A comparison of queueing, cluster and distributed computing systems
NASA Technical Reports Server (NTRS)
Kaplan, Joseph A.; Nelson, Michael L.
1993-01-01
Using workstation clusters for distributed computing has become popular with the proliferation of inexpensive, powerful workstations. Workstation clusters offer both a cost effective alternative to batch processing and an easy entry into parallel computing. However, a number of workstations on a network does not constitute a cluster. Cluster management software is necessary to harness the collective computing power. A variety of cluster management and queuing systems are compared: Distributed Queueing Systems (DQS), Condor, Load Leveler, Load Balancer, Load Sharing Facility (LSF - formerly Utopia), Distributed Job Manager (DJM), Computing in Distributed Networked Environments (CODINE), and NQS/Exec. The systems differ in their design philosophy and implementation. Based on published reports on the different systems and conversations with the system's developers and vendors, a comparison of the systems are made on the integral issues of clustered computing.
Cluster Computing for Embedded/Real-Time Systems
NASA Technical Reports Server (NTRS)
Katz, D.; Kepner, J.
1999-01-01
Embedded and real-time systems, like other computing systems, seek to maximize computing power for a given price, and thus can significantly benefit from the advancing capabilities of cluster computing.
Autonomic Cluster Management System (ACMS): A Demonstration of Autonomic Principles at Work
NASA Technical Reports Server (NTRS)
Baldassari, James D.; Kopec, Christopher L.; Leshay, Eric S.; Truszkowski, Walt; Finkel, David
2005-01-01
Cluster computing, whereby a large number of simple processors or nodes are combined together to apparently function as a single powerful computer, has emerged as a research area in its own right. The approach offers a relatively inexpensive means of achieving significant computational capabilities for high-performance computing applications, while simultaneously affording the ability to. increase that capability simply by adding more (inexpensive) processors. However, the task of manually managing and con.guring a cluster quickly becomes impossible as the cluster grows in size. Autonomic computing is a relatively new approach to managing complex systems that can potentially solve many of the problems inherent in cluster management. We describe the development of a prototype Automatic Cluster Management System (ACMS) that exploits autonomic properties in automating cluster management.
Towards an Autonomic Cluster Management System (ACMS) with Reflex Autonomicity
NASA Technical Reports Server (NTRS)
Truszkowski, Walt; Hinchey, Mike; Sterritt, Roy
2005-01-01
Cluster computing, whereby a large number of simple processors or nodes are combined together to apparently function as a single powerful computer, has emerged as a research area in its own right. The approach offers a relatively inexpensive means of providing a fault-tolerant environment and achieving significant computational capabilities for high-performance computing applications. However, the task of manually managing and configuring a cluster quickly becomes daunting as the cluster grows in size. Autonomic computing, with its vision to provide self-management, can potentially solve many of the problems inherent in cluster management. We describe the development of a prototype Autonomic Cluster Management System (ACMS) that exploits autonomic properties in automating cluster management and its evolution to include reflex reactions via pulse monitoring.
Abreu, Rui Mv; Froufe, Hugo Jc; Queiroz, Maria João Rp; Ferreira, Isabel Cfr
2010-10-28
Virtual screening of small molecules using molecular docking has become an important tool in drug discovery. However, large scale virtual screening is time demanding and usually requires dedicated computer clusters. There are a number of software tools that perform virtual screening using AutoDock4 but they require access to dedicated Linux computer clusters. Also no software is available for performing virtual screening with Vina using computer clusters. In this paper we present MOLA, an easy-to-use graphical user interface tool that automates parallel virtual screening using AutoDock4 and/or Vina in bootable non-dedicated computer clusters. MOLA automates several tasks including: ligand preparation, parallel AutoDock4/Vina jobs distribution and result analysis. When the virtual screening project finishes, an open-office spreadsheet file opens with the ligands ranked by binding energy and distance to the active site. All results files can automatically be recorded on an USB-flash drive or on the hard-disk drive using VirtualBox. MOLA works inside a customized Live CD GNU/Linux operating system, developed by us, that bypass the original operating system installed on the computers used in the cluster. This operating system boots from a CD on the master node and then clusters other computers as slave nodes via ethernet connections. MOLA is an ideal virtual screening tool for non-experienced users, with a limited number of multi-platform heterogeneous computers available and no access to dedicated Linux computer clusters. When a virtual screening project finishes, the computers can just be restarted to their original operating system. The originality of MOLA lies on the fact that, any platform-independent computer available can he added to the cluster, without ever using the computer hard-disk drive and without interfering with the installed operating system. With a cluster of 10 processors, and a potential maximum speed-up of 10x, the parallel algorithm of MOLA performed with a speed-up of 8,64× using AutoDock4 and 8,60× using Vina.
Construction and application of Red5 cluster based on OpenStack
NASA Astrophysics Data System (ADS)
Wang, Jiaqing; Song, Jianxin
2017-08-01
With the application and development of cloud computing technology in various fields, the resource utilization rate of the data center has been improved obviously, and the system based on cloud computing platform has also improved the expansibility and stability. In the traditional way, Red5 cluster resource utilization is low and the system stability is poor. This paper uses cloud computing to efficiently calculate the resource allocation ability, and builds a Red5 server cluster based on OpenStack. Multimedia applications can be published to the Red5 cloud server cluster. The system achieves the flexible construction of computing resources, but also greatly improves the stability of the cluster and service efficiency.
Baun, Christian
2016-01-01
Clusters usually consist of servers, workstations or personal computers as nodes. But especially for academic purposes like student projects or scientific projects, the cost for purchase and operation can be a challenge. Single board computers cannot compete with the performance or energy-efficiency of higher-value systems, but they are an option to build inexpensive cluster systems. Because of the compact design and modest energy consumption, it is possible to build clusters of single board computers in a way that they are mobile and can be easily transported by the users. This paper describes the construction of such a cluster, useful applications and the performance of the single nodes. Furthermore, the clusters' performance and energy-efficiency is analyzed by executing the High Performance Linpack benchmark with a different number of nodes and different proportion of the systems total main memory utilized.
Nagaoka, Tomoaki; Watanabe, Soichi
2012-01-01
Electromagnetic simulation with anatomically realistic computational human model using the finite-difference time domain (FDTD) method has recently been performed in a number of fields in biomedical engineering. To improve the method's calculation speed and realize large-scale computing with the computational human model, we adapt three-dimensional FDTD code to a multi-GPU cluster environment with Compute Unified Device Architecture and Message Passing Interface. Our multi-GPU cluster system consists of three nodes. The seven GPU boards (NVIDIA Tesla C2070) are mounted on each node. We examined the performance of the FDTD calculation on multi-GPU cluster environment. We confirmed that the FDTD calculation on the multi-GPU clusters is faster than that on a multi-GPU (a single workstation), and we also found that the GPU cluster system calculate faster than a vector supercomputer. In addition, our GPU cluster system allowed us to perform the large-scale FDTD calculation because were able to use GPU memory of over 100 GB.
Anandakrishnan, Ramu; Onufriev, Alexey
2008-03-01
In statistical mechanics, the equilibrium properties of a physical system of particles can be calculated as the statistical average over accessible microstates of the system. In general, these calculations are computationally intractable since they involve summations over an exponentially large number of microstates. Clustering algorithms are one of the methods used to numerically approximate these sums. The most basic clustering algorithms first sub-divide the system into a set of smaller subsets (clusters). Then, interactions between particles within each cluster are treated exactly, while all interactions between different clusters are ignored. These smaller clusters have far fewer microstates, making the summation over these microstates, tractable. These algorithms have been previously used for biomolecular computations, but remain relatively unexplored in this context. Presented here, is a theoretical analysis of the error and computational complexity for the two most basic clustering algorithms that were previously applied in the context of biomolecular electrostatics. We derive a tight, computationally inexpensive, error bound for the equilibrium state of a particle computed via these clustering algorithms. For some practical applications, it is the root mean square error, which can be significantly lower than the error bound, that may be more important. We how that there is a strong empirical relationship between error bound and root mean square error, suggesting that the error bound could be used as a computationally inexpensive metric for predicting the accuracy of clustering algorithms for practical applications. An example of error analysis for such an application-computation of average charge of ionizable amino-acids in proteins-is given, demonstrating that the clustering algorithm can be accurate enough for practical purposes.
NASA Astrophysics Data System (ADS)
Decyk, Viktor K.; Dauger, Dean E.
We have constructed a parallel cluster consisting of Apple Macintosh G4 computers running both Classic Mac OS as well as the Unix-based Mac OS X, and have achieved very good performance on numerically intensive, parallel plasma particle-in-cell simulations. Unlike other Unix-based clusters, no special expertise in operating systems is required to build and run the cluster. This enables us to move parallel computing from the realm of experts to the mainstream of computing.
Illinois Occupational Skill Standards: Information Technology Operate Cluster.
ERIC Educational Resources Information Center
Illinois Occupational Skill Standards and Credentialing Council, Carbondale.
This document contains Illinois Occupational Skill Standards for occupations in the Information Technology Operate Cluster (help desk support, computer maintenance and technical support technician, systems operator, application and computer support specialist, systems administrator, network administrator, and database administrator). The skill…
NAS Requirements Checklist for Job Queuing/Scheduling Software
NASA Technical Reports Server (NTRS)
Jones, James Patton
1996-01-01
The increasing reliability of parallel systems and clusters of computers has resulted in these systems becoming more attractive for true production workloads. Today, the primary obstacle to production use of clusters of computers is the lack of a functional and robust Job Management System for parallel applications. This document provides a checklist of NAS requirements for job queuing and scheduling in order to make most efficient use of parallel systems and clusters for parallel applications. Future requirements are also identified to assist software vendors with design planning.
HORN-6 special-purpose clustered computing system for electroholography.
Ichihashi, Yasuyuki; Nakayama, Hirotaka; Ito, Tomoyoshi; Masuda, Nobuyuki; Shimobaba, Tomoyoshi; Shiraki, Atsushi; Sugie, Takashige
2009-08-03
We developed the HORN-6 special-purpose computer for holography. We designed and constructed the HORN-6 board to handle an object image composed of one million points and constructed a cluster system composed of 16 HORN-6 boards. Using this HORN-6 cluster system, we succeeded in creating a computer-generated hologram of a three-dimensional image composed of 1,000,000 points at a rate of 1 frame per second, and a computer-generated hologram of an image composed of 100,000 points at a rate of 10 frames per second, which is near video rate, when the size of a computer-generated hologram is 1,920 x 1,080. The calculation speed is approximately 4,600 times faster than that of a personal computer with an Intel 3.4-GHz Pentium 4 CPU.
How to Build an AppleSeed: A Parallel Macintosh Cluster for Numerically Intensive Computing
NASA Astrophysics Data System (ADS)
Decyk, V. K.; Dauger, D. E.
We have constructed a parallel cluster consisting of a mixture of Apple Macintosh G3 and G4 computers running the Mac OS, and have achieved very good performance on numerically intensive, parallel plasma particle-incell simulations. A subset of the MPI message-passing library was implemented in Fortran77 and C. This library enabled us to port code, without modification, from other parallel processors to the Macintosh cluster. Unlike Unix-based clusters, no special expertise in operating systems is required to build and run the cluster. This enables us to move parallel computing from the realm of experts to the main stream of computing.
Jungle Computing: Distributed Supercomputing Beyond Clusters, Grids, and Clouds
NASA Astrophysics Data System (ADS)
Seinstra, Frank J.; Maassen, Jason; van Nieuwpoort, Rob V.; Drost, Niels; van Kessel, Timo; van Werkhoven, Ben; Urbani, Jacopo; Jacobs, Ceriel; Kielmann, Thilo; Bal, Henri E.
In recent years, the application of high-performance and distributed computing in scientific practice has become increasingly wide spread. Among the most widely available platforms to scientists are clusters, grids, and cloud systems. Such infrastructures currently are undergoing revolutionary change due to the integration of many-core technologies, providing orders-of-magnitude speed improvements for selected compute kernels. With high-performance and distributed computing systems thus becoming more heterogeneous and hierarchical, programming complexity is vastly increased. Further complexities arise because urgent desire for scalability and issues including data distribution, software heterogeneity, and ad hoc hardware availability commonly force scientists into simultaneous use of multiple platforms (e.g., clusters, grids, and clouds used concurrently). A true computing jungle.
Users matter : multi-agent systems model of high performance computing cluster users.
DOE Office of Scientific and Technical Information (OSTI.GOV)
North, M. J.; Hood, C. S.; Decision and Information Sciences
2005-01-01
High performance computing clusters have been a critical resource for computational science for over a decade and have more recently become integral to large-scale industrial analysis. Despite their well-specified components, the aggregate behavior of clusters is poorly understood. The difficulties arise from complicated interactions between cluster components during operation. These interactions have been studied by many researchers, some of whom have identified the need for holistic multi-scale modeling that simultaneously includes network level, operating system level, process level, and user level behaviors. Each of these levels presents its own modeling challenges, but the user level is the most complex duemore » to the adaptability of human beings. In this vein, there are several major user modeling goals, namely descriptive modeling, predictive modeling and automated weakness discovery. This study shows how multi-agent techniques were used to simulate a large-scale computing cluster at each of these levels.« less
Web Program for Development of GUIs for Cluster Computers
NASA Technical Reports Server (NTRS)
Czikmantory, Akos; Cwik, Thomas; Klimeck, Gerhard; Hua, Hook; Oyafuso, Fabiano; Vinyard, Edward
2003-01-01
WIGLAF (a Web Interface Generator and Legacy Application Facade) is a computer program that provides a Web-based, distributed, graphical-user-interface (GUI) framework that can be adapted to any of a broad range of application programs, written in any programming language, that are executed remotely on any cluster computer system. WIGLAF enables the rapid development of a GUI for controlling and monitoring a specific application program running on the cluster and for transferring data to and from the application program. The only prerequisite for the execution of WIGLAF is a Web-browser program on a user's personal computer connected with the cluster via the Internet. WIGLAF has a client/server architecture: The server component is executed on the cluster system, where it controls the application program and serves data to the client component. The client component is an applet that runs in the Web browser. WIGLAF utilizes the Extensible Markup Language to hold all data associated with the application software, Java to enable platform-independent execution on the cluster system and the display of a GUI generator through the browser, and the Java Remote Method Invocation software package to provide simple, effective client/server networking.
Two schemes for rapid generation of digital video holograms using PC cluster
NASA Astrophysics Data System (ADS)
Park, Hanhoon; Song, Joongseok; Kim, Changseob; Park, Jong-Il
2017-12-01
Computer-generated holography (CGH), which is a process of generating digital holograms, is computationally expensive. Recently, several methods/systems of parallelizing the process using graphic processing units (GPUs) have been proposed. Indeed, use of multiple GPUs or a personal computer (PC) cluster (each PC with GPUs) enabled great improvements in the process speed. However, extant literature has less often explored systems involving rapid generation of multiple digital holograms and specialized systems for rapid generation of a digital video hologram. This study proposes a system that uses a PC cluster and is able to more efficiently generate a video hologram. The proposed system is designed to simultaneously generate multiple frames and accelerate the generation by parallelizing the CGH computations across a number of frames, as opposed to separately generating each individual frame while parallelizing the CGH computations within each frame. The proposed system also enables the subprocesses for generating each frame to execute in parallel through multithreading. With these two schemes, the proposed system significantly reduced the data communication time for generating a digital hologram when compared with that of the state-of-the-art system.
Crane, Michael; Steinwand, Dan; Beckmann, Tim; Krpan, Greg; Liu, Shu-Guang; Nichols, Erin; Haga, Jim; Maddox, Brian; Bilderback, Chris; Feller, Mark; Homer, George
2001-01-01
The overarching goal of this project is to build a spatially distributed infrastructure for information science research by forming a team of information science researchers and providing them with similar hardware and software tools to perform collaborative research. Four geographically distributed Centers of the U.S. Geological Survey (USGS) are developing their own clusters of low-cost, personal computers into parallel computing environments that provide a costeffective way for the USGS to increase participation in the high-performance computing community. Referred to as Beowulf clusters, these hybrid systems provide the robust computing power required for conducting information science research into parallel computing systems and applications.
Grid Computing Environment using a Beowulf Cluster
NASA Astrophysics Data System (ADS)
Alanis, Fransisco; Mahmood, Akhtar
2003-10-01
Custom-made Beowulf clusters using PCs are currently replacing expensive supercomputers to carry out complex scientific computations. At the University of Texas - Pan American, we built a 8 Gflops Beowulf Cluster for doing HEP research using RedHat Linux 7.3 and the LAM-MPI middleware. We will describe how we built and configured our Cluster, which we have named the Sphinx Beowulf Cluster. We will describe the results of our cluster benchmark studies and the run-time plots of several parallel application codes that were compiled in C on the cluster using the LAM-XMPI graphics user environment. We will demonstrate a "simple" prototype grid environment, where we will submit and run parallel jobs remotely across multiple cluster nodes over the internet from the presentation room at Texas Tech. University. The Sphinx Beowulf Cluster will be used for monte-carlo grid test-bed studies for the LHC-ATLAS high energy physics experiment. Grid is a new IT concept for the next generation of the "Super Internet" for high-performance computing. The Grid will allow scientist worldwide to view and analyze huge amounts of data flowing from the large-scale experiments in High Energy Physics. The Grid is expected to bring together geographically and organizationally dispersed computational resources, such as CPUs, storage systems, communication systems, and data sources.
Monitoring by Use of Clusters of Sensor-Data Vectors
NASA Technical Reports Server (NTRS)
Iverson, David L.
2007-01-01
The inductive monitoring system (IMS) is a system of computer hardware and software for automated monitoring of the performance, operational condition, physical integrity, and other aspects of the health of a complex engineering system (e.g., an industrial process line or a spacecraft). The input to the IMS consists of streams of digitized readings from sensors in the monitored system. The IMS determines the type and amount of any deviation of the monitored system from a nominal or normal ( healthy ) condition on the basis of a comparison between (1) vectors constructed from the incoming sensor data and (2) corresponding vectors in a database of nominal or normal behavior. The term inductive reflects the use of a process reminiscent of traditional mathematical induction to learn about normal operation and build the nominal-condition database. The IMS offers two major advantages over prior computational monitoring systems: The computational burden of the IMS is significantly smaller, and there is no need for abnormal-condition sensor data for training the IMS to recognize abnormal conditions. The figure schematically depicts the relationships among the computational processes effected by the IMS. Training sensor data are gathered during normal operation of the monitored system, detailed computational simulation of operation of the monitored system, or both. The training data are formed into vectors that are used to generate the database. The vectors in the database are clustered into regions that represent normal or nominal operation. Once the database has been generated, the IMS compares the vectors of incoming sensor data with vectors representative of the clusters. The monitored system is deemed to be operating normally or abnormally, depending on whether the vector of incoming sensor data is or is not, respectively, sufficiently close to one of the clusters. For this purpose, a distance between two vectors is calculated by a suitable metric (e.g., Euclidean distance) and "sufficiently close" signifies lying at a distance less than a specified threshold value. It must be emphasized that although the IMS is intended to detect off-nominal or abnormal performance or health, it is not necessarily capable of performing a thorough or detailed diagnosis. Limited diagnostic information may be available under some circumstances. For example, the distance of a vector of incoming sensor data from the nearest cluster could serve as an indication of the severity of a malfunction. The identity of the nearest cluster may be a clue as to the identity of the malfunctioning component or subsystem. It is possible to decrease the IMS computation time by use of a combination of cluster-indexing and -retrieval methods. For example, in one method, the distances between each cluster and two or more reference vectors can be used for the purpose of indexing and retrieval. The clusters are sorted into a list according to these distance values, typically in ascending order of distance. When a set of input data arrives and is to be tested, the data are first arranged as an ordered set (that is, a vector). The distances from the input vector to the reference points are computed. The search of clusters from the list can then be limited to those clusters lying within a certain distance range from the input vector; the computation time is reduced by not searching the clusters at a greater distance.
Issues in ATM Support of High-Performance, Geographically Distributed Computing
NASA Technical Reports Server (NTRS)
Claus, Russell W.; Dowd, Patrick W.; Srinidhi, Saragur M.; Blade, Eric D.G
1995-01-01
This report experimentally assesses the effect of the underlying network in a cluster-based computing environment. The assessment is quantified by application-level benchmarking, process-level communication, and network file input/output. Two testbeds were considered, one small cluster of Sun workstations and another large cluster composed of 32 high-end IBM RS/6000 platforms. The clusters had Ethernet, fiber distributed data interface (FDDI), Fibre Channel, and asynchronous transfer mode (ATM) network interface cards installed, providing the same processors and operating system for the entire suite of experiments. The primary goal of this report is to assess the suitability of an ATM-based, local-area network to support interprocess communication and remote file input/output systems for distributed computing.
NASA Astrophysics Data System (ADS)
Romanchuk, V. A.; Lukashenko, V. V.
2018-05-01
The technique of functioning of a control system by a computing cluster based on neurocomputers is proposed. Particular attention is paid to the method of choosing the structure of the computing cluster due to the fact that the existing methods are not effective because of a specialized hardware base - neurocomputers, which are highly parallel computer devices with an architecture different from the von Neumann architecture. A developed algorithm for choosing the computational structure of a cloud cluster is described, starting from the direction of data transfer in the flow control graph of the program and its adjacency matrix.
Liu, Yan-Lin; Shih, Cheng-Ting; Chang, Yuan-Jen; Chang, Shu-Jun; Wu, Jay
2014-01-01
The rapid development of picture archiving and communication systems (PACSs) thoroughly changes the way of medical informatics communication and management. However, as the scale of a hospital's operations increases, the large amount of digital images transferred in the network inevitably decreases system efficiency. In this study, a server cluster consisting of two server nodes was constructed. Network load balancing (NLB), distributed file system (DFS), and structured query language (SQL) duplication services were installed. A total of 1 to 16 workstations were used to transfer computed radiography (CR), computed tomography (CT), and magnetic resonance (MR) images simultaneously to simulate the clinical situation. The average transmission rate (ATR) was analyzed between the cluster and noncluster servers. In the download scenario, the ATRs of CR, CT, and MR images increased by 44.3%, 56.6%, and 100.9%, respectively, when using the server cluster, whereas the ATRs increased by 23.0%, 39.2%, and 24.9% in the upload scenario. In the mix scenario, the transmission performance increased by 45.2% when using eight computer units. The fault tolerance mechanisms of the server cluster maintained the system availability and image integrity. The server cluster can improve the transmission efficiency while maintaining high reliability and continuous availability in a healthcare environment.
Chang, Shu-Jun; Wu, Jay
2014-01-01
The rapid development of picture archiving and communication systems (PACSs) thoroughly changes the way of medical informatics communication and management. However, as the scale of a hospital's operations increases, the large amount of digital images transferred in the network inevitably decreases system efficiency. In this study, a server cluster consisting of two server nodes was constructed. Network load balancing (NLB), distributed file system (DFS), and structured query language (SQL) duplication services were installed. A total of 1 to 16 workstations were used to transfer computed radiography (CR), computed tomography (CT), and magnetic resonance (MR) images simultaneously to simulate the clinical situation. The average transmission rate (ATR) was analyzed between the cluster and noncluster servers. In the download scenario, the ATRs of CR, CT, and MR images increased by 44.3%, 56.6%, and 100.9%, respectively, when using the server cluster, whereas the ATRs increased by 23.0%, 39.2%, and 24.9% in the upload scenario. In the mix scenario, the transmission performance increased by 45.2% when using eight computer units. The fault tolerance mechanisms of the server cluster maintained the system availability and image integrity. The server cluster can improve the transmission efficiency while maintaining high reliability and continuous availability in a healthcare environment. PMID:24701580
Integrating Xgrid into the HENP distributed computing model
NASA Astrophysics Data System (ADS)
Hajdu, L.; Kocoloski, A.; Lauret, J.; Miller, M.
2008-07-01
Modern Macintosh computers feature Xgrid, a distributed computing architecture built directly into Apple's OS X operating system. While the approach is radically different from those generally expected by the Unix based Grid infrastructures (Open Science Grid, TeraGrid, EGEE), opportunistic computing on Xgrid is nonetheless a tempting and novel way to assemble a computing cluster with a minimum of additional configuration. In fact, it requires only the default operating system and authentication to a central controller from each node. OS X also implements arbitrarily extensible metadata, allowing an instantly updated file catalog to be stored as part of the filesystem itself. The low barrier to entry allows an Xgrid cluster to grow quickly and organically. This paper and presentation will detail the steps that can be taken to make such a cluster a viable resource for HENP research computing. We will further show how to provide to users a unified job submission framework by integrating Xgrid through the STAR Unified Meta-Scheduler (SUMS), making tasks and jobs submission effortlessly at reach for those users already using the tool for traditional Grid or local cluster job submission. We will discuss additional steps that can be taken to make an Xgrid cluster a full partner in grid computing initiatives, focusing on Open Science Grid integration. MIT's Xgrid system currently supports the work of multiple research groups in the Laboratory for Nuclear Science, and has become an important tool for generating simulations and conducting data analyses at the Massachusetts Institute of Technology.
Burns, Randal; Roncal, William Gray; Kleissas, Dean; Lillaney, Kunal; Manavalan, Priya; Perlman, Eric; Berger, Daniel R; Bock, Davi D; Chung, Kwanghun; Grosenick, Logan; Kasthuri, Narayanan; Weiler, Nicholas C; Deisseroth, Karl; Kazhdan, Michael; Lichtman, Jeff; Reid, R Clay; Smith, Stephen J; Szalay, Alexander S; Vogelstein, Joshua T; Vogelstein, R Jacob
2013-01-01
We describe a scalable database cluster for the spatial analysis and annotation of high-throughput brain imaging data, initially for 3-d electron microscopy image stacks, but for time-series and multi-channel data as well. The system was designed primarily for workloads that build connectomes - neural connectivity maps of the brain-using the parallel execution of computer vision algorithms on high-performance compute clusters. These services and open-science data sets are publicly available at openconnecto.me. The system design inherits much from NoSQL scale-out and data-intensive computing architectures. We distribute data to cluster nodes by partitioning a spatial index. We direct I/O to different systems-reads to parallel disk arrays and writes to solid-state storage-to avoid I/O interference and maximize throughput. All programming interfaces are RESTful Web services, which are simple and stateless, improving scalability and usability. We include a performance evaluation of the production system, highlighting the effec-tiveness of spatial data organization.
Dynamic Extension of a Virtualized Cluster by using Cloud Resources
NASA Astrophysics Data System (ADS)
Oberst, Oliver; Hauth, Thomas; Kernert, David; Riedel, Stephan; Quast, Günter
2012-12-01
The specific requirements concerning the software environment within the HEP community constrain the choice of resource providers for the outsourcing of computing infrastructure. The use of virtualization in HPC clusters and in the context of cloud resources is therefore a subject of recent developments in scientific computing. The dynamic virtualization of worker nodes in common batch systems provided by ViBatch serves each user with a dynamically virtualized subset of worker nodes on a local cluster. Now it can be transparently extended by the use of common open source cloud interfaces like OpenNebula or Eucalyptus, launching a subset of the virtual worker nodes within the cloud. This paper demonstrates how a dynamically virtualized computing cluster is combined with cloud resources by attaching remotely started virtual worker nodes to the local batch system.
Galaxy CloudMan: delivering cloud compute clusters.
Afgan, Enis; Baker, Dannon; Coraor, Nate; Chapman, Brad; Nekrutenko, Anton; Taylor, James
2010-12-21
Widespread adoption of high-throughput sequencing has greatly increased the scale and sophistication of computational infrastructure needed to perform genomic research. An alternative to building and maintaining local infrastructure is "cloud computing", which, in principle, offers on demand access to flexible computational infrastructure. However, cloud computing resources are not yet suitable for immediate "as is" use by experimental biologists. We present a cloud resource management system that makes it possible for individual researchers to compose and control an arbitrarily sized compute cluster on Amazon's EC2 cloud infrastructure without any informatics requirements. Within this system, an entire suite of biological tools packaged by the NERC Bio-Linux team (http://nebc.nerc.ac.uk/tools/bio-linux) is available for immediate consumption. The provided solution makes it possible, using only a web browser, to create a completely configured compute cluster ready to perform analysis in less than five minutes. Moreover, we provide an automated method for building custom deployments of cloud resources. This approach promotes reproducibility of results and, if desired, allows individuals and labs to add or customize an otherwise available cloud system to better meet their needs. The expected knowledge and associated effort with deploying a compute cluster in the Amazon EC2 cloud is not trivial. The solution presented in this paper eliminates these barriers, making it possible for researchers to deploy exactly the amount of computing power they need, combined with a wealth of existing analysis software, to handle the ongoing data deluge.
NASA Astrophysics Data System (ADS)
Valasek, Lukas; Glasa, Jan
2017-12-01
Current fire simulation systems are capable to utilize advantages of high-performance computer (HPC) platforms available and to model fires efficiently in parallel. In this paper, efficiency of a corridor fire simulation on a HPC computer cluster is discussed. The parallel MPI version of Fire Dynamics Simulator is used for testing efficiency of selected strategies of allocation of computational resources of the cluster using a greater number of computational cores. Simulation results indicate that if the number of cores used is not equal to a multiple of the total number of cluster node cores there are allocation strategies which provide more efficient calculations.
Brown, David K; Penkler, David L; Musyoka, Thommas M; Bishop, Özlem Tastan
2015-01-01
Complex computational pipelines are becoming a staple of modern scientific research. Often these pipelines are resource intensive and require days of computing time. In such cases, it makes sense to run them over high performance computing (HPC) clusters where they can take advantage of the aggregated resources of many powerful computers. In addition to this, researchers often want to integrate their workflows into their own web servers. In these cases, software is needed to manage the submission of jobs from the web interface to the cluster and then return the results once the job has finished executing. We have developed the Job Management System (JMS), a workflow management system and web interface for high performance computing (HPC). JMS provides users with a user-friendly web interface for creating complex workflows with multiple stages. It integrates this workflow functionality with the resource manager, a tool that is used to control and manage batch jobs on HPC clusters. As such, JMS combines workflow management functionality with cluster administration functionality. In addition, JMS provides developer tools including a code editor and the ability to version tools and scripts. JMS can be used by researchers from any field to build and run complex computational pipelines and provides functionality to include these pipelines in external interfaces. JMS is currently being used to house a number of bioinformatics pipelines at the Research Unit in Bioinformatics (RUBi) at Rhodes University. JMS is an open-source project and is freely available at https://github.com/RUBi-ZA/JMS.
Brown, David K.; Penkler, David L.; Musyoka, Thommas M.; Bishop, Özlem Tastan
2015-01-01
Complex computational pipelines are becoming a staple of modern scientific research. Often these pipelines are resource intensive and require days of computing time. In such cases, it makes sense to run them over high performance computing (HPC) clusters where they can take advantage of the aggregated resources of many powerful computers. In addition to this, researchers often want to integrate their workflows into their own web servers. In these cases, software is needed to manage the submission of jobs from the web interface to the cluster and then return the results once the job has finished executing. We have developed the Job Management System (JMS), a workflow management system and web interface for high performance computing (HPC). JMS provides users with a user-friendly web interface for creating complex workflows with multiple stages. It integrates this workflow functionality with the resource manager, a tool that is used to control and manage batch jobs on HPC clusters. As such, JMS combines workflow management functionality with cluster administration functionality. In addition, JMS provides developer tools including a code editor and the ability to version tools and scripts. JMS can be used by researchers from any field to build and run complex computational pipelines and provides functionality to include these pipelines in external interfaces. JMS is currently being used to house a number of bioinformatics pipelines at the Research Unit in Bioinformatics (RUBi) at Rhodes University. JMS is an open-source project and is freely available at https://github.com/RUBi-ZA/JMS. PMID:26280450
Spatial clustering of pixels of a multispectral image
Conger, James Lynn
2014-08-19
A method and system for clustering the pixels of a multispectral image is provided. A clustering system computes a maximum spectral similarity score for each pixel that indicates the similarity between that pixel and the most similar neighboring. To determine the maximum similarity score for a pixel, the clustering system generates a similarity score between that pixel and each of its neighboring pixels and then selects the similarity score that represents the highest similarity as the maximum similarity score. The clustering system may apply a filtering criterion based on the maximum similarity score so that pixels with similarity scores below a minimum threshold are not clustered. The clustering system changes the current pixel values of the pixels in a cluster based on an averaging of the original pixel values of the pixels in the cluster.
Parallel Calculations in LS-DYNA
NASA Astrophysics Data System (ADS)
Vartanovich Mkrtychev, Oleg; Aleksandrovich Reshetov, Andrey
2017-11-01
Nowadays, structural mechanics exhibits a trend towards numeric solutions being found for increasingly extensive and detailed tasks, which requires that capacities of computing systems be enhanced. Such enhancement can be achieved by different means. E.g., in case a computing system is represented by a workstation, its components can be replaced and/or extended (CPU, memory etc.). In essence, such modification eventually entails replacement of the entire workstation, i.e. replacement of certain components necessitates exchange of others (faster CPUs and memory devices require buses with higher throughput etc.). Special consideration must be given to the capabilities of modern video cards. They constitute powerful computing systems capable of running data processing in parallel. Interestingly, the tools originally designed to render high-performance graphics can be applied for solving problems not immediately related to graphics (CUDA, OpenCL, Shaders etc.). However, not all software suites utilize video cards’ capacities. Another way to increase capacity of a computing system is to implement a cluster architecture: to add cluster nodes (workstations) and to increase the network communication speed between the nodes. The advantage of this approach is extensive growth due to which a quite powerful system can be obtained by combining not particularly powerful nodes. Moreover, separate nodes may possess different capacities. This paper considers the use of a clustered computing system for solving problems of structural mechanics with LS-DYNA software. To establish a range of dependencies a mere 2-node cluster has proven sufficient.
Galaxy CloudMan: delivering cloud compute clusters
2010-01-01
Background Widespread adoption of high-throughput sequencing has greatly increased the scale and sophistication of computational infrastructure needed to perform genomic research. An alternative to building and maintaining local infrastructure is “cloud computing”, which, in principle, offers on demand access to flexible computational infrastructure. However, cloud computing resources are not yet suitable for immediate “as is” use by experimental biologists. Results We present a cloud resource management system that makes it possible for individual researchers to compose and control an arbitrarily sized compute cluster on Amazon’s EC2 cloud infrastructure without any informatics requirements. Within this system, an entire suite of biological tools packaged by the NERC Bio-Linux team (http://nebc.nerc.ac.uk/tools/bio-linux) is available for immediate consumption. The provided solution makes it possible, using only a web browser, to create a completely configured compute cluster ready to perform analysis in less than five minutes. Moreover, we provide an automated method for building custom deployments of cloud resources. This approach promotes reproducibility of results and, if desired, allows individuals and labs to add or customize an otherwise available cloud system to better meet their needs. Conclusions The expected knowledge and associated effort with deploying a compute cluster in the Amazon EC2 cloud is not trivial. The solution presented in this paper eliminates these barriers, making it possible for researchers to deploy exactly the amount of computing power they need, combined with a wealth of existing analysis software, to handle the ongoing data deluge. PMID:21210983
Burns, Randal; Roncal, William Gray; Kleissas, Dean; Lillaney, Kunal; Manavalan, Priya; Perlman, Eric; Berger, Daniel R.; Bock, Davi D.; Chung, Kwanghun; Grosenick, Logan; Kasthuri, Narayanan; Weiler, Nicholas C.; Deisseroth, Karl; Kazhdan, Michael; Lichtman, Jeff; Reid, R. Clay; Smith, Stephen J.; Szalay, Alexander S.; Vogelstein, Joshua T.; Vogelstein, R. Jacob
2013-01-01
We describe a scalable database cluster for the spatial analysis and annotation of high-throughput brain imaging data, initially for 3-d electron microscopy image stacks, but for time-series and multi-channel data as well. The system was designed primarily for workloads that build connectomes— neural connectivity maps of the brain—using the parallel execution of computer vision algorithms on high-performance compute clusters. These services and open-science data sets are publicly available at openconnecto.me. The system design inherits much from NoSQL scale-out and data-intensive computing architectures. We distribute data to cluster nodes by partitioning a spatial index. We direct I/O to different systems—reads to parallel disk arrays and writes to solid-state storage—to avoid I/O interference and maximize throughput. All programming interfaces are RESTful Web services, which are simple and stateless, improving scalability and usability. We include a performance evaluation of the production system, highlighting the effec-tiveness of spatial data organization. PMID:24401992
WinHPC System | High-Performance Computing | NREL
System WinHPC System NREL's WinHPC system is a computing cluster running the Microsoft Windows operating system. It allows users to run jobs requiring a Windows environment such as ANSYS and MATLAB
Towards the use of computationally inserted lesions for mammographic CAD assessment
NASA Astrophysics Data System (ADS)
Ghanian, Zahra; Pezeshk, Aria; Petrick, Nicholas; Sahiner, Berkman
2018-03-01
Computer-aided detection (CADe) devices used for breast cancer detection on mammograms are typically first developed and assessed for a specific "original" acquisition system, e.g., a specific image detector. When CADe developers are ready to apply their CADe device to a new mammographic acquisition system, they typically assess the CADe device with images acquired using the new system. Collecting large repositories of clinical images containing verified cancer locations and acquired by the new image acquisition system is costly and time consuming. Our goal is to develop a methodology to reduce the clinical data burden in the assessment of a CADe device for use with a different image acquisition system. We are developing an image blending technique that allows users to seamlessly insert lesions imaged using an original acquisition system into normal images or regions acquired with a new system. In this study, we investigated the insertion of microcalcification clusters imaged using an original acquisition system into normal images acquired with that same system utilizing our previously-developed image blending technique. We first performed a reader study to assess whether experienced observers could distinguish between computationally inserted and native clusters. For this purpose, we applied our insertion technique to clinical cases taken from the University of South Florida Digital Database for Screening Mammography (DDSM) and the Breast Cancer Digital Repository (BCDR). Regions of interest containing microcalcification clusters from one breast of a patient were inserted into the contralateral breast of the same patient. The reader study included 55 native clusters and their 55 inserted counterparts. Analysis of the reader ratings using receiver operating characteristic (ROC) methodology indicated that inserted clusters cannot be reliably distinguished from native clusters (area under the ROC curve, AUC=0.58±0.04). Furthermore, CADe sensitivity was evaluated on mammograms with native and inserted microcalcification clusters using a commercial CADe system. For this purpose, we used full field digital mammograms (FFDMs) from 68 clinical cases, acquired at the University of Michigan Health System. The average sensitivities for native and inserted clusters were equal, 85.3% (58/68). These results demonstrate the feasibility of using the inserted microcalcification clusters for assessing mammographic CAD devices.
Mo, Yun; Zhang, Zhongzhao; Meng, Weixiao; Ma, Lin; Wang, Yao
2014-01-01
Indoor positioning systems based on the fingerprint method are widely used due to the large number of existing devices with a wide range of coverage. However, extensive positioning regions with a massive fingerprint database may cause high computational complexity and error margins, therefore clustering methods are widely applied as a solution. However, traditional clustering methods in positioning systems can only measure the similarity of the Received Signal Strength without being concerned with the continuity of physical coordinates. Besides, outage of access points could result in asymmetric matching problems which severely affect the fine positioning procedure. To solve these issues, in this paper we propose a positioning system based on the Spatial Division Clustering (SDC) method for clustering the fingerprint dataset subject to physical distance constraints. With the Genetic Algorithm and Support Vector Machine techniques, SDC can achieve higher coarse positioning accuracy than traditional clustering algorithms. In terms of fine localization, based on the Kernel Principal Component Analysis method, the proposed positioning system outperforms its counterparts based on other feature extraction methods in low dimensionality. Apart from balancing online matching computational burden, the new positioning system exhibits advantageous performance on radio map clustering, and also shows better robustness and adaptability in the asymmetric matching problem aspect. PMID:24451470
NASA Astrophysics Data System (ADS)
Chen, Xiuhong; Huang, Xianglei; Jiao, Chaoyi; Flanner, Mark G.; Raeker, Todd; Palen, Brock
2017-01-01
The suites of numerical models used for simulating climate of our planet are usually run on dedicated high-performance computing (HPC) resources. This study investigates an alternative to the usual approach, i.e. carrying out climate model simulations on commercially available cloud computing environment. We test the performance and reliability of running the CESM (Community Earth System Model), a flagship climate model in the United States developed by the National Center for Atmospheric Research (NCAR), on Amazon Web Service (AWS) EC2, the cloud computing environment by Amazon.com, Inc. StarCluster is used to create virtual computing cluster on the AWS EC2 for the CESM simulations. The wall-clock time for one year of CESM simulation on the AWS EC2 virtual cluster is comparable to the time spent for the same simulation on a local dedicated high-performance computing cluster with InfiniBand connections. The CESM simulation can be efficiently scaled with the number of CPU cores on the AWS EC2 virtual cluster environment up to 64 cores. For the standard configuration of the CESM at a spatial resolution of 1.9° latitude by 2.5° longitude, increasing the number of cores from 16 to 64 reduces the wall-clock running time by more than 50% and the scaling is nearly linear. Beyond 64 cores, the communication latency starts to outweigh the benefit of distributed computing and the parallel speedup becomes nearly unchanged.
The FOSS GIS Workbench on the GFZ Load Sharing Facility compute cluster
NASA Astrophysics Data System (ADS)
Löwe, P.; Klump, J.; Thaler, J.
2012-04-01
Compute clusters can be used as GIS workbenches, their wealth of resources allow us to take on geocomputation tasks which exceed the limitations of smaller systems. To harness these capabilities requires a Geographic Information System (GIS), able to utilize the available cluster configuration/architecture and a sufficient degree of user friendliness to allow for wide application. In this paper we report on the first successful porting of GRASS GIS, the oldest and largest Free Open Source (FOSS) GIS project, onto a compute cluster using Platform Computing's Load Sharing Facility (LSF). In 2008, GRASS6.3 was installed on the GFZ compute cluster, which at that time comprised 32 nodes. The interaction with the GIS was limited to the command line interface, which required further development to encapsulate the GRASS GIS business layer to facilitate its use by users not familiar with GRASS GIS. During the summer of 2011, multiple versions of GRASS GIS (v 6.4, 6.5 and 7.0) were installed on the upgraded GFZ compute cluster, now consisting of 234 nodes with 480 CPUs providing 3084 cores. The GFZ compute cluster currently offers 19 different processing queues with varying hardware capabilities and priorities, allowing for fine-grained scheduling and load balancing. After successful testing of core GIS functionalities, including the graphical user interface, mechanisms were developed to deploy scripted geocomputation tasks onto dedicated processing queues. The mechanisms are based on earlier work by NETELER et al. (2008). A first application of the new GIS functionality was the generation of maps of simulated tsunamis in the Mediterranean Sea for the Tsunami Atlas of the FP-7 TRIDEC Project (www.tridec-online.eu). For this, up to 500 processing nodes were used in parallel. Further trials included the processing of geometrically complex problems, requiring significant amounts of processing time. The GIS cluster successfully completed all these tasks, with processing times lasting up to full 20 CPU days. The deployment of GRASS GIS on a compute cluster allows our users to tackle GIS tasks previously out of reach of single workstations. In addition, this GRASS GIS cluster implementation will be made available to other users at GFZ in the course of 2012. It will thus become a research utility in the sense of "Software as a Service" (SaaS) and can be seen as our first step towards building a GFZ corporate cloud service.
Steinwand, Daniel R.; Maddox, Brian; Beckmann, Tim; Hamer, George
2003-01-01
Beowulf clusters can provide a cost-effective way to compute numerical models and process large amounts of remote sensing image data. Usually a Beowulf cluster is designed to accomplish a specific set of processing goals, and processing is very efficient when the problem remains inside the constraints of the original design. There are cases, however, when one might wish to compute a problem that is beyond the capacity of the local Beowulf system. In these cases, spreading the problem to multiple clusters or to other machines on the network may provide a cost-effective solution.
3D Viewer Platform of Cloud Clustering Management System: Google Map 3D
NASA Astrophysics Data System (ADS)
Choi, Sung-Ja; Lee, Gang-Soo
The new management system of framework for cloud envrionemnt is needed by the platfrom of convergence according to computing environments of changes. A ISV and small business model is hard to adapt management system of platform which is offered from super business. This article suggest the clustering management system of cloud computing envirionments for ISV and a man of enterprise in small business model. It applies the 3D viewer adapt from map3D & earth of google. It is called 3DV_CCMS as expand the CCMS[1].
Remote control system for high-perfomance computer simulation of crystal growth by the PFC method
NASA Astrophysics Data System (ADS)
Pavlyuk, Evgeny; Starodumov, Ilya; Osipov, Sergei
2017-04-01
Modeling of crystallization process by the phase field crystal method (PFC) - one of the important directions of modern computational materials science. In this paper, the practical side of the computer simulation of the crystallization process by the PFC method is investigated. To solve problems using this method, it is necessary to use high-performance computing clusters, data storage systems and other often expensive complex computer systems. Access to such resources is often limited, unstable and accompanied by various administrative problems. In addition, the variety of software and settings of different computing clusters sometimes does not allow researchers to use unified program code. There is a need to adapt the program code for each configuration of the computer complex. The practical experience of the authors has shown that the creation of a special control system for computing with the possibility of remote use can greatly simplify the implementation of simulations and increase the performance of scientific research. In current paper we show the principal idea of such a system and justify its efficiency.
Using Agent Base Models to Optimize Large Scale Network for Large System Inventories
NASA Technical Reports Server (NTRS)
Shameldin, Ramez Ahmed; Bowling, Shannon R.
2010-01-01
The aim of this paper is to use Agent Base Models (ABM) to optimize large scale network handling capabilities for large system inventories and to implement strategies for the purpose of reducing capital expenses. The models used in this paper either use computational algorithms or procedure implementations developed by Matlab to simulate agent based models in a principal programming language and mathematical theory using clusters, these clusters work as a high performance computational performance to run the program in parallel computational. In both cases, a model is defined as compilation of a set of structures and processes assumed to underlie the behavior of a network system.
Automating a Massive Online Course with Cluster Computing
ERIC Educational Resources Information Center
Haas, Timothy C.
2016-01-01
Before massive numbers of students can take online courses for college credit, the challenges of providing tutoring support, answers to student-posed questions, and the control of cheating will need to be addressed. These challenges are taken up here by developing an online course delivery system that runs in a cluster computing environment and is…
Continuous Variable Cluster State Generation over the Optical Spatial Mode Comb
Pooser, Raphael C.; Jing, Jietai
2014-10-20
One way quantum computing uses single qubit projective measurements performed on a cluster state (a highly entangled state of multiple qubits) in order to enact quantum gates. The model is promising due to its potential scalability; the cluster state may be produced at the beginning of the computation and operated on over time. Continuous variables (CV) offer another potential benefit in the form of deterministic entanglement generation. This determinism can lead to robust cluster states and scalable quantum computation. Recent demonstrations of CV cluster states have made great strides on the path to scalability utilizing either time or frequency multiplexingmore » in optical parametric oscillators (OPO) both above and below threshold. The techniques relied on a combination of entangling operators and beam splitter transformations. Here we show that an analogous transformation exists for amplifiers with Gaussian inputs states operating on multiple spatial modes. By judicious selection of local oscillators (LOs), the spatial mode distribution is analogous to the optical frequency comb consisting of axial modes in an OPO cavity. We outline an experimental system that generates cluster states across the spatial frequency comb which can also scale the amount of quantum noise reduction to potentially larger than in other systems.« less
Research on elastic resource management for multi-queue under cloud computing environment
NASA Astrophysics Data System (ADS)
CHENG, Zhenjing; LI, Haibo; HUANG, Qiulan; Cheng, Yaodong; CHEN, Gang
2017-10-01
As a new approach to manage computing resource, virtualization technology is more and more widely applied in the high-energy physics field. A virtual computing cluster based on Openstack was built at IHEP, using HTCondor as the job queue management system. In a traditional static cluster, a fixed number of virtual machines are pre-allocated to the job queue of different experiments. However this method cannot be well adapted to the volatility of computing resource requirements. To solve this problem, an elastic computing resource management system under cloud computing environment has been designed. This system performs unified management of virtual computing nodes on the basis of job queue in HTCondor based on dual resource thresholds as well as the quota service. A two-stage pool is designed to improve the efficiency of resource pool expansion. This paper will present several use cases of the elastic resource management system in IHEPCloud. The practical run shows virtual computing resource dynamically expanded or shrunk while computing requirements change. Additionally, the CPU utilization ratio of computing resource was significantly increased when compared with traditional resource management. The system also has good performance when there are multiple condor schedulers and multiple job queues.
A high performance scientific cloud computing environment for materials simulations
NASA Astrophysics Data System (ADS)
Jorissen, K.; Vila, F. D.; Rehr, J. J.
2012-09-01
We describe the development of a scientific cloud computing (SCC) platform that offers high performance computation capability. The platform consists of a scientific virtual machine prototype containing a UNIX operating system and several materials science codes, together with essential interface tools (an SCC toolset) that offers functionality comparable to local compute clusters. In particular, our SCC toolset provides automatic creation of virtual clusters for parallel computing, including tools for execution and monitoring performance, as well as efficient I/O utilities that enable seamless connections to and from the cloud. Our SCC platform is optimized for the Amazon Elastic Compute Cloud (EC2). We present benchmarks for prototypical scientific applications and demonstrate performance comparable to local compute clusters. To facilitate code execution and provide user-friendly access, we have also integrated cloud computing capability in a JAVA-based GUI. Our SCC platform may be an alternative to traditional HPC resources for materials science or quantum chemistry applications.
ERIC Educational Resources Information Center
Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.
This document, which is intended for use by community and junior colleges throughout Mississippi, contains curriculum frameworks for two programs in the state's postsecondary-level computer information systems technology cluster: computer programming and network support. Presented in the introduction are program descriptions and suggested course…
OpenCluster: A Flexible Distributed Computing Framework for Astronomical Data Processing
NASA Astrophysics Data System (ADS)
Wei, Shoulin; Wang, Feng; Deng, Hui; Liu, Cuiyin; Dai, Wei; Liang, Bo; Mei, Ying; Shi, Congming; Liu, Yingbo; Wu, Jingping
2017-02-01
The volume of data generated by modern astronomical telescopes is extremely large and rapidly growing. However, current high-performance data processing architectures/frameworks are not well suited for astronomers because of their limitations and programming difficulties. In this paper, we therefore present OpenCluster, an open-source distributed computing framework to support rapidly developing high-performance processing pipelines of astronomical big data. We first detail the OpenCluster design principles and implementations and present the APIs facilitated by the framework. We then demonstrate a case in which OpenCluster is used to resolve complex data processing problems for developing a pipeline for the Mingantu Ultrawide Spectral Radioheliograph. Finally, we present our OpenCluster performance evaluation. Overall, OpenCluster provides not only high fault tolerance and simple programming interfaces, but also a flexible means of scaling up the number of interacting entities. OpenCluster thereby provides an easily integrated distributed computing framework for quickly developing a high-performance data processing system of astronomical telescopes and for significantly reducing software development expenses.
Multi-agent grid system Agent-GRID with dynamic load balancing of cluster nodes
NASA Astrophysics Data System (ADS)
Satymbekov, M. N.; Pak, I. T.; Naizabayeva, L.; Nurzhanov, Ch. A.
2017-12-01
In this study the work presents the system designed for automated load balancing of the contributor by analysing the load of compute nodes and the subsequent migration of virtual machines from loaded nodes to less loaded ones. This system increases the performance of cluster nodes and helps in the timely processing of data. A grid system balances the work of cluster nodes the relevance of the system is the award of multi-agent balancing for the solution of such problems.
Workload Characterization of a Leadership Class Storage Cluster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Youngjae; Gunasekaran, Raghul; Shipman, Galen M
2010-01-01
Understanding workload characteristics is critical for optimizing and improving the performance of current systems and software, and architecting new storage systems based on observed workload patterns. In this paper, we characterize the scientific workloads of the world s fastest HPC (High Performance Computing) storage cluster, Spider, at the Oak Ridge Leadership Computing Facility (OLCF). Spider provides an aggregate bandwidth of over 240 GB/s with over 10 petabytes of RAID 6 formatted capacity. OLCFs flagship petascale simulation platform, Jaguar, and other large HPC clusters, in total over 250 thousands compute cores, depend on Spider for their I/O needs. We characterize themore » system utilization, the demands of reads and writes, idle time, and the distribution of read requests to write requests for the storage system observed over a period of 6 months. From this study we develop synthesized workloads and we show that the read and write I/O bandwidth usage as well as the inter-arrival time of requests can be modeled as a Pareto distribution.« less
Computational strategies for three-dimensional flow simulations on distributed computer systems
NASA Technical Reports Server (NTRS)
Sankar, Lakshmi N.; Weed, Richard A.
1995-01-01
This research effort is directed towards an examination of issues involved in porting large computational fluid dynamics codes in use within the industry to a distributed computing environment. This effort addresses strategies for implementing the distributed computing in a device independent fashion and load balancing. A flow solver called TEAM presently in use at Lockheed Aeronautical Systems Company was acquired to start this effort. The following tasks were completed: (1) The TEAM code was ported to a number of distributed computing platforms including a cluster of HP workstations located in the School of Aerospace Engineering at Georgia Tech; a cluster of DEC Alpha Workstations in the Graphics visualization lab located at Georgia Tech; a cluster of SGI workstations located at NASA Ames Research Center; and an IBM SP-2 system located at NASA ARC. (2) A number of communication strategies were implemented. Specifically, the manager-worker strategy and the worker-worker strategy were tested. (3) A variety of load balancing strategies were investigated. Specifically, the static load balancing, task queue balancing and the Crutchfield algorithm were coded and evaluated. (4) The classical explicit Runge-Kutta scheme in the TEAM solver was replaced with an LU implicit scheme. And (5) the implicit TEAM-PVM solver was extensively validated through studies of unsteady transonic flow over an F-5 wing, undergoing combined bending and torsional motion. These investigations are documented in extensive detail in the dissertation, 'Computational Strategies for Three-Dimensional Flow Simulations on Distributed Computing Systems', enclosed as an appendix.
Computational strategies for three-dimensional flow simulations on distributed computer systems
NASA Astrophysics Data System (ADS)
Sankar, Lakshmi N.; Weed, Richard A.
1995-08-01
This research effort is directed towards an examination of issues involved in porting large computational fluid dynamics codes in use within the industry to a distributed computing environment. This effort addresses strategies for implementing the distributed computing in a device independent fashion and load balancing. A flow solver called TEAM presently in use at Lockheed Aeronautical Systems Company was acquired to start this effort. The following tasks were completed: (1) The TEAM code was ported to a number of distributed computing platforms including a cluster of HP workstations located in the School of Aerospace Engineering at Georgia Tech; a cluster of DEC Alpha Workstations in the Graphics visualization lab located at Georgia Tech; a cluster of SGI workstations located at NASA Ames Research Center; and an IBM SP-2 system located at NASA ARC. (2) A number of communication strategies were implemented. Specifically, the manager-worker strategy and the worker-worker strategy were tested. (3) A variety of load balancing strategies were investigated. Specifically, the static load balancing, task queue balancing and the Crutchfield algorithm were coded and evaluated. (4) The classical explicit Runge-Kutta scheme in the TEAM solver was replaced with an LU implicit scheme. And (5) the implicit TEAM-PVM solver was extensively validated through studies of unsteady transonic flow over an F-5 wing, undergoing combined bending and torsional motion. These investigations are documented in extensive detail in the dissertation, 'Computational Strategies for Three-Dimensional Flow Simulations on Distributed Computing Systems', enclosed as an appendix.
FY17 Status Report on the Computing Systems for the Yucca Mountain Project TSPA-LA Models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Appel, Gordon John; Hadgu, Teklu; Appel, Gordon John
Sandia National Laboratories (SNL) continued evaluation of total system performance assessment (TSPA) computing systems for the previously considered Yucca Mountain Project (YMP). This was done to maintain the operational readiness of the computing infrastructure (computer hardware and software) and knowledge capability for total system performance assessment (TSPA) type analysis, as directed by the National Nuclear Security Administration (NNSA), DOE 2010. This work is a continuation of the ongoing readiness evaluation reported in Lee and Hadgu (2014), Hadgu et al. (2015) and Hadgu and Appel (2016). The TSPA computing hardware (CL2014) and storage system described in Hadgu et al. (2015) weremore » used for the current analysis. One floating license of GoldSim with Versions 9.60.300, 10.5, 11.1 and 12.0 was installed on the cluster head node, and its distributed processing capability was mapped on the cluster processors. Other supporting software were tested and installed to support the TSPA- type analysis on the server cluster. The current tasks included preliminary upgrade of the TSPA-LA from Version 9.60.300 to the latest version 12.0 and address DLL-related issues observed in the FY16 work. The model upgrade task successfully converted the Nominal Modeling case to GoldSim Versions 11.1/12. Conversions of the rest of the TSPA models were also attempted but program and operational difficulties precluded this. Upgrade of the remaining of the modeling cases and distributed processing tasks is expected to continue. The 2014 server cluster and supporting software systems are fully operational to support TSPA-LA type analysis.« less
Integration of Openstack cloud resources in BES III computing cluster
NASA Astrophysics Data System (ADS)
Li, Haibo; Cheng, Yaodong; Huang, Qiulan; Cheng, Zhenjing; Shi, Jingyan
2017-10-01
Cloud computing provides a new technical means for data processing of high energy physics experiment. However, the resource of each queue is fixed and the usage of the resource is static in traditional job management system. In order to make it simple and transparent for physicist to use, we developed a virtual cluster system (vpmanager) to integrate IHEPCloud and different batch systems such as Torque and HTCondor. Vpmanager provides dynamic virtual machines scheduling according to the job queue. The BES III use case results show that resource efficiency is greatly improved.
A 3D-PIV System for Gas Turbine Applications
NASA Astrophysics Data System (ADS)
Acharya, Sumanta
2002-08-01
Funds were received in April 2001 under the Department of Defense DURIP program for construction of a 48 processor high performance computing cluster. This report details the hardware, which was purchased, and how it has been used to enable and enhance research activities directly supported by, and of interest to, the Air Force Office of Scientific Research and the Department of Defense. The report is divided into two major sections. The first section after the summary describes the computer cluster, its setup, and some cluster hardware, and presents highlights of those efforts since installation of the cluster.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadgu, Teklu; Appel, Gordon John
Sandia National Laboratories (SNL) continued evaluation of total system performance assessment (TSPA) computing systems for the previously considered Yucca Mountain Project (YMP). This was done to maintain the operational readiness of the computing infrastructure (computer hardware and software) and knowledge capability for total system performance assessment (TSPA) type analysis, as directed by the National Nuclear Security Administration (NNSA), DOE 2010. This work is a continuation of the ongoing readiness evaluation reported in Lee and Hadgu (2014) and Hadgu et al. (2015). The TSPA computing hardware (CL2014) and storage system described in Hadgu et al. (2015) were used for the currentmore » analysis. One floating license of GoldSim with Versions 9.60.300, 10.5 and 11.1.6 was installed on the cluster head node, and its distributed processing capability was mapped on the cluster processors. Other supporting software were tested and installed to support the TSPA-type analysis on the server cluster. The current tasks included verification of the TSPA-LA uncertainty and sensitivity analyses, and preliminary upgrade of the TSPA-LA from Version 9.60.300 to the latest version 11.1. All the TSPA-LA uncertainty and sensitivity analyses modeling cases were successfully tested and verified for the model reproducibility on the upgraded 2014 server cluster (CL2014). The uncertainty and sensitivity analyses used TSPA-LA modeling cases output generated in FY15 based on GoldSim Version 9.60.300 documented in Hadgu et al. (2015). The model upgrade task successfully converted the Nominal Modeling case to GoldSim Version 11.1. Upgrade of the remaining of the modeling cases and distributed processing tasks will continue. The 2014 server cluster and supporting software systems are fully operational to support TSPA-LA type analysis.« less
a Linux PC Cluster for Lattice QCD with Exact Chiral Symmetry
NASA Astrophysics Data System (ADS)
Chiu, Ting-Wai; Hsieh, Tung-Han; Huang, Chao-Hsi; Huang, Tsung-Ren
A computational system for lattice QCD with overlap Dirac quarks is described. The platform is a home-made Linux PC cluster, built with off-the-shelf components. At present the system constitutes of 64 nodes, with each node consisting of one Pentium 4 processor (1.6/2.0/2.5 GHz), one Gbyte of PC800/1066 RDRAM, one 40/80/120 Gbyte hard disk, and a network card. The computationally intensive parts of our program are written in SSE2 codes. The speed of our system is estimated to be 70 Gflops, and its price/performance ratio is better than $1.0/Mflops for 64-bit (double precision) computations in quenched QCD. We discuss how to optimize its hardware and software for computing propagators of overlap Dirac quarks.
NASA Astrophysics Data System (ADS)
Masuda, Nobuyuki; Sugie, Takashige; Ito, Tomoyoshi; Tanaka, Shinjiro; Hamada, Yu; Satake, Shin-ichi; Kunugi, Tomoaki; Sato, Kazuho
2010-12-01
We have designed a PC cluster system with special purpose computer boards for visualization of fluid flow using digital holographic particle tracking velocimetry (DHPTV). In this board, there is a Field Programmable Gate Array (FPGA) chip in which is installed a pipeline for calculating the intensity of an object from a hologram by fast Fourier transform (FFT). This cluster system can create 1024 reconstructed images from a 1024×1024-grid hologram in 0.77 s. It is expected that this system will contribute to the analysis of fluid flow using DHPTV.
Parallel processing for scientific computations
NASA Technical Reports Server (NTRS)
Alkhatib, Hasan S.
1995-01-01
The scope of this project dealt with the investigation of the requirements to support distributed computing of scientific computations over a cluster of cooperative workstations. Various experiments on computations for the solution of simultaneous linear equations were performed in the early phase of the project to gain experience in the general nature and requirements of scientific applications. A specification of a distributed integrated computing environment, DICE, based on a distributed shared memory communication paradigm has been developed and evaluated. The distributed shared memory model facilitates porting existing parallel algorithms that have been designed for shared memory multiprocessor systems to the new environment. The potential of this new environment is to provide supercomputing capability through the utilization of the aggregate power of workstations cooperating in a cluster interconnected via a local area network. Workstations, generally, do not have the computing power to tackle complex scientific applications, making them primarily useful for visualization, data reduction, and filtering as far as complex scientific applications are concerned. There is a tremendous amount of computing power that is left unused in a network of workstations. Very often a workstation is simply sitting idle on a desk. A set of tools can be developed to take advantage of this potential computing power to create a platform suitable for large scientific computations. The integration of several workstations into a logical cluster of distributed, cooperative, computing stations presents an alternative to shared memory multiprocessor systems. In this project we designed and evaluated such a system.
A Self-Organizing Spatial Clustering Approach to Support Large-Scale Network RTK Systems.
Shen, Lili; Guo, Jiming; Wang, Lei
2018-06-06
The network real-time kinematic (RTK) technique can provide centimeter-level real time positioning solutions and play a key role in geo-spatial infrastructure. With ever-increasing popularity, network RTK systems will face issues in the support of large numbers of concurrent users. In the past, high-precision positioning services were oriented towards professionals and only supported a few concurrent users. Currently, precise positioning provides a spatial foundation for artificial intelligence (AI), and countless smart devices (autonomous cars, unmanned aerial-vehicles (UAVs), robotic equipment, etc.) require precise positioning services. Therefore, the development of approaches to support large-scale network RTK systems is urgent. In this study, we proposed a self-organizing spatial clustering (SOSC) approach which automatically clusters online users to reduce the computational load on the network RTK system server side. The experimental results indicate that both the SOSC algorithm and the grid algorithm can reduce the computational load efficiently, while the SOSC algorithm gives a more elastic and adaptive clustering solution with different datasets. The SOSC algorithm determines the cluster number and the mean distance to cluster center (MDTCC) according to the data set, while the grid approaches are all predefined. The side-effects of clustering algorithms on the user side are analyzed with real global navigation satellite system (GNSS) data sets. The experimental results indicate that 10 km can be safely used as the cluster radius threshold for the SOSC algorithm without significantly reducing the positioning precision and reliability on the user side.
Dynamic provisioning of a HEP computing infrastructure on a shared hybrid HPC system
NASA Astrophysics Data System (ADS)
Meier, Konrad; Fleig, Georg; Hauth, Thomas; Janczyk, Michael; Quast, Günter; von Suchodoletz, Dirk; Wiebelt, Bernd
2016-10-01
Experiments in high-energy physics (HEP) rely on elaborate hardware, software and computing systems to sustain the high data rates necessary to study rare physics processes. The Institut fr Experimentelle Kernphysik (EKP) at KIT is a member of the CMS and Belle II experiments, located at the LHC and the Super-KEKB accelerators, respectively. These detectors share the requirement, that enormous amounts of measurement data must be processed and analyzed and a comparable amount of simulated events is required to compare experimental results with theoretical predictions. Classical HEP computing centers are dedicated sites which support multiple experiments and have the required software pre-installed. Nowadays, funding agencies encourage research groups to participate in shared HPC cluster models, where scientist from different domains use the same hardware to increase synergies. This shared usage proves to be challenging for HEP groups, due to their specialized software setup which includes a custom OS (often Scientific Linux), libraries and applications. To overcome this hurdle, the EKP and data center team of the University of Freiburg have developed a system to enable the HEP use case on a shared HPC cluster. To achieve this, an OpenStack-based virtualization layer is installed on top of a bare-metal cluster. While other user groups can run their batch jobs via the Moab workload manager directly on bare-metal, HEP users can request virtual machines with a specialized machine image which contains a dedicated operating system and software stack. In contrast to similar installations, in this hybrid setup, no static partitioning of the cluster into a physical and virtualized segment is required. As a unique feature, the placement of the virtual machine on the cluster nodes is scheduled by Moab and the job lifetime is coupled to the lifetime of the virtual machine. This allows for a seamless integration with the jobs sent by other user groups and honors the fairshare policies of the cluster. The developed thin integration layer between OpenStack and Moab can be adapted to other batch servers and virtualization systems, making the concept also applicable for other cluster operators. This contribution will report on the concept and implementation of an OpenStack-virtualized cluster used for HEP workflows. While the full cluster will be installed in spring 2016, a test-bed setup with 800 cores has been used to study the overall system performance and dedicated HEP jobs were run in a virtualized environment over many weeks. Furthermore, the dynamic integration of the virtualized worker nodes, depending on the workload at the institute's computing system, will be described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, Amjad Majid; Albert, Don; Andersson, Par
SLURM is an open source, fault-tolerant, and highly scalable cluster management and job scheduling system for large and small computer clusters. As a cluster resource manager, SLURM has three key functions. First, it allocates exclusive and/or non-exclusive access to resources (compute nodes) to users for some duration of time so they can perform work. Second, it provides a framework for starting, executing, and monitoring work 9normally a parallel job) on the set of allocated nodes. Finally, it arbitrates conflicting requests for resources by managing a queue of pending work.
2017-01-01
We report a computational fluid dynamics–discrete element method (CFD-DEM) simulation study on the interplay between mass transfer and a heterogeneous catalyzed chemical reaction in cocurrent gas-particle flows as encountered in risers. Slip velocity, axial gas dispersion, gas bypassing, and particle mixing phenomena have been evaluated under riser flow conditions to study the complex system behavior in detail. The most important factors are found to be directly related to particle cluster formation. Low air-to-solids flux ratios lead to more heterogeneous systems, where the cluster formation is more pronounced and mass transfer more influenced. Falling clusters can be partially circumvented by the gas phase, which therefore does not fully interact with the cluster particles, leading to poor gas–solid contact efficiencies. Cluster gas–solid contact efficiencies are quantified at several gas superficial velocities, reaction rates, and dilution factors in order to gain more insight regarding the influence of clustering phenomena on the performance of riser reactors. PMID:28553011
Carlos Varas, Álvaro E; Peters, E A J F; Kuipers, J A M
2017-05-17
We report a computational fluid dynamics-discrete element method (CFD-DEM) simulation study on the interplay between mass transfer and a heterogeneous catalyzed chemical reaction in cocurrent gas-particle flows as encountered in risers. Slip velocity, axial gas dispersion, gas bypassing, and particle mixing phenomena have been evaluated under riser flow conditions to study the complex system behavior in detail. The most important factors are found to be directly related to particle cluster formation. Low air-to-solids flux ratios lead to more heterogeneous systems, where the cluster formation is more pronounced and mass transfer more influenced. Falling clusters can be partially circumvented by the gas phase, which therefore does not fully interact with the cluster particles, leading to poor gas-solid contact efficiencies. Cluster gas-solid contact efficiencies are quantified at several gas superficial velocities, reaction rates, and dilution factors in order to gain more insight regarding the influence of clustering phenomena on the performance of riser reactors.
Method and system for data clustering for very large databases
NASA Technical Reports Server (NTRS)
Livny, Miron (Inventor); Zhang, Tian (Inventor); Ramakrishnan, Raghu (Inventor)
1998-01-01
Multi-dimensional data contained in very large databases is efficiently and accurately clustered to determine patterns therein and extract useful information from such patterns. Conventional computer processors may be used which have limited memory capacity and conventional operating speed, allowing massive data sets to be processed in a reasonable time and with reasonable computer resources. The clustering process is organized using a clustering feature tree structure wherein each clustering feature comprises the number of data points in the cluster, the linear sum of the data points in the cluster, and the square sum of the data points in the cluster. A dense region of data points is treated collectively as a single cluster, and points in sparsely occupied regions can be treated as outliers and removed from the clustering feature tree. The clustering can be carried out continuously with new data points being received and processed, and with the clustering feature tree being restructured as necessary to accommodate the information from the newly received data points.
Huang, Chen; Muñoz-García, Ana Belén; Pavone, Michele
2016-12-28
Density-functional embedding theory provides a general way to perform multi-physics quantum mechanics simulations of large-scale materials by dividing the total system's electron density into a cluster's density and its environment's density. It is then possible to compute the accurate local electronic structures and energetics of the embedded cluster with high-level methods, meanwhile retaining a low-level description of the environment. The prerequisite step in the density-functional embedding theory is the cluster definition. In covalent systems, cutting across the covalent bonds that connect the cluster and its environment leads to dangling bonds (unpaired electrons). These represent a major obstacle for the application of density-functional embedding theory to study extended covalent systems. In this work, we developed a simple scheme to define the cluster in covalent systems. Instead of cutting covalent bonds, we directly split the boundary atoms for maintaining the valency of the cluster. With this new covalent embedding scheme, we compute the dehydrogenation energies of several different molecules, as well as the binding energy of a cobalt atom on graphene. Well localized cluster densities are observed, which can facilitate the use of localized basis sets in high-level calculations. The results are found to converge faster with the embedding method than the other multi-physics approach ONIOM. This work paves the way to perform the density-functional embedding simulations of heterogeneous systems in which different types of chemical bonds are present.
Performance comparison analysis library communication cluster system using merge sort
NASA Astrophysics Data System (ADS)
Wulandari, D. A. R.; Ramadhan, M. E.
