Science.gov

Sample records for cloudy days estimated

  1. Honey bee orientation: a backup system for cloudy days.

    PubMed

    Dyer, F C; Gould, J L

    1981-11-27

    On cloudy days, honey bees are known to navigate to familiar food sources and orient their dances accurately. This capacity could be based on a magnetic compass sense, an ability to perceive the sun or patterns of polarized light through the clouds, or on the bees' memory of the diurnal course of the sun with respect to local landmarks. Experiments pitting these alternatives against one another demonstrate that the navigational backup system of bees is based on memory.

  2. Increasing the solar photovoltaic energy capture on sunny and cloudy days

    SciTech Connect

    Kelly, Nelson A.; Gibson, Thomas L.

    2011-01-15

    This report analyzes an extensive set of measurements of the solar irradiance made using four identical solar arrays and associated solar sensors (collectively referred to as solar collectors) with different tilt angles relative to the earth's surface, and thus the position of the sun, in order to determine an optimal tracking algorithm for capturing solar radiation. The study included a variety of ambient conditions including different seasons and both cloudy and cloud-free conditions. One set of solar collectors was always approximately pointed directly toward the sun (DTS) for a period around solar noon. These solar collectors thus captured the direct beam component of the solar radiation that predominates on sunny days. We found that on sunny days, solar collectors with a DTS configuration captured more solar energy in accordance with the well-known cosine dependence for the response of a flat-surfaced solar collector to the angle of incidence with direct beam radiation. In particular, a DTS orientation was found to capture up to twice as much solar energy as a horizontal (H) orientation in which the array is tilted toward the zenith. Another set of solar collectors always had an H orientation, and this best captured the diffuse component of the solar radiation that predominates on cloudy days. The dependence of the H/DTS ratio on the solar-collector tilt angle was in approximate agreement with the Isotropic Diffuse Model derived for heavily overcast conditions. During cloudy periods, we found that an H configuration increased the solar energy capture by nearly 40% compared to a DTS configuration during the same period, and we estimate the solar energy increase of an H configuration over a system that tracks the obscured solar disk could reach 50% over a whole heavily-overcast day. On an annual basis the increase is predicted to be much less, typically only about 1%, because the contribution of cloudy days to the total annual solar energy captured by a

  3. Using Microwave Observations to Estimate Land Surface Temperature during Cloudy Conditions

    NASA Astrophysics Data System (ADS)

    Holmes, T. R.; Crow, W. T.; Hain, C.; Anderson, M. C.

    2014-12-01

    Land surface temperature (LST), a key ingredient for physically-based retrieval algorithms of hydrological states and fluxes, remains a poorly constrained parameter for global scale studies. The main two observational methods to remotely measure T are based on thermal infrared (TIR) observations and passive microwave observations (MW). TIR is the most commonly used approach and the method of choice to provide standard LST products for various satellite missions. MW-based LST retrievals on the other hand are not as widely adopted for land applications; currently their principle use is in soil moisture retrieval algorithms. MW and TIR technologies present two highly complementary and independent means of measuring LST. MW observations have a high tolerance to clouds but a low spatial resolution, and TIR has a high spatial resolution with temporal sampling restricted to clear skies. The nature of the temperature at the very surface layer of the land makes it difficult to combine temperature estimates between different methods. The skin temperature is characterized by a strong diurnal cycle that is dependant in timing and amplitude on the exact sensing depth and thermal properties of the vegetation. This paper builds on recent progress in characterizing the main structural components of the DTC that explain differences in TIR and MW estimates of LST. Spatial patterns in DTC timing (phase lag with solar noon) and DTC amplitude have been calculated for TIR, MW and compared to weather prediction estimates. Based on these comparisons MW LST can be matched to the TIR record. This paper will compare in situ measurements of LST with satellite estimates from (downscaled) TIR and (reconciled) MW products. By contrasting the validation results of clear sky days with those of cloudy days the expected tolerance to clouds of the MW observations will be tested. The goal of this study is to determine the weather conditions in which MW can supplement the TIR LST record.

  4. Estimation of daytime downward longwave radiation under clear and cloudy skies conditions over a sub-humid region

    NASA Astrophysics Data System (ADS)

    Carmona, Facundo; Rivas, Raúl; Caselles, Vicente

    2014-01-01

    Downward longwave radiation ( LW ↓ ) is a relevant variable for meteorological and climatic studies. Good estimates of this term are vitally important in correct determining of the net radiation, which, in turn, modulates the magnitude of the terms in the surface energy budget (e.g., evaporation). In remote sensing applications, the determination of daytime LW↓ is required for estimation of the net radiation using satellite data. LW↓ is not directly measured in weather stations and then is estimated using models with surface air temperature and humidity as input. In this paper, we identify the best models to estimate daytime downward longwave radiation from meteorological data in the sub-humid Pampean region. Several well-known models to estimate LW↓ under clear and cloudy skies were tested. We use downward radiation components and meteorological data registered at Tandil (Argentina) from 2006 to 2010 (840 days). In addition, we propose two multiple linear regression models (MLRM-1 and MLRM-2) to estimate LW↓ at the surface for all sky conditions. The new equations show better performance than the others models tested with root mean square errors between 12 and 16 W m-2, bias close to zero and best agreements with measured data ( r 2 ≥ 0.85).

  5. Estimation of the amount of tropospheric ozone in a cloudy sky by ground-based Fourier-transform infrared emission spectroscopy.

    PubMed

    Spänkuch, D; Döhler, W; Güldner, J; Schulz, E

    1998-05-20

    The problem of retrieving minor concentrations of constituents by ground-based Fourier-transform infrared emission spectroscopy is addressed by means of the concept of differential optical emission spectroscopy in analogy to the concept of differential optical absorption spectroscopy. Using the prominent nu3 ozone feature at 1043 cm(-1), we show that the strength of the spectral signature depends not only on the amount of ozone but also on the atmospheric thermal structure. This dependence can be described by a rather accurate approximation, which was used to construct a simple diagram to estimate the amount of column ozone between the instrument site and a cloud deck as well as to determine the detection limit. The detection limit is shown to depend on cloud base height. For a given thermal lapse rate it was found that the lower the detection limit, the higher the cloud base altitude. However, as shown in a case study with variable cloud base height, the concept fails for semitransparent clouds. Multiple scattering of the emitted radiation within the clouds yielded a path enhancement that simulated an enhanced amount of constituent. The path enhancement was estimated to be 2.4-4 km at 1000 cm(-1) for low-level clouds, equivalent to an enhancement factor of 6-21. The multiple scattering effect has considerable consequences for ground-based as well as for nadir satellite retrieval techniques in cloudy skies.

  6. Hot, Dry and Cloudy

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of Hot, Dry and Cloudy

    This artist's concept shows a cloudy Jupiter-like planet that orbits very close to its fiery hot star. NASA's Spitzer Space Telescope was recently used to capture spectra, or molecular fingerprints, of two 'hot Jupiter' worlds like the one depicted here. This is the first time a spectrum has ever been obtained for an exoplanet, or a planet beyond our solar system.

    The ground-breaking observations were made with Spitzer's spectrograph, which pries apart infrared light into its basic wavelengths, revealing the 'fingerprints' of molecules imprinted inside. Spitzer studied two planets, HD 209458b and HD 189733b, both of which were found, surprisingly, to have no water in the tops of their atmospheres. The results suggest that the hot planets are socked in with dry, high clouds, which are obscuring water that lies underneath. In addition, HD209458b showed hints of silicates, suggesting that the high clouds on that planet contain very fine sand-like particles.

    Capturing the spectra from the two hot-Jupiter planets was no easy feat. The planets cannot be distinguished from their stars and instead appear to telescopes as single blurs of light. One way to get around this is through what is known as the secondary eclipse technique. In this method, changes in the total light from a so-called transiting planet system are measured as a planet is eclipsed by its star, vanishing from our Earthly point of view. The dip in observed light can then be attributed to the planet alone.

    This technique, first used by Spitzer in 2005 to directly detect the light from an exoplanet, currently only works at infrared wavelengths, where the differences in brightness between the planet and star are less, and the planet's light is easier to pick out. For example, if the experiment had been done in visible light, the total light from the system would appear to be unchanged

  7. Empirical Estimates and Observations of 0Day Vulnerabilities

    SciTech Connect

    Miles A. McQueen; Trevor A. McQueen; Wayne F. Boyer; May R. Chaffin

    2009-01-01

    We define a 0Day vulnerability to be any vulnerability, in deployed software, that has been discovered by at least one person but has not yet been publicly announced or patched. These 0Day vulnerabilities are of particular interest when assessing the risk to a system from exploit of vulnerabilities which are not generally known to the public or, most importantly, to the owners of the system. Using the 0Day definition given above, we analyzed the 0Day lifespans of 491 vulnerabilities and conservatively estimated that in the worst year there were on average 2500 0Day vulnerabilities in existence on any given day. Then using a small but intriguing set of 15 0Day vulnerability lifespans representing the time from actual discovery to public disclosure, we made a more aggressive estimate. In this case, we estimated that in the worst year there were, on average, 4500 0Day vulnerabilities in existence on any given day.

  8. Empirical Estimates of 0Day Vulnerabilities in Control Systems

    SciTech Connect

    Miles A. McQueen; Wayne F. Boyer; Sean M. McBride; Trevor A. McQueen

    2009-01-01

    We define a 0Day vulnerability to be any vulnerability, in deployed software, which has been discovered by at least one person but has not yet been publicly announced or patched. These 0Day vulnerabilities are of particular interest when assessing the risk to well managed control systems which have already effectively mitigated the publicly known vulnerabilities. In these well managed systems the risk contribution from 0Days will have proportionally increased. To aid understanding of how great a risk 0Days may pose to control systems, an estimate of how many are in existence is needed. Consequently, using the 0Day definition given above, we developed and applied a method for estimating how many 0Day vulnerabilities are in existence on any given day. The estimate is made by: empirically characterizing the distribution of the lifespans, measured in days, of 0Day vulnerabilities; determining the number of vulnerabilities publicly announced each day; and applying a novel method for estimating the number of 0Day vulnerabilities in existence on any given day using the number of vulnerabilities publicly announced each day and the previously derived distribution of 0Day lifespans. The method was first applied to a general set of software applications by analyzing the 0Day lifespans of 491 software vulnerabilities and using the daily rate of vulnerability announcements in the National Vulnerability Database. This led to a conservative estimate that in the worst year there were, on average, 2500 0Day software related vulnerabilities in existence on any given day. Using a smaller but intriguing set of 15 0Day software vulnerability lifespans representing the actual time from discovery to public disclosure, we then made a more aggressive estimate. In this case, we estimated that in the worst year there were, on average, 4500 0Day software vulnerabilities in existence on any given day. We then proceeded to identify the subset of software applications likely to be used in some

  9. Common Day Care Safety Renovations: Descriptions, Explanations and Cost Estimates.

    ERIC Educational Resources Information Center

    Spack, Stan

    This booklet explains some of the day care safety features specified by the new Massachusetts State Building Code (January 1, 1975) which must be met before a new day care center can be licensed. The safety features described are those which most often require renovation to meet the building code standards. Best estimates of the costs involved in…

  10. A CLOUDY/XSPEC Interface

    NASA Technical Reports Server (NTRS)

    Porter, R. L.; Ferland, G. J.; Kraemer, S. B.; Armentrout, B. K.; Arnaud, K. A.; Turner, T. J.

    2007-01-01

    We discuss new functionality of the spectral simulation code CLOUDY which allows the user to calculate grids with one or more initial parameters varied and formats the predicted spectra in the standard FITS format. These files can then be imported into the x-ray spectral analysis software XSPEC and used as theoretical models for observations. We present and verify a test case. Finally, we consider a few observations and discuss our results.

  11. Total gaseous mercury exchange between water and air during cloudy weather conditions over Hongfeng Reservoir, Guizhou, China

    NASA Astrophysics Data System (ADS)

    Feng, Xinbin; Wang, Shaofeng; Qiu, Guangle; He, Tianrong; Li, Guanghui; Li, Zhonggen; Shang, Lihai

    2008-08-01

    Total gaseous mercury (TGM) exchange fluxes between air and water surface were measured using a dynamic flux chamber (DFC) coupled with a gaseous mercury analyzer at two sampling sites of Hongfeng reservoir in cloudy and rainy weather conditions. The concentrations of dissolved gaseous mercury (DGM) in water were also measured and indicated that DGM was supersaturated at most time during the sampling periods, which implied that the water body acted primarily as a source of mercury to the atmosphere. In general, TGM fluxes displayed a consistent diurnal pattern with peak fluxes at noon and minimum levels at early morning or night. However, this diurnal pattern was not clear when the weather was heavily cloudy and rainy with the maximum solar radiation of less than 140 W m-2. At this specific weather condition, a significantly positive correlation between TGM flux and relative humidity was observed. The behaviors of TGM flux over Hongfeng reservoir observed at cloudy weather conditions were some what different from those observed during mostly sunny weather conditions in Northern America and Europe. The empirical model developed based on the correlation between TGM flux and solar radiation during sunny days in Northern America was not applicable for estimation of TGM flux at cloudy and rainy weather conditions.

  12. Trade-Wind Cloudiness and Climate

    NASA Technical Reports Server (NTRS)

    Randall, David A.

    1997-01-01

    Closed Mesoscale Cellular Convection (MCC) consists of mesoscale cloud patches separated by narrow clear regions. Strong radiative cooling occurs at the cloud top. A dry two-dimensional Bousinesq model is used to study the effects of cloud-top cooling on convection. Wide updrafts and narrow downdrafts are used to indicate the asymmetric circulations associated with the mesoscale cloud patches. Based on the numerical results, a conceptual model was constructed to suggest a mechanism for the formation of closed MCC over cool ocean surfaces. A new method to estimate the radioative and evaporative cooling in the entrainment layer of a stratocumulus-topped boundary layer has been developed. The method was applied to a set of Large-Eddy Simulation (LES) results and to a set of tethered-balloon data obtained during FIRE. We developed a statocumulus-capped marine mixed layer model which includes a parameterization of drizzle based on the use of a predicted Cloud Condensation Nuclei (CCN) number concentration. We have developed, implemented, and tested a very elaborate new stratiform cloudiness parameterization for use in GCMs. Finally, we have developed a new, mechanistic parameterization of the effects of cloud-top cooling on the entrainment rate.

  13. Retrieval of Intensive Aerosol Properties from MFRSR observations: Partly Cloudy Cases

    SciTech Connect

    Kassianov, Evgueni I.; Barnard, James C.; Berg, Larry K.; Flynn, Connor J.; Long, Charles N.

    2010-09-30

    An approach for the obtaining column intensive aerosol properties, namely the single scattering albedo (SSA) and asymmetry parameter (ASP), from the Multi-Filter Rotating Shadowband Radiometer (MFRSR) spectral observations under partly cloudy conditions is described. The approach involves the MFRSR-based aerosol retrieval for clear-sky periods and an interpolation of the retrieved column aerosol properties for cloudy periods. The observed weak diurnal variability of SSA and ASP at the surface and the close association of the surface intensive aerosol properties with their column counterparts form the basis of such interpolation. The approach is evaluated by calculating the corresponding clear-sky total, direct and diffuse fluxes at five wavelengths (415, 500, 615, 673 and 870 nm) and compare them with the observed fluxes. The aerosol properties provided by this approach are applied for (i) an examination of the statistical relationship between spectral (visible spectral range) and broadband values of the total normalized cloud radiative forcing and (ii) an estimation of the fractional sky cover. Data collected during 13 days with single-layer cumulus clouds observed at U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site during summer 2007 are applied to illustrate the performance and application of this approach.

  14. Retrieval of intensive aerosol properties from MFRSR observations: partly cloudy cases

    NASA Astrophysics Data System (ADS)

    Kassianov, Evgueni; Barnard, James; Berg, Larry K.; Flynn, Connor; Long, Charles

    2010-10-01

    An approach for the obtaining column intensive aerosol properties, namely the single scattering albedo (SSA) and asymmetry parameter (ASP), from the Multi-Filter Rotating Shadowband Radiometer (MFRSR) spectral observations under partly cloudy conditions is described. The approach involves the MFRSR-based aerosol retrieval for clear-sky periods and an interpolation of the retrieved column aerosol properties for cloudy periods. The observed weak diurnal variability of SSA and ASP at the surface and the close association of the surface intensive aerosol properties with their column counterparts form the basis of such interpolation. The approach is evaluated by calculating the corresponding clear-sky total, direct and diffuse fluxes at five wavelengths (415, 500, 615, 673 and 870 nm) and compare them with the observed fluxes. The aerosol properties provided by this approach are applied for (i) an examination of the statistical relationship between spectral (visible range) and broadband values of the total normalized cloud radiative forcing and (ii) an estimation of the fractional sky cover. Data collected during 13 days with single-layer cumulus clouds observed at U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site during summer 2007 are applied to illustrate the performance and application of this approach.

  15. Bioactive compounds and quality parameters of natural cloudy lemon juices.

    PubMed

    Uçan, Filiz; Ağçam, Erdal; Akyildiz, Asiye

    2016-03-01

    In this study, bioactive compounds (phenolic and carotenoid) and some quality parameters (color, browning index and hydroxymethylfurfural (HMF)) of natural cloudy lemon juice, pasteurized (90 °C/15 s) and storage stability of concentrated lemon juice (-25 °C/180 days) were carried out. Fifteen phenolic compounds were determined in the lemon juice and the most abounded phenolic compounds were hesperidin, eriocitrin, chlorogenic acid and neoeriocitrin. In generally, phenolic compound concentrations of lemon juice samples increased after the pasteurization treatment. Four carotenoid compounds (β-carotene, β-cryptoxanthin, lutein and zeaxanthin) were detected in natural cloudy lemon juice. Lutein and β-cryptoxanthin were the most abounded carotenoid compounds in the lemon juice. Color values of the lemon juices were not affected by processing and storage periods. HMF and browning index of the lemon juices increased with concentration and storage. According to the results, storing at -25 °C was considered as sufficient for acceptable quality limits of natural cloudy lemon juice. PMID:27570271

  16. Bioactive compounds and quality parameters of natural cloudy lemon juices.

    PubMed

    Uçan, Filiz; Ağçam, Erdal; Akyildiz, Asiye

    2016-03-01

    In this study, bioactive compounds (phenolic and carotenoid) and some quality parameters (color, browning index and hydroxymethylfurfural (HMF)) of natural cloudy lemon juice, pasteurized (90 °C/15 s) and storage stability of concentrated lemon juice (-25 °C/180 days) were carried out. Fifteen phenolic compounds were determined in the lemon juice and the most abounded phenolic compounds were hesperidin, eriocitrin, chlorogenic acid and neoeriocitrin. In generally, phenolic compound concentrations of lemon juice samples increased after the pasteurization treatment. Four carotenoid compounds (β-carotene, β-cryptoxanthin, lutein and zeaxanthin) were detected in natural cloudy lemon juice. Lutein and β-cryptoxanthin were the most abounded carotenoid compounds in the lemon juice. Color values of the lemon juices were not affected by processing and storage periods. HMF and browning index of the lemon juices increased with concentration and storage. According to the results, storing at -25 °C was considered as sufficient for acceptable quality limits of natural cloudy lemon juice.

  17. Estimating degree-day factors from MODIS for snowmelt runoff modeling

    NASA Astrophysics Data System (ADS)

    He, Z. H.; Parajka, J.; Tian, F. Q.; Blöschl, G.

    2014-12-01

    Degree-day factors are widely used to estimate snowmelt runoff in operational hydrological models. Usually, they are calibrated on observed runoff, and sometimes on satellite snow cover data. In this paper, we propose a new method for estimating the snowmelt degree-day factor (DDFS) directly from MODIS snow covered area (SCA) and ground-based snow depth data without calibration. Subcatchment snow volume is estimated by combining SCA and snow depths. Snow density is estimated to be the ratio between observed precipitation and changes in the snow volume for days with snow accumulation. Finally, DDFS values are estimated to be the ratio between changes in the snow water equivalent and difference between the daily temperature and the melt threshold value for days with snow melt. We compare simulations of basin runoff and snow cover patterns using spatially variable DDFS estimated from snow data with those using spatially uniform DDFS calibrated on runoff. The runoff performances using estimated DDFS are slightly improved, and the simulated snow cover patterns are significantly more plausible. The new method may help reduce some of the runoff model parameter uncertainty by reducing the total number of calibration parameters. This method is applied to the Lienz catchment in East Tyrol, Austria, which covers an area of 1198 km2. Approximately 70% of the basin is covered by snow in the early spring season.

  18. Estimation of IT energy budget during the St. Patrick's Day storm 2015: observations, modeling and challenges.

    NASA Astrophysics Data System (ADS)

    Verkhoglyadova, O. P.; Meng, X.; Mannucci, A. J.; Mlynczak, M. G.; Hunt, L. A.; Tsurutani, B.

    2015-12-01

    We present estimates for the energy budget of the 2015 St. Patrick's Day storm. Empirical models and coupling functions are used as proxies for energy input due to solar wind-magnetosphere coupling. Fluxes of thermospheric nitric oxide and carbon dioxide cooling emissions are estimated in several latitude ranges. Solar wind data and the Weimer 2005 model for high-latitude electrodynamics are used to drive GITM modeling for the storm. Model estimations for energy partitioning, Joule heating, NO cooling are compared with observations and empirical proxies. We outline challenges in the estimation of the IT energy budget (Joule heating, Poynting flux, particle precipitation) during geomagnetic storms.

  19. Cooling properties of Cloudy Bag strange stars

    NASA Astrophysics Data System (ADS)

    Ng, C. Y.; Cheng, K. S.; Chu, M. C.

    2003-04-01

    As the chiral symmetry is widely recognized as an important driver of the strong interaction dynamics, current strange stars models based on MIT bag models do not obey such symmetry. We investigate properties of bare strange stars using the Cloudy Bag model, in which a pion cloud coupled to the quark-confining bag is introduced such that chiral symmetry is conserved. The parameters in the model, namely the bag constant and strange quark mass are determined self-consistently by fitting the mass spectrum of baryons. Then the equation of state is obtained by evaluating the energy-momentum tensor of the system. We find that the stellar properties of the Cloudy Bag strange stars are similar to those of MIT Bag models. However, the decay of pions is a very efficient cooling way. In fact it can carry out most the thermal energy in a few milliseconds and directly convert them into 100 MeV photons via pion decay. This may be a very efficient γ-ray burst mechanism. Numerical results indicate that temperature of a Cloudy Bag strange star is sufficiently lower than a MIT one for the small gap energy of color superconductivity (/Δ=1 MeV). On the other hand, large gap energy (/Δ=100 MeV) can suppress the pion emissivity and hence the cooling curves of Cloudy model and MIT model are almost identical. The long term cooling behaviors of both MIT model and Cloudy model are determined by the color-flavor locked phase. The surface luminosity of a bare strange star is higher than that of a neutron star until 106 and 108 s for (/Δ=100 MeV) and (/Δ=1 MeV) respectively. After this period, the surface luminosity of a bare strange star becomes lower than that of a neutron star even rapidly cooling mechanisms, e.g. direct URCA process or pion condensation, exist in the neutron stars. Hence, the cooling behavior may provide a possible way to distinguish a compact object between a neutron star, MIT strange star and Cloudy Bag strange star in observations.

  20. Estimation of Genetic Parameters for First Lactation Monthly Test-day Milk Yields using Random Regression Test Day Model in Karan Fries Cattle

    PubMed Central

    Singh, Ajay; Singh, Avtar; Singh, Manvendra; Prakash, Ved; Ambhore, G. S.; Sahoo, S. K.; Dash, Soumya

    2016-01-01

    A single trait linear mixed random regression test-day model was applied for the first time for analyzing the first lactation monthly test-day milk yield records in Karan Fries cattle. The test-day milk yield data was modeled using a random regression model (RRM) considering different order of Legendre polynomial for the additive genetic effect (4th order) and the permanent environmental effect (5th order). Data pertaining to 1,583 lactation records spread over a period of 30 years were recorded and analyzed in the study. The variance component, heritability and genetic correlations among test-day milk yields were estimated using RRM. RRM heritability estimates of test-day milk yield varied from 0.11 to 0.22 in different test-day records. The estimates of genetic correlations between different test-day milk yields ranged 0.01 (test-day 1 [TD-1] and TD-11) to 0.99 (TD-4 and TD-5). The magnitudes of genetic correlations between test-day milk yields decreased as the interval between test-days increased and adjacent test-day had higher correlations. Additive genetic and permanent environment variances were higher for test-day milk yields at both ends of lactation. The residual variance was observed to be lower than the permanent environment variance for all the test-day milk yields. PMID:26954137

  1. Comparison of the egg flotation and egg candling techniques for estimating incubation day of Canada Goose nests

    USGS Publications Warehouse

    Reiter, M.E.; Andersen, D.E.

    2008-01-01

    Both egg flotation and egg candling have been used to estimate incubation day (often termed nest age) in nesting birds, but little is known about the relative accuracy of these two techniques. We used both egg flotation and egg candling to estimate incubation day for Canada Geese (Branta canadensis interior) nesting near Cape Churchill, Manitoba, from 2000 to 2007. We modeled variation in the difference between estimates of incubation day using each technique as a function of true incubation day, as well as, variation in error rates with each technique as a function of the true incubation day. We also evaluated the effect of error in the estimated incubation day on estimates of daily survival rate (DSR) and nest success using simulations. The mean difference between concurrent estimates of incubation day based on egg flotation minus egg candling at the same nest was 0.85 ?? 0.06 (SE) days. The positive difference in favor of egg flotation and the magnitude of the difference in estimates of incubation day did not vary as a function of true incubation day. Overall, both egg flotation and egg candling overestimated incubation day early in incubation and underestimated incubation day later in incubation. The average difference between true hatch date and estimated hatch date did not differ from zero (days) for egg flotation, but egg candling overestimated true hatch date by about 1 d (true - estimated; days). Our simulations suggested that error associated with estimating the incubation day of nests and subsequently exposure days using either egg candling or egg flotation would have minimal effects on estimates of DSR and nest success. Although egg flotation was slightly less biased, both methods provided comparable and accurate estimates of incubation day and subsequent estimates of hatch date and nest success throughout the entire incubation period. ?? 2008 Association of Field Ornithologists.

  2. A cloudiness transition in a marine boundary layer

    NASA Technical Reports Server (NTRS)

    Betts, Alan K.; Boers, Reinout

    1990-01-01

    Boundary layer cloudiness plays several important roles in the energy budget of the earth. Low level stratocumulus are highly reflective clouds which reduce the net incoming shortwave radiation at the earth's surface. Climatically, the transition to a small area fraction of scattered cumulus clouds occurs as the air flows over warmer water. Although these clouds reflect less sunlight, they still play an important role in the boundary layer equilibrium by transporting water vapor upwards, and enhancing the surface evaporation. The First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment (FIRE) included a marine stratocumulus experiment off the southern California coast from June 29 to July 19, 1987. The objectives of this experiment were to study the controls on fractional cloudiness, and to assess the role of cloud-top entrainment instability (CTEI) and mesoscale structure in determining cloud type. The focus is one research day, July 7, 1987, when coordinated aircraft missions were flown by four research aircraft, centered on a LANDSAT scene at 1830 UTC. The remarkable feature of this LANDSAT scene is the transition from a clear sky in the west through broken cumulus to solid stratocumulus in the east. The dynamic and thermodynamic structure of this transition in cloudiness is analyzed using data from the NCAR Electra. By averaging the aircraft data, the internal structure of the different cloud regimes is documented, and it is shown that the transition between broken cumulus and stratocumulus is associated with a change in structure with respect to the CTEI condition. However, this results not from sea surface temperature changes, but mostly from a transition in the air above the inversion, and the breakup appears to be at a structure on the unstable side of the wet virtual adiabat.

  3. Estimation of effective day length at any light intensity using solar radiation data.

    PubMed

    Yokoya, Masana; Shimizu, Hideyasu

    2011-11-01

    The influence of day length on living creatures differs with the photosensitivity of the creature; however, the possible sunshine duration (N(0)) might be an inadequate index of the photoperiod for creatures with low light sensitivity. To address this issue, the authors tried to estimate the effective day length, i.e., the duration of the photoperiod that exceeds a certain threshold of light intensity. Continual global solar radiation observation data were gathered from the baseline surface radiation network (BSRN) of 18 sites from 2004 to 2007 and were converted to illuminance data using a luminous efficiency model. The monthly average of daily photoperiods exceeding each defined intensity (1 lx, 300 lx, … 20,000 lx) were calculated [defined as Ne(() (lux) ())]. The relationships between the monthly average of global solar radiation (Rs), N(0), and Ne(() (lux) ()) were investigated. At low light intensity (<500 lx), Ne(() (lux) ()) were almost the same as N(0). At high light intensity (>10,000 lx), Ne(() (lux) ()) and Rs showed a logarithmic relationship. Using these relationships, empirical models were derived to estimate the effective day length at different light intensities. According to the validation of the model, the effective day length for any light intensity could be estimated with an accuracy of less than 11% of the mean absolute percentage error (MAPE) in the estimation of the monthly base photoperiod. Recently, a number of studies have provided support for a link between day length and some diseases. Our results will be useful in further assessing the relationships between day length and these diseases.

  4. Optimized fractional cloudiness determination from five ground-based remote sensing techniques

    SciTech Connect

    Boers, R.; de Haij, M. J.; Wauben, W.M.F.; Baltink, Henk K.; van Ulft, L. H.; Savenije, M.; Long, Charles N.

    2010-12-23

    A one-year record of fractional cloudiness at 10 minute intervals was generated for the Cabauw Experimental Site for Atmospheric Research [CESAR] (51°58’N, 4° 55’E) using an integrated assessment of five different observational methods. The five methods are based on active as well as passive systems and use either a hemispheric or column remote sensing technique. The one-year instrumental cloudiness data were compared against a 30 year climatology of Observer data in the vicinity of CESAR [1971- 2000]. In the intermediate 2 - 6 octa range, most instruments, but especially the column methods, report lower frequency of occurrence of cloudiness than the absolute minimum values from the 30 year Observer climatology. At night, the Observer records less clouds in the 1, 2 octa range than during the day, while the instruments registered more clouds. During daytime the Observer also records much more 7 octa cloudiness than the instruments. One column method combining a radar with a lidar outstrips all other techniques in recording cloudiness, even up to height in excess of 9 km. This is mostly due to the high sensitivity of the radar that is used in the technique. A reference algorithm was designed to derive a continuous and optimized record of fractional cloudiness. Output from individual instruments were weighted according to the cloud base height reported at the observation time; the larger the height, the lower the weight. The algorithm was able to provide fractional cloudiness observations every 10 minutes for 98% of the total period of 12 months [15 May 2008 - 14 May 2009].

  5. Stochastic Radiative transfer and real cloudiness

    SciTech Connect

    Evans, F.

    1995-09-01

    Plane-parallel radiative transfer modeling of clouds in GCMs is thought to be an inadequate representation of the effects of real cloudiness. A promising new approach for studying the effects of cloud horizontal inhomogeneity is stochastic radiative transfer, which computes the radiative effects of ensembles of cloud structures described by probability distributions. This approach is appropriate because cloud information is inherently statistical, and it is the mean radiative effect of complex 3D cloud structure that is desired. 2 refs., 1 fig.

  6. Aerosols, cloud microphysics, and fractional cloudiness.

    PubMed

    Albrecht, B A

    1989-09-15

    Increases in aerosol concentrations over the oceans may increase the amount of low-level cloudiness through a reduction in drizzle-a process that regulates the liquid-water content and the energetics of shallow marine clouds. The resulting increase in the global albedo would be in addition to the increase due to enhancement in reflectivity associated with a decrease in droplet size and would contribute to a cooling of the earth's surface.

  7. Influences of the day-night differences of ionosphere on the GPS DCB estimation

    NASA Astrophysics Data System (ADS)

    Zhang, Donghe; Zhang, Shunrong; Coster, Anthea; Hao, Yongqiang; Xiao, Zuo

    2016-04-01

    The estimation of differential code bias (DCB) of GPS system is one of the necessary steps for total electron content (TEC) derivation from GPS measurements. Usually, the method for estimating the GPS DCBs follows the assumption of the gentle temporal and spatial variation of the ionosphere, but this assumption is just an approximation because of the ionosphere's inherent variability. It has been indicated that the estimated GPS satellite DCBs are sometimes influenced by the ionospheric conditions. Here, we demonstrate a possible influence of ionospheric condition that differs between day and night on the estimated DCBs from measurements of a single GPS station. It is found that the average standard deviations (STDs) of the satellite DCBs estimated with daytime data are higher than that with the nighttime data. To reduce this day-night difference effect on GPS DCB determination, we use an improved estimation method based on the primary features of the ionospheric variability with local time. A local time dependent weighting function was introduced into the original least-squared DCBs estimation algorithm. A test with data for BJFS station (39.60°N, 115.89°E) in 2001 indicates that the STD of the DCBs decreases from 2.533 TECU to 2.308 TECU, or by 8.9%, after the improved method was applied. For comparison, another test for the same station in 2009 indicates that the STD decreases from 1.344TECU to 1.295 TECU. Reference Li, LX. DH. Zhang., SR. Zhang., et al. Influences of the day-night differences of ionospheric variability on the estimation of GPS differential code bias, Radio Science, 2015, DOI: 10.1002/2014RS005565 Zhang D H, Shi H, Jin Y Q, et al. The variation of the estimated GPS instrumental bias and its possible connection with ionospheric variability. Sci China Tech Sci, 2014, 57: 67-79, doi: 10.1007/s11431-013-5419-7 Zhang D H, Zhang W,Li Q., Accuracy analysis of the GPS instrumental bias estimated from observations in middle and low latitudes

  8. A New Algorithm for Detection of Cloudiness and Moon Affect Area

    NASA Astrophysics Data System (ADS)

    Dindar, Murat; Helhel, Selcuk; Ünal Akdemir, Kemal

    2016-07-01

    Cloud detection is a crucial issue for observatories already operating and during phase of the site selection. Sky Quality Meter (SQM) devices mostly use to determine parameters of the quality of sky such as cloudiness, light flux. But, those parameters do not give us exact information about the cloudiness and moon affects. In this study we improved a new cloudiness and moon affects area detection algorithm. The algorithm is based on image processing methods and different approaches applied to both day time and night time images to calculate the sky coverage. The new algorithm also implemented with Matlab by using the images taken by all sky camera located at TÜBİTAK National Observatory and results were given.

  9. View-angle-dependent AIRS Cloudiness and Radiance Variance: Analysis and Interpretation

    NASA Technical Reports Server (NTRS)

    Gong, Jie; Wu, Dong L.

    2013-01-01

    Upper tropospheric clouds play an important role in the global energy budget and hydrological cycle. Significant view-angle asymmetry has been observed in upper-level tropical clouds derived from eight years of Atmospheric Infrared Sounder (AIRS) 15 um radiances. Here, we find that the asymmetry also exists in the extra-tropics. It is larger during day than that during night, more prominent near elevated terrain, and closely associated with deep convection and wind shear. The cloud radiance variance, a proxy for cloud inhomogeneity, has consistent characteristics of the asymmetry to those in the AIRS cloudiness. The leading causes of the view-dependent cloudiness asymmetry are the local time difference and small-scale organized cloud structures. The local time difference (1-1.5 hr) of upper-level (UL) clouds between two AIRS outermost views can create parts of the observed asymmetry. On the other hand, small-scale tilted and banded structures of the UL clouds can induce about half of the observed view-angle dependent differences in the AIRS cloud radiances and their variances. This estimate is inferred from analogous study using Microwave Humidity Sounder (MHS) radiances observed during the period of time when there were simultaneous measurements at two different view-angles from NOAA-18 and -19 satellites. The existence of tilted cloud structures and asymmetric 15 um and 6.7 um cloud radiances implies that cloud statistics would be view-angle dependent, and should be taken into account in radiative transfer calculations, measurement uncertainty evaluations and cloud climatology investigations. In addition, the momentum forcing in the upper troposphere from tilted clouds is also likely asymmetric, which can affect atmospheric circulation anisotropically.

  10. Variations in daylight as a contextual cue for estimating season, time of day, and weather conditions.

    PubMed

    Granzier, Jeroen J M; Valsecchi, Matteo

    2014-01-24

    Experience and experiments on human color constancy (i.e., Arend & Reeves, 1986; Craven & Foster, 1992) tell us that we are capable of judging the illumination. However, when asked to make a match of the illuminant's color and brightness, human observers seem to be quite poor (Granzier, Brenner, & Smeets, 2009a). Here we investigate whether human observers use (rather than match) daylight for estimating ecologically important dimensions: time of year, time of day, and outdoor temperature. In the first three experiments we had our observers evaluate calibrated color images of an outdoor urban scene acquired throughout a year. Although some observers could estimate the month and the temperature, overall they were quite poor at judging the time of day. In particular, observers were not able to discriminate between morning and afternoon pictures even when they were allowed to compare multiple images captured on the same day (Experiment 3). However, observers could distinguish between midday and sunset and sunrise daylight. Classification analysis showed that, given a perfect knowledge of its variation, an ideal observer could have performed the task over chance only considering the average chromatic variation in the picture. Instead, our observers reported using shadows to detect the position of the sun in order to estimate the time of day. However, this information is highly unreliable without knowledge of the orientation of the scene. In Experiment 4 we used an LED chamber in order to present our observers with lights whose chromaticity and illuminance varied along the daylight locus, thus isolating the light cues from the sun position cue. We conclude that discriminating the slight variations in chromaticity and brightness, which potentially distinguish morning and afternoon illuminations, lies beyond the ability of human observers.

  11. Variations in daylight as a contextual cue for estimating season, time of day, and weather conditions.

    PubMed

    Granzier, Jeroen J M; Valsecchi, Matteo

    2014-01-01

    Experience and experiments on human color constancy (i.e., Arend & Reeves, 1986; Craven & Foster, 1992) tell us that we are capable of judging the illumination. However, when asked to make a match of the illuminant's color and brightness, human observers seem to be quite poor (Granzier, Brenner, & Smeets, 2009a). Here we investigate whether human observers use (rather than match) daylight for estimating ecologically important dimensions: time of year, time of day, and outdoor temperature. In the first three experiments we had our observers evaluate calibrated color images of an outdoor urban scene acquired throughout a year. Although some observers could estimate the month and the temperature, overall they were quite poor at judging the time of day. In particular, observers were not able to discriminate between morning and afternoon pictures even when they were allowed to compare multiple images captured on the same day (Experiment 3). However, observers could distinguish between midday and sunset and sunrise daylight. Classification analysis showed that, given a perfect knowledge of its variation, an ideal observer could have performed the task over chance only considering the average chromatic variation in the picture. Instead, our observers reported using shadows to detect the position of the sun in order to estimate the time of day. However, this information is highly unreliable without knowledge of the orientation of the scene. In Experiment 4 we used an LED chamber in order to present our observers with lights whose chromaticity and illuminance varied along the daylight locus, thus isolating the light cues from the sun position cue. We conclude that discriminating the slight variations in chromaticity and brightness, which potentially distinguish morning and afternoon illuminations, lies beyond the ability of human observers. PMID:24464161

  12. Estimation of duration and mental workload at differing times of day by males and females

    NASA Technical Reports Server (NTRS)

    Hancock, P. A.; Rodenburg, G. J.; Mathews, W. D.; Vercruyssen, M.

    1988-01-01

    Two experiments are reported which investigated whether male and female operator duration estimation and subjective workload followed conventional circadian fluctuation. In the first experiment, twenty-four subjects performed a filled time-estimation task in a constant blacked-out, noise-reduced environment at 0800, 1200, 1600, and 2000 h. In the second experiment, twelve subjects performed an unfilled time estimation task in similar conditions at 0900, 1400, and 1900 h. At the termination of all experimental sessions, participants completed the NASA TLX workload assessment questionnaire as a measure of perceived mental workload. Results indicated that while physiological response followed an expected pattern, estimations of duration and subjective perception of workload showed no significant effects for time-of-day. In each of the experiments, however, there were significant differences in durational estimates and mental workload response depending upon the gender of the participant. Results are taken to support the assertion that subjective workload is responsive largely to task-related factors and indicates the important differences that may be expected due to operator gender.

  13. One-day rate measurements for estimating net nitrification potential in humid forest soils

    USGS Publications Warehouse

    Ross, D.S.; Fredriksen, G.; Jamison, A.E.; Wemple, B.C.; Bailey, S.W.; Shanley, J.B.; Lawrence, G.B.

    2006-01-01

    Measurements of net nitrification rates in forest soils have usually been performed by extended sample incubation (2-8 weeks), either in the field or in the lab. Because of disturbance effects, these measurements are only estimates of nitrification potential and shorter incubations may suffice. In three separate studies of northeastern USA forest soil surface horizons, we found that laboratory nitrification rates measured over 1 day related well to those measured over 4 weeks. Soil samples of Oa or A horizons were mixed by hand and the initial extraction of subsamples, using 2 mol L-1 KCl, occurred in the field as soon as feasible after sampling. Soils were kept near field temperature and subsampled again the following day in the laboratory. Rates measured by this method were about three times higher than the 4-week rates. Variability in measured rates was similar over either incubation period. Because NO3- concentrations were usually quite low in the field, average rates from 10 research watersheds could be estimated with only a single, 1-day extraction. Methodological studies showed that the concentration of NH4+ increased slowly during contact time with the KCl extractant and, thus, this contact time should be kept similar during the procedure. This method allows a large number of samples to be rapidly assessed. ?? 2006 Elsevier B.V. All rights reserved.

  14. Number of accelerometer monitoring days needed for stable group-level estimates of activity.

    PubMed

    Wolff-Hughes, Dana L; McClain, James J; Dodd, Kevin W; Berrigan, David; Troiano, Richard P

    2016-09-01

    To determine the number and distribution of days required to produce stable group-level estimates of a 7 d mean for common accelerometer-derived activity measures. Data from the 2003-2006 NHANES were used in this analysis. The sample included 986 youth (6-19 year) and 2532 adults (⩾20 year) with 7 d of  ⩾10 h of wear. Accelerometer measures included minutes of inactive, light physical activity, moderate-to-vigorous physical activity (MVPA); and total activity counts/d. Twenty-five alternative protocols were bootstrapped with 50 000 samples drawn for each protocol. Alternative protocols included: 1-6 random days, Saturday plus 1-5 random weekdays (WD), Sunday plus 1-5 random WD, 1 random weekend day (WE) plus 1-5 WD, and both WE plus 1-4 random WD. Relative difference was calculated between the 7 d mean and alternative protocol mean (((alternative protocol mean - 7 d mean)/7 d mean) (*) 100). Adult MVPA is used as an example; however, similar trends were observed across age groups and variables except adult inactive time, which was stable across protocols. The 7 d mean for adult MVPA was 44.1(0.9) min d(-1). The mean bias for any 1-6 random days ranged from  -0.0(0.3) to 0.0(0.2) min d(-1) with a relative difference of  -0.1 to 0.0%. For protocols with non-random components, bias ranged from  -1.4(0.2) to 0.6(0.1) min d(-1) with relative difference ranging from  -7.2 to 3.1%. Simulation data suggest that stable estimates of group-level means can be obtained from as few as one randomly selected monitoring day from a sampled week. On the other hand, estimates using non-random selection of weekend days may be significantly biased. Purposeful sampling that disproportionally forces inclusion of weekend data in analyses should be discouraged. PMID:27510765

  15. Between-day reliability of a method for non-invasive estimation of muscle composition.

    PubMed

    Simunič, Boštjan

    2012-08-01

    Tensiomyography is a method for valid and non-invasive estimation of skeletal muscle fibre type composition. The validity of selected temporal tensiomyographic measures has been well established recently; there is, however, no evidence regarding the method's between-day reliability. Therefore it is the aim of this paper to establish the between-day repeatability of tensiomyographic measures in three skeletal muscles. For three consecutive days, 10 healthy male volunteers (mean±SD: age 24.6 ± 3.0 years; height 177.9 ± 3.9 cm; weight 72.4 ± 5.2 kg) were examined in a supine position. Four temporal measures (delay, contraction, sustain, and half-relaxation time) and maximal amplitude were extracted from the displacement-time tensiomyogram. A reliability analysis was performed with calculations of bias, random error, coefficient of variation (CV), standard error of measurement, and intra-class correlation coefficient (ICC) with a 95% confidence interval. An analysis of ICC demonstrated excellent agreement (ICC were over 0.94 in 14 out of 15 tested parameters). However, lower CV was observed in half-relaxation time, presumably because of the specifics of the parameter definition itself. These data indicate that for the three muscles tested, tensiomyographic measurements were reproducible across consecutive test days. Furthermore, we indicated the most possible origin of the lowest reliability detected in half-relaxation time.

  16. A cloudiness transition in a marine boundary layer

    NASA Technical Reports Server (NTRS)

    Boers, Reinout; Betts, Alan K.

    1990-01-01

    In situ aircraft data and lidar data are used to analyze a transition in the boundary layer thermodynamic structure from a clear boundary layer through small cumulus and broken stratocumulus to a deck of solid stratocumulus. The data was collected in conjunction with a Landsat overpass on July 7, 1987 off the coast of southern California. A steady progression in mixing line stability is seen associated with the change in cloudiness. The (empirically based) stability threshold for the breakup of this stratocumulus is that the slope of the mixing line is 0.66 + or - 0.04 of the slope of the wet virtual adiabat. A simple linear parameterization is proposed for cloud fraction in terms of mixing line stability. Surface flux measurements are consistent with bulk aerodynamic estimates.

  17. Earthquake slip vectors and estimates of present-day plate motions

    NASA Technical Reports Server (NTRS)

    Demets, Charles

    1993-01-01

    Two alternative models for present-day global plate motions are derived from subsets of the NUVEL-1 data in order to investigate the degree to which earthquake slip vectors affect the NUVEL-1 model and to provide estimates of present-day plate velocities that are independent of earthquake slip vectors. The data set used to derive the first model excludes subduction zone slip vectors. The primary purpose of this model is to demonstrate that the 240 subduction zone slip vectors in the NUVEL-1 data set do not greatly affect the plate velocities predicted by NUVEL-1. A data set that excludes all of the 724 earthquake slip vectors used to derive NUVEL-1 is used to derive the second model. This model is suitable as a reference model for kinematic studies that require plate velocity estimates unaffected by earthquake slip vectors. The slip-dependent slip vector bias along transform faults is investigated using the second model, and evidence is sought for biases in slip directions along spreading centers.

  18. A pragmatic approach to estimate the number of days in exceedance of PM10 limit value

    NASA Astrophysics Data System (ADS)

    Beauchamp, Maxime; Malherbe, Laure; de Fouquet, Chantal

    2015-06-01

    European legislation on ambient air quality requests that Member States report the annual number of exceedances of short-term concentration regulatory thresholds for PM10 and delimit the concerned areas. Measurements at the monitoring stations do not allow to fully describe those areas. We present a methodology to estimate the number of exceedances of the daily limit value over a year, that can be extended to any similar issue. This methodology is applied to PM10 concentrations in France for which the daily limit value is 50 μg m-3, not to be exceeded more that 35 days. A probabilistic model is built using preliminary mapping of daily mean concentrations. First, daily atmospheric concentration fields are estimated at 1 km resolution by external drift kriging, combining surface monitoring observations and outputs from the CHIMERE chemistry transport model. Setting a conventional Gaussian hypothesis for the estimation error, the kriging variance is used to compute the probability of exceeding the daily limit value and to identify three areas: those where we can suppose as certain that the concentrations exceed or not the daily limit value and those where the situation is indeterminate because of the estimation uncertainty. Then, from the set of 365 daily mappings of the probability to exceed the daily limit value, the parameters of a translated Poisson distribution is fitted on the annual number of exceedances of the daily limit value at each grid cell, which enables to compute the probability for this number to exceed 35. The methodology is tested for three years (2007, 2009 and 2011) which present numerous exceedances of the daily limit concentration at some monitoring stations. A cross-validation analysis is carried out to check the efficiency of the methodology. The way to interpret probability maps is discussed. A comparison is made with simpler kriging approaches using indicator kriging of exceedances. Lastly, estimation of the population exposed to PM10

  19. Impact of age, sleep pressure and circadian phase on time-of-day estimates.

    PubMed

    Späti, Jakub; Münch, Mirjam; Blatter, Katharina; Knoblauch, Vera; Jones, Luke A; Cajochen, Christian

    2009-07-19

    Orientation and self-location within the temporal fabric of the environment involves multiple organismic systems. While temporal self-location on the physiological level has been known for some time to be based on a 'biological clock' located within the hypothalamus, the mechanisms that participate in temporal position finding on the cognitive level are not yet fully understood. In order to probe the mechanisms that underlie this faculty, verbal estimates on time-of-day were collected at 3.75-h intervals from 16 young (7 males, 8 females; 20-31 years) and 16 older (8 males, 8 females; 57-74 years) subjects in a balanced crossover design during 40-h epochs of prolonged wakefulness and 40-h epochs of sleep satiation spent under constant routine conditions. An overestimation of clock time during prolonged wakefulness was found in both age-groups, with significantly larger errors for the older group (young: 0.5+/-0.2h; older: 1.5+/-0.2h, p<0.05). In both age-groups, estimation errors ran roughly parallel to the time course of core body temperature. However a significant interaction between time-of-day and age-group was observed (rANOVA, p<0.05): younger subjects exhibited similar estimation errors as the older subjects after 16 h of prior wakefulness, whereas the latter did not manifest decrements under high sleep pressure. Data collected under conditions of sleep satiation also displayed a diurnal oscillation in estimation errors and a general overestimation (young: 0.8+/-0.2h; older: 1.3+/-0.3h, p<0.05). Here however, the age-groups did not differ significantly nor was there an interactive effect between time-of-day and age-group. The effects of age, duration of wake time and circadian phase on temporal position finding are in line with predictions based on the idea that awareness about current position in time is derived from interval timing processes.

  20. Effects of stage of pregnancy on variance components, daily milk yields and 305-day milk yield in Holstein cows, as estimated by using a test-day model.

    PubMed

    Yamazaki, T; Hagiya, K; Takeda, H; Osawa, T; Yamaguchi, S; Nagamine, Y

    2016-08-01

    Pregnancy and calving are elements indispensable for dairy production, but the daily milk yield of cows decline as pregnancy progresses, especially during the late stages. Therefore, the effect of stage of pregnancy on daily milk yield must be clarified to accurately estimate the breeding values and lifetime productivity of cows. To improve the genetic evaluation model for daily milk yield and determine the effect of the timing of pregnancy on productivity, we used a test-day model to assess the effects of stage of pregnancy on variance component estimates, daily milk yields and 305-day milk yield during the first three lactations of Holstein cows. Data were 10 646 333 test-day records for the first lactation; 8 222 661 records for the second; and 5 513 039 records for the third. The data were analyzed within each lactation by using three single-trait random regression animal models: one model that did not account for the stage of pregnancy effect and two models that did. The effect of stage of pregnancy on test-day milk yield was included in the model by applying a regression on days pregnant or fitting a separate lactation curve for each days open (days from calving to pregnancy) class (eight levels). Stage of pregnancy did not affect the heritability estimates of daily milk yield, although the additive genetic and permanent environmental variances in late lactation were decreased by accounting for the stage of pregnancy effect. The effects of days pregnant on daily milk yield during late lactation were larger in the second and third lactations than in the first lactation. The rates of reduction of the 305-day milk yield of cows that conceived fewer than 90 days after the second or third calving were significantly (P<0.05) greater than that after the first calving. Therefore, we conclude that differences between the negative effects of early pregnancy in the first, compared with later, lactations should be included when determining the optimal number of days open

  1. Effects of stage of pregnancy on variance components, daily milk yields and 305-day milk yield in Holstein cows, as estimated by using a test-day model.

    PubMed

    Yamazaki, T; Hagiya, K; Takeda, H; Osawa, T; Yamaguchi, S; Nagamine, Y

    2016-08-01

    Pregnancy and calving are elements indispensable for dairy production, but the daily milk yield of cows decline as pregnancy progresses, especially during the late stages. Therefore, the effect of stage of pregnancy on daily milk yield must be clarified to accurately estimate the breeding values and lifetime productivity of cows. To improve the genetic evaluation model for daily milk yield and determine the effect of the timing of pregnancy on productivity, we used a test-day model to assess the effects of stage of pregnancy on variance component estimates, daily milk yields and 305-day milk yield during the first three lactations of Holstein cows. Data were 10 646 333 test-day records for the first lactation; 8 222 661 records for the second; and 5 513 039 records for the third. The data were analyzed within each lactation by using three single-trait random regression animal models: one model that did not account for the stage of pregnancy effect and two models that did. The effect of stage of pregnancy on test-day milk yield was included in the model by applying a regression on days pregnant or fitting a separate lactation curve for each days open (days from calving to pregnancy) class (eight levels). Stage of pregnancy did not affect the heritability estimates of daily milk yield, although the additive genetic and permanent environmental variances in late lactation were decreased by accounting for the stage of pregnancy effect. The effects of days pregnant on daily milk yield during late lactation were larger in the second and third lactations than in the first lactation. The rates of reduction of the 305-day milk yield of cows that conceived fewer than 90 days after the second or third calving were significantly (P<0.05) greater than that after the first calving. Therefore, we conclude that differences between the negative effects of early pregnancy in the first, compared with later, lactations should be included when determining the optimal number of days open

  2. Analysis of global cloudiness comparison of meteor, Nimbus 7, and international satellite cloud climatology project (ISCCP) satellite data

    SciTech Connect

    Mokhov, I.I.; Schlesinger, M.E.

    1993-07-20

    In this first paper of a three-part series on cloudienss we intercompare the simultaneous cloudiness data obtained from Meteor satellites, Nimbus 7, and the International Satellite Cloud Climatology Project (ISCCP) for the one-year period, July 1983 to June 1984. Four versions of ISCCP cloudiness are obtained from analyses of the ISCCP-C1 data. These versions differ in their requirements for temporal and spectral sampling. ISCCPs 1 and 2 require for each 2.5{degree} x 2.5{degree} latitude-longitude cell that there be observations at least (N{sub d} = ) 20 of the 28-31 possible days per month and at least (N{sub h} = ) 5 of the 8 possible 3 hourly times each such day; ISCCPs 3 and 4 require only N{sub d} = 1 and N{sub h} = 1. The ISCCP 1-4 intercomparison shows that (1) the cloudiness differences due to the above temporal sampling are smaller than those due to the above spectral sampling; (2) both spectral and temporal sampling effects are larger for the northern hemisphere than for the southern hemisphere; and (3) the difference between zonal mean cloudiness with and without visible information generally increases with latitude from polar night to about 60{degree} latitude in the summer hemisphere. A special observational program in both the Arctic and the Antarctic is proposed to resolve the discrepancies among the satellite and ground-based cloudiness observations in polar latitudes.

  3. Observed and modeled patterns of covariability between low-level cloudiness and the structure of the trade-wind layer

    NASA Astrophysics Data System (ADS)

    Nuijens, Louise; Medeiros, Brian; Sandu, Irina; Ahlgrimm, Maike

    2015-12-01

    We present patterns of covariability between low-level cloudiness and the trade-wind boundary layer structure using long-term measurements at a site representative of dynamical regimes with moderate subsidence or weak ascent. We compare these with ECMWF's Integrated Forecast System and 10 CMIP5 models. By using single-time step output at a single location, we find that models can produce a fairly realistic trade-wind layer structure in long-term means, but with unrealistic variability at shorter-time scales. The unrealistic variability in modeled cloudiness near the lifting condensation level (LCL) is due to stronger than observed relationships with mixed-layer relative humidity (RH) and temperature stratification at the mixed-layer top. Those relationships are weak in observations, or even of opposite sign, which can be explained by a negative feedback of convection on cloudiness. Cloudiness near cumulus tops at the trade-wind inversion instead varies more pronouncedly in observations on monthly time scales, whereby larger cloudiness relates to larger surface winds and stronger trade-wind inversions. However, these parameters appear to be a prerequisite, rather than strong controlling factors on cloudiness, because they do not explain submonthly variations in cloudiness. Models underestimate the strength of these relationships and diverge in particular in their responses to large-scale vertical motion. No model stands out by reproducing the observed behavior in all respects. These findings suggest that climate models do not realistically represent the physical processes that underlie the coupling between trade-wind clouds and their environments in present-day climate, which is relevant for how we interpret modeled cloud feedbacks.

  4. Observed and modeled patterns of covariability between low-level cloudiness and the structure of the trade-wind layer

    SciTech Connect

    Nuijens, Louise; Medeiros, Brian; Sandu, Irina; Ahlgrimm, Maike

    2015-11-06

    We present patterns of covariability between low-level cloudiness and the trade-wind boundary layer structure using long-term measurements at a site representative of dynamical regimes with moderate subsidence or weak ascent. We compare these with ECMWF’s Integrated Forecast System and 10 CMIP5 models. By using single-time step output at a single location, we find that models can produce a fairly realistic trade-wind layer structure in long-term means, but with unrealistic variability at shorter-time scales. The unrealistic variability in modeled cloudiness near the lifting condensation level (LCL) is due to stronger than observed relationships with mixed-layer relative humidity (RH) and temperature stratification at the mixed-layer top. Those relationships are weak in observations, or even of opposite sign, which can be explained by a negative feedback of convection on cloudiness. Cloudiness near cumulus tops at the tradewind inversion instead varies more pronouncedly in observations on monthly time scales, whereby larger cloudiness relates to larger surface winds and stronger trade-wind inversions. However, these parameters appear to be a prerequisite, rather than strong controlling factors on cloudiness, because they do not explain submonthly variations in cloudiness. Models underestimate the strength of these relationships and diverge in particular in their responses to large-scale vertical motion. No model stands out by reproducing the observed behavior in all respects. As a result, these findings suggest that climate models do not realistically represent the physical processes that underlie the coupling between trade-wind clouds and their environments in present-day climate, which is relevant for how we interpret modeled cloud feedbacks.

  5. Observed and modeled patterns of covariability between low-level cloudiness and the structure of the trade-wind layer

    DOE PAGES

    Nuijens, Louise; Medeiros, Brian; Sandu, Irina; Ahlgrimm, Maike

    2015-11-06

    We present patterns of covariability between low-level cloudiness and the trade-wind boundary layer structure using long-term measurements at a site representative of dynamical regimes with moderate subsidence or weak ascent. We compare these with ECMWF’s Integrated Forecast System and 10 CMIP5 models. By using single-time step output at a single location, we find that models can produce a fairly realistic trade-wind layer structure in long-term means, but with unrealistic variability at shorter-time scales. The unrealistic variability in modeled cloudiness near the lifting condensation level (LCL) is due to stronger than observed relationships with mixed-layer relative humidity (RH) and temperature stratificationmore » at the mixed-layer top. Those relationships are weak in observations, or even of opposite sign, which can be explained by a negative feedback of convection on cloudiness. Cloudiness near cumulus tops at the tradewind inversion instead varies more pronouncedly in observations on monthly time scales, whereby larger cloudiness relates to larger surface winds and stronger trade-wind inversions. However, these parameters appear to be a prerequisite, rather than strong controlling factors on cloudiness, because they do not explain submonthly variations in cloudiness. Models underestimate the strength of these relationships and diverge in particular in their responses to large-scale vertical motion. No model stands out by reproducing the observed behavior in all respects. As a result, these findings suggest that climate models do not realistically represent the physical processes that underlie the coupling between trade-wind clouds and their environments in present-day climate, which is relevant for how we interpret modeled cloud feedbacks.« less

  6. Number of Days Required to Estimate Habitual Activity Using Wrist-Worn GENEActiv Accelerometer: A Cross-Sectional Study

    PubMed Central

    Dillon, Christina B.; Fitzgerald, Anthony P.; Kearney, Patricia M.; Perry, Ivan J.; Rennie, Kirsten L.; Kozarski, Robert; Phillips, Catherine M.

    2016-01-01

    Introduction Objective methods like accelerometers are feasible for large studies and may quantify variability in day-to-day physical activity better than self-report. The variability between days suggests that day of the week cannot be ignored in the design and analysis of physical activity studies. The purpose of this paper is to investigate the optimal number of days needed to obtain reliable estimates of weekly habitual physical activity using the wrist-worn GENEActiv accelerometer. Methods Data are from a subsample of the Mitchelstown cohort; 475 (44.6% males; mean aged 59.6±5.5 years) middle-aged Irish adults. Participants wore the wrist GENEActiv accelerometer for 7-consecutive days. Data were collected at 100Hz and summarised into a signal magnitude vector using 60s epochs. Each time interval was categorised according to intensity based on validated cut-offs. Spearman pairwise correlations determined the association between days of the week. Repeated measures ANOVA examined differences in average minutes across days. Intraclass correlations examined the proportion of variability between days, and Spearman-Brown formula estimated intra-class reliability coefficient associated with combinations of 1–7 days. Results Three hundred and ninety-seven adults (59.7±5.5yrs) had valid accelerometer data. Overall, men were most sedentary on weekends while women spent more time in sedentary behaviour on Sunday through Tuesday. Post hoc analysis found sedentary behaviour and light activity levels on Sunday to differ to all other days in the week. Analysis revealed greater than 1 day monitoring is necessary to achieve acceptable reliability. Monitoring frame duration for reliable estimates varied across intensity categories, (sedentary (3 days), light (2 days), moderate (2 days) and vigorous activity (6 days) and MVPA (2 days)). Conclusion These findings provide knowledge into the behavioural variability in weekly activity patterns of middle-aged adults. Since Sunday

  7. Estimating Monthly, Annual, and Low 7-Day, 10-Year Streamflows for Ungaged Rivers in Maine

    USGS Publications Warehouse

    Dudley, Robert W.

    2004-01-01

    Regression equations to estimate monthly, annual, and low 7-day, 10-year (7Q10) streamflows were derived for rivers in Maine. The derived regression equations for estimating mean monthly, mean annual, median monthly, median annual, and low 7Q10 streamflows for ungaged rivers in Maine presented in this report supersede those derived in previous studies. Twenty-six U.S. Geological Survey streamflow-gaging stations on unregulated, rural rivers in Maine with 10 years or more of recorded streamflow were used to develop the regression equations. Ordinary least squares (OLS) regression techniques were used to select the explanatory variables (basin and climatic characteristics) that would appear in the final regression equations. OLS regression of all possible subsets was done with 62 explanatory variables for each of 27 response variables. Five explanatory variables were chosen for the final regression equations: drainage basin area, areal fraction of the drainage basin underlain by sand and gravel aquifers, distance from the coast to the drainage basin centroid, mean drainage basin annual precipitation, and mean drainage basin winter precipitation (the sum of mean monthly precipitation for December, January, and February). Generalized least-squares regression techniques were used to derive the final coefficients and measures of uncertainty for the regression equations. The forms of many of the derived regression equations indicate some physical, mechanistic processes. Drainage basin area is the most statistically important explanatory variable and appears in all derived regression equations. Monthly streamflows are related inversely to the distance from the coast to the drainage basin centroid during December, January, February, and March; that is, the closer a river basin is to the coast, the higher monthly streamflows are per unit drainage basin area during the winter. The relation reverses in May when higher streamflows are attributed to basins farther from the coast

  8. Winter cloudiness variability over Northern Eurasia related to the Siberian High during 1966-2010

    NASA Astrophysics Data System (ADS)

    Chernokulsky, Alexander; Mokhov, Igor I.; Nikitina, Natalia

    2013-12-01

    This letter presents an assessment of winter cloudiness variability over Northern Eurasia regions related to the Siberian High intensity (SHI) variations during 1966-2010. An analysis of cloud fraction and the occurrence of different cloud types was carried out based on visual observations from almost 500 Russian meteorological stations. The moonlight criterion was implemented to reduce the uncertainty of night observations. The SHI was defined based on sea-level pressure fields from different reanalyses. We found a statistically significant negative correlation of cloud cover with the SHI over central and southern Siberia and the southern Urals with regression coefficients around 3% hPa-1 for total cloud fraction (TCF) for particular stations near the Siberian High center. Cross-wavelet analysis of TCF and SHI revealed a long-term relationship between cloudiness and the Siberian High. Generally, the Siberian High intensification by 1 hPa leads to a replacement of one overcast day with one day without clouds, which is associated mainly with a decrease in precipitating and stratiform clouds. These changes point to a positive feedback between cloudiness and the Siberian High.

  9. Characteristics of Water Vapor Under Partially Cloudy Conditions: Observations by the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Fishbein, E.

    2003-12-01

    The variability and quality of tropical water vapor derived from the Atmospheric Infrared Sounder (AIRS) are characterized. Profiles of water vapor, temperature and surface characteristics (states) are derived from coincident Advance Microwave Sounding Unit (AMSU) and 3x3 sets of AIRS footprints. States are obtained under partially cloudy conditions by estimating the radiances emitted from the clear portions of the AIRS footprints. This procedure, referred to as cloud clearing, amplifies the measurement noise, and the amplification increases with cloud amount and uniformity. Cumulus and stratus cloud amount are related to the water vapor saturation, and noise amplification and water vapor amount may be partially correlated. The correlations between the uncertainty of retrieved water vapor, cloudiness and noise amplification are characterized. Retrieved water vapor is generally good when the amplification is less than three. Water vapor profiles are compared with correlative data, such as radiosondes and numerical weather center analyses and are in relatively good agreement in the lower troposphere

  10. Quantitative analysis of night skyglow amplification under cloudy conditions

    NASA Astrophysics Data System (ADS)

    Kocifaj, Miroslav; Solano Lamphar, Héctor Antonio

    2014-10-01

    The radiance produced by artificial light is a major source of nighttime over-illumination. It can, however, be treated experimentally using ground-based and satellite data. These two types of data complement each other and together have a high information content. For instance, the satellite data enable upward light emissions to be normalized, and this in turn allows skyglow levels at the ground to be modelled under cloudy or overcast conditions. Excessive night lighting imposes an unacceptable burden on nature, humans and professional astronomy. For this reason, there is a pressing need to determine the total amount of downwelling diffuse radiation. Undoubtedly, cloudy periods can cause a significant increase in skyglow as a result of amplification owing to diffuse reflection from clouds. While it is recognized that the amplification factor (AF) varies with cloud cover, the effects of different types of clouds, of atmospheric turbidity and of the geometrical relationships between the positions of an individual observer, the cloud layer, and the light source are in general poorly known. In this paper the AF is quantitatively analysed considering different aerosol optical depths (AODs), urban layout sizes and cloud types with specific albedos and altitudes. The computational results show that the AF peaks near the edges of a city rather than at its centre. In addition, the AF appears to be a decreasing function of AOD, which is particularly important when modelling the skyglow in regions with apparent temporal or seasonal variability of atmospheric turbidity. The findings in this paper will be useful to those designing engineering applications or modelling light pollution, as well as to astronomers and environmental scientists who aim to predict the amplification of skyglow caused by clouds. In addition, the semi-analytical formulae can be used to estimate the AF levels, especially in densely populated metropolitan regions for which detailed computations may be CPU

  11. Assessment of clear and cloudy sky parameterizations for daily downwelling longwave radiation over different land surfaces in Florida, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clear sky downwelling longwave radiation and cloudy sky downwelling longwave radiation formulas were tested across eleven sites in Florida. The Sellers equation, using air vapor pressure and temperature measurements, provides the best estimates of clear sky downwelling longwave radiation with a roo...

