Science.gov

Sample records for cluster forming clump

  1. Outflow Feedback Regulated Massive Star Formation in Parsec-Scale Cluster Forming Clumps

    SciTech Connect

    Wang, Peng; Li, Zhi-Yun; Abel, Tom; Nakamura, Fumitaka; /Niigata U.

    2010-02-15

    We investigate massive star formation in turbulent, magnetized, parsec-scale clumps of molecular clouds including protostellar outflow feedback using three dimensional numerical simulations of effective resolution 2048{sup 3}. The calculations are carried out using a block structured adaptive mesh refinement code that solves the ideal MHD equations including self-gravity and implements accreting sink particles. We find that, in the absence of regulation by magnetic fields and outflow feedback, massive stars form readily in a turbulent, moderately condensed clump of {approx} 1,600 M{sub {circle_dot}} (containing {approx} 10{sup 2} initial Jeans masses), along with a cluster of hundreds of lower mass stars. The massive stars are fed at high rates by (1) transient dense filaments produced by large-scale turbulent compression at early times, and (2) by the clump-wide global collapse resulting from turbulence decay at late times. In both cases, the bulk of the massive star's mass is supplied from outside a 0.1 pc-sized 'core' that surrounds the star. In our simulation, the massive star is clump-fed rather than core-fed. The need for large-scale feeding makes the massive star formation prone to regulation by outflow feedback, which directly opposes the feeding processes. The outflows reduce the mass accretion rates onto the massive stars by breaking up the dense filaments that feed the massive star formation at early times, and by collectively slowing down the global collapse that fuel the massive star formation at late times. The latter is aided by a moderate magnetic field of strength in the observed range (corresponding to a dimensionless clump mass-to-flux ratio {lambda} {approx} a few); the field allows the outflow momenta to be deposited more efficiently inside the clump. We conclude that the massive star formation in our simulated turbulent, magnetized, parsec-scale clump is outflow-regulated and clump-fed (ORCF for short). An important implication is that the

  2. DYNAMO-HST Survey: Clumps in Nearby Massive Turbulent Disks and the Effects of Clump Clustering on Kiloparsec Scale Measurements of Clumps

    NASA Astrophysics Data System (ADS)

    Fisher, David B.; Glazebrook, Karl; Damjanov, Ivana; Abraham, Roberto G.; Obreschkow, Danail; Wisnioski, Emily; Bassett, Robert; Green, Andy; McGregor, Peter

    2016-09-01

    We present ˜100 pc resolution Hubble Space Telescope Hα images of 10 galaxies from the DYnamics of Newly-Assembled Massive Objects (DYNAMO) survey of low-z turbulent disk galaxies, and use these to undertake the first detailed systematic study of the effects of resolution and clump clustering on observations of clumps in turbulent disks. In the DYNAMO-HST sample we measure clump diameters spanning the range dclump ˜ 100 - 800 pc, and individual clump star formation rates as high as ˜5 M⊙ yr-1. DYNAMO clumps have very high SFR surface densities, ΣSFR ˜ 1 - 15 M⊙ yr-1 kpc-2, ˜100 × higher than in HII regions of nearby spirals. Indeed, SFR surface density provides a simple dividing line between massive star forming clumps and local star forming regions, where massive star forming clumps have ΣSFR > 0.5 M⊙ yr-1 kpc-2. When degraded to match the observations of galaxies in z ˜ 1 - 3 surveys, DYNAMO galaxies are similar in morphology and measured clump properties to clumpy galaxies observed in the high-z Universe. Emission peaks in the simulated high-redshift maps typically correspond to multiple clumps in full resolution images. This clustering of clumps systematically increases the apparent size and SFR of clumps in 1 kpc resolution maps, and decreases the measured SFR surface density of clumps by as much as a factor of 20×. From these results we can infer that clump clustering is likely to strongly effect the measured properties of clumps in high-z galaxies, which commonly have kiloparsec scale resolution.

  3. GAS CLUMPING IN THE OUTSKIRTS OF {Lambda}CDM CLUSTERS

    SciTech Connect

    Nagai, Daisuke; Lau, Erwin T.

    2011-04-10

    Recent Suzaku X-ray observations revealed that the observed entropy profile of the intracluster medium (ICM) deviates significantly from the prediction of hydrodynamical simulations of galaxy clusters. In this work, we show that gas clumping introduces significant biases in X-ray measurements of the ICM profiles in the outskirts of galaxy clusters. Using hydrodynamical simulations of galaxy cluster formation in a concordance {Lambda}CDM model, we demonstrate that gas clumping leads to an overestimate of the observed gas density and causes flattening of the entropy profile. Our results suggest that gas clumping must be taken into account when interpreting X-ray measurements of cluster outskirts.

  4. Stellar age spreads in clusters as imprints of cluster-parent clump densities

    SciTech Connect

    Parmentier, G.; Grebel, E. K.; Pfalzner, S.

    2014-08-20

    It has recently been suggested that high-density star clusters have stellar age distributions much narrower than that of the Orion Nebula Cluster, indicating a possible trend of narrower age distributions for denser clusters. We show this effect to likely arise from star formation being faster in gas with a higher density. We model the star formation history of molecular clumps in equilibrium by associating a star formation efficiency per free-fall time, ε{sub ff}, to their volume density profile. We focus on the case of isothermal spheres and we obtain the evolution with time of their star formation rate. Our model predicts a steady decline of the star formation rate, which we quantify with its half-life time, namely, the time needed for the star formation rate to drop to half its initial value. Given the uncertainties affecting the star formation efficiency per free-fall time, we consider two distinct values: ε{sub ff} = 0.1 and ε{sub ff} = 0.01. When ε{sub ff} = 0.1, the half-life time is of the order of the clump free-fall time, τ{sub ff}. As a result, the age distributions of stars formed in high-density clumps have smaller full-widths at half-maximum than those of stars formed in low-density clumps. When the star formation efficiency per free-fall time is 0.01, the half-life time is 10 times longer, i.e., 10 clump free-fall times. We explore what happens if the duration of star formation is shorter than 10τ{sub ff}, that is, if the half-life time of the star formation rate cannot be defined. There, we build on the invariance of the shape of the young cluster mass function to show that an anti-correlation between the clump density and the duration of star formation is expected. We therefore conclude that, regardless of whether the duration of star formation is longer than the star formation rate half-life time, denser molecular clumps yield narrower star age distributions in clusters. Published densities and stellar age spreads of young clusters and star-forming

  5. Stellar Age Spreads in Clusters as Imprints of Cluster-parent Clump Densities

    NASA Astrophysics Data System (ADS)

    Parmentier, G.; Pfalzner, S.; Grebel, E. K.

    2014-08-01

    It has recently been suggested that high-density star clusters have stellar age distributions much narrower than that of the Orion Nebula Cluster, indicating a possible trend of narrower age distributions for denser clusters. We show this effect to likely arise from star formation being faster in gas with a higher density. We model the star formation history of molecular clumps in equilibrium by associating a star formation efficiency per free-fall time, epsilonff, to their volume density profile. We focus on the case of isothermal spheres and we obtain the evolution with time of their star formation rate. Our model predicts a steady decline of the star formation rate, which we quantify with its half-life time, namely, the time needed for the star formation rate to drop to half its initial value. Given the uncertainties affecting the star formation efficiency per free-fall time, we consider two distinct values: epsilonff = 0.1 and epsilonff = 0.01. When epsilonff = 0.1, the half-life time is of the order of the clump free-fall time, τff. As a result, the age distributions of stars formed in high-density clumps have smaller full-widths at half-maximum than those of stars formed in low-density clumps. When the star formation efficiency per free-fall time is 0.01, the half-life time is 10 times longer, i.e., 10 clump free-fall times. We explore what happens if the duration of star formation is shorter than 10τff, that is, if the half-life time of the star formation rate cannot be defined. There, we build on the invariance of the shape of the young cluster mass function to show that an anti-correlation between the clump density and the duration of star formation is expected. We therefore conclude that, regardless of whether the duration of star formation is longer than the star formation rate half-life time, denser molecular clumps yield narrower star age distributions in clusters. Published densities and stellar age spreads of young clusters and star-forming regions

  6. Thick disk and pseudobulge formation in a clump cluster

    NASA Astrophysics Data System (ADS)

    Inoue, S.

    2012-02-01

    Bulges in spiral galaxies have been supposed to be classified into two types: classical bulges or pseudobulges. Classical bulges are thought to form by galactic merger with bursty star formation, whereas pseudobulges are suggested to form by secular evolution. Noguchi (1998,199) suggested another bulge formation scenario, `clump-origin bulge' [1,2]. He demonstrated using a numerical simulation that a galactic disc suffers dynamical instability to form clumpy structures in the early stage of disc formation, then the clumps are sucked into the galactic centre by dynamical friction and merge into a single bulge at the centre. Therefore, clump-origin bulges may have their own unique properties. I perform a high-resolution N-body/SPH simulation for the formation of the clump-origin bulge in an isolated galaxy model and study the formation of the clump-origin bulge. I find that the clump-origin bulge resembles pseudobulges in dynamical properties, a nearly exponential surface density profile, a barred boxy shape and a significant rotation. I also find that this bulge consists of old and metal-rich stars. These natures, old metal-rich population but pseudobulge-like structures, mean that the clump-origin bulge can not be simply classified into classical bulges nor pseudobulges. From these results, I discuss similarities of the clump-origin bulge to the Milky Way (MW) bulge.

  7. Modeling active galactic nucleus feedback in cool-core clusters: The formation of cold clumps

    SciTech Connect

    Li, Yuan; Bryan, Greg L.

    2014-07-10

    We perform high-resolution (15-30 pc) adaptive mesh simulations to study the impact of momentum-driven active galactic nucleus (AGN) feedback in cool-core clusters, focusing in this paper on the formation of cold clumps. The feedback is jet-driven with an energy determined by the amount of cold gas within 500 pc of the super-massive black hole. When the intracluster medium in the core of the cluster becomes marginally stable to radiative cooling, with the thermal instability to the free-fall timescale ratio t{sub TI}/t{sub ff} < 3-10, cold clumps of gas start to form along the propagation direction of the AGN jets. By tracing the particles in the simulations, we find that these cold clumps originate from low entropy (but still hot) gas that is accelerated by the jet to outward radial velocities of a few hundred km s{sup –1}. This gas is out of hydrostatic equilibrium and so can cool. The clumps then grow larger as they decelerate and fall toward the center of the cluster, eventually being accreted onto the super-massive black hole. The general morphology, spatial distribution, and estimated Hα morphology of the clumps are in reasonable agreement with observations, although we do not fully replicate the filamentary morphology of the clumps seen in the observations, probably due to missing physics.

  8. Modeling Active Galactic Nucleus Feedback in Cool-core Clusters: The Formation of Cold Clumps

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Bryan, Greg L.

    2014-07-01

    We perform high-resolution (15-30 pc) adaptive mesh simulations to study the impact of momentum-driven active galactic nucleus (AGN) feedback in cool-core clusters, focusing in this paper on the formation of cold clumps. The feedback is jet-driven with an energy determined by the amount of cold gas within 500 pc of the super-massive black hole. When the intracluster medium in the core of the cluster becomes marginally stable to radiative cooling, with the thermal instability to the free-fall timescale ratio t TI/t ff < 3-10, cold clumps of gas start to form along the propagation direction of the AGN jets. By tracing the particles in the simulations, we find that these cold clumps originate from low entropy (but still hot) gas that is accelerated by the jet to outward radial velocities of a few hundred km s-1. This gas is out of hydrostatic equilibrium and so can cool. The clumps then grow larger as they decelerate and fall toward the center of the cluster, eventually being accreted onto the super-massive black hole. The general morphology, spatial distribution, and estimated Hα morphology of the clumps are in reasonable agreement with observations, although we do not fully replicate the filamentary morphology of the clumps seen in the observations, probably due to missing physics.

  9. MOLECULAR CLUMPS AND INFRARED CLUSTERS IN THE S247, S252, AND BFS52 REGIONS

    SciTech Connect

    Shimoikura, Tomomi; Dobashi, Kazuhito; Saito, Hiro; Nakamura, Fumitaka; Matsumoto, Tomoaki; Nishimura, Atsushi; Kimura, Kimihiro; Onishi, Toshikazu; Ogawa, Hideo

    2013-05-01

    We present results of the observations carried out toward the S247, S252, and BFS52 H II regions with various molecular lines using the 1.85 m radio telescope and the 45 m telescope at Nobeyama Radio Observatory. There are at least 11 young infrared clusters (IR clusters) within the observed region. We found that there are two velocity components in {sup 12}CO (J = 2-1), and also that their spatial distributions show an anti-correlation. The IR clusters are located at their interfaces, suggesting that two distinct clouds with different velocities are colliding with each other, which may have induced the cluster formation. Based on {sup 13}CO (J = 1-0) and C{sup 18}O (J = 1-0) observations, we identified 16 clumps in and around the three H II regions. Eleven of the clumps are associated with the IR clusters and the other five clumps are not associated with any known young stellar objects. We investigated variations in the velocity dispersions of the 16 clumps as a function of the distance from the center of the clusters or the clumps. Clumps with clusters tend to have velocity dispersions that increase with distance from the cluster center, while clumps without clusters show a flat velocity dispersion over the clump extents. A {sup 12}CO outflow has been found in some of the clumps with IR clusters but not in the other clumps, supporting a strong relation of these clumps to the broader velocity dispersion region. We also estimated a mean star formation efficiency of {approx}30% for the clumps with IR clusters in the three H II regions.

  10. Entropy flattening, gas clumping, and turbulence in galaxy clusters

    SciTech Connect

    Fusco-Femiano, R.; Lapi, A.

    2014-03-10

    Several physical processes and formation events are expected in cluster outskirts, a vast region up to now essentially not covered by observations. The recent Suzaku (X-ray) and Planck (Sunyaev-Zel'dovich (SZ) effect) observations out to the virial radius have highlighted in these peripheral regions a rather sharp decline of the intracluster gas temperature, an entropy flattening in contrast with the theoretically expected power law increase, the break of the hydrostatic equilibrium even in some relaxed clusters, a derived gas mass fraction above the cosmic value measured from several cosmic microwave background experiments, and a total X-ray mass lower than the weak lensing mass determinations. Here we present the analysis of four clusters (A1795, A2029, A2204, and A133) with the SuperModel that includes a nonthermal pressure component due to turbulence to sustain the hydrostatic equilibrium also in the cluster outskirts. In this way, we obtain a correct determination of the total X-ray mass and of the gas mass fraction; this in turn allows us to determine the level of the gas clumping that can affect the shape of the entropy profiles reported by the Suzaku observations. Our conclusion is that the role of the gas clumping is very marginal and that the observed entropy flattening is due to the rapid decrement of the temperature in the cluster outskirts caused by non-gravitational effects. Moreover, we show that the X-ray/SZ joint analysis from ROSAT and Planck data, as performed in some recent investigations, is inadequate for discriminating between a power law increase and a flattening of the entropy.

  11. A super lithium-rich red-clump star in the open cluster Trumpler 5

    NASA Astrophysics Data System (ADS)

    Monaco, L.; Boffin, H. M. J.; Bonifacio, P.; Villanova, S.; Carraro, G.; Caffau, E.; Steffen, M.; Ahumada, J. A.; Beletsky, Y.; Beccari, G.

    2014-04-01

    Context. The existence of lithium-rich low-mass red giant stars still represents a challenge for stellar evolution models. Stellar clusters are privileged environments for this kind of investigation. Aims: To investigate the chemical abundance pattern of the old open cluster Trumpler 5, we observed a sample of four red-clump stars with high-resolution optical spectrographs. One of them (#3416) reveals extremely strong lithium lines in its spectrum. Methods: One-dimensional, local thermodynamic equilibrium analysis was performed on the spectra of the observed stars. A 3D-NLTE analysis was performed to derive the lithium abundance of star #3416. Results: Star #3416 is super Li-rich with A(Li) = 3.75 dex. The lack of 6Li enrichment (6Li/7Li < 2%), the low carbon isotopic ratio (12C/13C = 14 ± 3), and the lack of evidence for radial velocity variation or enhanced rotational velocity (vsini = 2.8 km s-1) all suggest that lithium production has occurred in this star through the Cameron & Fowler mechanism. Conclusions: We identified a super Li-rich core helium-burning, red-clump star in an open cluster. Internal production is the most likely cause of the observed enrichment. Given the expected short duration of a star's Li-rich phase, enrichment is likely to have occurred at the red clump or in the immediately preceding phases, namely during the He-flash at the tip of the red giant branch (RGB) or while ascending the brightest portion of the RGB. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program ID 088.D-0045(A).Appendix A is available in electronic form at http://www.aanda.org

  12. Properties of massive star-forming clumps with infall motions

    NASA Astrophysics Data System (ADS)

    He, Yu-Xin; Zhou, Jian-Jun; Esimbek, Jarken; Ji, Wei-Guang; Wu, Gang; Tang, Xin-Di; Komesh, Toktarkhan; Yuan, Ye; Li, Da-Lei; Baan, W. A.

    2016-09-01

    In this work, we aim to characterize high-mass clumps with infall motions. We selected 327 clumps from the Millimetre Astronomy Legacy Team 90-GHz survey, and identified 100 infall candidates. Combined with the results of He et al., we obtained a sample of 732 high-mass clumps, including 231 massive infall candidates and 501 clumps where infall is not detected. Objects in our sample were classified as pre-stellar, proto-stellar, H II or photodissociation region (PDR). The detection rates of the infall candidates in the pre-stellar, proto-stellar, H II and PDR stages are 41.2 per cent, 36.6 per cent, 30.6 per cent and 12.7 per cent, respectively. The infall candidates have a higher H2 column density and volume density compared with the clumps where infall is not detected at every stage. For the infall candidates, the median values of the infall rates at the pre-stellar, proto-stellar, H II and PDR stages are 2.6 × 10-3, 7.0 × 10-3, 6.5 × 10-3 and 5.5 × 10-3 M⊙ yr-1, respectively. These values indicate that infall candidates at later evolutionary stages are still accumulating material efficiently. It is interesting to find that both infall candidates and clumps where infall is not detected show a clear trend of increasing mass from the pre-stellar to proto-stellar, and to the H II stages. The power indices of the clump mass function are 2.04 ± 0.16 and 2.17 ± 0.31 for the infall candidates and clumps where infall is not detected, respectively, which agree well with the power index of the stellar initial mass function (2.35) and the cold Planck cores (2.0).

  13. An extremely young massive clump forming by gravitational collapse in a primordial galaxy

    NASA Astrophysics Data System (ADS)

    Zanella, A.; Daddi, E.; Le Floc'h, E.; Bournaud, F.; Gobat, R.; Valentino, F.; Strazzullo, V.; Cibinel, A.; Onodera, M.; Perret, V.; Renaud, F.; Vignali, C.

    2015-05-01

    When cosmic star formation history reaches a peak (at about redshift z ~ 2), galaxies vigorously fed by cosmic reservoirs are dominated by gas and contain massive star-forming clumps, which are thought to form by violent gravitational instabilities in highly turbulent gas-rich disks. However, a clump formation event has not yet been observed, and it is debated whether clumps can survive energetic feedback from young stars, and afterwards migrate inwards to form galaxy bulges. Here we report the spatially resolved spectroscopy of a bright off-nuclear emission line region in a galaxy at z = 1.987. Although this region dominates star formation in the galaxy disk, its stellar continuum remains undetected in deep imaging, revealing an extremely young (less than ten million years old) massive clump, forming through the gravitational collapse of more than one billion solar masses of gas. Gas consumption in this young clump is more than tenfold faster than in the host galaxy, displaying high star-formation efficiency during this phase, in agreement with our hydrodynamic simulations. The frequency of older clumps with similar masses, coupled with our initial estimate of their formation rate (about 2.5 per billion years), supports long lifetimes (about 500 million years), favouring models in which clumps survive feedback and grow the bulges of present-day galaxies.

  14. An extremely young massive clump forming by gravitational collapse in a primordial galaxy.

    PubMed

    Zanella, A; Daddi, E; Le Floc'h, E; Bournaud, F; Gobat, R; Valentino, F; Strazzullo, V; Cibinel, A; Onodera, M; Perret, V; Renaud, F; Vignali, C

    2015-05-01

    When cosmic star formation history reaches a peak (at about redshift z ≈ 2), galaxies vigorously fed by cosmic reservoirs are dominated by gas and contain massive star-forming clumps, which are thought to form by violent gravitational instabilities in highly turbulent gas-rich disks. However, a clump formation event has not yet been observed, and it is debated whether clumps can survive energetic feedback from young stars, and afterwards migrate inwards to form galaxy bulges. Here we report the spatially resolved spectroscopy of a bright off-nuclear emission line region in a galaxy at z = 1.987. Although this region dominates star formation in the galaxy disk, its stellar continuum remains undetected in deep imaging, revealing an extremely young (less than ten million years old) massive clump, forming through the gravitational collapse of more than one billion solar masses of gas. Gas consumption in this young clump is more than tenfold faster than in the host galaxy, displaying high star-formation efficiency during this phase, in agreement with our hydrodynamic simulations. The frequency of older clumps with similar masses, coupled with our initial estimate of their formation rate (about 2.5 per billion years), supports long lifetimes (about 500 million years), favouring models in which clumps survive feedback and grow the bulges of present-day galaxies. PMID:25951282

  15. The global chemical properties of high-mass star forming clumps at different evolutionary stages

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Jun; Zhou, Jian-Jun; Esimbek, Jarken; He, Yu-Xin; Li, Da-Lei; Tang, Xin-Di; Ji, Wei-Guang; Yuan, Ye; Guo, Wei-Hua

    2016-06-01

    A total of 197 relatively isolated high-mass star-forming clumps were selected from the Millimeter Astronomy Legacy Team 90 GHz (MALT90) survey data and their global chemical evolution investigated using four molecular lines, N2H+ (1--0), HCO+ (1--0), HCN (1-0), and HNC (1-0). The results suggest that the global averaged integrated intensity ratios I(HCO+)/I(HNC), I(HCN)/I(HNC), I(N2H+)/I(HCO+), and I(N2H+)/ I(HCN) are promising tracers for evolution of high-mass star-forming clumps. The global averaged column densities and abundances of N2H+, HCO+, HCN, and HNC increase as clumps evolve. The global averaged abundance ratios X(HCN)/X(HNC) could be used to trace evolution of high-mass star forming clumps, X(HCO+)/X(HNC) is more suitable for distinguishing high-mass star-forming clumps in prestellar (stage A) from those in protostellar (stage B) and HII/PDR region (stage C). These results suggest that the global averaged integrated intensity ratios between HCN (1-0), HNC (1-0), HCO+ (1--0) and N2H+ (1--0) are more suitable for tracing the evolution of high-mass star forming clumps. We also studied the chemical properties of the target high-mass star-forming clumps in each spiral arm of the Galaxy, and got results very different from those above. This is probably due to the relatively small sample in each spiral arm. For high-mass star-forming clumps in Sagittarius arm and Norma-Outer arm, comparing two groups located on one arm with different Galactocentric distances, the clumps near the Galactic Center appear to be younger than those far from the Galactic center, which may be due to more dense gas concentrated near the Galactic Center, and hence more massive stars being formed there.

  16. Cores and revived cusps of dark matter haloes in disc galaxy formation through clump clusters

    NASA Astrophysics Data System (ADS)

    Inoue, Shigeki; Saitoh, Takayuki R.

    2011-12-01

    The cusp-core problem is a controversial problem in galactic dark matter haloes. Cosmological N-body simulations have demonstrated that galactic dark matter haloes have a cuspy density profile at the centre. However, baryonic physics may affect the dark matter density profile. For example, it was suggested that adiabatic contraction of baryonic gas makes the dark matter cusp steeper. However, it is still an open question as to whether the gas falls into the galactic centre in a smooth adiabatic manner. Recent numerical studies suggested that disc galaxies might experience a clumpy phase in the early stage of disc formation, which could also explain the clump clusters and chain galaxies observed in the high-redshift Universe. In this paper, using numerical simulations with an isolated model, we study how the dark matter halo responds to the clumpy nature of baryon components in disc galaxy formation through the clump-cluster phase. Our simulation demonstrates that such a clumpy phase leads to a shallower density profile of the dark matter halo in the central region while clumps fall into the centre due to dynamical friction. This mechanism helps to make the central dark matter density profile shallower in galaxies with virial mass as large as 5.0 × 1011 M⊙. The halo draws the clumps into the galactic centre, while it is kinematically heated by the clumps. We additionally run a dark-matter-only simulation excluding baryonic components and confirm that the resultant shallower density profile is not due to a numerical artefact in the simulation, such as two-body relaxation.

  17. KIC 8263801: A clump star in the Kepler open cluster NGC 6866 field?

    NASA Astrophysics Data System (ADS)

    Abedigamba, O. P.

    2016-07-01

    In this paper we study the field of Kepler open cluster NGC 6866 using the data obtained from Kepler mission collected for a period of 4 years. We search for the red clump (RC) stars amongst the red giant (RG) stars showing solar-like oscillations using median gravity-mode period spacings (ΔP). We find a RG star KIC 8263801 having median gravity-mode period spacing 173.7 ± 6.4 s. We claim based on the median gravity-mode period spacing that KIC 8263801 is a secondary red clump (SRC) star which is massive enough to have ignited Helium burning in a non degenerate core. In the literature, no classification for KIC 8263801 has been provided. This is the first time that a star located in the field of NGC 6866 is classified in this manner.

  18. The JCMT Gould Belt Survey: Evidence for Dust Grain Evolution in Perseus Star-forming Clumps

    NASA Astrophysics Data System (ADS)

    Chen, Michael Chun-Yuan; Di Francesco, J.; Johnstone, D.; Sadavoy, S.; Hatchell, J.; Mottram, J. C.; Kirk, H.; Buckle, J.; Berry, D. S.; Broekhoven-Fiene, H.; Currie, M. J.; Fich, M.; Jenness, T.; Nutter, D.; Pattle, K.; Pineda, J. E.; Quinn, C.; Salji, C.; Tisi, S.; Hogerheijde, M. R.; Ward-Thompson, D.; Bastien, P.; Bresnahan, D.; Butner, H.; Chrysostomou, A.; Coude, S.; Davis, C. J.; Drabek-Maunder, E.; Duarte-Cabral, A.; Fiege, J.; Friberg, P.; Friesen, R.; Fuller, G. A.; Graves, S.; Greaves, J.; Gregson, J.; Holland, W.; Joncas, G.; Kirk, J. M.; Knee, L. B. G.; Mairs, S.; Marsh, K.; Matthews, B. C.; Moriarty-Schieven, G.; Mowat, C.; Pezzuto, S.; Rawlings, J.; Richer, J.; Robertson, D.; Rosolowsky, E.; Rumble, D.; Schneider-Bontemps, N.; Thomas, H.; Tothill, N.; Viti, S.; White, G. J.; Wouterloot, J.; Yates, J.; Zhu, M.

    2016-07-01

    The dust emissivity spectral index, β, is a critical parameter for deriving the mass and temperature of star-forming structures and, consequently, their gravitational stability. The β value is dependent on various dust grain properties, such as size, porosity, and surface composition, and is expected to vary as dust grains evolve. Here we present β, dust temperature, and optical depth maps of the star-forming clumps in the Perseus Molecular Cloud determined from fitting spectral energy distributions to combined Herschel and JCMT observations in the 160, 250, 350, 500, and 850 μm bands. Most of the derived β and dust temperature values fall within the ranges of 1.0-2.7 and 8-20 K, respectively. In Perseus, we find the β distribution differs significantly from clump to clump, indicative of grain growth. Furthermore, we also see significant localized β variations within individual clumps and find low-β regions correlate with local temperature peaks, hinting at the possible origins of low-β grains. Throughout Perseus, we also see indications of heating from B stars and embedded protostars, as well evidence of outflows shaping the local landscape.

  19. THE SINS SURVEY OF z {approx} 2 GALAXY KINEMATICS: PROPERTIES OF THE GIANT STAR-FORMING CLUMPS

    SciTech Connect

    Genzel, R.; Foerster Schreiber, N. M.; Genel, S.; Tacconi, L. J.; Buschkamp, P.; Davies, R.; Eisenhauer, F.; Kurk, J.; Newman, S.; Jones, T.; Shapiro, K.; Lilly, S. J.; Carollo, C. M.; Renzini, A.; Bouche, N.; Burkert, A.; Cresci, G.; Ceverino, D.; Dekel, A.; Hicks, E.

    2011-06-01

    We have studied the properties of giant star-forming clumps in five z {approx} 2 star-forming disks with deep SINFONI AO spectroscopy at the ESO VLT. The clumps reside in disk regions where the Toomre Q-parameter is below unity, consistent with their being bound and having formed from gravitational instability. Broad H{alpha}/[N II] line wings demonstrate that the clumps are launching sites of powerful outflows. The inferred outflow rates are comparable to or exceed the star formation rates, in one case by a factor of eight. Typical clumps may lose a fraction of their original gas by feedback in a few hundred million years, allowing them to migrate into the center. The most active clumps may lose much of their mass and disrupt in the disk. The clumps leave a modest imprint on the gas kinematics. Velocity gradients across the clumps are 10-40 km s{sup -1} kpc{sup -1}, similar to the galactic rotation gradients. Given beam smearing and clump sizes, these gradients may be consistent with significant rotational support in typical clumps. Extreme clumps may not be rotationally supported; either they are not virialized or they are predominantly pressure supported. The velocity dispersion is spatially rather constant and increases only weakly with star formation surface density. The large velocity dispersions may be driven by the release of gravitational energy, either at the outer disk/accreting streams interface, and/or by the clump migration within the disk. Spatial variations in the inferred gas phase oxygen abundance are broadly consistent with inside-out growing disks, and/or with inward migration of the clumps.

  20. Distance moduli of open cluster NGC 6819 from Red Giant Clump stars

    NASA Astrophysics Data System (ADS)

    Abedigamba, O. P.; Balona, L. A.; Medupe, R.

    2016-07-01

    In this paper we study Kepler open cluster NGC 6819 using Kepler data of Red Giant Clump (RGC) single member (SM) stars. The Kepler data spans a period of 4 years starting in 2009. In particular, we derive distance moduli for each individual RGC star, from which we get the mean distance modulus of μ0 = 11.520 ± 0.105 mag for the cluster when we use reddening from the Kepler Input Catalogue (KIC) for each RGC star. A value of μ0 = 11.747 ± 0.086 mag is obtained when uniform reddening value E(B - V) = 0.15 is used for the cluster. The values of μ0 obtained with RGC stars are in agreement with the values in the literature with other methods. We report for the case of Kepler open cluster NGC 6819 that RGC stars can be used as 'distance candles' as has been done in the literature with other open clusters.

  1. Molecular emission in dense massive clumps from the star-forming regions S231-S235

    NASA Astrophysics Data System (ADS)

    Ladeyschikov, D. A.; Kirsanova, M. S.; Tsivilev, A. P.; Sobolev, A. M.

    2016-04-01

    The paper is concerned with the study of the star-forming regions S231-S235 in radio lines of molecules of the interstellar medium—carbon monoxide (CO), ammonia (NH3), cyanoacetylene (HC3N), in maser lines—methanol (CH3OH) and water vapor (H2O). The regions S231-S235 belong to the giant molecular cloudG174+2.5. The goal of this paper is to search for new sources of emission toward molecular clumps and to estimate their physical parameters from CO and NH3 molecular lines. We obtained new detections ofNH3 andHC3Nlines in the sources WB89673 and WB89 668 which indicates the presence of high-density gas. From the CO line, we derived sizes, column densities, and masses of molecular clumps. From the NH3 line, we derived gas kinetic temperatures and number densities in molecular clumps. We determined that kinetic temperatures and number densities of molecular gas are within the limits 16-30 K and 2.8-7.2 × 103 cm-3 respectively. The shock-tracing line of CH3OH molecule at a frequency of 36.2 GHz was detected in WB89 673 for the first time.

  2. The Kinematic and Chemical Properties of a Potential Core-forming Clump: Perseus B1-E

    NASA Astrophysics Data System (ADS)

    Sadavoy, S. I.; Shirley, Y.; Di Francesco, J.; Henning, Th.; Currie, M. J.; André, Ph.; Pezzuto, S.

    2015-06-01

    We present 13CO and {{C}18}O (1-0), (2-1), and (3-2) maps toward the core-forming Perseus B1-E clump using observations from the James Clerk Maxwell Telescope, the Submillimeter Telescope of the Arizona Radio Observatory, and the IRAM 30 m telescope. We find that the 13CO and {{C}18}O line emission both have very complex velocity structures, indicative of multiple velocity components within the ambient gas. The (1-0) transitions reveal a radial velocity gradient across B1-E of ˜ 1 km {{s}-1} p{{c}-1} that increases from northwest to southeast, whereas the majority of the Perseus cloud has a radial velocity gradient increasing from southwest to northeast. In contrast, we see no evidence of a velocity gradient associated with the denser Herschel-identified substructures in B1-E. Additionally, the denser substructures have much lower systemic motions than the ambient clump material, which indicates that they are likely decoupled from the large-scale gas. Nevertheless, these substructures themselves have broad line widths (˜0.4 km {{s}-1}) similar to that of the {{C}18}O gas in the clump, which suggests they inherited their kinematic properties from the larger-scale, moderately dense gas. Finally, we find evidence of {{C}18}O depletion only toward one substructure, B1-E2, which is also the only object with narrow (transonic) line widths. We suggest that as prestellar cores form, their chemical and kinematic properties are linked in evolution, such that these objects must first dissipate their turbulence before they deplete in CO.

  3. Calibrating the Optical Luminosity of Red Clump Stars: An Archival Study of Star Clusters

    NASA Astrophysics Data System (ADS)

    Grocholski, Aaron

    2010-09-01

    The core helium burning stars of the red clump {RC} are a conspicuous feature in the color-magnitude diagram of many stellar populations. Its ease of identification, along with its relative brightness {M_I 0} make the RC a popular feature for HST studies of stellar populations in galaxies out to a few Mpc. Such studies generally interpret the data through comparison to theoretical isochrones. For accurate results, the theoretical predictions must be calibrated to match the RC properties of observed populations of known age and metallicity. However, no large scale studies of the luminosity of the RC currently exist in the optical bands. We propose to remedy this situation with an archival study of RC properties in star clusters in the Milky Way, LMC, and SMC. We will focus on HST images of globular clusters, but we will augment the sample with ground-based open cluster observations to extend the coverage of parameter space. The goal is to build a large and homogeneous database, through new analysis and incorporation of literature data, of cluster ages, abundances, distances, and RC photometry. This database will allow us to explore the variations in the RC luminosity as a function of age and [Fe/H] over the full range of parameter space where the RC exists, for both the V and I bands. The results will provide a fundamental calibration for all future HST studies of stellar populations and distances of nearby galaxies using the RC. They will also allow for verification or improvement of theoretical models for red giant phase evolution. This in turn will help many subjects, from stellar modeling to population synthesis and fitting of spectral energy distributions of distant galaxies.

  4. EVIDENCE FOR INFLOW IN HIGH-MASS STAR-FORMING CLUMPS

    SciTech Connect

    Reiter, Megan; Shirley, Yancy L.; Wu Jingwen; Brogan, Crystal; Wootten, Alwyn; Tatematsu, Ken'ichi E-mail: yshirley@as.arizona.edu E-mail: cbrogan@nrao.edu E-mail: k.tatematsu@nao.ac.jp

    2011-10-10

    We analyze the HCO{sup +} 3-2 and H{sup 13}CO{sup +} 3-2 line profiles of 27 high-mass star-forming regions to identify asymmetries that are suggestive of mass inflow. Three quantitative measures of line asymmetry are used to indicate whether a line profile is blue, red, or neither-the ratio of the temperature of the blue and red peaks, the line skew, and the dimensionless parameter {delta}v. We find nine HCO{sup +} 3-2 line profiles with a significant blue asymmetry and four with significant red asymmetric profiles. Comparing our HCO{sup +} 3-2 results to HCN 3-2 observations from Wu et al., we find that eight of the blue and three of the red have profiles with the same asymmetry in HCN. The eight sources with blue asymmetries in both tracers are considered strong candidates for inflow. Quantitative measures of the asymmetry (e.g., {delta}v) tend to be larger for HCN. This, combined with possible HCO{sup +} abundance enhancements in outflows, suggests that HCN may be a better tracer of inflow. Understanding the behavior of common molecular tracers like HCO{sup +} in clumps of different masses is important for properly analyzing the line profiles seen in a sample of sources representing a broad range of clump masses. Such studies will soon be possible with the large number of sources with possible self-absorption seen in spectroscopic follow-up observations of clumps identified in the Bolocam Galactic Plane Survey.

  5. Massive globular clusters and the origin of the double red clumps in the bulge

    NASA Astrophysics Data System (ADS)

    Lee, Young-Wook; Joo, Seok-Joo; Chung, Chul; Jang, Sohee

    2015-08-01

    The presence of double red clumps (RCs) in the Milky Way bulge is interpreted as an evidence for the X-shaped structure originated from the disk and bar instabilities. Here we show, however, that this double RCs phenomenon is another manifestation of multiple populations observed in massive globular clusters (GCs) in the metal-rich regime. As in the bulge GC Terzan 5, the helium enhanced second generation stars (G2) in the metal-rich bulge are placed on the bright RC, which is about 0.5 mag brighter than the normal RC originated from the first generation stars (G1), producing the observed double RCs. Our models can also naturally reproduce key observables, such as the negligible color difference between the two RCs, and the dependence of the double RCs feature on the Galactic latitude and metallicity. Unlike metal-poor GCs, the formation of G2 in the metal-rich system requires only moderate helium enrichment parameter, dY/dZ = 5-6, which would make it possible for G2 to be prevailed in the bulge field. If confirmed by Gaia trigonometric parallax distances, this would indicate that bulk of the stars in the Milky Way bulge originated from disrupted primordial building blocks, such as Terzan 5, rather than from the bar instability.

  6. The Bolocam Galactic Plane Survey. XIV. Physical Properties of Massive Starless and Star-forming Clumps

    NASA Astrophysics Data System (ADS)

    Svoboda, Brian E.; Shirley, Yancy L.; Battersby, Cara; Rosolowsky, Erik W.; Ginsburg, Adam G.; Ellsworth-Bowers, Timothy P.; Pestalozzi, Michele R.; Dunham, Miranda K.; Evans, Neal J., II; Bally, John; Glenn, Jason

    2016-05-01

    We sort 4683 molecular clouds between 10° < ℓ < 65° from the Bolocam Galactic Plane Survey based on observational diagnostics of star formation activity: compact 70 μm sources, mid-IR color-selected YSOs, H2O and CH3OH masers, and UCH ii regions. We also present a combined NH3-derived gas kinetic temperature and H2O maser catalog for 1788 clumps from our own GBT 100 m observations and from the literature. We identify a subsample of 2223 (47.5%) starless clump candidates (SCCs), the largest and most robust sample identified from a blind survey to date. Distributions of flux density, flux concentration, solid angle, kinetic temperature, column density, radius, and mass show strong (>1 dex) progressions when sorted by star formation indicator. The median SCC is marginally subvirial (α ˜ 0.7) with >75% of clumps with known distance being gravitationally bound (α < 2). These samples show a statistically significant increase in the median clump mass of ΔM ˜ 170-370 M ⊙ from the starless candidates to clumps associated with protostars. This trend could be due to (i) mass growth of the clumps at \\dot{M}˜ 200{--}440 M ⊙ Myr-1 for an average freefall 0.8 Myr timescale, (ii) a systematic factor of two increase in dust opacity from starless to protostellar phases, and/or (iii) a variation in the ratio of starless to protostellar clump lifetime that scales as ˜M -0.4. By comparing to the observed number of CH3OH maser containing clumps, we estimate the phase lifetime of massive (M > 103 M ⊙) starless clumps to be 0.37 ± 0.08 Myr (M/103 M ⊙)-1 the majority (M < 450 M ⊙) have phase lifetimes longer than their average freefall time.

  7. Herschel observations of a potential core-forming clump: Perseus B1-E

    NASA Astrophysics Data System (ADS)

    Sadavoy, S. I.; di Francesco, J.; André, Ph.; Pezzuto, S.; Bernard, J.-P.; Bontemps, S.; Bressert, E.; Chitsazzadeh, S.; Fallscheer, C.; Hennemann, M.; Hill, T.; Martin, P.; Motte, F.; Nguyen Luong, Q.; Peretto, N.; Reid, M.; Schneider, N.; Testi, L.; White, G. J.; Wilson, C.

    2012-04-01

    We present continuum observations of the Perseus B1-E region from the Herschel Gould Belt Survey. These Herschel data reveal a loose grouping of substructures at 160-500 μm not seen in previous submillimetre observations. We measure temperature and column density from these data and select the nine densest and coolest substructures for follow-up spectral line observations with the Green Bank Telescope. We find that the B1-E clump has a mass of ~100 M⊙ and appears to be gravitationally bound. Furthermore, of the nine substructures examined here, one substructure (B1-E2) appears to be itself bound. The substructures are typically less than a Jeans length from their nearest neighbour and thus, may interact on a timescale of ~1 Myr. We propose that B1-E may be forming a first generation of dense cores, which could provide important constraints on the initial conditions of prestellar core formation. Our results suggest that B1-E may be influenced by a strong, localized magnetic field, but further observations are still required.

  8. A preliminary systematic search for red-clump stars in Galactic open clusters based on 2mass data

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Chen, Li; Li, Zhongmu

    2013-02-01

    Red-clump (RC) giants are intermediate-age, core-helium-burning stars. The RC can be used as a standard candle. In particular, the small variance of the RC's K-band intrinsic luminosity and its weak dependence on chemical composition and age make it an extremely useful distance indicator. In this paper, we use 2mass data to search for RC stars in a sample of 60 Galactic open clusters with known reddening, ages, and distances, and obtain an average value for the RC's absolute K s-band magnitude, M K s = -1.72 +/- 0.17 mag.

  9. Star Formation in the Perseus Molecular Cloud: A Detailed Look at Star-Forming Clumps with Herschel

    NASA Astrophysics Data System (ADS)

    Sadavoy, Sarah I.

    2013-08-01

    This dissertation presents new Herschel observations at 70 micron, 160 micron, 250 micron, 350 micron, and 500 micron of the Perseus molecular cloud from the Herschel Gould Belt Survey. The Perseus molecular cloud is a nearby star-forming region consisting of seven main star-forming clumps. The Herschel observations are used to characterize and contrast the properties of these clumps, and to study their embedded core populations. First, we probed the exceptionally young clump, B1-E. Using complementary molecular line data, we demonstrate that B1-E is likely fragmenting into a first generation of dense cores in relative isolation. Such a core formation region has never been observed before. Second, we use complementary long wavelength observations at 850 micron to study the dust properties in the larger, more active B1 clump. We find that Herschel data alone cannot constrain well the dust properties of cold dust emission and that long wavelength observations are needed. Additionally, we find evidence of dust grain growth towards the dense cores in B1, where the dust emissivity index, beta, varies from the often assumed value of beta = 2. In the absence of long wavelength observations, however, assuming beta = 2 is preferable over measuring beta with the Herschel-only bands. Finally, we use the source extraction code, getsources, to identify the core populations within each clump from the Herschel data. In addition, we use complementary archival infrared observations to study their populations of young stellar objects (YSOs). We find that the more massive clumps have an excess of older stage YSOs, suggesting that these regions contracted first. Starless cores are typically associated with peaks in the column density, where those found towards regions of higher column density also have higher average densities and colder temperatures. Starless cores associated with a strong, local interstellar radiation field, however, have higher temperatures. We find that the clumps

  10. Infall through the evolution of high-mass star-forming clumps

    NASA Astrophysics Data System (ADS)

    Wyrowski, F.; Güsten, R.; Menten, K. M.; Wiesemeyer, H.; Csengeri, T.; Heyminck, S.; Klein, B.; König, C.; Urquhart, J. S.

    2016-01-01

    With the GREAT receiver at the Stratospheric Observatory for Infrared Astronomy (SOFIA), nine massive molecular clumps have been observed in the ammonia 32+-22- line at 1.8 THz in a search for signatures of infall. The sources were selected from the ATLASGAL submillimeter dust continuum survey of our Galaxy. Clumps with high masses covering a range of evolutionary stages based on their infrared properties were chosen. The ammonia line was detected in all sources, leading to five new detections and one confirmation of a previous detection of redshifted absorption in front of their strong THz continuum as a probe of infall in the clumps. These detections include two clumps embedded in infrared dark clouds. The measured velocity shifts of the absorptions compared to optically thin C17O (3-2) emission are 0.3-2.8 km s-1, corresponding to fractions of 3% to 30% of the free-fall velocities of the clumps. The ammonia infall signature is compared with complementary data of different transitions of HCN, HNC, CS, and HCO+, which are often used to probe infall because of their blue-skewed line profiles. The best agreement with the ammonia results is found for the HCO+ (4-3) transitions, but the latter is still strongly blended with emission from associated outflows. This outflow signature is far less prominent in the THz ammonia lines, which confirms it as a powerful probe of infall in molecular clumps. Infall rates in the range from 0.3 to 16 × 10-3 M⊙/yr were derived with a tentative correlation with the virial parameters of the clumps. The new observations show that infall on clump scales is ubiquitous through a wide range of evolutionary stages, from L/M covering about ten to several hundreds. Final reduced data cube (FITS) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/585/A149

  11. On the Cluster Physics of Sunyaev-Zel'dovich and X-Ray Surveys. IV. Characterizing Density and Pressure Clumping due to Infalling Substructures

    NASA Astrophysics Data System (ADS)

    Battaglia, N.; Bond, J. R.; Pfrommer, C.; Sievers, J. L.

    2015-06-01

    Understanding the outskirts of galaxy clusters at the virial radius (R200) and beyond is critical for an accurate determination of cluster masses, structure growth, and to ensure unbiased cosmological parameter estimates from cluster surveys. This problem has drawn renewed interest due to recent determinations of gas mass fractions beyond R200, which appear to be considerably larger than the cosmic mean. Here, we use a large suite of cosmological hydrodynamical simulations to study the inhomogeneity of the intra-cluster medium and employ different variants of simulated physics, including radiative gas physics and thermal feedback by active galactic nuclei. We find that density and pressure clumping closely trace each other as a function of radius, but the bias on density remains on average \\lt 20% within R200. At larger radii, clumping increases steeply due to the continuous infall of coherent structures that have not yet passed the accretion shock. Density and pressure clumping increase with cluster mass and redshift, which probes on average dynamically younger objects that are still in the process of assembling. The angular power spectra of gas density and pressure show that the clumping signal is dominated by large-scale cosmic filaments that reach from the cosmic web into the clusters, signaling the presence of gravitationally driven “super clumping.” While the prolateness of the gravitational halo potential implies an approximate radial correlation of these gaseous large-scale structures, gas density and pressure lose coherence on small scales across different radii due to dissipative gas physics. In contrast, the angular power spectrum of dark matter shows an almost uniform size distribution due to unimpeded subhalos. We provide a synopsis of the radial dependence of the clusters’ non-equilibrium measures (kinetic pressure support, ellipticity, and clumping) that all increase sharply beyond R200.

  12. Observations of Protostellar Outflow Feedback in Clustered Star Formation

    NASA Astrophysics Data System (ADS)

    Nakamura, F.

    2016-05-01

    We discuss the role of protostellar outflow feedback in clustered star formation using the observational data of recent molecular outflow surveys toward nearby cluster-forming clumps. We found that for almost all clumps, the outflow momentum injection rate is significantly larger than the turbulence dissipation rate. Therefore, the outflow feedback is likely to maintain supersonic turbulence in the clumps. For less massive clumps such as B59, L1551, and L1641N, the outflow kinetic energy is comparable to the clump gravitational energy. In such clumps, the outflow feedback probably affects significantly the clump dynamics. On the other hand, for clumps with masses larger than about 200 M⊙, the outflow kinetic energy is significantly smaller than the clump gravitational energy. Since the majority of stars form in such clumps, we conclude that outflow feedback cannot destroy the whole parent clump. These characteristics of the outflow feedback support the scenario of slow star formation.

  13. Magnetically regulated fragmentation of a massive, dense, and turbulent clump

    NASA Astrophysics Data System (ADS)

    Fontani, F.; Commerçon, B.; Giannetti, A.; Beltrán, M. T.; Sánchez-Monge, A.; Testi, L.; Brand, J.; Caselli, P.; Cesaroni, R.; Dodson, R.; Longmore, S.; Rioja, M.; Tan, J. C.; Walmsley, C. M.

    2016-09-01

    Massive stars, multiple stellar systems, and clusters are born of the gravitational collapse of massive, dense, gaseous clumps, and the way these systems form strongly depends on how the parent clump fragments into cores during collapse. Numerical simulations show that magnetic fields may be the key ingredient in regulating fragmentation. Here we present ALMA observations at ~ 0.25'' resolution of the thermal dust continuum emission at ~ 278 GHz towards a turbulent, dense, and massive clump, IRAS 16061-5048c1, in a very early evolutionary stage. The ALMA image shows that the clump has fragmented into many cores along a filamentary structure. We find that the number, the total mass, and the spatial distribution of the fragments are consistent with fragmentation dominated by a strong magnetic field. Our observations support the theoretical prediction that the magnetic field plays a dominant role in the fragmentation process of massive turbulent clumps.

  14. The growth of the galaxy cluster Abell 85: mergers, shocks, stripping and seeding of clumping

    NASA Astrophysics Data System (ADS)

    Ichinohe, Y.; Werner, N.; Simionescu, A.; Allen, S. W.; Canning, R. E. A.; Ehlert, S.; Mernier, F.; Takahashi, T.

    2015-04-01

    We present the results of deep Chandra, XMM-Newton and Suzaku observations of the nearby galaxy cluster Abell 85, which is currently undergoing at least two mergers, and in addition shows evidence for gas sloshing which extends out to r ≈ 600 kpc. One of the two infalling subclusters, to the south of the main cluster centre, has a dense, X-ray bright cool core and a tail extending to the south-east. The northern edge of this tail is strikingly smooth and sharp (narrower than the Coulomb mean free path of the ambient gas) over a length of 200 kpc, while towards the south-west the boundary of the tail is blurred and bent, indicating a difference in the plasma transport properties between these two edges. The thermodynamic structure of the tail strongly supports an overall north-westward motion. We propose, that a sloshing-induced tangential, ambient, coherent gas flow is bending the tail eastwards. The brightest galaxy of this subcluster is at the leading edge of the dense core, and is trailed by the tail of stripped gas, suggesting that the cool core of the subcluster has been almost completely destroyed by the time it reached its current radius of r ≈ 500 kpc. The surface-brightness excess, likely associated with gas stripped from the infalling southern subcluster, extends towards the south-east out to at least r500 of the main cluster, indicating that the stripping of infalling subclusters may seed gas inhomogeneities. The second merging subcluster appears to be a diffuse non-cool-core system. Its merger is likely supersonic with a Mach number of ≈1.4.

  15. Interferometric Mapping of Magnetic Fields: The ALMA View of the Massive Star-forming Clump W43-MM1

    NASA Astrophysics Data System (ADS)

    Cortes, Paulo C.; Girart, Josep M.; Hull, Charles L. H.; Sridharan, Tirupati K.; Louvet, Fabien; Plambeck, Richard; Li, Zhi-Yun; Crutcher, Richard M.; Lai, Shih-Ping

    2016-07-01

    Here, we present the first results from ALMA observations of 1 mm polarized dust emission toward the W43-MM1 high-mass star-forming clump. We have detected a highly fragmented filament with source masses ranging from 14 M {}⊙ to 312 M {}⊙ , where the largest fragment, source A, is believed to be one of the most massive in our Galaxy. We found a smooth, ordered, and detailed polarization pattern throughout the filament, which we used to derived magnetic field morphologies and strengths for 12 out of the 15 fragments detected ranging from 0.2 to 9 mG. The dynamical equilibrium of each fragment was evaluated finding that all the fragments are in a super-critical state that is consistent with previously detected infalling motions toward W43-MM1. Moreover, there are indications suggesting that the field is being dragged by gravity as the whole filament is collapsing.