2018-04-01
Begins by using a single processor, to increase the speed of computing time, the use of multi-processor was introduced. The second paradigm is known as parallel computing, example cluster. The cluster must have the communication potocol for processing, one of it is message passing Interface (MPI). MPI have many library, both of them OPENMPI and MPICH2. Performance of the cluster machine depend on suitable between performance characters of library communication and characters of the problem so this study aims to analyze the comparative performances libraries in handling parallel computing process. The case study in this research are MPICH2 and OpenMPI. This case research execute sorting’s problem to know the performance of cluster system. The sorting problem use mergesort method. The research method is by implementing OpenMPI and MPICH2 on a Linux-based cluster by using five computer virtual then analyze the performance of the system by different scenario tests and three parameters for to know the performance of MPICH2 and OpenMPI. These performances are execution time, speedup and efficiency. The results of this study showed that the addition of each data size makes OpenMPI and MPICH2 have an average speed-up and efficiency tend to increase but at a large data size decreases. increased data size doesn’t necessarily increased speed up and efficiency but only execution time example in 100000 data size. OpenMPI has a execution time greater than MPICH2 example in 1000 data size average execution time with MPICH2 is 0,009721 and OpenMPI is 0,003895 OpenMPI can customize communication needs.
Chen, Qingkui; Zhao, Deyu; Wang, Jingjuan
2017-01-01
This paper aims to develop a low-cost, high-performance and high-reliability computing system to process large-scale data using common data mining algorithms in the Internet of Things (IoT) computing environment. Considering the characteristics of IoT data processing, similar to mainstream high performance computing, we use a GPU (Graphics Processing Unit) cluster to achieve better IoT services. Firstly, we present an energy consumption calculation method (ECCM) based on WSNs. Then, using the CUDA (Compute Unified Device Architecture) Programming model, we propose a Two-level Parallel Optimization Model (TLPOM) which exploits reasonable resource planning and common compiler optimization techniques to obtain the best blocks and threads configuration considering the resource constraints of each node. The key to this part is dynamic coupling Thread-Level Parallelism (TLP) and Instruction-Level Parallelism (ILP) to improve the performance of the algorithms without additional energy consumption. Finally, combining the ECCM and the TLPOM, we use the Reliable GPU Cluster Architecture (RGCA) to obtain a high-reliability computing system considering the nodes’ diversity, algorithm characteristics, etc. The results show that the performance of the algorithms significantly increased by 34.1%, 33.96% and 24.07% for Fermi, Kepler and Maxwell on average with TLPOM and the RGCA ensures that our IoT computing system provides low-cost and high-reliability services. PMID:28777325
Fang, Yuling; Chen, Qingkui; Xiong, Neal N; Zhao, Deyu; Wang, Jingjuan
2017-08-04
This paper aims to develop a low-cost, high-performance and high-reliability computing system to process large-scale data using common data mining algorithms in the Internet of Things (IoT) computing environment. Considering the characteristics of IoT data processing, similar to mainstream high performance computing, we use a GPU (Graphics Processing Unit) cluster to achieve better IoT services. Firstly, we present an energy consumption calculation method (ECCM) based on WSNs. Then, using the CUDA (Compute Unified Device Architecture) Programming model, we propose a Two-level Parallel Optimization Model (TLPOM) which exploits reasonable resource planning and common compiler optimization techniques to obtain the best blocks and threads configuration considering the resource constraints of each node. The key to this part is dynamic coupling Thread-Level Parallelism (TLP) and Instruction-Level Parallelism (ILP) to improve the performance of the algorithms without additional energy consumption. Finally, combining the ECCM and the TLPOM, we use the Reliable GPU Cluster Architecture (RGCA) to obtain a high-reliability computing system considering the nodes' diversity, algorithm characteristics, etc. The results show that the performance of the algorithms significantly increased by 34.1%, 33.96% and 24.07% for Fermi, Kepler and Maxwell on average with TLPOM and the RGCA ensures that our IoT computing system provides low-cost and high-reliability services.
A uniform approach for programming distributed heterogeneous computing systems
Grasso, Ivan; Pellegrini, Simone; Cosenza, Biagio; Fahringer, Thomas
2014-01-01
Large-scale compute clusters of heterogeneous nodes equipped with multi-core CPUs and GPUs are getting increasingly popular in the scientific community. However, such systems require a combination of different programming paradigms making application development very challenging. In this article we introduce libWater, a library-based extension of the OpenCL programming model that simplifies the development of heterogeneous distributed applications. libWater consists of a simple interface, which is a transparent abstraction of the underlying distributed architecture, offering advanced features such as inter-context and inter-node device synchronization. It provides a runtime system which tracks dependency information enforced by event synchronization to dynamically build a DAG of commands, on which we automatically apply two optimizations: collective communication pattern detection and device-host-device copy removal. We assess libWater’s performance in three compute clusters available from the Vienna Scientific Cluster, the Barcelona Supercomputing Center and the University of Innsbruck, demonstrating improved performance and scaling with different test applications and configurations. PMID:25844015
A uniform approach for programming distributed heterogeneous computing systems.
Grasso, Ivan; Pellegrini, Simone; Cosenza, Biagio; Fahringer, Thomas
2014-12-01
Large-scale compute clusters of heterogeneous nodes equipped with multi-core CPUs and GPUs are getting increasingly popular in the scientific community. However, such systems require a combination of different programming paradigms making application development very challenging. In this article we introduce libWater, a library-based extension of the OpenCL programming model that simplifies the development of heterogeneous distributed applications. libWater consists of a simple interface, which is a transparent abstraction of the underlying distributed architecture, offering advanced features such as inter-context and inter-node device synchronization. It provides a runtime system which tracks dependency information enforced by event synchronization to dynamically build a DAG of commands, on which we automatically apply two optimizations: collective communication pattern detection and device-host-device copy removal. We assess libWater's performance in three compute clusters available from the Vienna Scientific Cluster, the Barcelona Supercomputing Center and the University of Innsbruck, demonstrating improved performance and scaling with different test applications and configurations.
Scalable cluster administration - Chiba City I approach and lessons learned.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Navarro, J. P.; Evard, R.; Nurmi, D.
2002-07-01
Systems administrators of large clusters often need to perform the same administrative activity hundreds or thousands of times. Often such activities are time-consuming, especially the tasks of installing and maintaining software. By combining network services such as DHCP, TFTP, FTP, HTTP, and NFS with remote hardware control, cluster administrators can automate all administrative tasks. Scalable cluster administration addresses the following challenge: What systems design techniques can cluster builders use to automate cluster administration on very large clusters? We describe the approach used in the Mathematics and Computer Science Division of Argonne National Laboratory on Chiba City I, a 314-node Linuxmore » cluster; and we analyze the scalability, flexibility, and reliability benefits and limitations from that approach.« less
Tri-Laboratory Linux Capacity Cluster 2007 SOW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seager, M
2007-03-22
The Advanced Simulation and Computing (ASC) Program (formerly know as Accelerated Strategic Computing Initiative, ASCI) has led the world in capability computing for the last ten years. Capability computing is defined as a world-class platform (in the Top10 of the Top500.org list) with scientific simulations running at scale on the platform. Example systems are ASCI Red, Blue-Pacific, Blue-Mountain, White, Q, RedStorm, and Purple. ASC applications have scaled to multiple thousands of CPUs and accomplished a long list of mission milestones on these ASC capability platforms. However, the computing demands of the ASC and Stockpile Stewardship programs also include a vastmore » number of smaller scale runs for day-to-day simulations. Indeed, every 'hero' capability run requires many hundreds to thousands of much smaller runs in preparation and post processing activities. In addition, there are many aspects of the Stockpile Stewardship Program (SSP) that can be directly accomplished with these so-called 'capacity' calculations. The need for capacity is now so great within the program that it is increasingly difficult to allocate the computer resources required by the larger capability runs. To rectify the current 'capacity' computing resource shortfall, the ASC program has allocated a large portion of the overall ASC platforms budget to 'capacity' systems. In addition, within the next five to ten years the Life Extension Programs (LEPs) for major nuclear weapons systems must be accomplished. These LEPs and other SSP programmatic elements will further drive the need for capacity calculations and hence 'capacity' systems as well as future ASC capability calculations on 'capability' systems. To respond to this new workload analysis, the ASC program will be making a large sustained strategic investment in these capacity systems over the next ten years, starting with the United States Government Fiscal Year 2007 (GFY07). However, given the growing need for 'capability' systems as well, the budget demands are extreme and new, more cost effective ways of fielding these systems must be developed. This Tri-Laboratory Linux Capacity Cluster (TLCC) procurement represents the ASC first investment vehicle in these capacity systems. It also represents a new strategy for quickly building, fielding and integrating many Linux clusters of various sizes into classified and unclassified production service through a concept of Scalable Units (SU). The programmatic objective is to dramatically reduce the overall Total Cost of Ownership (TCO) of these 'capacity' systems relative to the best practices in Linux Cluster deployments today. This objective only makes sense in the context of these systems quickly becoming very robust and useful production clusters under the crushing load that will be inflicted on them by the ASC and SSP scientific simulation capacity workload.« less
Simple Linux Utility for Resource Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jette, M.
2009-09-09
SLURM is an open source, fault-tolerant, and highly scalable cluster management and job scheduling system for large and small computer clusters. As a cluster resource manager, SLURM has three key functions. First, it allocates exclusive and/or non exclusive access to resources (compute nodes) to users for some duration of time so they can perform work. Second, it provides a framework for starting, executing, and monitoring work (normally a parallel job) on the set of allciated nodes. Finally, it arbitrates conflicting requests for resouces by managing a queue of pending work.
FPGA cluster for high-performance AO real-time control system
NASA Astrophysics Data System (ADS)
Geng, Deli; Goodsell, Stephen J.; Basden, Alastair G.; Dipper, Nigel A.; Myers, Richard M.; Saunter, Chris D.
2006-06-01
Whilst the high throughput and low latency requirements for the next generation AO real-time control systems have posed a significant challenge to von Neumann architecture processor systems, the Field Programmable Gate Array (FPGA) has emerged as a long term solution with high performance on throughput and excellent predictability on latency. Moreover, FPGA devices have highly capable programmable interfacing, which lead to more highly integrated system. Nevertheless, a single FPGA is still not enough: multiple FPGA devices need to be clustered to perform the required subaperture processing and the reconstruction computation. In an AO real-time control system, the memory bandwidth is often the bottleneck of the system, simply because a vast amount of supporting data, e.g. pixel calibration maps and the reconstruction matrix, need to be accessed within a short period. The cluster, as a general computing architecture, has excellent scalability in processing throughput, memory bandwidth, memory capacity, and communication bandwidth. Problems, such as task distribution, node communication, system verification, are discussed.
NASA Technical Reports Server (NTRS)
Sanz, J.; Pischel, K.; Hubler, D.
1992-01-01
An application for parallel computation on a combined cluster of powerful workstations and supercomputers was developed. A Parallel Virtual Machine (PVM) is used as message passage language on a macro-tasking parallelization of the Aerodynamic Inverse Design and Analysis for a Full Engine computer code. The heterogeneous nature of the cluster is perfectly handled by the controlling host machine. Communication is established via Ethernet with the TCP/IP protocol over an open network. A reasonable overhead is imposed for internode communication, rendering an efficient utilization of the engaged processors. Perhaps one of the most interesting features of the system is its versatile nature, that permits the usage of the computational resources available that are experiencing less use at a given point in time.
Persistent Topology and Metastable State in Conformational Dynamics
Chang, Huang-Wei; Bacallado, Sergio; Pande, Vijay S.; Carlsson, Gunnar E.
2013-01-01
The large amount of molecular dynamics simulation data produced by modern computational models brings big opportunities and challenges to researchers. Clustering algorithms play an important role in understanding biomolecular kinetics from the simulation data, especially under the Markov state model framework. However, the ruggedness of the free energy landscape in a biomolecular system makes common clustering algorithms very sensitive to perturbations of the data. Here, we introduce a data-exploratory tool which provides an overview of the clustering structure under different parameters. The proposed Multi-Persistent Clustering analysis combines insights from recent studies on the dynamics of systems with dominant metastable states with the concept of multi-dimensional persistence in computational topology. We propose to explore the clustering structure of the data based on its persistence on scale and density. The analysis provides a systematic way to discover clusters that are robust to perturbations of the data. The dominant states of the system can be chosen with confidence. For the clusters on the borderline, the user can choose to do more simulation or make a decision based on their structural characteristics. Furthermore, our multi-resolution analysis gives users information about the relative potential of the clusters and their hierarchical relationship. The effectiveness of the proposed method is illustrated in three biomolecules: alanine dipeptide, Villin headpiece, and the FiP35 WW domain. PMID:23565139
Mishima, Hiroyuki; Lidral, Andrew C; Ni, Jun
2008-05-28
Genetic association studies have been used to map disease-causing genes. A newly introduced statistical method, called exhaustive haplotype association study, analyzes genetic information consisting of different numbers and combinations of DNA sequence variations along a chromosome. Such studies involve a large number of statistical calculations and subsequently high computing power. It is possible to develop parallel algorithms and codes to perform the calculations on a high performance computing (HPC) system. However, most existing commonly-used statistic packages for genetic studies are non-parallel versions. Alternatively, one may use the cutting-edge technology of grid computing and its packages to conduct non-parallel genetic statistical packages on a centralized HPC system or distributed computing systems. In this paper, we report the utilization of a queuing scheduler built on the Grid Engine and run on a Rocks Linux cluster for our genetic statistical studies. Analysis of both consecutive and combinational window haplotypes was conducted by the FBAT (Laird et al., 2000) and Unphased (Dudbridge, 2003) programs. The dataset consisted of 26 loci from 277 extended families (1484 persons). Using the Rocks Linux cluster with 22 compute-nodes, FBAT jobs performed about 14.4-15.9 times faster, while Unphased jobs performed 1.1-18.6 times faster compared to the accumulated computation duration. Execution of exhaustive haplotype analysis using non-parallel software packages on a Linux-based system is an effective and efficient approach in terms of cost and performance.
Mishima, Hiroyuki; Lidral, Andrew C; Ni, Jun
2008-01-01
Background Genetic association studies have been used to map disease-causing genes. A newly introduced statistical method, called exhaustive haplotype association study, analyzes genetic information consisting of different numbers and combinations of DNA sequence variations along a chromosome. Such studies involve a large number of statistical calculations and subsequently high computing power. It is possible to develop parallel algorithms and codes to perform the calculations on a high performance computing (HPC) system. However, most existing commonly-used statistic packages for genetic studies are non-parallel versions. Alternatively, one may use the cutting-edge technology of grid computing and its packages to conduct non-parallel genetic statistical packages on a centralized HPC system or distributed computing systems. In this paper, we report the utilization of a queuing scheduler built on the Grid Engine and run on a Rocks Linux cluster for our genetic statistical studies. Results Analysis of both consecutive and combinational window haplotypes was conducted by the FBAT (Laird et al., 2000) and Unphased (Dudbridge, 2003) programs. The dataset consisted of 26 loci from 277 extended families (1484 persons). Using the Rocks Linux cluster with 22 compute-nodes, FBAT jobs performed about 14.4–15.9 times faster, while Unphased jobs performed 1.1–18.6 times faster compared to the accumulated computation duration. Conclusion Execution of exhaustive haplotype analysis using non-parallel software packages on a Linux-based system is an effective and efficient approach in terms of cost and performance. PMID:18541045
Data Management as a Cluster Middleware Centerpiece
NASA Technical Reports Server (NTRS)
Zero, Jose; McNab, David; Sawyer, William; Cheung, Samson; Duffy, Daniel; Rood, Richard; Webster, Phil; Palm, Nancy; Salmon, Ellen; Schardt, Tom
2004-01-01
Through earth and space modeling and the ongoing launches of satellites to gather data, NASA has become one of the largest producers of data in the world. These large data sets necessitated the creation of a Data Management System (DMS) to assist both the users and the administrators of the data. Halcyon Systems Inc. was contracted by the NASA Center for Computational Sciences (NCCS) to produce a Data Management System. The prototype of the DMS was produced by Halcyon Systems Inc. (Halcyon) for the Global Modeling and Assimilation Office (GMAO). The system, which was implemented and deployed within a relatively short period of time, has proven to be highly reliable and deployable. Following the prototype deployment, Halcyon was contacted by the NCCS to produce a production DMS version for their user community. The system is composed of several existing open source or government-sponsored components such as the San Diego Supercomputer Center s (SDSC) Storage Resource Broker (SRB), the Distributed Oceanographic Data System (DODS), and other components. Since Data Management is one of the foremost problems in cluster computing, the final package not only extends its capabilities as a Data Management System, but also to a cluster management system. This Cluster/Data Management System (CDMS) can be envisioned as the integration of existing packages.
NASA Astrophysics Data System (ADS)
Chen, Siyue; Leung, Henry; Dondo, Maxwell
2014-05-01
As computer network security threats increase, many organizations implement multiple Network Intrusion Detection Systems (NIDS) to maximize the likelihood of intrusion detection and provide a comprehensive understanding of intrusion activities. However, NIDS trigger a massive number of alerts on a daily basis. This can be overwhelming for computer network security analysts since it is a slow and tedious process to manually analyse each alert produced. Thus, automated and intelligent clustering of alerts is important to reveal the structural correlation of events by grouping alerts with common features. As the nature of computer network attacks, and therefore alerts, is not known in advance, unsupervised alert clustering is a promising approach to achieve this goal. We propose a joint optimization technique for feature selection and clustering to aggregate similar alerts and to reduce the number of alerts that analysts have to handle individually. More precisely, each identified feature is assigned a binary value, which reflects the feature's saliency. This value is treated as a hidden variable and incorporated into a likelihood function for clustering. Since computing the optimal solution of the likelihood function directly is analytically intractable, we use the Expectation-Maximisation (EM) algorithm to iteratively update the hidden variable and use it to maximize the expected likelihood. Our empirical results, using a labelled Defense Advanced Research Projects Agency (DARPA) 2000 reference dataset, show that the proposed method gives better results than the EM clustering without feature selection in terms of the clustering accuracy.
NASA Astrophysics Data System (ADS)
Niwase, Hiroaki; Takada, Naoki; Araki, Hiromitsu; Maeda, Yuki; Fujiwara, Masato; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi
2016-09-01
Parallel calculations of large-pixel-count computer-generated holograms (CGHs) are suitable for multiple-graphics processing unit (multi-GPU) cluster systems. However, it is not easy for a multi-GPU cluster system to accomplish fast CGH calculations when CGH transfers between PCs are required. In these cases, the CGH transfer between the PCs becomes a bottleneck. Usually, this problem occurs only in multi-GPU cluster systems with a single spatial light modulator. To overcome this problem, we propose a simple method using the InfiniBand network. The computational speed of the proposed method using 13 GPUs (NVIDIA GeForce GTX TITAN X) was more than 3000 times faster than that of a CPU (Intel Core i7 4770) when the number of three-dimensional (3-D) object points exceeded 20,480. In practice, we achieved ˜40 tera floating point operations per second (TFLOPS) when the number of 3-D object points exceeded 40,960. Our proposed method was able to reconstruct a real-time movie of a 3-D object comprising 95,949 points.
A Simple MO Treatment of Metal Clusters.
ERIC Educational Resources Information Center
Sahyun, M. R. V.
1980-01-01
Illustrates how a qualitative description of the geometry and electronic characteristics of homogeneous metal clusters can be obtained using semiempirical MO (molecular orbital theory) methods. Computer applications of MO methods to inorganic systems are also described. (CS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sreepathi, Sarat; Kumar, Jitendra; Mills, Richard T.
A proliferation of data from vast networks of remote sensing platforms (satellites, unmanned aircraft systems (UAS), airborne etc.), observational facilities (meteorological, eddy covariance etc.), state-of-the-art sensors, and simulation models offer unprecedented opportunities for scientific discovery. Unsupervised classification is a widely applied data mining approach to derive insights from such data. However, classification of very large data sets is a complex computational problem that requires efficient numerical algorithms and implementations on high performance computing (HPC) platforms. Additionally, increasing power, space, cooling and efficiency requirements has led to the deployment of hybrid supercomputing platforms with complex architectures and memory hierarchies like themore » Titan system at Oak Ridge National Laboratory. The advent of such accelerated computing architectures offers new challenges and opportunities for big data analytics in general and specifically, large scale cluster analysis in our case. Although there is an existing body of work on parallel cluster analysis, those approaches do not fully meet the needs imposed by the nature and size of our large data sets. Moreover, they had scaling limitations and were mostly limited to traditional distributed memory computing platforms. We present a parallel Multivariate Spatio-Temporal Clustering (MSTC) technique based on k-means cluster analysis that can target hybrid supercomputers like Titan. We developed a hybrid MPI, CUDA and OpenACC implementation that can utilize both CPU and GPU resources on computational nodes. We describe performance results on Titan that demonstrate the scalability and efficacy of our approach in processing large ecological data sets.« less
Toda Systems, Cluster Characters, and Spectral Networks
NASA Astrophysics Data System (ADS)
Williams, Harold
2016-11-01
We show that the Hamiltonians of the open relativistic Toda system are elements of the generic basis of a cluster algebra, and in particular are cluster characters of nonrigid representations of a quiver with potential. Using cluster coordinates defined via spectral networks, we identify the phase space of this system with the wild character variety related to the periodic nonrelativistic Toda system by the wild nonabelian Hodge correspondence. We show that this identification takes the relativistic Toda Hamiltonians to traces of holonomies around a simple closed curve. In particular, this provides nontrivial examples of cluster coordinates on SL n -character varieties for n > 2 where canonical functions associated to simple closed curves can be computed in terms of quivers with potential, extending known results in the SL 2 case.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connor, Carolyn Marie; Jacobson, Andree Lars; Bonnie, Amanda Marie
Sustainable and effective computing infrastructure depends critically on the skills and expertise of domain scientists and of committed and well-trained advanced computing professionals. But, in its ongoing High Performance Computing (HPC) work, Los Alamos National Laboratory noted a persistent shortage of well-prepared applicants, particularly for entry-level cluster administration, file systems administration, and high speed networking positions. Further, based upon recruiting efforts and interactions with universities graduating students in related majors of interest (e.g., computer science (CS)), there has been a long standing skillset gap, as focused training in HPC topics is typically lacking or absent in undergraduate and in evenmore » many graduate programs. Given that the effective operation and use of HPC systems requires specialized and often advanced training, that there is a recognized HPC skillset gap, and that there is intense global competition for computing and computational science talent, there is a long-standing and critical need for innovative approaches to help bridge the gap and create a well-prepared, next generation HPC workforce. Our paper places this need in the context of the HPC work and workforce requirements at Los Alamos National Laboratory (LANL) and presents one such innovative program conceived to address the need, bridge the gap, and grow an HPC workforce pipeline at LANL. The Computer System, Cluster, and Networking Summer Institute (CSCNSI) completed its 10th year in 2016. The story of the CSCNSI and its evolution is detailed below with a description of the design of its Boot Camp, and a summary of its success and some key factors that have enabled that success.« less
Connor, Carolyn Marie; Jacobson, Andree Lars; Bonnie, Amanda Marie; ...
2016-11-01
Sustainable and effective computing infrastructure depends critically on the skills and expertise of domain scientists and of committed and well-trained advanced computing professionals. But, in its ongoing High Performance Computing (HPC) work, Los Alamos National Laboratory noted a persistent shortage of well-prepared applicants, particularly for entry-level cluster administration, file systems administration, and high speed networking positions. Further, based upon recruiting efforts and interactions with universities graduating students in related majors of interest (e.g., computer science (CS)), there has been a long standing skillset gap, as focused training in HPC topics is typically lacking or absent in undergraduate and in evenmore » many graduate programs. Given that the effective operation and use of HPC systems requires specialized and often advanced training, that there is a recognized HPC skillset gap, and that there is intense global competition for computing and computational science talent, there is a long-standing and critical need for innovative approaches to help bridge the gap and create a well-prepared, next generation HPC workforce. Our paper places this need in the context of the HPC work and workforce requirements at Los Alamos National Laboratory (LANL) and presents one such innovative program conceived to address the need, bridge the gap, and grow an HPC workforce pipeline at LANL. The Computer System, Cluster, and Networking Summer Institute (CSCNSI) completed its 10th year in 2016. The story of the CSCNSI and its evolution is detailed below with a description of the design of its Boot Camp, and a summary of its success and some key factors that have enabled that success.« less
Federated data storage system prototype for LHC experiments and data intensive science
NASA Astrophysics Data System (ADS)
Kiryanov, A.; Klimentov, A.; Krasnopevtsev, D.; Ryabinkin, E.; Zarochentsev, A.
2017-10-01
Rapid increase of data volume from the experiments running at the Large Hadron Collider (LHC) prompted physics computing community to evaluate new data handling and processing solutions. Russian grid sites and universities’ clusters scattered over a large area aim at the task of uniting their resources for future productive work, at the same time giving an opportunity to support large physics collaborations. In our project we address the fundamental problem of designing a computing architecture to integrate distributed storage resources for LHC experiments and other data-intensive science applications and to provide access to data from heterogeneous computing facilities. Studies include development and implementation of federated data storage prototype for Worldwide LHC Computing Grid (WLCG) centres of different levels and University clusters within one National Cloud. The prototype is based on computing resources located in Moscow, Dubna, Saint Petersburg, Gatchina and Geneva. This project intends to implement a federated distributed storage for all kind of operations such as read/write/transfer and access via WAN from Grid centres, university clusters, supercomputers, academic and commercial clouds. The efficiency and performance of the system are demonstrated using synthetic and experiment-specific tests including real data processing and analysis workflows from ATLAS and ALICE experiments, as well as compute-intensive bioinformatics applications (PALEOMIX) running on supercomputers. We present topology and architecture of the designed system, report performance and statistics for different access patterns and show how federated data storage can be used efficiently by physicists and biologists. We also describe how sharing data on a widely distributed storage system can lead to a new computing model and reformations of computing style, for instance how bioinformatics program running on supercomputers can read/write data from the federated storage.
OCCAM: a flexible, multi-purpose and extendable HPC cluster
NASA Astrophysics Data System (ADS)
Aldinucci, M.; Bagnasco, S.; Lusso, S.; Pasteris, P.; Rabellino, S.; Vallero, S.
2017-10-01
The Open Computing Cluster for Advanced data Manipulation (OCCAM) is a multipurpose flexible HPC cluster designed and operated by a collaboration between the University of Torino and the Sezione di Torino of the Istituto Nazionale di Fisica Nucleare. It is aimed at providing a flexible, reconfigurable and extendable infrastructure to cater to a wide range of different scientific computing use cases, including ones from solid-state chemistry, high-energy physics, computer science, big data analytics, computational biology, genomics and many others. Furthermore, it will serve as a platform for R&D activities on computational technologies themselves, with topics ranging from GPU acceleration to Cloud Computing technologies. A heterogeneous and reconfigurable system like this poses a number of challenges related to the frequency at which heterogeneous hardware resources might change their availability and shareability status, which in turn affect methods and means to allocate, manage, optimize, bill, monitor VMs, containers, virtual farms, jobs, interactive bare-metal sessions, etc. This work describes some of the use cases that prompted the design and construction of the HPC cluster, its architecture and resource provisioning model, along with a first characterization of its performance by some synthetic benchmark tools and a few realistic use-case tests.
The [(AI 2O 3) 2] - Anion Cluster: Electron Localization-Delocalization Isomerism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierka, Marek; Dobler, Jens; Sauer, Joachim
2009-10-05
Three-dimensional bulk alumina and its two-dimensional thin films show great structural diversity, posing considerable challenges to their experimental structural characterization and computational modeling. Recently, structural diversity has also been demonstrated for zerodimensional gas phase aluminum oxide clusters. Mass-selected clusters not only make systematic studies of the structural and electronic properties as a function of size possible, but lately have also emerged as powerful molecular models of complex surfaces and solid catalysts. In particular, the [(Al 2O 3) 3-5] + clusters were the first example of polynuclear maingroup metal oxide cluster that are able to thermally activate CH 4. Over themore » past decades gas phase aluminum oxide clusters have been extensively studied both experimentally and computationally, but definitive structural assignments were made for only a handful of them: the planar [Al 3O 3] - and [Al 5O 4] - cluster anions, and the [(Al 2O 3) 1-4(AlO)] + cluster cations. For stoichiometric clusters only the atomic structures of [(Al 2O 3) 4] +/0 have been nambiguously resolved. Here we report on the structures of the [(Al 2O 3) 2] -/0 clusters combining photoelectron spectroscopy (PES) and quantum chemical calculations employing a genetic algorithm as a global optimization technique. The [(Al 2O 3) 2] - cluster anion show energetically close lying but structurally distinct cage and sheet-like isomers which differ by delocalization/localization of the extra electron. The experimental results are crucial for benchmarking the different computational methods applied with respect to a proper description of electron localization and the relative energies for the isomers which will be of considerable value for future computational studies of aluminum oxide and related systems.« less
BESIU Physical Analysis on Hadoop Platform
NASA Astrophysics Data System (ADS)
Huo, Jing; Zang, Dongsong; Lei, Xiaofeng; Li, Qiang; Sun, Gongxing
2014-06-01
In the past 20 years, computing cluster has been widely used for High Energy Physics data processing. The jobs running on the traditional cluster with a Data-to-Computing structure, have to read large volumes of data via the network to the computing nodes for analysis, thereby making the I/O latency become a bottleneck of the whole system. The new distributed computing technology based on the MapReduce programming model has many advantages, such as high concurrency, high scalability and high fault tolerance, and it can benefit us in dealing with Big Data. This paper brings the idea of using MapReduce model to do BESIII physical analysis, and presents a new data analysis system structure based on Hadoop platform, which not only greatly improve the efficiency of data analysis, but also reduces the cost of system building. Moreover, this paper establishes an event pre-selection system based on the event level metadata(TAGs) database to optimize the data analyzing procedure.
P43-S Computational Biology Applications Suite for High-Performance Computing (BioHPC.net)
Pillardy, J.
2007-01-01
One of the challenges of high-performance computing (HPC) is user accessibility. At the Cornell University Computational Biology Service Unit, which is also a Microsoft HPC institute, we have developed a computational biology application suite that allows researchers from biological laboratories to submit their jobs to the parallel cluster through an easy-to-use Web interface. Through this system, we are providing users with popular bioinformatics tools including BLAST, HMMER, InterproScan, and MrBayes. The system is flexible and can be easily customized to include other software. It is also scalable; the installation on our servers currently processes approximately 8500 job submissions per year, many of them requiring massively parallel computations. It also has a built-in user management system, which can limit software and/or database access to specified users. TAIR, the major database of the plant model organism Arabidopsis, and SGN, the international tomato genome database, are both using our system for storage and data analysis. The system consists of a Web server running the interface (ASP.NET C#), Microsoft SQL server (ADO.NET), compute cluster running Microsoft Windows, ftp server, and file server. Users can interact with their jobs and data via a Web browser, ftp, or e-mail. The interface is accessible at http://cbsuapps.tc.cornell.edu/.
Balancing computation and communication power in power constrained clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piga, Leonardo; Paul, Indrani; Huang, Wei
Systems, apparatuses, and methods for balancing computation and communication power in power constrained environments. A data processing cluster with a plurality of compute nodes may perform parallel processing of a workload in a power constrained environment. Nodes that finish tasks early may be power-gated based on one or more conditions. In some scenarios, a node may predict a wait duration and go into a reduced power consumption state if the wait duration is predicted to be greater than a threshold. The power saved by power-gating one or more nodes may be reassigned for use by other nodes. A cluster agentmore » may be configured to reassign the unused power to the active nodes to expedite workload processing.« less
NASA Astrophysics Data System (ADS)
Chibani, Wael; Ren, Xinguo; Scheffler, Matthias; Rinke, Patrick
2016-04-01
We present an embedding scheme for periodic systems that facilitates the treatment of the physically important part (here a unit cell or a supercell) with advanced electronic structure methods, that are computationally too expensive for periodic systems. The rest of the periodic system is treated with computationally less demanding approaches, e.g., Kohn-Sham density-functional theory, in a self-consistent manner. Our scheme is based on the concept of dynamical mean-field theory formulated in terms of Green's functions. Our real-space dynamical mean-field embedding scheme features two nested Dyson equations, one for the embedded cluster and another for the periodic surrounding. The total energy is computed from the resulting Green's functions. The performance of our scheme is demonstrated by treating the embedded region with hybrid functionals and many-body perturbation theory in the GW approach for simple bulk systems. The total energy and the density of states converge rapidly with respect to the computational parameters and approach their bulk limit with increasing cluster (i.e., computational supercell) size.
Surface passivation for tight-binding calculations of covalent solids.
Bernstein, N
2007-07-04
Simulation of a cluster representing a finite portion of a larger covalently bonded system requires the passivation of the cluster surface. We compute the effects of an explicit hybrid orbital passivation (EHOP) on the atomic structure in a model bulk, three-dimensional, narrow gap semiconductor, which is very different from the wide gap, quasi-one-dimensional organic molecules where most passivation schemes have been studied in detail. The EHOP approach is directly applicable to minimal atomic orbital basis methods such as tight-binding. Each broken bond is passivated by a hybrid created from an explicitly expressed linear combination of basis orbitals, chosen to represent the contribution of the missing neighbour, e.g. a sp(3) hybrid for a single bond. The method is tested by computing the forces on atoms near a point defect as a function of cluster geometry. We show that, compared to alternatives such as pseudo-hydrogen passivation, the force on an atom converges to the correct bulk limit more quickly as a function of cluster radius, and that the force is more stable with respect to perturbations in the position of the cluster centre. The EHOP method also obviates the need for parameterizing the interactions between the system atoms and the passivating atoms. The method is useful for cluster calculations of non-periodic defects in large systems and for hybrid schemes that simulate large systems by treating finite regions with a quantum-mechanical model, coupled to an interatomic potential description of the rest of the system.
Surface passivation for tight-binding calculations of covalent solids
NASA Astrophysics Data System (ADS)
Bernstein, N.
2007-07-01
Simulation of a cluster representing a finite portion of a larger covalently bonded system requires the passivation of the cluster surface. We compute the effects of an explicit hybrid orbital passivation (EHOP) on the atomic structure in a model bulk, three-dimensional, narrow gap semiconductor, which is very different from the wide gap, quasi-one-dimensional organic molecules where most passivation schemes have been studied in detail. The EHOP approach is directly applicable to minimal atomic orbital basis methods such as tight-binding. Each broken bond is passivated by a hybrid created from an explicitly expressed linear combination of basis orbitals, chosen to represent the contribution of the missing neighbour, e.g. a sp3 hybrid for a single bond. The method is tested by computing the forces on atoms near a point defect as a function of cluster geometry. We show that, compared to alternatives such as pseudo-hydrogen passivation, the force on an atom converges to the correct bulk limit more quickly as a function of cluster radius, and that the force is more stable with respect to perturbations in the position of the cluster centre. The EHOP method also obviates the need for parameterizing the interactions between the system atoms and the passivating atoms. The method is useful for cluster calculations of non-periodic defects in large systems and for hybrid schemes that simulate large systems by treating finite regions with a quantum-mechanical model, coupled to an interatomic potential description of the rest of the system.
Inductive Approaches to Improving Diagnosis and Design for Diagnosability
NASA Technical Reports Server (NTRS)
Fisher, Douglas H. (Principal Investigator)
1995-01-01
The first research area under this grant addresses the problem of classifying time series according to their morphological features in the time domain. A supervised learning system called CALCHAS, which induces a classification procedure for signatures from preclassified examples, was developed. For each of several signature classes, the system infers a model that captures the class's morphological features using Bayesian model induction and the minimum message length approach to assign priors. After induction, a time series (signature) is classified in one of the classes when there is enough evidence to support that decision. Time series with sufficiently novel features, belonging to classes not present in the training set, are recognized as such. A second area of research assumes two sources of information about a system: a model or domain theory that encodes aspects of the system under study and data from actual system operations over time. A model, when it exists, represents strong prior expectations about how a system will perform. Our work with a diagnostic model of the RCS (Reaction Control System) of the Space Shuttle motivated the development of SIG, a system which combines information from a model (or domain theory) and data. As it tracks RCS behavior, the model computes quantitative and qualitative values. Induction is then performed over the data represented by both the 'raw' features and the model-computed high-level features. Finally, work on clustering for operating mode discovery motivated some important extensions to the clustering strategy we had used. One modification appends an iterative optimization technique onto the clustering system; this optimization strategy appears to be novel in the clustering literature. A second modification improves the noise tolerance of the clustering system. In particular, we adapt resampling-based pruning strategies used by supervised learning systems to the task of simplifying hierarchical clusterings, thus making post-clustering analysis easier.
Elastic Cloud Computing Architecture and System for Heterogeneous Spatiotemporal Computing
NASA Astrophysics Data System (ADS)
Shi, X.
2017-10-01
Spatiotemporal computation implements a variety of different algorithms. When big data are involved, desktop computer or standalone application may not be able to complete the computation task due to limited memory and computing power. Now that a variety of hardware accelerators and computing platforms are available to improve the performance of geocomputation, different algorithms may have different behavior on different computing infrastructure and platforms. Some are perfect for implementation on a cluster of graphics processing units (GPUs), while GPUs may not be useful on certain kind of spatiotemporal computation. This is the same situation in utilizing a cluster of Intel's many-integrated-core (MIC) or Xeon Phi, as well as Hadoop or Spark platforms, to handle big spatiotemporal data. Furthermore, considering the energy efficiency requirement in general computation, Field Programmable Gate Array (FPGA) may be a better solution for better energy efficiency when the performance of computation could be similar or better than GPUs and MICs. It is expected that an elastic cloud computing architecture and system that integrates all of GPUs, MICs, and FPGAs could be developed and deployed to support spatiotemporal computing over heterogeneous data types and computational problems.
NASA Astrophysics Data System (ADS)
Teuben, P. J.; Wolfire, M. G.; Pound, M. W.; Mundy, L. G.
We have assembled a cluster of Intel-Pentium based PCs running Linux to compute a large set of Photodissociation Region (PDR) and Dust Continuum models. For various reasons the cluster is heterogeneous, currently ranging from a single Pentium-II 333 MHz to dual Pentium-III 450 MHz CPU machines. Although this will be sufficient for our ``embarrassingly parallelizable problem'' it may present some challenges for as yet unplanned future use. In addition the cluster was used to construct a MIRIAD benchmark, and compared to equivalent Ultra-Sparc based workstations. Currently the cluster consists of 8 machines, 14 CPUs, 50GB of disk-space, and a total peak speed of 5.83 GHz, or about 1.5 Gflops. The total cost of this cluster has been about $12,000, including all cabling, networking equipment, rack, and a CD-R backup system. The URL for this project is http://dustem.astro.umd.edu.
Hot Chips and Hot Interconnects for High End Computing Systems
NASA Technical Reports Server (NTRS)
Saini, Subhash
2005-01-01
I will discuss several processors: 1. The Cray proprietary processor used in the Cray X1; 2. The IBM Power 3 and Power 4 used in an IBM SP 3 and IBM SP 4 systems; 3. The Intel Itanium and Xeon, used in the SGI Altix systems and clusters respectively; 4. IBM System-on-a-Chip used in IBM BlueGene/L; 5. HP Alpha EV68 processor used in DOE ASCI Q cluster; 6. SPARC64 V processor, which is used in the Fujitsu PRIMEPOWER HPC2500; 7. An NEC proprietary processor, which is used in NEC SX-6/7; 8. Power 4+ processor, which is used in Hitachi SR11000; 9. NEC proprietary processor, which is used in Earth Simulator. The IBM POWER5 and Red Storm Computing Systems will also be discussed. The architectures of these processors will first be presented, followed by interconnection networks and a description of high-end computer systems based on these processors and networks. The performance of various hardware/programming model combinations will then be compared, based on latest NAS Parallel Benchmark results (MPI, OpenMP/HPF and hybrid (MPI + OpenMP). The tutorial will conclude with a discussion of general trends in the field of high performance computing, (quantum computing, DNA computing, cellular engineering, and neural networks).
Novel schemes for measurement-based quantum computation.
Gross, D; Eisert, J
2007-06-01
We establish a framework which allows one to construct novel schemes for measurement-based quantum computation. The technique develops tools from many-body physics-based on finitely correlated or projected entangled pair states-to go beyond the cluster-state based one-way computer. We identify resource states radically different from the cluster state, in that they exhibit nonvanishing correlations, can be prepared using nonmaximally entangling gates, or have very different local entanglement properties. In the computational models, randomness is compensated in a different manner. It is shown that there exist resource states which are locally arbitrarily close to a pure state. We comment on the possibility of tailoring computational models to specific physical systems.
Zodiacal Exoplanets in Time: Searching for Young Stars in K2
NASA Astrophysics Data System (ADS)
Morris, Nathan Ryan; Mann, Andrew; Rizzuto, Aaron
2018-01-01
Observations of planetary systems around young stars provide insight into the early stages of planetary system formation. Nearby young open clusters such as the Hyades, Pleiades, and Praesepe provide important benchmarks for the properties of stellar systems in general. These clusters are all known to be less than 1 Gyr old, making them ideal targets for a survey of young planetary systems. Few transiting planets have been detected around clusters stars, however, so this alone is too small of a sample. K2, the revived Kepler mission, has provided a vast number of light curves for young stars in clusters and elsewhere in the K2 field. This provides us with the opportunity to extend the sample of young systems to field stars while calibrating with cluster stars. We compute rotational periods from starspot patterns for ~36,000 K2 targets and use gyrochronological relationships derived from cluster stars to determine their ages. From there, we have begun searching for planets around young stars outside the clusters with the ultimate goal of shedding light on how planets and planetary systems evolve in their early, most formative years.
Software system for data management and distributed processing of multichannel biomedical signals.
Franaszczuk, P J; Jouny, C C
2004-01-01
The presented software is designed for efficient utilization of cluster of PC computers for signal analysis of multichannel physiological data. The system consists of three main components: 1) a library of input and output procedures, 2) a database storing additional information about location in a storage system, 3) a user interface for selecting data for analysis, choosing programs for analysis, and distributing computing and output data on cluster nodes. The system allows for processing multichannel time series data in multiple binary formats. The description of data format, channels and time of recording are included in separate text files. Definition and selection of multiple channel montages is possible. Epochs for analysis can be selected both manually and automatically. Implementation of a new signal processing procedures is possible with a minimal programming overhead for the input/output processing and user interface. The number of nodes in cluster used for computations and amount of storage can be changed with no major modification to software. Current implementations include the time-frequency analysis of multiday, multichannel recordings of intracranial EEG of epileptic patients as well as evoked response analyses of repeated cognitive tasks.
High Performance Computing Based Parallel HIearchical Modal Association Clustering (HPAR HMAC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patlolla, Dilip R; Surendran Nair, Sujithkumar; Graves, Daniel A.
For many applications, clustering is a crucial step in order to gain insight into the makeup of a dataset. The best approach to a given problem often depends on a variety of factors, such as the size of the dataset, time restrictions, and soft clustering requirements. The HMAC algorithm seeks to combine the strengths of 2 particular clustering approaches: model-based and linkage-based clustering. One particular weakness of HMAC is its computational complexity. HMAC is not practical for mega-scale data clustering. For high-definition imagery, a user would have to wait months or years for a result; for a 16-megapixel image, themore » estimated runtime skyrockets to over a decade! To improve the execution time of HMAC, it is reasonable to consider an multi-core implementation that utilizes available system resources. An existing imple-mentation (Ray and Cheng 2014) divides the dataset into N partitions - one for each thread prior to executing the HMAC algorithm. This implementation benefits from 2 types of optimization: parallelization and divide-and-conquer. By running each partition in parallel, the program is able to accelerate computation by utilizing more system resources. Although the parallel implementation provides considerable improvement over the serial HMAC, it still suffers from poor computational complexity, O(N2). Once the maximum number of cores on a system is exhausted, the program exhibits slower behavior. We now consider a modification to HMAC that involves a recursive partitioning scheme. Our modification aims to exploit divide-and-conquer benefits seen by the parallel HMAC implementation. At each level in the recursion tree, partitions are divided into 2 sub-partitions until a threshold size is reached. When the partition can no longer be divided without falling below threshold size, the base HMAC algorithm is applied. This results in a significant speedup over the parallel HMAC.« less
A Multiple Sphere T-Matrix Fortran Code for Use on Parallel Computer Clusters
NASA Technical Reports Server (NTRS)
Mackowski, D. W.; Mishchenko, M. I.
2011-01-01
A general-purpose Fortran-90 code for calculation of the electromagnetic scattering and absorption properties of multiple sphere clusters is described. The code can calculate the efficiency factors and scattering matrix elements of the cluster for either fixed or random orientation with respect to the incident beam and for plane wave or localized- approximation Gaussian incident fields. In addition, the code can calculate maps of the electric field both interior and exterior to the spheres.The code is written with message passing interface instructions to enable the use on distributed memory compute clusters, and for such platforms the code can make feasible the calculation of absorption, scattering, and general EM characteristics of systems containing several thousand spheres.
GREEN SUPERCOMPUTING IN A DESKTOP BOX
DOE Office of Scientific and Technical Information (OSTI.GOV)
HSU, CHUNG-HSING; FENG, WU-CHUN; CHING, AVERY
2007-01-17
The computer workstation, introduced by Sun Microsystems in 1982, was the tool of choice for scientists and engineers as an interactive computing environment for the development of scientific codes. However, by the mid-1990s, the performance of workstations began to lag behind high-end commodity PCs. This, coupled with the disappearance of BSD-based operating systems in workstations and the emergence of Linux as an open-source operating system for PCs, arguably led to the demise of the workstation as we knew it. Around the same time, computational scientists started to leverage PCs running Linux to create a commodity-based (Beowulf) cluster that provided dedicatedmore » computer cycles, i.e., supercomputing for the rest of us, as a cost-effective alternative to large supercomputers, i.e., supercomputing for the few. However, as the cluster movement has matured, with respect to cluster hardware and open-source software, these clusters have become much more like their large-scale supercomputing brethren - a shared (and power-hungry) datacenter resource that must reside in a machine-cooled room in order to operate properly. Consequently, the above observations, when coupled with the ever-increasing performance gap between the PC and cluster supercomputer, provide the motivation for a 'green' desktop supercomputer - a turnkey solution that provides an interactive and parallel computing environment with the approximate form factor of a Sun SPARCstation 1 'pizza box' workstation. In this paper, they present the hardware and software architecture of such a solution as well as its prowess as a developmental platform for parallel codes. In short, imagine a 12-node personal desktop supercomputer that achieves 14 Gflops on Linpack but sips only 185 watts of power at load, resulting in a performance-power ratio that is over 300% better than their reference SMP platform.« less
Accelerating epistasis analysis in human genetics with consumer graphics hardware.
Sinnott-Armstrong, Nicholas A; Greene, Casey S; Cancare, Fabio; Moore, Jason H
2009-07-24
Human geneticists are now capable of measuring more than one million DNA sequence variations from across the human genome. The new challenge is to develop computationally feasible methods capable of analyzing these data for associations with common human disease, particularly in the context of epistasis. Epistasis describes the situation where multiple genes interact in a complex non-linear manner to determine an individual's disease risk and is thought to be ubiquitous for common diseases. Multifactor Dimensionality Reduction (MDR) is an algorithm capable of detecting epistasis. An exhaustive analysis with MDR is often computationally expensive, particularly for high order interactions. This challenge has previously been met with parallel computation and expensive hardware. The option we examine here exploits commodity hardware designed for computer graphics. In modern computers Graphics Processing Units (GPUs) have more memory bandwidth and computational capability than Central Processing Units (CPUs) and are well suited to this problem. Advances in the video game industry have led to an economy of scale creating a situation where these powerful components are readily available at very low cost. Here we implement and evaluate the performance of the MDR algorithm on GPUs. Of primary interest are the time required for an epistasis analysis and the price to performance ratio of available solutions. We found that using MDR on GPUs consistently increased performance per machine over both a feature rich Java software package and a C++ cluster implementation. The performance of a GPU workstation running a GPU implementation reduces computation time by a factor of 160 compared to an 8-core workstation running the Java implementation on CPUs. This GPU workstation performs similarly to 150 cores running an optimized C++ implementation on a Beowulf cluster. Furthermore this GPU system provides extremely cost effective performance while leaving the CPU available for other tasks. The GPU workstation containing three GPUs costs $2000 while obtaining similar performance on a Beowulf cluster requires 150 CPU cores which, including the added infrastructure and support cost of the cluster system, cost approximately $82,500. Graphics hardware based computing provides a cost effective means to perform genetic analysis of epistasis using MDR on large datasets without the infrastructure of a computing cluster.
TethysCluster: A comprehensive approach for harnessing cloud resources for hydrologic modeling
NASA Astrophysics Data System (ADS)
Nelson, J.; Jones, N.; Ames, D. P.
2015-12-01
Advances in water resources modeling are improving the information that can be supplied to support decisions affecting the safety and sustainability of society. However, as water resources models become more sophisticated and data-intensive they require more computational power to run. Purchasing and maintaining the computing facilities needed to support certain modeling tasks has been cost-prohibitive for many organizations. With the advent of the cloud, the computing resources needed to address this challenge are now available and cost-effective, yet there still remains a significant technical barrier to leverage these resources. This barrier inhibits many decision makers and even trained engineers from taking advantage of the best science and tools available. Here we present the Python tools TethysCluster and CondorPy, that have been developed to lower the barrier to model computation in the cloud by providing (1) programmatic access to dynamically scalable computing resources, (2) a batch scheduling system to queue and dispatch the jobs to the computing resources, (3) data management for job inputs and outputs, and (4) the ability to dynamically create, submit, and monitor computing jobs. These Python tools leverage the open source, computing-resource management, and job management software, HTCondor, to offer a flexible and scalable distributed-computing environment. While TethysCluster and CondorPy can be used independently to provision computing resources and perform large modeling tasks, they have also been integrated into Tethys Platform, a development platform for water resources web apps, to enable computing support for modeling workflows and decision-support systems deployed as web apps.
GRAPE-6A: A Single-Card GRAPE-6 for Parallel PC-GRAPE Cluster Systems
NASA Astrophysics Data System (ADS)
Fukushige, Toshiyuki; Makino, Junichiro; Kawai, Atsushi
2005-12-01
In this paper, we describe the design and performance of GRAPE-6A, a special-purpose computer for gravitational many-body simulations. It was designed to be used with a PC cluster, in which each node has one GRAPE-6A. Such a configuration is particularly cost-effective in running parallel tree algorithms. Though the use of parallel tree algorithms was possible with the original GRAPE-6 hardware, it was not very cost-effective since a single GRAPE-6 board was still too fast and too expensive. Therefore, we designed GRAPE-6A as a single PCI card to minimize the reproduction cost and to optimize the computing speed. The peak performance is 130 Gflops for one GRAPE-6A board and 3.1 Tflops for our 24 node cluster. We describe the implementation of the tree, TreePM and individual timestep algorithms on both a single GRAPE-6A system and GRAPE-6A cluster. Using the tree algorithm on our 16-node GRAPE-6A system, we can complete a collisionless simulation with 100 million particles (8000 steps) within 10 days.
A multi-platform evaluation of the randomized CX low-rank matrix factorization in Spark
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gittens, Alex; Kottalam, Jey; Yang, Jiyan
We investigate the performance and scalability of the randomized CX low-rank matrix factorization and demonstrate its applicability through the analysis of a 1TB mass spectrometry imaging (MSI) dataset, using Apache Spark on an Amazon EC2 cluster, a Cray XC40 system, and an experimental Cray cluster. We implemented this factorization both as a parallelized C implementation with hand-tuned optimizations and in Scala using the Apache Spark high-level cluster computing framework. We obtained consistent performance across the three platforms: using Spark we were able to process the 1TB size dataset in under 30 minutes with 960 cores on all systems, with themore » fastest times obtained on the experimental Cray cluster. In comparison, the C implementation was 21X faster on the Amazon EC2 system, due to careful cache optimizations, bandwidth-friendly access of matrices and vector computation using SIMD units. We report these results and their implications on the hardware and software issues arising in supporting data-centric workloads in parallel and distributed environments.« less
Montecarlo Simulations for a Lep Experiment with Unix Workstation Clusters
NASA Astrophysics Data System (ADS)
Bonesini, M.; Calegari, A.; Rossi, P.; Rossi, V.
Modular systems of RISC CPU based computers have been implemented for large productions of Montecarlo simulated events for the DELPHI experiment at CERN. From a pilot system based on DEC 5000 CPU’s, a full size system based on a CONVEX C3820 UNIX supercomputer and a cluster of HP 735 workstations has been put into operation as a joint effort between INFN Milano and CILEA.
Repetitive Domain-Referenced Testing Using Computers: the TITA System.
ERIC Educational Resources Information Center
Olympia, P. L., Jr.
The TITA (Totally Interactive Testing and Analysis) System algorithm for the repetitive construction of domain-referenced tests utilizes a compact data bank, is highly portable, is useful in any discipline, requires modest computer hardware, and does not present a security problem. Clusters of related keyphrases, statement phrases, and distractors…
Clustering of low-valence particles: structure and kinetics.
Markova, Olga; Alberts, Jonathan; Munro, Edwin; Lenne, Pierre-François
2014-08-01
We compute the structure and kinetics of two systems of low-valence particles with three or six freely oriented bonds in two dimensions. The structure of clusters formed by trivalent particles is complex with loops and holes, while hexavalent particles self-organize into regular and compact structures. We identify the elementary structures which compose the clusters of trivalent particles. At initial stages of clustering, the clusters of trivalent particles grow with a power-law time dependence. Yet at longer times fusion and fission of clusters equilibrates and clusters form a heterogeneous phase with polydispersed sizes. These results emphasize the role of valence in the kinetics and stability of finite-size clusters.
Integration of High-Performance Computing into Cloud Computing Services
NASA Astrophysics Data System (ADS)
Vouk, Mladen A.; Sills, Eric; Dreher, Patrick
High-Performance Computing (HPC) projects span a spectrum of computer hardware implementations ranging from peta-flop supercomputers, high-end tera-flop facilities running a variety of operating systems and applications, to mid-range and smaller computational clusters used for HPC application development, pilot runs and prototype staging clusters. What they all have in common is that they operate as a stand-alone system rather than a scalable and shared user re-configurable resource. The advent of cloud computing has changed the traditional HPC implementation. In this article, we will discuss a very successful production-level architecture and policy framework for supporting HPC services within a more general cloud computing infrastructure. This integrated environment, called Virtual Computing Lab (VCL), has been operating at NC State since fall 2004. Nearly 8,500,000 HPC CPU-Hrs were delivered by this environment to NC State faculty and students during 2009. In addition, we present and discuss operational data that show that integration of HPC and non-HPC (or general VCL) services in a cloud can substantially reduce the cost of delivering cloud services (down to cents per CPU hour).
Enabling Diverse Software Stacks on Supercomputers using High Performance Virtual Clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younge, Andrew J.; Pedretti, Kevin; Grant, Ryan
While large-scale simulations have been the hallmark of the High Performance Computing (HPC) community for decades, Large Scale Data Analytics (LSDA) workloads are gaining attention within the scientific community not only as a processing component to large HPC simulations, but also as standalone scientific tools for knowledge discovery. With the path towards Exascale, new HPC runtime systems are also emerging in a way that differs from classical distributed com- puting models. However, system software for such capabilities on the latest extreme-scale DOE supercomputing needs to be enhanced to more appropriately support these types of emerging soft- ware ecosystems. In thismore » paper, we propose the use of Virtual Clusters on advanced supercomputing resources to enable systems to support not only HPC workloads, but also emerging big data stacks. Specifi- cally, we have deployed the KVM hypervisor within Cray's Compute Node Linux on a XC-series supercomputer testbed. We also use libvirt and QEMU to manage and provision VMs directly on compute nodes, leveraging Ethernet-over-Aries network emulation. To our knowledge, this is the first known use of KVM on a true MPP supercomputer. We investigate the overhead our solution using HPC benchmarks, both evaluating single-node performance as well as weak scaling of a 32-node virtual cluster. Overall, we find single node performance of our solution using KVM on a Cray is very efficient with near-native performance. However overhead increases by up to 20% as virtual cluster size increases, due to limitations of the Ethernet-over-Aries bridged network. Furthermore, we deploy Apache Spark with large data analysis workloads in a Virtual Cluster, ef- fectively demonstrating how diverse software ecosystems can be supported by High Performance Virtual Clusters.« less
NASA Astrophysics Data System (ADS)
Mo, Chao-jie; Qin, Li-zi; Yang, Li-jun
2017-10-01
We have derived a hypernetted-chain-like (HNC-like) approximate closure of the Ornstein-Zernike equation for multibody dissipative particle dynamics (MDPD) system in which the classic closures are not directly practicable. We first point out that the Percus's method is applicable to MDPD system in which particles interact with a density-dependent potential. And then an HNC-like closure is derived using Percus's idea and the saddle-point approximation of particle free energy. This HNC-like closure is compared with results of previous researchers, and in many cases, it demonstrates better agreement with computer simulation results. The HNC-like closure is used to predict the cluster crystallization in MDPD. We determine whether the cluster crystallization will happen in a system utilizing the widely applicable Hansen-Verlet freezing criterion and by observing the radial distribution function. The conclusions drawn from the results of the HNC-like closure are in agreement with computer simulation results. We evaluate different weight functions to determine whether they are prone to cluster crystallization. A new effective density-dependent pairwise potential is also proposed to help to explain the tendency to cluster crystallization of MDPD systems.
High Performance Computing of Meshless Time Domain Method on Multi-GPU Cluster
NASA Astrophysics Data System (ADS)
Ikuno, Soichiro; Nakata, Susumu; Hirokawa, Yuta; Itoh, Taku
2015-01-01
High performance computing of Meshless Time Domain Method (MTDM) on multi-GPU using the supercomputer HA-PACS (Highly Accelerated Parallel Advanced system for Computational Sciences) at University of Tsukuba is investigated. Generally, the finite difference time domain (FDTD) method is adopted for the numerical simulation of the electromagnetic wave propagation phenomena. However, the numerical domain must be divided into rectangle meshes, and it is difficult to adopt the problem in a complexed domain to the method. On the other hand, MTDM can be easily adept to the problem because MTDM does not requires meshes. In the present study, we implement MTDM on multi-GPU cluster to speedup the method, and numerically investigate the performance of the method on multi-GPU cluster. To reduce the computation time, the communication time between the decomposed domain is hided below the perfect matched layer (PML) calculation procedure. The results of computation show that speedup of MTDM on 128 GPUs is 173 times faster than that of single CPU calculation.
Efficient architecture for spike sorting in reconfigurable hardware.
Hwang, Wen-Jyi; Lee, Wei-Hao; Lin, Shiow-Jyu; Lai, Sheng-Ying
2013-11-01
This paper presents a novel hardware architecture for fast spike sorting. The architecture is able to perform both the feature extraction and clustering in hardware. The generalized Hebbian algorithm (GHA) and fuzzy C-means (FCM) algorithm are used for feature extraction and clustering, respectively. The employment of GHA allows efficient computation of principal components for subsequent clustering operations. The FCM is able to achieve near optimal clustering for spike sorting. Its performance is insensitive to the selection of initial cluster centers. The hardware implementations of GHA and FCM feature low area costs and high throughput. In the GHA architecture, the computation of different weight vectors share the same circuit for lowering the area costs. Moreover, in the FCM hardware implementation, the usual iterative operations for updating the membership matrix and cluster centroid are merged into one single updating process to evade the large storage requirement. To show the effectiveness of the circuit, the proposed architecture is physically implemented by field programmable gate array (FPGA). It is embedded in a System-on-Chip (SOC) platform for performance measurement. Experimental results show that the proposed architecture is an efficient spike sorting design for attaining high classification correct rate and high speed computation.
High Speed White Dwarf Asteroseismology with the Herty Hall Cluster
NASA Astrophysics Data System (ADS)
Gray, Aaron; Kim, A.
2012-01-01
Asteroseismology is the process of using observed oscillations of stars to infer their interior structure. In high speed asteroseismology, we complete that by quickly computing hundreds of thousands of models to match the observed period spectra. Each model on a single processor takes five to ten seconds to run. Therefore, we use a cluster of sixteen Dell Workstations with dual-core processors. The computers use the Ubuntu operating system and Apache Hadoop software to manage workloads.
Clustering recommendations to compute agent reputation
NASA Astrophysics Data System (ADS)
Bedi, Punam; Kaur, Harmeet
2005-03-01
Traditional centralized approaches to security are difficult to apply to multi-agent systems which are used nowadays in e-commerce applications. Developing a notion of trust that is based on the reputation of an agent can provide a softer notion of security that is sufficient for many multi-agent applications. Our paper proposes a mechanism for computing reputation of the trustee agent for use by the trustier agent. The trustier agent computes the reputation based on its own experience as well as the experience the peer agents have with the trustee agents. The trustier agents intentionally interact with the peer agents to get their experience information in the form of recommendations. We have also considered the case of unintentional encounters between the referee agents and the trustee agent, which can be directly between them or indirectly through a set of interacting agents. The clustering is done to filter off the noise in the recommendations in the form of outliers. The trustier agent clusters the recommendations received from referee agents on the basis of the distances between recommendations using the hierarchical agglomerative method. The dendogram hence obtained is cut at the required similarity level which restricts the maximum distance between any two recommendations within a cluster. The cluster with maximum number of elements denotes the views of the majority of recommenders. The center of this cluster represents the reputation of the trustee agent which can be computed using c-means algorithm.
High Performance Computer Cluster for Theoretical Studies of Roaming in Chemical Reactions
2016-08-30
High-performance Computer Cluster for Theoretical Studies of Roaming in Chemical Reactions A dedicated high-performance computer cluster was...SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Computer cluster ...peer-reviewed journals: Final Report: High-performance Computer Cluster for Theoretical Studies of Roaming in Chemical Reactions Report Title A dedicated
Computer aided detection of clusters of microcalcifications on full field digital mammograms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge Jun; Sahiner, Berkman; Hadjiiski, Lubomir M.
2006-08-15
We are developing a computer-aided detection (CAD) system to identify microcalcification clusters (MCCs) automatically on full field digital mammograms (FFDMs). The CAD system includes six stages: preprocessing; image enhancement; segmentation of microcalcification candidates; false positive (FP) reduction for individual microcalcifications; regional clustering; and FP reduction for clustered microcalcifications. At the stage of FP reduction for individual microcalcifications, a truncated sum-of-squares error function was used to improve the efficiency and robustness of the training of an artificial neural network in our CAD system for FFDMs. At the stage of FP reduction for clustered microcalcifications, morphological features and features derived from themore » artificial neural network outputs were extracted from each cluster. Stepwise linear discriminant analysis (LDA) was used to select the features. An LDA classifier was then used to differentiate clustered microcalcifications from FPs. A data set of 96 cases with 192 images was collected at the University of Michigan. This data set contained 96 MCCs, of which 28 clusters were proven by biopsy to be malignant and 68 were proven to be benign. The data set was separated into two independent data sets for training and testing of the CAD system in a cross-validation scheme. When one data set was used to train and validate the convolution neural network (CNN) in our CAD system, the other data set was used to evaluate the detection performance. With the use of a truncated error metric, the training of CNN could be accelerated and the classification performance was improved. The CNN in combination with an LDA classifier could substantially reduce FPs with a small tradeoff in sensitivity. By using the free-response receiver operating characteristic methodology, it was found that our CAD system can achieve a cluster-based sensitivity of 70, 80, and 90 % at 0.21, 0.61, and 1.49 FPs/image, respectively. For case-based performance evaluation, a sensitivity of 70, 80, and 90 % can be achieved at 0.07, 0.17, and 0.65 FPs/image, respectively. We also used a data set of 216 mammograms negative for clustered microcalcifications to further estimate the FP rate of our CAD system. The corresponding FP rates were 0.15, 0.31, and 0.86 FPs/image for cluster-based detection when negative mammograms were used for estimation of FP rates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidelberg, S T; Fitzgerald, K J; Richmond, G H
2006-01-24
There has been substantial development of the Lustre parallel filesystem prior to the configuration described below for this milestone. The initial Lustre filesystems that were deployed were directly connected to the cluster interconnect, i.e. Quadrics Elan3. That is, the clients (OSSes) and Meta-data Servers (MDS) were all directly connected to the cluster's internal high speed interconnect. This configuration serves a single cluster very well, but does not provide sharing of the filesystem among clusters. LLNL funded the development of high-efficiency ''portals router'' code by CFS (the company that develops Lustre) to enable us to move the Lustre servers to amore » GigE-connected network configuration, thus making it possible to connect to the servers from several clusters. With portals routing available, here is what changes: (1) another storage-only cluster is deployed to front the Lustre storage devices (these become the Lustre OSSes and MDS), (2) this ''Lustre cluster'' is attached via GigE connections to a large GigE switch/router cloud, (3) a small number of compute-cluster nodes are designated as ''gateway'' or ''portal router'' nodes, and (4) the portals router nodes are GigE-connected to the switch/router cloud. The Lustre configuration is then changed to reflect the new network paths. A typical example of this is a compute cluster and a related visualization cluster: the compute cluster produces the data (writes it to the Lustre filesystem), and the visualization cluster consumes some of the data (reads it from the Lustre filesystem). This process can be expanded by aggregating several collections of Lustre backend storage resources into one or more ''centralized'' Lustre filesystems, and then arranging to have several ''client'' clusters mount these centralized filesystems. The ''client clusters'' can be any combination of compute, visualization, archiving, or other types of cluster. This milestone demonstrates the operation and performance of a scaled-down version of such a large, centralized, shared Lustre filesystem concept.« less
Cloud computing for comparative genomics with windows azure platform.
Kim, Insik; Jung, Jae-Yoon; Deluca, Todd F; Nelson, Tristan H; Wall, Dennis P
2012-01-01
Cloud computing services have emerged as a cost-effective alternative for cluster systems as the number of genomes and required computation power to analyze them increased in recent years. Here we introduce the Microsoft Azure platform with detailed execution steps and a cost comparison with Amazon Web Services.
Cloud Computing for Comparative Genomics with Windows Azure Platform
Kim, Insik; Jung, Jae-Yoon; DeLuca, Todd F.; Nelson, Tristan H.; Wall, Dennis P.
2012-01-01
Cloud computing services have emerged as a cost-effective alternative for cluster systems as the number of genomes and required computation power to analyze them increased in recent years. Here we introduce the Microsoft Azure platform with detailed execution steps and a cost comparison with Amazon Web Services. PMID:23032609
Linear solver performance in elastoplastic problem solution on GPU cluster
NASA Astrophysics Data System (ADS)
Khalevitsky, Yu. V.; Konovalov, A. V.; Burmasheva, N. V.; Partin, A. S.
2017-12-01
Applying the finite element method to severe plastic deformation problems involves solving linear equation systems. While the solution procedure is relatively hard to parallelize and computationally intensive by itself, a long series of large scale systems need to be solved for each problem. When dealing with fine computational meshes, such as in the simulations of three-dimensional metal matrix composite microvolume deformation, tens and hundreds of hours may be needed to complete the whole solution procedure, even using modern supercomputers. In general, one of the preconditioned Krylov subspace methods is used in a linear solver for such problems. The method convergence highly depends on the operator spectrum of a problem stiffness matrix. In order to choose the appropriate method, a series of computational experiments is used. Different methods may be preferable for different computational systems for the same problem. In this paper we present experimental data obtained by solving linear equation systems from an elastoplastic problem on a GPU cluster. The data can be used to substantiate the choice of the appropriate method for a linear solver to use in severe plastic deformation simulations.
2016-01-01
Covering: 2003 to 2016 The last decade has seen the first major discoveries regarding the genomic basis of plant natural product biosynthetic pathways. Four key computationally driven strategies have been developed to identify such pathways, which make use of physical clustering, co-expression, evolutionary co-occurrence and epigenomic co-regulation of the genes involved in producing a plant natural product. Here, we discuss how these approaches can be used for the discovery of plant biosynthetic pathways encoded by both chromosomally clustered and non-clustered genes. Additionally, we will discuss opportunities to prioritize plant gene clusters for experimental characterization, and end with a forward-looking perspective on how synthetic biology technologies will allow effective functional reconstitution of candidate pathways using a variety of genetic systems. PMID:27321668
Level-2 Milestone 4797: Early Users on Max, Sequoia Visualization Cluster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cupps, Kim C.
This report documents the fact that an early user has run successfully on Max, the Sequoia visualization cluster, ASC L2 milestone 4797: Early Users on Sequoia Visualization System (Max), due December 31, 2013. The Max visualization and data analysis cluster will provide Sequoia users with compute cycles and an interactive option for data exploration and analysis. The system will be integrated in the first quarter of FY14 and the system is expected to be moved to the classified network by the second quarter of FY14. The goal of this milestone is to have early users running their visualization and datamore » analysis work on the Max cluster on the classified network.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
2012-09-25
The Megatux platform enables the emulation of large scale (multi-million node) distributed systems. In particular, it allows for the emulation of large-scale networks interconnecting a very large number of emulated computer systems. It does this by leveraging virtualization and associated technologies to allow hundreds of virtual computers to be hosted on a single moderately sized server or workstation. Virtualization technology provided by modern processors allows for multiple guest OSs to run at the same time, sharing the hardware resources. The Megatux platform can be deployed on a single PC, a small cluster of a few boxes or a large clustermore » of computers. With a modest cluster, the Megatux platform can emulate complex organizational networks. By using virtualization, we emulate the hardware, but run actual software enabling large scale without sacrificing fidelity.« less
NASA Astrophysics Data System (ADS)
Christou, Michalis; Christoudias, Theodoros; Morillo, Julián; Alvarez, Damian; Merx, Hendrik
2016-09-01
We examine an alternative approach to heterogeneous cluster-computing in the many-core era for Earth system models, using the European Centre for Medium-Range Weather Forecasts Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model as a pilot application on the Dynamical Exascale Entry Platform (DEEP). A set of autonomous coprocessors interconnected together, called Booster, complements a conventional HPC Cluster and increases its computing performance, offering extra flexibility to expose multiple levels of parallelism and achieve better scalability. The EMAC model atmospheric chemistry code (Module Efficiently Calculating the Chemistry of the Atmosphere (MECCA)) was taskified with an offload mechanism implemented using OmpSs directives. The model was ported to the MareNostrum 3 supercomputer to allow testing with Intel Xeon Phi accelerators on a production-size machine. The changes proposed in this paper are expected to contribute to the eventual adoption of Cluster-Booster division and Many Integrated Core (MIC) accelerated architectures in presently available implementations of Earth system models, towards exploiting the potential of a fully Exascale-capable platform.
Agent-based method for distributed clustering of textual information
Potok, Thomas E [Oak Ridge, TN; Reed, Joel W [Knoxville, TN; Elmore, Mark T [Oak Ridge, TN; Treadwell, Jim N [Louisville, TN
2010-09-28
A computer method and system for storing, retrieving and displaying information has a multiplexing agent (20) that calculates a new document vector (25) for a new document (21) to be added to the system and transmits the new document vector (25) to master cluster agents (22) and cluster agents (23) for evaluation. These agents (22, 23) perform the evaluation and return values upstream to the multiplexing agent (20) based on the similarity of the document to documents stored under their control. The multiplexing agent (20) then sends the document (21) and the document vector (25) to the master cluster agent (22), which then forwards it to a cluster agent (23) or creates a new cluster agent (23) to manage the document (21). The system also searches for stored documents according to a search query having at least one term and identifying the documents found in the search, and displays the documents in a clustering display (80) of similarity so as to indicate similarity of the documents to each other.
