our model, this approach has been extended to allow for aerosol particles in five different hydrometeors: cloud droplets, rain drops, ice crystals, snow flakes and graupel. We account for nucleation scavenging, freezing and melting processes, autoconversion, accretion, aggregation, riming and selfcollection, collisions between interstitial aerosol particles and hydrometeors, ice multiplication, sedimentation, evaporation and sublimation. The new scheme allows an evaluation of the cloud cycling of aerosol particles by tracking the particles even when scavenged into hydrometeors. Global simulations of aerosol processing in clouds have recently been conducted by Hoose et al. [6]. Our investigation regarding the influence of aerosol processing will focus on the regional scale using a cloud-system resolving model with a much higher resolution. Emphasis will be placed on orographic mixed-phase precipitation. Different two-dimensional simulations of idealized orographic clouds will be conducted to estimate the effect of aerosol processing on orographic cloud formation and precipitation. Here, cloud lifetime, location and extent as well as the cloud type will be of particular interest. In a supplementary study, the new parameterization will be compared to observations of total and interstitial aerosol concentrations and size distribution at the remote high alpine research station Jungfraujoch in Switzerland. In addition, our simulations will be compared to recent simulations of aerosol processing in warm, mixed-phase and cold clouds, which have been carried out at the location of Jungfraujoch station [5]. References: [1] Pruppacher & Jaenicke (1995), The processing of water vapor and aerosols by atmospheric clouds, a global estimate, Atmos. Res., 38, 283295. [2] Seifert & Beheng (2006), A two-moment microphysics parameterization for mixed-phase clouds. Part 1: Model description, Meteorol. Atmos. Phys., 92, 4566. [3] Vignati et al. (2004), An efficient size-resolved aerosol microphysics module for large-scale transport models, J. Geophys. Res., 109, D22202 [4] Muhlbauer & Lohmann (2008), Sensitivity studies of the role of aerosols in warm-phase orographic precipitation in different flow regimes, J. Atmos. Sci., 65, 25222542. [5] Hoose et al. (2008), Aerosol processing in mixed-phase clouds in ECHAM5HAM: Model description and comparison to observations, J. Geophys. Res., 113, D071210. [6] Hoose et al. (2008), Global simulations of aerosol processing in clouds, Atmos. Chem. Phys., 8, 69396963.
Thermodynamics of HMX Polymorphs and HMX/RDX Mixtures
Myint, Philip C.; Nichols, Albert L.
2016-12-09
In this paper, we present thermodynamic models for the five most commonly studied phases of the energetic material octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX): liquid HMX and four solid polymorphs (α-, β-, γ-, and δ-HMX). We show results for the density, heat capacity, bulk modulus, and sound speed, as well as a phase diagram that illustrates the temperature and pressure regions over which the various HMX phases are most thermodynamically stable. The models are based on the same equation of state presented in our recently published paper [Myint et al., Ind. Eng. Chem. Res., 2016, 55, 2252] on another energetic material, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Wemore » combine our HMX and RDX models together so that the equation of state can also be applied to liquid and solid mixtures of HMX/RDX. This allows us to generate an HMX/RDX phase diagram and calculate the enthalpy change associated with a few different kinds of phase transitions that these mixtures may undergo. Our paper is the first to present a single equation of state that is capable of modeling both pure HMX and HMX/RDX mixtures. A distinct feature of HMX is the strongly metastable nature of its polymorphs. This has caused some ambiguity in the literature regarding the thermodynamic stability of α-HMX. Finally, by examining possible arrangements for the relative order of the six different solid-solid transition (α–β, α–γ, α–δ, β–γ, β–δ, and γ–δ) temperatures, we conclude that α-HMX must be thermodynamically stable so that the HMX phase diagram must have an α phase region.« less
Thermodynamics of the relativistic Fermi gas in D dimensions
NASA Astrophysics Data System (ADS)
Sevilla, Francisco J.; Piña, Omar
2017-09-01
The influence of spatial dimensionality and particle-antiparticle pair production on the thermodynamic properties of the relativistic Fermi gas, at finite chemical potential, is studied. Resembling a "phase transition", qualitatively different behaviors of the thermodynamic susceptibilities, namely the isothermal compressibility and the specific heat, are markedly observed at different temperature regimes as function of the system dimensionality and of the rest mass of the particles. A minimum in the temperature dependence of the isothermal compressibility marks a characteristic temperature, in the range of tenths of the Fermi temperature, at which the system transit from a "normal" phase, to a phase where the gas compressibility grows as a power law of the temperature.