  12. The role of sulfate aerosol in the formation of cloudiness over the sea

    NASA Astrophysics Data System (ADS)

    Aloyan, A. E.; Yermakov, A. N.; Arutyunyan, V. O.

    2016-07-01

    We estimate the impact of sulfate aerosols on cloudiness formation over the sea in the middle troposphere and the involvement of these particles in the formation of polar stratospheric clouds (PSCs) in the lower stratosphere. The first of these problems is solved using a combined model of moist convection and the formation of cloudiness and sulfate aerosols in the troposphere and lower stratosphere over the sea, incorporating natural emissions of sulfur-containing compounds. We have found that a significant source of condensation nuclei in the troposphere is the photochemical transformation of biogenic dimethyl sulfide (in addition to NaCl). The results of numerical experiments indicate that the absence of sulfate aerosols hinders the cloudiness formation over the sea in the middle and upper troposphere. The problem of sulfate aerosol involvement in the formation of supercooled ternary solutions (STSs) (PSC Type Ib) in the lower stratosphere is solved using a mathematical model of global transport of multicomponent gas pollutants and aerosols in the atmosphere. Using the combined model, numerical experiments were performed for the winter season in both hemispheres. Sulfate aerosols were found to really participate in the formation of STS particles. Without their participation, the formation of STS particles in the lower stratosphere would be hindered. We present the results of numerical calculations and discuss the distribution of concentrations of gaseous nitric and sulfuric acids, as well as mass concentrations of these components in STS particles.

  13. A neural network based intelligent predictive sensor for cloudiness, solar radiation and air temperature.

    PubMed

    Ferreira, Pedro M; Gomes, João M; Martins, Igor A C; Ruano, António E

    2012-11-12

    Accurate measurements of global solar radiation and atmospheric temperature,as well as the availability of the predictions of their evolution over time, are important for different areas of applications, such as agriculture, renewable energy and energy management, or thermal comfort in buildings. For this reason, an intelligent, light-weight and portable sensor was developed, using artificial neural network models as the time-series predictor mechanisms. These have been identified with the aid of a procedure based on the multi-objective genetic algorithm. As cloudiness is the most significant factor affecting the solar radiation reaching a particular location on the Earth surface, it has great impact on the performance of predictive solar radiation models for that location. This work also represents one step towards the improvement of such models by using ground-to-sky hemispherical colour digital images as a means to estimate cloudiness by the fraction of visible sky corresponding to clouds and to clear sky. The implementation of predictive models in the prototype has been validated and the system is able to function reliably, providing measurements and four-hour forecasts of cloudiness, solar radiation and air temperature.

  14. A Neural Network Based Intelligent Predictive Sensor for Cloudiness, Solar Radiation and Air Temperature

    PubMed Central

    Ferreira, Pedro M.; Gomes, João M.; Martins, Igor A. C.; Ruano, António E.

    2012-01-01

    Accurate measurements of global solar radiation and atmospheric temperature, as well as the availability of the predictions of their evolution over time, are important for different areas of applications, such as agriculture, renewable energy and energy management, or thermal comfort in buildings. For this reason, an intelligent, light-weight and portable sensor was developed, using artificial neural network models as the time-series predictor mechanisms. These have been identified with the aid of a procedure based on the multi-objective genetic algorithm. As cloudiness is the most significant factor affecting the solar radiation reaching a particular location on the Earth surface, it has great impact on the performance of predictive solar radiation models for that location. This work also represents one step towards the improvement of such models by using ground-to-sky hemispherical colour digital images as a means to estimate cloudiness by the fraction of visible sky corresponding to clouds and to clear sky. The implementation of predictive models in the prototype has been validated and the system is able to function reliably, providing measurements and four-hour forecasts of cloudiness, solar radiation and air temperature. PMID:23202230

  15. Evaluation of total cloudiness and its variability in the atmospheric model intercomparison project

    SciTech Connect

    Weare, B.C.; Mokhov, I.I.

    1995-09-01

    Total cloudiness of 29 models participating in the Atmospheric Model Intercomparison Project is compared with the ISCCP C2 as well as the Nimbus-7 and Meteor observational estimates. The root-mean-square differences between the annual means of the model calculations and the C2 observations vary from about twice to nearly four times the difference between the C2 and Meteor observations. The large differences are in some cases due to the fact that although a model qualitatively has patterns of spatial variations similar to those of the observations, the magnitude of those variations is much too small. In other cases the models have produced the approximate magnitude of the spatial variability of the observations but display sizable errors in the pattern of that variability. Deficiencies with respect to the model simulations of the mean seasonal cycle are also pronounced. For instance, the differences between the zonal averages of total cloudiness for contrasting seasons suggest that near 60{degrees} most models predict minima in cloudiness in summer, whereas observations strongly suggest the opposite. Smoothed seasonal cycle analyses suggest that a portion of these deficiencies in some models is the result of a simulated seasonal cycle that lead that of the observations by about two months. However, some models, which appear to have the proper phase of the seasonal cycle, still show large root-mean-squared differences and small correlations when compared with the smoothed seasonal cycle of the C2 observations. The C2 and Meteor observations show a modest signal in total cloudiness for the only important interannual variation during the July 1983 through June 1988 observation period-the 1986/87 ENSO event. A few models reproduce this event about as well as do the Meteor observations, whereas many models fail to show any evidence of it. Overall, models that better reproduce the ENSO results also tend to do well with seasonal variations. 32 refs., 12 figs., 1 tab.

  16. Present-day groundwater recharge estimation in parts of the Indian Sub-Continent

    NASA Astrophysics Data System (ADS)

    Bhanja, S. N.; Mukherjee, A.; Wada, Y.; Scanlon, B. R.; Taylor, R. G.; Rodell, M.; Malakar, P.

    2015-12-01

    Large part of global population has been dependent on groundwater as a source of fresh water. The demand would further increase with increasing population and stress associated with climate change. We tried to provide regional-scale groundwater recharge estimates in a large part of Indian Sub-Continent. A combination of ground-based, satellite-based and numerical model simulated recharge estimates were presented in the densely populated region. Three different methods: an intense network of observational wells (n>13,000 wells), a satellite (TRMM) and global land-surface model (CLM) outputs, and a global-scale hydrological model (PCR GLOBWB) were employed to calculate recharge estimates. Groundwater recharge values exhibit large spatial variations over the entire region on the basis of aquifer hydrogeology, precipitation and groundwater withdrawal patterns. Groundwater recharge estimates from all three estimation techniques were found to be higher (>300 mm/year) in fertile planes of Indus-Ganges-Brahmaputra (IGB) river basins. A combination of favorable hydrogeologic conditions (porosity, permeability etc.), comparatively higher rates of precipitation, and return flow from rapidly withdrawn irrigation water might influence occurrence of high recharge rates. However, central and southern study area experiences lower recharge rates (<200 mm/year), might be associated with unfavorable hydrogeologic conditions associated with cratonic provinces. Statistical analysis of inter-comparison between the three different recharge estimates show good matches in some of the areas. Recharge estimates indicate dynamic nature of groundwater recharge as a function of precipitation, land use pattern, and hydrogeologic parameters. On a first hand basis, the estimates will help policy makers to understand groundwater recharge process over the densely populated region and finally would facilitate to implement sustainable policy for securing water security.

  17. Methods for estimating magnitude and frequency of 1-, 3-, 7-, 15-, and 30-day flood-duration flows in Arizona

    USGS Publications Warehouse

    Kennedy, Jeffrey R.; Paretti, Nicholas V.; Veilleux, Andrea G.

    2014-01-01

    Regression equations, which allow predictions of n-day flood-duration flows for selected annual exceedance probabilities at ungaged sites, were developed using generalized least-squares regression and flood-duration flow frequency estimates at 56 streamgaging stations within a single, relatively uniform physiographic region in the central part of Arizona, between the Colorado Plateau and Basin and Range Province, called the Transition Zone. Drainage area explained most of the variation in the n-day flood-duration annual exceedance probabilities, but mean annual precipitation and mean elevation were also significant variables in the regression models. Standard error of prediction for the regression equations varies from 28 to 53 percent and generally decreases with increasing n-day duration. Outside the Transition Zone there are insufficient streamgaging stations to develop regression equations, but flood-duration flow frequency estimates are presented at select streamgaging stations.

  18. Monte Carlo Simulation of Solar Reflectances for Cloudy Atmospheres.

    NASA Astrophysics Data System (ADS)

    Barker, H. W.; Goldstein, R. K.; Stevens, D. E.

    2003-08-01

    Monte Carlo simulations of solar radiative transfer were performed for a well-resolved, large, three-dimensional (3D) domain of boundary layer cloud simulated by a cloud-resolving model. In order to represent 3D distributions of optical properties for 2 × 106 cloudy cells, attenuation by droplets was handled by assigning each cell a cumulative distribution of extinction derived from either a model or an assumed discrete droplet size spectrum. This minimizes the required number of detailed phase functions. Likewise, to simulate statistically significant, high-resolution imagery, it was necessary to apply variance reduction techniques. Three techniques were developed for use with the local estimation method of computing reflectance . First, small fractions of come from numerous, small contributions of computed at each scattering event. Terminating calculation of when it falls below min 103 was found to impact estimates of minimally but reduced computation time by 10%. Second, large fractions of come from infrequent realizations of large . When sampled poorly, they boost Monte Carlo noise significantly. Removing max, storing them in a domainwide reservoir, adding max to local estimates of , and, at simulation's end, distributing the reservoir across the domain in proportion to local , tends to reduce variance much. This regionalization technique works well when the number of photons per unit area is small (nominally 50 000). A value of max 100 reduces variance of greatly with little impact on estimates of . Third, if

  19. Estimating Criminal Justice System Costs and Cost-Savings Benefits of Day Reporting Centers

    ERIC Educational Resources Information Center

    Craddock, Amy

    2004-01-01

    This paper reports on the net cost-savings benefits (loss) to the criminal justice system of one rural and one urban day reporting center, both of which serve high risk/high need probationers. It also discusses issues of conducting criminal justice system cost studies of community corrections programs. The average DRC participant in the rural…

  20. Thermal degradation of cloudy apple juice phenolic constituents.

    PubMed

    De Paepe, D; Valkenborg, D; Coudijzer, K; Noten, B; Servaes, K; De Loose, M; Voorspoels, S; Diels, L; Van Droogenbroeck, B

    2014-11-01

    Although conventional thermal processing is still the most commonly used preservation technique in cloudy apple juice production, detailed knowledge on phenolic compound degradation during thermal treatment is still limited. To evaluate the extent of thermal degradation as a function of time and temperature, apple juice samples were isothermally treated during 7,200s over a temperature range of 80-145 °C. An untargeted metabolomics approach based on liquid chromatography-high resolution mass spectrometry was developed and applied with the aim to find out the most heat labile phenolic constituents in cloudy apple juice. By the use of a high resolution mass spectrometer, the high degree of in-source fragmentation, the quality of deconvolution and the employed custom-made database, it was possible to achieve a high degree of structural elucidation for the thermolabile phenolic constituents. Procyanidin subclass representatives were discovered as the most heat labile phenolic compounds of cloudy apple juice.

  1. Variability of cloudiness at airline cruise altitudes from GASP measurements

    NASA Technical Reports Server (NTRS)

    Jasperson, W. H.; Nastrom, G. D.; Davis, R. E.; Holdeman, J. D.

    1985-01-01

    Additional statistics relating to the climatology of cloud cover at airline cruise altitudes are presented. The data were obtained between 1975 and 1979 from commercial airliners participating in the Global Atmospheric Sampling Program (GASP). The statistics describe the seasonal, latitudinal and altitudinal variation in cloudiness parameters as well as differences in the high-altitude cloud structure attributed to cyclone and convective-cloud generation processes. The latitudinal distribution of cloud cover derived form the GASP data was found to agree with high-altitude satellite observations. The relationships between three different measures of cloudiness and the relative vorticity at high altitudes is also discussed.

  2. Ultrafast High Accuracy PCRTM_SOLAR Model for Cloudy Atmosphere

    NASA Technical Reports Server (NTRS)

    Yang, Qiguang; Liu, Xu; Wu, Wan; Yang, Ping; Wang, Chenxi

    2015-01-01

    An ultrafast high accuracy PCRTM_SOLAR model is developed based on PCA compression and principal component-based radiative transfer model (PCRTM). A fast algorithm for simulation of multi-scattering properties of cloud and/or aerosols is integrated into the fast infrared PCRTM. We completed radiance simulation and training for instruments, such as IASI, AIRS, CrIS, NASTI and SHIS, under diverse conditions. The new model is 5 orders faster than 52-stream DISORT with very high accuracy for cloudy sky radiative transfer simulation. It is suitable for hyperspectral remote data assimilation and cloudy sky retrievals.

  3. Aerosol optical depth increase in partly cloudy conditions

    SciTech Connect

    Chand, Duli; Wood, R.; Ghan, Steven J.; Wang, Minghuai; Ovchinnikov, Mikhail; Rasch, Philip J.; Miller, Steven D.; Schichtel, Bret; Moore, Tom

    2012-09-14

    Remote sensing observations of aerosol from surface and satellite instruments are extensively used for atmospheric and climate research. From passive sensors, the apparent cloud-free atmosphere in the vicinity of clouds often appears to be brighter then further away from the clouds, leading to an enhancement in the retrieved aerosol optical depth. Mechanisms contributing to this enhancement, including contamination by undetected clouds, hygroscopic growth of aerosol particles, and meteorological conditions, have been debated in recent literature, but an extent to which each of these factors influence the observed enhancement is poorly known. Here we used 11 years of daily global observations at 10x10 km2 resolution from the MODIS on the NASA Terra satellite to quantify as a function of cloud fraction (CF). Our analysis reveals that, averaged over the globe, the clear sky is enhanced by ? = 0.05 which corresponds to relative enhancements of 25% in cloudy conditions (CF=0.8-0.9) compared with relatively clear conditions (CF=0.1-0.2). Unlike the absolute enhancement ?, the relative increase in ? is rather consistent in all seasons and is 25-35% in the subtropics and 15-25% at mid and higher latitudes. Using a simple Gaussian probability density function model to connect cloud cover and the distribution of relative humidity, we argue that much of the enhancement is consistent with aerosol hygroscopic growth in the humid environment surrounding clouds. Consideration of these cloud-dependent effects will facilitate understanding aerosol-cloud interactions and reduce the uncertainty in estimates of aerosol radiative forcing by global climate models.

  4. Estimating West Nile virus transmission period in Pennsylvania using an optimized degree-day model.

    PubMed

    Chen, Shi; Blanford, Justine I; Fleischer, Shelby J; Hutchinson, Michael; Saunders, Michael C; Thomas, Matthew B

    2013-07-01

    Abstract We provide calibrated degree-day models to predict potential West Nile virus (WNV) transmission periods in Pennsylvania. We begin by following the standard approach of treating the degree-days necessary for the virus to complete the extrinsic incubation period (EIP), and mosquito longevity as constants. This approach failed to adequately explain virus transmission periods based on mosquito surveillance data from 4 locations (Harrisburg, Philadelphia, Pittsburgh, and Williamsport) in Pennsylvania from 2002 to 2008. Allowing the EIP and adult longevity to vary across time and space improved model fit substantially. The calibrated models increase the ability to successfully predict the WNV transmission period in Pennsylvania to 70-80% compared to less than 30% in the uncalibrated model. Model validation showed the optimized models to be robust in 3 of the locations, although still showing errors for Philadelphia. These models and methods could provide useful tools to predict WNV transmission period from surveillance datasets, assess potential WNV risk, and make informed mosquito surveillance strategies.

  5. Outlook for Fund Raisers: Not so Cloudy

    ERIC Educational Resources Information Center

    Masterson, Kathryn

    2008-01-01

    Last week, the biggest annual gathering of college fund raisers was held in New York as some of the rockiest business news of the year unfolded. The three-day event, organized by the Council for Advancement and Support of Education, was bookended by the federal government's announcement that it would step in to bail out the beleaguered mortgage…

  6. Influences of the day-night differences of ionospheric variability on the estimation of GPS differential code bias

    NASA Astrophysics Data System (ADS)

    Li, L. X.; Zhang, D. H.; Zhang, S. R.; Coster, A. J.; Hao, Y. Q.; Xiao, Z.

    2015-04-01

    The estimation of differential code bias (DCB) of GPS system is one of the necessary steps for total electron content (TEC) derivation from GPS measurements. Usually, the method for estimating the GPS DCBs follows the assumption of the gentle temporal and spatial variation of the ionosphere, but this assumption is just an approximation because of the ionosphere's inherent variability. It has been indicated that the estimated GPS satellite DCBs are sometimes influenced by the ionospheric conditions. In this paper, we demonstrate a possible influence of ionospheric variability that differs between day and night on the estimated DCBs from measurements of a single GPS station. It is found that the average standard deviations (STDs) of the satellite DCBs estimated with daytime data are higher than that with the nighttime data. To reduce this day-night difference effect on GPS DCB determination, we use an improved estimation method based on the primary features of the ionospheric variability with local time. A local time dependent weighting function was introduced into the original least squares DCBs estimation algorithm. A test with data for BJFS station (39.60°N, 115.89°E) in 2001 indicates that the STD of the DCBs decreases from 2.533 TECU (total electron content unit, 1 TECU = 1016 el m-2) to 2.308 TECU, or by 8.9%, after the improved method was applied. For comparison, another test for the same station in 2009 indicates that the STD decreases from 1.344 TECU to 1.295 TECU. The amplitude of the 2009 improvement is very limited, only about 3.6%. The difference of the percentage improvements can probably be attributed to the different ionospheric conditions between 2001 and 2009.

  7. Estimating Sun Exposure of Children in Day Care Nurseries in South Oxfordshire, UK.

    PubMed

    Baczynska, Katarzyna A; Price, Luke L A; Higlett, Michael P; O'Hagan, John B

    2016-01-01

    Exposure to ultraviolet radiation and sunburn during childhood and adolescence is linked to increased risks of melanoma and basal cell carcinoma later in life. Infants and toddlers are thought to be unusually vulnerable to UVR because of lower levels of melanin, a thinner stratum corneum and a higher surface area/body mass ratio. The aim of this study was to assess variations in the available erythema effective radiant doses to young children in day care nurseries in South Oxfordshire, UK over 7 years between 2008 and 2014. The data were analyzed in three distinct seasons according to a series of realistic exposure scenarios taking into account nursery routines. The results indicate the time of year when high doses are to be expected and provide strong support for arguments in favor of raising public awareness of sun protection earlier in the year. PMID:26452244

  8. Simulations of the Broad Line Region of NGC 5548 with Cloudy Code: Temperature Determination

    NASA Astrophysics Data System (ADS)

    Ilic, D.

    2007-12-01

    In this paper an analysis of the physical properties of the Broad Line Region (BLR) of the active galaxy NGC 5548 is presented. Using the photoionization code CLOUDY and the measurements of Peterson et al. (2002), the physical conditions of the BLR are simulated and the BLR temperature is obtained. This temperature was compared to the temperature estimated with the Boltzmann-Plot (BP) method (Popović et al. 2007). It was shown that the measured variability in the BLR temperature could be due to the change in the hydrogen density.

  9. Cloudy's Journey from FORTRAN to C, Why and How

    NASA Astrophysics Data System (ADS)

    Ferland, G. J.

    Cloudy is a large-scale plasma simulation code that is widely used across the astronomical community as an aid in the interpretation of spectroscopic data. The cover of the ADAS VI book featured predictions of the code. The FORTRAN 77 source code has always been freely available on the Internet, contributing to its widespread use. The coming of PCs and Linux has fundamentally changed the computing environment. Modern Fortran compilers (F90 and F95) are not freely available. A common-use code must be written in either FORTRAN 77 or C to be Open Source/GNU/Linux friendly. F77 has serious drawbacks - modern language constructs cannot be used, students do not have skills in this language, and it does not contribute to their future employability. It became clear that the code would have to be ported to C to have a viable future. I describe the approach I used to convert Cloudy from FORTRAN 77 with MILSPEC extensions to ANSI/ISO 89 C. Cloudy is now openly available as a C code, and will evolve to C++ as gcc and standard C++ mature. Cloudy looks to a bright future with a modern language.

  10. Performance assessment of different day-of-the-year-based models for estimating global solar radiation - Case study: Egypt

    NASA Astrophysics Data System (ADS)

    Hassan, Gasser E.; Youssef, M. Elsayed; Ali, Mohamed A.; Mohamed, Zahraa E.; Shehata, Ali I.

    2016-11-01

    Different models are introduced to predict the daily global solar radiation in different locations but there is no specific model based on the day of the year is proposed for many locations around the world. In this study, more than 20 years of measured data for daily global solar radiation on a horizontal surface are used to develop and validate seven models to estimate the daily global solar radiation by day of the year for ten cities around Egypt as a case study. Moreover, the generalization capability for the best models is examined all over the country. The regression analysis is employed to calculate the coefficients of different suggested models. The statistical indicators namely, RMSE, MABE, MAPE, r and R2 are calculated to evaluate the performance of the developed models. Based on the validation with the available data, the results show that the hybrid sine and cosine wave model and 4th order polynomial model have the best performance among other suggested models. Consequently, these two models coupled with suitable coefficients can be used for estimating the daily global solar radiation on a horizontal surface for each city, and also for all the locations around the studied region. It is believed that the established models in this work are applicable and significant for quick estimation for the average daily global solar radiation on a horizontal surface with higher accuracy. The values of global solar radiation generated by this approach can be utilized in the design and estimation of the performance of different solar applications.

  11. Dynamics of a supernova envelope in a cloudy interstellar medium

    NASA Astrophysics Data System (ADS)

    Korolev, V. V.; Vasiliev, E. O.; Kovalenko, I. G.; Shchekinov, Yu. A.

    2015-07-01

    The evolution of a supernova remnant in a cloudy medium as a function of the volume filling factor of the clouds is studied in a three-dimensional axially symmetrical model. The model includes the mixing of heavy elements (metals) ejected by the supernova and their contribution to radiative losses. The interaction of the supernova envelope with the cloudy phase of the interstellar medium leads to nonsimultaneous, and on average earlier, onsets of the radiative phase in different parts of the supernova envelope. Growth in the volume filling factor f leads to a decrease in the time for the transition of the envelope to the radiative phase and a decrease in the envelope's mean radius, due to the increased energy losses by the envelope in the cloudy medium. When the development of hydrodynamical instabilities in the supernova envelope is efficient, the thermal energy falls as E t ~ t -2.3, for the propagation of the supernova remnant through either a homogeneous or a cloudy medium. When the volume filling factor is f ≳ 0.1, a layer with excess kinetic energy andmomentumforms far behind the global shock front from the supernova, which traps the hot gas of the cavity in the central part of the supernova remnant. Metals ejected by the supernova are also enclosed in the central region of the remnant, where the initial (high) metallicity is essentially preserved. Thus, the interaction of the supernova envelope with the cloudy interstellar medium appreciably changes the dynamics and structure of the distribution of the gas in the remnant. This affects the observational characteristics of the remnant, in particularly, leading to substantial fluctuations of the emissionmeasure of the gas with T > 105 K and the velocity dispersion of the ionized gas.

  12. Diurnal heating and cloudiness in the NCAR Community Climate Model (CCM2)

    SciTech Connect

    Lieberman, R.S.; Leovy, C.B. ); Boville, B.A.; Briegleb, B.P. )

    1994-06-01

    In this paper, the authors assess the suitability of the heating fields in the latest version of the NCAR Community Climate Model (CCM2) for modeling the thermal forcing of atmospheric tides. Accordingly, diurnal variations of the surface pressure, outgoing longwave radiation, cloudiness, and precipitation are examined in the CCM2. The fields of radiative, sensible, and latent heating are similarly analyzed. These results are subjectively compared with available data. Equatorial diurnal surface pressure tides are fairly well simulated by CCM2. The model successfully reproduces the semidiurnal surface pressure tides; however, this may result in part from reflection of wave energy at the upper boundary. The CCM2 large-scale diurnal OLR is generally consistent with observations. The moist-convective scheme in the model is able to reproduce the diurnally varying cloudiness and precipitation patterns associated with land-sea contrasts; however, the amplitudes of CCM2 diurnal continental convective cloudiness are weaker than observations. The CCM2 boundary-layer sensible heating is consistent with a very limited set of observations, and with estimates obtained from simple models of diffusive heating. Although the CCM2 tropospheric solar radiative heating is similar in magnitude to previous estimates, there are substantial differences in the vertical structures. A definitive assessment of the validity of the CCM2 diurnal cycle is precluded by the lack of detailed observations and the limitations of our CCM2 sample. Nevertheless, the authors conclude that the global-scale components of the CCM2 diurnal heating are useful proxies for the true diurnal forcing of the tides. 45 refs., 18 figs.

  13. Estimating hypothetical present-day insured losses for past intense hurricanes in the French Antilles

    NASA Astrophysics Data System (ADS)

    Thornton, James; Desarthe, Jérémy; Naulin, Jean-Philippe; Garnier, Emmanuel; Liu, Ye; Moncoulon, David

    2015-04-01

    On the islands of the French Antilles, the period for which systematic meteorological measurements and historic event loss data are available is short relative to the recurrence intervals of very intense, damaging hurricanes. Additionally, the value of property at risk changes through time. As such, the recent past can only provide limited insight into potential losses from extreme storms in coming years. Here we present some research that seeks to overcome, as far as is possible, the limitations of record length in assessing the possible impacts of near-future hurricanes on insured properties. First, using the archives of the French overseas departments (which included administrative and weather reports, inventories of damage to houses, crops and trees, as well as some meteorological observations after 1950) we reconstructed the spatial patterns of hazard intensity associated with three historical events. They are: i) the 1928 Hurricane (Guadeloupe), ii) Hurricane Betsy (1956, Guadeloupe) and iii) Hurricane David (1979, Martinique). These events were selected because all were damaging, and the information available on each is rich. Then, using a recently developed catastrophe model for hurricanes affecting Guadeloupe, Martinique, Saint-Barthélemy and Saint-Martin, we simulated the hypothetical losses to insured properties that the reconstructed events might cause if they were to reoccur today. The model simulated damage due to wind, rainfall-induced flooding and storm surge flooding. These 'what if' scenarios provided an initial indication of the potential present-day exposure of the insurance industry to intense hurricanes. However, we acknowledge that historical events are unlikely to repeat exactly. We therefore extended the study by producing a stochastic event catalogue containing a large number of synthetic but plausible hurricane events. Instrumental data were used as a basis for event generation, but importantly the statistical methods we applied permit

  14. Boundary Layer Cloudiness Parameterizations Using ARM Observations

    SciTech Connect

    Bruce Albrecht

    2004-09-15

    This study used DOE ARM data and facilities to: (1) study macroscopic properties of continental stratus clouds at SGP and the factors controlling these properties, (2) develop a scientific basis for understanding the processes responsible for the formation of boundary layer clouds using ARM observations in conjunction with simple parametric models and LES, and (3) evaluate cumulus cloud characteristics retrieved from the MMCR operating at TWP-Nauru. In addition we have used high resolution 94 GHz observations of boundary layer clouds and precipitation to: (1) develop techniques for using high temporal resolution Doppler velocities to study large-eddy circulations and turbulence in boundary layer clouds and estimate the limitations of using current and past MMCR data for boundary layer cloud studies, (2) evaluate the capability and limitations of the current MMCR data for estimating reflectivity, vertical velocities, and spectral under low- signal-to-noise conditions associated with weak no n-precipitating clouds, (3) develop possible sampling modes for the new MMCR processors to allow for adequate sampling of boundary layer clouds, and (4) retrieve updraft and downdraft structures under precipitating conditions.

  15. Cloudy sky shortwave radiative closure for a Baseline Surface Radiation Network site

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Knap, Wouter H.; Stammes, Piet

    2011-04-01

    A shortwave radiative closure analysis for cloudy skies is presented for the Cabauw Baseline Surface Radiation Network (BSRN) site (51.97°N, 4.93°E). The cloudy cases are carefully selected to be overcast, single-layer, homogeneous, nonprecipitating water clouds. We selected in total 639 cases on 9 days between May 2008 and May 2009 and on 30 January 2007. The Doubling-Adding KNMI (DAK) code is used to simulate global irradiances. The cloud optical thickness is derived from the cloud liquid water path from microwave radiometer (MWR) measurements and the MODIS L2 cloud effective radius product. The scattering phase matrix of the cloud particles is calculated using a Mie code with the two-parameter Gamma size distribution. The MWR integrated water vapor column and an aerosol climatology are also used in the simulations. The cloudy cases cover a large range of liquid water path (30-400 g/m2), water vapor column (0.7-3.1 cm), and solar zenith angle (41°-75°). The mean difference between simulated global irradiances and BSRN measurements is 6 W/m2 (5%), with a standard deviation of 14 W/m2 (13%). This difference is within the uncertainties of the model input parameters and measurement errors. The correlation coefficient between the measured and simulated global irradiances is 0.95. The good closure results demonstrate the high quality of the MODIS effective radius data and MWR liquid water path data and the accuracy of the DAK model for the selected water cloud cases. Furthermore, the effects of clouds, aerosols, water vapor, and surface albedo on the global irradiance have been analyzed carefully. The sensitivity study shows that in order to achieve the closure with an uncertainty of a few W/m2, more frequent effective radius data, simultaneous aerosol and cloud measurements, and surface albedo measurements are essential.

  16. Aerosol Retrievals under Partly Cloudy Conditions: Challenges and Perspectives

    SciTech Connect

    Kassianov, Evgueni I.; Ovchinnikov, Mikhail; Berg, Larry K.; Flynn, Connor J.

    2011-06-01

    There are lots of interesting and intriguing features of aerosols near clouds – many of which can be quite engaging, as well being useful and climate-related. Exploring aerosol with the aid of the remote sensing, in situ observations and numerical modeling has piqued our curiosity and led to improve insights into the nature of aerosol and clouds and their complex relationship. This chapter conveys the outstanding issues of cloudy-sky aerosol retrievals of important climate properties and outlines their fruitful connections to other research areas such as in situ measurements and model simulations. The chapter focuses mostly on treating the inverse problems in the context of the passive satellite remote sensing and how they can improve our understanding of the cloud-aerosol interactions. The presentation includes a basis in the inverse problem theory, reviews available approaches and discusses their applications to partly cloudy situations. Potential synergy of observations and model simulations is described as well.

  17. Changes in Extratropical Storm Track Cloudiness 1983-2008: Observational Support for a Poleward Shift

    NASA Technical Reports Server (NTRS)

    Bender, Frida A-M.; Rananathan, V.; Tselioudis, G.

    2012-01-01

    Climate model simulations suggest that the extratropical storm tracks will shift poleward as a consequence of global warming. In this study the northern and southern hemisphere storm tracks over the Pacific and Atlantic ocean basins are studied using observational data, primarily from the International Satellite Cloud Climatology Project, ISCCP. Potential shifts in the storm tracks are examined using the observed cloud structures as proxies for cyclone activity. Different data analysis methods are employed, with the objective to address difficulties and uncertainties in using ISCCP data for regional trend analysis. In particular, three data filtering techniques are explored; excluding specific problematic regions from the analysis, regressing out a spurious viewing geometry effect, and excluding specific cloud types from the analysis. These adjustments all, to varying degree, moderate the cloud trends in the original data but leave the qualitative aspects of those trends largely unaffected. Therefore, our analysis suggests that ISCCP data can be used to interpret regional trends in cloudiness, provided that data and instrumental artefacts are recognized and accounted for. The variation in magnitude between trends emerging from application of different data correction methods, allows us to estimate possible ranges for the observational changes. It is found that the storm tracks, here represented by the extent of the midlatitude-centered band of maximum cloud cover over the studied ocean basins, experience a poleward shift as well as a narrowing over the 25 year period covered by ISCCP. The observed magnitudes of these effects are larger than in current generation climate models (CMIP3). The magnitude of the shift is particularly large in the northern hemisphere Atlantic. This is also the one of the four regions in which imperfect data primarily prevents us from drawing firm conclusions. The shifted path and reduced extent of the storm track cloudiness is accompanied

  18. Evaluation of Total Cloudiness and Its Variability in the Atmospheric Model Intercomparison Project.

    NASA Astrophysics Data System (ADS)

    Weare, Bryan C.; Mokhov, Igor I.

    1995-09-01

    Total cloudiness of 29 models participating in the Atmospheric Model Intercomparison Project is compared with the ISCCP C2 as well as the Nimbus-7 and Meteor observational estimates. The root-mean-square differences between the annual means of the model calculations and the C2 observations after global means are removed vary from about twice to nearly four times the difference between the C2 and Meteor observations. The large differences are in some cases due to the fact that although a model qualitatively has patterns of spatial variations similar to those of the observations, the magnitude of those variations is much too small. In other cases the models have produced the approximate magnitude of the spatial variability of the observations but display sizable errors in the pattern of that variability.Deficiencies with respect to the model simulations of the mean seasonal cycle are also pronounced. For instance, the differences between the zonal averages of total cloudiness for contrasting seasons suggest that near 60° most models predict minima in cloudiness in summer, whereas observations strongly suggest the opposite. In addition, smoothed seasonal cycle analyses suggest that a portion of these deficiencies in some models is the result of a simulated seasonal cycle that leads that of the observations by about two months. However, some models, which appear to have the proper phase of the seasonal cycle, still show large root-mean-square differences and small correlations when compared with the smoothed seasonal cycle of the C2 observations. The C2 and Meteor observations show a modest signal in total cloudiness for the only important interannual variation during the July 1983 through June 1988 observation period-the 1986/87 ENSO event. A few models reproduce this event about as well as do the Meteor observations, whereas many models fail to show any evidence of it.Overall, models that better reproduce the ENSO results also tend to do well with seasonal

  19. Computation of Solar Radiative Fluxes by 1D and 3D Methods Using Cloudy Atmospheres Inferred from A-train Satellite Data

    NASA Technical Reports Server (NTRS)

    Barker, Howard W.; Kato, Serji; Wehr, T.

    2012-01-01

    The main point of this study was to use realistic representations of cloudy atmospheres to assess errors in solar flux estimates associated with 1D radiative transfer models. A scene construction algorithm, developed for the EarthCARE satellite mission, was applied to CloudSat, CALIPSO, and MODIS satellite data thus producing 3D cloudy atmospheres measuring 60 km wide by 13,000 km long at 1 km grid-spacing. Broadband solar fluxes and radiances for each (1 km)2 column where then produced by a Monte Carlo photon transfer model run in both full 3D and independent column approximation mode (i.e., a 1D model).

  20. An extended cumulative logit model for detecting a shift in frequencies of sky-cloudiness conditions

    NASA Astrophysics Data System (ADS)

    Lu, Qiqi; Wang, Xiaolan L.

    2012-08-01

    In Canada, sky-cloudiness (or cloud cover) condition is reported in terms of tenths of the sky dome covered by clouds and hence has 11 categories (0/10 for clear sky, 1/10 for one tenth of the sky dome covered by clouds, …, and 10/10 for overcast). The cloud cover data often contain temporal discontinuities (changepoints) and present a large amount of observational uncertainty. Detecting changepoints in a sequence of continuous random variables has been extensively explored in both statistics and climatology literature. However, changepoint analyses of a multinomial sequence data with extra variabilities are relatively sparse. This study develops a likelihood ratio test for detecting a sudden change in parameters of the cumulative logit model for a multinomial sequence. The extra-multinomial variation is accounted for by allowing an overdispersion parameter in the model fitting. Moreover, the empirical distribution of the estimated changepoint is approximated by a bootstrap method. An application of this new technique to real sky cloudiness data in Canada is presented.

  1. Cardiovascular responses to noise: Effects of self-estimated sensitivity to noise, sex, and time of the day

    NASA Astrophysics Data System (ADS)

    di Nisi, J.; Muzet, A.; Weber, L. D.

    1987-04-01

    Eighty subjects of both sexes were selected according to their self-estimated high or low sensitivity to noise. Noise exposure took place during a mental task ("sound" condition) or during a video film illustrating the noises ("sound and video" condition). The experiments were conducted between 0900 and 1100 hours or between 1500 and 1700 hours. Heart rate response and finger pulse response amplitudes were averaged separately for "sound" and "sound and video" conditions. In the "sound" condition, the average amplitude of the heart rate response differed significantly between noise-sensitivity groups: the low sensitivity group showed a lower average amplitude of heart rate response than the high sensitivity group. A significant interaction between sex and time of the day (morning or afternoon) was observed in both "sound" and "sound and video" conditions. In the "sound" condition, the percentage of noises inducing a finger pulse response appeared higher in female than in male subjects.

  2. A novel GIS-based tool for estimating present-day ocean reference depth using automatically processed gridded bathymetry data

    NASA Astrophysics Data System (ADS)

    Jurecka, Mirosława; Niedzielski, Tomasz; Migoń, Piotr

    2016-05-01

    This paper presents a new method for computing the present-day value of the reference depth (dr) which is an essential input information for assessment of past sea-level changes. The method applies a novel automatic geoprocessing tool developed using Python script and ArcGIS, and uses recent data about ocean floor depth, sediment thickness, and age of oceanic crust. The procedure is multi-step and involves creation of a bathymetric dataset corrected for sediment loading and isostasy, delineation of subduction zones, computation of perpendicular sea-floor profiles, and statistical analysis of these profiles versus crust age. The analysis of site-specific situations near the subduction zones all around the world shows a number of instances where the depth of the oceanic crust stabilizes at a certain level before reaching the subduction zone, and this occurs at depths much lower than proposed in previous approaches to the reference depth issue. An analysis of Jurassic and Cretaceous oceanic lithosphere shows that the most probable interval at which the reference depth occurs is 5300-5800 m. This interval is broadly consistent with dr estimates determined using the Global Depth-Heatflow model (GDH1), but is significantly lower than dr estimates calculated on a basis of the Parsons-Sclater Model (PSM).

  3. Cloudy 94 and Applications to Quasar Emission Line Regions

    NASA Technical Reports Server (NTRS)

    Ferland, Gary J.

    2000-01-01

    This review discusses the most recent developments of the plasma simulation code Cloudy and its application to the, emission-line regions of quasars. The longterm goal is to develop the tools needed to determine the chemical composition of the emitting gas and the luminosity of the central engine for any emission line source. Emission lines and the underlying thermal continuum are formed in plasmas that are far from thermodynamic equilibrium. Their thermal and ionization states are the result of a balance of a vast set of microphysical processes. Once produced, radiation must, propagate out of the (usually) optically thick source. No analytic solutions are possible, and recourse to numerical simulations is necessary. I am developing the large-scale plasma simulation code Cloudy as an investigative tool for this work, much as an observer might build a spectrometer. This review describes the current version of Cloudy, version 94. It describes improvements made since the, release of the previous version, C90. The major recent, application has been the development of the "Locally Optimally-Emitting Cloud" (LOC) model of AGN emission line regions. Powerful selection effects, introduced by the atomic physics and line formation process, permit individual lines to form most efficiently only near certain selected parameters. These selection effects, together with the presence of gas with a wide range of conditions, are enough to reproduce the spectrum of a typical quasar with little dependence on details. The spectrum actually carries little information to the identity of the emitters. I view this as a major step forward since it provides a method to handle accidental details at the source, so that we can concentrate on essential information such as the luminosity or chemical composition of the quasar.

  4. Opalescent and cloudy fruit juices: formation and particle stability.

    PubMed

    Beveridge, Tom

    2002-07-01

    Cloudy fruit juices, particularly from tropical fruit, are becoming a fast-growing part of the fruit juice sector. The classification of cloud as coarse and fine clouds by centrifugation and composition of cloud from apple, pineapple, orange, guava, and lemon juice are described. Fine particulate is shown to be the true stable cloud and to contain considerable protein, carbohydrate, and lipid components. Often, tannin is present as well. The fine cloud probably arises from cell membranes and appears not to be simply cell debris. Factors relating to the stability of fruit juice cloud, including particle sizes, size distribution, and density, are described and discussed. Factors promoting stable cloud in juice are presented.

  5. Climatic change by cloudiness linked to the spatial variability of sea surface temperatures

    NASA Technical Reports Server (NTRS)

    Otterman, J.

    1975-01-01

    An active role in modifying the earth's climate is suggested for low cloudiness over the circumarctic oceans. Such cloudiness, linked to the spatial differences in ocean surface temperatures, was studied. The temporal variations from year to year of ocean temperature patterns can be pronounced and therefore, the low cloudiness over this region should also show strong temporal variations, affecting the albedo of the earth and therefore the climate. Photographs are included.

  6. Regime-based evaluation of cloudiness in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Jin, Daeho; Oreopoulos, Lazaros; Lee, Dongmin

    2016-04-01

    The concept of cloud regimes (CRs) is used to develop a framework for evaluating the cloudiness of 12 fifth Coupled Model Intercomparison Project (CMIP5) models. Reference CRs come from existing global International Satellite Cloud Climatology Project (ISCCP) weather states. The evaluation is made possible by the implementation in several CMIP5 models of the ISCCP simulator generating in each grid cell daily joint histograms of cloud optical thickness and cloud top pressure. Model performance is assessed with several metrics such as CR global cloud fraction (CF), CR relative frequency of occurrence (RFO), their product [long-term average total cloud amount (TCA)], cross-correlations of CR RFO maps, and a metric of resemblance between model and ISCCP CRs. In terms of CR global RFO, arguably the most fundamental metric, the models perform unsatisfactorily overall, except for CRs representing thick storm clouds. Because model CR CF is internally constrained by our method, RFO discrepancies yield also substantial TCA errors. Our results support previous findings that CMIP5 models underestimate cloudiness. The multi-model mean performs well in matching observed RFO maps for many CRs, but is still not the best for this or other metrics. When overall performance across all CRs is assessed, some models, despite shortcomings, apparently outperform Moderate Resolution Imaging Spectroradiometer cloud observations evaluated against ISCCP like another model output. Lastly, contrasting cloud simulation performance against each model's equilibrium climate sensitivity in order to gain insight on whether good cloud simulation pairs with particular values of this parameter, yields no clear conclusions.

  7. Cloudiness over the Amazon rainforest: Meteorology and thermodynamics

    NASA Astrophysics Data System (ADS)

    Collow, Allison B. Marquardt; Miller, Mark A.; Trabachino, Lynne C.

    2016-07-01

    Comprehensive meteorological observations collected during GOAmazon2014/15 using the Atmospheric Radiation Measurement Mobile Facility no. 1 and assimilated observations from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 are used to document the seasonal cycle of cloudiness, thermodynamics, and precipitation above the Amazon rainforest. The reversal of synoptic-scale vertical motions modulates the transition between the wet and dry seasons. Ascending moist air during the wet season originates near the surface of the Atlantic Ocean and is advected into the Amazon rainforest, where it experiences convergence and, ultimately, precipitates. The dry season is characterized by weaker winds and synoptic-scale subsidence with little or no moisture convergence accompanying moisture advection. This combination results in the drying of the midtroposphere during June through October as indicated by a decrease in liquid water path, integrated water, and the vertical profile of water vapor mixing ratio. The vertical profile of cloud fraction exhibits a relatively consistent decline in cloud fraction from the lifting condensation level (LCL) to the freezing level where a minimum is observed, unlike many other tropical regions. Coefficients of determination between the LCL and cloud fractional coverage suggest a relatively robust relationship between the LCL and cloudiness beneath 5 km during the dry season (R2 = 0.42) but a weak relationship during the wet season (0.12).

  8. Determination of the Absorption Coefficient and Cloudiness Multiplicity Attenuation During the Gamma-Radiation Passage

    NASA Astrophysics Data System (ADS)

    Orlova, K. N.; Borovikov, I. F.; Gaidamak, M. A.

    2016-08-01

    The paper presents background value equivalent dose of gamma-radiation investigation in different weather: clear cloudy and overcast. The change of the dose rate of gamma radiation, depending on the weather and the ability cloudiness to shield gamma rays is shown. A new method for eliminating the consequences of accidents at nuclear power plants or plants using radioactive elements is proposed. A calculation method of cloudiness coefficient absorption and cloudiness gamma-radiation multiplicity attenuation is developed. The gamma- radiation multiplicity attenuation and the absorption coefficient of gamma radiation were calculated.

  9. Evaluation of the Impact of AlRS Radiance and Profile Data Assimilation in Partly Cloudy Regions

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradely; Srikishen, Jayanthi; Jedlovec, Gary

    2013-01-01

    Parallel experiments using AIRS L1B and L2 retrieved profiles were run for 29 case study days for early Winter 2011. Forecasts over and downstream regions of low, opaque cloudy regions yield improved T and Z anomaly correlations when non-thinned set of profiles is assimilated instead of radiances. Initial results indicate that GSI does a good job on the whole of determining cloud-free radiances there are some areas coincident with areas of larger profile impact that are misrepresented (compared to MODIS) that may result in reduced analysis impact.

  10. Parameterization of instantaneous global horizontal irradiance: Cloudy-sky component

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Liu, J.; Zeng, X.; Liang, H.

    2012-07-01

    Radiation calculations in global numerical weather prediction (NWP) and climate models are usually conducted in 3-hourly time interval in order to reduce the computational cost. This treatment can lead to an incorrect solar radiation at the Earth's surface which could be one of the error sources in modeled convection and precipitation. In order to improve the simulation of the diurnal cycle of solar radiation a fast scheme has been developed based on detailed radiative transfer calculations for a wide range of atmospheric conditions and can be used to determine the surface solar radiation at each model integration time step with affordable costs. This scheme is divided into components for clear-sky and cloudy-sky conditions. The clear-sky component has been described in a companion paper. The cloudy-sky component is introduced in this paper. The input variables required by this scheme are all available in NWP and climate models or can be obtained from satellite observations. Therefore, the scheme can be used in a global model to determine the surface GHI. It can also be used as an offline scheme to calculate the surface GHI using data from satellite measurements. SUNFLUX scheme has been tested using observations obtained from three Atmospheric Radiation Measurements (ARM) stations established by the U. S. Department of Energy. The results show that a half hourly mean relative error of GHI under all-sky conditions is less than 7%. An important application of the scheme is in global climate models. The radiation sampling error due to infrequent radiation calculations is investigated using the SUNFLUX and ARM observations. It is found that errors in the surface net solar irradiance are very large, exceeding 800 W m-2at many non-radiation time steps due to ignoring the effects of clouds. Use of the SUNFLUX scheme can reduce these errors to less than 50 W m-2.

  11. PyCloudy: a new tool to model 3D nebulae

    NASA Astrophysics Data System (ADS)

    Morisset, C.

    2014-04-01

    I present in this poster the python based library pyCloudy, allowing to run the Cloudy photoionization code and to: * Define and write input file(s) for Cloudy code. As one can have it in a code, one may generate automatically sets of input files, changing parameters from one to the other: easy to make grids * Read the Cloudy output files and play with the data: one will be able to plot line emissivity ratio vs. the radius of the nebula, the electron temperature, or any Cloudu output. * Build pseudo-3D models, a la Cloudy_3D. This means: run a set of models, changing parameters (e.g. inner radius, density) following angular laws, read the outputs of the set of models and interpolate the results (Te, ne, line emissivities) in a 3D cube. * PV-diagnrams and line profiles through any slit can also be computed

  12. Watch the Weather - More Activities for All Kinds of Days.

    ERIC Educational Resources Information Center

    Texas Child Care, 2002

    2002-01-01

    Explores summer seasonal weather activities for inside and outside the classroom. Offers instructions for hot days, cloudy and wet days, and rainy days, and include lists of supplies, age appropriateness, and instructions. Activities address the following learning areas: (1) intellectual; (2) physical/health/movement; (3) social; and (4) art and…

  13. Modification of spectral ultraviolet doses by different types of overcast cloudiness and atmospheric aerosol.

    PubMed

    Aun, Margit; Eerme, Kalju; Ansko, Ilmar; Veismann, Uno; Lätt, Silver

    2011-01-01

    Wavelength-dependent attenuation of ground-level ultraviolet (UV) dose by different cloud and aerosol situations at the Tartu Observatory site (58°15' N, 26°28' E, 70 m a.s.l) is under scrutiny. The spectra at wavelengths ranging below 400 nm have been recorded by the simple Avantes, Inc. array spectrometer AvaSpec-256 in 2004-2009. The spectral information was supported by the conventional broadband solar irradiance and by the necessary meteorological data. The average cloud modification factor (CMF) on overcast days from May to August has been quite low, 0.36 in UVA and 0.35 in UVB. In the UVA range, the reduction of the daily dose with increasing noon solar zenith angle (SZA) from 35-50° to 65-80° in overcast days has been about 20% more than in clear days, while in the UVB range it was 45% larger. No clear difference in the influence of SZA on CMF between low level (St, Ns) and medium level (As, Ac) overcast cloudiness has been found. The aerosol attenuation during large aerosol optical depth (AOD) episode has been comparable with that of medium level clouds with the wavelength dependency in the UVA range different from that of clouds.

  14. Usual Dietary Intakes: SAS Macros for Estimating Ratios of Two Dietary Components that are Consumed Nearly Every Day

    Cancer.gov

    The following SAS macros can be used to create a bivariate distribution of usual intake of two dietary components that are consumed nearly every day and to calculate percentiles of the population distribution of the ratio of usual intakes.

  15. An investigation into the minimum accelerometry wear time for reliable estimates of habitual physical activity and definition of a standard measurement day in pre-school children.

    PubMed

    Hislop, Jane; Law, James; Rush, Robert; Grainger, Andrew; Bulley, Cathy; Reilly, John J; Mercer, Tom

    2014-11-01

    The purpose of this study was to determine the number of hours and days of accelerometry data necessary to provide a reliable estimate of habitual physical activity in pre-school children. The impact of a weekend day on reliability estimates was also determined and standard measurement days were defined for weekend and weekdays.Accelerometry data were collected from 112 children (60 males, 52 females, mean (SD) 3.7 (0.7)yr) over 7 d. The Spearman-Brown Prophecy formula (S-B prophecy formula) was used to predict the number of days and hours of data required to achieve an intraclass correlation coefficient (ICC) of 0.7. The impact of including a weekend day was evaluated by comparing the reliability coefficient (r) for any 4 d of data with data for 4 d including one weekend day.Our observations indicate that 3 d of accelerometry monitoring, regardless of whether it includes a weekend day, for at least 7 h  d(-1) offers sufficient reliability to characterise total physical activity and sedentary behaviour of pre-school children. These findings offer an approach that addresses the underlying tension in epidemiologic surveillance studies between the need to maintain acceptable measurement rigour and retention of a representatively meaningful sample size.

  16. Direct radiative forcing of aerosols in cloudy condition using CALIPSO satellite data

    NASA Astrophysics Data System (ADS)

    Oikawa, E.; Nakajima, T.; Winker, D. M.

    2013-12-01

    The aerosol direct effect occurs by direct scattering and absorption of solar and thermal radiation. Shortwave direct aerosol radiative forcing (DARF) under clear-sky condition is estimated about 5 Wm-2 from satellite retrievals and model simulations [Yu et al., 2006ACP]. Simultaneous observations of aerosols and clouds are very limited, thus it is difficult to validate the estimation of DARF under cloudy-sky condition. In 2006, the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite was launched with the space-borne lidar, CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization). This enabled us to get data of the vertical distribution of aerosols and clouds all over the world. Oikawa et al. [2013JGR] estimated DARF under clear-sky, cloudy-sky, and all-sky conditions using CALIPSO and MODIS (Moderate resolution Imaging Spectrometer) data. Over Atlantic Ocean off southwest Africa, biomass burning aerosols are transported above low-level clouds and cause large positive DARF [Oikawa et al., 2013JGR; Chand et al., 2009Nat. Geosci.; De Graaf et al., 2012JGR; Takemura et al., 2005JGR]. We calculate DARF using CALIOP Level 2 Cloud and Aerosol Layer Products Version 3 and the method of Oikawa et al. [2013]. In this study, we focus on the case that aerosols exist above clouds (above-cloud case) in 2007. Over Atlantic Ocean off southwest Africa, DARF caused by smoke aerosols is +7.1 Wm-2 in September. On the other hand, aerosol optical thickness (AOT) of smoke is small as close to 0 Wm-2 in spring season. Over North Pacific, yellow sand and industrial smoke are transported from Asia and DARF is +5.2 Wm-2 in May. Dust AOT at 532 nm is 0.014 and polluted dust AOT at 532 nm is 0.052; in other words, a large part of dust emitted from Taklamakan and Gobi deserts are mixed with the industrial smoke and transported to the Pacific Ocean according to the CALIPSO algorithms.

  17. Psychophysical study of the visual sun location in pictures of cloudy and twilight skies inspired by Viking navigation

    NASA Astrophysics Data System (ADS)

    Barta, András; Horváth, Gábor; Benno Meyer-Rochow, Victor

    2005-06-01

    In the late 1960s it was hypothesized that Vikings had been able to navigate the open seas, even when the sun was occluded by clouds or below the sea horizon, by using the angle of polarization of skylight. To detect the direction of skylight polarization, they were thought to have made use of birefringent crystals, called "sunstones," and a large part of the scientific community still firmly believe that Vikings were capable of polarimetric navigation. However, there are some critics who treat the usefulness of skylight polarization for orientation under partly cloudy or twilight conditions with extreme skepticism. One of their counterarguments has been the assumption that solar positions or solar azimuth directions could be estimated quite accurately by the naked eye, even if the sun was behind clouds or below the sea horizon. Thus under partly cloudy or twilight conditions there might have been no serious need for a polarimetric method to determine the position of the sun. The aim of our study was to test quantitatively the validity of this qualitative counterargument. In our psychophysical laboratory experiments, test subjects were confronted with numerous 180° field-of-view color photographs of partly cloudy skies with the sun occluded by clouds or of twilight skies with the sun below the horizon. The task of the subjects was to guess the position or the azimuth direction of the invisible sun with the naked eye. We calculated means and standard deviations of the estimated solar positions and azimuth angles to characterize the accuracy of the visual sun location. Our data do not support the common belief that the invisible sun can be located quite accurately from the celestial brightness and/or color patterns under cloudy or twilight conditions. Although our results underestimate the accuracy of visual sun location by experienced Viking navigators, the mentioned counterargument cannot be taken seriously as a valid criticism of the theory of the alleged

  18. Psychophysical study of the visual sun location in pictures of cloudy and twilight skies inspired by Viking navigation.

    PubMed

    Barta, András; Horváth, Gábor; Meyer-Rochow, Victor Benno

    2005-06-01

    In the late 1960s it was hypothesized that Vikings had been able to navigate the open seas, even when the sun was occluded by clouds or below the sea horizon, by using the angle of polarization of skylight. To detect the direction of skylight polarization, they were thought to have made use of birefringent crystals, called "sun-stones," and a large part of the scientific community still firmly believe that Vikings were capable of polarimetric navigation. However, there are some critics who treat the usefulness of skylight polarization for orientation under partly cloudy or twilight conditions with extreme skepticism. One of their counterarguments has been the assumption that solar positions or solar azimuth directions could be estimated quite accurately by the naked eye, even if the sun was behind clouds or below the sea horizon. Thus under partly cloudy or twilight conditions there might have been no serious need for a polarimetric method to determine the position of the sun. The aim of our study was to test quantitatively the validity of this qualitative counterargument. In our psychophysical laboratory experiments, test subjects were confronted with numerous 180 degrees field-of-view color photographs of partly cloudy skies with the sun occluded by clouds or of twilight skies with the sun below the horizon. The task of the subjects was to guess the position or the azimuth direction of the invisible sun with the naked eye. We calculated means and standard deviations of the estimated solar positions and azimuth angles to characterize the accuracy of the visual sun location. Our data do not support the common belief that the invisible sun can be located quite accurately from the celestial brightness and/or color patterns under cloudy or twilight conditions. Although our results underestimate the accuracy of visual sun location by experienced Viking navigators, the mentioned counterargument cannot be taken seriously as a valid criticism of the theory of the alleged

  19. Hyperspectral radiance simulator: cloudy radiance modeling and beyond

    NASA Astrophysics Data System (ADS)

    Huang, Hung-Lung; Tobin, David C.; Li, Jun; Olson, Erik R.; Baggett, Kevin; Huang, Bormin; Mecikalski, John; Knuteson, Robert O.; Osborne, Brian; Posselt, Derek; Antonelli, Paolo B.; Revercomb, Henry E.; Smith, William L.; Yang, Ping

    2003-04-01

    Current and future advanced atmospheric profile sounding and imaging instruments are evolving to enable global or hemispherical hyperspectral resolution measurements from space. The NASA/Navy/NOAA Geosynchronous Imaging FTS (GIFTS) for EO-3, NOAA Hyperspectral Environmental Sounder (HES) for GOES-R, and the currently operational Atmospheric Infrared Sounder (AIRS) on the NASA's Aqua Spacecraft will collect infrared high-spectral resolution/hyperspectral radiance spectra for remote sensing of the atmosphere, clouds, land, and ocean surfaces. These semi-continuous infrared high spectral- resolution/hyperspectral radiances will provide unprecedented information in the infrared region that is highly sensitive to absorption and emission of clouds. For sounding the atmospheric profiles one must perform cloud clearing or model the radiative effects of cloud explicitly if sounding is desired under cloud-contaminated conditions. We will describe the approach for modeling cloud attenuation in a fast-parameterized forward model that treats clouds as an additional absorber. Together with the usual clear forward model spectroscopic inputs, cloud altitude, effective particle size and shape and its ice or liquid water content are required input variables. Based on this efficient cloudy radiative transfer model, the simulation of the spatial and temporal coherent radiance images in three dimensions becomes possible. We will further explain how these 3-D GIFTS radiance cubes are used as test bed for a variety of trade studies.

  20. Digital all-sky polarization imaging of partly cloudy skies.

    PubMed

    Pust, Nathan J; Shaw, Joseph A

    2008-12-01

    Clouds reduce the degree of linear polarization (DOLP) of skylight relative to that of a clear sky. Even thin subvisual clouds in the "twilight zone" between clouds and aerosols produce a drop in skylight DOLP long before clouds become visible in the sky. In contrast, the angle of polarization (AOP) of light scattered by a cloud in a partly cloudy sky remains the same as in the clear sky for most cases. In unique instances, though, select clouds display AOP signatures that are oriented 90 degrees from the clear-sky AOP. For these clouds, scattered light oriented parallel to the scattering plane dominates the perpendicularly polarized Rayleigh-scattered light between the instrument and the cloud. For liquid clouds, this effect may assist cloud particle size identification because it occurs only over a relatively limited range of particle radii that will scatter parallel polarized light. Images are shown from a digital all-sky-polarization imager to illustrate these effects. Images are also shown that provide validation of previously published theories for weak (approximately 2%) polarization parallel to the scattering plane for a 22 degrees halo.

  1. Laser Experiments with ARTEMIS Satellite in Cloudy Conditions

    NASA Astrophysics Data System (ADS)

    Kuzkov, Volodymyr; Sodnik, Zoran; Kuzkov, Sergii; Caramia, Vincenzo

    2014-05-01

    In July 2001, the ARTEMIS satellite with laser communication terminal OPALE on board was launched. 1789 laser communications sessions were performed between ARTEMIS and SPOT-4 (PASTEL) from 01 April 2003 to 09 January 2008 with total duration of 378 hours. In addition ESA's Optical Ground Station (OGS) performed laser communication experiments with OPALE in various atmospheric conditions. Since the launch of ARTEMIS, the amount of information handled by geostationary telecommunication satellites has increased dramatically and so has the demand for data rate that needs to be transmitted from ground. With limited bandwidth allocations in the radio frequency bands interest has grown for laser communication feeder link technology. In this respect there is interest to compare the influence of atmosphere conditions in different atmospheric regions with respect to laser transmission. Two locations are being compared, namely ESA's OGS (located in an altitude of 2400 m above sea level) and the Main Astronomical Observatory of Ukraine (MAO) (located at an altitude of 190 m above sea level). In 2002 MAO started the development of a ground laser communication system for the AZT-2 telescope. The MAO developed compact laser communication system is called LACES (Laser Atmosphere and Communication Experiments with Satellites) [1] and the work was supported by the National Space Agency of Ukraine and by ESA. The beacon laser from OPALE was occasionally detected even in cloudy conditions and an anomalous atmospheric refraction at low elevation angles was observed. The main results of laser experiments with ARTEMIS through clouds are presented in the paper.

  2. Efficient vector radiative transfer calculations in vertically inhomogeneous cloudy atmospheres.

    PubMed

    van Diedenhoven, Bastiaan; Hasekamp, Otto P; Landgraf, Jochen

    2006-08-10

    Accurate radiative transfer calculations in cloudy atmospheres are generally time consuming, limiting their practical use in satellite remote sensing applications. We present a model to efficiently calculate the radiative transfer of polarized light in atmospheres that contain homogeneous cloud layers. This model combines the Gauss-Seidel method, which is efficient for inhomogeneous cloudless atmospheres, with the doubling method, which is efficient for homogeneous cloud layers. Additionally to reduce the computational effort for radiative transfer calculations in absorption bands, the cloud reflection and transmission matrices are interpolated over the absorption and scattering optical thicknesses within the cloud layer. We demonstrate that the proposed radiative transfer model in combination with this interpolation technique is efficient for the simulation of satellite measurements for inhomogeneous atmospheres containing one homogeneous cloud layer. For example, the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) measurements in the oxygen A band (758-773 nm) and the Hartley-Huggins ozone band (295-335 nm) with a spectral resolution of 0.4 nm can be simulated for these atmospheres within 1 min on a 2.8 GHz PC with an accuracy better than 0.1%.

  3. Decreasing Cloudiness Over China: An Updated Analysis Examining Additional Variables

    SciTech Connect

    Kaiser, D.P.

    2000-01-14

    As preparation of the IPCC's Third Assessment Report takes place, one of the many observed climate variables of key interest is cloud amount. For several nations of the world, there exist records of surface-observed cloud amount dating back to the middle of the 20th Century or earlier, offering valuable information on variations and trends. Studies using such databases include Sun and Groisman (1999) and Kaiser and Razuvaev (1995) for the former Soviet Union, Angel1 et al. (1984) for the United States, Henderson-Sellers (1986) for Europe, Jones and Henderson-Sellers (1992) for Australia, and Kaiser (1998) for China. The findings of Kaiser (1998) differ from the other studies in that much of China appears to have experienced decreased cloudiness over recent decades (1954-1994), whereas the other land regions for the most part show evidence of increasing cloud cover. This paper expands on Kaiser (1998) by analyzing trends in additional meteorological variables for Chi na [station pressure (p), water vapor pressure (e), and relative humidity (rh)] and extending the total cloud amount (N) analysis an additional two years (through 1996).

  4. Retrieving Aerosol in a Cloudy Environment: Aerosol Availability as a Function of Spatial and Temporal Resolution

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Mattoo, Shana; Levy, Robert C.; Heidinger, Andrew; Pierce, R. Bradley; Chin, Mian

    2011-01-01

    The challenge of using satellite observations to retrieve aerosol properties in a cloudy environment is to prevent contamination of the aerosol signal from clouds, while maintaining sufficient aerosol product yield to satisfy specific applications. We investigate aerosol retrieval availability at different instrument pixel resolutions, using the standard MODIS aerosol cloud mask applied to MODIS data and a new GOES-R cloud mask applied to GOES data for a domain covering North America and surrounding oceans. Aerosol availability is not the same as the cloud free fraction and takes into account the technqiues used in the MODIS algorithm to avoid clouds, reduce noise and maintain sufficient numbers of aerosol retrievals. The inherent spatial resolution of each instrument, 0.5x0.5 km for MODIS and 1x1 km for GOES, is systematically degraded to 1x1 km, 2x2 km, 4x4 km and 8x8 km resolutions and then analyzed as to how that degradation would affect the availability of an aerosol retrieval, assuming an aerosol product resolution at 8x8 km. The results show that as pixel size increases, availability decreases until at 8x8 km 70% to 85% of the retrievals available at 0.5 km have been lost. The diurnal pattern of aerosol retrieval availability examined for one day in the summer suggests that coarse resolution sensors (i.e., 4x4 km or 8x8 km) may be able to retrieve aerosol early in the morning that would otherwise be missed at the time of current polar orbiting satellites, but not the diurnal aerosol properties due to cloud cover developed during the day. In contrast finer resolution sensors (i.e., 1x1 km or 2x2 km) have much better opportunity to retrieve aerosols in the partly cloudy scenes and better chance of returning the diurnal aerosol properties. Large differences in the results of the two cloud masks designed for MODIS aerosol and GOES cloud products strongly reinforce that cloud masks must be developed with specific purposes in mind and that a generic cloud mask

  5. Estimations of historical atmospheric mercury concentrations from mercury refining and present-day soil concentrations of total mercury in Huancavelica, Peru.

    PubMed

    Robins, Nicholas A; Hagan, Nicole; Halabi, Susan; Hsu-Kim, Heileen; Gonzales, Ruben Dario Espinoza; Morris, Mark; Woodall, George; Richter, Daniel deB; Heine, Paul; Zhang, Tong; Bacon, Allan; Vandenberg, John

    2012-06-01

    Detailed Spanish records of cinnabar mining and mercury production during the colonial period in Huancavelica, Peru were examined to estimate historical health risks to the community from exposure to elemental mercury (Hg) vapor resulting from cinnabar refining operations. Between 1564 and 1810, nearly 17,000 metric tons of Hg were released to the atmosphere in Huancavelica from Hg production. AERMOD was used with estimated emissions and source characteristics to approximate historic atmospheric concentrations of mercury vapor. Modeled 1-hour and long-term concentrations were compared with present-day inhalation reference values for elemental Hg. Estimated 1-hour maximum concentrations for the entire community exceeded present-day occupational inhalation reference values, while some areas closest to the smelters exceeded present-day emergency response guideline levels. Estimated long-term maximum concentrations for the entire community exceeded the EPA Reference Concentration (RfC) by a factor of 30 to 100, with areas closest to the smelters exceeding the RfC by a factor of 300 to 1000. Based on the estimated historical concentrations of Hg vapor in the community, the study also measured the extent of present-day contamination throughout the community through soil sampling and analysis. Total Hg in soils sampled from 20 locations ranged from 1.75 to 698 mg/kg and three adobe brick samples ranging from 47.4 to 284 mg/kg, consistent with other sites of mercury mining and use. The results of the soil sampling indicate that the present-day population of Huancavelica is exposed to levels of mercury from legacy contamination which is currently among the highest worldwide, consequently placing them at potential risk of adverse health outcomes. PMID:22542225

  6. DISCRIMINATING BETWEEN CLOUDY, HAZY, AND CLEAR SKY EXOPLANETS USING REFRACTION

    SciTech Connect

    Misra, Amit K.; Meadows, Victoria S.