A computational system for lattice QCD with overlap Dirac quarks
NASA Astrophysics Data System (ADS)
Chiu, Ting-Wai; Hsieh, Tung-Han; Huang, Chao-Hsi; Huang, Tsung-Ren
2003-05-01
We outline the essential features of a Linux PC cluster which is now being developed at National Taiwan University, and discuss how to optimize its hardware and software for lattice QCD with overlap Dirac quarks. At present, the cluster constitutes of 30 nodes, with each node consisting of one Pentium 4 processor (1.6/2.0 GHz), one Gbyte of PC800 RDRAM, one 40/80 Gbyte hard disk, and a network card. The speed of this system is estimated to be 30 Gflops, and its price/performance ratio is better than $1.0/Mflops for 64-bit (double precision) computations in quenched lattice QCD with overlap Dirac quarks.
Double Cluster Heads Model for Secure and Accurate Data Fusion in Wireless Sensor Networks
Fu, Jun-Song; Liu, Yun
2015-01-01
Secure and accurate data fusion is an important issue in wireless sensor networks (WSNs) and has been extensively researched in the literature. In this paper, by combining clustering techniques, reputation and trust systems, and data fusion algorithms, we propose a novel cluster-based data fusion model called Double Cluster Heads Model (DCHM) for secure and accurate data fusion in WSNs. Different from traditional clustering models in WSNs, two cluster heads are selected after clustering for each cluster based on the reputation and trust system and they perform data fusion independently of each other. Then, the results are sent to the base station where the dissimilarity coefficient is computed. If the dissimilarity coefficient of the two data fusion results exceeds the threshold preset by the users, the cluster heads will be added to blacklist, and the cluster heads must be reelected by the sensor nodes in a cluster. Meanwhile, feedback is sent from the base station to the reputation and trust system, which can help us to identify and delete the compromised sensor nodes in time. Through a series of extensive simulations, we found that the DCHM performed very well in data fusion security and accuracy. PMID:25608211
Comulang: towards a collaborative e-learning system that supports student group modeling.
Troussas, Christos; Virvou, Maria; Alepis, Efthimios
2013-01-01
This paper describes an e-learning system that is expected to further enhance the educational process in computer-based tutoring systems by incorporating collaboration between students and work in groups. The resulting system is called "Comulang" while as a test bed for its effectiveness a multiple language learning system is used. Collaboration is supported by a user modeling module that is responsible for the initial creation of student clusters, where, as a next step, working groups of students are created. A machine learning clustering algorithm works towards group formatting, so that co-operations between students from different clusters are attained. One of the resulting system's basic aims is to provide efficient student groups whose limitations and capabilities are well balanced.
WIS Implementation Study Report. Volume 2. Resumes.
1983-10-01
WIS modernization that major attention be paid to interface definition and design, system integra- tion and test , and configuration management of the...Estimates -- Computer Corporation of America -- 155 Test Processing Systems -- Newburyport Computer Associates, Inc. -- 183 Cluster II Papers-- Standards...enhancements of the SPL/I compiler system, development of test systems for the verification of SDEX/M and the timing and architecture of the AN/U YK-20 and
Towards Effective Clustering Techniques for the Analysis of Electric Power Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, Emilie A.; Cotilla Sanchez, Jose E.; Halappanavar, Mahantesh
2013-11-30
Clustering is an important data analysis technique with numerous applications in the analysis of electric power grids. Standard clustering techniques are oblivious to the rich structural and dynamic information available for power grids. Therefore, by exploiting the inherent topological and electrical structure in the power grid data, we propose new methods for clustering with applications to model reduction, locational marginal pricing, phasor measurement unit (PMU or synchrophasor) placement, and power system protection. We focus our attention on model reduction for analysis based on time-series information from synchrophasor measurement devices, and spectral techniques for clustering. By comparing different clustering techniques onmore » two instances of realistic power grids we show that the solutions are related and therefore one could leverage that relationship for a computational advantage. Thus, by contrasting different clustering techniques we make a case for exploiting structure inherent in the data with implications for several domains including power systems.« less
Star Clusters Simulations Using GRAPE-5
NASA Astrophysics Data System (ADS)
Fukushige, Toshiyuki
We discuss simulations of star cluster, such as globular cluster, galaxy, and galaxy cluster, using GRAPE(GRAvity PipE)-5. GRAPE-5 is a new version of special-purpose computer for many-body simulation, GRAPE. GRAPE-5 has eight custom pipeline LSI (G5 chip) per board, and its peak performance is 38.4 Gflops. GRAPE-5 is different from its predecessor, GRAPE-3, regarding four points: a) the calculation speed per chip is 8 time faster, b) the PCI bus is adapted as an interface between host computer and GRAPE-5, and, therefore, the communication speed is order of magnitude faster, c) in addition to the pure 1/r potential, GRAPE-5 can calculate force with arbitrary cutoff function so that it can be applied to the Ewald or P3M methods, and d) the pair wise force calculated on GRAPE-5 is about 10 times more accurate. Using the GRAPE-5 system with Barnes-Hut tree algorithm, we can complete force calculations for one timestep in 10(N/106) seconds. This speed enables us to perform a pre-collapse globular cluster simulation with real number of particles, and a galaxy simulation with more than 1 million particles, within several days. We also present some results of star cluster simulations using the GRAPE-5 system.
GPU computing with Kaczmarz’s and other iterative algorithms for linear systems
Elble, Joseph M.; Sahinidis, Nikolaos V.; Vouzis, Panagiotis
2009-01-01
The graphics processing unit (GPU) is used to solve large linear systems derived from partial differential equations. The differential equations studied are strongly convection-dominated, of various sizes, and common to many fields, including computational fluid dynamics, heat transfer, and structural mechanics. The paper presents comparisons between GPU and CPU implementations of several well-known iterative methods, including Kaczmarz’s, Cimmino’s, component averaging, conjugate gradient normal residual (CGNR), symmetric successive overrelaxation-preconditioned conjugate gradient, and conjugate-gradient-accelerated component-averaged row projections (CARP-CG). Computations are preformed with dense as well as general banded systems. The results demonstrate that our GPU implementation outperforms CPU implementations of these algorithms, as well as previously studied parallel implementations on Linux clusters and shared memory systems. While the CGNR method had begun to fall out of favor for solving such problems, for the problems studied in this paper, the CGNR method implemented on the GPU performed better than the other methods, including a cluster implementation of the CARP-CG method. PMID:20526446
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goebel, J
2004-02-27
Without stable hardware any program will fail. The frustration and expense of supporting bad hardware can drain an organization, delay progress, and frustrate everyone involved. At Stanford Linear Accelerator Center (SLAC), we have created a testing method that helps our group, SLAC Computer Services (SCS), weed out potentially bad hardware and purchase the best hardware at the best possible cost. Commodity hardware changes often, so new evaluations happen periodically each time we purchase systems and minor re-evaluations happen for revised systems for our clusters, about twice a year. This general framework helps SCS perform correct, efficient evaluations. This article outlinesmore » SCS's computer testing methods and our system acceptance criteria. We expanded the basic ideas to other evaluations such as storage, and we think the methods outlined in this article has helped us choose hardware that is much more stable and supportable than our previous purchases. We have found that commodity hardware ranges in quality, so systematic method and tools for hardware evaluation were necessary. This article is based on one instance of a hardware purchase, but the guidelines apply to the general problem of purchasing commodity computer systems for production computational work.« less
Implementation of MPEG-2 encoder to multiprocessor system using multiple MVPs (TMS320C80)
NASA Astrophysics Data System (ADS)
Kim, HyungSun; Boo, Kenny; Chung, SeokWoo; Choi, Geon Y.; Lee, YongJin; Jeon, JaeHo; Park, Hyun Wook
1997-05-01
This paper presents the efficient algorithm mapping for the real-time MPEG-2 encoding on the KAIST image computing system (KICS), which has a parallel architecture using five multimedia video processors (MVPs). The MVP is a general purpose digital signal processor (DSP) of Texas Instrument. It combines one floating-point processor and four fixed- point DSPs on a single chip. The KICS uses the MVP as a primary processing element (PE). Two PEs form a cluster, and there are two processing clusters in the KICS. Real-time MPEG-2 encoder is implemented through the spatial and the functional partitioning strategies. Encoding process of spatially partitioned half of the video input frame is assigned to ne processing cluster. Two PEs perform the functionally partitioned MPEG-2 encoding tasks in the pipelined operation mode. One PE of a cluster carries out the transform coding part and the other performs the predictive coding part of the MPEG-2 encoding algorithm. One MVP among five MVPs is used for system control and interface with host computer. This paper introduces an implementation of the MPEG-2 algorithm with a parallel processing architecture.
Zodiacal Exoplanets in Time: Searching for Young Stars in K2
NASA Astrophysics Data System (ADS)
Morris, Nathan; Mann, Andrew W.
2017-06-01
Nearby young, open clusters such as the Hyades, Pleiades, and Praesepe provide an important reference point for the properties of stellar systems in general. In each cluster, all stars are of the same known age. As such, observations of planetary systems around these stars can be used to gain insight into the early stages of planetary system formation. K2, the revived Kepler mission, has provided a vast number of light curves for young stars in the and elsewhere in the K2 field. We aim to compute rotational periods from sunspot patterns for all K2 target stars and use gyrochronometric relationships derived from cluster stars to determine their ages. From there, we will search for planets around young stars outside the clusters with the ultimate goal of shedding light on how planets and planetary systems evolve with time.
Understanding I/O workload characteristics of a Peta-scale storage system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Youngjae; Gunasekaran, Raghul
2015-01-01
Understanding workload characteristics is critical for optimizing and improving the performance of current systems and software, and architecting new storage systems based on observed workload patterns. In this paper, we characterize the I/O workloads of scientific applications of one of the world s fastest high performance computing (HPC) storage cluster, Spider, at the Oak Ridge Leadership Computing Facility (OLCF). OLCF flagship petascale simulation platform, Titan, and other large HPC clusters, in total over 250 thousands compute cores, depend on Spider for their I/O needs. We characterize the system utilization, the demands of reads and writes, idle time, storage space utilization,more » and the distribution of read requests to write requests for the Peta-scale Storage Systems. From this study, we develop synthesized workloads, and we show that the read and write I/O bandwidth usage as well as the inter-arrival time of requests can be modeled as a Pareto distribution. We also study the I/O load imbalance problems using I/O performance data collected from the Spider storage system.« less
A parallel-processing approach to computing for the geographic sciences
Crane, Michael; Steinwand, Dan; Beckmann, Tim; Krpan, Greg; Haga, Jim; Maddox, Brian; Feller, Mark
2001-01-01
The overarching goal of this project is to build a spatially distributed infrastructure for information science research by forming a team of information science researchers and providing them with similar hardware and software tools to perform collaborative research. Four geographically distributed Centers of the U.S. Geological Survey (USGS) are developing their own clusters of low-cost personal computers into parallel computing environments that provide a costeffective way for the USGS to increase participation in the high-performance computing community. Referred to as Beowulf clusters, these hybrid systems provide the robust computing power required for conducting research into various areas, such as advanced computer architecture, algorithms to meet the processing needs for real-time image and data processing, the creation of custom datasets from seamless source data, rapid turn-around of products for emergency response, and support for computationally intense spatial and temporal modeling.
Space Age Multi-CPU Computer Network Is Just for Fun and Education, Too.
ERIC Educational Resources Information Center
Technological Horizons in Education, 1980
1980-01-01
Describes the Sesame Place's Computer Gallery, 56 Apple II computers linked by three Nestar Cluster/One Model A hard disc systems, the first commercial permanent educational play park. Programs for this hands-on indoor/outdoor park as well as a description of the facility are given. (JN)
Computational Science in Armenia (Invited Talk)
NASA Astrophysics Data System (ADS)
Marandjian, H.; Shoukourian, Yu.
This survey is devoted to the development of informatics and computer science in Armenia. The results in theoretical computer science (algebraic models, solutions to systems of general form recursive equations, the methods of coding theory, pattern recognition and image processing), constitute the theoretical basis for developing problem-solving-oriented environments. As examples can be mentioned: a synthesizer of optimized distributed recursive programs, software tools for cluster-oriented implementations of two-dimensional cellular automata, a grid-aware web interface with advanced service trading for linear algebra calculations. In the direction of solving scientific problems that require high-performance computing resources, examples of completed projects include the field of physics (parallel computing of complex quantum systems), astrophysics (Armenian virtual laboratory), biology (molecular dynamics study of human red blood cell membrane), meteorology (implementing and evaluating the Weather Research and Forecast Model for the territory of Armenia). The overview also notes that the Institute for Informatics and Automation Problems of the National Academy of Sciences of Armenia has established a scientific and educational infrastructure, uniting computing clusters of scientific and educational institutions of the country and provides the scientific community with access to local and international computational resources, that is a strong support for computational science in Armenia.
Direct construction of mesoscopic models from microscopic simulations
NASA Astrophysics Data System (ADS)
Lei, Huan; Caswell, Bruce; Karniadakis, George Em
2010-02-01
Starting from microscopic molecular-dynamics (MD) simulations of constrained Lennard-Jones (LJ) clusters (with constant radius of gyration Rg ), we construct two mesoscopic models [Langevin dynamics and dissipative particle dynamics (DPD)] by coarse graining the LJ clusters into single particles. Both static and dynamic properties of the coarse-grained models are investigated and compared with the MD results. The effective mean force field is computed as a function of the intercluster distance, and the corresponding potential scales linearly with the number of particles per cluster and the temperature. We verify that the mean force field can reproduce the equation of state of the atomistic systems within a wide density range but the radial distribution function only within the dilute and the semidilute regime. The friction force coefficients for both models are computed directly from the time-correlation function of the random force field of the microscopic system. For high density or a large cluster size the friction force is overestimated and the diffusivity underestimated due to the omission of many-body effects as a result of the assumed pairwise form of the coarse-grained force field. When the many-body effect is not as pronounced (e.g., smaller Rg or semidilute system), the DPD model can reproduce the dynamic properties of the MD system.
Message Passing vs. Shared Address Space on a Cluster of SMPs
NASA Technical Reports Server (NTRS)
Shan, Hongzhang; Singh, Jaswinder Pal; Oliker, Leonid; Biswas, Rupak
2000-01-01
The convergence of scalable computer architectures using clusters of PCs (or PC-SMPs) with commodity networking has become an attractive platform for high end scientific computing. Currently, message-passing and shared address space (SAS) are the two leading programming paradigms for these systems. Message-passing has been standardized with MPI, and is the most common and mature programming approach. However message-passing code development can be extremely difficult, especially for irregular structured computations. SAS offers substantial ease of programming, but may suffer from performance limitations due to poor spatial locality, and high protocol overhead. In this paper, we compare the performance of and programming effort, required for six applications under both programming models on a 32 CPU PC-SMP cluster. Our application suite consists of codes that typically do not exhibit high efficiency under shared memory programming. due to their high communication to computation ratios and complex communication patterns. Results indicate that SAS can achieve about half the parallel efficiency of MPI for most of our applications: however, on certain classes of problems SAS performance is competitive with MPI. We also present new algorithms for improving the PC cluster performance of MPI collective operations.
Kubas, Adam; Noak, Johannes; Trunschke, Annette; Schlögl, Robert; Neese, Frank; Maganas, Dimitrios
2017-09-01
Absorption and multiwavelength resonance Raman spectroscopy are widely used to investigate the electronic structure of transition metal centers in coordination compounds and extended solid systems. In combination with computational methodologies that have predictive accuracy, they define powerful protocols to study the spectroscopic response of catalytic materials. In this work, we study the absorption and resonance Raman spectra of the M1 MoVO x catalyst. The spectra were calculated by time-dependent density functional theory (TD-DFT) in conjunction with the independent mode displaced harmonic oscillator model (IMDHO), which allows for detailed bandshape predictions. For this purpose cluster models with up to 9 Mo and V metallic centers are considered to represent the bulk structure of MoVO x . Capping hydrogens were used to achieve valence saturation at the edges of the cluster models. The construction of model structures was based on a thorough bonding analysis which involved conventional DFT and local coupled cluster (DLPNO-CCSD(T)) methods. Furthermore the relationship of cluster topology to the computed spectral features is discussed in detail. It is shown that due to the local nature of the involved electronic transitions, band assignment protocols developed for molecular systems can be applied to describe the calculated spectral features of the cluster models as well. The present study serves as a reference for future applications of combined experimental and computational protocols in the field of solid-state heterogeneous catalysis.
Clustering of galaxies with f(R) gravity
NASA Astrophysics Data System (ADS)
Capozziello, Salvatore; Faizal, Mir; Hameeda, Mir; Pourhassan, Behnam; Salzano, Vincenzo; Upadhyay, Sudhaker
2018-02-01
Based on thermodynamics, we discuss the galactic clustering of expanding Universe by assuming the gravitational interaction through the modified Newton's potential given by f(R) gravity. We compute the corrected N-particle partition function analytically. The corrected partition function leads to more exact equations of state of the system. By assuming that the system follows quasi-equilibrium, we derive the exact distribution function that exhibits the f(R) correction. Moreover, we evaluate the critical temperature and discuss the stability of the system. We observe the effects of correction of f(R) gravity on the power-law behaviour of particle-particle correlation function also. In order to check the feasibility of an f(R) gravity approach to the clustering of galaxies, we compare our results with an observational galaxy cluster catalogue.
Development of a small-scale computer cluster
NASA Astrophysics Data System (ADS)
Wilhelm, Jay; Smith, Justin T.; Smith, James E.
2008-04-01
An increase in demand for computing power in academia has necessitated the need for high performance machines. Computing power of a single processor has been steadily increasing, but lags behind the demand for fast simulations. Since a single processor has hard limits to its performance, a cluster of computers can have the ability to multiply the performance of a single computer with the proper software. Cluster computing has therefore become a much sought after technology. Typical desktop computers could be used for cluster computing, but are not intended for constant full speed operation and take up more space than rack mount servers. Specialty computers that are designed to be used in clusters meet high availability and space requirements, but can be costly. A market segment exists where custom built desktop computers can be arranged in a rack mount situation, gaining the space saving of traditional rack mount computers while remaining cost effective. To explore these possibilities, an experiment was performed to develop a computing cluster using desktop components for the purpose of decreasing computation time of advanced simulations. This study indicates that small-scale cluster can be built from off-the-shelf components which multiplies the performance of a single desktop machine, while minimizing occupied space and still remaining cost effective.
Qualitative mechanism models and the rationalization of procedures
NASA Technical Reports Server (NTRS)
Farley, Arthur M.
1989-01-01
A qualitative, cluster-based approach to the representation of hydraulic systems is described and its potential for generating and explaining procedures is demonstrated. Many ideas are formalized and implemented as part of an interactive, computer-based system. The system allows for designing, displaying, and reasoning about hydraulic systems. The interactive system has an interface consisting of three windows: a design/control window, a cluster window, and a diagnosis/plan window. A qualitative mechanism model for the ORS (Orbital Refueling System) is presented to coordinate with ongoing research on this system being conducted at NASA Ames Research Center.
On-Line Pattern Analysis and Recognition System. OLPARS VI. Software Reference Manual,
1982-06-18
Discriminant Analysis Data Transformation, Feature Extraction, Feature Evaluation Cluster Analysis, Classification Computer Software 20Z. ABSTRACT... cluster /scatter cut-off value, (2) change the one-space bin factor, (3) change from long prompts to short prompts or vice versa, (4) change the...value, a cluster plot is displayed, otherwise a scatter plot is shown. if option 1 is selected, the program requests that a new value be input
Cluster state generation in one-dimensional Kitaev honeycomb model via shortcut to adiabaticity
NASA Astrophysics Data System (ADS)
Kyaw, Thi Ha; Kwek, Leong-Chuan
2018-04-01
We propose a mean to obtain computationally useful resource states also known as cluster states, for measurement-based quantum computation, via transitionless quantum driving algorithm. The idea is to cool the system to its unique ground state and tune some control parameters to arrive at computationally useful resource state, which is in one of the degenerate ground states. Even though there is set of conserved quantities already present in the model Hamiltonian, which prevents the instantaneous state to go to any other eigenstate subspaces, one cannot quench the control parameters to get the desired state. In that case, the state will not evolve. With involvement of the shortcut Hamiltonian, we obtain cluster states in fast-forward manner. We elaborate our proposal in the one-dimensional Kitaev honeycomb model, and show that the auxiliary Hamiltonian needed for the counterdiabatic driving is of M-body interaction.
Exploiting analytics techniques in CMS computing monitoring
NASA Astrophysics Data System (ADS)
Bonacorsi, D.; Kuznetsov, V.; Magini, N.; Repečka, A.; Vaandering, E.
2017-10-01
The CMS experiment has collected an enormous volume of metadata about its computing operations in its monitoring systems, describing its experience in operating all of the CMS workflows on all of the Worldwide LHC Computing Grid Tiers. Data mining efforts into all these information have rarely been done, but are of crucial importance for a better understanding of how CMS did successful operations, and to reach an adequate and adaptive modelling of the CMS operations, in order to allow detailed optimizations and eventually a prediction of system behaviours. These data are now streamed into the CERN Hadoop data cluster for further analysis. Specific sets of information (e.g. data on how many replicas of datasets CMS wrote on disks at WLCG Tiers, data on which datasets were primarily requested for analysis, etc) were collected on Hadoop and processed with MapReduce applications profiting of the parallelization on the Hadoop cluster. We present the implementation of new monitoring applications on Hadoop, and discuss the new possibilities in CMS computing monitoring introduced with the ability to quickly process big data sets from mulltiple sources, looking forward to a predictive modeling of the system.
Job Management Requirements for NAS Parallel Systems and Clusters
NASA Technical Reports Server (NTRS)
Saphir, William; Tanner, Leigh Ann; Traversat, Bernard
1995-01-01
A job management system is a critical component of a production supercomputing environment, permitting oversubscribed resources to be shared fairly and efficiently. Job management systems that were originally designed for traditional vector supercomputers are not appropriate for the distributed-memory parallel supercomputers that are becoming increasingly important in the high performance computing industry. Newer job management systems offer new functionality but do not solve fundamental problems. We address some of the main issues in resource allocation and job scheduling we have encountered on two parallel computers - a 160-node IBM SP2 and a cluster of 20 high performance workstations located at the Numerical Aerodynamic Simulation facility. We describe the requirements for resource allocation and job management that are necessary to provide a production supercomputing environment on these machines, prioritizing according to difficulty and importance, and advocating a return to fundamental issues.
Computer simulations of dendrimer-polyelectrolyte complexes.
Pandav, Gunja; Ganesan, Venkat
2014-08-28
We carry out a systematic analysis of static properties of the clusters formed by complexation between charged dendrimers and linear polyelectrolyte (LPE) chains in a dilute solution under good solvent conditions. We use single chain in mean-field simulations and analyze the structure of the clusters through radial distribution functions of the dendrimer, cluster size, and charge distributions. The effects of LPE length, charge ratio between LPE and dendrimer, the influence of salt concentration, and the dendrimer generation number are examined. Systems with short LPEs showed a reduced propensity for aggregation with dendrimers, leading to formation of smaller clusters. In contrast, larger dendrimers and longer LPEs lead to larger clusters with significant bridging. Increasing salt concentration was seen to reduce aggregation between dendrimers as a result of screening of electrostatic interactions. Generally, maximum complexation was observed in systems with an equal amount of net dendrimer and LPE charges, whereas either excess LPE or dendrimer concentrations resulted in reduced clustering between dendrimers.
Oak Ridge Institutional Cluster Autotune Test Drive Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jibonananda, Sanyal; New, Joshua Ryan
2014-02-01
The Oak Ridge Institutional Cluster (OIC) provides general purpose computational resources for the ORNL staff to run computation heavy jobs that are larger than desktop applications but do not quite require the scale and power of the Oak Ridge Leadership Computing Facility (OLCF). This report details the efforts made and conclusions derived in performing a short test drive of the cluster resources on Phase 5 of the OIC. EnergyPlus was used in the analysis as a candidate user program and the overall software environment was evaluated against anticipated challenges experienced with resources such as the shared memory-Nautilus (JICS) and Titanmore » (OLCF). The OIC performed within reason and was found to be acceptable in the context of running EnergyPlus simulations. The number of cores per node and the availability of scratch space per node allow non-traditional desktop focused applications to leverage parallel ensemble execution. Although only individual runs of EnergyPlus were executed, the software environment on the OIC appeared suitable to run ensemble simulations with some modifications to the Autotune workflow. From a standpoint of general usability, the system supports common Linux libraries, compilers, standard job scheduling software (Torque/Moab), and the OpenMPI library (the only MPI library) for MPI communications. The file system is a Panasas file system which literature indicates to be an efficient file system.« less
Cluster-state quantum computing enhanced by high-fidelity generalized measurements.
Biggerstaff, D N; Kaltenbaek, R; Hamel, D R; Weihs, G; Rudolph, T; Resch, K J
2009-12-11
We introduce and implement a technique to extend the quantum computational power of cluster states by replacing some projective measurements with generalized quantum measurements (POVMs). As an experimental demonstration we fully realize an arbitrary three-qubit cluster computation by implementing a tunable linear-optical POVM, as well as fast active feedforward, on a two-qubit photonic cluster state. Over 206 different computations, the average output fidelity is 0.9832+/-0.0002; furthermore the error contribution from our POVM device and feedforward is only of O(10(-3)), less than some recent thresholds for fault-tolerant cluster computing.
FOSS GIS on the GFZ HPC cluster: Towards a service-oriented Scientific Geocomputation Environment
NASA Astrophysics Data System (ADS)
Loewe, P.; Klump, J.; Thaler, J.
2012-12-01
High performance compute clusters can be used as geocomputation workbenches. Their wealth of resources enables us to take on geocomputation tasks which exceed the limitations of smaller systems. These general capabilities can be harnessed via tools such as Geographic Information System (GIS), provided they are able to utilize the available cluster configuration/architecture and provide a sufficient degree of user friendliness to allow for wide application. While server-level computing is clearly not sufficient for the growing numbers of data- or computation-intense tasks undertaken, these tasks do not get even close to the requirements needed for access to "top shelf" national cluster facilities. So until recently such kind of geocomputation research was effectively barred due to lack access to of adequate resources. In this paper we report on the experiences gained by providing GRASS GIS as a software service on a HPC compute cluster at the German Research Centre for Geosciences using Platform Computing's Load Sharing Facility (LSF). GRASS GIS is the oldest and largest Free Open Source (FOSS) GIS project. During ramp up in 2011, multiple versions of GRASS GIS (v 6.4.2, 6.5 and 7.0) were installed on the HPC compute cluster, which currently consists of 234 nodes with 480 CPUs providing 3084 cores. Nineteen different processing queues with varying hardware capabilities and priorities are provided, allowing for fine-grained scheduling and load balancing. After successful initial testing, mechanisms were developed to deploy scripted geocomputation tasks onto dedicated processing queues. The mechanisms are based on earlier work by NETELER et al. (2008) and allow to use all 3084 cores for GRASS based geocomputation work. However, in practice applications are limited to fewer resources as assigned to their respective queue. Applications of the new GIS functionality comprise so far of hydrological analysis, remote sensing and the generation of maps of simulated tsunamis in the Mediterranean Sea for the Tsunami Atlas of the FP-7 TRIDEC Project (www.tridec-online.eu). This included the processing of complex problems, requiring significant amounts of processing time up to full 20 CPU days. This GRASS GIS-based service is provided as a research utility in the sense of "Software as a Service" (SaaS) and is a first step towards a GFZ corporate cloud service.
Resource Provisioning in SLA-Based Cluster Computing
NASA Astrophysics Data System (ADS)
Xiong, Kaiqi; Suh, Sang
Cluster computing is excellent for parallel computation. It has become increasingly popular. In cluster computing, a service level agreement (SLA) is a set of quality of services (QoS) and a fee agreed between a customer and an application service provider. It plays an important role in an e-business application. An application service provider uses a set of cluster computing resources to support e-business applications subject to an SLA. In this paper, the QoS includes percentile response time and cluster utilization. We present an approach for resource provisioning in such an environment that minimizes the total cost of cluster computing resources used by an application service provider for an e-business application that often requires parallel computation for high service performance, availability, and reliability while satisfying a QoS and a fee negotiated between a customer and the application service provider. Simulation experiments demonstrate the applicability of the approach.
Cloudgene: A graphical execution platform for MapReduce programs on private and public clouds
2012-01-01
Background The MapReduce framework enables a scalable processing and analyzing of large datasets by distributing the computational load on connected computer nodes, referred to as a cluster. In Bioinformatics, MapReduce has already been adopted to various case scenarios such as mapping next generation sequencing data to a reference genome, finding SNPs from short read data or matching strings in genotype files. Nevertheless, tasks like installing and maintaining MapReduce on a cluster system, importing data into its distributed file system or executing MapReduce programs require advanced knowledge in computer science and could thus prevent scientists from usage of currently available and useful software solutions. Results Here we present Cloudgene, a freely available platform to improve the usability of MapReduce programs in Bioinformatics by providing a graphical user interface for the execution, the import and export of data and the reproducibility of workflows on in-house (private clouds) and rented clusters (public clouds). The aim of Cloudgene is to build a standardized graphical execution environment for currently available and future MapReduce programs, which can all be integrated by using its plug-in interface. Since Cloudgene can be executed on private clusters, sensitive datasets can be kept in house at all time and data transfer times are therefore minimized. Conclusions Our results show that MapReduce programs can be integrated into Cloudgene with little effort and without adding any computational overhead to existing programs. This platform gives developers the opportunity to focus on the actual implementation task and provides scientists a platform with the aim to hide the complexity of MapReduce. In addition to MapReduce programs, Cloudgene can also be used to launch predefined systems (e.g. Cloud BioLinux, RStudio) in public clouds. Currently, five different bioinformatic programs using MapReduce and two systems are integrated and have been successfully deployed. Cloudgene is freely available at http://cloudgene.uibk.ac.at. PMID:22888776
Power System Decomposition for Practical Implementation of Bulk-Grid Voltage Control Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vallem, Mallikarjuna R.; Vyakaranam, Bharat GNVSR; Holzer, Jesse T.
Power system algorithms such as AC optimal power flow and coordinated volt/var control of the bulk power system are computationally intensive and become difficult to solve in operational time frames. The computational time required to run these algorithms increases exponentially as the size of the power system increases. The solution time for multiple subsystems is less than that for solving the entire system simultaneously, and the local nature of the voltage problem lends itself to such decomposition. This paper describes an algorithm that can be used to perform power system decomposition from the point of view of the voltage controlmore » problem. Our approach takes advantage of the dominant localized effect of voltage control and is based on clustering buses according to the electrical distances between them. One of the contributions of the paper is to use multidimensional scaling to compute n-dimensional Euclidean coordinates for each bus based on electrical distance to perform algorithms like K-means clustering. A simple coordinated reactive power control of photovoltaic inverters for voltage regulation is used to demonstrate the effectiveness of the proposed decomposition algorithm and its components. The proposed decomposition method is demonstrated on the IEEE 118-bus system.« less
Li, Cheng-Gang; Zhang, Jie; Zhang, Wu-Qin; Tang, Ya-Nan; Ren, Bao-Zeng; Hu, Yan-Fei
2017-12-13
The structural, electronic and magnetic properties of the (FeC) n (n = 1-8) clusters are studied using the unbiased CALYPSO structure search method and density functional theory. A combination of the PBE functional and 6-311 + G* basis set is used for determining global minima on potential energy surfaces of (FeC) n clusters. Relatively stabilities are analyzed via computing their binding energies, second order difference and HOMO-LUMO gaps. In addition, the origin of magnetic properties, spin density and density of states are discussed in detail, respectively. At last, based on the same computational method, the structures, magnetic properties and density of states are systemically investigated for the 3d (V, Cr, Mn and Co) atom doped (FeC) 8 cluster.
Grid-Enabled High Energy Physics Research using a Beowulf Cluster
NASA Astrophysics Data System (ADS)
Mahmood, Akhtar
2005-04-01
At Edinboro University of Pennsylvania, we have built a 8-node 25 Gflops Beowulf Cluster with 2.5 TB of disk storage space to carry out grid-enabled, data-intensive high energy physics research for the ATLAS experiment via Grid3. We will describe how we built and configured our Cluster, which we have named the Sphinx Beowulf Cluster. We will describe the results of our cluster benchmark studies and the run-time plots of several parallel application codes. Once fully functional, the Cluster will be part of Grid3[www.ivdgl.org/grid3]. The current ATLAS simulation grid application, models the entire physical processes from the proton anti-proton collisions and detector's response to the collision debri through the complete reconstruction of the event from analyses of these responses. The end result is a detailed set of data that simulates the real physical collision event inside a particle detector. Grid is the new IT infrastructure for the 21^st century science -- a new computing paradigm that is poised to transform the practice of large-scale data-intensive research in science and engineering. The Grid will allow scientist worldwide to view and analyze huge amounts of data flowing from the large-scale experiments in High Energy Physics. The Grid is expected to bring together geographically and organizationally dispersed computational resources, such as CPUs, storage systems, communication systems, and data sources.
Alignment and integration of complex networks by hypergraph-based spectral clustering
NASA Astrophysics Data System (ADS)
Michoel, Tom; Nachtergaele, Bruno
2012-11-01
Complex networks possess a rich, multiscale structure reflecting the dynamical and functional organization of the systems they model. Often there is a need to analyze multiple networks simultaneously, to model a system by more than one type of interaction, or to go beyond simple pairwise interactions, but currently there is a lack of theoretical and computational methods to address these problems. Here we introduce a framework for clustering and community detection in such systems using hypergraph representations. Our main result is a generalization of the Perron-Frobenius theorem from which we derive spectral clustering algorithms for directed and undirected hypergraphs. We illustrate our approach with applications for local and global alignment of protein-protein interaction networks between multiple species, for tripartite community detection in folksonomies, and for detecting clusters of overlapping regulatory pathways in directed networks.
Alignment and integration of complex networks by hypergraph-based spectral clustering.
Michoel, Tom; Nachtergaele, Bruno
2012-11-01
Complex networks possess a rich, multiscale structure reflecting the dynamical and functional organization of the systems they model. Often there is a need to analyze multiple networks simultaneously, to model a system by more than one type of interaction, or to go beyond simple pairwise interactions, but currently there is a lack of theoretical and computational methods to address these problems. Here we introduce a framework for clustering and community detection in such systems using hypergraph representations. Our main result is a generalization of the Perron-Frobenius theorem from which we derive spectral clustering algorithms for directed and undirected hypergraphs. We illustrate our approach with applications for local and global alignment of protein-protein interaction networks between multiple species, for tripartite community detection in folksonomies, and for detecting clusters of overlapping regulatory pathways in directed networks.
NASA Astrophysics Data System (ADS)
Komura, Yukihiro; Okabe, Yutaka
2014-03-01
We present sample CUDA programs for the GPU computing of the Swendsen-Wang multi-cluster spin flip algorithm. We deal with the classical spin models; the Ising model, the q-state Potts model, and the classical XY model. As for the lattice, both the 2D (square) lattice and the 3D (simple cubic) lattice are treated. We already reported the idea of the GPU implementation for 2D models (Komura and Okabe, 2012). We here explain the details of sample programs, and discuss the performance of the present GPU implementation for the 3D Ising and XY models. We also show the calculated results of the moment ratio for these models, and discuss phase transitions. Catalogue identifier: AERM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERM_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5632 No. of bytes in distributed program, including test data, etc.: 14688 Distribution format: tar.gz Programming language: C, CUDA. Computer: System with an NVIDIA CUDA enabled GPU. Operating system: System with an NVIDIA CUDA enabled GPU. Classification: 23. External routines: NVIDIA CUDA Toolkit 3.0 or newer Nature of problem: Monte Carlo simulation of classical spin systems. Ising, q-state Potts model, and the classical XY model are treated for both two-dimensional and three-dimensional lattices. Solution method: GPU-based Swendsen-Wang multi-cluster spin flip Monte Carlo method. The CUDA implementation for the cluster-labeling is based on the work by Hawick et al. [1] and that by Kalentev et al. [2]. Restrictions: The system size is limited depending on the memory of a GPU. Running time: For the parameters used in the sample programs, it takes about a minute for each program. Of course, it depends on the system size, the number of Monte Carlo steps, etc. References: [1] K.A. Hawick, A. Leist, and D. P. Playne, Parallel Computing 36 (2010) 655-678 [2] O. Kalentev, A. Rai, S. Kemnitzb, and R. Schneider, J. Parallel Distrib. Comput. 71 (2011) 615-620
Upgrading of the LGD cluster at JINR to support DLNP experiments
NASA Astrophysics Data System (ADS)
Bednyakov, I. V.; Dolbilov, A. G.; Ivanov, Yu. P.
2017-01-01
Since its construction in 2005, the Computing Cluster of the Dzhelepov Laboratory of Nuclear Problems has been mainly used to perform calculations (data analysis, simulation, etc.) for various scientific collaborations in which DLNP scientists take an active part. The Cluster also serves to train specialists. Much has changed in the past decades, and the necessity has arisen to upgrade the cluster, increasing its power and replacing the outdated equipment to maintain its reliability and modernity. In this work we describe the experience of performing this upgrading, which can be helpful for system administrators to put new equipment for clusters of this type into operation quickly and efficiently.
Promoting Interests in Atmospheric Science at a Liberal Arts Institution
NASA Astrophysics Data System (ADS)
Roussev, S.; Sherengos, P. M.; Limpasuvan, V.; Xue, M.
2007-12-01
Coastal Carolina University (CCU) students in Computer Science participated in a project to set up an operational weather forecast for the local community. The project involved the construction of two computing clusters and the automation of daily forecasting. Funded by NSF-MRI, two high-performance clusters were successfully established to run the University of Oklahoma's Advance Regional Prediction System (ARPS). Daily weather predictions are made over South Carolina and North Carolina at 3-km horizontal resolution (roughly 1.9 miles) using initial and boundary condition data provided by UNIDATA. At this high resolution, the model is cloud- resolving, thus providing detailed picture of heavy thunderstorms and precipitation. Forecast results are displayed on CCU's website (https://marc.coastal.edu/HPC) to complement observations at the National Weather Service in Wilmington N.C. Present efforts include providing forecasts at 1-km resolution (or finer), comparisons with other models like Weather Research and Forecasting (WRF) model, and the examination of local phenomena (like water spouts and tornadoes). Through these activities the students learn about shell scripting, cluster operating systems, and web design. More importantly, students are introduced to Atmospheric Science, the processes involved in making weather forecasts, and the interpretation of their forecasts. Simulations generated by the forecasts will be integrated into the contents of CCU's course like Fluid Dynamics, Atmospheric Sciences, Atmospheric Physics, and Remote Sensing. Operated jointly between the departments of Applied Physics and Computer Science, the clusters are expected to be used by CCU faculty and students for future research and inquiry-based projects in Computer Science, Applied Physics, and Marine Science.
Competition of information channels in the spreading of innovations
NASA Astrophysics Data System (ADS)
Kocsis, Gergely; Kun, Ferenc
2011-08-01
We study the spreading of information on technological developments in socioeconomic systems where the social contacts of agents are represented by a network of connections. In the model, agents get informed about the existence and advantages of new innovations through advertising activities of producers, which are then followed by an interagent information transfer. Computer simulations revealed that varying the strength of external driving and of interagent coupling, furthermore, the topology of social contacts, the model presents a complex behavior with interesting novel features: On the macrolevel the system exhibits logistic behavior typical for the diffusion of innovations. The time evolution can be described analytically by an integral equation that captures the nucleation and growth of clusters of informed agents. On the microlevel, small clusters are found to be compact with a crossover to fractal structures with increasing size. The distribution of cluster sizes has a power-law behavior with a crossover to a higher exponent when long-range social contacts are present in the system. Based on computer simulations we construct an approximate phase diagram of the model on a regular square lattice of agents.
Competition of information channels in the spreading of innovations.
Kocsis, Gergely; Kun, Ferenc
2011-08-01
We study the spreading of information on technological developments in socioeconomic systems where the social contacts of agents are represented by a network of connections. In the model, agents get informed about the existence and advantages of new innovations through advertising activities of producers, which are then followed by an interagent information transfer. Computer simulations revealed that varying the strength of external driving and of interagent coupling, furthermore, the topology of social contacts, the model presents a complex behavior with interesting novel features: On the macrolevel the system exhibits logistic behavior typical for the diffusion of innovations. The time evolution can be described analytically by an integral equation that captures the nucleation and growth of clusters of informed agents. On the microlevel, small clusters are found to be compact with a crossover to fractal structures with increasing size. The distribution of cluster sizes has a power-law behavior with a crossover to a higher exponent when long-range social contacts are present in the system. Based on computer simulations we construct an approximate phase diagram of the model on a regular square lattice of agents.
Freud: a software suite for high-throughput simulation analysis
NASA Astrophysics Data System (ADS)
Harper, Eric; Spellings, Matthew; Anderson, Joshua; Glotzer, Sharon
Computer simulation is an indispensable tool for the study of a wide variety of systems. As simulations scale to fill petascale and exascale supercomputing clusters, so too does the size of the data produced, as well as the difficulty in analyzing these data. We present Freud, an analysis software suite for efficient analysis of simulation data. Freud makes no assumptions about the system being analyzed, allowing for general analysis methods to be applied to nearly any type of simulation. Freud includes standard analysis methods such as the radial distribution function, as well as new methods including the potential of mean force and torque and local crystal environment analysis. Freud combines a Python interface with fast, parallel C + + analysis routines to run efficiently on laptops, workstations, and supercomputing clusters. Data analysis on clusters reduces data transfer requirements, a prohibitive cost for petascale computing. Used in conjunction with simulation software, Freud allows for smart simulations that adapt to the current state of the system, enabling the study of phenomena such as nucleation and growth, intelligent investigation of phases and phase transitions, and determination of effective pair potentials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allada, Veerendra, Benjegerdes, Troy; Bode, Brett
Commodity clusters augmented with application accelerators are evolving as competitive high performance computing systems. The Graphical Processing Unit (GPU) with a very high arithmetic density and performance per price ratio is a good platform for the scientific application acceleration. In addition to the interconnect bottlenecks among the cluster compute nodes, the cost of memory copies between the host and the GPU device have to be carefully amortized to improve the overall efficiency of the application. Scientific applications also rely on efficient implementation of the BAsic Linear Algebra Subroutines (BLAS), among which the General Matrix Multiply (GEMM) is considered as themore » workhorse subroutine. In this paper, they study the performance of the memory copies and GEMM subroutines that are critical to port the computational chemistry algorithms to the GPU clusters. To that end, a benchmark based on the NetPIPE framework is developed to evaluate the latency and bandwidth of the memory copies between the host and the GPU device. The performance of the single and double precision GEMM subroutines from the NVIDIA CUBLAS 2.0 library are studied. The results have been compared with that of the BLAS routines from the Intel Math Kernel Library (MKL) to understand the computational trade-offs. The test bed is a Intel Xeon cluster equipped with NVIDIA Tesla GPUs.« less
A scalable approach to solving dense linear algebra problems on hybrid CPU-GPU systems
Song, Fengguang; Dongarra, Jack
2014-10-01
Aiming to fully exploit the computing power of all CPUs and all graphics processing units (GPUs) on hybrid CPU-GPU systems to solve dense linear algebra problems, in this paper we design a class of heterogeneous tile algorithms to maximize the degree of parallelism, to minimize the communication volume, and to accommodate the heterogeneity between CPUs and GPUs. The new heterogeneous tile algorithms are executed upon our decentralized dynamic scheduling runtime system, which schedules a task graph dynamically and transfers data between compute nodes automatically. The runtime system uses a new distributed task assignment protocol to solve data dependencies between tasksmore » without any coordination between processing units. By overlapping computation and communication through dynamic scheduling, we are able to attain scalable performance for the double-precision Cholesky factorization and QR factorization. Finally, our approach demonstrates a performance comparable to Intel MKL on shared-memory multicore systems and better performance than both vendor (e.g., Intel MKL) and open source libraries (e.g., StarPU) in the following three environments: heterogeneous clusters with GPUs, conventional clusters without GPUs, and shared-memory systems with multiple GPUs.« less
A scalable approach to solving dense linear algebra problems on hybrid CPU-GPU systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Fengguang; Dongarra, Jack
Aiming to fully exploit the computing power of all CPUs and all graphics processing units (GPUs) on hybrid CPU-GPU systems to solve dense linear algebra problems, in this paper we design a class of heterogeneous tile algorithms to maximize the degree of parallelism, to minimize the communication volume, and to accommodate the heterogeneity between CPUs and GPUs. The new heterogeneous tile algorithms are executed upon our decentralized dynamic scheduling runtime system, which schedules a task graph dynamically and transfers data between compute nodes automatically. The runtime system uses a new distributed task assignment protocol to solve data dependencies between tasksmore » without any coordination between processing units. By overlapping computation and communication through dynamic scheduling, we are able to attain scalable performance for the double-precision Cholesky factorization and QR factorization. Finally, our approach demonstrates a performance comparable to Intel MKL on shared-memory multicore systems and better performance than both vendor (e.g., Intel MKL) and open source libraries (e.g., StarPU) in the following three environments: heterogeneous clusters with GPUs, conventional clusters without GPUs, and shared-memory systems with multiple GPUs.« less
Formation of Very Young Massive Clusters and Implications for Globular Clusters
NASA Astrophysics Data System (ADS)
Banerjee, Sambaran; Kroupa, Pavel
How Very Young Massive star Clusters (VYMCs; also known as "starburst" clusters), which typically are of ≳ 104 M ⊙ and are a few Myr old, form out of Giant Molecular Clouds is still largely an open question. Increasingly detailed observations of young star clusters and star-forming molecular clouds and computational studies provide clues about their formation scenarios and the underlying physical processes involved. This chapter is focused on reviewing the decade-long studies that attempt to computationally reproduce the well-observed nearby VYMCs, such as the Orion Nebula Cluster, R136 and NGC 3603 young cluster, thereby shedding light on birth conditions of massive star clusters, in general. On this regard, focus is given on direct N-body modelling of real-sized massive star clusters, with a monolithic structure and undergoing residual gas expulsion, which have consistently reproduced the observed characteristics of several VYMCs and also of young star clusters, in general. The connection of these relatively simplified model calculations with the structural richness of dense molecular clouds and the complexity of hydrodynamic calculations of star cluster formation is presented in detail. Furthermore, the connections of such VYMCs with globular clusters, which are nearly as old as our Universe, is discussed. The chapter is concluded by addressing long-term deeply gas-embedded (at least apparently) and substructured systems like W3 Main. While most of the results are quoted from existing and up-to-date literature, in an integrated fashion, several new insights and discussions are provided.
NASA Astrophysics Data System (ADS)
Srivastava, D. P.; Sahni, V.; Satsangi, P. S.
2014-08-01
Graph-theoretic quantum system modelling (GTQSM) is facilitated by considering the fundamental unit of quantum computation and information, viz. a quantum bit or qubit as a basic building block. Unit directional vectors "ket 0" and "ket 1" constitute two distinct fundamental quantum across variable orthonormal basis vectors, for the Hilbert space, specifying the direction of propagation of information, or computation data, while complementary fundamental quantum through, or flow rate, variables specify probability parameters, or amplitudes, as surrogates for scalar quantum information measure (von Neumann entropy). This paper applies GTQSM in continuum of protein heterodimer tubulin molecules of self-assembling polymers, viz. microtubules in the brain as a holistic system of interacting components representing hierarchical clustered quantum Hopfield network, hQHN, of networks. The quantum input/output ports of the constituent elemental interaction components, or processes, of tunnelling interactions and Coulombic bidirectional interactions are in cascade and parallel interconnections with each other, while the classical output ports of all elemental components are interconnected in parallel to accumulate micro-energy functions generated in the system as Hamiltonian, or Lyapunov, energy function. The paper presents an insight, otherwise difficult to gain, for the complex system of systems represented by clustered quantum Hopfield network, hQHN, through the application of GTQSM construct.
First assembly times and equilibration in stochastic coagulation-fragmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
D’Orsogna, Maria R.; Department of Mathematics, CSUN, Los Angeles, California 91330-8313; Lei, Qi
2015-07-07
We develop a fully stochastic theory for coagulation and fragmentation (CF) in a finite system with a maximum cluster size constraint. The process is modeled using a high-dimensional master equation for the probabilities of cluster configurations. For certain realizations of total mass and maximum cluster sizes, we find exact analytical results for the expected equilibrium cluster distributions. If coagulation is fast relative to fragmentation and if the total system mass is indivisible by the mass of the largest allowed cluster, we find a mean cluster-size distribution that is strikingly broader than that predicted by the corresponding mass-action equations. Combinations ofmore » total mass and maximum cluster size under which equilibration is accelerated, eluding late-stage coarsening, are also delineated. Finally, we compute the mean time it takes particles to first assemble into a maximum-sized cluster. Through careful state-space enumeration, the scaling of mean assembly times is derived for all combinations of total mass and maximum cluster size. We find that CF accelerates assembly relative to monomer kinetic only in special cases. All of our results hold in the infinite system limit and can be only derived from a high-dimensional discrete stochastic model, highlighting how classical mass-action models of self-assembly can fail.« less
Beyond the benzene dimer: an investigation of the additivity of pi-pi interactions.
Tauer, Tony P; Sherrill, C David
2005-11-24
The benzene dimer is the simplest prototype of pi-pi interactions and has been used to understand the fundamental physics of these interactions as they are observed in more complex systems. In biological systems, however, aromatic rings are rarely found in isolated pairs; thus, it is important to understand whether aromatic pairs remain a good model of pi-pi interactions in clusters. In this study, ab initio methods are used to compute the binding energies of several benzene trimers and tetramers, most of them in 1D stacked configurations. The two-body terms change only slightly relative to the dimer, and except for the cyclic trimer, the three- and four-body terms are negligible. This indicates that aromatic clusters do not feature any large nonadditive effects in their binding energies, and polarization effects in benzene clusters do not greatly change the binding that would be anticipated from unperturbed benzene-benzene interactions, at least for the 1D stacked systems considered. Three-body effects are larger for the cyclic trimer, but for all systems considered, the computed binding energies are within 10% of what would be estimated from benzene dimer energies at the same geometries.
Proposal for grid computing for nuclear applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Idris, Faridah Mohamad; Ismail, Saaidi; Haris, Mohd Fauzi B.
2014-02-12
The use of computer clusters for computational sciences including computational physics is vital as it provides computing power to crunch big numbers at a faster rate. In compute intensive applications that requires high resolution such as Monte Carlo simulation, the use of computer clusters in a grid form that supplies computational power to any nodes within the grid that needs computing power, has now become a necessity. In this paper, we described how the clusters running on a specific application could use resources within the grid, to run the applications to speed up the computing process.
Study on Global GIS architecture and its key technologies
NASA Astrophysics Data System (ADS)
Cheng, Chengqi; Guan, Li; Lv, Xuefeng
2009-09-01
Global GIS (G2IS) is a system, which supports the huge data process and the global direct manipulation on global grid based on spheroid or ellipsoid surface. Based on global subdivision grid (GSG), Global GIS architecture is presented in this paper, taking advantage of computer cluster theory, the space-time integration technology and the virtual reality technology. Global GIS system architecture is composed of five layers, including data storage layer, data representation layer, network and cluster layer, data management layer and data application layer. Thereinto, it is designed that functions of four-level protocol framework and three-layer data management pattern of Global GIS based on organization, management and publication of spatial information in this architecture. Three kinds of core supportive technologies, which are computer cluster theory, the space-time integration technology and the virtual reality technology, and its application pattern in the Global GIS are introduced in detail. The primary ideas of Global GIS in this paper will be an important development tendency of GIS.
Study on Global GIS architecture and its key technologies
NASA Astrophysics Data System (ADS)
Cheng, Chengqi; Guan, Li; Lv, Xuefeng
2010-11-01
Global GIS (G2IS) is a system, which supports the huge data process and the global direct manipulation on global grid based on spheroid or ellipsoid surface. Based on global subdivision grid (GSG), Global GIS architecture is presented in this paper, taking advantage of computer cluster theory, the space-time integration technology and the virtual reality technology. Global GIS system architecture is composed of five layers, including data storage layer, data representation layer, network and cluster layer, data management layer and data application layer. Thereinto, it is designed that functions of four-level protocol framework and three-layer data management pattern of Global GIS based on organization, management and publication of spatial information in this architecture. Three kinds of core supportive technologies, which are computer cluster theory, the space-time integration technology and the virtual reality technology, and its application pattern in the Global GIS are introduced in detail. The primary ideas of Global GIS in this paper will be an important development tendency of GIS.
NASA Astrophysics Data System (ADS)
Hai, Pengfei; Zhou, Yong; Zhang, Ruiying; Ma, Jun; Li, Yang; Wang, Lihong V.
2017-03-01
Circulating tumor cell (CTC) clusters arise from multicellular grouping in the primary tumor and elevate the metastatic potential by 23 to 50 fold compared to single CTCs. High throughout detection and quantification of CTC clusters is critical for understanding the tumor metastasis process and improving cancer therapy. In this work, we report a linear-array-based photoacoustic tomography (LA-PAT) system capable of label-free high-throughput CTC cluster detection and quantification in vivo. LA-PAT detects CTC clusters and quantifies the number of cells in them based on the contrast-to-noise ratios (CNRs) of photoacoustic signals. The feasibility of LA-PAT was first demonstrated by imaging CTC clusters ex vivo. LA-PAT detected CTC clusters in the blood-filled microtubes and computed the number of cells in the clusters. The size distribution of the CTC clusters measured by LA-PAT agreed well with that obtained by optical microscopy. We demonstrated the ability of LA-PAT to detect and quantify CTC clusters in vivo by imaging injected CTC clusters in rat tail veins. LA-PAT detected CTC clusters immediately after injection as well as when they were circulating in the rat bloodstreams. Similarly, the numbers of cells in the clusters were computed based on the CNRs of the photoacoustic signals. The data showed that larger CTC clusters disappear faster than the smaller ones. The results prove the potential of LA-PAT as a promising tool for both preclinical tumor metastasis studies and clinical cancer therapy evaluation.
A Hardware-Accelerated Quantum Monte Carlo framework (HAQMC) for N-body systems
NASA Astrophysics Data System (ADS)
Gothandaraman, Akila; Peterson, Gregory D.; Warren, G. Lee; Hinde, Robert J.; Harrison, Robert J.
2009-12-01
Interest in the study of structural and energetic properties of highly quantum clusters, such as inert gas clusters has motivated the development of a hardware-accelerated framework for Quantum Monte Carlo simulations. In the Quantum Monte Carlo method, the properties of a system of atoms, such as the ground-state energies, are averaged over a number of iterations. Our framework is aimed at accelerating the computations in each iteration of the QMC application by offloading the calculation of properties, namely energy and trial wave function, onto reconfigurable hardware. This gives a user the capability to run simulations for a large number of iterations, thereby reducing the statistical uncertainty in the properties, and for larger clusters. This framework is designed to run on the Cray XD1 high performance reconfigurable computing platform, which exploits the coarse-grained parallelism of the processor along with the fine-grained parallelism of the reconfigurable computing devices available in the form of field-programmable gate arrays. In this paper, we illustrate the functioning of the framework, which can be used to calculate the energies for a model cluster of helium atoms. In addition, we present the capabilities of the framework that allow the user to vary the chemical identities of the simulated atoms. Program summaryProgram title: Hardware Accelerated Quantum Monte Carlo (HAQMC) Catalogue identifier: AEEP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 691 537 No. of bytes in distributed program, including test data, etc.: 5 031 226 Distribution format: tar.gz Programming language: C/C++ for the QMC application, VHDL and Xilinx 8.1 ISE/EDK tools for FPGA design and development Computer: Cray XD1 consisting of a dual-core, dualprocessor AMD Opteron 2.2 GHz with a Xilinx Virtex-4 (V4LX160) or Xilinx Virtex-II Pro (XC2VP50) FPGA per node. We use the compute node with the Xilinx Virtex-4 FPGA Operating system: Red Hat Enterprise Linux OS Has the code been vectorised or parallelized?: Yes Classification: 6.1 Nature of problem: Quantum Monte Carlo is a practical method to solve the Schrödinger equation for large many-body systems and obtain the ground-state properties of such systems. This method involves the sampling of a number of configurations of atoms and averaging the properties of the configurations over a number of iterations. We are interested in applying the QMC method to obtain the energy and other properties of highly quantum clusters, such as inert gas clusters. Solution method: The proposed framework provides a combined hardware-software approach, in which the QMC simulation is performed on the host processor, with the computationally intensive functions such as energy and trial wave function computations mapped onto the field-programmable gate array (FPGA) logic device attached as a co-processor to the host processor. We perform the QMC simulation for a number of iterations as in the case of our original software QMC approach, to reduce the statistical uncertainty of the results. However, our proposed HAQMC framework accelerates each iteration of the simulation, by significantly reducing the time taken to calculate the ground-state properties of the configurations of atoms, thereby accelerating the overall QMC simulation. We provide a generic interpolation framework that can be extended to study a variety of pure and doped atomic clusters, irrespective of the chemical identities of the atoms. For the FPGA implementation of the properties, we use a two-region approach for accurately computing the properties over the entire domain, employ deep pipelines and fixed-point for all our calculations guaranteeing the accuracy required for our simulation.
Evaluating the Efficacy of the Cloud for Cluster Computation
NASA Technical Reports Server (NTRS)
Knight, David; Shams, Khawaja; Chang, George; Soderstrom, Tom
2012-01-01
Computing requirements vary by industry, and it follows that NASA and other research organizations have computing demands that fall outside the mainstream. While cloud computing made rapid inroads for tasks such as powering web applications, performance issues on highly distributed tasks hindered early adoption for scientific computation. One venture to address this problem is Nebula, NASA's homegrown cloud project tasked with delivering science-quality cloud computing resources. However, another industry development is Amazon's high-performance computing (HPC) instances on Elastic Cloud Compute (EC2) that promises improved performance for cluster computation. This paper presents results from a series of benchmarks run on Amazon EC2 and discusses the efficacy of current commercial cloud technology for running scientific applications across a cluster. In particular, a 240-core cluster of cloud instances achieved 2 TFLOPS on High-Performance Linpack (HPL) at 70% of theoretical computational performance. The cluster's local network also demonstrated sub-100 ?s inter-process latency with sustained inter-node throughput in excess of 8 Gbps. Beyond HPL, a real-world Hadoop image processing task from NASA's Lunar Mapping and Modeling Project (LMMP) was run on a 29 instance cluster to process lunar and Martian surface images with sizes on the order of tens of gigapixels. These results demonstrate that while not a rival of dedicated supercomputing clusters, commercial cloud technology is now a feasible option for moderately demanding scientific workloads.
Specialized Computer Systems for Environment Visualization
NASA Astrophysics Data System (ADS)
Al-Oraiqat, Anas M.; Bashkov, Evgeniy A.; Zori, Sergii A.
2018-06-01
The need for real time image generation of landscapes arises in various fields as part of tasks solved by virtual and augmented reality systems, as well as geographic information systems. Such systems provide opportunities for collecting, storing, analyzing and graphically visualizing geographic data. Algorithmic and hardware software tools for increasing the realism and efficiency of the environment visualization in 3D visualization systems are proposed. This paper discusses a modified path tracing algorithm with a two-level hierarchy of bounding volumes and finding intersections with Axis-Aligned Bounding Box. The proposed algorithm eliminates the branching and hence makes the algorithm more suitable to be implemented on the multi-threaded CPU and GPU. A modified ROAM algorithm is used to solve the qualitative visualization of reliefs' problems and landscapes. The algorithm is implemented on parallel systems—cluster and Compute Unified Device Architecture-networks. Results show that the implementation on MPI clusters is more efficient than Graphics Processing Unit/Graphics Processing Clusters and allows real-time synthesis. The organization and algorithms of the parallel GPU system for the 3D pseudo stereo image/video synthesis are proposed. With realizing possibility analysis on a parallel GPU-architecture of each stage, 3D pseudo stereo synthesis is performed. An experimental prototype of a specialized hardware-software system 3D pseudo stereo imaging and video was developed on the CPU/GPU. The experimental results show that the proposed adaptation of 3D pseudo stereo imaging to the architecture of GPU-systems is efficient. Also it accelerates the computational procedures of 3D pseudo-stereo synthesis for the anaglyph and anamorphic formats of the 3D stereo frame without performing optimization procedures. The acceleration is on average 11 and 54 times for test GPUs.
Diametrical clustering for identifying anti-correlated gene clusters.
Dhillon, Inderjit S; Marcotte, Edward M; Roshan, Usman
2003-09-01
Clustering genes based upon their expression patterns allows us to predict gene function. Most existing clustering algorithms cluster genes together when their expression patterns show high positive correlation. However, it has been observed that genes whose expression patterns are strongly anti-correlated can also be functionally similar. Biologically, this is not unintuitive-genes responding to the same stimuli, regardless of the nature of the response, are more likely to operate in the same pathways. We present a new diametrical clustering algorithm that explicitly identifies anti-correlated clusters of genes. Our algorithm proceeds by iteratively (i). re-partitioning the genes and (ii). computing the dominant singular vector of each gene cluster; each singular vector serving as the prototype of a 'diametric' cluster. We empirically show the effectiveness of the algorithm in identifying diametrical or anti-correlated clusters. Testing the algorithm on yeast cell cycle data, fibroblast gene expression data, and DNA microarray data from yeast mutants reveals that opposed cellular pathways can be discovered with this method. We present systems whose mRNA expression patterns, and likely their functions, oppose the yeast ribosome and proteosome, along with evidence for the inverse transcriptional regulation of a number of cellular systems.
NASA Astrophysics Data System (ADS)
Lele, Sanjiva K.
2002-08-01
Funds were received in April 2001 under the Department of Defense DURIP program for construction of a 48 processor high performance computing cluster. This report details the hardware which was purchased and how it has been used to enable and enhance research activities directly supported by, and of interest to, the Air Force Office of Scientific Research and the Department of Defense. The report is divided into two major sections. The first section after this summary describes the computer cluster, its setup, and some cluster performance benchmark results. The second section explains ongoing research efforts which have benefited from the cluster hardware, and presents highlights of those efforts since installation of the cluster.
A Computational Cluster for Multiscale Simulations of Ionic Liquids
2008-09-16
AND SUBTITLE DURIP: A Computational Cluster for Multiscale Simulations of Ionic Liquids 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA955007-1-0512 5c...AVAILABILITY STATEMENT ZO\\5oc\\\\%1>^ 13. SUPPLEMENTARY NOTES 14. ABSTRACT The focus of this project was to acquire and use computer cluster nodes...by ANSI Std. Z39.18 Adobe Professional 7.0 Comprehensive Final Report: Gregory A. Voth, PI Contract/Grant Title: DURIP: A Computational Cluster for
Development of a Computing Cluster At the University of Richmond
NASA Astrophysics Data System (ADS)
Carbonneau, J.; Gilfoyle, G. P.; Bunn, E. F.
2010-11-01
The University of Richmond has developed a computing cluster to support the massive simulation and data analysis requirements for programs in intermediate-energy nuclear physics, and cosmology. It is a 20-node, 240-core system running Red Hat Enterprise Linux 5. We have built and installed the physics software packages (Geant4, gemc, MADmap...) and developed shell and Perl scripts for running those programs on the remote nodes. The system has a theoretical processing peak of about 2500 GFLOPS. Testing with the High Performance Linpack (HPL) benchmarking program (one of the standard benchmarks used by the TOP500 list of fastest supercomputers) resulted in speeds of over 900 GFLOPS. The difference between the maximum and measured speeds is due to limitations in the communication speed among the nodes; creating a bottleneck for large memory problems. As HPL sends data between nodes, the gigabit Ethernet connection cannot keep up with the processing power. We will show how both the theoretical and actual performance of the cluster compares with other current and past clusters, as well as the cost per GFLOP. We will also examine the scaling of the performance when distributed to increasing numbers of nodes.
Zhang, X; Patel, L A; Beckwith, O; Schneider, R; Weeden, C J; Kindt, J T
2017-11-14
Micelle cluster distributions from molecular dynamics simulations of a solvent-free coarse-grained model of sodium octyl sulfate (SOS) were analyzed using an improved method to extract equilibrium association constants from small-system simulations containing one or two micelle clusters at equilibrium with free surfactants and counterions. The statistical-thermodynamic and mathematical foundations of this partition-enabled analysis of cluster histograms (PEACH) approach are presented. A dramatic reduction in computational time for analysis was achieved through a strategy similar to the selector variable method to circumvent the need for exhaustive enumeration of the possible partitions of surfactants and counterions into clusters. Using statistics from a set of small-system (up to 60 SOS molecules) simulations as input, equilibrium association constants for micelle clusters were obtained as a function of both number of surfactants and number of associated counterions through a global fitting procedure. The resulting free energies were able to accurately predict micelle size and charge distributions in a large (560 molecule) system. The evolution of micelle size and charge with SOS concentration as predicted by the PEACH-derived free energies and by a phenomenological four-parameter model fit, along with the sensitivity of these predictions to variations in cluster definitions, are analyzed and discussed.
Diao, K; Farmani, R; Fu, G; Astaraie-Imani, M; Ward, S; Butler, D
2014-01-01
Large water distribution systems (WDSs) are networks with both topological and behavioural complexity. Thereby, it is usually difficult to identify the key features of the properties of the system, and subsequently all the critical components within the system for a given purpose of design or control. One way is, however, to more explicitly visualize the network structure and interactions between components by dividing a WDS into a number of clusters (subsystems). Accordingly, this paper introduces a clustering strategy that decomposes WDSs into clusters with stronger internal connections than external connections. The detected cluster layout is very similar to the community structure of the served urban area. As WDSs may expand along with urban development in a community-by-community manner, the correspondingly formed distribution clusters may reveal some crucial configurations of WDSs. For verification, the method is applied to identify all the critical links during firefighting for the vulnerability analysis of a real-world WDS. Moreover, both the most critical pipes and clusters are addressed, given the consequences of pipe failure. Compared with the enumeration method, the method used in this study identifies the same group of the most critical components, and provides similar criticality prioritizations of them in a more computationally efficient time.
Exploiting Analytics Techniques in CMS Computing Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonacorsi, D.; Kuznetsov, V.; Magini, N.
The CMS experiment has collected an enormous volume of metadata about its computing operations in its monitoring systems, describing its experience in operating all of the CMS workflows on all of the Worldwide LHC Computing Grid Tiers. Data mining efforts into all these information have rarely been done, but are of crucial importance for a better understanding of how CMS did successful operations, and to reach an adequate and adaptive modelling of the CMS operations, in order to allow detailed optimizations and eventually a prediction of system behaviours. These data are now streamed into the CERN Hadoop data cluster formore » further analysis. Specific sets of information (e.g. data on how many replicas of datasets CMS wrote on disks at WLCG Tiers, data on which datasets were primarily requested for analysis, etc) were collected on Hadoop and processed with MapReduce applications profiting of the parallelization on the Hadoop cluster. We present the implementation of new monitoring applications on Hadoop, and discuss the new possibilities in CMS computing monitoring introduced with the ability to quickly process big data sets from mulltiple sources, looking forward to a predictive modeling of the system.« less
Continuous Security and Configuration Monitoring of HPC Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Lomeli, H. D.; Bertsch, A. D.; Fox, D. M.
Continuous security and configuration monitoring of information systems has been a time consuming and laborious task for system administrators at the High Performance Computing (HPC) center. Prior to this project, system administrators had to manually check the settings of thousands of nodes, which required a significant number of hours rendering the old process ineffective and inefficient. This paper explains the application of Splunk Enterprise, a software agent, and a reporting tool in the development of a user application interface to track and report on critical system updates and security compliance status of HPC Clusters. In conjunction with other configuration managementmore » systems, the reporting tool is to provide continuous situational awareness to system administrators of the compliance state of information systems. Our approach consisted of the development, testing, and deployment of an agent to collect any arbitrary information across a massively distributed computing center, and organize that information into a human-readable format. Using Splunk Enterprise, this raw data was then gathered into a central repository and indexed for search, analysis, and correlation. Following acquisition and accumulation, the reporting tool generated and presented actionable information by filtering the data according to command line parameters passed at run time. Preliminary data showed results for over six thousand nodes. Further research and expansion of this tool could lead to the development of a series of agents to gather and report critical system parameters. However, in order to make use of the flexibility and resourcefulness of the reporting tool the agent must conform to specifications set forth in this paper. This project has simplified the way system administrators gather, analyze, and report on the configuration and security state of HPC clusters, maintaining ongoing situational awareness. Rather than querying each cluster independently, compliance checking can be managed from one central location.« less
SANs and Large Scale Data Migration at the NASA Center for Computational Sciences
NASA Technical Reports Server (NTRS)
Salmon, Ellen M.
2004-01-01
Evolution and migration are a way of life for provisioners of high-performance mass storage systems that serve high-end computers used by climate and Earth and space science researchers: the compute engines come and go, but the data remains. At the NASA Center for Computational Sciences (NCCS), disk and tape SANs are deployed to provide high-speed I/O for the compute engines and the hierarchical storage management systems. Along with gigabit Ethernet, they also enable the NCCS's latest significant migration: the transparent transfer of 300 Til3 of legacy HSM data into the new Sun SAM-QFS cluster.
A convergent model for distributed processing of Big Sensor Data in urban engineering networks
NASA Astrophysics Data System (ADS)
Parygin, D. S.; Finogeev, A. G.; Kamaev, V. A.; Finogeev, A. A.; Gnedkova, E. P.; Tyukov, A. P.
2017-01-01
The problems of development and research of a convergent model of the grid, cloud, fog and mobile computing for analytical Big Sensor Data processing are reviewed. The model is meant to create monitoring systems of spatially distributed objects of urban engineering networks and processes. The proposed approach is the convergence model of the distributed data processing organization. The fog computing model is used for the processing and aggregation of sensor data at the network nodes and/or industrial controllers. The program agents are loaded to perform computing tasks for the primary processing and data aggregation. The grid and the cloud computing models are used for integral indicators mining and accumulating. A computing cluster has a three-tier architecture, which includes the main server at the first level, a cluster of SCADA system servers at the second level, a lot of GPU video cards with the support for the Compute Unified Device Architecture at the third level. The mobile computing model is applied to visualize the results of intellectual analysis with the elements of augmented reality and geo-information technologies. The integrated indicators are transferred to the data center for accumulation in a multidimensional storage for the purpose of data mining and knowledge gaining.