CLEPS 1.0: A new protocol for cloud aqueous phase oxidation of VOC mechanisms
NASA Astrophysics Data System (ADS)
Mouchel-Vallon, Camille; Deguillaume, Laurent; Monod, Anne; Perroux, Hélène; Rose, Clémence; Ghigo, Giovanni; Long, Yoann; Leriche, Maud; Aumont, Bernard; Patryl, Luc; Armand, Patrick; Chaumerliac, Nadine
2017-03-01
A new detailed aqueous phase mechanism named the Cloud Explicit Physico-chemical Scheme (CLEPS 1.0) is proposed to describe the oxidation of water soluble organic compounds resulting from isoprene oxidation. It is based on structure activity relationships (SARs) which provide global rate constants together with branching ratios for HOṡ abstraction and addition on atmospheric organic compounds. The GROMHE SAR allows the evaluation of Henry's law constants for undocumented organic compounds. This new aqueous phase mechanism is coupled with the MCM v3.3.1 gas phase mechanism through a mass transfer scheme between gas phase and aqueous phase. The resulting multiphase mechanism has then been implemented in a model based on the Dynamically Simple Model for Atmospheric Chemical Complexity (DSMACC) using the Kinetic PreProcessor (KPP) that can serve to analyze data from cloud chamber experiments and field campaigns. The simulation of permanent cloud under low-NOx conditions describes the formation of oxidized monoacids and diacids in the aqueous phase as well as a significant influence on the gas phase chemistry and composition and shows that the aqueous phase reactivity leads to an efficient fragmentation and functionalization of organic compounds.
NASA Astrophysics Data System (ADS)
Lawson, P.; Stamnes, K.; Stamnes, J.; Zmarzly, P.; O'Connor, D.; Koskulics, J.; Hamre, B.
2008-12-01
A tethered balloon system specifically designed to collect microphysical data in mixed-phase clouds was deployed in Arctic stratus clouds during May 2008 near Ny-Alesund, Svalbard, at 79 degrees North Latitude. This is the first time a tethered balloon system with a cloud particle imager (CPI) that records high-resolution digital images of cloud drops and ice particles has been operated in cloud. The custom tether supplies electrical power to the instrument package, which in addition to the CPI houses a 4-pi short-wavelength radiometer and a met package that measures temperature, humidity, pressure, GPS position, wind speed and direction. The instrument package was profiled vertically through cloud up to altitudes of 1.6 km. Since power was supplied to the instrument package from the ground, it was possible to keep the balloon package aloft for extended periods of time, up to 9 hours at Ny- Ålesund, which was limited only by crew fatigue. CPI images of cloud drops and the sizes, shapes and degree of riming of ice particles are shown throughout vertical profiles of Arctic stratus clouds. The images show large regions of mixed-phase cloud from -8 to -2 C. The predominant ice crystal habits in these regions are needles and aggregates of needles. The amount of ice in the mixed-phase clouds varied considerably and did not appear to be a function of temperature. On some occasions, ice was observed near cloud base at -2 C with supercooled cloud above to - 8 C that was devoid of ice. Measurements of shortwave radiation are also presented. Correlations between particle distributions and radiative measurements will be analyzed to determine the effect of these Arctic stratus clouds on radiative forcing.
Structure of ice crystallized from supercooled water
Malkin, Tamsin L.; Murray, Benjamin J.; Brukhno, Andrey V.; Anwar, Jamshed; Salzmann, Christoph G.
2012-01-01
The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I. Stacking disorder and stacking faults have been reported earlier for metastable ice I, but only for ice crystallizing in mesopores and in samples recrystallized from high-pressure ice phases rather than in water droplets. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable ice as a function of the nature and extent of stacking disorder using well-characterized samples. PMID:22232652
Structure of ice crystallized from supercooled water.
Malkin, Tamsin L; Murray, Benjamin J; Brukhno, Andrey V; Anwar, Jamshed; Salzmann, Christoph G
2012-01-24
The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I. Stacking disorder and stacking faults have been reported earlier for metastable ice I, but only for ice crystallizing in mesopores and in samples recrystallized from high-pressure ice phases rather than in water droplets. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable ice as a function of the nature and extent of stacking disorder using well-characterized samples.
NASA Astrophysics Data System (ADS)
Blanco, Joaquín. E.; Nolan, David S.; Mapes, Brian E.