    2014-11-01

    We propose a method to distinguish between cloudy, hazy, and clear sky (free of clouds and hazes) exoplanet atmospheres that could be applicable to upcoming large aperture space- and ground-based telescopes such as the James Webb Space Telescope (JWST) and the European Extremely Large Telescope (E-ELT). These facilities will be powerful tools for characterizing transiting exoplanets, but only after a considerable amount of telescope time is devoted to a single planet. A technique that could provide a relatively rapid means of identifying haze-free targets (which may be more valuable targets for characterization) could potentially increase the science return for these telescopes. Our proposed method utilizes broadband observations of refracted light in the out-of-transit spectrum. Light refracted through an exoplanet atmosphere can lead to an increase of flux prior to ingress and subsequent to egress. Because this light is transmitted at pressures greater than those for typical cloud and haze layers, the detection of refracted light could indicate a cloud- or haze-free atmosphere. A detection of refracted light could be accomplished in <10 hr for Jovian exoplanets with JWST and <5 hr for super-Earths/mini-Neptunes with E-ELT. We find that this technique is most effective for planets with equilibrium temperatures between 200 and 500 K, which may include potentially habitable planets. A detection of refracted light for a potentially habitable planet would strongly suggest the planet was free of a global cloud or haze layer, and therefore a promising candidate for follow-up observations.

  7. Estimation of ground heat flux from soil temperature over a bare soil

    NASA Astrophysics Data System (ADS)

    An, Kedong; Wang, Wenke; Wang, Zhoufeng; Zhao, Yaqian; Yang, Zeyuan; Chen, Li; Zhang, Zaiyong; Duan, Lei

    2016-05-01

    Ground soil heat flux, G 0, is a difficult-to-measure but important component of the surface energy budget. Over the past years, many methods were proposed to estimate G 0; however, the application of these methods was seldom validated and assessed under different weather conditions. In this study, three popular models (force-restore, conduction-convection, and harmonic) and one widely used method (plate calorimetric), which had well performance in publications, were investigated using field data to estimate daily G 0 on clear, cloudy, and rainy days, while the gradient calorimetric method was regarded as the reference for assessing the accuracy. The results showed that harmonic model was well reproducing the G 0 curve for clear days, but it yielded large errors on cloudy and rainy days. The force-restore model worked well only under rainfall condition, but it was poor to estimate G 0 under rain-free conditions. On the contrary, the conduction-convection model was acceptable to determine G 0 under rain-free conditions, but it generated large errors on rainfall days. More importantly, the plate calorimetric method was the best to estimate G 0 under different weather conditions compared with the three models, but the performance of this method is affected by the placement depth of the heat flux plate. As a result, the heat flux plate was recommended to be buried as close as possible to the surface under clear condition. But under cloudy and rainy conditions, the plate placed at depth of around 0.075 m yielded G 0 well. Overall, the findings of this paper provide guidelines to acquire more accurate estimation of G 0 under different weather conditions, which could improve the surface energy balance in field.

  8. Preliminary Estimates of Loss of Juvenile Anadromous Salmonids to Predators in John Day Reservoir and Development of a Predation Model : Interim Report, 1986.

    SciTech Connect

    Rieman, Bruce E.

    1986-03-01

    We made preliminary estimates of the loss of juvenile salmonids to predation by walleye, Stizostedion v. vitreum, and northern squawfish, Ptychocheilus oregonensis, in John Day Reservoir in 1984 and 1985 using estimates of predator abundance and daily prey consumption rates. Preliminary estimates may be biased and may be adjusted as much as 30%, but indications are that predation could account for the majority of unexplained loss of juvenile salmonids in John Day Reservoir. Total loss was estimated at 4.1 million in 1984 and 3.3 million in 1985. Northern squawfish consumed 76% and 92% of these totals, respectively. The majority of loss occurred in mid reservoir areas, but loss in a small area, the boat-restricted zone immediately below McNary Dam, was disproportionately large. Peaks in loss in May and July corresponded with peaks in availability of salmonids. Estimated mortality from predation for April through June in 1984 and 1985 was 9% and 7% respectively, for chinook salmon, Oncorhynchus tshawytscha, and 10% and 15% for steelhead, Salmogairdneri. Mortality was variable with time but tended to increase over the period of migration. Mortality of chinook was estimated at 26% to 55% during July and August. A model of predation in John Day Reservoir is outlined. The model includes a predation submodel that can calculate loss from predator number and consumption rate; a population submodel that can relate predator abundance and population structure to recruitment, exploitation, natural mortality and growth; and a distribution submodel that can apportion predators among areas of the reservoir over time. Applications of the model are discussed for projecting expected changes in predation over time and identifying management alternatives that might limit the impact of predation.

  9. A Cloudiness Index for Transiting Exoplanets Based on the Sodium and Potassium Lines: Tentative Evidence for Hotter Atmospheres Being Less Cloudy at Visible Wavelengths

    NASA Astrophysics Data System (ADS)

    Heng, Kevin

    2016-07-01

    We present a dimensionless index that quantifies the degree of cloudiness of the atmosphere of a transiting exoplanet. Our cloudiness index is based on measuring the transit radii associated with the line center and wing of the sodium or potassium line. In deriving this index, we revisited the algebraic formulae for inferring the isothermal pressure scale height from transit measurements. We demonstrate that the formulae of Lecavelier et al. and Benneke & Seager are identical: the former is inferring the temperature while assuming a value for the mean molecular mass and the latter is inferring the mean molecular mass while assuming a value for the temperature. More importantly, these formulae cannot be used to distinguish between cloudy and cloud-free atmospheres. We derive values of our cloudiness index for a small sample of seven hot Saturns/Jupiters taken from Sing et al. We show that WASP-17b, WASP-31b, and HAT-P-1b are nearly cloud-free at visible wavelengths. We find the tentative trend that more irradiated atmospheres tend to have fewer clouds consisting of sub-micron-sized particles. We also derive absolute sodium and/or potassium abundances ˜102 cm-3 for WASP-17b, WASP-31b, and HAT-P-1b (and upper limits for the other objects). Higher-resolution measurements of both the sodium and potassium lines, for a larger sample of exoplanetary atmospheres, are needed to confirm or refute this trend.

  10. A Cloudiness Index for Transiting Exoplanets Based on the Sodium and Potassium Lines: Tentative Evidence for Hotter Atmospheres Being Less Cloudy at Visible Wavelengths

    NASA Astrophysics Data System (ADS)

    Heng, Kevin

    2016-07-01

    We present a dimensionless index that quantifies the degree of cloudiness of the atmosphere of a transiting exoplanet. Our cloudiness index is based on measuring the transit radii associated with the line center and wing of the sodium or potassium line. In deriving this index, we revisited the algebraic formulae for inferring the isothermal pressure scale height from transit measurements. We demonstrate that the formulae of Lecavelier et al. and Benneke & Seager are identical: the former is inferring the temperature while assuming a value for the mean molecular mass and the latter is inferring the mean molecular mass while assuming a value for the temperature. More importantly, these formulae cannot be used to distinguish between cloudy and cloud-free atmospheres. We derive values of our cloudiness index for a small sample of seven hot Saturns/Jupiters taken from Sing et al. We show that WASP-17b, WASP-31b, and HAT-P-1b are nearly cloud-free at visible wavelengths. We find the tentative trend that more irradiated atmospheres tend to have fewer clouds consisting of sub-micron-sized particles. We also derive absolute sodium and/or potassium abundances ˜102 cm‑3 for WASP-17b, WASP-31b, and HAT-P-1b (and upper limits for the other objects). Higher-resolution measurements of both the sodium and potassium lines, for a larger sample of exoplanetary atmospheres, are needed to confirm or refute this trend.

  11. Relationship between high daily erythemal UV doses, total ozone, surface albedo and cloudiness: An analysis of 30 years of data from Switzerland and Austria

    NASA Astrophysics Data System (ADS)

    Rieder, H. E.; Staehelin, J.; Weihs, P.; Vuilleumier, L.; Maeder, J. A.; Holawe, F.; Blumthaler, M.; Lindfors, A.; Peter, T.; Simic, S.; Spichtinger, P.; Wagner, J. E.; Walker, D.; Ribatet, M.

    2010-10-01

    This work investigates the occurrence frequency of days with high erythemal UV doses at three stations in Switzerland and Austria (Davos, Hoher Sonnblick and Vienna) for the time period 1974-2003. While several earlier studies have reported on increases in erythemal UV dose up to 10% during the last decades, this study focuses on days with high erythemal UV dose, which is defined as a daily dose at least 15% higher than for 1950s clear-sky conditions (which represent preindustrial conditions with respect to anthropogenic chlorine). Furthermore, the influence of low column ozone, clear-sky/partly cloudy conditions and surface albedo on UV irradiance has been analyzed on annual and seasonal basis. The results of this study show that in the Central Alpine Region the number of days with high UV dose increased strongly in the early 1990s. A large fraction of all days with high UV dose occurring in the period 1974-2003 was found especially during the years 1994-2003, namely 40% at Davos, 54% at Hoher Sonnblick and 65% at Vienna. The importance of total ozone, clear-sky/partly cloudy conditions and surface albedo (e.g. in dependence of snow cover) varies strongly among the seasons. However, overall the interplay of low total ozone and clear-sky/partly cloudy conditions led to the largest fraction of days showing high erythemal UV dose. Furthermore, an analysis of the synoptic weather situation showed that days with high erythemal UV dose, low total ozone and high relative sunshine duration occur at all three stations more frequently during situations with low pressure gradients or southerly advection.

  12. Cloudy - simulating the non-equilibrium microphysics of gas and dust, and its observed spectrum

    NASA Astrophysics Data System (ADS)

    Ferland, Gary J.

    2014-01-01

    Cloudy is an open-source plasma/spectral simulation code, last described in the open-access journal Revista Mexicana (Ferland et al. 2013, 2013RMxAA..49..137F). The project goal is a complete simulation of the microphysics of gas and dust over the full range of density, temperature, and ionization that we encounter in astrophysics, together with a prediction of the observed spectrum. Cloudy is one of the more widely used theory codes in astrophysics with roughly 200 papers citing its documentation each year. It is developed by graduate students, postdocs, and an international network of collaborators. Cloudy is freely available on the web at trac.nublado.org, the user community can post questions on http://groups.yahoo.com/neo/groups/cloudy_simulations/info, and summer schools are organized to learn more about Cloudy and its use (http://cloud9.pa.uky.edu gary/cloudy/CloudySummerSchool/). The code’s widespread use is possible because of extensive automatic testing. It is exercised over its full range of applicability whenever the source is changed. Changes in predicted quantities are automatically detected along with any newly introduced problems. The code is designed to be autonomous and self-aware. It generates a report at the end of a calculation that summarizes any problems encountered along with suggestions of potentially incorrect boundary conditions. This self-monitoring is a core feature since the code is now often used to generate large MPI grids of simulations, making it impossible for a user to verify each calculation by hand. I will describe some challenges in developing a large physics code, with its many interconnected physical processes, many at the frontier of research in atomic or molecular physics, all in an open environment.

  13. Day to Day

    ERIC Educational Resources Information Center

    Jurecki, Dennis

    2006-01-01

    A clean, healthy and safe school provides students, faculty and staff with an environment conducive to learning and working. However, budget and staff reductions can lead to substandard cleaning practices and unsanitary conditions. Some school facility managers have been making the switch to a day-schedule to reduce security and energy costs, and…

  14. Analysis of the magnitude and frequency of the 4-day annual low flow and regression equations for estimating the 4-day, 3-year low-flow frequency at ungaged sites on unregulated streams in New Mexico

    USGS Publications Warehouse

    Waltemeyer, Scott D.

    2002-01-01

    Two regression equations were developed for estimating the 4- day, 3-year (4Q3) low-flow frequency at ungaged sites on unregulated streams in New Mexico. The first, a statewide equation for estimating the 4Q3 low-flow frequency from drainage area and average basin mean winter precipitation, was developed from the data for 50 streamflow-gaging stations that had non-zero 4Q3 low-flow frequency. The 4Q3 low-flow frequency for the 50 gaging stations ranged from 0.08 to 18.7 cubic feet per second. For this statewide equation, the average standard error of estimate was 126 percent and the coefficient of determination was 0.48. The second, an equation for estimating the 4Q3 low-flow frequency in mountainous regions from drainage area, average basin mean winter precipitation, and average basin slope, was developed from the data for 40 gaging stations located above 7,500 feet in elevation. For this regression equation, the average standard error of estimate was 94 percent and the coefficient of determination was 0.66. A U.S. Geological Survey computer-program interface for a geographical information system (GIS), called the GIS Weasel, was used to determine basin and climatic characteristics for 84 gaging stations that were not affected by regulation. Mean monthly precipitation estimates from 1961 to 1990 were used in the GIS Weasel to compute the climatic characteristics of average basin winter precipitation and annual mean precipitation. The U.S. Geological Survey National Elevation Dataset, which currently consists of the 7.5-minute, 30-meter digital elevation model for each State, was used in the GIS Weasel to compute the basin characteristics of drainage area, average basin slope, average basin elevation, and average basin aspect. Basin and climatic characteristics that were statistically significant in the regression equation with the 4Q3 low-flow frequency were drainage area, which ranged from 1.62 to 5,900 square miles; average basin mean winter precipitation, which

  15. Day to day with COPD

    MedlinePlus

    ... day; Chronic obstructive airways disease - day to day; Chronic obstructive lung disease - day to day; Chronic bronchitis - day to day; ... strategy for the diagnosis, management, and prevention of chronic ... disease. Updated 2015. www.goldcopd.it/materiale/2015/GOLD_ ...

  16. Analysis of global cloudiness. 2: Comparison of ground-based and satellite-based cloud climatologies

    SciTech Connect

    Mokhov, I.I.; Schlesinger, M.E. |

    1994-08-01

    Cloud climatologies are developed and intercompared for International Satellite Cloud Climatology Project (ISCCO) (1983-1988), Meteor I (1971-1980), Meteor II (1979-1988), and Nimbus 7 (1979-1985) satellite observations, and for Berlyand and Strokina (1975, 1980) and Warren et al. (1986, 1988) ground-based observations. The satellite annual-mean, global- mean cloudiness, 0.57 +/- 0.05, is less than the ground-based value, 0.61 +/- 0.01, predominantly because of the low value for Nimbus 7. There is agreement between the satellite means of ISCCP, 0.62, and Meteor II, 0.61, and the ground-based means of Warren et al., 0.62, and Berlyand and Strokina, 0.60. Each satellite- and ground-based climatology shows that the hemispheric- mean cloudiness is larger in summer than that in winter in both the northern and southern hemispheres. Excluding Nimbus 7 observations, the zonal- mean cloudiness distributions for January, July, and July minus January display reasonably good agreement between 60 deg S and 60 deg N. In polar latitudes there is significant disagreement among the different climatologies, even in the sign of cloudiness changes from winter to summer. This evinces the need for special cloudiness experiments in polar regions, particularly in winter and summer.

  17. Comment on ``A new estimate for present-day Cocos-Caribbean plate motion: Implications for slip along the Central American volcanic arc'' by Charles DeMets

    NASA Astrophysics Data System (ADS)

    Guzmán-Speziale, Marco; Gómez, Juan Martín

    2002-10-01

    We comment on ``A new estimate for present-day Cocos-Caribbean plate motion: Implications for slip along the Central American volcanic arc'' by Charles DeMets. We find the following inconsistencies in his model: Components of relative motion along the arc are small and variable, not uniform. There is no single surface faulting and earthquakes occur on faults along and perpendicular to the arc. Earthquakes also stop in the middle of the arc. Geometrically, the model calls for buttressing, but there is no evidence for this.

  18. Prediction of high spatio-temporal resolution land surface temperature under cloudy conditions using microwave vegetation index and ANN

    NASA Astrophysics Data System (ADS)

    Shwetha, H. R.; Kumar, D. Nagesh

    2016-07-01

    limits. Under cloudy conditions, results of microwave derived LST were evaluated with air temperature (Ta) and indicate that the approach performed well with RMSE values lesser than the results obtained under clear sky conditions for land cover classes for both day and nighttimes.

  19. Parameterization of cloudiness as a function of temperature for use in a thermodynamic model

    SciTech Connect

    Garduno, R.; Adem, J.

    1993-06-01

    Based on a parameterization by Adem (1967), the authors developed a formula of balance among the horizontal fraction of cloudiness and the vertical profiles of temperature and relative humidity, in which the authors now apply the usual hypothesis that the atmospheric relative humidity remains fixed in a climate change. The result is a negative correlation between the increments of cloudiness and temperature. The authors have incorporated this negative feedback mechanism in the Adem thermodynamic model and used it in the computation of climate change due to the atmospheric CO[sub 2] increase.

  20. Radiative Susceptibility of Cloudy Atmospheres to Droplet Number Perturbations: 1. Theoretical Analysis and Examples from MODIS

    NASA Technical Reports Server (NTRS)

    Platnick, Steven; Oreopoulos, Lazaros

    2008-01-01

    Theoretical and satellite-based assessments of the sensitivity of broadband shortwave radiative fluxes in cloudy atmospheres to small perturbations in the cloud droplet number concentration (N) of liquid water clouds under constant water conditions are performed. Two approaches to study this sensitivity are adopted: absolute increases in N, for which the radiative response is referred to as absolute cloud susceptibility, and relative increases in N or relative cloud susceptibility. Estimating the former is more challenging as it requires an assumed value for either cloud liquid water content or geometrical thickness; both susceptibilities require an assumed relationship between the droplet volume and effective radius. Expanding upon previous susceptibility studies, present radiative calculations include the effect of AN perturbations on droplet asymmetry parameter and single-scattering albedo, in addition to extinction. Absolute cloud susceptibility has a strong nonlinear dependence on the droplet effective radius as expected, while relative cloud susceptibility is primarily dependent on optical thickness. Molecular absorption and reflecting surfaces both reduce the relative contribution of the cloud to the top-of-atmosphere (TOA) flux and therefore also reduce the TOA albedo susceptibility. Transmittance susceptibilities are negative with absolute values similar to albedo susceptibility, while atmospheric absorptance susceptibilities are about an order of magnitude smaller than albedo susceptibilities and can be either positive or negative. Observation-based susceptibility calculations are derived from MODIS pixel-level retrievals of liquid water cloud optical thickness, effective radius, and cloud top temperature; two data granule examples are shown. Susceptibility quantifies the aerosol indirect effect sensitivity in a way that can be easily computed from model fields. As such, susceptibilities derived from MODIS observations provide a higher-order test of model

  1. Estimating present day extreme water level exceedance probabilities around the coastline of Australia: tides, extra-tropical storm surges and mean sea level

    NASA Astrophysics Data System (ADS)

    Haigh, Ivan D.; Wijeratne, E. M. S.; MacPherson, Leigh R.; Pattiaratchi, Charitha B.; Mason, Matthew S.; Crompton, Ryan P.; George, Steve

    2014-01-01

    The occurrence of extreme water levels along low-lying, highly populated and/or developed coastlines can lead to considerable loss of life and billions of dollars of damage to coastal infrastructure. Therefore it is vitally important that the exceedance probabilities of extreme water levels are accurately evaluated to inform risk-based flood management, engineering and future land-use planning. This ensures the risk of catastrophic structural failures due to under-design or expensive wastes due to over-design are minimised. This paper estimates for the first time present day extreme water level exceedence probabilities around the whole coastline of Australia. A high-resolution depth averaged hydrodynamic model has been configured for the Australian continental shelf region and has been forced with tidal levels from a global tidal model and meteorological fields from a global reanalysis to generate a 61-year hindcast of water levels. Output from this model has been successfully validated against measurements from 30 tide gauge sites. At each numeric coastal grid point, extreme value distributions have been fitted to the derived time series of annual maxima and the several largest water levels each year to estimate exceedence probabilities. This provides a reliable estimate of water level probabilities around southern Australia; a region mainly impacted by extra-tropical cyclones. However, as the meteorological forcing used only weakly includes the effects of tropical cyclones, extreme water level probabilities are underestimated around the western, northern and north-eastern Australian coastline. In a companion paper we build on the work presented here and more accurately include tropical cyclone-induced surges in the estimation of extreme water level. The multi-decadal hindcast generated here has been used primarily to estimate extreme water level exceedance probabilities but could be used more widely in the future for a variety of other research and practical

  2. Estimating heat stress from climate-based indicators: present-day biases and future spreads in the CMIP5 global climate model ensemble

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Ducharne, A.; Sultan, B.; Braconnot, P.; Vautard, R.

    2015-08-01

    The increased exposure of human populations to heat stress is one of the likely consequences of global warming, and it has detrimental effects on health and labor capacity. Here, we consider the evolution of heat stress under climate change using 21 general circulation models (GCMs). Three heat stress indicators, based on both temperature and humidity conditions, are used to investigate present-day model biases and spreads in future climate projections. Present day estimates of heat stress indicators from observational data shows that humid tropical areas tend to experience more frequent heat stress than other regions do, with a total frequency of heat stress 250-300 d yr-1. The most severe heat stress is found in the Sahel and south India. Present-day GCM simulations tend to underestimate heat stress over the tropics due to dry and cold model biases. The model based estimates are in better agreement with observation in mid to high latitudes, but this is due to compensating errors in humidity and temperature. The severity of heat stress is projected to increase by the end of the century under climate change scenario RCP8.5, reaching unprecedented levels in some regions compared with observations. An analysis of the different factors contributing to the total spread of projected heat stress shows that spread is primarily driven by the choice of GCMs rather than the choice of indicators, even when the simulated indicators are bias-corrected. This supports the utility of the multi-model ensemble approach to assess the impacts of climate change on heat stress.

  3. Methods for Cloud Cover Estimation

    NASA Technical Reports Server (NTRS)

    Glackin, D. L.; Huning, J. R.; Smith, J. H.; Logan, T. L.

    1984-01-01

    Several methods for cloud cover estimation are described relevant to assessing the performance of a ground-based network of solar observatories. The methods rely on ground and satellite data sources and provide meteorological or climatological information. One means of acquiring long-term observations of solar oscillations is the establishment of a ground-based network of solar observatories. Criteria for station site selection are: gross cloudiness, accurate transparency information, and seeing. Alternative methods for computing this duty cycle are discussed. The cycle, or alternatively a time history of solar visibility from the network, can then be input to a model to determine the effect of duty cycle on derived solar seismology parameters. Cloudiness from space is studied to examine various means by which the duty cycle might be computed. Cloudiness, and to some extent transparency, can potentially be estimated from satellite data.

  4. Analysis of a resistance-energy balance method for estimating daily evaporation from wheat plots using one-time-of-day infrared temperature observations

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Idso, S. B.; Reginato, R. J.

    1986-01-01

    Accurate estimates of evaporation over field-scale or larger areas are needed in hydrologic studies, irrigation scheduling, and meteorology. Remotely sensed surface temperature might be used in a model to calculate evaporation. A resistance-energy balance model, which combines an energy balance equation, the Penman-Monteith (1981) evaporation equation, and van den Honert's (1948) equation for water extraction by plant roots, is analyzed for estimating daily evaporation from wheat using postnoon canopy temperature measurements. Additional data requirements are half-hourly averages of solar radiation, air and dew point temperatures, and wind speed, along with reasonable estimates of canopy emissivity, albedo, height, and leaf area index. Evaporation fluxes were measured in the field by precision weighing lysimeters for well-watered and water-stressed wheat. Errors in computed daily evaporation were generally less than 10 percent, while errors in cumulative evaporation for 10 clear sky days were less than 5 percent for both well-watered and water-stressed wheat. Some results from sensitivity analysis of the model are also given.

  5. A new database of cloudiness for Italy from instrumental time series since the late 19th century

    NASA Astrophysics Data System (ADS)

    Manara, Veronica; Brunetti, Michele; Maugeri, Maurizio; Sanchez-Lorenzo, Arturo

    2015-04-01

    Italy has a very important role in the development of meteorological observations. Consequently, a heritage of data of enormous value has been accumulated in Italy over the last three centuries. However, only a small fraction of Italian data is available in computer readable form and the available records mainly concern temperature, precipitation and pressure. Within this context, we set up a project to recover as much as possible cloudiness Italian records. The goal is to consider total cloud cover (TCC), low and middle cloud cover, and cloud types. The data source we are using include the former national central office for meteorology (now CRA-CMA), the national air force meteorological and climatological service and some of the oldest Italian observatories as Milan, Rome, Turin and Venice. The database contains sub-daily (from 3 to 8 observations per day for each station) information about TCC but also about the amount and the type of low, middle and high cloud in the sky. The oldest records start at about 1858 and about 30 records start in the 1880s. Currently quality check and test for temporal homogeneity is in progress. Then the monthly records will be completed by means of the neighboring records and averaged in order to get national and regional records for Italy and its main climatic areas. This new dataset will be presented and the results of the first analyses will be discussed. The study of cloudiness records for Italy is important also to better understand the behavior of sunshine duration, which shows a rather peculiar behaviour, especially in northern Italy. In this area, in fact, we observe a statistically significant increasing tendency during the period 1936-2103, that most publications do not report, as a consequence of a strong increase starting from the 1980 and a less evident decrease in the previous period.

  6. Changes in Cirrus Cloudiness and their Relationship to Contrails

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Ayers, J. Kirk; Palikonda, Rabindra; Doelling, David R.; Schumann, Ulrich; Gierens, Klaus

    2001-01-01

    Condensation trails, or contrails, formed in the wake of high-altitude aircraft have long been suspected of causing the formation of additional cirrus cloud cover. More cirrus is possible because 10 - 20% of the atmosphere at typical commercial flight altitudes is clear but ice-saturated. Since they can affect the radiation budget like natural cirrus clouds of equivalent optical depth and microphysical properties, contrail -generated cirrus clouds are another potential source of anthropogenic influence on climate. Initial estimates of contrail radiative forcing (CRF) were based on linear contrail coverage and optical depths derived from a limited number of satellite observations. Assuming that such estimates are accurate, they can be considered as the minimum possible CRF because contrails often develop into cirrus clouds unrecognizable as contrails. These anthropogenic cirrus are not likely to be identified as contrails from satellites and would, therefore, not contribute to estimates of contrail coverage. The mean lifetime and coverage of spreading contrails relative to linear contrails are needed to fully assess the climatic effect of contrails, but are difficult to measure directly. However, the maximum possible impact can be estimated using the relative trends in cirrus coverage over regions with and without air traffic. In this paper, the upper bound of CRF is derived by first computing the change in cirrus coverage over areas with heavy air traffic relative to that over the remainder of the globe assuming that the difference between the two trends is due solely to contrails. This difference is normalized to the corresponding linear contrail coverage for the same regions to obtain an average spreading factor. The maximum contrail-cirrus coverage, estimated as the product of the spreading factor and the linear contrail coverage, is then used in the radiative model to estimate the maximum potential CRF for current air traffic.

  7. Employment from Solar Energy: A Bright but Partly Cloudy Future.

    ERIC Educational Resources Information Center

    Smeltzer, K. K.; Santini, D. J.

    A comparison of quantitative and qualitative employment effects of solar and conventional systems can prove the increased employment postulated as one of the significant secondary benefits of a shift from conventional to solar energy use. Current quantitative employment estimates show solar technology-induced employment to be generally greater…

  8. On the Analysis of the Climatology of Cloudiness of the Arabian Peninsula

    NASA Astrophysics Data System (ADS)

    Yousef, L. A.; Temimi, M.

    2015-12-01

    This study aims to determine the climatology of cloudiness over the Arabian Peninsula. The determined climatology will assist solar energy resource assessment in the region. The seasonality of cloudiness and its spatial variability will also help guide several cloud seeding operational experiments in the region. Cloud properties from the International Satellite Cloud Climatology Project (ISCCP) database covering the time period from 1983 through 2009 are analyzed. Time series of low, medium, high, and total cloud amounts are investigated, in addition to cloud optical depth and total column water vapor. Initial results show significant decreasing trends in the total and middle cloud amounts, both annually and seasonally, at a 95% confidence interval. The relationship between cloud amounts and climate oscillations known to affect the region is explored. Climate indices exhibiting significant correlations with the total cloud amounts include the Pacific Decadal Oscillation (PDO) index. The study also includes a focus on the United Arab Emirates (UAE), comparing the inferred cloudiness data to in situ rainfall measurements taken from rain gauges across the UAE. To assess the impact of cloudiness on solar power resources in the country, time series of cloud amounts and Direct Normal Irradiance (DNI), obtained from the UAE Solar Atlas, are compared.

  9. Local effects of partly cloudy skies on solar and emitted radiations

    NASA Technical Reports Server (NTRS)

    Whitney, D. A.; Venable, D. D.

    1981-01-01

    Solar radiation measurements are made on a routine basis. Global solar, atmospheric emitted, downwelled diffuse solar, and direct solar radiation measurement systems are fully operational with the first two in continuous operation. Fractional cloud cover measurements are made from GOES imagery or from ground based whole sky photographs. Normalized global solar irradiance values for partly cloudy skies were correlated to fractional cloud cover.

  10. Operational data fusion framework for building frequent Landsat-like imagery in a cloudy region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An operational data fusion framework is built to generate dense time-series Landsat-like images for a cloudy region by fusing Moderate Resolution Imaging Spectroradiometer (MODIS) data products and Landsat imagery. The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) is integrated in ...

  11. A new lethal syndrome with cloudy corneae, diaphragmatic defects and distal limb deformities.

    PubMed

    Fryns, J P; Moerman, F; Goddeeris, P; Bossuyt, C; Van den Berghe, H

    1979-01-01

    Two female sibs are reported with a possibly new lethal malformation pattern, the major anomalies of which are: coarse face with small eyes and cloudy corneae, cleft soft palate, hypoplasia and absence of lobulation of both lungs, diaphragmatic defects, digitalisation of thumbs and distal limb deformities. PMID:381161

  12. Estimation of minimum 7-day, 2-year discharge for selected stream sites, and associated low-flow water-quality data, southeast Texas, 1997-98

    USGS Publications Warehouse

    East, Jeffery W.

    1999-01-01

    The U.S. Geological Survey (USGS) operates a network of streamflow-gaging stations in Texas that provides discharge data used for water-management decisions and various other purposes. Operating stations at all locations where discharge data are needed is not feasible, but the statistical characteristics of the network station data can be used to estimate discharge characteristics at ungaged sites. Regionalization techniques such as regression analyses relate discharge-frequency characteristics to selected physical and climatic characteristics of drainage basins. A particular discharge-frequency characteristic that can be regionalized is the minimum 7-day, 2-year discharge1 (7Q2). In Texas, the 7Q2 is used at stream sites to analyze permit applications for water allocation, water-supply planning, aquatic maintenance (instream flow) requirements, and waste-load allocation for point and nonpoint source discharges.

  13. Using microwave observations to estimate land surface temperature during cloudy conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land surface temperature (LST), a key ingredient for physically-based retrieval algorithms of hydrological states and fluxes, remains a poorly constrained parameter for global scale studies. The main two observational methods to remotely measure T are based on thermal infrared (TIR) observations and...

  14. Properties of marine stratocumulus obtained with partly cloudy pixel retrievals and found in the MODIS MOD06 cloud product

    NASA Astrophysics Data System (ADS)

    Boeke, Robyn C.; Allan, Andrea M.; Coakley, James A.

    2016-06-01

    Partly cloudy pixel retrievals (PCPRs) of cloud properties for marine stratocumulus were compared with those of the 1 km Moderate Resolution Imaging Spectroradiometer (MODIS) cloud product (MOD06). In addition, the fractional cloud cover obtained from the PCPRs applied to 1 km MODIS radiances was compared with that derived from the 250 m cloud mask (MOD35). The comparisons were made for pixels that were overcast and pixels that were only partially covered by clouds. Accounting for failed retrievals in both the MOD06 cloud properties and those obtained with the PCPRs leads to the suggestion that regional cloud cover be estimated in terms of lower and upper limits. The average could serve as the best estimate of the cloud cover, and the difference between the average and an extreme could serve as the uncertainty. The comparisons reveal that the overcast assumption used in the MODIS cloud property retrievals leads to cloud cover, droplet effective radii, and cloud top temperatures that are overestimated and, shortwave optical depths, liquid water paths that are underestimated. These biases persist when the properties are averaged to form spatial and temporal means. Owing to significant horizontal variations of cloud liquid water within the 1 km MODIS pixels, visible optical depths, droplet effective radii, and liquid water paths derived from the PCPRs show similar biases. The trends of the biases with pixel-scale and regional-scale cloud cover suggest that estimates of the aerosol indirect radiative forcing derived from satellites have been overestimated.

  15. Application of remote sensing in estimating evapotranspiration in the Platte river basin

    NASA Technical Reports Server (NTRS)

    Blad, B. L.; Rosenberg, N. J.

    1976-01-01

    A 'resistance model' and a mass transport model for estimating evapotranspiration (ET) were tested on large fields of naturally subirrigated alfalfa. Both models make use of crop canopy temperature data. Temperature data were obtained with an IR thermometer and with leaf thermocouples. A Bowen ratio-energy balance (BREB) model, adjusted to account for underestimation of ET during periods of strong sensible heat advection, was used as the standard against which the resistance and mass transport models were compared. Daily estimates by the resistance model were within 10% of estimates made by the BREB model. Daily estimates by the mass transport model did not agree quite as well. Performance was good on clear and cloudy days and also during periods of non-advection and strong advection of sensible heat. The performance of the mass transport and resistance models was less satisfactory for estimation of fluxes of latent heat for short term periods. Both models tended to overestimate at low LE fluxes.

  16. Atmospheric CO2 Column Measurements Under Clear and Cloudy Conditions Using an Airborne Intensity-Modulated Continuous-Wave Lidar

    NASA Astrophysics Data System (ADS)

    Lin, B.; Ismail, S.; Harrison, F. W.; Nehrir, A. R.; Browell, E. V.; Fan, T. F.; Kooi, S. A.; Dobler, J. T.; Meadows, B.; Obland, M. D.

    2014-12-01

    This study focuses on the atmospheric CO2 measurements using the Exelis' airborne Intensity-Modulated Continuous-Wave (IM-CW) Laser Absorption Spectrometer (LAS) system operating in the 1.57-mm CO2 absorption band. The atmospheric CO2 estimates above clouds and for entire columns are retrieved from the data obtained during the summer 2011 and spring 2013 ASCENDS flight campaigns. The lidar returns from clouds and surfaces are discriminated by the range-encoded IM signals transmitted by the airborne LAS system. Under thin cloud conditions, lidar systems generally have strong enough return signals from the surface for CO2 retrieval. For optically thick clouds, CO2 columns above the clouds are estimated with lidar returns from the cloud tops, and neighboring clear sky areas are used to measure the total CO2 columns to the surface. Case studies show that the full-column atmospheric CO2 measurements are very similar in adjacent clear and thin-cloud regions, while the signal-to-noise ratio (SNR) values of the CO2 columns are very different due to differences in the transmissions from aircraft to surface over cloudy and clear regions. For example, the measured CO2 columns to land surfaces were found to be about 398 ppm with an average SNR values for 0.1-s averages of about 140 and 38 in clear and thin-cloud conditions, respectively. Under thick clouds conditions, considerable variations in lidar returns for the extended targets are found. Also, their CO2 differential absorption optical depth values are normally smaller than those to the surface. These effects significantly reduce the precisions of CO2 column measurements both above clouds and to the surface under cloudy conditions compared to those to the surface in clear skies. Still, column-averaged CO2 mixing ratio (XCO2) estimates above clouds for daytime observations are expected to be slightly higher than those for the entire atmospheric column due to CO2 uptake by vegetation at the surface.

  17. Attenuation of KBrO3-induced renal and hepatic toxicity by cloudy apple juice in rat.

    PubMed

    Kujawska, Małgorzata; Ignatowicz, Ewa; Ewertowska, Małgorzata; Adamska, Teresa; Markowski, Jarosław; Jodynis-Liebert, Jadwiga

    2013-08-01

    The aim of the study was to evaluate a protective effect of apple juice on KBrO3-induced oxidative stress in rats. Male Wistar rats were administered apple juice per os, 10 ml/kg b.w. for 28 days. On 27 day of the experiment, some rats were given i.p. a single 125 mg/kg b.w. dose of KBrO3 . Markers of oxidative damage and clinical chemistry parameters were determined. Treatment with apple juice prior to KBrO3 challenge prevented an increase in hepatic and renal microsomal lipid peroxidation by 25 and 44%, respectively, increased the activity of antioxidant enzymes in the liver by 29 - 59% and decreased the plasma content of carbonyl groups by 19%. Aminotransferases activity in plasma was reduced by 19% and 36%, concentrations of plasma bilirubin, cholesterol and creatinine were suppressed by 21%, 16% and 26%, respectively, in rats supplemented with juice before KBrO3 injection. No protective effect of apple juice on nuclear DNA was observed. Supplementation with cloudy apple juice to some extent attenuated oxidative damage induced by KBrO3 in the liver and kidney of rats as evidenced by alterations of certain oxidative stress markers and clinical chemistry parameters.

  18. Computation of averaged monthly zonal albedo utilizing the solar zenith angle, properties of clear and cloudy atmospheres

    NASA Technical Reports Server (NTRS)

    Dhuria, H.

    1981-01-01

    The zonal temporal averages of albedos at the top of the atmosphere were considered as a function of the length of the day. The length of the day were used to determine the average daily values of mu sub 0(=Cos of the solar zenith angle, theta sub 0). Polynominal fits of the slope and intercept functions of A sub s (cloud-free albedo) and A sub c(cloud albedo) as function of Cos theta sub 0 were obtained by using the sample values of albedo corresponding to solar zenith angles from 0 to 90 deg with interval of 5 deg. The daily zonal values of mu sub 0 and the surface albedos were used to compute the daily zonal values of albedos at the top of the clear and cloudy atmosphere. The monthly zonal cloud fractions were used to compute planetary albedo A at the top of the atmosphere. The global values of monthly albedos A sub s, A sub c and A were computed by using the weighting function defined as the difference of the sins of zonal values of latitudes. The computer program implementation is also described.

  19. The radiative impact of cumulus cloudiness in a general circulation model

    NASA Technical Reports Server (NTRS)

    Moeng, C. H.; Randall, D. A.

    1982-01-01

    The effect of cumulus cloudiness on the radiational heating and, on other aspects of the climate were simulated by the GLAS Climate Model. An experiment in which the cumulus cloudiness is neglected completely for purposes of the solar and terrestrial radiation parameterizations was performed. The results are compared with those of a control run, in which 100% cumulus cloud cover is assumed. The net solar radiation input into the Earth atmosphere system is more realistic in the experiment, and the model's underprediction of the global mean outgoing thermal radiation at the top of the atmosphere is reduced. The results suggest that there is a positive feedback between cumulus convection and the radiation field. The upper troposphere is warmer in the experiment, the surface air temperature increases over land, and the thermal lows over the continents intensity.

  20. Estimation of seasonal and annual acidic deposition through aggregation of three-day episodic periods. Report for February 1989-1991

    SciTech Connect

    Samson, P.J.; Brook, J.R.; Sillman, S.

    1990-08-01

    A method for aggregating episodic deposition estimates has been developed and used to identify which meteorological situations merit simulation by RADM based on their likelihood of producing sulfate (SO4(-2)) wet deposition at multiple locations across eastern North America, their frequency of occurrence, and their seasonality. The aggregation technique has been performed using four years (1982 - 1985) of precipitation chemistry data from the Utility Acid Precipitation Sampling Program (UAPSP). The method developed during the project improves upon random selection. It is based on the stratification of three-day periods into categories of similar 850 mb wind flow across eastern North America. The aggregation project has provided the RADM project with a list of simulation periods which represent the range of meteorological patterns over eastern North America. The selection of storm types was based on their likelihood of producing SO4(-2) wet deposition at multiple locations across eastern North America, their frequency of occurrence, and their seasonality. The project has also provided the RADM project with scaling factors for use in weighing episodic simulation results to seasonal and annual deposition.

  1. Limb Correction of Infrared Imagery in Cloudy Regions for the Improved Interpretation of RGB Composites

    NASA Technical Reports Server (NTRS)

    Elmer, Nicholas J.; Berndt, Emily; Jedlovec, Gary J.

    2016-01-01

    Red-Green-Blue (RGB) composites (EUMETSAT User Services 2009) combine information from several channels into a single composite image. RGB composites contain the same information as the original channels, but presents the information in a more efficient manner. However, RGB composites derived from infrared imagery of both polar-orbiting and geostationary sensors are adversely affected by the limb effect, which interferes with the qualitative interpretation of RGB composites at large viewing zenith angles. The limb effect, or limb-cooling, is a result of an increase in optical path length of the absorbing atmosphere as viewing zenith angle increases (Goldberg et al. 2001; Joyce et al. 2001; Liu and Weng 2007). As a result, greater atmospheric absorption occurs at the limb, causing the sensor to observe anomalously cooler brightness temperatures. Figure 1 illustrates this effect. In general, limb-cooling results in a 4-11 K decrease in measured brightness temperature (Liu and Weng 2007) depending on the infrared band. For example, water vapor and ozone absorption channels display much larger limb-cooling than infrared window channels. Consequently, RGB composites created from infrared imagery not corrected for limb effects can only be reliably interpreted close to nadir, which reduces the spatial coverage of the available imagery. Elmer (2015) developed a reliable, operational limb correction technique for clear regions. However, many RGB composites are intended to be used and interpreted in cloudy regions, so a limb correction methodology valid for both clear and cloudy regions is needed. This paper presents a limb correction technique valid for both clear and cloudy regions, which is described in Section 2. Section 3 presents several RGB case studies demonstrating the improved functionality of limb-corrected RGBs in both clear and cloudy regions, and Section 4 summarizes and presents the key conclusions of this work.

  2. Evolution of a storm-driven cloudy boundary layer in the Arctic

    SciTech Connect

    Inoue, J; Kosovic, B; Curry, J A

    2003-10-24

    The cloudy boundary layer under stormy conditions during the summertime Arctic has been studied using observation from the SHEBA experiment and large-eddy simulations (LES). On 29 July 1998, a stable Arctic cloudy boundary layer event was observed after passage of a synoptic low. The local dynamic and thermodynamic structure of the boundary layer was determined from aircraft measurement including analysis of turbulence, cloud microphysics and radiative properties. After the upper cloud layer advected over the existing cloud layer, the turbulent kinetic energy budget indicated that the cloud layer below 200 m was maintained predominantly by shear production. Observations of longwave radiation showed that cloud top cooling at the lower cloud top has been suppressed by radiative effects of the upper cloud layer. Our LES results demonstrate the importance of the combination of shear mixing near the surface and radiative cooling at the cloud top in the storm-driven cloudy boundary layer. Once the low-level cloud reaches a certain height, depending on the amount of cloud-top cooling, the two sources of TKE production begin to separate in space under continuous stormy conditions, suggesting one possible mechanism for the cloud layering. The sensitivity tests suggest that the storm-driven cloudy boundary layer is flexibly switched to the shear-driven system due to the advection of upper clouds or the buoyantly driven system due to the lack of the wind shear. A comparison is made of this storm-driven boundary layer with the buoyantly driven boundary layer previously described in the literature.

  3. Regression equations to estimate seasonal flow duration, n-day high-flow frequency, and n-day low-flow frequency at sites in North Dakota using data through water year 2009

    USGS Publications Warehouse

    Williams-Sether, Tara; Gross, Tara A.

    2016-01-01

    Seasonal mean daily flow data from 119 U.S. Geological Survey streamflow-gaging stations in North Dakota; the surrounding states of Montana, Minnesota, and South Dakota; and the Canadian provinces of Manitoba and Saskatchewan with 10 or more years of unregulated flow record were used to develop regression equations for flow duration, n-day high flow and n-day low flow using ordinary least-squares and Tobit regression techniques. Regression equations were developed for seasonal flow durations at the 10th, 25th, 50th, 75th, and 90th percent exceedances; the 1-, 7-, and 30-day seasonal mean high flows for the 10-, 25-, and 50-year recurrence intervals; and the 1-, 7-, and 30-day seasonal mean low flows for the 2-, 5-, and 10-year recurrence intervals. Basin and climatic characteristics determined to be significant explanatory variables in one or more regression equations included drainage area, percentage of basin drainage area that drains to isolated lakes and ponds, ruggedness number, stream length, basin compactness ratio, minimum basin elevation, precipitation, slope ratio, stream slope, and soil permeability. The adjusted coefficient of determination for the n-day high-flow regression equations ranged from 55.87 to 94.53 percent. The Chi2 values for the duration regression equations ranged from 13.49 to 117.94, whereas the Chi2 values for the n-day low-flow regression equations ranged from 4.20 to 49.68.

  4. Regression equations to estimate seasonal flow duration, n-day high-flow frequency, and n-day low-flow frequency at sites in North Dakota using data through water year 2009

    USGS Publications Warehouse

    Williams-Sether, Tara; Gross, Tara A.

    2016-02-09

    Seasonal mean daily flow data from 119 U.S. Geological Survey streamflow-gaging stations in North Dakota; the surrounding states of Montana, Minnesota, and South Dakota; and the Canadian provinces of Manitoba and Saskatchewan with 10 or more years of unregulated flow record were used to develop regression equations for flow duration, n-day high flow and n-day low flow using ordinary least-squares and Tobit regression techniques. Regression equations were developed for seasonal flow durations at the 10th, 25th, 50th, 75th, and 90th percent exceedances; the 1-, 7-, and 30-day seasonal mean high flows for the 10-, 25-, and 50-year recurrence intervals; and the 1-, 7-, and 30-day seasonal mean low flows for the 2-, 5-, and 10-year recurrence intervals. Basin and climatic characteristics determined to be significant explanatory variables in one or more regression equations included drainage area, percentage of basin drainage area that drains to isolated lakes and ponds, ruggedness number, stream length, basin compactness ratio, minimum basin elevation, precipitation, slope ratio, stream slope, and soil permeability. The adjusted coefficient of determination for the n-day high-flow regression equations ranged from 55.87 to 94.53 percent. The Chi2 values for the duration regression equations ranged from 13.49 to 117.94, whereas the Chi2 values for the n-day low-flow regression equations ranged from 4.20 to 49.68.

  5. A Quality Control study of the distribution of NOAA MIRS Cloudy retrievals during Hurricane Sandy

    NASA Astrophysics Data System (ADS)

    Fletcher, S. J.

    2013-12-01

    Cloudy radiance present a difficult challenge to data assimilation (DA) systems, through both the radiative transfer system as well the hydrometers required to resolve the cloud and precipitation. In most DA systems the hydrometers are not control variables due to many limitations. The National Oceanic and Atmospheric Administration's (NOAA) Microwave Integrated Retrieval System (MIRS) is producing products from the NPP-ATMS satellite where the scene is cloud and precipitation affected. The test case that we present here is the life time of Hurricane and then Superstorm Sandy in October 2012. As a quality control study we shall compare the retrieved water vapor content during the lifetime of Sandy with the first guess and the analysis from the NOAA Gridpoint Statistical Interpolation (GSI) system. The assessment involves the gross error check system against the first guess with different values for the observational error's variance to see if the difference is within three standard deviations. We shall also compare against the final analysis at the relevant cycles to see if the products which have been retrieved through a cloudy radiance are similar, given that the DA system does not assimilate cloudy radiances yet.

  6. High-Resolution Rainfall From Radar Reflectivity and Terrestrial Rain Gages for use in Estimating Debris-Flow Susceptibility in the Day Fire, California

    NASA Astrophysics Data System (ADS)

    Hanshaw, M. N.; Schmidt, K. M.; Jorgensen, D. P.; Stock, J. D.

    2007-12-01

    Constraining the distribution of rainfall is essential to evaluating the post-fire mass-wasting response of steep soil-mantled landscapes. As part of a pilot early-warning project for flash floods and debris flows, NOAA deployed a portable truck-mounted Shared Mobile Atmospheric Research and Teaching Radar (SMART-R) to the 2006 Day fire in the Transverse Ranges of Southern California. In conjunction with a dense array of ground- based instruments, including 8 tipping-bucket rain gages located within an area of 170 km2, this C-band mobile Doppler radar provided 200-m grid cell estimates of precipitation data at fine temporal and spatial scales in burned steeplands at risk from hazardous flash floods and debris flows. To assess the utility of using this data in process models for flood and debris flow initiation, we converted grids of radar reflectivity to hourly time-steps of precipitation using an empirical relationship for convective storms, sampling the radar data at the locations of each rain gage as determined by GPS. The SMART-R was located 14 km from the farthest rain gage, but <10 km away from our intensive research area, where 5 gages are located within <1-2 km of each other. Analyses of the nine storms imaged by radar throughout the 2006/2007 winter produced similar cumulative rainfall totals between the gages and their SMART-R grid location over the entire season which correlate well on the high side, with gages recording the most precipitation agreeing to within 11% of the SMART-R. In contrast, on the low rainfall side, totals between the two recording systems are more variable, with a 62% variance between the minimums. In addition, at the scale of individual storms, a correlation between ground-based rainfall measurements and radar-based rainfall estimates is less evident, with storm totals between the gages and the SMART-R varying between 7 and 88%, a possible result of these being relatively small, fast-moving storms in an unusually dry winter. The

  7. Cloudy cornea

    MedlinePlus

    ... Injury to the eye, including chemical burns and welding injury Scarring Clouding may affect all or part ... examine your eyes and ask about your medical history. The two main questions will be if your ...

  8. A New Retrieval of Aerosol Optical Depth under Partly Cloudy Conditions with Multi-Spectral Measurements of Reflectance

    SciTech Connect

    Kassianov, Evgueni I.; Ovtchinnikov, Mikhail; Berg, Larry K.; McFarlane, Sally A.; Flynn, Connor J.

    2009-02-01

    The three-dimensional (3D) radiative effects may cause large uncertainties of satellite aerosol retrievals under partly cloudy conditions [1,2]. For example, analysis of multi-year aerosol statistics derived from the MODerate-Resolution Imaging Spectroradiometer (MODIS) data in clear patches of cloud fields suggests that aerosol product may be in a large error (up to 140%) as a result of 3D cloud-induced enhancement of clear sky reflectance [3]. Retrievals of AOD τa from satellite observations consist of two basic steps: (1) sampling, which includes detection of clear pixels and (2) and application of an algorithm, which estimates AOD in these pixels. The quality of the final product depends on both steps [4]. The largest errors occur for pixels located within areas of sunlight and shadows where the 3D radiative effects have the greatest impacts on the AOD retrievals [2]. To reduce the 3D radiative effects, clear pixels have to be selected far away (~1-2 km) from clouds and their shadows [3]. For selected clear pixels, the independent pixel approximation approach (IPA) [5] is used to estimate the AOD. Since the IPA ignores the 3D cloud-induced enhancement, the IPA-based retrievals can substantially overestimate AOD even for these clear pixels. To take into account such enhancement, a simple parameterization has been suggested [6]. Here we introduce an approach [7], that provides an effective way to avoid the 3D cloud effects, and illustrate with a model-output inverse problem its capability to detect clear pixels (outside of shadows) and estimate their AOD.

  9. Estimating risks of heat strain by age and sex: a population-level simulation model.

    PubMed

    Glass, Kathryn; Tait, Peter W; Hanna, Elizabeth G; Dear, Keith

    2015-05-18

    Individuals living in hot climates face health risks from hyperthermia due to excessive heat. Heat strain is influenced by weather exposure and by individual characteristics such as age, sex, body size, and occupation. To explore the population-level drivers of heat strain, we developed a simulation model that scales up individual risks of heat storage (estimated using Myrup and Morgan's man model "MANMO") to a large population. Using Australian weather data, we identify high-risk weather conditions together with individual characteristics that increase the risk of heat stress under these conditions. The model identifies elevated risks in children and the elderly, with females aged 75 and older those most likely to experience heat strain. Risk of heat strain in males does not increase as rapidly with age, but is greatest on hot days with high solar radiation. Although cloudy days are less dangerous for the wider population, older women still have an elevated risk of heat strain on hot cloudy days or when indoors during high temperatures. Simulation models provide a valuable method for exploring population level risks of heat strain, and a tool for evaluating public health and other government policy interventions.

  10. Estimating Risks of Heat Strain by Age and Sex: A Population-Level Simulation Model

    PubMed Central

    Glass, Kathryn; Tait, Peter W.; Hanna, Elizabeth G.; Dear, Keith

    2015-01-01

    Individuals living in hot climates face health risks from hyperthermia due to excessive heat. Heat strain is influenced by weather exposure and by individual characteristics such as age, sex, body size, and occupation. To explore the population-level drivers of heat strain, we developed a simulation model that scales up individual risks of heat storage (estimated using Myrup and Morgan’s man model “MANMO”) to a large population. Using Australian weather data, we identify high-risk weather conditions together with individual characteristics that increase the risk of heat stress under these conditions. The model identifies elevated risks in children and the elderly, with females aged 75 and older those most likely to experience heat strain. Risk of heat strain in males does not increase as rapidly with age, but is greatest on hot days with high solar radiation. Although cloudy days are less dangerous for the wider population, older women still have an elevated risk of heat strain on hot cloudy days or when indoors during high temperatures. Simulation models provide a valuable method for exploring population level risks of heat strain, and a tool for evaluating public health and other government policy interventions. PMID:25993102

  11. Estimating Locations of Perennial Streams in Idaho Using a Generalized Least-Squares Regression Model of 7-Day, 2-Year Low Flows

    USGS Publications Warehouse

    Wood, Molly S.; Rea, Alan; Skinner, Kenneth D.; Hortness, Jon E.

    2009-01-01

    Many State and Federal agencies use information regarding the locations of streams having intermittent or perennial flow when making management and regulatory decisions. For example, the application of some Idaho water quality standards depends on whether streams are intermittent. Idaho Administrative Code defines an intermittent stream as one having a 7-day, 2-year low flow (7Q2) less than 0.1 ft3/s. However, there is a general recognition that the cartographic representation of perennial/intermittent status of streams on U.S. Geological Survey (USGS) topographic maps is not as accurate or consistent as desirable from one map to another, which makes broad management and regulatory assessments difficult and inconsistent. To help resolve this problem, the USGS has developed a methodology for predicting the locations of perennial streams based on regional generalized least-squares (GLS) regression equations for Idaho streams for the 7Q2 low-flow statistic. Using these regression equations, the 7Q2 streamflow may be estimated for naturally flowing streams in most areas in Idaho. The use of these equations in conjunction with a geographic information system (GIS) technique known as weighted flow accumulation allows for an automated and continuous estimation of 7Q2 streamflow at all points along stream reaches. The USGS has developed a GIS-based map of the locations of streams in Idaho with perennial flow based on a 7Q2 of 0.1 ft3/s and a transition zone of plus or minus 1 standard error. Idaho State cooperators plan to use this information to make regulatory and water-quality management decisions. Originally, 7Q2 equations were developed for eight regions of similar hydrologic characteristics in the study area, using long-term data from 234 streamflow-gaging stations. Equations in five of the regions were revised based on spatial patterns observed in the initial perennial streams map and unrealistic behavior of the equations in extrapolation. The standard errors of

  12. CEMI Days

    SciTech Connect

    2015-07-01

    CEMI Days are an important channel of engagement between DOE and the manufacturing industry to identify challenges and opportunities for increasing U.S. manufacturing competitiveness. CEMI Days that are held at manufacturing companies’ facilities can include tours of R&D operations or other points of interest determined by the host company.

  13. Dinosaur Day!

    ERIC Educational Resources Information Center

    Nakamura, Sandra; Baptiste, H. Prentice

    2006-01-01

    In this article, the authors describe how they capitalized on their first-grade students' love of dinosaurs by hosting a fun-filled Dinosaur Day in their classroom. On Dinosaur Day, students rotated through four dinosaur-related learning stations that integrated science content with art, language arts, math, and history in a fun and time-efficient…

  14. Evaluation of GCM Column Radiation Models Under Cloudy Conditions with The Arm BBHRP Value Added Product

    SciTech Connect

    Oreopoulos, Lazaros; Norris, Peter M.

    2010-03-14

    The overarching goal of the project was to improve the transfer of solar and thermal radiation in the most sophisticated computer tools that are currently available for climate studies, namely Global Climate Models (GCMs). This transfer can be conceptually separated into propagation of radiation under cloudy and under cloudless conditions. For cloudless conditions, the factors that affect radiation propagation are gaseous absorption and scattering, aerosol particle absorption and scattering and surface albedo and emissivity. For cloudy atmospheres the factors are the various cloud properties such as cloud fraction, amount of cloud condensate, the size of the cloud particles, and morphological cloud features such as cloud vertical location, cloud horizontal and vertical inhomogeneity and cloud shape and size. The project addressed various aspects of the influence of the above contributors to atmospheric radiative transfer variability. In particular, it examined: (a) the quality of radiative transfer for cloudless and non-complex cloudy conditions for a substantial number of radiation algorithms used in current GCMs; (b) the errors in radiative fluxes from neglecting the horizontal variabiity of cloud extinction; (c) the statistical properties of cloud horizontal and vertical cloud inhomogeneity that can be incorporated into radiative transfer codes; (d) the potential albedo effects of changes in the particle size of liquid clouds; (e) the gaseous radiative forcing in the presence of clouds; and (f) the relative contribution of clouds of different sizes to the reflectance of a cloud field. To conduct the research in the various facets of the project, data from both the DOE ARM project and other sources were used. The outcomes of the project will have tangible effects on how the calculation of radiative energy will be approached in future editions of GCMs. With better calculations of radiative energy in GCMs more reliable predictions of future climate states will be

  15. Inter-Calibration and Concatenation of Climate Quality Infrared Cloudy Radiances from Multiple Instruments

    NASA Technical Reports Server (NTRS)

    Behrangi, Ali; Aumann, Hartmut H.

    2013-01-01

    A change in climate is not likely captured from any single instrument, since no single instrument can span decades of time. Therefore, to detect signals of global climate change, observations from many instruments on different platforms have to be concatenated. This requires careful and detailed consideration of instrumental differences such as footprint size, diurnal cycle of observations, and relative biases in the spectral brightness temperatures. Furthermore, a common basic assumption is that the data quality is independent of the observed scene and therefore can be determined using clear scene data. However, as will be demonstrated, this is not necessarily a valid assumption as the globe is mostly cloudy. In this study we highlight challenges in inter-calibration and concatenation of infrared radiances from multiple instruments by focusing on the analysis of deep convective or anvil clouds. TRMM/VIRS is potentially useful instrument to make correction for observational differences in the local time and foot print sizes, and thus could be applied retroactively to vintage instruments such as AIRS, IASI, IRIS, AVHRR, and HIRS. As the first step, in this study, we investigate and discuss to what extent AIRS and VIRS agree in capturing deep cloudy radiances at the same local time. The analysis also includes comparisons with one year observations from CrIS. It was found that the instruments show calibration differences of about 1K under deep cloudy scenes that can vary as a function of land type and local time of observation. The sensitivity of footprint size, view angle, and spectral band-pass differences cannot fully explain the observed differences. The observed discrepancies can be considered as a measure of the magnitude of issues which will arise in the comparison of legacy data with current data.

  16. The global distribution of observed cloudiness - A contribution to the ISCCP. [International Satellite Cloud Climatology Project

    NASA Technical Reports Server (NTRS)

    London, Julius; Hahn, Carole J.; Warren, Stephen G.

    1989-01-01

    Satellite-inferred overall global cloud patterns generally corroborate those derived from ground-based observations. Both show significant differences of cloudiness between the two hemispheres and over extended land as compared with ocean areas. However, the averaged latitudinal values of surface-based observed cloud amounts are about 10 percent higher than those derived from Nimbus-7 observations. The largest difference (10-20 percent) is in the subtropics of each hemisphere and at subpolar and polar latitudes during the summer. The difference in reported average global total cloud amounts is about 10 percent.

  17. Career Day

    NASA Video Gallery

    NASA's 2013 Career Days was a joint collaboration between NASA Langley and the Newport News Shipbuilding where 600 high school students from Virginia took on two design challenges -- designing a ca...

  18. Zoo Day.

    ERIC Educational Resources Information Center

    Warden, Marian

    1978-01-01

    Zoo Day was one of the culminating activities of Art Extravaganza, a pilot summer art program for high ability first-and second-graders. Field trips, art history lessons, box sculpture, and a study of cavemen were included. (SJL)

  19. STS-113 Flight Day 9 Highlights

    NASA Astrophysics Data System (ADS)

    2002-12-01

    This video shows the activities of the STS-113 (Jim Wetherbee, Commander; Paul Lockhart, Pilot; Michael Lopez-Alegria, John Herrington, Mission Specialists) crew during flight day 9. Also seen are the outgoing Expedition 5 (Valeri Korzun, Commander; Peggy Whitsun, ISS Science Officer/Flight Engineer; Sergei Treschev, Flight Engineer) and incoming Expedition 6 (Kenneth Bowersox, Commander; Donald Pettit, Nikolai Budarin, Flight Engineers) crews of the ISS (International Space Station). Flight day 9 is a relatively inactive day, with some off-time scheduled for crew bonding and enjoying views. Seven of the joint crew members, including Lopez-Alegria, Wetherbee, Herrington, and Whitsun, pose together and answer questions. Footage shows ISS Science Officers Whitsun and Pettit troubleshooting equipment. The video also contains a clear view of southern South America, a cloudy view of the South Pacific, and external footage of the ISS including the Canadarm robotic arm. The payload bay of the shuttle Endeavour is also shown.

  20. STS-113 Flight Day 9 Highlights

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This video shows the activities of the STS-113 (Jim Wetherbee, Commander; Paul Lockhart, Pilot; Michael Lopez-Alegria, John Herrington, Mission Specialists) crew during flight day 9. Also seen are the outgoing Expedition 5 (Valeri Korzun, Commander; Peggy Whitsun, ISS Science Officer/Flight Engineer; Sergei Treschev, Flight Engineer) and incoming Expedition 6 (Kenneth Bowersox, Commander; Donald Pettit, Nikolai Budarin, Flight Engineers) crews of the ISS (International Space Station). Flight day 9 is a relatively inactive day, with some off-time scheduled for crew bonding and enjoying views. Seven of the joint crew members, including Lopez-Alegria, Wetherbee, Herrington, and Whitsun, pose together and answer questions. Footage shows ISS Science Officers Whitsun and Pettit troubleshooting equipment. The video also contains a clear view of southern South America, a cloudy view of the South Pacific, and external footage of the ISS including the Canadarm robotic arm. The payload bay of the shuttle Endeavour is also shown.

  1. Wind Profile Retrieval Method for Incoherent Doppler LIDAR in Partly Cloudy Conditions

    NASA Astrophysics Data System (ADS)

    Feng, Changzhong; Liu, Bingyi; Liu, Zhishen

    2014-11-01

    After the launch of ESA’s spaceborne Doppler lidar ALADIN, Ocean University of China is going to perform the ground validation using a ground based Doppler wind lidar which utilizes an iodine absorption filter as frequency discriminator to derive Doppler frequency shift of atmospheric wind from combined molecular and aerosol backscatter. Under circumstance of non-uniform aerosol horizontal distribution, such as partly cloudy conditions, the accuracy of wind measurements is seriously influenced. Therefore, an improved VAD (Velocity-Azimuth Display) method for retrieving wind profiles is developed, which significantly increases the accuracy. With the atmospheric return signal obtained from the line-of-sight velocity PPI (Plan Position Indicator) measurements, the spatial distribution of aerosol optical parameters can be derived and considered as a reference for the quality control of line-of-sight velocity. Consequently, the wind profile in partly cloudy conditions can be retrieved by using the quality controlled line-of-sight velocity. As a result, the applicability of the ground based Doppler lidar is improved.

  2. A Fast Visible-Infrared Imaging Radiometer Suite Simulator for Cloudy Atmopheres

    NASA Technical Reports Server (NTRS)

    Liu, Chao; Yang, Ping; Nasiri, Shaima L.; Platnick, Steven; Meyer, Kerry G.; Wang, Chen Xi; Ding, Shouguo

    2015-01-01

    A fast instrument simulator is developed to simulate the observations made in cloudy atmospheres by the Visible Infrared Imaging Radiometer Suite (VIIRS). The correlated k-distribution (CKD) technique is used to compute the transmissivity of absorbing atmospheric gases. The bulk scattering properties of ice clouds used in this study are based on the ice model used for the MODIS Collection 6 ice cloud products. Two fast radiative transfer models based on pre-computed ice cloud look-up-tables are used for the VIIRS solar and infrared channels. The accuracy and efficiency of the fast simulator are quantify in comparison with a combination of the rigorous line-by-line (LBLRTM) and discrete ordinate radiative transfer (DISORT) models. Relative errors are less than 2 for simulated TOA reflectances for the solar channels and the brightness temperature differences for the infrared channels are less than 0.2 K. The simulator is over three orders of magnitude faster than the benchmark LBLRTM+DISORT model. Furthermore, the cloudy atmosphere reflectances and brightness temperatures from the fast VIIRS simulator compare favorably with those from VIIRS observations.

  3. Assimilation of thermodynamic information from advanced infrared sounders under partially cloudy skies for regional NWP

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Li, Jun; Goldberg, Mitchell D.; Schmit, Timothy J.; Lim, Agnes H. N.; Li, Zhenglong; Han, Hyojin; Li, Jinlong; Ackerman, Steve A.

    2015-06-01

    Generally, only clear-infrared spectral radiances (not affected by clouds) are assimilated in weather analysis systems. This is due to difficulties in modeling cloudy radiances as well as in observing their vertical structure from space. To take full advantage of the thermodynamic information in advanced infrared (IR) sounder observations requires assimilating radiances from cloud-contaminated regions. An optimal imager/sounder cloud-clearing technique has been developed by the Cooperative Institute for Meteorological Satellite Studies at the University of Wisconsin-Madison. This technique can be used to retrieve clear column radiances through combining collocated multiband imager IR clear radiances and the sounder cloudy radiances; no background information is needed in this method. The imager/sounder cloud-clearing technique is similar to that of the microwave/IR cloud clearing in the derivation of the clear-sky equivalent radiances. However, it retains the original IR sounder resolution, which is critical for regional numerical weather prediction applications. In this study, we have investigated the assimilation of cloud-cleared IR sounder radiances using Atmospheric Infrared Sounder (AIRS)/Moderate Resolution Imaging Spectroradiometer for three hurricanes, Sandy (2012), Irene (2011), and Ike (2008). Results show that assimilating additional cloud-cleared AIRS radiances reduces the 48 and 72 h temperature forecast root-mean-square error by 0.1-0.3 K between 300 and 850 hPa. Substantial improvement in reducing track forecasts errors in the range of 10 km to 50 km was achieved.