Kontopantelis, Evangelos; Stevens, Richard John; Helms, Peter J; Edwards, Duncan; Doran, Tim; Ashcroft, Darren M
2018-02-28
UK primary care databases (PCDs) are used by researchers worldwide to inform clinical practice. These databases have been primarily tied to single clinical computer systems, but little is known about the adoption of these systems by primary care practices or their geographical representativeness. We explore the spatial distribution of clinical computing systems and discuss the implications for the longevity and regional representativeness of these resources. Cross-sectional study. English primary care clinical computer systems. 7526 general practices in August 2016. Spatial mapping of family practices in England in 2016 by clinical computer system at two geographical levels, the lower Clinical Commissioning Group (CCG, 209 units) and the higher National Health Service regions (14 units). Data for practices included numbers of doctors, nurses and patients, and area deprivation. Of 7526 practices, Egton Medical Information Systems (EMIS) was used in 4199 (56%), SystmOne in 2552 (34%) and Vision in 636 (9%). Great regional variability was observed for all systems, with EMIS having a stronger presence in the West of England, London and the South; SystmOne in the East and some regions in the South; and Vision in London, the South, Greater Manchester and Birmingham. PCDs based on single clinical computer systems are geographically clustered in England. For example, Clinical Practice Research Datalink and The Health Improvement Network, the most popular primary care databases in terms of research outputs, are based on the Vision clinical computer system, used by <10% of practices and heavily concentrated in three major conurbations and the South. Researchers need to be aware of the analytical challenges posed by clustering, and barriers to accessing alternative PCDs need to be removed. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
A Parallel Processing Algorithm for Remote Sensing Classification
NASA Technical Reports Server (NTRS)
Gualtieri, J. Anthony
2005-01-01
A current thread in parallel computation is the use of cluster computers created by networking a few to thousands of commodity general-purpose workstation-level commuters using the Linux operating system. For example on the Medusa cluster at NASA/GSFC, this provides for super computing performance, 130 G(sub flops) (Linpack Benchmark) at moderate cost, $370K. However, to be useful for scientific computing in the area of Earth science, issues of ease of programming, access to existing scientific libraries, and portability of existing code need to be considered. In this paper, I address these issues in the context of tools for rendering earth science remote sensing data into useful products. In particular, I focus on a problem that can be decomposed into a set of independent tasks, which on a serial computer would be performed sequentially, but with a cluster computer can be performed in parallel, giving an obvious speedup. To make the ideas concrete, I consider the problem of classifying hyperspectral imagery where some ground truth is available to train the classifier. In particular I will use the Support Vector Machine (SVM) approach as applied to hyperspectral imagery. The approach will be to introduce notions about parallel computation and then to restrict the development to the SVM problem. Pseudocode (an outline of the computation) will be described and then details specific to the implementation will be given. Then timing results will be reported to show what speedups are possible using parallel computation. The paper will close with a discussion of the results.
On the applicability of density dependent effective interactions in cluster-forming systems
NASA Astrophysics Data System (ADS)
Montes-Saralegui, Marta; Kahl, Gerhard; Nikoubashman, Arash
2017-02-01
We systematically studied the validity and transferability of the force-matching algorithm for computing effective pair potentials in a system of dendritic polymers, i.e., a particular class of ultrasoft colloids. We focused on amphiphilic dendrimers, macromolecules which can aggregate into clusters of overlapping particles to minimize the contact area with the surrounding implicit solvent. Simulations were performed for both the monomeric and coarse-grained models in the liquid phase at densities ranging from infinite dilution up to values close to the freezing point. The effective pair potentials for the coarse-grained simulations were computed from the monomeric simulations both in the zero-density limit (Φeff0) and at each investigated finite density (Φeff). Conducting the coarse-grained simulations with Φeff0 at higher densities is not appropriate as they failed at reproducing the structural properties of the monomeric simulations. In contrast, we found excellent agreement between the spatial dendrimer distributions obtained from the coarse-grained simulations with Φeff and the microscopically detailed simulations at low densities, where the macromolecules were distributed homogeneously in the system. However, the reliability of the coarse-grained simulations deteriorated significantly as the density was increased further and the cluster occupation became more polydisperse. Under these conditions, the effective pair potential of the coarse-grained model can no longer be computed by averaging over the whole system, but the local density needs to be taken into account instead.
Spiking neural networks on high performance computer clusters
NASA Astrophysics Data System (ADS)
Chen, Chong; Taha, Tarek M.
2011-09-01
In this paper we examine the acceleration of two spiking neural network models on three clusters of multicore processors representing three categories of processors: x86, STI Cell, and NVIDIA GPGPUs. The x86 cluster utilized consists of 352 dualcore AMD Opterons, the Cell cluster consists of 320 Sony Playstation 3s, while the GPGPU cluster contains 32 NVIDIA Tesla S1070 systems. The results indicate that the GPGPU platform can dominate in performance compared to the Cell and x86 platforms examined. From a cost perspective, the GPGPU is more expensive in terms of neuron/s throughput. If the cost of GPGPUs go down in the future, this platform will become very cost effective for these models.
Computational Design of Clusters for Catalysis
NASA Astrophysics Data System (ADS)
Jimenez-Izal, Elisa; Alexandrova, Anastassia N.
2018-04-01
When small clusters are studied in chemical physics or physical chemistry, one perhaps thinks of the fundamental aspects of cluster electronic structure, or precision spectroscopy in ultracold molecular beams. However, small clusters are also of interest in catalysis, where the cold ground state or an isolated cluster may not even be the right starting point. Instead, the big question is: What happens to cluster-based catalysts under real conditions of catalysis, such as high temperature and coverage with reagents? Myriads of metastable cluster states become accessible, the entire system is dynamic, and catalysis may be driven by rare sites present only under those conditions. Activity, selectivity, and stability are highly dependent on size, composition, shape, support, and environment. To probe and master cluster catalysis, sophisticated tools are being developed for precision synthesis, operando measurements, and multiscale modeling. This review intends to tell the messy story of clusters in catalysis.
X-ray morphological study of the ESZ sample
NASA Astrophysics Data System (ADS)
Lovisari, L.; Forman, W.; Jones, C.; Andrade-Santos, F.; Democles, J.; Pratt, G.; Ettori, S.; Arnaud, M.; Randall, S.; Kraft, R.
2017-10-01
An accurate knowledge of the scaling relations between X-ray observables and cluster mass is a crucial step for studies that aim to constrain cosmological parameters using galaxy clusters. The measure of the dynamical state of the systems offers important information to obtain precise scaling relations and understand their scatter. Unfortunately, characterize the dynamical state of a galaxy cluster requires to access a large set of information in different wavelength which are available only for a few individual systems. An alternative is to compute well defined morphological parameters making use of the relatively cheap X-ray images and profiles. Due to different projection effects none of the methods is good in all the cases and a combination of them is more effective to quantify the level of substructures. I will present the cluster morphologies that we derived for the ESZ sample. I will show their dependence on different cluster properties like total mass, redshift, and luminosity and how they differ from the ones obtained for X-ray selected clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielsen, Michael A.; School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Queensland 4072; Dawson, Christopher M.
The one-way quantum computing model introduced by Raussendorf and Briegel [Phys. Rev. Lett. 86, 5188 (2001)] shows that it is possible to quantum compute using only a fixed entangled resource known as a cluster state, and adaptive single-qubit measurements. This model is the basis for several practical proposals for quantum computation, including a promising proposal for optical quantum computation based on cluster states [M. A. Nielsen, Phys. Rev. Lett. (to be published), quant-ph/0402005]. A significant open question is whether such proposals are scalable in the presence of physically realistic noise. In this paper we prove two threshold theorems which showmore » that scalable fault-tolerant quantum computation may be achieved in implementations based on cluster states, provided the noise in the implementations is below some constant threshold value. Our first threshold theorem applies to a class of implementations in which entangling gates are applied deterministically, but with a small amount of noise. We expect this threshold to be applicable in a wide variety of physical systems. Our second threshold theorem is specifically adapted to proposals such as the optical cluster-state proposal, in which nondeterministic entangling gates are used. A critical technical component of our proofs is two powerful theorems which relate the properties of noisy unitary operations restricted to act on a subspace of state space to extensions of those operations acting on the entire state space. We expect these theorems to have a variety of applications in other areas of quantum-information science.« less
Halligan, Brian D.; Geiger, Joey F.; Vallejos, Andrew K.; Greene, Andrew S.; Twigger, Simon N.
2009-01-01
One of the major difficulties for many laboratories setting up proteomics programs has been obtaining and maintaining the computational infrastructure required for the analysis of the large flow of proteomics data. We describe a system that combines distributed cloud computing and open source software to allow laboratories to set up scalable virtual proteomics analysis clusters without the investment in computational hardware or software licensing fees. Additionally, the pricing structure of distributed computing providers, such as Amazon Web Services, allows laboratories or even individuals to have large-scale computational resources at their disposal at a very low cost per run. We provide detailed step by step instructions on how to implement the virtual proteomics analysis clusters as well as a list of current available preconfigured Amazon machine images containing the OMSSA and X!Tandem search algorithms and sequence databases on the Medical College of Wisconsin Proteomics Center website (http://proteomics.mcw.edu/vipdac). PMID:19358578
Halligan, Brian D; Geiger, Joey F; Vallejos, Andrew K; Greene, Andrew S; Twigger, Simon N
2009-06-01
One of the major difficulties for many laboratories setting up proteomics programs has been obtaining and maintaining the computational infrastructure required for the analysis of the large flow of proteomics data. We describe a system that combines distributed cloud computing and open source software to allow laboratories to set up scalable virtual proteomics analysis clusters without the investment in computational hardware or software licensing fees. Additionally, the pricing structure of distributed computing providers, such as Amazon Web Services, allows laboratories or even individuals to have large-scale computational resources at their disposal at a very low cost per run. We provide detailed step-by-step instructions on how to implement the virtual proteomics analysis clusters as well as a list of current available preconfigured Amazon machine images containing the OMSSA and X!Tandem search algorithms and sequence databases on the Medical College of Wisconsin Proteomics Center Web site ( http://proteomics.mcw.edu/vipdac ).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-02-02
This report consists of three separate but related reports. They are (1) Human Resource Development, (2) Carbon-based Structural Materials Research Cluster, and (3) Data Parallel Algorithms for Scientific Computing. To meet the objectives of the Human Resource Development plan, the plan includes K--12 enrichment activities, undergraduate research opportunities for students at the state`s two Historically Black Colleges and Universities, graduate research through cluster assistantships and through a traineeship program targeted specifically to minorities, women and the disabled, and faculty development through participation in research clusters. One research cluster is the chemistry and physics of carbon-based materials. The objective of thismore » cluster is to develop a self-sustaining group of researchers in carbon-based materials research within the institutions of higher education in the state of West Virginia. The projects will involve analysis of cokes, graphites and other carbons in order to understand the properties that provide desirable structural characteristics including resistance to oxidation, levels of anisotropy and structural characteristics of the carbons themselves. In the proposed cluster on parallel algorithms, research by four WVU faculty and three state liberal arts college faculty are: (1) modeling of self-organized critical systems by cellular automata; (2) multiprefix algorithms and fat-free embeddings; (3) offline and online partitioning of data computation; and (4) manipulating and rendering three dimensional objects. This cluster furthers the state Experimental Program to Stimulate Competitive Research plan by building on existing strengths at WVU in parallel algorithms.« less
Complete characterization of the stability of cluster synchronization in complex dynamical networks.
Sorrentino, Francesco; Pecora, Louis M; Hagerstrom, Aaron M; Murphy, Thomas E; Roy, Rajarshi
2016-04-01
Synchronization is an important and prevalent phenomenon in natural and engineered systems. In many dynamical networks, the coupling is balanced or adjusted to admit global synchronization, a condition called Laplacian coupling. Many networks exhibit incomplete synchronization, where two or more clusters of synchronization persist, and computational group theory has recently proved to be valuable in discovering these cluster states based on the topology of the network. In the important case of Laplacian coupling, additional synchronization patterns can exist that would not be predicted from the group theory analysis alone. Understanding how and when clusters form, merge, and persist is essential for understanding collective dynamics, synchronization, and failure mechanisms of complex networks such as electric power grids, distributed control networks, and autonomous swarming vehicles. We describe a method to find and analyze all of the possible cluster synchronization patterns in a Laplacian-coupled network, by applying methods of computational group theory to dynamically equivalent networks. We present a general technique to evaluate the stability of each of the dynamically valid cluster synchronization patterns. Our results are validated in an optoelectronic experiment on a five-node network that confirms the synchronization patterns predicted by the theory.
NASA Astrophysics Data System (ADS)
Kuwata, Keith T.
Ionic clusters are useful as model systems for the study of fundamental processes in solution and in the atmosphere. Their structure and reactivity can be studied in detail using vibrational predissociation spectroscopy, in conjunction with high level ab initio calculations. This thesis presents the applications of infrared spectroscopy and computation to a variety of gas-phase cluster systems. A crucial component of the process of stratospheric ozone depletion is the action of polar stratospheric clouds (PSCs) to convert the reservoir species HCl and chlorine nitrate (ClONO2) to photochemically labile compounds. Quantum chemistry was used to explore one possible mechanism by which this activation is effected: Cl- + ClONO2 /to Cl2 + NO3- eqno(1)Correlated ab initio calculations predicted that the direct reaction of chloride ion with ClONO2 is facile, which was confirmed in an experimental kinetics study. In the reaction a weakly bound intermediate Cl2-NO3- is formed, with ~70% of the charge localized on the nitrate moiety. This enables the Cl2-NO3- cluster to be well solvated even in bulk solution, allowing (1) to be facile on PSCs. Quantum chemistry was also applied to the hydration of nitrosonium ion (NO+), an important process in the ionosphere. The calculations, in conjunction with an infrared spectroscopy experiment, revealed the structure of the gas-phase clusters NO+(H2O)n. The large degree of covalent interaction between NO+ and the lone pairs of the H2O ligands is contrasted with the weak electrostatic bonding between iodide ion and H2O. Finally, the competition between ion solvation and solvent self-association is explored for the gas-phase clusters Cl/-(H2O)n and Cl-(NH3)n. For the case of water, vibrational predissociation spectroscopy reveals less hydrogen bonding among H2O ligands than predicted by ab initio calculations. Nevertheless, for n /ge 5, cluster structure is dominated by water-water interactions, with Cl- only partially solvated by the water cluster. Preliminary infrared spectra and computations on Cl- (NH3)n indicate that NH3 preferentially binds to Cl- ion instead of forming inter-solvent networks.
Development of small scale cluster computer for numerical analysis
NASA Astrophysics Data System (ADS)
Zulkifli, N. H. N.; Sapit, A.; Mohammed, A. N.
2017-09-01
In this study, two units of personal computer were successfully networked together to form a small scale cluster. Each of the processor involved are multicore processor which has four cores in it, thus made this cluster to have eight processors. Here, the cluster incorporate Ubuntu 14.04 LINUX environment with MPI implementation (MPICH2). Two main tests were conducted in order to test the cluster, which is communication test and performance test. The communication test was done to make sure that the computers are able to pass the required information without any problem and were done by using simple MPI Hello Program where the program written in C language. Additional, performance test was also done to prove that this cluster calculation performance is much better than single CPU computer. In this performance test, four tests were done by running the same code by using single node, 2 processors, 4 processors, and 8 processors. The result shows that with additional processors, the time required to solve the problem decrease. Time required for the calculation shorten to half when we double the processors. To conclude, we successfully develop a small scale cluster computer using common hardware which capable of higher computing power when compare to single CPU processor, and this can be beneficial for research that require high computing power especially numerical analysis such as finite element analysis, computational fluid dynamics, and computational physics analysis.
Ayral, Thomas; Vučičević, Jaksa; Parcollet, Olivier
2017-10-20
We present an embedded-cluster method, based on the triply irreducible local expansion formalism. It turns the Fierz ambiguity, inherent to approaches based on a bosonic decoupling of local fermionic interactions, into a convergence criterion. It is based on the approximation of the three-leg vertex by a coarse-grained vertex computed from a self-consistently determined cluster impurity model. The computed self-energies are, by construction, continuous functions of momentum. We show that, in three interaction and doping regimes of the two-dimensional Hubbard model, self-energies obtained with clusters of size four only are very close to numerically exact benchmark results. We show that the Fierz parameter, which parametrizes the freedom in the Hubbard-Stratonovich decoupling, can be used as a quality control parameter. By contrast, the GW+extended dynamical mean field theory approximation with four cluster sites is shown to yield good results only in the weak-coupling regime and for a particular decoupling. Finally, we show that the vertex has spatially nonlocal components only at low Matsubara frequencies.
Scientific Cluster Deployment and Recovery - Using puppet to simplify cluster management
NASA Astrophysics Data System (ADS)
Hendrix, Val; Benjamin, Doug; Yao, Yushu
2012-12-01
Deployment, maintenance and recovery of a scientific cluster, which has complex, specialized services, can be a time consuming task requiring the assistance of Linux system administrators, network engineers as well as domain experts. Universities and small institutions that have a part-time FTE with limited time for and knowledge of the administration of such clusters can be strained by such maintenance tasks. This current work is the result of an effort to maintain a data analysis cluster (DAC) with minimal effort by a local system administrator. The realized benefit is the scientist, who is the local system administrator, is able to focus on the data analysis instead of the intricacies of managing a cluster. Our work provides a cluster deployment and recovery process (CDRP) based on the puppet configuration engine allowing a part-time FTE to easily deploy and recover entire clusters with minimal effort. Puppet is a configuration management system (CMS) used widely in computing centers for the automatic management of resources. Domain experts use Puppet's declarative language to define reusable modules for service configuration and deployment. Our CDRP has three actors: domain experts, a cluster designer and a cluster manager. The domain experts first write the puppet modules for the cluster services. A cluster designer would then define a cluster. This includes the creation of cluster roles, mapping the services to those roles and determining the relationships between the services. Finally, a cluster manager would acquire the resources (machines, networking), enter the cluster input parameters (hostnames, IP addresses) and automatically generate deployment scripts used by puppet to configure it to act as a designated role. In the event of a machine failure, the originally generated deployment scripts along with puppet can be used to easily reconfigure a new machine. The cluster definition produced in our CDRP is an integral part of automating cluster deployment in a cloud environment. Our future cloud efforts will further build on this work.
A web portal for hydrodynamical, cosmological simulations
NASA Astrophysics Data System (ADS)
Ragagnin, A.; Dolag, K.; Biffi, V.; Cadolle Bel, M.; Hammer, N. J.; Krukau, A.; Petkova, M.; Steinborn, D.
2017-07-01
This article describes a data centre hosting a web portal for accessing and sharing the output of large, cosmological, hydro-dynamical simulations with a broad scientific community. It also allows users to receive related scientific data products by directly processing the raw simulation data on a remote computing cluster. The data centre has a multi-layer structure: a web portal, a job control layer, a computing cluster and a HPC storage system. The outer layer enables users to choose an object from the simulations. Objects can be selected by visually inspecting 2D maps of the simulation data, by performing highly compounded and elaborated queries or graphically by plotting arbitrary combinations of properties. The user can run analysis tools on a chosen object. These services allow users to run analysis tools on the raw simulation data. The job control layer is responsible for handling and performing the analysis jobs, which are executed on a computing cluster. The innermost layer is formed by a HPC storage system which hosts the large, raw simulation data. The following services are available for the users: (I) CLUSTERINSPECT visualizes properties of member galaxies of a selected galaxy cluster; (II) SIMCUT returns the raw data of a sub-volume around a selected object from a simulation, containing all the original, hydro-dynamical quantities; (III) SMAC creates idealized 2D maps of various, physical quantities and observables of a selected object; (IV) PHOX generates virtual X-ray observations with specifications of various current and upcoming instruments.
EVIDENCE FOR AN ACCRETION ORIGIN FOR THE OUTER HALO GLOBULAR CLUSTER SYSTEM OF M31
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackey, A. D.; Huxor, A. P.; Ferguson, A. M. N.
2010-07-01
We use a sample of newly discovered globular clusters from the Pan-Andromeda Archaeological Survey (PAndAS) in combination with previously cataloged objects to map the spatial distribution of globular clusters in the M31 halo. At projected radii beyond {approx}30 kpc, where large coherent stellar streams are readily distinguished in the field, there is a striking correlation between these features and the positions of the globular clusters. Adopting a simple Monte Carlo approach, we test the significance of this association by computing the probability that it could be due to the chance alignment of globular clusters smoothly distributed in the M31 halo.more » We find that the likelihood of this possibility is low, below 1%, and conclude that the observed spatial coincidence between globular clusters and multiple tidal debris streams in the outer halo of M31 reflects a genuine physical association. Our results imply that the majority of the remote globular cluster system of M31 has been assembled as a consequence of the accretion of cluster-bearing satellite galaxies. This constitutes the most direct evidence to date that the outer halo globular cluster populations in some galaxies are largely accreted.« less
State estimation and prediction using clustered particle filters.
Lee, Yoonsang; Majda, Andrew J
2016-12-20
Particle filtering is an essential tool to improve uncertain model predictions by incorporating noisy observational data from complex systems including non-Gaussian features. A class of particle filters, clustered particle filters, is introduced for high-dimensional nonlinear systems, which uses relatively few particles compared with the standard particle filter. The clustered particle filter captures non-Gaussian features of the true signal, which are typical in complex nonlinear dynamical systems such as geophysical systems. The method is also robust in the difficult regime of high-quality sparse and infrequent observations. The key features of the clustered particle filtering are coarse-grained localization through the clustering of the state variables and particle adjustment to stabilize the method; each observation affects only neighbor state variables through clustering and particles are adjusted to prevent particle collapse due to high-quality observations. The clustered particle filter is tested for the 40-dimensional Lorenz 96 model with several dynamical regimes including strongly non-Gaussian statistics. The clustered particle filter shows robust skill in both achieving accurate filter results and capturing non-Gaussian statistics of the true signal. It is further extended to multiscale data assimilation, which provides the large-scale estimation by combining a cheap reduced-order forecast model and mixed observations of the large- and small-scale variables. This approach enables the use of a larger number of particles due to the computational savings in the forecast model. The multiscale clustered particle filter is tested for one-dimensional dispersive wave turbulence using a forecast model with model errors.
State estimation and prediction using clustered particle filters
Lee, Yoonsang; Majda, Andrew J.
2016-01-01
Particle filtering is an essential tool to improve uncertain model predictions by incorporating noisy observational data from complex systems including non-Gaussian features. A class of particle filters, clustered particle filters, is introduced for high-dimensional nonlinear systems, which uses relatively few particles compared with the standard particle filter. The clustered particle filter captures non-Gaussian features of the true signal, which are typical in complex nonlinear dynamical systems such as geophysical systems. The method is also robust in the difficult regime of high-quality sparse and infrequent observations. The key features of the clustered particle filtering are coarse-grained localization through the clustering of the state variables and particle adjustment to stabilize the method; each observation affects only neighbor state variables through clustering and particles are adjusted to prevent particle collapse due to high-quality observations. The clustered particle filter is tested for the 40-dimensional Lorenz 96 model with several dynamical regimes including strongly non-Gaussian statistics. The clustered particle filter shows robust skill in both achieving accurate filter results and capturing non-Gaussian statistics of the true signal. It is further extended to multiscale data assimilation, which provides the large-scale estimation by combining a cheap reduced-order forecast model and mixed observations of the large- and small-scale variables. This approach enables the use of a larger number of particles due to the computational savings in the forecast model. The multiscale clustered particle filter is tested for one-dimensional dispersive wave turbulence using a forecast model with model errors. PMID:27930332
Kubas, Adam; Noak, Johannes
2017-01-01
Absorption and multiwavelength resonance Raman spectroscopy are widely used to investigate the electronic structure of transition metal centers in coordination compounds and extended solid systems. In combination with computational methodologies that have predictive accuracy, they define powerful protocols to study the spectroscopic response of catalytic materials. In this work, we study the absorption and resonance Raman spectra of the M1 MoVOx catalyst. The spectra were calculated by time-dependent density functional theory (TD-DFT) in conjunction with the independent mode displaced harmonic oscillator model (IMDHO), which allows for detailed bandshape predictions. For this purpose cluster models with up to 9 Mo and V metallic centers are considered to represent the bulk structure of MoVOx. Capping hydrogens were used to achieve valence saturation at the edges of the cluster models. The construction of model structures was based on a thorough bonding analysis which involved conventional DFT and local coupled cluster (DLPNO-CCSD(T)) methods. Furthermore the relationship of cluster topology to the computed spectral features is discussed in detail. It is shown that due to the local nature of the involved electronic transitions, band assignment protocols developed for molecular systems can be applied to describe the calculated spectral features of the cluster models as well. The present study serves as a reference for future applications of combined experimental and computational protocols in the field of solid-state heterogeneous catalysis. PMID:28989667
Low-level processing for real-time image analysis
NASA Technical Reports Server (NTRS)
Eskenazi, R.; Wilf, J. M.
1979-01-01
A system that detects object outlines in television images in real time is described. A high-speed pipeline processor transforms the raw image into an edge map and a microprocessor, which is integrated into the system, clusters the edges, and represents them as chain codes. Image statistics, useful for higher level tasks such as pattern recognition, are computed by the microprocessor. Peak intensity and peak gradient values are extracted within a programmable window and are used for iris and focus control. The algorithms implemented in hardware and the pipeline processor architecture are described. The strategy for partitioning functions in the pipeline was chosen to make the implementation modular. The microprocessor interface allows flexible and adaptive control of the feature extraction process. The software algorithms for clustering edge segments, creating chain codes, and computing image statistics are also discussed. A strategy for real time image analysis that uses this system is given.
NASA Astrophysics Data System (ADS)
Puzyrkov, Dmitry; Polyakov, Sergey; Podryga, Viktoriia; Markizov, Sergey
2018-02-01
At the present stage of computer technology development it is possible to study the properties and processes in complex systems at molecular and even atomic levels, for example, by means of molecular dynamics methods. The most interesting are problems related with the study of complex processes under real physical conditions. Solving such problems requires the use of high performance computing systems of various types, for example, GRID systems and HPC clusters. Considering the time consuming computational tasks, the need arises of software for automatic and unified monitoring of such computations. A complex computational task can be performed over different HPC systems. It requires output data synchronization between the storage chosen by a scientist and the HPC system used for computations. The design of the computational domain is also quite a problem. It requires complex software tools and algorithms for proper atomistic data generation on HPC systems. The paper describes the prototype of a cloud service, intended for design of atomistic systems of large volume for further detailed molecular dynamic calculations and computational management for this calculations, and presents the part of its concept aimed at initial data generation on the HPC systems.
Statistical mechanics of the cluster Ising model
NASA Astrophysics Data System (ADS)
Smacchia, Pietro; Amico, Luigi; Facchi, Paolo; Fazio, Rosario; Florio, Giuseppe; Pascazio, Saverio; Vedral, Vlatko
2011-08-01
We study a Hamiltonian system describing a three-spin-1/2 clusterlike interaction competing with an Ising-like antiferromagnetic interaction. We compute free energy, spin-correlation functions, and entanglement both in the ground and in thermal states. The model undergoes a quantum phase transition between an Ising phase with a nonvanishing magnetization and a cluster phase characterized by a string order. Any two-spin entanglement is found to vanish in both quantum phases because of a nontrivial correlation pattern. Nevertheless, the residual multipartite entanglement is maximal in the cluster phase and dependent on the magnetization in the Ising phase. We study the block entropy at the critical point and calculate the central charge of the system, showing that the criticality of the system is beyond the Ising universality class.
The methodology of multi-viewpoint clustering analysis
NASA Technical Reports Server (NTRS)
Mehrotra, Mala; Wild, Chris
1993-01-01
One of the greatest challenges facing the software engineering community is the ability to produce large and complex computer systems, such as ground support systems for unmanned scientific missions, that are reliable and cost effective. In order to build and maintain these systems, it is important that the knowledge in the system be suitably abstracted, structured, and otherwise clustered in a manner which facilitates its understanding, manipulation, testing, and utilization. Development of complex mission-critical systems will require the ability to abstract overall concepts in the system at various levels of detail and to consider the system from different points of view. Multi-ViewPoint - Clustering Analysis MVP-CA methodology has been developed to provide multiple views of large, complicated systems. MVP-CA provides an ability to discover significant structures by providing an automated mechanism to structure both hierarchically (from detail to abstract) and orthogonally (from different perspectives). We propose to integrate MVP/CA into an overall software engineering life cycle to support the development and evolution of complex mission critical systems.
Kanno, Chihiro; Sakamoto, Kentaro Q; Yanagawa, Yojiro; Takahashi, Yoshiyuki; Katagiri, Seiji; Nagano, Masashi
2017-08-04
In the present study, bull sperm in the first and second ejaculates were divided into subpopulations based on their motility characteristics using a cluster analysis of data from computer-assisted sperm motility analysis (CASA). Semen samples were collected from 4 Japanese black bulls. Data from 9,228 motile sperm were classified into 4 clusters; 1) very rapid and progressively motile sperm, 2) rapid and circularly motile sperm with widely moving heads, 3) moderately motile sperm with heads moving frequently in a short length, and 4) poorly motile sperm. The percentage of cluster 1 varied between bulls. The first ejaculates had a higher proportion of cluster 2 and lower proportion of cluster 3 than the second ejaculates.
Parallel Wavefront Analysis for a 4D Interferometer
NASA Technical Reports Server (NTRS)
Rao, Shanti R.
2011-01-01
This software provides a programming interface for automating data collection with a PhaseCam interferometer from 4D Technology, and distributing the image-processing algorithm across a cluster of general-purpose computers. Multiple instances of 4Sight (4D Technology s proprietary software) run on a networked cluster of computers. Each connects to a single server (the controller) and waits for instructions. The controller directs the interferometer to several images, then assigns each image to a different computer for processing. When the image processing is finished, the server directs one of the computers to collate and combine the processed images, saving the resulting measurement in a file on a disk. The available software captures approximately 100 images and analyzes them immediately. This software separates the capture and analysis processes, so that analysis can be done at a different time and faster by running the algorithm in parallel across several processors. The PhaseCam family of interferometers can measure an optical system in milliseconds, but it takes many seconds to process the data so that it is usable. In characterizing an adaptive optics system, like the next generation of astronomical observatories, thousands of measurements are required, and the processing time quickly becomes excessive. A programming interface distributes data processing for a PhaseCam interferometer across a Windows computing cluster. A scriptable controller program coordinates data acquisition from the interferometer, storage on networked hard disks, and parallel processing. Idle time of the interferometer is minimized. This architecture is implemented in Python and JavaScript, and may be altered to fit a customer s needs.
Bao, Shunxing; Weitendorf, Frederick D; Plassard, Andrew J; Huo, Yuankai; Gokhale, Aniruddha; Landman, Bennett A
2017-02-11
The field of big data is generally concerned with the scale of processing at which traditional computational paradigms break down. In medical imaging, traditional large scale processing uses a cluster computer that combines a group of workstation nodes into a functional unit that is controlled by a job scheduler. Typically, a shared-storage network file system (NFS) is used to host imaging data. However, data transfer from storage to processing nodes can saturate network bandwidth when data is frequently uploaded/retrieved from the NFS, e.g., "short" processing times and/or "large" datasets. Recently, an alternative approach using Hadoop and HBase was presented for medical imaging to enable co-location of data storage and computation while minimizing data transfer. The benefits of using such a framework must be formally evaluated against a traditional approach to characterize the point at which simply "large scale" processing transitions into "big data" and necessitates alternative computational frameworks. The proposed Hadoop system was implemented on a production lab-cluster alongside a standard Sun Grid Engine (SGE). Theoretical models for wall-clock time and resource time for both approaches are introduced and validated. To provide real example data, three T1 image archives were retrieved from a university secure, shared web database and used to empirically assess computational performance under three configurations of cluster hardware (using 72, 109, or 209 CPU cores) with differing job lengths. Empirical results match the theoretical models. Based on these data, a comparative analysis is presented for when the Hadoop framework will be relevant and non-relevant for medical imaging.
NASA Astrophysics Data System (ADS)
Bao, Shunxing; Weitendorf, Frederick D.; Plassard, Andrew J.; Huo, Yuankai; Gokhale, Aniruddha; Landman, Bennett A.
2017-03-01
The field of big data is generally concerned with the scale of processing at which traditional computational paradigms break down. In medical imaging, traditional large scale processing uses a cluster computer that combines a group of workstation nodes into a functional unit that is controlled by a job scheduler. Typically, a shared-storage network file system (NFS) is used to host imaging data. However, data transfer from storage to processing nodes can saturate network bandwidth when data is frequently uploaded/retrieved from the NFS, e.g., "short" processing times and/or "large" datasets. Recently, an alternative approach using Hadoop and HBase was presented for medical imaging to enable co-location of data storage and computation while minimizing data transfer. The benefits of using such a framework must be formally evaluated against a traditional approach to characterize the point at which simply "large scale" processing transitions into "big data" and necessitates alternative computational frameworks. The proposed Hadoop system was implemented on a production lab-cluster alongside a standard Sun Grid Engine (SGE). Theoretical models for wall-clock time and resource time for both approaches are introduced and validated. To provide real example data, three T1 image archives were retrieved from a university secure, shared web database and used to empirically assess computational performance under three configurations of cluster hardware (using 72, 109, or 209 CPU cores) with differing job lengths. Empirical results match the theoretical models. Based on these data, a comparative analysis is presented for when the Hadoop framework will be relevant and nonrelevant for medical imaging.
Comparison of Monte Carlo simulated and measured performance parameters of miniPET scanner
NASA Astrophysics Data System (ADS)
Kis, S. A.; Emri, M.; Opposits, G.; Bükki, T.; Valastyán, I.; Hegyesi, Gy.; Imrek, J.; Kalinka, G.; Molnár, J.; Novák, D.; Végh, J.; Kerek, A.; Trón, L.; Balkay, L.
2007-02-01
In vivo imaging of small laboratory animals is a valuable tool in the development of new drugs. For this purpose, miniPET, an easy to scale modular small animal PET camera has been developed at our institutes. The system has four modules, which makes it possible to rotate the whole detector system around the axis of the field of view. Data collection and image reconstruction are performed using a data acquisition (DAQ) module with Ethernet communication facility and a computer cluster of commercial PCs. Performance tests were carried out to determine system parameters, such as energy resolution, sensitivity and noise equivalent count rate. A modified GEANT4-based GATE Monte Carlo software package was used to simulate PET data analogous to those of the performance measurements. GATE was run on a Linux cluster of 10 processors (64 bit, Xeon with 3.0 GHz) and controlled by a SUN grid engine. The application of this special computer cluster reduced the time necessary for the simulations by an order of magnitude. The simulated energy spectra, maximum rate of true coincidences and sensitivity of the camera were in good agreement with the measured parameters.
Design and Verification of Remote Sensing Image Data Center Storage Architecture Based on Hadoop
NASA Astrophysics Data System (ADS)
Tang, D.; Zhou, X.; Jing, Y.; Cong, W.; Li, C.
2018-04-01
The data center is a new concept of data processing and application proposed in recent years. It is a new method of processing technologies based on data, parallel computing, and compatibility with different hardware clusters. While optimizing the data storage management structure, it fully utilizes cluster resource computing nodes and improves the efficiency of data parallel application. This paper used mature Hadoop technology to build a large-scale distributed image management architecture for remote sensing imagery. Using MapReduce parallel processing technology, it called many computing nodes to process image storage blocks and pyramids in the background to improve the efficiency of image reading and application and sovled the need for concurrent multi-user high-speed access to remotely sensed data. It verified the rationality, reliability and superiority of the system design by testing the storage efficiency of different image data and multi-users and analyzing the distributed storage architecture to improve the application efficiency of remote sensing images through building an actual Hadoop service system.
Hadjithomas, Michalis; Chen, I-Min Amy; Chu, Ken; Ratner, Anna; Palaniappan, Krishna; Szeto, Ernest; Huang, Jinghua; Reddy, T B K; Cimermančič, Peter; Fischbach, Michael A; Ivanova, Natalia N; Markowitz, Victor M; Kyrpides, Nikos C; Pati, Amrita
2015-07-14
In the discovery of secondary metabolites, analysis of sequence data is a promising exploration path that remains largely underutilized due to the lack of computational platforms that enable such a systematic approach on a large scale. In this work, we present IMG-ABC (https://img.jgi.doe.gov/abc), an atlas of biosynthetic gene clusters within the Integrated Microbial Genomes (IMG) system, which is aimed at harnessing the power of "big" genomic data for discovering small molecules. IMG-ABC relies on IMG's comprehensive integrated structural and functional genomic data for the analysis of biosynthetic gene clusters (BCs) and associated secondary metabolites (SMs). SMs and BCs serve as the two main classes of objects in IMG-ABC, each with a rich collection of attributes. A unique feature of IMG-ABC is the incorporation of both experimentally validated and computationally predicted BCs in genomes as well as metagenomes, thus identifying BCs in uncultured populations and rare taxa. We demonstrate the strength of IMG-ABC's focused integrated analysis tools in enabling the exploration of microbial secondary metabolism on a global scale, through the discovery of phenazine-producing clusters for the first time in Alphaproteobacteria. IMG-ABC strives to fill the long-existent void of resources for computational exploration of the secondary metabolism universe; its underlying scalable framework enables traversal of uncovered phylogenetic and chemical structure space, serving as a doorway to a new era in the discovery of novel molecules. IMG-ABC is the largest publicly available database of predicted and experimental biosynthetic gene clusters and the secondary metabolites they produce. The system also includes powerful search and analysis tools that are integrated with IMG's extensive genomic/metagenomic data and analysis tool kits. As new research on biosynthetic gene clusters and secondary metabolites is published and more genomes are sequenced, IMG-ABC will continue to expand, with the goal of becoming an essential component of any bioinformatic exploration of the secondary metabolism world. Copyright © 2015 Hadjithomas et al.
A harmonic linear dynamical system for prominent ECG feature extraction.
Thi, Ngoc Anh Nguyen; Yang, Hyung-Jeong; Kim, SunHee; Do, Luu Ngoc
2014-01-01
Unsupervised mining of electrocardiography (ECG) time series is a crucial task in biomedical applications. To have efficiency of the clustering results, the prominent features extracted from preprocessing analysis on multiple ECG time series need to be investigated. In this paper, a Harmonic Linear Dynamical System is applied to discover vital prominent features via mining the evolving hidden dynamics and correlations in ECG time series. The discovery of the comprehensible and interpretable features of the proposed feature extraction methodology effectively represents the accuracy and the reliability of clustering results. Particularly, the empirical evaluation results of the proposed method demonstrate the improved performance of clustering compared to the previous main stream feature extraction approaches for ECG time series clustering tasks. Furthermore, the experimental results on real-world datasets show scalability with linear computation time to the duration of the time series.
NASA Astrophysics Data System (ADS)
Kesharwani, Manoj K.; Sylvetsky, Nitai; Martin, Jan M. L.
2017-11-01
We show that the DCSD (distinguishable clusters with all singles and doubles) correlation method permits the calculation of vibrational spectra at near-CCSD(T) quality but at no more than CCSD cost, and with comparatively inexpensive analytical gradients. For systems dominated by a single reference configuration, even MP2.5 is a viable alternative, at MP3 cost. MP2.5 performance for vibrational frequencies is comparable to double hybrids such as DSD-PBEP86-D3BJ, but without resorting to empirical parameters. DCSD is also quite suitable for computing zero-point vibrational energies in computational thermochemistry.
A highly efficient multi-core algorithm for clustering extremely large datasets
2010-01-01
Background In recent years, the demand for computational power in computational biology has increased due to rapidly growing data sets from microarray and other high-throughput technologies. This demand is likely to increase. Standard algorithms for analyzing data, such as cluster algorithms, need to be parallelized for fast processing. Unfortunately, most approaches for parallelizing algorithms largely rely on network communication protocols connecting and requiring multiple computers. One answer to this problem is to utilize the intrinsic capabilities in current multi-core hardware to distribute the tasks among the different cores of one computer. Results We introduce a multi-core parallelization of the k-means and k-modes cluster algorithms based on the design principles of transactional memory for clustering gene expression microarray type data and categorial SNP data. Our new shared memory parallel algorithms show to be highly efficient. We demonstrate their computational power and show their utility in cluster stability and sensitivity analysis employing repeated runs with slightly changed parameters. Computation speed of our Java based algorithm was increased by a factor of 10 for large data sets while preserving computational accuracy compared to single-core implementations and a recently published network based parallelization. Conclusions Most desktop computers and even notebooks provide at least dual-core processors. Our multi-core algorithms show that using modern algorithmic concepts, parallelization makes it possible to perform even such laborious tasks as cluster sensitivity and cluster number estimation on the laboratory computer. PMID:20370922
Application of microarray analysis on computer cluster and cloud platforms.
Bernau, C; Boulesteix, A-L; Knaus, J
2013-01-01
Analysis of recent high-dimensional biological data tends to be computationally intensive as many common approaches such as resampling or permutation tests require the basic statistical analysis to be repeated many times. A crucial advantage of these methods is that they can be easily parallelized due to the computational independence of the resampling or permutation iterations, which has induced many statistics departments to establish their own computer clusters. An alternative is to rent computing resources in the cloud, e.g. at Amazon Web Services. In this article we analyze whether a selection of statistical projects, recently implemented at our department, can be efficiently realized on these cloud resources. Moreover, we illustrate an opportunity to combine computer cluster and cloud resources. In order to compare the efficiency of computer cluster and cloud implementations and their respective parallelizations we use microarray analysis procedures and compare their runtimes on the different platforms. Amazon Web Services provide various instance types which meet the particular needs of the different statistical projects we analyzed in this paper. Moreover, the network capacity is sufficient and the parallelization is comparable in efficiency to standard computer cluster implementations. Our results suggest that many statistical projects can be efficiently realized on cloud resources. It is important to mention, however, that workflows can change substantially as a result of a shift from computer cluster to cloud computing.
Quantum Dynamics of Helium Clusters
1993-03-01
the structure of both these and the HeN clusters in the body fixed frame by computing principal moments of inertia, thereby avoiding the...8217 of helium clusters, with the modification that we subtract 0.96 K from the computed values so that lor sufficiently large clusters we recover the...phonon spectrum of liquid He. To get a picture of these spectra one needs to compute the structure functions 51. Monte Carlo random walk simulations
Micromagnetics on high-performance workstation and mobile computational platforms
NASA Astrophysics Data System (ADS)
Fu, S.; Chang, R.; Couture, S.; Menarini, M.; Escobar, M. A.; Kuteifan, M.; Lubarda, M.; Gabay, D.; Lomakin, V.
2015-05-01
The feasibility of using high-performance desktop and embedded mobile computational platforms is presented, including multi-core Intel central processing unit, Nvidia desktop graphics processing units, and Nvidia Jetson TK1 Platform. FastMag finite element method-based micromagnetic simulator is used as a testbed, showing high efficiency on all the platforms. Optimization aspects of improving the performance of the mobile systems are discussed. The high performance, low cost, low power consumption, and rapid performance increase of the embedded mobile systems make them a promising candidate for micromagnetic simulations. Such architectures can be used as standalone systems or can be built as low-power computing clusters.
HPC enabled real-time remote processing of laparoscopic surgery
NASA Astrophysics Data System (ADS)
Ronaghi, Zahra; Sapra, Karan; Izard, Ryan; Duffy, Edward; Smith, Melissa C.; Wang, Kuang-Ching; Kwartowitz, David M.
2016-03-01
Laparoscopic surgery is a minimally invasive surgical technique. The benefit of small incisions has a disadvantage of limited visualization of subsurface tissues. Image-guided surgery (IGS) uses pre-operative and intra-operative images to map subsurface structures. One particular laparoscopic system is the daVinci-si robotic surgical system. The video streams generate approximately 360 megabytes of data per second. Real-time processing this large stream of data on a bedside PC, single or dual node setup, has become challenging and a high-performance computing (HPC) environment may not always be available at the point of care. To process this data on remote HPC clusters at the typical 30 frames per second rate, it is required that each 11.9 MB video frame be processed by a server and returned within 1/30th of a second. We have implement and compared performance of compression, segmentation and registration algorithms on Clemson's Palmetto supercomputer using dual NVIDIA K40 GPUs per node. Our computing framework will also enable reliability using replication of computation. We will securely transfer the files to remote HPC clusters utilizing an OpenFlow-based network service, Steroid OpenFlow Service (SOS) that can increase performance of large data transfers over long-distance and high bandwidth networks. As a result, utilizing high-speed OpenFlow- based network to access computing clusters with GPUs will improve surgical procedures by providing real-time medical image processing and laparoscopic data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samala, Ravi K., E-mail: rsamala@umich.edu; Chan, Heang-Ping; Lu, Yao
Purpose: Develop a computer-aided detection (CADe) system for clustered microcalcifications in digital breast tomosynthesis (DBT) volume enhanced with multiscale bilateral filtering (MSBF) regularization. Methods: With Institutional Review Board approval and written informed consent, two-view DBT of 154 breasts, of which 116 had biopsy-proven microcalcification (MC) clusters and 38 were free of MCs, was imaged with a General Electric GEN2 prototype DBT system. The DBT volumes were reconstructed with MSBF-regularized simultaneous algebraic reconstruction technique (SART) that was designed to enhance MCs and reduce background noise while preserving the quality of other tissue structures. The contrast-to-noise ratio (CNR) of MCs was furthermore » improved with enhancement-modulated calcification response (EMCR) preprocessing, which combined multiscale Hessian response to enhance MCs by shape and bandpass filtering to remove the low-frequency structured background. MC candidates were then located in the EMCR volume using iterative thresholding and segmented by adaptive region growing. Two sets of potential MC objects, cluster centroid objects and MC seed objects, were generated and the CNR of each object was calculated. The number of candidates in each set was controlled based on the breast volume. Dynamic clustering around the centroid objects grouped the MC candidates to form clusters. Adaptive criteria were designed to reduce false positive (FP) clusters based on the size, CNR values and the number of MCs in the cluster, cluster shape, and cluster based maximum intensity projection. Free-response receiver operating characteristic (FROC) and jackknife alternative FROC (JAFROC) analyses were used to assess the performance and compare with that of a previous study. Results: Unpaired two-tailedt-test showed a significant increase (p < 0.0001) in the ratio of CNRs for MCs with and without MSBF regularization compared to similar ratios for FPs. For view-based detection, a sensitivity of 85% was achieved at an FP rate of 2.16 per DBT volume. For case-based detection, a sensitivity of 85% was achieved at an FP rate of 0.85 per DBT volume. JAFROC analysis showed a significant improvement in the performance of the current CADe system compared to that of our previous system (p = 0.003). Conclusions: MBSF regularized SART reconstruction enhances MCs. The enhancement in the signals, in combination with properly designed adaptive threshold criteria, effective MC feature analysis, and false positive reduction techniques, leads to a significant improvement in the detection of clustered MCs in DBT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Priedhorsky, Reid; Randles, Tim
Charliecloud is a set of scripts to let users run a virtual cluster of virtual machines (VMs) on a desktop or supercomputer. Key functions include: 1. Creating (typically by installing an operating system from vendor media) and updating VM images; 2. Running a single VM; 3. Running multiple VMs in a virtual cluster. The virtual machines can talk to one another over the network and (in some cases) the outside world. This is accomplished by calling external programs such as QEMU and the Virtual Distributed Ethernet (VDE) suite. The goal is to let users have a virtual cluster containing nodesmore » where they have privileged access, while isolating that privilege within the virtual cluster so it cannot affect the physical compute resources. Host configuration enforces security; this is not included in Charliecloud, though security guidelines are included in its documentation and Charliecloud is designed to facilitate such configuration. Charliecloud manages passing information from host computers into and out of the virtual machines, such as parameters of the virtual cluster, input data specified by the user, output data from virtual compute jobs, VM console display, and network connections (e.g., SSH or X11). Parameters for the virtual cluster (number of VMs, RAM and disk per VM, etc.) are specified by the user or gathered from the environment (e.g., SLURM environment variables). Example job scripts are included. These include computation examples (such as a "hello world" MPI job) as well as performance tests. They also include a security test script to verify that the virtual cluster is appropriately sandboxed. Tests include: 1. Pinging hosts inside and outside the virtual cluster to explore connectivity; 2. Port scans (again inside and outside) to see what services are available; 3. Sniffing tests to see what traffic is visible to running VMs; 4. IP address spoofing to test network functionality in this case; 5. File access tests to make sure host access permissions are enforced. This test script is not a comprehensive scanner and does not test for specific vulnerabilities. Importantly, no information about physical hosts or network topology is included in this script (or any of Charliecloud); while part of a sensible test, such information is specified by the user when the test is run. That is, one cannot learn anything about the LANL network or computing infrastructure by examining Charliecloud code.« less
Performance Comparison of Mainframe, Workstations, Clusters, and Desktop Computers
NASA Technical Reports Server (NTRS)
Farley, Douglas L.
2005-01-01
A performance evaluation of a variety of computers frequently found in a scientific or engineering research environment was conducted using a synthetic and application program benchmarks. From a performance perspective, emerging commodity processors have superior performance relative to legacy mainframe computers. In many cases, the PC clusters exhibited comparable performance with traditional mainframe hardware when 8-12 processors were used. The main advantage of the PC clusters was related to their cost. Regardless of whether the clusters were built from new computers or whether they were created from retired computers their performance to cost ratio was superior to the legacy mainframe computers. Finally, the typical annual maintenance cost of legacy mainframe computers is several times the cost of new equipment such as multiprocessor PC workstations. The savings from eliminating the annual maintenance fee on legacy hardware can result in a yearly increase in total computational capability for an organization.
Image texture segmentation using a neural network
NASA Astrophysics Data System (ADS)
Sayeh, Mohammed R.; Athinarayanan, Ragu; Dhali, Pushpuak
1992-09-01
In this paper we use a neural network called the Lyapunov associative memory (LYAM) system to segment image texture into different categories or clusters. The LYAM system is constructed by a set of ordinary differential equations which are simulated on a digital computer. The clustering can be achieved by using a single tuning parameter in the simplest model. Pattern classes are represented by the stable equilibrium states of the system. Design of the system is based on synthesizing two local energy functions, namely, the learning and recall energy functions. Before the implementation of the segmentation process, a Gauss-Markov random field (GMRF) model is applied to the raw image. This application suitably reduces the image data and prepares the texture information for the neural network process. We give a simple image example illustrating the capability of the technique. The GMRF-generated features are also used for a clustering, based on the Euclidean distance.
2013-01-01
M. Ahmadi, and M. Shridhar, “ Handwritten Numeral Recognition with Multiple Features and Multistage Classifiers,” Proc. IEEE Int’l Symp. Circuits...ARTICLE (Post Print) 3. DATES COVERED (From - To) SEP 2011 – SEP 2013 4. TITLE AND SUBTITLE A PARALLEL NEUROMORPHIC TEXT RECOGNITION SYSTEM AND ITS...research in computational intelligence has entered a new era. In this paper, we present an HPC-based context-aware intelligent text recognition
Modeling of mixing processes: Fluids, particulates, and powders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ottino, J.M.; Hansen, S.
Work under this grant involves two main areas: (1) Mixing of Viscous Liquids, this first area comprising aggregation, fragmentation and dispersion, and (2) Mixing of Powders. In order to produce a coherent self-contained picture, we report primarily on results obtained under (1), and within this area, mostly on computational studies of particle aggregation in regular and chaotic flows. Numerical simulations show that the average cluster size of compact clusters grows algebraically, while the average cluster size of fractal clusters grows exponentially; companion mathematical arguments are used to describe the initial growth of average cluster size and polydispersity. It is foundmore » that when the system is well mixed and the capture radius independent of mass, the polydispersity is constant for long-times and the cluster size distribution is self-similar. Furthermore, our simulations indicate that the fractal nature of the clusters is dependent upon the mixing.« less
Distributed parallel computing in stochastic modeling of groundwater systems.
Dong, Yanhui; Li, Guomin; Xu, Haizhen
2013-03-01
Stochastic modeling is a rapidly evolving, popular approach to the study of the uncertainty and heterogeneity of groundwater systems. However, the use of Monte Carlo-type simulations to solve practical groundwater problems often encounters computational bottlenecks that hinder the acquisition of meaningful results. To improve the computational efficiency, a system that combines stochastic model generation with MODFLOW-related programs and distributed parallel processing is investigated. The distributed computing framework, called the Java Parallel Processing Framework, is integrated into the system to allow the batch processing of stochastic models in distributed and parallel systems. As an example, the system is applied to the stochastic delineation of well capture zones in the Pinggu Basin in Beijing. Through the use of 50 processing threads on a cluster with 10 multicore nodes, the execution times of 500 realizations are reduced to 3% compared with those of a serial execution. Through this application, the system demonstrates its potential in solving difficult computational problems in practical stochastic modeling. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.
NASA Technical Reports Server (NTRS)
Yedavalli, R. K.
1992-01-01
The problem of analyzing and designing controllers for linear systems subject to real parameter uncertainty is considered. An elegant, unified theory for robust eigenvalue placement is presented for a class of D-regions defined by algebraic inequalities by extending the nominal matrix root clustering theory of Gutman and Jury (1981) to linear uncertain time systems. The author presents explicit conditions for matrix root clustering for different D-regions and establishes the relationship between the eigenvalue migration range and the parameter range. The bounds are all obtained by one-shot computation in the matrix domain and do not need any frequency sweeping or parameter gridding. The method uses the generalized Lyapunov theory for getting the bounds.
Recursive Hierarchical Image Segmentation by Region Growing and Constrained Spectral Clustering
NASA Technical Reports Server (NTRS)
Tilton, James C.
2002-01-01
This paper describes an algorithm for hierarchical image segmentation (referred to as HSEG) and its recursive formulation (referred to as RHSEG). The HSEG algorithm is a hybrid of region growing and constrained spectral clustering that produces a hierarchical set of image segmentations based on detected convergence points. In the main, HSEG employs the hierarchical stepwise optimization (HS WO) approach to region growing, which seeks to produce segmentations that are more optimized than those produced by more classic approaches to region growing. In addition, HSEG optionally interjects between HSWO region growing iterations merges between spatially non-adjacent regions (i.e., spectrally based merging or clustering) constrained by a threshold derived from the previous HSWO region growing iteration. While the addition of constrained spectral clustering improves the segmentation results, especially for larger images, it also significantly increases HSEG's computational requirements. To counteract this, a computationally efficient recursive, divide-and-conquer, implementation of HSEG (RHSEG) has been devised and is described herein. Included in this description is special code that is required to avoid processing artifacts caused by RHSEG s recursive subdivision of the image data. Implementations for single processor and for multiple processor computer systems are described. Results with Landsat TM data are included comparing HSEG with classic region growing. Finally, an application to image information mining and knowledge discovery is discussed.
Android Malware Classification Using K-Means Clustering Algorithm
NASA Astrophysics Data System (ADS)
Hamid, Isredza Rahmi A.; Syafiqah Khalid, Nur; Azma Abdullah, Nurul; Rahman, Nurul Hidayah Ab; Chai Wen, Chuah
2017-08-01
Malware was designed to gain access or damage a computer system without user notice. Besides, attacker exploits malware to commit crime or fraud. This paper proposed Android malware classification approach based on K-Means clustering algorithm. We evaluate the proposed model in terms of accuracy using machine learning algorithms. Two datasets were selected to demonstrate the practicing of K-Means clustering algorithms that are Virus Total and Malgenome dataset. We classify the Android malware into three clusters which are ransomware, scareware and goodware. Nine features were considered for each types of dataset such as Lock Detected, Text Detected, Text Score, Encryption Detected, Threat, Porn, Law, Copyright and Moneypak. We used IBM SPSS Statistic software for data classification and WEKA tools to evaluate the built cluster. The proposed K-Means clustering algorithm shows promising result with high accuracy when tested using Random Forest algorithm.
Parallel hyperbolic PDE simulation on clusters: Cell versus GPU
NASA Astrophysics Data System (ADS)
Rostrup, Scott; De Sterck, Hans
2010-12-01
Increasingly, high-performance computing is looking towards data-parallel computational devices to enhance computational performance. Two technologies that have received significant attention are IBM's Cell Processor and NVIDIA's CUDA programming model for graphics processing unit (GPU) computing. In this paper we investigate the acceleration of parallel hyperbolic partial differential equation simulation on structured grids with explicit time integration on clusters with Cell and GPU backends. The message passing interface (MPI) is used for communication between nodes at the coarsest level of parallelism. Optimizations of the simulation code at the several finer levels of parallelism that the data-parallel devices provide are described in terms of data layout, data flow and data-parallel instructions. Optimized Cell and GPU performance are compared with reference code performance on a single x86 central processing unit (CPU) core in single and double precision. We further compare the CPU, Cell and GPU platforms on a chip-to-chip basis, and compare performance on single cluster nodes with two CPUs, two Cell processors or two GPUs in a shared memory configuration (without MPI). We finally compare performance on clusters with 32 CPUs, 32 Cell processors, and 32 GPUs using MPI. Our GPU cluster results use NVIDIA Tesla GPUs with GT200 architecture, but some preliminary results on recently introduced NVIDIA GPUs with the next-generation Fermi architecture are also included. This paper provides computational scientists and engineers who are considering porting their codes to accelerator environments with insight into how structured grid based explicit algorithms can be optimized for clusters with Cell and GPU accelerators. It also provides insight into the speed-up that may be gained on current and future accelerator architectures for this class of applications. Program summaryProgram title: SWsolver Catalogue identifier: AEGY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL v3 No. of lines in distributed program, including test data, etc.: 59 168 No. of bytes in distributed program, including test data, etc.: 453 409 Distribution format: tar.gz Programming language: C, CUDA Computer: Parallel Computing Clusters. Individual compute nodes may consist of x86 CPU, Cell processor, or x86 CPU with attached NVIDIA GPU accelerator. Operating system: Linux Has the code been vectorised or parallelized?: Yes. Tested on 1-128 x86 CPU cores, 1-32 Cell Processors, and 1-32 NVIDIA GPUs. RAM: Tested on Problems requiring up to 4 GB per compute node. Classification: 12 External routines: MPI, CUDA, IBM Cell SDK Nature of problem: MPI-parallel simulation of Shallow Water equations using high-resolution 2D hyperbolic equation solver on regular Cartesian grids for x86 CPU, Cell Processor, and NVIDIA GPU using CUDA. Solution method: SWsolver provides 3 implementations of a high-resolution 2D Shallow Water equation solver on regular Cartesian grids, for CPU, Cell Processor, and NVIDIA GPU. Each implementation uses MPI to divide work across a parallel computing cluster. Additional comments: Sub-program numdiff is used for the test run.
Automated clustering-based workload characterization
NASA Technical Reports Server (NTRS)
Pentakalos, Odysseas I.; Menasce, Daniel A.; Yesha, Yelena
1996-01-01
The demands placed on the mass storage systems at various federal agencies and national laboratories are continuously increasing in intensity. This forces system managers to constantly monitor the system, evaluate the demand placed on it, and tune it appropriately using either heuristics based on experience or analytic models. Performance models require an accurate workload characterization. This can be a laborious and time consuming process. It became evident from our experience that a tool is necessary to automate the workload characterization process. This paper presents the design and discusses the implementation of a tool for workload characterization of mass storage systems. The main features of the tool discussed here are: (1)Automatic support for peak-period determination. Histograms of system activity are generated and presented to the user for peak-period determination; (2) Automatic clustering analysis. The data collected from the mass storage system logs is clustered using clustering algorithms and tightness measures to limit the number of generated clusters; (3) Reporting of varied file statistics. The tool computes several statistics on file sizes such as average, standard deviation, minimum, maximum, frequency, as well as average transfer time. These statistics are given on a per cluster basis; (4) Portability. The tool can easily be used to characterize the workload in mass storage systems of different vendors. The user needs to specify through a simple log description language how the a specific log should be interpreted. The rest of this paper is organized as follows. Section two presents basic concepts in workload characterization as they apply to mass storage systems. Section three describes clustering algorithms and tightness measures. The following section presents the architecture of the tool. Section five presents some results of workload characterization using the tool.Finally, section six presents some concluding remarks.
Million-body star cluster simulations: comparisons between Monte Carlo and direct N-body
NASA Astrophysics Data System (ADS)
Rodriguez, Carl L.; Morscher, Meagan; Wang, Long; Chatterjee, Sourav; Rasio, Frederic A.; Spurzem, Rainer
2016-12-01
We present the first detailed comparison between million-body globular cluster simulations computed with a Hénon-type Monte Carlo code, CMC, and a direct N-body code, NBODY6++GPU. Both simulations start from an identical cluster model with 106 particles, and include all of the relevant physics needed to treat the system in a highly realistic way. With the two codes `frozen' (no fine-tuning of any free parameters or internal algorithms of the codes) we find good agreement in the overall evolution of the two models. Furthermore, we find that in both models, large numbers of stellar-mass black holes (>1000) are retained for 12 Gyr. Thus, the very accurate direct N-body approach confirms recent predictions that black holes can be retained in present-day, old globular clusters. We find only minor disagreements between the two models and attribute these to the small-N dynamics driving the evolution of the cluster core for which the Monte Carlo assumptions are less ideal. Based on the overwhelming general agreement between the two models computed using these vastly different techniques, we conclude that our Monte Carlo approach, which is more approximate, but dramatically faster compared to the direct N-body, is capable of producing an accurate description of the long-term evolution of massive globular clusters even when the clusters contain large populations of stellar-mass black holes.
NASA Astrophysics Data System (ADS)
Sakata, Katsumi; Ohyanagi, Hajime; Sato, Shinji; Nobori, Hiroya; Hayashi, Akiko; Ishii, Hideshi; Daub, Carsten O.; Kawai, Jun; Suzuki, Harukazu; Saito, Toshiyuki
2015-02-01
We present a system-wide transcriptional network structure that controls cell types in the context of expression pattern transitions that correspond to cell type transitions. Co-expression based analyses uncovered a system-wide, ladder-like transcription factor cluster structure composed of nearly 1,600 transcription factors in a human transcriptional network. Computer simulations based on a transcriptional regulatory model deduced from the system-wide, ladder-like transcription factor cluster structure reproduced expression pattern transitions when human THP-1 myelomonocytic leukaemia cells cease proliferation and differentiate under phorbol myristate acetate stimulation. The behaviour of MYC, a reprogramming Yamanaka factor that was suggested to be essential for induced pluripotent stem cells during dedifferentiation, could be interpreted based on the transcriptional regulation predicted by the system-wide, ladder-like transcription factor cluster structure. This study introduces a novel system-wide structure to transcriptional networks that provides new insights into network topology.
Scalable computing for evolutionary genomics.
Prins, Pjotr; Belhachemi, Dominique; Möller, Steffen; Smant, Geert
2012-01-01
Genomic data analysis in evolutionary biology is becoming so computationally intensive that analysis of multiple hypotheses and scenarios takes too long on a single desktop computer. In this chapter, we discuss techniques for scaling computations through parallelization of calculations, after giving a quick overview of advanced programming techniques. Unfortunately, parallel programming is difficult and requires special software design. The alternative, especially attractive for legacy software, is to introduce poor man's parallelization by running whole programs in parallel as separate processes, using job schedulers. Such pipelines are often deployed on bioinformatics computer clusters. Recent advances in PC virtualization have made it possible to run a full computer operating system, with all of its installed software, on top of another operating system, inside a "box," or virtual machine (VM). Such a VM can flexibly be deployed on multiple computers, in a local network, e.g., on existing desktop PCs, and even in the Cloud, to create a "virtual" computer cluster. Many bioinformatics applications in evolutionary biology can be run in parallel, running processes in one or more VMs. Here, we show how a ready-made bioinformatics VM image, named BioNode, effectively creates a computing cluster, and pipeline, in a few steps. This allows researchers to scale-up computations from their desktop, using available hardware, anytime it is required. BioNode is based on Debian Linux and can run on networked PCs and in the Cloud. Over 200 bioinformatics and statistical software packages, of interest to evolutionary biology, are included, such as PAML, Muscle, MAFFT, MrBayes, and BLAST. Most of these software packages are maintained through the Debian Med project. In addition, BioNode contains convenient configuration scripts for parallelizing bioinformatics software. Where Debian Med encourages packaging free and open source bioinformatics software through one central project, BioNode encourages creating free and open source VM images, for multiple targets, through one central project. BioNode can be deployed on Windows, OSX, Linux, and in the Cloud. Next to the downloadable BioNode images, we provide tutorials online, which empower bioinformaticians to install and run BioNode in different environments, as well as information for future initiatives, on creating and building such images.
NASA Technical Reports Server (NTRS)
Smedes, H. W.; Linnerud, H. J.; Woolaver, L. B.; Su, M. Y.; Jayroe, R. R.
1972-01-01
Two clustering techniques were used for terrain mapping by computer of test sites in Yellowstone National Park. One test was made with multispectral scanner data using a composite technique which consists of (1) a strictly sequential statistical clustering which is a sequential variance analysis, and (2) a generalized K-means clustering. In this composite technique, the output of (1) is a first approximation of the cluster centers. This is the input to (2) which consists of steps to improve the determination of cluster centers by iterative procedures. Another test was made using the three emulsion layers of color-infrared aerial film as a three-band spectrometer. Relative film densities were analyzed using a simple clustering technique in three-color space. Important advantages of the clustering technique over conventional supervised computer programs are (1) human intervention, preparation time, and manipulation of data are reduced, (2) the computer map, gives unbiased indication of where best to select the reference ground control data, (3) use of easy to obtain inexpensive film, and (4) the geometric distortions can be easily rectified by simple standard photogrammetric techniques.
Vote Stuffing Control in IPTV-based Recommender Systems
NASA Astrophysics Data System (ADS)
Bhatt, Rajen
Vote stuffing is a general problem in the functioning of the content rating-based recommender systems. Currently IPTV viewers browse various contents based on the program ratings. In this paper, we propose a fuzzy clustering-based approach to remove the effects of vote stuffing and consider only the genuine ratings for the programs over multiple genres. The approach requires only one authentic rating, which is generally available from recommendation system administrators or program broadcasters. The entire process is automated using fuzzy c-means clustering. Computational experiments performed over one real-world program rating database shows that the proposed approach is very efficient for controlling vote stuffing.
Fast "swarm of detectors" and their application in cosmic rays
NASA Astrophysics Data System (ADS)
Shoziyoev, G. P.; Shoziyoev, Sh. P.
2017-06-01
New opportunities in science appeared with the latest technology of the 21st century. This paper points to creating a new architecture for detection systems of different characteristics in astrophysics and geophysics using the latest technologies related to multicopter cluster systems, alternative energy sources, cluster technologies, cloud computing and big data. The idea of a quick-deployable scaleable dynamic system of a controlled drone with a small set of different detectors for detecting various components of extensive air showers in cosmic rays and in geophysics is very attractive. Development of this type of new system also allows to give a multiplier effect for the development of various sciences and research methods to observe natural phenomena.
MRPack: Multi-Algorithm Execution Using Compute-Intensive Approach in MapReduce
2015-01-01
Large quantities of data have been generated from multiple sources at exponential rates in the last few years. These data are generated at high velocity as real time and streaming data in variety of formats. These characteristics give rise to challenges in its modeling, computation, and processing. Hadoop MapReduce (MR) is a well known data-intensive distributed processing framework using the distributed file system (DFS) for Big Data. Current implementations of MR only support execution of a single algorithm in the entire Hadoop cluster. In this paper, we propose MapReducePack (MRPack), a variation of MR that supports execution of a set of related algorithms in a single MR job. We exploit the computational capability of a cluster by increasing the compute-intensiveness of MapReduce while maintaining its data-intensive approach. It uses the available computing resources by dynamically managing the task assignment and intermediate data. Intermediate data from multiple algorithms are managed using multi-key and skew mitigation strategies. The performance study of the proposed system shows that it is time, I/O, and memory efficient compared to the default MapReduce. The proposed approach reduces the execution time by 200% with an approximate 50% decrease in I/O cost. Complexity and qualitative results analysis shows significant performance improvement. PMID:26305223
MRPack: Multi-Algorithm Execution Using Compute-Intensive Approach in MapReduce.
Idris, Muhammad; Hussain, Shujaat; Siddiqi, Muhammad Hameed; Hassan, Waseem; Syed Muhammad Bilal, Hafiz; Lee, Sungyoung
2015-01-01
Large quantities of data have been generated from multiple sources at exponential rates in the last few years. These data are generated at high velocity as real time and streaming data in variety of formats. These characteristics give rise to challenges in its modeling, computation, and processing. Hadoop MapReduce (MR) is a well known data-intensive distributed processing framework using the distributed file system (DFS) for Big Data. Current implementations of MR only support execution of a single algorithm in the entire Hadoop cluster. In this paper, we propose MapReducePack (MRPack), a variation of MR that supports execution of a set of related algorithms in a single MR job. We exploit the computational capability of a cluster by increasing the compute-intensiveness of MapReduce while maintaining its data-intensive approach. It uses the available computing resources by dynamically managing the task assignment and intermediate data. Intermediate data from multiple algorithms are managed using multi-key and skew mitigation strategies. The performance study of the proposed system shows that it is time, I/O, and memory efficient compared to the default MapReduce. The proposed approach reduces the execution time by 200% with an approximate 50% decrease in I/O cost. Complexity and qualitative results analysis shows significant performance improvement.
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center on Education and Training for Employment.
This publication contains 17 subjects appropriate for use in a competency list for the occupation of network systems technician, 1 of 12 occupations within the business/computer technologies cluster. Each unit consists of a number of competencies; a list of competency builders is provided for each competency. Titles of the 17 units are as follows:…
Implementing Journaling in a Linux Shared Disk File System
NASA Technical Reports Server (NTRS)
Preslan, Kenneth W.; Barry, Andrew; Brassow, Jonathan; Cattelan, Russell; Manthei, Adam; Nygaard, Erling; VanOort, Seth; Teigland, David; Tilstra, Mike; O'Keefe, Matthew;
2000-01-01
In computer systems today, speed and responsiveness is often determined by network and storage subsystem performance. Faster, more scalable networking interfaces like Fibre Channel and Gigabit Ethernet provide the scaffolding from which higher performance computer systems implementations may be constructed, but new thinking is required about how machines interact with network-enabled storage devices. In this paper we describe how we implemented journaling in the Global File System (GFS), a shared-disk, cluster file system for Linux. Our previous three papers on GFS at the Mass Storage Symposium discussed our first three GFS implementations, their performance, and the lessons learned. Our fourth paper describes, appropriately enough, the evolution of GFS version 3 to version 4, which supports journaling and recovery from client failures. In addition, GFS scalability tests extending to 8 machines accessing 8 4-disk enclosures were conducted: these tests showed good scaling. We describe the GFS cluster infrastructure, which is necessary for proper recovery from machine and disk failures in a collection of machines sharing disks using GFS. Finally, we discuss the suitability of Linux for handling the big data requirements of supercomputing centers.
Plasma Physics Calculations on a Parallel Macintosh Cluster
NASA Astrophysics Data System (ADS)
Decyk, Viktor; Dauger, Dean; Kokelaar, Pieter
2000-03-01
We have constructed a parallel cluster consisting of 16 Apple Macintosh G3 computers running the MacOS, and achieved very good performance on numerically intensive, parallel plasma particle-in-cell simulations. A subset of the MPI message-passing library was implemented in Fortran77 and C. This library enabled us to port code, without modification, from other parallel processors to the Macintosh cluster. For large problems where message packets are large and relatively few in number, performance of 50-150 MFlops/node is possible, depending on the problem. This is fast enough that 3D calculations can be routinely done. Unlike Unix-based clusters, no special expertise in operating systems is required to build and run the cluster. Full details are available on our web site: http://exodus.physics.ucla.edu/appleseed/.