  16. Controversial age spreads from the main sequence turn-off and red clump in intermediate-age clusters in the LMC

    NASA Astrophysics Data System (ADS)

    Niederhofer, F.; Bastian, N.; Kozhurina-Platais, V.; Hilker, M.; de Mink, S. E.; Cabrera-Ziri, I.; Li, C.; Ercolano, B.

    2016-02-01

    Most star clusters at an intermediate age (1-2 Gyr) in the Large and Small Magellanic Clouds show a puzzling feature in their color-magnitude diagrams (CMD) that is not in agreement with a simple stellar population. The main sequence turn-off of these clusters is much broader than expected from photometric uncertainties. One interpretation of this feature is that age spreads of the order of 200-500 Myr exist within individual clusters, although this interpretation is highly debated. Such large age spreads should affect other parts of the CMD, which are sensitive to age, as well. In this study, we analyze the CMDs of a sample of 12 intermediate-age clusters in the Large Magellanic Cloud that all show an extended turn-off using archival optical data taken with the Hubble Space Telescope. We fit the star formation history of the turn-off region and the red clump region independently. We find that in most cases, the age spreads inferred from the red clumps are smaller than those that result from the turn-off region. However, the age ranges that result from the red clump region are broader than expected for a single age. Only two out of 12 clusters in our sample show a red clump which seems to be consistent with a single age. As our results are ambiguous, by fitting the star formation histories to the red clump regions, we cannot ultimately tell if the extended main sequence turn-off feature is the result of an age spread or not. However, we do find that the width of the extended main sequence turn-off feature is correlated with the age of the clusters in a way which would be unexplained in the so-called age spread interpretation, but which may be expected if stellar rotation is the cause of the spread at the turn-off. Based on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST

  17. Lithium Inventory of 2 M ⊙ Red Clump Stars in Open Clusters: A Test of the Helium Flash Mechanism

    NASA Astrophysics Data System (ADS)

    Carlberg, Joleen K.; Cunha, Katia; Smith, Verne V.

    2016-08-01

    The temperature distribution of field Li-rich red giants suggests the presence of a population of Li-rich red clump (RC) stars. One proposed explanation for this population is that all stars with masses near 2 M ⊙ experience a short-lived phase of Li-richness at the onset of core He-burning. Many of these stars have low 12C/13C, a signature of deep mixing that is presumably associated with the Li regeneration. To test this purported mechanism of Li enrichment, we measured abundances in 38 RC stars and 6 red giant branch (RGB) stars in four open clusters selected to have RC masses near 2 M ⊙. We find six Li-rich stars (A(Li) ≥ 1.50 dex) of which only two may be RC stars. None of the RC stars have Li exceeding the levels observed in the RGB stars, but given the brevity of the suggested Li-rich phase and the modest sample size, it is probable that stars with larger Li-enrichments were missed simply by chance. However, we find very few stars in our sample with low 12C/13C. Such low 12C/13C, seen in many field Li-rich stars, should persist even after lithium has returned to normal low levels. Thus, if Li synthesis during the He flash occurs, it is a rare, but potentially long-lived occurrence rather than a short-lived phase for all stars. We estimate a conservative upper limit of the fraction of stars going through a Li-rich phase to be \\lt 47 % , based on stars that have low 12C/13C for their observed A(Li).

  18. Lithium Inventory of 2 Solar Mass Red Clump Stars in Open Clusters: A Test of the Helium Flash Mechanism

    NASA Technical Reports Server (NTRS)

    Carlberg, Joleen K.; Cunha, Katia; Smith, Verne V.

    2016-01-01

    The temperature distribution of field Li-rich red giants suggests the presence of a population of Li-rich red clump (RC) stars. One proposed explanation for this population is that all stars with masses near 2 solar mass experience a shortlived phase of Li-richness at the onset of core He-burning. Many of these stars have low C-12/C-13, a signature of deep mixing that is presumably associated with the Li regeneration. To test this purported mechanism of Li enrichment, we measured abundances in 38 RC stars and 6 red giant branch (RGB) stars in four open clusters selected to have RC masses near 2 solar mass. We find six Li-rich stars (A(Li) greater than or equal to 1.50 dex) of which only two may be RC stars. None of the RC stars have Li exceeding the levels observed in the RGB stars, but given the brevity of the suggested Li-rich phase and the modest sample size, it is probable that stars with larger Li-enrichments were missed simply by chance. However, we find very few stars in our sample with low C-12/C-13. Such low C-12/C-13, seen in many field Li-rich stars, should persist even after lithium has returned to normal low levels. Thus, if Li synthesis during the He flash occurs, it is a rare, but potentially long-lived occurrence rather than a short-lived phase for all stars. We estimate a conservative upper limit of the fraction of stars going through a Li-rich phase to be less than 47%, based on stars that have low C-12/C-13 for their observed A(Li).

  19. Radiative Feedback of Forming Star Clusters on Their GMC Environments: Theory and Simulation

    NASA Astrophysics Data System (ADS)

    Howard, C. S.; Pudritz, R. E.; Harris, W. E.

    2013-07-01

    Star clusters form from dense clumps within a molecular cloud. Radiation from these newly formed clusters feeds back on their natal molecular cloud through heating and ionization which ultimately stops gas accretion into the cluster. Recent studies suggest that radiative feedback effects from a single cluster may be sufficient to disrupt an entire cloud over a short timescale. Simulating cluster formation on a large scale, however, is computationally demanding due to the high number of stars involved. For this reason, we present a model for representing the radiative output of an entire cluster which involves randomly sampling an initial mass function (IMF) as the cluster accretes mass. We show that this model is able to reproduce the star formation histories of observed clusters. To examine the degree to which radiative feedback shapes the evolution of a molecular cloud, we use the FLASH adaptive-mesh refinement hydrodynamics code to simulate cluster formation in a turbulent cloud. Unlike previous studies, sink particles are used to represent a forming cluster rather than individual stars. Our cluster model is then coupled with a raytracing scheme to treat radiative transfer as the clusters grow in mass. This poster will outline the details of our model and present preliminary results from our 3D hydrodynamical simulations.

  20. Molecular clumps in the W51 giant molecular cloud

    NASA Astrophysics Data System (ADS)

    Parsons, H.; Thompson, M. A.; Clark, J. S.; Chrysostomou, A.

    2012-08-01

    In this paper, we present a catalogue of dense molecular clumps located within the W51 giant molecular cloud (GMC). This work is based on Heterodyne Array Receiver Programme 13CO J = 3-2 observations of the W51 GMC and uses the automated CLUMPFIND algorithm to decompose the region into a total of 1575 clumps of which 1130 are associated with the W51 GMC. We clearly see the distinct structures of the W51 complex and the high-velocity stream previously reported. We find the clumps have characteristic diameters of 1.4 pc, excitation temperatures of 12 K, densities of 5.6 × 1021 cm-2, surface densities 0.02 g cm-2 and masses of 90 M⊙. We find a total mass of dense clumps within the GMC of 1.5 × 105 M⊙, with only 1 per cent of the clumps detected by number and 4 per cent by mass found to be supercritical. We find a clump-forming efficiency of 14 ± 1 per cent for the W51 GMC and a supercritical clump-forming efficiency of 0.5-0.5+2.3 per cent. Looking at the clump mass distribution, we find it is described by a single power law with a slope of α=2.4-0.1+0.2 above ˜100 M⊙. By comparing locations of supercritical clumps and young clusters, we see that any future star formation is likely to be located away from the currently active W51A region.

  1. SMOOTH(ER) STELLAR MASS MAPS IN CANDELS: CONSTRAINTS ON THE LONGEVITY OF CLUMPS IN HIGH-REDSHIFT STAR-FORMING GALAXIES

    SciTech Connect

    Wuyts, Stijn; Foerster Schreiber, Natascha M.; Genzel, Reinhard; Lutz, Dieter; Guo Yicheng; Giavalisco, Mauro; Barro, Guillermo; Faber, Sandra M.; Kocevski, Dale D.; Koo, David C.; McGrath, Elizabeth; Dekel, Avishai; Ferguson, Henry C.; Grogin, Norman A.; Koekemoer, Anton M.; Lotz, Jennifer; Hathi, Nimish P.; Huang, Kuang-Han; Newman, Jeffrey A.; and others

    2012-07-10

    We perform a detailed analysis of the resolved colors and stellar populations of a complete sample of 323 star-forming galaxies (SFGs) at 0.5 < z < 1.5 and 326 SFGs at 1.5 < z < 2.5 in the ERS and CANDELS-Deep region of GOODS-South. Galaxies were selected to be more massive than 10{sup 10} M{sub Sun} and have specific star formation rates (SFRs) above 1/t{sub H} . We model the seven-band optical ACS + near-IR WFC3 spectral energy distributions of individual bins of pixels, accounting simultaneously for the galaxy-integrated photometric constraints available over a longer wavelength range. We analyze variations in rest-frame color, stellar surface mass density, age, and extinction as a function of galactocentric radius and local surface brightness/density, and measure structural parameters on luminosity and stellar mass maps. We find evidence for redder colors, older stellar ages, and increased dust extinction in the nuclei of galaxies. Big star-forming clumps seen in star formation tracers are less prominent or even invisible in the inferred stellar mass distributions. Off-center clumps contribute up to {approx}20% to the integrated SFR, but only 7% or less to the integrated mass of all massive SFGs at z {approx} 1 and z {approx} 2, with the fractional contributions being a decreasing function of wavelength used to select the clumps. The stellar mass profiles tend to have smaller sizes and M20 coefficients, and higher concentration and Gini coefficients than the light distribution. Our results are consistent with an inside-out disk growth scenario with brief (100-200 Myr) episodic local enhancements in star formation superposed on the underlying disk. Alternatively, the young ages of off-center clumps may signal inward clump migration, provided this happens efficiently on the order of an orbital timescale.

  2. Interstellar Clump Behavior and Magnetic Effects in Small Clumps

    NASA Astrophysics Data System (ADS)

    Vallée, Jacques P.

    2000-07-01

    Cold, dusty molecular clumps (0.01 pcclumps. There are universal physical relations in clumps governing mean parameters such as gas density n, diameter D, magnetic field B, and gas line width σ, with the forms ~Dc, ~p, ~k, <σ>~q. For clumps with diameters <0.5 pc, one finds c=-1.5+/-0.1, p=-1.5+/-0.1, k=1.0+/-0.2. These exponent values differ from those found by Larson for molecular clouds with sizes greater than 1 pc. These differences in c and k could be indicative of ongoing accretion processes in shocked media as a prelude to star formation. The energy distribution in clumps reveals the following: the support against gravitational collapse in clumps with sizes greater than 0.1 pc comes mainly from turbulent energy, while smaller clumps with sizes less than 0.1 pc are supported by both magnetic and turbulent energies. The clump size of 0.1 pc is critical in many other respects.

  3. The morphology of the sub-giant branch and red clump reveal no sign of age spreads in intermediate-age clusters

    NASA Astrophysics Data System (ADS)

    Bastian, N.; Niederhofer, F.

    2015-04-01

    A recent surprise in stellar cluster research, made possible through the precision of Hubble Space Telescope photometry, was that some intermediate-age (1-2 Gyr) clusters in the Large and Small Magellanic Clouds have main-sequence turn-off (MSTO) widths that are significantly broader than would be expected for a simple stellar population (SSP). One interpretation of these extended MSTOs (eMSTOs) is that age spreads of the order of ˜500 Myr exist within the clusters, radically redefining our view of stellar clusters, which are traditionally thought of as single-age, single-metallicity stellar populations. Here we test this interpretation by studying other regions of the CMD that should also be affected by such large age spreads, namely the width of the sub-giant branch (SGB) and the red clump (RC). We study two massive clusters in the LMC that display the eMSTO phenomenon (NGC 1806 and NGC 1846) and show that both have SGB and RC morphologies that are in conflict with expectations if large age spreads exist within the clusters. We conclude that the SGB and RC widths are inconsistent with extended star formation histories within these clusters, hence age spreads are not likely to be the cause of the eMSTO phenomenon. Our results are in agreement with recent studies that also have cast doubt on whether large age spreads can exist in massive clusters; namely the failure to find age spreads in young massive clusters, a lack of gas/dust detected within massive clusters, and homogeneous abundances within clusters that exhibit the eMSTO phenomenon.

  4. VLT-SINFONI sub-kpc study of the star formation in local LIRGs and ULIRGs. Analysis of the global ΣSFR structure and characterisation of individual star-forming clumps

    NASA Astrophysics Data System (ADS)

    Piqueras López, J.; Colina, L.; Arribas, S.; Pereira-Santaella, M.; Alonso-Herrero, A.

    2016-05-01

    identified a total of 95 individual star-forming clumps in our sample of U/LIRGs, with sizes that range within ~60-400 pc and ~300-1500 pc, and extinction-corrected Paα luminosities of ~105-107 L⊙ and ~106-108 L⊙ in LIRGs and ULIRGs, respectively. The ΣSFR of the clumps presents a wide range of values within 1-90 M⊙ yr-1 kpc-2 and 0.1-100 M⊙ yr-1 kpc-2 for LIRGs and ULIRGs. Star-forming clumps in LIRGs are about ten times larger and thousands of times more luminous than typical clumps in spiral galaxies, which is consistent with expected photon-bounded conditions in ionized nebulae that surround young stellar clusters. Clumps in ULIRGs have sizes similar (×0.5-1) to those of high-z clumps, having Paα luminosities similar to some high-z clumps, and about 10 times less luminous than the most luminous high-z clumps identified so far. This could be an indication that the most luminous giant clumps in high-z star-forming galaxies are forming stars with a higher surface density rate than low-z compact ULIRGs. We also observed a change in the slope of the L-r relation, from η = 3.04 of local samples to η = 1.88 from high-z observations. A likely explanation is that most luminous galaxies are interacting and merging, and therefore their size represents a combination of the distribution of the star-forming clumps within each galaxy in the system plus the additional effect of the projected distance between the galaxies. As a consequence, this produces an overall size that is larger than that of individual clumps, or galaxies (for integrated measurements) Final data products are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A67

  5. Lithopanspermia in star-forming clusters.

    PubMed

    Adams, Fred C; Spergel, David N

    2005-08-01

    This paper considers the lithopanspermia hypothesis in star-forming groups and clusters, where the chances of biological material spreading from one solar system to another is greatly enhanced (relative to action in the field) because of the close proximity of the systems and lower relative velocities. These effects more than compensate for the reduced time spent in such crowded environments. This paper uses approximately 300,000 Monte Carlo scattering calculations to determine the cross sections for rocks to be captured by binaries and provides fitting formulae for other applications. We assess the odds of transfer as a function of the ejection speed v (eject) and number N(.) of members in the birth aggregate. The odds of any given ejected meteoroid being recaptured by another solar system are relatively low, about 1:10(3)-10(6) over the expected range of ejection speeds and cluster sizes. Because the number of ejected rocks (with mass m > 10 kg) per system can be large, N (R) approximately 10(16), virtually all solar systems are likely to share rocky ejecta with all of the other solar systems in their birth cluster. The number of ejected rocks that carry living microorganisms is much smaller and less certain, but we estimate that N (B) approximately 10(7) rocks can be ejected from a biologically active solar system. For typical birth environments, the capture of life-bearing rocks is expected to occur N (bio) asymptotically equal to 10-16,000 times (per cluster), depending on the ejection speeds. Only a small fraction (f (imp) approximately 10(4)) of the captured rocks impact the surfaces of terrestrial planets, so that N (lps) asymptotically equal to 10(3)-1.6 lithopanspermia events are expected per cluster (under favorable conditions). Finally, we discuss the question of internal versus external seeding of clusters and the possibility of Earth seeding young clusters over its biologically active lifetime.

  6. Lithopanspermia in star-forming clusters.

    PubMed

    Adams, Fred C; Spergel, David N

    2005-08-01

    This paper considers the lithopanspermia hypothesis in star-forming groups and clusters, where the chances of biological material spreading from one solar system to another is greatly enhanced (relative to action in the field) because of the close proximity of the systems and lower relative velocities. These effects more than compensate for the reduced time spent in such crowded environments. This paper uses approximately 300,000 Monte Carlo scattering calculations to determine the cross sections for rocks to be captured by binaries and provides fitting formulae for other applications. We assess the odds of transfer as a function of the ejection speed v (eject) and number N(.) of members in the birth aggregate. The odds of any given ejected meteoroid being recaptured by another solar system are relatively low, about 1:10(3)-10(6) over the expected range of ejection speeds and cluster sizes. Because the number of ejected rocks (with mass m > 10 kg) per system can be large, N (R) approximately 10(16), virtually all solar systems are likely to share rocky ejecta with all of the other solar systems in their birth cluster. The number of ejected rocks that carry living microorganisms is much smaller and less certain, but we estimate that N (B) approximately 10(7) rocks can be ejected from a biologically active solar system. For typical birth environments, the capture of life-bearing rocks is expected to occur N (bio) asymptotically equal to 10-16,000 times (per cluster), depending on the ejection speeds. Only a small fraction (f (imp) approximately 10(4)) of the captured rocks impact the surfaces of terrestrial planets, so that N (lps) asymptotically equal to 10(3)-1.6 lithopanspermia events are expected per cluster (under favorable conditions). Finally, we discuss the question of internal versus external seeding of clusters and the possibility of Earth seeding young clusters over its biologically active lifetime. PMID:16078868

  7. Cloud Structure of Galactic OB Cluster-forming Regions from Combining Ground- and Space-based Bolometric Observations

    NASA Astrophysics Data System (ADS)

    Lin, Yuxin; Liu, Hauyu Baobab; Li, Di; Zhang, Zhi-Yu; Ginsburg, Adam; Pineda, Jaime E.; Qian, Lei; Galván-Madrid, Roberto; McLeod, Anna Faye; Rosolowsky, Erik; Dale, James E.; Immer, Katharina; Koch, Eric; Longmore, Steve; Walker, Daniel; Testi, Leonardo

    2016-09-01

    We have developed an iterative procedure to systematically combine the millimeter and submillimeter images of OB cluster-forming molecular clouds, which were taken by ground-based (CSO, JCMT, APEX, and IRAM-30 m) and space telescopes (Herschel and Planck). For the seven luminous (L\\gt {10}6 L ⊙) Galactic OB cluster-forming molecular clouds selected for our analyses, namely W49A, W43-Main, W43-South, W33, G10.6-0.4, G10.2-0.3, and G10.3-0.1, we have performed single-component, modified blackbody fits to each pixel of the combined (sub)millimeter images, and the Herschel PACS and SPIRE images at shorter wavelengths. The ˜10″ resolution dust column density and temperature maps of these sources revealed dramatically different morphologies, indicating very different modes of OB cluster-formation, or parent molecular cloud structures in different evolutionary stages. The molecular clouds W49A, W33, and G10.6-0.4 show centrally concentrated massive molecular clumps that are connected with approximately radially orientated molecular gas filaments. The W43-Main and W43-South molecular cloud complexes, which are located at the intersection of the Galactic near 3 kpc (or Scutum) arm and the Galactic bar, show a widely scattered distribution of dense molecular clumps/cores over the observed ˜10 pc spatial scale. The relatively evolved sources G10.2-0.3 and G10.3-0.1 appear to be affected by stellar feedback, and show a complicated cloud morphology embedded with abundant dense molecular clumps/cores. We find that with the high angular resolution we achieved, our visual classification of cloud morphology can be linked to the systematically derived statistical quantities (i.e., the enclosed mass profile, the column density probability distribution function (N-PDF), the two-point correlation function of column density, and the probability distribution function of clump/core separations). In particular, the massive molecular gas clumps located at the center of G10.6-0.4 and

  8. THE CONTRIBUTIONS OF INTERACTIVE BINARY STARS TO DOUBLE MAIN-SEQUENCE TURNOFFS AND DUAL RED CLUMP OF INTERMEDIATE-AGE STAR CLUSTERS

    SciTech Connect

    Yang Wuming; Bi Shaolan; Tian Zhijia; Li Tanda; Liu Kang; Meng Xiangcun E-mail: woomyang@gmail.com

    2011-04-20

    Double or extended main-sequence turnoffs (DMSTOs) and dual red clump (RC) were observed in intermediate-age clusters, such as in NGC 1846 and 419. The DMSTOs are interpreted as that the cluster has two distinct stellar populations with differences in age of about 200-300 Myr but with the same metallicity. The dual RC is interpreted as a result of a prolonged star formation. Using a stellar population-synthesis method, we calculated the evolution of a binary-star stellar population. We found that binary interactions and merging can reproduce the dual RC in the color-magnitude diagrams of an intermediate-age cluster, whereas in actuality only a single population exists. Moreover, the binary interactions can lead to an extended main-sequence turnoff (MSTO) rather than DMSTOs. However, the rest of the main sequence, subgiant branch, and first giant branch are hardly spread by the binary interactions. Part of the observed dual RC and extended MSTO may be the results of binary interactions and mergers.

  9. Cooperation, clumping and the evolution of multicellularity

    PubMed Central

    Biernaskie, Jay M.; West, Stuart A.

    2015-01-01

    The evolution of multicellular organisms represents one of the major evolutionary transitions in the history of life. A potential advantage of forming multicellular clumps is that it provides an efficiency benefit to pre-existing cooperation, such as the production of extracellular ‘public goods’. However, this is complicated by the fact that cooperation could jointly evolve with clumping, and clumping could have multiple consequences for the evolution of cooperation. We model the evolution of clumping and a cooperative public good, showing that (i) when considered separately, both clumping and public goods production gradually increase with increasing genetic relatedness; (ii) in contrast, when the traits evolve jointly, a small increase in relatedness can lead to a major shift in evolutionary outcome—from a non-clumping state with low public goods production to a cooperative clumping state with high values of both traits; (iii) high relatedness makes it easier to get to the cooperative clumping state and (iv) clumping can be inhibited when it increases the number of cells that the benefits of cooperation must be shared with, but promoted when it increases relatedness between those cells. Overall, our results suggest that public goods sharing can facilitate the formation of well-integrated cooperative clumps as a first step in the evolution of multicellularity. PMID:26246549

  10. Cooperation, clumping and the evolution of multicellularity.

    PubMed

    Biernaskie, Jay M; West, Stuart A

    2015-08-22

    The evolution of multicellular organisms represents one of the major evolutionary transitions in the history of life. A potential advantage of forming multicellular clumps is that it provides an efficiency benefit to pre-existing cooperation, such as the production of extracellular 'public goods'. However, this is complicated by the fact that cooperation could jointly evolve with clumping, and clumping could have multiple consequences for the evolution of cooperation. We model the evolution of clumping and a cooperative public good, showing that (i) when considered separately, both clumping and public goods production gradually increase with increasing genetic relatedness; (ii) in contrast, when the traits evolve jointly, a small increase in relatedness can lead to a major shift in evolutionary outcome—from a non-clumping state with low public goods production to a cooperative clumping state with high values of both traits; (iii) high relatedness makes it easier to get to the cooperative clumping state and (iv) clumping can be inhibited when it increases the number of cells that the benefits of cooperation must be shared with, but promoted when it increases relatedness between those cells. Overall, our results suggest that public goods sharing can facilitate the formation of well-integrated cooperative clumps as a first step in the evolution of multicellularity.

  11. THE LIFE AND DEATH OF DENSE MOLECULAR CLUMPS IN THE LARGE MAGELLANIC CLOUD

    SciTech Connect

    Seale, Jonathan P.; Looney, Leslie W.; Wong, Tony; Ott, Juergen; Klein, Uli; Pineda, Jorge L.

    2012-05-20

    We report the results of a high spatial (parsec) resolution HCO{sup +} (J = 1 {yields} 0) and HCN (J = 1 {yields} 0) emission survey toward the giant molecular clouds of the star formation regions N 105, N 113, N 159, and N 44 in the Large Magellanic Cloud (LMC). The HCO{sup +} and HCN observations at 89.2 and 88.6 GHz, respectively, were conducted in the compact configuration of the Australia Telescope Compact Array. The emission is imaged into individual clumps with masses between 10{sup 2} and 10{sup 4} M{sub Sun} and radii of <1 pc to {approx}2 pc. Many of the clumps are coincident with indicators of current massive star formation, indicating that many of the clumps are associated with deeply embedded forming stars and star clusters. We find that massive young stellar object (YSO) bearing clumps tend to be larger ({approx}>1 pc), more massive (M {approx}> 10{sup 3} M{sub Sun }), and have higher surface densities ({approx}1 g cm{sup -2}), while clumps without signs of star formation are smaller ({approx}<1 pc), less massive (M {approx}< 10{sup 3} M{sub Sun }), and have lower surface densities ({approx}0.1 g cm{sup -2}). The dearth of massive (M > 10{sup 3} M{sub Sun }) clumps not bearing massive YSOs suggests that the onset of star formation occurs rapidly once the clump has attained physical properties favorable to massive star formation. Using a large sample of LMC massive YSO mid-IR spectra, we estimate that {approx}2/3 of the massive YSOs for which there are Spitzer mid-IR spectra are no longer located in molecular clumps; we estimate that these young stars/clusters have destroyed their natal clumps on a timescale of at least {approx}3 Multiplication-Sign 10{sup 5} yr.

  12. Clumped isotopes in soil carbonate

    NASA Astrophysics Data System (ADS)

    Quade, J.; Eiler, J. M.; Daeron, M.

    2011-12-01

    We are monitoring soil temperature and measuring clumped isotopes from modern soil carbonate in North and South America, Hawaii, and Tibet. Clumped isotopes from 50-200 cm soil depth show a strong and systematic bias toward formation in the warmest summer months. For example, soil carbonate as these depths exceed local mean annual temperature by 10-15°C in soils from India and Tibet. Clumped isotope temperatures from modern carbonate increase very regularly (r2 = 0.90) with elevation gain from lowland India to Tibet. Here carbonate forms largely in May-June, just prior to the arrival of the soil-cooling monsoon rains. In this regard, clumped isotopes hold great promise as a paleoaltimeter on the plateau. The question is whether these patterns from a monsoonal climate can be generalized (and they probably can't be) to other climate regimes when soil carbonate forms at a different time of year than the pre-monsoon. For example, in winter-dominated rainfall regimes soil carbonate may form as soils dewater in the spring and soil temperature is closer to mean annual temperature. These are open questions. Diurnal temperature information is also archived in the upper 30 cm of soils. Modern carbonate in Tibet appears to form in very late morning through afternoon, when the surface soil is warmest. Shade and aspect also strongly influence measured soil and clumped isotope temperatures. Both variables will have to be controlled for to correctly interpret clumped isotopes from the paleosol record. Clumped isotope values correlate with δ13C values in soil carbonate from shallowly buried (<1 km) paleosols from Nepal and Pakistan. This makes sense since δ13C values in the sub-tropics are determined the fraction of tree (C3) to grass (C4) cover, and soils under tree-covered areas are cooler. Finally, clumped isotopes from carbonates are reset to higher temperatures at burial depths roughly >2-3 km or >50-75°C. This was reproduced from paleosol and lake carbonates from three

  13. Clumps in stellar winds

    NASA Astrophysics Data System (ADS)

    Vink, J. S.

    2014-07-01

    We discuss the origin and quantification of wind clumping and mass-loss rates (Ṁ), particularly in close proximity to the Eddington (Γ) limit, relevant for very massive stars (VMS). We present evidence that clumping may not be the result of the line-deshadowing instability (LDI), but that clumps are already present in the stellar photosphere.

  14. Transient Clumps in Saturn's F Ring

    NASA Astrophysics Data System (ADS)

    Meinke, B. K.; Esposito, L. W.; Sremcevic, M.

    2011-10-01

    The Cassini Ultraviolet Imaging Spectrograph has detected 27 statistically significant features in 101 occultations by Saturn's F ring since July 2004. Of those 27 features, 17 likely correspond to transient clumps of material. We calculate from these observations the total number and total mass of transient clumps in the F ring. Constraints from observations place an upper limit on the number and total mass of such clumps. In turn, an upper limit on mass indicates that the clumps are not solid, spherical objects, rather they are loosely-packed, triaxial ellipsoids elongated in azimuth and vertically flattened. The total mass of clumps in the F ring is thus 6.1 x 1014 kg, the equivalent of a 6.8 km icy moon with a density equivalent to that of Prometheus. The differences in optical depth and morphology of the 17 significant features considered here also lead us to believe porosity differences exist among clumps. We investigate how the size distribution of clumps of different porosities evolves and how compaction of such clumps could lead to denser states that resemble moonlets, which describes 2 of the 17 features observed. The results presented here lead to a better model of how transient clumps form, evolve, and survive.

  15. Photoevaporation of Clumps in Photodissociation Regions

    NASA Technical Reports Server (NTRS)

    Gorti, Uma; Hollenbach, David; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    We present the results of an investigation of the effects of Far Ultraviolet (FUV) radiation (6.0eV < hv < 13.6eV) from hot early type OB stars on clumps in star-forming molecular clouds. Clumps in FUV-illuminated regions (or photodissociation regions or PDRs) undergo external heating and photodissociation as they are exposed to the FUV field, resulting in a loss of cold, molecular lump mass as it is converted to warm atomic gas. The heating, if rapid, creates strong photoevaporative mass flows off the clump surfaces, and drives shocks into the clumps, compressing them to high densities. The clumps lose mass on relatively short timescales. The evolution of an individual clump is found to be sensitive to three dimensionless parameters: Nc0, the ratio of the initial column density of the clump to the column N(0) approx. 10(exp 21) cm(exp -2) of a warm FUV-heated surface region; upsilon, the ratio of the sound speed in the heated surface to that in the cold clump material: and t(FUV)t(c), the ratio of the "turn-on time" t(FUV) of the heating flux on a clump to its initial sound crossing-time t(c). The evolution also depends on whether a confining interclump medium exists, or whether the interclump region has negligible pressure, as is the case for turbulence-generated clumps. In this paper, we use spherical 1-D numerical hydrodynamic models as well as approximate analytical models to study the dependence of clump photoevaporation on the physical parameters of the clump, and to derive the dynamical evolution, mass loss rates and photoevaporative timescales of a clump for a variety of astrophysical situations. Turbulent clumps evolve so that their column densities are equal to a critical value determined by the local FUV field, and typically have short photo evaporation timescales, approx. 10(exp 4-5) years for a 1 M(solar mass) clump in a typical star-forming region (Nc0 = 10, upsilon = 10). Clumps with insufficient magnetic pressure support, and in strong FUV fields

  16. How did the Virgo cluster form?

    NASA Astrophysics Data System (ADS)

    Sorce, Jenny G.; Gottlöber, Stefan; Hoffman, Yehuda; Yepes, Gustavo

    2016-08-01

    While the Virgo cluster is the nearest galaxy cluster and therefore the best observed one, little is known about its formation history. In this paper, a set of cosmological simulations that resemble the Local Universe is used to shed the first light on this mystery. The initial conditions for these simulations are constrained with galaxy peculiar velocities of the second catalogue of the Cosmicflows project using algorithms developed within the Constrained Local UniversE Simulation project. Boxes of 500 h-1 Mpc on a side are set to run a series of dark matter only constrained simulations. In each simulation, a unique dark matter halo can be reliably identified as Virgo's counterpart. The properties of these Virgo haloes are in agreement at a 10-20 per cent level with the global properties of the observed Virgo cluster. Their zero-velocity masses agree at 1σ with the observational mass estimate. In all the simulations, the matter falls on to the Virgo objects along a preferential direction that corresponds to the observational filament and the slowest direction of collapse. A study of the mass accretion history of the Virgo candidates reveals the most likely formation history of the Virgo cluster, namely a quiet accretion over the last 7 Gyr.

  17. Clumped isotope thermometry and catagenesis

    NASA Astrophysics Data System (ADS)

    Eiler, J. M.; Clog, M. D.; Dallas, B.; Douglas, P. M.; Piasecki, A.; Sessions, A. L.; Stolper, D. A.

    2014-12-01

    Clumped- and site-specific isotopic compositions of organic compounds can constrain their formation temperatures, sources, and chemical reaction histories. The large number of isotopologues of organic molecules may allow for the isotopic composition of a single compound to illuminate many processes. For example, it is possible that clumping or site specific effects in different parts of the same molecule will differ in blocking temperature, such that a molecule's full isotopic structure could simultaneously constrain conditions of biosynthesis, catagenic 'cracking', and storage in the crust. Recent innovations in high-resolution mass spectrometry and methods of IR and NMR spectroscopy make it possible to explore these questions. Methane is the first organic molecule to have its clumped isotope geochemistry analyzed in a variety of natural environments and controlled experiments. Methane generated through catagenic cracking of kerogen and other organic matter forms in equilibrium with respect to isotopic clumping, and preserves that state through later storage or migration, up to temperatures of ~250 ˚C. This kinetic behavior permits a variety of useful geological applications. But it is unexpected because the bulk stable isotope composition of thermogenic methane is thought to reflect kinetic isotope effects on irreversible reactions. Our observations imply a new interpretation of the chemical physics of catagenic methane formation. Additional instrument and methods developments are currently extending the measurement of isotopic clumping and position specific effects to larger alkanes, other hydrocarbon compounds, and amino acids. These measurements will ultimately expand our capacity to understand the formational conditions and fates of organic molecules in high- and low-temperature environments through geological time.

  18. Statistical clumped isotope signatures.

    PubMed

    Röckmann, T; Popa, M E; Krol, M C; Hofmann, M E G

    2016-08-18

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules.

  19. Statistical clumped isotope signatures

    PubMed Central

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  20. Statistical clumped isotope signatures

    NASA Astrophysics Data System (ADS)

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-08-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules.

  1. Statistical clumped isotope signatures.

    PubMed

    Röckmann, T; Popa, M E; Krol, M C; Hofmann, M E G

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  2. Anatomy of a high-mass star forming cloud: The G24.78+0.08 (proto)stellar cluster

    NASA Astrophysics Data System (ADS)

    Cesaroni, R.; Codella, C.; Furuya, R. S.; Testi, L.

    2003-04-01

    We present the results of an interferometric and single-dish study of G24.78+0.08, a region associated with high-mass star formation. Observations have been carried out in several molecular species, which are suitable to trace environments with different densities and temperatures. Evidence for this region to contain a cluster of very young massive stellar objects has been presented in a previous paper (Furuya et al. \\cite{furu}). We suggest that the embedded stars might be too young to have affected the surrounding molecular cloud significantly on a large scale. This gives us the opportunity to investigate the configuration of the cloud as it was prior to the star formation episode. We assess that the (proto)stellar cluster lies at the center of a molecular clump with diameter of ~ 2 pc: to a good approximation this may be described as a spherically symmetric clump with density profile of the type nH_2~ R-1.8. Inside 0.5 pc from the center, instead, the gas is much more inhomogeneous and concentrated in a few high-density cores surrounding the (proto)stars. Our findings indicate that a self-regulating formation mechanism for the high-mass stars in G24.78 is plausible: in the proposed scenario star formation would occur from inside-out collapse of the parsec-scale clump, followed by infall reversal due to outflows powered by the newly formed massive stars. We also find that one of the two bipolar outflows powered by the embedded YSOs is more extended and hence older than the other, thus confirming the evolutionary sequence proposed in our previous article.

  3. HUBBLE SPIES HUGE CLUSTERS OF STARS FORMED

    NASA Technical Reports Server (NTRS)

    2002-01-01

    BY ANCIENT ENCOUNTER This stunningly beautiful image [right] taken with the NASA Hubble Space Telescope shows the heart of the prototypical starburst galaxy M82. The ongoing violent star formation due to an ancient encounter with its large galactic neighbor, M81, gives this galaxy its disturbed appearance. The smaller picture at upper left shows the entire galaxy. The image was taken in December 1994 by the Kitt Peak National Observatory's 0.9-meter telescope. Hubble's view is represented by the white outline in the center. In the Hubble image, taken by the Wide Field and Planetary Camera 2, the huge lanes of dust that crisscross M82's disk are another telltale sign of the flurry of star formation. Below the center and to the right, a strong galactic wind is spewing knotty filaments of hydrogen and nitrogen gas. More than 100 super star clusters -- very bright, compact groupings of about 100,000 stars -- are seen in this detailed Hubble picture as white dots sprinkled throughout M82's central region. The dark region just above the center of the picture is a huge dust cloud. A collaboration of European and American scientists used these clusters to date the ancient interaction between M82 and M81. About 600 million years ago, a region called 'M82 B' (the bright area just below and to the left of the central dust cloud) exploded with new stars. Scientists have discovered that this ancient starburst was triggered by the violent encounter with M81. M82 is a bright (eighth magnitude), nearby (12 million light-years from Earth) galaxy in the constellation Ursa Major (the Great Bear). The Hubble picture was taken Sept. 15, 1997. The natural-color composite was constructed from three Wide Field and Planetary Camera 2 exposures, which were combined in chromatic order: 4,250 seconds through a blue filter (428 nm); 2,800 seconds through a green filter (520 nm); and 2,200 seconds through a red (820 nm) filter. Credits for Hubble image: NASA, ESA, R. de Grijs (Institute of

  4. Young open clusters in the Galactic star forming region NGC 6357

    NASA Astrophysics Data System (ADS)

    Massi, F.; Giannetti, A.; Di Carlo, E.; Brand, J.; Beltrán, M. T.; Marconi, G.

    2015-01-01

    Context. NGC 6357 is an active star forming region with very young massive open clusters. These clusters contain some of the most massive stars in the Galaxy and strongly interact with nearby giant molecular clouds. Aims: We study the young stellar populations of the region and of the open cluster Pismis 24, focusing on their relationship with the nearby giant molecular clouds. We seek evidence of triggered star formation "propagating" from the clusters. Methods: We used new deep JHKs photometry, along with unpublished deep Spitzer/IRAC mid-infrared photometry, complemented with optical HST/WFPC2 high spatial resolution photometry and X-ray Chandra observations, to constrain age, initial mass function, and star formation modes in progress. We carefully examine and discuss all sources of bias (saturation, confusion, different sensitivities, extinction). Results: NGC 6357 hosts three large young stellar clusters, of which Pismis 24 is the most prominent. We found that Pismis 24 is a very young (~1-3 Myr) open cluster with a Salpeter-like initial mass function and a few thousand members. A comparison between optical and infrared photometry indicates that the fraction of members with a near-infrared excess (i.e., with a circumstellar disk) is in the range 0.3-0.6, consistent with its photometrically derived age. We also find that Pismis 24 is likely subdivided into a few different subclusters, one of which contains almost all the massive members. There are indications of current star formation triggered by these massive stars, but clear age trends could not be derived (although the fraction of stars with a near-infrared excess does increase towards the Hii region associated with the cluster). The gas out of which Pismis 24 formed must have been distributed in dense clumps within a cloud of less dense gas ~1 pc in radius. Conclusions: Our findings provide some new insight into how young stellar populations and massive stars emerge, and evolve in the first few Myr after

  5. Dense molecular clumps associated with the Large Magellanic Cloud supergiant shells LMC 4 and LMC 5

    SciTech Connect

    Fujii, Kosuke; Mizuno, Norikazu; Minamidani, Tetsuhiro; Onishi, Toshikazu; Muraoka, Kazuyuki; Kawamura, Akiko; Muller, Erik; Tatematsu, Ken'ichi; Hasegawa, Tetsuo; Miura, Rie E.; Ezawa, Hajime; Dawson, Joanne; Tosaki, Tomoka; Sakai, Takeshi; Tsukagoshi, Takashi; Tanaka, Kunihiko; Fukui, Yasuo

    2014-12-01

    We investigate the effects of supergiant shells (SGSs) and their interaction on dense molecular clumps by observing the Large Magellanic Cloud (LMC) star-forming regions N48 and N49, which are located between two SGSs, LMC 4 and LMC 5. {sup 12}CO (J = 3-2, 1-0) and {sup 13}CO(J = 1-0) observations with the ASTE and Mopra telescopes have been carried out toward these regions. A clumpy distribution of dense molecular clumps is revealed with 7 pc spatial resolution. Large velocity gradient analysis shows that the molecular hydrogen densities (n(H{sub 2})) of the clumps are distributed from low to high density (10{sup 3}-10{sup 5} cm{sup –3}) and their kinetic temperatures (T {sub kin}) are typically high (greater than 50 K). These clumps seem to be in the early stages of star formation, as also indicated from the distribution of Hα, young stellar object candidates, and IR emission. We found that the N48 region is located in the high column density H I envelope at the interface of the two SGSs and the star formation is relatively evolved, whereas the N49 region is associated with LMC 5 alone and the star formation is quiet. The clumps in the N48 region typically show high n(H{sub 2}) and T {sub kin}, which are as dense and warm as the clumps in LMC massive cluster-forming areas (30 Dor, N159). These results suggest that the large-scale structure of the SGSs, especially the interaction of two SGSs, works efficiently on the formation of dense molecular clumps and stars.

  6. Dense Molecular Clumps Associated with the Large Magellanic Cloud Supergiant Shells LMC 4 and LMC 5

    NASA Astrophysics Data System (ADS)

    Fujii, Kosuke; Minamidani, Tetsuhiro; Mizuno, Norikazu; Onishi, Toshikazu; Kawamura, Akiko; Muller, Erik; Dawson, Joanne; Tatematsu, Ken'ichi; Hasegawa, Tetsuo; Tosaki, Tomoka; Miura, Rie E.; Muraoka, Kazuyuki; Sakai, Takeshi; Tsukagoshi, Takashi; Tanaka, Kunihiko; Ezawa, Hajime; Fukui, Yasuo

    2014-12-01

    We investigate the effects of supergiant shells (SGSs) and their interaction on dense molecular clumps by observing the Large Magellanic Cloud (LMC) star-forming regions N48 and N49, which are located between two SGSs, LMC 4 and LMC 5. 12CO (J = 3-2, 1-0) and 13CO(J = 1-0) observations with the ASTE and Mopra telescopes have been carried out toward these regions. A clumpy distribution of dense molecular clumps is revealed with 7 pc spatial resolution. Large velocity gradient analysis shows that the molecular hydrogen densities (n(H2)) of the clumps are distributed from low to high density (103-105 cm-3) and their kinetic temperatures (T kin) are typically high (greater than 50 K). These clumps seem to be in the early stages of star formation, as also indicated from the distribution of Hα, young stellar object candidates, and IR emission. We found that the N48 region is located in the high column density H I envelope at the interface of the two SGSs and the star formation is relatively evolved, whereas the N49 region is associated with LMC 5 alone and the star formation is quiet. The clumps in the N48 region typically show high n(H2) and T kin, which are as dense and warm as the clumps in LMC massive cluster-forming areas (30 Dor, N159). These results suggest that the large-scale structure of the SGSs, especially the interaction of two SGSs, works efficiently on the formation of dense molecular clumps and stars.

  7. Confronting the outflow-regulated cluster formation model with observations

    SciTech Connect

    Nakamura, Fumitaka; Li, Zhi-Yun E-mail: zl4h@virginia.edu

    2014-03-10

    Protostellar outflows have been shown theoretically to be capable of maintaining supersonic turbulence in cluster-forming clumps and keeping the star formation rate per free-fall time as low as a few percent. We aim to test two basic predictions of this outflow-regulated cluster formation model, namely, (1) the clump should be close to virial equilibrium and (2) the turbulence dissipation rate should be balanced by the outflow momentum injection rate, using recent outflow surveys toward eight nearby cluster-forming clumps (B59, L1551, L1641N, Serpens Main Cloud, Serpens South, ρ Oph, IC 348, and NGC 1333). We find, for almost all sources, that the clumps are close to virial equilibrium and the outflow momentum injection rate exceeds the turbulence momentum dissipation rate. In addition, the outflow kinetic energy is significantly smaller than the clump gravitational energy for intermediate and massive clumps with M {sub cl} ≳ a few × 10{sup 2} M {sub ☉}, suggesting that the outflow feedback is not enough to disperse the clump as a whole. The number of observed protostars also indicates that the star formation rate per free-fall time is as small as a few percent for all clumps. These observationally based results strengthen the case for outflow-regulated cluster formation.

  8. Confronting the Outflow-regulated Cluster Formation Model with Observations

    NASA Astrophysics Data System (ADS)

    Nakamura, Fumitaka; Li, Zhi-Yun

    2014-03-01

    Protostellar outflows have been shown theoretically to be capable of maintaining supersonic turbulence in cluster-forming clumps and keeping the star formation rate per free-fall time as low as a few percent. We aim to test two basic predictions of this outflow-regulated cluster formation model, namely, (1) the clump should be close to virial equilibrium and (2) the turbulence dissipation rate should be balanced by the outflow momentum injection rate, using recent outflow surveys toward eight nearby cluster-forming clumps (B59, L1551, L1641N, Serpens Main Cloud, Serpens South, ρ Oph, IC 348, and NGC 1333). We find, for almost all sources, that the clumps are close to virial equilibrium and the outflow momentum injection rate exceeds the turbulence momentum dissipation rate. In addition, the outflow kinetic energy is significantly smaller than the clump gravitational energy for intermediate and massive clumps with M cl >~ a few × 102 M ⊙, suggesting that the outflow feedback is not enough to disperse the clump as a whole. The number of observed protostars also indicates that the star formation rate per free-fall time is as small as a few percent for all clumps. These observationally based results strengthen the case for outflow-regulated cluster formation.

  9. The Structural Evolution of Forming and Early Stage Star Clusters

    NASA Astrophysics Data System (ADS)

    Jaehnig, Karl; Da Rio, Nicola; Tan, Jonathan C.

    2016-05-01

    We study the degree of angular substructure in the stellar position distribution of young members of Galactic star-forming regions, looking for correlations with distance from cluster center, surface number density of stars, and local dynamical age. To this end we adopt the catalog of members in 18 young (∼1-3 Myr) clusters from the Massive Young Star-Forming Complex Study in Infrared and X-ray (MYStIX) Survey and the statistical analysis of the Angular Dispersion Parameter, δADP. We find statistically significant correlation between δADP and physical projected distance from the center of the clusters, with the centers appearing smoother than the outskirts, consistent with more rapid dynamical processing on local dynamical, free-fall or orbital timescales. Similarly, smoother distributions are seen in regions of higher surface density, or older dynamical ages. These results indicate that dynamical processing that erases substructure is already well-advanced in young, sometimes still-forming, clusters. Such observations of the dissipation of substructure have the potential to constrain theoretical models of the dynamical evolution of young and forming clusters.

  10. THE STRUCTURAL EVOLUTION OF FORMING AND EARLY STAGE STAR CLUSTERS

    SciTech Connect

    Jaehnig, Karl O.; Da Rio, Nicola; Tan, Jonathan C. E-mail: ndario@ufl.edu

    2015-01-10

    We study the degree of angular substructure in the stellar position distribution of young members of Galactic star-forming regions, looking for correlations with distance from cluster center, surface number density of stars, and local dynamical age. To this end we adopt the catalog of members in 18 young (∼1-3 Myr) clusters from the Massive Young Star-Forming Complex Study in Infrared and X-ray Survey and the statistical analysis of the angular dispersion parameter, δ{sub ADP,} {sub N}. We find statistically significant correlation between δ{sub ADP,} {sub N} and physical projected distance from the center of the clusters, with the centers appearing smoother than the outskirts, consistent with more rapid dynamical processing on local dynamical, free-fall or orbital timescales. Similarly, smoother distributions are seen in regions of higher surface density, or older dynamical ages. These results indicate that dynamical processing that erases substructure is already well-advanced in young, sometimes still-forming, clusters. Such observations of the dissipation of substructure have the potential to constrain theoretical models of the dynamical evolution of young and forming clusters.

  11. The Structural Evolution of Forming and Early Stage Star Clusters

    NASA Astrophysics Data System (ADS)

    Jaehnig, Karl O.; Da Rio, Nicola; Tan, Jonathan C.

    2015-01-01

    We study the degree of angular substructure in the stellar position distribution of young members of Galactic star-forming regions, looking for correlations with distance from cluster center, surface number density of stars, and local dynamical age. To this end we adopt the catalog of members in 18 young (~1-3 Myr) clusters from the Massive Young Star-Forming Complex Study in Infrared and X-ray Survey and the statistical analysis of the angular dispersion parameter, δADP, N. We find statistically significant correlation between δADP, N and physical projected distance from the center of the clusters, with the centers appearing smoother than the outskirts, consistent with more rapid dynamical processing on local dynamical, free-fall or orbital timescales. Similarly, smoother distributions are seen in regions of higher surface density, or older dynamical ages. These results indicate that dynamical processing that erases substructure is already well-advanced in young, sometimes still-forming, clusters. Such observations of the dissipation of substructure have the potential to constrain theoretical models of the dynamical evolution of young and forming clusters.

  12. Automatic style clustering of printed characters in form images

    NASA Astrophysics Data System (ADS)

    Liu, Changsong; Ding, Xiaoqing

    2005-01-01

    Style is an important feature of printed or handwritten characters. But it is not studied thoroughly compared with character recognition. In this paper, we try to learn how many typical styles exist in a kind of real world form images. A hierarchical clustering method has been developed and tested. A cross recognition error rate constraint is proposed to reduce the false combinations in the hierarchical clustering process, and a cluster selecting method is used to delete redundant or unsuitable clusters. Only a similarity measure between any patterns is needed by the algorithm. It is tested on a template matching based similarity measure which can be extended to any other feature and distance measure easily. The detailed comparing on every step"s effects is shown in the paper. Total 16 kinds of typical styles are found out, and by giving each character in each style a prototype for recognition, a 0.78% error rate is achieved by recognizing the testing set.

  13. Automatic style clustering of printed characters in form images

    NASA Astrophysics Data System (ADS)

    Liu, Changsong; Ding, Xiaoqing

    2004-12-01

    Style is an important feature of printed or handwritten characters. But it is not studied thoroughly compared with character recognition. In this paper, we try to learn how many typical styles exist in a kind of real world form images. A hierarchical clustering method has been developed and tested. A cross recognition error rate constraint is proposed to reduce the false combinations in the hierarchical clustering process, and a cluster selecting method is used to delete redundant or unsuitable clusters. Only a similarity measure between any patterns is needed by the algorithm. It is tested on a template matching based similarity measure which can be extended to any other feature and distance measure easily. The detailed comparing on every step"s effects is shown in the paper. Total 16 kinds of typical styles are found out, and by giving each character in each style a prototype for recognition, a 0.78% error rate is achieved by recognizing the testing set.

  14. Mass-density relationship in molecular cloud clumps

    NASA Astrophysics Data System (ADS)

    Donkov, Sava; Veltchev, Todor V.; Klessen, Ralf S.

    2011-12-01

    We study the mass-density relationship n ∝ mx in molecular cloud condensations (clumps), considering various equipartition relations between their gravitational, kinetic, internal and magnetic energies. Clumps are described statistically, with a density distribution that reflects a lognormal probability density function in turbulent cold interstellar medium. The clump mass-density exponent x derived at different scales L varies in most of the cases within the range -2.5 ≲x≲-0.2, with a pronounced scale dependence and in consistency with observations. When derived from the global size-mass relationship ? for set of clumps, generated at all scales, the clump mass-density exponent has typical values -3.0 ≲x(γglob) ≲-0.3 that depend on the forms of energy, included in the equipartition relations, and on the velocity scaling law, whereas the description of clump geometry is important when magnetic energy is taken into account.

  15. Genome Sequences of Newly Isolated Mycobacteriophages Forming Cluster S

    PubMed Central

    Mills, Monique L.; Bragg, Judd; Bruce, Asri; Dehn, Ari; Drouin, Jordan; Hefner, Morgan; Katon, Dylan; McHugh, Dustin; Zeba, Franck; Bowman, Charles A.; Cresawn, Steven G.; Jacobs-Sera, Deborah; Russell, Daniel A.; Pope, Welkin H.; Hatfull, Graham F.; Dunbar, David A.; Zegers, Gerard P.