  4. Inspire Day

    ERIC Educational Resources Information Center

    Bohach, Barbara M.; Meade, Birgitta

    2014-01-01

    The authors collaborated on hosting a "Spring Inspire Day." planned and delivered by preservice elementary teachers as a social studies/science methods project. Projects that have authentic application opportunities can make learning meaningful for prospective teachers as well as elementary students. With the impetus for an integrated…

  5. Energy Day.

    ERIC Educational Resources Information Center

    Thomas, Peter

    1997-01-01

    Describes a program in which students present their displays in the normal science-fair style but without the competitive element and more as a "science-share". Describes an "energy day" celebration which included an energy exhibition and engaged students in an "energy decathlon" that challenged them with tasks encompassing many aspects of energy.…

  6. Dynamics and energetics of the cloudy boundary layer in simulations of off-ice flow in the marginal ice zone

    NASA Astrophysics Data System (ADS)

    Olsson, Peter Q.; Harrington, Jerry Y.

    2000-05-01

    The case under consideration occurred on March 4, 1993, and was observed as part of the Radiation and Eddy Flux Experiment (REFLEX II) 1993 observational campaign northwest of Spitsbergen. The off-ice flow on this day brought very cold surface air temperatures (-35°C) over a relatively warm ocean surface. The resultant latent and sensible surface heat fluxes produced intense convection and a thermal internal boundary layer (TIBL) which deepened with distance from the ice edge. Two-dimensional cloud-resolving model (CRM) simulations were performed to determine the impact of various cloud parameterizations on the structure and evolution of the TIBL. The model was able to reproduce the observed thermal structure of the boundary layer to within the acknowledged limitations of the CRM approach. Sensitivity studies of cloud type showed that inclusion of mixed-phase microphysics had a large impact of BL depth and structure. Radiative heating of the cloud near cloud base and cooling near cloud top along with latent heat release were found to be significant sources of turbulence kinetic energy even in the present case where very strong surface heat fluxes occur. Ice-phase precipitation processes rapidly depleted the BL of condensate, weakening the radiative thermal forcing. A further consequence of condensate depletion in the mixed-phase cloud was a less humid boundary layer that was able to maintain a larger surface latent heat flux and continuously extract heat through condensation and deposition. Not surprisingly, the presence of clouds had a profound impact on the radiative budget at the surface, with the cloudy BL reducing surface radiative losses more that 60% over clear-sky values. Inclusion of the ice phase significantly affected the radiative budget as compared to purely liquid clouds, illustrating the importance of ice-phase-radiative couplings for accurate simulations of arctic clouds and boundary layer dynamics.

  7. First Complete Day from MODIS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This spectacular, full-color image of the Earth is a composite of the first full day of data gathered by the Moderate-resolution Imaging Spectroradiometer (MODIS) aboard NASA's Terra spacecraft. MODIS collected the data for each wavelength of red, green, and blue light as Terra passed over the daylit side of the Earth on April 19, 2000. Terra is orbiting close enough to the Earth so that it cannot quite see the entire surface in a day, resulting in the narrow gaps around the equator. Although the sensor's visible channels were combined to form this true-color picture, MODIS collects data in a total of 36 wavelengths, ranging from visible to thermal infrared energy. Scientists use these data to measure regional and global-scale changes in marine and land-based plant life, sea and land surface temperatures, cloud properties, aerosols, fires, and land surface properties. Notice how cloudy the Earth is, and the large differences in brightness between clouds, deserts, oceans, and forests. The Antarctic, surrounded by clockwise swirls of cloud, is shrouded in darkness because the sun is north of the equator at this time of year. The tropical forests of Africa, Southeast Asia, and South America are shrouded by clouds. The bright Sahara and Arabian deserts stand out clearly. Green vegetation is apparent in the southeast United States, the Yucatan Peninsula, and Madagascar. Image by Mark Gray, MODIS Atmosphere Team, NASA GSFC

  8. Estimated loss of juvenile salmonids to predation by northern squawfish, walleyes, and smallmouth bass in John Day Reservoir, Columbia River. [Oncorhynchus spp. ; Ptychocheilus oregonensis; Stizostedion vitreum; Micropterus dolomieu; O. tshawytscha

    SciTech Connect

    Rieman, B.E.; Beamesderfer, R.C. ); Vigg, S.; Poe, T.P. )

    1991-07-01

    The authors estimated the loss of juvenile salmonids Oncorhynchus spp. to predation by northern squawfish Ptychocheilus oregonensis, walleyes Stizostedion vitreum, and smallmouth bass Micropterus dolomieu in John Day Reservoir during 1983-1986. Their estimates were based on measures of daily prey consumption, predator numbers, and numbers of juvenile salmonids entering the reservoir during the April-August period of migration. They estimated the mean annual loss was 2.7 million juvenile salmonids. Northern squawfish were responsible for 78% of the total loss; walleyes accounted for 13% and smallmouth bass for 9%. Twenty-one percent of the loss occurred in a small area immediately below McNary Dam at the head of John Day Reservoir. The authors estimated that the three predator species consumed 14% of all juvenile salmonids that entered the reservoir. Mortality changed by month and increased late in the migration season. Monthly mortality estimates ranged from 7% in June and 61% in August. Mortality from predation was highest for chinook salmon O. tshawytscha, which migrated in July and August. Despite uncertainties in the estimates, it is clear that predation by resident fish predators can easily account for previously explained mortality of out-migrating juvenile salmonids. Alteration of the Columbia River by dams and a decline in the number of salmonids could have increased the fraction of mortality caused by predation over what is was in the past.

  9. 34 CFR 300.11 - Day; business day; school day.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false Day; business day; school day. 300.11 Section 300.11... CHILDREN WITH DISABILITIES General Definitions Used in This Part § 300.11 Day; business day; school day. (a) Day means calendar day unless otherwise indicated as business day or school day. (b) Business...

  10. Seasonal size distribution of airborne culturable bacteria and fungi and preliminary estimation of their deposition in human lungs during non-haze and haze days

    NASA Astrophysics Data System (ADS)

    Gao, Min; Jia, Ruizhi; Qiu, Tianlei; Han, Meilin; Song, Yuan; Wang, Xuming

    2015-10-01

    In recent years, haze events in Beijing have significantly increased in frequency. On haze days, airborne microorganisms are considered to be a potential risk factor for various health concerns. However, limited information on bioaerosols has prevented our proper understanding of the possible threat to human health due to these bioaerosols. In this study, we used a six-stage impactor for sampling culturable bioaerosols and the LUDEP 2.07 computer-based model for calculating their deposition on human lungs to investigate seasonal concentration, size distribution, and corresponding deposition efficiency and flux in the human respiratory tract during different haze-level events. The current results of the analysis of 398 samples over four seasons indicate that the concentration of culturable airborne bacteria decreased with increasing haze severity. The bioaerosol concentration ratio was skewed towards larger particle sizes on heavy haze days leading to larger bioaerosol aerodynamic diameters than on non-haze days. During nasal breathing by an adult male engaged in light exercise in an outdoor environment, the total deposition efficiency of culturable bioaerosols is 80-90% including approximately 70% in the upper respiratory tract, 5-7% in the alveoli, and about 3% in the bronchial couple with bronchiolar regions. Although the difference in culturable bioaerosol aerodynamic diameters at different haze levels was not large enough to cause obvious differences in lung deposition efficiency, the deposition fluxes clearly varied with the degree of haze owing to the varied concentration of culturable airborne bacteria and fungi. The results here could improve our understanding of the seasonal health threat due to culturable bioaerosols during non-haze and haze days.

  11. Estimation of evapotranspiration using satellite remote sensing data in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Jang, K.; Kang, S.

    2013-12-01

    The land surface evapotranspiration (ET) that is the sum of evaporation and transpiration is one of key components for understanding the land surface water cycle and the energy interaction between land surface and atmosphere. The quantification of ET is important to improve our understandings such as the terrestrial water budget as well as water management. Although numerous studies for ET estimation have been performed, the regional studies on ET in Northeast Asia are still few. In this study, we present the method for the satellite data-based ET estimates under clear and cloudy sky conditions in Northeast Asia. The input variables for ET calculation were obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) atmosphere and land products. Frequent cloud cover results in a substantial loss of remote sensing information, limiting the capability of continuous ET monitoring for the monsoon region such as the Northeast Asia. For this reason, the gap-filling processes were conducted for the temperature variables using the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) data and the radiation components using MODIS cloud properties product. The operational MODIS ET algorithm was applied to estimate the terrestrial ET in Northeast Asia. Flux tower measurements at eight sites over study domain were used to evaluate the satellite-derived inputs and ET estimates. The satellite-based input variables for estimating ET showed good agreements in comparison with flux tower observations. The resulting ET calculations showed generally favorable agreement (RMSE < 1.3 mm day-1) with respect to in situ measurements from eight regional flux tower sites. The estimated mean annual ET for three years from 2006 to 2008 was approximately 360 mm yr-1 over the Northeast Asia domain. The results generated by this study indicated that the integration of MODIS and AMSR-E products provides the potentials to estimate ET and radiation components for clear and

  12. Estimates of genetic parameters for content of boar taint compounds in adipose tissue of intact males at 160 and 220 days of age.

    PubMed

    Rostellato, R; Bonfatti, V; Larzul, C; Bidanel, J P; Carnier, P

    2015-09-01

    The aims of this study were to investigate variation in content of androstenone (AND), skatole (SKA), and indole (IND), quantified in adipose tissue of intact male pigs at 160 d of age (105 kg BW) and 220 d of age (155 kg BW), to estimate genetic parameters and to investigate the genetic relationships for AND, SKA, IND, and growth traits. A sample of adipose tissue was collected in vivo, using a biopsy device, from the neck of 500 intact males at the 2 ages and at slaughter from the ham of 100 of the investigated animals. Backfat depth was measured at 220 d of age, whereas BW was recorded at each sampling. Quantification of AND, SKA, and IND was performed by HPLC with fluorescence detection. Estimates of genetic parameters were obtained through Bayesian analyses after logarithmic transformations of original measures. Contents of boar taint compounds (BTC) measured at 220 d were higher than those at 160 d of age. Correlations between contents of BTC in backfat and ham fat ranged from 0.7 (IND) to 0.88 (SKA). Medium-high h were estimated for BTC at both ages, but estimates at 220 d (0.58, 0.60, and 0.69 for AND, SKA, and IND, respectively) were greater than those at 160 d. The genetic correlation between contents at 160 and 220 d of each BTC was positive, but the probability that such estimates were greater than 0.8 was very low, indicating that contents at 160 and 220 d were traits controlled by different genetic backgrounds. Different rankings were observed when breeding values for the content at 160 and 220 d of age were used to rank animals. As a consequence, performance testing programs for BTC should be based preferably on phenotypes measured at 220 d of age. Weak genetic correlations were observed between content of BT compounds and growth traits (BW, backfat depth, and daily gain from 160 to 220 d of age), indicating that selective breeding to reduce the risk of tainted pork is expected to exert trivial effects on growth performance and fat deposition

  13. Representation of Clear and Cloudy Boundary Layers in Climate Models. Chapter 14

    NASA Technical Reports Server (NTRS)

    Randall, D. A.; Shao, Q.; Branson, M.

    1997-01-01

    The atmospheric general circulation models which are being used as components of climate models rely on their boundary layer parameterizations to produce realistic simulations of the surface turbulent fluxes of sensible heat. moisture. and momentum: of the boundary-layer depth over which these fluxes converge: of boundary layer cloudiness: and of the interactions of the boundary layer with the deep convective clouds that grow upwards from it. Two current atmospheric general circulation models are used as examples to show how these requirements are being addressed: these are version 3 of the Community Climate Model. which has been developed at the U.S. National Center for Atmospheric Research. and the Colorado State University atmospheric general circulation model. The formulations and results of both models are discussed. Finally, areas for future research are suggested.

  14. Some doubts concerning a link between cosmic ray fluxes and global cloudiness

    NASA Astrophysics Data System (ADS)

    Kernthaler, Simon C.; Toumi, Ralf; Haigh, Joanna D.

    Svensmark and Friis-Christensen (1997, henceforth SFC) showed a strong correlation between cosmic ray flux and ISCCP total cloudiness between 1984 and 1990. They concluded that ionisation by cosmic rays, more prevalent at times of lower solar activity, might explain apparent correlations between solar activity and climate through changes in cloud radiative forcing. We have extended SFC's approach with a study of the different cloud types, restricting our analysis to the period 1985 to 1988 during which the ISCCP calibration is believed to be stable. We find no clear relationship between individual cloud types and cosmic ray flux. Inclusion of data at high latitudes decreases the amplitude of the apparent correlation although ionisation by cosmic rays is greatest at high latitudes. Thin high cloud shows an increase throughout the period such that the combined effect of the changes in cloud types suggests an almost monotonic increase in cloud radiative forcing between 1985 and 1988 which is not related to cosmic ray activity.

  15. Satellite sounding of cloud parameters and temperature profiles in cloudy atmospheres from infrared and microwave data

    NASA Astrophysics Data System (ADS)

    Yeh, H. Y.

    The utilization of both infrared and microwave sounding channels for the simultaneous inference of the cloud parameters and temperature profiles in cloudy atmospheres is studied. The necessary parameterized equations for infrared and microwave radiative transfer were derived, and the retrieval programs were developed for the determination of the high cloud top height, high cloud thickness, low cloud top height, surface emissivities, cloud liquid water content, and temperature profile successively utilizing selected HIRS and SCAMS channels. Hypothetical error analyses were performed and it is found that the retrieval technique is theoretically rigorous and practically feasible. The retrieval technique is then applied to the Nimbus 4 HIRS and SCAMS data for a number of carefully selected cases associated with summertime convective cloud systems and wintertime large scale synoptic cyclones. Cloud parameters and temperature profiles appear to be in qualitative agreement with the available synoptic, radiosonde, surface, and radar observations.

  16. Formation of spectral lines in planetary atmospheres. I - Theory for cloudy atmospheres: Application to Venus.

    NASA Technical Reports Server (NTRS)

    Hunt, G. E.

    1972-01-01

    The theory of the formation of spectral lines in a cloudy planetary atmosphere is studied in detail. It is shown that models based upon homogeneous, isotropically scattering atmospheres cannot be used to reproduce observed spectroscopic features of phase effect and the shape of spectral lines for weak and strong bands. The theory must, therefore, be developed using an inhomogeneous (gravitational) model of a planetary atmosphere, accurately incorporating all the physical processes of radiative transfer. Such a model of the lower Venus atmosphere, consistent with our present knowledge, is constructed. The results discussed in this article demonstrate the effects of the parameters that describe the atmospheric model on the spectroscopic features of spectral line profile and phase effect, at visible and near infrared wavelengths. This information enables us to develop a comprehensive theory of line formation in a Venus atmosphere.

  17. Validation and Improvement of CERES Surface Radiation Budget Algorithms: Extension of Dusty and Cloudy Scenes

    NASA Technical Reports Server (NTRS)

    Ramanathan, V.; Inamdar, Anand K.

    2005-01-01

    Our main task was to validate and improve the generation of surface long wave fluxes from the CERES TOA window channel flux measurements. We completed this task successfully for the clear sky fluxes in the presence of aerosols including dust during the first year of the project. The algorithm we developed for CERES was remarkably successful for clear sky fluxes and we have no further tasks that need to be performed past the requested termination date of December 31, 2004. We found that the information contained in the TOA fluxes was not sufficient to improve upon the current CERES algorithm for cloudy sky fluxes. Given this development and given our success in clear sky fluxes, we do not see any reason to continue our validation work beyond what we have completed. Specific details are given.

  18. Absorption of Solar Radiation by the Cloudy Atmosphere Interpretations of Collocated Aircraft Measurements

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.; Cess, Robert D.; Zhang, Minghua; Pope, Shelly K.; Bucholtz, Anthony; Bush, Brett; Vitko, John, Jr.

    1997-01-01

    As part of the Atmospheric Radiation Measurement (ARM) Enhanced Shortwave Experiment (ARESE), we have obtained and analyzed measurements made from collocated aircraft of the absorption of solar radiation within the atmospheric column between the two aircraft. The measurements were taken during October 1995 at the ARM site in Oklahoma. Relative to a theoretical radiative transfer model, we find no evidence for excess solar absorption in the clear atmosphere and significant evidence for its existence in the cloudy atmosphere. This excess cloud solar absorption appears to occur in both visible (0.224-0.68 microns) and near-infrared (0.68-3.30 microns) spectral regions, although not at 0.5 microns for the visible contribution, and it is shown to be true absorption rather than an artifact of sampling errors caused by measuring three-dimensional clouds.

  19. Investigation of the environment around close-in transiting exoplanets using CLOUDY

    NASA Astrophysics Data System (ADS)

    Turner, Jake D.; Christie, Duncan; Arras, Phil; Johnson, Robert E.; Schmidt, Carl

    2016-06-01

    It has been suggested that hot stellar wind gas in a bow shock around an exoplanet is sufficiently opaque to absorb stellar photons and give rise to an observable transit depth at optical and UV wavelengths. In the first part of this paper, we use the CLOUDY plasma simulation code to model the absorption from X-ray to radio wavelengths by 1D slabs of gas in coronal equilibrium with varying densities (104-108 cm-3) and temperatures (2000-106 K) illuminated by a solar spectrum. For slabs at coronal temperatures (106 K) and densities even orders of magnitude larger than expected for the compressed stellar wind (104-105 cm-3), we find optical depths orders of magnitude too small (>3 × 10-7) to explain the ˜3 per cent UV transit depths seen with Hubble. Using this result and our modelling of slabs with lower temperatures (2000-104K), the conclusion is that the UV transits of WASP-12b and HD 189733b are likely due to atoms originating in the planet, as the stellar wind is too highly ionized. A corollary of this result is that transport of neutral atoms from the denser planetary atmosphere outward must be a primary consideration when constructing physical models. In the second part of this paper, additional calculations using CLOUDY are carried out to model a slab of planetary gas in radiative and thermal equilibrium with the stellar radiation field. Promising sources of opacity from the X-ray to radio wavelengths are discussed, some of which are not yet observed.

  20. VLT FORS2 comparative transmission spectral survey of clear and cloudy exoplanet atmospheres

    NASA Astrophysics Data System (ADS)

    Nikolov, Nikolay; Sing, David; Gibson, Neale; Evans, Thomas; Barstow, Joanna Katy; Kataria, Tiffany; Wilson, Paul A.

    2016-10-01

    Transmission spectroscopy is a key to unlocking the secrets of close-in exoplanet atmospheres. Observations have started to unveil a vast diversity of irradiated giant planet atmospheres with clouds and hazes playing a definitive role across the entire mass and temperature regime. We have initiated a ground-based, multi-object transmission spectroscopy of a hand full of hot Jupiters, covering the wavelength range 360-850nm using the recently upgraded FOcal Reducer and Spectrograph (FORS2) mounted on the Very Large Telescope (VLT) at the European Southern Observatory (ESO). These targets were selected for comparative follow-up as their transmission spectra showed evidence for alkali metal absorption, based on the results of Hubble Space Telescope (HST) observations. This talk will discuss the first results from the programme, demonstrating excellent agreement between the transmission spectra measured from VLT and HST and further reinforce the findings of clear, cloudy and hazy atmospheres. More details will be discussed on the narrow alkali features obtained with FORS2 at higher resolution, revealing its high potential in securing optical transmission spectra. These FORS2 observations are the first ground-based detections of clear, cloudy and hazy hot-Jupiter atmosphere with a simultaneous detections of Na, K, and H2 Rayleigh scattering. Our program demonstrates the large potential of the instrument for optical transmission spectroscopy, capable of obtaining HST-quality light curves from the ground. Compared to HST, the larger aperture of VLT will allow for fainter targets to be observed and higher spectral resolution, which can greatly aid comparative exoplanet studies. This is important for further exploring the diversity of exoplanet atmospheres and is particularly complementary to the near- and mid-IR regime, to be covered by the upcoming James-Webb Space Telescope (JWST) and is readily applicable to less massive planets down to super-Earths.

  1. [The specific features of present-day children's physical development in the estimation of the functional sizes of furniture for pupils].

    PubMed

    Khramtsov, P I; Strokina, A N; Sotnikova, E N; Butareva, I I; Moldovanov, V V

    2009-01-01

    The authors made mass anthropometric surveys in 923 first-to-fourth-form pupils and determined the values of 5 variables for height groups 2, 3, and 4, used to justify the functional sizes of furniture for pupils: the length of a shoulder slope above the seat, that of an elbow slope above the seat, that of a popliteal space slope above the floor, the distance from the chair hack to the popliteal space, and the highest pelvic width. Differences were found in the anthropometric values in the present-day junior pupils and the equals in age of the early 1970s. The present-day children are characterized by changes in body proportions (a decrease in height and an increase in the length of the shin and femur), which should be kept in mind on optimizing the working place of pupils. It is suggested that popliteal space length rather than the currently applied height should be used as a fitting ratio of anthropometric characteristics to the functional sizes of furniture for pupils.

  2. Valentine's Day

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA02174 Valentine's Day

    This isolated mesa [lower left center of the image] has an almost heart-shaped margin. Happy Valentine's Day from Mars.

    Image information: VIS instrument. Latitude 29.4N, Longitude 79.1E. 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  3. Liquid chromatographic method for determination of patulin in clear and cloudy apple juices and apple puree: collaborative study.

    PubMed

    MacDonald, S; Long, M; Gilbert, J; Felgueiras, I

    2000-01-01

    A collaborative trial was conducted to validate the effectiveness of a liquid chromatographic (LC) procedure for determination of patulin in both clear and cloudy apple juices and apple puree. The test portion of clear apple juice was directly extracted with ethyl acetate; cloudy apple juice and apple puree were treated with pectinase enzyme before extraction. After back-extraction into sodium carbonate to remove interfering acidic compounds, the extract was dried and concentrated, and patulin was determined by LC with UV detection. Clear and cloudy apple juices, apple puree test samples naturally contaminated with patulin, and blank test samples for spiking with patulin were sent to 14 collaborators in 12 different European countries. Test portions of each of the 3 test sample types were spiked with patulin at 75 ng/g. Recoveries of patulin ranged from 80 to 92%. Based on the results for spiked test samples (blind pairs) and naturally contaminated test samples (blind pairs at 3 levels), the relative standard deviations for repeatability (RSDr) and reproducibility (RSDR) ranged from 8 to 35% and 11 to 36%, respectively. Although HORRAT values of <1.4 were obtained for all 3 matrixes at patulin levels ranging from 26 to 121 ng/g, better performance values (RSDr values 6-10% and RSDR values 11-25%) were obtained for clear and cloudy apple juice spiked above 50 ng/g, which is either the statutory limit or the advisory level for patulin contamination in apple juices in many countries.

  4. Absorption of Sunlight by Water Vapor in Cloudy Conditions: A Partial Explaination for the Cloud Absorption Anomaly

    NASA Technical Reports Server (NTRS)

    Crisp, D.

    1996-01-01

    The atmospheric radiative transfer algorithms used in most global general circulation models underestimate the globally-averaged solar energy absorbed by cloudy atmospheres by up to 25 Wm(sup -2)...Here, a sophisticated atmospheric radiative transfer model was used to provide a more comprehensive description of the physical processes that contribute to the absorption of solar radiation by the Earth's atmosphere.

  5. Nanopaleomagnetism of Meteoritic Fe-Ni: the Potential for Time-Resolved Remanence Records within the Cloudy Zone

    NASA Astrophysics Data System (ADS)

    Harrison, R. J.; Bryson, J. F.; Kasama, T.; Church, N. S.; Herrero Albillos, J.; Kronast, F.; Ghidini, M.; Redfern, S. A.; van der Laan, G.; Tyliszczak, T.

    2013-12-01

    Paleomagnetic signals recorded by meteorites provide compelling evidence that the liquid cores of differentiated asteroids generated magnetic dynamo fields. Here we argue that magnetic nanostructures unique to meteoritic Fe-Ni metal are capable of carrying a time-resolved record of asteroid dynamo activity, a prospect that could revolutionise our understanding of the thermochemical conditions of differentiated bodies in the early solar system. Using a combination of high-resolution magnetic imaging techniques (including electron holography, magnetic force microscopy, X-ray photoemission electron microscopy and scanning transmission X-ray microscopy) we reveal the origins of the dramatic changes in magnetic properties that are associated with the transition from kamacite - tetrataenite rim - cloudy zone - plessite, typical of Fe-Ni intergrowths. The cloudy zone is comprised of nanoscale islands of tetrataenite (FeNi) coherently intergrown with a hitherto unobserved soft magnetic phase (Fe3Ni). The tetrataenite island diameter decreases with increasing lateral distance from the tetrataenite rim. Exchange coupling between the hard tetrataenite islands and the soft matrix phase leads to an exchange spring effect that lowers the tetrataenite switching field and causes a systematic variation in microcoercivity throughout the cloudy zone. The cloudy zone displays a complex interlocking magnetic domain pattern caused by uniaxial single domain tetrataenite islands with easy axes distributed along all three of the possible <100> crystallographic orientations. The coarse and intermediate cloudy zones contain a random distribution of all three easy axes. The fine cloudy zone, on the other hand, contains one dominant easy axis direction. This easy axis distribution suggests that strong interaction fields (either magnetic or stress) were present in this region at the time of tetrataenite formation, which likely originated from the neighbouring plessite. The easy axis

  6. A new method to estimate air-quality levels using a synoptic-regression approach. Part I: Present-day O 3 and PM 10 analysis

    NASA Astrophysics Data System (ADS)

    Demuzere, Matthias; van Lipzig, Nicole P. M.

    2010-03-01

    In order to make projections for future air-quality levels, a robust methodology is needed that succeeds in reconstructing present-day air-quality levels. At present, climate projections for meteorological variables are available from Atmospheric-Ocean Coupled Global Climate Models (AOGCMs) but the temporal and spatial resolution is insufficient for air-quality assessment. Therefore, a variety of methods are tested in this paper in their ability to hindcast maximum 8 hourly levels of O 3 and daily mean PM 10 from observed meteorological data. The methods are based on a multiple linear regression technique combined with the automated Lamb weather classification. Moreover, we studied whether the above-mentioned multiple regression analysis still holds when driven by operational ECMWF (European Center for Medium-Range Weather Forecast) meteorological data. The main results show that a weather type classification prior to the regression analysis is superior to a simple linear regression approach. In contrast to PM 10 downscaling, seasonal characteristics should be taken into account during the downscaling of O 3 time series. Apart from a lower explained variance due to intrinsic limitations of the regression approach itself, a lower variability of the meteorological predictors (resolution effect) and model deficiencies, this synoptic-regression-based tool is generally able to reproduce the relevant statistical properties of the observed O 3 distributions important in terms of European air quality Directives and air quality mitigation strategies. For PM 10, the situation is different as the approach using only meteorology data was found to be insufficient to explain the observed PM 10 variability using the meteorological variables considered in this study.

  7. Variation between Hospitals with Regard to Diagnostic Practice, Coding Accuracy, and Case-Mix. A Retrospective Validation Study of Administrative Data versus Medical Records for Estimating 30-Day Mortality after Hip Fracture

    PubMed Central

    Kristoffersen, Doris Tove; Skyrud, Katrine Damgaard; Lindman, Anja Schou

    2016-01-01

    Background The purpose of this study was to assess the validity of patient administrative data (PAS) for calculating 30-day mortality after hip fracture as a quality indicator, by a retrospective study of medical records. Methods We used PAS data from all Norwegian hospitals (2005–2009), merged with vital status from the National Registry, to calculate 30-day case-mix adjusted mortality for each hospital (n = 51). We used stratified sampling to establish a representative sample of both hospitals and cases. The hospitals were stratified according to high, low and medium mortality of which 4, 3, and 5 hospitals were sampled, respectively. Within hospitals, cases were sampled stratified according to year of admission, age, length of stay, and vital 30-day status (alive/dead). The final study sample included 1043 cases from 11 hospitals. Clinical information was abstracted from the medical records. Diagnostic and clinical information from the medical records and PAS were used to define definite and probable hip fracture. We used logistic regression analysis in order to estimate systematic between-hospital variation in unmeasured confounding. Finally, to study the consequences of unmeasured confounding for identifying mortality outlier hospitals, a sensitivity analysis was performed. Results The estimated overall positive predictive value was 95.9% for definite and 99.7% for definite or probable hip fracture, with no statistically significant differences between hospitals. The standard deviation of the additional, systematic hospital bias in mortality estimates was 0.044 on the logistic scale. The effect of unmeasured confounding on outlier detection was small to moderate, noticeable only for large hospital volumes. Conclusions This study showed that PAS data are adequate for identifying cases of hip fracture, and the effect of unmeasured case mix variation was small. In conclusion, PAS data are adequate for calculating 30-day mortality after hip-fracture as a quality

  8. Solar activity cloudiness effect on NH warming for 1980-2095

    NASA Astrophysics Data System (ADS)

    Mendoza, Víctor M.; Mendoza, Blanca; Garduño, René; Villanueva, Elba E.; Adem, Julián

    2016-03-01

    We use a Thermodynamic Climate Model (TCM) to compute the Northern Hemisphere temperature anomaly for the period 1980-2095, corresponding to the global warming (GW) by the increase of the atmospheric CO2; the GW is in turn diminished as a consequence of the negative anomaly of the solar activity (SA), giving a warming reduction (WR). So the CO2 and the SA represent external climate forcings. The total solar irradiance (TSI) is the main manifestation of the SA and of course is the climate driver; the SA produces besides the solar wind that modulates the flux of galactic cosmic rays (GCR), which in turn modifies the low cloud cover, that by itself influences inversely the mid cloud cover; the combination of both cloudiness yields the so called relevant cloud cover. The GCR-cloudiness effect has a delay of ∼1 yr with respect to TSI effect, which is the time for a SA change to reach the heliopause carried by the solar wind. In order to incorporate this climate mechanism, the TCM now includes the warming due to the vapor condensation by GCR, which causes a decrease in the magnitude of the WR. The TCM was improved by incorporating it new parameterizations of three mechanisms, which are activated by the GW: the atmospheric lapse rate changes; the water vapor emissivity between 8 and 12.5μ is computed with the E-Trans/HITRAN calculator; and changes in this emissivity band according to the relative humidity changes. The 11-yr variability of the TSI time series is filtered to get the trend along 21st century. Two IPCC (2001, 2007) CO2 emission scenarios are used: the high A1FI and the low A1T. Emphasis is made on the results for two particular years: one corresponding to the deepest part of the TSI grand solar minimum in the year 2029, and the other to the end of the century, 2095. The main thermal feedbacks included in TCM are those due to the atmospheric greenhouse effect by water vapor, to the cryosphere-albedo and to cloudiness-albedo. By 2100 the GW from the TCM is 5

  9. Assimilation of hyperspectral infrared sounder radiances under cloudy skies in a regional NWP model

    NASA Astrophysics Data System (ADS)

    Wang, Pei

    Satellite measurements are an important source of global observations in support of numerical weather prediction (NWP). The assimilation of satellite radiances under clear skies has greatly improved NWP forecast scores. Since most of the data assimilation models are used for the clear radiances assimilation, an important step for satellite radiances assimilation is the clear location detection. Good clear detection could effectively remove the cloud contamination and keep the clear observations for assimilation. In this dissertation, a new detection method uses collocated high spatial resolution imager data onboard the same platform as the satellite sounders to help IR sounders subpixel cloud detection, such as the Atmospheric Infrared Sounder (AIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS), the Crosstrack Infrared Sounder (CrIS) and Visible Infrared Imaging Radiometer Suite (VIIRS). The MODIS cloud mask provides a level of confidence for the observed skies to help AIRS Field-of-View (FOVs) cloud detection. By reducing the cloud contamination, a cold bias in the temperature field and a wet bias in the moisture field are corrected for the atmospheric analysis fields. These less cloud affected analysis fields further improve hurricane track and intensity forecast. The availability of satellite observations that can be assimilated in the model is limited if only the clear radiances are assimilation. An effective way to use the thermodynamic information under partially cloudy regions is to assimilate the "cloud-cleared" radiances (CCRs); CCRs are also called clear equivalent radiances. Because the CCRs are the equivalent clear radiances from the partially cloudy FOVs, they can be directly assimilated into the current data assimilation models without modifications. The AIRS CCRs are assimilated and compared with the AIRS using stand-alone cloud detection and collocated cloud detection. The assimilation of AIRS cloud-cleared radiances directly affects

  10. How to distinguish between cloudy mini-Neptunes and water/volatile-dominated super-Earths

    SciTech Connect

    Benneke, Björn; Seager, Sara

    2013-12-01

    One of the most profound questions about the newly discovered class of low-density super-Earths is whether these exoplanets are predominately H{sub 2}-dominated mini-Neptunes or volatile-rich worlds with gas envelopes dominated by H{sub 2}O, CO{sub 2}, CO, CH{sub 4}, or N{sub 2}. Transit observations of the super-Earth GJ 1214b rule out cloud-free H{sub 2}-dominated scenarios, but are not able to determine whether the lack of deep spectral features is due to high-altitude clouds or the presence of a high mean molecular mass atmosphere. Here, we demonstrate that one can unambiguously distinguish between cloudy mini-Neptunes and volatile-dominated worlds based on wing steepness and relative depths of absorption features in moderate-resolution near-infrared transmission spectra (R ∼ 100). In a numerical retrieval study, we show for GJ 1214b that an unambiguous distinction between a cloudy H{sub 2}-dominated atmosphere and cloud-free H{sub 2}O atmosphere will be possible if the uncertainties in the spectral transit depth measurements can be reduced by a factor of ∼3 compared to the published Hubble Space Telescope Wide-Field Camera 3 and Very Large Telescope transit observations by Berta et al. and Bean et al. We argue that the required precision for the distinction may be achievable with currently available instrumentation by stacking 10-15 repeated transit observations. We provide a scaling law that scales our quantitative results to other transiting super-Earths and Neptunes such as HD 97658b, 55 Cnc e, GJ 3470b and GJ 436b. The analysis in this work is performed using an improved version of our Bayesian atmospheric retrieval framework. The new framework not only constrains the gas composition and cloud/haze parameters, but also determines our confidence in having detected molecules and cloud/haze species through Bayesian model comparison. Using the Bayesian tool, we demonstrate quantitatively that the subtle transit depth variation in the Berta et al. data is

  11. On the Interaction between Marine Boundary Layer Cellular Cloudiness and Surface Heat Fluxes

    SciTech Connect

    Kazil, J.; Feingold, G.; Wang, Hailong; Yamaguchi, T.

    2014-01-02

    The interaction between marine boundary layer cellular cloudiness and surface uxes of sensible and latent heat is investigated. The investigation focuses on the non-precipitating closed-cell state and the precipitating open-cell state at low geostrophic wind speed. The Advanced Research WRF model is used to conduct cloud-system-resolving simulations with interactive surface fluxes of sensible heat, latent heat, and of sea salt aerosol, and with a detailed representation of the interaction between aerosol particles and clouds. The mechanisms responsible for the temporal evolution and spatial distribution of the surface heat fluxes in the closed- and open-cell state are investigated and explained. It is found that the horizontal spatial structure of the closed-cell state determines, by entrainment of dry free tropospheric air, the spatial distribution of surface air temperature and water vapor, and, to a lesser degree, of the surface sensible and latent heat flux. The synchronized dynamics of the the open-cell state drives oscillations in surface air temperature, water vapor, and in the surface fluxes of sensible and latent heat, and of sea salt aerosol. Open-cell cloud formation, cloud optical depth and liquid water path, and cloud and rain water path are identified as good predictors of the spatial distribution of surface air temperature and sensible heat flux, but not of surface water vapor and latent heat flux. It is shown that by enhancing the surface sensible heat flux, the open-cell state creates conditions by which it is maintained. While the open-cell state under consideration is not depleted in aerosol, and is insensitive to variations in sea-salt fluxes, it also enhances the sea-salt flux relative to the closed-cell state. In aerosol-depleted conditions, this enhancement may replenish the aerosol needed for cloud formation, and hence contribute to the perpetuation of the open-cell state as well. Spatial homogenization of the surface fluxes is found to have

  12. A gap-filling model for eddy covariance latent heat flux: Estimating evapotranspiration of a subtropical seasonal evergreen broad-leaved forest as an example

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Ying; Chu, Chia-Ren; Li, Ming-Hsu

    2012-10-01

    SummaryIn this paper we present a semi-parametric multivariate gap-filling model for tower-based measurement of latent heat flux (LE). Two statistical techniques, the principal component analysis (PCA) and a nonlinear interpolation approach were integrated into this LE gap-filling model. The PCA was first used to resolve the multicollinearity relationships among various environmental variables, including radiation, soil moisture deficit, leaf area index, wind speed, etc. Two nonlinear interpolation methods, multiple regressions (MRS) and the K-nearest neighbors (KNNs) were examined with random selected flux gaps for both clear sky and nighttime/cloudy data to incorporate into this LE gap-filling model. Experimental results indicated that the KNN interpolation approach is able to provide consistent LE estimations while MRS presents over estimations during nighttime/cloudy. Rather than using empirical regression parameters, the KNN approach resolves the nonlinear relationship between the gap-filled LE flux and principal components with adaptive K values under different atmospheric states. The developed LE gap-filling model (PCA with KNN) works with a RMSE of 2.4 W m-2 (˜0.09 mm day-1) at a weekly time scale by adding 40% artificial flux gaps into original dataset. Annual evapotranspiration at this study site were estimated at 736 mm (1803 MJ) and 728 mm (1785 MJ) for year 2008 and 2009, respectively.

  13. Water ice clouds on Mars: a study of partial cloudiness with a global climate model and MARCI data

    NASA Astrophysics Data System (ADS)

    Pottier, Alizée; Montmessin, Franck; Forget, François; Wolff, Mike; Navarro, Thomas; Millour, Ehouarn; Madeleine, Jean-Baptiste; Spiga, Aymeric; Bertrand, Tanguy

    2015-04-01

    There is a large reservoir of water ice on Mars in the polar caps, that sublimates in summer and releases water vapor. Water is then advected in the atmospheric circulation that evolves seasonally. This vapor forms clouds, frost, and can also be adsorbed in the soil. In a global study of the water cycle, water ice clouds play a key part in the martian climate. There is a need to understand better their distribution and radiative effect. The tool used in this study is the global climate model (GCM) of the Laboratoire de Météorologie Dynamique. It is made up of a core that computes fluid dynamics, and a physical part that gathers a number of parametrised processes. It includes tracers and the condensation and sublimation of water in the atmosphere and on the ground, allowing a study of the complete water cycle. To improve the representation of water ice clouds in the model, a new parametrisation of partial cloudiness has been implemented and will be presented. Indeed, model cells are hundreds of kilometers wide, and it is quite unrealistic to suppose that cloud coverage is always uniform in them. Furthermore, the model was quite unstable since the implementation of the radiative effect of clouds, and partial cloudiness had the effect of reducing this instability. In practice, a subgrid temperature distribution is supposed, and the temperature computed in the model is interpreted as its mean. The subgrid scale temperature distribution is simple, and its width is a free parameter. Using this distribution, the fraction of the grid cells under the water vapor condensation temperature is interpreted as the fraction of the cell in which clouds form (or cloud fraction). From these fractions at each height a total partial cloudiness (the clouds as seen from the orbit) is deduced. The radiative transfer is computed twice, for the clear area and for the cloudy one. Observing the water cycle with this new parametrisation, some differences are seen with standard runs. These

  14. The SunCloud project: worldwide compilation of long-term series of sunshine duration and cloudiness observations

    NASA Astrophysics Data System (ADS)

    Sanchez-Lorenzo, Arturo; Pallé, Enric; Wild, Martin; Calbó, Josep; Brunetti, Michelle; Stanhill, Gerald; Brázdil, Rudolf; Barriendos, Mariano; Pereira, Paulo; Azorin-Molina, César

    2010-05-01

    homogenized sunshine series will be studied in order to reconstruct global and regional solar irradiance at the Earth's surface since the late 19th century. Equally, we plan to calibrate sunshine duration measurements against planetary albedo estimations from the Earthshine measurements and other satellite radiation data. Since clouds are the main cause of interannual and decadal variability of radiation reaching the Earth's surface, as a complement to the long-term sunshine series we will also compile worldwide surface cloudiness observations. With this abstract we seek to encourage the climate community to contribute with their own local datasets to the SunCloud project. In the near future we will create a webpage with the main details of this project.

  15. Trends of solar radiation, cloudiness and atmospheric transparency during recent decades in Estonia

    NASA Astrophysics Data System (ADS)

    Russak, V.

    1990-04-01

    Data obtained during 1955 1986 at the Tôravere Actinometric Station (Estonia, USSR) are used to study the long-term variations of the direct (S') and global solar radiation (Q) at the earth's surface. During these years, a certain decreasing trend was observed both in S' and in Q (ΔS'= 13%, ΔQ= 6.8%). The results from Tôravere are compared with the data on global radiation acquired in 1964 1986 at 9 different actinometric stations in northern Europe (8) and western Siberia (1). Decreasing trends have been observed in Helsinki and Stockholm (ΔQ=-11%), and also in Kaunas (ΔQ=-12%) in the same period. The variations of the cloudiness regime and atmospheric transparency as the main reasons for the decrease of radiation are discussed. According to the measurement data from Tôravere, the mean annual amount of low clouds increased by 11%, whereas the value of the Bouguer atmospheric transparency coefficient decreased by 3.7%.

  16. Two-dimensional radiative transfer in cloudy atmospheres - The spherical harmonic spatial grid method

    NASA Technical Reports Server (NTRS)

    Evans, K. F.

    1993-01-01

    A new two-dimensional monochromatic method that computes the transfer of solar or thermal radiation through atmospheres with arbitrary optical properties is described. The model discretizes the radiative transfer equation by expanding the angular part of the radiance field in a spherical harmonic series and representing the spatial part with a discrete grid. The resulting sparse coupled system of equations is solved iteratively with the conjugate gradient method. A Monte Carlo model is used for extensive verification of outgoing flux and radiance values from both smooth and highly variable (multifractal) media. The spherical harmonic expansion naturally allows for different levels of approximation, but tests show that the 2D equivalent of the two-stream approximation is poor at approximating variations in the outgoing flux. The model developed here is shown to be highly efficient so that media with tens of thousands of grid points can be computed in minutes. The large improvement in efficiency will permit quick, accurate radiative transfer calculations of realistic cloud fields and improve our understanding of the effect of inhomogeneity on radiative transfer in cloudy atmospheres.

  17. Evaluation of the Impact of AIRS Radiance and Profile Data Assimilation in Partly Cloudy Regions

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi; Jedlovec, Gary

    2013-01-01

    Improvements to global and regional numerical weather prediction have been demonstrated through assimilation of data from NASA s Atmospheric Infrared Sounder (AIRS). Current operational data assimilation systems use AIRS radiances, but impact on regional forecasts has been much smaller than for global forecasts. Retrieved profiles from AIRS contain much of the information that is contained in the radiances and may be able to reveal reasons for this reduced impact. Assimilating AIRS retrieved profiles in an identical analysis configuration to the radiances, tracking the quantity and quality of the assimilated data in each technique, and examining analysis increments and forecast impact from each data type can yield clues as to the reasons for the reduced impact. By doing this with regional scale models individual synoptic features (and the impact of AIRS on these features) can be more easily tracked. This project examines the assimilation of hyperspectral sounder data used in operational numerical weather prediction by comparing operational techniques used for AIRS radiances and research techniques used for AIRS retrieved profiles. Parallel versions of a configuration of the Weather Research and Forecasting (WRF) model with Gridpoint Statistical Interpolation (GSI) are run to examine the impact AIRS radiances and retrieved profiles. Statistical evaluation of a long-term series of forecast runs will be compared along with preliminary results of in-depth investigations for select case comparing the analysis increments in partly cloudy regions and short-term forecast impacts.

  18. Safety and quality assessment during the ozonation of cloudy apple juice.

    PubMed

    Patil, S; Torres, B; Tiwari, B K; Wijngaard, Hilde H; Bourke, P; Cullen, P J; O'Donnell, C P; Valdramidis, V P

    2010-09-01

    Traditionally, ozone processing within the food industry has focused on solid foods by either gaseous treatment or washing with ozonized water. However, with the FDA's approval of ozone as a direct additive to food, the potential for liquid applications has emerged. This study investigates the effect of ozone processing on microbial inactivation (E. coli ATCC 25922 and NCTC 12900) and quality parameters (color, phenolic content) of cloudy apple juice. Apple juice samples were ozonated at room temperature (20 ± 1.5 °C) with a generated ozone concentration of 0.048 mg O(3) at a constant flow rate of 0.12 L/min and treatment time of 0 to 10 min. E. coli inactivation kinetics in apple juice were described quantitatively by using the Shoulder log-linear and the Weibull model. Ozone treatment of E. coli in apple juice demonstrate that a desired 5 log reduction can be achieved within 5 min. Apple juice color (L*, a*, and b*) and total phenols were significantly affected by ozone concentration and treatment time.

  19. Light-pollution model for cloudy and cloudless night skies with ground-based light sources.

    PubMed

    Kocifaj, Miroslav

    2007-05-20

    The scalable theoretical model of light pollution for ground sources is presented. The model is successfully employed for simulation of angular behavior of the spectral and integral sky radiance and/or luminance during nighttime. There is no restriction on the number of ground-based light sources or on the spatial distribution of these sources in the vicinity of the measuring point (i.e., both distances and azimuth angles of the light sources are configurable). The model is applicable for real finite-dimensional surface sources with defined spectral and angular radiating properties contrary to frequently used point-source approximations. The influence of the atmosphere on the transmitted radiation is formulated in terms of aerosol and molecular optical properties. Altitude and spectral reflectance of a cloud layer are the main factors introduced for simulation of cloudy and/or overcast conditions. The derived equations are translated into numerically fast code, and it is possible to repeat the entire set of calculations in real time. The parametric character of the model enables its efficient usage by illuminating engineers and/or astronomers in the study of various light-pollution situations. Some examples of numerical runs in the form of graphical results are presented. PMID:17514252

  20. Pilot-scale production of cloudy juice from low-quality pear fruit under low-oxygen conditions.

    PubMed

    De Paepe, Domien; Coudijzer, Katleen; Noten, Bart; Valkenborg, Dirk; Servaes, Kelly; De Loose, Marc; Diels, Ludo; Voorspoels, Stefan; Van Droogenbroeck, Bart

    2015-04-15

    In this study, a process for the production of premium quality yellowish, cloudy pear juice from low-quality fruit under low-oxygen conditions was developed. The production process consisted of (1) shredding, (2) pressing with spiral-filter technology including a vacuumised extraction cell, (3) holding in an inert gas buffer tank, (4) pasteurisation, (5) and refrigerated storage. First, the system parameters of a spiral-filter press were optimised with the aim of producing a yellowish, cloudy pear juice with the highest possible juice yield. A maximum juice yield of 78% could be obtained. Enzymatic browning during juice extraction could be suppressed as a result of the fast processing and the low air (oxygen) levels in the extraction chamber of the spiral-filter press. Furthermore, we observed that instantaneous pasteurisation at 107 °C for 6s, subsequent aluminium laminate packaging and cold storage had only a minimum effect on the phenolic composition.

  1. A comparative study between spiral-filter press and belt press implemented in a cloudy apple juice production process.

    PubMed

    De Paepe, Domien; Coudijzer, Katleen; Noten, Bart; Valkenborg, Dirk; Servaes, Kelly; De Loose, Marc; Diels, Ludo; Voorspoels, Stefan; Van Droogenbroeck, Bart

    2015-04-15

    In this study, advantages and disadvantages of the innovative, low-oxygen spiral-filter press system were studied in comparison with the belt press, commonly applied in small and medium size enterprises for the production of cloudy apple juice. On the basis of equivalent throughput, a higher juice yield could be achieved with spiral-filter press. Also a more turbid juice with a higher content of suspended solids could be produced. The avoidance of enzymatic browning during juice extraction led to an attractive yellowish juice with an elevated phenolic content. Moreover, it was found that juice produced with spiral-filter press demonstrates a higher retention of phenolic compounds during the downstream processing steps and storage. The results demonstrates the advantage of the use of a spiral-filter press in comparison with belt press in the production of a high quality cloudy apple juice rich in phenolic compounds, without the use of oxidation inhibiting additives.

  2. Pilot-scale production of cloudy juice from low-quality pear fruit under low-oxygen conditions.

    PubMed

    De Paepe, Domien; Coudijzer, Katleen; Noten, Bart; Valkenborg, Dirk; Servaes, Kelly; De Loose, Marc; Diels, Ludo; Voorspoels, Stefan; Van Droogenbroeck, Bart

    2015-04-15

    In this study, a process for the production of premium quality yellowish, cloudy pear juice from low-quality fruit under low-oxygen conditions was developed. The production process consisted of (1) shredding, (2) pressing with spiral-filter technology including a vacuumised extraction cell, (3) holding in an inert gas buffer tank, (4) pasteurisation, (5) and refrigerated storage. First, the system parameters of a spiral-filter press were optimised with the aim of producing a yellowish, cloudy pear juice with the highest possible juice yield. A maximum juice yield of 78% could be obtained. Enzymatic browning during juice extraction could be suppressed as a result of the fast processing and the low air (oxygen) levels in the extraction chamber of the spiral-filter press. Furthermore, we observed that instantaneous pasteurisation at 107 °C for 6s, subsequent aluminium laminate packaging and cold storage had only a minimum effect on the phenolic composition. PMID:25466096

  3. A comparative study between spiral-filter press and belt press implemented in a cloudy apple juice production process.

    PubMed

    De Paepe, Domien; Coudijzer, Katleen; Noten, Bart; Valkenborg, Dirk; Servaes, Kelly; De Loose, Marc; Diels, Ludo; Voorspoels, Stefan; Van Droogenbroeck, Bart

    2015-04-15

    In this study, advantages and disadvantages of the innovative, low-oxygen spiral-filter press system were studied in comparison with the belt press, commonly applied in small and medium size enterprises for the production of cloudy apple juice. On the basis of equivalent throughput, a higher juice yield could be achieved with spiral-filter press. Also a more turbid juice with a higher content of suspended solids could be produced. The avoidance of enzymatic browning during juice extraction led to an attractive yellowish juice with an elevated phenolic content. Moreover, it was found that juice produced with spiral-filter press demonstrates a higher retention of phenolic compounds during the downstream processing steps and storage. The results demonstrates the advantage of the use of a spiral-filter press in comparison with belt press in the production of a high quality cloudy apple juice rich in phenolic compounds, without the use of oxidation inhibiting additives. PMID:25466116

  4. Effect of enzymatic mash treatment and storage on phenolic composition, antioxidant activity, and turbidity of cloudy apple juice.

    PubMed

    Oszmiański, Jan; Wojdylo, Aneta; Kolniak, Joanna

    2009-08-12

    The effects of different commercial enzymatic mash treatments on yield, turbidity, color, and polyphenolic and sediment of procyanidins content of cloudy apple juice were studied. Addition of pectolytic enzymes to mash treatment had positive effect on the production of cloud apple juices by improving polyphenolic contents, especially procyanidins and juice yields (68.3% in control samples to 77% after Pectinex Yield Mash). As summary of the effect of enzymatic mash treatment, polyphenol contents in cloudy apple juices significantly increased after Pectinex Yield Mash, Pectinex Smash XXL, and Pectinex XXL maceration were applied but no effect was observed after Pectinex Ultra-SPL I Panzym XXL use, compared to the control samples. The content of polymeric procyanidins represented 50-70% of total polyphenols, but in the present study, polymeric procyanidins were significantly lower in juices than in fruits and also affected by enzymatic treatment (Pectinex AFP L-4 and Panzym Yield Mash) compared to the control samples. The enzymatic treatment decreased procyanidin content in most sediment with the exception of Pectinex Smash XXL and Pectinex AFP L-4. Generally in samples that were treated by pectinase, radical scavenging activity of cloudy apple juices was increased compared to the untreated reference samples. The highest radical scavenging activity was associated with Pectinex Yield Mash, Pectinex Smash XXL, and Pectinex XXL enzyme and the lowest activity with Pectinex Ultra SP-L and Pectinex APFL-4. However, in the case of enzymatic mash treatment cloudy apple juices showed instability of turbidity and low viscosity. These results must be ascribed to the much higher hydrolysis of pectin by enzymatic preparation which is responsible for viscosity. During 6 months of storage at 4 degrees C small changes in analyzed parameters of apple juices were observed.

  5. Prevention of conglomerate formation in not-from-concentrate single-cultivar cloudy apple juice by using different treatment methods.

    PubMed

    Schnürer, Monika; Vogl, Karl; Gössinger, Manfred

    2013-02-01

    Conglomerates may form at the bottom of bottles containing not-from-concentrate (NFC) cloudy apple juice obtained from a single apple cultivar. Since dissociation or dispersion of these conglomerates cannot be achieved by shaking, the juice appears unsightly, and consumers can mistake the product as being spoilt. Juice from Elstar and Braeburn apples was treated with selected enzymes (gluco-amylase, alpha-amylase, pectin lyase, polygalacturonase and protease) and by using bentonite and a separator. The effects of these treatments on the formation of conglomerates in cloudy apple juice have been studied, and the treatment effects on turbidity and cloud stability have been documented. Conglomerates were observed in juices treated with protease or bentonite and in control juices. However, no conglomerates were observed in the juice samples treated with gluco-amylase, alpha-amylase, pectin lyase or pectin lyase in combination with polygalacturonase. The results obtained after treatment with a separator were not consistent. It is supposed that carbohydrate fractions play a more important role in conglomerate formation than proteins and phenols. Gluco-amylase and alpha-amylase treatment also provides good cloud stability, and thus can be a suitable method for preventing conglomerate formation in single-cultivar NFC cloudy apple juice.

  6. Radiative Susceptibility of Cloudy Atmospheres to Droplet Number Perturbations: 2. Global analysis from MODIS

    NASA Technical Reports Server (NTRS)

    Oreopoulos, Lazaros; Platnick, Steven

    2008-01-01

    Global distributions of albedo susceptibility for areas covered by liquid clouds are presented for 4 months in 2005. The susceptibility estimates are based on expanded definitions presented in a companion paper and include relative cloud droplet number concentration (CDNC) changes, perturbations in cloud droplet asymmetry parameter and single-scattering albedo, atmospheric/surface effects, and incorporation of the full solar spectrum. The cloud properties (optical thickness and effective radius) used as input in the susceptibility calculations come from MODIS Terra and Aqua Collection 5 gridded data. Geographical distributions of susceptibility corresponding to absolute ( absolute cloud susceptibility ) and relative ( relative cloud susceptibility ) CDNC changes are markedly different indicating that the detailed nature of the cloud microphysical perturbation is important for determining the radiative forcing associated with the first indirect aerosol effect. However, both types of susceptibility exhibit common characteristics such as significant reductions when perturbations in single-scattering properties are omitted, significant increases when atmospheric absorption and surface albedo effects are ignored, and the tendency to decrease with latitude, to be higher over ocean than over land, and to be statistically similar between the morning and afternoon MODIS overpasses. The satellite-based susceptibility analysis helps elucidate the role of present-day cloud and land surface properties in indirect aerosol forcing responses. Our realistic yet moderate CDNC perturbations yield forcings on the order of 1-2 W/sq m for cloud optical property distributions and land surface spectral albedos observed by MODIS. Since susceptibilities can potentially be computed from model fields, these results have practical application in assessing the reasonableness of model-generated estimates of the aerosol indirect radiative forcing.

  7. A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion.

    PubMed

    Sing, David K; Fortney, Jonathan J; Nikolov, Nikolay; Wakeford, Hannah R; Kataria, Tiffany; Evans, Thomas M; Aigrain, Suzanne; Ballester, Gilda E; Burrows, Adam S; Deming, Drake; Désert, Jean-Michel; Gibson, Neale P; Henry, Gregory W; Huitson, Catherine M; Knutson, Heather A; des Etangs, Alain Lecavelier; Pont, Frederic; Showman, Adam P; Vidal-Madjar, Alfred; Williamson, Michael H; Wilson, Paul A

    2016-01-01

    Thousands of transiting exoplanets have been discovered, but spectral analysis of their atmospheres has so far been dominated by a small number of exoplanets and data spanning relatively narrow wavelength ranges (such as 1.1-1.7 micrometres). Recent studies show that some hot-Jupiter exoplanets have much weaker water absorption features in their near-infrared spectra than predicted. The low amplitude of water signatures could be explained by very low water abundances, which may be a sign that water was depleted in the protoplanetary disk at the planet's formation location, but it is unclear whether this level of depletion can actually occur. Alternatively, these weak signals could be the result of obscuration by clouds or hazes, as found in some optical spectra. Here we report results from a comparative study of ten hot Jupiters covering the wavelength range 0.3-5 micrometres, which allows us to resolve both the optical scattering and infrared molecular absorption spectroscopically. Our results reveal a diverse group of hot Jupiters that exhibit a continuum from clear to cloudy atmospheres. We find that the difference between the planetary radius measured at optical and infrared wavelengths is an effective metric for distinguishing different atmosphere types. The difference correlates with the spectral strength of water, so that strong water absorption lines are seen in clear-atmosphere planets and the weakest features are associated with clouds and hazes. This result strongly suggests that primordial water depletion during formation is unlikely and that clouds and hazes are the cause of weaker spectral signatures.

  8. A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion.

    PubMed

    Sing, David K; Fortney, Jonathan J; Nikolov, Nikolay; Wakeford, Hannah R; Kataria, Tiffany; Evans, Thomas M; Aigrain, Suzanne; Ballester, Gilda E; Burrows, Adam S; Deming, Drake; Désert, Jean-Michel; Gibson, Neale P; Henry, Gregory W; Huitson, Catherine M; Knutson, Heather A; des Etangs, Alain Lecavelier; Pont, Frederic; Showman, Adam P; Vidal-Madjar, Alfred; Williamson, Michael H; Wilson, Paul A

    2016-01-01

    Thousands of transiting exoplanets have been discovered, but spectral analysis of their atmospheres has so far been dominated by a small number of exoplanets and data spanning relatively narrow wavelength ranges (such as 1.1-1.7 micrometres). Recent studies show that some hot-Jupiter exoplanets have much weaker water absorption features in their near-infrared spectra than predicted. The low amplitude of water signatures could be explained by very low water abundances, which may be a sign that water was depleted in the protoplanetary disk at the planet's formation location, but it is unclear whether this level of depletion can actually occur. Alternatively, these weak signals could be the result of obscuration by clouds or hazes, as found in some optical spectra. Here we report results from a comparative study of ten hot Jupiters covering the wavelength range 0.3-5 micrometres, which allows us to resolve both the optical scattering and infrared molecular absorption spectroscopically. Our results reveal a diverse group of hot Jupiters that exhibit a continuum from clear to cloudy atmospheres. We find that the difference between the planetary radius measured at optical and infrared wavelengths is an effective metric for distinguishing different atmosphere types. The difference correlates with the spectral strength of water, so that strong water absorption lines are seen in clear-atmosphere planets and the weakest features are associated with clouds and hazes. This result strongly suggests that primordial water depletion during formation is unlikely and that clouds and hazes are the cause of weaker spectral signatures. PMID:26675732

  9. Evaluation of Warm-Rain Microphysical Parameterizations in Cloudy Boundary Layer Transitions

    NASA Astrophysics Data System (ADS)

    Nelson, K.; Mechem, D. B.

    2014-12-01

    Common warm-rain microphysical parameterizations used for marine boundary layer (MBL) clouds are either tuned for specific cloud types (e.g., the Khairoutdinov and Kogan 2000 parameterization, "KK2000") or are altogether ill-posed (Kessler 1969). An ideal microphysical parameterization should be "unified" in the sense of being suitable across MBL cloud regimes that include stratocumulus, cumulus rising into stratocumulus, and shallow trade cumulus. The recent parameterization of Kogan (2013, "K2013") was formulated for shallow cumulus but has been shown in a large-eddy simulation environment to work quite well for stratocumulus as well. We report on our efforts to implement and test this parameterization into a regional forecast model (NRL COAMPS). Results from K2013 and KK2000 are compared with the operational Kessler parameterization for a 5-day period of the VOCALS-REx field campaign, which took place over the southeast Pacific. We focus on both the relative performance of the three parameterizations and also on how they compare to the VOCALS-REx observations from the NOAA R/V Ronald H. Brown, in particular estimates of boundary-layer depth, liquid water path (LWP), cloud base, and area-mean precipitation rate obtained from C-band radar.

  10. Consistency of ARESE II Cloud Absorption Estimates and Sampling Issues

    NASA Technical Reports Server (NTRS)

    Oreopoulos, L.; Marshak, A.; Cahalan, R. F.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Data from three cloudy days (March 3, 21, 29, 2000) of the ARM Enhanced Shortwave Experiment II (ARESE II) were analyzed. Grand averages of broadband absorptance among three sets of instruments were compared. Fractional solar absorptances were approx. 0.21-0.22 with the exception of March 3 when two sets of instruments gave values smaller by approx. 0.03-0.04. The robustness of these values was investigated by looking into possible sampling problems with the aid of 500 nm spectral fluxes. Grand averages of 500 nm apparent absorptance cover a wide range of values for these three days, namely from a large positive (approx. 0.011) average for March 3, to a small negative (approximately -0.03) for March 21, to near zero (approx. 0.01) for March 29. We present evidence suggesting that a large part of the discrepancies among the three days is due to the different nature of clouds and their non-uniform sampling. Hence, corrections to the grand average broadband absorptance values may be necessary. However, application of the known correction techniques may be precarious due to the sparsity of collocated flux measurements above and below the clouds. Our analysis leads to the conclusion that only March 29 fulfills all requirements for reliable estimates of cloud absorption, that is, the presence of thick, overcast, homogeneous clouds.

  11. Multi scale imaging of the Cloudy Zone in the Tazewell IIICD Meteorite

    NASA Astrophysics Data System (ADS)

    Einsle, J. F.; Harrison, R. J.; Nichols, C. I. O.; Blukis, R.; Midgley, P. A.; Eggeman, A.; Saghi, Z.; Bagot, P.

    2015-12-01

    Paleomagnetic studies of iron and stony iron meteorites suggest that many small planetary bodies possessed molten cores resulting in the generation of a magnetic field. As these bodies cooled, Fe-Ni metal trapped within their mantle underwent a series of low-temperature transitions, leading to the familiar Widmanstatten intergrowth of kamacite and taenite. Adjacent to the kamacite/taenite interface is the so-called "cloudy zone" (CZ): a nanoscale intergrowth of tetrataenite islands in an Fe-rich matrix phase formed via spinodal decomposition. It has recently been shown (Bryson et al. 2015, Nature) that the CZ encodes a time-series record of the evolution of the magnetic field generated by the molten core of the planetary body. Extracting meaningful paleomagnetic data from the CZ relies, on a thorough understanding of the 3D chemical and magnetic properties of the intergrowth focsusing on the interactions between the magnetically hard tetrataenite islands and the magnetically soft matrix. Here we present a multi scale study of the chemical and crystallographic make up of the CZ in the Tazewell IIICD meteorite, using a range of advanced microscopy techniques. The results provide unprecedented insight into the architecture of the CZ, with implications for how the CZ acquires chemical transformation remanance during cooling on the parent body. Previous 2D transmission electron microscope studies of the CZ suggested that the matrix is an ordered Fe3Ni phase with the L12 structure. Interpretation of the electron diffraction patterns and chemical maps in these studies was hindered by a failure to resolve signals from overlapping island and matrix phases. Here we obtain high resolution electron diffraction and 3D chemical maps with near atomic resolution using a combination of scanning precession electron diffraction, 3D STEM EDS and atom probe tomography. Using this combined methodology we reslove for the first time the phenomena of secondary precipitation in the

  12. A Fast Radiative Transfer Parameterization Under Cloudy Condition in Solar Spectral Region

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Liu, X.; Yang, P.; Wang, C.

    2014-12-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) system, which is proposed and developed by NASA, will directly measure the Earth's thermal infrared spectrum (IR), the spectrum of solar radiation reflected by the Earth and its atmosphere (RS), and radio occultation (RO). IR, RS, and RO measurements provide information on the most critical but least understood climate forcings, responses, and feedbacks associated with the vertical distribution of atmospheric temperature and water vapor, broadband reflected and emitted radiative fluxes, cloud properties, surface albedo, and surface skin temperature. To perform Observing System Simulation Experiments (OSSE) for long term climate observations, accurate and fast radiative transfer models are needed. The principal component-based radiative transfer model (PCRTM) is one of the efforts devoted to the development of fast radiative transfer models for simulating radiances and reflecatance observed by various hyperspectral instruments. Retrieval algorithm based on PCRTM forward model has been developed for AIRS, NAST, IASI, and CrIS. It is very fast and very accurate relative to the training radiative transfer model. In this work, we are extending PCRTM to UV-VIS-near IR spectral region. To implement faster cloudy radiative transfer calculations, we carefully investigated the radiative transfer process under cloud condition. The cloud bidirectional reflectance was parameterized based on off-line 36-stream multiple scattering calculations while few other lookup tables were generated to describe the effective transmittance and reflectance of the cloud-clear-sky coupling system in solar spectral region. The bidirectional reflectance or the irradiance measured by satellite may be calculated using a simple fast radiative transfer model providing the type of cloud (ice or water), optical depth of the cloud, optical depth of both atmospheric trace gases above and below clouds, particle size of the cloud, as well

  13. Methane and carbon dioxide total column retrievals from cloudy GOSAT soundings over the oceans

    NASA Astrophysics Data System (ADS)

    Schepers, D.; Butz, A.; Hu, H.; Hasekamp, O. P.; Arnold, S. G.; Schneider, M.; Feist, D. G.; Morino, I.; Pollard, D.; Aben, I.; Landgraf, J.