Plasma Physics Calculations on a Parallel Macintosh Cluster
NASA Astrophysics Data System (ADS)
Decyk, Viktor K.; Dauger, Dean E.; Kokelaar, Pieter R.
We have constructed a parallel cluster consisting of 16 Apple Macintosh G3 computers running the MacOS, and achieved very good performance on numerically intensive, parallel plasma particle-in-cell simulations. A subset of the MPI message-passing library was implemented in Fortran77 and C. This library enabled us to port code, without modification, from other parallel processors to the Macintosh cluster. For large problems where message packets are large and relatively few in number, performance of 50-150 Mflops/node is possible, depending on the problem. This is fast enough that 3D calculations can be routinely done. Unlike Unix-based clusters, no special expertise in operating systems is required to build and run the cluster. Full details are available on our web site: http://exodus.physics.ucla.edu/appleseed/.
Visual based laser speckle pattern recognition method for structural health monitoring
NASA Astrophysics Data System (ADS)
Park, Kyeongtaek; Torbol, Marco
2017-04-01
This study performed the system identification of a target structure by analyzing the laser speckle pattern taken by a camera. The laser speckle pattern is generated by the diffuse reflection of the laser beam on a rough surface of the target structure. The camera, equipped with a red filter, records the scattered speckle particles of the laser light in real time and the raw speckle image of the pixel data is fed to the graphic processing unit (GPU) in the system. The algorithm for laser speckle contrast analysis (LASCA) computes: the laser speckle contrast images and the laser speckle flow images. The k-mean clustering algorithm is used to classify the pixels in each frame and the clusters' centroids, which function as virtual sensors, track the displacement between different frames in time domain. The fast Fourier transform (FFT) and the frequency domain decomposition (FDD) compute the modal properties of the structure: natural frequencies and damping ratios. This study takes advantage of the large scale computational capability of GPU. The algorithm is written in Compute Unifies Device Architecture (CUDA C) that allows the processing of speckle images in real time.
Bao, Shunxing; Weitendorf, Frederick D.; Plassard, Andrew J.; Huo, Yuankai; Gokhale, Aniruddha; Landman, Bennett A.
2016-01-01
The field of big data is generally concerned with the scale of processing at which traditional computational paradigms break down. In medical imaging, traditional large scale processing uses a cluster computer that combines a group of workstation nodes into a functional unit that is controlled by a job scheduler. Typically, a shared-storage network file system (NFS) is used to host imaging data. However, data transfer from storage to processing nodes can saturate network bandwidth when data is frequently uploaded/retrieved from the NFS, e.g., “short” processing times and/or “large” datasets. Recently, an alternative approach using Hadoop and HBase was presented for medical imaging to enable co-location of data storage and computation while minimizing data transfer. The benefits of using such a framework must be formally evaluated against a traditional approach to characterize the point at which simply “large scale” processing transitions into “big data” and necessitates alternative computational frameworks. The proposed Hadoop system was implemented on a production lab-cluster alongside a standard Sun Grid Engine (SGE). Theoretical models for wall-clock time and resource time for both approaches are introduced and validated. To provide real example data, three T1 image archives were retrieved from a university secure, shared web database and used to empirically assess computational performance under three configurations of cluster hardware (using 72, 109, or 209 CPU cores) with differing job lengths. Empirical results match the theoretical models. Based on these data, a comparative analysis is presented for when the Hadoop framework will be relevant and non-relevant for medical imaging. PMID:28736473
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korovin, Yu. A.; Maksimushkina, A. V., E-mail: AVMaksimushkina@mephi.ru; Frolova, T. A.
2016-12-15
The cross sections of nuclear reactions involving emission of clusters of light nuclei in proton collisions with a heavy-metal target are computed for incident-proton energies between 30 MeV and 2.6 GeV. The calculation relies on the ALICE/ASH and CASCADE/INPE computer codes. The parameters determining the pre-equilibrium cluster emission are varied in the computation.
NASA Astrophysics Data System (ADS)
Lawry, B. J.; Encarnacao, A.; Hipp, J. R.; Chang, M.; Young, C. J.
2011-12-01
With the rapid growth of multi-core computing hardware, it is now possible for scientific researchers to run complex, computationally intensive software on affordable, in-house commodity hardware. Multi-core CPUs (Central Processing Unit) and GPUs (Graphics Processing Unit) are now commonplace in desktops and servers. Developers today have access to extremely powerful hardware that enables the execution of software that could previously only be run on expensive, massively-parallel systems. It is no longer cost-prohibitive for an institution to build a parallel computing cluster consisting of commodity multi-core servers. In recent years, our research team has developed a distributed, multi-core computing system and used it to construct global 3D earth models using seismic tomography. Traditionally, computational limitations forced certain assumptions and shortcuts in the calculation of tomographic models; however, with the recent rapid growth in computational hardware including faster CPU's, increased RAM, and the development of multi-core computers, we are now able to perform seismic tomography, 3D ray tracing and seismic event location using distributed parallel algorithms running on commodity hardware, thereby eliminating the need for many of these shortcuts. We describe Node Resource Manager (NRM), a system we developed that leverages the capabilities of a parallel computing cluster. NRM is a software-based parallel computing management framework that works in tandem with the Java Parallel Processing Framework (JPPF, http://www.jppf.org/), a third party library that provides a flexible and innovative way to take advantage of modern multi-core hardware. NRM enables multiple applications to use and share a common set of networked computers, regardless of their hardware platform or operating system. Using NRM, algorithms can be parallelized to run on multiple processing cores of a distributed computing cluster of servers and desktops, which results in a dramatic speedup in execution time. NRM is sufficiently generic to support applications in any domain, as long as the application is parallelizable (i.e., can be subdivided into multiple individual processing tasks). At present, NRM has been effective in decreasing the overall runtime of several algorithms: 1) the generation of a global 3D model of the compressional velocity distribution in the Earth using tomographic inversion, 2) the calculation of the model resolution matrix, model covariance matrix, and travel time uncertainty for the aforementioned velocity model, and 3) the correlation of waveforms with archival data on a massive scale for seismic event detection. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Ergatis: a web interface and scalable software system for bioinformatics workflows
Orvis, Joshua; Crabtree, Jonathan; Galens, Kevin; Gussman, Aaron; Inman, Jason M.; Lee, Eduardo; Nampally, Sreenath; Riley, David; Sundaram, Jaideep P.; Felix, Victor; Whitty, Brett; Mahurkar, Anup; Wortman, Jennifer; White, Owen; Angiuoli, Samuel V.
2010-01-01
Motivation: The growth of sequence data has been accompanied by an increasing need to analyze data on distributed computer clusters. The use of these systems for routine analysis requires scalable and robust software for data management of large datasets. Software is also needed to simplify data management and make large-scale bioinformatics analysis accessible and reproducible to a wide class of target users. Results: We have developed a workflow management system named Ergatis that enables users to build, execute and monitor pipelines for computational analysis of genomics data. Ergatis contains preconfigured components and template pipelines for a number of common bioinformatics tasks such as prokaryotic genome annotation and genome comparisons. Outputs from many of these components can be loaded into a Chado relational database. Ergatis was designed to be accessible to a broad class of users and provides a user friendly, web-based interface. Ergatis supports high-throughput batch processing on distributed compute clusters and has been used for data management in a number of genome annotation and comparative genomics projects. Availability: Ergatis is an open-source project and is freely available at http://ergatis.sourceforge.net Contact: jorvis@users.sourceforge.net PMID:20413634
Reliable, Memory Speed Storage for Cluster Computing Frameworks
2014-06-16
specification API that can capture computations in many of today’s popular data -parallel computing models, e.g., MapReduce and SQL. We also ported the Hadoop ...today’s big data workloads: • Immutable data : Data is immutable once written, since dominant underlying storage systems, such as HDFS [3], only support...network transfers, so reads can be data -local. • Program size vs. data size: In big data processing, the same operation is repeatedly applied on massive
Mixing HTC and HPC Workloads with HTCondor and Slurm
NASA Astrophysics Data System (ADS)
Hollowell, C.; Barnett, J.; Caramarcu, C.; Strecker-Kellogg, W.; Wong, A.; Zaytsev, A.
2017-10-01
Traditionally, the RHIC/ATLAS Computing Facility (RACF) at Brookhaven National Laboratory (BNL) has only maintained High Throughput Computing (HTC) resources for our HEP/NP user community. We’ve been using HTCondor as our batch system for many years, as this software is particularly well suited for managing HTC processor farm resources. Recently, the RACF has also begun to design/administrate some High Performance Computing (HPC) systems for a multidisciplinary user community at BNL. In this paper, we’ll discuss our experiences using HTCondor and Slurm in an HPC context, and our facility’s attempts to allow our HTC and HPC processing farms/clusters to make opportunistic use of each other’s computing resources.
Oh, Jeongsu; Choi, Chi-Hwan; Park, Min-Kyu; Kim, Byung Kwon; Hwang, Kyuin; Lee, Sang-Heon; Hong, Soon Gyu; Nasir, Arshan; Cho, Wan-Sup; Kim, Kyung Mo
2016-01-01
High-throughput sequencing can produce hundreds of thousands of 16S rRNA sequence reads corresponding to different organisms present in the environmental samples. Typically, analysis of microbial diversity in bioinformatics starts from pre-processing followed by clustering 16S rRNA reads into relatively fewer operational taxonomic units (OTUs). The OTUs are reliable indicators of microbial diversity and greatly accelerate the downstream analysis time. However, existing hierarchical clustering algorithms that are generally more accurate than greedy heuristic algorithms struggle with large sequence datasets. To keep pace with the rapid rise in sequencing data, we present CLUSTOM-CLOUD, which is the first distributed sequence clustering program based on In-Memory Data Grid (IMDG) technology-a distributed data structure to store all data in the main memory of multiple computing nodes. The IMDG technology helps CLUSTOM-CLOUD to enhance both its capability of handling larger datasets and its computational scalability better than its ancestor, CLUSTOM, while maintaining high accuracy. Clustering speed of CLUSTOM-CLOUD was evaluated on published 16S rRNA human microbiome sequence datasets using the small laboratory cluster (10 nodes) and under the Amazon EC2 cloud-computing environments. Under the laboratory environment, it required only ~3 hours to process dataset of size 200 K reads regardless of the complexity of the human microbiome data. In turn, one million reads were processed in approximately 20, 14, and 11 hours when utilizing 20, 30, and 40 nodes on the Amazon EC2 cloud-computing environment. The running time evaluation indicates that CLUSTOM-CLOUD can handle much larger sequence datasets than CLUSTOM and is also a scalable distributed processing system. The comparative accuracy test using 16S rRNA pyrosequences of a mock community shows that CLUSTOM-CLOUD achieves higher accuracy than DOTUR, mothur, ESPRIT-Tree, UCLUST and Swarm. CLUSTOM-CLOUD is written in JAVA and is freely available at http://clustomcloud.kopri.re.kr.
Park, Min-Kyu; Kim, Byung Kwon; Hwang, Kyuin; Lee, Sang-Heon; Hong, Soon Gyu; Nasir, Arshan; Cho, Wan-Sup; Kim, Kyung Mo
2016-01-01
High-throughput sequencing can produce hundreds of thousands of 16S rRNA sequence reads corresponding to different organisms present in the environmental samples. Typically, analysis of microbial diversity in bioinformatics starts from pre-processing followed by clustering 16S rRNA reads into relatively fewer operational taxonomic units (OTUs). The OTUs are reliable indicators of microbial diversity and greatly accelerate the downstream analysis time. However, existing hierarchical clustering algorithms that are generally more accurate than greedy heuristic algorithms struggle with large sequence datasets. To keep pace with the rapid rise in sequencing data, we present CLUSTOM-CLOUD, which is the first distributed sequence clustering program based on In-Memory Data Grid (IMDG) technology–a distributed data structure to store all data in the main memory of multiple computing nodes. The IMDG technology helps CLUSTOM-CLOUD to enhance both its capability of handling larger datasets and its computational scalability better than its ancestor, CLUSTOM, while maintaining high accuracy. Clustering speed of CLUSTOM-CLOUD was evaluated on published 16S rRNA human microbiome sequence datasets using the small laboratory cluster (10 nodes) and under the Amazon EC2 cloud-computing environments. Under the laboratory environment, it required only ~3 hours to process dataset of size 200 K reads regardless of the complexity of the human microbiome data. In turn, one million reads were processed in approximately 20, 14, and 11 hours when utilizing 20, 30, and 40 nodes on the Amazon EC2 cloud-computing environment. The running time evaluation indicates that CLUSTOM-CLOUD can handle much larger sequence datasets than CLUSTOM and is also a scalable distributed processing system. The comparative accuracy test using 16S rRNA pyrosequences of a mock community shows that CLUSTOM-CLOUD achieves higher accuracy than DOTUR, mothur, ESPRIT-Tree, UCLUST and Swarm. CLUSTOM-CLOUD is written in JAVA and is freely available at http://clustomcloud.kopri.re.kr. PMID:26954507
On-demand provisioning of HEP compute resources on cloud sites and shared HPC centers
NASA Astrophysics Data System (ADS)
Erli, G.; Fischer, F.; Fleig, G.; Giffels, M.; Hauth, T.; Quast, G.; Schnepf, M.; Heese, J.; Leppert, K.; Arnaez de Pedro, J.; Sträter, R.
2017-10-01
This contribution reports on solutions, experiences and recent developments with the dynamic, on-demand provisioning of remote computing resources for analysis and simulation workflows. Local resources of a physics institute are extended by private and commercial cloud sites, ranging from the inclusion of desktop clusters over institute clusters to HPC centers. Rather than relying on dedicated HEP computing centers, it is nowadays more reasonable and flexible to utilize remote computing capacity via virtualization techniques or container concepts. We report on recent experience from incorporating a remote HPC center (NEMO Cluster, Freiburg University) and resources dynamically requested from the commercial provider 1&1 Internet SE into our intitute’s computing infrastructure. The Freiburg HPC resources are requested via the standard batch system, allowing HPC and HEP applications to be executed simultaneously, such that regular batch jobs run side by side to virtual machines managed via OpenStack [1]. For the inclusion of the 1&1 commercial resources, a Python API and SDK as well as the possibility to upload images were available. Large scale tests prove the capability to serve the scientific use case in the European 1&1 datacenters. The described environment at the Institute of Experimental Nuclear Physics (IEKP) at KIT serves the needs of researchers participating in the CMS and Belle II experiments. In total, resources exceeding half a million CPU hours have been provided by remote sites.
Effect of Graphene with Nanopores on Metal Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Hu; Chen, Xianlang; Wang, Lei
Porous graphene, which is a novel type of defective graphene, shows excellent potential as a support material for metal clusters. In this work, the stability and electronic structures of metal clusters (Pd, Ir, Rh) supported on pristine graphene and graphene with different sizes of nanopore were investigated by first-principle density functional theory (DFT) calculations. Thereafter, CO adsorption and oxidation reaction on the Pd-graphene system were chosen to evaluate its catalytic performance. Graphene with nanopore can strongly stabilize the metal clusters and cause a substantial downshift of the d-band center of the metal clusters, thus decreasing CO adsorption. All binding energies,more » d-band centers, and adsorption energies show a linear change with the size of the nanopore: a bigger size of nanopore corresponds to a stronger metal clusters bond to the graphene, lower downshift of the d-band center, and weaker CO adsorption. By using a suitable size nanopore, supported Pd clusters on the graphene will have similar CO and O2 adsorption ability, thus leading to superior CO tolerance. The DFT calculated reaction energy barriers show that graphene with nanopore is a superior catalyst for CO oxidation reaction. These properties can play an important role in instructing graphene-supported metal catalyst preparation to prevent the diffusion or agglomeration of metal clusters and enhance catalytic performance. This work was supported by National Basic Research Program of China (973Program) (2013CB733501), the National Natural Science Foundation of China (NSFC-21176221, 21136001, 21101137, 21306169, and 91334013). D. Mei acknowledges the support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and by the National Energy Research Scientific Computing Center (NERSC).« less
Template based parallel checkpointing in a massively parallel computer system
Archer, Charles Jens [Rochester, MN; Inglett, Todd Alan [Rochester, MN
2009-01-13
A method and apparatus for a template based parallel checkpoint save for a massively parallel super computer system using a parallel variation of the rsync protocol, and network broadcast. In preferred embodiments, the checkpoint data for each node is compared to a template checkpoint file that resides in the storage and that was previously produced. Embodiments herein greatly decrease the amount of data that must be transmitted and stored for faster checkpointing and increased efficiency of the computer system. Embodiments are directed to a parallel computer system with nodes arranged in a cluster with a high speed interconnect that can perform broadcast communication. The checkpoint contains a set of actual small data blocks with their corresponding checksums from all nodes in the system. The data blocks may be compressed using conventional non-lossy data compression algorithms to further reduce the overall checkpoint size.
NASA Astrophysics Data System (ADS)
Capone, V.; Esposito, R.; Pardi, S.; Taurino, F.; Tortone, G.
2012-12-01
Over the last few years we have seen an increasing number of services and applications needed to manage and maintain cloud computing facilities. This is particularly true for computing in high energy physics, which often requires complex configurations and distributed infrastructures. In this scenario a cost effective rationalization and consolidation strategy is the key to success in terms of scalability and reliability. In this work we describe an IaaS (Infrastructure as a Service) cloud computing system, with high availability and redundancy features, which is currently in production at INFN-Naples and ATLAS Tier-2 data centre. The main goal we intended to achieve was a simplified method to manage our computing resources and deliver reliable user services, reusing existing hardware without incurring heavy costs. A combined usage of virtualization and clustering technologies allowed us to consolidate our services on a small number of physical machines, reducing electric power costs. As a result of our efforts we developed a complete solution for data and computing centres that can be easily replicated using commodity hardware. Our architecture consists of 2 main subsystems: a clustered storage solution, built on top of disk servers running GlusterFS file system, and a virtual machines execution environment. GlusterFS is a network file system able to perform parallel writes on multiple disk servers, providing this way live replication of data. High availability is also achieved via a network configuration using redundant switches and multiple paths between hypervisor hosts and disk servers. We also developed a set of management scripts to easily perform basic system administration tasks such as automatic deployment of new virtual machines, adaptive scheduling of virtual machines on hypervisor hosts, live migration and automated restart in case of hypervisor failures.
Postcollapse Evolution of Globular Clusters
NASA Astrophysics Data System (ADS)
Makino, Junichiro
1996-11-01
A number of globular clusters appear to have undergone core collapse, in the sense that their predicted collapse times are much shorter than their current ages. Simulations with gas models and the Fokker-Planck approximation have shown that the central density of a globular cluster after the collapse undergoes nonlinear oscillation with a large amplitude (gravothermal oscillation). However, the question whether such an oscillation actually takes place in real N-body systems has remained unsolved because an N-body simulation with a sufficiently high resolution would have required computing resources of the order of several GFLOPS-yr. In the present paper, we report the results of such a simulation performed on a dedicated special-purpose computer, GRAPE-4. We have simulated the evolution of isolated point-mass systems with up to 32,768 particles. The largest number of particles reported previously is 10,000. We confirm that gravothermal oscillation takes place in an N-body system. The expansion phase shows all the signatures that are considered to be evidence of the gravothermal nature of the oscillation. At the maximum expansion, the core radius is ˜1% of the half-mass radius for the run with 32,768 particles. The maximum core size, rc, depends on N as
Workload Characterization of CFD Applications Using Partial Differential Equation Solvers
NASA Technical Reports Server (NTRS)
Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)
1998-01-01
Workload characterization is used for modeling and evaluating of computing systems at different levels of detail. We present workload characterization for a class of Computational Fluid Dynamics (CFD) applications that solve Partial Differential Equations (PDEs). This workload characterization focuses on three high performance computing platforms: SGI Origin2000, EBM SP-2, a cluster of Intel Pentium Pro bases PCs. We execute extensive measurement-based experiments on these platforms to gather statistics of system resource usage, which results in workload characterization. Our workload characterization approach yields a coarse-grain resource utilization behavior that is being applied for performance modeling and evaluation of distributed high performance metacomputing systems. In addition, this study enhances our understanding of interactions between PDE solver workloads and high performance computing platforms and is useful for tuning these applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tzeng, Nian-Feng; White, Christopher D.; Moreman, Douglas
2012-07-14
The UCoMS research cluster has spearheaded three research areas since August 2004, including wireless and sensor networks, Grid computing, and petroleum applications. The primary goals of UCoMS research are three-fold: (1) creating new knowledge to push forward the technology forefronts on pertinent research on the computing and monitoring aspects of energy resource management, (2) developing and disseminating software codes and toolkits for the research community and the public, and (3) establishing system prototypes and testbeds for evaluating innovative techniques and methods. Substantial progress and diverse accomplishment have been made by research investigators in their respective areas of expertise cooperatively onmore » such topics as sensors and sensor networks, wireless communication and systems, computational Grids, particularly relevant to petroleum applications.« less
Accelerating Subsurface Transport Simulation on Heterogeneous Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villa, Oreste; Gawande, Nitin A.; Tumeo, Antonino
Reactive transport numerical models simulate chemical and microbiological reactions that occur along a flowpath. These models have to compute reactions for a large number of locations. They solve the set of ordinary differential equations (ODEs) that describes the reaction for each location through the Newton-Raphson technique. This technique involves computing a Jacobian matrix and a residual vector for each set of equation, and then solving iteratively the linearized system by performing Gaussian Elimination and LU decomposition until convergence. STOMP, a well known subsurface flow simulation tool, employs matrices with sizes in the order of 100x100 elements and, for numerical accuracy,more » LU factorization with full pivoting instead of the faster partial pivoting. Modern high performance computing systems are heterogeneous machines whose nodes integrate both CPUs and GPUs, exposing unprecedented amounts of parallelism. To exploit all their computational power, applications must use both the types of processing elements. For the case of subsurface flow simulation, this mainly requires implementing efficient batched LU-based solvers and identifying efficient solutions for enabling load balancing among the different processors of the system. In this paper we discuss two approaches that allows scaling STOMP's performance on heterogeneous clusters. We initially identify the challenges in implementing batched LU-based solvers for small matrices on GPUs, and propose an implementation that fulfills STOMP's requirements. We compare this implementation to other existing solutions. Then, we combine the batched GPU solver with an OpenMP-based CPU solver, and present an adaptive load balancer that dynamically distributes the linear systems to solve between the two components inside a node. We show how these approaches, integrated into the full application, provide speed ups from 6 to 7 times on large problems, executed on up to 16 nodes of a cluster with two AMD Opteron 6272 and a Tesla M2090 per node.« less
NASA Technical Reports Server (NTRS)
Weed, Richard Allen; Sankar, L. N.
1994-01-01
An increasing amount of research activity in computational fluid dynamics has been devoted to the development of efficient algorithms for parallel computing systems. The increasing performance to price ratio of engineering workstations has led to research to development procedures for implementing a parallel computing system composed of distributed workstations. This thesis proposal outlines an ongoing research program to develop efficient strategies for performing three-dimensional flow analysis on distributed computing systems. The PVM parallel programming interface was used to modify an existing three-dimensional flow solver, the TEAM code developed by Lockheed for the Air Force, to function as a parallel flow solver on clusters of workstations. Steady flow solutions were generated for three different wing and body geometries to validate the code and evaluate code performance. The proposed research will extend the parallel code development to determine the most efficient strategies for unsteady flow simulations.
TOSCA-based orchestration of complex clusters at the IaaS level
NASA Astrophysics Data System (ADS)
Caballer, M.; Donvito, G.; Moltó, G.; Rocha, R.; Velten, M.
2017-10-01
This paper describes the adoption and extension of the TOSCA standard by the INDIGO-DataCloud project for the definition and deployment of complex computing clusters together with the required support in both OpenStack and OpenNebula, carried out in close collaboration with industry partners such as IBM. Two examples of these clusters are described in this paper, the definition of an elastic computing cluster to support the Galaxy bioinformatics application where the nodes are dynamically added and removed from the cluster to adapt to the workload, and the definition of an scalable Apache Mesos cluster for the execution of batch jobs and support for long-running services. The coupling of TOSCA with Ansible Roles to perform automated installation has resulted in the definition of high-level, deterministic templates to provision complex computing clusters across different Cloud sites.
N-body simulations of star clusters
NASA Astrophysics Data System (ADS)
Engle, Kimberly Anne
1999-10-01
We investigate the structure and evolution of underfilling (i.e. non-Roche-lobe-filling) King model globular star clusters using N-body simulations. We model clusters with various underfilling factors and mass distributions to determine their evolutionary tracks and lifetimes. These models include a self-consistent galactic tidal field, mass loss due to stellar evolution, ejection, and evaporation, and binary evolution. We find that a star cluster that initially does not fill its Roche lobe can live many times longer than one that does initially fill its Roche lobe. After a few relaxation times, the cluster expands to fill its Roche lobe. We also find that the choice of initial mass function significantly affects the lifetime of the cluster. These simulations were performed on the GRAPE-4 (GRAvity PipE) special-purpose hardware with the stellar dynamics package ``Starlab.'' The GRAPE-4 system is a massively-parallel computer designed to calculate the force (and its first time derivative) due to N particles. Starlab's integrator ``kira'' employs a 4th- order Hermite scheme with hierarchical (block) time steps to evolve the stellar system. We discuss, in some detail, the design of the GRAPE-4 system and the manner in which the Hermite integration scheme with block time steps is implemented in the hardware.
Naver: a PC-cluster-based VR system
NASA Astrophysics Data System (ADS)
Park, ChangHoon; Ko, HeeDong; Kim, TaiYun
2003-04-01
In this paper, we present a new framework NAVER for virtual reality application. The NAVER is based on a cluster of low-cost personal computers. The goal of NAVER is to provide flexible, extensible, scalable and re-configurable framework for the virtual environments defined as the integration of 3D virtual space and external modules. External modules are various input or output devices and applications on the remote hosts. From the view of system, personal computers are divided into three servers according to its specific functions: Render Server, Device Server and Control Server. While Device Server contains external modules requiring event-based communication for the integration, Control Server contains external modules requiring synchronous communication every frame. And, the Render Server consists of 5 managers: Scenario Manager, Event Manager, Command Manager, Interaction Manager and Sync Manager. These managers support the declaration and operation of virtual environment and the integration with external modules on remote servers.
Veis, Libor; Antalík, Andrej; Brabec, Jiří; Neese, Frank; Legeza, Örs; Pittner, Jiří
2016-10-03
In the past decade, the quantum chemical version of the density matrix renormalization group (DMRG) method has established itself as the method of choice for calculations of strongly correlated molecular systems. Despite its favorable scaling, it is in practice not suitable for computations of dynamic correlation. We present a novel method for accurate "post-DMRG" treatment of dynamic correlation based on the tailored coupled cluster (CC) theory in which the DMRG method is responsible for the proper description of nondynamic correlation, whereas dynamic correlation is incorporated through the framework of the CC theory. We illustrate the potential of this method on prominent multireference systems, in particular, N 2 and Cr 2 molecules and also oxo-Mn(Salen), for which we have performed the first post-DMRG computations in order to shed light on the energy ordering of the lowest spin states.
Low rank factorization of the Coulomb integrals for periodic coupled cluster theory.
Hummel, Felix; Tsatsoulis, Theodoros; Grüneis, Andreas
2017-03-28
We study a tensor hypercontraction decomposition of the Coulomb integrals of periodic systems where the integrals are factorized into a contraction of six matrices of which only two are distinct. We find that the Coulomb integrals can be well approximated in this form already with small matrices compared to the number of real space grid points. The cost of computing the matrices scales as O(N 4 ) using a regularized form of the alternating least squares algorithm. The studied factorization of the Coulomb integrals can be exploited to reduce the scaling of the computational cost of expensive tensor contractions appearing in the amplitude equations of coupled cluster methods with respect to system size. We apply the developed methodologies to calculate the adsorption energy of a single water molecule on a hexagonal boron nitride monolayer in a plane wave basis set and periodic boundary conditions.
Sparsity enabled cluster reduced-order models for control
NASA Astrophysics Data System (ADS)
Kaiser, Eurika; Morzyński, Marek; Daviller, Guillaume; Kutz, J. Nathan; Brunton, Bingni W.; Brunton, Steven L.
2018-01-01
Characterizing and controlling nonlinear, multi-scale phenomena are central goals in science and engineering. Cluster-based reduced-order modeling (CROM) was introduced to exploit the underlying low-dimensional dynamics of complex systems. CROM builds a data-driven discretization of the Perron-Frobenius operator, resulting in a probabilistic model for ensembles of trajectories. A key advantage of CROM is that it embeds nonlinear dynamics in a linear framework, which enables the application of standard linear techniques to the nonlinear system. CROM is typically computed on high-dimensional data; however, access to and computations on this full-state data limit the online implementation of CROM for prediction and control. Here, we address this key challenge by identifying a small subset of critical measurements to learn an efficient CROM, referred to as sparsity-enabled CROM. In particular, we leverage compressive measurements to faithfully embed the cluster geometry and preserve the probabilistic dynamics. Further, we show how to identify fewer optimized sensor locations tailored to a specific problem that outperform random measurements. Both of these sparsity-enabled sensing strategies significantly reduce the burden of data acquisition and processing for low-latency in-time estimation and control. We illustrate this unsupervised learning approach on three different high-dimensional nonlinear dynamical systems from fluids with increasing complexity, with one application in flow control. Sparsity-enabled CROM is a critical facilitator for real-time implementation on high-dimensional systems where full-state information may be inaccessible.
NASA Astrophysics Data System (ADS)
De, Sandip; Schaefer, Bastian; Sadeghi, Ali; Sicher, Michael; Kanhere, D. G.; Goedecker, Stefan
2014-02-01
Based on a recently introduced metric for measuring distances between configurations, we introduce distance-energy (DE) plots to characterize the potential energy surface of clusters. Producing such plots is computationally feasible on the density functional level since it requires only a few hundred stable low energy configurations including the global minimum. By using standard criteria based on disconnectivity graphs and the dynamics of Lennard-Jones clusters, we show that the DE plots convey the necessary information about the character of the potential energy surface and allow us to distinguish between glassy and nonglassy systems. We then apply this analysis to real clusters at the density functional theory level and show that both glassy and nonglassy clusters can be found in simulations. It turns out that among our investigated clusters only those can be synthesized experimentally which exhibit a nonglassy landscape.
Jakubikova, Elena; Bernstein, Elliot R
2007-12-27
Thermodynamics of reactions of vanadium oxide clusters with SO2 are studied at the BPW91/LANL2DZ level of theory. BPW91/LANL2DZ is insufficient to properly describe relative V-O and S-O bond strengths of vanadium and sulfur oxides. Calibration of theoretical results with experimental data is necessary to compute reliable enthalpy changes for reactions between VxOy and SO2. Theoretical results indicate SO2 to SO conversion occurs for oxygen-deficient clusters and SO2 to SO3 conversion occurs for oxygen-rich clusters. Stable intermediate structures of VOy (y = 1 - 4) clusters with SO2 are also obtained at the BPW91/TZVP level of theory. Some possible mechanisms for SO3 formation and catalyst regeneration for condensed-phase systems are suggested. These results are in agreement with, and complement, gas-phase experimental studies of neutral vanadium oxide clusters.
Catalysis by clusters with precise numbers of atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyo, Eric C.; Vajda, Stefan
2015-07-03
Clusters that contain only a small number of atoms can exhibit unique and often unexpected properties. The clusters are of particular interest in catalysis because they can act as individual active sites, and minor changes in size and composition – such as the addition or removal of a single atom – can have a substantial influence on the activity and selectivity of a reaction. Here we review recent progress in the synthesis, characterization and catalysis of well-defined sub-nanometre clusters. We examine work on size-selected supported clusters in ultra-high vacuum environments and under realistic reaction conditions, and explore the use ofmore » computational methods to provide a mechanistic understanding of their catalytic properties. We also highlight the potential of size-selected clusters to provide insights into important catalytic processes and their use in the development of novel catalytic systems.« less
AnnotCompute: annotation-based exploration and meta-analysis of genomics experiments
Zheng, Jie; Stoyanovich, Julia; Manduchi, Elisabetta; Liu, Junmin; Stoeckert, Christian J.
2011-01-01
The ever-increasing scale of biological data sets, particularly those arising in the context of high-throughput technologies, requires the development of rich data exploration tools. In this article, we present AnnotCompute, an information discovery platform for repositories of functional genomics experiments such as ArrayExpress. Our system leverages semantic annotations of functional genomics experiments with controlled vocabulary and ontology terms, such as those from the MGED Ontology, to compute conceptual dissimilarities between pairs of experiments. These dissimilarities are then used to support two types of exploratory analysis—clustering and query-by-example. We show that our proposed dissimilarity measures correspond to a user's intuition about conceptual dissimilarity, and can be used to support effective query-by-example. We also evaluate the quality of clustering based on these measures. While AnnotCompute can support a richer data exploration experience, its effectiveness is limited in some cases, due to the quality of available annotations. Nonetheless, tools such as AnnotCompute may provide an incentive for richer annotations of experiments. Code is available for download at http://www.cbil.upenn.edu/downloads/AnnotCompute. Database URL: http://www.cbil.upenn.edu/annotCompute/ PMID:22190598
The design of multiplayer online video game systems
NASA Astrophysics Data System (ADS)
Hsu, Chia-chun A.; Ling, Jim; Li, Qing; Kuo, C.-C. J.
2003-11-01
The distributed Multiplayer Online Game (MOG) system is complex since it involves technologies in computer graphics, multimedia, artificial intelligence, computer networking, embedded systems, etc. Due to the large scope of this problem, the design of MOG systems has not yet been widely addressed in the literatures. In this paper, we review and analyze the current MOG system architecture followed by evaluation. Furthermore, we propose a clustered-server architecture to provide a scalable solution together with the region oriented allocation strategy. Two key issues, i.e. interesting management and synchronization, are discussed in depth. Some preliminary ideas to deal with the identified problems are described.
Zhu, Hao; Sun, Yan; Rajagopal, Gunaretnam; Mondry, Adrian; Dhar, Pawan
2004-01-01
Background Many arrhythmias are triggered by abnormal electrical activity at the ionic channel and cell level, and then evolve spatio-temporally within the heart. To understand arrhythmias better and to diagnose them more precisely by their ECG waveforms, a whole-heart model is required to explore the association between the massively parallel activities at the channel/cell level and the integrative electrophysiological phenomena at organ level. Methods We have developed a method to build large-scale electrophysiological models by using extended cellular automata, and to run such models on a cluster of shared memory machines. We describe here the method, including the extension of a language-based cellular automaton to implement quantitative computing, the building of a whole-heart model with Visible Human Project data, the parallelization of the model on a cluster of shared memory computers with OpenMP and MPI hybrid programming, and a simulation algorithm that links cellular activity with the ECG. Results We demonstrate that electrical activities at channel, cell, and organ levels can be traced and captured conveniently in our extended cellular automaton system. Examples of some ECG waveforms simulated with a 2-D slice are given to support the ECG simulation algorithm. A performance evaluation of the 3-D model on a four-node cluster is also given. Conclusions Quantitative multicellular modeling with extended cellular automata is a highly efficient and widely applicable method to weave experimental data at different levels into computational models. This process can be used to investigate complex and collective biological activities that can be described neither by their governing differentiation equations nor by discrete parallel computation. Transparent cluster computing is a convenient and effective method to make time-consuming simulation feasible. Arrhythmias, as a typical case, can be effectively simulated with the methods described. PMID:15339335
DID THE INFANT R136 AND NGC 3603 CLUSTERS UNDERGO RESIDUAL GAS EXPULSION?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Sambaran; Kroupa, Pavel, E-mail: sambaran@astro.uni-bonn.de, E-mail: pavel@astro.uni-bonn.de
2013-02-10
Based on kinematic data observed for very young, massive clusters that appear to be in dynamical equilibrium, it has recently been argued that such young systems are examples of where the early residual gas expulsion did not happen or had no dynamical effect. The intriguing scenario of a star cluster forming through a single starburst has thereby been challenged. Choosing the case of the R136 cluster of the Large Magellanic Cloud, the most cited one in this context, we perform direct N-body computations that mimic the early evolution of this cluster including the gas-removal phase (on a thermal timescale). Ourmore » calculations show that under plausible initial conditions which are consistent with observational data, a large fraction (>60%) of a gas-expelled, expanding R136-like cluster is bound to regain dynamical equilibrium by its current age. Therefore, the recent measurements of velocity dispersion in the inner regions of R136, which indicate that the cluster is in dynamical equilibrium, are consistent with an earlier substantial gas expulsion of R136 followed by a rapid re-virialization (in Almost-Equal-To 1 Myr). Additionally, we find that the less massive Galactic NGC 3603 Young Cluster (NYC), with a substantially longer re-virialization time, is likely to be found to have deviated from dynamical equilibrium at its present age ( Almost-Equal-To 1 Myr). The recently obtained stellar proper motions in the central part of the NYC indeed suggest this and are consistent with the computed models. This work significantly extends previous models of the Orion Nebula Cluster which already demonstrated that the re-virialization time of young post-gas-expulsion clusters decreases with increasing pre-expulsion density.« less
Did the Infant R136 and NGC 3603 Clusters Undergo Residual Gas Expulsion?
NASA Astrophysics Data System (ADS)
Banerjee, Sambaran; Kroupa, Pavel
2013-02-01
Based on kinematic data observed for very young, massive clusters that appear to be in dynamical equilibrium, it has recently been argued that such young systems are examples of where the early residual gas expulsion did not happen or had no dynamical effect. The intriguing scenario of a star cluster forming through a single starburst has thereby been challenged. Choosing the case of the R136 cluster of the Large Magellanic Cloud, the most cited one in this context, we perform direct N-body computations that mimic the early evolution of this cluster including the gas-removal phase (on a thermal timescale). Our calculations show that under plausible initial conditions which are consistent with observational data, a large fraction (>60%) of a gas-expelled, expanding R136-like cluster is bound to regain dynamical equilibrium by its current age. Therefore, the recent measurements of velocity dispersion in the inner regions of R136, which indicate that the cluster is in dynamical equilibrium, are consistent with an earlier substantial gas expulsion of R136 followed by a rapid re-virialization (in ≈1 Myr). Additionally, we find that the less massive Galactic NGC 3603 Young Cluster (NYC), with a substantially longer re-virialization time, is likely to be found to have deviated from dynamical equilibrium at its present age (≈1 Myr). The recently obtained stellar proper motions in the central part of the NYC indeed suggest this and are consistent with the computed models. This work significantly extends previous models of the Orion Nebula Cluster which already demonstrated that the re-virialization time of young post-gas-expulsion clusters decreases with increasing pre-expulsion density.
Retrospective respiration-gated whole-body photoacoustic computed tomography of mice
NASA Astrophysics Data System (ADS)
Xia, Jun; Chen, Wanyi; Maslov, Konstantin; Anastasio, Mark A.; Wang, Lihong V.
2014-01-01
Photoacoustic tomography (PAT) is an emerging technique that has a great potential for preclinical whole-body imaging. To date, most whole-body PAT systems require multiple laser shots to generate one cross-sectional image, yielding a frame rate of <1 Hz. Because a mouse breathes at up to 3 Hz, without proper gating mechanisms, acquired images are susceptible to motion artifacts. Here, we introduce, for the first time to our knowledge, retrospective respiratory gating for whole-body photoacoustic computed tomography. This new method involves simultaneous capturing of the animal's respiratory waveform during photoacoustic data acquisition. The recorded photoacoustic signals are sorted and clustered according to the respiratory phase, and an image of the animal at each respiratory phase is reconstructed subsequently from the corresponding cluster. The new method was tested in a ring-shaped confocal photoacoustic computed tomography system with a hardware-limited frame rate of 0.625 Hz. After respiratory gating, we observed sharper vascular and anatomical images at different positions of the animal body. The entire breathing cycle can also be visualized at 20 frames/cycle.
One-step generation of continuous-variable quadripartite cluster states in a circuit QED system
NASA Astrophysics Data System (ADS)
Yang, Zhi-peng; Li, Zhen; Ma, Sheng-li; Li, Fu-li
2017-07-01
We propose a dissipative scheme for one-step generation of continuous-variable quadripartite cluster states in a circuit QED setup consisting of four superconducting coplanar waveguide resonators and a gap-tunable superconducting flux qubit. With external driving fields to adjust the desired qubit-resonator and resonator-resonator interactions, we show that continuous-variable quadripartite cluster states of the four resonators can be generated with the assistance of energy relaxation of the qubit. By comparison with the previous proposals, the distinct advantage of our scheme is that only one step of quantum operation is needed to realize the quantum state engineering. This makes our scheme simpler and more feasible in experiment. Our result may have useful application for implementing quantum computation in solid-state circuit QED systems.
Camerlengo, Terry; Ozer, Hatice Gulcin; Onti-Srinivasan, Raghuram; Yan, Pearlly; Huang, Tim; Parvin, Jeffrey; Huang, Kun
2012-01-01
Next Generation Sequencing is highly resource intensive. NGS Tasks related to data processing, management and analysis require high-end computing servers or even clusters. Additionally, processing NGS experiments requires suitable storage space and significant manual interaction. At The Ohio State University's Biomedical Informatics Shared Resource, we designed and implemented a scalable architecture to address the challenges associated with the resource intensive nature of NGS secondary analysis built around Illumina Genome Analyzer II sequencers and Illumina's Gerald data processing pipeline. The software infrastructure includes a distributed computing platform consisting of a LIMS called QUEST (http://bisr.osumc.edu), an Automation Server, a computer cluster for processing NGS pipelines, and a network attached storage device expandable up to 40TB. The system has been architected to scale to multiple sequencers without requiring additional computing or labor resources. This platform provides demonstrates how to manage and automate NGS experiments in an institutional or core facility setting.
Ahmad, Farah; Norman, Cameron; O'Campo, Patricia
2012-12-19
Emerging eHealth tools could facilitate the delivery of comprehensive care in time-constrained clinical settings. One such tool is interactive computer-assisted health-risk assessments (HRA), which may improve provider-patient communication at the point of care, particularly for psychosocial health concerns, which remain under-detected in clinical encounters. The research team explored the perspectives of healthcare providers representing a variety of disciplines (physicians, nurses, social workers, allied staff) regarding the factors required for implementation of an interactive HRA on psychosocial health. The research team employed a semi-qualitative participatory method known as Concept Mapping, which involved three distinct phases. First, in face-to-face and online brainstorming sessions, participants responded to an open-ended central question: "What factors should be in place within your clinical setting to support an effective computer-assisted screening tool for psychosocial risks?" The brainstormed items were consolidated by the research team. Then, in face-to-face and online sorting sessions, participants grouped the items thematically as 'it made sense to them'. Participants also rated each item on a 5-point scale for its 'importance' and 'action feasibility' over the ensuing six month period. The sorted and rated data was analyzed using multidimensional scaling and hierarchical cluster analyses which produced visual maps. In the third and final phase, the face-to-face Interpretation sessions, the concept maps were discussed and illuminated by participants collectively. Overall, 54 providers participated (emergency care 48%; primary care 52%). Participants brainstormed 196 items thought to be necessary for the implementation of an interactive HRA emphasizing psychosocial health. These were consolidated by the research team into 85 items. After sorting and rating, cluster analysis revealed a concept map with a seven-cluster solution: 1) the HRA's equitable availability; 2) the HRA's ease of use and appropriateness; 3) the content of the HRA survey; 4) patient confidentiality and choice; 5) patient comfort through humanistic touch; 6) professional development, care and workload; and 7) clinical management protocol. Drawing insight from the theoretical lens of Sociotechnical theory, the seven clusters of factors required for HRA implementation could be read as belonging to three overarching aspects : Technical (cluster 1, 2 and 3), Social-Patient (cluster 4 and 5), and Social-Provider (cluster 6 and 7). Participants rated every one of the clusters as important, with mean scores from 4.0 to 4.5. Their scores for feasibility were somewhat lower, ranging from 3.4 to. 4.3. Comparing the scores for importance and feasibility, a significant difference was found for one cluster from each region (cluster 2, 5, 6). The cluster on professional development, care and workload was perceived as especially challenging in emergency department settings, and possible reasons were discussed in the interpretation sessions. A number of intertwined multilevel factors emerged as important for the implementation of a computer-assisted, interactive HRA with a focus on psychosocial health. Future developments in this area could benefit from systems thinking and insights from theoretical perspectives, such as sociotechnical system theory for joint optimization and responsible autonomy, with emphasis on both the technical and social aspects of HRA implementation.
Experiences using OpenMP based on Computer Directed Software DSM on a PC Cluster
NASA Technical Reports Server (NTRS)
Hess, Matthias; Jost, Gabriele; Mueller, Matthias; Ruehle, Roland
2003-01-01
In this work we report on our experiences running OpenMP programs on a commodity cluster of PCs running a software distributed shared memory (DSM) system. We describe our test environment and report on the performance of a subset of the NAS Parallel Benchmarks that have been automaticaly parallelized for OpenMP. We compare the performance of the OpenMP implementations with that of their message passing counterparts and discuss performance differences.
Running VisIt Software on the Peregrine System | High-Performance Computing
kilobyte range. VisIt features a robust remote visualization capability. VisIt can be started on a local machine and used to visualize data on a remote compute cluster.The remote machine must be able to send VisIt module must be loaded as part of this process. To enable remote visualization the 'module load
NASA Technical Reports Server (NTRS)
Chaban, Galina M.; Gerber, R. Benny; Kwak, Dochan (Technical Monitor)
2001-01-01
Anharmonic vibrational frequencies and intensities are computed for hydrogen fluoride clusters (HF)n with n=3,4 and mixed clusters of hydrogen fluoride with water (HF)n(H2O)n where n=1,2. For the (HF)4(H2O)4 complex, the vibrational spectra are calculated at the harmonic level, and anharmonic effects are estimated. Potential energy surfaces for these systems are obtained at the MP2/TZP level of electronic structure theory. Vibrational states are calculated from the potential surface points using the correlation-corrected vibrational self-consistent field (CC-VSCF) method. The method accounts for the anharmonicities and couplings between all vibrational modes and provides fairly accurate anharmonic vibrational spectra that can be directly compared with experimental results without a need for empirical scaling. For (HF)n, good agreement is found with experimental data. This agreement shows that the MP2 potential surfaces for these systems are reasonably reliable. The accuracy is best for the stiff intramolecular modes, which indicates the validity of MP2 in describing coupling between intramolecular and intermolecular degrees of freedom. For (HF)n(H2O)n experimental results are unavailable. The computed intramolecular frequencies show a strong dependence on cluster size. Intensity features are predicted for future experiments.
NASA Technical Reports Server (NTRS)
Chaban, Galina M.; Gerber, R. Benny
2002-01-01
Anharmonic vibrational frequencies and intensities are computed for hydrogen fluoride clusters (HF)n, with n = 3, 4 and mixed clusters of hydrogen fluoride with water (HF)n(H2O)n where n = 1, 2. For the (HF)4(H2O)4 complex, the vibrational spectra are calculated at the harmonic level, and anharmonic effects are estimated. Potential energy surfaces for these systems are obtained at the MP2/TZP level of electronic structure theory. Vibrational states are calculated from the potential surface points using the correlation-corrected vibrational self-consistent field method. The method accounts for the anharmonicities and couplings between all vibrational modes and provides fairly accurate anharmonic vibrational spectra that can be directly compared with experimental results without a need for empirical scaling. For (HF)n, good agreement is found with experimental data. This agreement shows that the Moller-Plesset (MP2) potential surfaces for these systems are reasonably reliable. The accuracy is best for the stiff intramolecular modes, which indicates the validity of MP2 in describing coupling between intramolecular and intermolecular degrees of freedom. For (HF)n(H2O)n experimental results are unavailable. The computed intramolecular frequencies show a strong dependence on cluster size. Intensity features are predicted for future experiments.
Singh, Dadabhai T; Trehan, Rahul; Schmidt, Bertil; Bretschneider, Timo
2008-01-01
Preparedness for a possible global pandemic caused by viruses such as the highly pathogenic influenza A subtype H5N1 has become a global priority. In particular, it is critical to monitor the appearance of any new emerging subtypes. Comparative phyloinformatics can be used to monitor, analyze, and possibly predict the evolution of viruses. However, in order to utilize the full functionality of available analysis packages for large-scale phyloinformatics studies, a team of computer scientists, biostatisticians and virologists is needed--a requirement which cannot be fulfilled in many cases. Furthermore, the time complexities of many algorithms involved leads to prohibitive runtimes on sequential computer platforms. This has so far hindered the use of comparative phyloinformatics as a commonly applied tool in this area. In this paper the graphical-oriented workflow design system called Quascade and its efficient usage for comparative phyloinformatics are presented. In particular, we focus on how this task can be effectively performed in a distributed computing environment. As a proof of concept, the designed workflows are used for the phylogenetic analysis of neuraminidase of H5N1 isolates (micro level) and influenza viruses (macro level). The results of this paper are hence twofold. Firstly, this paper demonstrates the usefulness of a graphical user interface system to design and execute complex distributed workflows for large-scale phyloinformatics studies of virus genes. Secondly, the analysis of neuraminidase on different levels of complexity provides valuable insights of this virus's tendency for geographical based clustering in the phylogenetic tree and also shows the importance of glycan sites in its molecular evolution. The current study demonstrates the efficiency and utility of workflow systems providing a biologist friendly approach to complex biological dataset analysis using high performance computing. In particular, the utility of the platform Quascade for deploying distributed and parallelized versions of a variety of computationally intensive phylogenetic algorithms has been shown. Secondly, the analysis of the utilized H5N1 neuraminidase datasets at macro and micro levels has clearly indicated a pattern of spatial clustering of the H5N1 viral isolates based on geographical distribution rather than temporal or host range based clustering.
A non-voxel-based broad-beam (NVBB) framework for IMRT treatment planning.
Lu, Weiguo
2010-12-07
We present a novel framework that enables very large scale intensity-modulated radiation therapy (IMRT) planning in limited computation resources with improvements in cost, plan quality and planning throughput. Current IMRT optimization uses a voxel-based beamlet superposition (VBS) framework that requires pre-calculation and storage of a large amount of beamlet data, resulting in large temporal and spatial complexity. We developed a non-voxel-based broad-beam (NVBB) framework for IMRT capable of direct treatment parameter optimization (DTPO). In this framework, both objective function and derivative are evaluated based on the continuous viewpoint, abandoning 'voxel' and 'beamlet' representations. Thus pre-calculation and storage of beamlets are no longer needed. The NVBB framework has linear complexities (O(N(3))) in both space and time. The low memory, full computation and data parallelization nature of the framework render its efficient implementation on the graphic processing unit (GPU). We implemented the NVBB framework and incorporated it with the TomoTherapy treatment planning system (TPS). The new TPS runs on a single workstation with one GPU card (NVBB-GPU). Extensive verification/validation tests were performed in house and via third parties. Benchmarks on dose accuracy, plan quality and throughput were compared with the commercial TomoTherapy TPS that is based on the VBS framework and uses a computer cluster with 14 nodes (VBS-cluster). For all tests, the dose accuracy of these two TPSs is comparable (within 1%). Plan qualities were comparable with no clinically significant difference for most cases except that superior target uniformity was seen in the NVBB-GPU for some cases. However, the planning time using the NVBB-GPU was reduced many folds over the VBS-cluster. In conclusion, we developed a novel NVBB framework for IMRT optimization. The continuous viewpoint and DTPO nature of the algorithm eliminate the need for beamlets and lead to better plan quality. The computation parallelization on a GPU instead of a computer cluster significantly reduces hardware and service costs. Compared with using the current VBS framework on a computer cluster, the planning time is significantly reduced using the NVBB framework on a single workstation with a GPU card.
NASA Astrophysics Data System (ADS)
DePrince, A. Eugene; Mazziotti, David A.
2010-01-01
The parametric variational two-electron reduced-density-matrix (2-RDM) method is applied to computing electronic correlation energies of medium-to-large molecular systems by exploiting the spatial locality of electron correlation within the framework of the cluster-in-molecule (CIM) approximation [S. Li et al., J. Comput. Chem. 23, 238 (2002); J. Chem. Phys. 125, 074109 (2006)]. The 2-RDMs of individual molecular fragments within a molecule are determined, and selected portions of these 2-RDMs are recombined to yield an accurate approximation to the correlation energy of the entire molecule. In addition to extending CIM to the parametric 2-RDM method, we (i) suggest a more systematic selection of atomic-orbital domains than that presented in previous CIM studies and (ii) generalize the CIM method for open-shell quantum systems. The resulting method is tested with a series of polyacetylene molecules, water clusters, and diazobenzene derivatives in minimal and nonminimal basis sets. Calculations show that the computational cost of the method scales linearly with system size. We also compute hydrogen-abstraction energies for a series of hydroxyurea derivatives. Abstraction of hydrogen from hydroxyurea is thought to be a key step in its treatment of sickle cell anemia; the design of hydroxyurea derivatives that oxidize more rapidly is one approach to devising more effective treatments.
An Improved Clustering Algorithm of Tunnel Monitoring Data for Cloud Computing
Zhong, Luo; Tang, KunHao; Li, Lin; Yang, Guang; Ye, JingJing
2014-01-01
With the rapid development of urban construction, the number of urban tunnels is increasing and the data they produce become more and more complex. It results in the fact that the traditional clustering algorithm cannot handle the mass data of the tunnel. To solve this problem, an improved parallel clustering algorithm based on k-means has been proposed. It is a clustering algorithm using the MapReduce within cloud computing that deals with data. It not only has the advantage of being used to deal with mass data but also is more efficient. Moreover, it is able to compute the average dissimilarity degree of each cluster in order to clean the abnormal data. PMID:24982971
CO2 Cluster Ion Beam, an Alternative Projectile for Secondary Ion Mass Spectrometry
NASA Astrophysics Data System (ADS)
Tian, Hua; Maciążek, Dawid; Postawa, Zbigniew; Garrison, Barbara J.; Winograd, Nicholas
2016-09-01
The emergence of argon-based gas cluster ion beams for SIMS experiments opens new possibilities for molecular depth profiling and 3D chemical imaging. These beams generally leave less surface chemical damage and yield mass spectra with reduced fragmentation compared with smaller cluster projectiles. For nanoscale bioimaging applications, however, limited sensitivity due to low ionization probability and technical challenges of beam focusing remain problematic. The use of gas cluster ion beams based upon systems other than argon offer an opportunity to resolve these difficulties. Here we report on the prospects of employing CO2 as a simple alternative to argon. Ionization efficiency, chemical damage, sputter rate, and beam focus are investigated on model compounds using a series of CO2 and Ar cluster projectiles (cluster size 1000-5000) with the same mass. The results show that the two projectiles are very similar in each of these aspects. Computer simulations comparing the impact of Ar2000 and (CO2)2000 on an organic target also confirm that the CO2 molecules in the cluster projectile remain intact, acting as a single particle of m/z 44. The imaging resolution employing CO2 cluster projectiles is improved by more than a factor of two. The advantage of CO2 versus Ar is also related to the increased stability which, in addition, facilitates the operation of the gas cluster ion beams (GCIB) system at lower backing pressure.
Quantum Gibbs Samplers: The Commuting Case
NASA Astrophysics Data System (ADS)
Kastoryano, Michael J.; Brandão, Fernando G. S. L.
2016-06-01
We analyze the problem of preparing quantum Gibbs states of lattice spin Hamiltonians with local and commuting terms on a quantum computer and in nature. Our central result is an equivalence between the behavior of correlations in the Gibbs state and the mixing time of the semigroup which drives the system to thermal equilibrium (the Gibbs sampler). We introduce a framework for analyzing the correlation and mixing properties of quantum Gibbs states and quantum Gibbs samplers, which is rooted in the theory of non-commutative {mathbb{L}_p} spaces. We consider two distinct classes of Gibbs samplers, one of them being the well-studied Davies generator modelling the dynamics of a system due to weak-coupling with a large Markovian environment. We show that their spectral gap is independent of system size if, and only if, a certain strong form of clustering of correlations holds in the Gibbs state. Therefore every Gibbs state of a commuting Hamiltonian that satisfies clustering of correlations in this strong sense can be prepared efficiently on a quantum computer. As concrete applications of our formalism, we show that for every one-dimensional lattice system, or for systems in lattices of any dimension at temperatures above a certain threshold, the Gibbs samplers of commuting Hamiltonians are always gapped, giving an efficient way of preparing the associated Gibbs states on a quantum computer.
Beating the tyranny of scale with a private cloud configured for Big Data
NASA Astrophysics Data System (ADS)
Lawrence, Bryan; Bennett, Victoria; Churchill, Jonathan; Juckes, Martin; Kershaw, Philip; Pepler, Sam; Pritchard, Matt; Stephens, Ag
2015-04-01
The Joint Analysis System, JASMIN, consists of a five significant hardware components: a batch computing cluster, a hypervisor cluster, bulk disk storage, high performance disk storage, and access to a tape robot. Each of the computing clusters consists of a heterogeneous set of servers, supporting a range of possible data analysis tasks - and a unique network environment makes it relatively trivial to migrate servers between the two clusters. The high performance disk storage will include the world's largest (publicly visible) deployment of the Panasas parallel disk system. Initially deployed in April 2012, JASMIN has already undergone two major upgrades, culminating in a system which by April 2015, will have in excess of 16 PB of disk and 4000 cores. Layered on the basic hardware are a range of services, ranging from managed services, such as the curated archives of the Centre for Environmental Data Archival or the data analysis environment for the National Centres for Atmospheric Science and Earth Observation, to a generic Infrastructure as a Service (IaaS) offering for the UK environmental science community. Here we present examples of some of the big data workloads being supported in this environment - ranging from data management tasks, such as checksumming 3 PB of data held in over one hundred million files, to science tasks, such as re-processing satellite observations with new algorithms, or calculating new diagnostics on petascale climate simulation outputs. We will demonstrate how the provision of a cloud environment closely coupled to a batch computing environment, all sharing the same high performance disk system allows massively parallel processing without the necessity to shuffle data excessively - even as it supports many different virtual communities, each with guaranteed performance. We will discuss the advantages of having a heterogeneous range of servers with available memory from tens of GB at the low end to (currently) two TB at the high end. There are some limitations of the JASMIN environment, the high performance disk environment is not fully available in the IaaS environment, and a planned ability to burst compute heavy jobs into the public cloud is not yet fully available. There are load balancing and performance issues that need to be understood. We will conclude with projections for future usage, and our plans to meet those requirements.
Hadjithomas, Michalis; Chen, I-Min Amy; Chu, Ken; ...
2015-07-14
In the discovery of secondary metabolites, analysis of sequence data is a promising exploration path that remains largely underutilized due to the lack of computational platforms that enable such a systematic approach on a large scale. In this work, we present IMG-ABC (https://img.jgi.doe.gov/abc), an atlas of biosynthetic gene clusters within the Integrated Microbial Genomes (IMG) system, which is aimed at harnessing the power of “big” genomic data for discovering small molecules. IMG-ABC relies on IMG’s comprehensive integrated structural and functional genomic data for the analysis of biosynthetic gene clusters (BCs) and associated secondary metabolites (SMs). SMs and BCs serve asmore » the two main classes of objects in IMG-ABC, each with a rich collection of attributes. A unique feature of IMG-ABC is the incorporation of both experimentally validated and computationally predicted BCs in genomes as well as metagenomes, thus identifying BCs in uncultured populations and rare taxa. We demonstrate the strength of IMG-ABC’s focused integrated analysis tools in enabling the exploration of microbial secondary metabolism on a global scale, through the discovery of phenazine-producing clusters for the first time in lphaproteobacteria. IMG-ABC strives to fill the long-existent void of resources for computational exploration of the secondary metabolism universe; its underlying scalable framework enables traversal of uncovered phylogenetic and chemical structure space, serving as a doorway to a new era in the discovery of novel molecules. IMG-ABC is the largest publicly available database of predicted and experimental biosynthetic gene clusters and the secondary metabolites they produce. The system also includes powerful search and analysis tools that are integrated with IMG’s extensive genomic/metagenomic data and analysis tool kits. As new research on biosynthetic gene clusters and secondary metabolites is published and more genomes are sequenced, IMG-ABC will continue to expand, with the goal of becoming an essential component of any bioinformatic exploration of the secondary metabolism world.« less
Cognitive Model Exploration and Optimization: A New Challenge for Computational Science
2010-03-01
the generation and analysis of computational cognitive models to explain various aspects of cognition. Typically the behavior of these models...computational scale of a workstation, so we have turned to high performance computing (HPC) clusters and volunteer computing for large-scale...computational resources. The majority of applications on the Department of Defense HPC clusters focus on solving partial differential equations (Post
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grulke, Eric; Stencel, John
2011-09-13
The KY DOE EPSCoR Program supports two research clusters. The Materials Cluster uses unique equipment and computational methods that involve research expertise at the University of Kentucky and University of Louisville. This team determines the physical, chemical and mechanical properties of nanostructured materials and examines the dominant mechanisms involved in the formation of new self-assembled nanostructures. State-of-the-art parallel computational methods and algorithms are used to overcome current limitations of processing that otherwise are restricted to small system sizes and short times. The team also focuses on developing and applying advanced microtechnology fabrication techniques and the application of microelectrornechanical systems (MEMS)more » for creating new materials, novel microdevices, and integrated microsensors. The second research cluster concentrates on High Energy and Nuclear Physics. lt connects research and educational activities at the University of Kentucky, Eastern Kentucky University and national DOE research laboratories. Its vision is to establish world-class research status dedicated to experimental and theoretical investigations in strong interaction physics. The research provides a forum, facilities, and support for scientists to interact and collaborate in subatomic physics research. The program enables increased student involvement in fundamental physics research through the establishment of graduate fellowships and collaborative work.« less
Measurement of liner slips, milking time, and milk yield.
O'Callaghan, E J
1996-03-01
Liner slip or rapid air leakage past the mouthpiece of the milking machine liner is related to high rates of new cases of mastitis. A real time technique was developed to monitor the air flow into the milking machine cluster during liner slips as well as to monitor milking time and milk yield using a commercial type pipeline milking system. The air flow into the cluster was measured by recording the pressure differences across an orifice plate placed in the air bypass of an air-milk separator using a differential pressure transducer. Milk yield was recorded by counting the number of milk releases from an electronic milk meter. The release solenoids of the milk meter were linked to a computer. The start and end of milking were manually recorded by switching a two-pole switch connected to a digital input card on the computer, which was programmed to record air flow, milk yield, and milking time. Milk yield, milking time, and air flows during liner slips were recorded simultaneously at each milking unit in an 11-unit herringbone parlor. The system was tested with an experiment with a 4 x 4 Latin square design using four treatments (clusters) and four treatment groups (22 cows per group).
Hybrid cloud and cluster computing paradigms for life science applications
2010-01-01
Background Clouds and MapReduce have shown themselves to be a broadly useful approach to scientific computing especially for parallel data intensive applications. However they have limited applicability to some areas such as data mining because MapReduce has poor performance on problems with an iterative structure present in the linear algebra that underlies much data analysis. Such problems can be run efficiently on clusters using MPI leading to a hybrid cloud and cluster environment. This motivates the design and implementation of an open source Iterative MapReduce system Twister. Results Comparisons of Amazon, Azure, and traditional Linux and Windows environments on common applications have shown encouraging performance and usability comparisons in several important non iterative cases. These are linked to MPI applications for final stages of the data analysis. Further we have released the open source Twister Iterative MapReduce and benchmarked it against basic MapReduce (Hadoop) and MPI in information retrieval and life sciences applications. Conclusions The hybrid cloud (MapReduce) and cluster (MPI) approach offers an attractive production environment while Twister promises a uniform programming environment for many Life Sciences applications. Methods We used commercial clouds Amazon and Azure and the NSF resource FutureGrid to perform detailed comparisons and evaluations of different approaches to data intensive computing. Several applications were developed in MPI, MapReduce and Twister in these different environments. PMID:21210982
Hybrid cloud and cluster computing paradigms for life science applications.
Qiu, Judy; Ekanayake, Jaliya; Gunarathne, Thilina; Choi, Jong Youl; Bae, Seung-Hee; Li, Hui; Zhang, Bingjing; Wu, Tak-Lon; Ruan, Yang; Ekanayake, Saliya; Hughes, Adam; Fox, Geoffrey
2010-12-21
Clouds and MapReduce have shown themselves to be a broadly useful approach to scientific computing especially for parallel data intensive applications. However they have limited applicability to some areas such as data mining because MapReduce has poor performance on problems with an iterative structure present in the linear algebra that underlies much data analysis. Such problems can be run efficiently on clusters using MPI leading to a hybrid cloud and cluster environment. This motivates the design and implementation of an open source Iterative MapReduce system Twister. Comparisons of Amazon, Azure, and traditional Linux and Windows environments on common applications have shown encouraging performance and usability comparisons in several important non iterative cases. These are linked to MPI applications for final stages of the data analysis. Further we have released the open source Twister Iterative MapReduce and benchmarked it against basic MapReduce (Hadoop) and MPI in information retrieval and life sciences applications. The hybrid cloud (MapReduce) and cluster (MPI) approach offers an attractive production environment while Twister promises a uniform programming environment for many Life Sciences applications. We used commercial clouds Amazon and Azure and the NSF resource FutureGrid to perform detailed comparisons and evaluations of different approaches to data intensive computing. Several applications were developed in MPI, MapReduce and Twister in these different environments.
Importance of balanced architectures in the design of high-performance imaging systems
NASA Astrophysics Data System (ADS)
Sgro, Joseph A.; Stanton, Paul C.
1999-03-01
Imaging systems employed in demanding military and industrial applications, such as automatic target recognition and computer vision, typically require real-time high-performance computing resources. While high- performances computing systems have traditionally relied on proprietary architectures and custom components, recent advances in high performance general-purpose microprocessor technology have produced an abundance of low cost components suitable for use in high-performance computing systems. A common pitfall in the design of high performance imaging system, particularly systems employing scalable multiprocessor architectures, is the failure to balance computational and memory bandwidth. The performance of standard cluster designs, for example, in which several processors share a common memory bus, is typically constrained by memory bandwidth. The symptom characteristic of this problem is failure to the performance of the system to scale as more processors are added. The problem becomes exacerbated if I/O and memory functions share the same bus. The recent introduction of microprocessors with large internal caches and high performance external memory interfaces makes it practical to design high performance imaging system with balanced computational and memory bandwidth. Real word examples of such designs will be presented, along with a discussion of adapting algorithm design to best utilize available memory bandwidth.
1994-03-14
Comanche VAX/i960 Ada Compiler System, Version 4.1.1 Host Computer System: Digital Local Area Network VAX Cluster executing on (2) MicroVAX 3100 Model 90...31 $MAX DIGITS 15 SmNx INT 2147483647 $MAX INT PLUS_1 2147483648 $MIN IN -2_147483648 A-3 MACR PARAMEERIS $NAME NO SUCH INTEGER TYPE $NAME LIST...nested generlcs are Supported and generics defined in libary units are pexitted. zt is not possible to pen ore a macro instantiation for a generic I
A handheld computer-aided diagnosis system and simulated analysis
NASA Astrophysics Data System (ADS)
Su, Mingjian; Zhang, Xuejun; Liu, Brent; Su, Kening; Louie, Ryan
2016-03-01
This paper describes a Computer Aided Diagnosis (CAD) system based on cellphone and distributed cluster. One of the bottlenecks in building a CAD system for clinical practice is the storage and process of mass pathology samples freely among different devices, and normal pattern matching algorithm on large scale image set is very time consuming. Distributed computation on cluster has demonstrated the ability to relieve this bottleneck. We develop a system enabling the user to compare the mass image to a dataset with feature table by sending datasets to Generic Data Handler Module in Hadoop, where the pattern recognition is undertaken for the detection of skin diseases. A single and combination retrieval algorithm to data pipeline base on Map Reduce framework is used in our system in order to make optimal choice between recognition accuracy and system cost. The profile of lesion area is drawn by doctors manually on the screen, and then uploads this pattern to the server. In our evaluation experiment, an accuracy of 75% diagnosis hit rate is obtained by testing 100 patients with skin illness. Our system has the potential help in building a novel medical image dataset by collecting large amounts of gold standard during medical diagnosis. Once the project is online, the participants are free to join and eventually an abundant sample dataset will soon be gathered enough for learning. These results demonstrate our technology is very promising and expected to be used in clinical practice.
A framework for graph-based synthesis, analysis, and visualization of HPC cluster job data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayo, Jackson R.; Kegelmeyer, W. Philip, Jr.; Wong, Matthew H.
The monitoring and system analysis of high performance computing (HPC) clusters is of increasing importance to the HPC community. Analysis of HPC job data can be used to characterize system usage and diagnose and examine failure modes and their effects. This analysis is not straightforward, however, due to the complex relationships that exist between jobs. These relationships are based on a number of factors, including shared compute nodes between jobs, proximity of jobs in time, etc. Graph-based techniques represent an approach that is particularly well suited to this problem, and provide an effective technique for discovering important relationships in jobmore » queuing and execution data. The efficacy of these techniques is rooted in the use of a semantic graph as a knowledge representation tool. In a semantic graph job data, represented in a combination of numerical and textual forms, can be flexibly processed into edges, with corresponding weights, expressing relationships between jobs, nodes, users, and other relevant entities. This graph-based representation permits formal manipulation by a number of analysis algorithms. This report presents a methodology and software implementation that leverages semantic graph-based techniques for the system-level monitoring and analysis of HPC clusters based on job queuing and execution data. Ontology development and graph synthesis is discussed with respect to the domain of HPC job data. The framework developed automates the synthesis of graphs from a database of job information. It also provides a front end, enabling visualization of the synthesized graphs. Additionally, an analysis engine is incorporated that provides performance analysis, graph-based clustering, and failure prediction capabilities for HPC systems.« less
Commodity Cluster Computing for Remote Sensing Applications using Red Hat LINUX
NASA Technical Reports Server (NTRS)
Dorband, John
2003-01-01
Since 1994, we have been doing research at Goddard Space Flight Center on implementing a wide variety of applications on commodity based computing clusters. This talk is about these clusters and haw they are used on these applications including ones for remote sensing.
NASA Astrophysics Data System (ADS)
Chakraborty, Debdutta; Chattaraj, Pratim Kumar
2017-10-01
The possibility of functionalizing boron nitride flakes (BNFs) with some selected main group metal clusters, viz. OLi4, NLi5, CLi6, BLI7 and Al12Be, has been analyzed with the aid of density functional theory (DFT) based computations. Thermochemical as well as energetic considerations suggest that all the metal clusters interact with the BNF moiety in a favorable fashion. As a result of functionalization, the static (first) hyperpolarizability (β ) values of the metal cluster supported BNF moieties increase quite significantly as compared to that in the case of pristine BNF. Time dependent DFT analysis reveals that the metal clusters can lower the transition energies associated with the dominant electronic transitions quite significantly thereby enabling the metal cluster supported BNF moieties to exhibit significant non-linear optical activity. Moreover, the studied systems demonstrate broad band absorption capability spanning the UV-visible as well as infra-red domains. Energy decomposition analysis reveals that the electrostatic interactions principally stabilize the metal cluster supported BNF moieties.