    2016-01-01

    We describe the genomes of two mycobacteriophages, MosMoris and Gattaca, newly isolated on Mycobacterium smegmatis. The two phages are very similar to each other, differing in 61 single nucleotide polymorphisms and six small insertion/deletions. Both have extensive nucleotide sequence similarity to mycobacteriophage Marvin and together form cluster S. PMID:27688332

  16. Genome Sequences of Newly Isolated Mycobacteriophages Forming Cluster S.

    PubMed

    Mills, Monique L; Bragg, Judd; Bruce, Asri; Dehn, Ari; Drouin, Jordan; Hefner, Morgan; Katon, Dylan; McHugh, Dustin; Zeba, Franck; Bowman, Charles A; Cresawn, Steven G; Jacobs-Sera, Deborah; Russell, Daniel A; Pope, Welkin H; Hatfull, Graham F; Dunbar, David A; Zegers, Gerard P; Page, Shallee T

    2016-01-01

    We describe the genomes of two mycobacteriophages, MosMoris and Gattaca, newly isolated on Mycobacterium smegmatis The two phages are very similar to each other, differing in 61 single nucleotide polymorphisms and six small insertion/deletions. Both have extensive nucleotide sequence similarity to mycobacteriophage Marvin and together form cluster S. PMID:27688332

  17. Detailed modeling of cluster galaxies in free-form lenses

    NASA Astrophysics Data System (ADS)

    Lam, Daniel

    2015-08-01

    The main goal of the Frontier Fields is to characterize the population of high redshift galaxies that are gravitationally lensed and magnified by foreground massive galaxy clusters. The magnification received by lensed images has to be accurately quantified in order to derive the correct science results. The magnification is in turn computed from lens models, which are constructed from various constraints, most commonly the positions and redshifts of multiply-lensed galaxies.The locations and magnification of multiple images that appear near cluster galaxies are very sensitive to the mass distribution of those individual galaxies. In current free-form lens models, they are at best crudely approximated by arbitrary mass halos and are usually being completely neglected. Given sufficient free parameters and iterations, such models may be highly consistent but their predictive power would be rather limited. This shortcoming is particularly pronounced in light of the recent discovery of the first multiply-lensed supernova in the Frontier Fields cluster MACSJ1149. The proximity of its images to cluster galaxies mandates detailed modeling on galaxy-scales, where free-form methods solely based on grid solutions simply fail.We present a hybrid free-form lens model of Abell 2744, which for the first time incorporates a detailed mass component modeled by GALFIT that accurately captures the stellar light distribution of the hundred brightest cluster galaxies. The model better reproduces the image positions than a previous version, which modeled cluster galaxies with simplistic NFW halos. Curiously, this improvement is found in all but system 2, which has two radial images appearing around the BCG. Despite its complex light profile is being captured by GALFIT, the persistent discrepancies suggest considering mass distributions that may be largely offset from the stellar light distribution.

  18. THE PROPERTIES OF THE STAR-FORMING INTERSTELLAR MEDIUM AT z = 0.8-2.2 FROM HiZELS: STAR FORMATION AND CLUMP SCALING LAWS IN GAS-RICH, TURBULENT DISKS

    SciTech Connect

    Swinbank, A. M.; Smail, Ian; Theuns, T.; Sobral, D.; Best, P. N.; Geach, J. E.

    2012-12-01

    We present adaptive optics assisted integral field spectroscopy of nine H{alpha}-selected galaxies at z = 0.84-2.23 drawn from the HiZELS narrowband survey. Our observations map the kinematics of these star-forming galaxies on {approx}kpc scales. We demonstrate that within the interstellar medium of these galaxies, the velocity dispersion of the star-forming gas ({sigma}) follows a scaling relation {sigma}{proportional_to}{Sigma}{sup 1/n} {sub SFR} + constant (where {Sigma}{sub SFR} is the star formation surface density and the constant includes the stellar surface density). Assuming the disks are marginally stable (Toomre Q = 1), this follows from the Kennicutt-Schmidt relation ({Sigma}{sub SFR} = A{Sigma} {sup n} {sub gas}), and we derive best-fit parameters of n = 1.34 {+-} 0.15 and A = 3.4{sup +2.5} {sub -1.6} Multiplication-Sign 10{sup -4} M {sub Sun} yr{sup -1} kpc{sup -2}, consistent with the local relation, and implying cold molecular gas masses of M {sub gas} = 10{sup 9-10} M {sub Sun} and molecular gas fractions of M {sub gas}/(M {sub gas} + M {sub *}) = 0.3 {+-} 0.1, with a range of 10%-75%. We also identify 11 {approx}kpc-scale star-forming regions (clumps) within our sample and show that their sizes are comparable to the wavelength of the fastest growing mode. The luminosities and velocity dispersions of these clumps follow the same scaling relations as local H II regions, although their star formation densities are a factor {approx}15 {+-} 5 Multiplication-Sign higher than typically found locally. We discuss how the clump properties are related to the disk, and show that their high masses and luminosities are a consequence of the high disk surface density.

  19. Dense Molecular Clumps Associated with the LMC Supergiant Shell LMC 4 & LMC 5

    NASA Astrophysics Data System (ADS)

    Fujii, K.; Minamidani, T.; Mizuno, N.; Onishi, T.; Kawamura, A.; Muller, E.; Dawson, J.; Fukui, Y.

    2015-12-01

    The 12CO(J=3-2/1-0) and 13CO(J=3-2/1-0) observations with ASTE and Mopra telescopes have been carried out toward the giant molecular clouds (GMCs) in the N48/N49 regions in the Large Magellanic Cloud (LMC), which are located at the boundary of two kpc-scale Supergiant Shell (SGS) LMC 4 & LMC 5. The star formation is relatively evolved in the N48 region, which is just located at the boundary of SGSs, than in the N49 region. The clumps in the N48 show higher n(H2) and Tkin than those in the N49, but their densities are not so high as the LMC cluster forming clumps. The collision of two SGSs actually enhances the star formation but further evolution seem to be necessary for subsequent cluster formation.

  20. STAR-FORMING GALAXY EVOLUTION IN NEARBY RICH CLUSTERS

    SciTech Connect

    Tyler, K. D.; Rieke, G. H.; Bai, L.

    2013-08-20

    Dense environments are known to quench star formation in galaxies, but it is still unknown what mechanism(s) are directly responsible. In this paper, we study the star formation of galaxies in A2029 and compare it to that of Coma, combining indicators at 24 {mu}m, H{alpha}, and UV down to rates of 0.03 M{sub Sun} yr{sup -1}. We show that A2029's star-forming galaxies follow the same mass-SFR relation as the field. The Coma cluster, on the other hand, has a population of galaxies with star formation rates (SFRs) significantly lower than the field mass-SFR relation, indicative of galaxies in the process of being quenched. Over half of these galaxies also host active galactic nuclei. Ram-pressure stripping and starvation/strangulation are the most likely mechanisms for suppressing the star formation in these galaxies, but we are unable to disentangle which is dominating. The differences we see between the two clusters' populations of star-forming galaxies may be related to their accretion histories, with A2029 having accreted its star-forming galaxies more recently than Coma. Additionally, many early-type galaxies in A2029 are detected at 24 {mu}m and/or in the far-UV, but this emission is not directly related to star formation. Similar galaxies have probably been classified as star forming in previous studies of dense clusters, possibly obscuring some of the effects of the cluster environment on true star-forming galaxies.

  1. From gas to stars in energetic environments: dense gas clumps in the 30 Doradus region within the Large Magellanic Cloud

    SciTech Connect

    Anderson, Crystal N.; Meier, David S.; Ott, Jürgen; Hughes, Annie; Wong, Tony; Looney, Leslie; Henkel, Christian; Chen, Rosie; Indebetouw, Remy; Muller, Erik; Pineda, Jorge L.; Seale, Jonathan

    2014-09-20

    We present parsec-scale interferometric maps of HCN(1-0) and HCO{sup +}(1-0) emission from dense gas in the star-forming region 30 Doradus, obtained using the Australia Telescope Compact Array. This extreme star-forming region, located in the Large Magellanic Cloud (LMC), is characterized by a very intense ultraviolet ionizing radiation field and sub-solar metallicity, both of which are expected to impact molecular cloud structure. We detect 13 bright, dense clumps within the 30 Doradus-10 giant molecular cloud. Some of the clumps are aligned along a filamentary structure with a characteristic spacing that is consistent with formation via varicose fluid instability. Our analysis shows that the filament is gravitationally unstable and collapsing to form stars. There is a good correlation between HCO{sup +} emission in the filament and signatures of recent star formation activity including H{sub 2}O masers and young stellar objects (YSOs). YSOs seem to continue along the same direction of the filament toward the massive compact star cluster R136 in the southwest. We present detailed comparisons of clump properties (masses, linewidths, and sizes) in 30Dor-10 to those in other star forming regions of the LMC (N159, N113, N105, and N44). Our analysis shows that the 30Dor-10 clumps have similar masses but wider linewidths and similar HCN/HCO{sup +} (1-0) line ratios as clumps detected in other LMC star-forming regions. Our results suggest that the dense molecular gas clumps in the interior of 30Dor-10 are well shielded against the intense ionizing field that is present in the 30 Doradus region.

  2. On the onset of secondary stellar generations in giant star-forming regions and massive star clusters

    SciTech Connect

    Palouš, J.; Wünsch, R.; Tenorio-Tagle, G.

    2014-09-10

    Here we consider the strong evolution experienced by the matter reinserted by massive stars, both in giant star-forming regions driven by a constant star formation rate and in massive and coeval superstar clusters. In both cases we take into consideration the changes induced by stellar evolution on the number of massive stars, the number of ionizing photons, and the integrated mechanical luminosity of the star-forming regions. The latter is at all times compared with the critical luminosity that defines, for a given size, the lower mechanical luminosity limit above which the matter reinserted via strong winds and supernova explosions suffers frequent and recurrent thermal instabilities that reduce its temperature and pressure and inhibit its exit as part of a global wind. Instead, the unstable reinserted matter is compressed by the pervasive hot gas, and photoionization maintains its temperature at T ∼ 10{sup 4} K. As the evolution proceeds, more unstable matter accumulates and the unstable clumps grow in size. Here we evaluate the possible self-shielding of thermally unstable clumps against the UV radiation field. Self-shielding allows for a further compression of the reinserted matter, which rapidly develops a high-density neutral core able to absorb in its outer skin the incoming UV radiation. Under such conditions the cold (T ∼ 10 K) neutral cores soon surpass the Jeans limit and become gravitationally unstable, creating a new stellar generation with the matter reinserted by former massive stars. We present the results of several calculations of this positive star formation feedback scenario promoted by strong radiative cooling and mass loading.

  3. On the Onset of Secondary Stellar Generations in Giant Star-forming Regions and Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Palouš, J.; Wünsch, R.; Tenorio-Tagle, G.

    2014-09-01

    Here we consider the strong evolution experienced by the matter reinserted by massive stars, both in giant star-forming regions driven by a constant star formation rate and in massive and coeval superstar clusters. In both cases we take into consideration the changes induced by stellar evolution on the number of massive stars, the number of ionizing photons, and the integrated mechanical luminosity of the star-forming regions. The latter is at all times compared with the critical luminosity that defines, for a given size, the lower mechanical luminosity limit above which the matter reinserted via strong winds and supernova explosions suffers frequent and recurrent thermal instabilities that reduce its temperature and pressure and inhibit its exit as part of a global wind. Instead, the unstable reinserted matter is compressed by the pervasive hot gas, and photoionization maintains its temperature at T ~ 104 K. As the evolution proceeds, more unstable matter accumulates and the unstable clumps grow in size. Here we evaluate the possible self-shielding of thermally unstable clumps against the UV radiation field. Self-shielding allows for a further compression of the reinserted matter, which rapidly develops a high-density neutral core able to absorb in its outer skin the incoming UV radiation. Under such conditions the cold (T ~ 10 K) neutral cores soon surpass the Jeans limit and become gravitationally unstable, creating a new stellar generation with the matter reinserted by former massive stars. We present the results of several calculations of this positive star formation feedback scenario promoted by strong radiative cooling and mass loading.

  4. Extra-nuclear starbursts: young luminous Hinge clumps in interacting galaxies

    SciTech Connect

    Smith, Beverly J.; Giroux, Mark L.; Soria, Roberto; Struck, Curtis; Swartz, Douglas A.; Yukita, Mihoko E-mail: girouxm@etsu.edu E-mail: curt@iastate.edu

    2014-03-01

    Hinge clumps are luminous knots of star formation near the base of tidal features in some interacting galaxies. We use archival Hubble Space Telescope (HST) UV/optical/IR images and Chandra X-ray maps along with Galaxy Evolution Explorer UV, Spitzer IR, and ground-based optical/near-IR images to investigate the star forming properties in a sample of 12 hinge clumps in five interacting galaxies. The most extreme of these hinge clumps have star formation rates of 1-9 M {sub ☉} yr{sup –1}, comparable to or larger than the 'overlap' region of intense star formation between the two disks of the colliding galaxy system the Antennae. In the HST images, we have found remarkably large and luminous sources at the centers of these hinge clumps. These objects are much larger and more luminous than typical 'super star clusters' in interacting galaxies, and are sometimes embedded in a linear ridge of fainter star clusters, consistent with star formation along a narrow caustic. These central sources have FWHM diameters of ∼70 pc, compared to ∼3 pc in 'ordinary' super star clusters. Their absolute I magnitudes range from M{sub I} ∼ – 12.2 to –16.5; thus, if they are individual star clusters they would lie near the top of the 'super star cluster' luminosity function of star clusters. These sources may not be individual star clusters, but instead may be tightly packed groups of clusters that are blended together in the HST images. Comparison to population synthesis modeling indicates that the hinge clumps contain a range of stellar ages. This is consistent with expectations based on models of galaxy interactions, which suggest that star formation may be prolonged in these regions. In the Chandra images, we have found strong X-ray emission from several of these hinge clumps. In most cases, this emission is well-resolved with Chandra and has a thermal X-ray spectrum, thus it is likely due to hot gas associated with the star formation. The ratio of the extinction

  5. Hippocampal cells encode places by forming small anatomical clusters.

    PubMed

    Nakamura, N H; Fukunaga, M; Akama, K T; Soga, T; Ogawa, S; Pavlides, C

    2010-03-31

    The hippocampus has been hypothesized to function as a "spatial" or "cognitive" map, however, the functional cellular organization of the spatial map remains a mystery. The majority of electrophysiological studies, thus far, have supported the view of a random-type organization in the hippocampus. However, using immediate early genes (IEGs) as an indicator of neuronal activity, we recently observed a cluster-type organization of hippocampal principal cells, whereby a small number ( approximately 4) of nearby cells were activated in rats exposed to a restricted part of an environment. To determine the fine structure of these clusters and to provide a 3D image of active hippocampal cells that encode for different parts of an environment, we established a functional mapping of IEGs zif268 and Homer1a, using in situ hybridization and 3D-reconstruction imaging methods. We found that, in rats exposed to the same location twice, there were significantly more double IEG-expressing cells, and the clusters of nearby cells were more "tightly" formed, in comparison to rats exposed to two different locations. We propose that spatial encoding recruits specific cell ensembles in the hippocampus and that with repeated exposure to the same place the ensembles become better organized to more accurately represent the "spatial map." PMID:20060034

  6. Identification of protostellar clusters in the inner part of the milky way : Interaction between the ISM and star forming regions.

    NASA Astrophysics Data System (ADS)

    Beuret, M.; Billot, N.; Cambrésy, L.; Elia, D.; Molinari, S.; Pezzuto, S.; Pestalozzi, M.; Schisano, E.

    2014-12-01

    Interactions between the interstellar medium (ISM) and young stellar objects (YSO) need to be investigated to better understand star formation. We used the Minimum Spanning Tree (MST) method to identify protostellar clusters in the inner part of galactic plane. Using heliocentric distance estimates, we obtained about 230 clusters over a 140 × 2 square degree region. Most of these clusters are correlated with Infrared Dark Cloud (IRDC) or H II regions. We conclude that clustering is more important for protostars than for prestellar clumps and that a strong correlation can be established between the distribution of H II regions, known star formation complexes and the YSOs identified in the Hi-GAL data.

  7. Chemical Diagnostics of the Massive Star Cluster-forming Cloud G33.92+0.11 I. 13CS, CH3OH, CH3CN, OCS, H2S, SO2, and SiO

    NASA Astrophysics Data System (ADS)

    Minh, Young Chol; Liu, Hauyu Baobab; Galvań-Madrid, Roberto

    2016-06-01

    Large chemical diversity was found in the gas clumps associated with the massive star cluster-forming G33.92+0.11 region with sub-arcsecond angular resolution (0.″6-0.″8) observations with ALMA. The most prominent gas clumps are associated with the dust emission peaks A1, A2, and A5. The close correlation between CH3OH and OCS in the emission distributions strongly suggests that these species share a common origin of hot core grain mantle evaporation. The latest generation of star clusters are forming in the A5 clump, as indicated by multiple SiO outflows and its rich hot core chemistry. We also found a narrow SiO emission associated with the outflows, which may trace a cooled component of the outflows. Part of the chemical complexity may have resulted from the accreting gas from the ambient clouds, especially in the northern part of A1 and the southern part of A2. The chemical diversity found in this region is believed to mainly result from the different chemical evolutionary timescales of massive star formation. In particular, the abundance ratio between CH3OH and CH3CN may be a good chemical clock for the early phase of star formation.

  8. Chemical Diagnostics of the Massive Star Cluster-forming Cloud G33.92+0.11 I. 13CS, CH3OH, CH3CN, OCS, H2S, SO2, and SiO

    NASA Astrophysics Data System (ADS)

    Minh, Young Chol; Liu, Hauyu Baobab; Galvań-Madrid, Roberto

    2016-06-01

    Large chemical diversity was found in the gas clumps associated with the massive star cluster-forming G33.92+0.11 region with sub-arcsecond angular resolution (0.″6–0.″8) observations with ALMA. The most prominent gas clumps are associated with the dust emission peaks A1, A2, and A5. The close correlation between CH3OH and OCS in the emission distributions strongly suggests that these species share a common origin of hot core grain mantle evaporation. The latest generation of star clusters are forming in the A5 clump, as indicated by multiple SiO outflows and its rich hot core chemistry. We also found a narrow SiO emission associated with the outflows, which may trace a cooled component of the outflows. Part of the chemical complexity may have resulted from the accreting gas from the ambient clouds, especially in the northern part of A1 and the southern part of A2. The chemical diversity found in this region is believed to mainly result from the different chemical evolutionary timescales of massive star formation. In particular, the abundance ratio between CH3OH and CH3CN may be a good chemical clock for the early phase of star formation.

  9. Stellar Clusters Forming in the Blue Dwarf Galaxy NGC 5253

    NASA Astrophysics Data System (ADS)

    2004-11-01

    ; it is located at a distance of about 11 million light-years in the direction of the southern constellation Centaurus. Some time ago a group of European astronomers [1] decided to take a closer look at this object and to study star-forming processes in the primordial-like environment of this galaxy. True, NGC 5253 does contains some dust and heavier elements, but significantly less than our own Milky Way galaxy. However, it is quite extreme as a site of intense star formation, a profuse "starburst galaxy" in astronomical terminology, and a prime object for detailed studies of large-scale star formation. ESO PR Photo 31a/04 provides an impressive view of NGC 5253. This composite image is based on a near-infrared exposure obtained with the multi-mode ISAAC instrument mounted on the 8.2-m VLT Antu telescope at the ESO Paranal Observatory (Chile), as well as two images in the optical waveband obtained from the Hubble Space Telescope data archive (located at ESO Garching). The VLT image (in the K-band at wavelength 2.16 μm) is coded red, the HST images are blue (V-band at 0.55 μm) and green (I-band at 0.79 μm), respectively. The enormous light-gathering capability and the fine optical quality of the VLT made it possible to obtain the very detailed near-infrared image (cf. PR Photo 31b/04) during an exposure lasting only 5 min. The excellent atmospheric conditions of Paranal at the time of the observation (seeing 0.4 arcsec) allow the combination of space- and ground-based data into a colour photo of this interesting object. A major dust lane is visible at the western (right) side of the galaxy, but patches of dust are visible all over, together with a large number of colourful stars and stellar clusters. The different colour shades are indicative of the ages of the objects and the degree of obscuration by interstellar dust. The near-infrared VLT image penetrates the dust clouds much better than the optical HST images, and some deeply embedded objects that are not

  10. SUBMILLIMETER OBSERVATIONS OF DENSE CLUMPS IN THE INFRARED DARK CLOUD G049.40-00.01

    SciTech Connect

    Kang, Miju; Choi, Minho; Bieging, John H.; Rho, Jeonghee; Tsai, Chao-Wei

    2011-12-20

    We obtained 350 and 850 {mu}m continuum maps of the infrared dark cloud G049.40-00.01. Twenty-one dense clumps were identified within G049.40-00.01 based on the 350 {mu}m continuum map with an angular resolution of about 9.''6. We present submillimeter continuum maps and report physical properties of the clumps. The masses of clumps range from 50 to 600 M{sub Sun }. About 70% of the clumps are associated with bright 24 {mu}m emission sources, and they may contain protostars. The two most massive clumps show extended, enhanced 4.5 {mu}m emission indicating vigorous star-forming activity. The clump-size-mass distribution suggests that many of them are forming high-mass stars. G049.40-00.01 contains numerous objects in various evolutionary stages of star formation, from pre-protostellar clumps to H II regions.

  11. The Herschel Virgo Cluster Survey. XVIII. Star-forming dwarf galaxies in a cluster environment

    NASA Astrophysics Data System (ADS)

    Grossi, M.; Hunt, L. K.; Madden, S. C.; Hughes, T. M.; Auld, R.; Baes, M.; Bendo, G. J.; Bianchi, S.; Bizzocchi, L.; Boquien, M.; Boselli, A.; Clemens, M.; Corbelli, E.; Cortese, L.; Davies, J.; De Looze, I.; di Serego Alighieri, S.; Fritz, J.; Pappalardo, C.; Pierini, D.; Rémy-Ruyer, A.; Smith, M. W. L.; Verstappen, J.; Viaene, S.; Vlahakis, C.

    2015-02-01

    To assess the effects of the cluster environment on the different components of the interstellar medium, we analyse the far-infrared (FIR) and submillimetre (submm) properties of a sample of star-forming dwarf galaxies detected by the Herschel Virgo Cluster Survey (HeViCS). We determine dust masses and dust temperatures by fitting a modified black body function to the spectral energy distributions (SEDs). Stellar and gas masses, star formation rates (SFRs), and metallicities are obtained from the analysis of a set of ancillary data. Dust is detected in 49 out of a total 140 optically identified dwarfs covered by the HeViCS field; considering only dwarfs brighter than mB = 18 mag, this gives a detection rate of 43%. After evaluating different emissivity indices, we find that the FIR-submm SEDs are best-fit by β = 1.5, with a median dust temperature Td = 22.4 K. Assuming β = 1.5, 67% of the 23 galaxies detected in all five Herschel bands show emission at 500 μm in excess of the modified black-body model. The fraction of galaxies with a submillimetre excess decreases for lower values of β, while a similarly high fraction (54%) is found if a β-free SED modelling is applied. The excess is inversely correlated with SFR and stellar masses. To study the variations in the global properties of our sample that come from environmental effects, we compare the Virgo dwarfs to other Herschel surveys,such as the Key Insights into Nearby Galaxies: Far-Infrared Survey with Herschel (KINGFISH), the Dwarf Galaxy Survey (DGS), and the HeViCS Bright Galaxy Catalogue (BGC). We explore the relations between stellar mass and Hi fraction, specific star formation rate, dust fraction, gas-to-dust ratio over a wide range of stellar masses (from 107 to 1011 M⊙) for both dwarfs and spirals. Highly Hi-deficient Virgo dwarf galaxies are mostly characterised by quenched star formation activity and lower dust fractions giving hints for dust stripping in cluster dwarfs. However, to explain the

  12. Mycobacteria Clumping Increase Their Capacity to Damage Macrophages

    PubMed Central

    Brambilla, Cecilia; Llorens-Fons, Marta; Julián, Esther; Noguera-Ortega, Estela; Tomàs-Martínez, Cristina; Pérez-Trujillo, Miriam; Byrd, Thomas F.; Alcaide, Fernando; Luquin, Marina

    2016-01-01

    The rough morphotypes of non-tuberculous mycobacteria have been associated with the most severe illnesses in humans. This idea is consistent with the fact that Mycobacterium tuberculosis presents a stable rough morphotype. Unlike smooth morphotypes, the bacilli of rough morphotypes grow close together, leaving no spaces among them and forming large aggregates (clumps). Currently, the initial interaction of macrophages with clumps remains unclear. Thus, we infected J774 macrophages with bacterial suspensions of rough morphotypes of M. abscessus containing clumps and suspensions of smooth morphotypes, primarily containing isolated bacilli. Using confocal laser scanning microscopy and electron microscopy, we observed clumps of at least five rough-morphotype bacilli inside the phagocytic vesicles of macrophages at 3 h post-infection. These clumps grew within the phagocytic vesicles, killing 100% of the macrophages at 72 h post-infection, whereas the proliferation of macrophages infected with smooth morphotypes remained unaltered at 96 h post-infection. Thus, macrophages phagocytose large clumps, exceeding the bactericidal capacities of these cells. Furthermore, proinflammatory cytokines and granuloma-like structures were only produced by macrophages infected with rough morphotypes. Thus, the present study provides a foundation for further studies that consider mycobacterial clumps as virulence factors. PMID:27757105

  13. Small scale clustering of late forming dark matter

    NASA Astrophysics Data System (ADS)

    Agarwal, S.; Corasaniti, P.-S.; Das, S.; Rasera, Y.

    2015-09-01

    We perform a study of the nonlinear clustering of matter in the late-forming dark matter (LFDM) scenario in which dark matter results from the transition of a nonminimally coupled scalar field from radiation to collisionless matter. A distinct feature of this model is the presence of a damped oscillatory cutoff in the linear matter power spectrum at small scales. We use a suite of high-resolution N-body simulations to study the imprints of LFDM on the nonlinear matter power spectrum, the halo mass and velocity functions and the halo density profiles. The model largely satisfies high-redshift matter power spectrum constraints from Lyman-α forest measurements, while it predicts suppressed abundance of low-mass halos (˜109- 1010 h-1 M⊙ ) at all redshifts compared to a vanilla Λ CDM model. The analysis of the LFDM halo velocity function shows a better agreement than the Λ CDM prediction with the observed abundance of low-velocity galaxies in the local volume. Halos with mass M ≳1011 h-1 M⊙ show minor departures of the density profiles from Λ CDM expectations, while smaller-mass halos are less dense, consistent with the fact that they form later than their Λ CDM counterparts.

  14. Glass Frit Clumping And Dusting

    SciTech Connect

    Steimke, J. L.

    2013-09-26

    DWPF mixes a slurry of glass frit (Frit 418) and dilute (1.5 wt%) formic acid solution with high level waste in the Slurry Mix Evaporator (SME). There would be advantages to introducing the frit in a non-slurry form to minimize water addition to the SME, however, adding completely dry frit has the potential to generate dust which could clog filters or condensers. Prior testing with another type of frit, Frit 320, and using a minimal amount of water reduced dust generation, however, the formation of hard clumps was observed. To examine options and behavior, a TTQAP [McCabe and Stone, 2013] was written to initiate tests that would address these concerns. Tests were conducted with four types of glass frit; Frit 320, DWPF Frit 418, Bekeson Frit 418 and Multi-Aspirator Frit 418. The last two frits are chemically identical to DWPF Frit 418 but smaller particles were removed by the respective vendors. Test results on Frit Clumping and Dusting are provided in this report. This report addresses the following seven questions. Short answers are provided below with more detailed answers to follow. 1. Will the addition of a small amount of water, 1.5 wt%, to dry DWPF Frit 418 greatly reduce the dust generation during handling at DWPF? a. Yes, a small scale test showed that adding a little water to the frit greatly reduced dust generation during handling. 2. Will the addition of small amounts of water to the frit cause clumping that will impair frit handling at DWPF? a. No, not with Frit 418. Although clumps were observed to form when 1.5 wt% water was mixed with DWPF Frit 418, then compressed and air-dried overnight, the clumps were easily crushed and did not form the hardened material noted when Frit 320 was tested. 3. What is the measured size distribution of dust generated when dry frit is handled? (This affects the feasibility and choice of processing equipment for removing the dust generating fraction of the frit before it is added to the SME.) a. The size distribution for

  15. Search for starless clumps in the ATLASGAL survey

    NASA Astrophysics Data System (ADS)

    Tackenberg, J.; Beuther, H.; Henning, T.; Schuller, F.; Wienen, M.; Motte, F.; Wyrowski, F.; Bontemps, S.; Bronfman, L.; Menten, K.; Testi, L.; Lefloch, B.

    2012-04-01

    Context. Understanding massive star formation requires comprehensive knowledge about the initial conditions of this process. The cradles of massive stars are believed to be located in dense and massive molecular clumps. Aims: In this study, we present an unbiased sample of the earliest stages of massive star formation across 20 deg2 of the sky. Methods: Within the region 10° < l < 20° and |b| < 1°, we search the ATLASGAL survey at 870 μm for dense gas condensations. These clumps are carefully examined for indications of ongoing star formation using YSOs from the GLIMPSE source catalog as well as sources in the 24 μm MIPSGAL images, to search for starless clumps. We calculate the column densities as well as the kinematic distances and masses for sources where the vlsr is known from spectroscopic observations. Results: Within the given region, we identify 210 starless clumps with peak column densities >1 × 1023 cm-2. In particular, we identify potential starless clumps on the other side of the Galaxy. The sizes of the clumps range between 0.1 pc and 3 pc with masses between a few tens of M⊙ up to several ten thousands of M⊙. Most of them may form massive stars, but in the 20 deg2 area we only find 14 regions massive enough to form stars more massive than 20 M⊙ and 3 regions with the potential to form stars more massive than 40 M⊙. The slope of the high-mass tail of the clump mass function for clumps on the near side of the Galaxy is α = 2.2 and, therefore, Salpeter-like. We estimate the lifetime of the most massive starless clumps to be (6 ± 5) × 104 yr. Conclusions: The sample offers a uniform selection of starless clumps. In the large area surveyed, we only find a few potential precursors of stars in the excess of 40 M⊙. It appears that the lifetime of these clumps is somewhat shorter than their free-fall times, although both values agree within the errors. In addition, these are ideal objects for detailed studies and follow-up observations. The

  16. Red Clump Stars

    NASA Astrophysics Data System (ADS)

    Girardi, Léo

    2016-09-01

    Low-mass stars in their core-helium-burning stage define the sharpest feature present in the color-magnitude diagrams of nearby galaxy systems: the red clump (RC). This feature has given rise to a series of methods aimed at measuring the distributions of stellar distances and extinctions, especially in the Magellanic Clouds and Milky Way Bulge. Because the RC is easily recognizable within the data of large spectroscopic and asteroseismic surveys, it is a useful probe of stellar densities, kinematics, and chemical abundances across the Milky Way disk; it can be applied up to larger distances than that allowed by dwarfs; and it has better accuracy than is possible with other kinds of giants. Here, we discuss the reasons for the RC narrowness in several sets of observational data, its fine structure, and the presence of systematic changes in the RC properties as regards age, metallicity, and the observed passband. These factors set the limits on the validity and accuracy of several RC methods defined in the literature.

  17. Robustness of a partially interdependent network formed of clustered networks

    NASA Astrophysics Data System (ADS)

    Shao, Shuai; Huang, Xuqing; Stanley, H. Eugene; Havlin, Shlomo

    2014-03-01

    Clustering, or transitivity, a behavior observed in real-world networks, affects network structure and function. This property has been studied extensively, but most of this research has been limited to clustering in single networks. The effect of clustering on the robustness of coupled networks, on the other hand, has received much less attention. Only the case of a pair of fully coupled networks with clustering has recently received study. Here we generalize the study of clustering of a fully coupled pair of networks and apply it to a partially interdependent network of networks with clustering within the network components. We show, both analytically and numerically, how clustering within networks affects the percolation properties of interdependent networks, including the percolation threshold, the size of the giant component, and the critical coupling point at which the first-order phase transition changes to a second-order phase transition as the coupling between the networks is reduced. We study two types of clustering, one proposed by Newman [Phys. Rev. Lett. 103, 058701 (2009), 10.1103/PhysRevLett.103.058701] in which the average degree is kept constant while the clustering is changed, and the other by Hackett et al. [Phys. Rev. E 83, 056107 (2011), 10.1103/PhysRevE.83.056107] in which the degree distribution is kept constant. The first type of clustering is studied both analytically and numerically, and the second is studied numerically.

  18. Remarks on the clump theory

    SciTech Connect

    Krommes, J.A.

    1986-07-01

    Further details are provided of a soon-to-be published dialog (Phys. Fluids 29 (July, 1986)) which discussed the role of the small scales in fluid clump theory. It is argued that the approximation of the clump lifetime which is compatible with exponentially rapid separation of adjacent orbits is inappropriate for the description of the dynamically important large scales. Various other remarks are made relating to the analytic treatment of strong drift-wave-like turbulence.

  19. CUPID: Clump Identification and Analysis Package

    NASA Astrophysics Data System (ADS)

    Berry, David S.; Reinhold, K.; Jenness, Tim; Economou, Frossie

    2013-11-01

    The CUPID package allows the identification and analysis of clumps of emission within 1, 2 or 3 dimensional data arrays. Whilst targeted primarily at sub-mm cubes, it can be used on any regularly gridded 1, 2 or 3D data. A variety of clump finding algorithms are implemented within CUPID, including the established ClumpFind (ascl:1107.014) and GaussClumps algorithms. In addition, two new algorithms called FellWalker and Reinhold are also provided. CUPID allows easy inter-comparison between the results of different algorithms; the catalogues produced by each algorithm contains a standard set of columns containing clump peak position, clump centroid position, the integrated data value within the clump, clump volume, and the dimensions of the clump. In addition, pixel masks are produced identifying which input pixels contribute to each clump. CUPID is distributed as part of the Starlink (ascl:1110.012) software collection.

  20. Fuzzy clustering of facial form for prototyping environmental protection equipment

    SciTech Connect

    Robinson, D.G.

    1994-07-01

    Emphasis on the human-to-aircraft interface has magnified in importance as the performance envelope of today`s aircraft has continued to expand. A major problem is that there has been a corresponding increase in the need for better fitting protection equipment and unfortunately it has become increasingly difficult for aircrew members to find equipment that will provide this level of fit. While protection equipment has, historically had poor fit characteristics, the issue has grown tremendously with the recent increase in the numbers of minorities and women. Fundamental to this problem are the archaic methods for sizing individual equipment and the methods for establishing a sizing system. This paper documents recent investigations by the author into developing new methods to overcome these problems. Research centered on the development of a new statistically based method for describing form and the application of fuzzy clustering using the new shape descriptors. A sizing system was developed from the application of the research, prototype masks were constructed and the hardware tested under flight conditions.

  1. HUBBLE SPIES HUGE CLUSTERS OF STARS FORMED BY ANCIENT ENCOUNTER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope snapped these two views of the heart of the galaxy M82. The image at left was taken in visible light; the picture at right, in infrared light. In the infrared view, the telescope's Near Infrared Camera and Multi-Object Spectrometer peered through thick dust lanes to find some of the galaxy's more than 100 super star clusters. The clusters are the larger pink and yellow dots scattered throughout the picture. They were formed during a violent collision with the galaxy M81 about 600 million years ago. The galaxy is 12 million light-years from Earth in the constellation Ursa Major. The pictures were taken Sept. 15, 1997. Credits: NASA, ESA, R. de Grijs (Institute of Astronomy, Cambridge, UK) NOTE TO EDITORS: For additional information, please contact Richard de Grijs, Institute of Astronomy, Cambridge University, Madingley Road, Cambridge CB3 0HA, UK, +44(0)1223-337528 (phone), +44(0)1223-337523 (fax), grijs@ast.cam.ac.uk (e-mail). The Space Telescope Science Institute (STScI) is operated by the Association of Universities for Research in Astronomy, Inc. (AURA), for NASA, under contract with the Goddard Space Flight Center, Greenbelt, MD. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency (ESA). This image is issued jointly by NASA and ESA. Electronic images, animation and additional information are available at: http://oposite.stsci.edu/pubinfo/pr/2001/08 and via links in http://oposite.stsci.edu/pubinfo/latest.html http://oposite.stsci.edu/pubinfo/pictures.html http://hubble.stsci.edu/go/news http://hubble.esa.int To receive STScI press releases electronically, send an Internet electronic mail message to public-request@stsci.edu. Leave the subject line blank, and type the word subscribe in the body of the message. The system will respond with a confirmation of the subscription, and you will receive new press releases as they are issued. Please subscribe using the email account

  2. Star formation and feedback in LMC Massive Clusters: ALMA and HST analysis of 30 Doradus and N159

    NASA Astrophysics Data System (ADS)

    Indebetouw, Remy

    2015-08-01

    The Magellanic Clouds offer the opportunity to study star formation at reduced metallicity with no distance ambiguity and minimal line-of-sight confusion. They are arguably unique in that it is observationally tractable to analyze entire galaxies (e.g. our surveys with Spitzer and Herschel) simultaneously with critical subparsec physics, especially using ALMA and HST (1"~0.25pc). I will discuss the effects of the massive cluster R136 on star formation within 100pc in 30 Doradus, and on the formation of new star clusters in N159, a separate region 600pc to the south. These represent two different evolutionary states: 30 Doradus a more evolved cluster in which current star formation has potentially been significantly affected by the previous generations, and N159 a significantly younger region in which massive clusters may still form in the future. Cluster-forming clumps near R136 analyzed with ALMA contain both massive YSOs and low-mass pre-main-sequence stars revealed by HST. Although diffuse molecular gas is photodissociated, the cluster-forming clumps do not have dramatically different properties from parsec-sized clumps in less active Milky Way regions. Cluster-forming clumps and filaments in N159 also contain a rich pre-main-sequence population which we can now relate to the clump-scale dense gas distribution.

  3. The virial balance of clumps and cores in molecular clouds

    NASA Astrophysics Data System (ADS)

    Dib, Sami; Vázquez-Semadeni, Enrique; Kim, Jongsoo; Burkert, Andreas; Shadmehri, Mohsen

    We analyse the virial balance of clumps and cores in a set of three-dimensional, driven, isothermal, magnetohydrodynamical simulations of molecular clouds. We apply a clump finding algorithm based on a density threshold and a friend of friend approach to isolate clumps and cores in the simulation box. For each clump, we calculate all the terms which enter the virial equation in its Eulerian form (EVT): 1/2 ddot I_E=2E_th+E_k-τ_th-τ_k+E_m+τ_m-1/2 dΦ/dt, where the left hand side is the second time derivative of the clump moment of inertia and on the right hand side the terms are (from left to right), the thermal volume energy, volume kinetic energy, surface thermal energy, surface kinetic energy, volume magnetic energy, surface magnetic energy, gravitational term and first time derivative of the flux of moment of inertia through the clump boundary. We also calculate for each clump and core other stability indicators commonly used in both observational and theoretical work such as the Jeans number J[c], mass-to magnetic flux ratio (normalized to the critical value for collapse) μ_[c] and the gravitational parameter α_[vir]. We show that :a) Clumps and cores are dynamical, out of equilibrium structures, b) Surface energy terms are as important as the volume ones in the overall energy balance, c) Not all clumps that have infall like motions are gravitationally bound, d) The near equality of the temporal terms in the EVT enables the usage of the other terms as a stability indicator (gravity versus other energies), and e) We establish the relationships between the classical parameters J[c], μ_[c] and α_[vir] which are used to compare the ratios of gravitational to thermal, magnetic, and kinetic energy in clumps to their counterparts in the EVT (i.e., for example J[c] is compared to IWI /I E[th] -?τ [th] I). Thus, we propose a method to test the clumps stability based on observations of their derived dynamical, thermal and magnetic properties.

  4. Composition and topology of activity cliff clusters formed by bioactive compounds.

    PubMed

    Stumpfe, Dagmar; Dimova, Dilyana; Bajorath, Jürgen

    2014-02-24

    The assessment of activity cliffs has thus far mostly focused on compound pairs, although the majority of activity cliffs are not formed in isolation but in a coordinated manner involving multiple active compounds and cliffs. However, the composition of coordinated activity cliff configurations and their topologies are unknown. Therefore, we have identified all activity cliff configurations formed by currently available bioactive compounds and analyzed them in network representations where activity cliff configurations occur as clusters. The composition, topology, frequency of occurrence, and target distribution of activity cliff clusters have been determined. A limited number of large cliff clusters with unique topologies were identified that were centers of activity cliff formation. These clusters originated from a small number of target sets. However, most clusters were of small to moderate size. Three basic topologies were sufficient to describe recurrent activity cliff cluster motifs/topologies. For example, frequently occurring clusters with star topology determined the scale-free character of the global activity cliff network and represented a characteristic activity cliff configuration. Large clusters with complex topology were often found to contain different combinations of basic topologies. Our study provides a first view of activity cliff configurations formed by currently available bioactive compounds and of the recurrent topologies of activity cliff clusters. Activity cliff clusters of defined topology can be selected, and from compounds forming the clusters, SAR information can be obtained. The SAR information of activity cliff clusters sharing a/one specific activity and topology can be compared.

  5. STAR CLUSTERS IN A NUCLEAR STAR FORMING RING: THE DISAPPEARING STRING OF PEARLS

    SciTech Connect

    Väisänen, Petri; Barway, Sudhanshu; Randriamanakoto, Zara

    2014-12-20

    An analysis of the star cluster population in a low-luminosity early-type galaxy, NGC 2328, is presented. The clusters are found in a tight star forming nuclear spiral/ring pattern and we also identify a bar from structural two-dimensional decomposition. These massive clusters are forming very efficiently in the circumnuclear environment and they are young, possibly all less than 30 Myr of age. The clusters indicate an azimuthal age gradient, consistent with a ''pearls-on-a-string'' formation scenario, suggesting bar-driven gas inflow. The cluster mass function has a robust down turn at low masses at all age bins. Assuming clusters are born with a power-law distribution, this indicates extremely rapid disruption at timescales of just several million years. If found to be typical, it means that clusters born in dense circumnuclear rings do not survive to become old globular clusters in non-interacting systems.

  6. Stellar Clusters in the NGC 6334 Star-Forming Complex

    NASA Astrophysics Data System (ADS)

    Feigelson, Eric D.; Martin, Amanda L.; McNeill, Collin J.; Broos, Patrick S.; Garmire, Gordon P.

    2009-07-01

    The full stellar population of NGC 6334, one of the most spectacular regions of massive star formation in the nearby Galaxy, has not been well sampled in past studies. We analyze here a mosaic of two Chandra X-ray Observatory images of the region using sensitive data analysis methods, giving a list of 1607 faint X-ray sources with arcsecond positions and approximate line-of-sight absorption. About 95% of these are expected to be cluster members, most lower mass pre-main-sequence stars. Extrapolating to low X-ray levels, the total stellar population is estimated to be 20,000-30,000 pre-main-sequence stars. The X-ray sources show a complicated spatial pattern with ~10 distinct star clusters. The heavily obscured clusters are mostly associated with previously known far-infrared sources and radio H II regions. The lightly obscured clusters are mostly newly identified in the X-ray images. Dozens of likely OB stars are found, both in clusters and dispersed throughout the region, suggesting that star formation in the complex has proceeded over millions of years. A number of extraordinarily heavily absorbed X-ray sources are associated with the active regions of star formation.

  7. STELLAR CLUSTERS IN THE NGC 6334 STAR-FORMING COMPLEX

    SciTech Connect

    Feigelson, Eric D.; Martin, Amanda L.; McNeill, Collin J.; Broos, Patrick S.; Garmire, Gordon P.

    2009-07-15

    The full stellar population of NGC 6334, one of the most spectacular regions of massive star formation in the nearby Galaxy, has not been well sampled in past studies. We analyze here a mosaic of two Chandra X-ray Observatory images of the region using sensitive data analysis methods, giving a list of 1607 faint X-ray sources with arcsecond positions and approximate line-of-sight absorption. About 95% of these are expected to be cluster members, most lower mass pre-main-sequence stars. Extrapolating to low X-ray levels, the total stellar population is estimated to be 20,000-30,000 pre-main-sequence stars. The X-ray sources show a complicated spatial pattern with {approx}10 distinct star clusters. The heavily obscured clusters are mostly associated with previously known far-infrared sources and radio H II regions. The lightly obscured clusters are mostly newly identified in the X-ray images. Dozens of likely OB stars are found, both in clusters and dispersed throughout the region, suggesting that star formation in the complex has proceeded over millions of years. A number of extraordinarily heavily absorbed X-ray sources are associated with the active regions of star formation.

  8. High-Redshift Clusters form NVSS: The TexOx Cluster (TOC) Survey

    SciTech Connect

    Croft, S; Rawlings, S; Hill, G J

    2003-02-11

    The TexOx Cluster (TOC) Survey uses overdensities of radiosources in the NVSS to trace clusters of galaxies. The links between radiosources and rich environments make this a powerful way to find clusters which may potentially be overlooked by other selection techniques. By including constraints from optical surveys, TOC is an extremely efficient way to find clusters at high redshift. One such field, TOC J0233.3+3021, contains at least one galaxy cluster (at z {approx} 1.4) and has been detected using the Sunyaev-Zel'dovich (SZ) effect. Even in targeted deep optical observations, however, distinguishing the cluster galaxies from the background is difficult, especially given the tendency of TOC to select fields containing multiple structures at different redshifts.

  9. Generation of self-clusters of galectin-1 in the farnesyl-bound form

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Kazumi; Niwa, Yusuke; Nakabayashi, Takakazu; Hiramatsu, Hirotsugu

    2016-09-01

    Ras protein is involved in a signal transduction cascade in cell growth, and cluster formation of H-Ras and human galectin-1 (Gal-1) complex is considered to be crucial to achieve its physiological roles. It is considered that the complex is formed through interactions between Gal-1 and the farnesyl group (farnesyl-dependent model), post-translationally modified to the C-terminal Cys, of H-Ras. We investigated the role of farnesyl-bound Gal-1 in the cluster formation by analyzing the structure and properties of Gal-1 bound to farnesyl thiosalicylic acid (FTS), a competitive inhibitor of the binding of H-Ras to Gal-1. Gal-1 exhibited self-cluster formation upon interaction with FTS, and small- and large-size clusters were formed depending on FTS concentration. The galactoside-binding pocket of Gal-1 in the FTS-bound form was found to play an important role in small-size cluster formation. Large-size clusters were likely formed by the interaction among the hydrophobic sites of Gal-1 in the FTS-bound form. The present results indicate that Gal-1 in the FTS-bound form has the ability to form self-clusters as well as intrinsic lectin activity. Relevance of the self-clustering of FTS-bound Gal-1 to the cluster formation of the H-Ras–Gal-1complex was discussed by taking account of the farnesyl-dependent model and another (Raf-dependent) model.

  10. The Spatial Distribution of the Young Stellar Clusters in the Star-forming Galaxy NGC 628

    NASA Astrophysics Data System (ADS)

    Grasha, K.; Calzetti, D.; Adamo, A.; Kim, H.; Elmegreen, B. G.; Gouliermis, D. A.; Aloisi, A.; Bright, S. N.; Christian, C.; Cignoni, M.; Dale, D. A.; Dobbs, C.; Elmegreen, D. M.; Fumagalli, M.; Gallagher, J. S., III; Grebel, E. K.; Johnson, K. E.; Lee, J. C.; Messa, M.; Smith, L. J.; Ryon, J. E.; Thilker, D.; Ubeda, L.; Wofford, A.

    2015-12-01

    We present a study of the spatial distribution of the stellar cluster populations in the star-forming galaxy NGC 628. Using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury Program LEGUS (Legacy ExtraGalactic UV Survey), we have identified 1392 potential young (≲ 100 Myr) stellar clusters within the galaxy using a combination of visual inspection and automatic selection. We investigate the clustering of these young stellar clusters and quantify the strength and change of clustering strength with scale using the two-point correlation function. We also investigate how image boundary conditions and dust lanes affect the observed clustering. The distribution of the clusters is well fit by a broken power law with negative exponent α. We recover a weighted mean index of α ∼ -0.8 for all spatial scales below the break at 3.″3 (158 pc at a distance of 9.9 Mpc) and an index of α ∼ -0.18 above 158 pc for the accumulation of all cluster types. The strength of the clustering increases with decreasing age and clusters older than 40 Myr lose their clustered structure very rapidly and tend to be randomly distributed in this galaxy, whereas the mass of the star cluster has little effect on the clustering strength. This is consistent with results from other studies that the morphological hierarchy in stellar clustering resembles the same hierarchy as the turbulent interstellar medium.

  11. The Evolution of the Globular Cluster System in a Triaxial Galaxy: Can a Galactic Nucleus Form by Globular Cluster Capture?

    NASA Astrophysics Data System (ADS)

    Capuzzo-Dolcetta, Roberto

    1993-10-01

    Among the possible phenomena inducing evolution of the globular cluster system in an elliptical galaxy, dynamical friction due to field stars and tidal disruption caused by a central nucleus is of crucial importance. The aim of this paper is the study of the evolution of the globular cluster system in a triaxial galaxy in the presence of these phenomena. In particular, the possibility is examined that some galactic nuclei have been formed by frictionally decayed globular clusters moving in a triaxial potential. We find that the initial rapid growth of the nucleus, due mainly to massive clusters on box orbits falling in a short time scale into the galactic center, is later slowed by tidal disruption induced by the nucleus itself on less massive clusters in the way described by Ostriker, Binney, and Saha. The efficiency of dynamical friction is such to carry to the center of the galaxy enough globular cluster mass available to form a compact nucleus, but the actual modes and results of cluster-cluster encounters in the central potential well are complicated phenomena which remains to be investigated. The mass of the resulting nucleus is determined by the mutual feedback of the described processes, together with the initial spatial, velocity, and mass distributions of the globular cluster family. The effect on the system mass function is studied, showing the development of a low- and high-mass turnover even with an initially flat mass function. Moreover, in this paper is discussed the possibility that the globular cluster fall to the galactic center has been a cause of primordial violent galactic activity. An application of the model to M31 is presented.

  12. Constraining the Star Forming History in Monoceros: A Study of Embedded Cluster Ages and Spatial Structure

    NASA Astrophysics Data System (ADS)

    Lada, Elizabeth A.; Marinas, Naibi; Levine, Joanna L.; Ferreira, Bruno

    2009-08-01

    We propose to use FLAMINGOS multi-object spectrometer on the KPNO 4 meter telescope to complete a spectroscopic survey of 7 clusters in the Monoceros GMC. The data will be combined with existing FLAMINGOS photometry to determine the ages and masses of the stars in the clusters using the HR Diagram and PMS evolutionary models. This information, combined with the spatial distribution of clusters in the cloud, determined from previous observations, will allow us to investigate the ages and age spreads of the embedded clusters and the star forming histories of the clusters and the molecular cloud.

  13. Constraining the Star Forming History in Monoceros: A Study of Embedded Cluster Ages and Spatial Structure

    NASA Astrophysics Data System (ADS)

    Marinas, Naibi; Lada, Elizabeth; Ybarra, Jason; Fleming, Scott

    2010-08-01

    We propose to use FLAMINGOS multi-object spectrometer on the KPNO 4 meter telescope to complete a spectroscopic survey of 5 clusters in the Monoceros GMC. The data will be combined with existing FLAMINGOS photometry to determine the ages and masses of the stars in the clusters using the HR Diagram and PMS evolutionary models. This information, combined with the spatial distribution of clusters in the cloud, determined from previous observations, will allow us to investigate the ages and age spreads of the embedded clusters and the star forming histories of the clusters and the molecular cloud.