    2016-05-01

    We present a novel physics-based retrieval method to infer total column mixing ratios of methane (XCH4) and carbon dioxide (XCO2) from space-borne short-wavelength infrared (SWIR) Earth radiance observations over the cloud-covered ocean. In nadir observing geometry in the SWIR spectral range, backscattering at the ocean surface is negligible. Hence, space-borne radiance measurements of ocean scenes generally do not provide sufficient level to retrieve XCO2 and XCH4. Our approach specifically targets cloudy GOSAT ocean soundings to provide sufficient radiance signal in nadir soundings in ocean areas. Currently, exploiting space-borne SWIR soundings over oceans relies on soundings in Sun glint geometry, observing the specular solar reflection at the ocean surface. The glint observation mode requires cloud-free conditions and a suitable observation geometry, severely limiting their number and geographical coverage. The proposed method is based on the existing RemoTeC algorithm that is extensively used to retrieve CH4 and CO2 columns from GOSAT SWIR measurements over land. For ocean pixels, we describe light scattering by clouds and aerosols by a single-layer water cloud with Gaussian height distribution. We infer the height and the geometrical thickness of the cloud layer jointly with the droplet size and the number density and the column abundances of CO2, CH4, and H2O. The CO2 and CH4 column product is validated with ground-based total column measurements performed at eight stations from the TCCON network that are geographically close to an ocean coastline. For the TCCON site with the most robust statistics (Lauder, New Zealand), we find a retrieval bias of 0.36% for XCH4 combined with a standard deviation of retrieval errors of 1.12%. For XCO2, the bias is 0.51% combined with a standard deviation of 1.03%. Averaged over all TCCON sites, our retrievals are biased -0.01% for XCO2 and -0.32% for XCH4. The standard deviation of station biases amounts to 0.45% for XCO2

  14. A Cloudy Quark Bag Model of S, P, and D wave interactions for the coupled channel antikaon-nucleon system

    SciTech Connect

    He, Guangliang.

    1992-05-15

    The Cloudy Quark Bag Model is extended from S-wave to P- and D-wave. The parameters of the model are determined by K{sup {minus}}p scattering cross section data, K{sup {minus}}p {yields}{Sigma}{pi}{pi}{pi} production data, K{sup {minus}}p threshold branching ratio data, and K{sup {minus}}p {yields}{Lambda}{pi}{pi}{pi} production data. The resonance structure of the {Lambda}(1405), {Sigma}(1385), and {Lambda}(1520) are studied in the model. The shift and width of kaonic hydrogen are calculated using the model.

  15. The effect of cloudy apple juice on hepatic and mammary gland phase I and II enzymes induced by DMBA in female Sprague-Dawley rats.

    PubMed

    Szaefer, Hanna; Krajka-Kuźniak, Violetta; Ignatowicz, Ewa; Adamska, Teresa; Markowski, Jarosław; Baer-Dubowska, Wanda

    2014-10-01

    Apples abundant in phenolic compounds show a variety of biological activities that may contribute to health beneficial effects against cardiovascular diseases, diabetes, obesity and cancer. We investigated the effect of cloudy apple juice (CAJ) on the hepatic and mammary gland carcinogen metabolizing enzymes, DNA damage and liver injury, altered by 7,12-dimethylbenz[a]anthracene (DMBA). Sprague-Dawley female rats were gavaged with CAJ (10 ml/kg b.w.) for 28 consecutive days. DMBA was administered i.p. on the 27th and the 28th days. In the liver, feeding with CAJ decreased the activities of CYP1A1 and 1A2 and increased phase II enzymes. The activities of all enzymes tested were enhanced in the animals treated with DMBA alone and in combination with CAJ. The most significant changes in the level of the hepatic enzymes tested were observed for GST alpha and NQO1. In mammary gland CAJ induced an increase in the level of GST mu and GST pi, while DMBA and CAJ combined administration elevated GST pi only. This may be beneficial as GST pi is involved in the DMBA detoxification. Additionally, pretreatment with CAJ reduced the level of most of the blood biochemical liver and kidney markers elevated as a result of DMBA treatment. These findings indicate that CAJ may interfere with enzyme system involved in carcinogen metabolism. However, this effect seems to be dependent on tissue and carcinogen and is moderately effective in the case of DMBA. Moreover, CAJ can also provide some protection against the liver and kidney damage.

  16. Absorption of Sunlight by Water Vapor in Cloudy Conditions: A Partial Explanation for the Cloud Absorption Anomaly

    NASA Technical Reports Server (NTRS)

    Crisp, D.

    1997-01-01

    The atmospheric radiative transfer algorithms used in most global general circulation models underestimate the globally-averaged solar energy absorbed by cloudy atmospheres by up to 25 W/sq m. The origin of this anomalous absorption is not yet known, but it has been attributed to a variety of sources including oversimplified or missing physical processes in these models, uncertainties in the input data, and even measurement errors. Here, a sophisticated atmospheric radiative transfer model was used to provide a more comprehensive description of the physical processes that contribute to the absorption of solar radiation by the Earth's atmosphere. We found that the amount of sunlight absorbed by a cloudy atmosphere is inversely proportional to the solar zenith angle and the cloud top height, and directly proportional to the cloud optical depth and the water vapor concentration within the clouds. Atmospheres with saturated, optically-thick, low clouds absorbed about 12 W/sq m more than clear atmospheres. This accounts for about 1/2 to 1/3 of the anomalous ab- sorption. Atmospheres with optically thick middle and high clouds usually absorb less than clear atmospheres. Because water vapor is concentrated within and below the cloud tops, this absorber is most effective at small solar zenith angles. An additional absorber that is distributed at or above the cloud tops is needed to produce the amplitude and zenith angle dependence of the observed anomalous absorption.

  17. Empirical evaluation of global vitamin D effective ultraviolet irradiances under cloudy conditions for a subtropical southern hemisphere site.

    PubMed

    Turnbull, David J; Parisi, Alfio V; Schouten, Peter W

    2010-05-01

    This paper evaluates the global vitamin D effective UV (UV(vitd)) irradiances under cloudy conditions at a subtropical, southern hemisphere site. The UV(vitd) irradiances were analyzed on a horizontal plane and sampled at 5-min intervals over 18 months so that a wide range of parameters including cloud conditions, solar zenith angles (SZA) and ozone levels were taken into account. Cloud modification factors were determined from the influence of clouds on the global broadband solar radiation, and these were applied to the cloud-free vitamin D effective UV irradiance to evaluate the UV(vitd) irradiances on a horizontal plane for cloudy conditions. For vitamin D effective UV irradiance, cloud modification factors were found to range from 0.9 to 1.0 for no cloud and 0.4 to 0.5 for 8 octa of cloud cover. SZA played a minimal role in this variation. A comparison of the measured and calculated UV(vitd) irradiances for the 2004 data set in the range of SZA of 70 degrees or less provided an R(2) value of 0.90. The output of the model was compared to data measured during the first 6 months of 2005 for an SZA of 70 degrees or less and provided an R(2) value of approximately 0.82.

  18. STS-107 Flight Day 8 Highlights

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This video shows the activities of the STS-107 crew (Rick Husband, Commander; William McCool, Pilot; Kalpana Chawla, David Brown, Michael Anderson, Laurel Clark, Mission Specialists, Ilan Ramon, Payload Specialist) during flight day 8 of the Columbia orbiter's final flight. The primary activities of flight day 8 are spaceborne experiments. Some background information is given on the SOFBALL (Structure of Flame Balls at Low Lewis-Number) microgravity experiment as footage of the flame balls is shown. The video also shows the MEIDEX (Mediterranean Israeli Dust Experiment) calibrating on the Moon. The six STARS (Space Technology and Research Students) international student experiments are profiled, including experiments on carpenter bees (Liechtenstein), spiders (Australia), silkworms (China), ants (United States), crystal growth (Israel), and fish embryos (Japan). A commercial experiment on roses is also profiled. Astronaut Clark gives a tour of the SpaceHab RDM (Research Double Module), in the space shuttle's payload bay. Astronauts McCool and Ramon take turns on an exercise machine. The video includes a partly cloudy view of the Pacific Ocean.

  19. Development of sun compensation by honeybees: how partially experienced bees estimate the sun's course.

    PubMed

    Dyer, F C; Dickinson, J A

    1994-05-10

    Honeybees and some other insects, in learning the sun's course, behave as if they can estimate the sun's position at times of day when they have never seen it, but there are competing ideas about the computational mechanisms underlying this ability. In an approach to this problem, we provided incubator-reared bees with opportunities to fly and see the sun only during the late afternoon. Then, on a cloudy day, we allowed bees to fly for the first time during the morning and early afternoon, and we observed how they oriented their waggle dances to indicate their direction of flight relative to the sun's position. The clouds denied the bees a direct view of celestial orientation cues and thus forced them to estimate the sun's position on the basis of their experience on previous evenings. During the test days, experience-restricted bees behaved during the entire morning as if they expected the sun to be in an approximately stationary position about 180 degrees from the average solar azimuth that they had experienced on previous evenings; then from about local noon onward they used the evening azimuth. This pattern suggests that honeybees are innately informed of the general pattern of solar movement, such that they can generate an internal representation that incorporates spatial and temporal features of the sun's course that they have never directly seen.

  20. Solar absorption in the clear and cloudy skies - quantification and attribution

    NASA Astrophysics Data System (ADS)

    Zyta Hakuba, Maria; Folini, Doris; Wild, Martin

    2015-04-01

    We estimate atmospheric solar absorption at 433 locations worldwide through combining ground-based measurements of surface solar radiation (SSR) with collocated satellite-derived surface albedo and top-of-atmosphere net irradiance under both, all-sky and clear-sky conditions. Using two ground-based SSR datasets (BSRN and GEBA) and the CERES EBAF data product, we estimate atmospheric absorption at around 23±2

  1. Homomorphism between cloudy and clear spectral radiance in the 800-900-cm(-1) atmospheric window region.

    PubMed

    Masiello, Guido; Matricardi, Marco; Rizzi, Rolando; Serio, Carmine

    2002-02-20

    The sensitivity of a new algorithm for cloud detection over a sea surface has been assessed on the basis of extensive simulations of clear and cloudy radiance spectra, including water and ice and low- and high-altitude clouds. The new algorithm makes use of autocorrelation and cross correlation between an observed spectrum and either a synthetic or a laboratory spectrum and can be used to determine quantitatively the degree of homogeneity of two spectra in the 800-900-cm(-1) region (11.11-12.5 microm). The scheme is intended for high-spectral-resolution observations and could form the basis for an operational stand-alone cloud-detection algorithm for next-generation sounding spectrometers. Application of the scheme to real observations is presented and discussed.

  2. Cloudy Sounding and Cloud-Top Height Retrieval From AIRS Alone Single Field-of-View Radiance Measurements

    NASA Technical Reports Server (NTRS)

    Weisz, Elisabeth; Li, Jun; Li, Jinlong; Zhou, Daniel K.; Huang, Hung-Lung; Goldberg, Mitchell D.; Yang, Ping

    2007-01-01

    High-spectral resolution measurements from the Atmospheric Infrared Sounder (AIRS) onboard the EOS (Earth Observing System) Aqua satellite provide unique information about atmospheric state, surface and cloud properties. This paper presents an AIRS alone single field-of-view (SFOV) retrieval algorithm to simultaneously retrieve temperature, humidity and ozone profiles under all weather conditions, as well as cloud top pressure (CTP) and cloud optical thickness (COT) under cloudy skies. For optically thick cloud conditions the above-cloud soundings are derived, whereas for clear skies and optically thin cloud conditions the profiles are retrieved from 0.005 hPa down to the earth's surface. Initial validation has been conducted by using the operational MODIS (Moderate Resolution Imaging Spectroradiometer) product, ECMWF (European Center of Medium range Weather Forecasts) analysis fields and radiosonde observations (RAOBs). These inter-comparisons clearly demonstrate the potential of this algorithm to process data from 38 high-spectral infrared (IR) sounder instruments.

  3. Study on aerosol optical properties and radiative effect in cloudy weather in the Guangzhou region.

    PubMed

    Deng, Tao; Deng, XueJiao; Li, Fei; Wang, ShiQiang; Wang, Gang

    2016-10-15

    Currently, Guangzhou region was facing the problem of severe air pollution. Large amount of aerosols in the polluted air dramatically attenuated solar radiation. This study investigated the vertical optical properties of aerosols and inverted the height of boundary layer in the Guangzhou region using the lidar. Simultaneously, evaluated the impact of different types of clouds on aerosol radiation effects using the SBDART. The results showed that the height of the boundary layer and the surface visibility changed consistently, the average height of the boundary layer on the hazy days was only 61% of that on clear days. At the height of 2km or lower, the aerosol extinction coefficient profile distribution decreased linearly along with height on clear days, but the haze days saw an exponential decrease. When there was haze, the changing of heating rate of atmosphere caused by the aerosol decreased from 3.72K/d to 0.9K/d below the height of 2km, and the attenuation of net radiation flux at the ground surface was 97.7W/m(2), and the attenuation amplitude was 11.4%; when there were high clouds, the attenuation was 125.2W/m(2) and the attenuation amplitude was 14.6%; where there were medium cloud, the attenuation was 286.4W/m(2) and the attenuation amplitude was 33.4%. Aerosol affected mainly shortwave radiation, and affected long wave radiation very slightly. PMID:27295588

  4. Study on aerosol optical properties and radiative effect in cloudy weather in the Guangzhou region.

    PubMed

    Deng, Tao; Deng, XueJiao; Li, Fei; Wang, ShiQiang; Wang, Gang

    2016-10-15

    Currently, Guangzhou region was facing the problem of severe air pollution. Large amount of aerosols in the polluted air dramatically attenuated solar radiation. This study investigated the vertical optical properties of aerosols and inverted the height of boundary layer in the Guangzhou region using the lidar. Simultaneously, evaluated the impact of different types of clouds on aerosol radiation effects using the SBDART. The results showed that the height of the boundary layer and the surface visibility changed consistently, the average height of the boundary layer on the hazy days was only 61% of that on clear days. At the height of 2km or lower, the aerosol extinction coefficient profile distribution decreased linearly along with height on clear days, but the haze days saw an exponential decrease. When there was haze, the changing of heating rate of atmosphere caused by the aerosol decreased from 3.72K/d to 0.9K/d below the height of 2km, and the attenuation of net radiation flux at the ground surface was 97.7W/m(2), and the attenuation amplitude was 11.4%; when there were high clouds, the attenuation was 125.2W/m(2) and the attenuation amplitude was 14.6%; where there were medium cloud, the attenuation was 286.4W/m(2) and the attenuation amplitude was 33.4%. Aerosol affected mainly shortwave radiation, and affected long wave radiation very slightly.

  5. Antimicrobial efficacy of emulsified essential oil components against weak acid-adapted spoilage yeasts in clear and cloudy apple juice.

    PubMed

    Loeffler, Myriam; Beiser, Sophia; Suriyarak, Sarisa; Gibis, Monika; Weiss, Jochen

    2014-08-01

    The antimicrobial activity of oil-in-water emulsions containing dual combinations of the essential oil components cinnamaldehyde, perillaldehyde, and citral was examined against two acid-resistant yeast strains (Zygosaccharomyces bailii) in beverage systems composed of diluted clear or cloudy apple juice and in a Sabouraud dextrose broth model. Antimicrobial properties of an encapsulated oil-in-water emulsion and of essential oil components dissolved in 10% dimethyl sulfoxide were compared using plate counts and turbidity measurements. Growth curves were modulated to qualitatively assess differences in antimicrobial efficacy. The impact of the presence of a beverage emulsion without essential oils (unloaded; 5% oil and 1% modified starch, pH 3.0) on the antimicrobial efficacy also was investigated. Dual combinations of essential oil components were sufficient to completely inhibit and/or kill yeast cells in diluted apple juice and Sabouraud dextrose broth systems at very low concentrations (100 to 200 μg/ml). However, the combination of perillaldehyde and citral had the weakest antimicrobial effect; a concentration of 400 μg/ml was necessary to prevent yeast growth in beverages, and up to 800 μg/ml was required in systems to which an unloaded emulsion had been added. The antimicrobial activity of essential oil components did not differ in diluted clear and cloudy apple juices and was not affected by being added in emulsified form or dissolved in dimethyl sulfoxide as long as there was no unloaded emulsion also present. These results indicate that formulations of essential oil combinations encapsulated together in emulsions are highly effective for inhibiting and/or killing microorganisms in real beverage systems.

  6. Schoolwide Literacy Days.

    ERIC Educational Resources Information Center

    Polder, Darlene D.

    2000-01-01

    Describes 10 "literacy day" activities that one California elementary school has used successfully schoolwide, typically one such day per month, to make reading fun and purposeful, while developing a sense of community. Includes: spread-a-quilt day; teacher exchange day; turn off the TV; Dr. Seuss day; community readers; schoolwide poets; original…

  7. First Day of Life

    MedlinePlus

    ... Things to Know About Zika & Pregnancy The First Day of Life KidsHealth > For Parents > The First Day ... continue What Your Baby Does on the First Day Many parents are surprised to see how alert ...

  8. Cloudy with a Chance of Sarcasm or Sunny with High Expectations: Using Best Practice Language to Strengthen Positive Behavior Intervention and Support Efforts

    ERIC Educational Resources Information Center

    Holloman, Hal; Yates, Peggy H.

    2013-01-01

    What's the forecast in your classroom? Are you forecasting cloudy with a chance of sarcasm or sunny with high expectations? A teacher's Language of Practice holds the key to creating a climate of mutual respect in our schools. This article will explore the power and promise of "teacher language," and how it can be used to…

  9. Turbulence structure in clear and cloudy regions of the 7 July 1987 Electra mission

    NASA Technical Reports Server (NTRS)

    Khalsa, Siri Jodha Singh

    1990-01-01

    The 7 July mission of the 1987 FIRE Marine Stratocumulus Intensive Field Observations was chosen for analysis because of a well-defined transition from stratocumulus to clear conditions sampled by the aircraft on this day. It is hoped that by studying this case something can be learned about the processes responsible for the maintenance and breakup of stratocumulus layers, a primary objective of FIRE. The preliminary analysis is based on data from the Electra flight of this day. The properties of turbulence elements, i.e., updrafts and downdrafts, are examined to gain information on the nature of the turbulent exchanges through the boundary layer and across the inversion. Since such exchanges in large measure determine the stability and structure of cloud layers, a study of draft properties should be informative. The results will also be useful in the development of boundary layer models that are based on draft circulations (e.g., Randall, 1988; Hanson, 1988).

  10. Adult Day Services

    MedlinePlus

    A Smart Choice Adult Day Services Comparison At-a-Glance 1 Adult Day Services Assisted Living Home Care Nursing Homes Live at home with family ... supervision Nursing care available as needed during the day Flexibility to receive care only on days when ...

  11. Cost Implications of the FIDCR: The Derivation of the Estimates in the Report to the Congress Entitled "The Appropriateness of the Federal Interagency Day Care Requirements..." and an Analysis of Alternative Assumptions. Technical Paper 3.

    ERIC Educational Resources Information Center

    Conly, Sonia Rempel

    This volume contains the technical paper prepared by DHEW to give additional data and a more detailed analysis of materials used to study the cost implications of the Federal Interagency Day Care Requirements (FIDCR). This study was part of a larger project to investigate two questions: is the Federal regulation of day care financed under Title XX…

  12. A less cloudy future: the role of subtropical subsidence in climate sensitivity.

    PubMed

    Fasullo, John T; Trenberth, Kevin E

    2012-11-01

    An observable constraint on climate sensitivity, based on variations in mid-tropospheric relative humidity (RH) and their impact on clouds, is proposed. We show that the tropics and subtropics are linked by teleconnections that induce seasonal RH variations that relate strongly to albedo (via clouds), and that this covariability is mimicked in a warming climate. A present-day analog for future trends is thus identified whereby the intensity of subtropical dry zones in models associated with the boreal monsoon is strongly linked to projected cloud trends, reflected solar radiation, and model sensitivity. Many models, particularly those with low climate sensitivity, fail to adequately resolve these teleconnections and hence are identifiably biased. Improving model fidelity in matching observed variations provides a viable path forward for better predicting future climate.

  13. Simple approximations for estimating quickly the motion and timing of salt diapir rise, overhang development, and associated thermal anomalies using present-day observations: Case history from the Gulf of Mexico and Danish North Sea

    SciTech Connect

    Lerche, I. ); Thomsen, R.O. )

    1993-09-01

    Estimates of the upward motion of salt, due solely to buoyancy forces, through deposited and depositing sedimentary cover can be split into several parts: the critical thickness of sedimentary cover necessary to cause an underlying salt to become buoyant; the critical thickness of sedimentary cover necessary for a salt diapir to reach the sediment mudline in the absence of an impeding pressure of competent sediments opposing salt rise and in the absence of significant overpressure (both differential impedance and differential overpressure will slow the rise of the salt to the mudline); the effective speed of motion of the salt through the nonimpeding sediments during the salt's buoyant-ascent phase; current observed salt-top depth below mudline versus nonimpeded predicted salt-top depth leading to (a) minimum estimate of mechanical strength of competent resistive layers, and (b) an approximate estimate of buoyancy pressure of salt attempting to penetrate the resistive cover layer; uplift estimate of the overlying competent sediments because of the buoyancy pressure, in relation to observed uplift, leading to an estimate of salt-diapir rise speed since reaching the impeding formation; timing estimates of [open quotes]mushroom cap[close quotes] development of salt since emplacement of the resistive overlying layer and an estimate of the lateral competence of sedimentary beds ahead of the mushroom-salt sheet cap as a consequence of the observed mushroom extent; an estimate of evolving thermal anomalies around the dynamic salt/sediment system as a consequence of high-salt thermal conductivity. Such simple rough estimation methods are important in assessing the local and regional factors influencing the dynamic, thermal, and hydrocarbon retention factors in basinal sediments influenced by salt. Examples from the Gulf of Mexico and the Danish North Sea illustrate how to use both seismic and/or downhole data to perform the simple estimates.

  14. Every Day Is National Lab Day

    ERIC Educational Resources Information Center

    Bull, Glen

    2010-01-01

    President Barack Obama recently issued a call for increased hands-on learning in U.S. schools in an address at the National Academy of Sciences. Obama concluded that the future of the United States depends on one's ability to encourage young people to "create, and build, and invent." In this article, the author discusses National Lab Day (NLD)…

  15. Improving Forecast Skill by Assimilation of Quality-controlled AIRS Temperature Retrievals under Partially Cloudy Conditions

    NASA Technical Reports Server (NTRS)

    Reale, O.; Susskind, J.; Rosenberg, R.; Brin, E.; Riishojgaard, L.; Liu, E.; Terry, J.; Jusem, J. C.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) Atmospheric Infrared Sounder (AIRS) on board the Aqua satellite has been long recognized as an important contributor towards the improvement of weather forecasts. At this time only a small fraction of the total data produced by AIRS is being used by operational weather systems. In fact, in addition to effects of thinning and quality control, the only AIRS data assimilated are radiance observations of channels unaffected by clouds. Observations in mid-lower tropospheric sounding AIRS channels are assimilated primarily under completely clear-sky conditions, thus imposing a very severe limitation on the horizontal distribution of the AIRS-derived information. In this work it is shown that the ability to derive accurate temperature profiles from AIRS observations in partially cloud-contaminated areas can be utilized to further improve the impact of AIRS observations in a global model and forecasting system. The analyses produced by assimilating AIRS temperature profiles obtained under partial cloud cover result in a substantially colder representation of the northern hemisphere lower midtroposphere at higher latitudes. This temperature difference has a strong impact, through hydrostatic adjustment, in the midtropospheric geopotential heights, which causes a different representation of the polar vortex especially over northeastern Siberia and Alaska. The AIRS-induced anomaly propagates through the model's dynamics producing improved 5-day forecasts.

  16. Shortwave absorptance in a tropical cloudy atmosphere: Reconciling calculations and observations

    SciTech Connect

    Parding, Kajsa; Hinkelman, Laura M.; Ackerman, Thomas P.; McFarlane, Sally A.

    2011-10-04

    The absorption of shortwave (SW) by clouds is a topic surrounded by contradictory reports and controversy. Some studies have shown large discrepancies between observed SW absorption and absorption predicted by models, while others have found no significant dfference. In this study, values of column SW absorptance obtained by combining collocated top-of atmosphere (TOA) and surface observations at an island site in the Tropical Western Pacific are compared to radiative transfer model (RTM) output. To compensate for the field of view difference between satellite and surface instruments, the surface data are averaged over time. Scatterplots and statistical measures show that there is a signficant discrepancy between models and observations with the RTMs apparently underestimating SW absorptance. In previous observational studies showing highly enhanced absorption compared to models, the slope of a linear fit to d*TOA/dT (the derivative of TOA albedo with respect to transmittance) was used to quantify cloud SW absorption while non-linearity of d*TOA/dT was interpreted as a sign of sampling issues. Here, the models produce a steeper slope (about -0.9) than observations (-0.6 to -0.8), indicating that models predict too little cloud SW absorption. However, when the surface observations are averaged over a longer period, their slope grows steeper and the root mean square di*erence between linear and quadratic fits to d*TOA/dT is reduced. This implies that insufficient averaging of surface data contributes to the observed SW absorption discrepancy. Reexamination of the observational data using the difference between cloud fraction estimated from satellite and surface measurements as an estimate of field of view mismatch supports this hypothesis. High mea sured absorptance values are shown to correspond to occasions of large field of view mismatch. When such data are excluded, the difference between the linear and quadratic fits is reduced and the slope of the best fit line

  17. Every Day Is Mathematical

    ERIC Educational Resources Information Center

    Barger, Rita H.; Jarrah, Adeeb M.

    2012-01-01

    March 14 is special because it is Pi Day. Mathematics is celebrated on that day because the date, 3-14, replicates the first three digits of pi. Pi-related songs, websites, trivia facts, and more are at the fingertips of interested teachers and students. Less celebrated, but still fairly well known, is National Metric Day, which falls on October…

  18. Growing degree day calculator

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Degree-day benchmarks indicate discrete biological events in the development of insect pests. For the Sparganothis fruitworm, we have isolated all key development events and linked them to degree-day accumulations. These degree-day accumulations can greatly improve treatment timings for cranberry IP...

  19. THE YOUNG PLANET-MASS OBJECT 2M1207b: A COOL, CLOUDY, AND METHANE-POOR ATMOSPHERE

    SciTech Connect

    Barman, Travis S.; Macintosh, Bruce; Konopacky, Quinn M.; Marois, Christian

    2011-07-10

    The properties of 2M1207b, a young ({approx}8 Myr) planet-mass companion, have lacked a satisfactory explanation for some time. The combination of low luminosity, red near-IR colors, and L-type near-IR spectrum (previously consistent with T{sub eff} {approx} 1600 K) implies an abnormally small radius. Early explanations for the apparent underluminosity of 2M1207b invoked an edge-on disk or the remnant of a recent protoplanetary collision. The discovery of a second planet-mass object (HR8799b) with similar luminosity and colors as 2M1207b indicates that a third explanation, one of a purely atmospheric nature, is more likely. By including clouds, non-equilibrium chemistry, and low gravity, an atmosphere with effective temperature consistent with evolution cooling-track predictions is revealed. Consequently, 2M1207b, and others like it, requires no new physics to explain nor do they belong to a new class of objects. Instead they most likely represent the natural extension of cloudy substellar atmospheres down to low T{sub eff} and log (g). If this atmosphere only explanation for 2M1207b is correct, then very young planet-mass objects with near-IR spectra similar to field T dwarfs may be rare.

  20. Forward Model Studies of Water Vapor Using Scanning Microwave Radiometers, Global Positioning System, and Radiosondes during the Cloudiness Intercomparison Experiment

    SciTech Connect

    Mattioli, Vinia; Westwater, Ed R.; Gutman, S.; Morris, Victor R.

    2005-05-01

    Brightness temperatures computed from five absorption models and radiosonde observations were analyzed by comparing them with measurements from three microwave radiometers at 23.8 and 31.4 GHz. Data were obtained during the Cloudiness Inter-Comparison experiment at the U.S. Department of Energy's Atmospheric Radiation Measurement Program's (ARM) site in North-Central Oklahoma in 2003. The radiometers were calibrated using two procedures, the so-called instantaneous ?tipcal? method and an automatic self-calibration algorithm. Measurements from the radiometers were in agreement, with less than a 0.4-K difference during clear skies, when the instantaneous method was applied. Brightness temperatures from the radiometer and the radiosonde showed an agreement of less than 0.55 K when the most recent absorption models were considered. Precipitable water vapor (PWV) computed from the radiometers were also compared to the PWV derived from a Global Positioning System station that operates at the ARM site. The instruments agree to within 0.1 cm in PWV retrieval.

  1. Failure to Target RANKL Signaling Through p38-MAPK Results in Defective Osteoclastogenesis in the Microphthalmia Cloudy-Eyed Mutant.

    PubMed

    Carey, Heather A; Bronisz, Agnieszka; Cabrera, Jennifer; Hildreth, Blake E; Cuitiño, Maria; Fu, Qi; Ahmad, Asrar; Toribio, Ramiro E; Ostrowski, Michael C; Sharma, Sudarshana M

    2016-03-01

    The Microphthalmia-associated transcription factor (MITF) is a basic helix-loop-helix leucine zipper family factor that is essential for terminal osteoclast differentiation. Previous work demonstrates that phosphorylation of MITF by p38 MAPK downstream of Receptor Activator of NFkB Ligand (RANKL) signaling is necessary for MITF activation in osteoclasts. The spontaneous Mitf cloudy eyed (ce) allele results in production of a truncated MITF protein that lacks the leucine zipper and C-terminal end. Here we show that the Mitf(ce) allele leads to a dense bone phenotype in neonatal mice due to defective osteoclast differentiation. In response to RANKL stimulation, in vitro osteoclast differentiation was impaired in myeloid precursors derived from neonatal or adult Mitf(ce/ce) mice. The loss of the leucine zipper domain in Mitf(ce/ce) mice does not interfere with the recruitment of MITF/PU.1 complexes to target promoters. Further, we have mapped the p38 MAPK docking site within the region deleted in Mitf(ce). This interaction is necessary for the phosphorylation of MITF by p38 MAPK. Site-directed mutations in the docking site interfered with the interaction between MITF and its co-factors FUS and BRG1. MITF-ce fails to recruit FUS and BRG1 to target genes, resulting in decreased expression of target genes and impaired osteoclast function. These results highlight the crucial role of signaling dependent MITF/p38 MAPK interactions in osteoclast differentiation.

  2. Evaluation of the Impact of Atmospheric Infrared Sounder (AIRS) Radiance and Profile Data Assimilation in Partly Cloudy Regions

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi; Jedlovec, Gary

    2013-01-01

    Improvements to global and regional numerical weather prediction have been demonstrated through assimilation of data from NASA s Atmospheric Infrared Sounder (AIRS). Current operational data assimilation systems use AIRS radiances, but impact on regional forecasts has been much smaller than for global forecasts. Retrieved profiles from AIRS contain much of the information that is contained in the radiances and may be able to reveal reasons for this reduced impact. Assimilating AIRS retrieved profiles in an identical analysis configuration to the radiances, tracking the quantity and quality of the assimilated data in each technique, and examining analysis increments and forecast impact from each data type can yield clues as to the reasons for the reduced impact. By doing this with regional scale models individual synoptic features (and the impact of AIRS on these features) can be more easily tracked. This project examines the assimilation of hyperspectral sounder data used in operational numerical weather prediction by comparing operational techniques used for AIRS radiances and research techniques used for AIRS retrieved profiles. Parallel versions of a configuration of the Weather Research and Forecasting (WRF) model with Gridpoint Statistical Interpolation (GSI) are run to examine the impact AIRS radiances and retrieved profiles. Statistical evaluation of 6 weeks of forecast runs will be compared along with preliminary results of in-depth investigations for select case comparing the analysis increments in partly cloudy regions and short-term forecast impacts.

  3. Multi-waveband solar irradiance on tree-shaded vertical and horizontal surfaces: cloud-free and partly cloudy skies.

    PubMed

    Grant, R H; Heisler, G M

    2001-01-01

    Irradiance measurements of short wave (SW), photosynthetically active (PAR), ultraviolet-A (UVA) and ultraviolet-B (UVB) solar radiations were made on horizontal and vertical surfaces in the shade of trees under cloud-free and partly cloudy skies. All measurements were referenced to the irradiance of a horizontal surface above the canopy. For horizontal shaded surfaces under cloud-free skies, the values of the ratio (Rh) of below- to above-canopy horizontal irradiance were similar for the UVA and UVB wavebands and for the SW and PAR wavebands. However, Rh for the UV wavebands differed from that for the PAR and SW wavebands. Overall, values of Rh in the shade typically varied as PAR < SW < UVA < UVB. The irradiance ratios for vertical surface in the shade typically varied as UVB > UVA = SW > PAR. In absolute terms, UVB irradiance (Ih) on tree-shaded horizontal surfaces increased relative to a cloud-free sky when a translucent cirroform cloud was in front of the sun, but decreased when the cloud was in a region of sky away from the sun. Translucent cirroform cloud cover also tended to decrease the UVB irradiance (Iv) for a shaded vertical surface (either facing the sun or south) relative to that under cloud-free skies, regardless of where the clouds were in the sky. In all other wavebands the shaded Ih and Iv increased under translucent cirroform cloud cover relative to cloud-free skies, regardless of where the clouds were in the sky.

  4. The Young Planet-mass Object 2M1207b: A Cool, Cloudy, and Methane-poor Atmosphere

    NASA Astrophysics Data System (ADS)

    Barman, Travis S.; Macintosh, Bruce; Konopacky, Quinn M.; Marois, Christian

    2011-07-01

    The properties of 2M1207b, a young (~8 Myr) planet-mass companion, have lacked a satisfactory explanation for some time. The combination of low luminosity, red near-IR colors, and L-type near-IR spectrum (previously consistent with T eff ~ 1600 K) implies an abnormally small radius. Early explanations for the apparent underluminosity of 2M1207b invoked an edge-on disk or the remnant of a recent protoplanetary collision. The discovery of a second planet-mass object (HR8799b) with similar luminosity and colors as 2M1207b indicates that a third explanation, one of a purely atmospheric nature, is more likely. By including clouds, non-equilibrium chemistry, and low gravity, an atmosphere with effective temperature consistent with evolution cooling-track predictions is revealed. Consequently, 2M1207b, and others like it, requires no new physics to explain nor do they belong to a new class of objects. Instead they most likely represent the natural extension of cloudy substellar atmospheres down to low T eff and log (g). If this atmosphere only explanation for 2M1207b is correct, then very young planet-mass objects with near-IR spectra similar to field T dwarfs may be rare.

  5. Failure to Target RANKL Signaling Through p38-MAPK Results in Defective Osteoclastogenesis in the Microphthalmia Cloudy-Eyed Mutant.

    PubMed

    Carey, Heather A; Bronisz, Agnieszka; Cabrera, Jennifer; Hildreth, Blake E; Cuitiño, Maria; Fu, Qi; Ahmad, Asrar; Toribio, Ramiro E; Ostrowski, Michael C; Sharma, Sudarshana M

    2016-03-01

    The Microphthalmia-associated transcription factor (MITF) is a basic helix-loop-helix leucine zipper family factor that is essential for terminal osteoclast differentiation. Previous work demonstrates that phosphorylation of MITF by p38 MAPK downstream of Receptor Activator of NFkB Ligand (RANKL) signaling is necessary for MITF activation in osteoclasts. The spontaneous Mitf cloudy eyed (ce) allele results in production of a truncated MITF protein that lacks the leucine zipper and C-terminal end. Here we show that the Mitf(ce) allele leads to a dense bone phenotype in neonatal mice due to defective osteoclast differentiation. In response to RANKL stimulation, in vitro osteoclast differentiation was impaired in myeloid precursors derived from neonatal or adult Mitf(ce/ce) mice. The loss of the leucine zipper domain in Mitf(ce/ce) mice does not interfere with the recruitment of MITF/PU.1 complexes to target promoters. Further, we have mapped the p38 MAPK docking site within the region deleted in Mitf(ce). This interaction is necessary for the phosphorylation of MITF by p38 MAPK. Site-directed mutations in the docking site interfered with the interaction between MITF and its co-factors FUS and BRG1. MITF-ce fails to recruit FUS and BRG1 to target genes, resulting in decreased expression of target genes and impaired osteoclast function. These results highlight the crucial role of signaling dependent MITF/p38 MAPK interactions in osteoclast differentiation. PMID:26218069

  6. Multi-waveband solar irradiance on tree-shaded vertical and horizontal surfaces: cloud-free and partly cloudy skies.

    PubMed

    Grant, R H; Heisler, G M

    2001-01-01

    Irradiance measurements of short wave (SW), photosynthetically active (PAR), ultraviolet-A (UVA) and ultraviolet-B (UVB) solar radiations were made on horizontal and vertical surfaces in the shade of trees under cloud-free and partly cloudy skies. All measurements were referenced to the irradiance of a horizontal surface above the canopy. For horizontal shaded surfaces under cloud-free skies, the values of the ratio (Rh) of below- to above-canopy horizontal irradiance were similar for the UVA and UVB wavebands and for the SW and PAR wavebands. However, Rh for the UV wavebands differed from that for the PAR and SW wavebands. Overall, values of Rh in the shade typically varied as PAR < SW < UVA < UVB. The irradiance ratios for vertical surface in the shade typically varied as UVB > UVA = SW > PAR. In absolute terms, UVB irradiance (Ih) on tree-shaded horizontal surfaces increased relative to a cloud-free sky when a translucent cirroform cloud was in front of the sun, but decreased when the cloud was in a region of sky away from the sun. Translucent cirroform cloud cover also tended to decrease the UVB irradiance (Iv) for a shaded vertical surface (either facing the sun or south) relative to that under cloud-free skies, regardless of where the clouds were in the sky. In all other wavebands the shaded Ih and Iv increased under translucent cirroform cloud cover relative to cloud-free skies, regardless of where the clouds were in the sky. PMID:11202362

  7. Cloning and functional characterization of Chondrichthyes, cloudy catshark, Scyliorhinus torazame and whale shark, Rhincodon typus estrogen receptors.

    PubMed

    Katsu, Yoshinao; Kohno, Satomi; Narita, Haruka; Urushitani, Hiroshi; Yamane, Koudai; Hara, Akihiko; Clauss, Tonya M; Walsh, Michael T; Miyagawa, Shinichi; Guillette, Louis J; Iguchi, Taisen

    2010-09-15

    Sex-steroid hormones are essential for normal reproductive activity in both sexes in all vertebrates. Estrogens are required for ovarian differentiation during a critical developmental stage and promote the growth and differentiation of the female reproductive system following puberty. Recent studies have shown that environmental estrogens influence the developing reproductive system as well as gametogenesis, especially in males. To understand the molecular mechanisms of estrogen actions and to evaluate estrogen receptor-ligand interactions in Elasmobranchii, we cloned a single estrogen receptor (ESR) from two shark species, the cloudy catshark (Scyliorhinus torazame) and whale shark (Rhincodon typus) and used an ERE-luciferase reporter assay system to characterize the interaction of these receptors with steroidal and other environmental estrogens. In the transient transfection ERE-luciferase reporter assay system, both shark ESR proteins displayed estrogen-dependent activation of transcription, and shark ESRs were more sensitive to 17beta-estradiol compared with other natural and synthetic estrogens. Further, the environmental chemicals, bisphenol A, nonylphenol, octylphenol and DDT could activate both shark ESRs. The assay system provides a tool for future studies examining the receptor-ligand interactions and estrogen disrupting mechanisms in Elasmobranchii.

  8. A study of the 3D radiative transfer effect in cloudy atmospheres

    NASA Astrophysics Data System (ADS)

    Okata, M.; Teruyuki, N.; Suzuki, K.

    2015-12-01

    Evaluation of the effect of clouds in the atmosphere is a significant problem in the Earth's radiation budget study with their large uncertainties of microphysics and the optical properties. In this situation, we still need more investigations of 3D cloud radiative transer problems using not only models but also satellite observational data.For this purpose, we have developed a 3D-Monte-Carlo radiative transfer code that is implemented with various functions compatible with the OpenCLASTR R-Star radiation code for radiance and flux computation, i.e. forward and backward tracing routines, non-linear k-distribution parameterization (Sekiguchi and Nakajima, 2008) for broad band solar flux calculation, and DM-method for flux and TMS-method for upward radiance (Nakajima and Tnaka 1998). We also developed a Minimum cloud Information Deviation Profiling Method (MIDPM) as a method for a construction of 3D cloud field with MODIS/AQUA and CPR/CloudSat data. We then selected a best-matched radar reflectivity factor profile from the library for each of off-nadir pixels of MODIS where CPR profile is not available, by minimizing the deviation between library MODIS parameters and those at the pixel. In this study, we have used three cloud microphysical parameters as key parameters for the MIDPM, i.e. effective particle radius, cloud optical thickness and top of cloud temperature, and estimated 3D cloud radiation budget. We examined the discrepancies between satellite observed and mode-simulated radiances and three cloud microphysical parameter's pattern for studying the effects of cloud optical and microphysical properties on the radiation budget of the cloud-laden atmospheres.

  9. Multi-Sensor Investigation of a Regional High-Arctic Cloudy Event

    NASA Astrophysics Data System (ADS)

    Ivanescu, L.; O'Neill, N. T.; Blanchet, J. P.; Baibakov, K.; Chaubey, J. P.; Perro, C. W.; Duck, T. J.

    2014-12-01

    A regional high-Arctic cloud event observed in March, 2011 at the PEARL Observatory, near the Eureka Weather Station (80°N, 86°W), was investigated with a view to better understanding cloud formation mechanisms during the Polar night. We analysed the temporal cloud evolution with a suite of nighttime, ground-based remote sensing (RS) instruments, supplemented by radiosonde profiles and surface weather measurements. The RS suite included Raman lidar, cloud radar, a star-photometer and microwave-radiometers. In order to estimate the spatial extent and vertical variability of the cloud mass, we employed satellite-based lidar (CALIPSO) and radar (CloudSat) profiles in the regional neighbourhood of Eureka (at a latitude of 80°N, Eureka benefits from a high frequency of CALIPSO and CloudSat overpasses). The ground-based and satellite-based observations provide quantitative measurements of extensive (bulk) properties (cloud and aerosol optical depths), and intensive (per particle properties) such as aerosol and cloud particle size as well as shape, density and aggregation phase of the cloud particulates. All observations were then compared with the upper atmosphere NCEP/NCAR reanalyses in order to understand better the synoptic context of the cloud mass dynamics as a function of key meteorological parameters such as upper air temperature and water vapor circulation. Preliminary results indicated the presence of a particular type of thin ice cloud (TIC-2) associated with a deep and stable atmospheric low. A classification into small and large ice crystal size (< 40 μm and > 40 μm, respectively), identifies the clouds as TIC-1 or TIC-2. This classification is hypothesized to be associated with the nature of the aerosols (non-anthropogenic versus anthropogenic) serving as ice nuclei in their formation. Such a distinction has important implications on the initiation of precipitation, removal rate of the cloud particles and, in consequence, the radiative forcing

  10. Characterization of bubble core and cloudiness in Yb3+:Sr5(PO4)3F crystals using Micro-Raman spectroscopy

    SciTech Connect

    Cui, Y; Roy, U N; Bai, L; Burger, A; Qiu, S R; Schaffers, K

    2006-11-15

    Ytterbium doped strontium fluoroapatite Yb{sup 3+}:Sr{sub 5}(PO{sub 4}){sub 3}F (Yb: S-FAP) crystals have been used in High Average Power Laser systems as gain medium. Growth induced defects associated with the crystal often affect their performance. In order to improve the crystal quality and its optical applications, it is imperative to understand the nature of these defects. In this study, we utilize Micro-Raman spectroscopy to characterize two common growth-induced defects: bubble core and cloudiness. We find the bubble core consist of voids and microcrystals of Yb: S-FAP. These microcrystals have very different orientation from that of the pure crystal outside the bubble core. In contrast to a previous report, neither Sr{sub 3}(PO{sub 4}){sub 2} nor Yb{sub 2}O{sub 3} are observed in the bubble core regions. On the other hand, the cloudy regions are made up of the host materials blended with a structural deformation along with impurities which include CaCO{sub 3}, YbPO{sub 4}, SrHPO{sub 4} and Sr{sub 2}P{sub 2}O{sub 7}. The impurities are randomly distributed in the cloudy regions. This analysis is necessary for understanding and eliminating these growth defects in Yb:S-FAP crystals.

  11. Open Day at SHMI.

    NASA Astrophysics Data System (ADS)

    Jarosova, M.

    2010-09-01

    During the World Meteorological Day there has been preparing "Open Day" at Slovak Hydrometeorological Institute. This event has more than 10 years traditions. "Open Day" is one of a lot of possibilities to give more information about meteorology, climatology, hydrology too to public. This "Day" is executed in whole Slovakia. People can visit the laboratories, the forecasting room....and meteo and clima measuring points. The most popular is visiting forecasting room. Visitors are interested in e.g. climatologic change in Slovakia territory, preparing weather forecasting, dangerous phenomena.... Every year we have more than 500 visitors.

  12. How Many Days Are Enough? A Study of 365 Days of Pedometer Monitoring

    ERIC Educational Resources Information Center

    Kang, Minsoo; Bassett, David R.; Barreira, Tiago V.; Tudor-Locke, Catrine; Ainsworth, Barbara; Reis, Jared P.; Strath, Scott; Swartz, Ann

    2009-01-01

    This study was designed to determine the number of days of pedometer monitoring necessary to achieve reliable and valid estimates of a 1-year average of step counts in adults based on either consecutive days (CD) or random days (RD) of data collection. Twenty-three participants (16 women; M age = 38 years, SD = 9.9) wore a Yamax SW 200 pedometer…

  13. 3D pyCloudy modelling of bipolar planetary nebulae: Evidence for fast fading of the lobes

    NASA Astrophysics Data System (ADS)

    Gesicki, K.; Zijlstra, A. A.; Morisset, C.

    2016-01-01

    Aims: The origin and evolution of the shapes of bipolar planetary nebulae are poorly understood. We postulate that their history can be traced through their internal velocity fields in a procedure similar to the one well established for spherical objects. Such an analysis requires 3D photoionization and kinematical modelling that is computationally very time consuming. We apply an axially symmetric pseudo-3D photoionization model, pyCloudy, to derive the structures of six bipolar nebulae and two suggested post-bipolars in an attempt to constrain the bipolar planetary nebulae evolution. Methods: HST images and VLT/UVES spectroscopy are used for the modelling. The targets are located in the direction of the Galactic bulge. A 3D model structure is used as input to the photoionization code in order to fit the HST images. Line profiles of different ions constrain the velocity field. The model and associated velocity fields allow us to derive masses, velocities, and ages. Results: The 3D models find much lower ionized masses than required in 1D models: ionized masses are reduced by factors of 2-7. The selected bi-lobed planetary nebulae show a narrow range of ages: the averaged radii and velocities result in values between 1300 and 2000 yr. The lobes are fitted well with velocities that increase linearly with radius. These Hubble-type flows have been found before, and suggest that the lobes form at a defined point in time. The lobes appear to be slightly younger, by ~500 yr, than the main (host) nebulae; they seem to form at an early phase of PN evolution and fade after 1-2 kyr. We find that 30-35% of bulge PNe pass through a bipolar phase. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (proposal 075.D-0104) and HST (program 9356).

  14. Decrease of cloudiness in the Mediterranean region since the 1970s: consistency between observations and climate simulations

    NASA Astrophysics Data System (ADS)

    Sanchez-Lorenzo, Arturo; Enriquez-Alonso, Aaron; Calbó, Josep; González, Josep-Abel; Wild, Martin; Folini, Doris; Norris, Joel

    2015-04-01

    One the main limitations when studying clouds and their associated radiative effects is related to the difficulties in obtaining temporal homogeneous observations of clouds. In this study, total cloud cover trends from surface observations over land (EECRA) for the Mediterranean area since 1971 have been examined. Then, the observed changes have been compared with different global databases for a common period 1984-2005. Specifically, several satellite projects (ISCCP, CLARA, PATMOS-x) and reanalysis products (ERA-Interim, MERRA, NCEP-DOE, NCEP-CFSR) have been chosen. Finally, simulations from 44 climate models of the Coupled Model Intercomparison Project Phase 5 (CMIP5) corresponding to the historical scenario have been compared against the observations. The observations show a widespread decrease of total cloud cover over the Mediterranean since the 1970s, especially during the winter and spring. There is a relatively good agreement between this time evolution of cloud cover provided by surface observations and reanalyses, as well as with PATMOS-x and corrected ISCCP data (Norris and Evan, 2015), whereas raw ISCCP, CLARA and ERA-Interim provide unrealistic trends. Historical climate model simulations from the CMIP5 also indicate a decrease of cloud cover over the Mediterranean since the 1970s, although with a lower magnitude as compared with observations. Overall, the observed decrease in cloudiness over the Mediterranean could explain a fraction of the increase in downward shortwave surface radiation detected since the 1970s (i.e. brightening period) by using direct and indirect (e.g. sunshine duration data) measurements. Norris, J. R. and A. T. Evan (2015) Empirical Removal of Artifacts from the ISCCP and PATMOS-x Satellite Cloud Records, Journal of Atmospheric and Oceanic Technology, in press.

  15. Spatio-temporal reconstruction of air temperature maps and their application to estimate rice growing season heat accumulation using multi-temporal MODIS data.

    PubMed

    Zhang, Li-wen; Huang, Jing-feng; Guo, Rui-fang; Li, Xin-xing; Sun, Wen-bo; Wang, Xiu-zhen

    2013-02-01

    The accumulation of thermal time usually represents the local heat resources to drive crop growth. Maps of temperature-based agro-meteorological indices are commonly generated by the spatial interpolation of data collected from meteorological stations with coarse geographic continuity. To solve the critical problems of estimating air temperature (T(a)) and filling in missing pixels due to cloudy and low-quality images in growing degree days (GDDs) calculation from remotely sensed data, a novel spatio-temporal algorithm for T(a) estimation from Terra and Aqua moderate resolution imaging spectroradiometer (MODIS) data was proposed. This is a preliminary study to calculate heat accumulation, expressed in accumulative growing degree days (AGDDs) above 10 °C, from reconstructed T(a) based on MODIS land surface temperature (LST) data. The verification results of maximum T(a), minimum T(a), GDD, and AGDD from MODIS-derived data to meteorological calculation were all satisfied with high correlations over 0.01 significant levels. Overall, MODIS-derived AGDD was slightly underestimated with almost 10% relative error. However, the feasibility of employing AGDD anomaly maps to characterize the 2001-2010 spatio-temporal variability of heat accumulation and estimating the 2011 heat accumulation distribution using only MODIS data was finally demonstrated in the current paper. Our study may supply a novel way to calculate AGDD in heat-related study concerning crop growth monitoring, agricultural climatic regionalization, and agro-meteorological disaster detection at the regional scale.

  16. Spatio-temporal reconstruction of air temperature maps and their application to estimate rice growing season heat accumulation using multi-temporal MODIS data*

    PubMed Central

    Zhang, Li-wen; Huang, Jing-feng; Guo, Rui-fang; Li, Xin-xing; Sun, Wen-bo; Wang, Xiu-zhen

    2013-01-01

    The accumulation of thermal time usually represents the local heat resources to drive crop growth. Maps of temperature-based agro-meteorological indices are commonly generated by the spatial interpolation of data collected from meteorological stations with coarse geographic continuity. To solve the critical problems of estimating air temperature (T a) and filling in missing pixels due to cloudy and low-quality images in growing degree days (GDDs) calculation from remotely sensed data, a novel spatio-temporal algorithm for T a estimation from Terra and Aqua moderate resolution imaging spectroradiometer (MODIS) data was proposed. This is a preliminary study to calculate heat accumulation, expressed in accumulative growing degree days (AGDDs) above 10 °C, from reconstructed T a based on MODIS land surface temperature (LST) data. The verification results of maximum T a, minimum T a, GDD, and AGDD from MODIS-derived data to meteorological calculation were all satisfied with high correlations over 0.01 significant levels. Overall, MODIS-derived AGDD was slightly underestimated with almost 10% relative error. However, the feasibility of employing AGDD anomaly maps to characterize the 2001–2010 spatio-temporal variability of heat accumulation and estimating the 2011 heat accumulation distribution using only MODIS data was finally demonstrated in the current paper. Our study may supply a novel way to calculate AGDD in heat-related study concerning crop growth monitoring, agricultural climatic regionalization, and agro-meteorological disaster detection at the regional scale. PMID:23365013

  17. Spatio-temporal reconstruction of air temperature maps and their application to estimate rice growing season heat accumulation using multi-temporal MODIS data.

    PubMed

    Zhang, Li-wen; Huang, Jing-feng; Guo, Rui-fang; Li, Xin-xing; Sun, Wen-bo; Wang, Xiu-zhen

    2013-02-01

    The accumulation of thermal time usually represents the local heat resources to drive crop growth. Maps of temperature-based agro-meteorological indices are commonly generated by the spatial interpolation of data collected from meteorological stations with coarse geographic continuity. To solve the critical problems of estimating air temperature (T(a)) and filling in missing pixels due to cloudy and low-quality images in growing degree days (GDDs) calculation from remotely sensed data, a novel spatio-temporal algorithm for T(a) estimation from Terra and Aqua moderate resolution imaging spectroradiometer (MODIS) data was proposed. This is a preliminary study to calculate heat accumulation, expressed in accumulative growing degree days (AGDDs) above 10 °C, from reconstructed T(a) based on MODIS land surface temperature (LST) data. The verification results of maximum T(a), minimum T(a), GDD, and AGDD from MODIS-derived data to meteorological calculation were all satisfied with high correlations over 0.01 significant levels. Overall, MODIS-derived AGDD was slightly underestimated with almost 10% relative error. However, the feasibility of employing AGDD anomaly maps to characterize the 2001-2010 spatio-temporal variability of heat accumulation and estimating the 2011 heat accumulation distribution using only MODIS data was finally demonstrated in the current paper. Our study may supply a novel way to calculate AGDD in heat-related study concerning crop growth monitoring, agricultural climatic regionalization, and agro-meteorological disaster detection at the regional scale. PMID:23365013

  18. Rainy Day Activities.

    ERIC Educational Resources Information Center

    Texas Child Care, 1997

    1997-01-01

    Experienced caregivers plan ahead for rainy days. This article describes specific rainy day activities for young children, such as books and crafts to learn about rain (rain in a jar, making a rainbow), simple cooking activities (taffy pull, cinnamon candy tea), and games (mummy wrap, hunt the thimble, rain lotto). (EV)

  19. RED-LETTER DAYS

    EPA Science Inventory

    The word "red-letter" is an adjective meaning "of special significance." It's origin is from the practice of marking Christian holy days in red letters on calendars. The "red-letter days" to which I refer occurred while I was a graduate student of ...

  20. The Presidents' Day Game

    ERIC Educational Resources Information Center

    Maxwell, D. Jackson

    2008-01-01

    The history behind the holiday commonly called "Presidents' Day" is a bit confusing. It started as a federal holiday called Washington's Birthday. It was a day set aside to honor George Washington for his accomplishments as a founding father of the country. Later, many northern states began to recognize Abraham Lincoln's Birthday as well for his…

  1. Science Challenge Day

    ERIC Educational Resources Information Center

    Siegel, Deborah

    2013-01-01

    Science fairs can be good motivators, but as extracurricular activities, they leave some students behind. However, by staging a Science Challenge Day at school, educators can involve all students in doing everything from choosing activities to judging projects. This article presents a model for running a successful Science Challenge Day. The…

  2. School Building Day, 2001.

    ERIC Educational Resources Information Center

    Council of Educational Facility Planners, International, Scottsdale, AZ.

    This document presents information and development materials about "School Building Day" (an event spotlighting the school facility and developing support and pride in the community's schools) to help local school districts conduct their own "School Building Day" to be held on April 20th of 2001. Included are lists of suggested activities and…

  3. My Lucky Day

    ERIC Educational Resources Information Center

    Olvey, Maura

    2010-01-01

    Teaching based on problem solving brings challenges for the teacher, primarily that of finding problems with multiple access points that accommodate all students. This article narrates the author's lucky day as she discovers the Four fours problem which impacted her passion for teaching math. The day she presented the Four fours problem to her…

  4. Day of the Dead

    ERIC Educational Resources Information Center

    Dann, Tammy; Murphy, Amy

    2012-01-01

    Foreign Language in Elementary School (FLES) teachers in the West Des Moines schools incorporate the Day of the Dead into the fourth grade curriculum each year. The teachers discuss the Day of the Dead celebration at the Art Center, and many ask for volunteers from fourth grade to participate in the event. Student presentations include a wide…

  5. Family Science Day

    ERIC Educational Resources Information Center

    McCubbins, Sara; Thomas, Bethany; Vetere, Michael

    2014-01-01

    This article describes a family-friendly science day event that encourages scientific discovery through hands-on activities, while also providing an opportunity to learn about scientific careers from actual research scientists and science educators, thereby raising awareness of the importance of STEM in our society. The one-day event bought…

  6. Day Care Personnel Management.

    ERIC Educational Resources Information Center

    Levi Strauss Foundation, Inc., San Francisco, CA.

    The information presented in this guide focuses on the knowledge, skills, values, and attitudes needed for effective personnel management in day care settings. Information included in this publication came from the suggestions of day care directors who participated in Training for Child Care Project workshops on administration, as well as from…

  7. Popular Chat Day Q & A

    MedlinePlus

    ... Day / Popular Chat Day Q & A Popular Chat Day Q & A Print Read students’ most popular questions ... Cool Order Free Materials National Drugs & Alcohol Chat Day Chat Day Participant FAQs Popular Chat Day Q & ...

  8. Modulation of aerosol radiative forcing due to mixing state in clear and cloudy-sky: A case study from Delhi National Capital Region, India

    NASA Astrophysics Data System (ADS)

    Srivastava, Parul; Dey, Sagnik; Srivastava, Atul K.; Singh, Sachchidanand; Tiwari, Suresh; Agarwal, Poornima

    2016-04-01

    Aerosol properties change with the change in mixing state of aerosols and therefore it is a source of uncertainty in estimated aerosol radiative forcing (ARF) from observations or by models assuming a specific mixing state. The problem is important in the Indo-Gangetic Basin, Northern India, where various aerosol types mix and show strong seasonal variations. Quantifying the modulation of ARF by mixing state is hindered by lack of knowledge about proper aerosol composition. Hence, first a detailed chemical composition analysis of aerosols for Delhi National capital region (NCR) is carried out. Aerosol composition is arranged quantitatively into five major aerosol types - accumulation dust, coarse dust, water soluble (WS), water insoluble (WINS), and black carbon (BC) (directly measured by Athelometer). Eight different mixing cases - external mixing, internal mixing, and six combinations of core- shell mixing (BC over dust, WS over dust, WS over BC, BC over WS, WS over WINS, and BC over WINS; each of the combinations externally mixed with other species) have been considered. The spectral aerosol optical properties - extinction coefficient, single scattering albedo (SSA) and asymmetry parameter (g) for each of the mixing cases are calculated and finally 'clear-sky' and 'cloudy-sky' ARF at the top-of-the-atmosphere (TOA) and surface are estimated using a radiative transfer model. Comparison of surface-reaching flux for each of the cases with MERRA downward shortwave surface flux reveals the most likely mixing state. 'BC-WINS+WS+Dust' show least deviation relative to MERRA during the pre-monsoon (MAMJ) and monsoon (JAS) seasons and hence is the most probable mixing states. During the winter season (DJF), 'BC-Dust+WS+WINS' case shows the closest match with MERRA, while external mixing is the most probable mixing state in the post-monsoon season (ON). Lowest values for both TOA and surface 'clear-sky' ARF is observed for 'BC-WINS+WS+ Dust' mixing case. TOA ARF is 0.28±2

  9. Pregnancy - identifying fertile days

    MedlinePlus

    ... between days 7 and 20 of a woman's menstrual cycle. In order to become pregnant, having sex every ... hours of ovulation. If you have an irregular menstrual cycle, an ovulation predictor kit can help you know ...

  10. Career Day 2012

    NASA Video Gallery

    More than 200 high school juniors and seniors with interests in science, technology, engineering and math met one-on-one with professionals at NASA's Langley Research Center during Career Day 2012,...

  11. Day care health risks

    MedlinePlus

    ... after going to the bathroom or changing a diaper, and then preparing food. In addition to good ... washing, important policies include: Preparing food and changing diapers in different areas Making sure day care staff ...

  12. Stennis Day Camper

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Sara Beth Casey, 5, proudly displays her artwork, 'Planets.' Sara Beth created the art as a student of Stennis Day Camp, a free camp for Stennis Space Center employees' children whose schools have not resumed since Hurricane Katrina hit the region on Aug. 29. The camp has registered nearly 200 children and averages 100 children each day. The camp will continue until all schools are back in session.

  13. 2016 SPD: Day 2

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    advances in simulating sunspot formation. He and his collaborators have used high-performance computing to build a model that successfully reproduces many of the key properties of sunspots that are observed.In particular, these simulations track the motions of the magnetic field starting within the interior of the Sun (8000 km below the surface!). The magnetic field is generated and intensified by convection deep within the solar interior. Bundles of magnetic field then rise through the convection zone, eventually breaking through the solar surface and giving rise to sunspots.This process of tracking the flow as it travels from the convective layer all the way through the solar surface has resulted in what may be some of the highest fidelity simulations of sunspots thus far. The structures produced in these simulations compares very favorably with actual observations of sunspots including the asymmetry seen in most sunspots.Counting Spots on the SunContinuing the discussion of sunspots, Leif Svalgaard (Stanford University) next took us on a historical journey from the 1600s through the present. For the last 400 years starting with Galileo people have kept records of the number of sunspots visible on the Suns disk.One of Galileos drawings of his sunspot observations from 1612. [The Galileo Project]This turns out to be a very useful practice! Total solar irradiance, a measure used as input into climate models, is reconstructed from sunspot numbers. Therefore, the historical record of sunspots over the last 400 years impacts our estimates of the long-term trends in solar activity.Based on raw sunspot counts, studies have argued that solar activity has been steadily increasing over time. But could this be a misinterpretation resulting from the fact that our technology and therefore our ability to detect sunspots has improved over time? Svalgaard believes so.By studying and reconstructing 18th century telescopes, he demonstrates that modern-day sunspot counts are able to detect

  14. Comparison of validity of food group intake by food frequency questionnaire between pre- and post- adjustment estimates derived from 2-day 24-hour recalls in combination with the probability of consumption.

    PubMed

    Kim, Dong Woo; Oh, Se-Young; Kwon, Sung-Ok; Kim, Jeongseon

    2012-01-01

    Validation of a food frequency questionnaire (FFQ) utilising a short-term measurement method is challenging when the reference method does not accurately reflect the usual food intake. In addition, food group intake that is not consumed on daily basis is more critical when episodically consumed foods are related and compared. To overcome these challenges, several statistical approaches have been developed to determine usual food intake distributions. The Multiple Source Method (MSM) can calculate the usual food intake by combining the frequency questions of an FFQ with the short-term food intake amount data. In this study, we applied the MSM to estimate the usual food group intake and evaluate the validity of an FFQ with a group of 333 Korean children (aged 3-6 y) who completed two 24-hour recalls (24HR) and one FFQ in 2010. After adjusting the data using the MSM procedure, the true rate of non-consumption for all food groups was less than 1% except for the beans group. The median Spearman correlation coefficients against FFQ of the mean of 2-d 24HRs data and the MSM-adjusted data were 0.20 (range: 0.11 to 0.40) and 0.35 (range: 0.14 to 0.60), respectively. The weighted kappa values against FFQ ranged from 0.08 to 0.25 for the mean of 2-d 24HRs data and from 0.10 to 0.41 for the MSM-adjusted data. For most food groups, the MSM-adjusted data showed relatively stronger correlations against FFQ than raw 2-d 24HRs data, from 0.03 (beverages) to 0.34 (mushrooms). The results of this study indicated that the application of the MSM, which was a better estimate of the usual intake, could be worth considering in FFQ validation studies among Korean children.

  15. Estimating risk.

    PubMed

    2016-07-01

    A free mobile phone app has been launched providing nurses and other hospital clinicians with a simple way to identify high-risk surgical patients. The app is a phone version of the Surgical Outcome Risk Tool (SORT), originally developed for online use with computers by researchers from the National Confidential Enquiry into Patient Outcome and Death and the University College London Hospital Surgical Outcomes Research Centre. SORT uses information about patients' health and planned surgical procedures to estimate the risk of death within 30 days of an operation. The percentages are only estimates, taking into account the general risks of the procedures and some information about patients, and should not be confused with patient-specific estimates in individual cases. PMID:27369709

  16. Jupiter Night and Day

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Day and night side narrow angle images taken on January 1, 2001 illustrating storms visible on the day side which are the sources of visible lightning when viewed on the night side. The images have been enhanced in contrast. Note the two day-side occurrences of high clouds, in the upper and lower parts of the image, are coincident with lightning storms seen on the darkside. The storms occur at 34.5 degrees and 23.5 degrees North latitude, within one degree of the latitudes at which similar lightning features were detected by the Galileo spacecraft. The images were taken at different times. The storms' longitudinal separation changes from one image to the next because the winds carrying them blow at different speeds at the two latitudes.

  17. Measurements of Atmospheric CO2 Column in Cloudy Weather Conditions using An IM-CW Lidar at 1.57 Micron

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Obland, Michael; Harrison, F. Wallace; Nehrir, Amin; Browell, Edward; Campbell, Joel; Dobler, Jeremy; Meadows, Bryon; Fan, Tai-Fang; Kooi, Susan; Ismail, Syed

    2015-01-01

    This study evaluates the capability of atmospheric CO2 column measurements under cloudy conditions using an airborne intensity-modulated continuous-wave integrated-path-differential-absorption lidar operating in the 1.57-m CO2 absorption band. The atmospheric CO2 column amounts from the aircraft to the tops of optically thick cumulus clouds and to the surface in the presence of optically thin clouds are retrieved from lidar data obtained during the summer 2011 and spring 2013 flight campaigns, respectively.

  18. With a cloudy horizon scene as a backdrop, the Spartan 207 free-flyer is held in the grasp of the

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-77 ESC VIEW --- With a cloudy horizon scene as a backdrop, the Spartan 207 free-flyer is held in the grasp of the Space Shuttle Endeavour's Remote Manipulator System (RMS) following its re-capture on May 21, 1996. The view was captured with an onboard Electronic Still Camera (ESC). The six-member crew has spent a portion of the early stages of the mission in various activities involving the Spartan 207 and the related Inflatable Antenna Experiment (IAE). The Spartan project is managed by NASA's Goddard Space Flight Center (GSFC) for NASA's Office of Space Science, Washington, D.C. GMT: 09:39:35.