Chakraborty, Debdutta; Chattaraj, Pratim Kumar
2017-10-25
The possibility of functionalizing boron nitride flakes (BNFs) with some selected main group metal clusters, viz. OLi 4 , NLi 5 , CLi 6 , BLI 7 and Al 12 Be, has been analyzed with the aid of density functional theory (DFT) based computations. Thermochemical as well as energetic considerations suggest that all the metal clusters interact with the BNF moiety in a favorable fashion. As a result of functionalization, the static (first) hyperpolarizability ([Formula: see text]) values of the metal cluster supported BNF moieties increase quite significantly as compared to that in the case of pristine BNF. Time dependent DFT analysis reveals that the metal clusters can lower the transition energies associated with the dominant electronic transitions quite significantly thereby enabling the metal cluster supported BNF moieties to exhibit significant non-linear optical activity. Moreover, the studied systems demonstrate broad band absorption capability spanning the UV-visible as well as infra-red domains. Energy decomposition analysis reveals that the electrostatic interactions principally stabilize the metal cluster supported BNF moieties.
NASA Astrophysics Data System (ADS)
Krumholz, Mark R.; Fumagalli, Michele; da Silva, Robert L.; Rendahl, Theodore; Parra, Jonathan
2015-09-01
Stellar population synthesis techniques for predicting the observable light emitted by a stellar population have extensive applications in numerous areas of astronomy. However, accurate predictions for small populations of young stars, such as those found in individual star clusters, star-forming dwarf galaxies, and small segments of spiral galaxies, require that the population be treated stochastically. Conversely, accurate deductions of the properties of such objects also require consideration of stochasticity. Here we describe a comprehensive suite of modular, open-source software tools for tackling these related problems. These include the following: a greatly-enhanced version of the SLUG code introduced by da Silva et al., which computes spectra and photometry for stochastically or deterministically sampled stellar populations with nearly arbitrary star formation histories, clustering properties, and initial mass functions; CLOUDY_SLUG, a tool that automatically couples SLUG-computed spectra with the CLOUDY radiative transfer code in order to predict stochastic nebular emission; BAYESPHOT, a general-purpose tool for performing Bayesian inference on the physical properties of stellar systems based on unresolved photometry; and CLUSTER_SLUG and SFR_SLUG, a pair of tools that use BAYESPHOT on a library of SLUG models to compute the mass, age, and extinction of mono-age star clusters, and the star formation rate of galaxies, respectively. The latter two tools make use of an extensive library of pre-computed stellar population models, which are included in the software. The complete package is available at http://www.slugsps.com.
Efficient Deployment of Key Nodes for Optimal Coverage of Industrial Mobile Wireless Networks
Li, Xiaomin; Li, Di; Dong, Zhijie; Hu, Yage; Liu, Chengliang
2018-01-01
In recent years, industrial wireless networks (IWNs) have been transformed by the introduction of mobile nodes, and they now offer increased extensibility, mobility, and flexibility. Nevertheless, mobile nodes pose efficiency and reliability challenges. Efficient node deployment and management of channel interference directly affect network system performance, particularly for key node placement in clustered wireless networks. This study analyzes this system model, considering both industrial properties of wireless networks and their mobility. Then, static and mobile node coverage problems are unified and simplified to target coverage problems. We propose a novel strategy for the deployment of clustered heads in grouped industrial mobile wireless networks (IMWNs) based on the improved maximal clique model and the iterative computation of new candidate cluster head positions. The maximal cliques are obtained via a double-layer Tabu search. Each cluster head updates its new position via an improved virtual force while moving with full coverage to find the minimal inter-cluster interference. Finally, we develop a simulation environment. The simulation results, based on a performance comparison, show the efficacy of the proposed strategies and their superiority over current approaches. PMID:29439439
Traveling-cluster approximation for uncorrelated amorphous systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, A.K.; Mills, R.; Kaplan, T.
1984-11-15
We have developed a formalism for including cluster effects in the one-electron Green's function for a positionally disordered (liquid or amorphous) system without any correlation among the scattering sites. This method is an extension of the technique known as the traveling-cluster approximation (TCA) originally obtained and applied to a substitutional alloy by Mills and Ratanavararaksa. We have also proved the appropriate fixed-point theorem, which guarantees, for a bounded local potential, that the self-consistent equations always converge upon iteration to a unique, Herglotz solution. To our knowledge, this is the only analytic theory for considering cluster effects. Furthermore, we have performedmore » some computer calculations in the pair TCA, for the model case of delta-function potentials on a one-dimensional random chain. These results have been compared with ''exact calculations'' (which, in principle, take into account all cluster effects) and with the coherent-potential approximation (CPA), which is the single-site TCA. The density of states for the pair TCA clearly shows some improvement over the CPA and yet, apparently, the pair approximation distorts some of the features of the exact results.« less
Applying Pose Clustering and MD Simulations To Eliminate False Positives in Molecular Docking.
Makeneni, Spandana; Thieker, David F; Woods, Robert J
2018-03-26
In this work, we developed a computational protocol that employs multiple molecular docking experiments, followed by pose clustering, molecular dynamic simulations (10 ns), and energy rescoring to produce reliable 3D models of antibody-carbohydrate complexes. The protocol was applied to 10 antibody-carbohydrate co-complexes and three unliganded (apo) antibodies. Pose clustering significantly reduced the number of potential poses. For each system, 15 or fewer clusters out of 100 initial poses were generated and chosen for further analysis. Molecular dynamics (MD) simulations allowed the docked poses to either converge or disperse, and rescoring increased the likelihood that the best-ranked pose was an acceptable pose. This approach is amenable to automation and can be a valuable aid in determining the structure of antibody-carbohydrate complexes provided there is no major side chain rearrangement or backbone conformational change in the H3 loop of the CDR regions. Further, the basic protocol of docking a small ligand to a known binding site, clustering the results, and performing MD with a suitable force field is applicable to any protein ligand system.
Fault-tolerant measurement-based quantum computing with continuous-variable cluster states.
Menicucci, Nicolas C
2014-03-28
A long-standing open question about Gaussian continuous-variable cluster states is whether they enable fault-tolerant measurement-based quantum computation. The answer is yes. Initial squeezing in the cluster above a threshold value of 20.5 dB ensures that errors from finite squeezing acting on encoded qubits are below the fault-tolerance threshold of known qubit-based error-correcting codes. By concatenating with one of these codes and using ancilla-based error correction, fault-tolerant measurement-based quantum computation of theoretically indefinite length is possible with finitely squeezed cluster states.
NASA Astrophysics Data System (ADS)
Dreano, Denis; Tsiaras, Kostas; Triantafyllou, George; Hoteit, Ibrahim
2017-07-01
Forecasting the state of large marine ecosystems is important for many economic and public health applications. However, advanced three-dimensional (3D) ecosystem models, such as the European Regional Seas Ecosystem Model (ERSEM), are computationally expensive, especially when implemented within an ensemble data assimilation system requiring several parallel integrations. As an alternative to 3D ecological forecasting systems, we propose to implement a set of regional one-dimensional (1D) water-column ecological models that run at a fraction of the computational cost. The 1D model domains are determined using a Gaussian mixture model (GMM)-based clustering method and satellite chlorophyll-a (Chl-a) data. Regionally averaged Chl-a data is assimilated into the 1D models using the singular evolutive interpolated Kalman (SEIK) filter. To laterally exchange information between subregions and improve the forecasting skills, we introduce a new correction step to the assimilation scheme, in which we assimilate a statistical forecast of future Chl-a observations based on information from neighbouring regions. We apply this approach to the Red Sea and show that the assimilative 1D ecological models can forecast surface Chl-a concentration with high accuracy. The statistical assimilation step further improves the forecasting skill by as much as 50%. This general approach of clustering large marine areas and running several interacting 1D ecological models is very flexible. It allows many combinations of clustering, filtering and regression technics to be used and can be applied to build efficient forecasting systems in other large marine ecosystems.
Excess electrons in methanol clusters: Beyond the one-electron picture
NASA Astrophysics Data System (ADS)
Pohl, Gábor; Mones, Letif; Turi, László
2016-10-01
We performed a series of comparative quantum chemical calculations on various size negatively charged methanol clusters, ("separators=" CH 3 OH ) n - . The clusters are examined in their optimized geometries (n = 2-4), and in geometries taken from mixed quantum-classical molecular dynamics simulations at finite temperature (n = 2-128). These latter structures model potential electron binding sites in methanol clusters and in bulk methanol. In particular, we compute the vertical detachment energy (VDE) of an excess electron from increasing size methanol cluster anions using quantum chemical computations at various levels of theory including a one-electron pseudopotential model, several density functional theory (DFT) based methods, MP2 and coupled-cluster CCSD(T) calculations. The results suggest that at least four methanol molecules are needed to bind an excess electron on a hydrogen bonded methanol chain in a dipole bound state. Larger methanol clusters are able to form stronger interactions with an excess electron. The two simulated excess electron binding motifs in methanol clusters, interior and surface states, correlate well with distinct, experimentally found VDE tendencies with size. Interior states in a solvent cavity are stabilized significantly stronger than electron states on cluster surfaces. Although we find that all the examined quantum chemistry methods more or less overestimate the strength of the experimental excess electron stabilization, MP2, LC-BLYP, and BHandHLYP methods with diffuse basis sets provide a significantly better estimate of the VDE than traditional DFT methods (BLYP, B3LYP, X3LYP, PBE0). A comparison to the better performing many electron methods indicates that the examined one-electron pseudopotential can be reasonably used in simulations for systems of larger size.
Excess electrons in methanol clusters: Beyond the one-electron picture.
Pohl, Gábor; Mones, Letif; Turi, László
2016-10-28
We performed a series of comparative quantum chemical calculations on various size negatively charged methanol clusters, CH 3 OH n - . The clusters are examined in their optimized geometries (n = 2-4), and in geometries taken from mixed quantum-classical molecular dynamics simulations at finite temperature (n = 2-128). These latter structures model potential electron binding sites in methanol clusters and in bulk methanol. In particular, we compute the vertical detachment energy (VDE) of an excess electron from increasing size methanol cluster anions using quantum chemical computations at various levels of theory including a one-electron pseudopotential model, several density functional theory (DFT) based methods, MP2 and coupled-cluster CCSD(T) calculations. The results suggest that at least four methanol molecules are needed to bind an excess electron on a hydrogen bonded methanol chain in a dipole bound state. Larger methanol clusters are able to form stronger interactions with an excess electron. The two simulated excess electron binding motifs in methanol clusters, interior and surface states, correlate well with distinct, experimentally found VDE tendencies with size. Interior states in a solvent cavity are stabilized significantly stronger than electron states on cluster surfaces. Although we find that all the examined quantum chemistry methods more or less overestimate the strength of the experimental excess electron stabilization, MP2, LC-BLYP, and BHandHLYP methods with diffuse basis sets provide a significantly better estimate of the VDE than traditional DFT methods (BLYP, B3LYP, X3LYP, PBE0). A comparison to the better performing many electron methods indicates that the examined one-electron pseudopotential can be reasonably used in simulations for systems of larger size.
Method of identifying clusters representing statistical dependencies in multivariate data
NASA Technical Reports Server (NTRS)
Borucki, W. J.; Card, D. H.; Lyle, G. C.
1975-01-01
Approach is first to cluster and then to compute spatial boundaries for resulting clusters. Next step is to compute, from set of Monte Carlo samples obtained from scrambled data, estimates of probabilities of obtaining at least as many points within boundaries as were actually observed in original data.
Individualization as Driving Force of Clustering Phenomena in Humans
Mäs, Michael; Flache, Andreas; Helbing, Dirk
2010-01-01
One of the most intriguing dynamics in biological systems is the emergence of clustering, in the sense that individuals self-organize into separate agglomerations in physical or behavioral space. Several theories have been developed to explain clustering in, for instance, multi-cellular organisms, ant colonies, bee hives, flocks of birds, schools of fish, and animal herds. A persistent puzzle, however, is the clustering of opinions in human populations, particularly when opinions vary continuously, such as the degree to which citizens are in favor of or against a vaccination program. Existing continuous opinion formation models predict “monoculture” in the long run, unless subsets of the population are perfectly separated from each other. Yet, social diversity is a robust empirical phenomenon, although perfect separation is hardly possible in an increasingly connected world. Considering randomness has not overcome the theoretical shortcomings so far. Small perturbations of individual opinions trigger social influence cascades that inevitably lead to monoculture, while larger noise disrupts opinion clusters and results in rampant individualism without any social structure. Our solution to the puzzle builds on recent empirical research, combining the integrative tendencies of social influence with the disintegrative effects of individualization. A key element of the new computational model is an adaptive kind of noise. We conduct computer simulation experiments demonstrating that with this kind of noise a third phase besides individualism and monoculture becomes possible, characterized by the formation of metastable clusters with diversity between and consensus within clusters. When clusters are small, individualization tendencies are too weak to prohibit a fusion of clusters. When clusters grow too large, however, individualization increases in strength, which promotes their splitting. In summary, the new model can explain cultural clustering in human societies. Strikingly, model predictions are not only robust to “noise”—randomness is actually the central mechanism that sustains pluralism and clustering. PMID:20975937
Correlation Functions in Two-Dimensional Critical Systems with Conformal Symmetry
NASA Astrophysics Data System (ADS)
Flores, Steven Miguel
This thesis presents a study of certain conformal field theory (CFT) correlation functions that describe physical observables in conform ally invariant two-dimensional critical systems. These are typically continuum limits of critical lattice models in a domain within the complex plane and with a boundary. Certain clusters, called
Taming Pipelines, Users, and High Performance Computing with Rector
NASA Astrophysics Data System (ADS)
Estes, N. M.; Bowley, K. S.; Paris, K. N.; Silva, V. H.; Robinson, M. S.
2018-04-01
Rector is a high-performance job management system created by the LROC SOC team to enable processing of thousands of observations and ancillary data products as well as ad-hoc user jobs across a 634 CPU core processing cluster.
Visualization of Unsteady Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Haimes, Robert
1997-01-01
The current compute environment that most researchers are using for the calculation of 3D unsteady Computational Fluid Dynamic (CFD) results is a super-computer class machine. The Massively Parallel Processors (MPP's) such as the 160 node IBM SP2 at NAS and clusters of workstations acting as a single MPP (like NAS's SGI Power-Challenge array and the J90 cluster) provide the required computation bandwidth for CFD calculations of transient problems. If we follow the traditional computational analysis steps for CFD (and we wish to construct an interactive visualizer) we need to be aware of the following: (1) Disk space requirements. A single snap-shot must contain at least the values (primitive variables) stored at the appropriate locations within the mesh. For most simple 3D Euler solvers that means 5 floating point words. Navier-Stokes solutions with turbulence models may contain 7 state-variables. (2) Disk speed vs. Computational speeds. The time required to read the complete solution of a saved time frame from disk is now longer than the compute time for a set number of iterations from an explicit solver. Depending, on the hardware and solver an iteration of an implicit code may also take less time than reading the solution from disk. If one examines the performance improvements in the last decade or two, it is easy to see that depending on disk performance (vs. CPU improvement) may not be the best method for enhancing interactivity. (3) Cluster and Parallel Machine I/O problems. Disk access time is much worse within current parallel machines and cluster of workstations that are acting in concert to solve a single problem. In this case we are not trying to read the volume of data, but are running the solver and the solver outputs the solution. These traditional network interfaces must be used for the file system. (4) Numerics of particle traces. Most visualization tools can work upon a single snap shot of the data but some visualization tools for transient problems require dealing with time.
Quantum chemical calculation of the equilibrium structures of small metal atom clusters
NASA Technical Reports Server (NTRS)
Kahn, L. R.
1982-01-01
Metal atom clusters are studied based on the application of ab initio quantum mechanical approaches. Because these large 'molecular' systems pose special practical computational problems in the application of the quantum mechanical methods, there is a special need to find simplifying techniques that do not compromise the reliability of the calculations. Research is therefore directed towards various aspects of the implementation of the effective core potential technique for the removal of the metal atom core electrons from the calculations.
Experiences Using OpenMP Based on Compiler Directed Software DSM on a PC Cluster
NASA Technical Reports Server (NTRS)
Hess, Matthias; Jost, Gabriele; Mueller, Matthias; Ruehle, Roland; Biegel, Bryan (Technical Monitor)
2002-01-01
In this work we report on our experiences running OpenMP (message passing) programs on a commodity cluster of PCs (personal computers) running a software distributed shared memory (DSM) system. We describe our test environment and report on the performance of a subset of the NAS (NASA Advanced Supercomputing) Parallel Benchmarks that have been automatically parallelized for OpenMP. We compare the performance of the OpenMP implementations with that of their message passing counterparts and discuss performance differences.
MPIGeneNet: Parallel Calculation of Gene Co-Expression Networks on Multicore Clusters.
Gonzalez-Dominguez, Jorge; Martin, Maria J
2017-10-10
In this work we present MPIGeneNet, a parallel tool that applies Pearson's correlation and Random Matrix Theory to construct gene co-expression networks. It is based on the state-of-the-art sequential tool RMTGeneNet, which provides networks with high robustness and sensitivity at the expenses of relatively long runtimes for large scale input datasets. MPIGeneNet returns the same results as RMTGeneNet but improves the memory management, reduces the I/O cost, and accelerates the two most computationally demanding steps of co-expression network construction by exploiting the compute capabilities of common multicore CPU clusters. Our performance evaluation on two different systems using three typical input datasets shows that MPIGeneNet is significantly faster than RMTGeneNet. As an example, our tool is up to 175.41 times faster on a cluster with eight nodes, each one containing two 12-core Intel Haswell processors. Source code of MPIGeneNet, as well as a reference manual, are available at https://sourceforge.net/projects/mpigenenet/.
Energetics and solvation structure of a dihalogen dopant (I2) in (4)He clusters.
Pérez de Tudela, Ricardo; Barragán, Patricia; Valdés, Álvaro; Prosmiti, Rita
2014-08-21
The energetics and structure of small HeNI2 clusters are analyzed as the size of the system changes, with N up to 38. The full interaction between the I2 molecule and the He atoms is based on analytical ab initio He-I2 potentials plus the He-He interaction, obtained from first-principle calculations. The most stable structures, as a function of the number of solvent He atoms, are obtained by employing an evolutionary algorithm and compared with CCSD(T) and MP2 ab initio computations. Further, the classical description is completed by explicitly including thermal corrections and quantum features, such as zero-point-energy values and spatial delocalization. From quantum PIMC calculations, the binding energies and radial/angular probability density distributions of the thermal equilibrium state for selected-size clusters are computed at a low temperature. The sequential formation of regular shell structures is analyzed and discussed for both classical and quantum treatments.
High performance data transfer
NASA Astrophysics Data System (ADS)
Cottrell, R.; Fang, C.; Hanushevsky, A.; Kreuger, W.; Yang, W.
2017-10-01
The exponentially increasing need for high speed data transfer is driven by big data, and cloud computing together with the needs of data intensive science, High Performance Computing (HPC), defense, the oil and gas industry etc. We report on the Zettar ZX software. This has been developed since 2013 to meet these growing needs by providing high performance data transfer and encryption in a scalable, balanced, easy to deploy and use way while minimizing power and space utilization. In collaboration with several commercial vendors, Proofs of Concept (PoC) consisting of clusters have been put together using off-the- shelf components to test the ZX scalability and ability to balance services using multiple cores, and links. The PoCs are based on SSD flash storage that is managed by a parallel file system. Each cluster occupies 4 rack units. Using the PoCs, between clusters we have achieved almost 200Gbps memory to memory over two 100Gbps links, and 70Gbps parallel file to parallel file with encryption over a 5000 mile 100Gbps link.
Cooperativity in self-limiting equilibrium self-associating systems
NASA Astrophysics Data System (ADS)
Freed, Karl F.
2012-11-01
A wide variety of highly cooperative self-assembly processes in biological and synthetic systems involve the assembly of a large number (m) of units into clusters, with m narrowly peaked about a large size m0 ≫ 1 and with a second peak centered about the m = 1 unassembled monomers. While very specific models have been proposed for the assembly of, for example, viral capsids and core-shell micelles of ß-casein, no available theory describes a thermodynamically general mechanism for this double peaked, highly cooperative equilibrium assembly process. This study provides a general mechanism for these cooperative processes by developing a minimal Flory-Huggins type theory. Beginning from the simplest non-cooperative, free association model in which the equilibrium constant for addition of a monomer to a cluster is independent of cluster size, the new model merely allows more favorable growth for clusters of intermediate sizes. The theory is illustrated by computing the phase diagram for cases of self-assembly on cooling or heating and for the mass distribution of the two phases.
Further Automate Planned Cluster Maintenance to Minimize System Downtime during Maintenance Windows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springmeyer, R.
This report documents the integration and testing of the automated update process of compute clusters in LC to minimize impact to user productivity. Description: A set of scripts will be written and deployed to further standardize cluster maintenance activities and minimize downtime during planned maintenance windows. Completion Criteria: When the scripts have been deployed and used during planned maintenance windows and a timing comparison is completed between the existing process and the new more automated process, this milestone is complete. This milestone was completed on Aug 23, 2016 on the new CTS1 cluster called Jade when a request to upgrademore » the version of TOSS 3 was initiated while SWL jobs and normal user jobs were running. Jobs that were running when the update to the system began continued to run to completion. New jobs on the cluster started on the new release of TOSS 3. No system administrator action was required. Current update procedures in TOSS 2 begin by killing all users jobs. Then all diskfull nodes are updated, which can take a few hours. Only after the updates are applied are all nodes are rebooted, and then finally put back into service. A system administrator is required for all steps. In terms of human time spent during a cluster OS update, the TOSS 3 automated procedure on Jade took 0 FTE hours. Doing the same update without the Toss Update Tool would have required 4 FTE hours.« less
Tran, Van Tan; Nguyen, Minh Thao; Tran, Quoc Tri
2017-10-12
Density functional theory and the multiconfigurational CASSCF/CASPT2 method have been employed to study the low-lying states of VGe n -/0 (n = 1-4) clusters. For VGe -/0 and VGe 2 -/0 clusters, the relative energies and geometrical structures of the low-lying states are reported at the CASSCF/CASPT2 level. For the VGe 3 -/0 and VGe 4 -/0 clusters, the computational results show that due to the large contribution of the Hartree-Fock exact exchange, the hybrid B3LYP, B3PW91, and PBE0 functionals overestimate the energies of the high-spin states as compared to the pure GGA BP86 and PBE functionals and the CASPT2 method. On the basis of the pure GGA BP86 and PBE functionals and the CASSCF/CASPT2 results, the ground states of anionic and neutral clusters are defined, the relative energies of the excited states are computed, and the electron detachment energies of the anionic clusters are evaluated. The computational results are employed to give new assignments for all features in the photoelectron spectra of VGe 3 - and VGe 4 - clusters.
Towards accurate modeling of noncovalent interactions for protein rigidity analysis.
Fox, Naomi; Streinu, Ileana
2013-01-01
Protein rigidity analysis is an efficient computational method for extracting flexibility information from static, X-ray crystallography protein data. Atoms and bonds are modeled as a mechanical structure and analyzed with a fast graph-based algorithm, producing a decomposition of the flexible molecule into interconnected rigid clusters. The result depends critically on noncovalent atomic interactions, primarily on how hydrogen bonds and hydrophobic interactions are computed and modeled. Ongoing research points to the stringent need for benchmarking rigidity analysis software systems, towards the goal of increasing their accuracy and validating their results, either against each other and against biologically relevant (functional) parameters. We propose two new methods for modeling hydrogen bonds and hydrophobic interactions that more accurately reflect a mechanical model, without being computationally more intensive. We evaluate them using a novel scoring method, based on the B-cubed score from the information retrieval literature, which measures how well two cluster decompositions match. To evaluate the modeling accuracy of KINARI, our pebble-game rigidity analysis system, we use a benchmark data set of 20 proteins, each with multiple distinct conformations deposited in the Protein Data Bank. Cluster decompositions for them were previously determined with the RigidFinder method from Gerstein's lab and validated against experimental data. When KINARI's default tuning parameters are used, an improvement of the B-cubed score over a crude baseline is observed in 30% of this data. With our new modeling options, improvements were observed in over 70% of the proteins in this data set. We investigate the sensitivity of the cluster decomposition score with case studies on pyruvate phosphate dikinase and calmodulin. To substantially improve the accuracy of protein rigidity analysis systems, thorough benchmarking must be performed on all current systems and future extensions. We have measured the gain in performance by comparing different modeling methods for noncovalent interactions. We showed that new criteria for modeling hydrogen bonds and hydrophobic interactions can significantly improve the results. The two new methods proposed here have been implemented and made publicly available in the current version of KINARI (v1.3), together with the benchmarking tools, which can be downloaded from our software's website, http://kinari.cs.umass.edu.
Towards accurate modeling of noncovalent interactions for protein rigidity analysis
2013-01-01
Background Protein rigidity analysis is an efficient computational method for extracting flexibility information from static, X-ray crystallography protein data. Atoms and bonds are modeled as a mechanical structure and analyzed with a fast graph-based algorithm, producing a decomposition of the flexible molecule into interconnected rigid clusters. The result depends critically on noncovalent atomic interactions, primarily on how hydrogen bonds and hydrophobic interactions are computed and modeled. Ongoing research points to the stringent need for benchmarking rigidity analysis software systems, towards the goal of increasing their accuracy and validating their results, either against each other and against biologically relevant (functional) parameters. We propose two new methods for modeling hydrogen bonds and hydrophobic interactions that more accurately reflect a mechanical model, without being computationally more intensive. We evaluate them using a novel scoring method, based on the B-cubed score from the information retrieval literature, which measures how well two cluster decompositions match. Results To evaluate the modeling accuracy of KINARI, our pebble-game rigidity analysis system, we use a benchmark data set of 20 proteins, each with multiple distinct conformations deposited in the Protein Data Bank. Cluster decompositions for them were previously determined with the RigidFinder method from Gerstein's lab and validated against experimental data. When KINARI's default tuning parameters are used, an improvement of the B-cubed score over a crude baseline is observed in 30% of this data. With our new modeling options, improvements were observed in over 70% of the proteins in this data set. We investigate the sensitivity of the cluster decomposition score with case studies on pyruvate phosphate dikinase and calmodulin. Conclusion To substantially improve the accuracy of protein rigidity analysis systems, thorough benchmarking must be performed on all current systems and future extensions. We have measured the gain in performance by comparing different modeling methods for noncovalent interactions. We showed that new criteria for modeling hydrogen bonds and hydrophobic interactions can significantly improve the results. The two new methods proposed here have been implemented and made publicly available in the current version of KINARI (v1.3), together with the benchmarking tools, which can be downloaded from our software's website, http://kinari.cs.umass.edu. PMID:24564209
Lee, Kang-Hoon; Shin, Kyung-Seop; Lim, Debora; Kim, Woo-Chan; Chung, Byung Chang; Han, Gyu-Bum; Roh, Jeongkyu; Cho, Dong-Ho; Cho, Kiho
2015-07-01
The genomes of living organisms are populated with pleomorphic repetitive elements (REs) of varying densities. Our hypothesis that genomic RE landscapes are species/strain/individual-specific was implemented into the Genome Signature Imaging system to visualize and compute the RE-based signatures of any genome. Following the occurrence profiling of 5-nucleotide REs/words, the information from top-50 frequency words was transformed into a genome-specific signature and visualized as Genome Signature Images (GSIs), using a CMYK scheme. An algorithm for computing distances among GSIs was formulated using the GSIs' variables (word identity, frequency, and frequency order). The utility of the GSI-distance computation system was demonstrated with control genomes. GSI-based computation of genome-relatedness among 1766 microbes (117 archaea and 1649 bacteria) identified their clustering patterns; although the majority paralleled the established classification, some did not. The Genome Signature Imaging system, with its visualization and distance computation functions, enables genome-scale evolutionary studies involving numerous genomes with varying sizes. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
B. Shokouhi, Shahriar; Fooladivanda, Aida; Ahmadinejad, Nasrin
2017-12-01
A computer-aided detection (CAD) system is introduced in this paper for detection of breast lesions in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The proposed CAD system firstly compensates motion artifacts and segments the breast region. Then, the potential lesion voxels are detected and used as the initial seed points for the seeded region-growing algorithm. A new and robust region-growing algorithm incorporating with Fuzzy C-means (FCM) clustering and vesselness filter is proposed to segment any potential lesion regions. Subsequently, the false positive detections are reduced by applying a discrimination step. This is based on 3D morphological characteristics of the potential lesion regions and kinetic features which are fed to the support vector machine (SVM) classifier. The performance of the proposed CAD system is evaluated using the free-response operating characteristic (FROC) curve. We introduce our collected dataset that includes 76 DCE-MRI studies, 63 malignant and 107 benign lesions. The prepared dataset has been used to verify the accuracy of the proposed CAD system. At 5.29 false positives per case, the CAD system accurately detects 94% of the breast lesions.
The role of the host in a cooperating mainframe and workstation environment, volumes 1 and 2
NASA Technical Reports Server (NTRS)
Kusmanoff, Antone; Martin, Nancy L.
1989-01-01
In recent years, advancements made in computer systems have prompted a move from centralized computing based on timesharing a large mainframe computer to distributed computing based on a connected set of engineering workstations. A major factor in this advancement is the increased performance and lower cost of engineering workstations. The shift to distributed computing from centralized computing has led to challenges associated with the residency of application programs within the system. In a combined system of multiple engineering workstations attached to a mainframe host, the question arises as to how does a system designer assign applications between the larger mainframe host and the smaller, yet powerful, workstation. The concepts related to real time data processing are analyzed and systems are displayed which use a host mainframe and a number of engineering workstations interconnected by a local area network. In most cases, distributed systems can be classified as having a single function or multiple functions and as executing programs in real time or nonreal time. In a system of multiple computers, the degree of autonomy of the computers is important; a system with one master control computer generally differs in reliability, performance, and complexity from a system in which all computers share the control. This research is concerned with generating general criteria principles for software residency decisions (host or workstation) for a diverse yet coupled group of users (the clustered workstations) which may need the use of a shared resource (the mainframe) to perform their functions.
Hierarchical clustering method for improved prostate cancer imaging in diffuse optical tomography
NASA Astrophysics Data System (ADS)
Kavuri, Venkaiah C.; Liu, Hanli
2013-03-01
We investigate the feasibility of trans-rectal near infrared (NIR) based diffuse optical tomography (DOT) for early detection of prostate cancer using a transrectal ultrasound (TRUS) compatible imaging probe. For this purpose, we designed a TRUS-compatible, NIR-based image system (780nm), in which the photo diodes were placed on the trans-rectal probe. DC signals were recorded and used for estimating the absorption coefficient. We validated the system using laboratory phantoms. For further improvement, we also developed a hierarchical clustering method (HCM) to improve the accuracy of image reconstruction with limited prior information. We demonstrated the method using computer simulations laboratory phantom experiments.
Computational Approaches to Simulation and Optimization of Global Aircraft Trajectories
NASA Technical Reports Server (NTRS)
Ng, Hok Kwan; Sridhar, Banavar
2016-01-01
This study examines three possible approaches to improving the speed in generating wind-optimal routes for air traffic at the national or global level. They are: (a) using the resources of a supercomputer, (b) running the computations on multiple commercially available computers and (c) implementing those same algorithms into NASAs Future ATM Concepts Evaluation Tool (FACET) and compares those to a standard implementation run on a single CPU. Wind-optimal aircraft trajectories are computed using global air traffic schedules. The run time and wait time on the supercomputer for trajectory optimization using various numbers of CPUs ranging from 80 to 10,240 units are compared with the total computational time for running the same computation on a single desktop computer and on multiple commercially available computers for potential computational enhancement through parallel processing on the computer clusters. This study also re-implements the trajectory optimization algorithm for further reduction of computational time through algorithm modifications and integrates that with FACET to facilitate the use of the new features which calculate time-optimal routes between worldwide airport pairs in a wind field for use with existing FACET applications. The implementations of trajectory optimization algorithms use MATLAB, Python, and Java programming languages. The performance evaluations are done by comparing their computational efficiencies and based on the potential application of optimized trajectories. The paper shows that in the absence of special privileges on a supercomputer, a cluster of commercially available computers provides a feasible approach for national and global air traffic system studies.
Large Data at Small Universities: Astronomical processing using a computer classroom
NASA Astrophysics Data System (ADS)
Fuller, Nathaniel James; Clarkson, William I.; Fluharty, Bill; Belanger, Zach; Dage, Kristen
2016-06-01
The use of large computing clusters for astronomy research is becoming more commonplace as datasets expand, but access to these required resources is sometimes difficult for research groups working at smaller Universities. As an alternative to purchasing processing time on an off-site computing cluster, or purchasing dedicated hardware, we show how one can easily build a crude on-site cluster by utilizing idle cycles on instructional computers in computer-lab classrooms. Since these computers are maintained as part of the educational mission of the University, the resource impact on the investigator is generally low.By using open source Python routines, it is possible to have a large number of desktop computers working together via a local network to sort through large data sets. By running traditional analysis routines in an “embarrassingly parallel” manner, gains in speed are accomplished without requiring the investigator to learn how to write routines using highly specialized methodology. We demonstrate this concept here applied to 1. photometry of large-format images and 2. Statistical significance-tests for X-ray lightcurve analysis. In these scenarios, we see a speed-up factor which scales almost linearly with the number of cores in the cluster. Additionally, we show that the usage of the cluster does not severely limit performance for a local user, and indeed the processing can be performed while the computers are in use for classroom purposes.
NASA Astrophysics Data System (ADS)
Marcus, Kelvin
2014-06-01
The U.S Army Research Laboratory (ARL) has built a "Network Science Research Lab" to support research that aims to improve their ability to analyze, predict, design, and govern complex systems that interweave the social/cognitive, information, and communication network genres. Researchers at ARL and the Network Science Collaborative Technology Alliance (NS-CTA), a collaborative research alliance funded by ARL, conducted experimentation to determine if automated network monitoring tools and task-aware agents deployed within an emulated tactical wireless network could potentially increase the retrieval of relevant data from heterogeneous distributed information nodes. ARL and NS-CTA required the capability to perform this experimentation over clusters of heterogeneous nodes with emulated wireless tactical networks where each node could contain different operating systems, application sets, and physical hardware attributes. Researchers utilized the Dynamically Allocated Virtual Clustering Management System (DAVC) to address each of the infrastructure support requirements necessary in conducting their experimentation. The DAVC is an experimentation infrastructure that provides the means to dynamically create, deploy, and manage virtual clusters of heterogeneous nodes within a cloud computing environment based upon resource utilization such as CPU load, available RAM and hard disk space. The DAVC uses 802.1Q Virtual LANs (VLANs) to prevent experimentation crosstalk and to allow for complex private networks. Clusters created by the DAVC system can be utilized for software development, experimentation, and integration with existing hardware and software. The goal of this paper is to explore how ARL and the NS-CTA leveraged the DAVC to create, deploy and manage multiple experimentation clusters to support their experimentation goals.
Simple, efficient allocation of modelling runs on heterogeneous clusters with MPI
Donato, David I.
2017-01-01
In scientific modelling and computation, the choice of an appropriate method for allocating tasks for parallel processing depends on the computational setting and on the nature of the computation. The allocation of independent but similar computational tasks, such as modelling runs or Monte Carlo trials, among the nodes of a heterogeneous computational cluster is a special case that has not been specifically evaluated previously. A simulation study shows that a method of on-demand (that is, worker-initiated) pulling from a bag of tasks in this case leads to reliably short makespans for computational jobs despite heterogeneity both within and between cluster nodes. A simple reference implementation in the C programming language with the Message Passing Interface (MPI) is provided.
New computing systems and their impact on structural analysis and design
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.
1989-01-01
A review is given of the recent advances in computer technology that are likely to impact structural analysis and design. The computational needs for future structures technology are described. The characteristics of new and projected computing systems are summarized. Advances in programming environments, numerical algorithms, and computational strategies for new computing systems are reviewed, and a novel partitioning strategy is outlined for maximizing the degree of parallelism. The strategy is designed for computers with a shared memory and a small number of powerful processors (or a small number of clusters of medium-range processors). It is based on approximating the response of the structure by a combination of symmetric and antisymmetric response vectors, each obtained using a fraction of the degrees of freedom of the original finite element model. The strategy was implemented on the CRAY X-MP/4 and the Alliant FX/8 computers. For nonlinear dynamic problems on the CRAY X-MP with four CPUs, it resulted in an order of magnitude reduction in total analysis time, compared with the direct analysis on a single-CPU CRAY X-MP machine.
Field-induced cluster spin glass and inverse symmetry breaking enhanced by frustration
NASA Astrophysics Data System (ADS)
Schmidt, M.; Zimmer, F. M.; Magalhaes, S. G.
2018-03-01
We consider a cluster disordered model to study the interplay between short- and long-range interactions in geometrically frustrated spin systems under an external magnetic field (h). In our approach, the intercluster long-range disorder (J) is analytically treated to get an effective cluster model that is computed exactly. The clusters follow a checkerboard lattice with first-neighbor (J1) and second-neighbor (J2) interactions. We find a reentrant transition from the cluster spin-glass (CSG) state to a paramagnetic (PM) phase as the temperature decreases for a certain range of h. This inverse symmetry breaking (ISB) appears as a consequence of both quenched disorder with frustration and h, that introduce a CSG state with higher entropy than the polarized PM phase. The competitive scenario introduced by antiferromagnetic (AF) short-range interactions increases the CSG state entropy, leading to continuous ISB transitions and enhancing the ISB regions, mainly in the geometrically frustrated case (J1 =J2). Remarkably, when strong AF intracluster couplings are present, field-induced CSG phases can be found. These CSG regions are strongly related to the magnetization plateaus observed in this cluster disordered system. In fact, it is found that each field-induced magnetization jump brings a CSG region. We notice that geometrical frustration, as well as cluster size, play an important role in the magnetization plateaus and, therefore, are also relevant in the field-induced glassy states. Our findings suggest that competing interactions support ISB and field-induced CSG phases in disordered cluster systems under an external magnetic field.
Pt/Au nanoalloy supported on alumina and chlorided alumina: DFT and experimental analysis
NASA Astrophysics Data System (ADS)
Sharifi, N.; Falamaki, C.; Ghorbanzadeh Ahangari, M.
2018-04-01
Density functional theory (DFT) was used to explore the adsorption of Pt/Au nanoalloy onto a pure and chlorided γ-Al2O3(110) surface, which has been applied in numerous catalytic reactions. First, we considered the adsorption properties of Pt clusters (n ≤ 5) onto the Al2O3(110) surface to determine the most stable Pt cluster on alumina surface in reforming processes. After full structural relaxations of Pt clusters at various configurations on alumina, our computed results expressed that the minimum binding energy (‑5.67 eV) is accrued for Pt4 cluster and the distance between the nearest Pt atom in the cluster to the alumina surface is equal to 1.13 Å. Then, we investigated the binding energies, geometries, and electronic properties of adsorbed Aun clusters (n ≤ 6) on the γ-Al2O3(110) surface. Our studied showed that Au5 was the most thermodynamically stable structure on γ-Al2O3. Finally, we inspected these properties for adsorbed Au clusters onto the Pt4-decorated alumina (Aun/Pt4-alumina) system. The binding energy of the Au4/Pt4-alumina system was ‑5.01 eV, and the distance between Au4 cluster and Pt4-alumina was 1.33 Å. The Au4/Pt4alumina system was found to be the most stable nanometer-sized catalyst design. At last, our first-principles calculations predicted that the best position of embedment Cl on the Au4/Pt4-alumina.
High-performance dynamic quantum clustering on graphics processors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wittek, Peter, E-mail: peterwittek@acm.org
2013-01-15
Clustering methods in machine learning may benefit from borrowing metaphors from physics. Dynamic quantum clustering associates a Gaussian wave packet with the multidimensional data points and regards them as eigenfunctions of the Schroedinger equation. The clustering structure emerges by letting the system evolve and the visual nature of the algorithm has been shown to be useful in a range of applications. Furthermore, the method only uses matrix operations, which readily lend themselves to parallelization. In this paper, we develop an implementation on graphics hardware and investigate how this approach can accelerate the computations. We achieve a speedup of up tomore » two magnitudes over a multicore CPU implementation, which proves that quantum-like methods and acceleration by graphics processing units have a great relevance to machine learning.« less
Near-Infrared Spectroscopy of Small Protonated Water Clusters
NASA Astrophysics Data System (ADS)
Wagner, J. Philipp; McDonald, David C., II; McCoy, Anne B.; Duncan, Michael A.
2017-06-01
Small protonated water clusters and their argon tagged analogues of the general formula H^{+}(H_{2}O)_{n}Ar_{m} have been generated in a pulsed electric discharge source. Clusters containing n=1-8 water molecules were mass-selected and their absorptions in the near-infrared were probed with a tunable Nd/colonYAG pumped OPA/OPA laser system in the region from 4850-7350 cm^{-1}. A doublet corresponding to overtones of the free O-H stretches of the external waters was observed around 7200 cm^{-1} that was continuously decreasing in intensity with increasing cluster size. Broad, mostly featureless absorptions were found around 5300 cm^{-1} associated with stretch/bend combinations and with the hydrogen bonded waters in the core of the clusters. Vibrational assignments were substantiated by comparison to anharmonic frequency computations via second-order vibrational perturbation theory (VPT2) at the MP2/aug-cc-pVTZ level of theory.
NETRA: A parallel architecture for integrated vision systems. 1: Architecture and organization
NASA Technical Reports Server (NTRS)
Choudhary, Alok N.; Patel, Janak H.; Ahuja, Narendra
1989-01-01
Computer vision is regarded as one of the most complex and computationally intensive problems. An integrated vision system (IVS) is considered to be a system that uses vision algorithms from all levels of processing for a high level application (such as object recognition). A model of computation is presented for parallel processing for an IVS. Using the model, desired features and capabilities of a parallel architecture suitable for IVSs are derived. Then a multiprocessor architecture (called NETRA) is presented. This architecture is highly flexible without the use of complex interconnection schemes. The topology of NETRA is recursively defined and hence is easily scalable from small to large systems. Homogeneity of NETRA permits fault tolerance and graceful degradation under faults. It is a recursively defined tree-type hierarchical architecture where each of the leaf nodes consists of a cluster of processors connected with a programmable crossbar with selective broadcast capability to provide for desired flexibility. A qualitative evaluation of NETRA is presented. Then general schemes are described to map parallel algorithms onto NETRA. Algorithms are classified according to their communication requirements for parallel processing. An extensive analysis of inter-cluster communication strategies in NETRA is presented, and parameters affecting performance of parallel algorithms when mapped on NETRA are discussed. Finally, a methodology to evaluate performance of algorithms on NETRA is described.
Wolf, Antje; Kirschner, Karl N
2013-02-01
With improvements in computer speed and algorithm efficiency, MD simulations are sampling larger amounts of molecular and biomolecular conformations. Being able to qualitatively and quantitatively sift these conformations into meaningful groups is a difficult and important task, especially when considering the structure-activity paradigm. Here we present a study that combines two popular techniques, principal component (PC) analysis and clustering, for revealing major conformational changes that occur in molecular dynamics (MD) simulations. Specifically, we explored how clustering different PC subspaces effects the resulting clusters versus clustering the complete trajectory data. As a case example, we used the trajectory data from an explicitly solvated simulation of a bacteria's L11·23S ribosomal subdomain, which is a target of thiopeptide antibiotics. Clustering was performed, using K-means and average-linkage algorithms, on data involving the first two to the first five PC subspace dimensions. For the average-linkage algorithm we found that data-point membership, cluster shape, and cluster size depended on the selected PC subspace data. In contrast, K-means provided very consistent results regardless of the selected subspace. Since we present results on a single model system, generalization concerning the clustering of different PC subspaces of other molecular systems is currently premature. However, our hope is that this study illustrates a) the complexities in selecting the appropriate clustering algorithm, b) the complexities in interpreting and validating their results, and c) by combining PC analysis with subsequent clustering valuable dynamic and conformational information can be obtained.
Performance Analysis Tool for HPC and Big Data Applications on Scientific Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Wucherl; Koo, Michelle; Cao, Yu
Big data is prevalent in HPC computing. Many HPC projects rely on complex workflows to analyze terabytes or petabytes of data. These workflows often require running over thousands of CPU cores and performing simultaneous data accesses, data movements, and computation. It is challenging to analyze the performance involving terabytes or petabytes of workflow data or measurement data of the executions, from complex workflows over a large number of nodes and multiple parallel task executions. To help identify performance bottlenecks or debug the performance issues in large-scale scientific applications and scientific clusters, we have developed a performance analysis framework, using state-ofthe-more » art open-source big data processing tools. Our tool can ingest system logs and application performance measurements to extract key performance features, and apply the most sophisticated statistical tools and data mining methods on the performance data. It utilizes an efficient data processing engine to allow users to interactively analyze a large amount of different types of logs and measurements. To illustrate the functionality of the big data analysis framework, we conduct case studies on the workflows from an astronomy project known as the Palomar Transient Factory (PTF) and the job logs from the genome analysis scientific cluster. Our study processed many terabytes of system logs and application performance measurements collected on the HPC systems at NERSC. The implementation of our tool is generic enough to be used for analyzing the performance of other HPC systems and Big Data workows.« less
Construction and Utilization of a Beowulf Computing Cluster: A User's Perspective
NASA Technical Reports Server (NTRS)
Woods, Judy L.; West, Jeff S.; Sulyma, Peter R.
2000-01-01
Lockheed Martin Space Operations - Stennis Programs (LMSO) at the John C Stennis Space Center (NASA/SSC) has designed and built a Beowulf computer cluster which is owned by NASA/SSC and operated by LMSO. The design and construction of the cluster are detailed in this paper. The cluster is currently used for Computational Fluid Dynamics (CFD) simulations. The CFD codes in use and their applications are discussed. Examples of some of the work are also presented. Performance benchmark studies have been conducted for the CFD codes being run on the cluster. The results of two of the studies are presented and discussed. The cluster is not currently being utilized to its full potential; therefore, plans are underway to add more capabilities. These include the addition of structural, thermal, fluid, and acoustic Finite Element Analysis codes as well as real-time data acquisition and processing during test operations at NASA/SSC. These plans are discussed as well.
Nguyen, Thanh; Khosravi, Abbas; Creighton, Douglas; Nahavandi, Saeid
2014-12-30
Understanding neural functions requires knowledge from analysing electrophysiological data. The process of assigning spikes of a multichannel signal into clusters, called spike sorting, is one of the important problems in such analysis. There have been various automated spike sorting techniques with both advantages and disadvantages regarding accuracy and computational costs. Therefore, developing spike sorting methods that are highly accurate and computationally inexpensive is always a challenge in the biomedical engineering practice. An automatic unsupervised spike sorting method is proposed in this paper. The method uses features extracted by the locality preserving projection (LPP) algorithm. These features afterwards serve as inputs for the landmark-based spectral clustering (LSC) method. Gap statistics (GS) is employed to evaluate the number of clusters before the LSC can be performed. The proposed LPP-LSC is highly accurate and computationally inexpensive spike sorting approach. LPP spike features are very discriminative; thereby boost the performance of clustering methods. Furthermore, the LSC method exhibits its efficiency when integrated with the cluster evaluator GS. The proposed method's accuracy is approximately 13% superior to that of the benchmark combination between wavelet transformation and superparamagnetic clustering (WT-SPC). Additionally, LPP-LSC computing time is six times less than that of the WT-SPC. LPP-LSC obviously demonstrates a win-win spike sorting solution meeting both accuracy and computational cost criteria. LPP and LSC are linear algorithms that help reduce computational burden and thus their combination can be applied into real-time spike analysis. Copyright © 2014 Elsevier B.V. All rights reserved.
Improved Ant Colony Clustering Algorithm and Its Performance Study
Gao, Wei
2016-01-01
Clustering analysis is used in many disciplines and applications; it is an important tool that descriptively identifies homogeneous groups of objects based on attribute values. The ant colony clustering algorithm is a swarm-intelligent method used for clustering problems that is inspired by the behavior of ant colonies that cluster their corpses and sort their larvae. A new abstraction ant colony clustering algorithm using a data combination mechanism is proposed to improve the computational efficiency and accuracy of the ant colony clustering algorithm. The abstraction ant colony clustering algorithm is used to cluster benchmark problems, and its performance is compared with the ant colony clustering algorithm and other methods used in existing literature. Based on similar computational difficulties and complexities, the results show that the abstraction ant colony clustering algorithm produces results that are not only more accurate but also more efficiently determined than the ant colony clustering algorithm and the other methods. Thus, the abstraction ant colony clustering algorithm can be used for efficient multivariate data clustering. PMID:26839533
Structure-sequence based analysis for identification of conserved regions in proteins
Zemla, Adam T; Zhou, Carol E; Lam, Marisa W; Smith, Jason R; Pardes, Elizabeth
2013-05-28
Disclosed are computational methods, and associated hardware and software products for scoring conservation in a protein structure based on a computationally identified family or cluster of protein structures. A method of computationally identifying a family or cluster of protein structures in also disclosed herein.
2012-01-01
Background Emerging eHealth tools could facilitate the delivery of comprehensive care in time-constrained clinical settings. One such tool is interactive computer-assisted health-risk assessments (HRA), which may improve provider-patient communication at the point of care, particularly for psychosocial health concerns, which remain under-detected in clinical encounters. The research team explored the perspectives of healthcare providers representing a variety of disciplines (physicians, nurses, social workers, allied staff) regarding the factors required for implementation of an interactive HRA on psychosocial health. Methods The research team employed a semi-qualitative participatory method known as Concept Mapping, which involved three distinct phases. First, in face-to-face and online brainstorming sessions, participants responded to an open-ended central question: “What factors should be in place within your clinical setting to support an effective computer-assisted screening tool for psychosocial risks?” The brainstormed items were consolidated by the research team. Then, in face-to-face and online sorting sessions, participants grouped the items thematically as ‘it made sense to them’. Participants also rated each item on a 5-point scale for its ‘importance’ and ‘action feasibility’ over the ensuing six month period. The sorted and rated data was analyzed using multidimensional scaling and hierarchical cluster analyses which produced visual maps. In the third and final phase, the face-to-face Interpretation sessions, the concept maps were discussed and illuminated by participants collectively. Results Overall, 54 providers participated (emergency care 48%; primary care 52%). Participants brainstormed 196 items thought to be necessary for the implementation of an interactive HRA emphasizing psychosocial health. These were consolidated by the research team into 85 items. After sorting and rating, cluster analysis revealed a concept map with a seven-cluster solution: 1) the HRA’s equitable availability; 2) the HRA’s ease of use and appropriateness; 3) the content of the HRA survey; 4) patient confidentiality and choice; 5) patient comfort through humanistic touch; 6) professional development, care and workload; and 7) clinical management protocol. Drawing insight from the theoretical lens of Sociotechnical theory, the seven clusters of factors required for HRA implementation could be read as belonging to three overarching aspects : Technical (cluster 1, 2 and 3), Social-Patient (cluster 4 and 5), and Social-Provider (cluster 6 and 7). Participants rated every one of the clusters as important, with mean scores from 4.0 to 4.5. Their scores for feasibility were somewhat lower, ranging from 3.4 to. 4.3. Comparing the scores for importance and feasibility, a significant difference was found for one cluster from each region (cluster 2, 5, 6). The cluster on professional development, care and workload was perceived as especially challenging in emergency department settings, and possible reasons were discussed in the interpretation sessions. Conclusion A number of intertwined multilevel factors emerged as important for the implementation of a computer-assisted, interactive HRA with a focus on psychosocial health. Future developments in this area could benefit from systems thinking and insights from theoretical perspectives, such as sociotechnical system theory for joint optimization and responsible autonomy, with emphasis on both the technical and social aspects of HRA implementation. PMID:23253913
CO2 Cluster Ion Beam, an Alternative Projectile for Secondary Ion Mass Spectrometry.
Tian, Hua; Maciążek, Dawid; Postawa, Zbigniew; Garrison, Barbara J; Winograd, Nicholas
2016-09-01
The emergence of argon-based gas cluster ion beams for SIMS experiments opens new possibilities for molecular depth profiling and 3D chemical imaging. These beams generally leave less surface chemical damage and yield mass spectra with reduced fragmentation compared with smaller cluster projectiles. For nanoscale bioimaging applications, however, limited sensitivity due to low ionization probability and technical challenges of beam focusing remain problematic. The use of gas cluster ion beams based upon systems other than argon offer an opportunity to resolve these difficulties. Here we report on the prospects of employing CO2 as a simple alternative to argon. Ionization efficiency, chemical damage, sputter rate, and beam focus are investigated on model compounds using a series of CO2 and Ar cluster projectiles (cluster size 1000-5000) with the same mass. The results show that the two projectiles are very similar in each of these aspects. Computer simulations comparing the impact of Ar2000 and (CO2)2000 on an organic target also confirm that the CO2 molecules in the cluster projectile remain intact, acting as a single particle of m/z 44. The imaging resolution employing CO2 cluster projectiles is improved by more than a factor of two. The advantage of CO2 versus Ar is also related to the increased stability which, in addition, facilitates the operation of the gas cluster ion beams (GCIB) system at lower backing pressure. Graphical Abstract ᅟ.
Fast distributed large-pixel-count hologram computation using a GPU cluster.
Pan, Yuechao; Xu, Xuewu; Liang, Xinan
2013-09-10
Large-pixel-count holograms are one essential part for big size holographic three-dimensional (3D) display, but the generation of such holograms is computationally demanding. In order to address this issue, we have built a graphics processing unit (GPU) cluster with 32.5 Tflop/s computing power and implemented distributed hologram computation on it with speed improvement techniques, such as shared memory on GPU, GPU level adaptive load balancing, and node level load distribution. Using these speed improvement techniques on the GPU cluster, we have achieved 71.4 times computation speed increase for 186M-pixel holograms. Furthermore, we have used the approaches of diffraction limits and subdivision of holograms to overcome the GPU memory limit in computing large-pixel-count holograms. 745M-pixel and 1.80G-pixel holograms were computed in 343 and 3326 s, respectively, for more than 2 million object points with RGB colors. Color 3D objects with 1.02M points were successfully reconstructed from 186M-pixel hologram computed in 8.82 s with all the above three speed improvement techniques. It is shown that distributed hologram computation using a GPU cluster is a promising approach to increase the computation speed of large-pixel-count holograms for large size holographic display.
A New Soft Computing Method for K-Harmonic Means Clustering.
Yeh, Wei-Chang; Jiang, Yunzhi; Chen, Yee-Fen; Chen, Zhe
2016-01-01
The K-harmonic means clustering algorithm (KHM) is a new clustering method used to group data such that the sum of the harmonic averages of the distances between each entity and all cluster centroids is minimized. Because it is less sensitive to initialization than K-means (KM), many researchers have recently been attracted to studying KHM. In this study, the proposed iSSO-KHM is based on an improved simplified swarm optimization (iSSO) and integrates a variable neighborhood search (VNS) for KHM clustering. As evidence of the utility of the proposed iSSO-KHM, we present extensive computational results on eight benchmark problems. From the computational results, the comparison appears to support the superiority of the proposed iSSO-KHM over previously developed algorithms for all experiments in the literature.
Torres, Edmanuel; DiLabio, Gino A
2013-08-13
Large clusters of noncovalently bonded molecules can only be efficiently modeled by classical mechanics simulations. One prominent challenge associated with this approach is obtaining force-field parameters that accurately describe noncovalent interactions. High-level correlated wave function methods, such as CCSD(T), are capable of correctly predicting noncovalent interactions, and are widely used to produce reference data. However, high-level correlated methods are generally too computationally costly to generate the critical reference data required for good force-field parameter development. In this work we present an approach to generate Lennard-Jones force-field parameters to accurately account for noncovalent interactions. We propose the use of a computational step that is intermediate to CCSD(T) and classical molecular mechanics, that can bridge the accuracy and computational efficiency gap between them, and demonstrate the efficacy of our approach with methane clusters. On the basis of CCSD(T)-level binding energy data for a small set of methane clusters, we develop methane-specific, atom-centered, dispersion-correcting potentials (DCPs) for use with the PBE0 density-functional and 6-31+G(d,p) basis sets. We then use the PBE0-DCP approach to compute a detailed map of the interaction forces associated with the removal of a single methane molecule from a cluster of eight methane molecules and use this map to optimize the Lennard-Jones parameters for methane. The quality of the binding energies obtained by the Lennard-Jones parameters we obtained is assessed on a set of methane clusters containing from 2 to 40 molecules. Our Lennard-Jones parameters, used in combination with the intramolecular parameters of the CHARMM force field, are found to closely reproduce the results of our dispersion-corrected density-functional calculations. The approach outlined can be used to develop Lennard-Jones parameters for any kind of molecular system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, William A., E-mail: wadawson@ucdavis.edu
2013-08-01
Merging galaxy clusters have become one of the most important probes of dark matter, providing evidence for dark matter over modified gravity and even constraints on the dark matter self-interaction cross-section. To properly constrain the dark matter cross-section it is necessary to understand the dynamics of the merger, as the inferred cross-section is a function of both the velocity of the collision and the observed time since collision. While the best understanding of merging system dynamics comes from N-body simulations, these are computationally intensive and often explore only a limited volume of the merger phase space allowed by observed parametermore » uncertainty. Simple analytic models exist but the assumptions of these methods invalidate their results near the collision time, plus error propagation of the highly correlated merger parameters is unfeasible. To address these weaknesses I develop a Monte Carlo method to discern the properties of dissociative mergers and propagate the uncertainty of the measured cluster parameters in an accurate and Bayesian manner. I introduce this method, verify it against an existing hydrodynamic N-body simulation, and apply it to two known dissociative mergers: 1ES 0657-558 (Bullet Cluster) and DLSCL J0916.2+2951 (Musket Ball Cluster). I find that this method surpasses existing analytic models-providing accurate (10% level) dynamic parameter and uncertainty estimates throughout the merger history. This, coupled with minimal required a priori information (subcluster mass, redshift, and projected separation) and relatively fast computation ({approx}6 CPU hours), makes this method ideal for large samples of dissociative merging clusters.« less
Scheduling Operations for Massive Heterogeneous Clusters
NASA Technical Reports Server (NTRS)
Humphrey, John; Spagnoli, Kyle
2013-01-01
High-performance computing (HPC) programming has become increasingly difficult with the advent of hybrid supercomputers consisting of multicore CPUs and accelerator boards such as the GPU. Manual tuning of software to achieve high performance on this type of machine has been performed by programmers. This is needlessly difficult and prone to being invalidated by new hardware, new software, or changes in the underlying code. A system was developed for task-based representation of programs, which when coupled with a scheduler and runtime system, allows for many benefits, including higher performance and utilization of computational resources, easier programming and porting, and adaptations of code during runtime. The system consists of a method of representing computer algorithms as a series of data-dependent tasks. The series forms a graph, which can be scheduled for execution on many nodes of a supercomputer efficiently by a computer algorithm. The schedule is executed by a dispatch component, which is tailored to understand all of the hardware types that may be available within the system. The scheduler is informed by a cluster mapping tool, which generates a topology of available resources and their strengths and communication costs. Software is decoupled from its hardware, which aids in porting to future architectures. A computer algorithm schedules all operations, which for systems of high complexity (i.e., most NASA codes), cannot be performed optimally by a human. The system aids in reducing repetitive code, such as communication code, and aids in the reduction of redundant code across projects. It adds new features to code automatically, such as recovering from a lost node or the ability to modify the code while running. In this project, the innovators at the time of this reporting intend to develop two distinct technologies that build upon each other and both of which serve as building blocks for more efficient HPC usage. First is the scheduling and dynamic execution framework, and the second is scalable linear algebra libraries that are built directly on the former.
Advances in Significance Testing for Cluster Detection
NASA Astrophysics Data System (ADS)
Coleman, Deidra Andrea
Over the past two decades, much attention has been given to data driven project goals such as the Human Genome Project and the development of syndromic surveillance systems. A major component of these types of projects is analyzing the abundance of data. Detecting clusters within the data can be beneficial as it can lead to the identification of specified sequences of DNA nucleotides that are related to important biological functions or the locations of epidemics such as disease outbreaks or bioterrorism attacks. Cluster detection techniques require efficient and accurate hypothesis testing procedures. In this dissertation, we improve upon the hypothesis testing procedures for cluster detection by enhancing distributional theory and providing an alternative method for spatial cluster detection using syndromic surveillance data. In Chapter 2, we provide an efficient method to compute the exact distribution of the number and coverage of h-clumps of a collection of words. This method involves defining a Markov chain using a minimal deterministic automaton to reduce the number of states needed for computation. We allow words of the collection to contain other words of the collection making the method more general. We use our method to compute the distributions of the number and coverage of h-clumps in the Chi motif of H. influenza.. In Chapter 3, we provide an efficient algorithm to compute the exact distribution of multiple window discrete scan statistics for higher-order, multi-state Markovian sequences. This algorithm involves defining a Markov chain to efficiently keep track of probabilities needed to compute p-values of the statistic. We use our algorithm to identify cases where the available approximation does not perform well. We also use our algorithm to detect unusual clusters of made free throw shots by National Basketball Association players during the 2009-2010 regular season. In Chapter 4, we give a procedure to detect outbreaks using syndromic surveillance data while controlling the Bayesian False Discovery Rate (BFDR). The procedure entails choosing an appropriate Bayesian model that captures the spatial dependency inherent in epidemiological data and considers all days of interest, selecting a test statistic based on a chosen measure that provides the magnitude of the maximumal spatial cluster for each day, and identifying a cutoff value that controls the BFDR for rejecting the collective null hypothesis of no outbreak over a collection of days for a specified region.We use our procedure to analyze botulism-like syndrome data collected by the North Carolina Disease Event Tracking and Epidemiologic Collection Tool (NC DETECT).
Jade: using on-demand cloud analysis to give scientists back their flow
NASA Astrophysics Data System (ADS)
Robinson, N.; Tomlinson, J.; Hilson, A. J.; Arribas, A.; Powell, T.
2017-12-01
The UK's Met Office generates 400 TB weather and climate data every day by running physical models on its Top 20 supercomputer. As data volumes explode, there is a danger that analysis workflows become dominated by watching progress bars, and not thinking about science. We have been researching how we can use distributed computing to allow analysts to process these large volumes of high velocity data in a way that's easy, effective and cheap.Our prototype analysis stack, Jade, tries to encapsulate this. Functionality includes: An under-the-hood Dask engine which parallelises and distributes computations, without the need to retrain analysts Hybrid compute clusters (AWS, Alibaba, and local compute) comprising many thousands of cores Clusters which autoscale up/down in response to calculation load using Kubernetes, and balances the cluster across providers based on the current price of compute Lazy data access from cloud storage via containerised OpenDAP This technology stack allows us to perform calculations many orders of magnitude faster than is possible on local workstations. It is also possible to outperform dedicated local compute clusters, as cloud compute can, in principle, scale to much larger scales. The use of ephemeral compute resources also makes this implementation cost efficient.
Computer Vision and Machine Learning for Autonomous Characterization of AM Powder Feedstocks
NASA Astrophysics Data System (ADS)
DeCost, Brian L.; Jain, Harshvardhan; Rollett, Anthony D.; Holm, Elizabeth A.
2017-03-01
By applying computer vision and machine learning methods, we develop a system to characterize powder feedstock materials for metal additive manufacturing (AM). Feature detection and description algorithms are applied to create a microstructural scale image representation that can be used to cluster, compare, and analyze powder micrographs. When applied to eight commercial feedstock powders, the system classifies powder images into the correct material systems with greater than 95% accuracy. The system also identifies both representative and atypical powder images. These results suggest the possibility of measuring variations in powders as a function of processing history, relating microstructural features of powders to properties relevant to their performance in AM processes, and defining objective material standards based on visual images. A significant advantage of the computer vision approach is that it is autonomous, objective, and repeatable.
Approximation Of Multi-Valued Inverse Functions Using Clustering And Sugeno Fuzzy Inference
NASA Technical Reports Server (NTRS)
Walden, Maria A.; Bikdash, Marwan; Homaifar, Abdollah
1998-01-01
Finding the inverse of a continuous function can be challenging and computationally expensive when the inverse function is multi-valued. Difficulties may be compounded when the function itself is difficult to evaluate. We show that we can use fuzzy-logic approximators such as Sugeno inference systems to compute the inverse on-line. To do so, a fuzzy clustering algorithm can be used in conjunction with a discriminating function to split the function data into branches for the different values of the forward function. These data sets are then fed into a recursive least-squares learning algorithm that finds the proper coefficients of the Sugeno approximators; each Sugeno approximator finds one value of the inverse function. Discussions about the accuracy of the approximation will be included.
ERIC Educational Resources Information Center
Hofmann, Richard J.
A very general model for the computation of independent cluster solutions in factor analysis is presented. The model is discussed as being either orthogonal or oblique. Furthermore, it is demonstrated that for every orthogonal independent cluster solution there is an oblique analog. Using three illustrative examples, certain generalities are made…
Evolutionary Computation for the Identification of Emergent Behavior in Autonomous Systems
NASA Technical Reports Server (NTRS)
Terrile, Richard J.; Guillaume, Alexandre
2009-01-01
Over the past several years the Center for Evolutionary Computation and Automated Design at the Jet Propulsion Laboratory has developed a technique based on Evolutionary Computational Methods (ECM) that allows for the automated optimization of complex computationally modeled systems. An important application of this technique is for the identification of emergent behaviors in autonomous systems. Mobility platforms such as rovers or airborne vehicles are now being designed with autonomous mission controllers that can find trajectories over a solution space that is larger than can reasonably be tested. It is critical to identify control behaviors that are not predicted and can have surprising results (both good and bad). These emergent behaviors need to be identified, characterized and either incorporated into or isolated from the acceptable range of control characteristics. We use cluster analysis of automatically retrieved solutions to identify isolated populations of solutions with divergent behaviors.
NASA Technical Reports Server (NTRS)
Dongarra, Jack (Editor); Messina, Paul (Editor); Sorensen, Danny C. (Editor); Voigt, Robert G. (Editor)
1990-01-01
Attention is given to such topics as an evaluation of block algorithm variants in LAPACK and presents a large-grain parallel sparse system solver, a multiprocessor method for the solution of the generalized Eigenvalue problem on an interval, and a parallel QR algorithm for iterative subspace methods on the CM2. A discussion of numerical methods includes the topics of asynchronous numerical solutions of PDEs on parallel computers, parallel homotopy curve tracking on a hypercube, and solving Navier-Stokes equations on the Cedar Multi-Cluster system. A section on differential equations includes a discussion of a six-color procedure for the parallel solution of elliptic systems using the finite quadtree structure, data parallel algorithms for the finite element method, and domain decomposition methods in aerodynamics. Topics dealing with massively parallel computing include hypercube vs. 2-dimensional meshes and massively parallel computation of conservation laws. Performance and tools are also discussed.
High-Performance Data Analysis Tools for Sun-Earth Connection Missions
NASA Technical Reports Server (NTRS)
Messmer, Peter
2011-01-01
The data analysis tool of choice for many Sun-Earth Connection missions is the Interactive Data Language (IDL) by ITT VIS. The increasing amount of data produced by these missions and the increasing complexity of image processing algorithms requires access to higher computing power. Parallel computing is a cost-effective way to increase the speed of computation, but algorithms oftentimes have to be modified to take advantage of parallel systems. Enhancing IDL to work on clusters gives scientists access to increased performance in a familiar programming environment. The goal of this project was to enable IDL applications to benefit from both computing clusters as well as graphics processing units (GPUs) for accelerating data analysis tasks. The tool suite developed in this project enables scientists now to solve demanding data analysis problems in IDL that previously required specialized software, and it allows them to be solved orders of magnitude faster than on conventional PCs. The tool suite consists of three components: (1) TaskDL, a software tool that simplifies the creation and management of task farms, collections of tasks that can be processed independently and require only small amounts of data communication; (2) mpiDL, a tool that allows IDL developers to use the Message Passing Interface (MPI) inside IDL for problems that require large amounts of data to be exchanged among multiple processors; and (3) GPULib, a tool that simplifies the use of GPUs as mathematical coprocessors from within IDL. mpiDL is unique in its support for the full MPI standard and its support of a broad range of MPI implementations. GPULib is unique in enabling users to take advantage of an inexpensive piece of hardware, possibly already installed in their computer, and achieve orders of magnitude faster execution time for numerically complex algorithms. TaskDL enables the simple setup and management of task farms on compute clusters. The products developed in this project have the potential to interact, so one can build a cluster of PCs, each equipped with a GPU, and use mpiDL to communicate between the nodes and GPULib to accelerate the computations on each node.
Heterogeneous real-time computing in radio astronomy
NASA Astrophysics Data System (ADS)
Ford, John M.; Demorest, Paul; Ransom, Scott
2010-07-01
Modern computer architectures suited for general purpose computing are often not the best choice for either I/O-bound or compute-bound problems. Sometimes the best choice is not to choose a single architecture, but to take advantage of the best characteristics of different computer architectures to solve your problems. This paper examines the tradeoffs between using computer systems based on the ubiquitous X86 Central Processing Units (CPU's), Field Programmable Gate Array (FPGA) based signal processors, and Graphical Processing Units (GPU's). We will show how a heterogeneous system can be produced that blends the best of each of these technologies into a real-time signal processing system. FPGA's tightly coupled to analog-to-digital converters connect the instrument to the telescope and supply the first level of computing to the system. These FPGA's are coupled to other FPGA's to continue to provide highly efficient processing power. Data is then packaged up and shipped over fast networks to a cluster of general purpose computers equipped with GPU's, which are used for floating-point intensive computation. Finally, the data is handled by the CPU and written to disk, or further processed. Each of the elements in the system has been chosen for its specific characteristics and the role it can play in creating a system that does the most for the least, in terms of power, space, and money.
Parallel Signal Processing and System Simulation using aCe
NASA Technical Reports Server (NTRS)
Dorband, John E.; Aburdene, Maurice F.
2003-01-01
Recently, networked and cluster computation have become very popular for both signal processing and system simulation. A new language is ideally suited for parallel signal processing applications and system simulation since it allows the programmer to explicitly express the computations that can be performed concurrently. In addition, the new C based parallel language (ace C) for architecture-adaptive programming allows programmers to implement algorithms and system simulation applications on parallel architectures by providing them with the assurance that future parallel architectures will be able to run their applications with a minimum of modification. In this paper, we will focus on some fundamental features of ace C and present a signal processing application (FFT).
NASA Technical Reports Server (NTRS)
Endlich, R. M.; Wolf, D. E.
1980-01-01
The automatic cloud tracking system was applied to METEOSAT 6.7 micrometers water vapor measurements to learn whether the system can track the motions of water vapor patterns. Data for the midlatitudes, subtropics, and tropics were selected from a sequence of METEOSAT pictures for 25 April 1978. Trackable features in the water vapor patterns were identified using a clustering technique and the features were tracked by two different methods. In flat (low contrast) water vapor fields, the automatic motion computations were not reliable, but in areas where the water vapor fields contained small scale structure (such as in the vicinity of active weather phenomena) the computations were successful. Cloud motions were computed using METEOSAT infrared observations (including tropical convective systems and midlatitude jet stream cirrus).