  14. THERE ARE NO STARLESS MASSIVE PROTO-CLUSTERS IN THE FIRST QUADRANT OF THE GALAXY

    SciTech Connect

    Ginsburg, A.; Bally, J.; Battersby, C.; Bressert, E.

    2012-10-20

    We search the {lambda} = 1.1 mm Bolocam Galactic Plane Survey for clumps containing sufficient mass to form {approx}10{sup 4} M{sub Sun} star clusters. Eighteen candidate massive proto-clusters are identified in the first Galactic quadrant outside of the central kiloparsec. This sample is complete to clumps with mass M{sub clump} > 10{sup 4} M{sub Sun} and radius r {approx}< 2.5 pc. The overall Galactic massive cluster formation rate is CFR(M{sub cluster} > 10{sup 4}) {approx}<5 Myr{sup -1}, which is in agreement with the rates inferred from Galactic open clusters and M31 massive clusters. We find that all massive proto-clusters in the first quadrant are actively forming massive stars and place an upper limit of {tau}{sub starless} < 0.5 Myr on the lifetime of the starless phase of massive cluster formation. If massive clusters go through a starless phase with all of their mass in a single clump, the lifetime of this phase is very short.

  15. Clumped isotope thermometry of cryogenic cave carbonates

    NASA Astrophysics Data System (ADS)

    Kluge, Tobias; Affek, Hagit P.; Zhang, Yi Ge; Dublyansky, Yuri; Spötl, Christoph; Immenhauser, Adrian; Richter, Detlev K.

    2014-02-01

    Freezing of cave pool water that is increasingly oversaturated with dissolved carbonate leads to precipitation of a very specific type of speleothems known as cryogenic cave carbonates (CCC). At present, two different environments for their formation have been proposed, based on their characteristic carbon and oxygen isotope ratios. Rapidly freezing thin water films result in the fast precipitation of fine-grained carbonate powder (CCCfine). This leads to rapid physicochemical changes including CO2 degassing and CaCO3 precipitation, resulting in significantly 13C-enriched carbonates. Alternatively, slow carbonate precipitation in ice-covered cave pools results in coarse crystalline CCC (CCCcoarse) yielding strongly 18O-depleted carbonate. This is due to the formation of relatively 18O-enriched ice causing the gradual depletion of 18O in the water from which the CCC precipitates. Cryogenic carbonates from Central European caves were found to have been formed primarily during the last glacial period, specifically during times of permafrost thawing, based on the oxygen isotope ratios and U-Th dating. Information about the precise conditions of CCCcoarse formation, i.e. whether these crystals formed under equilibrium or disequilibrium conditions with the parent fluid, however, is lacking. An improved understanding of CCCcoarse formation will increase the predictive value of this paleo-permafrost archive. Here we apply clumped isotopes to investigate the formation conditions of cryogenic carbonates using well-studied CCCcoarse from five different cave systems in western Germany. Carbonate clumped isotope measurements yielded apparent temperatures between 3 and 18 °C and thus exhibit clear evidence of isotopic disequilibrium. Although the very negative carbonate δ18O values can only be explained by gradual freezing of pool water accompanied by preferential incorporation of 18O into the ice, clumped isotope-derived temperatures significantly above expected freezing

  16. Predicted Sizes of Pressure-supported HI Clouds in the Outskirts of the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Burkhart, Blakesley; Loeb, Abraham

    2016-06-01

    Using data from the ALFALFA AGES Arecibo HI survey of galaxies and the Virgo cluster X-ray pressure profiles from XMM-Newton, we investigate the possibility that starless dark HI clumps, also known as “dark galaxies,” are supported by external pressure in the surrounding intercluster medium. We find that the starless HI clump masses, velocity dispersions, and positions allow these clumps to be in pressure equilibrium with the X-ray gas near the virial radius of the Virgo cluster. We predict the sizes of these clumps to range from 1 to 10 kpc, in agreement with the range of sizes found for spatially resolved HI starless clumps outside of Virgo. Based on the predicted HI surface density of the Virgo sources, as well as a sample of other similar resolved ALFALFA HI dark clumps with follow-up optical/radio observations, we predict that most of the HI dark clumps are on the cusp of forming stars. These HI sources therefore mark the transition between starless HI clouds and dwarf galaxies with stars.

  17. Chemical ionization of clusters formed from sulfuric acid and dimethylamine or diamines

    NASA Astrophysics Data System (ADS)

    Jen, Coty N.; Zhao, Jun; McMurry, Peter H.; Hanson, David R.

    2016-10-01

    Chemical ionization (CI) mass spectrometers are used to study atmospheric nucleation by detecting clusters produced by reactions of sulfuric acid and various basic gases. These instruments typically use nitrate to deprotonate and thus chemically ionize the clusters. In this study, we compare cluster concentrations measured using either nitrate or acetate. Clusters were formed in a flow reactor from vapors of sulfuric acid and dimethylamine, ethylene diamine, tetramethylethylene diamine, or butanediamine (also known as putrescine). These comparisons show that nitrate is unable to chemically ionize clusters with high base content. In addition, we vary the ion-molecule reaction time to probe ion processes which include proton-transfer, ion-molecule clustering, and decomposition of ions. Ion decomposition upon deprotonation by acetate/nitrate was observed. More studies are needed to quantify to what extent ion decomposition affects observed cluster content and concentrations, especially those chemically ionized with acetate since it deprotonates more types of clusters than nitrate.Model calculations of the neutral and ion cluster formation pathways are also presented to better identify the cluster types that are not efficiently deprotonated by nitrate. Comparison of model and measured clusters indicate that sulfuric acid dimers with two diamines and sulfuric acid trimers with two or more base molecules are not efficiently chemical ionized by nitrate. We conclude that acetate CI provides better information on cluster abundancies and their base content than nitrate CI.

  18. CO depletion in ATLASGAL-selected high-mass clumps

    NASA Astrophysics Data System (ADS)

    Giannetti, A.; Wyrowski, F.; Brand, J.; Csengeri, T.; Fontani, F.; Walmsley, C. M.; Nguyen Luong, Q.; Beuther, H.; Schuller, F.; Güsten, R.; Menten, K. M.

    2016-05-01

    In the low-mass regime, it is found that the gas-phase abundances of C-bearing molecules in cold starless cores rapidly decrease with increasing density. Here the molecules tend to stick to the grains, forming ice mantles. We study CO depletion in the TOP100 sample of the ATLASGAL survey, and investigate its correlation with evolutionary stage and with the physical parameters of the sources. We use low-J emission lines of CO isotopologues and the dust continuum emission to infer the depletion factor fD. RATRAN one-dimensional models were also used to determine fD and to investigate the presence of depletion above a density threshold. The isotopic ratios and optical depth were derived with a Bayesian approach. We find a significant number of clumps with a large CO depletion, up to ˜20. Larger values are found for colder clumps, thus for earlier evolutionary phases. For massive clumps in the earliest stages of evolution we estimate the radius of the region where CO depletion is important to be a few tenths of a pc. CO depletion in high-mass clumps seems to behave as in the low-mass regime, with less evolved clumps showing larger values for the depletion than their more evolved counterparts, and increasing for denser sources.

  19. The clustering evolution of dusty star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Cowley, William I.; Lacey, Cedric G.; Baugh, Carlton M.; Cole, Shaun

    2016-09-01

    We present predictions for the clustering of galaxies selected by their emission at far-infrared (FIR) and sub-millimetre wavelengths. This includes the first predictions for the effect of clustering biases induced by the coarse angular resolution of single-dish telescopes at these wavelengths. We combine a new version of the GALFORM model of galaxy formation with a self-consistent model for calculating the absorption and re-emission of radiation by interstellar dust. Model galaxies selected at 850μm reside in dark matter haloes of mass Mhalo ˜ 1011.5-1012 h-1 M⊙, independent of redshift (for 0.2 ≲ z ≲ 4) or flux (for 0.25 ≲ S850 μm ≲ 4 mJy). At z ˜ 2.5, the brightest galaxies (S850 μm > 4 mJy) exhibit a correlation length of r0=5.5_{-0.5}^{+0.3} h-1 Mpc, consistent with observations. We show that these galaxies have descendants with stellar masses M⋆ ˜ 1011 h-1 M⊙ occupying haloes spanning a broad range in mass Mhalo ˜ 1012-1014 h-1 M⊙. The FIR emissivity at shorter wavelengths (250, 350 and 500 μm) is also dominated by galaxies in the halo mass range Mhalo ˜ 1011.5-1012 h-1 M⊙, again independent of redshift (for 0.5 ≲ z ≲ 5). We compare our predictions for the angular power spectrum of cosmic infrared background anisotropies at these wavelengths with observations, finding agreement to within a factor of ˜2 over all scales and wavelengths, an improvement over earlier versions of the model. Simulating images at 850 μm, we show that confusion effects boost the measured angular correlation function on all scales by a factor of ˜4. This has important consequences, potentially leading to inferred halo masses being overestimated by an order of magnitude.

  20. The simultaneous formation of massive stars and stellar clusters

    NASA Astrophysics Data System (ADS)

    Smith, Rowan J.; Longmore, Steven; Bonnell, Ian

    2009-12-01

    We show that massive stars and stellar clusters are formed simultaneously, the global evolution of the forming cluster is what allows the central stars to become massive. We predict that massive star-forming clumps, such as those observed in Motte et al., contract and grow in mass leading to the formation of massive stars. This occurs as mass is continually channelled from large radii on to the central protostars, which can become massive through accretion. Using smoothed particle hydrodynamic simulations of massive star-forming clumps in a giant molecular cloud, we show that clumps are initially diffuse and filamentary, and become more concentrated as they collapse. Simulated interferometry observations of our data provide an explanation as to why young massive star-forming regions show more substructure than older ones. The most massive stars in our model are found within the most bound cluster. Most of the mass accreted by the massive stars was originally distributed throughout the clump at low densities and was later funnelled to the star due to global infall. Even with radiative feedback no massive pre-stellar cores are formed. The original cores are of intermediate mass and gain their additional mass in the protostellar stage. We also find that cores which form low-mass stars exist within the volume from which the high-mass stars accrete, but are largely unaffected by this process.

  1. Carbonate clumped isotope bond reordering and geospeedometry

    NASA Astrophysics Data System (ADS)

    Passey, Benjamin H.; Henkes, Gregory A.

    2012-10-01

    Carbonate clumped isotope thermometry is based on the preference of 13C and 18O to form bonds with each other. At elevated temperatures such bond ordering is susceptible to resetting by diffusion of C and O through the solid mineral lattice. This type of bond reordering has the potential to obscure primary paleoclimate information, but could also provide a basis for reconstructing shallow crustal temperatures and cooling rates. We determined Arrhenius parameters for solid-state reordering of C-O bonds in two different calcites through a series of laboratory heating experiments. We find that the calcites have different susceptibilities to solid-state reordering. Reaction progress follows a first order rate law in both calcites, but only after an initial period of non-first order reaction that we suggest relates to annealing of nonequilibrium defects when the calcites are first heated to experimental temperature. We show that the apparent equilibrium temperature equations (or "closure temperature" equations) for carbonate clumped isotope reordering are analogous Dodson's equations for first order loss of daughter isotopes. For each calcite, the sensitivity of apparent equilibrium temperature to cooling rate is sufficiently high for inference of cooling rates within a factor of ˜5 or better for cooling rates ranging from tens of degrees per day to a few degrees per million years. However, because the calcites have different susceptibilities to reordering, each calcite defines its own cooling rate-apparent equilibrium temperature relationship. The cooling rates of Carrara marble inferred from carbonate clumped isotope geospeedometry are 10-6-10-3 degrees per annum and are in broad agreement with rates inferred from thermochronometric methods. Cooling rates for 13C-depleted calcites from the late Neoproterozoic Doushantou cap carbonates in south China are on the order of 102-104 degrees per annum, consistent with rapid cooling following formation of these calcites by a

  2. Generation of self-clusters of galectin-1 in the farnesyl-bound form.

    PubMed

    Yamaguchi, Kazumi; Niwa, Yusuke; Nakabayashi, Takakazu; Hiramatsu, Hirotsugu

    2016-01-01

    Ras protein is involved in a signal transduction cascade in cell growth, and cluster formation of H-Ras and human galectin-1 (Gal-1) complex is considered to be crucial to achieve its physiological roles. It is considered that the complex is formed through interactions between Gal-1 and the farnesyl group (farnesyl-dependent model), post-translationally modified to the C-terminal Cys, of H-Ras. We investigated the role of farnesyl-bound Gal-1 in the cluster formation by analyzing the structure and properties of Gal-1 bound to farnesyl thiosalicylic acid (FTS), a competitive inhibitor of the binding of H-Ras to Gal-1. Gal-1 exhibited self-cluster formation upon interaction with FTS, and small- and large-size clusters were formed depending on FTS concentration. The galactoside-binding pocket of Gal-1 in the FTS-bound form was found to play an important role in small-size cluster formation. Large-size clusters were likely formed by the interaction among the hydrophobic sites of Gal-1 in the FTS-bound form. The present results indicate that Gal-1 in the FTS-bound form has the ability to form self-clusters as well as intrinsic lectin activity. Relevance of the self-clustering of FTS-bound Gal-1 to the cluster formation of the H-Ras-Gal-1complex was discussed by taking account of the farnesyl-dependent model and another (Raf-dependent) model. PMID:27624845

  3. Generation of self-clusters of galectin-1 in the farnesyl-bound form

    PubMed Central

    Yamaguchi, Kazumi; Niwa, Yusuke; Nakabayashi, Takakazu; Hiramatsu, Hirotsugu

    2016-01-01

    Ras protein is involved in a signal transduction cascade in cell growth, and cluster formation of H-Ras and human galectin-1 (Gal-1) complex is considered to be crucial to achieve its physiological roles. It is considered that the complex is formed through interactions between Gal-1 and the farnesyl group (farnesyl-dependent model), post-translationally modified to the C-terminal Cys, of H-Ras. We investigated the role of farnesyl-bound Gal-1 in the cluster formation by analyzing the structure and properties of Gal-1 bound to farnesyl thiosalicylic acid (FTS), a competitive inhibitor of the binding of H-Ras to Gal-1. Gal-1 exhibited self-cluster formation upon interaction with FTS, and small- and large-size clusters were formed depending on FTS concentration. The galactoside-binding pocket of Gal-1 in the FTS-bound form was found to play an important role in small-size cluster formation. Large-size clusters were likely formed by the interaction among the hydrophobic sites of Gal-1 in the FTS-bound form. The present results indicate that Gal-1 in the FTS-bound form has the ability to form self-clusters as well as intrinsic lectin activity. Relevance of the self-clustering of FTS-bound Gal-1 to the cluster formation of the H-Ras–Gal-1complex was discussed by taking account of the farnesyl-dependent model and another (Raf-dependent) model. PMID:27624845

  4. Nano-clustered Pd catalysts formed on GaN surface for green chemistry

    NASA Astrophysics Data System (ADS)

    Hirayama, Motoi; Ueta, Yukiko; Konishi, Tomoya; Tsukamoto, Shiro

    2011-05-01

    We have succeeded in observing Pd nano-clusters, catalytic prime elements, on a GaN(0 0 0 1) surface by a scanning tunneling microscope for the first time. After the sample was reused, we found that nano-clusters (width: 11 nm, height: 2.2 nm) existed on the surface which still kept the catalytic activity, resulting that the neutral Pd atoms formed the nano-cluster. Moreover, the S-termination contributed to the formation of the dense and flat structure consisting of the Pd nano-clusters.

  5. Form gene clustering method about pan-ethnic-group products based on emotional semantic

    NASA Astrophysics Data System (ADS)

    Chen, Dengkai; Ding, Jingjing; Gao, Minzhuo; Ma, Danping; Liu, Donghui

    2016-09-01

    The use of pan-ethnic-group products form knowledge primarily depends on a designer's subjective experience without user participation. The majority of studies primarily focus on the detection of the perceptual demands of consumers from the target product category. A pan-ethnic-group products form gene clustering method based on emotional semantic is constructed. Consumers' perceptual images of the pan-ethnic-group products are obtained by means of product form gene extraction and coding and computer aided product form clustering technology. A case of form gene clustering about the typical pan-ethnic-group products is investigated which indicates that the method is feasible. This paper opens up a new direction for the future development of product form design which improves the agility of product design process in the era of Industry 4.0.

  6. Clumps and streams in the local dark matter distribution.

    PubMed

    Diemand, J; Kuhlen, M; Madau, P; Zemp, M; Moore, B; Potter, D; Stadel, J

    2008-08-01

    In cold dark matter cosmological models, structures form and grow through the merging of smaller units. Numerical simulations have shown that such merging is incomplete; the inner cores of haloes survive and orbit as 'subhaloes' within their hosts. Here we report a simulation that resolves such substructure even in the very inner regions of the Galactic halo. We find hundreds of very concentrated dark matter clumps surviving near the solar circle, as well as numerous cold streams. The simulation also reveals the fractal nature of dark matter clustering: isolated haloes and subhaloes contain the same relative amount of substructure and both have cusped inner density profiles. The inner mass and phase-space densities of subhaloes match those of recently discovered faint, dark-matter-dominated dwarf satellite galaxies, and the overall amount of substructure can explain the anomalous flux ratios seen in strong gravitational lenses. Subhaloes boost gamma-ray production from dark matter annihilation by factors of 4 to 15 relative to smooth galactic models. Local cosmic ray production is also enhanced, typically by a factor of 1.4 but by a factor of more than 10 in one per cent of locations lying sufficiently close to a large subhalo. (These estimates assume that the gravitational effects of baryons on dark matter substructure are small.).

  7. Metabolic adaptations of Azospirillum brasilense to oxygen stress by cell-to-cell clumping and flocculation.

    PubMed

    Bible, Amber N; Khalsa-Moyers, Gurusahai K; Mukherjee, Tanmoy; Green, Calvin S; Mishra, Priyanka; Purcell, Alicia; Aksenova, Anastasia; Hurst, Gregory B; Alexandre, Gladys

    2015-12-01

    The ability of bacteria to monitor their metabolism and adjust their behavior accordingly is critical to maintain competitiveness in the environment. The motile microaerophilic bacterium Azospirillum brasilense navigates oxygen gradients by aerotaxis in order to locate low oxygen concentrations that can support metabolism. When cells are exposed to elevated levels of oxygen in their surroundings, motile A. brasilense cells implement an alternative response to aerotaxis and form transient clumps by cell-to-cell interactions. Clumping was suggested to represent a behavior protecting motile cells from transiently elevated levels of aeration. Using the proteomics of wild-type and mutant strains affected in the extent of their clumping abilities, we show that cell-to-cell clumping represents a metabolic scavenging strategy that likely prepares the cells for further metabolic stresses. Analysis of mutants affected in carbon or nitrogen metabolism confirmed this assumption. The metabolic changes experienced as clumping progresses prime cells for flocculation, a morphological and metabolic shift of cells triggered under elevated-aeration conditions and nitrogen limitation. The analysis of various mutants during clumping and flocculation characterized an ordered set of changes in cell envelope properties accompanying the metabolic changes. These data also identify clumping and early flocculation to be behaviors compatible with the expression of nitrogen fixation genes, despite the elevated-aeration conditions. Cell-to-cell clumping may thus license diazotrophy to microaerophilic A. brasilense cells under elevated oxygen conditions and prime them for long-term survival via flocculation if metabolic stress persists. PMID:26407887

  8. Metabolic adaptations of Azospirillum brasilense to oxygen stress by cell-to-cell clumping and flocculation.

    PubMed

    Bible, Amber N; Khalsa-Moyers, Gurusahai K; Mukherjee, Tanmoy; Green, Calvin S; Mishra, Priyanka; Purcell, Alicia; Aksenova, Anastasia; Hurst, Gregory B; Alexandre, Gladys

    2015-12-01

    The ability of bacteria to monitor their metabolism and adjust their behavior accordingly is critical to maintain competitiveness in the environment. The motile microaerophilic bacterium Azospirillum brasilense navigates oxygen gradients by aerotaxis in order to locate low oxygen concentrations that can support metabolism. When cells are exposed to elevated levels of oxygen in their surroundings, motile A. brasilense cells implement an alternative response to aerotaxis and form transient clumps by cell-to-cell interactions. Clumping was suggested to represent a behavior protecting motile cells from transiently elevated levels of aeration. Using the proteomics of wild-type and mutant strains affected in the extent of their clumping abilities, we show that cell-to-cell clumping represents a metabolic scavenging strategy that likely prepares the cells for further metabolic stresses. Analysis of mutants affected in carbon or nitrogen metabolism confirmed this assumption. The metabolic changes experienced as clumping progresses prime cells for flocculation, a morphological and metabolic shift of cells triggered under elevated-aeration conditions and nitrogen limitation. The analysis of various mutants during clumping and flocculation characterized an ordered set of changes in cell envelope properties accompanying the metabolic changes. These data also identify clumping and early flocculation to be behaviors compatible with the expression of nitrogen fixation genes, despite the elevated-aeration conditions. Cell-to-cell clumping may thus license diazotrophy to microaerophilic A. brasilense cells under elevated oxygen conditions and prime them for long-term survival via flocculation if metabolic stress persists.

  9. Metabolic Adaptations of Azospirillum brasilense to Oxygen Stress by Cell-to-Cell Clumping and Flocculation

    PubMed Central

    Bible, Amber N.; Khalsa-Moyers, Gurusahai K.; Mukherjee, Tanmoy; Green, Calvin S.; Mishra, Priyanka; Purcell, Alicia; Aksenova, Anastasia; Hurst, Gregory B.

    2015-01-01

    The ability of bacteria to monitor their metabolism and adjust their behavior accordingly is critical to maintain competitiveness in the environment. The motile microaerophilic bacterium Azospirillum brasilense navigates oxygen gradients by aerotaxis in order to locate low oxygen concentrations that can support metabolism. When cells are exposed to elevated levels of oxygen in their surroundings, motile A. brasilense cells implement an alternative response to aerotaxis and form transient clumps by cell-to-cell interactions. Clumping was suggested to represent a behavior protecting motile cells from transiently elevated levels of aeration. Using the proteomics of wild-type and mutant strains affected in the extent of their clumping abilities, we show that cell-to-cell clumping represents a metabolic scavenging strategy that likely prepares the cells for further metabolic stresses. Analysis of mutants affected in carbon or nitrogen metabolism confirmed this assumption. The metabolic changes experienced as clumping progresses prime cells for flocculation, a morphological and metabolic shift of cells triggered under elevated-aeration conditions and nitrogen limitation. The analysis of various mutants during clumping and flocculation characterized an ordered set of changes in cell envelope properties accompanying the metabolic changes. These data also identify clumping and early flocculation to be behaviors compatible with the expression of nitrogen fixation genes, despite the elevated-aeration conditions. Cell-to-cell clumping may thus license diazotrophy to microaerophilic A. brasilense cells under elevated oxygen conditions and prime them for long-term survival via flocculation if metabolic stress persists. PMID:26407887

  10. Kinematics and dynamics of the MKW/AWM poor clusters

    NASA Technical Reports Server (NTRS)

    Beers, Timothy C.; Kriessler, Jeffrey R.; Bird, Christina M.; Huchra, John P.

    1995-01-01

    We report 472 new redshifts for 416 galaxies in the regions of the 23 poor clusters of galaxies originally identified by Morgan, Kayser, and White (MKW), and Albert, White, and Morgan (AWM). Eighteen of the poor clusters now have 10 or more available redshifts within 1.5/h Mpc of the central galaxy; 11 clusters have at least 20 available redshifts. Based on the 21 clusters for which we have sufficient velocity information, the median velocity scale is 336 km/s, a factor of 2 smaller than found for rich clusters. Several of the poor clusters exhibit complex velocity distributions due to the presence of nearby clumps of galaxies. We check on the velocity of the dominant galaxy in each poor cluster relative to the remaining cluster members. Significantly high relative velocities of the dominant galaxy are found in only 4 of 21 poor clusters, 3 of which we suspect are due to contamination of the parent velocity distribution. Several statistical tests indicate that the D/cD galaxies are at the kinematic centers of the parent poor cluster velocity distributions. Mass-to-light ratios for 13 of the 15 poor clusters for which we have the required data are in the range 50 less than or = M/L(sub B(0)) less than or = 200 solar mass/solar luminosity. The complex nature of the regions surrounding many of the poor clusters suggests that these groupings may represent an early epoch of cluster formation. For example, the poor clusters MKW7 and MKWS are shown to be gravitationally bound and likely to merge to form a richer cluster within the next several Gyrs. Eight of the nine other poor clusters for which simple two-body dynamical models can be carried out are consistent with being bound to other clumps in their vicinity. Additional complex systems with more than two gravitationally bound clumps are observed among the poor clusters.

  11. Kinematics and dynamics of the MKW/AWM poor clusters

    NASA Astrophysics Data System (ADS)

    Beers, Timothy C.; Kriessler, Jeffrey R.; Bird, Christina M.; Huchra, John P.

    1995-03-01

    We report 472 new redshifts for 416 galaxies in the regions of the 23 poor clusters of galaxies originally identified by Morgan, Kayser, and White (MKW), and Albert, White, and Morgan (AWM). Eighteen of the poor clusters now have 10 or more available redshifts within 1.5/h Mpc of the central galaxy; 11 clusters have at least 20 available redshifts. Based on the 21 clusters for which we have sufficient velocity information, the median velocity scale is 336 km/s, a factor of 2 smaller than found for rich clusters. Several of the poor clusters exhibit complex velocity distributions due to the presence of nearby clumps of galaxies. We check on the velocity of the dominant galaxy in each poor cluster relative to the remaining cluster members. Significantly high relative velocities of the dominant galaxy are found in only 4 of 21 poor clusters, 3 of which we suspect are due to contamination of the parent velocity distribution. Several statistical tests indicate that the D/cD galaxies are at the kinematic centers of the parent poor cluster velocity distributions. Mass-to-light ratios for 13 of the 15 poor clusters for which we have the required data are in the range 50 less than or = M/LB(0) less than or = 200 solar mass/solar luminosity. The complex nature of the regions surrounding many of the poor clusters suggests that these groupings may represent an early epoch of cluster formation. For example, the poor clusters MKW7 and MKWS are shown to be gravitationally bound and likely to merge to form a richer cluster within the next several Gyrs. Eight of the nine other poor clusters for which simple two-body dynamical models can be carried out are consistent with being bound to other clumps in their vicinity. Additional complex systems with more than two gravitationally bound clumps are observed among the poor clusters.

  12. Cluster Formation Triggered by Filament Collisions in Serpens South

    NASA Astrophysics Data System (ADS)

    Nakamura, Fumitaka; Sugitani, Koji; Tanaka, Tomohiro; Nishitani, Hiroyuki; Dobashi, Kazuhito; Shimoikura, Tomomi; Shimajiri, Yoshito; Kawabe, Ryohei; Yonekura, Yoshinori; Mizuno, Izumi; Kimura, Kimihiko; Tokuda, Kazuki; Kozu, Minato; Okada, Nozomi; Hasegawa, Yutaka; Ogawa, Hideo; Kameno, Seiji; Shinnaga, Hiroko; Momose, Munetake; Nakajima, Taku; Onishi, Toshikazu; Maezawa, Hiroyuki; Hirota, Tomoya; Takano, Shuro; Iono, Daisuke; Kuno, Nario; Yamamoto, Satoshi

    2014-08-01

    The Serpens South infrared dark cloud consists of several filamentary ridges, some of which fragment into dense clumps. On the basis of CCS (JN = 43-32), HC3N (J = 5-4), N2H+ (J = 1-0), and SiO (J = 2-1, v = 0) observations, we investigated the kinematics and chemical evolution of these filamentary ridges. We find that CCS is extremely abundant along the main filament in the protocluster clump. We emphasize that Serpens South is the first cluster-forming region where extremely strong CCS emission is detected. The CCS-to-N2H+ abundance ratio is estimated to be about 0.5 toward the protocluster clump, whereas it is about 3 in the other parts of the main filament. We identify six dense ridges with different V LSR. These ridges appear to converge toward the protocluster clump, suggesting that the collisions of these ridges may have triggered cluster formation. The collisions presumably happened within a few × 105 yr because CCS is abundant only for a short time. The short lifetime agrees with the fact that the number fraction of Class I objects, whose typical lifetime is 0.4 × 105 yr, is extremely high, about 70% in the protocluster clump. In the northern part, two ridges appear to have partially collided, forming a V-shape clump. In addition, we detected strong bipolar SiO emission that is due to the molecular outflow blowing out of the protostellar clump, as well as extended weak SiO emission that may originate from the filament collisions.

  13. CLUSTER FORMATION TRIGGERED BY FILAMENT COLLISIONS IN SERPENS SOUTH

    SciTech Connect

    Nakamura, Fumitaka; Kawabe, Ryohei; Shinnaga, Hiroko; Sugitani, Koji; Tanaka, Tomohiro; Kimura, Kimihiko; Tokuda, Kazuki; Kozu, Minato; Okada, Nozomi; Hasegawa, Yutaka; Ogawa, Hideo; Nishitani, Hiroyuki; Mizuno, Izumi; Dobashi, Kazuhito; Shimoikura, Tomomi; Shimajiri, Yoshito; Kameno, Seiji; Momose, Munetake; Nakajima, Taku; and others

    2014-08-20

    The Serpens South infrared dark cloud consists of several filamentary ridges, some of which fragment into dense clumps. On the basis of CCS (J{sub N} = 4{sub 3}-3{sub 2}), HC{sub 3}N (J = 5-4), N{sub 2}H{sup +} (J = 1-0), and SiO (J = 2-1, v = 0) observations, we investigated the kinematics and chemical evolution of these filamentary ridges. We find that CCS is extremely abundant along the main filament in the protocluster clump. We emphasize that Serpens South is the first cluster-forming region where extremely strong CCS emission is detected. The CCS-to-N{sub 2}H{sup +} abundance ratio is estimated to be about 0.5 toward the protocluster clump, whereas it is about 3 in the other parts of the main filament. We identify six dense ridges with different V {sub LSR}. These ridges appear to converge toward the protocluster clump, suggesting that the collisions of these ridges may have triggered cluster formation. The collisions presumably happened within a few × 10{sup 5} yr because CCS is abundant only for a short time. The short lifetime agrees with the fact that the number fraction of Class I objects, whose typical lifetime is 0.4 × 10{sup 5} yr, is extremely high, about 70% in the protocluster clump. In the northern part, two ridges appear to have partially collided, forming a V-shape clump. In addition, we detected strong bipolar SiO emission that is due to the molecular outflow blowing out of the protostellar clump, as well as extended weak SiO emission that may originate from the filament collisions.

  14. 3D radiation hydrodynamics: Interacting photo-evaporating clumps

    NASA Astrophysics Data System (ADS)

    Lim, A. J.; Mellema, G.

    2003-07-01

    We present the results of a new radiation hydrodynamics code called Maartje. This code describes the evolution of a flow in three spatial dimensions using an adaptive mesh, and contains a combination of a ray tracer and an atomic physics module to describe the effects of ionizing radiation. The code is parallelized using a custom threadpool library. We present an application in which we follow the ionization of two dense spherical clumps which are exposed to an ionizing radiation field from a 50 000 K black body. We study various configurations in which one of the clumps shields the other from the ionizing photons. We find that relatively long-lived filamentary structures with narrow tails are formed. This raises the possibility that cometary knots (such as are found in the Helix Nebula) may be the result of the interaction of an ionizing radiation field with an ensemble of clumps, as opposed to the identification of a single knot with a single clump. Movies are available at http://www.edpsciences.org

  15. INTER- AND INTRA-CLUSTER AGE GRADIENTS IN MASSIVE STAR FORMING REGIONS AND INDIVIDUAL NEARBY STELLAR CLUSTERS REVEALED BY MYStIX

    NASA Astrophysics Data System (ADS)

    Getman, Konstantin V.; Feigelson, Eric; Kuhn, Michael A.; Broos, Patrick S; Townsley, Leisa K.; Naylor, Tim; Povich, Matthew S.; Luhman, Kevin; Garmire, Gordon

    2014-08-01

    The MYStIX (Massive Young Star-Forming Complex Study in Infrared and X-ray) project seeks to characterize 20 OB-dominated young star forming regions (SFRs) at distances <4 kpc using photometric catalogs from the Chandra X-ray Observatory, Spitzer Space Telescope, UKIRT and 2MASS surveys. As part of the MYStIX project, we developed a new stellar chronometer that employs near-infrared and X-ray photometry data, AgeJX. Computing AgeJX averaged over MYStIX (sub)clusters reveals previously unknown age gradients across most of the MYStIX regions as well as within some individual rich clusters. Within the SFRs, the inferred AgeJX ages are youngest in obscured locations in molecular clouds, intermediate in revealed stellar clusters, and oldest in distributed stellar populations. Noticeable intra-cluster gradients are seen in the NGC 2024 (Flame Nebula) star cluster and the Orion Nebula Cluster (ONC): stars in cluster cores appear younger and thus were formed later than stars in cluster halos. The latter result has two important implications for the formation of young stellar clusters. Clusters likely form slowly: they do not arise from a single nearly-instantaneous burst of star formation. The simple models where clusters form inside-out are likely incorrect, and more complex models are needed. We provide several star formation scenarios that alone or in combination may lead to the observed core-halo age gradients.

  16. Searching for star-forming dwarf galaxies in the Antlia cluster

    NASA Astrophysics Data System (ADS)

    Vaduvescu, O.; Kehrig, C.; Bassino, L. P.; Smith Castelli, A. V.; Calderón, J. P.

    2014-03-01

    Context. The formation and evolution of dwarf galaxies in clusters need to be understood, and this requires large aperture telescopes. Aims: In this sense, we selected the Antlia cluster to continue our previous work in the Virgo, Fornax, and Hydra clusters and in the Local Volume (LV). Because of the scarce available literature data, we selected a small sample of five blue compact dwarf (BCD) candidates in Antlia for observation. Methods: Using the Gemini South and GMOS camera, we acquired the Hα imaging needed to detect star-forming regions in this sample. With the long-slit spectroscopic data of the brightest seven knots detected in three BCD candidates, we derived their basic chemical properties. Using archival VISTA VHS survey images, we derived KS magnitudes and surface brightness profile fits for the whole sample to assess basic physical properties. Results: FS90-98, FS90-106, and FS90-147 are confirmed as BCDs and cluster members, based on their morphology, KS surface photometry, oxygen abundance, and velocity redshift. FS90-155 and FS90-319 did not show any Hα emission, and they could not be confirmed as dwarf cluster star-forming galaxies. Based on our data, we studied some fundamental relations to compare star forming dwarfs (BCDs and dIs) in the LV and in the Virgo, Fornax, Hydra, and Antlia clusters. Conclusions: Star-forming dwarfs in nearby clusters appear to follow same fundamental relations in the near infrared with similar objects in the LV, specifically the size-luminosity and the metallicity-luminosity, while other more fundamental relations could not be checked in Antlia due to lack of data. Based on observations acquired at Gemini South (GS-2010A-Q-51 and GS-2012A-Q-59) and ESO VISTA Hemisphere Survey (VHS).

  17. Combinatorial effects on clumped isotopes and their significance in biogeochemistry

    NASA Astrophysics Data System (ADS)

    Yeung, Laurence Y.

    2016-01-01

    The arrangement of isotopes within a collection of molecules records their physical and chemical histories. Clumped-isotope analysis interrogates these arrangements, i.e., how often rare isotopes are bound together, which in many cases can be explained by equilibrium and/or kinetic isotope fractionation. However, purely combinatorial effects, rooted in the statistics of pairing atoms in a closed system, are also relevant, and not well understood. Here, I show that combinatorial isotope effects are most important when two identical atoms are neighbors on the same molecule (e.g., O2, N2, and D-D clumping in CH4). When the two halves of an atom pair are either assembled with different isotopic preferences or drawn from different reservoirs, combinatorial effects cause depletions in clumped-isotope abundance that are most likely between zero and -1‰, although they could potentially be -10‰ or larger for D-D pairs. These depletions are of similar magnitude, but of opposite sign, to low-temperature equilibrium clumped-isotope effects for many small molecules. Enzymatic isotope-pairing reactions, which can have site-specific isotopic fractionation factors and atom reservoirs, should express this class of combinatorial isotope effect, although it is not limited to biological reactions. Chemical-kinetic isotope effects, which are related to a bond-forming transition state, arise independently and express second-order combinatorial effects related to the abundance of the rare isotope. Heteronuclear moeties (e.g., Csbnd O and Csbnd H), are insensitive to direct combinatorial influences, but secondary combinatorial influences are evident. In general, both combinatorial and chemical-kinetic factors are important for calculating and interpreting clumped-isotope signatures of kinetically controlled reactions. I apply this analytical framework to isotope-pairing reactions relevant to geochemical oxygen, carbon, and nitrogen cycling that may be influenced by combinatorial

  18. Rotational support of giant clumps in high-z disc galaxies

    NASA Astrophysics Data System (ADS)

    Ceverino, Daniel; Dekel, Avishai; Mandelker, Nir; Bournaud, Frederic; Burkert, Andreas; Genzel, Reinhard; Primack, Joel

    2012-03-01

    We address the internal support against total free-fall collapse of the giant clumps that form by violent gravitational instability in high-z disc galaxies. Guidance is provided by an analytic model, where the protoclumps are cut from a rotating disc and collapse to equilibrium while preserving angular momentum. This model predicts prograde clump rotation, which dominates the support if the clump has contracted to a surface density contrast ≳10. This is confirmed in hydro adaptive mesh refinement zoom-in simulations of galaxies in a cosmological context. In most high-z clumps, the centrifugal force dominates the support, ?, where Vrot is the rotation velocity and the circular velocity Vcirc measures the potential well. The clump spin indeed tends to be in the sense of the global disc angular momentum, but substantial tilts are frequent, reflecting the highly warped nature of the high-z discs. Most clumps are in Jeans equilibrium, with the rest of the support provided by turbulence, partly driven by the gravitational instability itself. The general agreement between model and simulations indicates that angular momentum loss or gain in most clumps is limited to a factor of 2. Simulations of isolated gas-rich discs that resolve the clump substructure reveal that the cosmological simulations may overestimate ? by ˜30 per cent, but the dominance of rotational support at high z is not a resolution artefact. In turn, isolated gas-poor disc simulations produce at z= 0 smaller gaseous non-rotating transient clouds, indicating that the difference in rotational support is associated with the fraction of cold baryons in the disc. In our current cosmological simulations, the clump rotation velocity is typically more than twice the disc dispersion, Vrot˜ 100 km s-1, but when beam smearing of ≥0.1 arcsec is imposed, the rotation signal is reduced to a small gradient of ≤30 km s-1 kpc-1 across the clump. The velocity dispersion in the simulated clumps is comparable to the

  19. A lower fragmentation mass scale for clumps in high redshift galaxies: a systematic numerical study

    NASA Astrophysics Data System (ADS)

    Tamburello, Valentina; Mayer, Lucio; Shen, Sijing; Wadsley, James

    2015-08-01

    We perform a systematic study of the effect of sub-grid physics, resolution and structural parameters on the fragmentation of gas-rich galaxy discs into massive star forming clumps due to gravitational instability. We use the state-of-the-art zoom-in cosmological hydrodynamical simulation ARGO (Fiacconi et al. 2015) to set up the initial conditions of our models, and then carry out 26 high resolution controlled simulations of high-z galaxies using the GASOLINE2 code, which includes a modern, numerically robust SPH implementation.We find that when blast-wave feedback is included, the formation of long-lived, gravitationally bound clumps requires disc gas fractions of at least 50% and massive discs, which should have Vmax > 200 km/s at z ˜ 2, more massive than the typical galaxies expected at those redshifts.Less than 50 Myr after formation, clumps have stellar masses in the range 4 × 106 - 5 × 107 M⊙.Formation of clumps with mass exceeding ˜108 M⊙ is a rare occurrence, since it requires mergers between multiple massive clumps, as we verified by tracing back in time the particles belonging to such clumps. Such mergers happen after a few orbital times (˜200-300 Myr), but normally clumps migrate inward and are tidally disrupted on shorter timescales.Clump sizes are in the range 100-500 pc. We argue that giant clumps identified in observations (˜109 M⊙ and 1 kpc in size) might either have a different origin, such as minor mergers and clumpy gas accretion, or their sizes and masses may be overestimated due to resolution issues.Using an analytical model, already developed to explain the fragmentation scale in gravitationally unstable 3D protoplanetary discs, we can predict fairly accurately the characteristic gaseous masses of clumps soon after fragmentation, when standard Toome analysis becomes invalid.Due to their modest size, clumps have little effect on bulge growth as they migrate to the center. In our unstable discs a small bulge can form irrespective of

  20. Doubly charged CO2 clusters formed by ionization of doped helium nanodroplets☆

    PubMed Central

    Daxner, Matthias; Denifl, Stephan; Scheier, Paul; Echt, Olof

    2014-01-01

    Helium nanodroplets are doped with carbon dioxide and ionized by electrons. Doubly charged cluster ions are, for the first time, identified based on their characteristic patterns of isotopologues. Thanks to the high mass resolution, large dynamic range, and a novel method to eliminate contributions from singly charged ions from the mass spectra, we are able to observe doubly charged cluster ions that are smaller than the ones reported in the past. The likely mechanism by which doubly charged ions are formed in doped helium droplets is discussed. PMID:25844051

  1. ATLASGAL - properties of compact H II regions and their natal clumps

    NASA Astrophysics Data System (ADS)

    Urquhart, J. S.; Thompson, M. A.; Moore, T. J. T.; Purcell, C. R.; Hoare, M. G.; Schuller, F.; Wyrowski, F.; Csengeri, T.; Menten, K. M.; Lumsden, S. L.; Kurtz, S.; Walmsley, C. M.; Bronfman, L.; Morgan, L. K.; Eden, D. J.; Russeil, D.

    2013-10-01

    We present a complete sample of molecular clumps containing compact and ultracompact H II (UC H II) regions between ℓ = 10° and 60° and |b| < 1°, identified by combining the APEX Telescope Large Area Survey of the Galaxy submm and CORNISH radio continuum surveys with visual examination of archival infrared data. Our sample is complete to optically thin, compact and UC H II regions driven by a zero-age main-sequence star of spectral type B0 or earlier embedded within a 1000 M⊙ clump. In total we identify 213 compact and UC H II regions, associated with 170 clumps. Unambiguous kinematic distances are derived for these clumps and used to estimate their masses and physical sizes, as well as the Lyman continuum fluxes and sizes of their embedded H II regions. We find a clear lower envelope for the surface density of molecular clumps hosting massive star formation of 0.05 g cm-2, which is consistent with a similar sample of clumps associated with 6.7 GHz masers. The mass of the most massive embedded stars is closely correlated with the mass of their natal clump. Young B stars appear to be significantly more luminous in the ultraviolet than predicted by current stellar atmosphere models. The properties of clumps associated with compact and UC H II regions are very similar to those associated with 6.7 GHz methanol masers and we speculate that there is little evolution in the structure of the molecular clumps between these two phases. Finally, we identify a significant peak in the surface density of compact and UC H II-regions associated with the W49A star-forming complex, noting that this complex is truly one of the most massive and intense regions of star formation in the Galaxy.

  2. Recombination clumping factor during cosmic reionization

    SciTech Connect

    Kaurov, Alexander A.; Gnedin, Nickolay Y. E-mail: gnedin@fnal.gov

    2014-06-01

    We discuss the role of recombinations in the intergalactic medium, and the related concept of the clumping factor, during cosmic reionization. The clumping factor is, in general, a local quantity that depends on both the local overdensity and the scale below which the baryon density field can be assumed smooth. That scale, called the filtering scale, depends on over-density and local thermal history. We present a method for building a self-consistent analytical model of inhomogeneous reionization, assuming the linear growth rate of the density fluctuation, which simultaneously accounts for these effects. We show that taking into account the local clumping factor introduces significant corrections to the total recombination rate, compared to the model with a globally uniform clumping factor.

  3. UV-selected Young Massive Star Cluster Populations in Nearby Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Smith, Linda J.

    2015-08-01

    The Legacy ExtraGalactic UV Survey (LEGUS) is an HST Treasury program aimed at the investigation of star-formation and its relationship to environment in nearby galaxies. The results of a UV-selected study of young massive star clusters in a sample of nearby galaxies (< 10 Mpc) using detections based on the WFC3/UVIS F275W filter will be presented. Previous studies have used V or I-band detections and tend to ignore clusters younger than 10 Myr old. This very young population, which represents the most recent cluster-forming event in the LEGUS galaxies will be discussed.This poster is presented on behalf of the LEGUS team (PI Daniela Calzetti).

  4. The SUNBIRD survey: characterizing the super star cluster populations of intensely star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Randriamanakoto, Zara; Vaisanen, Petri; Escala, Andres

    2015-08-01

    This work investigates properties of young, massive and dense star clusters in a sample of 42 nearby starbursts and LIRGs with an average distance of 80 Mpc. The targets form the sample of the SUperNovae and starBursts in the InfraReD (SUNBIRD) survey that were imaged using near-infrared K-band adaptive optics mounted on the Gemini/NIRI and the VLT/NaCo instruments.We fitted power-laws to the SSC K-band luminosity functions and found index values ranging between 1.5 and 2.4 with a median value of α ˜ 1.86±0.24. This is shallower than the average of ≈ 2.4 associated with normal spiral galaxies indicating that SSCs hosted by star-forming galaxies are disrupted in a way depending on their mass or environment. Using simulations we found that blending effects are not significant for targets closer than ≈100Mpc. We also established the first ever near-infrared (NIR) brightest star cluster magnitude - star formation rate (SFR) relation. The correlation has a steeper slope compared to the one with optical data at lower SFRs which could indicate a simple statistical effect, though we argue that a physical truncation of the mass distribution at high masses would better explain the tight scatter of the observed relation.Finally, we combined new NIR imaging of seven LIRG targets with their optical HST archival data to derive the age, mass, and extinction distributions of optically-selected SSC candidates. Apart from having a high mass range of 10^4 - 10^8 M⊙, more than a quarter of the cluster population is younger than 30 Myr. We also derived the cluster initial mass functions and found that at least in one of the LIRGs, a mass-dependent disruption mechanism is responsible for the deficiency in low-mass star clusters. The cluster formation efficiencies Γ = 10 - 23 %, on the other hand, support the arguments that highly-pressurized environments favor SF in bound star clusters.This work has shown the importance of studying SSC host galaxies with high SFR levels to

  5. Natures of Clump-Origin Bulges: Similarities to the Milky Way Bulge

    NASA Astrophysics Data System (ADS)

    Inoue, S.

    2012-08-01

    Bulges in spiral galaxies have been supposed to be classified into two types: classical bulges or pseudobulges. Classical bulges are thought to form by galactic merger with bursty star formation, whereas pseudobulges are suggested to form by secular evolution. Noguchi (1998, 1999) suggested another bulge formation scenario, 'clump-origin bulge'. He demonstrated using a numerical simulation that a galactic disc forms clumpy structures in the early stage of disc formation, then the clumps merge into a single bulge at the centre. I perform a high-resolution N-body/SPH simulation for the formation of the clump-origin bulge in an isolated galaxy model. I find that the clump-origin bulge resembles pseudobulges in dynamical properties, but this bulge consists of old and metal-rich stars. These natures, old metal-rich population but pseudobulge-like structures, mean that the clump-origin bulge can not be simply classified into classical bulges nor pseudobulges. From these results, I discuss similarities of the clump-origin bulge to the Milky Way (MW) bulge.

  6. GAS RESERVOIRS AND STAR FORMATION IN A FORMING GALAXY CLUSTER AT zbsime0.2

    SciTech Connect

    Jaffe, Yara L.; Poggianti, Bianca M.; Verheijen, Marc A. W.; Deshev, Boris Z.; Van Gorkom, Jacqueline H.

    2012-09-10

    We present first results from the Blind Ultra-Deep H I Environmental Survey of the Westerbork Synthesis Radio Telescope. Our survey is the first direct imaging study of neutral atomic hydrogen gas in galaxies at a redshift where evolutionary processes begin to show. In this Letter we investigate star formation, H I content, and galaxy morphology, as a function of environment in Abell 2192 (at z = 0.1876). Using a three-dimensional visualization technique, we find that Abell 2192 is a cluster in the process of forming, with significant substructure in it. We distinguish four structures that are separated in redshift and/or space. The richest structure is the baby cluster itself, with a core of elliptical galaxies that coincides with (weak) X-ray emission, almost no H I detections, and suppressed star formation. Surrounding the cluster, we find a compact group where galaxies pre-process before falling into the cluster, and a scattered population of 'field-like' galaxies showing more star formation and H I detections. This cluster proves to be an excellent laboratory to understand the fate of the H I gas in the framework of galaxy evolution. We clearly see that the H I gas and the star formation correlate with morphology and environment at z {approx} 0.2. In particular, the fraction of H I detections is significantly affected by the environment. The effect starts to kick in in low-mass groups that pre-process the galaxies before they enter the cluster. Our results suggest that by the time the group galaxies fall into the cluster, they are already devoid of H I.

  7. Gas Reservoirs and Star Formation in a Forming Galaxy Cluster at zbsime0.2

    NASA Astrophysics Data System (ADS)

    Jaffé, Yara L.; Poggianti, Bianca M.; Verheijen, Marc A. W.; Deshev, Boris Z.; van Gorkom, Jacqueline H.

    2012-09-01

    We present first results from the Blind Ultra-Deep H I Environmental Survey of the Westerbork Synthesis Radio Telescope. Our survey is the first direct imaging study of neutral atomic hydrogen gas in galaxies at a redshift where evolutionary processes begin to show. In this Letter we investigate star formation, H I content, and galaxy morphology, as a function of environment in Abell 2192 (at z = 0.1876). Using a three-dimensional visualization technique, we find that Abell 2192 is a cluster in the process of forming, with significant substructure in it. We distinguish four structures that are separated in redshift and/or space. The richest structure is the baby cluster itself, with a core of elliptical galaxies that coincides with (weak) X-ray emission, almost no H I detections, and suppressed star formation. Surrounding the cluster, we find a compact group where galaxies pre-process before falling into the cluster, and a scattered population of "field-like" galaxies showing more star formation and H I detections. This cluster proves to be an excellent laboratory to understand the fate of the H I gas in the framework of galaxy evolution. We clearly see that the H I gas and the star formation correlate with morphology and environment at z ~ 0.2. In particular, the fraction of H I detections is significantly affected by the environment. The effect starts to kick in in low-mass groups that pre-process the galaxies before they enter the cluster. Our results suggest that by the time the group galaxies fall into the cluster, they are already devoid of H I.

  8. Herschel Reveals Massive Cold Clump Candidates in NGC 7538

    NASA Astrophysics Data System (ADS)

    Fallscheer, Cassandra; Reid, Mike; Di Francesco, James; Martin, Peter; Hill, Tracey

    2013-07-01

    Observations of the high-mass star formation region NGC 7538 taken with the Herschel Space Observatory were made at 70, 160, 250, 350, and 500 micron as part of the Herschel imaging study of OB Young Stellar objects (HOBYS) Key Programme. Within the one square degree field, we identify 780 dense sources and classify 224 of those. With the intention of investigating the existence of cold massive starless or class 0-like clumps that would have the potential to form intermediate- to high-mass stars, we further isolate 13 clumps as the most likely candidates for follow-up studies. A peculiar feature in the observations is a large, nearly complete ring of material. The evacuated ring is of unknown origin and hosts a number of the detected sources.