  19. AAS 228: Day 4

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Editors Note: Lastweek we were at the 228th AAS Meeting in San Diego, CA. Here is a final post aboutselectedevents on the last day of the meeting, written by authors fromastrobites.com, a grad-student collaborative project with which we recently announced a new partnership! Starting in July,keep an eye out for astrobites postsat AAS Nova in between Highlights(i.e., on Tuesdays and Thursdays).Were excited to be working together to bring you more recent astronomy research from AAS journals!Extrasolar Planets: Detection (by Leonardo dos Santos)Thursdays first session on exoplanets was about detecting these distant worlds, and the opening talk was given by Robert Siverd (Las Cumbres Observatory). He describes the NRES, a network of spectrographs that will look for exoplanets using the radial velocity method. One of the coolest aspects of this instrument is that it will feature an on the fly scheduling system that will perform observations as efficiently as possible. The spectrograph is still being tested, but a unit will be deployed at CTIO later this year.@lcogt contracted by @NASA_TESS for follow up of their candidates. #aas228 Jessie Christiansen (@aussiastronomer) June 16, 2016Measuring the depths of transits and eclipses in Spitzer has been problematic in the past, since the Spitzer instrument IRAC (InfraRed Array Camera) has a non-uniform response in its detectors pixels. But, as reported by James Ingalls (Spitzer Science Center, Caltech), observers are circumventing this issue by using what they call the staring mode (avoiding large pointing jumps) and an algorithm to pick sweet spot pixels. Moreover, the results from the IRAC Data Challenge are helping to better understand its behavior. Giuseppe Morello (University College London), on the other hand, explained how his research group gets rid of instrumental effects from IRAC using machine learning. This method removes systematics from exoplanet transit data no matter if the noise source is from an instrument or

  20. First Day of School

    ERIC Educational Resources Information Center

    Bort, Nancy

    2004-01-01

    In this brief article, the author, a science teacher at F. C. Hammond Middle School in Alexandria, Virginia, describes how the setting up of a simple science experiment on the first day of school can get students excited about learning science. The experiment involves heating a small amount of water in a flask, then covering the opening of the…

  1. Scheduling: Seven Period Day

    ERIC Educational Resources Information Center

    Williamson, Ronald

    2010-01-01

    Driven by stable or declining financial resources many school districts are considering the costs and benefits of a seven-period day. While there is limited evidence that any particular scheduling model has a greater impact on student learning than any other, it is clear that the school schedule is a tool that can significantly impact teacher…

  2. Fabulous Weather Day

    ERIC Educational Resources Information Center

    Marshall, Candice; Mogil, H. Michael

    2007-01-01

    Each year, first graders at Kensington Parkwood Elementary School in Kensington, Maryland, look forward to Fabulous Weather Day. Students learn how meteorologists collect data about the weather, how they study wind, temperature, precipitation, basic types/characteristics of clouds, and how they forecast. The project helps the students grow in…

  3. 90-Day Cycle Handbook

    ERIC Educational Resources Information Center

    Park, Sandra; Takahashi, Sola

    2013-01-01

    90-Day Cycles are a disciplined and structured form of inquiry designed to produce and test knowledge syntheses, prototyped processes, or products in support of improvement work. With any type of activity, organizations inevitably encounter roadblocks to improving performance and outcomes. These barriers might include intractable problems at…

  4. Day Care: Nutrition.

    ERIC Educational Resources Information Center

    Foster, Florence P.; And Others

    This collection of 12 short, bilingual papers on nutrition and preschool children is part of a series of papers on various aspects of day care published by the Canadian Department of Health and Welfare. Each paper is presented in both English and French. Topics dealt with include an overview of children's nutritional needs; development of…

  5. An Earth Day Reader.

    ERIC Educational Resources Information Center

    Moser, Don, Ed.

    1990-01-01

    Presents what the author believes to be some of the most important environmental books published since Earth Day 1970. Discusses each selection and how it provides the historical background, basic information, and appreciation necessary to understand the character of our environmental dilemma and our need to address it. (MCO)

  6. Sun-Earth Day

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Michael Sandras, a member of the Pontchartrain Astronomical Society, explains his solar telescope to students of Second Street in Bay St. Louis, Hancock County and Nicholson elementary schools in StenniSphere's Millennium Hall on April 10. The students participated in several hands-on activities at Stennis Space Center's Sun-Earth Day celebration.

  7. Make a Splash Day

    ERIC Educational Resources Information Center

    Coverdale, Greg; Rust, April; Jensen, Belinda

    2004-01-01

    At the annual, all-day events-sponsored by Project WET (Water Education for Teachers) and held in nearly every state across the country each September--students participate in interactive activities and exhibits to learn about water resources and explore how human behaviors, such as development and recreation, can affect the quality of the…

  8. One Play a Day

    ERIC Educational Resources Information Center

    Blankenship, Mark

    2007-01-01

    Undergraduate theater students rarely get the chance to work on a major world premiere, but this year hundreds of them will. Currently, more than 70 colleges and universities are participating in "365 Days/365 Plays," an ambitious project from Pulitzer Prize-winning playwright Suzan-Lori Parks. Every week, as they mount their portion of this epic…

  9. Seize the Day

    ERIC Educational Resources Information Center

    Berkey, Tim

    2008-01-01

    In order to improve what happens in classrooms, a considerable amount of work needs to take place between teachers and principals. This can only happen if campus leaders make dramatic shifts in how and where they spend their daily time. Principals can have a greater impact on teaching and learning by transforming their work one day at a time. The…

  10. AAS 228: Day 4

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Editors Note: Lastweek we were at the 228th AAS Meeting in San Diego, CA. Here is a final post aboutselectedevents on the last day of the meeting, written by authors fromastrobites.com, a grad-student collaborative project with which we recently announced a new partnership! Starting in July,keep an eye out for astrobites postsat AAS Nova in between Highlights(i.e., on Tuesdays and Thursdays).Were excited to be working together to bring you more recent astronomy research from AAS journals!Extrasolar Planets: Detection (by Leonardo dos Santos)Thursdays first session on exoplanets was about detecting these distant worlds, and the opening talk was given by Robert Siverd (Las Cumbres Observatory). He describes the NRES, a network of spectrographs that will look for exoplanets using the radial velocity method. One of the coolest aspects of this instrument is that it will feature an on the fly scheduling system that will perform observations as efficiently as possible. The spectrograph is still being tested, but a unit will be deployed at CTIO later this year.@lcogt contracted by @NASA_TESS for follow up of their candidates. #aas228 Jessie Christiansen (@aussiastronomer) June 16, 2016Measuring the depths of transits and eclipses in Spitzer has been problematic in the past, since the Spitzer instrument IRAC (InfraRed Array Camera) has a non-uniform response in its detectors pixels. But, as reported by James Ingalls (Spitzer Science Center, Caltech), observers are circumventing this issue by using what they call the staring mode (avoiding large pointing jumps) and an algorithm to pick sweet spot pixels. Moreover, the results from the IRAC Data Challenge are helping to better understand its behavior. Giuseppe Morello (University College London), on the other hand, explained how his research group gets rid of instrumental effects from IRAC using machine learning. This method removes systematics from exoplanet transit data no matter if the noise source is from an instrument or

  11. 2016 SPD: Day 2

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    advances in simulating sunspot formation. He and his collaborators have used high-performance computing to build a model that successfully reproduces many of the key properties of sunspots that are observed.In particular, these simulations track the motions of the magnetic field starting within the interior of the Sun (8000 km below the surface!). The magnetic field is generated and intensified by convection deep within the solar interior. Bundles of magnetic field then rise through the convection zone, eventually breaking through the solar surface and giving rise to sunspots.This process of tracking the flow as it travels from the convective layer all the way through the solar surface has resulted in what may be some of the highest fidelity simulations of sunspots thus far. The structures produced in these simulations compares very favorably with actual observations of sunspots including the asymmetry seen in most sunspots.Counting Spots on the SunContinuing the discussion of sunspots, Leif Svalgaard (Stanford University) next took us on a historical journey from the 1600s through the present. For the last 400 years starting with Galileo people have kept records of the number of sunspots visible on the Suns disk.One of Galileos drawings of his sunspot observations from 1612. [The Galileo Project]This turns out to be a very useful practice! Total solar irradiance, a measure used as input into climate models, is reconstructed from sunspot numbers. Therefore, the historical record of sunspots over the last 400 years impacts our estimates of the long-term trends in solar activity.Based on raw sunspot counts, studies have argued that solar activity has been steadily increasing over time. But could this be a misinterpretation resulting from the fact that our technology and therefore our ability to detect sunspots has improved over time? Svalgaard believes so.By studying and reconstructing 18th century telescopes, he demonstrates that modern-day sunspot counts are able to detect

  12. Retrieval of water vapor mixing ratio from a multiple channel Raman-scatter lidar using an optimal estimation method.

    PubMed

    Sica, R J; Haefele, A

    2016-02-01

    Lidar measurements of the atmospheric water vapor mixing ratio provide an excellent complement to radiosoundings and passive, ground-based remote sensors. Lidars are now routinely used that can make high spatial-temporal resolution measurements of water vapor from the surface to the stratosphere. Many of these systems can operate during the day and night, with operation only limited by clouds thick enough to significantly attenuate the laser beam. To enhance the value of these measurements for weather and climate studies, this paper presents an optimal estimation method (OEM) to retrieve the water vapor mixing ratio, aerosol optical depth profile, Ångstrom exponent, lidar constants, detector dead times, and measurement backgrounds from multichannel vibrational Raman-scatter lidars. The OEM retrieval provides the systematic uncertainties due to the overlap function, calibration factor, air density and Rayleigh-scatter cross sections, in addition to the random uncertainties of the retrieval due to measurement noise. The OEM also gives the vertical resolution of the retrieval as a function of height, as well as the height to which the contribution of the a priori is small. The OEM is applied to measurements made by the Meteoswiss Raman Lidar for Meteorological Observations (RALMO) in the day and night for clear and cloudy conditions. The retrieved water vapor mixing ratio is in excellent agreement with both the traditional lidar retrieval method and coincident radiosoundings. PMID:26836078

  13. Retrieval of water vapor mixing ratio from a multiple channel Raman-scatter lidar using an optimal estimation method.

    PubMed

    Sica, R J; Haefele, A

    2016-02-01

    Lidar measurements of the atmospheric water vapor mixing ratio provide an excellent complement to radiosoundings and passive, ground-based remote sensors. Lidars are now routinely used that can make high spatial-temporal resolution measurements of water vapor from the surface to the stratosphere. Many of these systems can operate during the day and night, with operation only limited by clouds thick enough to significantly attenuate the laser beam. To enhance the value of these measurements for weather and climate studies, this paper presents an optimal estimation method (OEM) to retrieve the water vapor mixing ratio, aerosol optical depth profile, Ångstrom exponent, lidar constants, detector dead times, and measurement backgrounds from multichannel vibrational Raman-scatter lidars. The OEM retrieval provides the systematic uncertainties due to the overlap function, calibration factor, air density and Rayleigh-scatter cross sections, in addition to the random uncertainties of the retrieval due to measurement noise. The OEM also gives the vertical resolution of the retrieval as a function of height, as well as the height to which the contribution of the a priori is small. The OEM is applied to measurements made by the Meteoswiss Raman Lidar for Meteorological Observations (RALMO) in the day and night for clear and cloudy conditions. The retrieved water vapor mixing ratio is in excellent agreement with both the traditional lidar retrieval method and coincident radiosoundings.

  14. Day One Sustainability

    ERIC Educational Resources Information Center

    Orr, John; Ibell, Timothy; Evernden, Mark; Darby, Antony

    2015-01-01

    Emissions reductions targets for the UK set out in the Climate Change Act for the period to 2050 will only be achieved with significant changes to the built environment, which is currently estimated to account for 50% of the UK's carbon emissions. The socio-technological nature of Civil Engineering means that this field is uniquely placed to lead…

  15. Market day midwives.

    PubMed

    1994-06-01

    In August 1994 in Uganda, the Social Marketing for Change (SOMARC) project invited midwives to counsel clients and sell low-dose oral contraceptives (OCs), condoms, and the progestin-only OCs in local markets. They now sell these contraceptives from vendor stalls in busy markets, which allows clients to speak privately with the midwives. The midwives refer clients to their maternity clinics or to hospitals for other contraceptive methods and reproductive/maternal and child health (MCH) services. All Market Day Midwives have taken a 1-month family planning course and a course in quality of customer service. By the end of March 1994, 17 midwives served 22 marketplaces ranging from rural village markets operating once every 2 weeks to very busy, daily city markets. Some markets have 15 permanent stalls, while other midwives move within markets. Market Day Midwives have been able to add more than 1900 women to the list of women using the OC Pilplan. 65% of the new acceptors had not used any OC before Pilplan. 46% of them would be women considered to be high risk if they were to become pregnant (teenagers, women over 35, and women with many children). These midwives have been successful because they operate where the people are and they provide anonymity. Market Day Midwives have also brought in men who seek them out for family planning/sexually transmitted disease prevention services. They have sold more than 1000 Protector condoms. Another benefit of the market day approach is professional growth of the midwives. They often invest their earnings into new equipment and their private maternity clinics. They have learned the significance of advertising and the value of high-quality customer service. They look to expand into other markets and to integrate MCH products (e.g., oral rehydration) into their contraceptive business.

  16. Flight Day 2 Highlights

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The STS-107 second flight day begins with a shot of the Spacehab Research Double Module. Live presentations of experiments underway inside of the Spacehab Module are presented. Six experiments are shown. As part of the Space Technology and Research Student Payload, students from Australia, China, Israel, Japan, New York, and Liechtenstein are studying the effect that microgravity has on ants, spiders, silkworms, fish, bees, granular materials, and crystals. Mission Specialist Kalpana Chawla is seen working with the zeolite crystal growth experiment.

  17. The Dying Day

    NASA Astrophysics Data System (ADS)

    Heiles, Carl

    1993-05-01

    The 85-foot telescope's dying day was part of a week of memorably unusual weather---which, in turn, was part of a memorable winter in California (and elsewhere!). On this day, it spent several hours finishing a months-long, apparently successful observation of Zeeman splitting of the 18-cm OH lines in absorption against the Galactic center continuum source Sgr A. Later, it continued a survey of weak diffuse radio recombination lines near the Galactic plane---observations that were interrupted by strong winds, which made the telescope move to the stow position. We know the rest. Had the telescope not been destroyed, it would have been reconfigured the following day to observe the 21-cm line. It would have continued an ongoing survey of interstellar magnetic fields using Zeeman splitting of the 21-cm line. It would have begun a search for broad, weak line wings, which had been previously discovered in association with supernova remnants. It would have been involved in a number of H I mapping projects. And it would have continued its measurements of diffuse radio recombination lines. Had it not been for the inclement weather, the weekend would have seen it being used in laboratory exercises for undergraduates at UC Berkeley.

  18. The SunCloud project: An initiative for a development of a worldwide sunshine duration and cloudiness observations dataset

    NASA Astrophysics Data System (ADS)

    Sanchez-Lorenzo, A.

    2010-09-01

    One problem encountered when establishing the causes of global dimming and brightening is the limited number of long-term solar radiation series with accurate and calibrated measurements. For this reason, the analysis is often supported and extended with the use of other climatic variables such as sunshine duration and cloud cover. Specifically, sunshine duration is defined as the amount of time usually expressed in hours that direct solar radiation exceeds a certain threshold (usually taken at 120 W m-2). Consequently, this variable can be considered as an excellent proxy measure of solar radiation at interannual and decadal time scales, with the advantage that measurements of this variable were initiated in the late 19th century in different, worldwide, main meteorological stations. Nevertheless, detailed and up-to-date analysis of sunshine duration behavior on global or hemispheric scales are still missing. Thus, starting on September 2010 in the framework of different research projects, we will engage a worldwide compilation of the longest daily or monthly sunshine duration series from the late 19th century until present. Several quality control checks and homogenization methods will be applied to the generated sunshine dataset. The relationship between the more precise downward solar radiation series from the Global Energy Balance Archive (GEBA) and the homogenized sunshine series will be studied in order to reconstruct global and regional solar irradiance at the Earth's surface since the late 19th century. Since clouds are the main cause of interannual and decadal variability of radiation reaching the Earth's surface, as a complement to the long-term sunshine series we will also compile worldwide surface cloudiness observations. With this presentation we seek to encourage the climate community to contribute with their own local datasets to the SunCloud project. The SunCloud Team: M. Wild, Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland

  19. One Cold Autumn Day

    PubMed Central

    de Schweinitz, Peter

    2015-01-01

    Behavioral change is at the heart of effective primary care, but when patients don’t change, how do we account for our days? In this personal essay, I relate an encounter with a patient who wants to quit smoking, lose weight, and control her diabetes. I am discouraged when she deflects my recommendations, but a colleague’s comment encourages a deeper inquiry. Knowing the patient’s story and deepening the conversation, however, do not guarantee change. The experience reminds me why patience, humility, and faith are core values of the primary care physician. PMID:25964410

  20. Preventing 30-day readmissions.

    PubMed

    Stevens, Sherri

    2015-03-01

    Preventing 30-day readmissions to hospitals is a top priority in the era of health care reform. New regulations will be costly to health care facilities because of payment guidelines. The most frequently readmitted medical conditions are acute myocardial infarction, heart failure, and pneumonia. The transition from the hospital and into the home has been classified as a vulnerable time for many patients. During this time of transition patients may fail to fully understand their discharge instructions. Ineffective communication, low health literacy, and compliance issues contribute to readmissions. Telehealth and the use of technology may be used to prevent some readmissions.

  1. Proceedings, Dean's Day 1999

    SciTech Connect

    Zanner, M.A.

    1999-03-01

    On January 14--15, 1999, Sandia National Laboratories sponsored Deans Day, a conference for the Deans of Engineering and other executive-level representatives from 29 invited universities. Through breakout sessions and a wrap-up discussion, university and Sandia participants identified activities to further develop their strategic relationships. The four primary activities are: (A) concentrate joint efforts on current and future research strengths and needs; (B) attract the best students (at all grade levels) to science and engineering; (C) promote awareness of the need for and work together to influence a national science and technology R and D policy; and (D) enable the universities and Sandia to be true allies, jointly pursuing research opportunities and funding from government agencies and industry.

  2. Influence of day length, ambient temperature, and seasonality on daily travel distance in the Yunnan snub-nosed monkey at Jinsichang, Yunnan, China.

    PubMed

    Baoping, Ren; Ming, Li; Yongcheng, Long; Fuwen, Wei

    2009-03-01

    This article examines the effect of ambient temperature, day length, weather conditions, and seasonality on daily path length (DPL) of a free-ranging group of Yunnan snub-nosed monkeys (Rhinopithecus bieti) using an auto-released GPS collar. Data were collected from December 17, 2003 to October 22, 2004 at Laojunshan in northwestern Yunnan province, China. The average DPL of the monkey group was 909+/-472 m (n=291), with the shortest distance being 180 m and the longest distance 3,626 m. Ambient temperature and day length were found to affect DPL. Both factors were positively correlated with DPL, which means that the monkey group traveled greater distances on longer and warmer days. At the study site, three distinct seasons were identified, and DPL did not vary significantly across these periods. The time of sunrise was not correlated with DPL. Nevertheless, we sometimes observed the group starting its daily trip later on cloudy days than on sunny days. Furthermore, weather conditions (e.g. rainy, cloudy, and sunny) did not influence the average DPL of the study group. Overall we found that the primary factors affecting DPL in R. bieti were day length and ambient temperature, especially daily highest temperature.

  3. Recent progress in neural network estimation of atmospheric profiles using microwave and hyperspectral infrared sounding data in the presence of clouds

    NASA Astrophysics Data System (ADS)

    Blackwell, William J.; Chen, Frederick W.

    2007-04-01

    Recent work has demonstrated the feasibility of neural network estimation techniques for atmospheric profiling in partially cloudy atmospheres using combined microwave (MW) and hyperspectral infrared (IR) sounding data. In this paper, the global retrieval performance of the stochastic cloud-clearing / neural network (SCC/NN) method is examined using atmospheric fields provided by the European Center for Medium-range Weather Forecasting (ECMWF) and in situ measurements from the NOAA radiosonde database. Furthermore, the retrieval performance of the neural network method is compared with the AIRS Level 2 algorithm (Version 4). Comparisons of both forecast and radiosonde data indicate that the neural network retrieval performance is similar to or exceeds that of the AIRS Level 2 (version 4) profile products, substantially so in very cloudy areas. A novel statistical method for the global retrieval of atmospheric temperature and water vapor profiles in cloudy conditions has been developed and evaluated with sounding data from the Atmospheric InfraRed Sounder (AIRS) and the Advanced Microwave Sounding Unit (AMSU). The present work focuses on the cloud impact on the AIRS radiances and explores the use of Stochastic Cloud Clearing (SCC) together with neural network estimation. A stand-alone statistical algorithm will be presented that operates directly on cloud-impacted AIRS/AMSU data, with no need for a physical cloud clearing process. The algorithm is implemented in three stages. First, the infrared radiance perturbations due to clouds are estimated and corrected by combined processing of the infrared and microwave data using the SCC method. The cloud clearing of the infrared radiances was performed using principal components analysis of infrared brightness temperature contrasts in adjacent fields of view and microwave-derived estimates of the infrared clear-column radiances to estimate and correct the radiance contamination introduced by clouds. Second, a Projected

  4. AAS 227: Day 2

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Editors Note:This week were at the 227th AAS Meeting in Kissimmee, FL. Along with several fellow authors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting at the end of each day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Welcome to Day 2 of the winter American Astronomical Society (AAS) meeting in Kissimmee! Several of us are attending the conference this year, and we will report highlights from each day here on astrobites. If youd like to see more timely updates during the day, we encourage you to follow @astrobites on twitter or search the #aas227 hashtag.Plenary Session: Black Hole Physics with the Event Horizon Telescope (by Susanna Kohler)If anyone needed motivation to wake up early this morning, they got it in the form of Feryal Ozel (University of Arizona) enthralling us all with exciting pictures, videos, and words about black holes and the Event Horizon Telescope. Ozel spoke to a packed room (at 8:30am!) about where the project currently stands, and where its heading in the future.The EHT has pretty much the coolest goal ever: actually image the event horizons of black holes in our universe. The problem is that the largest black hole we can look at (Sgr A*, in the center of our galaxy) has an event horizon size of 50 as. For this kind of resolution roughly equivalent to trying to image a DVD on the Moon! wed need an Earth-sized telescope. EHT has solved this problem by linking telescopes around the world, creating one giant, mm-wavelength effective telescope with a baseline the size of Earth.Besides producing awesome images, the EHT will be able to test properties of black-hole spacetime, the no-hair theorem, and general relativity (GR) in new regimes.Ozel walked us through some of the theory prep work we need to do now in order to get the most science out of the EHT, including devising new

  5. The triple day.

    PubMed

    Smith, V

    1980-08-01

    The risks are high and the returns low when Peruvian women work outside the home, but they have few other options. Most have large families, and their husbands scramble to earn a few dollars. For some women the day begins at 3:30 a.m. when they go to Lima to peddle fish, combs, or whatever commodity is available. The poor women who live in the pueblos jovenes of Lima, the newly formed outskirts, have banded together in a Christian group called Luz y Esperanza, or Light and Hope. The group has a 10-year history of coping with unsanitary water and resultant health problems, child care, and lack of electricity. The women began with neighborhood issues but have also developed an interest in trade unions and other less local concerns. Members have also started to attend union meetings in Lima and involved themselves in recent trade union struggles. The development of the women's political consciousness is closely intertwined with their Christian faith. They believe Christ is the source of the energy they need to persevere. PMID:12262074

  6. Day-1 chick development.

    PubMed

    Sheng, Guojun

    2014-03-01

    The first day of chick development takes place inside the mother hen (in utero), during which the embryo progresses from fertilization to late blastula/early gastrula formation. The salient features of developmental anatomy in this period are conserved among the sauropsids (birds and reptiles). Many of these features are also shared in prototherian (monotreme) embryos, whereas metatherian (marsupial) and eutherian (placental) embryos display significant variations. Important for understanding the evolution of early development in amniotes, the knowledge of cellular and molecular mechanisms regulating in utero chick development may also offer valuable insight into early lineage specification in prototherians and conserved features in mammalian early development. This commentary provides a snapshot of what is currently known about intrauterine chick development and identifies key issues that await further clarification, including the process of cellularization, allocation of maternal determinants, zygotic gene activation, mid-blastula transition, cell layer increase and reduction, radial symmetry breaking, early lineage segregation, and role of yolk syncytium in early patterning. PMID:24550174

  7. AAS 227: Day 3

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Editors Note:This week were at the 227th AAS Meeting in Kissimmee, FL. Along with several fellow authors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting at the end of each day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Welcome to Day 3 of the winter American Astronomical Society (AAS) meeting in Kissimmee! Several of us are attending the conference this year, and we will report highlights from each day here on astrobites. If youd like to see more timely updates during the day, we encourage you to follow @astrobites on twitter or search the #aas227 hashtag.Henry Norris Russell Lecture: Viewing the Universe with Infrared Eyes: The Spitzer Space Telescope (by Erika Nesvold)The Henry Norris Russell Award is the highest honor given by the AAS, for a lifetime of eminence in astronomy research. This years award went to Giovanni Fazio of the Harvard-Smithsonian Center for Astrophysics. Fazio became a leader in gamma ray astronomy before switching mid-career to the study of infrared astronomy, and he gave his award lecture on the latter subject, specifically on the Spitzer Space Telescope, one of the most successful infrared telescopes of all time.Artists rendering of the Spitzer space telescope. [NASA/JPL-Caltech]Spitzer has been operating for more than twelve years, and has resulted in over six thousand papers in refereed journals in that time. The telescope sits in an Earth-trailing orbit around the Sun, and is now farther from the Earth (1.4 AU) than the Earth is from the Sun. Fazio gave the audience a fascinating overview of the science done by Spitzer over more than a decade. One of the most productive areas of research for Spitzer is the study of exoplanets, which hadnt even been discovered when the Spitzer Telescope was first conceived. Spitzers high sensitivity and ability to observe exoplanets over

  8. AAS 227: Day 4

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Editors Note:This week were at the 227th AAS Meeting in Kissimmee, FL. Along with several fellow authors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting at the end of each day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Welcome to Day 4 of the winter American Astronomical Society (AAS) meeting in Kissimmee! Several of us are attending the conference this year, and we will report highlights from each day here on astrobites. If youd like to see more timely updates during the day, we encourage you to follow @astrobites on twitter or search the #aas227 hashtag.Helen B. Warner Prize: Origins of Structure in Planetary Systems (by Erika Nesvold)Another excellent prize lecture started off todays sessions. The Helen B. Warner Prize is awarded for achievement in observational or theoretical astrophysics by a young researcher (no more than eight years after their Ph.D.). This years Warner Prize was presented to Ruth Murray-Clay of UC Santa Barbara. For her award lecture, Murray-Clay told us all about planetary system architecture: the number, masses, and orbits of planets in a given system.Ruth Murray-Clay [photo from http://web.physics.ucsb.edu/ ~murray/biocv.html]The underlying question motivating this type of research is: How rare is the Solar System? In other words, how likely is it that a given planetary system will have rocky planets close to their star, gas giants farther out, and ice giants at the outer reaches of the system? Answering this question will help us solve the physics problem of how and where planets form, and will also help us on our search for other planets like Earth.The data on exoplanet population from transit and radial velocity observations and from direct imaging tell us that our Solar System is not common (many systems we observe have much more eccentric gas giants), but that doesnt

  9. AAS 227: Day 4

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Editors Note:This week were at the 227th AAS Meeting in Kissimmee, FL. Along with several fellow authors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting at the end of each day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Welcome to Day 4 of the winter American Astronomical Society (AAS) meeting in Kissimmee! Several of us are attending the conference this year, and we will report highlights from each day here on astrobites. If youd like to see more timely updates during the day, we encourage you to follow @astrobites on twitter or search the #aas227 hashtag.Helen B. Warner Prize: Origins of Structure in Planetary Systems (by Erika Nesvold)Another excellent prize lecture started off todays sessions. The Helen B. Warner Prize is awarded for achievement in observational or theoretical astrophysics by a young researcher (no more than eight years after their Ph.D.). This years Warner Prize was presented to Ruth Murray-Clay of UC Santa Barbara. For her award lecture, Murray-Clay told us all about planetary system architecture: the number, masses, and orbits of planets in a given system.Ruth Murray-Clay [photo from http://web.physics.ucsb.edu/ ~murray/biocv.html]The underlying question motivating this type of research is: How rare is the Solar System? In other words, how likely is it that a given planetary system will have rocky planets close to their star, gas giants farther out, and ice giants at the outer reaches of the system? Answering this question will help us solve the physics problem of how and where planets form, and will also help us on our search for other planets like Earth.The data on exoplanet population from transit and radial velocity observations and from direct imaging tell us that our Solar System is not common (many systems we observe have much more eccentric gas giants), but that doesnt

  10. Day one sustainability

    NASA Astrophysics Data System (ADS)

    Orr, John; Ibell, Timothy; Evernden, Mark; Darby, Antony

    2015-05-01

    Emissions reductions targets for the UK set out in the Climate Change Act for the period to 2050 will only be achieved with significant changes to the built environment, which is currently estimated to account for 50% of the UK's carbon emissions. The socio-technological nature of Civil Engineering means that this field is uniquely placed to lead the UK through such adaptations. This paper discusses the importance of interdisciplinary teaching to produce multi-faceted team approaches to sustainable design solutions. Methods for measuring success in education are often not fit for purpose, producing good students but poor engineers. Real-world failures to apply sustainable design present a serious, difficult to detect, and ultimately economically negative situation. Techniques to replace summative examinations are presented and discussed, with the aim of enhancing core technical skills alongside those required for sustainable design. Finally, the role of our future engineers in policy-making is discussed. In addition to carbon, the provision of water and food will heavily influence the work of civil engineers in the coming decades. Leadership from civil engineers with the technical knowledge and social awareness to tackle these issues will be required. This provides both opportunities and challenges for engineering education in the UK.

  11. Effect of pectinase treatment on extraction of antioxidant phenols from pomace, for the production of puree-enriched cloudy apple juices.

    PubMed

    Oszmiański, Jan; Wojdyło, Aneta; Kolniak, Joanna

    2011-07-15

    Effects of pomace maceration on yield, turbidity, cloud stability, composition of phenolics, antioxidant activity and colour properties were studied, to evaluate the potential applicability of enzyme preparations in puree-enriched cloudy apple juice production. The yield of mixed juice and puree from pomace obtained in the enzymatic processing of apple ranged from 92.3% to 95.3%, significantly higher than the yield from the control without enzymatic pomace treatment (81.8%). Higher turbidity was obtained upon pomace treatment with Pectinex XXL and Pectinex Ultra SPL enzymes. The total content of phenolic compounds in apple pomace was higher than in raw juices (1520mg/kg and 441mg/L, respectively). The total polyphenol yields were higher in juices treated with Pectinex AFP L-4, Pectinex Yield Mash and Pectinex XXL, as compared to the control treatment. During 6months of storage, a significant change was observed in the content of polyphenols, especially in procyanidin fractions.

  12. Effects of types and amounts of stabilizers on physical and sensory characteristics of cloudy ready-to-drink mulberry fruit juice

    PubMed Central

    Akkarachaneeyakorn, Suthida; Tinrat, Sirikhwan

    2015-01-01

    In this study, the pH of mulberry juice was optimized for high anthocyanin content and an attractive red color. Mulberry juice pH values of 2.5, 4.0, 6.0, and 8.0 were evaluated. A pH of 2.5 gave an anthocyanin content of 541.39 ± 106.43 mg of cyanidin-3-glucoside per liter, and the a* value was 14 ± 1.00. The effects of stabilizers (CMC and xanthan gum) on the physical characteristics of cloudy ready-to-drink mulberry fruit juice (via the addition of mulberry fruit pulp at a mass fraction of 5%) during storage (4°C for 1 week) were also determined using different mass fractions of the stabilizers (0.1%, 0.3%, and 0.5%). Increasing the stabilizer mass fraction increased the viscosity, turbidity, stability of turbidity, and h* value. Using xanthan gum as the stabilizer produced better results for these parameters than CMC. The type of stabilizer and its mass fraction had no effect on most sensory characteristics, including appearance, color, taste, texture, and overall acceptability (P ≥ 0.05), but did affect the odor (P ≥ 0.05). Xanthan gum stabilizer gave the juice a better odor than CMC. Cloudy mulberry juice containing 0.5% xanthan gum as the stabilizer had the highest acceptance rate among panelists (average acceptance was 6.90 ± 1.37 points) and produced no precipitate during storage. PMID:25987996

  13. International Women's Day speech.

    PubMed

    Kazibwe, S W

    1993-01-01

    The objectives of the International Women's Day are: 1) to celebrate the struggle for women's rights in the economic, social, political, and cultural domain; 2) to reaffirm women's solidarity in the struggle for peace; 3) and to show what women have achieved. In 1988, Uganda's government of the National Resistance Movement created the Ministry of Women in Development. The period 1988-1990 was one of consultations, needs assessment, planning, and recruiting staff for the Ministry. From 1990 to 1993, measurable results have been achieved. The Ministry's gender concerns pertained to the sector policies of the Ministries of Agriculture, Animal Industry and Fisheries, Education, Health, Water, Energy, Minerals, and Environment Protection. Under the Umbrella Project for Women in Development, gender sensitization has been achieved with policy makers in ministries, at district level, and in the media. Gender issues have also been incorporated in the National Political School Curriculum. The Ministry has also trained a corps of 73 women trainers from 38 districts. The Ministry, with funding from DANIDA, collected women's views on the constitution through meetings and seminars in all the districts in the country. Recommendations were submitted in a consolidated report to the Constitution Commission. A pilot para-legal scheme is successfully being implemented in Kamuli district. A community-based pool of legal advisors has been developed. Legal matters that affect both women and men are undertaken at the community level. The economic emancipation of women is a crucial part of the Ministry's mandate. In conjunction with NGOs, pilot credit programs are being run in Mukono, Jinja, Mbale, and Kapchorwa districts. Cross-sectoral programs are in close collaboration with the rural water and sanitation program, the Northern Uganda rehabilitation program, and the integrated Basic Education Pilot Project to be implemented in 8 districts. PMID:12345405

  14. AAS 227: Day 3

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Editors Note:This week were at the 227th AAS Meeting in Kissimmee, FL. Along with several fellow authors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting at the end of each day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Welcome to Day 3 of the winter American Astronomical Society (AAS) meeting in Kissimmee! Several of us are attending the conference this year, and we will report highlights from each day here on astrobites. If youd like to see more timely updates during the day, we encourage you to follow @astrobites on twitter or search the #aas227 hashtag.Henry Norris Russell Lecture: Viewing the Universe with Infrared Eyes: The Spitzer Space Telescope (by Erika Nesvold)The Henry Norris Russell Award is the highest honor given by the AAS, for a lifetime of eminence in astronomy research. This years award went to Giovanni Fazio of the Harvard-Smithsonian Center for Astrophysics. Fazio became a leader in gamma ray astronomy before switching mid-career to the study of infrared astronomy, and he gave his award lecture on the latter subject, specifically on the Spitzer Space Telescope, one of the most successful infrared telescopes of all time.Artists rendering of the Spitzer space telescope. [NASA/JPL-Caltech]Spitzer has been operating for more than twelve years, and has resulted in over six thousand papers in refereed journals in that time. The telescope sits in an Earth-trailing orbit around the Sun, and is now farther from the Earth (1.4 AU) than the Earth is from the Sun. Fazio gave the audience a fascinating overview of the science done by Spitzer over more than a decade. One of the most productive areas of research for Spitzer is the study of exoplanets, which hadnt even been discovered when the Spitzer Telescope was first conceived. Spitzers high sensitivity and ability to observe exoplanets over

  15. Franco, the Early Days

    NASA Astrophysics Data System (ADS)

    Siemssen, R. H.

    2004-04-01

    As this meeting is to honour Franco on the occasion of his 60 birthday I thought that it might be fitting to report on some early reminiscences of Franco of the pre-IBA days. Franco first came to Groningen in 1972 for a seminar on the invitation of Alex Lande. Alex and Franco had known each other from the Niels Bohr Institute in Copenhagen, where they had collaborated. In 1972 both Alex and I had been freshly appointed at Groningen, Alex on the Faculty of the Theory Department, and I myself as the new director of the KVI. A position for a Senior Scientist in theory had been newly created at the KVI with the aim to establish a strong in-house theory group. Needless to say that everyone who met Franco was deeply impressed by him. We thus were extremely happy to be able to entice Franco to join the KVI as a Senior Scientist in 1974, after he had spent a few weeks in Groningen in 1973 as a visitor. So characteristic of Franco he immediately took a strong interest in the experimental program as evidenced by the following publications on the weak-coupling description of three-nucleon pickup in the (p, α) reaction [1] and the spreading width of deep-hole states [2]. Both topics appear to have maintained their actuality, looking at the many papers that have been published since on these and related topics. But this brief citation of the "other Franco" would not do justice to him without mentioning the diverse palette of Franco's work also listed in the KVI 1974 Annual Report, reflecting Franco's extremely broad and diversified scientific interests. [3-10]...

  16. International Women's Day speech.

    PubMed

    Kazibwe, S W

    1993-01-01

    The objectives of the International Women's Day are: 1) to celebrate the struggle for women's rights in the economic, social, political, and cultural domain; 2) to reaffirm women's solidarity in the struggle for peace; 3) and to show what women have achieved. In 1988, Uganda's government of the National Resistance Movement created the Ministry of Women in Development. The period 1988-1990 was one of consultations, needs assessment, planning, and recruiting staff for the Ministry. From 1990 to 1993, measurable results have been achieved. The Ministry's gender concerns pertained to the sector policies of the Ministries of Agriculture, Animal Industry and Fisheries, Education, Health, Water, Energy, Minerals, and Environment Protection. Under the Umbrella Project for Women in Development, gender sensitization has been achieved with policy makers in ministries, at district level, and in the media. Gender issues have also been incorporated in the National Political School Curriculum. The Ministry has also trained a corps of 73 women trainers from 38 districts. The Ministry, with funding from DANIDA, collected women's views on the constitution through meetings and seminars in all the districts in the country. Recommendations were submitted in a consolidated report to the Constitution Commission. A pilot para-legal scheme is successfully being implemented in Kamuli district. A community-based pool of legal advisors has been developed. Legal matters that affect both women and men are undertaken at the community level. The economic emancipation of women is a crucial part of the Ministry's mandate. In conjunction with NGOs, pilot credit programs are being run in Mukono, Jinja, Mbale, and Kapchorwa districts. Cross-sectoral programs are in close collaboration with the rural water and sanitation program, the Northern Uganda rehabilitation program, and the integrated Basic Education Pilot Project to be implemented in 8 districts.

  17. AAS 227: Day 2

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Editors Note:This week were at the 227th AAS Meeting in Kissimmee, FL. Along with several fellow authors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting at the end of each day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Welcome to Day 2 of the winter American Astronomical Society (AAS) meeting in Kissimmee! Several of us are attending the conference this year, and we will report highlights from each day here on astrobites. If youd like to see more timely updates during the day, we encourage you to follow @astrobites on twitter or search the #aas227 hashtag.Plenary Session: Black Hole Physics with the Event Horizon Telescope (by Susanna Kohler)If anyone needed motivation to wake up early this morning, they got it in the form of Feryal Ozel (University of Arizona) enthralling us all with exciting pictures, videos, and words about black holes and the Event Horizon Telescope. Ozel spoke to a packed room (at 8:30am!) about where the project currently stands, and where its heading in the future.The EHT has pretty much the coolest goal ever: actually image the event horizons of black holes in our universe. The problem is that the largest black hole we can look at (Sgr A*, in the center of our galaxy) has an event horizon size of 50 as. For this kind of resolution roughly equivalent to trying to image a DVD on the Moon! wed need an Earth-sized telescope. EHT has solved this problem by linking telescopes around the world, creating one giant, mm-wavelength effective telescope with a baseline the size of Earth.Besides producing awesome images, the EHT will be able to test properties of black-hole spacetime, the no-hair theorem, and general relativity (GR) in new regimes.Ozel walked us through some of the theory prep work we need to do now in order to get the most science out of the EHT, including devising new

  18. 2016 SPD: Day 1

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Editors note: This week were in Boulder, Colorado at the 47th meeting of the AAS Solar Physics Division (SPD). Follow along to catch some of the latest news from the field of solar physics!The 2016 SPD meeting was launched this morning from the University of Colorado Boulder campus. Two of the hot topics at this years meeting include celebration of the recent move of the National Solar Observatorys headquarters to Boulder, and discussion of the future Daniel K. Inouye Solar Telescope (DKIST, formerly the Advanced Technology Solar Telescope, ATST). DKIST, planned for a 2019 completion in Hawaii, is the next big telescope on the horizon for solar physics.Todays press conference had an interesting focus: instruments providing new high-energy observations of the Sun. Representatives from four different instruments were here to talk about some of the latest X-ray solar observations.GRIPSThe GRIPS payload flew at 130,000 ft over Antarctica on a giant balloon in January 2016. [NASA/Albert Shih]First up, Albert Shih (NASA Goddard) described the Gamma-Ray Imager/Polarimeter for Solar flares, or GRIPS. GRIPS is a balloon-borne instrument designed to detect X-rays and gamma rays emitted during solar flares. Up to tens of a percent of the energy in solar flares is emitted in the form of accelerated particles, but the physics behind this process is not well understood. GRIPS observes where the highest-energy particles are accelerated, in an effort to learn more about the process.GRIPS was launched on 19 January, 2016 and flew for roughly 12 days gathering ~1 million seconds of data! The logistics of this instruments flight are especially interesting, since it was launched from Antarctica and carried by a balloon at a whopping elevation of 130,000 ft (to get high enough that the atmosphere doesnt absorb all the photons GRIPS is trying to observe). Though the data from the mission has been retrieved, the bulk of the hardware remains where it landed at the end of January. It must

  19. 2016 SPD: Day 1

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Editors note: This week were in Boulder, Colorado at the 47th meeting of the AAS Solar Physics Division (SPD). Follow along to catch some of the latest news from the field of solar physics!The 2016 SPD meeting was launched this morning from the University of Colorado Boulder campus. Two of the hot topics at this years meeting include celebration of the recent move of the National Solar Observatorys headquarters to Boulder, and discussion of the future Daniel K. Inouye Solar Telescope (DKIST, formerly the Advanced Technology Solar Telescope, ATST). DKIST, planned for a 2019 completion in Hawaii, is the next big telescope on the horizon for solar physics.Todays press conference had an interesting focus: instruments providing new high-energy observations of the Sun. Representatives from four different instruments were here to talk about some of the latest X-ray solar observations.GRIPSThe GRIPS payload flew at 130,000 ft over Antarctica on a giant balloon in January 2016. [NASA/Albert Shih]First up, Albert Shih (NASA Goddard) described the Gamma-Ray Imager/Polarimeter for Solar flares, or GRIPS. GRIPS is a balloon-borne instrument designed to detect X-rays and gamma rays emitted during solar flares. Up to tens of a percent of the energy in solar flares is emitted in the form of accelerated particles, but the physics behind this process is not well understood. GRIPS observes where the highest-energy particles are accelerated, in an effort to learn more about the process.GRIPS was launched on 19 January, 2016 and flew for roughly 12 days gathering ~1 million seconds of data! The logistics of this instruments flight are especially interesting, since it was launched from Antarctica and carried by a balloon at a whopping elevation of 130,000 ft (to get high enough that the atmosphere doesnt absorb all the photons GRIPS is trying to observe). Though the data from the mission has been retrieved, the bulk of the hardware remains where it landed at the end of January. It must

  20. AAS 227: Day 1

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Editors Note:This week were at the 227th AAS Meeting in Kissimmee, FL. Along with several fellow authors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting at the end of each day. Follow along here or at astrobites.com, or catch ourlive-tweeted updates from the @astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Things kicked off last night at our undergraduate reception booth. Thanks to all of you who stopped by we were delightedto have so many people tell us that they already know about and useastrobites, and we were excited to introduce a new cohort of students at AAS to astrobites for the first time.Tuesday morning was the official start of the meeting. Here are just a few of the talks and workshops astrobiters attended today.Opening Address (by Becky Smethurst)The President of the AAS, aka our fearless leader Meg Urry kicked off the meeting this morning at the purely coffee powered hour of 8am this morning. She spoke about the importance of young astronomers at the meeting (heres looking at you reader!) and also the importance of the new Working Group for Accessibility and Disabilities (aka WGAD pronounced like wicked) at the AAS. The Society has made extra effort this year to make the conference accessible to all,a message which was very well received by everyone in attendance.Kavli Lecture: New Horizons Alan Stern (by Becky Smethurst)We were definitely spoilt with the first Plenary lecture at this years conference Alan Stern gave us a a review of the New Horizons mission of the Pluto Fly By (astrobites covered the mission back in July with this post). We were treated to beautiful images, wonderful results and a foray into geology.Before (Hubble) and after #NewHorizons. #thatisall #science #astro alanstern #aas227 pic.twitter.com/kkMt6RsSIR Science News (@topsciencething) January 5, 2016Some awesome facts from the lecture that blew my mind:New Horizons is now 2AU (!) beyond Pluto

  1. Family Day Care Training Curriculum.

    ERIC Educational Resources Information Center

    Nakatsu, Gail

    California's Family Day Care Training Program was designed to recruit and train in 7 weeks, Lao, Vietnamese, and Chinese refugees to establish their own state-licensed, family day care homes. Topics in the program's curriculum include an introduction to family day care, state licenses for family day care, state licensing requirements for family…

  2. 2016 SPD: Day 3

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    last the longest 2 minutes and 40 seconds is the small town of Hopkinsville, KY. WKU is located a little over an hour away, and both locations are prepared for a large influx of people on eclipse day!Partial solar eclipse as viewed by the space-based Solar Dynamics Observatory. [NASA/SDO]WKU is located just off the centerline of eclipse path, which has some advantages: this provides better viewing of some of the chromospheric features of the Sun during the eclipse, like priminences and solar loops. WKU is setting up a variety of educational and public outreach activities at their football stadium and the WKU farm, and they encourage you to come visit for the eclipse!In addition, they are participating in a nationwide experiment called Citizen CATE, short for the Continental American Telescopic Eclipse. This project will use 60 telescopes spanning the 2500 mile path of totality to record continuous data of the eclipse as it travels across the US. The result will be data of a remarkable 90 minutes of totality, revealing the activity of the solar corona and providing an extended view of the eclipse as has never been seen before.Science During the EclipseNext up was Shadia Habbal (University of Hawaii), who is a co-leader of the AAS 2017 Eclipse Task Force. In addition to her education and outreach efforts associated with the eclipse, however, Habbal is a solar eclipse researcher. She and her collaborators are known as the Solar Wind Sherpas, due to the fact that they hand-carry their science equipment around the world for solar eclipses!Solar corona during a 2008 eclipse, with color overlay indicating emission from highly ionized iron lines. [Habbal et al. 2010]The primary science done during solar eclipses is the study of the solar corona, the region that extends from the solar surface out to several solar radii. This region is too faint to observe normally, but when the light from the Suns disk is blocked out, we can examine it.Unfortunately, the space telescopes that

  3. 2016 SPD: Day 3

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    last the longest 2 minutes and 40 seconds is the small town of Hopkinsville, KY. WKU is located a little over an hour away, and both locations are prepared for a large influx of people on eclipse day!Partial solar eclipse as viewed by the space-based Solar Dynamics Observatory. [NASA/SDO]WKU is located just off the centerline of eclipse path, which has some advantages: this provides better viewing of some of the chromospheric features of the Sun during the eclipse, like priminences and solar loops. WKU is setting up a variety of educational and public outreach activities at their football stadium and the WKU farm, and they encourage you to come visit for the eclipse!In addition, they are participating in a nationwide experiment called Citizen CATE, short for the Continental American Telescopic Eclipse. This project will use 60 telescopes spanning the 2500 mile path of totality to record continuous data of the eclipse as it travels across the US. The result will be data of a remarkable 90 minutes of totality, revealing the activity of the solar corona and providing an extended view of the eclipse as has never been seen before.Science During the EclipseNext up was Shadia Habbal (University of Hawaii), who is a co-leader of the AAS 2017 Eclipse Task Force. In addition to her education and outreach efforts associated with the eclipse, however, Habbal is a solar eclipse researcher. She and her collaborators are known as the Solar Wind Sherpas, due to the fact that they hand-carry their science equipment around the world for solar eclipses!Solar corona during a 2008 eclipse, with color overlay indicating emission from highly ionized iron lines. [Habbal et al. 2010]The primary science done during solar eclipses is the study of the solar corona, the region that extends from the solar surface out to several solar radii. This region is too faint to observe normally, but when the light from the Suns disk is blocked out, we can examine it.Unfortunately, the space telescopes that

  4. Southeast Elevation, Attic Stair Nosing, Day Room Fireplace Details, Day ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Southeast Elevation, Attic Stair Nosing, Day Room Fireplace Details, Day Room Mantel Shelf, Northeast Elevation - National Home for Disabled Volunteer Soldiers - Battle Mountain Sanitarium, Ward 4, 500 North Fifth Street, Hot Springs, Fall River County, SD

  5. AAS 227: Day 1

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Editors Note:This week were at the 227th AAS Meeting in Kissimmee, FL. Along with several fellow authors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting at the end of each day. Follow along here or at astrobites.com, or catch ourlive-tweeted updates from the @astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Things kicked off last night at our undergraduate reception booth. Thanks to all of you who stopped by we were delightedto have so many people tell us that they already know about and useastrobites, and we were excited to introduce a new cohort of students at AAS to astrobites for the first time.Tuesday morning was the official start of the meeting. Here are just a few of the talks and workshops astrobiters attended today.Opening Address (by Becky Smethurst)The President of the AAS, aka our fearless leader Meg Urry kicked off the meeting this morning at the purely coffee powered hour of 8am this morning. She spoke about the importance of young astronomers at the meeting (heres looking at you reader!) and also the importance of the new Working Group for Accessibility and Disabilities (aka WGAD pronounced like wicked) at the AAS. The Society has made extra effort this year to make the conference accessible to all,a message which was very well received by everyone in attendance.Kavli Lecture: New Horizons Alan Stern (by Becky Smethurst)We were definitely spoilt with the first Plenary lecture at this years conference Alan Stern gave us a a review of the New Horizons mission of the Pluto Fly By (astrobites covered the mission back in July with this post). We were treated to beautiful images, wonderful results and a foray into geology.Before (Hubble) and after #NewHorizons. #thatisall #science #astro alanstern #aas227 pic.twitter.com/kkMt6RsSIR Science News (@topsciencething) January 5, 2016Some awesome facts from the lecture that blew my mind:New Horizons is now 2AU (!) beyond Pluto

  6. Estimate of Boundary-Layer Depth Over Beijing, China, Using Doppler Lidar Data During SURF-2015

    NASA Astrophysics Data System (ADS)

    Huang, Meng; Gao, Zhiqiu; Miao, Shiguang; Chen, Fei; LeMone, Margaret A.; Li, Ju; Hu, Fei; Wang, Linlin

    2016-09-01

    Planetary boundary-layer (PBL) structure was investigated using observations from a Doppler lidar and the 325-m Institute of Atmospheric Physics (IAP) meteorological tower in the centre of Beijing during the summer 2015 Study of Urban-impacts on Rainfall and Fog/haze (SURF-2015) field campaign. Using six fair-weather days of lidar and tower data under clear to cloudy skies, we evaluate the ability of the Doppler lidar to probe the urban boundary-layer structure, and then propose a composite method for estimating the diurnal cycle of the PBL depth using the Doppler lidar. For the convective boundary layer (CBL), a threshold method using vertical velocity variance (σ _w^2 >0.1 m2s^{-2}) is used, since it provides more reliable CBL depths than a conventional maximum wind-shear method. The nocturnal boundary-layer (NBL) depth is defined as the height at which σ _w^2 decreases to 10 % of its near-surface maximum minus a background variance. The PBL depths determined by combining these methods have average values ranging from ≈ 270 to ≈ 1500 m for the six days, with the greatest maximum depths associated with clear skies. Release of stored and anthropogenic heat contributes to the maintenance of turbulence until late evening, keeping the NBL near-neutral and deeper at night than would be expected over a natural surface. The NBL typically becomes more shallow with time, but grows in the presence of low-level nocturnal jets. While current results are promising, data over a broader range of conditions are needed to fully develop our PBL-depth algorithms.

  7. Last Days of Life (PDQ)

    MedlinePlus

    ... for more information. Symptoms During the Final Months, Weeks, and Days of Life Key Points Delirium Delirium ... may get worse during the final days or weeks of life. Shortness of breath or not being ...

  8. Family Day Care Provider Handbook

    ERIC Educational Resources Information Center

    New York State Office of Children and Family Services, 2006

    2006-01-01

    Family day care providers are responsible for creating a high-quality program where children have opportunities to grow, learn and thrive. Part of providing high-quality child care includes complying with the family day care regulations from the New York State Office of Children and Family Services (OCFS). This Handbook will help day care…

  9. Perspectives on Infant Day Care.

    ERIC Educational Resources Information Center

    Elardo, Richard, E.; Pagan, Betty, Ed.

    These proceedings of the first annual SACUS workshop on infant day care contain the papers presented at the conference, plus an appendix--Developmental Objectives for Infants and Toddlers. The papers are: "Infant Day Care--Fads, Facts, and Fancies" by Bettye M. Caldwell; "Family Day Care""A Broad Perspective" by Malcolm S. Host; "Getting…

  10. Myth or Truth: Independence Day.

    ERIC Educational Resources Information Center

    Gardner, Traci

    Most Americans think of the Fourth of July as Independence Day, but is it really the day the U.S. declared and celebrated independence? By exploring myths and truths surrounding Independence Day, this lesson asks students to think critically about commonly believed stories regarding the beginning of the Revolutionary War and the Independence Day…

  11. The 4 Day School Week

    ERIC Educational Resources Information Center

    Dam, Ai

    2006-01-01

    Colorado law requires school districts to schedule 1080 hours per year of instructional time for secondary schools and 990 instructional hours for elementary schools. The 1080 hours equate to six hours per day for 180 days. The 990 hours equate to five and one-half hours per day. Up to 24 hours may be counted for parent-teacher conferences, staff…

  12. Combining shipboard in situ data with satellite data to estimate daily primary production in a coastal upwelling system: A data mining approach

    NASA Astrophysics Data System (ADS)

    Williamson, Robert I.; Field, John G.; Shillington, Frank A.; Jarre, Astrid; Potgieter, Anet

    2015-11-01

    This study classifies coastal time-series data according to subsurface phytoplankton vertical distributions to be able to capture the variability of primary production at fine spatial and temporal scales. Our method uses algorithms developed to extract patterns in large datasets of time-sequential data. We use short time-series of QuikSCAT surface winds, MODIS sea surface temperature and surface chlorophyll a associated with each in situ chlorophyll a profile, as well as the season and bottom depth of the in situ station to discover patterns that can be used to classify new data into 12 profile classes. We first fill in missing MODIS data using a conditional random field model so that cloudy days are not excluded. The most likely profile is then predicted using all the available data. We apply our method to the St Helena Bay area, a region within the productive Benguela Current upwelling system. A profile is predicted for each day and each pixel of 4 km resolution satellite image for 16 consecutive months. Each profile is used in a broad-band photosynthesis model to produce a daily three-dimensional estimate of gross primary production. An average production rate of 3.2 g C m-2 day-1 was obtained for the area, which shows very good agreement with other estimates from the region. The results show persistent high productivity near the surface throughout the year with the exception of the winter months. Deeper in the water column productivity is more seasonal. The 16 month time-series highlights the interannual, seasonal and daily variability of the system. By linking physical processes to the distribution of phytoplankton at appropriate spatio-temporal scales, we can now more rigorously investigate bottom-up driven impacts on ecosystems characterised by short-term variability.

  13. Insolation data manual: long-term monthly averages of solar radiation, temperature, degree-days and global anti K/sub T/ for 248 national weather service stations

    SciTech Connect

    Knapp, C L; Stoffel, T L; Whitaker, S D

    1980-10-01

    Monthly averaged data is presented which describes the availability of solar radiation at 248 National Weather Service stations. Monthly and annual average daily insolation and temperature values have been computed from a base of 24 to 25 years of data. Average daily maximum, minimum, and monthly temperatures are provided for most locations in both Celsius and Fahrenheit. Heating and cooling degree-days were computed relative to a base of 18.3/sup 0/C (65/sup 0/F). For each station, global anti K/sub T/ (cloudiness index) were calculated on a monthly and annual basis. (MHR)

  14. Optical characterization of the oceanic unicellular cyanobacterium Synechococcus grown under a day-night cycle in natural irradiance

    NASA Technical Reports Server (NTRS)

    Stramski, Dariusz; Shalapyonok, Alexi; Reynolds, Rick A.

    1995-01-01

    The optical properties of the ocenanic cyanobacterium Synechococcus (clone WH8103) were examined in a nutrient-replete laboratory culture grown under a day-night cycle in natural irradiance. Measurements of the spectral absorption and beam attenuation coefficients, the size distribution of cells in suspension, and microscopic analysis of samples were made at intervals of 2-4 hours for 2 days. These measurements were used to calculate the optical properties at the level of a single 'mean' cell representative of the acutal population, specifically, the optical cross sections for spectral absorption bar-(sigma(sub a)), scattering bar-sigma(sub b))(lambda), and attentuation bar-(sigma(sub c))(lambda). In addition, concurrent determinations of chlorophyll a and particulate organic carbon allowed calculation of the Chl a- and C-specific optical coefficients. The refractive index of cells was derived from the observed data using a theory of light absorption and scattering by homogeneous spheres. Low irradiance because of cloudy skies resulted in slow division rates of cells in the culture. The percentage of dividing cells was unusually high (greater than 30%) throughout the experiment. The optical cross sections varied greatly over a day-night cycle, with a minimum near dawn or midmorning and maximum near dusk. During daylight hours, bar-(sigma(sub b)) and bar-(sigma(sub c)) can increase more than twofold and bar-(sigma(sub a) by as much as 45%. The real part of the refractive index n increaed during the day; changes in n had equal or greater effect than the varying size distribution on changes in bar-(sigma(sub c)) and bar-(sigma(sub b)). The contribution of changes in n to the increase of bar-(sigma(sub c))(660) during daylight hours was 65.7% and 45.1% on day 1 and 2, respectively. During the dark period, when bar-(sigma(sub c))(660) decreased by a factor of 2.9, the effect of decreasing n was dominant (86.3%). With the exception of a few hours during the second light

  15. Constraining UV continuum slopes of active galactic nuclei with cloudy models of broad-line region extreme-ultraviolet emission lines

    SciTech Connect

    Moloney, Joshua; Michael Shull, J. E-mail: michael.shull@colorado.edu

    2014-10-01

    Understanding the composition and structure of the broad-line region (BLR) of active galactic nuclei (AGNs) is important for answering many outstanding questions in supermassive black hole evolution, galaxy evolution, and ionization of the intergalactic medium. We used single-epoch UV spectra from the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope to measure EUV emission-line fluxes from four individual AGNs with 0.49 ≤ z ≤ 0.64, two AGNs with 0.32 ≤ z ≤ 0.40, and a composite of 159 AGNs. With the CLOUDY photoionization code, we calculated emission-line fluxes from BLR clouds with a range of density, hydrogen ionizing flux, and incident continuum spectral indices. The photoionization grids were fit to the observations using single-component and locally optimally emitting cloud (LOC) models. The LOC models provide good fits to the measured fluxes, while the single-component models do not. The UV spectral indices preferred by our LOC models are consistent with those measured from COS spectra. EUV emission lines such as N IV λ765, O II λ833, and O III λ834 originate primarily from gas with electron temperatures between 37,000 K and 55,000 K. This gas is found in BLR clouds with high hydrogen densities (n {sub H} ≥ 10{sup 12} cm{sup –3}) and hydrogen ionizing photon fluxes (Φ{sub H} ≥ 10{sup 22} cm{sup –2} s{sup –1}).

  16. Study of the Half-Day/Full-Day Kindergarten Model

    ERIC Educational Resources Information Center

    McInroy, Thomas R.

    2012-01-01

    This case study and problem analysis was an in-depth investigation of the half-day/full-day kindergarten model by utilizing interviews and focus groups to provide insight from parents, teachers, and other district personnel as to how the model has impacted the social, emotional, and academic development of the participating students. This study…

  17. Venus Length-of-Day Variations

    NASA Astrophysics Data System (ADS)

    Margot, Jean-Luc; Campbell, D. B.; Peale, S. J.; Ghigo, F. D.

    2012-10-01

    Since 2004 we have been monitoring the instantaneous spin state of Venus with the goals of measuring the precession of the rotation axis and of quantifying daily, seasonal, and secular changes in length-of-day. We use the Goldstone and Green Bank Telescopes for these observations. The spin period of Venus is thought to be set by a delicate balance between solid-body tides and atmospheric torques that must vary as insolation and orbital parameters change [Bills 2005]. Our measurements to date reveal length-of-day (LOD) variations of 50 ppm. None of the models can be reconciled with the Magellan 500-day-average spin period of 243.0185 +/- 0.0001 days [Davies et al 1992], nor with a 16-year-average estimate of 243.023 +/- 0.002 days [Mueller et al 2012], nor with any other constant spin period. With our nominal solution we can rule out a constant spin period with over 99.9% confidence. When allowances are made for uncertainties in spin axis orientation and instantaneous spin measurement epochs, the confidence is reduced but remains higher than 99%. We attribute the LOD variations primarily to angular momentum exchange between the atmosphere and solid planet. Because there are so few constraints on the internal dynamical structure of the Venusian atmosphere, a time history of atmospheric angular momentum changes can be used to address questions related to the dynamics of the atmosphere, including its super-rotation, and climatic variations.

  18. Rethinking the Day of Silence

    ERIC Educational Resources Information Center

    Murphy, Adriana

    2013-01-01

    Back in 2006, 7th and 8th graders at Green Acres, the K-8 independent school where the author taught in suburban Maryland, participated in the Day of Silence. The Day of Silence is a national event: Students across the country take a one-day pledge of silence to show that they want to make schools safe for all students, regardless of their sexual…

  19. Sun-Earth Day, 2001

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi L.; Mortfield, P.; Hathaway, D. H.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    To promote awareness of the Sun-Earth connection, NASA's Marshall Space Flight Center, in collaboration with the Stanford SOLAR Center, sponsored a one-day Sun-Earth Day event on April 27, 2001. Although "celebrated" on only one day, teachers and students from across the nation, prepared for over a month in advance. Workshops were held in March to train teachers. Students performed experiments, results of which were shared through video clips and an internet web cast. Our poster includes highlights from student experiments (grades 2 - 12), lessons learned from the teacher workshops and the event itself, and plans for Sun-Earth Day 2002.

  20. STS-109 Mission Highlights Resource Tape. Part 4 of 4; Flight Days 8 - 12

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This video, Part 4 of 4, shows footage of crew activities from flight days 8 through 12 of STS-109. The crew included: Scott Altman, Commander; Duane Carey, Pilot; John Grunsfeld, Payload Commander; Nancy Currie, Richard Linnehan, James Newman, Michael Massimino, Mission Speicalists. The activities from other flights days can be seen on 'STS-109 Mission Highlights Resource Tape' Part 1 of 4 (internal ID 2002139471), 'STS-109 Mission Highlights Resource Tape' Part 2 of 4 (internal ID 2002137664), and 'STS-109 Mission Highlights Resource Tape' Part 3 of 4 (internal ID 2002139476). The primary activity on flight day 8 was an EVA (extravehicular activity) by Grunsfeld and Linnehan to install a cryocooler and radiator for the NICMOS (Near Infrared Camera and Multi-Object Spectrometer) on the HST (Hubble Space Telescope). Before returning to Columbia's airlock, the astronauts, with a cloudy background, hold onto the orbiter and offer their thoughts on the significance of their mission, the HST, and spaceflight. Footage from flight day 9 includes the grappling, unbearthing, and deployment of the HST from Columbia, and the crew coordinating and videotaping Columbia's departure. Flight day 10 was a relatively inactive day, and flight day 11 includes a checkout of Columbia's aerodynamic surfaces. Columbia landed on flight day 12, which is covered by footage of the crew members speaking during reentry, and their night landing, primarily shown through the orbiter's head-up display. The video includes numerous views of the HST, as well as views of the the Galapagos Islands, Madagascar, and Southern Africa with parts of the Atlantic, Indian, and Pacific Oceans, and part of the coast of Chile. The pistol grip space tool is shown in use, and the crew answers two messages from the public, including a message to Massimino from the Fire Department of New York.

  1. Quantifying Forest and Coastal Disturbance from Industrial Mining Using Satellite Time Series Analysis Under Very Cloudy Conditions

    NASA Astrophysics Data System (ADS)

    Alonzo, M.; Van Den Hoek, J.; Ahmed, N.

    2015-12-01

    The open-pit Grasberg mine, located in the highlands of Western Papua, Indonesia, and operated by PT Freeport Indonesia (PT-FI), is among the world's largest in terms of copper and gold production. Over the last 27 years, PT-FI has used the Ajkwa River to transport an estimated 1.3 billion tons of tailings from the mine into the so-called Ajkwa Deposition Area (ADA). The ADA is the product of aggradation and lateral expansion of the Ajkwa River into the surrounding lowland rainforest and mangroves, which include species important to the livelihoods of indigenous Papuans. Mine tailings that do not settle in the ADA disperse into the Arafura Sea where they increase levels of suspended particulate matter (SPM) and associated concentrations of dissolved copper. Despite the mine's large-scale operations, ecological impact of mine tailings deposition on the forest and estuarial ecosystems have received minimal formal study. While ground-based inquiries are nearly impossible due to access restrictions, assessment via satellite remote sensing is promising but hindered by extreme cloud cover. In this study, we characterize ridgeline-to-coast environmental impacts along the Ajkwa River, from the Grasberg mine to the Arafura Sea between 1987 and 2014. We use "all available" Landsat TM and ETM+ images collected over this time period to both track pixel-level vegetation disturbance and monitor changes in coastal SPM levels. Existing temporal segmentation algorithms are unable to assess both acute and protracted trajectories of vegetation change due to pervasive cloud cover. In response, we employ robust, piecewise linear regression on noisy vegetation index (NDVI) data in a manner that is relatively insensitive to atmospheric contamination. Using this disturbance detection technique we constructed land cover histories for every pixel, based on 199 image dates, to differentiate processes of vegetation decline, disturbance, and regrowth. Using annual reports from PT-FI, we show

  2. Day Care Infection Control Protocol.

    ERIC Educational Resources Information Center

    Seattle-King County Dept. of Public Health, Seattle, WA.

    This day care infection control manual was assembled to provide technical guidance for the prevention and control of communicable diseases to child day care facilities in Seattle and King County, Washington. For each disease, the manual provides background information, public health control recommendations, and letters that can be used to…

  3. Day Care for America's Children.

    ERIC Educational Resources Information Center

    LaCrosse, E. Robert

    High quality day care is a pressing social need for the 1970's. Factors responsible for the strong interest in day care include pressures for welfare reform, the growing number of women in the labor force, minority pressures for equal opportunities, and research findings stressing the importance of development during the early years of a child's…

  4. Montessori All Day, All Year

    ERIC Educational Resources Information Center

    Black, Connie; Davis, Liza

    2015-01-01

    Introducing real community into the Children's House goes back to the roots of Montessori education through all-day Montessori. The all-day environment is a house where children live with a "developmental room" of Montessori materials including a living room, kitchen, dining area, bedroom, bathroom, greeting rooms, and outdoor spaces.…

  5. Good References on Day Care.

    ERIC Educational Resources Information Center

    Children's Bureau (DHEW), Washington, DC.