López, Carlos; Lejeune, Marylène; Escrivà, Patricia; Bosch, Ramón; Salvadó, Maria Teresa; Pons, Lluis E.; Baucells, Jordi; Cugat, Xavier; Álvaro, Tomás; Jaén, Joaquín
2008-01-01
This study investigates the effects of digital image compression on automatic quantification of immunohistochemical nuclear markers. We examined 188 images with a previously validated computer-assisted analysis system. A first group was composed of 47 images captured in TIFF format, and other three contained the same images converted from TIFF to JPEG format with 3×, 23× and 46× compression. Counts of TIFF format images were compared with the other three groups. Overall, differences in the count of the images increased with the percentage of compression. Low-complexity images (≤100 cells/field, without clusters or with small-area clusters) had small differences (<5 cells/field in 95–100% of cases) and high-complexity images showed substantial differences (<35–50 cells/field in 95–100% of cases). Compression does not compromise the accuracy of immunohistochemical nuclear marker counts obtained by computer-assisted analysis systems for digital images with low complexity and could be an efficient method for storing these images. PMID:18755997
The ALICE Software Release Validation cluster
NASA Astrophysics Data System (ADS)
Berzano, D.; Krzewicki, M.
2015-12-01
One of the most important steps of software lifecycle is Quality Assurance: this process comprehends both automatic tests and manual reviews, and all of them must pass successfully before the software is approved for production. Some tests, such as source code static analysis, are executed on a single dedicated service: in High Energy Physics, a full simulation and reconstruction chain on a distributed computing environment, backed with a sample “golden” dataset, is also necessary for the quality sign off. The ALICE experiment uses dedicated and virtualized computing infrastructures for the Release Validation in order not to taint the production environment (i.e. CVMFS and the Grid) with non-validated software and validation jobs: the ALICE Release Validation cluster is a disposable virtual cluster appliance based on CernVM and the Virtual Analysis Facility, capable of deploying on demand, and with a single command, a dedicated virtual HTCondor cluster with an automatically scalable number of virtual workers on any cloud supporting the standard EC2 interface. Input and output data are externally stored on EOS, and a dedicated CVMFS service is used to provide the software to be validated. We will show how the Release Validation Cluster deployment and disposal are completely transparent for the Release Manager, who simply triggers the validation from the ALICE build system's web interface. CernVM 3, based entirely on CVMFS, permits to boot any snapshot of the operating system in time: we will show how this allows us to certify each ALICE software release for an exact CernVM snapshot, addressing the problem of Long Term Data Preservation by ensuring a consistent environment for software execution and data reprocessing in the future.
Analyzing the errors of DFT approximations for compressed water systems
NASA Astrophysics Data System (ADS)
Alfè, D.; Bartók, A. P.; Csányi, G.; Gillan, M. J.
2014-07-01
We report an extensive study of the errors of density functional theory (DFT) approximations for compressed water systems. The approximations studied are based on the widely used PBE and BLYP exchange-correlation functionals, and we characterize their errors before and after correction for 1- and 2-body errors, the corrections being performed using the methods of Gaussian approximation potentials. The errors of the uncorrected and corrected approximations are investigated for two related types of water system: first, the compressed liquid at temperature 420 K and density 1.245 g/cm3 where the experimental pressure is 15 kilobars; second, thermal samples of compressed water clusters from the trimer to the 27-mer. For the liquid, we report four first-principles molecular dynamics simulations, two generated with the uncorrected PBE and BLYP approximations and a further two with their 1- and 2-body corrected counterparts. The errors of the simulations are characterized by comparing with experimental data for the pressure, with neutron-diffraction data for the three radial distribution functions, and with quantum Monte Carlo (QMC) benchmarks for the energies of sets of configurations of the liquid in periodic boundary conditions. The DFT errors of the configuration samples of compressed water clusters are computed using QMC benchmarks. We find that the 2-body and beyond-2-body errors in the liquid are closely related to similar errors exhibited by the clusters. For both the liquid and the clusters, beyond-2-body errors of DFT make a substantial contribution to the overall errors, so that correction for 1- and 2-body errors does not suffice to give a satisfactory description. For BLYP, a recent representation of 3-body energies due to Medders, Babin, and Paesani [J. Chem. Theory Comput. 9, 1103 (2013)] gives a reasonably good way of correcting for beyond-2-body errors, after which the remaining errors are typically 0.5 mEh ≃ 15 meV/monomer for the liquid and the clusters.
Analyzing the errors of DFT approximations for compressed water systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alfè, D.; London Centre for Nanotechnology, UCL, London WC1H 0AH; Thomas Young Centre, UCL, London WC1H 0AH
We report an extensive study of the errors of density functional theory (DFT) approximations for compressed water systems. The approximations studied are based on the widely used PBE and BLYP exchange-correlation functionals, and we characterize their errors before and after correction for 1- and 2-body errors, the corrections being performed using the methods of Gaussian approximation potentials. The errors of the uncorrected and corrected approximations are investigated for two related types of water system: first, the compressed liquid at temperature 420 K and density 1.245 g/cm{sup 3} where the experimental pressure is 15 kilobars; second, thermal samples of compressed watermore » clusters from the trimer to the 27-mer. For the liquid, we report four first-principles molecular dynamics simulations, two generated with the uncorrected PBE and BLYP approximations and a further two with their 1- and 2-body corrected counterparts. The errors of the simulations are characterized by comparing with experimental data for the pressure, with neutron-diffraction data for the three radial distribution functions, and with quantum Monte Carlo (QMC) benchmarks for the energies of sets of configurations of the liquid in periodic boundary conditions. The DFT errors of the configuration samples of compressed water clusters are computed using QMC benchmarks. We find that the 2-body and beyond-2-body errors in the liquid are closely related to similar errors exhibited by the clusters. For both the liquid and the clusters, beyond-2-body errors of DFT make a substantial contribution to the overall errors, so that correction for 1- and 2-body errors does not suffice to give a satisfactory description. For BLYP, a recent representation of 3-body energies due to Medders, Babin, and Paesani [J. Chem. Theory Comput. 9, 1103 (2013)] gives a reasonably good way of correcting for beyond-2-body errors, after which the remaining errors are typically 0.5 mE{sub h} ≃ 15 meV/monomer for the liquid and the clusters.« less
Vertebra identification using template matching modelmp and K-means clustering.
Larhmam, Mohamed Amine; Benjelloun, Mohammed; Mahmoudi, Saïd
2014-03-01
Accurate vertebra detection and segmentation are essential steps for automating the diagnosis of spinal disorders. This study is dedicated to vertebra alignment measurement, the first step in a computer-aided diagnosis tool for cervical spine trauma. Automated vertebral segment alignment determination is a challenging task due to low contrast imaging and noise. A software tool for segmenting vertebrae and detecting subluxations has clinical significance. A robust method was developed and tested for cervical vertebra identification and segmentation that extracts parameters used for vertebra alignment measurement. Our contribution involves a novel combination of a template matching method and an unsupervised clustering algorithm. In this method, we build a geometric vertebra mean model. To achieve vertebra detection, manual selection of the region of interest is performed initially on the input image. Subsequent preprocessing is done to enhance image contrast and detect edges. Candidate vertebra localization is then carried out by using a modified generalized Hough transform (GHT). Next, an adapted cost function is used to compute local voted centers and filter boundary data. Thereafter, a K-means clustering algorithm is applied to obtain clusters distribution corresponding to the targeted vertebrae. These clusters are combined with the vote parameters to detect vertebra centers. Rigid segmentation is then carried out by using GHT parameters. Finally, cervical spine curves are extracted to measure vertebra alignment. The proposed approach was successfully applied to a set of 66 high-resolution X-ray images. Robust detection was achieved in 97.5 % of the 330 tested cervical vertebrae. An automated vertebral identification method was developed and demonstrated to be robust to noise and occlusion. This work presents a first step toward an automated computer-aided diagnosis system for cervical spine trauma detection.
Detecting Genomic Clustering of Risk Variants from Sequence Data: Cases vs. Controls
Schaid, Daniel J.; Sinnwell, Jason P.; McDonnell, Shannon K.; Thibodeau, Stephen N.
2013-01-01
As the ability to measure dense genetic markers approaches the limit of the DNA sequence itself, taking advantage of possible clustering of genetic variants in, and around, a gene would benefit genetic association analyses, and likely provide biological insights. The greatest benefit might be realized when multiple rare variants cluster in a functional region. Several statistical tests have been developed, one of which is based on the popular Kulldorff scan statistic for spatial clustering of disease. We extended another popular spatial clustering method – Tango’s statistic – to genomic sequence data. An advantage of Tango’s method is that it is rapid to compute, and when single test statistic is computed, its distribution is well approximated by a scaled chi-square distribution, making computation of p-values very rapid. We compared the Type-I error rates and power of several clustering statistics, as well as the omnibus sequence kernel association test (SKAT). Although our version of Tango’s statistic, which we call “Kernel Distance” statistic, took approximately half the time to compute than the Kulldorff scan statistic, it had slightly less power than the scan statistic. Our results showed that the Ionita-Laza version of Kulldorff’s scan statistic had the greatest power over a range of clustering scenarios. PMID:23842950
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langer, S; Rotman, D; Schwegler, E
The Institutional Computing Executive Group (ICEG) review of FY05-06 Multiprogrammatic and Institutional Computing (M and IC) activities is presented in the attached report. In summary, we find that the M and IC staff does an outstanding job of acquiring and supporting a wide range of institutional computing resources to meet the programmatic and scientific goals of LLNL. The responsiveness and high quality of support given to users and the programs investing in M and IC reflects the dedication and skill of the M and IC staff. M and IC has successfully managed serial capacity, parallel capacity, and capability computing resources.more » Serial capacity computing supports a wide range of scientific projects which require access to a few high performance processors within a shared memory computer. Parallel capacity computing supports scientific projects that require a moderate number of processors (up to roughly 1000) on a parallel computer. Capability computing supports parallel jobs that push the limits of simulation science. M and IC has worked closely with Stockpile Stewardship, and together they have made LLNL a premier institution for computational and simulation science. Such a standing is vital to the continued success of laboratory science programs and to the recruitment and retention of top scientists. This report provides recommendations to build on M and IC's accomplishments and improve simulation capabilities at LLNL. We recommend that institution fully fund (1) operation of the atlas cluster purchased in FY06 to support a few large projects; (2) operation of the thunder and zeus clusters to enable 'mid-range' parallel capacity simulations during normal operation and a limited number of large simulations during dedicated application time; (3) operation of the new yana cluster to support a wide range of serial capacity simulations; (4) improvements to the reliability and performance of the Lustre parallel file system; (5) support for the new GDO petabyte-class storage facility on the green network for use in data intensive external collaborations; and (6) continued support for visualization and other methods for analyzing large simulations. We also recommend that M and IC begin planning in FY07 for the next upgrade of its parallel clusters. LLNL investments in M and IC have resulted in a world-class simulation capability leading to innovative science. We thank the LLNL management for its continued support and thank the M and IC staff for its vision and dedicated efforts to make it all happen.« less
A Conceptual Framework for Tactical Private Satellite Networks
2008-09-01
will be deployed on a controlled basis so as not to consume valuable bandwidth during critical time windows. Faults inside the network can be tracked ... attitude control , timing, and navigation - More precise station keeping - Optical LANs and inter-satellite links - Inter satellite links - New...Cluster operations, such as electromagnetic formation flying systems and remote attitude determination systems. • Distributed spacecraft computing
Rigid-Cluster Models of Conformational Transitions in Macromolecular Machines and Assemblies
Kim, Moon K.; Jernigan, Robert L.; Chirikjian, Gregory S.
2005-01-01
We present a rigid-body-based technique (called rigid-cluster elastic network interpolation) to generate feasible transition pathways between two distinct conformations of a macromolecular assembly. Many biological molecules and assemblies consist of domains which act more or less as rigid bodies during large conformational changes. These collective motions are thought to be strongly related with the functions of a system. This fact encourages us to simply model a macromolecule or assembly as a set of rigid bodies which are interconnected with distance constraints. In previous articles, we developed coarse-grained elastic network interpolation (ENI) in which, for example, only Cα atoms are selected as representatives in each residue of a protein. We interpolate distance differences of two conformations in ENI by using a simple quadratic cost function, and the feasible conformations are generated without steric conflicts. Rigid-cluster interpolation is an extension of the ENI method with rigid-clusters replacing point masses. Now the intermediate conformations in an anharmonic pathway can be determined by the translational and rotational displacements of large clusters in such a way that distance constraints are observed. We present the derivation of the rigid-cluster model and apply it to a variety of macromolecular assemblies. Rigid-cluster ENI is then modified for a hybrid model represented by a mixture of rigid clusters and point masses. Simulation results show that both rigid-cluster and hybrid ENI methods generate sterically feasible pathways of large systems in a very short time. For example, the HK97 virus capsid is an icosahedral symmetric assembly composed of 60 identical asymmetric units. Its original Hessian matrix size for a Cα coarse-grained model is >(300,000)2. However, it reduces to (84)2 when we apply the rigid-cluster model with icosahedral symmetry constraints. The computational cost of the interpolation no longer scales heavily with the size of structures; instead, it depends strongly on the minimal number of rigid clusters into which the system can be decomposed. PMID:15833998
BOWS (bioinformatics open web services) to centralize bioinformatics tools in web services.
Velloso, Henrique; Vialle, Ricardo A; Ortega, J Miguel
2015-06-02
Bioinformaticians face a range of difficulties to get locally-installed tools running and producing results; they would greatly benefit from a system that could centralize most of the tools, using an easy interface for input and output. Web services, due to their universal nature and widely known interface, constitute a very good option to achieve this goal. Bioinformatics open web services (BOWS) is a system based on generic web services produced to allow programmatic access to applications running on high-performance computing (HPC) clusters. BOWS intermediates the access to registered tools by providing front-end and back-end web services. Programmers can install applications in HPC clusters in any programming language and use the back-end service to check for new jobs and their parameters, and then to send the results to BOWS. Programs running in simple computers consume the BOWS front-end service to submit new processes and read results. BOWS compiles Java clients, which encapsulate the front-end web service requisitions, and automatically creates a web page that disposes the registered applications and clients. Bioinformatics open web services registered applications can be accessed from virtually any programming language through web services, or using standard java clients. The back-end can run in HPC clusters, allowing bioinformaticians to remotely run high-processing demand applications directly from their machines.
A diabetic retinopathy detection method using an improved pillar K-means algorithm.
Gogula, Susmitha Valli; Divakar, Ch; Satyanarayana, Ch; Rao, Allam Appa
2014-01-01
The paper presents a new approach for medical image segmentation. Exudates are a visible sign of diabetic retinopathy that is the major reason of vision loss in patients with diabetes. If the exudates extend into the macular area, blindness may occur. Automated detection of exudates will assist ophthalmologists in early diagnosis. This segmentation process includes a new mechanism for clustering the elements of high-resolution images in order to improve precision and reduce computation time. The system applies K-means clustering to the image segmentation after getting optimized by Pillar algorithm; pillars are constructed in such a way that they can withstand the pressure. Improved pillar algorithm can optimize the K-means clustering for image segmentation in aspects of precision and computation time. This evaluates the proposed approach for image segmentation by comparing with Kmeans and Fuzzy C-means in a medical image. Using this method, identification of dark spot in the retina becomes easier and the proposed algorithm is applied on diabetic retinal images of all stages to identify hard and soft exudates, where the existing pillar K-means is more appropriate for brain MRI images. This proposed system help the doctors to identify the problem in the early stage and can suggest a better drug for preventing further retinal damage.
NASA Astrophysics Data System (ADS)
Hai, Pengfei; Zhou, Yong; Zhang, Ruiying; Ma, Jun; Li, Yang; Shao, Jin-Yu; Wang, Lihong V.
2017-04-01
Circulating tumor cell (CTC) clusters, arising from multicellular groupings in a primary tumor, greatly elevate the metastatic potential of cancer compared with single CTCs. High-throughput detection and quantification of CTC clusters are important for understanding the tumor metastatic process and improving cancer therapy. Here, we applied a linear-array-based photoacoustic tomography (LA-PAT) system and improved the image reconstruction for label-free high-throughput CTC cluster detection and quantification in vivo. The feasibility was first demonstrated by imaging CTC cluster ex vivo. The relationship between the contrast-to-noise ratios (CNRs) and the number of cells in melanoma tumor cell clusters was investigated and verified. Melanoma CTC clusters with a minimum of four cells could be detected, and the number of cells could be computed from the CNR. Finally, we demonstrated imaging of injected melanoma CTC clusters in rats in vivo. Similarly, the number of cells in the melanoma CTC clusters could be quantified. The data showed that larger CTC clusters had faster clearance rates in the bloodstream, which agreed with the literature. The results demonstrated the capability of LA-PAT to detect and quantify melanoma CTC clusters in vivo and showed its potential for tumor metastasis study and cancer therapy.
Ravell, Estefanía; Jalife, Said; Barroso, Jorge; Orozco-Ic, Mesías; Hernández-Juárez, Gerardo; Ortiz-Chi, Filiberto; Pan, Sudip; Cabellos, José Luis; Merino, Gabriel
2018-03-24
The structure, bonding, and stability of clusters with the empirical formula CE 5 - (E=Al-Tl) have been analyzed by means of high-level computations. The results indicate that, whereas aluminum and gallium clusters have C 2v structures with a planar tetracoordinate carbon (ptC), their heavier homologues prefer three-dimensional C 4v forms with a pentacoordinate carbon center over the ptC one. The reason for such a preference is a delicate balance between the interaction energy of the fifth E atom with CE 4 and the distortion energy. Moreover, bonding analysis shows that the ptC systems can be better described as CE 4 - , with 17-valence electrons interacting with E. The ptC core in these systems exhibits double aromatic (both σ and π) behavior, but the σ contribution is dominating. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A two-step initial mass function:. Consequences of clustered star formation for binary properties
NASA Astrophysics Data System (ADS)
Durisen, R. H.; Sterzik, M. F.; Pickett, B. K.
2001-06-01
If stars originate in transient bound clusters of moderate size, these clusters will decay due to dynamic interactions in which a hard binary forms and ejects most or all the other stars. When the cluster members are chosen at random from a reasonable initial mass function (IMF), the resulting binary characteristics do not match current observations. We find a significant improvement in the trends of binary properties from this scenario when an additional constraint is taken into account, namely that there is a distribution of total cluster masses set by the masses of the cloud cores from which the clusters form. Two distinct steps then determine final stellar masses - the choice of a cluster mass and the formation of the individual stars. We refer to this as a ``two-step'' IMF. Simple statistical arguments are used in this paper to show that a two-step IMF, combined with typical results from dynamic few-body system decay, tends to give better agreement between computed binary characteristics and observations than a one-step mass selection process.
Cognitive Model Exploration and Optimization: A New Challenge for Computational Science
2010-01-01
Introduction Research in cognitive science often involves the generation and analysis of computational cognitive models to explain various...HPC) clusters and volunteer computing for large-scale computational resources. The majority of applications on the Department of Defense HPC... clusters focus on solving partial differential equations (Post, 2009). These tend to be lean, fast models with little noise. While we lack specific
Hartree-Fock calculation of the differential photoionization cross sections of small Li clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galitskiy, S. A.; Artemyev, A. N.; Jänkälä, K.
2015-01-21
Cross sections and angular distribution parameters for the single-photon ionization of all electron orbitals of Li{sub 2−8} are systematically computed in a broad interval of the photoelectron kinetic energies for the energetically most stable geometry of each cluster. Calculations of the partial photoelectron continuum waves in clusters are carried out by the single center method within the Hartree-Fock approximation. We study photoionization cross sections per one electron and analyze in some details general trends in the photoionization of inner and outer shells with respect to the size and geometry of a cluster. The present differential cross sections computed for Li{submore » 2} are in a good agreement with the available theoretical data, whereas those computed for Li{sub 3−8} clusters can be considered as theoretical predictions.« less
Operating Dedicated Data Centers - Is It Cost-Effective?
NASA Astrophysics Data System (ADS)
Ernst, M.; Hogue, R.; Hollowell, C.; Strecker-Kellog, W.; Wong, A.; Zaytsev, A.
2014-06-01
The advent of cloud computing centres such as Amazon's EC2 and Google's Computing Engine has elicited comparisons with dedicated computing clusters. Discussions on appropriate usage of cloud resources (both academic and commercial) and costs have ensued. This presentation discusses a detailed analysis of the costs of operating and maintaining the RACF (RHIC and ATLAS Computing Facility) compute cluster at Brookhaven National Lab and compares them with the cost of cloud computing resources under various usage scenarios. An extrapolation of likely future cost effectiveness of dedicated computing resources is also presented.
ERIC Educational Resources Information Center
Cornforth, David; Atkinson, John; Spennemann, Dirk H. R.
2006-01-01
Purpose: Many researchers require access to computer facilities beyond those offered by desktop workstations. Traditionally, these are offered either through partnerships, to share the cost of supercomputing facilities, or through purpose-built cluster facilities. However, funds are not always available to satisfy either of these options, and…
An Experiment in Computer Ethics: Clustering Composition with Computer Applications.
ERIC Educational Resources Information Center
Nydahl, Joel
Babson College (a school of business and management in Wellesley, Massachusetts) attempted to make a group of first-year students computer literate through "clustering." The same group of students were enrolled in two courses: a special section of "Composition" which stressed word processing as a composition aid and a regular…
Multi-hop routing mechanism for reliable sensor computing.
Chen, Jiann-Liang; Ma, Yi-Wei; Lai, Chia-Ping; Hu, Chia-Cheng; Huang, Yueh-Min
2009-01-01
Current research on routing in wireless sensor computing concentrates on increasing the service lifetime, enabling scalability for large number of sensors and supporting fault tolerance for battery exhaustion and broken nodes. A sensor node is naturally exposed to various sources of unreliable communication channels and node failures. Sensor nodes have many failure modes, and each failure degrades the network performance. This work develops a novel mechanism, called Reliable Routing Mechanism (RRM), based on a hybrid cluster-based routing protocol to specify the best reliable routing path for sensor computing. Table-driven intra-cluster routing and on-demand inter-cluster routing are combined by changing the relationship between clusters for sensor computing. Applying a reliable routing mechanism in sensor computing can improve routing reliability, maintain low packet loss, minimize management overhead and save energy consumption. Simulation results indicate that the reliability of the proposed RRM mechanism is around 25% higher than that of the Dynamic Source Routing (DSR) and ad hoc On-demand Distance Vector routing (AODV) mechanisms.
NASA Astrophysics Data System (ADS)
Appel, Marius; Nüst, Daniel; Pebesma, Edzer
2017-04-01
Geoscientific analyses of Earth observation data typically involve a long path from data acquisition to scientific results and conclusions. Before starting the actual processing, scenes must be downloaded from the providers' platforms and the computing infrastructure needs to be prepared. The computing environment often requires specialized software, which in turn might have lots of dependencies. The software is often highly customized and provided without commercial support, which leads to rather ad-hoc systems and irreproducible results. To let other scientists reproduce the analyses, the full workspace including data, code, the computing environment, and documentation must be bundled and shared. Technologies such as virtualization or containerization allow for the creation of identical computing environments with relatively little effort. Challenges, however, arise when the volume of the data is too large, when computations are done in a cluster environment, or when complex software components such as databases are used. We discuss these challenges for the example of scalable Land use change detection on Landsat imagery. We present a reproducible implementation that runs R and the scalable data management and analytical system SciDB within a Docker container. Thanks to an explicit container recipe (the Dockerfile), this enables the all-in-one reproduction including the installation of software components, the ingestion of the data, and the execution of the analysis in a well-defined environment. We furthermore discuss possibilities how the implementation could be transferred to multi-container environments in order to support reproducibility on large cluster environments.
Region Templates: Data Representation and Management for High-Throughput Image Analysis
Pan, Tony; Kurc, Tahsin; Kong, Jun; Cooper, Lee; Klasky, Scott; Saltz, Joel
2015-01-01
We introduce a region template abstraction and framework for the efficient storage, management and processing of common data types in analysis of large datasets of high resolution images on clusters of hybrid computing nodes. The region template abstraction provides a generic container template for common data structures, such as points, arrays, regions, and object sets, within a spatial and temporal bounding box. It allows for different data management strategies and I/O implementations, while providing a homogeneous, unified interface to applications for data storage and retrieval. A region template application is represented as a hierarchical dataflow in which each computing stage may be represented as another dataflow of finer-grain tasks. The execution of the application is coordinated by a runtime system that implements optimizations for hybrid machines, including performance-aware scheduling for maximizing the utilization of computing devices and techniques to reduce the impact of data transfers between CPUs and GPUs. An experimental evaluation on a state-of-the-art hybrid cluster using a microscopy imaging application shows that the abstraction adds negligible overhead (about 3%) and achieves good scalability and high data transfer rates. Optimizations in a high speed disk based storage implementation of the abstraction to support asynchronous data transfers and computation result in an application performance gain of about 1.13×. Finally, a processing rate of 11,730 4K×4K tiles per minute was achieved for the microscopy imaging application on a cluster with 100 nodes (300 GPUs and 1,200 CPU cores). This computation rate enables studies with very large datasets. PMID:26139953
Hierarchical Kohonenen net for anomaly detection in network security.
Sarasamma, Suseela T; Zhu, Qiuming A; Huff, Julie
2005-04-01
A novel multilevel hierarchical Kohonen Net (K-Map) for an intrusion detection system is presented. Each level of the hierarchical map is modeled as a simple winner-take-all K-Map. One significant advantage of this multilevel hierarchical K-Map is its computational efficiency. Unlike other statistical anomaly detection methods such as nearest neighbor approach, K-means clustering or probabilistic analysis that employ distance computation in the feature space to identify the outliers, our approach does not involve costly point-to-point computation in organizing the data into clusters. Another advantage is the reduced network size. We use the classification capability of the K-Map on selected dimensions of data set in detecting anomalies. Randomly selected subsets that contain both attacks and normal records from the KDD Cup 1999 benchmark data are used to train the hierarchical net. We use a confidence measure to label the clusters. Then we use the test set from the same KDD Cup 1999 benchmark to test the hierarchical net. We show that a hierarchical K-Map in which each layer operates on a small subset of the feature space is superior to a single-layer K-Map operating on the whole feature space in detecting a variety of attacks in terms of detection rate as well as false positive rate.
NASA Astrophysics Data System (ADS)
Zhang, Ning; Du, Yunsong; Miao, Shiguang; Fang, Xiaoyi
2016-08-01
The simulation performance over complex building clusters of a wind simulation model (Wind Information Field Fast Analysis model, WIFFA) in a micro-scale air pollutant dispersion model system (Urban Microscale Air Pollution dispersion Simulation model, UMAPS) is evaluated using various wind tunnel experimental data including the CEDVAL (Compilation of Experimental Data for Validation of Micro-Scale Dispersion Models) wind tunnel experiment data and the NJU-FZ experiment data (Nanjing University-Fang Zhuang neighborhood wind tunnel experiment data). The results show that the wind model can reproduce the vortexes triggered by urban buildings well, and the flow patterns in urban street canyons and building clusters can also be represented. Due to the complex shapes of buildings and their distributions, the simulation deviations/discrepancies from the measurements are usually caused by the simplification of the building shapes and the determination of the key zone sizes. The computational efficiencies of different cases are also discussed in this paper. The model has a high computational efficiency compared to traditional numerical models that solve the Navier-Stokes equations, and can produce very high-resolution (1-5 m) wind fields of a complex neighborhood scale urban building canopy (~ 1 km ×1 km) in less than 3 min when run on a personal computer.
GATE Monte Carlo simulation in a cloud computing environment
NASA Astrophysics Data System (ADS)
Rowedder, Blake Austin
The GEANT4-based GATE is a unique and powerful Monte Carlo (MC) platform, which provides a single code library allowing the simulation of specific medical physics applications, e.g. PET, SPECT, CT, radiotherapy, and hadron therapy. However, this rigorous yet flexible platform is used only sparingly in the clinic due to its lengthy calculation time. By accessing the powerful computational resources of a cloud computing environment, GATE's runtime can be significantly reduced to clinically feasible levels without the sizable investment of a local high performance cluster. This study investigated a reliable and efficient execution of GATE MC simulations using a commercial cloud computing services. Amazon's Elastic Compute Cloud was used to launch several nodes equipped with GATE. Job data was initially broken up on the local computer, then uploaded to the worker nodes on the cloud. The results were automatically downloaded and aggregated on the local computer for display and analysis. Five simulations were repeated for every cluster size between 1 and 20 nodes. Ultimately, increasing cluster size resulted in a decrease in calculation time that could be expressed with an inverse power model. Comparing the benchmark results to the published values and error margins indicated that the simulation results were not affected by the cluster size and thus that integrity of a calculation is preserved in a cloud computing environment. The runtime of a 53 minute long simulation was decreased to 3.11 minutes when run on a 20-node cluster. The ability to improve the speed of simulation suggests that fast MC simulations are viable for imaging and radiotherapy applications. With high power computing continuing to lower in price and accessibility, implementing Monte Carlo techniques with cloud computing for clinical applications will continue to become more attractive.
Decentralized Formation Flying Control in a Multiple-Team Hierarchy
NASA Technical Reports Server (NTRS)
Mueller, Joseph .; Thomas, Stephanie J.
2005-01-01
This paper presents the prototype of a system that addresses these objectives-a decentralized guidance and control system that is distributed across spacecraft using a multiple-team framework. The objective is to divide large clusters into teams of manageable size, so that the communication and computational demands driven by N decentralized units are related to the number of satellites in a team rather than the entire cluster. The system is designed to provide a high-level of autonomy, to support clusters with large numbers of satellites, to enable the number of spacecraft in the cluster to change post-launch, and to provide for on-orbit software modification. The distributed guidance and control system will be implemented in an object-oriented style using MANTA (Messaging Architecture for Networking and Threaded Applications). In this architecture, tasks may be remotely added, removed or replaced post-launch to increase mission flexibility and robustness. This built-in adaptability will allow software modifications to be made on-orbit in a robust manner. The prototype system, which is implemented in MATLAB, emulates the object-oriented and message-passing features of the MANTA software. In this paper, the multiple-team organization of the cluster is described, and the modular software architecture is presented. The relative dynamics in eccentric reference orbits is reviewed, and families of periodic, relative trajectories are identified, expressed as sets of static geometric parameters. The guidance law design is presented, and an example reconfiguration scenario is used to illustrate the distributed process of assigning geometric goals to the cluster. Next, a decentralized maneuver planning approach is presented that utilizes linear-programming methods to enact reconfiguration and coarse formation keeping maneuvers. Finally, a method for performing online collision avoidance is discussed, and an example is provided to gauge its performance.
Use of multivariate statistics to identify unreliable data obtained using CASA.
Martínez, Luis Becerril; Crispín, Rubén Huerta; Mendoza, Maximino Méndez; Gallegos, Oswaldo Hernández; Martínez, Andrés Aragón
2013-06-01
In order to identify unreliable data in a dataset of motility parameters obtained from a pilot study acquired by a veterinarian with experience in boar semen handling, but without experience in the operation of a computer assisted sperm analysis (CASA) system, a multivariate graphical and statistical analysis was performed. Sixteen boar semen samples were aliquoted then incubated with varying concentrations of progesterone from 0 to 3.33 µg/ml and analyzed in a CASA system. After standardization of the data, Chernoff faces were pictured for each measurement, and a principal component analysis (PCA) was used to reduce the dimensionality and pre-process the data before hierarchical clustering. The first twelve individual measurements showed abnormal features when Chernoff faces were drawn. PCA revealed that principal components 1 and 2 explained 63.08% of the variance in the dataset. Values of principal components for each individual measurement of semen samples were mapped to identify differences among treatment or among boars. Twelve individual measurements presented low values of principal component 1. Confidence ellipses on the map of principal components showed no statistically significant effects for treatment or boar. Hierarchical clustering realized on two first principal components produced three clusters. Cluster 1 contained evaluations of the two first samples in each treatment, each one of a different boar. With the exception of one individual measurement, all other measurements in cluster 1 were the same as observed in abnormal Chernoff faces. Unreliable data in cluster 1 are probably related to the operator inexperience with a CASA system. These findings could be used to objectively evaluate the skill level of an operator of a CASA system. This may be particularly useful in the quality control of semen analysis using CASA systems.
Computer-aided tracking and characterization of homicides and sexual assaults (CATCH)
NASA Astrophysics Data System (ADS)
Kangas, Lars J.; Terrones, Kristine M.; Keppel, Robert D.; La Moria, Robert D.
1999-03-01
When a serial offender strikes, it usually means that the investigation is unprecedented for that police agency. The volume of incoming leads and pieces of information in the case(s) can be overwhelming as evidenced by the thousands of leads gathered in the Ted Bundy Murders, Atlanta Child Murders, and the Green River Murders. Serial cases can be long term investigations in which the suspect remains unknown and continues to perpetrate crimes. With state and local murder investigative systems beginning to crop up, it will become important to manage that information in a timely and efficient way by developing computer programs to assist in that task. One vital function will be to compare violent crime cases from different jurisdictions so investigators can approach the investigation knowing that similar cases exist. CATCH (Computer Aided Tracking and Characterization of Homicides) is being developed to assist crime investigations by assessing likely characteristics of unknown offenders, by relating a specific crime case to other cases, and by providing a tool for clustering similar cases that may be attributed to the same offenders. CATCH is a collection of tools that assist the crime analyst in the investigation process by providing advanced data mining and visualization capabilities.These tools include clustering maps, query tools, geographic maps, timelines, etc. Each tool is designed to give the crime analyst a different view of the case data. The clustering tools in CATCH are based on artificial neural networks (ANNs). The ANNs learn to cluster similar cases from approximately 5000 murders and 3000 sexual assaults residing in a database. The clustering algorithm is applied to parameters describing modus operandi (MO), signature characteristics of the offenders, and other parameters describing the victim and offender. The proximity of cases within a two-dimensional representation of the clusters allows the analyst to identify similar or serial murders and sexual assaults.
Dynamic Transition and Resonance in Coupled Oscillators Under Symmetry-Breaking Fields
NASA Astrophysics Data System (ADS)
Choi, J.; Choi, M. Y.; Chung, M. S.; Yoon, B.-G.
2013-06-01
We investigate numerically the dynamic properties of a system of globally coupled oscillators driven by periodic symmetry-breaking fields in the presence of noise. The phase distribution of the oscillators is computed and a dynamic transition is disclosed. It is further found that the stochastic resonance is closely related to the behavior of the dynamic order parameter, which is in turn explained by the formation of a bi-cluster in the system. Here noise tends to symmetrize the motion of the oscillators, facilitating the bi-cluster formation. The observed resonance appears to be of the same class as the resonance present in the two-dimensional Ising model under oscillating fields.
Vidossich, Pietro; Lledós, Agustí; Ujaque, Gregori
2016-06-21
Computational chemistry is a valuable aid to complement experimental studies of organometallic systems and their reactivity. It allows probing mechanistic hypotheses and investigating molecular structures, shedding light on the behavior and properties of molecular assemblies at the atomic scale. When approaching a chemical problem, the computational chemist has to decide on the theoretical approach needed to describe electron/nuclear interactions and the composition of the model used to approximate the actual system. Both factors determine the reliability of the modeling study. The community dedicated much effort to developing and improving the performance and accuracy of theoretical approaches for electronic structure calculations, on which the description of (inter)atomic interactions rely. Here, the importance of the model system used in computational studies is highlighted through examples from our recent research focused on organometallic systems and homogeneous catalytic processes. We show how the inclusion of explicit solvent allows the characterization of molecular events that would otherwise not be accessible in reduced model systems (clusters). These include the stabilization of nascent charged fragments via microscopic solvation (notably, hydrogen bonding), transfer of charge (protons) between distant fragments mediated by solvent molecules, and solvent coordination to unsaturated metal centers. Furthermore, when weak interactions are involved, we show how conformational and solvation properties of organometallic complexes are also affected by the explicit inclusion of solvent molecules. Such extended model systems may be treated under periodic boundary conditions, thus removing the cluster/continuum (or vacuum) boundary, and require a statistical mechanics simulation technique to sample the accessible configurational space. First-principles molecular dynamics, in which atomic forces are computed from electronic structure calculations (namely, density functional theory), is certainly the technique of choice to investigate chemical events in solution. This methodology is well established and thanks to advances in both algorithms and computational resources simulation times required for the modeling of chemical events are nowadays accessible, though the computational requirements use to be high. Specific applications reviewed here include mechanistic studies of the Shilov and Wacker processes, speciation in Pd chemistry, hydrogen bonding to metal centers, and the dynamics of agostic interactions.
National Laboratory for Advanced Scientific Visualization at UNAM - Mexico
NASA Astrophysics Data System (ADS)
Manea, Marina; Constantin Manea, Vlad; Varela, Alfredo
2016-04-01
In 2015, the National Autonomous University of Mexico (UNAM) joined the family of Universities and Research Centers where advanced visualization and computing plays a key role to promote and advance missions in research, education, community outreach, as well as business-oriented consulting. This initiative provides access to a great variety of advanced hardware and software resources and offers a range of consulting services that spans a variety of areas related to scientific visualization, among which are: neuroanatomy, embryonic development, genome related studies, geosciences, geography, physics and mathematics related disciplines. The National Laboratory for Advanced Scientific Visualization delivers services through three main infrastructure environments: the 3D fully immersive display system Cave, the high resolution parallel visualization system Powerwall, the high resolution spherical displays Earth Simulator. The entire visualization infrastructure is interconnected to a high-performance-computing-cluster (HPCC) called ADA in honor to Ada Lovelace, considered to be the first computer programmer. The Cave is an extra large 3.6m wide room with projected images on the front, left and right, as well as floor walls. Specialized crystal eyes LCD-shutter glasses provide a strong stereo depth perception, and a variety of tracking devices allow software to track the position of a user's hand, head and wand. The Powerwall is designed to bring large amounts of complex data together through parallel computing for team interaction and collaboration. This system is composed by 24 (6x4) high-resolution ultra-thin (2 mm) bezel monitors connected to a high-performance GPU cluster. The Earth Simulator is a large (60") high-resolution spherical display used for global-scale data visualization like geophysical, meteorological, climate and ecology data. The HPCC-ADA, is a 1000+ computing core system, which offers parallel computing resources to applications that requires large quantity of memory as well as large and fast parallel storage systems. The entire system temperature is controlled by an energy and space efficient cooling solution, based on large rear door liquid cooled heat exchangers. This state-of-the-art infrastructure will boost research activities in the region, offer a powerful scientific tool for teaching at undergraduate and graduate levels, and enhance association and cooperation with business-oriented organizations.
Implementation of Parallel Dynamic Simulation on Shared-Memory vs. Distributed-Memory Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Shuangshuang; Chen, Yousu; Wu, Di
2015-12-09
Power system dynamic simulation computes the system response to a sequence of large disturbance, such as sudden changes in generation or load, or a network short circuit followed by protective branch switching operation. It consists of a large set of differential and algebraic equations, which is computational intensive and challenging to solve using single-processor based dynamic simulation solution. High-performance computing (HPC) based parallel computing is a very promising technology to speed up the computation and facilitate the simulation process. This paper presents two different parallel implementations of power grid dynamic simulation using Open Multi-processing (OpenMP) on shared-memory platform, and Messagemore » Passing Interface (MPI) on distributed-memory clusters, respectively. The difference of the parallel simulation algorithms and architectures of the two HPC technologies are illustrated, and their performances for running parallel dynamic simulation are compared and demonstrated.« less
NASA Astrophysics Data System (ADS)
Erberich, Stephan G.; Hoppe, Martin; Jansen, Christian; Schmidt, Thomas; Thron, Armin; Oberschelp, Walter
2001-08-01
In the last few years more and more University Hospitals as well as private hospitals changed to digital information systems for patient record, diagnostic files and digital images. Not only that patient management becomes easier, it is also very remarkable how clinical research can profit from Picture Archiving and Communication Systems (PACS) and diagnostic databases, especially from image databases. Since images are available on the finger tip, difficulties arise when image data needs to be processed, e.g. segmented, classified or co-registered, which usually demands a lot computational power. Today's clinical environment does support PACS very well, but real image processing is still under-developed. The purpose of this paper is to introduce a parallel cluster of standard distributed systems and its software components and how such a system can be integrated into a hospital environment. To demonstrate the cluster technique we present our clinical experience with the crucial but cost-intensive motion correction of clinical routine and research functional MRI (fMRI) data, as it is processed in our Lab on a daily basis.
TX Cnc AS A MEMBER OF THE PRAESEPE OPEN CLUSTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, X. B.; Deng, L.; Lu, P.
2009-08-15
We present B-, V-, and I-band CCD photometry of the W UMa-type binary system TX Cnc, which is a member star of the Praesepe open cluster. Based on the observations, new ephemeris and a revised photometric solution of the binary system were derived. Combined with the results of the radial velocity solution contributed by Pribulla et al., the absolute parameters of the system were determined. The mass, radius, and luminosity of the primary component are derived to be 1.35 {+-} 0.02 M {sub sun}, 1.27 {+-} 0.04 R {sub sun}, and 2.13 {+-} 0.11 L {sub sun}. Those for themore » secondary star are computed as 0.61 {+-} 0.01 M {sub sun}, 0.89 {+-} 0.03 R {sub sun}, and 1.26 {+-} 0.07 L {sub sun}, respectively. Based on these results, a distance modulus of (m - M) {sub V} = 6.34 {+-} 0.05 is determined for the star. It confirms the membership of TX Cnc to the Praesepe open cluster. The evolutionary status and the physical nature of the binary system are discussed compared with the theoretical model.« less
Reducing Earth Topography Resolution for SMAP Mission Ground Tracks Using K-Means Clustering
NASA Technical Reports Server (NTRS)
Rizvi, Farheen
2013-01-01
The K-means clustering algorithm is used to reduce Earth topography resolution for the SMAP mission ground tracks. As SMAP propagates in orbit, knowledge of the radar antenna footprints on Earth is required for the antenna misalignment calibration. Each antenna footprint contains a latitude and longitude location pair on the Earth surface. There are 400 pairs in one data set for the calibration model. It is computationally expensive to calculate corresponding Earth elevation for these data pairs. Thus, the antenna footprint resolution is reduced. Similar topographical data pairs are grouped together with the K-means clustering algorithm. The resolution is reduced to the mean of each topographical cluster called the cluster centroid. The corresponding Earth elevation for each cluster centroid is assigned to the entire group. Results show that 400 data points are reduced to 60 while still maintaining algorithm performance and computational efficiency. In this work, sensitivity analysis is also performed to show a trade-off between algorithm performance versus computational efficiency as the number of cluster centroids and algorithm iterations are increased.
Visualization of unsteady computational fluid dynamics
NASA Astrophysics Data System (ADS)
Haimes, Robert
1994-11-01
A brief summary of the computer environment used for calculating three dimensional unsteady Computational Fluid Dynamic (CFD) results is presented. This environment requires a super computer as well as massively parallel processors (MPP's) and clusters of workstations acting as a single MPP (by concurrently working on the same task) provide the required computational bandwidth for CFD calculations of transient problems. The cluster of reduced instruction set computers (RISC) is a recent advent based on the low cost and high performance that workstation vendors provide. The cluster, with the proper software can act as a multiple instruction/multiple data (MIMD) machine. A new set of software tools is being designed specifically to address visualizing 3D unsteady CFD results in these environments. Three user's manuals for the parallel version of Visual3, pV3, revision 1.00 make up the bulk of this report.
Visualization of unsteady computational fluid dynamics
NASA Technical Reports Server (NTRS)
Haimes, Robert
1994-01-01
A brief summary of the computer environment used for calculating three dimensional unsteady Computational Fluid Dynamic (CFD) results is presented. This environment requires a super computer as well as massively parallel processors (MPP's) and clusters of workstations acting as a single MPP (by concurrently working on the same task) provide the required computational bandwidth for CFD calculations of transient problems. The cluster of reduced instruction set computers (RISC) is a recent advent based on the low cost and high performance that workstation vendors provide. The cluster, with the proper software can act as a multiple instruction/multiple data (MIMD) machine. A new set of software tools is being designed specifically to address visualizing 3D unsteady CFD results in these environments. Three user's manuals for the parallel version of Visual3, pV3, revision 1.00 make up the bulk of this report.
On the Accuracy and Parallelism of GPGPU-Powered Incremental Clustering Algorithms.
Chen, Chunlei; He, Li; Zhang, Huixiang; Zheng, Hao; Wang, Lei
2017-01-01
Incremental clustering algorithms play a vital role in various applications such as massive data analysis and real-time data processing. Typical application scenarios of incremental clustering raise high demand on computing power of the hardware platform. Parallel computing is a common solution to meet this demand. Moreover, General Purpose Graphic Processing Unit (GPGPU) is a promising parallel computing device. Nevertheless, the incremental clustering algorithm is facing a dilemma between clustering accuracy and parallelism when they are powered by GPGPU. We formally analyzed the cause of this dilemma. First, we formalized concepts relevant to incremental clustering like evolving granularity. Second, we formally proved two theorems. The first theorem proves the relation between clustering accuracy and evolving granularity. Additionally, this theorem analyzes the upper and lower bounds of different-to-same mis-affiliation. Fewer occurrences of such mis-affiliation mean higher accuracy. The second theorem reveals the relation between parallelism and evolving granularity. Smaller work-depth means superior parallelism. Through the proofs, we conclude that accuracy of an incremental clustering algorithm is negatively related to evolving granularity while parallelism is positively related to the granularity. Thus the contradictory relations cause the dilemma. Finally, we validated the relations through a demo algorithm. Experiment results verified theoretical conclusions.
Globular Clusters: Absolute Proper Motions and Galactic Orbits
NASA Astrophysics Data System (ADS)
Chemel, A. A.; Glushkova, E. V.; Dambis, A. K.; Rastorguev, A. S.; Yalyalieva, L. N.; Klinichev, A. D.
2018-04-01
We cross-match objects from several different astronomical catalogs to determine the absolute proper motions of stars within the 30-arcmin radius fields of 115 Milky-Way globular clusters with the accuracy of 1-2 mas yr-1. The proper motions are based on positional data recovered from the USNO-B1, 2MASS, URAT1, ALLWISE, UCAC5, and Gaia DR1 surveys with up to ten positions spanning an epoch difference of up to about 65 years, and reduced to Gaia DR1 TGAS frame using UCAC5 as the reference catalog. Cluster members are photometrically identified by selecting horizontal- and red-giant branch stars on color-magnitude diagrams, and the mean absolute proper motions of the clusters with a typical formal error of about 0.4 mas yr-1 are computed by averaging the proper motions of selected members. The inferred absolute proper motions of clusters are combined with available radial-velocity data and heliocentric distance estimates to compute the cluster orbits in terms of the Galactic potential models based on Miyamoto and Nagai disk, Hernquist spheroid, and modified isothermal dark-matter halo (axisymmetric model without a bar) and the same model + rotating Ferre's bar (non-axisymmetric). Five distant clusters have higher-than-escape velocities, most likely due to large errors of computed transversal velocities, whereas the computed orbits of all other clusters remain bound to the Galaxy. Unlike previously published results, we find the bar to affect substantially the orbits of most of the clusters, even those at large Galactocentric distances, bringing appreciable chaotization, especially in the portions of the orbits close to the Galactic center, and stretching out the orbits of some of the thick-disk clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, Khaled Z.; Epifanovsky, Evgeny; Williams, Samuel
Coupled-cluster methods provide highly accurate models of molecular structure through explicit numerical calculation of tensors representing the correlation between electrons. These calculations are dominated by a sequence of tensor contractions, motivating the development of numerical libraries for such operations. While based on matrix–matrix multiplication, these libraries are specialized to exploit symmetries in the molecular structure and in electronic interactions, and thus reduce the size of the tensor representation and the complexity of contractions. The resulting algorithms are irregular and their parallelization has been previously achieved via the use of dynamic scheduling or specialized data decompositions. We introduce our efforts tomore » extend the Libtensor framework to work in the distributed memory environment in a scalable and energy-efficient manner. We achieve up to 240× speedup compared with the optimized shared memory implementation of Libtensor. We attain scalability to hundreds of thousands of compute cores on three distributed-memory architectures (Cray XC30 and XC40, and IBM Blue Gene/Q), and on a heterogeneous GPU-CPU system (Cray XK7). As the bottlenecks shift from being compute-bound DGEMM's to communication-bound collectives as the size of the molecular system scales, we adopt two radically different parallelization approaches for handling load-imbalance, tasking and bulk synchronous models. Nevertheless, we preserve a unified interface to both programming models to maintain the productivity of computational quantum chemists.« less
Ibrahim, Khaled Z.; Epifanovsky, Evgeny; Williams, Samuel; ...
2017-03-08
Coupled-cluster methods provide highly accurate models of molecular structure through explicit numerical calculation of tensors representing the correlation between electrons. These calculations are dominated by a sequence of tensor contractions, motivating the development of numerical libraries for such operations. While based on matrix–matrix multiplication, these libraries are specialized to exploit symmetries in the molecular structure and in electronic interactions, and thus reduce the size of the tensor representation and the complexity of contractions. The resulting algorithms are irregular and their parallelization has been previously achieved via the use of dynamic scheduling or specialized data decompositions. We introduce our efforts tomore » extend the Libtensor framework to work in the distributed memory environment in a scalable and energy-efficient manner. We achieve up to 240× speedup compared with the optimized shared memory implementation of Libtensor. We attain scalability to hundreds of thousands of compute cores on three distributed-memory architectures (Cray XC30 and XC40, and IBM Blue Gene/Q), and on a heterogeneous GPU-CPU system (Cray XK7). As the bottlenecks shift from being compute-bound DGEMM's to communication-bound collectives as the size of the molecular system scales, we adopt two radically different parallelization approaches for handling load-imbalance, tasking and bulk synchronous models. Nevertheless, we preserve a unified interface to both programming models to maintain the productivity of computational quantum chemists.« less
DeRobertis, Christopher V.; Lu, Yantian T.
2010-02-23
A method, system, and program storage device for creating a new user account or user group with a unique identification number in a computing environment having multiple user registries is provided. In response to receiving a command to create a new user account or user group, an operating system of a clustered computing environment automatically checks multiple registries configured for the operating system to determine whether a candidate identification number for the new user account or user group has been assigned already to one or more existing user accounts or groups, respectively. The operating system automatically assigns the candidate identification number to the new user account or user group created in a target user registry if the checking indicates that the candidate identification number has not been assigned already to any of the existing user accounts or user groups, respectively.
Evidence for an Accretion Origin for the Outer Halo Globular Cluster System of M31
NASA Astrophysics Data System (ADS)
Mackey, A. D.; Huxor, A. P.; Ferguson, A. M. N.; Irwin, M. J.; Tanvir, N. R.; McConnachie, A. W.; Ibata, R. A.; Chapman, S. C.; Lewis, G. F.
2010-07-01
We use a sample of newly discovered globular clusters from the Pan-Andromeda Archaeological Survey (PAndAS) in combination with previously cataloged objects to map the spatial distribution of globular clusters in the M31 halo. At projected radii beyond ≈30 kpc, where large coherent stellar streams are readily distinguished in the field, there is a striking correlation between these features and the positions of the globular clusters. Adopting a simple Monte Carlo approach, we test the significance of this association by computing the probability that it could be due to the chance alignment of globular clusters smoothly distributed in the M31 halo. We find that the likelihood of this possibility is low, below 1%, and conclude that the observed spatial coincidence between globular clusters and multiple tidal debris streams in the outer halo of M31 reflects a genuine physical association. Our results imply that the majority of the remote globular cluster system of M31 has been assembled as a consequence of the accretion of cluster-bearing satellite galaxies. This constitutes the most direct evidence to date that the outer halo globular cluster populations in some galaxies are largely accreted. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii.
Ji-Wook Jeong; Seung-Hoon Chae; Eun Young Chae; Hak Hee Kim; Young Wook Choi; Sooyeul Lee
2016-08-01
A computer-aided detection (CADe) algorithm for clustered microcalcifications (MCs) in reconstructed digital breast tomosynthesis (DBT) images is suggested. The MC-like objects were enhanced by a Hessian-based 3D calcification response function, and a signal-to-noise ratio (SNR) enhanced image was also generated to screen the MC clustering seed objects. A connected component segmentation method was used to detect the cluster seed objects, which were considered as potential clustering centers of MCs. Bounding cubes for the accepted clustering seed candidate were generated and the overlapping cubes were combined and examined. After the MC clustering and false-positive (FP) reduction step, the average number of FPs was estimated to be 0.87 per DBT volume with a sensitivity of 90.5%.
ATLAS and LHC computing on CRAY
NASA Astrophysics Data System (ADS)
Sciacca, F. G.; Haug, S.; ATLAS Collaboration
2017-10-01
Access and exploitation of large scale computing resources, such as those offered by general purpose HPC centres, is one important measure for ATLAS and the other Large Hadron Collider experiments in order to meet the challenge posed by the full exploitation of the future data within the constraints of flat budgets. We report on the effort of moving the Swiss WLCG T2 computing, serving ATLAS, CMS and LHCb, from a dedicated cluster to the large Cray systems at the Swiss National Supercomputing Centre CSCS. These systems do not only offer very efficient hardware, cooling and highly competent operators, but also have large backfill potentials due to size and multidisciplinary usage and potential gains due to economy at scale. Technical solutions, performance, expected return and future plans are discussed.
Parallel Computer System for 3D Visualization Stereo on GPU
NASA Astrophysics Data System (ADS)
Al-Oraiqat, Anas M.; Zori, Sergii A.
2018-03-01
This paper proposes the organization of a parallel computer system based on Graphic Processors Unit (GPU) for 3D stereo image synthesis. The development is based on the modified ray tracing method developed by the authors for fast search of tracing rays intersections with scene objects. The system allows significant increase in the productivity for the 3D stereo synthesis of photorealistic quality. The generalized procedure of 3D stereo image synthesis on the Graphics Processing Unit/Graphics Processing Clusters (GPU/GPC) is proposed. The efficiency of the proposed solutions by GPU implementation is compared with single-threaded and multithreaded implementations on the CPU. The achieved average acceleration in multi-thread implementation on the test GPU and CPU is about 7.5 and 1.6 times, respectively. Studying the influence of choosing the size and configuration of the computational Compute Unified Device Archi-tecture (CUDA) network on the computational speed shows the importance of their correct selection. The obtained experimental estimations can be significantly improved by new GPUs with a large number of processing cores and multiprocessors, as well as optimized configuration of the computing CUDA network.
Dorfman, David M; LaPlante, Charlotte D; Pozdnyakova, Olga; Li, Betty
2015-11-01
In our high-sensitivity flow cytometric approach for systemic mastocytosis (SM), we identified mast cell event clustering as a new diagnostic criterion for the disease. To objectively characterize mast cell gated event distributions, we performed cluster analysis using FLOCK, a computational approach to identify cell subsets in multidimensional flow cytometry data in an unbiased, automated fashion. FLOCK identified discrete mast cell populations in most cases of SM (56/75 [75%]) but only a minority of non-SM cases (17/124 [14%]). FLOCK-identified mast cell populations accounted for 2.46% of total cells on average in SM cases and 0.09% of total cells on average in non-SM cases (P < .0001) and were predictive of SM, with a sensitivity of 75%, a specificity of 86%, a positive predictive value of 76%, and a negative predictive value of 85%. FLOCK analysis provides useful diagnostic information for evaluating patients with suspected SM, and may be useful for the analysis of other hematopoietic neoplasms. Copyright© by the American Society for Clinical Pathology.
Evaluation of spatial accessibility to primary healthcare using GIS
NASA Astrophysics Data System (ADS)
Jamtsho, S.; Corner, R. J.
2014-11-01
Primary health care is considered to be one of the most important aspects of the health care system in any country, which directly helps in improving the health of the population. Potential spatial accessibility is a very important component of the primary health care system. One technique for studying spatial accessibility is by computing a gravity-based measure within a geographic information system (GIS) framework. In this study, straight-line distances between the associated population clusters and the health facilities and the provider-to-population ratio were used to compute the spatial accessibility of the population clusters for the whole country. Bhutan has been chosen as the case study area because it is quite easy to acquire and process data for the whole country due to its small size and population. The spatial accessibility measure of the 203 sub-districts shows noticeable disparities in health care accessibility in this country with about only 19 sub-districts achieving good health accessibility ranking. This study also examines a number of different health accessibility policy scenarios which can assist in identifying the most effective health policy from amongst many probable planning scenarios. Such a health accessibility measuring system can be incorporated into an existing spatial health system in developing countries to facilitate the proper planning and equitable distribution of health resources.
Parallel Density-Based Clustering for Discovery of Ionospheric Phenomena
NASA Astrophysics Data System (ADS)
Pankratius, V.; Gowanlock, M.; Blair, D. M.
2015-12-01
Ionospheric total electron content maps derived from global networks of dual-frequency GPS receivers can reveal a plethora of ionospheric features in real-time and are key to space weather studies and natural hazard monitoring. However, growing data volumes from expanding sensor networks are making manual exploratory studies challenging. As the community is heading towards Big Data ionospheric science, automation and Computer-Aided Discovery become indispensable tools for scientists. One problem of machine learning methods is that they require domain-specific adaptations in order to be effective and useful for scientists. Addressing this problem, our Computer-Aided Discovery approach allows scientists to express various physical models as well as perturbation ranges for parameters. The search space is explored through an automated system and parallel processing of batched workloads, which finds corresponding matches and similarities in empirical data. We discuss density-based clustering as a particular method we employ in this process. Specifically, we adapt Density-Based Spatial Clustering of Applications with Noise (DBSCAN). This algorithm groups geospatial data points based on density. Clusters of points can be of arbitrary shape, and the number of clusters is not predetermined by the algorithm; only two input parameters need to be specified: (1) a distance threshold, (2) a minimum number of points within that threshold. We discuss an implementation of DBSCAN for batched workloads that is amenable to parallelization on manycore architectures such as Intel's Xeon Phi accelerator with 60+ general-purpose cores. This manycore parallelization can cluster large volumes of ionospheric total electronic content data quickly. Potential applications for cluster detection include the visualization, tracing, and examination of traveling ionospheric disturbances or other propagating phenomena. Acknowledgments. We acknowledge support from NSF ACI-1442997 (PI V. Pankratius).
Solving the scalability issue in quantum-based refinement: Q|R#1.
Zheng, Min; Moriarty, Nigel W; Xu, Yanting; Reimers, Jeffrey R; Afonine, Pavel V; Waller, Mark P
2017-12-01
Accurately refining biomacromolecules using a quantum-chemical method is challenging because the cost of a quantum-chemical calculation scales approximately as n m , where n is the number of atoms and m (≥3) is based on the quantum method of choice. This fundamental problem means that quantum-chemical calculations become intractable when the size of the system requires more computational resources than are available. In the development of the software package called Q|R, this issue is referred to as Q|R#1. A divide-and-conquer approach has been developed that fragments the atomic model into small manageable pieces in order to solve Q|R#1. Firstly, the atomic model of a crystal structure is analyzed to detect noncovalent interactions between residues, and the results of the analysis are represented as an interaction graph. Secondly, a graph-clustering algorithm is used to partition the interaction graph into a set of clusters in such a way as to minimize disruption to the noncovalent interaction network. Thirdly, the environment surrounding each individual cluster is analyzed and any residue that is interacting with a particular cluster is assigned to the buffer region of that particular cluster. A fragment is defined as a cluster plus its buffer region. The gradients for all atoms from each of the fragments are computed, and only the gradients from each cluster are combined to create the total gradients. A quantum-based refinement is carried out using the total gradients as chemical restraints. In order to validate this interaction graph-based fragmentation approach in Q|R, the entire atomic model of an amyloid cross-β spine crystal structure (PDB entry 2oNA) was refined.
A Human Activity Recognition System Based on Dynamic Clustering of Skeleton Data.
Manzi, Alessandro; Dario, Paolo; Cavallo, Filippo
2017-05-11
Human activity recognition is an important area in computer vision, with its wide range of applications including ambient assisted living. In this paper, an activity recognition system based on skeleton data extracted from a depth camera is presented. The system makes use of machine learning techniques to classify the actions that are described with a set of a few basic postures. The training phase creates several models related to the number of clustered postures by means of a multiclass Support Vector Machine (SVM), trained with Sequential Minimal Optimization (SMO). The classification phase adopts the X-means algorithm to find the optimal number of clusters dynamically. The contribution of the paper is twofold. The first aim is to perform activity recognition employing features based on a small number of informative postures, extracted independently from each activity instance; secondly, it aims to assess the minimum number of frames needed for an adequate classification. The system is evaluated on two publicly available datasets, the Cornell Activity Dataset (CAD-60) and the Telecommunication Systems Team (TST) Fall detection dataset. The number of clusters needed to model each instance ranges from two to four elements. The proposed approach reaches excellent performances using only about 4 s of input data (~100 frames) and outperforms the state of the art when it uses approximately 500 frames on the CAD-60 dataset. The results are promising for the test in real context.
The importance of accurate interaction potentials in the melting of argon nanoclusters
NASA Astrophysics Data System (ADS)
Pahl, E.; Calvo, F.; Schwerdtfeger, P.
The melting temperatures of argon clusters ArN (N = 13, 55, 147, 309, 561, and 923) and of bulk argon have been obtained from exchange Monte Carlo simulations and are compared using different two-body interaction potentials, namely the standard Lennard-Jones (LJ), Aziz and extended Lennard-Jones (ELJ) potentials. The latter potential has many advantages: while maintaining the computational efficiency of the commonly used LJ potential, it is as accurate as the Aziz potential but the computer time scales more favorably with increasing cluster size. By applying the ELJ form and extrapolating the cluster data to the infinite system, we are able to extract the melting point of argon already in good agreement with experimental measurements. By considering the additional Axilrod-Teller three-body contribution as well, we calculate a melting temperature of T meltELJ = 84.7 K compared to the experimental value of T meltexp = 83.85 K, whereas the LJ potential underestimates the melting point by more than 7 K. Thus melting temperatures within 1 K accuracy are now feasible.
NASA Astrophysics Data System (ADS)
Jakubikova, Elena; He, Sheng-Gui; Xie, Yan; Matsuda, Yoshiyuki; Bernstein, Elliot
2007-03-01
Vanadium oxide is a catalytic system that plays an important role in the conversion of SO2 to SO3. Density functional theory at the BPW91/LANL2DZ level is employed to obtain structures of VOy (y=1,,5), V2Oy (y=2,,7), V3Oy (y=4,,9), V4Oy (y=7,,12) and their complexes with SO2. BPW91/LANL2DZ is insufficient to describe properly relative V-O and S-O bond strengths of vanadium and sulfur oxides. Calibration of theoretical results with experimental data is necessary to compute enthalpies of reactions between VxOy and SO2. Theoretical results indicate SO2 to SO conversion occurs for oxygen-deficient clusters and SO2 to SO3 conversion occurs for oxygen-rich clusters. Subsequent experimental studies confirm the presence of SO in the molecular beam as well as the presence of VxOy complexes with SO2. Some possible mechanisms for SO3 formation and catalyst regeneration for solids are also suggested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bozkaya, Uğur, E-mail: ugrbzky@gmail.com
2016-04-14
An efficient implementation of the asymmetric triples correction for the coupled-cluster singles and doubles [ΛCCSD(T)] method [S. A. Kucharski and R. J. Bartlett, J. Chem. Phys. 108, 5243 (1998); T. D. Crawford and J. F. Stanton, Int. J. Quantum Chem. 70, 601 (1998)] with the density-fitting [DF-ΛCCSD(T)] approach is presented. The computational time for the DF-ΛCCSD(T) method is compared with that of ΛCCSD(T). Our results demonstrate that the DF-ΛCCSD(T) method provide substantially lower computational costs than ΛCCSD(T). Further application results show that the ΛCCSD(T) and DF-ΛCCSD(T) methods are very beneficial for the study of single bond breaking problems as wellmore » as noncovalent interactions and transition states. We conclude that ΛCCSD(T) and DF-ΛCCSD(T) are very promising for the study of challenging chemical systems, where the coupled-cluster singles and doubles with perturbative triples method fails.« less
ERIC Educational Resources Information Center
Raths, David
2010-01-01
In the tug-of-war between researchers and IT for supercomputing resources, a centralized approach can help both sides get more bang for their buck. As 2010 began, the University of Washington was preparing to launch its first shared high-performance computing cluster, a 1,500-node system called Hyak, dedicated to research activities. Like other…
Robustness and structure of complex networks
NASA Astrophysics Data System (ADS)
Shao, Shuai
This dissertation covers the two major parts of my PhD research on statistical physics and complex networks: i) modeling a new type of attack -- localized attack, and investigating robustness of complex networks under this type of attack; ii) discovering the clustering structure in complex networks and its influence on the robustness of coupled networks. Complex networks appear in every aspect of our daily life and are widely studied in Physics, Mathematics, Biology, and Computer Science. One important property of complex networks is their robustness under attacks, which depends crucially on the nature of attacks and the structure of the networks themselves. Previous studies have focused on two types of attack: random attack and targeted attack, which, however, are insufficient to describe many real-world damages. Here we propose a new type of attack -- localized attack, and study the robustness of complex networks under this type of attack, both analytically and via simulation. On the other hand, we also study the clustering structure in the network, and its influence on the robustness of a complex network system. In the first part, we propose a theoretical framework to study the robustness of complex networks under localized attack based on percolation theory and generating function method. We investigate the percolation properties, including the critical threshold of the phase transition pc and the size of the giant component Pinfinity. We compare localized attack with random attack and find that while random regular (RR) networks are more robust against localized attack, Erdoḧs-Renyi (ER) networks are equally robust under both types of attacks. As for scale-free (SF) networks, their robustness depends crucially on the degree exponent lambda. The simulation results show perfect agreement with theoretical predictions. We also test our model on two real-world networks: a peer-to-peer computer network and an airline network, and find that the real-world networks are much more vulnerable to localized attack compared with random attack. In the second part, we extend the tree-like generating function method to incorporating clustering structure in complex networks. We study the robustness of a complex network system, especially a network of networks (NON) with clustering structure in each network. We find that the system becomes less robust as we increase the clustering coefficient of each network. For a partially dependent network system, we also find that the influence of the clustering coefficient on network robustness decreases as we decrease the coupling strength, and the critical coupling strength qc, at which the first-order phase transition changes to second-order, increases as we increase the clustering coefficient.
McCormack, Patrick; Han, Fei; Yan, Zijie
2018-02-01
Light-driven self-organization of metal nanoparticles (NPs) can lead to unique optical matter systems, yet simulation of such self-organization (i.e., optical binding) is a complex computational problem that increases nonlinearly with system size. Here we show that a combined electrodynamics-molecular dynamics simulation technique can simulate the trajectories and predict stable configurations of silver NPs in optical fields. The simulated dynamic equilibrium of a two-NP system matches the probability density of oscillations for two optically bound NPs obtained experimentally. The predicted stable configurations for up to eight NPs are further compared to experimental observations of silver NP clusters formed by optical binding in a Bessel beam. All configurations are confirmed to form in real systems, including pentagonal clusters with five-fold symmetry. Our combined simulations and experiments have revealed a diverse optical matter system formed by anisotropic optical binding interactions, providing a new strategy to discover artificial materials.
Performance Evaluation in Network-Based Parallel Computing
NASA Technical Reports Server (NTRS)
Dezhgosha, Kamyar
1996-01-01
Network-based parallel computing is emerging as a cost-effective alternative for solving many problems which require use of supercomputers or massively parallel computers. The primary objective of this project has been to conduct experimental research on performance evaluation for clustered parallel computing. First, a testbed was established by augmenting our existing SUNSPARCs' network with PVM (Parallel Virtual Machine) which is a software system for linking clusters of machines. Second, a set of three basic applications were selected. The applications consist of a parallel search, a parallel sort, a parallel matrix multiplication. These application programs were implemented in C programming language under PVM. Third, we conducted performance evaluation under various configurations and problem sizes. Alternative parallel computing models and workload allocations for application programs were explored. The performance metric was limited to elapsed time or response time which in the context of parallel computing can be expressed in terms of speedup. The results reveal that the overhead of communication latency between processes in many cases is the restricting factor to performance. That is, coarse-grain parallelism which requires less frequent communication between processes will result in higher performance in network-based computing. Finally, we are in the final stages of installing an Asynchronous Transfer Mode (ATM) switch and four ATM interfaces (each 155 Mbps) which will allow us to extend our study to newer applications, performance metrics, and configurations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arunachalam, V.; Marlow, W.H.; Lu, J.X.
1998-09-01
The importance of the long-range Lifshitz{endash}van der Waals interaction energy between condensed bodies is well known. However, its implementation for interacting bodies that are highly irregular and separated by distances varying from contact to micrometers has received little attention. As part of a study of collisions of irregular aerosol particles, an approach based on the Lifshitz theory of van der Waals interaction has been developed to compute the interaction energy between a sphere and an aggregate of spheres at all separations. In the first part of this study, the iterated sum-over-dipole interactions between pairs of approximately spherical molecular clusters aremore » compared with the Lifshitz and Lifshitz-Hamaker interaction energies for continuum spheres of radii equal to those of the clusters{close_quote} circumscribed spheres and of the same masses as the clusters. The Lifshitz energy is shown to converge to the iterated dipolar energy for quasispherical molecular clusters for sufficiently large separations, while the energy calculated by using the Lifshitz-Hamaker approach does not. Next, the interaction energies between a contacting pair of these molecular clusters and a third cluster in different relative positions are calculated first by coupling all molecules in the three-cluster system and second by ignoring the interactions between the molecules of the adhering clusters. The error calculated by this omission is shown to be very small, and is an indication of the error in computing the long-range interaction energy between a pair of interacting spheres and a third sphere as a simple sum over the Lifshitz energies between individual, condensed-matter spheres. This Lifshitz energy calculation is then combined with the short-separation, nonsingular van der Waals energy calculation of Lu, Marlow, and Arunachalam, to provide an integrated picture of the van der Waals energy from large separations to contact. {copyright} {ital 1998} {ital The American Physical Society}« less
Caso, Giuseppe; de Nardis, Luca; di Benedetto, Maria-Gabriella
2015-10-30
The weighted k-nearest neighbors (WkNN) algorithm is by far the most popular choice in the design of fingerprinting indoor positioning systems based on WiFi received signal strength (RSS). WkNN estimates the position of a target device by selecting k reference points (RPs) based on the similarity of their fingerprints with the measured RSS values. The position of the target device is then obtained as a weighted sum of the positions of the k RPs. Two-step WkNN positioning algorithms were recently proposed, in which RPs are divided into clusters using the affinity propagation clustering algorithm, and one representative for each cluster is selected. Only cluster representatives are then considered during the position estimation, leading to a significant computational complexity reduction compared to traditional, flat WkNN. Flat and two-step WkNN share the issue of properly selecting the similarity metric so as to guarantee good positioning accuracy: in two-step WkNN, in particular, the metric impacts three different steps in the position estimation, that is cluster formation, cluster selection and RP selection and weighting. So far, however, the only similarity metric considered in the literature was the one proposed in the original formulation of the affinity propagation algorithm. This paper fills this gap by comparing different metrics and, based on this comparison, proposes a novel mixed approach in which different metrics are adopted in the different steps of the position estimation procedure. The analysis is supported by an extensive experimental campaign carried out in a multi-floor 3D indoor positioning testbed. The impact of similarity metrics and their combinations on the structure and size of the resulting clusters, 3D positioning accuracy and computational complexity are investigated. Results show that the adoption of metrics different from the one proposed in the original affinity propagation algorithm and, in particular, the combination of different metrics can significantly improve the positioning accuracy while preserving the efficiency in computational complexity typical of two-step algorithms.