  9. Herschel Reveals Massive Cold Clumps in NGC 7538

    NASA Astrophysics Data System (ADS)

    Fallscheer, C.; Reid, M. A.; Di Francesco, J.; Martin, P. G.; Hill, T.; Hennemann, M.; Nguyen-Luong, Q.; Motte, F.; Men'shchikov, A.; André, Ph.; Ward-Thompson, D.; Griffin, M.; Kirk, J.; Konyves, V.; Rygl, K. L. J.; Sadavoy, S.; Sauvage, M.; Schneider, N.; Anderson, L. D.; Benedettini, M.; Bernard, J.-P.; Bontemps, S.; Ginsburg, A.; Molinari, S.; Polychroni, D.; Rivera-Ingraham, A.; Roussel, H.; Testi, L.; White, G.; Williams, J. P.; Wilson, C. D.; Wong, M.; Zavagno, A.

    2013-08-01

    We present the first overview of the Herschel observations of the nearby high-mass star-forming region NGC 7538, taken as part of the Herschel imaging study of OB young stellar objects (HOBYS) Key Programme. These PACS and SPIRE maps cover an approximate area of one square degree at five submillimeter and far-infrared wavebands. We have identified 780 dense sources and classified 224 of those. With the intention of investigating the existence of cold massive starless or class 0-like clumps that would have the potential to form intermediate- to high-mass stars, we further isolate 13 clumps as the most likely candidates for follow-up studies. These 13 clumps have masses in excess of 40 M ⊙ and temperatures below 15 K. They range in size from 0.4 pc to 2.5 pc and have densities between 3 × 103 cm-3 and 4 × 104 cm-3. Spectral energy distributions are then used to characterize their energetics and evolutionary state through a luminosity-mass diagram. NGC 7538 has a highly filamentary structure, previously unseen in the dust continuum of existing submillimeter surveys. We report the most complete imaging to date of a large, evacuated ring of material in NGC 7538 which is bordered by many cool sources. Herschel is an ESA space observatory that has science instruments provided by European-led Principal Investigator consortia with important participation from NASA.

  10. Action of Winds Inside and Outside of Star Clusters

    NASA Astrophysics Data System (ADS)

    Palouš, Jan; Dale, Jim; Wünsch, Richard; Silich, Sergiy; Tenorio-Tagle, Guillermo; Whitworth, Anthony

    2011-04-01

    The feedback form pre-main sequence and young stars influences their vicinity. The stars are formed in clusters, which implies that the winds of individual stars collide with each other. Inside of a star cluster, winds thermalize a fraction of their kinetic energy, forming a very hot medium able to escape from the cluster in the form of a large-scale wind. Outside of the cluster, the cluster wind forms a shock front as it interacts with the ambient medium which is accreted onto the expanding shell. A variety of instabilities may develop in such shells, and in some cases they fragment, triggering second generation of star formation. However, if the cluster surpasses a certain mass (depending on the radius and other parameters) the hot medium starts to be thermally unstable even inside of the cluster, forming dense warm clumps. The formation of next generations of stars may start if the clumps are big enough to self-shield against stellar radiation creating cold dense cores.

  11. Thermodynamic stability and structural properties of cluster crystals formed by amphiphilic dendrimers

    NASA Astrophysics Data System (ADS)

    Lenz, Dominic A.; Mladek, Bianca M.; Likos, Christos N.; Blaak, Ronald

    2016-05-01

    We pursue the goal of finding real-world examples of macromolecular aggregates that form cluster crystals, which have been predicted on the basis of coarse-grained, ultrasoft pair potentials belonging to a particular mathematical class [B. M. Mladek et al., Phys. Rev. Lett. 46, 045701 (2006)]. For this purpose, we examine in detail the phase behavior and structural properties of model amphiphilic dendrimers of the second generation by means of monomer-resolved computer simulations. On augmenting the density of these systems, a fluid comprised of clusters that contain several overlapping and penetrating macromolecules is spontaneously formed. Upon further compression of the system, a transition to multi-occupancy crystals takes place, the thermodynamic stability of which is demonstrated by means of free-energy calculations, and where the FCC is preferred over the BCC-phase. Contrary to predictions for coarse-grained theoretical models in which the particles interact exclusively by effective pair potentials, the internal degrees of freedom of these molecules cause the lattice constant to be density-dependent. Furthermore, the mechanical stability of monodisperse BCC and FCC cluster crystals is restricted to a bounded region in the plane of cluster occupation number versus density. The structural properties of the dendrimers in the dense crystals, including their overall sizes and the distribution of monomers are also thoroughly analyzed.

  12. The segregation of starless and protostellar clumps in the Hi-GAL ℓ = 224° region

    NASA Astrophysics Data System (ADS)

    Olmi, L.; Cunningham, M.; Elia, D.; Jones, P.

    2016-10-01

    Context. Stars form in dense, dusty structures, which are embedded in larger clumps of molecular clouds often showing a clear filamentary structure on large scales (≳1 pc). The origin (e.g., turbulence or gravitational instabilities) and evolution of these filaments, as well as their relation to clump and core formation, are not yet fully understood. A large sample of both starless and protostellar clumps can now be found in the Herschel Infrared GALactic Plane Survey (Hi-GAL) key project, which also provides striking images of the filamentary structure of the parent molecular clouds. Recent results indicate that populations of clumps on and off filaments may differ. Aims: One of the best-studied regions in the Hi-GAL survey can be observed toward the ℓ = 224° field. Here, a filamentary region has been studied and it has been found that protostellar clumps are mostly located along the main filament, whereas starless clumps are detected off this filament and are instead found on secondary, less prominent filaments. We want to investigate this segregation effect and how it may affect the clumps properties. Methods: We mapped the 12CO (1-0) line and its main three isotopologues toward the two most prominent filaments observed toward the ℓ = 224° field using the Mopra radio telescope, in order to set observational constraints on the dynamics of these structures and the associated starless and protostellar clumps. Results: Compared to the starless clumps, the protostellar clumps are more luminous, more turbulent and lie in regions where the filamentary ambient gas shows larger linewidths. We see evidence of gas flowing along the main filament, but we do not find any signs of accretion flow from the filament onto the Hi-GAL clumps. We analyze the radial column density profile of the filaments and their gravitational stability. Conclusions: The more massive and highly fragmented main filament appears to be thermally supercritical and gravitationally bound

  13. Clustered streamlined forms in Athabasca Valles, Mars: Evidence for sediment deposition during floodwater ponding

    USGS Publications Warehouse

    Burr, D.

    2005-01-01

    A unique clustering of layered streamlined forms in Athabasca Valles is hypothesized to reflect a significant hydraulic event. The forms, interpreted as sedimentary, are attributed to extensive sediment deposition during ponding and then streamlining of this sediment behind flow obstacles during ponded water outflow. These streamlined forms are analogous to those found in depositional basins and other loci of ponding in terrestrial catastrophic flood landscapes. These terrestrial streamlined forms can provide the best opportunity for reconstructing the history of the terrestrial flooding. Likewise, the streamlined forms in Athabasca Valles may provide the best opportunity to reconstruct the recent geologic history of this young Martian outflow channel. ?? 2005 Elsevier B.V. All rights reserved.

  14. On the form factors of relevant operators and their cluster property

    NASA Astrophysics Data System (ADS)

    Acerbi, C.; Mussardo, G.; Valleriani, A.

    1997-05-01

    We compute the form factors of the relevant scaling operators in a class of integrable models without internal symmetries by exploiting their cluster properties. Their identification is established by computing the corresponding anomalous dimensions by means of the Delfino - Simonetti - Cardy sum rule and further confirmed it by comparing some universal ratios of the nearby non-integrable quantum field theories with their independent numerical determination.

  15. The role of low-mass star clusters in forming the massive stars in DR 21

    NASA Astrophysics Data System (ADS)

    Rivilla, V. M.; Jiménez-Serra, I.; Martín-Pintado, J.; Sanz-Forcada, J.

    2014-01-01

    We have studied the young low-mass pre-main sequence (PMS) stellar population associated with the massive star-forming region DR 21 by using archival X-ray Chandra observations and by complementing them with existing optical and infrared (IR) surveys. The Chandra observations have revealed for the first time a new highly extincted population of PMS low-mass stars previously missed in observations at other wavelengths. The X-ray population exhibits three main stellar density peaks, coincident with the massive star-forming regions, being the DR 21 core the main peak. The cross-correlated X-ray/IR sample exhibits a radial `Spokes-like' stellar filamentary structure that extends from the DR 21 core towards the northeast. The near-IR data reveal a centrally peaked structure for the extinction, which exhibits its maximum in the DR 21 core and gradually decreases with the distance to the N-S cloud axis and to the cluster centre. We find evidence of a global mass segregation in the full low-mass stellar cluster, and of a stellar age segregation, with the youngest stars still embedded in the N-S cloud, and more evolved stars more spatially distributed. The results are consistent with the scenario where an elongated overall potential well created by the full low-mass stellar cluster funnels gas through filaments feeding stellar formation. Besides the full gravitational well, smaller scale local potential wells created by dense stellar sub-clusters of low-mass stars are privileged in the competition for the gas of the common reservoir, allowing the formation of massive stars. We also discuss the possibility that a stellar collision in the very dense stellar cluster revealed by Chandra in the DR 21 core is the origin of the large-scale and highly energetic outflow arising from this region.

  16. Photothermolysis by laser-induced microbubbles generated around gold nanorod clusters selectively formed in leukemia cells

    NASA Astrophysics Data System (ADS)

    Lapotko, Dmitri; Lukianova-Hleb, Ekaterina; Zhdanok, Sergei; Rostro, Betty; Simonette, Rebecca; Hafner, Jason; Konopleva, Marina; Andreeff, Michael; Conjusteau, Andre; Oraevsky, Alexander

    2008-02-01

    In an effort of developing clinical LANTCET (laser-activated nano-thermolysis as cell elimination technology) we achieved selective destruction of individual tumor cells through laser generation of vapor microbubbles around clusters of light absorbing gold nanorods (GNR) selectively formed in target tumor cells. Among all gold nanoparticles, nanorods offer the highest optical absorption in the near-infrared. We applied covalent conjugates of gold nanorods with targeting vectors such as monoclonal antibodies CD33 (specific for Acute Myeloid Leukemia), while GNR conjugates with polyethylene-glycol (PEG) were used as nonspecific targeting control. GNR clusters were formed inside the tumor cells at 37 °C due to endocytosis of large concentration of nanorods accumulated on the surface of tumor cells targeted at 4 °C. Formation of GNR clusters significantly reduces the threshold of tumor cell damage making LANTCET safe for normal cells. Appearance of GNR clusters was verified directly with optical resonance scattering microscopy. LANTCET was performed in vitro with living cells of (1) model myeloid K562 cells (CD33 positive), (2) primary human bone marrow CD33-positive blast cells from patients diagnosed with acute myeloid leukemia. Laser-induced microbubbles were generated and detected with a photothermal microscope equipped with a tunable Ti-Sa pulsed laser. GNT cluster formation caused a 100-fold decrease in the threshold optical fluence for laser microbubble generation in tumor cells compared with that in normal cells under the same targeting and irradiation conditions. Combining imaging based on resonance optical scattering with photothermal imaging of microbubbles, we developed a method for detection, image-guided treatment and monitoring of LANTCET. Pilot experiments were performed in flow mode bringing LANTCET closer to reality of clinical procedure of purging tumor cells from bone marrow grafts.

  17. Kiloparsec-Scale Simulations of Star Formation in Disk Galaxies III. Structure and Dynamics of Filaments and Clumps in Giant Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Butler, Michael J.; Tan, Jonathan C.; Van Loo, Sven

    2015-05-01

    We present hydrodynamic simulations of self-gravitating dense gas in a galactic disk, exploring scales ranging from 1 kpc down to ˜0.1 pc. Our primary goal is to understand how dense filaments form in giant molecular clouds (GMCs). These structures, often observed as infrared dark clouds (IRDCs) in the Galactic plane, are thought to be the precursors to massive stars and star clusters, so their formation may be the rate-limiting step controlling global star formation rates in galactic systems as described by the Kennicutt-Schmidt relation. Our study follows on from Van Loo et al., which carried out simulations to 0.5 pc resolution and examined global aspects of the formation of dense gas clumps and the resulting star formation rate. Here, using our higher resolution, we examine the detailed structural, kinematic, and dynamical properties of dense filaments and clumps, including mass surface density (Σ) probability distribution functions, filament mass per unit length and its dispersion, lateral Σ profiles, filament fragmentation, filament velocity gradients and infall, and degree of filament and clump virialization. Where possible, these properties are compared to observations of IRDCs. By many metrics, especially too large mass fractions of high {Σ }\\gt 1 g c{{m}-2} material, too high mass per unit length dispersion due to dense clump formation, too high velocity gradients, and too high velocity dispersion for a given mass per unit length, the simulated filaments differ from observed IRDCs. We thus conclude that IRDCs do not form from global fast collapse of GMCs. Rather, we expect that IRDC formation and collapse are slowed significantly by the influence of dynamically important magnetic fields, which may thus play a crucial role in regulating galactic star formation rates.

  18. The Clumped Isotope Composition of Biogenic Methane.

    NASA Astrophysics Data System (ADS)

    Sessions, A. L.; Douglas, P. M.; Eiler, J. M.; Stolper, D. A.

    2015-12-01

    The excess or lack of 13CH3D, a doubly substituted ("clumped") isotopologue of methane, relative to that expected for a random distribution of isotopes across molecules, is a function of the processes that generated the methane. For high-temperature thermogenic methane, which typically achieves internal equilibrium, an excess of 13CH3D is expected and the amount of excess can serve as a thermometer. In contrast, biogenic methane often - though not always - has a smaller excess of clumped isotopologues, and sometimes even a deficit of clumped species ("anti-clumped"). The effect presumably arises from kinetic isotope effects accompanying enzymatic reactions in the methanogenic pathway, though the particular reaction(s) has not yet been positively identified. The decrease in clumping is also known to correlate with both the reversibility of the pathway and the methane flux. In this talk, we will present recent data bearing on the origin and utility of biologic fractionations of clumped isotopologues in methane. Preliminary data suggest that methane deriving from the fermentative pathway is enriched in D-bearing isotopologues, at the same level of clumping, relative to that derived from the CO2-reductive pathway. This property offers another potential means to distinguish biogenic methane sources in the environment. Recently, we have also begun to measure the 12CH2D2 isotopologue, for which equilibrium and kinetic isotope effects are predicted to be distinct from 13CH3D. Preliminary data suggest that the combination of both doubly-substituted isotopologues will be especially useful for disentangling mixtures containing biogenic gas.

  19. THE CLUSTERING AND HALO MASSES OF STAR-FORMING GALAXIES AT z < 1

    SciTech Connect

    Dolley, Tim; Brown, Michael J. I.; Pimbblet, Kevin A.; Palamara, David P.; Beare, Richard; Weiner, Benjamin J.; Jannuzi, Buell T.; Brodwin, Mark; Kochanek, C. S.; Dey, Arjun; Atlee, David W.

    2014-12-20

    We present clustering measurements and halo masses of star-forming galaxies at 0.2 < z < 1.0. After excluding active galactic nuclei (AGNs), we construct a sample of 22,553 24 μm sources selected from 8.42 deg{sup 2} of the Spitzer MIPS AGN and Galaxy Evolution Survey of Boötes. Mid-infrared imaging allows us to observe galaxies with the highest star formation rates (SFRs), less biased by dust obscuration afflicting the optical bands. We find that the galaxies with the highest SFRs have optical colors that are redder than typical blue cloud galaxies, with many residing within the green valley. At z > 0.4 our sample is dominated by luminous infrared galaxies (LIRGs, L {sub TIR} > 10{sup 11} L {sub ☉}) and is composed entirely of LIRGs and ultraluminous infrared galaxies (ULIRGs, L {sub TIR} > 10{sup 12} L {sub ☉}) at z > 0.6. We observe weak clustering of r {sub 0} ≈ 3-6 h {sup –1} Mpc for almost all of our star-forming samples. We find that the clustering and halo mass depend on L {sub TIR} at all redshifts, where galaxies with higher L {sub TIR} (hence higher SFRs) have stronger clustering. Galaxies with the highest SFRs at each redshift typically reside within dark matter halos of M {sub halo} ≈ 10{sup 12.9} h {sup –1} M {sub ☉}. This is consistent with a transitional halo mass, above which star formation is largely truncated, although we cannot exclude that ULIRGs reside within higher mass halos. By modeling the clustering evolution of halos, we connect our star-forming galaxy samples to their local descendants. Most star-forming galaxies at z < 1.0 are the progenitors of L ≲ 2.5 L {sub *} blue galaxies in the local universe, but star-forming galaxies with the highest SFRs (L {sub TIR} ≳ 10{sup 11.7} L {sub ☉}) at 0.6 < z < 1.0 are the progenitors of early-type galaxies in denser group environments.

  20. The initial mass function of star clusters that form in turbulent molecular clouds

    NASA Astrophysics Data System (ADS)

    Fujii, M. S.; Portegies Zwart, S.

    2015-05-01

    We simulate the formation and evolution of young star clusters using the combination of smoothed particle hydrodynamics (SPH) simulations and direct N-body simulations. We start by performing SPH simulations of the giant molecular cloud (GMC) with a turbulent velocity field, a mass of 4 × 104 to 5 × 106 M⊙, and a density between ρ ˜ 1.7 × 103 and 170 cm-3. We continue the hydrodynamical simulations for a free-fall time-scale (tff ≃ 0.83 and 2.5 Myr), and analyse the resulting structure of the collapsed cloud. We subsequently replace a density-selected subset of SPH particles with stars by adopting a local star formation efficiency proportional to ρ1/2. As a consequence, the local star formation efficiency exceeds 30 per cent, whereas globally only a few per cent of the gas is converted to stars. The stellar distribution by the time gas is converted to stars is very clumpy, with typically a dozen bound conglomerates that consist of 100-104 stars. We continue to evolve the stars dynamically using the collisional N-body method, which accurately treats all pairwise interactions, stellar collisions and stellar evolution. We analyse the results of the N-body simulations when the stars have an age of 2 and 10 Myr. During the dynamical simulations, massive clusters grow via hierarchical merging of smaller clusters. The shape of the cluster mass function that originates from an individual molecular cloud is consistent with a Schechter function with a power-law slope of β = -1.73 at 2 Myr and β = -1.67 at 10 Myr, which fits to observed cluster mass function of the Carina region. The superposition of mass functions have a power-law slope of ≲ -2, which fits the observed mass function of star clusters in the Milky Way, M31 and M83. We further find that the mass of the most massive cluster formed in a single molecular cloud with a mass of Mg scales with 6.1 M_g^{0.51} which also agrees with recent observation of the GMC and young clusters in M51.

  1. HIGH-RESOLUTION STUDY OF THE CLUSTER COMPLEXES IN A LENSED SPIRAL AT REDSHIFT 1.5: CONSTRAINTS ON THE BULGE FORMATION AND DISK EVOLUTION

    SciTech Connect

    Adamo, Angela; Oestlin, G.; Zackrisson, E.; Guaita, L.; Bastian, N.; Livermore, R. C.

    2013-04-01

    We analyze the clump population of the spiral galaxy Sp 1149 at redshift 1.5. Located behind the galaxy cluster MACS J1149.5+2223, Sp 1149 has been significantly magnified allowing us to study the galaxy on physical scales down to {approx}100 pc. The galaxy cluster frame is among the targets of the Cluster Lensing And Supernova survey with Hubble (CLASH), an ongoing Hubble Space Telescope (HST) Multi-Cycle Treasury program. We have used the publicly available multi-band imaging data set to reconstruct the spectral energy distributions of the clumps in Sp 1149, and derive, by means of stellar evolutionary models, their physical properties. We found that 40% of the clumps observed in Sp 1149 are older than 30 Myr and can be as old as 300 Myr. These are also the more massive (luminous) clumps in the galaxy. Among the complexes in the local reference sample, the star-forming knots in luminous blue compact galaxies could be considered progenitor analogs of these long-lived clumps. The remaining 60% of clumps have colors comparable to local cluster complexes, suggesting a similar young age. We observe that the Sp 1149 clumps follow the M{proportional_to}R {sup 2} relation similar to local cluster complexes, suggesting similar formation mechanisms although they may have different initial conditions (e.g., higher gas surface densities). We suggest that the galaxy is experiencing a slow decline in star formation rate and a likely transitional phase toward a more quiescent star formation mode. The older clumps have survived between 6 and 20 dynamical times and are all located at projected distances smaller than 4 kpc from the center. Their current location suggests migration toward the center and the possibility of being the building blocks of the bulge. On the other hand, the dynamical timescale of the younger clumps is significantly shorter, meaning that they are quite close to their birthplace. We show that the clumps of Sp 1149 may account for the expected metal

  2. Local-density-driven clustered star formation

    NASA Astrophysics Data System (ADS)

    Parmentier, G.; Pfalzner, S.

    2013-01-01

    Context. A positive power-law trend between the local surface densities of molecular gas, Σgas, and young stellar objects, Σ ⋆ , in molecular clouds of the solar neighbourhood has recently been identified. How it relates to the properties of embedded clusters, in particular to the recently established radius-density relation, has so far not been investigated. Aims: We model the development of the stellar component of molecular clumps as a function of time and initial local volume density. Our study provides a coherent framework able to explain both the molecular-cloud and embedded-cluster relations quoted above. Methods: We associate the observed volume density gradient of molecular clumps to a density-dependent free-fall time. The molecular clump star formation history is obtained by applying a constant star formation efficiency per free-fall time, ɛff. Results: For the volume density profiles typical of observed molecular clumps (i.e. power-law slope ≃ -1.7), our model gives a star-gas surface-density relation of the form Σ⋆ ∝ Σgas2, which agrees very well with the observations. Taking the case of a molecular clump of mass M0 ≃ 104 M⊙ and radius R ≃ 6 pc experiencing star formation during 2 Myr, we derive what star formation efficiency per free-fall time matches the normalizations of the observed and predicted (Σ ⋆ , Σgas) relations best. We find ɛff ≃ 0.1. We show that the observed growth of embedded clusters, embodied by their radius-density relation, corresponds to a surface density threshold being applied to developing star-forming regions. The consequences of our model in terms of cluster survivability after residual star-forming gas expulsion are that, owing to the locally high star formation efficiency in the inner part of star-forming regions, global star formation efficiency as low as 10% can lead to the formation of bound gas-free star clusters.

  3. Formation of phase space holes and clumps.

    PubMed

    Lilley, M K; Nyqvist, R M

    2014-04-18

    It is shown that the formation of phase space holes and clumps in kinetically driven, dissipative systems is not restricted to the near threshold regime, as previously reported and widely believed. Specifically, we observe hole-clump generation from the edges of an unmodulated phase space plateau, created via excitation, phase mixing and subsequent dissipative decay of a linearly unstable bulk plasma mode in the electrostatic bump-on-tail model. This has now allowed us to elucidate the underlying physics of the hole-clump formation process for the first time. Holes and clumps develop from negative energy waves that arise due to the sharp gradients at the interface between the plateau and the nearly unperturbed, ambient distribution and destabilize in the presence of dissipation in the bulk plasma. We confirm this picture by demonstrating that the formation of such nonlinear structures in general does not rely on a "seed" wave, only on the ability of the system to generate a plateau. In addition, we observe repetitive cycles of plateau generation and erosion, the latter due to hole-clump formation and detachment, which appear to be insensitive to initial conditions and can persist for a long time. We present an intuitive discussion of why this continual regeneration occurs. PMID:24785043

  4. Metabolic Adaptations of Azospirillum brasilense to Oxygen Stress by Cell-to-Cell Clumping and Flocculation

    SciTech Connect

    Bible, Amber N.; Khalsa-Moyers, Gurusahai K.; Mukherjee, Tanmoy; Green, Calvin S.; Mishra, Priyanka; Purcell, Alicia; Aksenova, Anastasia; Hurst, Gregory B.; Alexandre, Gladys

    2015-09-25

    The ability of bacteria to monitor their metabolism and adjust their behavior accordingly is critical to maintain competitiveness in the environment. The motile microaerophilic bacteriumAzospirillum brasilensenavigates oxygen gradients by aerotaxis in order to locate low oxygen concentrations that can support metabolism. When cells are exposed to elevated levels of oxygen in their surroundings, motileA. brasilensecells implement an alternative response to aerotaxis and form transient clumps by cell-to-cell interactions. Clumping was suggested to represent a behavior protecting motile cells from transiently elevated levels of aeration. Using the proteomics of wild-type and mutant strains affected in the extent of their clumping abilities, we show that cell-to-cell clumping represents a metabolic scavenging strategy that likely prepares the cells for further metabolic stresses. Analysis of mutants affected in carbon or nitrogen metabolism confirmed this assumption. The metabolic changes experienced as clumping progresses prime cells for flocculation, a morphological and metabolic shift of cells triggered under elevated-aeration conditions and nitrogen limitation. The analysis of various mutants during clumping and flocculation characterized an ordered set of changes in cell envelope properties accompanying the metabolic changes. These data also identify clumping and early flocculation to be behaviors compatible with the expression of nitrogen fixation genes, despite the elevated-aeration conditions. Finally, cell-to-cell clumping may thus license diazotrophy to microaerophilicA. brasilensecells under elevated oxygen conditions and prime them for long-term survival via flocculation if metabolic stress persists.

  5. Metabolic Adaptations of Azospirillum brasilense to Oxygen Stress by Cell-to-Cell Clumping and Flocculation

    DOE PAGES

    Bible, Amber N.; Khalsa-Moyers, Gurusahai K.; Mukherjee, Tanmoy; Green, Calvin S.; Mishra, Priyanka; Purcell, Alicia; Aksenova, Anastasia; Hurst, Gregory B.; Alexandre, Gladys

    2015-09-25

    The ability of bacteria to monitor their metabolism and adjust their behavior accordingly is critical to maintain competitiveness in the environment. The motile microaerophilic bacteriumAzospirillum brasilensenavigates oxygen gradients by aerotaxis in order to locate low oxygen concentrations that can support metabolism. When cells are exposed to elevated levels of oxygen in their surroundings, motileA. brasilensecells implement an alternative response to aerotaxis and form transient clumps by cell-to-cell interactions. Clumping was suggested to represent a behavior protecting motile cells from transiently elevated levels of aeration. Using the proteomics of wild-type and mutant strains affected in the extent of their clumping abilities,more » we show that cell-to-cell clumping represents a metabolic scavenging strategy that likely prepares the cells for further metabolic stresses. Analysis of mutants affected in carbon or nitrogen metabolism confirmed this assumption. The metabolic changes experienced as clumping progresses prime cells for flocculation, a morphological and metabolic shift of cells triggered under elevated-aeration conditions and nitrogen limitation. The analysis of various mutants during clumping and flocculation characterized an ordered set of changes in cell envelope properties accompanying the metabolic changes. These data also identify clumping and early flocculation to be behaviors compatible with the expression of nitrogen fixation genes, despite the elevated-aeration conditions. Finally, cell-to-cell clumping may thus license diazotrophy to microaerophilicA. brasilensecells under elevated oxygen conditions and prime them for long-term survival via flocculation if metabolic stress persists.« less

  6. MAGNETIC FIELD IN THE ISOLATED MASSIVE DENSE CLUMP IRAS 20126+4104

    SciTech Connect

    Shinnaga, Hiroko; Phillips, Thomas G.; Novak, Giles; Vaillancourt, John E.; Machida, Masahiro N.; Kataoka, Akimasa; Tomisaka, Kohji; Davidson, Jacqueline; Houde, Martin; Dowell, C. Darren; Leeuw, Lerothodi

    2012-05-10

    We measured polarized dust emission at 350 {mu}m toward the high-mass star-forming massive dense clump IRAS 20126+4104 using the SHARC II Polarimeter, SHARP, at the Caltech Submillimeter Observatory. Most of the observed magnetic field vectors agree well with magnetic field vectors obtained from a numerical simulation for the case when the global magnetic field lines are inclined with respect to the rotation axis of the dense clump. The results of the numerical simulation show that rotation plays an important role on the evolution of the massive dense clump and its magnetic field. The direction of the cold CO 1-0 bipolar outflow is parallel to the observed magnetic field within the dense clump as well as the global magnetic field, as inferred from optical polarimetry data, indicating that the magnetic field also plays a critical role in an early stage of massive star formation. The large-scale Keplerian disk of the massive (proto)star rotates in an almost opposite sense to the clump's envelope. The observed magnetic field morphology and the counterrotating feature of the massive dense clump system provide hints to constrain the role of magnetic fields in the process of high-mass star formation.

  7. Physical and Chemical Properties of Protocluster Clumps and Massive Young Stellar Objects Associated to Infrared Dark Clouds

    NASA Astrophysics Data System (ADS)

    Gomez Gonzalez, Laura

    2012-01-01

    The study of high-mass stars is important not only because of the effects they produce in their environment through outflows, expanding HII regions, stellar winds, and eventually supernova shock waves, but also because they play a crucial role in estimating star formation rates in other galaxies. Although we have an accepted evolutionary scenario that explains (isolated) low-mass star formation, the processes that produce massive stars (M_star > 8 M_sol) and star clusters, especially their earliest stages, are not well understood. The newly discovered class of interstellar clouds now termed infrared dark clouds (IRDCs) represent excellent laboratories to study the earliest stages of high-mass star formation given that some of the clumps within them are known to have high masses (~100's M_sol), high densities (n > 10^5 cm^-3), and low temperatures (10-20K) as expected for the birthplaces of high-mass stars. Some questions remain unanswered: Do IRDCs harbor the very early stages of high-mass star formation, i.e., the pre-protocluster phase? If so, how do they compare with low-mass star formation sites? Is there chemical differentiation in IRDC clumps? What is the mass distribution of IRDCs? In this dissertation and for the first time, a catalog of 12529 IRDC candidates at 24 um has been created using archival data from the MIPSGAL/Spitzer survey, as a first step in searching for the massive pre-protocluster clumps. From this catalog, a sample of ~60 clumps has been selected in order to perform single-pointing observations with the IRAM 30m, Effelsberg 100m, and APEX 12m telescopes. One IRDC clump seems to be a promising candidate for being in the pre-protocluster phase. In addition, molecular line mapping observations have been performed on three clumps within IRDCs and a detailed chemical study of 10 molecular lines has been carried out. A larger difference in column densities and abundances has been found between these clumps and high-m! ass protostellar objects

  8. The Hercules Cluster Environment Impact on the Chemical History of Star-Forming Galaxies

    NASA Astrophysics Data System (ADS)

    Petropoulou, V.; VíLchez, J. M.; Iglesias-Páramo, J.; Papaderos, P.

    In this work we study the effects of the Hercules cluster environment on the chemical history of star-forming (SF) galaxies. For this purpose we have derived the gas metallicities, the mean stellar metallicities and ages, the masses and the luminosities of our sample of galaxies. We have found that our Hercules SF galaxies are either chemically evolved spirals with nearly flat oxygen gradients, or less metal-rich dwarf galaxies which appear to be the "newcomers" in the cluster. Most Hercules SF galaxies follow well defined mass-metallicity and luminosity-metallicity sequences; nevertheless significant outliers to these relations have been identified, illustrating how environmental effects can provide a physical source of dispersion in these fundamental relations.

  9. Planck early results. XXII. The submillimetre properties of a sample of Galactic cold clumps

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Cabella, P.; Cantalupo, C. M.; Cardoso, J.-F.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chiang, L.-Y.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davies, R. D.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Doi, Y.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Ikeda, N.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kitamura, Y.; Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leonardi, R.; Leroy, C.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Malinen, J.; Mandolesi, N.; Mann, R.; Maris, M.; Marshall, D. J.; Martin, P.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Meny, C.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Pagani, L.; Pajot, F.; Paladini, R.; Pasian, F.; Patanchon, G.; Pelkonen, V.-M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Smoot, G. F.; Starck, J.-L.; Stivoli, F.; Stolyarov, V.; Sudiwala, R.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Torre, J.-P.; Toth, V.; Tristram, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Ysard, N.; Yvon, D.; Zacchei, A.; Zonca, A.

    2011-12-01

    within factors of a few, to the gas linear mass densities. The analysis of this small set of cold clumps already probes a broad variety of structures in the C3PO sample, probably associated with different evolutionary stages, from cold and starless clumps, to young protostellar objects still embedded in their cold surrounding cloud. Because of the all-sky coverage and its sensitivity, Planck is able to detect and locate the coldest spots in massive elongated structures that may be the long-searched for progenitors of stellar clusters. Appendix A is available in electronic form at http://www.aanda.orgCorresponding author: I. Ristorcelli, e-mail: isabelle.ristorcelli@irap.omp.eu

  10. Ejection of gaseous clumps from gravitationally unstable protostellar disks

    NASA Astrophysics Data System (ADS)

    Vorobyov, E. I.

    2016-05-01

    Aims: We investigate the dynamics of gaseous clumps formed via gravitational fragmentation in young protostellar disks, focusing on the fragments that are ejected from the disk via many-body gravitational interaction. Methods: Numerical hydrodynamics simulations were employed to study the evolution of young protostellar disks that were formed from the collapse of rotating pre-stellar cores. Results: The protostellar disks that formed in our models undergo gravitational fragmentation driven by continuing mass-loading from parental collapsing cores. Several fragments can be ejected from the disk during the early evolution, but the low-mass fragments (<15 MJup) disperse, which creates spectacular bow-type structures while passing through the disk and collapsing core. The least massive fragment that survived the ejection (21 MJup) straddles the planetary-mass limit, while the most massive ejected fragments (145 MJup) can break up into several pieces, leading to the ejection of wide separation binary clumps in the brown-dwarf mass range. About half of the ejected fragments are gravitationally bound, the majority are supported by rotation against gravity, and all fragments have the specific angular momentum that is much higher than that expected for brown dwarfs. We found that the internal structure of the ejected fragments is distinct from what would be expected for gravitationally contracting clumps formed via molecular cloud fragmentation, which can help in differentiating their origin. Conclusions: The ejection of fragments is an important process, which is inherent to massive protostellar disks, and which produces freely floating pre-brown dwarf cores, regulates the disk and stellar masses and, potentially, enriches the intracluster medium with processed dust and complex organics.

  11. Clumped Isotopes in Bahamian Dolomites: A Rosetta Stone?

    NASA Astrophysics Data System (ADS)

    Murray, S.; Swart, P. K.; Arienzo, M. M.

    2014-12-01

    Low temperature dolomite formation continues to be an enigmatic process. However, with the advent of the clumped isotope technique, there is an opportunity to determine the temperature of formation as well as the δ18O of the fluid (δ18Ow) from which it formed. By using samples with a well constrained geologic and thermal history, we have attempted to accurately develop a technique for the application of clumped isotopes to varying dolomite systems. Samples for this study were taken from two cores, one from the island of San Salvador and one on Great Bahama Bank (known as Clino), located on the eastern and western edges respectively of the Bahamian Archipelago. Both cores penetrate through Pleistocene to Miocene aged carbonates. The San Salvador core has a 110m section of pure, near stoichiometric dolomite, while the Clino core is of a mixed carbonate composition with varying abundances (0% - 50%) of calcian dolomite (42-46 mol % MgCO3). The water temperature profile of the Bahamas can be assumed over time due to the stable geology and no influence of higher temperature waters. Because of its location and the present burial depth, the largest influence on dolomite formation has been changes in sea level. As the dolomites from San Salvador are 100% dolomite, the Δ47 was determined directly. The Clino dolomites however were only partially dolomitized and so were treated with buffered acetic acid to remove non-dolomite carbonates. This was carried out in stages, using X-ray diffraction to determine composition, followed by the measurement of Δ47 after each leaching episode. Because the dolomite formation temperature and δ18Ow can be constrained, it becomes possible to evaluate the applicability of the multitude of clumped isotope correction schemes that have been applied to various dolomite samples. Also tested were several different equations which link temperature to the δ18O of the dolomite allowing the δ18O of the water to be calculated. This is a necessary

  12. Giant Clumps in Simulated High-z Galaxies: Properties, Evolution and Dependence on Feedback

    NASA Astrophysics Data System (ADS)

    Mandelker, Nir; Dekel, Avishai; Ceverino, Daniel; DeGraf, Colin; Guo, Yicheng; Primack, Joel

    2016-09-01

    We study the evolution and properties of giant clumps in high-z disc galaxies using AMR cosmological simulations at redshifts z ˜ 6 - 1. Our sample consists of 34 galaxies, of halo masses 1011 - 1012M⊙ at z = 2, run with and without radiation pressure (RP) feedback from young stars. While RP has little effect on the sizes and global stability of discs, it reduces the amount of star-forming gas by a factor of ˜2, leading to a similar decrease in stellar mass by z ˜ 2. Both samples undergo extended periods of violent disc instability (VDI) continuously forming giant clumps of masses 107 - 109M⊙ at a similar rate, though RP significantly reduces the number of long-lived clumps (LLCs). When RP is (not) included, clumps with circular velocity ≲ 40(20) km s^{-1}, baryonic surface density ≲ 200(100) M_⊙ pc^{-2} and baryonic mass ≲ 10^{8.2}(10^{7.3}) M_⊙ are short-lived, disrupted in a few free-fall times. More massive and dense clumps survive and migrate toward the disc centre over a few disc orbital times. In the RP simulations, the distribution of clump masses and star-formation rates (SFRs) normalized to their host disc is similar at all redshifts, exhibiting a truncated power-law with a slope slightly shallower than -2. The specific SFR (sSFR) of the LLCs declines with age as they migrate towards the disc centre, producing gradients in mass, stellar age, gas fraction, sSFR and metallicity that distinguish them from the short-lived clumps which tend to populate the outer disc. Ex situ mergers comprise ˜37% of the mass in clumps and ˜29% of the SFR. They are more massive and with older stellar ages than the in situ clumps, especially near the disc edge. Roughly half the galaxies at redshifts z = 4 - 1 are clumpy, with ˜3 - 30% of their SFR and ˜0.1 - 3% of their stellar mass in clumps.

  13. HOW TO FIND YOUNG MASSIVE CLUSTER PROGENITORS

    SciTech Connect

    Bressert, E.; Longmore, S.; Testi, L.; Ginsburg, A.; Bally, J.; Battersby, C.

    2012-10-20

    We propose that bound, young massive stellar clusters form from dense clouds that have escape speeds greater than the sound speed in photo-ionized gas. In these clumps, radiative feedback in the form of gas ionization is bottled up, enabling star formation to proceed to sufficiently high efficiency so that the resulting star cluster remains bound even after gas removal. We estimate the observable properties of the massive proto-clusters (MPCs) for existing Galactic plane surveys and suggest how they may be sought in recent and upcoming extragalactic observations. These surveys will potentially provide a significant sample of MPC candidates that will allow us to better understand extreme star-formation and massive cluster formation in the Local Universe.

  14. The Spiderweb Galaxy: A Forming Massive Cluster Galaxy at z ~ 2

    NASA Astrophysics Data System (ADS)

    Miley, George K.; Overzier, Roderik A.; Zirm, Andrew W.; Ford, Holland C.; Kurk, Jaron; Pentericci, Laura; Blakeslee, John P.; Franx, Marijn; Illingworth, Garth D.; Postman, Marc; Rosati, Piero; Röttgering, Huub J. A.; Venemans, Bram P.; Helder, Eveline

    2006-10-01

    We present a deep image of the radio galaxy MRC 1138-262 taken with the Hubble Space Telescope (HST) at a redshift of z=2.2. The galaxy is known to have properties of a cD galaxy progenitor and be surrounded by a 3 Mpc-sized structure, identified with a protocluster. The morphology shown on the new deep HST ACS image is reminiscent of a spider's web. More than 10 individual clumpy features are observed, apparently star-forming satellite galaxies in the process of merging with the progenitor of a dominant cluster galaxy 11 Gyr ago. There is an extended emission component, implying that star formation was occurring over a 50×40 kpc region at a rate of more than 100 Msolar yr-1. A striking feature of the newly named ``Spiderweb galaxy'' is the presence of several faint linear galaxies within the merging structure. The dense environments and fast galaxy motions at the centers of protoclusters may stimulate the formation of these structures, which dominate the faint resolved galaxy populations in the Hubble Ultra Deep Field. The new image provides a unique testbed for simulations of forming dominant cluster galaxies.

  15. Stagnation and Infall of Dense Clumps in the Stellar Wind of τ Scorpii

    NASA Astrophysics Data System (ADS)

    Howk, J. Christopher; Cassinelli, Joseph P.; Bjorkman, Jon E.; Lamers, Henny J. G. L. M.

    2000-05-01

    Observations of the B0.2 V star τ Scorpii have revealed unusual stellar wind characteristics: redshifted absorption in the far-ultraviolet O VI resonance doublet up to ~+250 km s-1 and extremely hard X-ray emission implying gas at temperatures in excess of 107 K. We describe a phenomenological model to explain these properties. We assume the wind of τ Sco consists of two components: ambient gas in which denser clumps are embedded. The clumps are optically thick in the UV resonance lines primarily responsible for accelerating the ambient wind. The reduced acceleration causes the clumps to slow and even infall, all the while being confined by the ram pressure of the outflowing ambient wind. We calculate detailed trajectories of the clumps in the ambient stellar wind, accounting for a line radiation driving force and the momentum deposited by the ambient wind in the form of drag. We show that these clumps will fall back toward the star with velocities of several hundred km s-1 for a broad range of initial conditions. The velocities of the clumps relative to the ambient stellar wind can approach 2000 km s-1, producing X-ray-emitting plasmas with temperatures in excess of (1-6)×107 K in bow shocks at their leading edge. The infalling material explains the peculiar redshifted absorption wings seen in the O VI doublet. Of order 103 clumps with individual masses mc~1019-1020 g are needed to explain the observed X-ray luminosity and also to explain the strength of the O VI absorption lines. These values correspond to a mass-loss rate in clumps of Mc~10-9 to 10-8 Msolar yr-1, a small fraction of the total mass-loss rate (M~3×10-8 Msolar yr-1). We discuss the position of τ Sco in the H-R diagram, concluding that τ Sco is in a crucial position on the main sequence. Hotter stars near the spectral type of τ Sco have too powerful winds for clumps to fall back to the stars, and cooler stars have too low mass-loss rates to produce observable effects. The model developed here

  16. Carbonate clumped isotope thermometry in continental tectonics

    NASA Astrophysics Data System (ADS)

    Huntington, Katharine W.; Lechler, Alex R.

    2015-04-01

    Reconstructing the thermal history of minerals and fluids in continental environments is a cornerstone of tectonics research. Paleotemperature constraints from carbonate clumped isotope thermometry have provided important tests of geodynamic, structural, topographic and basin evolution models. The thermometer is based on the 13C-18O bond ordering in carbonates (mass-47 anomaly, Δ47) and provides estimates of the carbonate formation temperature independent of the δ18O value of the water from which the carbonate grew; Δ47 is measured simultaneously with conventional measurements of carbonate δ13C and δ18O values, which together constrain the isotopic composition of the parent water. Depending on the geologic setting of carbonate growth, this information can help constrain paleoenvironmental conditions or basin temperatures and fluid sources. This review examines how clumped isotope thermometry can shed new light on problems in continental tectonics, focusing on paleoaltimetry, basin evolution and structural diagenesis applications. Paleoaltimetry is inherently difficult, and the precision in carbonate growth temperature estimates is at the limit of what is useful for quantitative paleoelevation reconstruction. Nevertheless, clumped isotope analyses have enabled workers to address previously intractable problems and in many settings offer the best chance of understanding topographic change from the geologic record. The portion of the shallow crust residing at temperatures up to ca. 200 °C is important as host to economic resources and records of tectonics and climate, and clumped isotope thermometry is one of the few proxies that can access this critical range with sensitivity to temperature alone. Only a handful of studies to date have used clumped isotopes to investigate diagenesis and other sub-surface processes using carbonate crystallization temperatures or the sensitivity of Δ47 values to a sample's thermal history. However, the thermometer is

  17. Star-forming galaxies in low-redshift clusters: comparison of integrated properties of cluster and field galaxies

    NASA Astrophysics Data System (ADS)

    Bretherton, C. F.; James, P. A.; Moss, C.; Whittle, M.

    2010-12-01

    Aims: We investigate the effect of the cluster environment on the star formation properties of galaxies in 8 nearby Abell clusters. Methods: Star formation properties are determined for individual galaxies using the equivalent width of Hα+[Nii] line emission from narrow-band imaging. Equivalent width distributions are derived for each galaxy type in each of 3 environments - cluster, supercluster (outside the cluster virial radius) and field. The effects of morphological disturbance on star formation are also investigated. Results: We identify a population of early-type disk galaxies in the cluster population with enhanced star formation compared to their field counterparts. The enhanced cluster galaxies frequently show evidence of disturbance, and the disturbed galaxies show marginal evidence for a higher velocity dispersion, possibly indicative of an infalling population. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias; and with the Jacobus Kapteyn Telescope, which was operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  18. Speciation, stability, and coagulation mechanisms of hydroxyl aluminum clusters formed by PACl and alum: A critical review.

    PubMed

    Tang, Hongxiao; Xiao, Feng; Wang, Dongsheng

    2015-12-01

    The physicochemical property of coagulant species plays a significant role in the coagulation process. Recent progress on speciation, stability, and coagulation mechanisms of the hydroxyl aluminum clusters formed by PACl and alum has been critically reviewed. The complicated nature on species formation, stability, and transformation of various hydrolyzed aluminum clusters formed by PACl and Alum are discussed. Based on the aspects of spontaneous hydrolysis, forced hydrolysis, and dual-hydrolysis models, the special stability of aluminum clusters that results in various coagulation behaviors is compared with the traditional salts. The coagulation behavior of the hydroxyl aluminum clusters in terms of particle aggregation and restabilization, surface adsorption and coverage, microfloc formation and kinetics, modified DLVO simulation, and finally, the coagulation model is then analyzed in detail. It is indicative that the coagulation mechanism of inorganic coagulants can be understood better with the hydroxyl clusters being tailor-made.

  19. Mass Spectrometric Investigation of Anions Formed upon Free Electron Attachment to Nucleobase Molecules and Clusters Embedded in Superfluid Helium Droplets

    SciTech Connect

    Denifl, Stephan; Zappa, Fabio; Maehr, Ingo; Lecointre, Julien; Probst, Michael; Maerk, Tilmann D.; Scheier, Paul

    2006-07-28

    Here we report the first mass spectrometric study of negative ions formed via free electron attachment (EA) to nucleobases (NBs) embedded in helium clusters. Pure and mixed clusters of adenine and thymine have been formed by pickup of isolated NB molecules by cold helium droplets. In contrast to EA of isolated molecules in the gas phase we observe a long-lived parent anion NB{sup -} and, in addition, parent cluster ions NB{sub n}{sup -} up to size n=6. Moreover, we show that a low energy electron penetrating into a doped helium droplet causes efficient damage of the embedded nucleobases via resonant, site selective, dissociative electron attachment.

  20. Spectroscopic and functional characterization of iron-sulfur cluster-bound forms of Azotobacter vinelandii (Nif)IscA.

    PubMed

    Mapolelo, Daphne T; Zhang, Bo; Naik, Sunil G; Huynh, Boi Hanh; Johnson, Michael K

    2012-10-16

    The mechanism of [4Fe-4S] cluster assembly on A-type Fe-S cluster assembly proteins, in general, and the specific role of (Nif)IscA in the maturation of nitrogen fixation proteins are currently unknown. To address these questions, in vitro spectroscopic studies (UV-visible absorption/CD, resonance Raman and Mössbauer) have been used to investigate the mechanism of [4Fe-4S] cluster assembly on Azotobacter vinelandii(Nif)IscA, and the ability of (Nif)IscA to accept clusters from NifU and to donate clusters to the apo form of the nitrogenase Fe-protein. The results show that (Nif)IscA can rapidly and reversibly cycle between forms containing one [2Fe-2S](2+) and one [4Fe-4S](2+) cluster per homodimer via DTT-induced two-electron reductive coupling of two [2Fe-2S](2+) clusters and O(2)-induced [4Fe-4S](2+) oxidative cleavage. This unique type of cluster interconversion in response to cellular redox status and oxygen levels is likely to be important for the specific role of A-type proteins in the maturation of [4Fe-4S] cluster-containing proteins under aerobic growth or oxidative stress conditions. Only the [4Fe-4S](2+)-(Nif)IscA was competent for rapid activation of apo-nitrogenase Fe protein under anaerobic conditions. Apo-(Nif)IscA was shown to accept clusters from [4Fe-4S] cluster-bound NifU via rapid intact cluster transfer, indicating a potential role as a cluster carrier for delivery of clusters assembled on NifU. Overall the results support the proposal that A-type proteins can function as carrier proteins for clusters assembled on U-type proteins and suggest that they are likely to supply [2Fe-2S] clusters rather than [4Fe-4S] for the maturation of [4Fe-4S] cluster-containing proteins under aerobic or oxidative stress growth conditions.

  1. Far-ultraviolet morphology of star-forming filaments in cool core brightest cluster galaxies

    NASA Astrophysics Data System (ADS)

    Tremblay, G. R.; O'Dea, C. P.; Baum, S. A.; Mittal, R.; McDonald, M. A.; Combes, F.; Li, Y.; McNamara, B. R.; Bremer, M. N.; Clarke, T. E.; Donahue, M.; Edge, A. C.; Fabian, A. C.; Hamer, S. L.; Hogan, M. T.; Oonk, J. B. R.; Quillen, A. C.; Sanders, J. S.; Salomé, P.; Voit, G. M.

    2015-08-01

    We present a multiwavelength morphological analysis of star-forming clouds and filaments in the central (≲50 kpc) regions of 16 low-redshift (z < 0.3) cool core brightest cluster galaxies. New Hubble Space Telescope imaging of far-ultraviolet continuum emission from young (≲10 Myr), massive (≳5 M⊙) stars reveals filamentary and clumpy morphologies, which we quantify by means of structural indices. The FUV data are compared with X-ray, Lyα, narrow-band Hα, broad-band optical/IR, and radio maps, providing a high spatial resolution atlas of star formation locales relative to the ambient hot (˜107-8 K) and warm ionized (˜104 K) gas phases, as well as the old stellar population and radio-bright active galactic nucleus (AGN) outflows. Nearly half of the sample possesses kpc-scale filaments that, in projection, extend towards and around radio lobes and/or X-ray cavities. These filaments may have been uplifted by the propagating jet or buoyant X-ray bubble, or may have formed in situ by cloud collapse at the interface of a radio lobe or rapid cooling in a cavity's compressed shell. The morphological diversity of nearly the entire FUV sample is reproduced by recent hydrodynamical simulations in which the AGN powers a self-regulating rain of thermally unstable star-forming clouds that precipitate from the hot atmosphere. In this model, precipitation triggers where the cooling-to-free-fall time ratio is tcool/tff ˜ 10. This condition is roughly met at the maximal projected FUV radius for more than half of our sample, and clustering about this ratio is stronger for sources with higher star formation rates.

  2. Integrin-Matrix Clusters Form Podosome-like Adhesions in the Absence of Traction Forces

    PubMed Central

    Yu, Cheng-han; Rafiq, Nisha Bte Mohd; Krishnasamy, Anitha; Hartman, Kevin L.; Jones, Gareth E.; Bershadsky, Alexander D.; Sheetz, Michael P.