    This annotated bibliography, with about 70 entries, deals with many facets of day care programs. Citations are divided by the following subjects: day care guides and standards, environmental standards, education and child development, social services, health and nutrition, training of staff, parent involvement, administration and coordination, and…

  6. Families, Day Care, and Stress.

    ERIC Educational Resources Information Center

    Monroe, Marian

    Stress in relationship to preschool children, day care environments, and the parents of children in day care is examined in this conference paper. Some events that may cause stress in individuals and the defense mechanisms associated with stressful experiences are indicated. Guidelines are provided for identifying children under stress and for…

  7. Child Day Care Health Handbook.

    ERIC Educational Resources Information Center

    Fookson, Maxine; And Others

    Developed to meet Washington State Day Care Minimum Licensing Requirements, guidelines in this handbook concern 10 health topics. Discussion focuses on (1) preventing illness in day care settings; (2) illnesses, their treatment, ways to limit their spread, and what caregivers can do when they have a sick child at their center; (3) caregivers'…

  8. Day Care: Facilities and Equipment.

    ERIC Educational Resources Information Center

    Campbell, Sheila; And Others

    This collection of 4 bilingual papers on facilities and equipment in day care centers is part of a series of papers on various aspects of day care published by the Canadian Department of Health and Welfare. Each paper is presented in both English and French. Paper I, concerning space and equipment in the playground, consists of short lists of…

  9. Day Care: Resources for Decisions.

    ERIC Educational Resources Information Center

    Grotberg, Edith H., Ed.

    The question of federal day care programs on a mass scale oriented toward influencing family life is discussed, and a number of issues concerning the behavioral and social effects of such a system are raised. This document is divided into six parts. Part I discusses the following: day care settings--social, cultural, and anthropological…

  10. In Defense of Snow Days

    ERIC Educational Resources Information Center

    Goodman, Joshua

    2015-01-01

    In snowy climates, school superintendents must frequently decide whether an impending storm warrants closing schools for the day. Concerns about student and teacher safety must be weighed against the loss of student learning time, along with state requirements for days of instruction and the cost and inconvenience of extending the school year into…

  11. Youth Field Day Planning Guide.

    ERIC Educational Resources Information Center

    Wisconsin State Dept. of Natural Resources, Madison.

    Youth field days expose children to outdoor activities, land use ethics, and habitat conservation and encourage adults to be mentors in these areas. A typical youth field day could have programs in archery, fishing, boating, shooting, or safety. The event requires a diverse steering committee that usually includes sporting clubs and state…

  12. Day Care Center Enrichment Program.

    ERIC Educational Resources Information Center

    West Virginia State Dept. of Welfare, Charleston.

    This guide to a West Virginia Department of Welfare project for upgrading the quality of day care centers throughout the state presents samples of the forms used in the program, accompanied by a brief description of the program's format, requirements and procedures. The Day Care Center Enrichment Program provides a monetary incentive for…

  13. Impacts of Reprojection and Sampling of MODIS Satellite Images on Estimating Crop Evapotranspiration Using METRIC model

    NASA Astrophysics Data System (ADS)

    Pun, M.; Kilic, A.; Allen, R.

    2014-12-01

    Landsat satellite images have been used frequently to map evapotranspiration (ET) andbiophysical variables at the field scale with surface energy balance algorithms. Although Landsat images have high spatial resolution with 30m cell size, it has limitations for real time monitoring of crop ET by providing only two to four images per month for an area, which, when encountered with cloudy days, further deteriorates the availability of images and snapshots of ET behavior. Therefore real time monitoring essentially has to include near-daily thermal satellites such as MODIS/VIIRS into the time series. However, the challenge with field scale monitoring with these systems is the large size of the thermal band which is 375 m with VIIRS and 1000 meter with MODIS. To maximize the accuracy of ET estimates during infusion of MODIS products into land surface models for monitoring field scale ET, it is important to assess the geometric accuracy of the various MODIS products, for example, spatial correspondence among the 250 m red and near-infrared bands, the 500 m reflectance bands; and the 1000 m thermal bands and associated products. METRIC model was used with MODIS images to estimate ET from irrigated and rainfed fields in Nebraska. Our objective was to assess geometric accuracy of MODIS image layers and how to correctly handle these data for highest accuracy of estimated ET at the individual field scale during the extensive drought of 2012. For example, the particular tool used to subset and reproject MODIS swath images from level-1 and level-2 products (e.g., using the MRTSwath and other tools), the initial starting location (upper left hand corner), and the projection system all effect how pixel corners of the various resolution bands align. Depending on the approach used, origin of pixel corners can vary from image to image date and therefore impacts the pairing of ET information from multiple dates the consistency and accuracy of sampling ET from within field interiors

  14. Estimating photosynthetically available radiation at the ocean surface from GOCI data

    NASA Astrophysics Data System (ADS)

    Frouin, Robert; McPherson, John

    2012-09-01

    A technique is presented to estimate photosynthetically available radiation (PAR) at the ocean surface from Geostationary Ocean Color Imager (GOCI) data. The sensor is adapted to the problem, since it measures at visible wavelengths and does not saturate over clouds, and the hourly data provides adequate temporal sampling to describe diurnal variability of clouds. Instantaneous surface PAR is computed as the difference between the solar irradiance incident at the top of the atmosphere (known) and the solar irradiance reflected back to space (derived from GOCI radiance), taking into account absorption and scattering by the clear atmosphere (modeled). Knowledge of pixel composition is not required. Apart from planetary albedo and sun zenith angle, the model parameters are fixed at their climatological values. The instantaneous PAR estimates at hourly intervals are integrated over time to provide daily values. The technique is applied to GOCI imagery acquired on 5 April 2011, and the GOCI daily PAR estimates are compared with those obtained from MODerate Resolution Imaging Spectrometer (MODIS) data. Agreement is good between the two types of estimates, with a coefficient of determination ( r 2) of 0.778, a bias of 0.23 Em-2d-1 (0.5% with higher GOCI values), and a root-mean-squared difference of 5.00 Em-2d-1 (11.2%). Differences in cloudy conditions are attributed to daily cloudiness changes not captured by the MODIS observations. The comparison statistics indicate that GOCI PAR estimates have acceptable accuracy for regional studies of aquatic photosynthesis.

  15. The ocean sampling day consortium.

    PubMed

    Kopf, Anna; Bicak, Mesude; Kottmann, Renzo; Schnetzer, Julia; Kostadinov, Ivaylo; Lehmann, Katja; Fernandez-Guerra, Antonio; Jeanthon, Christian; Rahav, Eyal; Ullrich, Matthias; Wichels, Antje; Gerdts, Gunnar; Polymenakou, Paraskevi; Kotoulas, Giorgos; Siam, Rania; Abdallah, Rehab Z; Sonnenschein, Eva C; Cariou, Thierry; O'Gara, Fergal; Jackson, Stephen; Orlic, Sandi; Steinke, Michael; Busch, Julia; Duarte, Bernardo; Caçador, Isabel; Canning-Clode, João; Bobrova, Oleksandra; Marteinsson, Viggo; Reynisson, Eyjolfur; Loureiro, Clara Magalhães; Luna, Gian Marco; Quero, Grazia Marina; Löscher, Carolin R; Kremp, Anke; DeLorenzo, Marie E; Øvreås, Lise; Tolman, Jennifer; LaRoche, Julie; Penna, Antonella; Frischer, Marc; Davis, Timothy; Katherine, Barker; Meyer, Christopher P; Ramos, Sandra; Magalhães, Catarina; Jude-Lemeilleur, Florence; Aguirre-Macedo, Ma Leopoldina; Wang, Shiao; Poulton, Nicole; Jones, Scott; Collin, Rachel; Fuhrman, Jed A; Conan, Pascal; Alonso, Cecilia; Stambler, Noga; Goodwin, Kelly; Yakimov, Michael M; Baltar, Federico; Bodrossy, Levente; Van De Kamp, Jodie; Frampton, Dion Mf; Ostrowski, Martin; Van Ruth, Paul; Malthouse, Paul; Claus, Simon; Deneudt, Klaas; Mortelmans, Jonas; Pitois, Sophie; Wallom, David; Salter, Ian; Costa, Rodrigo; Schroeder, Declan C; Kandil, Mahrous M; Amaral, Valentina; Biancalana, Florencia; Santana, Rafael; Pedrotti, Maria Luiza; Yoshida, Takashi; Ogata, Hiroyuki; Ingleton, Tim; Munnik, Kate; Rodriguez-Ezpeleta, Naiara; Berteaux-Lecellier, Veronique; Wecker, Patricia; Cancio, Ibon; Vaulot, Daniel; Bienhold, Christina; Ghazal, Hassan; Chaouni, Bouchra; Essayeh, Soumya; Ettamimi, Sara; Zaid, El Houcine; Boukhatem, Noureddine; Bouali, Abderrahim; Chahboune, Rajaa; Barrijal, Said; Timinouni, Mohammed; El Otmani, Fatima; Bennani, Mohamed; Mea, Marianna; Todorova, Nadezhda; Karamfilov, Ventzislav; Ten Hoopen, Petra; Cochrane, Guy; L'Haridon, Stephane; Bizsel, Kemal Can; Vezzi, Alessandro; Lauro, Federico M; Martin, Patrick; Jensen, Rachelle M; Hinks, Jamie; Gebbels, Susan; Rosselli, Riccardo; De Pascale, Fabio; Schiavon, Riccardo; Dos Santos, Antonina; Villar, Emilie; Pesant, Stéphane; Cataletto, Bruno; Malfatti, Francesca; Edirisinghe, Ranjith; Silveira, Jorge A Herrera; Barbier, Michele; Turk, Valentina; Tinta, Tinkara; Fuller, Wayne J; Salihoglu, Ilkay; Serakinci, Nedime; Ergoren, Mahmut Cerkez; Bresnan, Eileen; Iriberri, Juan; Nyhus, Paul Anders Fronth; Bente, Edvardsen; Karlsen, Hans Erik; Golyshin, Peter N; Gasol, Josep M; Moncheva, Snejana; Dzhembekova, Nina; Johnson, Zackary; Sinigalliano, Christopher David; Gidley, Maribeth Louise; Zingone, Adriana; Danovaro, Roberto; Tsiamis, George; Clark, Melody S; Costa, Ana Cristina; El Bour, Monia; Martins, Ana M; Collins, R Eric; Ducluzeau, Anne-Lise; Martinez, Jonathan; Costello, Mark J; Amaral-Zettler, Linda A; Gilbert, Jack A; Davies, Neil; Field, Dawn; Glöckner, Frank Oliver

    2015-01-01

    Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world's oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits. PMID:26097697

  16. The Ocean Sampling Day Consortium

    SciTech Connect

    Kopf, Anna; Bicak, Mesude; Kottmann, Renzo; Schnetzer, Julia; Kostadinov, Ivaylo; Lehmann, Katja; Fernandez-Guerra, Antonio; Jeanthon, Christian; Rahav, Eyal; Ullrich, Matthias; Wichels, Antje; Gerdts, Gunnar; Polymenakou, Paraskevi; Kotoulas, Giorgos; Siam, Rania; Abdallah, Rehab Z.; Sonnenschein, Eva C.; Cariou, Thierry; O’Gara, Fergal; Jackson, Stephen; Orlic, Sandi; Steinke, Michael; Busch, Julia; Duarte, Bernardo; Caçador, Isabel; Canning-Clode, João; Bobrova, Oleksandra; Marteinsson, Viggo; Reynisson, Eyjolfur; Loureiro, Clara Magalhães; Luna, Gian Marco; Quero, Grazia Marina; Löscher, Carolin R.; Kremp, Anke; DeLorenzo, Marie E.; Øvreås, Lise; Tolman, Jennifer; LaRoche, Julie; Penna, Antonella; Frischer, Marc; Davis, Timothy; Katherine, Barker; Meyer, Christopher P.; Ramos, Sandra; Magalhães, Catarina; Jude-Lemeilleur, Florence; Aguirre-Macedo, Ma Leopoldina; Wang, Shiao; Poulton, Nicole; Jones, Scott; Collin, Rachel; Fuhrman, Jed A.; Conan, Pascal; Alonso, Cecilia; Stambler, Noga; Goodwin, Kelly; Yakimov, Michael M.; Baltar, Federico; Bodrossy, Levente; Van De Kamp, Jodie; Frampton, Dion M. F.; Ostrowski, Martin; Van Ruth, Paul; Malthouse, Paul; Claus, Simon; Deneudt, Klaas; Mortelmans, Jonas; Pitois, Sophie; Wallom, David; Salter, Ian; Costa, Rodrigo; Schroeder, Declan C.; Kandil, Mahrous M.; Amaral, Valentina; Biancalana, Florencia; Santana, Rafael; Pedrotti, Maria Luiza; Yoshida, Takashi; Ogata, Hiroyuki; Ingleton, Tim; Munnik, Kate; Rodriguez-Ezpeleta, Naiara; Berteaux-Lecellier, Veronique; Wecker, Patricia; Cancio, Ibon; Vaulot, Daniel; Bienhold, Christina; Ghazal, Hassan; Chaouni, Bouchra; Essayeh, Soumya; Ettamimi, Sara; Zaid, El Houcine; Boukhatem, Noureddine; Bouali, Abderrahim; Chahboune, Rajaa; Barrijal, Said; Timinouni, Mohammed; El Otmani, Fatima; Bennani, Mohamed; Mea, Marianna; Todorova, Nadezhda; Karamfilov, Ventzislav; ten Hoopen, Petra; Cochrane, Guy; L’Haridon, Stephane; Bizsel, Kemal Can; Vezzi, Alessandro; Lauro, Federico M.; Martin, Patrick; Jensen, Rachelle M.; Hinks, Jamie; Gebbels, Susan; Rosselli, Riccardo; De Pascale, Fabio; Schiavon, Riccardo; dos Santos, Antonina; Villar, Emilie; Pesant, Stéphane; Cataletto, Bruno; Malfatti, Francesca; Edirisinghe, Ranjith; Silveira, Jorge A. Herrera; Barbier, Michele; Turk, Valentina; Tinta, Tinkara; Fuller, Wayne J.; Salihoglu, Ilkay; Serakinci, Nedime; Ergoren, Mahmut Cerkez; Bresnan, Eileen; Iriberri, Juan; Nyhus, Paul Anders Fronth; Bente, Edvardsen; Karlsen, Hans Erik; Golyshin, Peter N.; Gasol, Josep M.; Moncheva, Snejana; Dzhembekova, Nina; Johnson, Zackary; Sinigalliano, Christopher David; Gidley, Maribeth Louise; Zingone, Adriana; Danovaro, Roberto; Tsiamis, George; Clark, Melody S.; Costa, Ana Cristina; El Bour, Monia; Martins, Ana M.; Collins, R. Eric; Ducluzeau, Anne-Lise; Martinez, Jonathan; Costello, Mark J.; Amaral-Zettler, Linda A.; Gilbert, Jack A.; Davies, Neil; Field, Dawn; Glöckner, Frank Oliver

    2015-06-19

    In this study, Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits.

  17. STS-79 Flight Day 10

    NASA Technical Reports Server (NTRS)

    1996-01-01

    On this tenth day of the STS-79 mission, the flight crew, Cmdr. William F. Readdy, Pilot Terrence W. Wilcutt, Mission Specialists, Thomas D. Akers, Shannon Lucid, Jay Apt, and Carl E. Walz spent the day stowing equipment and deactivating experiments in preparation for the planned landing at Kennedy Space Center (KSC) in Florida. All systems aboard the orbiter were checked out overnight in preparation for landing day, including testing the flight control surfaces and thruster jets that will be used to maneuver the spacecraft through the atmosphere.

  18. STS-70 flight: Day 3

    NASA Astrophysics Data System (ADS)

    1995-07-01

    The third day of the STS-70 mission of Space Shuttle Discovery is contained on this video. Astronauts Kregal and Thomas begin the day by working with the Hercules camera, which will record pinpoint data on the surface location of Earth observation imagery. Other work includes operations with an experiment that gauges astronauts' reflexes and hand-eye coordination. During the day, the crew spoke with World War 2 veteran, Harland Claussen,and ABC's Mike and Maty Show and the Toledo Blade newspaper (Toledo, Ohio) interviewed the astronauts via satellite link.

  19. The ocean sampling day consortium.

    PubMed

    Kopf, Anna; Bicak, Mesude; Kottmann, Renzo; Schnetzer, Julia; Kostadinov, Ivaylo; Lehmann, Katja; Fernandez-Guerra, Antonio; Jeanthon, Christian; Rahav, Eyal; Ullrich, Matthias; Wichels, Antje; Gerdts, Gunnar; Polymenakou, Paraskevi; Kotoulas, Giorgos; Siam, Rania; Abdallah, Rehab Z; Sonnenschein, Eva C; Cariou, Thierry; O'Gara, Fergal; Jackson, Stephen; Orlic, Sandi; Steinke, Michael; Busch, Julia; Duarte, Bernardo; Caçador, Isabel; Canning-Clode, João; Bobrova, Oleksandra; Marteinsson, Viggo; Reynisson, Eyjolfur; Loureiro, Clara Magalhães; Luna, Gian Marco; Quero, Grazia Marina; Löscher, Carolin R; Kremp, Anke; DeLorenzo, Marie E; Øvreås, Lise; Tolman, Jennifer; LaRoche, Julie; Penna, Antonella; Frischer, Marc; Davis, Timothy; Katherine, Barker; Meyer, Christopher P; Ramos, Sandra; Magalhães, Catarina; Jude-Lemeilleur, Florence; Aguirre-Macedo, Ma Leopoldina; Wang, Shiao; Poulton, Nicole; Jones, Scott; Collin, Rachel; Fuhrman, Jed A; Conan, Pascal; Alonso, Cecilia; Stambler, Noga; Goodwin, Kelly; Yakimov, Michael M; Baltar, Federico; Bodrossy, Levente; Van De Kamp, Jodie; Frampton, Dion Mf; Ostrowski, Martin; Van Ruth, Paul; Malthouse, Paul; Claus, Simon; Deneudt, Klaas; Mortelmans, Jonas; Pitois, Sophie; Wallom, David; Salter, Ian; Costa, Rodrigo; Schroeder, Declan C; Kandil, Mahrous M; Amaral, Valentina; Biancalana, Florencia; Santana, Rafael; Pedrotti, Maria Luiza; Yoshida, Takashi; Ogata, Hiroyuki; Ingleton, Tim; Munnik, Kate; Rodriguez-Ezpeleta, Naiara; Berteaux-Lecellier, Veronique; Wecker, Patricia; Cancio, Ibon; Vaulot, Daniel; Bienhold, Christina; Ghazal, Hassan; Chaouni, Bouchra; Essayeh, Soumya; Ettamimi, Sara; Zaid, El Houcine; Boukhatem, Noureddine; Bouali, Abderrahim; Chahboune, Rajaa; Barrijal, Said; Timinouni, Mohammed; El Otmani, Fatima; Bennani, Mohamed; Mea, Marianna; Todorova, Nadezhda; Karamfilov, Ventzislav; Ten Hoopen, Petra; Cochrane, Guy; L'Haridon, Stephane; Bizsel, Kemal Can; Vezzi, Alessandro; Lauro, Federico M; Martin, Patrick; Jensen, Rachelle M; Hinks, Jamie; Gebbels, Susan; Rosselli, Riccardo; De Pascale, Fabio; Schiavon, Riccardo; Dos Santos, Antonina; Villar, Emilie; Pesant, Stéphane; Cataletto, Bruno; Malfatti, Francesca; Edirisinghe, Ranjith; Silveira, Jorge A Herrera; Barbier, Michele; Turk, Valentina; Tinta, Tinkara; Fuller, Wayne J; Salihoglu, Ilkay; Serakinci, Nedime; Ergoren, Mahmut Cerkez; Bresnan, Eileen; Iriberri, Juan; Nyhus, Paul Anders Fronth; Bente, Edvardsen; Karlsen, Hans Erik; Golyshin, Peter N; Gasol, Josep M; Moncheva, Snejana; Dzhembekova, Nina; Johnson, Zackary; Sinigalliano, Christopher David; Gidley, Maribeth Louise; Zingone, Adriana; Danovaro, Roberto; Tsiamis, George; Clark, Melody S; Costa, Ana Cristina; El Bour, Monia; Martins, Ana M; Collins, R Eric; Ducluzeau, Anne-Lise; Martinez, Jonathan; Costello, Mark J; Amaral-Zettler, Linda A; Gilbert, Jack A; Davies, Neil; Field, Dawn; Glöckner, Frank Oliver

    2015-01-01

    Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world's oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits.

  20. World AIDS Day focuses on children.

    PubMed

    1997-01-01

    The focus of the 1997 World AIDS Day was children. An estimated 1600 children become infected with HIV each day and, by the end of 1997, 1 million children--95% of them in developing countries--are expected to be HIV-infected. Another 8 million children have lost their mothers to AIDS. Although most HIV-positive children become infected as a result of maternal-child transmission during pregnancy, childbirth, and breast feeding, other risk factors such as child sex abuse, exploitation in the commercial sex trade, blood transfusions, and intravenous drug use are also significant in later years. Because of its devastating impact on social and economic life, the fight against AIDS is one of the most important challenges in the world today. The UNAIDS program, a joint venture of 6 UN agencies with expertise ranging from reproductive health care to economic development, is at the center of this effort.

  1. Atmospheric CO(2) column measurements in cloudy conditions using intensity-modulated continuous-wave lidar at 1.57 micron.

    PubMed

    Lin, Bing; Nehrir, Amin R; Harrison, F Wallace; Browell, Edward V; Ismail, Syed; Obland, Michael D; Campbell, Joel; Dobler, Jeremy; Meadows, Byron; Fan, Tai-Fang; Kooi, Susan

    2015-06-01

    This study evaluates the capability of atmospheric CO2 column measurements under cloudy conditions using an airborne intensity-modulated continuous-wave integrated-path-differential-absorption lidar operating in the 1.57-μm CO2 absorption band. The atmospheric CO2 column amounts from the aircraft to the tops of optically thick cumulus clouds and to the surface in the presence of optically thin clouds are retrieved from lidar data obtained during the summer 2011 and spring 2013 flight campaigns, respectively. For the case of intervening thin cirrus clouds with an average cloud optical depth of about 0.16 over an arid/semi-arid area, the CO2 column measurements from 12.2 km altitude were found to be consistent with the cloud free conditions with a lower precision due to the additional optical attenuation of the thin clouds. The clear sky precision for this flight campaign case was about 0.72% for a 0.1-s integration, which was close to previously reported flight campaign results. For a vegetated area and lidar path lengths of 8 to 12 km, the precision of the measured differential absorption optical depths to the surface was 1.3 - 2.2% for 0.1-s integration. The precision of the CO2 column measurements to thick clouds with reflectance about 1/10 of that of the surface was about a factor of 2 to 3 lower than that to the surface owing to weaker lidar returns from clouds and a smaller CO2 differential absorption optical depth compared to that for the entire column.

  2. Workers' Memorial Day - April 28, 2016.

    PubMed

    2016-01-01

    Workers' Memorial Day, observed annually on April 28, recognizes workers who suffered or died because of exposures to hazards at work. In 2014, 4,679 U.S. workers died from work-related injuries. Although deaths from work-related injuries are captured by surveillance systems, most deaths from work-related illness are not. In 2007, an estimated 53,445 deaths from work-related illness occurred. In 2014, employers reported approximately 3 million nonfatal injuries and illnesses to private industry workers and 722,000 to state and local government workers; an estimated 2.7 million work-related injuries were treated in emergency departments, resulting in 113,000 hospitalizations (National Institute for Occupational Safety and Health (CDC-NIOSH), unpublished data, 2016). PMID:27563708

  3. Making Those First Days Count.

    ERIC Educational Resources Information Center

    Soloway, Rhoda Kahn

    1979-01-01

    The author describes three "icebreaker" activities she uses to help a class of students get acquainted with one another--learning names and personal information--during the first days of the school year. (SJL)

  4. STS-79 Flight Day 5

    NASA Technical Reports Server (NTRS)

    1996-01-01

    On this fifth day of the STS-79 mission, the flight crew, Cmdr. William F. Readdy, Pilot Terrence W. Wilcutt, Mission Specialists, Thomas D. Akers, Shannon Lucid, Jay Apt, and Carl E. Walz, in the first full day of joint Shuttle/Mir operations begin in with the transfer of a biotechnology investigation and logistical supplies from Atlantis to Mir. The Biotechnology System, an investigation that will study the long-term development of cartilage cells in microgravity, was transported to Mir early this morning. During his planned four-month stay on Mir, John Blaha will take weekly samples of the culture which may provide researchers with information on engineering cartilage cells for possible use in transplantation. They also took time out of their schedules to talk with Good Morning America's Elizabeth Vargas in a brief interview. Prior to beginning the day's transfer activities, all nine astronauts and cosmonauts participated in a joint planning session to outline the day's schedule.

  5. AeroSpace Days 2013

    NASA Video Gallery

    At the eighth annual AeroSpace Days, first mom in space, Astronaut AnnaFisher, and Sen. Louise Lucas, interacted with students from Mack BennJr. Elementary School in Suffolk, Va. through NASA’s...

  6. STS-79 Flight Day 11

    NASA Technical Reports Server (NTRS)

    1996-01-01

    On this eleventh day of the STS-79 mission, the flight crew, Cmdr. William F. Readdy, Pilot Terrence W. Wilcutt, Mission Specialists, Thomas D. Akers, Shannon Lucid, Jay Apt, and Carl E. Walz aboard the Space Shuttle Atlantis glided into the Kennedy Space Center to mark the ending of the fourth docking flight with Mir and the end of Shannon Lucid's record setting 188 day stay on board the Russian space station.

  7. Go-To-Blazes Day.

    ERIC Educational Resources Information Center

    McLean, Ross

    THE FOLLOWING IS THE FULL TEXT OF THIS DOCUMENT: Last year, the Bruce Trail Association held its first annual Go-To-Blazes Day in which a record number of volunteers gave the 700 kilometres of Trail from Queenston to Tobermory a spring-cleaning. One key section of Trail near Dyer's Bay had been closed for over a year. On this day, over four miles…

  8. STS-73 flight day 16

    NASA Astrophysics Data System (ADS)

    1995-11-01

    On this last day of the STS-73 sixteen day mission, the crew Cmdr. Kenneth Bowersox, Pilot Kent Rominger, Payload Specialists Albert Sacco and Fred Gregory, and Mission Specialists Kathryn Thornton, Catherine 'Cady' Collman, and Michael Lopez-Alegria are shown preparing the United States Microgravity Lab-2 (USML-2) and the shuttle for return to Earth. There is footage of the shuttle from the robot arm cameras and of Earth. Earth views include cloud cover, various land masses, mountain ranges, and oceans.

  9. STS-73 flight day 13

    NASA Astrophysics Data System (ADS)

    1995-11-01

    On this thirteenth day of the STS-73 sixteen day mission, the crew Cmdr. Kenneth Bowersox, Pilot Kent Rominger, Payload Specialists Albert Sacco and Fred Gregory, and Mission Specialists Kathryn Thornton, Catherine 'Cady' Collman, and Michael Lopez-Alegria are shown performing several of the spaceborne experiments onboard the United States Microgravity Lab-2 (USML-2). The experiments shown included the Drop Physics Module (DPM) experiment, human physiological experiments, and a Crystal Gel experiment.

  10. Antarctica Day: An International Celebration

    NASA Astrophysics Data System (ADS)

    Pope, A.; Hambrook Berkman, J.; Berkman, P. A.

    2013-12-01

    For more than half a century, the 1959 Antarctic Treaty continues to shine as a rare beacon of international cooperation. To celebrate this milestone of peace in our civilization with hope and inspiration for future generations, Antarctica Day is celebrated each year on December 1st , the anniversary of the Antarctic Treaty signing. As an annual event - initiated by the Foundation for the Good Governance of International Spaces (www.internationalspaces.org/) in collaboration with the Association of Polar Early Carer Scientists (www.apecs.is) - Antarctica Day encourages participation from around the world. The Antarctic Treaty set aside 10% of the earth, 'forever to be used exclusively for peaceful purposes in the interest of mankind.' It was the first nuclear arms agreement and the first institution to govern all human activities in an international region beyond sovereign jurisdictions. In this spirit, Antarctica Day aims to: - Demonstrate how diverse nations can work together peacefully, using science as a global language of cooperation for decision making beyond national boundaries, - Provide strategies for students learning about Antarctica through art, science and history at all school levels, - Increase collaboration and communication between classrooms, communities, researchers and government officials around the world, and - Provide a focus for polar educators to build on each year. Through close collaboration with a number of partners. Antarctica Day activities have included: a Polar Film Festival convened by The Explorers Club; live sessions connecting classrooms with scientists in Antarctica thanks to PolarTREC and ARCUS; an international activity that involved children from 13 countries who created over 600 flags which exemplify Antarctica Day (these were actually flown in Antarctica with signed certificates then returned to the classes); a map where Antarctica Day participants all over the world could share what they were doing; an Antarctic bird count

  11. AAS 228: Day 2 afternoon

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Editors Note:This week were at the 228th AAS Meeting in San Diego, CA. Along with a team ofauthors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting twiceeach day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.The Limits of Scientific Cosmology: Setting the Stage: Accepted Facts, and Testing Limitations in Theory and Data (by Gourav Khullar)With a stellar lineup of speakers to talk about current and future prospects of cosmology and its limits (or lack thereof), the first session kicked off with talks by Risa Wechsler, Joseph Silk, and Sean Carroll (his talk on Multiverses is described below, by Nathan Sanders). Risa set the stage with an elaborate description of the current accepted facts in the era of precision cosmology including the standard model of concordance cosmology, described by seven parameters and an accepted Lambda-CDM paradigm (with a cosmological constant and cold dark matter). The talk stressed on the fact that all these parameters are understood to a percent order precision, which is a remarkable deviation from the time in 1990s when according to Risa, Alan Guth never thought that any of these numbers could be measured precisely!Risa Wechsler describing our current constraints on what Dark Matter could constitute.Joseph Silk discussing limits on cosmological parameters.The CMB measurements, Big Bang Nucleosynthesis estimates and galaxy clustering statistics all contribute to locking down the description of our universe. She emphasized on the tensions between different probes to measure expansion rate H0 of the universe, and small scale predictions of cold dark matter simulations, but she is hopeful that these shall be resolved eventually. Joe Silk followed this up with his interpretation of trying to understand our place in the universe and placing limits on different parameters and

  12. Starting a Day Care Center: The Day Care Center Handbook.

    ERIC Educational Resources Information Center

    Checkett, Donald

    Designed to be of help to individuals and groups seeking to establish a day care center in the metropolitan St. Louis area, this manual calls attention to important and basic information which must be taken into account if planning is to produce tangible results. Following a brief section defining commonly used terms referring to organized…

  13. Holy Day or Graduation Day in Fairfax County.

    ERIC Educational Resources Information Center

    Hentoff, Nat

    1980-01-01

    Discusses court cases which involved the First Amendment rights of two Jewish high school seniors. Presents the arguments between the seniors and their school board to have graduation day changed from the Jewish Sabbath so the seniors could participate in both events. (MK)

  14. Estimating Planetary Boundary Layer Heights from NOAA Profiler Network Wind Profiler Data

    NASA Technical Reports Server (NTRS)

    Molod, Andrea M.; Salmun, H.; Dempsey, M

    2015-01-01

    An algorithm was developed to estimate planetary boundary layer (PBL) heights from hourly archived wind profiler data from the NOAA Profiler Network (NPN) sites located throughout the central United States. Unlike previous studies, the present algorithm has been applied to a long record of publicly available wind profiler signal backscatter data. Under clear conditions, summertime averaged hourly time series of PBL heights compare well with Richardson-number based estimates at the few NPN stations with hourly temperature measurements. Comparisons with clear sky reanalysis based estimates show that the wind profiler PBL heights are lower by approximately 250-500 m. The geographical distribution of daily maximum PBL heights corresponds well with the expected distribution based on patterns of surface temperature and soil moisture. Wind profiler PBL heights were also estimated under mostly cloudy conditions, and are generally higher than both the Richardson number based and reanalysis PBL heights, resulting in a smaller clear-cloudy condition difference. The algorithm presented here was shown to provide a reliable summertime climatology of daytime hourly PBL heights throughout the central United States.

  15. A Cloudy View of Exoplanets

    NASA Technical Reports Server (NTRS)

    Deming, Drake

    2010-01-01

    The lack of absorption features in the transmission spectrum of exoplanet GJ1214b rules out a hydrogen-rich atmosphere for the planet. It is consistent with an atmosphere rich in water vapour or abundant in clouds.

  16. The Ocean Sampling Day Consortium

    DOE PAGES

    Kopf, Anna; Bicak, Mesude; Kottmann, Renzo; Schnetzer, Julia; Kostadinov, Ivaylo; Lehmann, Katja; Fernandez-Guerra, Antonio; Jeanthon, Christian; Rahav, Eyal; Ullrich, Matthias; et al

    2015-06-19

    In this study, Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and theirmore » embedded functional traits.« less

  17. [Day surgery for anal disease].

    PubMed

    Takano, M

    2000-10-01

    Historically, patients with anal diseases treated on a day surgery basis had inadequate cure rates and a high complication rate. After World War II, modern treatment methods were learned from the UK and USA and improved in Japan. However, the improved radical methods were so complex that approximately 2 weeks' hospitalization was needed. Recently, day surgery for various diseases including hemorrhoids has been recommended by the Japanese ministry of Health and Welfare. However, the characteristics of anal anatomy and physiology make the smooth healing of wounds difficult and tend to cause postoperative pain, bleeding, infection, prolonged healing time, etc. To prevent such difficulties, care must be well planned following the critical path of informed consent, careful surgery, postoperative observation, and management at home. However, hospital staff in charge of such surgery are under so much stress that only patients with less severe anal disease without local or systemic complications should be selected for day surgery.

  18. STS-79 Flight Day 7

    NASA Technical Reports Server (NTRS)

    1996-01-01

    On this seventh day of the STS-79 mission, the flight crew, Cmdr. William F. Readdy, Pilot Terrence W. Wilcutt, Mission Specialists, Thomas D. Akers, Shannon Lucid, Jay Apt, and Carl E. Walz, share a brief video tour of the Mir Space Station with flight controllers, taking a break from the transfer activities that has occupied the astronauts' time during three days of docked operations. Readdy and Apt floated through several of Mir's modules and back into Atlantis' double Spacehab module during the tour pointing out the numerous transfer items stowed on both spacecraft. Readdy, Wilcutt, Lucid and Blaha are seen discussing their mission in an interview with CNN's John Holliman.

  19. STS-73 flight day 7

    NASA Astrophysics Data System (ADS)

    1995-10-01

    On this seventh day of the STS-73 sixteen day mission, the crew Cmdr. Kenneth Bowersox, Pilot Kent Rominger, Payload Specialists Albert Sacco and Fred Gregory, and Mission Specialists Kathryn Thornton, Catherine 'Cady' Collman, and Michael Lopez-Alegria are shown performing several of the spaceborne experiments onboard the United States Microgravity Lab-2 (USML-2). The experiments shown included the Surface Tension Driven Convection Experiment (STDCE), the Drop Physics Module (DPM), the Protein Crystal Growth (PCG) experiment, and the Glovebox (GBX) demonstration. All the experiments were monitored by the High-Packed Digital Television (HI-PAC) system onboard the shuttle.

  20. STS-73 flight day 9

    NASA Astrophysics Data System (ADS)

    1995-10-01

    On this ninth day of the STS-73 sixteen day mission, the crew Cmdr. Kenneth Bowersox, Pilot Kent Rominger, Payload Specialists Albert Sacco and Fred Gregory, and Mission Specialists Kathryn Thornton, Catherine 'Cady' Collman, and Michael Lopez-Alegria are shown performing several of the spaceborne experiments onboard the United States Microgravity Lab-2 (USML-2). The experiments shown include the Surface Tension Driven Convection Experiment (STDCE) and the Protein Crystal Growth (PCG) experiment with different types of solution mixtures used. The imagery of the experiments inside the Spacelab were downlinked to Mission Control with the High-Packed Digital Television (HI-PAC) system.

  1. STS-73 flight day 11

    NASA Astrophysics Data System (ADS)

    1995-10-01

    On this eleventh day of the STS-73 sixteen day mission, the crew Cmdr. Kenneth Bowersox, Pilot Kent Rominger, Payload Specialists Albert Sacco and Fred Gregory, and Mission Specialists Kathryn Thornton, Catherine 'Cady' Collman, and Michael Lopez-Alegria are shown performing several of the spaceborne experiments onboard the United States Microgravity Lab-2 (USML-2). The experiments shown included the Drop Physics Module (DPM) and the Surface Tension Driven Convection Experiment (STDCE). Thermistors are used in the STDCE to study the fluid dynamics behind particle motion.

  2. STS-73 flight day 12

    NASA Astrophysics Data System (ADS)

    1995-10-01

    On this twelfth day of the STS-73 sixteen day mission, the crew Cmdr. Kenneth Bowersox, Pilot Kent Rominger, Payload Specialists Albert Sacco and Fred Gregory, and Mission Specialists Kathryn Thornton, Catherine 'Cady' Collman, and Michael Lopez-Alegria are shown performing several of the spaceborne experiments onboard the United States Microgravity Lab-2 (USML-2). The experiments shown included the Drop Physics Module (DPM) experiment, the Surface Tension Driven Convection Experiment (STDCE), and the Astroculture (tm)(ASC) demonstration. Rominger was interviewed by a Colorado radio news show and asked questions about the mission and living in space. Earth views included cloud cover.

  3. STS-73 flight day 10

    NASA Astrophysics Data System (ADS)

    1995-10-01

    On this tenth day of the STS-73 sixteen day mission, the crew Cmdr. Kenneth Bowersox, Pilot Kent Rominger, Payload Specialists Albert Sacco and Fred Gregory, and Mission Specialists Kathryn Thornton, Catherine 'Cady' Collman, and Michael Lopez-Alegria are shown performing several of the spaceborne experiments onboard the United States Microgravity Lab-2 (USML-2). The experiments shown include the Surface Tension Driven Convection Experiment (STDCE), the Drop Physics Module (DPM) experiment, and the Geophysical Fluid Flow Cell Experiment (GFFC). All experiment imagery was downlinked from the shuttle to Mission Control using the High-Packed Digital Television (HI-PAC) system.

  4. STS-91 Day 08 Highlights

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On this eighth day of the STS-91 mission, the flight crew, Cmdr. Charles J. Precourt, Pilot Dominic L. Pudwill Gorie and Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet L. Kavandi, and Valery Victorovitch Ryumin focus on science investigations and participate in several special interviews and phone calls. Following yesterday's undocking with the Russian Mir space station, crew members are given a couple of hours off duty during the day to provide a brief rest break from the hectic pace of their flight.

  5. Governance: Blending Bureaucratic Rules with Day to Day Operational Realities

    PubMed Central

    Chinitz, David P

    2016-01-01

    Richard Saltman and Antonio Duran take up the challenging issue of governance in their article "Governance, Government and the Search for New Provider Models," and use two case studies of health policy changes in Sweden and Spain to shed light on the subject. In this commentary, I seek to link their conceptualization of governance, especially its interrelated roles at the macro, meso, and micro levels of health systems, with the case studies on which they report. While the case studies focus on the shifts in governance between the macro and meso levels and their impacts on achievement of desired policy outcomes, they also highlight the need to better integrate the dynamics of day to day operations within micro organizations into the overall governance picture. PMID:27694682

  6. STS-106 Crew Activity Report / Flight Day Highlights Day 2

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-106 was launched on Sept 8, 2000 at 8:45 a.m. The crew was commanded by Terrence W. Wilcutt, the pilot was Scott D. Altman. The mission specialists were Daniel C. Burbank, Edward T. Lu, Richard A. Mastracchio, Yuri Ivanovich Malenchenko, and Boris V. Morukov. During the 11-day mission, the crew spent a week inside the International Space Station (ISS) unloading supplies from both a double SPACEHAB cargo module in the rear of the Atlantis cargo bay and from a Russian Progress M-1 resupply craft docked to the aft end of the Zvezda Service Module. The videotape shows the activities of the second day of the flight and the preparations for docking with the ISS. Shown on the video are shots of the flight deck on the shuttle, the shuttle payload arm, and shots of the crew eating lunch.

  7. Governance: Blending Bureaucratic Rules with Day to Day Operational Realities

    PubMed Central

    Chinitz, David P

    2016-01-01

    Richard Saltman and Antonio Duran take up the challenging issue of governance in their article "Governance, Government and the Search for New Provider Models," and use two case studies of health policy changes in Sweden and Spain to shed light on the subject. In this commentary, I seek to link their conceptualization of governance, especially its interrelated roles at the macro, meso, and micro levels of health systems, with the case studies on which they report. While the case studies focus on the shifts in governance between the macro and meso levels and their impacts on achievement of desired policy outcomes, they also highlight the need to better integrate the dynamics of day to day operations within micro organizations into the overall governance picture.

  8. Giving Students Their School Day

    ERIC Educational Resources Information Center

    Watchorn, Vince; Willingham, Daniel T.

    2016-01-01

    Opportunities, not obligations. That is how Providence Country Day School (Rhode Island) characterizes its daily one-hour "Community Time." The block, from 9:25 to 10:25 a.m., is used chiefly for students to partake in activities of their own making--as a daily lesson in the value of students taking charge of their own education. On any…

  9. Bright Ideas for Dark Days

    ERIC Educational Resources Information Center

    Easley, Dauna

    2005-01-01

    In this brief column, the author of "Teachers Touch Eternity," provides 20 tips that teachers can use to motivate themselves and others through the dark days of winter: (1) Fake it till you make it; (2) Allow for spontaneity; (3) Build an encouragement folder; (4) Lighten up! (5) Read motivational books or inspirational thoughts late at night or…

  10. Festivals of the Darkest Days.

    ERIC Educational Resources Information Center

    Cacha, Frances B.

    1980-01-01

    Presents historical background on various winter festivals around the world including Saturnalia, Christmas, winter solstice, Yule festivals, Hannukah, Divali, and New Year's Day. Suggests how teachers can help elementary school students understand their own culture by studying these and other festivals using maps, mobiles, discussion, and reading…

  11. International Literacy Day Tool Kit.

    ERIC Educational Resources Information Center

    2002

    This tool kit suggests various International Literacy Day activities to raise awareness of the issues of adult literacy and language learning, to connect local literacy programs with national programs, and to help achieve the National Literacy Summit goal by 2010. The kit is intended for individuals, programs, and organizations that want to call…

  12. Infant Nurseries and Day Care.

    ERIC Educational Resources Information Center

    International Children's Centre, Paris (France).

    In four brief pamphlets, background information concerning aspects of the provision of day care services for infants and young children is directed to (1) policy makers, (2) mass media specialists, (3) academic level workers and professionals, and (4) nurses, midwives, social workers, teachers, and parents. Topics discussed include child…

  13. Let's Celebrate! Canada's Special Days.

    ERIC Educational Resources Information Center

    Parry, Caroline

    Designed for children ages 8 to 13, this teaching resource presents an explanation of seasons, calendars, and why people celebrate particular days. The four seasons are discussed. Canada's national holidays, and the seasonal, social and religious holidays celebrated by diverse Canadian culture groups are described. A separate section presents…

  14. State Trees and Arbor Days.

    ERIC Educational Resources Information Center

    Forest Service (USDA), Washington, DC.

    Provides information on state trees for each of the 50 states and the District of Columbia. Includes for each state: (1) year in which state tree was chosen; (2) common and scientific names of the tree; (3) arbor day observance; (4) address of state forester; and (5) drawings of the tree, leaf, and fruit or cone. (JN)

  15. Take Advantage of Constitution Day

    ERIC Educational Resources Information Center

    McCune, Bonnie F.

    2008-01-01

    The announcement of the mandate for Constitution and Citizenship Day shortly before September, 2005, probably led to groans of dismay. Not another "must-do" for teachers and schools already stressed by federal and state requirements for standardized tests, increasingly rigid curricula, and scrutiny from the public and officials. But the idea and…

  16. Experiments for a Special Day

    ERIC Educational Resources Information Center

    Gluck, Paul

    2008-01-01

    Special events like science days, teacher's meetings and physics recruiting efforts require spectacular and, if possible, interactive experiments for the audience. Based on past experience with such events, we have gathered and present here a series of demonstration experiments in mechanics, optics, waves and electricity which are suitable, and…

  17. Earth Day Changes in Attitude.

    ERIC Educational Resources Information Center

    Davis, Betty; And Others

    1992-01-01

    Describes recycling related activities associated with the Earth Day celebration at the University School of East Tennessee State University. Activities involve tree planting, campus clean-up, student posters, assemblies, a schoolwide rally, and displays of recyclable items. A study examining attitude change revealed that hands-on activities…

  18. Infectious Diseases in Day Care.

    ERIC Educational Resources Information Center

    Sleator, Esther K.

    Discussed in this publication are infectious illnesses for which children attending day care appear to be at special risk. Also covered are the common cold, some infectious disease problems receiving media attention, and some other annoying but not serious diseases, such as head lice, pinworms, and contagious skin conditions. Causes,…

  19. Make Your Own Snow Day!

    ERIC Educational Resources Information Center

    Robeck, Edward

    2011-01-01

    Children love snow days, even when they come during the warmest weather. In this lesson the snow isn't falling outside, it's in the classroom--thanks to "Snowflake Bentley" (Briggs Martin 1998) and several models of snowflakes. A lesson on snow demonstrates several principles of practice for using models in elementary science. Focusing on snow was…

  20. A New Day for Kids

    ERIC Educational Resources Information Center

    Farbman, David

    2007-01-01

    The Martin Luther King School in Boston and nine other Massachusetts public schools used a grant from the Massachusetts Department of Education to expand their school days by at least two hours. Each school lengthened the time students spent in reading and math instruction. Farbman focuses on the Martin Luther King School's foray into an extended…

  1. A New Day for Intellectuals

    ERIC Educational Resources Information Center

    Delbanco, Andrew

    2009-01-01

    Soon after election day, the columnist Nicholas D. Kristof wrote in "The New York Times" that the "second most remarkable thing" about the election was that "American voters have just picked a president who is an open, out-of-the-closet, practicing intellectual." Surely, one of the secrets of President Obama's rhetorical power is his ability to…

  2. AAS 228: Day 3 morning

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Editors Note:This week were at the 228th AAS Meeting in San Diego, CA. Along with a team ofauthors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting twiceeach day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Plenary Session 2015 Newton Lacy Pierce Prize Lecture: The Elephant in the Room: Effects of Distant, Massive Companions on Planetary System Architectures (by Leonardo dos Santos)The first session on Wednesday at 228th AAS Meeting was the Newton Lacy Pierce Prize Lecture by Heather Knutson (California Institute of Technology). This talk featured a broad range of research efforts on exoplanets, with the main focus on how we study the composition of their atmospheres, and how multi-body interactions carve the structure of the planetary systems we observe.One of her first points is the well-known idea that the Solar System is an oddball, compared to the exoplanet systems we have found so far: most of these systems contain hot Jupiters and mini-Neptunes at very close-in orbits around their host stars. Moreover, even when studying their transmission spectra, it is difficult to know the exact composition of their atmospheres.Knutson: it is difficult to constrain atmospheric composition of exoplanets (H-poor or H-rich+clouds?) #aas228pic.twitter.com/LdyN4o9RC7 astrobites (@astrobites) June 15, 2016The main proposal on how these systems formed is the migration scenario. In order to validate this idea, Dr. Knutson and her group The Friends of Hot Jupiters study systems with close-in gas giants and their frequency of binary companions, which are supposed to be the main culprits causing gas-giant migration. They found that approximately half of the observed systems have long-distance companions, providing strong validation of the migration scenario. Moreover, Dr. Knutson speculates that wide binaries have more

  3. QuickStats: Percentage of Adult Day Services Center Participants, by Selected Diagnoses

    MedlinePlus

    ... MMWR ) MMWR Share Compartir QuickStats: Percentage of Adult Day Services Center Participants,* by Selected Diagnoses † — National Study ... which is the estimated number of enrolled adult day services center participants in the United States on ...

  4. STS-79 Flight Day 8

    NASA Technical Reports Server (NTRS)

    1996-01-01

    On this eighth day of the STS-79 mission, the flight crew, Cmdr. William F. Readdy, Pilot Terrence W. Wilcutt, Mission Specialists, Thomas D. Akers, Shannon Lucid, Jay Apt, and Carl E. Walz, are seen bidding the crew of Mir farewell and then closing the hatches between their two spacecraft in preparation for undocking. The nine astronauts and cosmonauts gathered in the Core Module of the Russian space station for a formal goodbye. With the official ceremony complete, the crewmembers shared a final meal together and exchanged private farewells as Shannon Lucid prepared to return home in Atlantis and her replacement on Mir, John Blaha, began a four month stay on the station. Walz and Apt and Mir 22 Commander Valery Korzun with assistance from Flight Engineer 2 John Blaha, swung the hatches between their spacecraft closed concluding five days of joint operations. The vestibule between Atlantis and Mir was depressurized and leak checks were performed in readiness for undocking.

  5. STS-73 flight day 3

    NASA Astrophysics Data System (ADS)

    1995-10-01

    On this third day of the STS-73 sixteen day mission, the crew, Cmdr. Kenneth Bowersox, Pilot Kent Rominger, Payload Specialists Albert Sacco and Fred Gregory, and Mission Specialists Kathryn Thornton, Catherine 'Cady' Collman, and Michael Lopez-Alegria are shown performing several of the spaceborne experiments onboard the United States Microgravity Lab-2 (USML-2). The experiments shown include the Surface Tension Driven Convection Experiment (STDCE), the Drop Physics Module (DPM) experiment, and the High-Packed Digital Television (HI-PAC) demonstration. The HI-PAC allows the digitization of up to six video downlink signals from the Spacelab experiments and other cameras onboard the Shuttle, where previously only one downlink was allowed.

  6. STS-73 flight day 15

    NASA Astrophysics Data System (ADS)

    1995-11-01

    On this fifteenth day of the STS-73 sixteen day mission, the crew Cmdr. Kenneth Bowersox, Pilot Kent Rominger, Payload Specialists Albert Sacco and Fred Gregory, and Mission Specialists Kathryn Thornton, Catherine 'Cady' Collman, and Michael Lopez-Alegria are shown hosting an in-orbit interview with various newspaper reporters from Johnson Space Center, Kennedy Space Center, and Marshall Space Flight Center via satellite hookup. The astronauts were asked questions regarding the status of the United States Microgravity Lab-2 (USML-2) experiments, their personal goals regarding their involvement in the mission, their future in the space program, and general questions about living in space. Earth views included cloud cover and a tropical storm.

  7. STS-73 flight day 4

    NASA Astrophysics Data System (ADS)

    1995-10-01

    On this fourth day of the STS-73 sixteen day mission, the crew Cmdr. Kenneth Bowersox, Pilot Kent Rominger, Payload Specialists Albert Sacco and Fred Gregory, and Mission Specialists Kathryn Thornton, Catherine 'Cady' Collman, and Michael Lopez-Alegria are shown performing several of the spaceborne experiments onboard the United States Microgravity Lab-2 (USML-2). The experiments shown include the High-Packed Digital Television (HI-PAC) demonstration, the Surface Tension Driven Convection Experiment (STDCE), and the Drop Physics Module (DPM) experiment. Video footage is shown of the crew working in the Spacelab along with a split screen Shuttle downlink/Ground-Air Television (GATV) uplink from Mission Control. Several of the astronauts are interviewed by Mission Control regarding the status of the experiments.

  8. STS-73 flight day 2

    NASA Astrophysics Data System (ADS)

    1995-10-01

    On this second day of the STS-73 sixteen day mission, the crew Cmdr. Kenneth Bowersox, Pilot Kent Rominger, Payload Specialists Albert Sacco and Fred Gregory, and Mission Specialists Kathryn Thornton, Catherine 'Cady' Collman, and Michael Lopez-Alegria are shown performing several of the spaceborne experiments on the United States Microgravity Lab-2 (USML-2). These experiments included the Astroculture (tm)(ASC) experiment, the Protein Crystal Growth (PCG) experiment using liquid/liquid diffusion methods, and the Drop Physics Module (DPM) experiment. A High-Packed Digital Television (HI-PAC) system is used to downlink video images of the various experiments from the Shuttle to Mission Control. Video from Mission Control is uplinked to the shuttle using a Ground-Air Television (GATV) system.

  9. STS-73 flight day 14

    NASA Astrophysics Data System (ADS)

    1995-11-01

    On this fourteenth day of the STS-73 sixteen day mission, the crew Cmdr. Kenneth Bowersox, Pilot Kent Rominger, Payload Specialists Albert Sacco and Fred Gregory, and Mission Specialists Kathryn Thornton, Catherine 'Cady' Collman, and Michael Lopez-Alegria are shown performing several of the spaceborne experiments onboard the United States Microgravity Lab-2 (USML-2). The experiments shown include the Drop Physics Module (DPM) experiment, the Surface Tension Driven Convection Experiment (STDCE), the Geophysical Fluid Flow Cell (GFFC) experiment, and an experiment on fuel combustion and combustion products. Bowersox, Sacco, Thornton, and Rominger (the red team) were interviewed by high school students from Worcester, Massachusetts, who asked questions regarding the mission's experiments and general questions about living in space. Earth views included a black and white image of the Earth's atmospheric boundary layers.

  10. STS-73 flight day 8

    NASA Astrophysics Data System (ADS)

    1995-10-01

    On this eighth day of the STS-73 sixteen day mission, the crew Cmdr. Kenneth Bowersox, Pilot Kent Rominger, Payload Specialists Albert Sacco and Fred Gregory, and Mission Specialists Kathryn Thornton, Catherine 'Cady' Collman, and Michael Lopez-Alegria are shown performing several of the spaceborne experiments onboard the United States Microgravity Lab-2 (USML-2). The experiments shown include the Astroculture(tm)(ASC) experiment, the Protein Crystal Growth (PCG) experiment, the Surface Tension Driven Convection Experiment (STDCE), the Commercial Generic Bioprocessing Apparatus (CGBA),and further testing of the High-Packed Digital Television (HI-PAC) system. An interview with Bowersox and Thornton regarding the mission's status was conducted by radio World News Now in Houston.

  11. STS-73 flight day 5

    NASA Astrophysics Data System (ADS)

    1995-10-01

    On this fifth day of the STS-73 sixteen day mission, the crew Cmdr. Kenneth Bowersox, Pilot Kent Rominger, Payload Specialists Albert Sacco and Fred Gregory, and Mission Specialists Kathryn Thornton, Catherine 'Cady' Collman, and Michael Lopez-Alegria are shown performing several of the spaceborne experiments onboard the United States Microgravity Lab-2 (USML-2). These experiments are downlinked to Mission Control from the Spacelab using the High-Packed Digital Television (HI-PAC) systems onboard the Shuttle. The experiments shown include the Drop Physics Module (DPM) experiment, the Surface Tension Driven Convection Experiment (STDCE), the Protein Crystal Growth (PCG) experiment, and a Hand-Held Diffusion Test Cell experiment. Lopez-Alegria is interviewed in Spanish by two Spanish radio show hosts. Earth views include cloud cover, the Earth's horizon and atmospheric boundary layers, and several oceans.

  12. STS-90 Day 01 Highlights

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On this first day of the STS-90 mission, the flight crew, Cmdr. Richard A. Searfoss, Pilot Scott D. Altman, and Mission Specialists Richard M. Linnehan, Dafydd Rhys Williams and Kathryn P. Hire, and Payload Specialists Jay C. Buckey and James A. Pawelczyk, can be seen performing pre-launch activities such as eating the traditional breakfast, crew suit-up, and the ride out to the launch pad. Also, included are various panoramic views of the shuttle on the pad. The crew is readied in the white room' for their mission. After the closing of the hatch and arm retraction, launch activities are shown including countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters. The shuttle's payload bay doors are then opened in anticipation of the 16-day scientific mission. The astronauts then are seen readying the Spacelab module for various experiments.

  13. AAS 228: Day 3 afternoon

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Editors Note:This week were at the 228th AAS Meeting in San Diego, CA. Along with a team ofauthors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting twiceeach day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Wikipedia Year of Science Editathon (by Meredith Rawls)Whats your first go-to source for an unfamiliar topic on the internet? If you said Wikipedia, youre not alone. For many people, Wikipedia is the primary source of information about astronomy and science. However, many Wikipedia articles about science topics are incomplete or missing, and women are underrepresented among scientists with biographies.To address this, the AAS Astronomy Education Board teamed up with the Wiki Education Foundation to host an edit-a-thon as part of the Wikipedia Year of Science. More than forty attendees spent the better part of three hours working through tutorials, creating new articles, and editing existing ones. The session was generously sponsored by the Simons Foundation.The Year of Science initiative seeks to bring Wikipedia editing skills to the classroom and help new editors find sustainable ways to contribute to Wikipedia in the long term. Anybody can create a free account and start editing!As a first-time Wikipedia contributor, I took the time to go through nearly all the tutorial exercises and familiarize myself with the process of editing a page. I decided to flesh out one section in an existing page about asteroseismology. Others created biography pages from scratch or selected various astronomical topics to write about. To me, the editing process felt like a cross between writing a blog post and a journal article, in a hack day type environment. Working through the tutorial and some examples renewed my empathy for learners who are tackling a new skill set for the first time. A full summary of our

  14. The early days of incineration

    SciTech Connect

    Valenti, M.

    1995-05-01

    Landfills reaching capacity, beaches fouled with trash, neighborhood residents protesting waste disposal sites in their backyards, and municipalities forced to recycle. Sound familiar? These issues might have been taken from today`s headlines, but they were also problems facing mechanical engineers a century ago. Conditions such as these were what led engineers to design the first incinerators for reducing the volume of municipal garbage, as well as for producing heat and electricity. The paper discusses these early days.

  15. Argonne's 2012 Earth Day Event

    SciTech Connect

    2012-01-01

    Argonne's 2012 Earth Day event drew crowds from across the laboratory. Argonne and U.S. Department of Energy employees toured booths and interactive displays set up by Argonne programs and clubs. Several of Argonne's partners participated, including U.S. Department of Energy, University of Chicago, Abri Credit Union, DuPage County Forest Preserve, DuPage Water Commission, PACE and Morton Arboretum. Argonne scientists and engineers also participated in a poster session, discussing their clean energy research.

  16. Argonne's 2012 Earth Day Event

    ScienceCinema

    None

    2016-07-12

    Argonne's 2012 Earth Day event drew crowds from across the laboratory. Argonne and U.S. Department of Energy employees toured booths and interactive displays set up by Argonne programs and clubs. Several of Argonne's partners participated, including U.S. Department of Energy, University of Chicago, Abri Credit Union, DuPage County Forest Preserve, DuPage Water Commission, PACE and Morton Arboretum. Argonne scientists and engineers also participated in a poster session, discussing their clean energy research.

  17. AAS 228: Day 3 morning

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Editors Note:This week were at the 228th AAS Meeting in San Diego, CA. Along with a team ofauthors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting twiceeach day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Plenary Session 2015 Newton Lacy Pierce Prize Lecture: The Elephant in the Room: Effects of Distant, Massive Companions on Planetary System Architectures (by Leonardo dos Santos)The first session on Wednesday at 228th AAS Meeting was the Newton Lacy Pierce Prize Lecture by Heather Knutson (California Institute of Technology). This talk featured a broad range of research efforts on exoplanets, with the main focus on how we study the composition of their atmospheres, and how multi-body interactions carve the structure of the planetary systems we observe.One of her first points is the well-known idea that the Solar System is an oddball, compared to the exoplanet systems we have found so far: most of these systems contain hot Jupiters and mini-Neptunes at very close-in orbits around their host stars. Moreover, even when studying their transmission spectra, it is difficult to know the exact composition of their atmospheres.Knutson: it is difficult to constrain atmospheric composition of exoplanets (H-poor or H-rich+clouds?) #aas228pic.twitter.com/LdyN4o9RC7 astrobites (@astrobites) June 15, 2016The main proposal on how these systems formed is the migration scenario. In order to validate this idea, Dr. Knutson and her group The Friends of Hot Jupiters study systems with close-in gas giants and their frequency of binary companions, which are supposed to be the main culprits causing gas-giant migration. They found that approximately half of the observed systems have long-distance companions, providing strong validation of the migration scenario. Moreover, Dr. Knutson speculates that wide binaries have more

  18. STS-79 Flight Day 9

    NASA Technical Reports Server (NTRS)

    1996-01-01

    On this ninth day of the STS-79 mission, the flight crew, Cmdr. William F. Readdy, Pilot Terrence W. Wilcutt, Mission Specialists, Thomas D. Akers, Shannon Lucid, Jay Apt, and Carl E. Walz having completed five days of joint operations between the American astronauts and the Russian cosmonauts are seen flying solo once again after undocking from the Mir Space Station. As Atlantis/Mir flew over the Ural Mountains of central Asia, the docking hooks and latches that joined the vehicles together were commanded open and Atlantis drifted slowly away from Mir. Wilcutt then initiated a tail-forward fly-around of the Russian space station. After one and one-half revolutions around Mir, Atlantis' jets were fired in a separation maneuver to enable Atlantis to break away from Mir. On board Atlantis, the six-member crew is settling back into its normal routine with a fairly light schedule for the remainder of the day. Early in the morning as Atlantis flew over the United States, the crew took time to talk with anchors for the CBS Up to the Minute' network news broadcast.

  19. STS-79 Flight Day 4

    NASA Technical Reports Server (NTRS)

    1996-01-01

    On this fourth day of the STS-79 mission, the flight crew, Cmdr. William F. Readdy, Pilot Terrence W. Wilcutt, Mission Specialists, Thomas D. Akers, John Blaha, Jay Apt, and Carl E. Walz, are seen docking with the Mir Space Station. After two hours of pressure and leak checks, the hatches between the two spacecraft is then opened. The two crews are seen greeting one another to begin five days of joint operations. The rendezvous and docking went flawlessly as Readdy flew the orbiter manually through the final 2,000 feet. Docking occurred within seconds of the pre-planned time and flight controllers reported that only slight oscillations were felt through the Orbiter Docking System as the two spacecraft locked together. Within hours of the hatch opening, crew members John Blaha and Shannon Lucid formally swapped places before going to bed with Blaha becoming a member of the Mir-22 crew and Lucid joining the STS-79 crew to wrap up 179 days as a member of the Mir station. Blaha joins Mir 22 Commander Valery Korzun and Flight Engineer Alexander Kaleri on Mir for the next four months. Soon after the crew members completed their welcoming ceremony, they went to work, hauling bags of water and other supplies from the Shuttle's Spacehab module into the Mir. More than 4000 pounds of equipment and logistical supplies will be transferred to the Mir before Atlantis undocks from the space station.

  20. [Laparoscopic surgery in day surgery].

    PubMed

    Micali, S; Bitelli, M; Torelli, F; Valitutti, M; Micali, F

    1998-06-01

    Since ten years laparoscopic techniques have been employed as alternatives of many established open procedures in gynecologic, abdominal and finally urologic surgery. Laparoscopic techniques show significant advantages compared to open surgery, such as less hospitalization, reduced need of analgesic drugs, quick return to daily activities and far a better cosmetic results. Laparoscopic surgery has been advocated for urologic, uro-gynecologic and andrologic diseases. Since 1983 one-day surgery was proposed for only a few gynecologic and abdominal procedures and only recently for laparoscopic renal biopsy and abdominal testis evaluation. In these preliminary experiences the conditions for a correct management of laparoscopic one-day surgery have been clearly pointed out: 1. correct surgical indication; 2. through knowledge of surgical technique; 3. duration of the procedure less than 90 minutes; 4. correct anesthesia. Technique of anesthesia must be adapted to the surgical procedure required, its duration and the physical features of the patient. General anesthesia is usually preferred for either longer and more complex procedures or when a higher abdominal insufflation pressure is needed. Spinal or local anesthesia are preferred for simpler procedures or when only one trocar is required. At date only few urologic procedures seem to be suitable to one-day laparoscopic surgery. 1) Varicocele: although laparoscopic varicocelectomy in one-day surgery has never been reported previously, it can be performed in a short time, only 3 trocars are needed and insufflation pressure can be maintained within 15 mm Hg. 2) Renal biopsy and marsupialization of renal cysts. These are usually managed percutaneously but in some particular indications procedures under direct vision should be preferable. Both are short-lasting and only superficial general anesthesia is required; as surgical access is retroperitoneal only two trocars are sufficient; at date only renal biopsies have

  1. On the Estimation of Clear-Sky Upwelling Shortwave and Longwave

    SciTech Connect

    Long, C.N.

    2005-03-18

    Previous work (Long and Ackerman 2000; Long 2004) has concentrated on estimation of the downwelling clear-sky irradiances and the calculation of the effect of clouds on the downwelling radiative energy budget. However, cloud forcing is defined for the difference between clear- and cloudy-sky net radiation, which includes the upwelling components. Thus, if we are to estimate the surface radiative cloud forcing, the means must be developed to estimate what the upwelling shortwave and longwave irradiance would be if the clouds were not present. Estimation of the upwelling longwave (LW) is particularly troublesome in that the emitted upwelling LW is a function of the total surface energy exchange including latent and sensible heat, which is related to but not necessarily always totally driven by the radiative exchange alone, but also involves the evolving soil and vegetation properties and changes in soil moisture amounts.