Caso, Giuseppe; de Nardis, Luca; di Benedetto, Maria-Gabriella
2015-01-01
The weighted k-nearest neighbors (WkNN) algorithm is by far the most popular choice in the design of fingerprinting indoor positioning systems based on WiFi received signal strength (RSS). WkNN estimates the position of a target device by selecting k reference points (RPs) based on the similarity of their fingerprints with the measured RSS values. The position of the target device is then obtained as a weighted sum of the positions of the k RPs. Two-step WkNN positioning algorithms were recently proposed, in which RPs are divided into clusters using the affinity propagation clustering algorithm, and one representative for each cluster is selected. Only cluster representatives are then considered during the position estimation, leading to a significant computational complexity reduction compared to traditional, flat WkNN. Flat and two-step WkNN share the issue of properly selecting the similarity metric so as to guarantee good positioning accuracy: in two-step WkNN, in particular, the metric impacts three different steps in the position estimation, that is cluster formation, cluster selection and RP selection and weighting. So far, however, the only similarity metric considered in the literature was the one proposed in the original formulation of the affinity propagation algorithm. This paper fills this gap by comparing different metrics and, based on this comparison, proposes a novel mixed approach in which different metrics are adopted in the different steps of the position estimation procedure. The analysis is supported by an extensive experimental campaign carried out in a multi-floor 3D indoor positioning testbed. The impact of similarity metrics and their combinations on the structure and size of the resulting clusters, 3D positioning accuracy and computational complexity are investigated. Results show that the adoption of metrics different from the one proposed in the original affinity propagation algorithm and, in particular, the combination of different metrics can significantly improve the positioning accuracy while preserving the efficiency in computational complexity typical of two-step algorithms. PMID:26528984
Adaptive Scaling of Cluster Boundaries for Large-Scale Social Media Data Clustering.
Meng, Lei; Tan, Ah-Hwee; Wunsch, Donald C
2016-12-01
The large scale and complex nature of social media data raises the need to scale clustering techniques to big data and make them capable of automatically identifying data clusters with few empirical settings. In this paper, we present our investigation and three algorithms based on the fuzzy adaptive resonance theory (Fuzzy ART) that have linear computational complexity, use a single parameter, i.e., the vigilance parameter to identify data clusters, and are robust to modest parameter settings. The contribution of this paper lies in two aspects. First, we theoretically demonstrate how complement coding, commonly known as a normalization method, changes the clustering mechanism of Fuzzy ART, and discover the vigilance region (VR) that essentially determines how a cluster in the Fuzzy ART system recognizes similar patterns in the feature space. The VR gives an intrinsic interpretation of the clustering mechanism and limitations of Fuzzy ART. Second, we introduce the idea of allowing different clusters in the Fuzzy ART system to have different vigilance levels in order to meet the diverse nature of the pattern distribution of social media data. To this end, we propose three vigilance adaptation methods, namely, the activation maximization (AM) rule, the confliction minimization (CM) rule, and the hybrid integration (HI) rule. With an initial vigilance value, the resulting clustering algorithms, namely, the AM-ART, CM-ART, and HI-ART, can automatically adapt the vigilance values of all clusters during the learning epochs in order to produce better cluster boundaries. Experiments on four social media data sets show that AM-ART, CM-ART, and HI-ART are more robust than Fuzzy ART to the initial vigilance value, and they usually achieve better or comparable performance and much faster speed than the state-of-the-art clustering algorithms that also do not require a predefined number of clusters.
Investigation of the cluster formation in lithium niobate crystals by computer modeling method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voskresenskii, V. M.; Starodub, O. R., E-mail: ol-star@mail.ru; Sidorov, N. V.
The processes occurring upon the formation of energetically equilibrium oxygen-octahedral clusters in the ferroelectric phase of a stoichiometric lithium niobate (LiNbO{sub 3}) crystal have been investigated by the computer modeling method within the semiclassical atomistic model. An energetically favorable cluster size (at which a structure similar to that of a congruent crystal is organized) is shown to exist. A stoichiometric cluster cannot exist because of the electroneutrality loss. The most energetically favorable cluster is that with a Li/Nb ratio of about 0.945, a value close to the lithium-to-niobium ratio for a congruent crystal.
Identification of atypical flight patterns
NASA Technical Reports Server (NTRS)
Statler, Irving C. (Inventor); Ferryman, Thomas A. (Inventor); Amidan, Brett G. (Inventor); Whitney, Paul D. (Inventor); White, Amanda M. (Inventor); Willse, Alan R. (Inventor); Cooley, Scott K. (Inventor); Jay, Joseph Griffith (Inventor); Lawrence, Robert E. (Inventor); Mosbrucker, Chris (Inventor)
2005-01-01
Method and system for analyzing aircraft data, including multiple selected flight parameters for a selected phase of a selected flight, and for determining when the selected phase of the selected flight is atypical, when compared with corresponding data for the same phase for other similar flights. A flight signature is computed using continuous-valued and discrete-valued flight parameters for the selected flight parameters and is optionally compared with a statistical distribution of other observed flight signatures, yielding atypicality scores for the same phase for other similar flights. A cluster analysis is optionally applied to the flight signatures to define an optimal collection of clusters. A level of atypicality for a selected flight is estimated, based upon an index associated with the cluster analysis.
m-BIRCH: an online clustering approach for computer vision applications
NASA Astrophysics Data System (ADS)
Madan, Siddharth K.; Dana, Kristin J.
2015-03-01
We adapt a classic online clustering algorithm called Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH), to incrementally cluster large datasets of features commonly used in multimedia and computer vision. We call the adapted version modified-BIRCH (m-BIRCH). The algorithm uses only a fraction of the dataset memory to perform clustering, and updates the clustering decisions when new data comes in. Modifications made in m-BIRCH enable data driven parameter selection and effectively handle varying density regions in the feature space. Data driven parameter selection automatically controls the level of coarseness of the data summarization. Effective handling of varying density regions is necessary to well represent the different density regions in data summarization. We use m-BIRCH to cluster 840K color SIFT descriptors, and 60K outlier corrupted grayscale patches. We use the algorithm to cluster datasets consisting of challenging non-convex clustering patterns. Our implementation of the algorithm provides an useful clustering tool and is made publicly available.
Core Collapse: The Race Between Stellar Evolution and Binary Heating
NASA Astrophysics Data System (ADS)
Converse, Joseph M.; Chandar, R.
2012-01-01
The dynamical formation of binary stars can dramatically affect the evolution of their host star clusters. In relatively small clusters (M < 6000 Msun) the most massive stars rapidly form binaries, heating the cluster and preventing any significant contraction of the core. The situation in much larger globular clusters (M 105 Msun) is quite different, with many showing collapsed cores, implying that binary formation did not affect them as severely as lower mass clusters. More massive clusters, however, should take longer to form their binaries, allowing stellar evolution more time to prevent the heating by causing the larger stars to die off. Here, we simulate the evolution of clusters between those of open and globular clusters in order to find at what size a star cluster is able to experience true core collapse. Our simulations make use of a new GPU-based computing cluster recently purchased at the University of Toledo. We also present some benchmarks of this new computational resource.
Climate Ocean Modeling on a Beowulf Class System
NASA Technical Reports Server (NTRS)
Cheng, B. N.; Chao, Y.; Wang, P.; Bondarenko, M.
2000-01-01
With the growing power and shrinking cost of personal computers. the availability of fast ethernet interconnections, and public domain software packages, it is now possible to combine them to build desktop parallel computers (named Beowulf or PC clusters) at a fraction of what it would cost to buy systems of comparable power front supercomputer companies. This led as to build and assemble our own sys tem. specifically for climate ocean modeling. In this article, we present our experience with such a system, discuss its network performance, and provide some performance comparison data with both HP SPP2000 and Cray T3E for an ocean Model used in present-day oceanographic research.
Piekarski, Dariusz Grzegorz; Díaz-Tendero, Sergio
2017-02-15
We present a theoretical study of neutral clusters of β-alanine molecules in the gas phase, (β-ala) n n ≤ 5. Classical molecular dynamics simulations carried out with different internal excitation energies provide information on the clusters formation and their thermal decomposition limits. We also present an assessment study performed with different families of density functionals using the dimer, (β-ala) 2 , as a benchmark system. The M06-2X functional provides the best agreement in geometries and relative energies in comparison with the reference values computed with the MP2 and CCSD(T) methods. The structure, stability, dissociation energies and vertical ionization potentials of the studied clusters have been investigated using this functional in combination with the 6-311++G(d,p) basis set. An exhaustive analysis of intermolecular interactions is also presented. These results provide new insights into the stability, interaction nature and formation mechanisms of clusters of amino acids in the gas phase.
Going beyond Clustering in MD Trajectory Analysis: An Application to Villin Headpiece Folding
Rajan, Aruna; Freddolino, Peter L.; Schulten, Klaus
2010-01-01
Recent advances in computing technology have enabled microsecond long all-atom molecular dynamics (MD) simulations of biological systems. Methods that can distill the salient features of such large trajectories are now urgently needed. Conventional clustering methods used to analyze MD trajectories suffer from various setbacks, namely (i) they are not data driven, (ii) they are unstable to noise and changes in cut-off parameters such as cluster radius and cluster number, and (iii) they do not reduce the dimensionality of the trajectories, and hence are unsuitable for finding collective coordinates. We advocate the application of principal component analysis (PCA) and a non-metric multidimensional scaling (nMDS) method to reduce MD trajectories and overcome the drawbacks of clustering. To illustrate the superiority of nMDS over other methods in reducing data and reproducing salient features, we analyze three complete villin headpiece folding trajectories. Our analysis suggests that the folding process of the villin headpiece is structurally heterogeneous. PMID:20419160
Going beyond clustering in MD trajectory analysis: an application to villin headpiece folding.
Rajan, Aruna; Freddolino, Peter L; Schulten, Klaus
2010-04-15
Recent advances in computing technology have enabled microsecond long all-atom molecular dynamics (MD) simulations of biological systems. Methods that can distill the salient features of such large trajectories are now urgently needed. Conventional clustering methods used to analyze MD trajectories suffer from various setbacks, namely (i) they are not data driven, (ii) they are unstable to noise and changes in cut-off parameters such as cluster radius and cluster number, and (iii) they do not reduce the dimensionality of the trajectories, and hence are unsuitable for finding collective coordinates. We advocate the application of principal component analysis (PCA) and a non-metric multidimensional scaling (nMDS) method to reduce MD trajectories and overcome the drawbacks of clustering. To illustrate the superiority of nMDS over other methods in reducing data and reproducing salient features, we analyze three complete villin headpiece folding trajectories. Our analysis suggests that the folding process of the villin headpiece is structurally heterogeneous.
Computer aided diagnosis based on medical image processing and artificial intelligence methods
NASA Astrophysics Data System (ADS)
Stoitsis, John; Valavanis, Ioannis; Mougiakakou, Stavroula G.; Golemati, Spyretta; Nikita, Alexandra; Nikita, Konstantina S.
2006-12-01
Advances in imaging technology and computer science have greatly enhanced interpretation of medical images, and contributed to early diagnosis. The typical architecture of a Computer Aided Diagnosis (CAD) system includes image pre-processing, definition of region(s) of interest, features extraction and selection, and classification. In this paper, the principles of CAD systems design and development are demonstrated by means of two examples. The first one focuses on the differentiation between symptomatic and asymptomatic carotid atheromatous plaques. For each plaque, a vector of texture and motion features was estimated, which was then reduced to the most robust ones by means of ANalysis of VAriance (ANOVA). Using fuzzy c-means, the features were then clustered into two classes. Clustering performances of 74%, 79%, and 84% were achieved for texture only, motion only, and combinations of texture and motion features, respectively. The second CAD system presented in this paper supports the diagnosis of focal liver lesions and is able to characterize liver tissue from Computed Tomography (CT) images as normal, hepatic cyst, hemangioma, and hepatocellular carcinoma. Five texture feature sets were extracted for each lesion, while a genetic algorithm based feature selection method was applied to identify the most robust features. The selected feature set was fed into an ensemble of neural network classifiers. The achieved classification performance was 100%, 93.75% and 90.63% in the training, validation and testing set, respectively. It is concluded that computerized analysis of medical images in combination with artificial intelligence can be used in clinical practice and may contribute to more efficient diagnosis.
Distributed multitasking ITS with PVM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, W.C.; Halbleib, J.A. Sr.
1995-12-31
Advances in computer hardware and communication software have made it possible to perform parallel-processing computing on a collection of desktop workstations. For many applications, multitasking on a cluster of high-performance workstations has achieved performance comparable to or better than that on a traditional supercomputer. From the point of view of cost-effectiveness, it also allows users to exploit available but unused computational resources and thus achieve a higher performance-to-cost ratio. Monte Carlo calculations are inherently parallelizable because the individual particle trajectories can be generated independently with minimum need for interprocessor communication. Furthermore, the number of particle histories that can be generatedmore » in a given amount of wall-clock time is nearly proportional to the number of processors in the cluster. This is an important fact because the inherent statistical uncertainty in any Monte Carlo result decreases as the number of histories increases. For these reasons, researchers have expended considerable effort to take advantage of different parallel architectures for a variety of Monte Carlo radiation transport codes, often with excellent results. The initial interest in this work was sparked by the multitasking capability of the MCNP code on a cluster of workstations using the Parallel Virtual Machine (PVM) software. On a 16-machine IBM RS/6000 cluster, it has been demonstrated that MCNP runs ten times as fast as on a single-processor CRAY YMP. In this paper, we summarize the implementation of a similar multitasking capability for the coupled electronphoton transport code system, the Integrated TIGER Series (ITS), and the evaluation of two load-balancing schemes for homogeneous and heterogeneous networks.« less
Distributed multitasking ITS with PVM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, W.C.; Halbleib, J.A. Sr.
1995-02-01
Advances of computer hardware and communication software have made it possible to perform parallel-processing computing on a collection of desktop workstations. For many applications, multitasking on a cluster of high-performance workstations has achieved performance comparable or better than that on a traditional supercomputer. From the point of view of cost-effectiveness, it also allows users to exploit available but unused computational resources, and thus achieve a higher performance-to-cost ratio. Monte Carlo calculations are inherently parallelizable because the individual particle trajectories can be generated independently with minimum need for interprocessor communication. Furthermore, the number of particle histories that can be generated inmore » a given amount of wall-clock time is nearly proportional to the number of processors in the cluster. This is an important fact because the inherent statistical uncertainty in any Monte Carlo result decreases as the number of histories increases. For these reasons, researchers have expended considerable effort to take advantage of different parallel architectures for a variety of Monte Carlo radiation transport codes, often with excellent results. The initial interest in this work was sparked by the multitasking capability of MCNP on a cluster of workstations using the Parallel Virtual Machine (PVM) software. On a 16-machine IBM RS/6000 cluster, it has been demonstrated that MCNP runs ten times as fast as on a single-processor CRAY YMP. In this paper, we summarize the implementation of a similar multitasking capability for the coupled electron/photon transport code system, the Integrated TIGER Series (ITS), and the evaluation of two load balancing schemes for homogeneous and heterogeneous networks.« less
A numerical differentiation library exploiting parallel architectures
NASA Astrophysics Data System (ADS)
Voglis, C.; Hadjidoukas, P. E.; Lagaris, I. E.; Papageorgiou, D. G.
2009-08-01
We present a software library for numerically estimating first and second order partial derivatives of a function by finite differencing. Various truncation schemes are offered resulting in corresponding formulas that are accurate to order O(h), O(h), and O(h), h being the differencing step. The derivatives are calculated via forward, backward and central differences. Care has been taken that only feasible points are used in the case where bound constraints are imposed on the variables. The Hessian may be approximated either from function or from gradient values. There are three versions of the software: a sequential version, an OpenMP version for shared memory architectures and an MPI version for distributed systems (clusters). The parallel versions exploit the multiprocessing capability offered by computer clusters, as well as modern multi-core systems and due to the independent character of the derivative computation, the speedup scales almost linearly with the number of available processors/cores. Program summaryProgram title: NDL (Numerical Differentiation Library) Catalogue identifier: AEDG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 73 030 No. of bytes in distributed program, including test data, etc.: 630 876 Distribution format: tar.gz Programming language: ANSI FORTRAN-77, ANSI C, MPI, OPENMP Computer: Distributed systems (clusters), shared memory systems Operating system: Linux, Solaris Has the code been vectorised or parallelized?: Yes RAM: The library uses O(N) internal storage, N being the dimension of the problem Classification: 4.9, 4.14, 6.5 Nature of problem: The numerical estimation of derivatives at several accuracy levels is a common requirement in many computational tasks, such as optimization, solution of nonlinear systems, etc. The parallel implementation that exploits systems with multiple CPUs is very important for large scale and computationally expensive problems. Solution method: Finite differencing is used with carefully chosen step that minimizes the sum of the truncation and round-off errors. The parallel versions employ both OpenMP and MPI libraries. Restrictions: The library uses only double precision arithmetic. Unusual features: The software takes into account bound constraints, in the sense that only feasible points are used to evaluate the derivatives, and given the level of the desired accuracy, the proper formula is automatically employed. Running time: Running time depends on the function's complexity. The test run took 15 ms for the serial distribution, 0.6 s for the OpenMP and 4.2 s for the MPI parallel distribution on 2 processors.
Structure and Dynamics Ionic Block co-Polymer Melts: Computational Study
NASA Astrophysics Data System (ADS)
Aryal, Dipak; Perahia, Dvora; Grest, Gary S.
Tethering ionomer blocks into co-polymers enables engineering of polymeric systems designed to encompass transport while controlling structure. Here the structure and dynamics of symmetric pentablock copolymers melts are probed by fully atomistic molecular dynamics simulations. The center block consists of randomly sulfonated polystyrene with sulfonation fractions f = 0 to 0.55 tethered to a hydrogenated polyisoprene (PI), end caped with poly(t-butyl styrene). We find that melts with f = 0.15 and 0.30 consist of isolated ionic clusters whereas melts with f = 0.55 exhibit a long-range percolating ionic network. Similar to polystyrene sulfonate, a small number of ionic clusters slow the mobility of the center of mass of the co-polymer, however, formation of the ionic clusters is slower and they are often intertwined with PI segments. Surprisingly, the segmental dynamics of the other blocks are also affected. NSF DMR-1611136; NERSC; Palmetto Cluster Clemson University; Kraton Polymers US, LLC.
Automated detection of microcalcification clusters in mammograms
NASA Astrophysics Data System (ADS)
Karale, Vikrant A.; Mukhopadhyay, Sudipta; Singh, Tulika; Khandelwal, Niranjan; Sadhu, Anup
2017-03-01
Mammography is the most efficient modality for detection of breast cancer at early stage. Microcalcifications are tiny bright spots in mammograms and can often get missed by the radiologist during diagnosis. The presence of microcalcification clusters in mammograms can act as an early sign of breast cancer. This paper presents a completely automated computer-aided detection (CAD) system for detection of microcalcification clusters in mammograms. Unsharp masking is used as a preprocessing step which enhances the contrast between microcalcifications and the background. The preprocessed image is thresholded and various shape and intensity based features are extracted. Support vector machine (SVM) classifier is used to reduce the false positives while preserving the true microcalcification clusters. The proposed technique is applied on two different databases i.e DDSM and private database. The proposed technique shows good sensitivity with moderate false positives (FPs) per image on both databases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douberly, Gary E.; Miller, Roger E.; Xantheas, Sotiris S.
Water clusters are formed in helium droplets via the sequential capture of monomers. One or two neon atoms are added to each droplet prior to the addition of water. The infrared spectrum of the droplet ensemble reveals several signatures of polar, water tetramer clusters having dipole moments between 2D and 3D. Comparison with ab initio computations supports the assignment of the cluster networks to noncyclic “3+1” clusters, which are ~5.3 kcal/mol less stable than the global minimum nonpolar cyclic tetramer. The (H2O)3Ne + H2O ring insertion barrier is sufficiently large, such that evaporative helium cooling is capable of kinetically quenchingmore » the nonequilibrium tetramer system prior to its rearrangement to the lower energy cyclic species. To this end, the reported process results in the formation of exotic water cluster networks that are either higher in energy than the most stable gas-phase analogs or not even stable in the gas phase.« less
Clustering biomolecular complexes by residue contacts similarity.
Rodrigues, João P G L M; Trellet, Mikaël; Schmitz, Christophe; Kastritis, Panagiotis; Karaca, Ezgi; Melquiond, Adrien S J; Bonvin, Alexandre M J J
2012-07-01
Inaccuracies in computational molecular modeling methods are often counterweighed by brute-force generation of a plethora of putative solutions. These are then typically sieved via structural clustering based on similarity measures such as the root mean square deviation (RMSD) of atomic positions. Albeit widely used, these measures suffer from several theoretical and technical limitations (e.g., choice of regions for fitting) that impair their application in multicomponent systems (N > 2), large-scale studies (e.g., interactomes), and other time-critical scenarios. We present here a simple similarity measure for structural clustering based on atomic contacts--the fraction of common contacts--and compare it with the most used similarity measure of the protein docking community--interface backbone RMSD. We show that this method produces very compact clusters in remarkably short time when applied to a collection of binary and multicomponent protein-protein and protein-DNA complexes. Furthermore, it allows easy clustering of similar conformations of multicomponent symmetrical assemblies in which chain permutations can occur. Simple contact-based metrics should be applicable to other structural biology clustering problems, in particular for time-critical or large-scale endeavors. Copyright © 2012 Wiley Periodicals, Inc.
WEIGHING GALAXY CLUSTERS WITH GAS. I. ON THE METHODS OF COMPUTING HYDROSTATIC MASS BIAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, Erwin T.; Nagai, Daisuke; Nelson, Kaylea, E-mail: erwin.lau@yale.edu
2013-11-10
Mass estimates of galaxy clusters from X-ray and Sunyeav-Zel'dovich observations assume the intracluster gas is in hydrostatic equilibrium with their gravitational potential. However, since galaxy clusters are dynamically active objects whose dynamical states can deviate significantly from the equilibrium configuration, the departure from the hydrostatic equilibrium assumption is one of the largest sources of systematic uncertainties in cluster cosmology. In the literature there have been two methods for computing the hydrostatic mass bias based on the Euler and the modified Jeans equations, respectively, and there has been some confusion about the validity of these two methods. The word 'Jeans' wasmore » a misnomer, which incorrectly implies that the gas is collisionless. To avoid further confusion, we instead refer these methods as 'summation' and 'averaging' methods respectively. In this work, we show that these two methods for computing the hydrostatic mass bias are equivalent by demonstrating that the equation used in the second method can be derived from taking spatial averages of the Euler equation. Specifically, we identify the correspondences of individual terms in these two methods mathematically and show that these correspondences are valid to within a few percent level using hydrodynamical simulations of galaxy cluster formation. In addition, we compute the mass bias associated with the acceleration of gas and show that its contribution is small in the virialized regions in the interior of galaxy clusters, but becomes non-negligible in the outskirts of massive galaxy clusters. We discuss future prospects of understanding and characterizing biases in the mass estimate of galaxy clusters using both hydrodynamical simulations and observations and their implications for cluster cosmology.« less
Weighing Galaxy Clusters with Gas. I. On the Methods of Computing Hydrostatic Mass Bias
NASA Astrophysics Data System (ADS)
Lau, Erwin T.; Nagai, Daisuke; Nelson, Kaylea
2013-11-01
Mass estimates of galaxy clusters from X-ray and Sunyeav-Zel'dovich observations assume the intracluster gas is in hydrostatic equilibrium with their gravitational potential. However, since galaxy clusters are dynamically active objects whose dynamical states can deviate significantly from the equilibrium configuration, the departure from the hydrostatic equilibrium assumption is one of the largest sources of systematic uncertainties in cluster cosmology. In the literature there have been two methods for computing the hydrostatic mass bias based on the Euler and the modified Jeans equations, respectively, and there has been some confusion about the validity of these two methods. The word "Jeans" was a misnomer, which incorrectly implies that the gas is collisionless. To avoid further confusion, we instead refer these methods as "summation" and "averaging" methods respectively. In this work, we show that these two methods for computing the hydrostatic mass bias are equivalent by demonstrating that the equation used in the second method can be derived from taking spatial averages of the Euler equation. Specifically, we identify the correspondences of individual terms in these two methods mathematically and show that these correspondences are valid to within a few percent level using hydrodynamical simulations of galaxy cluster formation. In addition, we compute the mass bias associated with the acceleration of gas and show that its contribution is small in the virialized regions in the interior of galaxy clusters, but becomes non-negligible in the outskirts of massive galaxy clusters. We discuss future prospects of understanding and characterizing biases in the mass estimate of galaxy clusters using both hydrodynamical simulations and observations and their implications for cluster cosmology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spurzem, R.; Giersz, M.; Heggie, D. C.
At least 10%-15% of nearby Sunlike stars have known Jupiter-mass planets. In contrast, very few planets are found in mature open and globular clusters such as the Hyades and 47 Tuc. We explore here the possibility that this dichotomy is due to the postformation disruption of planetary systems associated with the stellar encounters in long-lived clusters. One supporting piece of evidence for this scenario is the discovery of freely floating low-mass objects in star forming regions. We use two independent numerical approaches, a hybrid Monte Carlo and a direct N-body method, to simulate the impact of the encounters. We showmore » that the results of numerical simulations are in reasonable agreement with analytical determinations in the adiabatic and impulsive limits. They indicate that distant stellar encounters generally do not significantly modify the compact and nearly circular orbits. However, moderately close stellar encounters, which are likely to occur in dense clusters, can excite planets' orbital eccentricity and induce dynamical instability in systems that are closely packed with multiple planets. The disruption of planetary systems occurs primarily through occasional nearly parabolic, nonadiabatic encounters, though eccentricity of the planets evolves through repeated hyperbolic adiabatic encounters that accumulate small-amplitude changes. The detached planets are generally retained by the potential of their host clusters as free floaters in young stellar clusters such as {sigma} Orionis. We compute effective cross sections for the dissolution of planetary systems and show that, for all initial eccentricities, dissolution occurs on timescales that are longer than the dispersion of small stellar associations, but shorter than the age of typical open and globular clusters. Although it is much more difficult to disrupt short-period planets, close encounters can excite modest eccentricity among them, such that subsequent tidal dissipation leads to orbital decay, tidal inflation, and even disruption of the close-in planets.« less
NASA Astrophysics Data System (ADS)
Santiago Girola Schneider, Rafael
2015-08-01
The fuzzy logic is a branch of the artificial intelligence founded on the concept that 'everything is a matter of degree.' It intends to create mathematical approximations on the resolution of certain types of problems. In addition, it aims to produce exact results obtained from imprecise data, for which it is particularly useful for electronic and computer applications. This enables it to handle vague or unspecific information when certain parts of a system are unknown or ambiguous and, therefore, they cannot be measured in a reliable manner. Also, when the variation of a variable can produce an alteration on the others.The main focus of this paper is to prove the importance of these techniques formulated from a theoretical analysis on its application on ambiguous situations in the field of the rich clusters of galaxies. The purpose is to show its applicability in the several classification systems proposed for the rich clusters, which are based on criteria such as the level of richness of the cluster, the distribution of the brightest galaxies, whether there are signs of type-cD galaxies or not or the existence of sub-clusters.Fuzzy logic enables the researcher to work with “imprecise” information implementing fuzzy sets and combining rules to define actions. The control systems based on fuzzy logic join input variables that are defined in terms of fuzzy sets through rule groups that produce one or several output values of the system under study. From this context, the application of the fuzzy logic’s techniques approximates the solution of the mathematical models in abstractions about the rich galaxy cluster classification of physical properties in order to solve the obscurities that must be confronted by an investigation group in order to make a decision.
NASA Astrophysics Data System (ADS)
Girola Schneider, R.
2017-07-01
The fuzzy logic is a branch of the artificial intelligence founded on the concept that everything is a matter of degree. It intends to create mathematical approximations on the resolution of certain types of problems. In addition, it aims to produce exact results obtained from imprecise data, for which it is particularly useful for electronic and computer applications. This enables it to handle vague or unspecific information when certain parts of a system are unknown or ambiguous and, therefore, they cannot be measured in a reliable manner. Also, when the variation of a variable can produce an alteration on the others The main focus of this paper is to prove the importance of these techniques formulated from a theoretical analysis on its application on ambiguous situations in the field of the rich clusters of galaxies. The purpose is to show its applicability in the several classification systems proposed for the rich clusters, which are based on criteria such as the level of richness of the cluster, the distribution of the brightest galaxies, whether there are signs of type-cD galaxies or not or the existence of sub-clusters. Fuzzy logic enables the researcher to work with "imprecise" information implementing fuzzy sets and combining rules to define actions. The control systems based on fuzzy logic join input variables that are defined in terms of fuzzy sets through rule groups that produce one or several output values of the system under study. From this context, the application of the fuzzy logic's techniques approximates the solution of the mathematical models in abstractions about the rich galaxy cluster classification of physical properties in order to solve the obscurities that must be confronted by an investigation group in order to make a decision.
On the Accuracy and Parallelism of GPGPU-Powered Incremental Clustering Algorithms
He, Li; Zheng, Hao; Wang, Lei
2017-01-01
Incremental clustering algorithms play a vital role in various applications such as massive data analysis and real-time data processing. Typical application scenarios of incremental clustering raise high demand on computing power of the hardware platform. Parallel computing is a common solution to meet this demand. Moreover, General Purpose Graphic Processing Unit (GPGPU) is a promising parallel computing device. Nevertheless, the incremental clustering algorithm is facing a dilemma between clustering accuracy and parallelism when they are powered by GPGPU. We formally analyzed the cause of this dilemma. First, we formalized concepts relevant to incremental clustering like evolving granularity. Second, we formally proved two theorems. The first theorem proves the relation between clustering accuracy and evolving granularity. Additionally, this theorem analyzes the upper and lower bounds of different-to-same mis-affiliation. Fewer occurrences of such mis-affiliation mean higher accuracy. The second theorem reveals the relation between parallelism and evolving granularity. Smaller work-depth means superior parallelism. Through the proofs, we conclude that accuracy of an incremental clustering algorithm is negatively related to evolving granularity while parallelism is positively related to the granularity. Thus the contradictory relations cause the dilemma. Finally, we validated the relations through a demo algorithm. Experiment results verified theoretical conclusions. PMID:29123546
Xu, Peng; Gordon, Mark S
2014-09-04
Anionic water clusters are generally considered to be extremely challenging to model using fragmentation approaches due to the diffuse nature of the excess electron distribution. The local correlation coupled cluster (CC) framework cluster-in-molecule (CIM) approach combined with the completely renormalized CR-CC(2,3) method [abbreviated CIM/CR-CC(2,3)] is shown to be a viable alternative for computing the vertical electron binding energies (VEBE). CIM/CR-CC(2,3) with the threshold parameter ζ set to 0.001, as a trade-off between accuracy and computational cost, demonstrates the reliability of predicting the VEBE, with an average percentage error of ∼15% compared to the full ab initio calculation at the same level of theory. The errors are predominantly from the electron correlation energy. The CIM/CR-CC(2,3) approach provides the ease of a black-box type calculation with few threshold parameters to manipulate. The cluster sizes that can be studied by high-level ab initio methods are significantly increased in comparison with full CC calculations. Therefore, the VEBE computed by the CIM/CR-CC(2,3) method can be used as benchmarks for testing model potential approaches in small-to-intermediate-sized water clusters.
Minimal spanning trees at the percolation threshold: a numerical calculation
NASA Astrophysics Data System (ADS)
Sweeney, Sean; Middleton, A. Alan
2013-03-01
Through computer simulations on a hypercubic lattice, we grow minimal spanning trees (MSTs) in up to five dimensions and examine their fractal dimensions. Understanding MSTs is imporant for studying systems with quenched disorder such as spin glasses. We implement a combination of Prim's and Kruskal's algorithms for finding MSTs in order to reduce memory usage and allow for simulation of larger systems than would otherwise be possible. These fractal objects are analyzed in an attempt to numerically verify predictions of the perturbation expansion developed by T. S. Jackson and N. Read for the pathlength fractal dimension ds of MSTs on percolation clusters at criticality [T. S. Jackson and N. Read, Phys. Rev. E 81, 021131 (2010)]. Examining these trees also sparked the development of an analysis technique for dealing with correlated data that could be easily generalized to other systems and should be a robust method for analyzing a wide array of randomly generated fractal structures. This work was made possible in part by NSF Grant No. DMR-1006731 and by the Syracuse University Gravitation and Relativity computing cluster, which is supported in part by NSF Grant No. PHY-0600953.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haas, Nicholas Q; Gillen, Robert E; Karnowski, Thomas P
MathWorks' MATLAB is widely used in academia and industry for prototyping, data analysis, data processing, etc. Many users compile their programs using the MATLAB Compiler to run on workstations/computing clusters via the free MATLAB Compiler Runtime (MCR). The MCR facilitates the execution of code calling Application Programming Interfaces (API) functions from both base MATLAB and MATLAB toolboxes. In a Linux environment, a sizable number of third-party runtime dependencies (i.e. shared libraries) are necessary. Unfortunately, to the MTLAB community's knowledge, these dependencies are not documented, leaving system administrators and/or end-users to find/install the necessary libraries either as runtime errors resulting frommore » them missing or by inspecting the header information of Executable and Linkable Format (ELF) libraries of the MCR to determine which ones are missing from the system. To address various shortcomings, Docker Images based on Community Enterprise Operating System (CentOS) 7, a derivative of Redhat Enterprise Linux (RHEL) 7, containing recent (2015-2017) MCR releases and their dependencies were created. These images, along with a provided sample Docker Compose YAML Script, can be used to create a simulated computing cluster where MATLAB Compiler created binaries can be executed using a sample Slurm Workload Manager script.« less
Localized Ambient Solidity Separation Algorithm Based Computer User Segmentation.
Sun, Xiao; Zhang, Tongda; Chai, Yueting; Liu, Yi
2015-01-01
Most of popular clustering methods typically have some strong assumptions of the dataset. For example, the k-means implicitly assumes that all clusters come from spherical Gaussian distributions which have different means but the same covariance. However, when dealing with datasets that have diverse distribution shapes or high dimensionality, these assumptions might not be valid anymore. In order to overcome this weakness, we proposed a new clustering algorithm named localized ambient solidity separation (LASS) algorithm, using a new isolation criterion called centroid distance. Compared with other density based isolation criteria, our proposed centroid distance isolation criterion addresses the problem caused by high dimensionality and varying density. The experiment on a designed two-dimensional benchmark dataset shows that our proposed LASS algorithm not only inherits the advantage of the original dissimilarity increments clustering method to separate naturally isolated clusters but also can identify the clusters which are adjacent, overlapping, and under background noise. Finally, we compared our LASS algorithm with the dissimilarity increments clustering method on a massive computer user dataset with over two million records that contains demographic and behaviors information. The results show that LASS algorithm works extremely well on this computer user dataset and can gain more knowledge from it.
Localized Ambient Solidity Separation Algorithm Based Computer User Segmentation
Sun, Xiao; Zhang, Tongda; Chai, Yueting; Liu, Yi
2015-01-01
Most of popular clustering methods typically have some strong assumptions of the dataset. For example, the k-means implicitly assumes that all clusters come from spherical Gaussian distributions which have different means but the same covariance. However, when dealing with datasets that have diverse distribution shapes or high dimensionality, these assumptions might not be valid anymore. In order to overcome this weakness, we proposed a new clustering algorithm named localized ambient solidity separation (LASS) algorithm, using a new isolation criterion called centroid distance. Compared with other density based isolation criteria, our proposed centroid distance isolation criterion addresses the problem caused by high dimensionality and varying density. The experiment on a designed two-dimensional benchmark dataset shows that our proposed LASS algorithm not only inherits the advantage of the original dissimilarity increments clustering method to separate naturally isolated clusters but also can identify the clusters which are adjacent, overlapping, and under background noise. Finally, we compared our LASS algorithm with the dissimilarity increments clustering method on a massive computer user dataset with over two million records that contains demographic and behaviors information. The results show that LASS algorithm works extremely well on this computer user dataset and can gain more knowledge from it. PMID:26221133
Computation of neutron fluxes in clusters of fuel pins arranged in hexagonal assemblies (2D and 3D)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabha, H.; Marleau, G.
2012-07-01
For computations of fluxes, we have used Carvik's method of collision probabilities. This method requires tracking algorithms. An algorithm to compute tracks (in 2D and 3D) has been developed for seven hexagonal geometries with cluster of fuel pins. This has been implemented in the NXT module of the code DRAGON. The flux distribution in cluster of pins has been computed by using this code. For testing the results, they are compared when possible with the EXCELT module of the code DRAGON. Tracks are plotted in the NXT module by using MATLAB, these plots are also presented here. Results are presentedmore » with increasing number of lines to show the convergence of these results. We have numerically computed volumes, surface areas and the percentage errors in these computations. These results show that 2D results converge faster than 3D results. The accuracy on the computation of fluxes up to second decimal is achieved with fewer lines. (authors)« less
Low cost, high performance processing of single particle cryo-electron microscopy data in the cloud.
Cianfrocco, Michael A; Leschziner, Andres E
2015-05-08
The advent of a new generation of electron microscopes and direct electron detectors has realized the potential of single particle cryo-electron microscopy (cryo-EM) as a technique to generate high-resolution structures. Calculating these structures requires high performance computing clusters, a resource that may be limiting to many likely cryo-EM users. To address this limitation and facilitate the spread of cryo-EM, we developed a publicly available 'off-the-shelf' computing environment on Amazon's elastic cloud computing infrastructure. This environment provides users with single particle cryo-EM software packages and the ability to create computing clusters with 16-480+ CPUs. We tested our computing environment using a publicly available 80S yeast ribosome dataset and estimate that laboratories could determine high-resolution cryo-EM structures for $50 to $1500 per structure within a timeframe comparable to local clusters. Our analysis shows that Amazon's cloud computing environment may offer a viable computing environment for cryo-EM.
Gate sequence for continuous variable one-way quantum computation
Su, Xiaolong; Hao, Shuhong; Deng, Xiaowei; Ma, Lingyu; Wang, Meihong; Jia, Xiaojun; Xie, Changde; Peng, Kunchi
2013-01-01
Measurement-based one-way quantum computation using cluster states as resources provides an efficient model to perform computation and information processing of quantum codes. Arbitrary Gaussian quantum computation can be implemented sufficiently by long single-mode and two-mode gate sequences. However, continuous variable gate sequences have not been realized so far due to an absence of cluster states larger than four submodes. Here we present the first continuous variable gate sequence consisting of a single-mode squeezing gate and a two-mode controlled-phase gate based on a six-mode cluster state. The quantum property of this gate sequence is confirmed by the fidelities and the quantum entanglement of two output modes, which depend on both the squeezing and controlled-phase gates. The experiment demonstrates the feasibility of implementing Gaussian quantum computation by means of accessible gate sequences.
Li, Rui; You, Xue-Rui; Wang, Kang; Zhai, Hua-Jin
2018-05-04
The bowl-shaped C 6v B 36 cluster with a central hexagon hole is considered an ideal molecular model for low-dimensional boron-based nanosystems. Owing to the electron deficiency of boron, chemical bonding in the B 36 cluster is intriguing, complicated, and has remained elusive despite a couple of papers in the literature. Herein, a bonding analysis is given through canonical molecular orbitals (CMOs) and adaptive natural density partitioning (AdNDP), further aided by natural bond orbital (NBO) analysis and orbital composition calculations. The concerted computational data establish the idea of concentric double π aromaticity for the B 36 cluster, with inner 6π and outer 18π electron counting, which both conform to the (4n+2) Hückel rule. The updated bonding picture differs from existing knowledge of the system. A refined bonding model is also proposed for coronene, of which the B 36 cluster is an inorganic analogue. It is further shown that concentric double π aromaticity in the B 36 cluster is retained and spatially fixed, irrespective of the migration of the hexagonal hole; the latter process changes the system energetically. The hexagonal hole is a destabilizing factor for σ/π CMOs. The central hexagon hole affects substantially fewer CMOs, thus making the bowl-shaped C 6v B 36 cluster the global minimum. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Genetic Algorithm That Exchanges Neighboring Centers for Fuzzy c-Means Clustering
ERIC Educational Resources Information Center
Chahine, Firas Safwan
2012-01-01
Clustering algorithms are widely used in pattern recognition and data mining applications. Due to their computational efficiency, partitional clustering algorithms are better suited for applications with large datasets than hierarchical clustering algorithms. K-means is among the most popular partitional clustering algorithm, but has a major…
NASA Astrophysics Data System (ADS)
Maitra, Rahul; Akinaga, Yoshinobu; Nakajima, Takahito
2017-08-01
A single reference coupled cluster theory that is capable of including the effect of connected triple excitations has been developed and implemented. This is achieved by regrouping the terms appearing in perturbation theory and parametrizing through two different sets of exponential operators: while one of the exponentials, involving general substitution operators, annihilates the ground state but has a non-vanishing effect when it acts on the excited determinant, the other is the regular single and double excitation operator in the sense of conventional coupled cluster theory, which acts on the Hartree-Fock ground state. The two sets of operators are solved as coupled non-linear equations in an iterative manner without significant increase in computational cost than the conventional coupled cluster theory with singles and doubles excitations. A number of physically motivated and computationally advantageous sufficiency conditions are invoked to arrive at the working equations and have been applied to determine the ground state energies of a number of small prototypical systems having weak multi-reference character. With the knowledge of the correlated ground state, we have reconstructed the triple excitation operator and have performed equation of motion with coupled cluster singles, doubles, and triples to obtain the ionization potential and excitation energies of these molecules as well. Our results suggest that this is quite a reasonable scheme to capture the effect of connected triple excitations as long as the ground state remains weakly multi-reference.
Genotyping in the cloud with Crossbow.
Gurtowski, James; Schatz, Michael C; Langmead, Ben
2012-09-01
Crossbow is a scalable, portable, and automatic cloud computing tool for identifying SNPs from high-coverage, short-read resequencing data. It is built on Apache Hadoop, an implementation of the MapReduce software framework. Hadoop allows Crossbow to distribute read alignment and SNP calling subtasks over a cluster of commodity computers. Two robust tools, Bowtie and SOAPsnp, implement the fundamental alignment and variant calling operations respectively, and have demonstrated capabilities within Crossbow of analyzing approximately one billion short reads per hour on a commodity Hadoop cluster with 320 cores. Through protocol examples, this unit will demonstrate the use of Crossbow for identifying variations in three different operating modes: on a Hadoop cluster, on a single computer, and on the Amazon Elastic MapReduce cloud computing service.
Jeong, Ji-Wook; Chae, Seung-Hoon; Chae, Eun Young; Kim, Hak Hee; Choi, Young-Wook; Lee, Sooyeul
2016-01-01
We propose computer-aided detection (CADe) algorithm for microcalcification (MC) clusters in reconstructed digital breast tomosynthesis (DBT) images. The algorithm consists of prescreening, MC detection, clustering, and false-positive (FP) reduction steps. The DBT images containing the MC-like objects were enhanced by a multiscale Hessian-based three-dimensional (3D) objectness response function and a connected-component segmentation method was applied to extract the cluster seed objects as potential clustering centers of MCs. Secondly, a signal-to-noise ratio (SNR) enhanced image was also generated to detect the individual MC candidates and prescreen the MC-like objects. Each cluster seed candidate was prescreened by counting neighboring individual MC candidates nearby the cluster seed object according to several microcalcification clustering criteria. As a second step, we introduced bounding boxes for the accepted seed candidate, clustered all the overlapping cubes, and examined. After the FP reduction step, the average number of FPs per case was estimated to be 2.47 per DBT volume with a sensitivity of 83.3%.
Closed-cage tungsten oxide clusters in the gas phase.
Singh, D M David Jeba; Pradeep, T; Thirumoorthy, Krishnan; Balasubramanian, Krishnan
2010-05-06
During the course of a study on the clustering of W-Se and W-S mixtures in the gas phase using laser desorption ionization (LDI) mass spectrometry, we observed several anionic W-O clusters. Three distinct species, W(6)O(19)(-), W(13)O(29)(-), and W(14)O(32)(-), stand out as intense peaks in the regular mass spectral pattern of tungsten oxide clusters suggesting unusual stabilities for them. Moreover, these clusters do not fragment in the postsource decay analysis. While trying to understand the precursor material, which produced these clusters, we found the presence of nanoscale forms of tungsten oxide. The structure and thermodynamic parameters of tungsten clusters have been explored using relativistic quantum chemical methods. Our computed results of atomization energy are consistent with the observed LDI mass spectra. The computational results suggest that the clusters observed have closed-cage structure. These distinct W(13) and W(14) clusters were observed for the first time in the gas phase.
Cluster formation in precompound nuclei in the time-dependent framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuetrumpf, B.; Nazarewicz, W.
Background: Modern applications of nuclear time-dependent density functional theory (TDDFT) are often capable of providing quantitative description of heavy ion reactions. However, the structures of precompound (preequilibrium, prefission) states produced in heavy ion reactions are difficult to assess theoretically in TDDFT as the single-particle density alone is a weak indicator of shell structure and cluster states. Purpose: We employ the time-dependent nucleon localization function (NLF) to reveal the structure of precompound states in nuclear reactions involving light and medium-mass ions. We primarily focus on spin saturated systems with N = Z . Furthermore, we study reactions with oxygen and carbonmore » ions, for which some experimental evidence for α clustering in precompound states exists. Method: We utilize the symmetry-free TDDFT approach with the Skyrme energy density functional UNEDF1 and compute the time-dependent NLFs to describe 16O + 16O, 40Ca + 16O, 40Ca + 40Ca , and 16,18O + 12C collisions at energies above the Coulomb barrier. Results: We show that NLFs reveal a variety of time-dependent modes involving cluster structures. For instance, the 16O + 16O collision results in a vibrational mode of a quasimolecular α - 12 C - 12 C- α state. For heavier ions, a variety of cluster configurations are predicted. For the collision of 16,18O + 12C, we showed that the precompound system has a tendency to form α clusters. This result supports the experimental findings that the presence of cluster structures in the projectile and target nuclei gives rise to strong entrance channel effects and enhanced α emission. Conclusion: The time-dependent nucleon localization measure is a very good indicator of cluster structures in complex precompound states formed in heavy-ion fusion reactions. Finally, the localization reveals the presence of collective vibrations involving cluster structures, which dominate the initial dynamics of the fusing system.« less
Cluster formation in precompound nuclei in the time-dependent framework
Schuetrumpf, B.; Nazarewicz, W.
2017-12-15
Background: Modern applications of nuclear time-dependent density functional theory (TDDFT) are often capable of providing quantitative description of heavy ion reactions. However, the structures of precompound (preequilibrium, prefission) states produced in heavy ion reactions are difficult to assess theoretically in TDDFT as the single-particle density alone is a weak indicator of shell structure and cluster states. Purpose: We employ the time-dependent nucleon localization function (NLF) to reveal the structure of precompound states in nuclear reactions involving light and medium-mass ions. We primarily focus on spin saturated systems with N = Z . Furthermore, we study reactions with oxygen and carbonmore » ions, for which some experimental evidence for α clustering in precompound states exists. Method: We utilize the symmetry-free TDDFT approach with the Skyrme energy density functional UNEDF1 and compute the time-dependent NLFs to describe 16O + 16O, 40Ca + 16O, 40Ca + 40Ca , and 16,18O + 12C collisions at energies above the Coulomb barrier. Results: We show that NLFs reveal a variety of time-dependent modes involving cluster structures. For instance, the 16O + 16O collision results in a vibrational mode of a quasimolecular α - 12 C - 12 C- α state. For heavier ions, a variety of cluster configurations are predicted. For the collision of 16,18O + 12C, we showed that the precompound system has a tendency to form α clusters. This result supports the experimental findings that the presence of cluster structures in the projectile and target nuclei gives rise to strong entrance channel effects and enhanced α emission. Conclusion: The time-dependent nucleon localization measure is a very good indicator of cluster structures in complex precompound states formed in heavy-ion fusion reactions. Finally, the localization reveals the presence of collective vibrations involving cluster structures, which dominate the initial dynamics of the fusing system.« less
Cluster formation in precompound nuclei in the time-dependent framework
NASA Astrophysics Data System (ADS)
Schuetrumpf, B.; Nazarewicz, W.
2017-12-01
Background: Modern applications of nuclear time-dependent density functional theory (TDDFT) are often capable of providing quantitative description of heavy ion reactions. However, the structures of precompound (preequilibrium, prefission) states produced in heavy ion reactions are difficult to assess theoretically in TDDFT as the single-particle density alone is a weak indicator of shell structure and cluster states. Purpose: We employ the time-dependent nucleon localization function (NLF) to reveal the structure of precompound states in nuclear reactions involving light and medium-mass ions. We primarily focus on spin saturated systems with N =Z . Furthermore, we study reactions with oxygen and carbon ions, for which some experimental evidence for α clustering in precompound states exists. Method: We utilize the symmetry-free TDDFT approach with the Skyrme energy density functional UNEDF1 and compute the time-dependent NLFs to describe 16O + 16O,40Ca + 16O, 40Ca + 40Ca, and O,1816 + 12C collisions at energies above the Coulomb barrier. Results: We show that NLFs reveal a variety of time-dependent modes involving cluster structures. For instance, the 16O + 16O collision results in a vibrational mode of a quasimolecular α - 12C - 12C-α state. For heavier ions, a variety of cluster configurations are predicted. For the collision of O,1816 + 12C, we showed that the precompound system has a tendency to form α clusters. This result supports the experimental findings that the presence of cluster structures in the projectile and target nuclei gives rise to strong entrance channel effects and enhanced α emission. Conclusion: The time-dependent nucleon localization measure is a very good indicator of cluster structures in complex precompound states formed in heavy-ion fusion reactions. The localization reveals the presence of collective vibrations involving cluster structures, which dominate the initial dynamics of the fusing system.
cosmoabc: Likelihood-free inference for cosmology
NASA Astrophysics Data System (ADS)
Ishida, Emille E. O.; Vitenti, Sandro D. P.; Penna-Lima, Mariana; Trindade, Arlindo M.; Cisewski, Jessi; M.; de Souza, Rafael; Cameron, Ewan; Busti, Vinicius C.
2015-05-01
Approximate Bayesian Computation (ABC) enables parameter inference for complex physical systems in cases where the true likelihood function is unknown, unavailable, or computationally too expensive. It relies on the forward simulation of mock data and comparison between observed and synthetic catalogs. cosmoabc is a Python Approximate Bayesian Computation (ABC) sampler featuring a Population Monte Carlo variation of the original ABC algorithm, which uses an adaptive importance sampling scheme. The code can be coupled to an external simulator to allow incorporation of arbitrary distance and prior functions. When coupled with the numcosmo library, it has been used to estimate posterior probability distributions over cosmological parameters based on measurements of galaxy clusters number counts without computing the likelihood function.
Scalable Algorithms for Clustering Large Geospatiotemporal Data Sets on Manycore Architectures
NASA Astrophysics Data System (ADS)
Mills, R. T.; Hoffman, F. M.; Kumar, J.; Sreepathi, S.; Sripathi, V.
2016-12-01
The increasing availability of high-resolution geospatiotemporal data sets from sources such as observatory networks, remote sensing platforms, and computational Earth system models has opened new possibilities for knowledge discovery using data sets fused from disparate sources. Traditional algorithms and computing platforms are impractical for the analysis and synthesis of data sets of this size; however, new algorithmic approaches that can effectively utilize the complex memory hierarchies and the extremely high levels of available parallelism in state-of-the-art high-performance computing platforms can enable such analysis. We describe a massively parallel implementation of accelerated k-means clustering and some optimizations to boost computational intensity and utilization of wide SIMD lanes on state-of-the art multi- and manycore processors, including the second-generation Intel Xeon Phi ("Knights Landing") processor based on the Intel Many Integrated Core (MIC) architecture, which includes several new features, including an on-package high-bandwidth memory. We also analyze the code in the context of a few practical applications to the analysis of climatic and remotely-sensed vegetation phenology data sets, and speculate on some of the new applications that such scalable analysis methods may enable.
Implementation of Grid Tier 2 and Tier 3 facilities on a Distributed OpenStack Cloud
NASA Astrophysics Data System (ADS)
Limosani, Antonio; Boland, Lucien; Coddington, Paul; Crosby, Sean; Huang, Joanna; Sevior, Martin; Wilson, Ross; Zhang, Shunde
2014-06-01
The Australian Government is making a AUD 100 million investment in Compute and Storage for the academic community. The Compute facilities are provided in the form of 30,000 CPU cores located at 8 nodes around Australia in a distributed virtualized Infrastructure as a Service facility based on OpenStack. The storage will eventually consist of over 100 petabytes located at 6 nodes. All will be linked via a 100 Gb/s network. This proceeding describes the development of a fully connected WLCG Tier-2 grid site as well as a general purpose Tier-3 computing cluster based on this architecture. The facility employs an extension to Torque to enable dynamic allocations of virtual machine instances. A base Scientific Linux virtual machine (VM) image is deployed in the OpenStack cloud and automatically configured as required using Puppet. Custom scripts are used to launch multiple VMs, integrate them into the dynamic Torque cluster and to mount remote file systems. We report on our experience in developing this nation-wide ATLAS and Belle II Tier 2 and Tier 3 computing infrastructure using the national Research Cloud and storage facilities.
Reliability Evaluation for Clustered WSNs under Malware Propagation
Shen, Shigen; Huang, Longjun; Liu, Jianhua; Champion, Adam C.; Yu, Shui; Cao, Qiying
2016-01-01
We consider a clustered wireless sensor network (WSN) under epidemic-malware propagation conditions and solve the problem of how to evaluate its reliability so as to ensure efficient, continuous, and dependable transmission of sensed data from sensor nodes to the sink. Facing the contradiction between malware intention and continuous-time Markov chain (CTMC) randomness, we introduce a strategic game that can predict malware infection in order to model a successful infection as a CTMC state transition. Next, we devise a novel measure to compute the Mean Time to Failure (MTTF) of a sensor node, which represents the reliability of a sensor node continuously performing tasks such as sensing, transmitting, and fusing data. Since clustered WSNs can be regarded as parallel-serial-parallel systems, the reliability of a clustered WSN can be evaluated via classical reliability theory. Numerical results show the influence of parameters such as the true positive rate and the false positive rate on a sensor node’s MTTF. Furthermore, we validate the method of reliability evaluation for a clustered WSN according to the number of sensor nodes in a cluster, the number of clusters in a route, and the number of routes in the WSN. PMID:27294934
Reliability Evaluation for Clustered WSNs under Malware Propagation.
Shen, Shigen; Huang, Longjun; Liu, Jianhua; Champion, Adam C; Yu, Shui; Cao, Qiying
2016-06-10
We consider a clustered wireless sensor network (WSN) under epidemic-malware propagation conditions and solve the problem of how to evaluate its reliability so as to ensure efficient, continuous, and dependable transmission of sensed data from sensor nodes to the sink. Facing the contradiction between malware intention and continuous-time Markov chain (CTMC) randomness, we introduce a strategic game that can predict malware infection in order to model a successful infection as a CTMC state transition. Next, we devise a novel measure to compute the Mean Time to Failure (MTTF) of a sensor node, which represents the reliability of a sensor node continuously performing tasks such as sensing, transmitting, and fusing data. Since clustered WSNs can be regarded as parallel-serial-parallel systems, the reliability of a clustered WSN can be evaluated via classical reliability theory. Numerical results show the influence of parameters such as the true positive rate and the false positive rate on a sensor node's MTTF. Furthermore, we validate the method of reliability evaluation for a clustered WSN according to the number of sensor nodes in a cluster, the number of clusters in a route, and the number of routes in the WSN.
Optimizing R with SparkR on a commodity cluster for biomedical research.
Sedlmayr, Martin; Würfl, Tobias; Maier, Christian; Häberle, Lothar; Fasching, Peter; Prokosch, Hans-Ulrich; Christoph, Jan
2016-12-01
Medical researchers are challenged today by the enormous amount of data collected in healthcare. Analysis methods such as genome-wide association studies (GWAS) are often computationally intensive and thus require enormous resources to be performed in a reasonable amount of time. While dedicated clusters and public clouds may deliver the desired performance, their use requires upfront financial efforts or anonymous data, which is often not possible for preliminary or occasional tasks. We explored the possibilities to build a private, flexible cluster for processing scripts in R based on commodity, non-dedicated hardware of our department. For this, a GWAS-calculation in R on a single desktop computer, a Message Passing Interface (MPI)-cluster, and a SparkR-cluster were compared with regards to the performance, scalability, quality, and simplicity. The original script had a projected runtime of three years on a single desktop computer. Optimizing the script in R already yielded a significant reduction in computing time (2 weeks). By using R-MPI and SparkR, we were able to parallelize the computation and reduce the time to less than three hours (2.6 h) on already available, standard office computers. While MPI is a proven approach in high-performance clusters, it requires rather static, dedicated nodes. SparkR and its Hadoop siblings allow for a dynamic, elastic environment with automated failure handling. SparkR also scales better with the number of nodes in the cluster than MPI due to optimized data communication. R is a popular environment for clinical data analysis. The new SparkR solution offers elastic resources and allows supporting big data analysis using R even on non-dedicated resources with minimal change to the original code. To unleash the full potential, additional efforts should be invested to customize and improve the algorithms, especially with regards to data distribution. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Computer vision applications for coronagraphic optical alignment and image processing.
Savransky, Dmitry; Thomas, Sandrine J; Poyneer, Lisa A; Macintosh, Bruce A
2013-05-10
Modern coronagraphic systems require very precise alignment between optical components and can benefit greatly from automated image processing. We discuss three techniques commonly employed in the fields of computer vision and image analysis as applied to the Gemini Planet Imager, a new facility instrument for the Gemini South Observatory. We describe how feature extraction and clustering methods can be used to aid in automated system alignment tasks, and also present a search algorithm for finding regular features in science images used for calibration and data processing. Along with discussions of each technique, we present our specific implementation and show results of each one in operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoang, Tuan L.; Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, CA 94550; Marian, Jaime, E-mail: jmarian@ucla.edu
2015-11-01
An improved version of a recently developed stochastic cluster dynamics (SCD) method (Marian and Bulatov, 2012) [6] is introduced as an alternative to rate theory (RT) methods for solving coupled ordinary differential equation (ODE) systems for irradiation damage simulations. SCD circumvents by design the curse of dimensionality of the variable space that renders traditional ODE-based RT approaches inefficient when handling complex defect population comprised of multiple (more than two) defect species. Several improvements introduced here enable efficient and accurate simulations of irradiated materials up to realistic (high) damage doses characteristic of next-generation nuclear systems. The first improvement is a proceduremore » for efficiently updating the defect reaction-network and event selection in the context of a dynamically expanding reaction-network. Next is a novel implementation of the τ-leaping method that speeds up SCD simulations by advancing the state of the reaction network in large time increments when appropriate. Lastly, a volume rescaling procedure is introduced to control the computational complexity of the expanding reaction-network through occasional reductions of the defect population while maintaining accurate statistics. The enhanced SCD method is then applied to model defect cluster accumulation in iron thin films subjected to triple ion-beam (Fe{sup 3+}, He{sup +} and H{sup +}) irradiations, for which standard RT or spatially-resolved kinetic Monte Carlo simulations are prohibitively expensive.« less
NASA Astrophysics Data System (ADS)
Hoang, Tuan L.; Marian, Jaime; Bulatov, Vasily V.; Hosemann, Peter
2015-11-01
An improved version of a recently developed stochastic cluster dynamics (SCD) method (Marian and Bulatov, 2012) [6] is introduced as an alternative to rate theory (RT) methods for solving coupled ordinary differential equation (ODE) systems for irradiation damage simulations. SCD circumvents by design the curse of dimensionality of the variable space that renders traditional ODE-based RT approaches inefficient when handling complex defect population comprised of multiple (more than two) defect species. Several improvements introduced here enable efficient and accurate simulations of irradiated materials up to realistic (high) damage doses characteristic of next-generation nuclear systems. The first improvement is a procedure for efficiently updating the defect reaction-network and event selection in the context of a dynamically expanding reaction-network. Next is a novel implementation of the τ-leaping method that speeds up SCD simulations by advancing the state of the reaction network in large time increments when appropriate. Lastly, a volume rescaling procedure is introduced to control the computational complexity of the expanding reaction-network through occasional reductions of the defect population while maintaining accurate statistics. The enhanced SCD method is then applied to model defect cluster accumulation in iron thin films subjected to triple ion-beam (Fe3+, He+ and H+) irradiations, for which standard RT or spatially-resolved kinetic Monte Carlo simulations are prohibitively expensive.
Choi, Hyungsuk; Choi, Woohyuk; Quan, Tran Minh; Hildebrand, David G C; Pfister, Hanspeter; Jeong, Won-Ki
2014-12-01
As the size of image data from microscopes and telescopes increases, the need for high-throughput processing and visualization of large volumetric data has become more pressing. At the same time, many-core processors and GPU accelerators are commonplace, making high-performance distributed heterogeneous computing systems affordable. However, effectively utilizing GPU clusters is difficult for novice programmers, and even experienced programmers often fail to fully leverage the computing power of new parallel architectures due to their steep learning curve and programming complexity. In this paper, we propose Vivaldi, a new domain-specific language for volume processing and visualization on distributed heterogeneous computing systems. Vivaldi's Python-like grammar and parallel processing abstractions provide flexible programming tools for non-experts to easily write high-performance parallel computing code. Vivaldi provides commonly used functions and numerical operators for customized visualization and high-throughput image processing applications. We demonstrate the performance and usability of Vivaldi on several examples ranging from volume rendering to image segmentation.
Measurement-based quantum computation on two-body interacting qubits with adiabatic evolution.
Kyaw, Thi Ha; Li, Ying; Kwek, Leong-Chuan
2014-10-31
A cluster state cannot be a unique ground state of a two-body interacting Hamiltonian. Here, we propose the creation of a cluster state of logical qubits encoded in spin-1/2 particles by adiabatically weakening two-body interactions. The proposal is valid for any spatial dimensional cluster states. Errors induced by thermal fluctuations and adiabatic evolution within finite time can be eliminated ensuring fault-tolerant quantum computing schemes.
Caricato, Marco
2013-07-28
The calculation of vertical electronic transition energies of molecular systems in solution with accurate quantum mechanical methods requires the use of approximate and yet reliable models to describe the effect of the solvent on the electronic structure of the solute. The polarizable continuum model (PCM) of solvation represents a computationally efficient way to describe this effect, especially when combined with coupled cluster (CC) methods. Two formalisms are available to compute transition energies within the PCM framework: State-Specific (SS) and Linear-Response (LR). The former provides a more complete account of the solute-solvent polarization in the excited states, while the latter is computationally very efficient (i.e., comparable to gas phase) and transition properties are well defined. In this work, I review the theory for the two formalisms within CC theory with a focus on their computational requirements, and present the first implementation of the LR-PCM formalism with the coupled cluster singles and doubles method (CCSD). Transition energies computed with LR- and SS-CCSD-PCM are presented, as well as a comparison between solvation models in the LR approach. The numerical results show that the two formalisms provide different absolute values of transition energy, but similar relative solvatochromic shifts (from nonpolar to polar solvents). The LR formalism may then be used to explore the solvent effect on multiple states and evaluate transition probabilities, while the SS formalism may be used to refine the description of specific states and for the exploration of excited state potential energy surfaces of solvated systems.
NASA Astrophysics Data System (ADS)
Lenz, Annika; Ojamäe, Lars
2009-10-01
The size distribution of water clusters at equilibrium is studied using quantum-chemical calculations in combination with statistical thermodynamics. The necessary energetic data is obtained by quantum-chemical B3LYP computations and through extrapolations from the B3LYP results for the larger clusters. Clusters with up to 60 molecules are included in the equilibrium computations. Populations of different cluster sizes are calculated using both an ideal gas model with noninteracting clusters and a model where a correction for the interaction energy is included analogous to the van der Waals law. In standard vapor the majority of the water molecules are monomers. For the ideal gas model at 1 atm large clusters [56-mer (0-120 K) and 28-mer (100-260 K)] dominate at low temperatures and separate to smaller clusters [21-22-mer (170-280 K) and 4-6-mer (270-320 K) and to monomers (300-350 K)] when the temperature is increased. At lower pressure the transition from clusters to monomers lies at lower temperatures and fewer cluster sizes are formed. The computed size distribution exhibits enhanced peaks for the clusters consisting of 21 and 28 water molecules; these sizes are for protonated water clusters often referred to as magic numbers. If cluster-cluster interactions are included in the model the transition from clusters to monomers is sharper (i.e., occurs over a smaller temperature interval) than when the ideal-gas model is used. Clusters with 20-22 molecules dominate in the liquid region. When a large icelike cluster is included it will dominate for temperatures up to 325 K for the noninteracting clusters model. Thermodynamic properties (Cp, ΔH) were calculated with in general good agreement with experimental values for the solid and gas phase. A formula for the number of H-bond topologies in a given cluster structure is derived. For the 20-mer it is shown that the number of topologies contributes to making the population of dodecahedron-shaped cluster larger than that of a lower-energy fused prism cluster at high temperatures.
Lenz, Annika; Ojamäe, Lars
2009-10-07
The size distribution of water clusters at equilibrium is studied using quantum-chemical calculations in combination with statistical thermodynamics. The necessary energetic data is obtained by quantum-chemical B3LYP computations and through extrapolations from the B3LYP results for the larger clusters. Clusters with up to 60 molecules are included in the equilibrium computations. Populations of different cluster sizes are calculated using both an ideal gas model with noninteracting clusters and a model where a correction for the interaction energy is included analogous to the van der Waals law. In standard vapor the majority of the water molecules are monomers. For the ideal gas model at 1 atm large clusters [56-mer (0-120 K) and 28-mer (100-260 K)] dominate at low temperatures and separate to smaller clusters [21-22-mer (170-280 K) and 4-6-mer (270-320 K) and to monomers (300-350 K)] when the temperature is increased. At lower pressure the transition from clusters to monomers lies at lower temperatures and fewer cluster sizes are formed. The computed size distribution exhibits enhanced peaks for the clusters consisting of 21 and 28 water molecules; these sizes are for protonated water clusters often referred to as magic numbers. If cluster-cluster interactions are included in the model the transition from clusters to monomers is sharper (i.e., occurs over a smaller temperature interval) than when the ideal-gas model is used. Clusters with 20-22 molecules dominate in the liquid region. When a large icelike cluster is included it will dominate for temperatures up to 325 K for the noninteracting clusters model. Thermodynamic properties (C(p), DeltaH) were calculated with in general good agreement with experimental values for the solid and gas phase. A formula for the number of H-bond topologies in a given cluster structure is derived. For the 20-mer it is shown that the number of topologies contributes to making the population of dodecahedron-shaped cluster larger than that of a lower-energy fused prism cluster at high temperatures.
Advanced electronics for the CTF MEG system.
McCubbin, J; Vrba, J; Spear, P; McKenzie, D; Willis, R; Loewen, R; Robinson, S E; Fife, A A
2004-11-30
Development of the CTF MEG system has been advanced with the introduction of a computer processing cluster between the data acquisition electronics and the host computer. The advent of fast processors, memory, and network interfaces has made this innovation feasible for large data streams at high sampling rates. We have implemented tasks including anti-alias filter, sample rate decimation, higher gradient balancing, crosstalk correction, and optional filters with a cluster consisting of 4 dual Intel Xeon processors operating on up to 275 channel MEG systems at 12 kHz sample rate. The architecture is expandable with additional processors to implement advanced processing tasks which may include e.g., continuous head localization/motion correction, optional display filters, coherence calculations, or real time synthetic channels (via beamformer). We also describe an electronics configuration upgrade to provide operator console access to the peripheral interface features such as analog signal and trigger I/O. This allows remote location of the acoustically noisy electronics cabinet and fitting of the cabinet with doors for improved EMI shielding. Finally, we present the latest performance results available for the CTF 275 channel MEG system including an unshielded SEF (median nerve electrical stimulation) measurement enhanced by application of an adaptive beamformer technique (SAM) which allows recognition of the nominal 20-ms response in the unaveraged signal.
Localization of phonons in mass-disordered alloys: A typical medium dynamical cluster approach
Jarrell, Mark; Moreno, Juana; Raja Mondal, Wasim; ...
2017-07-20
The effect of disorder on lattice vibrational modes has been a topic of interest for several decades. In this article, we employ a Green's function based approach, namely, the dynamical cluster approximation (DCA), to investigate phonons in mass-disordered systems. Detailed benchmarks with previous exact calculations are used to validate the method in a wide parameter space. An extension of the method, namely, the typical medium DCA (TMDCA), is used to study Anderson localization of phonons in three dimensions. We show that, for binary isotopic disorder, lighter impurities induce localized modes beyond the bandwidth of the host system, while heavier impuritiesmore » lead to a partial localization of the low-frequency acoustic modes. For a uniform (box) distribution of masses, the physical spectrum is shown to develop long tails comprising mostly localized modes. The mobility edge separating extended and localized modes, obtained through the TMDCA, agrees well with results from the transfer matrix method. A reentrance behavior of the mobility edge with increasing disorder is found that is similar to, but somewhat more pronounced than, the behavior in disordered electronic systems. Our work establishes a computational approach, which recovers the thermodynamic limit, is versatile and computationally inexpensive, to investigate lattice vibrations in disordered lattice systems.« less
Localization of phonons in mass-disordered alloys: A typical medium dynamical cluster approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarrell, Mark; Moreno, Juana; Raja Mondal, Wasim
The effect of disorder on lattice vibrational modes has been a topic of interest for several decades. In this article, we employ a Green's function based approach, namely, the dynamical cluster approximation (DCA), to investigate phonons in mass-disordered systems. Detailed benchmarks with previous exact calculations are used to validate the method in a wide parameter space. An extension of the method, namely, the typical medium DCA (TMDCA), is used to study Anderson localization of phonons in three dimensions. We show that, for binary isotopic disorder, lighter impurities induce localized modes beyond the bandwidth of the host system, while heavier impuritiesmore » lead to a partial localization of the low-frequency acoustic modes. For a uniform (box) distribution of masses, the physical spectrum is shown to develop long tails comprising mostly localized modes. The mobility edge separating extended and localized modes, obtained through the TMDCA, agrees well with results from the transfer matrix method. A reentrance behavior of the mobility edge with increasing disorder is found that is similar to, but somewhat more pronounced than, the behavior in disordered electronic systems. Our work establishes a computational approach, which recovers the thermodynamic limit, is versatile and computationally inexpensive, to investigate lattice vibrations in disordered lattice systems.« less