    2013-01-01

    Summary Matrix-activated integrins can form different adhesion structures. We report that nontransformed fibroblasts develop podosome-like adhesions when spread on fluid Arg-Gly-Asp peptide (RGD)-lipid surfaces, whereas they habitually form focal adhesions on rigid RGD glass surfaces. Similar to classic macrophage podosomes, the podosome-like adhesions are protrusive and characterized by doughnut-shaped RGD rings that surround characteristic core components including F-actin, N-WASP, and Arp2/Arp3. Furthermore, there are 18 podosome markers in these adhesions, though they lack matrix metalloproteinases that characterize invadopodia and podosomes of Src-transformed cells. When nontransformed cells develop force on integrin-RGD clusters by pulling RGD lipids to prefabricated rigid barriers (metal lines spaced by 1–2 μm), these podosomes fail to form and instead form focal adhesions. The formation of podosomes on fluid surfaces is mediated by local activation of phosphoinositide 3-kinase (PI3K) and the production of phosphatidylinositol-(3,4,5)-triphosphate (PIP3) in a FAK/PYK2-dependent manner. Enrichment of PIP3 precedes N-WASP activation and the recruitment of RhoA-GAP ARAP3. We propose that adhesion structures can be modulated by traction force development and that production of PIP3 stimulates podosome formation and subsequent RhoA downregulation in the absence of traction force. PMID:24290759

  3. X-RAY EMISSION LINE PROFILES FROM WIND CLUMP BOW SHOCKS IN MASSIVE STARS

    SciTech Connect

    Ignace, R.; Waldron, W. L.; Cassinelli, J. P.; Burke, A. E. E-mail: wwaldron@satx.rr.com E-mail: burke.alexander@gmail.com

    2012-05-01

    The consequences of structured flows continue to be a pressing topic in relating spectral data to physical processes occurring in massive star winds. In a preceding paper, our group reported on hydrodynamic simulations of hypersonic flow past a rigid spherical clump to explore the structure of bow shocks that can form around wind clumps. Here we report on profiles of emission lines that arise from such bow shock morphologies. To compute emission line profiles, we adopt a two-component flow structure of wind and clumps using two 'beta' velocity laws. While individual bow shocks tend to generate double-horned emission line profiles, a group of bow shocks can lead to line profiles with a range of shapes with blueshifted peak emission that depends on the degree of X-ray photoabsorption by the interclump wind medium, the number of clump structures in the flow, and the radial distribution of the clumps. Using the two beta law prescription, the theoretical emission measure and temperature distribution throughout the wind can be derived. The emission measure tends to be power law, and the temperature distribution is broad in terms of wind velocity. Although restricted to the case of adiabatic cooling, our models highlight the influence of bow shock effects for hot plasma temperature and emission measure distributions in stellar winds and their impact on X-ray line profile shapes. Previous models have focused on geometrical considerations of the clumps and their distribution in the wind. Our results represent the first time that the temperature distribution of wind clump structures are explicitly and self-consistently accounted for in modeling X-ray line profile shapes for massive stars.

  4. Clump detections and limits on moons in Jupiter's ring system.

    PubMed

    Showalter, Mark R; Cheng, Andrew F; Weaver, Harold A; Stern, S Alan; Spencer, John R; Throop, Henry B; Birath, Emma M; Rose, Debi; Moore, Jeffrey M

    2007-10-12

    The dusty jovian ring system must be replenished continuously from embedded source bodies. The New Horizons spacecraft has performed a comprehensive search for kilometer-sized moons within the system, which might have revealed the larger members of this population. No new moons were found, however, indicating a sharp cutoff in the population of jovian bodies smaller than 8-kilometer-radius Adrastea. However, the search revealed two families of clumps in the main ring: one close pair and one cluster of three to five. All orbit within a brighter ringlet just interior to Adrastea. Their properties are very different from those of the few other clumpy rings known; the origin and nonrandom distribution of these features remain unexplained, but resonant confinement by Metis may play a role. PMID:17932287

  5. Heat conduction boundary layers of condensed clumps in cooling flows

    NASA Astrophysics Data System (ADS)

    Boehringer, H.; Fabian, A. C.

    1989-04-01

    The structure of heat conduction boundary layers of gaseous condensations embedded in the hot intergalactic gas in clusters of galaxies is investigated by means of steady, one-dimensional, hydrodynamic models. It is assumed that heat conduction is effective only on scales much smaller than the total region of the cooling flow. Models are calculated for an arbitrary scaling factor, accounting for the reduction in heat conduction efficiency compared to the classical Spitzer case. The results imply a lower limit to the size spectrum of the condensations. The enhancement of cooling in the ambient medium due to heat conduction losses is calculated for a range of clump parameters. The luminosity of several observable emission lines, the extreme ultraviolet (EUV) and soft X-ray emission spectrum, and the column density of some important ions are determined for the model boundary layers and compared with observations.

  6. THE CLUSTERED NATURE OF STAR FORMATION. PRE-MAIN-SEQUENCE CLUSTERS IN THE STAR-FORMING REGION NGC 602/N90 IN THE SMALL MAGELLANIC CLOUD

    SciTech Connect

    Gouliermis, Dimitrios A.; Gennaro, Mario; Schmeja, Stefan; Dolphin, Andrew E.; Tognelli, Emanuele; Prada Moroni, Pier Giorgio

    2012-03-20

    Located at the tip of the wing of the Small Magellanic Cloud (SMC), the star-forming region NGC 602/N90 is characterized by the H II nebular ring N90 and the young cluster of pre-main-sequence (PMS) and early-type main-sequence stars NGC 602, located in the central area of the ring. We present a thorough cluster analysis of the stellar sample identified with Hubble Space Telescope/Advanced Camera for Surveys in the region. We show that apart from the central cluster low-mass PMS stars are congregated in 13 additional small, compact sub-clusters at the periphery of NGC 602, identified in terms of their higher stellar density with respect to the average background density derived from star counts. We find that the spatial distribution of the PMS stars is bimodal, with an unusually large fraction ({approx}60%) of the total population being clustered, while the remaining is diffusely distributed in the intercluster area, covering the whole central part of the region. From the corresponding color-magnitude diagrams we disentangle an age difference of {approx}2.5 Myr between NGC 602 and the compact sub-clusters, which appear younger, on the basis of comparison of the brighter PMS stars with evolutionary models, which we accurately calculated for the metal abundance of the SMC. The diffuse PMS population appears to host stars as old as those in NGC 602. Almost all detected PMS sub-clusters appear to be centrally concentrated. When the complete PMS stellar sample, including both clustered and diffused stars, is considered in our cluster analysis, it appears as a single centrally concentrated stellar agglomeration, covering the whole central area of the region. Considering also the hot massive stars of the system, we find evidence that this agglomeration is hierarchically structured. Based on our findings, we propose a scenario according to which the region NGC 602/N90 experiences an active clustered star formation for the last {approx}5 Myr. The central cluster NGC 602 was

  7. Do All Stars Form in Clusters?: Masses and Ages of Young Supergiants in Andromeda

    NASA Astrophysics Data System (ADS)

    Choudhury, Zareen; Debs, C.; Kirby, E. N.; Guhathakurta, P.

    2013-01-01

    Currently it is not understood whether seemingly isolated stars formed in situ or were ejected from star clusters as runaway stars. Previous studies determined the origins of isolated stars by measuring their velocities, but past research was limited to OB stars in the Milky Way and Magellanic Clouds due to the difficulty of computing velocities of distant objects. This study proposed an innovative velocity test to statistically determine whether six seemingly isolated BA-type supergiants in Andromeda are runaways. We calculated the minimum relative transverse velocity needed for each supergiant to travel to its current location from the nearest open cluster. By comparing the minimum velocity with Andromeda’s known velocity dispersion, a statistical measure of the stars’ actual velocities, we determined whether the star had the necessary velocity to be a runaway. Minimum velocity was computed from the age of the star, which was calculated from its effective temperature and surface gravity. To compute effective temperature and surface gravity, we applied three new techniques based on Balmer absorption features. The results suggest that all six supergiants had the necessary velocities to be runaways. Although the proposed velocity test is a statistical assessment, it offers a valuable new tool for future investigation of isolated stars beyond the Milky Way and its satellites. This research was supported by the Science Internship Program (SIP) at UCSC, the National Science Foundation, NASA, and Palomar Observatory.

  8. METAL FORMING AND FABRICATION CLUSTER--AN INVESTIGATION AND DEVELOPMENT OF THE CLUSTER CONCEPT AS A PROGRAM IN VOCATIONAL EDUCATION AT THE SECONDARY LEVEL.

    ERIC Educational Resources Information Center

    MALEY, DONALD

    THIS COURSE OUTLINE ON METAL FORMING AND FABRICATION IS PART OF THE FINAL REPORT ON "CLUSTER CONCEPT" COURSES IN VOCATIONAL EDUCATION FOR SECONDARY EDUCATION (ED 010 301). EACH JOB ENTRY TASK WAS ANALYZED FOR HUMAN REQUIREMENTS (COMMUNICATION,MEASUREMENT, MATHEMATICS, SCIENCE, SKILLS, AND INFORMATION) NECESSARY TO PERFORMANCE OF THE TASK. THE TASK…

  9. Nonequilibrium clumped isotope signals in microbial methane

    NASA Astrophysics Data System (ADS)

    Wang, David T.; Gruen, Danielle S.; Lollar, Barbara Sherwood; Hinrichs, Kai-Uwe; Stewart, Lucy C.; Holden, James F.; Hristov, Alexander N.; Pohlman, John W.; Morrill, Penny L.; Könneke, Martin; Delwiche, Kyle B.; Reeves, Eoghan P.; Sutcliffe, Chelsea N.; Ritter, Daniel J.; Seewald, Jeffrey S.; McIntosh, Jennifer C.; Hemond, Harold F.; Kubo, Michael D.; Cardace, Dawn; Hoehler, Tori M.; Ono, Shuhei

    2015-04-01

    Methane is a key component in the global carbon cycle, with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its multiply substituted “clumped” isotopologues (for example, 13CH3D) has recently emerged as a proxy for determining methane-formation temperatures. However, the effect of biological processes on methane’s clumped isotopologue signature is poorly constrained. We show that methanogenesis proceeding at relatively high rates in cattle, surface environments, and laboratory cultures exerts kinetic control on 13CH3D abundances and results in anomalously elevated formation-temperature estimates. We demonstrate quantitatively that H2 availability accounts for this effect. Clumped methane thermometry can therefore provide constraints on the generation of methane in diverse settings, including continental serpentinization sites and ancient, deep groundwaters.

  10. Nonequilibrium clumped isotope signals in microbial methane

    USGS Publications Warehouse

    Wang, David T.; Gruen, Danielle S.; Lollar, Barbara Sherwood; Hinrichs, Kai-Uwe; Stewart, Lucy C.; Holden, James F.; Hristov, Alexander N.; Pohlman, John W.; Morrill, Penny L.; Könneke, Martin; Delwiche, Kyle B.; Reeves, Eoghan P.; Sutcliffe, Chelsea N.; Ritter, Daniel J.; Seewald, Jeffrey S.; McIntosh, Jennifer C.; Hemond, Harold F.; Kubo, Michael D.; Cardace, Dawn; Hoehler, Tori M.; Ono, Shuhei

    2015-01-01

    Methane is a key component in the global carbon cycle with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its multiply-substituted “clumped” isotopologues, e.g., 13CH3D, has recently emerged as a proxy for determining methane-formation temperatures; however, the impact of biological processes on methane’s clumped isotopologue signature is poorly constrained. We show that methanogenesis proceeding at relatively high rates in cattle, surface environments, and laboratory cultures exerts kinetic control on 13CH3D abundances and results in anomalously elevated formation temperature estimates. We demonstrate quantitatively that H2 availability accounts for this effect. Clumped methane thermometry can therefore provide constraints on the generation of methane in diverse settings, including continental serpentinization sites and ancient, deep groundwaters.

  11. The long lives of giant clumps and the birth of outflows in gas-rich galaxies at high redshift

    SciTech Connect

    Bournaud, Frédéric; Renaud, Florent; Daddi, Emanuele; Duc, Pierre-Alain; Elbaz, David; Gabor, Jared M.; Juneau, Stéphanie; Kraljic, Katarina; Le Floch', Emeric; Dekel, Avishai; Elmegreen, Bruce G.; Elmegreen, Debra M.; Teyssier, Romain

    2014-01-01

    Star-forming disk galaxies at high redshift are often subject to violent disk instability, characterized by giant clumps whose fate is yet to be understood. The main question is whether the clumps disrupt within their dynamical timescale (≤50 Myr), like the molecular clouds in today's galaxies, or whether they survive stellar feedback for more than a disk orbital time (≈300 Myr) in which case they can migrate inward and help building the central bulge. We present 3.5-7 pc resolution adaptive mesh refinement simulations of high-redshift disks including photoionization, radiation pressure, and supernovae feedback. Our modeling of radiation pressure determines the mass loading and initial velocity of winds from basic physical principles. We find that the giant clumps produce steady outflow rates comparable to and sometimes somewhat larger than their star formation rate, with velocities largely sufficient to escape the galaxy. The clumps also lose mass, especially old stars, by tidal stripping, and the stellar populations contained in the clumps hence remain relatively young (≤200 Myr), as observed. The clumps survive gaseous outflows and stellar loss, because they are wandering in gas-rich turbulent disks from which they can reaccrete gas at high rates compensating for outflows and tidal stripping, overall keeping realistic and self-regulated gaseous and stellar masses. The outflow and accretion rates have specific timescales of a few 10{sup 8} yr, as opposed to rapid and repeated dispersion and reformation of clumps. Our simulations produce gaseous outflows with velocities, densities, and mass loading consistent with observations, and at the same time suggest that the giant clumps survive for hundreds of Myr and complete their migration to the center of high-redshift galaxies. These long-lived clumps are gas-dominated and contain a moderate mass fraction of stars; they drive inside-out disk evolution, thickening, spheroid growth, and fueling of the central

  12. High-resolution simulations of clump-clump collisions using SPH with particle splitting

    NASA Astrophysics Data System (ADS)

    Kitsionas, S.; Whitworth, A. P.

    2007-06-01

    We investigate, by means of numerical simulations, the phenomenology of star formation triggered by low-velocity collisions between low-mass molecular clumps. The simulations are performed using a smoothed particle hydrodynamics code which satisfies the Jeans condition by invoking on-the-fly particle splitting. Clumps are modelled as stable truncated (non-singular) isothermal, i.e. Bonnor-Ebert, spheres. Collisions are characterized by M0 (clump mass), b (offset parameter, i.e. ratio of impact parameter to clump radius) and (Mach number, i.e. ratio of collision velocity to effective post-shock sound speed). The gas subscribes to a barotropic equation of state, which is intended to capture (i) the scaling of pre-collision internal velocity dispersion with clump mass, (ii) post-shock radiative cooling and (iii) adiabatic heating in optically thick protostellar fragments. The efficiency of star formation is found to vary between 10 and 30 per cent in the different collisions studied and it appears to increase with decreasing M0, and/or decreasing b, and/or increasing . For b < 0.5 collisions produce shock-compressed layers which fragment into filaments. Protostellar objects then condense out of the filaments and accrete from them. The resulting accretion rates are high, , for the first . The densities in the filaments, , are sufficient that they could be mapped in NH3 or CS line radiation, in nearby star formation regions.

  13. SEPARATING THE CONJOINED RED CLUMP IN THE GALACTIC BULGE: KINEMATICS AND ABUNDANCES

    SciTech Connect

    De Propris, Roberto; Kunder, Andrea; Rich, R. Michael; Johnson, Christian I.; Koch, Andreas; Brough, Sarah; Conselice, Christopher J.; Gunawardhana, Madusha; Wijesinghe, Dinuka; Palamara, David; Pimbblet, Kevin

    2011-05-10

    We have used the AAOMEGA spectrograph to obtain R {approx} 1500 spectra of 714 stars that are members of two red clumps in the Plaut Window Galactic bulge field (l, b) = (0{sup 0}, - 8{sup 0}). We discern no difference between the clump populations based on radial velocities or abundances measured from the Mgb index. The velocity dispersion has a strong trend with Mgb-index metallicity, in the sense of a declining velocity dispersion at higher metallicity. We also find a strong trend in mean radial velocity with abundance. Our red clump sample shows distinctly different kinematics for stars with [Fe/H] <-1, which may plausibly be attributable to a minority classical bulge or inner halo population. The transition between the two groups is smooth. The chemo-dynamical properties of our sample are reminiscent of those of the Milky Way globular cluster system. If correct, this argues for no bulge/halo dichotomy and a relatively rapid star formation history. Large surveys of the composition and kinematics of the bulge clump and red giant branch are needed to further define these trends.

  14. A Multinuclear Copper(I) Cluster Forms the Dimerization Interface in Copper-Loaded Human Copper Chaperone for Superoxide Dismutase

    SciTech Connect

    Stasser, J.P.; Siluvai, G.S.; Barry, A.N.; Blackburn, N.J.

    2009-06-04

    Copper binding and X-ray aborption spectroscopy studies are reported on untagged human CCS (hCCS; CCS = copper chaperone for superoxide dismutase) isolated using an intein self-cleaving vector and on single and double Cys to Ala mutants of the hCCS MTCQSC and CSC motifs of domains 1 (D1) and 3 (D3), respectively. The results on the wild-type protein confirmed earlier findings on the CCS-MBP (maltose binding protein) constructs, namely, that Cu(I) coordinates to the CXC motif, forming a cluster at the interface of two D3 polypeptides. In contrast to the single Cys to Ser mutations of the CCS-MBP protein (Stasser, J. P., Eisses, J. F., Barry, A. N., Kaplan, J. H., and Blackburn, N. J. (2005) Biochemistry 44, 3143-3152), single Cys to Ala mutations in D3 were sufficient to eliminate cluster formation and significantly reduce CCS activity. Analysis of the intensity of the Cu-Cu cluster interaction in C244A, C246A, and C244/246A variants suggested that the nuclearity of the cluster was greater than 2 and was most consistent with a Cu4S6 adamantane-type species. The relationship among cluster formation, oligomerization, and metal loading was evaluated. The results support a model in which Cu(I) binding converts the apo dimer with a D2-D2 interface to a new dimer connected by cluster formation at two D3 CSC motifs. The predominance of dimer over tetramer in the cluster-containing species strongly suggests that the D2 dimer interface remains open and available for sequestering an SOD1 monomer. This work implicates the copper cluster in the reactive form and adds detail to the cluster nuclearity and how copper loading affects the oligomerization states and reactivity of CCS for its partner SOD1.

  15. ATCA survey of ammonia in the galactic center: The temperatures of dense gas clumps between Sgr A* and Sgr B2

    SciTech Connect

    Ott, Jürgen; Weiß, Axel; Henkel, Christian; Staveley-Smith, Lister; Meier, David S. E-mail: aweiss@mpifr-bonn.mpg.de E-mail: Lister.Staveley-Smith@uwa.edu.au

    2014-04-10

    We present a large-scale, interferometric survey of ammonia (1, 1) and (2, 2) toward the Galactic center observed with the Australia Telescope Compact Array. The survey covers Δℓ ∼ 1° (∼150 pc at an assumed distance of 8.5 kpc) and Δb ∼ 0.°2 (∼30 pc) which spans the region between the supermassive black hole Sgr A* and the massive star forming region Sgr B2. The resolution is ∼20'' (∼0.8 pc) and emission at scales ≳ 2' (≳ 3.2 pc) is filtered out due to missing interferometric short spacings. Consequently, the data represent the denser, compact clouds and disregards the large-scale, diffuse gas. Many of the clumps align with the 100 pc dust ring and mostly anti-correlate with 1.2 cm continuum emission. We present a kinetic temperature map of the dense gas. The temperature distribution peaks at ∼38 K with a width at half maximum between 18 K and 61 K (measurements sensitive within T {sub kin} ∼ 10-80 K). Larger clumps are on average warmer than smaller clumps which suggests internal heating sources. Our observations indicate that the circumnuclear disk ∼1.5 pc around Sgr A* is supplied with gas from the 20 km s{sup –1} molecular cloud. This gas is substantially cooler than gas ∼3-15 pc away from Sgr A*. We find a strong temperature gradient across Sgr B2. Ammonia column densities correlate well with SCUBA 850 μm fluxes, but the relation is shifted from the origin, which may indicate a requirement for a minimum amount of dust to form and shield ammonia. Around the Arches and Quintuplet clusters we find shell morphologies with UV-influenced gas in their centers, followed by ammonia and radio continuum layers.

  16. ATCA Survey of Ammonia in the Galactic Center: The Temperatures of Dense Gas Clumps between Sgr A* and Sgr B2

    NASA Astrophysics Data System (ADS)

    Ott, Jürgen; Weiß, Axel; Staveley-Smith, Lister; Henkel, Christian; Meier, David S.

    2014-04-01

    We present a large-scale, interferometric survey of ammonia (1, 1) and (2, 2) toward the Galactic center observed with the Australia Telescope Compact Array. The survey covers Δl ~ 1° (~150 pc at an assumed distance of 8.5 kpc) and Δb ~ 0.°2 (~30 pc) which spans the region between the supermassive black hole Sgr A* and the massive star forming region Sgr B2. The resolution is ~20'' (~0.8 pc) and emission at scales >~ 2' (gsim 3.2 pc) is filtered out due to missing interferometric short spacings. Consequently, the data represent the denser, compact clouds and disregards the large-scale, diffuse gas. Many of the clumps align with the 100 pc dust ring and mostly anti-correlate with 1.2 cm continuum emission. We present a kinetic temperature map of the dense gas. The temperature distribution peaks at ~38 K with a width at half maximum between 18 K and 61 K (measurements sensitive within T kin ~ 10-80 K). Larger clumps are on average warmer than smaller clumps which suggests internal heating sources. Our observations indicate that the circumnuclear disk ~1.5 pc around Sgr A* is supplied with gas from the 20 km s-1 molecular cloud. This gas is substantially cooler than gas ~3-15 pc away from Sgr A*. We find a strong temperature gradient across Sgr B2. Ammonia column densities correlate well with SCUBA 850 μm fluxes, but the relation is shifted from the origin, which may indicate a requirement for a minimum amount of dust to form and shield ammonia. Around the Arches and Quintuplet clusters we find shell morphologies with UV-influenced gas in their centers, followed by ammonia and radio continuum layers.

  17. Astrophysics. Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens.

    PubMed

    Kelly, Patrick L; Rodney, Steven A; Treu, Tommaso; Foley, Ryan J; Brammer, Gabriel; Schmidt, Kasper B; Zitrin, Adi; Sonnenfeld, Alessandro; Strolger, Louis-Gregory; Graur, Or; Filippenko, Alexei V; Jha, Saurabh W; Riess, Adam G; Bradac, Marusa; Weiner, Benjamin J; Scolnic, Daniel; Malkan, Matthew A; von der Linden, Anja; Trenti, Michele; Hjorth, Jens; Gavazzi, Raphael; Fontana, Adriano; Merten, Julian C; McCully, Curtis; Jones, Tucker; Postman, Marc; Dressler, Alan; Patel, Brandon; Cenko, S Bradley; Graham, Melissa L; Tucker, Bradley E

    2015-03-01

    In 1964, Refsdal hypothesized that a supernova whose light traversed multiple paths around a strong gravitational lens could be used to measure the rate of cosmic expansion. We report the discovery of such a system. In Hubble Space Telescope imaging, we have found four images of a single supernova forming an Einstein cross configuration around a redshift z = 0.54 elliptical galaxy in the MACS J1149.6+2223 cluster. The cluster's gravitational potential also creates multiple images of the z = 1.49 spiral supernova host galaxy, and a future appearance of the supernova elsewhere in the cluster field is expected. The magnifications and staggered arrivals of the supernova images probe the cosmic expansion rate, as well as the distribution of matter in the galaxy and cluster lenses.

  18. Astrophysics. Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens.

    PubMed

    Kelly, Patrick L; Rodney, Steven A; Treu, Tommaso; Foley, Ryan J; Brammer, Gabriel; Schmidt, Kasper B; Zitrin, Adi; Sonnenfeld, Alessandro; Strolger, Louis-Gregory; Graur, Or; Filippenko, Alexei V; Jha, Saurabh W; Riess, Adam G; Bradac, Marusa; Weiner, Benjamin J; Scolnic, Daniel; Malkan, Matthew A; von der Linden, Anja; Trenti, Michele; Hjorth, Jens; Gavazzi, Raphael; Fontana, Adriano; Merten, Julian C; McCully, Curtis; Jones, Tucker; Postman, Marc; Dressler, Alan; Patel, Brandon; Cenko, S Bradley; Graham, Melissa L; Tucker, Bradley E

    2015-03-01

    In 1964, Refsdal hypothesized that a supernova whose light traversed multiple paths around a strong gravitational lens could be used to measure the rate of cosmic expansion. We report the discovery of such a system. In Hubble Space Telescope imaging, we have found four images of a single supernova forming an Einstein cross configuration around a redshift z = 0.54 elliptical galaxy in the MACS J1149.6+2223 cluster. The cluster's gravitational potential also creates multiple images of the z = 1.49 spiral supernova host galaxy, and a future appearance of the supernova elsewhere in the cluster field is expected. The magnifications and staggered arrivals of the supernova images probe the cosmic expansion rate, as well as the distribution of matter in the galaxy and cluster lenses. PMID:25745167

  19. The initial conditions of stellar protocluster formation - II. A catalogue of starless and protostellar clumps embedded in IRDCs in the Galactic longitude range 15° ≤ l ≤ 55°

    NASA Astrophysics Data System (ADS)

    Traficante, A.; Fuller, G. A.; Peretto, N.; Pineda, J. E.; Molinari, S.

    2015-08-01

    We present a catalogue of starless and protostellar clumps associated with infrared dark clouds (IRDCs) in a 40° wide region of the inner Galactic plane (|b| ≤ 1°). We have extracted the far-infrared (FIR) counterparts of 3493 IRDCs with known distance in the Galactic longitude range 15° ≤ l ≤ 55° and searched for the young clumps using Herschel infrared Galactic plane survey, the survey of the Galactic plane carried out with the Herschel satellite. Each clump is identified as a compact source detected at 160, 250 and 350 μm. The clumps have been classified as protostellar or starless, based on their emission (or lack of emission) at 70 μm. We identify 1723 clumps, 1056 (61 per cent) of which are protostellar and 667 (39 per cent) starless. These clumps are found within 764 different IRDCs, 375 (49 per cent) of which are only associated with protostellar clumps, 178 (23 per cent) only with starless clumps, and 211 (28 per cent) with both categories of clumps. The clumps have a median mass of ˜250 M⊙ and range up to >104 M⊙ in mass and up to 105 L⊙ in luminosity. The mass-radius distribution shows that almost 30 per cent of the starless clumps identified in this survey could form high-mass stars; however these massive clumps are confined in only ≃4 per cent of the IRDCs. Assuming a minimum mass surface density threshold for the formation of high-mass stars, the comparison of the numbers of massive starless clumps and those already containing embedded sources suggests an upper limit lifetime for the starless phase of ˜105 yr for clumps with a mass M > 500 M⊙.

  20. Characterization of [4Fe-4S]-containing and cluster-free forms of Streptomyces WhiD

    PubMed Central

    Crack, Jason C.; den Hengst, Chris D.; Jakimowicz, Piotr; Subramanian, Sowmya; Johnson, Michael K.; Buttner, Mark J.; Thomson, Andrew J.; Le Brun, Nick E.

    2009-01-01

    WhiD, a member of the WhiB-like (Wbl) family of iron-sulfur proteins found exclusively within the actinomycetes, is required for the late stages of sporulation in Streptomyces coelicolor. Like all other Wbl proteins, WhiD has not so far been purified in a soluble form that contains a significant amount of cluster and characterization has relied on cluster-reconstituted protein. Thus, a major goal in Wbl research is to obtain and characterize native protein containing iron-sulfur clusters. Here we report the analysis of S. coelicolor WhiD purified anaerobically from E. coli as a soluble protein containing a single [4Fe-4S]2+ cluster ligated by four cysteines. Upon exposure to oxygen, spectral features associated with the [4Fe-4S] cluster were lost in a slow reaction that unusually yielded apo-WhiD directly without significant concentrations of cluster intermediates. This process was found to be highly pH dependent with an optimal stability observed between pH 7.0 and 8.0. Low molecular weight thiols, including a mycothiol analogue and thioredoxin, exerted a small but significant protective effect against WhiD cluster loss, an activity that could be of physiological importance. [4Fe-4S]2+ WhiD was found to react much more rapidly with superoxide than with either oxygen or hydrogen peroxide, which may also be of physiological significance. Loss of the [4Fe-4S] cluster to form apo-protein destabilized the protein fold significantly, but did not lead to complete unfolding. Finally, apo-WhiD exhibited negligible activity in an insulin-based disulfide reductase assay demonstrating that it does not function as a general protein disulfide reductase. PMID:19954209

  1. Clumps and Temporal Changes in the Jovian Ring System as Viewed by New Horizons

    NASA Astrophysics Data System (ADS)

    Showalter, Mark R.; Cheng, A. F.; Weaver, H. A.; Stern, S. A.; Spencer, J. R.; Throop, H.; Birath, E. M.; Rose, D.; Moore, J. M.

    2007-10-01

    New Horizons obtained 400 ring images of the Jovian ring system using the Long Range Reconnaissance Imager (LORRI). This camera has a broad bandpass spanning wavelengths λ = 0.35 to 0.85 µm. The ring was imaged at phase angles 7°-159°. In addition, one sequence of near-IR spectra (λ = 1.25 to 2.5 µm) was obtained by the Linear Etalon Imaging Spectral Array (LEISA) for compositional studies. Two ring rotation movies during Jupiter approach were used to search for small moons embedded within the system. These bodies might serve as source bodies for the prevalent ring dust. No moons were detected down to a threshold of 500 m radius, suggesting a sharp cutoff in the population of inner Jovian moons below 8-km Adrastea. Although this search focused on the main Jovian ring, any 1-km moons from orbital radius r = 100,000 km to beyond the orbit of Amalthea (r = 181,000 km) should have been detected multiple times. More surprisingly, the ring revealed two clusters of tiny clumps, one pair and one set of three. These are definitively not moons because they have longitudinal extents of a few tenths of a degree. Separations between clumps are 2 to 4° but are not uniform. These clump families both orbit within a brightness peak just interior to the orbit of Adrastea, at r = 128,740 km. Their origin is unknown. They are not visible at high phase angles, indicating that they are composed primarily of larger "parent” bodies, not dust. They are definitely not related to a clump detected in Cassini images of the Jovian ring from December 2000, indicating that at least some ring clumps are transient. The large quadrant asymmetries reported in earlier images from Voyager and Galileo are completely absent in the new data.

  2. Structure of Charged Argon Clusters Formed in a Free Jet Expansion

    NASA Astrophysics Data System (ADS)

    Harris, I. A.; Kidwell, R. S.; Northby, J. A.

    1984-12-01

    We describe measurements of the mass spectrum of charged argon clusters generated in a low-temperature free jet expansion. It contains detailed intensity variations which can be understood in terms of a simplified competing-lattice model of charged-cluster structure.

  3. Gravitational microlensing as a probe for dark matter clumps

    NASA Astrophysics Data System (ADS)

    Fedorova, E.; Sliusar, V. M.; Zhdanov, V. I.; Alexandrov, A. N.; Del Popolo, A.; Surdej, J.

    2016-04-01

    Extended dark matter (DM) substructures may play the role of microlenses in the Milky Way and in extragalactic gravitational lens systems (GLSs). We compare microlensing effects caused by point masses (Schwarzschild lenses) and extended clumps of matter using a simple model for the lens mapping. A superposition of the point mass and the extended clump is also considered. For special choices of the parameters, this model may represent a cusped clump of cold DM, a cored clump of self-interacting dark matter (SIDM) or an ultra-compact minihalo of DM surrounding a massive point-like object. We built the resulting micro-amplification curves for various parameters of one clump moving with respect to the source in order to estimate differences between the light curves caused by clumps and by point lenses. The results show that it may be difficult to distinguish between these models. However, some region of the clump parameters can be restricted by considering the high amplification events at the present level of photometric accuracy. Then we estimate the statistical properties of the amplification curves in extragalactic GLSs. For this purpose, an ensemble of amplification curves is generated yielding the autocorrelation functions (ACFs) of the curves for different choices of the system parameters. We find that there can be a significant difference between these ACFs if the clump size is comparable with typical Einstein radii; as a rule, the contribution of clumps makes the ACFs less steep.

  4. The Milky Way Project and ATLASGAL: The Distribution and Physical Properties of Cold Clumps Near Infrared Bubbles

    NASA Astrophysics Data System (ADS)

    Kendrew, Sarah; Beuther, Henrik; Simpson, Robert; Csengeri, Timea; Wienen, Marion; Lintott, Chris. J.; Povich, Matthew S.; Beaumont, Chris; Schuller, Frédéric

    2016-07-01

    We present a statistical study of the distribution and physical properties of cold, dense material in and around the inner Galactic Plane near-infrared bubbles as cataloged by the Milky Way Project citizen scientists. Using data from the Atacama Pathfinder Experiment (APEX) Telescope Large Area Survey of the Galaxy 870 μm survey, we show that 48 ± 2% of all cold clumps in the studied survey region (| l| ≤slant 65^\\circ , | b| ≤slant 1^\\circ ) are found in close proximity to a bubble, and 25 ± 2% appear directly projected toward a bubble rim. A two-point correlation analysis confirms the strong correlation of massive cold clumps with expanding bubbles. It shows an overdensity of clumps along bubble rims that grows with increasing bubble size, which shows how interstellar medium material is reordered on large scales by bubble expansion around regions of massive star formation. The highest column density clumps appear to be resistent to the expansion, remaining overdense toward the bubbles’ interior rather than being swept up by the expanding edge. Spectroscopic observations in ammonia show that cold dust clumps near bubbles appear to be denser, hotter, and more turbulent than those in the field, offering circumstantial evidence that bubble-associated clumps are more likely to be forming stars. These observed differences in physical conditions persist beyond the region of the bubble rims.

  5. The clustering of merging star-forming haloes: dust emission as high frequency arcminute CMB foreground

    NASA Astrophysics Data System (ADS)

    Righi, M.; Hernández-Monteagudo, C.; Sunyaev, R. A.

    2008-02-01

    Context: Future observations of CMB anisotropies will be able to probe high multipole regions of the angular power spectrum, corresponding to a resolution of a few arcminutes. Dust emission from merging haloes is one of the foregrounds that will affect such very small scales. Aims: We estimate the contribution to CMB angular fluctuations from objects that are bright in the sub-millimeter band due to intense star formation bursts following merging episodes. Methods: We base our approach on the Lacey-Cole merger model and on the Kennicutt relation which connects the star formation rate in galaxies with their infrared luminosity. We set the free parameters of the model in order to not exceed the SCUBA source counts, the Madau plot of star formation rate in the universe and COBE/FIRAS data on the intensity of the sub-millimeter cosmic background radiation. Results: We show that the angular power spectrum arising from the distribution of such star-forming haloes will be one of the most significant foregrounds in the high frequency channels of future CMB experiments, such as PLANCK, ACT and SPT. The correlation term, due to the clustering of multiple haloes at redshift z ~ 2-6, is dominant in the broad range of angular scales 200 ⪉ l ⪉ 3000. Poisson fluctuations due to bright sub-millimeter sources are more important at higher l, but since they are generated from the bright sources, such contribution could be strongly reduced if bright sources are excised from the sky maps. The contribution of the correlation term to the angular power spectrum depends strongly on the redshift evolution of the escape fraction of UV photons and the resulting temperature of the dust. The measurement of this signal will therefore give important information about the sub-millimeter emission and the escape fraction of UV photons from galaxies, in the early stage of their evolution.

  6. Sejong Open Cluster Survey (SOS) - V. The Active Star Forming Region SH 2-255-257

    NASA Astrophysics Data System (ADS)

    Lim, Beomdu; Sung, Hwankyung; Hur, Hyeonoh; Lee, Byeong-Cheol; Bessell, Michael S.; Kim, Jinyoung S.; Lee, Kang Hwan; Park, Byeong-Gon; Jeong, Gwanghui

    2015-12-01

    There is much observational evidence that active star formation is taking place in the H II regions Sh 2-255-257. We present a photometric study of this star forming region (SFR) using imaging data obtained in passbands from the optical to the mid-infrared, in order to study the star formation process. A total of 218 members were identified using various selection criteria based on their observational properties. The SFR is reddened by at least E(B-V) = 0.8 mag, and the reddening law toward the region is normal (R_V = 3.1). From the zero-age main sequence fitting method it is confirmed that the SFR is 2.1 ± 0.3 kpc from the Sun. The median age of the identified members is estimated to be about 1.3 Myr from a comparison of the Hertzsprung-Russell diagram (HRD) with stellar evolutionary models. The initial mass function (IMF) is derived from the HRD and the near-infrared (J, J-H) color-magnitude diagram. The slope of the IMF is about Γ = -1.6 ± 0.1, which is slightly steeper than that of the Salpeter/Kroupa IMF. It implies that low-mass star formation is dominant in the SFR. The sum of the masses of all the identified members provides the lower limit of the cluster mass (169 M_{⊙}). We also analyzed the spectral energy distribution (SED) of pre-main sequence stars using the SED fitting tool of Robitaille et al., and confirm that there is a significant discrepancy between stellar mass and age obtained from two different methods based on the SED fitting tool and the HRD.

  7. The luminosity function of star clusters in 20 star-forming galaxies based on Hubble legacy archive photometry

    SciTech Connect

    Whitmore, Bradley C.; Bowers, Ariel S.; Lindsay, Kevin; Ansari, Asna; Evans, Jessica; Chandar, Rupali; Larsen, Soeren

    2014-04-01

    Luminosity functions (LFs) have been determined for star cluster populations in 20 nearby (4-30 Mpc), star-forming galaxies based on Advanced Camera for Surveys source lists generated by the Hubble Legacy Archive (HLA). These cluster catalogs provide one of the largest sets of uniform, automatically generated cluster candidates available in the literature at present. Comparisons are made with other recently generated cluster catalogs demonstrating that the HLA-generated catalogs are of similar quality, but in general do not go as deep. A typical cluster LF can be approximated by a power law, dN/dL∝L {sup α}, with an average value for α of –2.37 and rms scatter = 0.18 when using the F814W ('I') band. A comparison of fitting results based on methods that use binned and unbinned data shows good agreement, although there may be a systematic tendency for the unbinned (maximum likelihood) method to give slightly more negative values of α for galaxies with steeper LFs. We find that galaxies with high rates of star formation (or equivalently, with the brightest or largest numbers of clusters) have a slight tendency to have shallower values of α. In particular, the Antennae galaxy (NGC 4038/39), a merging system with a relatively high star formation rate (SFR), has the second flattest LF in the sample. A tentative correlation may also be present between Hubble type and values of α, in the sense that later type galaxies (i.e., Sd and Sm) appear to have flatter LFs. Hence, while there do appear to be some weak correlations, the relative similarity in the values of α for a large number of star-forming galaxies suggests that, to first order, the LFs are fairly universal. We examine the bright end of the LFs and find evidence for a downturn, although it only pertains to about 1% of the clusters. Our uniform database results in a small scatter (≈0.4 to 0.5 mag) in the correlation between the magnitude of the brightest cluster (M {sub brightest}) and log of the number

  8. The clump mass function of the dense clouds in the Carina nebula complex

    NASA Astrophysics Data System (ADS)

    Pekruhl, S.; Preibisch, T.; Schuller, F.; Menten, K.

    2013-02-01

    Context. The question how the initial conditions in a star-forming region affect the resulting mass function of the forming stars is one of the most fundamental open topics in star formation theory. Aims: We want to characterize the properties of the cold dust clumps in the Carina nebula complex, which is one of the most massive star forming regions in our Galaxy and shows a very high level of massive star feedback. We derive the clump mass function (ClMF), explore the reliability of different clump extraction algorithms, and investigate the influence of the temperatures within the clouds on the resulting shape of the ClMF. Methods: We analyze a 1.25° × 1.25° wide-field submillimeter map obtained with LABOCA at the APEX telescope, which provides the first spatially complete survey of the clouds in the Carina nebula complex. We use the three clump-finding algorithms CLUMPFIND, GAUSSCLUMPS and SExtractor to identify individual clumps and determine their total fluxes. In addition to assuming a common "typical" temperature for all clouds, we also employ an empirical relation between cloud column densities and temperature to determine an estimate of the individual clump temperatures, and use this to determine individual clump masses. Results: We find that the ClMFs resulting from the different extraction methods show considerable differences in their shape. While the ClMF based on the CLUMPFIND extraction is very well described by a power-law (for clump masses well above the completeness limit), the ClMFs based on the extractions with GAUSSCLUMPS and SExtractor are better represented by a log-normal distribution. We also find that the use of individual clump temperatures leads to a shallower ClMF slope than the (often used) assumption of a common temperature (e.g. 20 K) of all clumps. Conclusions: The power-law of dN/dM ∝ M-1.95 we find for the CLUMPFIND sample is in good agreement with ClMF slopes found in previous studies of the ClMFs of other regions. The

  9. Clumped isotopes’ thermometry in land gastropod carbonate shells

    NASA Astrophysics Data System (ADS)

    Zaarur, S.; Affek, H. P.

    2009-12-01

    The carbonate ‘clumped isotope’ (Δ47) thermometer is based on the dependence of the abundance of 13C-18O bonds in carbonates on the carbonate formation temperature. We repeated at higher analytical precision the original thermometer calibration experiments of Ghosh et al., (2006) using carbonates precipitated synthetically by slow degassing of CO2 from saturated Ca(HCO3)2 solutions at a temperature range of 8°C to 70°C. Our data fall within error of the original calibration and generally confirms it. However, the samples precipitated at lower temperatures are slightly shifted, forming a line with a lower slope, fitting better the theoretical calibration thermometer predicted by Guo et al., (in press). We tested the Δ47 thermometer in land gastropods (snails) by analyzing modern gastropod shells from various geographical locations in comparison to the gastropods’ growing season temperatures. No significant inhomogeneity was observed within an individual shell. Segments growing at different stages in the gastropods’ life (e.g., inner part of the helix reflecting young gastropod growth and outer shell that grew at older gastropod age) revealed no significant variations within a specimen in either Δ47 or δ18O, whereas δ13C varied significantly (0.5 ‰) implying a change in the gastropods’ food source. Inter-species comparison revealed significant δ13C and δ18O variations among specimens collected at the same location (Sphincterochila zonata and Trochoidea simulate, south Israel, and Pleurodonte acuta and Orthalicus undutus, Jamaica) but no significant interspecies variations in Δ47, providing a strong indication for carbonate precipitation in isotopic equilibrium. Gastropod shells do not grow year-round, with most gastropods being dormant during dry cold seasons. ‘Clumped isotopes’ values are therefore expected to record the temperature of the gastropods’ growth season. Hence gastropod ecology and preferred growth conditions has to be taken

  10. CLUMPED CHLOROPLASTS 1 is required for plastid separation in Arabidopsis.

    PubMed

    Yang, Yue; Sage, Tammy L; Liu, Yi; Ahmad, Tiara R; Marshall, Wallace F; Shiu, Shin-Han; Froehlich, John E; Imre, Kathleen M; Osteryoung, Katherine W

    2011-11-01

    We identified an Arabidopsis thaliana mutant, clumped chloroplasts 1 (clmp1), in which disruption of a gene of unknown function causes chloroplasts to cluster instead of being distributed throughout the cytoplasm. The phenotype affects chloroplasts and nongreen plastids in multiple organs and cell types, but is detectable only at certain developmental stages. In young leaf petioles of clmp1, where clustering is prevalent, cells lacking chloroplasts are detected, suggesting impaired chloroplast partitioning during mitosis. Although organelle distribution and partitioning are actin-dependent in plants, the actin cytoskeleton in clmp1 is indistinguishable from that in WT, and peroxisomes and mitochondria are distributed normally. A CLMP1-YFP fusion protein that complements clmp1 localizes to discrete foci in the cytoplasm, most of which colocalize with the cell periphery or with chloroplasts. Ultrastructural analysis revealed that chloroplasts within clmp1 clusters are held together by membranous connections, including thin isthmi characteristic of late-stage chloroplast division. This finding suggests that constriction of dividing chloroplasts proceeds normally in clmp1, but separation is impaired. Consistently, chloroplast size and number, as well as positioning of the plastid division proteins FtsZ and ARC5/DRP5B, are unaffected in clmp1, indicating that loss of CLMP1-mediated chloroplast separation does not prevent otherwise normal division. CLMP1-like sequences are unique to green algae and land plants, and the CLMP1 sequence suggests that it functions through protein-protein interactions. Our studies identify a unique class of proteins required for plastid separation after the constriction stage of plastid division and indicate that CLMP1 activity is also required for plastid distribution and partitioning during cell division.

  11. The Spherically Symmetric Gravitational Collapse of a Clump of Solids in a Gas

    NASA Astrophysics Data System (ADS)

    Shariff, Karim; Cuzzi, Jeffrey N.

    2015-05-01

    In the subject of planetesimal formation, several mechanisms have been identified that create dense particle clumps in the solar nebula. The present work is concerned with the gravitational collapse of such clumps, idealized as being spherically symmetric. Fully nonlinear simulations using the two-fluid model are carried out (almost) up to the time when a central density singularity forms. We refer to this as the collapse time. The end result of the study is a parametrization of the collapse time, in order that it may be compared with timescales for various disruptive effects to which clumps may be subject in a particular situation. An important effect that determines the collapse time is that as the clump compresses, it also compresses the gas due to drag. This increases gas pressure, which retards particle collapse and can lead to oscillation in the size and density of the clump. In the limit of particles perfectly coupled to the gas, the characteristic ratio of gravitational force to gas pressure becomes relevant and defines a two-phase Jeans parameter, {{J}t}, which is the classical Jeans parameter with the speed of sound replaced by an effective wave speed in the coupled two-fluid medium. The parameter {{J}t} remains useful even away from the perfect coupling limit because it makes the simulation results insensitive to the initial density ratio of particles to gas (Φ0) as a separate parameter. A simple ordinary differential equation model is developed. It takes the form of two coupled non-linear oscillators and reproduces key features of the simulations. Finally, a parametric study of the time to collapse is performed and a formula (fit to the simulations) is developed. In the incompressible limit {{J}t}\\to 0, collapse time equals the self-sedimentation time, which is inversely proportional to the Stokes number. As {{J}t} increases, the collapse time decreases with {{J}t} and eventually becomes approximately equal to the dynamical time. Values of collapse

  12. The clumped isotope geothermometer in soil and paleosol carbonate

    NASA Astrophysics Data System (ADS)

    Quade, J.; Eiler, J.; Daëron, M.; Achyuthan, H.

    2013-03-01

    We studied both modern soils and buried paleosols in order to understand the relationship of temperature (T°C(47)) estimated from clumped isotope compositions (Δ47) of soil carbonates to actual surface and burial temperatures. Carbonates from modern soils with differing rainfall seasonality were sampled from Arizona, Nevada, Tibet, Pakistan, and India. T°C(47) obtained from these soils shows that soil carbonate forms in the warmest months of the year, in the late morning to afternoon, and probably in response to intense soil dewatering. T°C(47) obtained from modern soil carbonate ranges from 10.8 to 39.5 °C. On average, T°C(47) exceeds mean annual temperature by 10-15 °C due to summertime bias in soil carbonate formation, and to summertime ground heating by incident solar radiation. Secondary controls on T°C(47) are soil depth and shading. Site mean annual air temperature (MAAT) across a broad range (0-30 °C) of site temperatures is highly correlated with T°C(47) from soils, following the equation: MAAT(°C)=1.20(T°C(47)0)-21.72(r2=0.92) where T°C(47)0 is the effective air temperature at the site estimated from T°C(47). The effective air temperature represents the air temperature required to account for the T°C(47) at each site, after consideration of variations in T°C(47) with soil depth and ground heating. The highly correlated relationship in this equation should now permit mean annual temperature in the past to be reconstructed from T°C(47) in paleosol carbonate, assuming one is studying paleosols that formed in environments generally similar in seasonality and ground cover to our calibration sites. T°C(47)0 decreases systematically with elevation gain in the Himalaya, following the equation: elevation(m)=-229(T°C(47)0)+9300(r2=0.95) Assuming that temperature varied similarly with elevation in the past, this equation can be used to reconstruct paleoelevation from clumped isotope analysis of ancient soil carbonates. We also measured T°C(47

  13. Star Formation Laws in Both Galactic Massive Clumps and External Galaxies: Extensive Study with Dust Coninuum, HCN (4-3), and CS (7-6)

    NASA Astrophysics Data System (ADS)

    Liu, Tie; Kim, Kee-Tae; Yoo, Hyunju; Liu, Sheng-yuan; Tatematsu, Ken'ichi; Qin, Sheng-Li; Zhang, Qizhou; Wu, Yuefang; Wang, Ke; Goldsmith, Paul F.; Juvela, Mika; Lee, Jeong-Eun; Tóth, L. Viktor; Mardones, Diego; Garay, Guido; Bronfman, Leonardo; Cunningham, Maria R.; Li, Di; Lo, Nadia; Ristorcelli, Isabelle; Schnee, Scott

    2016-10-01

    We observed 146 Galactic clumps in HCN (4-3) and CS (7-6) with the Atacama Submillimeter Telescope Experiment 10 m telescope. A tight linear relationship between star formation rate and gas mass traced by dust continuum emission was found for both Galactic clumps and the high redshift (z > 1) star forming galaxies (SFGs), indicating a constant gas depletion time of ˜100 Myr for molecular gas in both Galactic clumps and high z SFGs. However, low z galaxies do not follow this relation and seem to have a longer global gas depletion time. The correlations between total infrared luminosities (L TIR) and molecular line luminosities ({L}{mol}\\prime ) of HCN (4-3) and CS (7-6) are tight and sublinear extending down to clumps with L TIR ˜ 103 L ⊙. These correlations become linear when extended to external galaxies. A bimodal behavior in the L TIR-{L}{mol}\\prime correlations was found for clumps with different dust temperature, luminosity-to-mass ratio, and σ line/σ vir. Such bimodal behavior may be due to evolutionary effects. The slopes of L TIR-L‧mol correlations become more shallow as clumps evolve. We compared our results with lower J transition lines in Wu et al. (2010). The correlations between clump masses and line luminosities are close to linear for low effective excitation density tracers but become sublinear for high effective excitation density tracers for clumps with L TIR larger than L TIR ˜ 104.5 L ⊙. High effective excitation density tracers cannot linearly trace the total clump masses, leading to a sublinear correlations for both M clump-L‧mol and L TIR-L‧mol relations.

  14. The high and low molecular weight forms of hyaluronan have distinct effects on CD44 clustering.

    PubMed

    Yang, Cuixia; Cao, Manlin; Liu, Hua; He, Yiqing; Xu, Jing; Du, Yan; Liu, Yiwen; Wang, Wenjuan; Cui, Lian; Hu, Jiajie; Gao, Feng

    2012-12-14

    CD44 is a major cell surface receptor for the glycosaminoglycan hyaluronan (HA). Native high molecular weight hyaluronan (nHA) and oligosaccharides of hyaluronan (oHA) provoke distinct biological effects upon binding to CD44. Despite the importance of such interactions, however, the feature of binding with CD44 at the cell surface and the molecular basis for functional distinction between different sizes of HA is still unclear. In this study we investigated the effects of high and low molecular weight hyaluronan on CD44 clustering. For the first time, we provided direct evidence for a strong relationship between HA size and CD44 clustering in vivo. In CD44-transfected COS-7 cells, we showed that exogenous nHA stimulated CD44 clustering, which was disrupted by oHA. Moreover, naturally expressed CD44 was distributed into clusters due to abundantly expressed nHA in HK-2 cells (human renal proximal tubule cells) and BT549 cells (human breast cancer cell line) without exogenous stimulation. Our results suggest that native HA binding to CD44 selectively induces CD44 clustering, which could be inhibited by oHA. Finally, we demonstrated that HA regulates cell adhesion in a manner specifically dependent on its size. oHA promoted cell adhesion while nHA showed no effects. Our results might elucidate a molecular- and/or cellular-based mechanism for the diverse biological activities of nHA and oHA.