2016-10-01
This second part of a two-part study uses Weather Research and Forecasting simulations with aquachannel and aquapatch domains to investigate the time evolution of convectively coupled Kelvin waves (CCKWs). Power spectra, filtering, and compositing are combined with object-tracking methods to assess the structure and phase speed propagation of CCKWs during their strengthening, mature, and decaying phases. In this regard, we introduce an innovative approach to more closely investigate the wave (Kelvin) versus entity (super cloud cluster or "SCC") dualism. In general, the composite CCKW structures represent a dynamical response to the organized convective activity. However, pressure and thermodynamic fields in the boundary layer behave differently. Further analysis of the time evolution of pressure and low-level moist static energy finds that these fields propagate eastward as a "moist" Kelvin wave (MKW), faster than the envelope of organized convection or SCC. When the separation is sufficiently large the SCC dissipates, and a new SCC generates to the east, in the region of strongest negative pressure perturbations. We revisit the concept itself of the "coupling" between convection and dynamics, and we also propose a conceptual model for CCKWs, with a clear distinction between the SCC and the MKW components.
On Which Microphysical Time Scales to Use in Studies of Entrainment-Mixing Mechanisms in Clouds
Lu, Chunsong; Liu, Yangang; Zhu, Bin; ...
2018-03-23
The commonly used time scales in entrainment-mixing studies are examined in this paper to seek the most appropriate one, based on aircraft observations of cumulus clouds from the RACORO campaign and numerical simulations with the Explicit Mixing Parcel Model. The time scales include: τ evap, the time for droplet complete evaporation; τ phase, the time for saturation ratio deficit (S) to reach 1/e of its initial value; τ satu, the time for S to reach -0.5%; τ react, the time for complete droplet evaporation or S to reach -0.5%. It is found that the proper time scale to use dependsmore » on the specific objectives of entrainment-mixing studies. First, if the focus is on the variations of liquid water content (LWC) and S, then τ react for saturation, τ satu and τ phase are almost equivalently appropriate, because they all represent the rate of dry air reaching saturation or of LWC decrease. Second, if one focuses on the variations of droplet size and number concentration, τ react for complete evaporation and τ evap are proper because they characterize how fast droplets evaporate and whether number concentration decreases. Moreover, τ react for complete evaporation and τ evap are always positively correlated with homogeneous mixing degree (ψ), thus the two time scales, especially τ evap, are recommended for developing parameterizations. However, ψ and the other time scales can be negatively, positively, or not correlated, depending on the dominant factors of the entrained air (i.e., relative humidity or aerosols). Third and finally, all time scales are proportional to each other under certain microphysical and thermodynamic conditions.« less
On Which Microphysical Time Scales to Use in Studies of Entrainment-Mixing Mechanisms in Clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Chunsong; Liu, Yangang; Zhu, Bin
The commonly used time scales in entrainment-mixing studies are examined in this paper to seek the most appropriate one, based on aircraft observations of cumulus clouds from the RACORO campaign and numerical simulations with the Explicit Mixing Parcel Model. The time scales include: τ evap, the time for droplet complete evaporation; τ phase, the time for saturation ratio deficit (S) to reach 1/e of its initial value; τ satu, the time for S to reach -0.5%; τ react, the time for complete droplet evaporation or S to reach -0.5%. It is found that the proper time scale to use dependsmore » on the specific objectives of entrainment-mixing studies. First, if the focus is on the variations of liquid water content (LWC) and S, then τ react for saturation, τ satu and τ phase are almost equivalently appropriate, because they all represent the rate of dry air reaching saturation or of LWC decrease. Second, if one focuses on the variations of droplet size and number concentration, τ react for complete evaporation and τ evap are proper because they characterize how fast droplets evaporate and whether number concentration decreases. Moreover, τ react for complete evaporation and τ evap are always positively correlated with homogeneous mixing degree (ψ), thus the two time scales, especially τ evap, are recommended for developing parameterizations. However, ψ and the other time scales can be negatively, positively, or not correlated, depending on the dominant factors of the entrained air (i.e., relative humidity or aerosols). Third and finally, all time scales are proportional to each other under certain microphysical and thermodynamic conditions.« less
Explosive desorption of icy grain mantles in dense clouds
NASA Technical Reports Server (NTRS)
Schutte, W. A.; Greenberg, J. M.
1991-01-01
The cycling of the condensible material in dense clouds between the gas phase and the icy grain mantles is investigated. In the model studied, desorption of the ice occurs due to grain mantle explosions when photochemically stored energy is released after transient heating by a cosmic ray particle. It is shown that, depending on the grain size distribution in dense clouds, explosive desorption can maintain up to about eight percent of the carbon in the form of CO in the gas phase at typical cloud densities.