  2. Macrocognition in Day-To-Day Police Incident Response

    PubMed Central

    Baber, Chris; McMaster, Richard

    2016-01-01

    Using examples of incidents that UK Police Forces deal with on a day-to-day basis, we explore the macrocognition of incident response. Central to our analysis is the idea that information relating to an incident is translated from negotiated to structured and actionable meaning, in terms of the Community of Practice of the personnel involved in incident response. Through participant observation of, and interviews with, police personnel, we explore the manner in which these different types of meaning shift over the course of incident. In this way, macrocognition relates to gathering, framing, and sharing information through the collaborative sensemaking practices of those involved. This involves two cycles of macrocognition, which we see as ‘informal’ (driven by information gathering as the Community of Practice negotiates and actions meaning) and ‘formal’ (driven by the need to assign resources to the response and the need to record incident details). The examples illustrate that these cycles are often intertwined, as are the different forms of meaning, in situation-specific ways that provide adaptive response to the demands of the incident. PMID:27014117

  3. Secondary organic aerosol: a comparison between foggy and nonfoggy days.

    PubMed

    Kaul, D S; Gupta, Tarun; Tripathi, S N; Tare, V; Collett, J L

    2011-09-01

    Carbonaceous species, meteorological parameters, trace gases, and fogwater chemistry were measured during winter in the Indian city of Kanpur to study secondary organic aerosol (SOA) during foggy and clear (nonfoggy) days. Enhanced SOA production was observed during fog episodes. It is hypothesized that aqueous phase chemistry in fog drops is responsible for increasing SOA production. SOA concentrations on foggy days exceeded those on clear days at all times of day; peak foggy day SOA concentrations were observed in the evening vs peak clear day SOA concentrations which occurred in the afternoon. Changes in biomass burning emissions on foggy days were examined because of their potential to confound estimates of SOA production based on analysis of organic to elemental carbon (OC/EC) ratios. No evidence of biomass burning influence on SOA during foggy days was found. Enhanced oxidation of SO(2) to sulfate during foggy days was observed, possibly causing the regional aerosol to become more acidic. No evidence was found in this study, either, for effects of temperature or relative humidity on SOA production. In addition to SOA production, fogs can also play an important role in cleaning the atmosphere of carbonaceous aerosols. Preferential scavenging of water-soluble organic carbon (WSOC) by fog droplets was observed. OC was found to be enriched in smaller droplets, limiting the rate of OC deposition by droplet sedimentation. Lower EC concentrations were observed on foggy days, despite greater stagnation and lower mixing heights, suggesting fog scavenging and removal of EC was active as well. PMID:21790145

  4. Secondary organic aerosol: a comparison between foggy and nonfoggy days.

    PubMed

    Kaul, D S; Gupta, Tarun; Tripathi, S N; Tare, V; Collett, J L

    2011-09-01

    Carbonaceous species, meteorological parameters, trace gases, and fogwater chemistry were measured during winter in the Indian city of Kanpur to study secondary organic aerosol (SOA) during foggy and clear (nonfoggy) days. Enhanced SOA production was observed during fog episodes. It is hypothesized that aqueous phase chemistry in fog drops is responsible for increasing SOA production. SOA concentrations on foggy days exceeded those on clear days at all times of day; peak foggy day SOA concentrations were observed in the evening vs peak clear day SOA concentrations which occurred in the afternoon. Changes in biomass burning emissions on foggy days were examined because of their potential to confound estimates of SOA production based on analysis of organic to elemental carbon (OC/EC) ratios. No evidence of biomass burning influence on SOA during foggy days was found. Enhanced oxidation of SO(2) to sulfate during foggy days was observed, possibly causing the regional aerosol to become more acidic. No evidence was found in this study, either, for effects of temperature or relative humidity on SOA production. In addition to SOA production, fogs can also play an important role in cleaning the atmosphere of carbonaceous aerosols. Preferential scavenging of water-soluble organic carbon (WSOC) by fog droplets was observed. OC was found to be enriched in smaller droplets, limiting the rate of OC deposition by droplet sedimentation. Lower EC concentrations were observed on foggy days, despite greater stagnation and lower mixing heights, suggesting fog scavenging and removal of EC was active as well.

  5. Estimating Eggs

    ERIC Educational Resources Information Center

    Lindsay, Margaret; Scott, Amanda

    2005-01-01

    The authors discuss mass as one of the three fundamental measurements (the others being length and time), noting that estimation of mass is little taught and assessed in primary schools. This article briefly explores the reasons for this in terms of culture, practice, and the difficulty of assessing estimation of mass. An activity using the…

  6. AAS 228: Day 2 afternoon

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Editors Note:This week were at the 228th AAS Meeting in San Diego, CA. Along with a team ofauthors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting twiceeach day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.The Limits of Scientific Cosmology: Setting the Stage: Accepted Facts, and Testing Limitations in Theory and Data (by Gourav Khullar)With a stellar lineup of speakers to talk about current and future prospects of cosmology and its limits (or lack thereof), the first session kicked off with talks by Risa Wechsler, Joseph Silk, and Sean Carroll (his talk on Multiverses is described below, by Nathan Sanders). Risa set the stage with an elaborate description of the current accepted facts in the era of precision cosmology including the standard model of concordance cosmology, described by seven parameters and an accepted Lambda-CDM paradigm (with a cosmological constant and cold dark matter). The talk stressed on the fact that all these parameters are understood to a percent order precision, which is a remarkable deviation from the time in 1990s when according to Risa, Alan Guth never thought that any of these numbers could be measured precisely!Risa Wechsler describing our current constraints on what Dark Matter could constitute.Joseph Silk discussing limits on cosmological parameters.The CMB measurements, Big Bang Nucleosynthesis estimates and galaxy clustering statistics all contribute to locking down the description of our universe. She emphasized on the tensions between different probes to measure expansion rate H0 of the universe, and small scale predictions of cold dark matter simulations, but she is hopeful that these shall be resolved eventually. Joe Silk followed this up with his interpretation of trying to understand our place in the universe and placing limits on different parameters and

  7. STS-75 Flight Day 7

    NASA Technical Reports Server (NTRS)

    1996-01-01

    On this seventh day of the STS-75 mission, the flight crew, Cmdr. Andrew Allen, Pilot Scott Horowitz, Payload Cmdr. Franklin Chang-Diaz, Payload Specialist Umberto Guidoni (Italy), and Mission Specialists Jeffrey Hoffman, Maurizio Cheli (ESA) and Claude Nicollier (ESA), are shown performing several of the United States Microgravity Payload-3 (USMP-3) experiments. There is an in-orbit interview by several of the astronauts with newspaper reporters. An announcement is made by Mission Control that Cmdr. Allen has become the first American Astronaut to log 1000 flight hours in space, with Payload Cmdr. Franklin Chang-Diaz coming in second.

  8. STS-88 Day 06 Highlights

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On this sixth day of the STS-88 mission, the flight crew, Commander Robert D. Cabana, Pilot Frederick W. Sturckow, and Mission Specialists Nancy J. Currie, James H. Newman, Jerry L. Ross, and Sergei Krikalev are awakened by Dwight Yokum's "Streets of Bakersfield," requested by the wife of Pilot Rick Sturckow, a California native. Cabana and Sturckow fire Endeavour's primary reaction control jets to raise the altitude of the International Space Station by about 5-1/2 statute miles. Later on Cabana, Sturckow and Currie are interviewed by the ABC News/Discovery Channel and MSNBC.

  9. STS-95 Day 02 Highlights

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On this second day of the STS-95 mission, the flight crew, Cmdr. Curtis L. Brown, Pilot Steven W. Lindsey, Mission Specialists Scott E. Parazynski, Stephen K. Robinson, and Pedro Duque, and Payload Specialists Chiaki Mukai and John H. Glenn, are seen preparing a glovebox device in the middeck area of Discovery, an enclosed research facility that will support numerous science investigations throughout the mission. Payload Specialist John Glenn, activates the Microgravity Encapsulation Process experiment (MEPS). This experiment will study the formation of capsules containing two kinds of anti-tumor drugs that could be delivered directly to solid tumors with applications for future chemotherapy treatments and the pharmaceutical industry.

  10. STS-88 Day 01 Highlights

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On this first day of the STS-88 mission, the flight crew, Commander Robert D. Cabana, Pilot Frederick W. Sturckow, and Mission Specialists Nancy J. Currie, James H. Newman, Jerry L. Ross, and Sergei Krikalev can be seen performing pre-launch activities such as eating the traditional breakfast, crew suit-up, and the ride out to the launch pad. Also, included are various panoramic views of the shuttle on the pad. The crew is readied in the "white room" for their mission. After the closing of the hatch and arm retraction, launch activities are shown including countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters.

  11. STS-79 Flight Day 1

    NASA Technical Reports Server (NTRS)

    1996-01-01

    On this first day of the STS-79 mission, the flight crew, Cmdr. William F. Readdy, Pilot Terrence W. Wilcutt, and Mission Specialists, Thomas D. Akers, John E. Blaha, Jay Apt, and Carl E. Walz, can be seen preforming pre-launch activities such as eating the traditional breakfast, crew suit-up, and the ride out to the launch pad. Also, included are various panoramic views of the shuttle on the pad. The crew can be seen being readied in the white room' for their mission. After the closing of the hatch and arm retraction, launch activities are shown including countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters.

  12. STS-90 Day 05 Highlights

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On this fifth day of the STS-90 mission, the flight crew, Cmdr. Richard A. Searfoss, Pilot Scott D. Altman, and Mission Specialists Richard M. Linnehan, Dafydd Rhys Williams and Kathryn P. Hire, and Payload Specialists Jay C. Buckey and James A. Pawelczyk perform tests associated with the STS-90 Neurolab Vestibular Team's efforts to gain insight into the balance organs in the ear and all the connections that system has to the eyes, brain, and muscles in adapting to the weightless condition in space and then readapts to the gravity environment found on Earth.

  13. Daily estimates of soil ingestion in children.

    PubMed Central

    Stanek, E J; Calabrese, E J

    1995-01-01

    Soil ingestion estimates play an important role in risk assessment of contaminated sites, and estimates of soil ingestion in children are of special interest. Current estimates of soil ingestion are trace-element specific and vary widely among elements. Although expressed as daily estimates, the actual estimates have been constructed by averaging soil ingestion over a study period of several days. The wide variability has resulted in uncertainty as to which method of estimation of soil ingestion is best. We developed a methodology for calculating a single estimate of soil ingestion for each subject for each day. Because the daily soil ingestion estimate represents the median estimate of eligible daily trace-element-specific soil ingestion estimates for each child, this median estimate is not trace-element specific. Summary estimates for individuals and weeks are calculated using these daily estimates. Using this methodology, the median daily soil ingestion estimate for 64 children participating in the 1989 Amherst soil ingestion study is 13 mg/day or less for 50% of the children and 138 mg/day or less for 95% of the children. Mean soil ingestion estimates (for up to an 8-day period) were 45 mg/day or less for 50% of the children, whereas 95% of the children reported a mean soil ingestion of 208 mg/day or less. Daily soil ingestion estimates were used subsequently to estimate the mean and variance in soil ingestion for each child and to extrapolate a soil ingestion distribution over a year, assuming that soil ingestion followed a log-normal distribution. Images Figure 1. Figure 2. Figure 3. Figure 4. PMID:7768230

  14. STS-90 Day 14 Highlights

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On this fourteenth day of the STS-90 mission, the flight crew, Cmdr. Richard A. Searfoss, Pilot Scott D. Altman, and Mission Specialists Richard M. Linnehan, Dafydd Rhys Williams and Kathryn P. Hire, and Payload Specialists Jay C. Buckey and James A. Pawelczyk focus on the efforts of Neurolab's Neuronal Plasticity Team to better understand how the adult nervous system adapts to the new environment of space. Columbia's science crew -- Mission Specialists Rick Linnehan and Dave Williams and Payload Specialists Jay Buckey and Jim Pawelczyk -- perform the second and final in-flight dissections of the adult male rats on board. The crew euthanizes and dissects nine rats and remove the vestibular or balance organs of the inner ear; the cerebellum, the part of the brain critical for maintaining balance and for processing information from the limbs so they can be moved smoothly; and the cerebrum, one part of which controls automatic functions such as body temperature regulation and the body's internal clock, and the cortical region that controls cognitive functions such as thinking. The first dissection, which was performed on the second day of the flight, went extremely well, according to Neurolab scientists.

  15. STS-79 Flight Day 6

    NASA Technical Reports Server (NTRS)

    1996-01-01

    On this sixth day of the STS-79 mission, the flight crew, Cmdr. William F. Readdy, Pilot Terrence W. Wilcutt, Mission Specialists, Thomas D. Akers, Shannon Lucid, Jay Apt, and Carl E. Walz, continue activities aboard Atlantis/Mir as the nine astronauts and cosmonauts work in their second full day of docked operations. The continuing transfer of logistical supplies and scientific hardware can be seen proceeding smoothly. Apt and Walz once again worked with the Active Rack Isolation System experiment to replace a broken pushrod. With that complete, Apt monitors the ARIS experiment as Readdy and Korzun fire small maneuvering jets on their spacecraft to test the ability of ARIS to damp out any disturbances created by the firings. Walz also is continuing his work with the Mechanics of Granular Materials experiment in Atlantis' double Spacehab module. The astronauts used the large format IMAX camera to conduct a photographic survey of Mir from the Shuttle's flight deck windows while Akers shot IMAX movie scenes of Readdy, Wilcutt, and Korzun in the Spektr module.

  16. Earth Day 25 years later

    SciTech Connect

    Nelson, G.

    1995-08-01

    The idea of Earth Day 1970 was to have a national demonstration of environmental concern big enough to shake up the political establishment--get its attention, get some action, force environmental issues onto the political agenda of national priorities. The idea worked, thanks to the spontaneous response of millions of concerned Americans, and the event served as a wake-up call to the political establishment. Suddenly, the environment became a national political priority. Since Earth Day 1970, Congress has enacted nearly 40 major federal environmental laws addressing a wide range of issues, including clean air, clean water, energy conservation, hazardous wastes, and herbicides and other pesticides. Dozens of individual public land bills have been enacted since 1970 to designate or expand wilderness areas, wild and scenic rivers, national parks, and wildlife refuges. Perhaps most important, more than 80 percent of Americans now regard themselves as environmentalists. Since 1970 man has come a long way. After 25 years of researching, debating, and learning, increasing numbers of people recognize that the state of the environment is the key factor in determining this way of life and the quality of it.

  17. STS-73 flight day 1

    NASA Astrophysics Data System (ADS)

    1995-10-01

    On this first day of the STS-73 sixteen day mission, the crew Cmdr. Kenneth Bowersox, Pilot Kent Rominger, Payload Specialists Albert Sacco and Fred Gregory, and Mission Specialists Kathryn Thornton, Catherine 'Cady' Collman, and Michael Lopez-Alegria are shown in various stages of prelaunch and launch activities. This mission carries the United States Microgravity Lab-2 (USML-2) payload, in which a variety of spaceborne microgravity experiments will be performed. These experiments include the Advanced Protein Crystallization Facility (APCF), The Astroculture (tm)(ASC) hardware and experiment, the Commercial Generic Bioprocessing Apparatus (CGBA), the Crystal Growth Furnace (CGF), the Drop Physics Module (DPM), the Geophysical Fluid Flow Cell (GFFC), the Glovebox (GBX), the Zeolite Crystal Growth (ZCG) experiment, the Surface Tension Driven Convection Experiment (STDCE), the Protein Crystal Growth (PCG) experiment, three Measuring Microgravity experiments (the Space Acceleration Measurement System (SAMS), the Three Dimensional Microgravity Accelerometer (3DMA), and the Orbital Acceleration Research Experiment (OARE)), and the High-Packed Digital Television (HI-PAC) demonstration system. Earth views include some cloud cover and various Earth land masses.

  18. STS-73 flight day 6

    NASA Astrophysics Data System (ADS)

    1995-10-01

    On this sixth day of the STS-73 sixteen day mission, the crew Cmdr. Kenneth Bowersox, Pilot Kent Rominger, Payload Specialists Albert Sacco and Fred Gregory, and Mission Specialists Kathryn Thornton, Catherine 'Cady' Collman, and Michael Lopez-Alegria are shown performing several of the spaceborne experiments onboard the United States Microgravity Lab-2 (USML-2). The experiments shown include the Protein Crystal Growth (PCG) experiment, the Astroculture(tm)(ASC) experiment, the Drop Physics Module (DPM) experiment, and the Surface Tension Driven Convection Experiment (STDCE). The High-Packed Digital Television (HI-PAC) system is further tested and an in-orbit interview with Lopez-Alegria by NBC Nightside is conducted. The entire flightcrew salutes the 5th game of the World Series between the Atlanta Braves and Cleveland Indians by pretending to throw out the first ball of the game through a downlink to the stadium. Earth views taken from the payload bay cameras include some cloud cover, oceans, land masses, and the Nile River and the Red Sea.

  19. STS-79 Flight Day 3

    NASA Technical Reports Server (NTRS)

    1996-01-01

    On this third day of the STS-79 mission, the flight crew, Cmdr. William F. Readdy, Pilot Terrence W. Wilcutt, Mission Specialists, Thomas D. Akers, John E. Blaha, Jay Apt, and Carl E. Walz, start another busy day on orbit activating experiments in the Spacehab module. Readdy and Wilcutt are seen conducting two rendezvous burns while other crew members are seen working in the Spacehab module. The Active Rack Isolation System, or ARIS, is tended to by Walz, who performs a minor maintenance procedure on one of ARIS' vibration-damping pushrods while Akers works with an inventory management system using a bar code reader to more effectively keep track of items that will be transferred back and forth between the Shuttle and the Mir. Apt continues work with a furnace which heats to nearly 1,600 degrees centigrade to melt metal samples for study after the flight. Apt also provides a television tour of the Spacehab, which is twice its normal size for this flight to allow extra room for science experiments and logistical items slated for transfer to Mir.

  20. Three day crisis resolution unit.

    PubMed

    Dubin, S E; Ananth, J; Bajwa-Goldsmith, B; Stuller, S; Lewis, C; Miller, M; Noel, N; Fernandez, L

    1990-01-01

    This paper describes a three day crisis resolution unit within the confines of the psychiatric emergency service of a general hospital. It utilizes a crisis model of acute intervention, time limited psychotherapeutic approach combined with family therapy, and psychotropic meditation when indicated. One hundred thirty six consecutive admissions were rev ie.wed. 19% were discharged within 72 hours, and 51% required further hospitalization. Seventy seven percent of the patients discharged had involved families (significant others) in the treatment process, in comparison with only 28% family involvement with those patients who needed further hospitalization. This may be even more significant for psychotic patients who were discharged (14/18 family involvement) versus those who needed long hospitalization (13/50 family involvement).

  1. STS-95 Day 01 Highlights

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On this first day of the STS-95 mission, the flight crew, Cmdr. Curtis L. Brown, Pilot Steven W. Lindsey, Mission Specialists Scott E. Parazynski, Stephen K. Robinson, and Pedro Duque, and Payload Specialists Chiaki Mukai and John H. Glenn, can be seen performing pre-launch activities such as eating the traditional breakfast, crew suit-up, and the ride out to the launch pad. Also, included are various panoramic views of the shuttle on the pad. The crew is readied in the 'white room' for their mission. After the closing of the hatch and arm retraction, launch activities are shown including countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters.

  2. STS-88 Day 03 Highlights

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On this third day of the STS-88 mission, the flight crew, Commander Robert D. Cabana, Pilot Frederick W. Sturckow, and Mission Specialists Nancy J. Currie, James H. Newman, Jerry L. Ross, and Sergei Krikalev check out the various tools they will use during the three scheduled spacewalks to be conducted later in the flight. They then begin an early set-up of the Shuttle's airlock in preparation for that first spacewalk. Newman and Russian cosmonaut Sergei Krikalev take part in an on-line interview by the New York Times. Currie is seen placing Unity just inches above the extended outer ring on Endeavour's docking mechanism, enabling Commander Bob Cabana to fire downward maneuvering jets to lock the shuttle's docking system to one of two Pressurized Mating Adapters (PMA's) attached to Unity.

  3. STS-88 Day 04 Highlights

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On this forth day of the STS-88 mission, the flight crew, Commander Robert D. Cabana, Pilot Frederick W. Sturckow, and Mission Specialists Nancy J. Currie, James H. Newman, Jerry L. Ross, and Sergei are awakened to the sounds of "Somewhere Over the Rainbow," requested by Commander Bob Cabana's daughter, Sarah. With the three-story-high Unity connecting module latched upright in the shuttle's payload bay, Cabana takes manual control of the shuttle as it moves to within about a half-mile of Zarya. Cabana and Sturckow execute a sequence of maneuvers that will bring Endeavour directly above the module. Currie uses the robotic arm to capture the module. She then positions Zarya above Unity's docking mechanism.

  4. STS-95 Day 08 Highlights

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On this eighth day of the STS-95 mission, the flight crew, Cmdr. Curtis L. Brown, Pilot Steven W. Lindsey, Mission Specialists Scott E. Parazynski, Stephen K. Robinson, and Pedro Duque, and Payload Specialists Chiaki Mukai and John H. Glenn, continue to perform microgravity experiments. Specialist John Glenn completes a back-pain questionnaire as part of a study of how the muscle, intervertebral discs and bone marrow change due to microgravity. The results will then be compared with data provided by astronauts during previous missions. Glenn continues blood sample analysis and blood processing that are part of the Protein Turnover (PTO) experiment, which is studying the muscle loss that occurs during space flight.

  5. STS-95 Day 07 Highlights

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On this seventh day of the STS-95 mission, the flight crew, Cmdr. Curtis L. Brown, Pilot Steven W. Lindsey, Mission Specialists Scott E. Parazynski, Stephen K. Robinson, and Pedro Duque, and Payload Specialists Chiaki Mukai and John H. Glenn, again test the Orbiter Space Vision System. OSVS uses special markings on Spartan and the shuttle cargo bay to provide an alignment aid for the arm's operator using shuttle television images. It will be used extensively on the next Space Shuttle flight in December as an aid in using the arm to join together the first two modules of the International Space Station. Specialist John Glenn will complete a daily back-pain questionnaire by as part of a study of how the muscle, intervertebral discs and bone marrow change after exposure to microgravity.

  6. Attitude Estimation or Quaternion Estimation?

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis

    2003-01-01

    The attitude of spacecraft is represented by a 3x3 orthogonal matrix with unity determinant, which belongs to the three-dimensional special orthogonal group SO(3). The fact that all three-parameter representations of SO(3) are singular or discontinuous for certain attitudes has led to the use of higher-dimensional nonsingular parameterizations, especially the four-component quaternion. In attitude estimation, we are faced with the alternatives of using an attitude representation that is either singular or redundant. Estimation procedures fall into three broad classes. The first estimates a three-dimensional representation of attitude deviations from a reference attitude parameterized by a higher-dimensional nonsingular parameterization. The deviations from the reference are assumed to be small enough to avoid any singularity or discontinuity of the three-dimensional parameterization. The second class, which estimates a higher-dimensional representation subject to enough constraints to leave only three degrees of freedom, is difficult to formulate and apply consistently. The third class estimates a representation of SO(3) with more than three dimensions, treating the parameters as independent. We refer to the most common member of this class as quaternion estimation, to contrast it with attitude estimation. We analyze the first and third of these approaches in the context of an extended Kalman filter with simplified kinematics and measurement models.

  7. Present-day plate motions

    NASA Technical Reports Server (NTRS)

    Minster, J. B.; Jordan, T. H.

    1977-01-01

    A data set comprising 110 spreading rates, 78 transform fault azimuths and 142 earthquake slip vectors was inverted to yield a new instantaneous plate motion model, designated RM2. The mean averaging interval for the relative motion data was reduced to less than 3 My. A detailed comparison of RM2 with angular velocity vectors which best fit the data along individual plate boundaries indicates that RM2 performs close to optimally in most regions, with several notable exceptions. On the other hand, a previous estimate (RM1) failed to satisfy an extensive set of new data collected in the South Atlantic Ocean. It is shown that RM1 incorrectly predicts the plate kinematics in the South Atlantic because the presently available data are inconsistent with the plate geometry assumed in deriving RM1. It is demonstrated that this inconsistency can be remedied by postulating the existence of internal deformation with the Indian plate, although alternate explanations are possible.

  8. APhoRISM FP7 project: the Multi-platform volcanic Ash Cloud Estimation (MACE) infrastructure

    NASA Astrophysics Data System (ADS)

    Merucci, Luca; Corradini, Stefano; Bignami, Christian; Stramondo, Salvatore

    2014-05-01

    APHORISM is an FP7 project that aims to develop innovative products to support the management and mitigation of the volcanic and the seismic crisis. Satellite and ground measurements will be managed in a novel manner to provide new and improved products in terms of accuracy and quality of information. The Multi-platform volcanic Ash Cloud Estimation (MACE) infrastructure will exploit the complementarity between geostationary, and polar satellite sensors and ground measurements to improve the ash detection and retrieval and to fully characterize the volcanic ash clouds from source to the atmosphere. The basic idea behind the proposed method consists to manage in a novel manner, the volcanic ash retrievals at the space-time scale of typical geostationary observations using both the polar satellite estimations and in-situ measurements. The typical ash thermal infrared (TIR) retrieval will be integrated by using a wider spectral range from visible (VIS) to microwave (MW) and the ash detection will be extended also in case of cloudy atmosphere or steam plumes. All the MACE ash products will be tested on three recent eruptions representative of different eruption styles in different clear or cloudy atmospheric conditions: Eyjafjallajokull (Iceland) 2010, Grimsvotn (Iceland) 2011 and Etna (Italy) 2011-2012. The MACE infrastructure will be suitable to be implemented in the next generation of ESA Sentinels satellite missions.

  9. Ares Valles: Night and Day

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 15 June 2004 This pair of images shows part of the Ares Valles region.

    Day/Night Infrared Pairs

    The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top.

    Infrared image interpretation

    Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark.

    Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images.

    Image information: IR instrument. Latitude 3.6, Longitude 339.9 East (20.1 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released

  10. Day Fire in Ventura County

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Annotated Version

    The Day fire has been burning in Ventura County in Southern California since Labor Day, and has consumed more than 160,000 acres. As of September 29, it was 63 percent contained. The Advanced Spaceborne Thermal Emission and Reflection Radiometer on NASA's Terra satellite flew over the fire at 10 p.m. Pacific Time on September 28, and imaged the fire with its infrared camera. The hottest areas of active burning appear as red spots on the image. The blue-green background is a daytime image acquired in June, used as a background to allow firefighters to localize the hot spots.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission directorate.

    Size: 22.5 by 31.0 kilometers (12.6 by 15.2 miles) Location: 34

  11. Lomonosov Crater, Day and Night

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 16 June 2004 This pair of images shows part of Lomonosov Crater.

    Day/Night Infrared Pairs

    The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top.

    Infrared image interpretation

    Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark.

    Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images.

    Image information: IR instrument. Latitude 64.9, Longitude 350.7 East (9.3 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through

  12. 70 Days of Jupiter Winds

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This global movie of 70 days of Jupiter's cloud movements photographed by NASA's Cassini spacecraft shows that zones of eastward and westward winds cover the planet virtually from pole to pole.

    Cassini's narrow-angle camera captured the images of Jupiter's atmosphere from October 1 to December 9, 2000, in the near-infrared region of the spectrum. The view here is a cylindrical projection centered in the planet's equator.

    The movie allows tracking of individual storms' movements in the familiar zonal bands of the lower latitudes, in the swirling turbulence around the Great Red Spot and in the high latitudes where still images show chaotic mottling instead of stripes.

    Cassini collected images of Jupiter for months before and after it passed the planet on December 30, 2000. Six or more images of the planet in each of several spectral filters were taken at evenly spaced intervals over the course of Jupiter's 10-hour rotation period. The entire sequence was repeated generally every other Jupiter rotation, yielding views of every sector of the planet at least once every 20 hours.

    The images used for the movie shown here were taken every 20 hours through a filter centered at a wavelength of 756 nanometers, where there are almost no absorptions in the planet's atmosphere. Six images covering each rotation were mosaiced together to form a cylindrical map extending from 75 degrees north to 75 degrees south in latitude and covering 360 degrees in longitude. The movie consists of 84 such maps, spanning 70Earth days in time or 168 Jupiter rotations.

    For more information, see the Cassini Project home page, http://www.jpl.nasa.gov/cassini/ and the Cassini Imaging Team home page, http://ciclops.lpl.arizona.edu/ciclops/ .

    Cassini is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini mission for NASA's Office of

  13. Channel by Day and Night

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 17 June 2004 This pair of images shows part of a small channel.

    Day/Night Infrared Pairs

    The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top.

    Infrared image interpretation

    Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark.

    Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images.

    Image information: IR instrument. Latitude 19.8, Longitude 141.5 East (218.5 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through

  14. Estimating Photosynthetically Available Radiation (PAR) at the Earth's surface from satellite observations

    NASA Technical Reports Server (NTRS)

    Frouin, Robert

    1993-01-01

    Current satellite algorithms to estimate photosynthetically available radiation (PAR) at the earth' s surface are reviewed. PAR is deduced either from an insolation estimate or obtained directly from top-of-atmosphere solar radiances. The characteristics of both approaches are contrasted and typical results are presented. The inaccuracies reported, about 10 percent and 6 percent on daily and monthly time scales, respectively, are useful to model oceanic and terrestrial primary productivity. At those time scales variability due to clouds in the ratio of PAR and insolation is reduced, making it possible to deduce PAR directly from insolation climatologies (satellite or other) that are currently available or being produced. Improvements, however, are needed in conditions of broken cloudiness and over ice/snow. If not addressed properly, calibration/validation issues may prevent quantitative use of the PAR estimates in studies of climatic change. The prospects are good for an accurate, long-term climatology of PAR over the globe.

  15. Dental Care Every Day: A Caregiver's Guide

    MedlinePlus

    ... Every Day: A Caregiver's Guide Dental Care Every Day: A Caregiver's Guide Main Content Getting Started Three ... regularly. Back to Top Step 1. Brush Every Day Angle the brush at the gumline and brush ...

  16. STS-88 Day 11 Highlights

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On this eleventh day of the STS-88 mission, the flight crew, Commander Robert D. Cabana, Pilot Frederick W. Sturckow, and Mission Specialists Nancy J. Currie, James H. Newman, Jerry L. Ross, and Sergei Krikalev are awakened with the song "Goodnight, Sweetheart, Goodnight". Pilot Rick Sturckow undocks Endeavour from the station and backs the shuttle away to a distance of 450 feet above the station before beginning a nose-forward fly-around. Later Cabana, Sturckow and Ross deploy the SAC-A satellite from Endeavour's payload bay. SAC-A is a small, self-contained, non-recoverable satellite built by the Argentinean National Commission of Space Activities. The cube-shaped, 590-pound satellite will test and characterize the performance of new equipment and technologies that may be used in future scientific or operational missions. The payload includes a differential global positioning system, a magnetometer, silicon solar cells, a charge-coupled device Earth camera and a whale tracker experiment.

  17. Estimated soil ingestion by children.

    PubMed

    van Wijnen, J H; Clausing, P; Brunekreef, B

    1990-04-01

    The amount of soil ingested by young children was estimated by measuring the titanium, aluminum, and acid-insoluble residue in soil and feces. As intake of each of these tracers is also possible from sources other than soil ingestion, the amount of soil ingested was estimated to be not higher than the lowest of the three separate estimates. This estimate, the limiting tracer method (LTM) value, was then corrected for the similarly calculated mean LTM value for a group of hospitalized children without access to soil and dust. The study groups included children in three different environmental situations: day-care centers, campgrounds, and hospitals. The day-care center groups were sampled twice. From these groups, 162 children produced usable feces samples during both sampling periods. The camping groups and the hospitalized (control) group were sampled once. For the day-care center groups, the estimated geometric mean soil intake varied from 0 to 90 mg/day and for the camping groups these estimates ranged from 30 to 200 mg/day (in dry weight). Using estimates of the "true" between-child GSD values, the 90th percentile of the estimated soil intakes was shown to be typically 40-100 mg/day higher than the geometric means of these estimates. In the day-care center groups few correlations with the geometric mean LTM values were found for variables concerning living conditions, mouthing behavior, playing habits, etc. A strong correlation was found with weather. During dry weather the younger children especially showed higher LTM values. In the camping group the weather also influenced the mean LTM value only in the younger age groups. Analysis of variance showed that a single LTM value of a child has a low predictive value with regard to the LTM value of the next few days or that of a few months later. Therefore it seems reasonable to use group statistics as estimates of soil ingestion in health risk assessments of soil pollution incidents. PMID:2335156

  18. Revealing important nocturnal and day-to-day variations in fire smoke emissions through a multiplatform inversion

    SciTech Connect

    Saide, Pablo E.; Peterson, David A.; de Silva, Arlindo; Anderson, Bruce; Ziemba, Luke D.; Diskin, Glenn; Sachse, Glen; Hair, Jonathan; Butler, Carolyn; Fenn, Marta; Jimenez, Jose L.; Campuzano-Jost, Pedro; Perring, Anne E.; Schwarz, Joshua P.; Markovic, Milos Z.; Russell, Phil; Redemann, Jens; Shinozuka, Yohei; Streets, David G.; Yan, Fang; Dibb, Jack; Yokelson, Robert; Toon, O. Brian; Hyer, Edward; Carmichael, Gregory R.

    2015-05-16

    We couple airborne, ground-based, and satellite observations; conduct regional simulations; and develop and apply an inversion technique to constrain hourly smoke emissions from the Rim Fire, the third largest observed in California, USA. Emissions constrained with multiplatform data show notable nocturnal enhancements (sometimes over a factor of 20), correlate better with daily burned area data, and are a factor of 2–4 higher than a priori estimates, highlighting the need for improved characterization of diurnal profiles and day-to-day variability when modeling extreme fires. Constraining only with satellite data results in smaller enhancements mainly due to missing retrievals near the emissions source, suggesting that top-down emission estimates for these events could be underestimated and a multiplatform approach is required to resolve them. Predictions driven by emissions constrained with multiplatform data present significant variations in downwind air quality and in aerosol feedback on meteorology, emphasizing the need for improved emissions estimates during exceptional events.

  19. Computational Estimation

    ERIC Educational Resources Information Center

    Fung, Maria G.; Latulippe, Christine L.

    2010-01-01

    Elementary school teachers are responsible for constructing the foundation of number sense in youngsters, and so it is recommended that teacher-training programs include an emphasis on number sense to ensure the development of dynamic, productive computation and estimation skills in students. To better prepare preservice elementary school teachers…

  20. Melas Chasma, Day and Night.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image is a mosaic of day and night infrared images of Melas Chasma taken by the camera system on NASA's Mars Odyssey spacecraft. The daytime temperature images are shown in black and white, superimposed on the martian topography. A single nighttime temperature image is superimposed in color. The daytime temperatures range from approximately -35 degrees Celsius (-31 degrees Fahrenheit) in black to -5 degrees Celsius (23 degrees Fahrenheit) in white. Overlapping landslides and individual layers in the walls of Melas Chasma can be seen in this image. The landslides flowed over 100 kilometers (62 miles) across the floor of Melas Chasma, producing deposits with ridges and grooves of alternating warm and cold materials that can still be seen. The temperature differences in the daytime images are due primarily to lighting effects, where sunlit slopes are warm (bright) and shadowed slopes are cool (dark). The nighttime temperature differences are due to differences in the abundance of rocky materials that retain their heat at night and stay relatively warm (red). Fine grained dust and sand (blue) cools off more rapidly at night. These images were acquired using the thermal infrared imaging system infrared Band 9, centered at 12.6 micrometers.

    Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the 2001 Mars Odyssey mission for NASA's Office of Space Science in Washington, D.C. Investigators at Arizona State University in Tempe, the University of Arizona in Tucson and NASA's Johnson Space Center, Houston, operate the science instruments. Additional science partners are located at the Russian Aviation and Space Agency and at Los Alamos National Laboratories, New Mexico. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL. Aviation and Space Agency and at Los Alamos National

  1. AAS 228: Day 1 afternoon

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Editors Note:This week were at the 228th AAS Meeting in San Diego, CA. Along with a team ofauthors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting twiceeach day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Plenary Session: From Space Archeology to Serving the World Today: A 20-year Journey from the Jungles of Guatemala to a Network of Satellite Remote Sensing Facilities Around the World(by Michael Zevin)In the conferences second plenary session, NASAs Daniel Irwin turned the eyes of the conference back to Earth by highlighting the huge impact that NASA missions play in protecting and developing our own planet.Daniel Irwin: using satellite imagery to detect differences in vegetation and find ancient Mayan cities. #aas228 pic.twitter.com/9LFPQdCHTM astrobites (@astrobites) June 13, 2016Irwin came to be involved in NASA through his work mapping Guatemalan jungles, where he would spend 22 days at a time exploring the treacherous jungles on foot armed with a 1st generation GPS, a compass, and a machete. A colleague introduced Irwin to the satellite imagery thathe was exploring, demonstratinghow these images are a strong complement to field work. The sharing of this satellite data with nearby villages helped to show the encroachment of agriculture and the necessity of connecting space to the village. Satellite imagery also played a role in archeological endeavors, uncovering dozens of Mayan cities that have been buried for over a millennia by vegetation, and it provided evidence that the fall of the Mayan civilization may have been due to massive deforestation that ledto drought.Glacial retreat in Chile imaged by ISERV.Irwin displayed the constellation of NASAs Earth-monitoring satellites that have played an integral role in conserving our planet and alerting the world of natural disasters. He also showed

  2. AAS 228: Day 3 afternoon

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Editors Note:This week were at the 228th AAS Meeting in San Diego, CA. Along with a team ofauthors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting twiceeach day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Wikipedia Year of Science Editathon (by Meredith Rawls)Whats your first go-to source for an unfamiliar topic on the internet? If you said Wikipedia, youre not alone. For many people, Wikipedia is the primary source of information about astronomy and science. However, many Wikipedia articles about science topics are incomplete or missing, and women are underrepresented among scientists with biographies.To address this, the AAS Astronomy Education Board teamed up with the Wiki Education Foundation to host an edit-a-thon as part of the Wikipedia Year of Science. More than forty attendees spent the better part of three hours working through tutorials, creating new articles, and editing existing ones. The session was generously sponsored by the Simons Foundation.The Year of Science initiative seeks to bring Wikipedia editing skills to the classroom and help new editors find sustainable ways to contribute to Wikipedia in the long term. Anybody can create a free account and start editing!As a first-time Wikipedia contributor, I took the time to go through nearly all the tutorial exercises and familiarize myself with the process of editing a page. I decided to flesh out one section in an existing page about asteroseismology. Others created biography pages from scratch or selected various astronomical topics to write about. To me, the editing process felt like a cross between writing a blog post and a journal article, in a hack day type environment. Working through the tutorial and some examples renewed my empathy for learners who are tackling a new skill set for the first time. A full summary of our

  3. AAS 228: Day 2 morning

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Editors Note:This week were at the 228th AAS Meeting in San Diego, CA. Along with a team ofauthors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting twiceeach day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Plenary Session (Day 1) The Galaxy Zoo(by Benny Tsang)Galaxy Zoo was so hot that the servers hosting the galaxy images got melted down soon after being launched.Kevin Schawinski from ETH Zurich took us on a tour ofhis wonderful Galaxy Zoo. It is a huge zoo with about a quarter million zookeepers, they are citizen astronomers who collaboratively classify galaxies by their looks as an attempt to understand galaxy evolution. The big question that is being answered is: how do blue, actively star-forming galaxies evolve into red, quiescent (non-star-forming) galaxies? The Zoo helped reveal that blue galaxies turn into red galaxies via two possible paths galaxies might run out of supply of gas and shut off star formation slowly; or they could merge with one another and turn off star formation by destroying the gas reservoir rapidly!The Galaxy Zoo project also led to the discoveries of:Green Peas: they are the living fossils of galaxy evolution; compact, bright, green galaxies that are actively forming starsOverlapping galaxies: they are pairs of galaxies that are separated physically but happen to lie on the same line of sight; they provide excellent laboratories for studying dust extinctionHannys Voorwerp: an unusual object named after Hanny the discoverer, which is believed to be the first detection of quasar light echoThe idea of Galaxy Zoo in getting help from citizen scientists was further extended into an award-winningproject known as the Zooniverse, which is an online platform for streamlined crowd-sourcing for scientific research that requires human input. The future of astronomy is going to be

  4. Estimated water use in Puerto Rico, 2000

    USGS Publications Warehouse

    Molina-Rivera, Wanda L.

    2005-01-01

    Water-use data were compiled for the 78 municipios of the Commonwealth of Puerto Rico for 2000. Five offstream categories were considered: public-supply water withdrawals, domestic self-supplied water use, industrial self-supplied withdrawals, crop irrigation water use, and thermoelectric power fresh water use. Two additional categories also were considered: power generation instream use and public wastewater treatment return-flows. Fresh water withdrawals for offstream use from surface- and ground-water sources in Puerto Rico were estimated at 617 million gallons per day. The largest amount of fresh water withdrawn was by public-supply water facilities and was estimated at 540 million gallons per day. Fresh surface- and ground-water withdrawals by domestic self-supplied users was estimated at 2 million gallons per day and the industrial self-supplied withdrawals were estimated at 9.5 million gallons per day. Withdrawals for crop irrigation purposes were estimated at 64 million gallons per day, or approximately 10 percent of all offstream fresh water withdrawals. Saline instream surface-water withdrawals for cooling purposes by thermoelectric power facilities was estimated at 2,191 million gallons per day, and instream fresh water withdrawals by hydroelectric facilities at 171 million gallons per day. Total discharge from public wastewater treatment facilities was estimated at 211 million gallons per day.

  5. Iowa Family Day Care Handbook. Second Edition.

    ERIC Educational Resources Information Center

    Pinsky, Dorothy; And Others

    The Iowa Family Day Care Handbook is designed as an aid for persons entering the business of providing home day care as well as for those persons already in the field. Topics include advantages and disadvantages of family day care for children, parents and providers; getting started in family day care; and a list and description of records that…

  6. Family Day Care Training Curriculum (Lao).

    ERIC Educational Resources Information Center

    Nakatsu, Gail

    California's Family Day Care Training Program was designed to recruit and train, in 7 weeks, Lao, Vietnamese, and Chinese refugees to establish their own state-licensed, family day care homes. Topics in the program's curriculum include an introduction to family day care, state licenses for family day care, state licensing requirements for family…

  7. The Four-Day School Week. Revised.

    ERIC Educational Resources Information Center

    Colorado State Dept. of Education, Denver.

    This paper provides an overview of the 4-day school week being utilized by 36 school districts in Colorado. These districts, which tend to be rural and sparsely populated, schedule 7.5 hours per day for 144 days of school instead of the normal 6 hours for 180 days. Colorado law requires school districts to schedule 1,080 hours per year of…

  8. Reducing uncertainties associated with remotely sensed estimates of forest growth and carbon exchange in the Great Lakes Region

    NASA Astrophysics Data System (ADS)

    Cook, Bruce Douglas

    NASA satellites Terra and Aqua orbit the Earth every 100 minutes and collect data that is used to compute an 8 day time series of gross photosynthesis and annual plant production for each square kilometer of the earth's surface. This is a remarkable technological and scientific achievement that permits continuous monitoring of plant production and quantification of CO2 fixed by the terrestrial biosphere. It also allows natural resource scientists and practitioners to identify global trends associated with land cover/use and climate change. Satellite-derived estimates of photosynthesis and plant production from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) generally agree with independent measurements from validation sites across the globe, but local biases and spatial uncertainties exist at the regional scale. This dissertation evaluates three sources of uncertainty associated with MODIS algorithms in the Great Lakes Region, and evaluates LiDAR (Light Detection and Ranging) remote sensing as a method for improving model inputs. Chapter 1 examines the robustness of model parameters and errors resulting from canopy disturbances, which were assessed by inversion of flux tower observations during a severe outbreak of forest tent caterpillars. Chapter 2 examines model logic errors in wetland ecosystems, focusing on surface water table fluctuations as a potential constraint to photosynthesis that is not accounted for in the MODIS algorithm. Chapter 3 examines errors associated with pixel size and poor state data, using fine spatial resolution LiDAR and multispectral satellite data to derive estimates plant production across a heterogeneous landscape in northern Wisconsin. Together, these papers indicate that light- and carbon-use efficiency models driven by remote sensing and surface meteorology data are capable of providing accurate estimates of plant production within stands and across landscapes of the Great Lakes Region. It is demonstrated that model

  9. AAS 228: Day 1 afternoon

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Editors Note:This week were at the 228th AAS Meeting in San Diego, CA. Along with a team ofauthors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting twiceeach day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Plenary Session: From Space Archeology to Serving the World Today: A 20-year Journey from the Jungles of Guatemala to a Network of Satellite Remote Sensing Facilities Around the World(by Michael Zevin)In the conferences second plenary session, NASAs Daniel Irwin turned the eyes of the conference back to Earth by highlighting the huge impact that NASA missions play in protecting and developing our own planet.Daniel Irwin: using satellite imagery to detect differences in vegetation and find ancient Mayan cities. #aas228 pic.twitter.com/9LFPQdCHTM astrobites (@astrobites) June 13, 2016Irwin came to be involved in NASA through his work mapping Guatemalan jungles, where he would spend 22 days at a time exploring the treacherous jungles on foot armed with a 1st generation GPS, a compass, and a machete. A colleague introduced Irwin to the satellite imagery thathe was exploring, demonstratinghow these images are a strong complement to field work. The sharing of this satellite data with nearby villages helped to show the encroachment of agriculture and the necessity of connecting space to the village. Satellite imagery also played a role in archeological endeavors, uncovering dozens of Mayan cities that have been buried for over a millennia by vegetation, and it provided evidence that the fall of the Mayan civilization may have been due to massive deforestation that ledto drought.Glacial retreat in Chile imaged by ISERV.Irwin displayed the constellation of NASAs Earth-monitoring satellites that have played an integral role in conserving our planet and alerting the world of natural disasters. He also showed

  10. The Four Day School Week. Research Brief

    ERIC Educational Resources Information Center

    Muir, Mike

    2013-01-01

    Can four-day school weeks help districts save money? How do districts overcome the barriers of moving to a four-day week? What is the effect of a four-day week on students, staff and the community? This paper enumerates the benefits for students and teachers of four-day school weeks. Recommendations for implementation of a four-day week are also…

  11. AAS 228: Day 2 morning

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Editors Note:This week were at the 228th AAS Meeting in San Diego, CA. Along with a team ofauthors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting twiceeach day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Plenary Session (Day 1) The Galaxy Zoo(by Benny Tsang)Galaxy Zoo was so hot that the servers hosting the galaxy images got melted down soon after being launched.Kevin Schawinski from ETH Zurich took us on a tour ofhis wonderful Galaxy Zoo. It is a huge zoo with about a quarter million zookeepers, they are citizen astronomers who collaboratively classify galaxies by their looks as an attempt to understand galaxy evolution. The big question that is being answered is: how do blue, actively star-forming galaxies evolve into red, quiescent (non-star-forming) galaxies? The Zoo helped reveal that blue galaxies turn into red galaxies via two possible paths galaxies might run out of supply of gas and shut off star formation slowly; or they could merge with one another and turn off star formation by destroying the gas reservoir rapidly!The Galaxy Zoo project also led to the discoveries of:Green Peas: they are the living fossils of galaxy evolution; compact, bright, green galaxies that are actively forming starsOverlapping galaxies: they are pairs of galaxies that are separated physically but happen to lie on the same line of sight; they provide excellent laboratories for studying dust extinctionHannys Voorwerp: an unusual object named after Hanny the discoverer, which is believed to be the first detection of quasar light echoThe idea of Galaxy Zoo in getting help from citizen scientists was further extended into an award-winningproject known as the Zooniverse, which is an online platform for streamlined crowd-sourcing for scientific research that requires human input. The future of astronomy is going to be

  12. GnRH analogue treatment on LH surge day 0 followed by single transvaginal artificial insemination with frozen semen on day 5 in bitches

    PubMed Central

    OHTAKI, Tadatoshi; KOGA, Yasuna; ONO, Mamiko; WATANABE, Gen; TAYA, Kazuyoshi; TSUMAGARI, Shigehisa

    2014-01-01

    ABSTRACT Reproductive parameters were evaluated in 19 and 14 estrous beagles that received 100 µg of gonadotropin-releasing hormone (GnRH) and saline treatment, respectively, on the day of luteinizing hormone (LH) surge (Day 0; estimated by serial progesterone assay) and balloon catheter-aided single transvaginal artificial insemination of frozen semen on Day 5. Although the conception rate and litter size were similar between the GnRH and saline groups, the concentration of LH peak was significantly higher in GnRH-treated bitches (P<0.01). In addition, the actual LH surge did not occur on the estimated Day 0 in one saline-treated bitch. In clinical practice that daily progesterone assay is difficult, administration of GnRH on estimated Day 0 would be recommended to induce or enhance the LH surge for timely and successful insemination. PMID:25311914

  13. AAS 228: Day 1 morning

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Editors Note:This week were at the 228th AAS Meeting in San Diego, CA. Along with a team ofauthors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting twiceeach day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Come visit astrobites at the AAS booth we have swag!Things kicked off last night at our undergraduate reception booth. Thanks to all of you who stopped by we were delightedto hear from undergrads who already know and love the site, educators who want to use it in their classrooms, and students who had not yet been introduced to astrobites and were excited about a new resource!For the rest of the meeting we will be stationed at theAAS booth in the exhibit hall (booth #211-213), so drop by if you want to learn more (or pick up swag: weve got lots of stickers and sunglasses)!Mondaymorning was the official start of the meeting. Here are just a few of the talks and workshops astrobiters attended this morning.Opening Address(by Susanna Kohler)AAS President Meg Urry kicked off the meeting this morning at 8am with an overview of some of the great endeavors AAS is supporting. We astrobiters had personal motivation to drag ourselves out of bed that early: during this session, Urryannounced the new partnership between AAS and astrobites!Urry touched on some difficult topics in her welcome, including yesterdays tragedy in Orlando. Shereiteratedthe AASs support fortheCommittee for Sexual-Orientation and Gender Minorities in Astronomy (SGMA). She also reminded meeting attendees about the importance ofkeeping conference interactions professional, and pointed to the meetings anti-harassment policy.Partnership Announcement (by Michael Zevin)This morning, the American Astronomical Society announced the new partnership that it will have with Astrobites! We are beyond excited to embark on this new partnership with the

  14. 3 CFR 8562 - Proclamation 8562 of September 16, 2010. Constitution Day and Citizenship Day, Constitution Week...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... Constitution Day and Citizenship Day, Constitution Week, 2010 8562 Proclamation 8562 Presidential Documents Proclamations Proclamation 8562 of September 16, 2010 Proc. 8562 Constitution Day and Citizenship Day... the States, the Framers advanced our national journey. On Constitution Day and Citizenship Day,...

  15. Helicobacter pylori eradication with either seven-day or 10-day triple therapies, and with a 10-day sequential regimen

    PubMed Central

    Scaccianoce, Giuseppe; Hassan, Cesare; Panarese, Alba; Piglionica, Donato; Morini, Sergio; Zullo, Angelo

    2006-01-01

    BACKGROUND Helicobacter pylori eradication rates achieved by standard seven-day triple therapies are decreasing in several countries, while a novel 10-day sequential regimen has achieved a very high success rate. A longer 10-day triple therapy, similar to the sequential regimen, was tested to see whether it could achieve a better infection cure rate. METHODS Patients with nonulcer dyspepsia and H pylori infection were randomly assigned to one of the following three therapies: esomeprazole 20 mg, clarithromycin 500 mg and amoxycillin 1 g for seven days or 10 days, or a 10-day sequential regimen including esomeprazole 20 mg plus amoxycillin 1 g for five days and esomeprazole 20 mg, clarithromycin 500 mg and tinidazole 500 mg for the remaining five days. All drugs were given twice daily. H pylori eradication was checked four to six weeks after treatment by using a 13C-urea breath test. RESULTS Overall, 213 patients were enrolled. H pylori eradication was achieved in 75.7% and 77.9%, in 81.7% and 84.1%, and in 94.4% and 97.1% of patients following seven-day or 10-day triple therapy and the 10-day sequential regimen, at intention-to-treat and per protocol analyses, respectively. The eradication rate following the sequential regimen was higher than either seven-day (P=0.002) or 10-day triple therapy (P=0.02), while no significant difference emerged between the latter two regimens (P=0.6). CONCLUSIONS The 10-day sequential regimen was significantly more effective than both triple regimens, while 10-day triple therapy failed to significantly increase the H pylori eradication rate achieved by the standard seven-day regimen. PMID:16482238

  16. Adaptation to capsaicin within and across days.

    PubMed

    McBurney, D H; Balaban, C D; Christopher, D E; Harvey, C

    1997-02-01

    Subjects judged the time-course of the burn caused by 100 ppm capsaicin applied to the tongue on Day 1 and Day 5. On Days 2-4, they tasted hard candy containing capsaicin. Most subjects did not show adaptation within Day 1, but either plateaued after about 16 min or rose monotonically for the entire 34 min. Intensity was less on Day 5 and levelled off or declined for most subjects. Data were fit to a mathematical model of adaptation. Adaptation across days was accounted for by changes in the gains of the three processes.

  17. Is Full-Day Kindergarten Worth It? an Academic Comparison of Full-Day and Half-Day Kindergarten Programs

    ERIC Educational Resources Information Center

    Romines, Robert A.

    2012-01-01

    The purpose of this study is to answer this question: Which is academically superior for young children, full-or half-day kindergarten? This inquiry-oriented case study was designed to compare and contrast students who attended half-day versus full-day kindergarten programs in a suburban public school district. The study is necessary because the…

  18. AAS 228: Day 1 morning

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Editors Note:This week were at the 228th AAS Meeting in San Diego, CA. Along with a team ofauthors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting twiceeach day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Come visit astrobites at the AAS booth we have swag!Things kicked off last night at our undergraduate reception booth. Thanks to all of you who stopped by we were delightedto hear from undergrads who already know and love the site, educators who want to use it in their classrooms, and students who had not yet been introduced to astrobites and were excited about a new resource!For the rest of the meeting we will be stationed at theAAS booth in the exhibit hall (booth #211-213), so drop by if you want to learn more (or pick up swag: weve got lots of stickers and sunglasses)!Mondaymorning was the official start of the meeting. Here are just a few of the talks and workshops astrobiters attended this morning.Opening Address(by Susanna Kohler)AAS President Meg Urry kicked off the meeting this morning at 8am with an overview of some of the great endeavors AAS is supporting. We astrobiters had personal motivation to drag ourselves out of bed that early: during this session, Urryannounced the new partnership between AAS and astrobites!Urry touched on some difficult topics in her welcome, including yesterdays tragedy in Orlando. Shereiteratedthe AASs support fortheCommittee for Sexual-Orientation and Gender Minorities in Astronomy (SGMA). She also reminded meeting attendees about the importance ofkeeping conference interactions professional, and pointed to the meetings anti-harassment policy.Partnership Announcement (by Michael Zevin)This morning, the American Astronomical Society announced the new partnership that it will have with Astrobites! We are beyond excited to embark on this new partnership with the

  19. Accuracy of egg flotation throughout incubation to determine embryo age and incubation day in waterbird nests

    USGS Publications Warehouse

    Ackerman, Joshua T.; Eagles-Smith, Collin A.

    2010-01-01

    Floating bird eggs to estimate their age is a widely used technique, but few studies have examined its accuracy throughout incubation. We assessed egg flotation for estimating hatch date, day of incubation, and the embryo's developmental age in eggs of the American Avocet (Recurvirostra americana), Black-necked Stilt (Himantopus mexicanus), and Forster's Tern (Sterna forsteri). Predicted hatch dates based on egg flotation during our first visit to a nest were highly correlated with actual hatch dates (r = 0.99) and accurate within 2.3 ± 1.7 (SD) days. Age estimates based on flotation were correlated with both day of incubation (r = 0.96) and the embryo's developmental age (r = 0.86) and accurate within 1.3 ± 1.6 days and 1.9 ± 1.6 days, respectively. However, the technique's accuracy varied substantially throughout incubation. Flotation overestimated the embryo's developmental age between 3 and 9 days, underestimated age between 12 and 21 days, and was most accurate between 0 and 3 days and 9 and 12 days. Age estimates based on egg flotation were generally accurate within 3 days until day 15 but later in incubation were biased progressively lower. Egg flotation was inaccurate and overestimated embryo age in abandoned nests (mean error: 7.5 ± 6.0 days). The embryo's developmental age and day of incubation were highly correlated (r = 0.94), differed by 2.1 ± 1.6 days, and resulted in similar assessments of the egg-flotation technique. Floating every egg in the clutch and refloating eggs at subsequent visits to a nest can refine age estimates.

  20. Test day variability in yield and composition of Surti and Mehsani buffaloes milk at day 15 and 60 postpartum

    PubMed Central

    Tyagi, K. K.; Brahmkshtri, B. P.; Ramani, U. V.; Kharadi, V. B.; Pandaya, G. M.; Janmeda, M.; Ankuya, K. J.; Patel, M. D.; Sorathiya, L. M.

    2016-01-01

    Aim: To estimate individual test day variability in yield and composition of Surti and Mehsani buffaloes milk at day 15 and 60 postpartum (pp). Materials and Methods: A total of 13 normally calved Surti and Mehsani buffaloes each maintained at Livestock Research Stations of Navsari and Sardarkrushinagar Dantiwada Agricultural Universities, respectively, were selected for the study. Milk sample was collected from each selected buffalo at day 15 and 60 pp to study milk yield and composition variability between these two breeds. Buffaloes were categorized for the ease of data analysis and comparisons into four groups, viz., S15 (Surti buffaloes 15th day pp), S60 (Surti buffaloes 60th day pp), M15 (Mehsani buffaloes 15th day pp), and M60 (Mehsani buffaloes 60th day pp). Results: There were 37.20% and 25.03% significant (p≤0.05) increase in mean test day milk yield (TDMY) of S60 and M60 as compared to S15 and M15 groups, respectively. The mean TDMY of Mehsani buffalo was 99.19% and 81.53% significantly (p≤0.05) higher than Surti buffaloes at day 15 and 60 pp, respectively. The mean fat and protein corrected test day milk yield (FPCTDMY) of all the groups was found to be significantly different (p≤0.05) from each other. There was significant (p≤0.05) increase of 1.94 and 3.45 kg in mean FPCTDMY with the progression of lactation between day 15 and 60 pp in Surti and Mehsani buffaloes, respectively. Similarly, the mean FPCTDMY of Mehsani buffaloes were approximately double with 103.27% and 96.36% higher yield as compared to Surti buffaloes at day 15 and 60 pp, respectively. Among milk composition, significant differences were observed for solid not fat (SNF) and protein%, whereas fat and lactose% were steady among four groups. The only significant (p≤0.05) difference was observed for SNF in M60 group, which was 8.29%, 6.85%, and 10.70% higher as compared to S15, S60, and M15 groups, respectively. The mean protein% in milk of Mehsani buffaloes was 21.01% and 33

  1. ["Day surgery, for an efficient patient pathway"].

    PubMed

    Burkhardt, Céline; Michon, Florence

    2015-05-01

    Working in day surgery requires teams to harmonise their practices and coordinate with each other at all times.We interview Céline Burkhardt, a healthcare manager who oversaw the deployment of a day surgery unit in her hospital.

  2. Dust indicator maps for improving solar radiation estimation from satellite data

    NASA Astrophysics Data System (ADS)

    Marpu, P. R.; Eissa, Y.; Al Meqbali, N.; Ghedira, H.

    2012-12-01

    Measurement of solar radiation from ground-based sensors is an expensive process as it requires large number of ground measurement stations to account for the spatial variability. Moreover, the instruments require regular maintenance. Satellite data can be used to model solar radiation and produce maps in regular intervals, which can be used for solar resource assessment. The models can either be empirical, physics-based or statistical models. However, in environments such as the United Arab Emirates (UAE) which are characterized by heavy dust, the results obtained by the models will lead to lower accuracies. In this study, we build on the model developed in [1], where ensembles of ANNs are used separately for cloudy and cloud-free pixels to derive solar radiation maps using the data acquired in the thermal channels of the Meteosat SEVIRI instrument. The model showed good accuracies for the estimation of direct normal irradiance (DNI), diffuse horizontal irradiance (DHI) and global horizontal irradiance (GHI); where the relative root mean square error (rRMSE) values for the DNI, DHI and GHI were 15.7, 23.6 and 7.2%, respectively, while the relative mean bias error (rMBE) values were +0.8, +8.3 and +1.9%, respectively. However, an analysis of the results on different dusty days showed varying accuracy. To further improve the model, we propose to use the dust indicator maps as inputs to the model. An interception index was proposed in [2] to detect dust over desert regions using visible channels of the SEVIRI instrument. The index has a range of 0 to 1 where the value of 1 corresponds to heavy dust and 0 corresponds to clear conditions. There is ongoing work to use the measurements from AERONET stations to derive dust indicator maps based on canonical correlation analysis, which relates the thermal channels to the aerosol optical depth (AOD) derived at different wavelengths from the AERONET measurements. There is also an ongoing work to analyze the time series of the

  3. Day Camp Manual: Program. Book IV.

    ERIC Educational Resources Information Center

    Babcock, William

    Book IV in a 5-book day camp manual discusses the camp program. Section I describes the organization, definition, and elements essential to successful day camp programs. Section II, which addresses the benefits and special considerations of mass programs, includes rainy day contingencies, materials to have on hand, and activity suggestions.…

  4. Maximizing Peak Running on Race Day

    ERIC Educational Resources Information Center

    Consolo, Kitty

    2008-01-01

    Distance runners spend many hours training assiduously for competition, yet on race day they can often make mistakes that sabotage their performance. This article addresses five common race-day mistakes: (1) failure to bring proper equipment to the race; (2) failure to eat an appropriate race-day meal; (3) failure to hydrate properly; (4) failure…

  5. Celebrate Missouri Day in Your Classroom.

    ERIC Educational Resources Information Center

    Missouri State Dept. of Elementary and Secondary Education, Jefferson City.

    This booklet provides suggested activities that can be used to enrich the observance of Missouri Day, a day commemorative of Missouri history. The document includes a chart specifying the date of Missouri day from 1990 through 1995, always the third Wednesday of October. Activities are recommended for primary, elementary, middle, and secondary…

  6. Women in History--Dorothy Day

    ERIC Educational Resources Information Center

    Brock, Barbara L.

    2007-01-01

    This article profiles Dorothy Day, a pacifist and a champion of the rights of women, the poor, and the oppressed, who challenged generations of social and political orthodoxies. Day believed in a social revolution that did not begin with government programs, but from the bottom up. Day's life of voluntary poverty, her writings and actions on…

  7. Tourette Syndrome: A Training Day for Teachers.

    ERIC Educational Resources Information Center

    Chowdhury, Uttom; Christie, Deborah

    2002-01-01

    This article describes a Tourette syndrome training day for teachers facilitated by members of the Tic Disorders Clinic at Great Ormond Street Hospital in England. The day provided a mix of information giving and discussion of current practice. Outcomes of the day are related to professional knowledge and experience. (Contains references.) (CR)

  8. Scoring the All-Day Screener

    Cancer.gov

    For the All-Day screener, scoring involves a series of operations that are shown below and implemented in the All-Day Screener Pyramid Servings SAS Program and the All-Day Screener MyPyramid Cup Equivalents SAS Program.

  9. 31 CFR 800.201 - Business day.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Business day. 800.201 Section 800.201 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF INVESTMENT... FOREIGN PERSONS Definitions § 800.201 Business day. The term business day means Monday through...

  10. 31 CFR 800.201 - Business day.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Business day. 800.201 Section 800.201 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF INVESTMENT... FOREIGN PERSONS Definitions § 800.201 Business day. The term business day means Monday through...

  11. 31 CFR 800.201 - Business day.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Business day. 800.201 Section 800.201 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF INVESTMENT... FOREIGN PERSONS Definitions § 800.201 Business day. The term business day means Monday through...

  12. 31 CFR 800.201 - Business day.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Business day. 800.201 Section 800.201 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF INVESTMENT... FOREIGN PERSONS Definitions § 800.201 Business day. The term business day means Monday through...

  13. 75 FR 24371 - Loyalty Day, 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ... the two hundred and thirty-fourth. (Presidential Sig.) [FR Doc. 2010-10748 Filed 5-4-10; 8:45 am...#0;#0; ] Proclamation 8512 of April 29, 2010 Loyalty Day, 2010 By the President of the United States... 85-529 as amended, has designated May 1 of each year as ``Loyalty Day.'' On this day, we honor...

  14. 75 FR 63033 - Leif Erikson Day, 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-13

    ... America the two hundred and thirty-fifth. (Presidential Sig.) [FR Doc. 2010-25967 Filed 10-12-10; 11:15 am... Proclamation 8581--Leif Erikson Day, 2010 Proclamation 8582--General Pulaski Memorial Day, 2010 #0; #0; #0... Erikson Day, 2010 By the President of the United States of America A Proclamation Over 1,000 years...

  15. 77 FR 68043 - World Freedom Day, 2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    .... (Presidential Sig.) [FR Doc. 2012-27918 Filed 11-14-12; 8:45 am] Billing code 3295-F3 ... Documents#0;#0; #0; #0;Title 3-- #0;The President ] Proclamation 8903 of November 9, 2012 World Freedom Day..., 2012, as World Freedom Day. I call upon the people of the United States to observe this day...

  16. 77 FR 25859 - Workers Memorial Day, 2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... Independence of the United States of America the two hundred and thirty- sixth. (Presidential Sig.) [FR Doc...#0;#0; #0; #0;Title 3-- #0;The President ] Proclamation 8805 of April 27, 2012 Workers Memorial Day... average of 12 individuals die on the job every day. On Workers Memorial Day, we honor all who...

  17. 77 FR 28761 - Mother's Day, 2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-16

    ... thirty-sixth. (Presidential Sig.) [FR Doc. 2012-11992 Filed 5-15-12; 8:45 am] Billing code 3295-F2-P ... Documents#0;#0; ] Proclamation 8817 of May 11, 2012 Mother's Day, 2012 By the President of the United States... Day, we honor the remarkable women who strive and sacrifice every day to ensure their children...

  18. 75 FR 35947 - Father's Day, 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-23

    .... (Presidential Sig.) [FR Doc. 2010-15403 Filed 6-22-10; 11:15 am] Billing code 3195-W0-P ... Proclamation 8537--Father's Day, 2010 Proclamation 8538--World Refugee Day, 2010 Memorandum of June 18, 2010... ] Proclamation 8537 of June 18, 2010 Father's Day, 2010 By the President of the United States of America...

  19. The First Day: It Happens Only Once

    ERIC Educational Resources Information Center

    Anderson, Denise M.; McGuire, Francis A.; Cory, Lynne

    2011-01-01

    Research findings on optimum use of the first day of class are mixed. Past data gathered from students from various disciplines support a first day designed to distribute the course syllabus and explain class expectations, rules, and policies. Additional literature supports a different approach to the first day; one designed to immediately engage…

  20. 77 FR 18895 - Cesar Chavez Day, 2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    .... (Presidential Sig.) [FR Doc. 2012-7639 Filed 3-27-12; 11:15 am] Billing code 3295-F2-P ... Documents#0;#0; ] Proclamation 8786 of March 23, 2012 Cesar Chavez Day, 2012 By the President of the United... hereby proclaim March 31, 2012, as Cesar Chavez Day. I call upon all Americans to observe this day...