  15. THE BLAST VIEW OF THE STAR-FORMING REGION IN AQUILA (l = 45{sup 0}, b = 0{sup 0})

    SciTech Connect

    Rivera-Ingraham, Alana; Martin, Peter G.; Netterfield, Calvin B.; Ade, Peter A. R.; Griffin, Matthew; Hargrave, Peter C.; Mauskopf, Philip; Bock, James J.; Chapin, Edward L.; Halpern, Mark; Marsden, Gaelen; Scott, Douglas; Devlin, Mark J.; Dicker, Simon R.; Klein, Jeff; Rex, Marie; Gundersen, Joshua O.; Hughes, David H.; Olmi, Luca; Patanchon, Guillaume

    2010-11-01

    We have carried out the first general submillimeter analysis of the field toward GRSMC 45.46+0.05, a massive star-forming region in Aquila. The deconvolved 6 deg{sup 2} (3{sup 0} x 2{sup 0}) maps provided by BLAST in 2005 at 250, 350, and 500 {mu}m were used to perform a preliminary characterization of the clump population previously investigated in the infrared, radio, and molecular maps. Interferometric CORNISH data at 4.8 GHz have also been used to characterize the Ultracompact H II regions (UCHIIRs) within the main clumps. By means of the BLAST maps, we have produced an initial census of the submillimeter structures that will be observed by Herschel, several of which are known Infrared Dark Clouds. Our spectral energy distributions of the main clumps in the field, located at {approx}7 kpc, reveal an active population with temperatures of T{approx} 35-40 K and masses of {approx}10{sup 3} M{sub sun} for a dust emissivity index {beta} = 1.5. The clump evolutionary stages range from evolved sources, with extended H II regions and prominent IR stellar population, to massive young stellar objects, prior to the formation of an UCHIIR. The CORNISH data have revealed the details of the stellar content and structure of the UCHIIRs. In most cases, the ionizing stars corresponding to the brightest radio detections are capable of accounting for the clump bolometric luminosity, in most cases powered by embedded OB stellar clusters.

  16. Galaxies and dark matter - a free-form mass analysis of Hubble Frontier Field clusters

    NASA Astrophysics Data System (ADS)

    Williams, Liliya L. R.; Sebesta, Kevin; Saha, Prasenjit; Mohammed, Irshad; Liesenborgs, Jori

    2015-08-01

    Centers of galaxy clusters are the densest regions in the Universe, and the most likely places to find anomalous behavior of dark matter: either purely gravitational effects like dynamical friction, or more exotic ones, like self-scattering. We use a genetic algorithm based optimization method (GRALE) to recover mass distribution in HFF clusters using gravitational lensing. We correlate the total mass with the visible galaxies, and also examine the regions around the most massive central galaxies. Our results imply that mass and light are not perfectly correlated. We suggest further ways of testing these results. We also use our reconstructions to examine the line of sight distribution of mass in the directions of HFF clusters.

  17. Dynamic stabilities of icosahedral-like clusters and their ability to form quasicrystals

    NASA Astrophysics Data System (ADS)

    Liang, Xiaogang; Hamid, Ilyar; Duan, Haiming

    2016-06-01

    The dynamic stabilities of the icosahedral-like clusters containing up to 2200 atoms are investigated for 15 metal elements. The clusters originate from five different initial structures (icosahedron, truncated decahedron, octahedron, closed-shell fragment of an HCP structure, and non-closed-shell fragment of an HCP structure). The obtained order of the dynamic stabilities of the icosahedral-like clusters can be assigned to three groups, from stronger to weaker, according to the size ranges involved: (Zr, Al, Ti) > (Cu, Fe, Co, Ni, Mg, Ag) > (Pb, Au, Pd, Pt, Rh, Ir), which correspond to the predicted formation ability of the quasicrystals. Thedifferences of the sequences can be explained by analyzing the parameters of the Gupta-type many-body inter-atomic potentials.

  18. A Photometrically Detected Forming Cluster of Galaxies at Redshift 1.6 in the GOODS Field

    NASA Astrophysics Data System (ADS)

    Castellano, M.; Salimbeni, S.; Trevese, D.; Grazian, A.; Pentericci, L.; Fiore, F.; Fontana, A.; Giallongo, E.; Santini, P.; Cristiani, S.; Nonino, M.; Vanzella, E.

    2007-12-01

    We report the discovery of a localized overdensity at z~1.6 in the GOODS-South field, presumably a poor cluster in the process of formation. The three-dimensional galaxy density has been estimated on the basis of well-calibrated photometric redshifts from the multiband photometric GOODS-MUSIC catalog using the (2+1)-dimensional technique. The density peak is embedded in the larger scale overdensity of galaxies known to exist at z=1.61 in the area. The properties of the member galaxies are compared to those of the surrounding field, and we find that the two populations are significantly different, supporting the reality of the structure. The reddest galaxies, once evolved according to their best-fit models, have colors consistent with the red sequence of lower redshift clusters. The estimated M200 total mass of the cluster is in the range 1.3×1014-5.7×1014 Msolar, depending on the assumed bias factor b. An upper limit for the 2-10 keV X-ray luminosity, based on the 1 Ms Chandra observations, is LX=0.5×1043 erg s-1, suggesting that the cluster has not yet reached the virial equilibrium.

  19. Using Spinning Dust Emission To Constrain The Evolution Of Dust Grains In Cold Clumps

    NASA Astrophysics Data System (ADS)

    Tibbs, C.; Paladini, R.; Cleary, K.; Grainge, K.; Muchovej, S.; Pearson, T.; Perrott, Y.; Rumsey, C.; Scaife, A.; Stevenson, M.; Villadsen, J.

    Within many molecular clouds in our Galaxy there are cold, dense regions known as cold clumps in which stars form. These dense environments provide a great location in which to study dust grain evolution. Given the low temperatures (˜10-15 K) and high densities (˜105 cm-3 ), these environments are dark at mid-infrared (IR) wavelengths and emit strongly at wavelengths ≥160 µm. The lack of mid-IR emission can be attributed to one of two reasons: i) a deficit of the small dust grains that emit stochastically at mid-IR wavelengths; or ii) small dust grains are present, but due to the high densities, the stellar photons cannot penetrate deep enough into the clumps to excite them. Using mid-IR observations alone it is impossible to distinguish between these two scenarios. However, by using spinning dust emission at cm wavelengths it is possible to break this degeneracy, because if small dust grains are present in these clumps, then even though stellar photons cannot excite them to emit at mid-IR wavelengths, these dust grains will be spunup by collisions and hence emit spinning dust radiation. If spinning dust were detected in these clumps it would prove that there are small dust grains present and that the lack of mid-IR emission is due to a lack of stellar photons. Conversely, a lack of spinning dust emission would indicate a deficit of small dust grains in these clumps. Since small dust grains require harsh radiation fields to be destroyed, a lack of small dust grains is likely a result of dust grain coagulation. With this in mind, we present preliminary results illustrating our method of using spinning dust observations to determine the evolution of small dust grains in these environments.

  20. Star-forming Brightest Cluster Galaxies at 0.25 > z > 1.25: A Transitioning Fuel Supply

    NASA Astrophysics Data System (ADS)

    McDonald, M.; Stalder, B.; Bayliss, M.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Brodwin, M.; Carlstrom, J. E.; Chiu, I.; Desai, S.; Gonzalez, A. H.; Hlavacek-Larrondo, J.; Holzapfel, W. L.; Marrone, D. P.; Miller, E. D.; Reichardt, C. L.; Saliwanchik, B. R.; Saro, A.; Schrabback, T.; Stanford, S. A.; Stark, A. A.; Vieira, J. D.; Zenteno, A.

    2016-02-01

    We present a multiwavelength study of the 90 brightest cluster galaxies (BCGs) in a sample of galaxy clusters selected via the Sunyaev Zel’dovich effect by the South Pole Telescope, utilizing data from various ground- and space-based facilities. We infer the star-formation rate (SFR) for the BCG in each cluster—based on the UV and IR continuum luminosity, as well as the [O ii]λλ3726,3729 emission line luminosity in cases where spectroscopy is available—and find seven systems with SFR > 100 M⊙ yr-1. We find that the BCG SFR exceeds 10 M⊙ yr-1 in 31 of 90 (34%) cases at 0.25 < z < 1.25, compared to ˜1%-5% at z ˜ 0 from the literature. At z ≳ 1, this fraction increases to {92}-31+6%, implying a steady decrease in the BCG SFR over the past ˜9 Gyr. At low-z, we find that the specific SFR in BCGs is declining more slowly with time than for field or cluster galaxies, which is most likely due to the replenishing fuel from the cooling ICM in relaxed, cool core clusters. At z ≳ 0.6, the correlation between the cluster central entropy and BCG star formation—which is well established at z ˜ 0—is not present. Instead, we find that the most star-forming BCGs at high-z are found in the cores of dynamically unrelaxed clusters. We use data from the Hubble Space Telescope to investigate the rest-frame near-UV morphology of a subsample of the most star-forming BCGs, and find complex, highly asymmetric UV morphologies on scales as large as ˜50-60 kpc. The high fraction of star-forming BCGs hosted in unrelaxed, non-cool core clusters at early times suggests that the dominant mode of fueling star formation in BCGs may have recently transitioned from galaxy-galaxy interactions to ICM cooling.

  1. Star-Forming Brightest Cluster Galaxies at 0.25 < z < 1.25: A Transitioning Fuel Supply

    DOE PAGES

    McDonald, M.; Stalder, B.; Bayliss, M.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Brodwin, M.; et al

    2016-01-22

    In this paper, we present a multiwavelength study of the 90 brightest cluster galaxies (BCGs) in a sample of galaxy clusters selected via the Sunyaev Zel'dovich effect by the South Pole Telescope, utilizing data from various ground- and space-based facilities. We infer the star-formation rate (SFR) for the BCG in each cluster—based on the UV and IR continuum luminosity, as well as the [O ii]λλ3726,3729 emission line luminosity in cases where spectroscopy is available—and find seven systems with SFR > 100 M⊙ yr-1. We find that the BCG SFR exceeds 10 M⊙ yr-1 in 31 of 90 (34%) cases at 0.25 < z < 1.25, compared to ~1%–5% at z ~ 0 from the literature. At z ≳ 1, this fraction increases tomore » $${92}_{-31}^{+6}$$%, implying a steady decrease in the BCG SFR over the past ~9 Gyr. At low-z, we find that the specific SFR in BCGs is declining more slowly with time than for field or cluster galaxies, which is most likely due to the replenishing fuel from the cooling ICM in relaxed, cool core clusters. At z ≳ 0.6, the correlation between the cluster central entropy and BCG star formation—which is well established at z ~ 0—is not present. Instead, we find that the most star-forming BCGs at high-z are found in the cores of dynamically unrelaxed clusters. We use data from the Hubble Space Telescope to investigate the rest-frame near-UV morphology of a subsample of the most star-forming BCGs, and find complex, highly asymmetric UV morphologies on scales as large as ~50–60 kpc. Finally, the high fraction of star-forming BCGs hosted in unrelaxed, non-cool core clusters at early times suggests that the dominant mode of fueling star formation in BCGs may have recently transitioned from galaxy–galaxy interactions to ICM cooling.« less

  2. Hydrogen abstraction in the neutral molecular cluster of benzophenone and hydrogen donors formed in a supersonic free jet expansion

    SciTech Connect

    Matsushita, Yoshihisa; Kajii, Yoshizumi; Obi, Kinichi

    1992-08-06

    This paper discusses how benzophenone undergoes photoreduction to form benzophenone ketyl radical by an intracellular reaction in the benzophenone 1,4-cyclohexadiene mixed expansion in a supersonic free jet expansion. No ketyl radical fluorescence is observed when triethylamine, 2-propanol, or ethanol is the hydrogen donor; thus the normal molecular cluster activity depends on the nature of the hydrogen donor. 36 refs., 5 figs.

  3. THE BOLOCAM GALACTIC PLANE SURVEY. XI. TEMPERATURES AND SUBSTRUCTURE OF GALACTIC CLUMPS BASED ON 350 μM OBSERVATIONS

    SciTech Connect

    Merello, Manuel; Evans II, Neal J.; Shirley, Yancy L.; Rosolowsky, Erik; Ginsburg, Adam; Bally, John; Battersby, Cara; Dunham, Michael M.

    2015-05-15

    We present 107 maps of continuum emission at 350 μm from Galactic molecular clumps. Observed sources were mainly selected from the Bolocam Galactic Plane Survey (BGPS) catalog, with three additional maps covering star-forming regions in the outer Galaxy. The higher resolution of the SHARC-II images (8.″5 beam) compared with the 1.1 mm images from BGPS (33″ beam) allowed us to identify a large population of smaller substructures within the clumps. A catalog is presented for the 1386 sources extracted from the 350 μm maps. The color temperature distribution of clumps based on the two wavelengths has a median of 13.3 K and mean of 16.3 ± 0.4 K, assuming an opacity law index of 1.7. For the structures with good determination of color temperatures, the mean ratio of gas temperature, determined from NH{sub 3} observations, to dust color temperature is 0.88 and the median ratio is 0.76. About half the clumps have more than 2 substructures and 22 clumps have more than 10. The fraction of the mass in dense substructures seen at 350 μm compared to the mass of their parental clump is ∼0.19, and the surface densities of these substructures are, on average, 2.2 times those seen in the clumps identified at 1.1 mm. For a well-characterized sample, 88 structures (31%) exceed a surface density of 0.2 g cm{sup −2}, and 18 (6%) exceed 1.0 g cm{sup −2}, thresholds for massive star formation suggested by theorists.

  4. IN-SPIRALING CLUMPS IN BLUE COMPACT DWARF GALAXIES

    SciTech Connect

    Elmegreen, Bruce G.; Zhang Hongxin; Hunter, Deidre A.

    2012-03-10

    Giant star formation clumps in dwarf irregular galaxies can have masses exceeding a few percent of the galaxy mass enclosed inside their orbital radii. They can produce sufficient torques on dark matter halo particles, halo stars, and the surrounding disk to lose their angular momentum and spiral into the central region in 1 Gyr. Pairs of giant clumps with similarly large relative masses can interact and exchange angular momentum to the same degree. The result of this angular momentum loss is a growing central concentration of old stars, gas, and star formation that can produce a long-lived starburst in the inner region, identified with the blue compact dwarf (BCD) phase. This central concentration is proposed to be analogous to the bulge in a young spiral galaxy. Observations of star complexes in five local BCDs confirm the relatively large clump masses that are expected for this process. The observed clumps also seem to contain old field stars, even after background light subtraction, in which case the clumps may be long-lived. The two examples with clumps closest to the center have the largest relative clump masses and the greatest contributions from old stars. An additional indication that the dense central regions of BCDs are like bulges is the high ratio of the inner disk scale height to the scale length, which is comparable to 1 for four of the galaxies.

  5. BCD Galaxies from In-spiraling Giant Clumps

    NASA Astrophysics Data System (ADS)

    Elmegreen, Bruce; Zhang, H.; Hunter, D. A.

    2012-01-01

    Giant star-formation clumps in dwarf irregular galaxies can have masses exceeding a few percent of the galaxy mass enclosed inside their orbital radii. They can produce sufficient torques on dark matter halo particles, halo stars, and the surrounding disk to lose their angular momentum and spiral into the center in less than 1 Gyr. Pairs of giant clumps with similarly large relative masses can interact and exchange angular momentum to the same degree. The result of this angular momentum loss is a growing central concentration analogous to a bulge in an earlier-type galaxy. A long history of inward migration will also produce a long-lived starburst in the inner regions as the gas column density remains above a threshold for star formation. Such a burst may be identified with the BCD phase in some dwarfs. Observations of giant star formation clumps in five local dwarf irregulars illustrate the relatively large clump masses that are suggested by this process. The observed clumps also seem to contain old field stars, even after background light subtraction, in which case they may be gravitationally bound and long-lived. The two examples with clumps closest to the center have the largest relative clump masses and the greatest contributions from old stars. This work was funded in part by the National Science Foundation through grants AST-0707563 and AST-0707426 to DAH and BGE. HZ was partly supported by NSF of China through grants #10425313, #10833006 and #10621303 to Professor Yu Gao.

  6. The Amyloid Precursor Protein Forms Plasmalemmal Clusters via Its Pathogenic Amyloid-β Domain

    PubMed Central

    Schreiber, Arne; Fischer, Sebastian; Lang, Thorsten

    2012-01-01

    The amyloid precursor protein (APP) is a large, ubiquitous integral membrane protein with a small amyloid-β (Aβ) domain. In the human brain, endosomal processing of APP produces neurotoxic Aβ-peptides, which are involved in Alzheimer's disease. Here, we show that the Aβ sequence exerts a physiological function when still present in the unprocessed APP molecule. From the extracellular site, Aβ concentrates APP molecules into plasmalemmal membrane protein clusters. Moreover, Aβ stabilization of clusters is a prerequisite for their targeting to endocytic clathrin structures. Therefore, we conclude that the Aβ domain directly mediates a central step in APP trafficking, driving its own conversion into neurotoxic peptides. PMID:22455924

  7. Microlensing Optical Depth towards the Galactic Bulge Using Clump Giants from the MACHO Survey

    SciTech Connect

    Popowski, P; Griest, K; Thomas, C L; Cook, K H; Bennett, D P; Becker, A C; Alves, D R; Minniti, D; Drake, A J; Alcock, C; Allsman, R A; Axelrod, T S; Freeman, K C; Geha, M; Lehner, M J; Marshall, S L; Nelson, C A; Peterson, B A; Quinn, P J; Stubbs, C W; Sutherland, W; Vandehei, T; Welch, D

    2005-07-14

    Using 7 years of MACHO survey data, we present a new determination of the optical depth to microlensing towards the Galactic bulge. We select the sample of 62 microlensing events (60 unique) on clump giant sources and perform a detailed efficiency analysis. We use only the clump giant sources because these are bright bulge stars and are not as strongly affected by blending as other events. Using a subsample of 42 clump events concentrated in an area of 4.5 deg{sup 2} with 739000 clump giant stars, we find {tau} = 2.17{sub -0.38}{sup +0.47} x 10{sup -6} at (l,b) = (1{sup o}.50, -2{sup o}.68), somewhat smaller than found in most previous MACHO studies, but in excellent agreement with recent theoretical predictions. We also present the optical depth in each of the 19 fields in which we detected events, and find limits on optical depth for fields with no events. The errors in optical depth in individual fields are dominated by Poisson noise. We measure optical depth gradients of (1.06 {+-} 0.71) x 10{sup -6}deg{sup -1} and (0.29 {+-} 0.43) x 10{sup -6}deg{sup -1} in the galactic latitude b and longitude l directions, respectively. Finally, we discuss the possibility of anomalous duration distribution of events in the field 104 centered on (l,b) = (3{sup o}.11, -3{sup o}.01) as well as investigate spatial clustering of events in all fields.

  8. Nanopore integrated with Au clusters formed under electron beam irradiation for single molecule analysis

    NASA Astrophysics Data System (ADS)

    Choi, Seong Soo; Park, Myoung Jin; Han, Chul Hee; Kim, Sung In; Yoo, Jung Ho; Park, Kyung Jin; Park, Nam Kyou; Kim, Yong-Sang

    2016-02-01

    Recently the single molecules such as protein and deoxyribonucleic acid (DNA) have been successfully characterized using a solidstate nanopore with an electrical detection technique. However, the optical plasmonic nanopore has yet to be fabricated. The optical detection technique can be better utilized as next generation ultrafast geneome sequencing devices due to the possible utilization of the current optical technique for genome sequencing. In this report, we have investigated the Au nanopore formation under the electron beam irradiation on an Au aperture. The circular-type nanoopening with ~ 5 nm diameter on the diffused membrane is fabricated by using 2 keV electron beam irradiation by using field emission scanning electron microscopy (FESEM). We found the Au cluster on the periphery of the drilled aperture under a 2 keV electron beam irradiation. Immediately right after electron beam irradiation, no Au cluster and no Au crystal lattice structure on the diffused plane are observed. However, after the sample was kept for ~ 6 months under a room environment, the Au clusters are found on the diffused membrane and the Au crystal lattice structures on the diffused membrane are also found using high resolution transmission electron microscopy. These phenomena can be attributed to Ostwald ripening. In addition, the Au nano-hole on the 40 nm thick Au membrane was also drilled by using 200 keV scanning transmission electron microscopy.

  9. The Nitrogenase FeMo-Cofactor Precursor Formed by NifB Protein: A Diamagnetic Cluster Containing Eight Iron Atoms.

    PubMed

    Guo, Yisong; Echavarri-Erasun, Carlos; Demuez, Marie; Jiménez-Vicente, Emilio; Bominaar, Emile L; Rubio, Luis M

    2016-10-01

    The biological activation of N2 occurs at the FeMo-cofactor, a 7Fe-9S-Mo-C-homocitrate cluster. FeMo-cofactor formation involves assembly of a Fe6-8 -SX -C core precursor, NifB-co, which occurs on the NifB protein. Characterization of NifB-co in NifB is complicated by the dynamic nature of the assembly process and the presence of a permanent [4Fe-4S] cluster associated with the radical SAM chemistry for generating the central carbide. We have used the physiological carrier protein, NifX, which has been proposed to bind NifB-co and deliver it to the NifEN protein, upon which FeMo-cofactor assembly is ultimately completed. Preparation of NifX in a fully NifB-co-loaded form provided an opportunity for Mössbauer analysis of NifB-co. The results indicate that NifB-co is a diamagnetic (S=0) 8-Fe cluster, containing two spectroscopically distinct Fe sites that appear in a 3:1 ratio. DFT analysis of the (57) Fe electric hyperfine interactions deduced from the Mössbauer analysis suggests that NifB-co is either a 4Fe(2+) -4Fe(3+) or 6Fe(2+) -2Fe(3+) cluster having valence-delocalized states.

  10. Probing the Dragonfish star-forming complex: the ionizing population of the young massive cluster Mercer 30

    NASA Astrophysics Data System (ADS)

    de la Fuente, D.; Najarro, F.; Borissova, J.; Ramírez Alegría, S.; Hanson, M. M.; Trombley, C.; Figer, D. F.; Davies, B.; Garcia, M.; Kurtev, R.; Urbaneja, M. A.; Smith, L. C.; Lucas, P. W.; Herrero, A.

    2016-05-01

    It has recently been claimed that the nebula, Dragonfish, is powered by a superluminous but elusive OB association. However, systematic searches in near-infrared photometric surveys have found many other cluster candidates in this region of the sky. Among these, the first confirmed young massive cluster was Mercer 30, where Wolf-Rayet stars were found.We perform a new characterization of Mercer 30 with unprecedented accuracy, combining NICMOS/HST and VVV photometric data with multi-epoch ISAAC/VLT H- and K-band spectra. Stellar parameters for most of spectroscopically observed cluster members are found through precise non-LTE atmosphere modeling with the CMFGEN code. Our spectrophotometric study for this cluster yields a new, revised distance of d = (12.4 ± 1.7) kpc and a total of QHMc30 ≈ 6.70 × 1050 s-1 Lyman ionizing photons. A cluster age of (4.0 ± 0.8) Myr is found through isochrone fitting, and a total mass of (1.6 ± 0.6) × 104M⊙ is estimated, thanks to our extensive knowledge of the post-main-sequence population. As a consequence, membership of Mercer 30 to the Dragonfish star-forming complex is confirmed, allowing us to use this cluster as a probe for the whole complex, which turns out to be extremely large (~400 pc across) and located at the outer edge of the Sagittarius-Carina spiral arm (~11 kpc from the Galactic center). The Dragonfish complex hosts 19 young clusters or cluster candidates (including Mercer 30 and a new candidate presented in this work) and an estimated minimum of nine field Wolf-Rayet stars. All these contributions account for, at least 73% of the ionization of the Dragonfish nebula and leaves little or no room for the alleged superluminous OB association; alternative explanations are discussed. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under programs IDs 179.B-2002, 081.D-0471, 083.D-0765, 087.D-0957, and 089.D-0989.

  11. Triosmium clusters formed by oxidative addition and decarbonylation of 2-formylpyrrole: Crystal structures of three triosmium clusters containing aromatic or nonaromatic heterocyclic ligands derived from pyrrole

    SciTech Connect

    Day, M.W.; Hardcastle, K.I. ); Deeming, A.J. ); Arce, A.J.; De Sanctis, Y. )

    1990-01-01

    The {mu}-acyl cluster (Os{sub 3}H({mu}{sub 2}-NHCH=CHCH=CCO)(CO){sub 10}) (1) is formed by oxidative addition of 2-formylpyrrole to (Os{sub 3}(CO){sub 10}(MeCN){sub 2}) in refluxing cyclohexane in the same manner as with other aldehydes. The crystals of 1 are triclinic, space group P{bar 1}, with cell dimensions a = 14.882 (2) {angstrom}, b = 15.626 (4) {angstrom}, c = 9.447 (3) {angstrom}, {alpha} = 107.39 (2){degree}, {beta} = 97.29 (2){degree}, {gamma} = 97.84 (2){degree}, and Z = 4. The structure was refined to R{sub w} = 0.034. The pyrrolylacyl ligand bridges two osmium atoms through the C and O atoms of the original formyl group. Thermal loss of two COs from 1 gives two isomers of the cluster (Os{sub 3}H{sub 2}({mu}{sub 3}-C{sub 4}H{sub 3}N)(CO){sub 9}) (2 and 3), isomer 2 converting to 3 thermally. Isomer 2, (Os{sub 3}H{sub 2}({mu}{sub 3}-NHCH=CHC=C)(CO){sub 9}), retains the NH bond and is directly related to the N-methyl analogue of 2, (Os{sub 3}H{sub 2}({mu}{sub 3}-MeNCH=CHC=C)(CO){sub 9}) (5), and closely related to the benzyne cluster (Os{sub 3}H{sub 2}(C{sub 6}H{sub 4})(CO){sub 9}), both of known X-ray structure. Cluster 2 converts to 3 by cleavage of N-H and Os-C bonds and with formation of C-H and Os-N bonds. Crystals of 3 are monoclinic, space group P2{sub 1}/c, with cell dimensions a = 11.308 (2) {angstrom}, b = 12.457 (2) {angstrom}, c = 15.384 (3) {angstrom}, {beta} = 123.59 (2){degree}, and Z = 8. The structure was refined to R{sub w} = 0.052. The structure is best defined by a model in which the {mu}{sub 3}-N=CHCH=CHC ligand is coordinated to one Os atom through a N atom and to the other two through a single C atom forming a {mu}{sub 2}-alkylidene bridge. The C{sub 4}N ring is formally nonaromatic and is oriented vertically to the metal plane.

  12. CLUMPY GALAXIES IN CANDELS. I. THE DEFINITION OF UV CLUMPS AND THE FRACTION OF CLUMPY GALAXIES AT 0.5 < z < 3

    SciTech Connect

    Guo, Yicheng; Koo, David C.; Barro, Guillermo; Faber, Sandra M.; Fang, Jerome J.; Bell, Eric F.; Conselice, Christopher J.; Giavalisco, Mauro; Lu, Yu; Mandelker, Nir; Dekel, Avishai; McIntosh, Daniel M.; Primack, Joel R.; Ceverino, Daniel; and others

    2015-02-10

    Although giant clumps of stars are thought to be crucial to galaxy formation and evolution, the most basic demographics of clumps are still uncertain, mainly because the definition of clumps has not been thoroughly discussed. In this paper, we carry out a study of the basic demographics of clumps in star-forming galaxies at 0.5 < z < 3, using our proposed physical definition that UV-bright clumps are discrete star-forming regions that individually contribute more than 8% of the rest-frame UV light of their galaxies. Clumps defined this way are significantly brighter than the H II regions of nearby large spiral galaxies, either individually or blended, when physical spatial resolution and cosmological dimming are considered. Under this definition, we measure the fraction of star-forming galaxies that have at least one off-center clump (f {sub clumpy}) and the contributions of clumps to the rest-frame UV light and star formation rate (SFR) of star-forming galaxies in the CANDELS/GOODS-S and UDS fields, where our mass-complete sample consists of 3239 galaxies with axial ratio q > 0.5. The redshift evolution of f {sub clumpy} changes with the stellar mass (M {sub *}) of the galaxies. Low-mass (log (M {sub *}/M {sub ☉}) < 9.8) galaxies keep an almost constant f {sub clumpy} of ∼60% from z ∼ 3 to z ∼ 0.5. Intermediate-mass and massive galaxies drop their f {sub clumpy} from 55% at z ∼ 3 to 40% and 15%, respectively, at z ∼ 0.5. We find that (1) the trend of disk stabilization predicted by violent disk instability matches the f {sub clumpy} trend of massive galaxies; (2) minor mergers are a viable explanation of the f {sub clumpy} trend of intermediate-mass galaxies at z < 1.5, given a realistic observability timescale; and (3) major mergers are unlikely responsible for the f {sub clumpy} trend in all masses at z < 1.5. The clump contribution to the rest-frame UV light of star-forming galaxies shows a broad peak around galaxies with log (M {sub *}/M {sub

  13. The Galactic Census of High- and Medium-mass Protostars. II. Luminosities and Evolutionary States of a Complete Sample of Dense Gas Clumps

    NASA Astrophysics Data System (ADS)

    Ma, Bo; Tan, Jonathan C.; Barnes, Peter J.

    2013-12-01

    The Census of High- and Medium-mass Protostars (CHaMP) is the first large-scale (280° < l < 300°, -4° < b < 2°), unbiased, subparsec resolution survey of Galactic molecular clumps and their embedded stars. Barnes et al. presented the source catalog of ~300 clumps based on HCO+(1-0) emission, used to estimate masses M. Here we use archival midinfrared-to-millimeter continuum data to construct spectral energy distributions. Fitting two-temperature gray-body models, we derive bolometric luminosities, L. We find that the clumps have 10 <~ L/L ⊙ <~ 106.5 and 0.1 <~ L/M/[L ⊙/M ⊙] <~ 103, consistent with a clump population spanning a range of instantaneous star-formation efficiencies from 0 to ~50%. We thus expect L/M to be a useful, strongly varying indicator of clump evolution during the star cluster formation process. We find correlations of the ratio of warm-to-cold component fluxes and of cold component temperature with L/M. We also find a near-linear relation between L/M and Spitzer-IRAC specific intensity (surface brightness); thus, this relation may also be useful as a star-formation efficiency indicator. The lower bound of the clump L/M distribution suggests that the star-formation efficiency per free-fall time is epsilonff < 0.2. We do not find strong correlations of L/M with mass surface density, velocity dispersion, or virial parameter. We find a linear relation between L and L_HCO^+(1{--0)}, although with large scatter for any given individual clump. Fitting together with extragalactic systems, the linear relation still holds, extending over 10 orders of magnitude in luminosity. The complete nature of the CHaMP survey over a several kiloparsec-scale region allows us to derive a measurement at an intermediate scale, bridging those of individual clumps and whole galaxies.

  14. The E. coli monothiol glutaredoxin GrxD forms homodimeric and heterodimeric FeS cluster containing complexes.

    PubMed

    Yeung, N; Gold, B; Liu, N L; Prathapam, R; Sterling, H J; Willams, E R; Butland, G

    2011-10-18

    Monothiol glutaredoxins (mono-Grx) represent a highly evolutionarily conserved class of proteins present in organisms ranging from prokaryotes to humans. Mono-Grxs have been implicated in iron sulfur (FeS) cluster biosynthesis as potential scaffold proteins and in iron homeostasis via an FeS-containing complex with Fra2p (homologue of E. coli BolA) in yeast and are linked to signal transduction in mammalian systems. However, the function of the mono-Grx in prokaryotes and the nature of an interaction with BolA-like proteins have not been established. Recent genome-wide screens for E. coli genetic interactions reported the synthetic lethality (combination of mutations leading to cell death; mutation of only one of these genes does not) of a grxD mutation when combined with strains defective in FeS cluster biosynthesis (isc operon) functions [Butland, G., et al. (2008) Nature Methods 5, 789-795]. These data connected the only E. coli mono-Grx, GrxD to a potential role in FeS cluster biosynthesis. We investigated GrxD to uncover the molecular basis of this synthetic lethality and observed that GrxD can form FeS-bound homodimeric and BolA containing heterodimeric complexes. These complexes display substantially different spectroscopic and functional properties, including the ability to act as scaffold proteins for intact FeS cluster transfer to the model [2Fe-2S] acceptor protein E. coli apo-ferredoxin (Fdx), with the homodimer being significantly more efficient. In this work, we functionally dissect the potential cellular roles of GrxD as a component of both homodimeric and heterodimeric complexes to ultimately uncover if either of these complexes performs functions linked to FeS cluster biosynthesis.

  15. DYNAMO survey: An upclose view of turbulent disks with massive starforming clumps

    NASA Astrophysics Data System (ADS)

    Fisher, David B.

    2015-08-01

    In this talk I will discuss properties of extremely gas rich, turbulent disk galaxies in the DYNAMO survey, an IFU survey of Halpha in ~100 galaxies at z~0.1. DYNAMO galaxies are selected to have the highest Halpha luminosity at their redshift, yet are not AGNs. Follow up results from HST, and kinematic maps from Keck and Gemini show that many DYNAMO galaxies are clumpy, rotating disks, with large internal velocity dispersion, similar to galaxies at z=1-2. In this talk I will show that gas fractions in DYNAMO galaxies are 20-40%, much higher than typical local Universe galaxies (1-8%). The gas fraction of DYNAMO galaxies is similar to that of z=1-2 disks (eg. PHIBBS survey). The DYNAMO galaxies offer a sample of galaxies gas rich, clumpy, turbulent disks at z~0.1. Using DYNAMO galaxies we can therefore constrain the properties of individual clumps with much higher precision than in z=2 galaxies. Unlike high redshift observations in our data the Jeans length is resolved, and we can therefore measure the size of star forming regions with much greater security. I will therefore show how effects from resolution are likely to affect the measurement of clump propoerties, and present an analysis of the sizes and luminosities of star forming regions of massive star forming clumps using HST maps of ionized gas. I will show that in gas rich disk galaxies the sizes of clumps is directly linked to the gas fraction and velocity dispersion of the disk, both predictions of the theory that instabilities lead to clumpy disks.

  16. A CLUSTER IN THE MAKING: ALMA REVEALS THE INITIAL CONDITIONS FOR HIGH-MASS CLUSTER FORMATION

    SciTech Connect

    Rathborne, J. M.; Contreras, Y.; Longmore, S. N.; Bastian, N.; Jackson, J. M.; Alves, J. F.; Bally, J.; Foster, J. B.; Garay, G.; Kruijssen, J. M. D.; Testi, L.; Walsh, A. J.

    2015-04-01

    G0.253+0.016 is a molecular clump that appears to be on the verge of forming a high-mass cluster: its extremely low dust temperature, high mass, and high density, combined with its lack of prevalent star formation, make it an excellent candidate for an Arches-like cluster in a very early stage of formation. Here we present new Atacama Large Millimeter/Sub-millimeter Array observations of its small-scale (∼0.07 pc) 3 mm dust continuum and molecular line emission from 17 different species that probe a range of distinct physical and chemical conditions. The data reveal a complex network of emission features with a complicated velocity structure: there is emission on all spatial scales, the morphology of which ranges from small, compact regions to extended, filamentary structures that are seen in both emission and absorption. The dust column density is well traced by molecules with higher excitation energies and critical densities, consistent with a clump that has a denser interior. A statistical analysis supports the idea that turbulence shapes the observed gas structure within G0.253+0.016. We find a clear break in the turbulent power spectrum derived from the optically thin dust continuum emission at a spatial scale of ∼0.1 pc, which may correspond to the spatial scale at which gravity has overcome the thermal pressure. We suggest that G0.253+0.016 is on the verge of forming a cluster from hierarchical, filamentary structures that arise from a highly turbulent medium. Although the stellar distribution within high-mass Arches-like clusters is compact, centrally condensed, and smooth, the observed gas distribution within G0.253+0.016 is extended, with no high-mass central concentration, and has a complex, hierarchical structure. If this clump gives rise to a high-mass cluster and its stars are formed from this initially hierarchical gas structure, then the resulting cluster must evolve into a centrally condensed structure via a dynamical process.

  17. Local-density driven clustered star formation: Model and (some) implications

    NASA Astrophysics Data System (ADS)

    Parmentier, G.

    A positive power-law trend between the local surface densities of molecular gas, Σ_gas, and young stellar objects, Σ_stars, in molecular clouds of the solar neighbourhood has recently been identified. How it relates to the properties of embedded clusters has so far not been investigated. To that purpose, we model the development of the stellar component of molecular clumps as a function of time and local volume density. Specifically, we associate the observed volume density gradient of molecular clumps to the density-dependent free-fall time and we obtain the molecular clump star formation history by applying a constant star formation efficiency per free-fall time, ɛ_ff. The model reproduces naturally the observed (Σ_gas, Σ_stars) relation quoted above. The consequences of our model in terms of cluster survivability after residual star-forming gas expulsion and in terms of star age distribution in young gas-free clusters are discussed.

  18. An X-ray and radio study of the massive star-forming cluster IRAS 20126+4104

    NASA Astrophysics Data System (ADS)

    Montes, Virginie; Hofner, Peter; Anderson, Crystal; Rosero, Viviana

    2015-08-01

    Two main competitive theories intent to explain massive star formation: the turbulent core model, which is an extension of the low-mass star formation model (McKee & Tan 2003), and models involving competitive accretion or stellar collisions (Bonnell & Bate 2006). The characterization of the cluster in which massive stars remain can help discriminate between the two main scenarios of their formation.Until recently it was believed that massive stars were only formed in dense molecular clouds leading to a substantial cluster. However, a previous study of the massive star forming region IRAS 20126+4104 using Spitzer observations by Qiu et al. (2008), suggested that the massive protostar was isolated, and the region was showing no obvious cluster.Here we adopt a multiwavelength technique to characterize the stellar environment of the IRAS 20126+4104 region combining Chandra X-ray ACIS-I and VLA 6cm continuum observations, and near-infrared (2MASS) data of the region. We detected 150 X-ray sources in the ACIS-I field and 13 radio sources within the 9’.2 VLA primary beam. Associating X-ray sources with their near-infrared counterparts from the 2MASS catalog and a color study of those counterparts, allow us to determine the galactic foreground/background contamination, and we conclude that 90 X-ray sources are associated with the region.This study shows an increasing surface density of X-ray sources toward the massive protostar and a number of at least 42 YSOs within 1.2 pc distance from the massive protostar. This number is consistent with typical B-type stars clusters (Lada & Lada 2003).

  19. VizieR Online Data Catalog: ATLASGAL clumps with IRAS flux and MALT90 data (Stephens+, 2016)

    NASA Astrophysics Data System (ADS)

    Stephens, I. W.; Jackson, J. M.; Whitaker, J. S.; Contreras, Y.; Guzman, A. E.; Sanhueza, P.; Foster, J. B.; Rathborne, J. M.

    2016-08-01

    The Millimetre Astronomy Legacy Team 90GHz (MALT90) survey (Foster+ 2011, J/ApJS/197/25; 2013PASA...30...38F; Jackson+ 2013PASA...30...57J) mapped 16 lines for 3246 clumps, primarily high-mass star-forming clumps that are >200Mȯ, as identified from the ATLASGAL 870um survey (Schuller et al. 2009A&A...504..415S). In order to compare luminosities derived from IRAS (LIR) to molecular line luminosities from MALT90 (Lmolecule), we first matched the MALT90 clumps to the IRAS Point Source Catalog v2.1 (PSC; see Cat. II/125). See section 2.1 for further explanations. (1 data file).

  20. Mid-infrared Extinction Mapping of Infrared Dark Clouds. II. The Structure of Massive Starless Cores and Clumps

    NASA Astrophysics Data System (ADS)

    Butler, Michael J.; Tan, Jonathan C.

    2012-07-01

    We develop the mid-infrared extinction (MIREX) mapping technique of Butler & Tan (Paper I), presenting a new method to correct for the Galactic foreground emission based on observed saturation in independent cores. Using Spitzer GLIMPSE 8 μm images, this allows us to accurately probe mass surface densities, Σ, up to ~= 0.5 g cm-2 with 2'' resolution and mitigate one of the main sources of uncertainty associated with Galactic MIREX mapping. We then characterize the structure of 42 massive starless and early-stage cores and their surrounding clumps, selected from 10 infrared dark clouds, measuring Σcl(r) from the core/clump centers. We first assess the properties of the core/clump at a scale where the total enclosed mass as projected on the sky is M cl = 60 M ⊙. We find that these objects have a mean radius of R cl ~= 0.1 pc, mean \\bar{\\Sigma }_cl = 0.3\\:g\\:cm^{-2} and, if fitted by a power-law (PL) density profile \\rho _cl\\propto r^{-k_\\rho ,cl}, a mean value of k ρ, cl = 1.1. If we assume a core is embedded in each clump and subtract the surrounding clump envelope to derive the core properties, then we find a mean core density PL index of k ρ, c = 1.6. We repeat this analysis as a function of radius and derive the best-fitting PL plus uniform clump envelope model for each of the 42 core/clumps. The cores have typical masses of Mc ~ 100 M ⊙ and \\bar{\\Sigma }_c\\sim 0.1\\:g\\:cm^{-2}, and are embedded in clumps with comparable mass surface densities. We also consider Bonnor-Ebert density models, but these do not fit the observed Σ profiles as well as PLs. We conclude that massive starless cores exist and are well described by singular polytropic spheres. Their relatively low values of Σ and the fact that they are IR dark may imply that their fragmentation is inhibited by magnetic fields rather than radiative heating. Comparing to massive star-forming cores and clumps, there is tentative evidence for an evolution toward higher densities and steeper

  1. Asymmetrical clustering by sex in free-forming groups: an observational field study.

    PubMed

    Kramer-Moore, Daniela

    2010-08-01

    464 observations were carried out in public places of 3- or 4-person, mixed sex, free-forming groups who spontaneously divided into subgroups. An analysis of sex composition of the subgroups showed that significantly more single-sex subgroups were formed than expected by chance. This was significantly more pronounced among women than among men. Several explanations were considered.

  2. Molecular gas clumps from the destruction of icy bodies in the β Pictoris debris disk.

    PubMed

    Dent, W R F; Wyatt, M C; Roberge, A; Augereau, J-C; Casassus, S; Corder, S; Greaves, J S; de Gregorio-Monsalvo, I; Hales, A; Jackson, A P; Hughes, A Meredith; Lagrange, A-M; Matthews, B; Wilner, D

    2014-03-28

    Many stars are surrounded by disks of dusty debris formed in the collisions of asteroids, comets, and dwarf planets, but is gas also released in such events? Observations at submillimeter wavelengths of the archetypal debris disk around β Pictoris show that 0.3% of a Moon mass of carbon monoxide orbits in its debris belt. The gas distribution is highly asymmetric, with 30% found in a single clump 85 astronomical units from the star, in a plane closely aligned with the orbit of the inner planet, β Pictoris b. This gas clump delineates a region of enhanced collisions, either from a mean motion resonance with an unseen giant planet or from the remnants of a collision of Mars-mass planets. PMID:24603151

  3. Molecular Gas Clumps from the Destruction of Icy Bodies in the β Pictoris Debris Disk

    NASA Astrophysics Data System (ADS)

    Dent, W. R. F.; Wyatt, M. C.; Roberge, A.; Augereau, J.-C.; Casassus, S.; Corder, S.; Greaves, J. S.; de Gregorio-Monsalvo, I.; Hales, A.; Jackson, A. P.; Hughes, A. Meredith; Lagrange, A.-M.; Matthews, B.; Wilner, D.

    2014-03-01

    Many stars are surrounded by disks of dusty debris formed in the collisions of asteroids, comets, and dwarf planets, but is gas also released in such events? Observations at submillimeter wavelengths of the archetypal debris disk around β Pictoris show that 0.3% of a Moon mass of carbon monoxide orbits in its debris belt. The gas distribution is highly asymmetric, with 30% found in a single clump 85 astronomical units from the star, in a plane closely aligned with the orbit of the inner planet, β Pictoris b. This gas clump delineates a region of enhanced collisions, either from a mean motion resonance with an unseen giant planet or from the remnants of a collision of Mars-mass planets.

  4. Molecular Gas Clumps from the Destruction of Icy Bodies in the beta Pictoris Debris Disk

    NASA Technical Reports Server (NTRS)

    Dent, W. R. F.; Wyatt, M. C.; Roberge, A.; Augereau, J. -C.; Casassus, S.; Corder, S.; Greaves, J. S.; DeGregorio-Monsalvo, I.; Hales, A.; Jackson, A. P.; Hughes, A. Meredith; Lagrange, A. -M.; Matthews, B.; Wilner, D.

    2014-01-01

    Many stars are surrounded by disks of dusty debris formed in the collisions of asteroids, comets and dwarf planets. But is gas also released in such events? Observations at sub-mm wavelengths of the archetypal debris disk around ß Pictoris show that 0.3% of a Moon mass of carbon monoxide orbits in its debris belt. The gas distribution is highly asymmetric, with 30% found in a single clump 85 AU from the star, in a plane closely aligned with the orbit of the inner planet, beta Pic b. This gas clump delineates a region of enhanced collisions, either from a mean motion resonance with an unseen giant planet, or from the remnants of a collision of Mars-mass planets.

  5. Initial conditions of formation of starburst clusters: constraints from stellar dynamics

    NASA Astrophysics Data System (ADS)

    Banerjee, Sambaran; Kroupa, Pavel

    2015-08-01

    Recent high resolution observations of dense regions of molecular clouds and massive gaseous clumps with instruments like Herschel and ALMA have revealed intricate and filamentary overdensity structures in them. Such progenitors of massive starburst clusters are in contrast with smooth, centrally-pronounced profiles of the latter. In this work, we intend to constrain massive, substructured stellar distributions that would evolve to cluster-like profiles at very young ages (~Myr), as seen in starburst clusters. Taking the well observed NGC3603 Young Cluster (NYC) as an example, we compute the infall and final merger of filament-like compact (0.1-0.3 pc) subclusters, totalling 10000 M_sun, from a range of spatial scales and modes of sub-clustering, using direct N-body calculations. These calculations infer an allowable span of approx. 2.5 pc from which the subclusters can fall in a gas potential and merge to form a single centrally-dense structure in near dynamical equilibrium, within the young age of NYC (1-2 Myr). However, these merged clusters are too compact and centrally overdense compared to typical young clusters. Our N-body calculations, beginning from such compact initial conditions, show that even stellar wind and supernova mass loss, dynamical heating from retaining black holes, external tidal field and heating due to tight O-star binaries together cannot expand these clusters to their observed sizes, even in 100 Myr. Hence an explosive gas dispersal phase seems essential for forming starburst and other young clusters observed in the Milky Way and in the Local Group which can expand the clusters to their observed sizes and concentrations; including that for NYC with approx. 30% clump star formation efficiency. However, some observed massive but highly extended (>10 pc) , >10 Myr old clusters better fit a slow (several Myr timescale) gas dispersal from parsec-scale initial profiles, which can be the future of embedded systems like W3 Main.

  6. The effect of counteranions on the molecular structures of phosphanegold(i) cluster cations formed by polyoxometalate (POM)-mediated clusterization.

    PubMed

    Nagashima, Eri; Yoshida, Takuya; Matsunaga, Satoshi; Nomiya, Kenji

    2016-09-14

    The effect of counteranions on the molecular structures of phosphanegold(i) cluster cations formed by polyoxometalate (POM)-mediated clusterization was investigated. A novel intercluster compound, [{(AuLCl)2(μ-OH)}2]3[α-PMo12O40]2·3EtOH (1-PMo12), was obtained as orange-yellow plate crystals in 12.0% yield from a 6 : 1 molar ratio reaction of the monomeric phosphanegold(i) carboxylato complex [Au(RS-pyrrld)(LCl)] (RS-Hpyrrld = RS-2-pyrrolidone-5-carboxylic acid; LCl = tris(4-chlorophenyl)phosphane) in CH2Cl2 with the free acid-form of Keggin polyoxometalate (POM), H3[α-PMo12O40]·14H2O. An EtOH/H2O (5 : 1, v/v) solvent mixture was used. The dimeric cation [{(AuLCl)2(μ-OH)}2](2+) in 1-PMo12 was in a parallel-edge arrangement that was formed by self-assembly through the inter-cationic aurophilic interactions of the μ-OH-bridged dinuclear phosphanegold(i) cation. The POM anion in 1-PMo12 was successfully exchanged with a smaller PF6(-) anion by the use of an anion-exchange resin. POM-free, colorless block crystals of [{(AuLCl)3(μ3-O)}2](PF6)2·4CH2Cl2 (2-PF6) were obtained by vapor diffusion in 14.1% yield. During the synthesis of 2-PF6, a compound with mixed counteranions (one POM and one PF6(-) anion), i.e. [{(AuLCl)4(μ4-O)}]2[α-PMo12O40]PF6 (3-PMo12PF6), was obtained in 66.4% yield. Both products were characterized by elemental analysis, TG/DTA, FT-IR, (31)P{(1)H} NMR, (1)H NMR, and X-ray crystallography. X-ray crystallography revealed that the countercation in 2-PF6 was the dimeric cation of the μ3-O-bridged tris{phosphanegold(i)} species, whereas that in 3-PMo12PF6 consisted of an unusual μ4-O-bridged tetragonal-pyramidal tetrakis{phosphanegold(i)} cation. Therefore, we concluded that the POM anion significantly contributed to the stabilization of these countercations (parallel-edged arrangement in 1-PMo12 and μ4-O-bridged tetragonal-pyramid in 3-PMo12PF6). Moreover, the previously reported yellow crystals of [{(AuLF)2(μ-OH)}2]3[PMo12O40]2·3

  7. EVOLUTION AND LIFETIME OF TRANSIENT CLUMPS IN THE TURBULENT INTERSTELLAR MEDIUM

    SciTech Connect

    Falceta-Goncalves, D.; Lazarian, A.

    2011-07-10

    We study the evolution of dense clumps and provide an argument that the existence of the clumps is not limited by their crossing times. We claim that the lifetimes of the clumps are determined by turbulent motions on a larger scale, and we predict the correlation of clump lifetime with column density. We use numerical simulations to successfully test this relation. In addition, we study the morphological asymmetry and the magnetization of the clumps as functions of their masses.

  8. The SCUBA-2 cosmology legacy survey: Ultraluminous star-forming galaxies in a z = 1.6 cluster

    SciTech Connect

    Smail, Ian; Swinbank, A. M.; Danielson, A. L. R.; Edge, A. C.; Simpson, J. M.; Geach, J. E.; Tadaki, K.; Arumugam, V.; Dunlop, J. S.; Ivison, R. J.; Hartley, W.; Almaini, O.; Conselice, C.; Bremer, M. N.; Chapin, E.; Chapman, S. C.; Scott, D.; Simpson, C. J.; Karim, A.; Kodama, T.; and others

    2014-02-10

    We analyze new SCUBA-2 submillimeter and archival SPIRE far-infrared imaging of a z = 1.62 cluster, Cl 0218.3–0510, which lies in the UKIRT Infrared Deep Sky Survey/Ultra-Deep Survey field of the SCUBA-2 Cosmology Legacy Survey. Combining these tracers of obscured star-formation activity with the extensive photometric and spectroscopic information available for this field, we identify 31 far-infrared/submillimeter-detected probable cluster members with bolometric luminosities ≳10{sup 12} L {sub ☉} and show that by virtue of their dust content and activity, these represent some of the reddest and brightest galaxies in this structure. We exploit ALMA submillimeter continuum observations, which cover one of these sources, to confirm the identification of a SCUBA-2-detected ultraluminous star-forming galaxy in this structure. Integrating the total star-formation activity in the central region of the structure, we estimate that it is an order of magnitude higher (in a mass-normalized sense) than clusters at z ∼ 0.5-1. However, we also find that the most active cluster members do not reside in the densest regions of the structure, which instead host a population of passive and massive, red galaxies. We suggest that while the passive and active populations have comparable near-infrared luminosities at z = 1.6, M{sub H} ∼ –23, the subsequent stronger fading of the more active galaxies means that they will evolve into passive systems at the present day that are less luminous than the descendants of those galaxies that were already passive at z ∼ 1.6 (M{sub H} ∼ –20.5 and M{sub H} ∼ –21.5, respectively, at z ∼ 0). We conclude that the massive galaxy population in the dense cores of present-day clusters were already in place at z = 1.6 and that in Cl 0218.3–0510 we are seeing continuing infall of less extreme, but still ultraluminous, star-forming galaxies onto a pre-existing structure.

  9. Spatially Resolved Spectroscopy and Chemical History of Star-forming Galaxies in the Hercules Cluster: The Effects of the Environment

    NASA Astrophysics Data System (ADS)

    Petropoulou, V.; Vílchez, J.; Iglesias-Páramo, J.; Papaderos, P.; Magrini, L.; Cedrés, B.; Reverte, D.

    2011-06-01

    Spatially resolved spectroscopy has been obtained for a sample of 27 star-forming (SF) galaxies selected from our deep Hα survey of the Hercules cluster. We have applied spectral synthesis models to all emission-line spectra of this sample using the population synthesis code STARLIGHT and have obtained fundamental parameters of stellar components such as mean metallicity and age. The emission-line spectra were corrected for underlying stellar absorption using these spectral synthesis models. Line fluxes were measured and O/H and N/O gas chemical abundances were obtained using the latest empirical calibrations. We have derived the masses and total luminosities of the galaxies using available Sloan Digital Sky Survey broadband photometry. The effects of cluster environment on the chemical evolution of galaxies and on their mass-metallicity (MZ) and luminosity-metallicity (LZ) relations were studied by combining the derived gas metallicities, the mean stellar metallicities and ages, the masses and luminosities of the galaxies, and their existing H I data. Our Hercules SF galaxies are divided into three main subgroups: (1) chemically evolved spirals with truncated ionized-gas disks and nearly flat oxygen gradients, demonstrating the effect of ram-pressure stripping; (2) chemically evolved dwarfs/irregulars populating the highest local densities, possible products of tidal interactions in preprocessing events; and (3) less metallic dwarf galaxies that appear to be "newcomers" to the cluster and are experiencing pressure-triggered star formation. Most Hercules SF galaxies follow well-defined MZ and LZ sequences (for both O/H and N/O), though the dwarf/irregular galaxies located at the densest regions appear to be outliers to these global relations, suggesting a physical reason for the dispersion in these fundamental relations. The Hercules cluster appears to be currently assembling via the merger of smaller substructures, providing an ideal laboratory where the local

  10. SPATIALLY RESOLVED SPECTROSCOPY AND CHEMICAL HISTORY OF STAR-FORMING GALAXIES IN THE HERCULES CLUSTER: THE EFFECTS OF THE ENVIRONMENT

    SciTech Connect

    Petropoulou, V.; Vilchez, J.; Iglesias-Paramo, J.; Cedres, B.; Papaderos, P.; Magrini, L.; Reverte, D.

    2011-06-10

    Spatially resolved spectroscopy has been obtained for a sample of 27 star-forming (SF) galaxies selected from our deep H{alpha} survey of the Hercules cluster. We have applied spectral synthesis models to all emission-line spectra of this sample using the population synthesis code STARLIGHT and have obtained fundamental parameters of stellar components such as mean metallicity and age. The emission-line spectra were corrected for underlying stellar absorption using these spectral synthesis models. Line fluxes were measured and O/H and N/O gas chemical abundances were obtained using the latest empirical calibrations. We have derived the masses and total luminosities of the galaxies using available Sloan Digital Sky Survey broadband photometry. The effects of cluster environment on the chemical evolution of galaxies and on their mass-metallicity (MZ) and luminosity-metallicity (LZ) relations were studied by combining the derived gas metallicities, the mean stellar metallicities and ages, the masses and luminosities of the galaxies, and their existing H I data. Our Hercules SF galaxies are divided into three main subgroups: (1) chemically evolved spirals with truncated ionized-gas disks and nearly flat oxygen gradients, demonstrating the effect of ram-pressure stripping; (2) chemically evolved dwarfs/irregulars populating the highest local densities, possible products of tidal interactions in preprocessing events; and (3) less metallic dwarf galaxies that appear to be 'newcomers' to the cluster and are experiencing pressure-triggered star formation. Most Hercules SF galaxies follow well-defined MZ and LZ sequences (for both O/H and N/O), though the dwarf/irregular galaxies located at the densest regions appear to be outliers to these global relations, suggesting a physical reason for the dispersion in these fundamental relations. The Hercules cluster appears to be currently assembling via the merger of smaller substructures, providing an ideal laboratory where the

  11. Systematic assessment of coordinated activity cliffs formed by kinase inhibitors and detailed characterization of activity cliff clusters and associated SAR information.

    PubMed

    Dimova, Dilyana; Stumpfe, Dagmar; Bajorath, Jürgen

    2015-01-27

    From currently available kinase inhibitors and their activity data, clusters of coordinated activity cliffs were systematically derived and subjected to cluster index and index map analysis. Type I-like inhibitors with well-defined IC50 measurements were found to provide a large knowledge base of activity cliff clusters for 266 targets from nine kinase groups. On the basis of index map analysis, these clusters were systematically organized according to structural similarity of inhibitors and activity cliff diversity and prioritized for structure-activity relationship (SAR) analysis. From prioritized clusters, interpretable SAR information can be extracted. It is also shown that activity cliff clusters formed by ATP site-directed inhibitors often represent local SAR environments of rather different complexity and interpretability. In addition, activity cliff clusters including promiscuous kinase inhibitors have been determined. Only a small subset of inhibitors was found to change activity cliff roles in different clusters. The activity cliff clusters described herein and their index map organization substantially enrich SAR information associated with kinase inhibitors in compound subsets of limited size. The cluster and index map information is made available upon request to provide opportunities for further SAR exploration. On the basis of our analysis and the data provided, activity cliff clusters and corresponding inhibitor series for kinase targets of interest can be readily selected.

  12. Clumped isotope calibration data for lacustrine carbonates: A progress report

    NASA Astrophysics Data System (ADS)

    Tripati, A.

    2015-12-01

    Our capacity to understand Earth's environmental history is highly dependent on the accuracy of reconstructions of past climates. Lake sediments provide important archives of terrestrial climate change, and represent an important tool for reconstructing paleohydrology, paleoclimate, paleoenvironment, and paleoaltimetry. Unfortunately, while multiple methods for constraining marine temperature exist, quantitative terrestrial proxies are scarcer - tree rings, speleothems, and leaf margin analyses have all been used with varying degrees of accuracy. Clumped isotope thermometry has the potential to be a useful instrument for determining terrestrial climates: multiple studies have shown the fraction of 13C—18O bonds in carbonates is inversely related to the temperature at which the rocks formed. We have been measuring the abundance of 13C18O16O in the CO2 produced by the dissolution of carbonate minerals in phosphoric acid in modern lake samples and comparing results to independently known estimates of lake water temperature. Here we discuss an extensive calibration dataset comprised of 132 analyses of 97 samples from 44 localities, including microbialites, tufas, and micrites endogenic carbonates, freshwater gastropods, bivalves, microbialites, and ooids.

  13. Formation of cold clumps and filaments around superbubbles

    NASA Astrophysics Data System (ADS)

    Ntormousi, Evangelia; Dawson, Joanne; Del Sordo, Fabio; Hennebelle, Patrick

    2015-08-01

    The combined feedback of supernova explosions and stellar winds from associations of massive stars has a dramatic impact on their environment: Large amounts of energy coming from the ejecta create dense shocks around the associations, compressing the surrounding ISM and triggering the formation of molecular clouds and new stars. In this work we employ high-resolution, three-dimensional simulations of this process with the MHD code RAMSES to explore the effects of self-gravity and magnetic fields on the structure of the shells. Two superbubbles expand and collide in a turbulent diffuse medium. In the expansion phase rich dense structure appears on the surface of the shocks due to hydrodynamic and hydromagnetic instabilities. Although gravity seems to play a minor role in the formation and evolution of these dense clumps, magnetic fields completely alter both the expansion of the superbubble and the morphology of the dense gas, slowing the expansion down and causing the appearance of large-scale filaments. The collision does not help increase the amount of cold gas, but rather destroys a lot of the pre-existing dense structures. Finally, we compare clouds formed in these simulations with observations of a molecular cloud crushed between two superbubbles.

  14. North African Jewish and non-Jewish populations form distinctive, orthogonal clusters

    PubMed Central

    Campbell, Christopher L.; Palamara, Pier F.; Dubrovsky, Maya; Botigué, Laura R.; Fellous, Marc; Atzmon, Gil; Oddoux, Carole; Pearlman, Alexander; Hao, Li; Henn, Brenna M.; Burns, Edward; Bustamante, Carlos D.; Comas, David; Friedman, Eitan; Pe'er, Itsik; Ostrer, Harry

    2012-01-01

    North African Jews constitute the second largest Jewish Diaspora group. However, their relatedness to each other; to European, Middle Eastern, and other Jewish Diaspora groups; and to their former North African non-Jewish neighbors has not been well defined. Here, genome-wide analysis of five North African Jewish groups (Moroccan, Algerian, Tunisian, Djerban, and Libyan) and comparison with other Jewish and non-Jewish groups demonstrated distinctive North African Jewish population clusters with proximity to other Jewish populations and variable degrees of Middle Eastern, European, and North African admixture. Two major subgroups were identified by principal component, neighbor joining tree, and identity-by-descent analysis—Moroccan/Algerian and Djerban/Libyan—that varied in their degree of European admixture. These populations showed a high degree of endogamy and were part of a larger Ashkenazi and Sephardic Jewish group. By principal component analysis, these North African groups were orthogonal to contemporary populations from North and South Morocco, Western Sahara, Tunisia, Libya, and Egypt. Thus, this study is compatible with the history of North African Jews—founding during Classical Antiquity with proselytism of local populations, followed by genetic isolation with the rise of Christianity and then Islam, and admixture following the emigration of Sephardic Jews during the Inquisition. PMID:22869716

  15. H-ATLAS: a candidate high redshift cluster/protocluster of star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Clements, D. L.; Braglia, F.; Petitpas, G.; Greenslade, J.; Cooray, A.; Valiante, E.; De Zotti, G.; O'Halloran, B.; Holdship, J.; Morris, B.; Pérez-Fournon, I.; Herranz, D.; Riechers, D.; Baes, M.; Bremer, M.; Bourne, N.; Dannerbauer, H.; Dariush, A.; Dunne, L.; Eales, S.; Fritz, J.; Gonzalez-Nuevo, J.; Hopwood, R.; Ibar, E.; Ivison, R. J.; Leeuw, L. L.; Maddox, S.; Michałowski, M. J.; Negrello, M.; Omont, A.; Oteo, I.; Serjeant, S.; Valtchanov, I.; Vieira, J. D.; Wardlow, J.; van der Werf, P.

    2016-09-01

    We investigate the region around the Planck-detected z = 3.26 gravitationally lensed galaxy HATLAS J114637.9-001132 (hereinafter HATLAS12-00) using both archival Herschel data from the H-ATLAS survey and using submm data obtained with both LABOCA and SCUBA2. The lensed source is found to be surrounded by a strong overdensity of both Herschel-SPIRE sources and submm sources. We detect 17 bright (S870 > ˜7 mJy) sources at >4σ closer than 5 arcmin to the lensed object at 850/870 μm. 10 of these sources have good cross-identifications with objects detected by Herschel-SPIRE which have redder colours than other sources in the field, with 350 μm flux >250 μm flux, suggesting that they lie at high redshift. Submillimeter Array (SMA) observations localise one of these companions to ˜1 arcsec, allowing unambiguous cross identification with a 3.6 and 4.5 μm Spitzer source. The optical/near-IR spectral energy distribution of this source is measured by further observations and found to be consistent with z > 2, but incompatible with lower redshifts. We conclude that this system may be a galaxy cluster/protocluster or larger scale structure that contains a number of galaxies undergoing starbursts at the same time.

  16. Radiation Pressure on Bacterial Clumps in the Solar Vicinity and Their Survival Between Interstellar Transits

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, N. C.; Wickramasinghe, J. T.

    Radiation pressure cross-sections for clumps of hollow bacterial grains with thin coatings of graphite are calculated using rigorous Guttler formulae. The carbonized skins are expected to form through exposure to solar ultraviolet radiation, but a limiting thickness of about 0.03 μm is determined by opacity effects. The ratios of radiation pressure to gravity P/G are calculated for varying sizes of the clumps and for varying thickness of the graphite coatings. Bacterial clumps and individual desiccated bacteria without coatings of radii in the range 0.3-8 μm have P/G ratios less than unity, whereas particles with coatings of 0.02 μm thickness have ratios in excess of unity. Such coatings also provide protection from damaging ultraviolet radiation. Putative cometary bacteria, such as have been recently collected in the stratosphere, are thus not gravitationally bound in the solar system provided they possess carbonised exterior coatings. They are rapidly expelled from the solar system reaching nearby protosolar nebulae in timescales of a few million years. Even with the most pessimistic assumptions galactic cosmic rays are unable to diminish viability to an extent that vitiates the continuity of panspermia.

  17. Properties of Starless Clumps through Protoclusters from the Bolocam Galactic Plane Survey

    NASA Astrophysics Data System (ADS)

    Svoboda, Brian E.; Shirley, Yancy

    2014-07-01

    High mass stars play a key role in the physical and chemical evolution of the interstellar medium, yet the evolution of physical properties for high-mass star-forming regions remains unclear. We sort a sample of ~4668 molecular cloud clumps from the Bolocam Galactic Plane Survey (BGPS) into different evolutionary stages by combining the BGPS 1.1 mm continuum and observational diagnostics of star-formation activity from a variety of Galactic plane surveys: 70 um compact sources, mid-IR color-selected YSOs, H2O and CH3OH masers, EGOs, and UCHII regions. We apply Monte Carlo techniques to distance probability distribution functions (DPDFs) in order to marginalize over the kinematic distance ambiguity and calculate distributions for derived quantities of clumps in different evolutionary stages. We also present a combined NH3 and H2O maser catalog for ~1590 clumps from the literature and our own GBT 100m observations. We identify a sub-sample of 440 dense clumps with no star-formation indicators, representing the largest and most robust sample of pre-protocluster candidates from a blind survey to date. Distributions of I(HCO+), I(N2H+), dv(HCO+), dv(N2H+), mass surface density, and kinetic temperature show strong progressions when separated by evolutionary stage. No progressions are found in size or dust mass; however, weak progressions are observed in area > 2 pc^2 and dust mass > 3 10^3 Msun. An observed breakdown occurs in the size-linewidth relationship and we find no improvement when sampling by evolutionary stage.

  18. From Gas to Stars in Energetic Environments: Chemistry of Clumps in Giant Molecular Clouds Within the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Anderson, Crystal N.; Meier, David S.; Ott, Juergen; Hughes, Annie; Wong, Tony H.

    2015-01-01

    We present parsec scale interferometric maps of HCN and HCO^{+} emission from dense gas in the star-forming region 30 Doradus, obtained using the Australia Telescope Compact Array (ATCA). This extreme star-forming region, located in the Large Magellanic Cloud (LMC), is characterized by a very intense ultraviolet ionizing radiation field and sub-solar metallicity, both of which are expected to impact molecular cloud structure. We detect 13 bright, dense clumps within the 30 Doradus-10 giant molecular cloud. Some of the clumps are aligned along a filamentary structure with a characteristic spacing that is consistent with formation via the varicose fluid instability. Our analysis shows that the filament is gravitationally unstable and collapsing to form stars. There is a good correlation between HCO^{+} emission in the filament and signatures of recent star formation activity including H_{2}O masers and young stellar objects (YSOs). We present detailed comparisons of clump properties (masses, linewidths, sizes) in 30Dor-10 to those in other star forming regions of the LMC (N159, N113, N105, N44). Our analysis shows that the 30 Doradus-10 clumps have similar mass but wider linewidths and similar HCN/HCO^{+} (1-0) line ratios as clumps detected in other LMC star-forming regions. Our results suggest that the dense molecular gas clumps in the interior of 30Dor-10 are well-shielded against the intense ionizing field that is present in the 30 Doradus region. We also present preliminary results from follow up observations with the ATCA of a several molecular lines detected from the brightest clumps in 30 Doradus-10, N113 and N159W. The maps cover the following dense gas, photo-dominated regions (PDRs), and shock tracers: HCN, HCO^{+}, C_{2}H, SiO, HNCO, SiS, N_{2}H^{+}, CS, CH_{3}H, CH_{3}CN, {13}^CS, OCS, H_{2}, {34}^CS. These giant molecular clouds have varying radiation fields and energetics. We compare the chemistry within these giant molecular clouds to one another to

  19. Clump formation through colliding stellar winds in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Calderón, Diego

    2016-07-01

    The gas cloud G2 is currently being tidally disrupted by the Galactic Center super-massive black hole, Sgr A*. The region around the black hole is populated by ˜30 Wolf-Rayet stars, which produce strong outflows. Following an analytical approach, we explore the possibility that gas clumps, such as G2, originate from the collision of identical stellar winds via the Non-Linear Thin Shell Instability. We have found that the collision of relatively slow (<750 km s^{-1}) and strong (˜10^{-5} M_{⊙} yr^{-1}) stellar winds from stars at short separations (<2000 AU) is a process that indeed could produce clumps of G2's mass and above. Such short separation encounters of single stars along their orbits are not common in the Galactic Centre, however close binaries, such as IRS 16SW, are promising clump sources (see Calderón et al. 2016). We also present the first results of 2D models of colliding wind systems using the hydrodynamics adaptive mesh refinement code RAMSES, aiming to obtain a clump mass function, and the rate of clump formation and ejection to the ISM. We study the effect of parameters such as wind properties, stellar separation and orbital motion, in order to understand how likely the formation of G2 is in this context.

  20. PARTICLE CLUMPING AND PLANETESIMAL FORMATION DEPEND STRONGLY ON METALLICITY

    SciTech Connect

    Johansen, Anders; Youdin, Andrew; Mac Low, Mordecai-Mark

    2009-10-20

    We present three-dimensional numerical simulations of particle clumping and planetesimal formation in protoplanetary disks with varying amounts of solid material. As centimeter-size pebbles settle to the mid-plane, turbulence develops through vertical shearing and streaming instabilities. We find that when the pebble-to-gas column density ratio is 0.01, corresponding roughly to solar metallicity, clumping is weak, so the pebble density rarely exceeds the gas density. Doubling the column density ratio leads to a dramatic increase in clumping, with characteristic particle densities more than 10 times the gas density and maximum densities reaching several thousand times the gas density. This is consistent with unstratified simulations of the streaming instability that show strong clumping in particle-dominated flows. The clumps readily contract gravitationally into interacting planetesimals on the order of 100 km in radius. Our results suggest that the correlation between host star metallicity and exoplanets may reflect the early stages of planet formation. We further speculate that initially low-metallicity disks can be particle enriched during the gas dispersal phase, leading to a late burst of planetesimal formation.

  1. Cluster of genes that encode positive and negative elements influencing filament length in a heterocyst-forming cyanobacterium.

    PubMed

    Merino-Puerto, Victoria; Herrero, Antonia; Flores, Enrique

    2013-09-01

    The filamentous, heterocyst-forming cyanobacteria perform oxygenic photosynthesis in vegetative cells and nitrogen fixation in heterocysts, and their filaments can be hundreds of cells long. In the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120, the genes in the fraC-fraD-fraE operon are required for filament integrity mainly under conditions of nitrogen deprivation. The fraC operon transcript partially overlaps gene all2395, which lies in the opposite DNA strand and ends 1 bp beyond fraE. Gene all2395 produces transcripts of 1.35 kb (major transcript) and 2.2 kb (minor transcript) that overlap fraE and whose expression is dependent on the N-control transcription factor NtcA. Insertion of a gene cassette containing transcriptional terminators between fraE and all2395 prevented production of the antisense RNAs and resulted in an increased length of the cyanobacterial filaments. Deletion of all2395 resulted in a larger increase of filament length and in impaired growth, mainly under N2-fixing conditions and specifically on solid medium. We denote all2395 the fraF gene, which encodes a protein restricting filament length. A FraF-green fluorescent protein (GFP) fusion protein accumulated significantly in heterocysts. Similar to some heterocyst differentiation-related proteins such as HglK, HetL, and PatL, FraF is a pentapeptide repeat protein. We conclude that the fraC-fraD-fraE←fraF gene cluster (where the arrow indicates a change in orientation), in which cis antisense RNAs are produced, regulates morphology by encoding proteins that influence positively (FraC, FraD, FraE) or negatively (FraF) the length of the filament mainly under conditions of nitrogen deprivation. This gene cluster is often conserved in heterocyst-forming cyanobacteria. PMID:23813733

  2. Cluster of Genes That Encode Positive and Negative Elements Influencing Filament Length in a Heterocyst-Forming Cyanobacterium

    PubMed Central

    Merino-Puerto, Victoria; Herrero, Antonia

    2013-01-01

    The filamentous, heterocyst-forming cyanobacteria perform oxygenic photosynthesis in vegetative cells and nitrogen fixation in heterocysts, and their filaments can be hundreds of cells long. In the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120, the genes in the fraC-fraD-fraE operon are required for filament integrity mainly under conditions of nitrogen deprivation. The fraC operon transcript partially overlaps gene all2395, which lies in the opposite DNA strand and ends 1 bp beyond fraE. Gene all2395 produces transcripts of 1.35 kb (major transcript) and 2.2 kb (minor transcript) that overlap fraE and whose expression is dependent on the N-control transcription factor NtcA. Insertion of a gene cassette containing transcriptional terminators between fraE and all2395 prevented production of the antisense RNAs and resulted in an increased length of the cyanobacterial filaments. Deletion of all2395 resulted in a larger increase of filament length and in impaired growth, mainly under N2-fixing conditions and specifically on solid medium. We denote all2395 the fraF gene, which encodes a protein restricting filament length. A FraF-green fluorescent protein (GFP) fusion protein accumulated significantly in heterocysts. Similar to some heterocyst differentiation-related proteins such as HglK, HetL, and PatL, FraF is a pentapeptide repeat protein. We conclude that the fraC-fraD-fraE←fraF gene cluster (where the arrow indicates a change in orientation), in which cis antisense RNAs are produced, regulates morphology by encoding proteins that influence positively (FraC, FraD, FraE) or negatively (FraF) the length of the filament mainly under conditions of nitrogen deprivation. This gene cluster is often conserved in heterocyst-forming cyanobacteria. PMID:23813733

  3. Gaps in globular cluster streams: giant molecular clouds can cause them too

    NASA Astrophysics Data System (ADS)

    Amorisco, Nicola C.; Gómez, Facundo A.; Vegetti, Simona; White, Simon D. M.

    2016-11-01

    As a result of their internal dynamical coherence, thin stellar streams formed by disrupting globular clusters (GCs) can act as detectors of dark matter (DM) substructure in the Galactic halo. Perturbations induced by close flybys amplify into detectable density gaps, providing a probe both of the abundance and of the masses of DM subhaloes. Here, we use N-body simulations to show that the Galactic population of giant molecular clouds (GMCs) can also produce gaps (and clumps) in GC streams, and so may confuse the detection of DM subhaloes. We explore the cases of streams analogous to the observed Palomar 5 and GD1 systems, quantifying the expected incidence of structure caused by GMC perturbations. Deep observations should detect such disturbances regardless of the substructure content of the Milky Way's halo. Detailed modelling will be needed to demonstrate that any detected gaps or clumps were produced by DM subhaloes rather than by molecular clouds.

  4. Calibration of the carbonate `clumped isotope' paleotemperature proxy using mollusc shells and benthic foraminiferal tests

    NASA Astrophysics Data System (ADS)

    Came, R. E.; Curry, W. B.; Weidman, C. R.; Eiler, J. M.

    2007-12-01

    It has recently been shown that the carbonate `clumped isotope' thermometer can provide temperature constraints that depend only on the isotopic composition of carbonate (in particular, on the proportion of 13C and 18O that form bonds with each other), and that do not require assumptions about the isotopic composition of the water in which the carbonate formed (Ghosh et al., 2006). Furthermore, this novel method permits the calculation of seawater δ18O based on the clumped isotope temperature estimates and the simultaneously obtained δ18O of carbonate, thereby enabling the extraction of global ice volume estimates for both the recent and distant geologic past. Here we present clumped isotope analyses of several naturally occurring marine carbonates that calcified at known temperatures in the modern ocean. First, we analyzed benthic foraminiferal tests from six high-quality multicore tops collected in the Florida Strait, spanning a temperature range of 9.3-20.2 degrees C. Second, we analyzed shallow-water mollusc shells from a variety of different climate regimes, spanning a temperature range of 2.5-26.0 degrees C. We find that the calcitic foraminiferal species Cibicidoides spp. agrees well with the inorganic calcite precipitation experiments of Ghosh et al. (2006), while the aragonitic species Hoeglundina elegans is significantly offset. Similarly, clumped isotope results obtained from aragonitic mollusc shells also reveal an offset from the Ghosh et al. (2006) trend, although the offset observed in mollusc aragonite is quite different in nature from that observed in foraminiferal aragonite. Assuming our estimates of the growth temperatures of these naturally occurring organisms are correct, these results suggest that there are vital effects associated with the stable isotope compositions of the aragonite-precipitating organisms examined in this study; further work will be required to determine their cause. Nevertheless, the internal coherence of trends for

  5. Clumped isotope geochemistry of mid-Cretaceous (Barremian-Aptian) rudist shells: paleoclimatic and paleoenvironmental implications

    NASA Astrophysics Data System (ADS)

    Huck, S.; Steuber, T.; Bernasconi, S.; Weissert, H.

    2012-04-01

    The Cretaceous period is generally considered to have been a time of climate warmth, but there is an ongoing dispute about the existence of Cretaceous cool episodes - including the short-termed installation of polar ice caps. The Late Barremian-Early Aptian represents a Cretaceous key interval in terms of paleoclimate and paleoceanography, as it provides evidence for (i) a cooler climate (Pucéat et al., 2003) and (ii) a considerable seasonality of sea surface temperatures (SSTs) at low latitudes (Steuber et al., 2005). The timing and significance of these cool episodes, however, are not well constrained. Recently published TEX86 data, in contrast to oxygen isotope paleotemperature estimates, now are in support of a climate scenario with equable hot (~30° C) tropical SSTs from the Early Cretaceous onwards. The aim of this project is to reconstruct the evolution of Barremian-Aptian sea-surface temperatures (SSTs) in the tropical Tethyan realm by use of a combined geochemical approach including oxygen isotope analysis and carbonate clumped-isotope thermometry. Paleotemperature proxies are based on the isotope geochemistry of low-Mg calcite of pristine rudist bivalve shells (Toucasia, Requienia) collected from different carbonate platform settings, including the Provence platform in SE France and the Adriatic Carbonate platform in Croatia. Carbonate clumped-isotope geochemistry deals with the state of ordering of rare isotopes in molecules, in particular with their tendency to form bonds with other rare isotopes (13C-18O) rather than with the most abundant ones. Carbonate clumped-isotope thermometry has been shown to allow for reconstructing (i) the temperature of carbonate mineral formation and calculating (ii) the isotopic composition of the water from which carbonate minerals were formed (by using the δ18O of the analysed carbonate sample). Our approach seeks to provide insights into possible biases in temperature estimates of different paleothermometers

  6. Enhancing glass-forming ability via frustration of nano-clustering in alloys with a high solvent content

    PubMed Central

    Li, H. X.; Gao, J. E.; Wu, Y.; Jiao, Z. B.; Ma, D.; Stoica, A. D.; Wang, X. L.; Ren, Y.; Miller, M. K.; Lu, Z. P.

    2013-01-01

    The glass-forming ability (GFA) of alloys with a high-solvent content such as soft magnetic Fe-based and Al-based alloys is usually limited due to strong formation of the solvent-based solid solution phase. Herein, we report that the GFA of soft magnetic Fe-based alloys (with >70 at.% Fe to ensure large saturation magnetization) could be dramatically improved by doping with only 0.3 at.% Cu which has a positive enthalpy of mixing with Fe. It was found that an appropriate Cu addition could enhance the liquid phase stability and crystallization resistance by destabilizing the α-Fe nano-clusters due to the necessity to redistribute the Cu atoms. However, excessive Cu doping would stimulate nucleation of the α-Fe nano-clusters due to the repulsive nature between the Fe and Cu atoms, thus deteriorating the GFA. Our findings provide new insights into understanding of glass formation in general. PMID:23760427

  7. THE HIGH-VELOCITY MOLECULAR OUTFLOWS IN MASSIVE CLUSTER-FORMING REGION G10.6-0.4

    SciTech Connect

    Liu Hauyu Baobab; Ho, Paul T. P.; Zhang Qizhou E-mail: pho@asiaa.sinica.edu.t

    2010-12-20

    We report the arcsecond resolution Submillimeter Array observations of the {sup 12}CO (2-1) transition in the massive cluster-forming region G10.6-0.4. In these observations, the high-velocity {sup 12}CO emission is resolved into individual outflow systems, which have a typical size scale of a few arcseconds. These molecular outflows are energetic and are interacting with the ambient molecular gas. By inspecting the shock signatures traced by CH{sub 3}OH, SiO, and HCN emissions, we suggest that abundant star formation activities are distributed over the entire 0.5 pc scale dense molecular envelope. The star formation efficiency over one global free-fall timescale (of the 0.5 pc molecular envelope, {approx}10{sup 5} years) is about a few percent. The total energy feedback of these high-velocity outflows is higher than 10{sup 47} erg, which is comparable to the total kinetic energy in the rotational motion of the dense molecular envelope. From order-of-magnitude estimations, we suggest that the energy injected from the protostellar outflows is capable of balancing the turbulent energy dissipation. No high-velocity bipolar molecular outflow associated with the central OB cluster is directly detected, which can be due to the photoionization.

  8. The High-velocity Molecular Outflows in Massive Cluster-forming Region G10.6-0.4

    NASA Astrophysics Data System (ADS)

    Liu, Hauyu Baobab; Ho, Paul T. P.; Zhang, Qizhou

    2010-12-01

    We report the arcsecond resolution Submillimeter Array observations of the 12CO (2-1) transition in the massive cluster-forming region G10.6-0.4. In these observations, the high-velocity 12CO emission is resolved into individual outflow systems, which have a typical size scale of a few arcseconds. These molecular outflows are energetic and are interacting with the ambient molecular gas. By inspecting the shock signatures traced by CH3OH, SiO, and HCN emissions, we suggest that abundant star formation activities are distributed over the entire 0.5 pc scale dense molecular envelope. The star formation efficiency over one global free-fall timescale (of the 0.5 pc molecular envelope, ~105 years) is about a few percent. The total energy feedback of these high-velocity outflows is higher than 1047 erg, which is comparable to the total kinetic energy in the rotational motion of the dense molecular envelope. From order-of-magnitude estimations, we suggest that the energy injected from the protostellar outflows is capable of balancing the turbulent energy dissipation. No high-velocity bipolar molecular outflow associated with the central OB cluster is directly detected, which can be due to the photoionization.

  9. The Interstellar Extinction Towards the Milky Way Bulge with Planetary Nebulae, Red Clump, and RR Lyrae Stars

    NASA Astrophysics Data System (ADS)

    Nataf, David M.

    2016-06-01

    I review the literature covering the issue of interstellar extinction towards the Milky Way bulge, with emphasis placed on findings from planetary nebulae, RR Lyrae, and red clump stars. I also report on observations from HI gas and globular clusters. I show that there has been substantial progress in this field in recent decades, most particularly from red clump stars. The spatial coverage of extinction maps has increased by a factor ~ 100 × in the past 20 yr, and the total-to-selective extinction ratios reported have shifted by ~ 20-25%, indicative of the improved accuracy and separately, of a steeper-than-standard extinction curve. Problems remain in modelling differential extinction, explaining anomalies involving the planetary nebulae, and understanding the difference between bulge extinction coefficients and `standard' literature values.

  10. Accretion of gaseous clumps from the Galactic Centre Mini-spiral onto Milky Way's supermassive black hole

    NASA Astrophysics Data System (ADS)

    Karas, Vladimir; Kunneriath, Devaky; Czerny, Bozena; Rozanska, Agata; Adhikari, Tek P.

    2016-07-01

    Evidence for reflection of X-rays on molecular clouds in the vicinity of Sagittarius A* super-massive black hole (Sgr A* SMBH) suggests that the center of Galaxy was active in its recent history. We investigate the idea of gaseous Mini-spiral pattern as the origin of material triggering this enhanced activity. Collisions between clumps of gas in the Mini-spiral can reduce their angular momentum and set some of the clumps on a plunging trajectory towards Sgr A* SMBH. It turns out that the amount of material in the Mini-spiral region is sufficient to sustain the required level of luminosity. We examine a possibility of Thermal Instability onset to describe the mechanism for elevated accretion during the past period. Our contribution extends a recent paper by including the effect of the Nuclear Star Cluster, which provides additional important contribution to the energy balance of the inter-stellar medium.

  11. Extinction in young massive clusters

    NASA Astrophysics Data System (ADS)

    De Marchi, Guido; Panagia, Nino

    2016-01-01

    Up to ages of ~100 Myr, massive clusters are still swamped in large amounts of gas and dust, causing considerable and uneven levels of extinction. At the same time, large grains (ices?) produced by type II supernovae profoundly alter the interstellar medium (ISM), thus resulting in extinction properties very different from those of the diffuse ISM. To obtain physically meaningful parameters of stars (luminosities, effective temperatures, masses, ages, etc.) we must understand and measure the local extinction law. We have developed a powerful method to unambiguously determine the extinction law everywhere across a cluster field, using multi-band photometry of red giant stars belonging to the red clump (RC) and are applying it to young massive clusters in the Local Group. In the Large Magellanic Cloud, with about 20 RC stars per arcmin2, for each field we can easily derive an accurate extinction curve over the entire wavelength range of the photometry. As an example, we present the extinction law of the Tarantula nebula (30 Dor) based on thousands of stars observed as part of the Hubble Tarantula Treasury Project. We discuss how the incautious adoption of the Milky Way extinction law in the analysis of massive star forming regions may lead to serious underestimates of the fluxes and of the star formation rates by factors of 2 or more.

  12. INTERACTIONS BETWEEN FORMING STARS AND DENSE GAS IN THE SMALL LOW-MASS CLUSTER CEDERBLAD 110

    SciTech Connect

    Ladd, E. F.; Wong, T.; Bourke, T. L.; Thompson, K. L.

    2011-12-20

    We present observations of dense gas and outflow activity in the Cederblad 110 region of the Chamaeleon I dark cloud complex. The region contains nine forming low-mass stars in evolutionary stages ranging from Class 0 to Class II/III crowded into a 0.2 pc region with high surface density ({Sigma}{sub YSO} {approx} 150 pc{sup -2}). The analysis of our N{sub 2}H{sup +} (J = 1{yields}0) maps indicates the presence of 13 {+-} 3 solar masses of dense (n {approx} 10{sup 5} cm{sup -3}) gas in this region, much of which is unstable against gravitational collapse. The most unstable material is located near the Class 0 source MMS-1, which is almost certainly actively accreting material from its dense core. Smaller column densities of more stable dense gas are found toward the region's Class I sources, IRS 4, 11, and 6. Little or no dense gas is colocated with the Class II and III sources in the region. The outflow from IRS 4 is interacting with the dense core associated with MMS-1. The molecular component of the outflow, measured in the (J = 1{yields}0) line of {sup 12}CO, appears to be deflected by the densest part of the core, after which it appears to plow through some of the lower column density portions of the core. The working surface between the head of the outflow lobe and the dense core material can be seen in the enhanced velocity dispersion of the dense gas. IRS 2, the Class III source that produces the optical reflection nebula that gives the Cederblad 110 region its name, may also be influencing the dense gas in the region. A dust temperature gradient across the MMS-1 dense core is consistent with warming from IRS 2, and a sharp gradient in dense gas column density may be caused by winds from this source. Taken together, our data indicate that this region has been producing several young stars in the recent past, and that sources which began forming first are interacting with the remaining dense gas in the region, thereby influencing current and future star

  13. EVOLUTION OF SUPER STAR CLUSTER WINDS WITH STRONG COOLING

    SciTech Connect

    Wuensch, Richard; Palous, Jan; Silich, Sergiy; Tenorio-Tagle, Guillermo; Munoz-Tunon, Casiana

    2011-10-20

    We study the evolution of super star cluster winds driven by stellar winds and supernova explosions. Time-dependent rates at which mass and energy are deposited into the cluster volume, as well as the time-dependent chemical composition of the re-inserted gas, are obtained from the population synthesis code Starburst99. These results are used as input for a semi-analytic code which determines the hydrodynamic properties of the cluster wind as a function of cluster age. Two types of winds are detected in the calculations. For the quasi-adiabatic solution, all of the inserted gas leaves the cluster in the form of a stationary wind. For the bimodal solution, some of the inserted gas becomes thermally unstable and forms dense warm clumps which accumulate inside the cluster. We calculate the evolution of the wind velocity and energy flux and integrate the amount of accumulated mass for clusters of different mass, radius, and initial metallicity. We also consider conditions with low heating efficiency of the re-inserted gas or mass loading of the hot thermalized plasma with the gas left over from star formation. We find that the bimodal regime and the related mass accumulation occur if at least one of the two conditions above is fulfilled.

  14. Methane cycling. Nonequilibrium clumped isotope signals in microbial methane.

    PubMed

    Wang, David T; Gruen, Danielle S; Lollar, Barbara Sherwood; Hinrichs, Kai-Uwe; Stewart, Lucy C; Holden, James F; Hristov, Alexander N; Pohlman, John W; Morrill, Penny L; Könneke, Martin; Delwiche, Kyle B; Reeves, Eoghan P; Sutcliffe, Chelsea N; Ritter, Daniel J; Seewald, Jeffrey S; McIntosh, Jennifer C; Hemond, Harold F; Kubo, Michael D; Cardace, Dawn; Hoehler, Tori M; Ono, Shuhei

    2015-04-24

    Methane is a key component in the global carbon cycle, with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its multiply substituted "clumped" isotopologues (for example, (13)CH3D) has recently emerged as a proxy for determining methane-formation temperatures. However, the effect of biological processes on methane's clumped isotopologue signature is poorly constrained. We show that methanogenesis proceeding at relatively high rates in cattle, surface environments, and laboratory cultures exerts kinetic control on (13)CH3D abundances and results in anomalously elevated formation-temperature estimates. We demonstrate quantitatively that H2 availability accounts for this effect. Clumped methane thermometry can therefore provide constraints on the generation of methane in diverse settings, including continental serpentinization sites and ancient, deep groundwaters. PMID:25745067

  15. Isotope geochemistry. Biological signatures in clumped isotopes of O₂.

    PubMed

    Yeung, Laurence Y; Ash, Jeanine L; Young, Edward D

    2015-04-24

    The abundances of molecules containing more than one rare isotope have been applied broadly to determine formation temperatures of natural materials. These applications of "clumped" isotopes rely on the assumption that isotope-exchange equilibrium is reached, or at least approached, during the formation of those materials. In a closed-system terrarium experiment, we demonstrate that biological oxygen (O2) cycling drives the clumped-isotope composition of O2 away from isotopic equilibrium. Our model of the system suggests that unique biological signatures are present in clumped isotopes of O2—and not formation temperatures. Photosynthetic O2 is depleted in (18)O(18)O and (17)O(18)O relative to a stochastic distribution of isotopes, unlike at equilibrium, where heavy-isotope pairs are enriched. Similar signatures may be widespread in nature, offering new tracers of biological and geochemical cycling.

  16. Modeling Asymmetric Forbidden Line Emission Profiles in Supernovae with Clumping

    NASA Astrophysics Data System (ADS)

    Herrington, Jessica; Ignace, R.; Hole, K. T.

    2010-01-01

    There are some supernovae that display emission line profiles that are asymmetric in shape. One cause for asymmetry could be an in-homogeneous density distribution, or "clumps". We explore the effects of clumps on the emission line profiles of forbidden lines. Our model assumes the ejecta shell is spherically symmetric in velocity, with a central cavity. The model assigns density perturbations to conical sections in the ejecta. To model the emission profile for a forbidden line, we use Sobolev theory. Our model gives asymmetric profiles when the clumping is introduced. The amount of asymmetry varies with the range of density perturbations allowed, and the relative asymmetry evolves in time. This project was funded by a partnership between the National Science Foundation (NSF AST-0552798), Research Experiences for Undergraduates (REU), and the Department of Defense (DoD) ASSURE (Awards to Stimulate and Support Undergraduate Research Experiences) programs.

  17. Isotope geochemistry. Biological signatures in clumped isotopes of O₂.

    PubMed

    Yeung, Laurence Y; Ash, Jeanine L; Young, Edward D

    2015-04-24

    The abundances of molecules containing more than one rare isotope have been applied broadly to determine formation temperatures of natural materials. These applications of "clumped" isotopes rely on the assumption that isotope-exchange equilibrium is reached, or at least approached, during the formation of those materials. In a closed-system terrarium experiment, we demonstrate that biological oxygen (O2) cycling drives the clumped-isotope composition of O2 away from isotopic equilibrium. Our model of the system suggests that unique biological signatures are present in clumped isotopes of O2—and not formation temperatures. Photosynthetic O2 is depleted in (18)O(18)O and (17)O(18)O relative to a stochastic distribution of isotopes, unlike at equilibrium, where heavy-isotope pairs are enriched. Similar signatures may be widespread in nature, offering new tracers of biological and geochemical cycling. PMID:25908819

  18. Cosmic Reionization On Computers III. The Clumping Factor

    SciTech Connect

    Kaurov, Alexander A.; Gnedin, Nickolay Y.

    2015-09-09

    We use fully self-consistent numerical simulations of cosmic reionization, completed under the Cosmic Reionization On Computers project, to explore how well the recombinations in the ionized intergalactic medium (IGM) can be quantified by the effective "clumping factor." The density distribution in the simulations (and, presumably, in a real universe) is highly inhomogeneous and more-or-less smoothly varying in space. However, even in highly complex and dynamic environments, the concept of the IGM remains reasonably well-defined; the largest ambiguity comes from the unvirialized regions around galaxies that are over-ionized by the local enhancement in the radiation field ("proximity zones"). This ambiguity precludes computing the IGM clumping factor to better than about 20%. Furthermore, we discuss a "local clumping factor," defined over a particular spatial scale, and quantify its scatter on a given scale and its variation as a function of scale.

  19. Clumping factors of H II, He II and He III

    NASA Astrophysics Data System (ADS)

    Jeeson-Daniel, Akila; Ciardi, Benedetta; Graziani, Luca

    2014-09-01

    Estimating the intergalactic medium ionization level of a region needs proper treatment of the reionization process for a large representative volume of the universe. The clumping factor, a parameter which accounts for the effect of recombinations in unresolved, small-scale structures, aids in achieving the required accuracy for the reionization history even in simulations with low spatial resolution. In this paper, we study for the first time the redshift evolution of clumping factors of different ionized species of H and He in a small but very high resolution simulation of the reionization process. We investigate the dependence of the value and redshift evolution of clumping factors on their definition, the ionization level of the gas, the grid resolution, box size and mean dimensionless density of the simulations.

  20. Cosmic Reionization On Computers III. The Clumping Factor

    DOE PAGES

    Kaurov, Alexander A.; Gnedin, Nickolay Y.

    2015-09-09

    We use fully self-consistent numerical simulations of cosmic reionization, completed under the Cosmic Reionization On Computers project, to explore how well the recombinations in the ionized intergalactic medium (IGM) can be quantified by the effective "clumping factor." The density distribution in the simulations (and, presumably, in a real universe) is highly inhomogeneous and more-or-less smoothly varying in space. However, even in highly complex and dynamic environments, the concept of the IGM remains reasonably well-defined; the largest ambiguity comes from the unvirialized regions around galaxies that are over-ionized by the local enhancement in the radiation field ("proximity zones"). This ambiguity precludesmore » computing the IGM clumping factor to better than about 20%. Furthermore, we discuss a "local clumping factor," defined over a particular spatial scale, and quantify its scatter on a given scale and its variation as a function of scale.« less

  1. Star-forming dwarf galaxies in the Virgo cluster: the link between molecular gas, atomic gas, and dust

    NASA Astrophysics Data System (ADS)

    Grossi, M.; Corbelli, E.; Bizzocchi, L.; Giovanardi, C.; Bomans, D.; Coelho, B.; De Looze, I.; Gonçalves, T. S.; Hunt, L. K.; Leonardo, E.; Madden, S.; Menéndez-Delmestre, K.; Pappalardo, C.; Riguccini, L.

    2016-05-01

    We present 12CO(1-0) and 12CO(2-1) observations of a sample of 20 star-forming dwarfs selected from the Herschel Virgo Cluster Survey, with oxygen abundances ranging from 12 + log (O / H) ~ 8.1 to 8.8. CO emission is observed in ten galaxies and marginally detected in another one. CO fluxes correlate with the FIR 250 μm emission, and the dwarfs follow the same linear relation that holds for more massive spiral galaxies extended to a wider dynamical range. We compare different methods to estimate H2 molecular masses, namely a metallicity-dependent CO-to-H2 conversion factor and one dependent on H-band luminosity. The molecular-to-stellar mass ratio remains nearly constant at stellar masses ≲ 109 M⊙, contrary to the atomic hydrogen fraction, MHI/M∗, which increases inversely with M∗. The flattening of the MH2/M∗ ratio at low stellar masses does not seem to be related to the effects of the cluster environment because it occurs for both Hi-deficient and Hi-normal dwarfs. The molecular-to-atomic ratio is more tightly correlated with stellar surface density than metallicity, confirming that the interstellar gas pressure plays a key role in determining the balance between the two gaseous components of the interstellar medium. Virgo dwarfs follow the same linear trend between molecular gas mass and star formation rate as more massive spirals, but gas depletion timescales, τdep, are not constant and range between 100 Myr and 6 Gyr. The interaction with the Virgo cluster environment is removing the atomic gas and dust components of the dwarfs, but the molecular gas appears to be less affected at the current stage of evolution within the cluster. However, the correlation between Hi deficiency and the molecular gas depletion time suggests that the lack of gas replenishment from the outer regions of the disc is lowering the star formation activity. Based on observations carried out with the IRAM 30-m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany

  2. Observational overview of clumping in hot stellar winds

    NASA Astrophysics Data System (ADS)

    Moffat, Anthony F. J.

    2008-04-01

    In the old days (pre ˜1990) hot stellar winds were assumed to be smooth, which made life fairly easy and bothered no one. Then after suspicious behaviour had been revealed, e.g. stochastic temporal variability in broadband polarimetry of single hot stars, it took the emerging CCD technology developed in the preceding decades (˜1970-80’s) to reveal that these winds were far from smooth. It was mainly high-S/N, time-dependent spectroscopy of strong optical recombination emission lines in WR, and also a few OB and other stars with strong hot winds, that indicated all hot stellar winds likely to be pervaded by thousands of multiscale (compressible supersonic turbulent?) structures, whose driver is probably some kind of radiative instability. Quantitative estimates of clumping-independent mass-loss rates came from various fronts, mainly dependent directly on density (e.g. electron-scattering wings of emission lines, UV spectroscopy of weak resonance lines, and binary-star properties including orbital-period changes, electron-scattering, and X-ray fluxes from colliding winds) rather than the more common, easier-to-obtain but clumping-dependent density-squared diagnostics (e.g. free-free emission in the IR/radio and recombination lines, of which the favourite has always been Hα). Many big questions still remain, such as: What do the clumps really look like? Do clumping properties change as one recedes from the mother star? Is clumping universal? Does the relative clumping correction depend on dot{M} itself?

  3. Clumped-isotope thermometry of magnesium carbonates in ultramafic rocks

    NASA Astrophysics Data System (ADS)

    García del Real, Pablo; Maher, Kate; Kluge, Tobias; Bird, Dennis K.; Brown, Gordon E.; John, Cédric M.

    2016-11-01

    Magnesium carbonate minerals produced by reaction of H2O-CO2 with ultramafic rocks occur in a wide range of paragenetic and tectonic settings and can thus provide insights into a variety of geologic processes, including (1) deposition of ore-grade, massive-vein cryptocrystalline magnesite; (2) formation of hydrous magnesium carbonates in weathering environments; and (3) metamorphic carbonate alteration of ultramafic rocks. However, the application of traditional geochemical and isotopic methods to infer temperatures of mineralization, the nature of mineralizing fluids, and the mechanisms controlling the transformation of dissolved CO2 into magnesium carbonates in these settings is difficult because the fluids are usually not preserved. Clumped-isotope compositions of magnesium carbonates provide a means to determine primary mineralization or (re)equilibration temperature, which permits the reconstruction of geologic processes that govern magnesium carbonate formation. We first provide an evaluation of the acid fractionation correction for magnesium carbonates using synthetic magnesite and hydromagnesite, along with natural metamorphic magnesite and low-temperature hydromagnesite precipitated within a mine adit. We show that the acid fractionation correction for magnesium carbonates is virtually indistinguishable from other carbonate acid fractionation corrections given current mass spectrometer resolution and error. In addition, we employ carbonate clumped-isotope thermometry on natural magnesium carbonates from various geologic environments and tectonic settings. Cryptocrystalline magnesite vein deposits from California (Red Mountain magnesite mine), Austria (Kraubath locality), Turkey (Tutluca mine, Eskişehir district) and Iran (Derakht-Senjed deposit) exhibit broadly uniform Δ47 compositions that yield apparent clumped-isotope temperatures that average 23.7 ± 5.0 °C. Based on oxygen isotope thermometry, these clumped-isotope temperatures suggest

  4. Shear heating and clumped isotope reordering in carbonate faults

    NASA Astrophysics Data System (ADS)

    Siman-Tov, Shalev; Affek, Hagit P.; Matthews, Alan; Aharonov, Einat; Reches, Ze'ev

    2016-07-01

    Natural faults are expected to heat rapidly during seismic slip and to cool quite quickly after the slip event. Here we examine clumped isotope thermometry for its ability to identify such short duration elevated temperature events along frictionally heated carbonate faults. Our approach is based on measured Δ47 values that reflect the distribution of oxygen and carbon isotopes in the calcite lattice, measuring the abundance of 13Csbnd 18O bonds, which is affected by temperature. We examine three types of calcite rock samples: (1) crushed limestone grains that were rapidly heated and then cooled in static laboratory experiments, simulating the temperature cycle experienced by fault rock during an earthquake slip; (2) limestone samples that were experimentally sheared to simulate earthquake slip events; and (3) samples from Fault Mirrors (FMs) collected from principle slip surfaces of three natural carbonate faults. Extensive FM surfaces are believed to form during earthquake slip. Our experimental results show that Δ47 values decrease rapidly (in the course of seconds) with increasing temperature and shear velocity. On the other hand, carbonate shear zones from natural faults do not show such Δ47 decrease. We suggest that the Δ47 response may be controlled by nano-size grains, the high abundance of defects, and highly stressed/strained grain boundaries within the carbonate fault zone that can reduce the activation energy for diffusion, and thus lead to an increased rate of isotopic disordering during shear experiments. In our laboratory experiments the high stress and strain on grain contacts and the presence of nanograins thus allows for rapid disordering so that a change in Δ47 occurs in a very short and relatively low intensity heating events. In natural faults it may also lead to isotopic ordering after the cessation of frictional heating thus erasing the high temperature signature of Δ47.

  5. Reconstruction of limnology and microbialite formation conditions from carbonate clumped isotope thermometry.

    PubMed

    Petryshyn, V A; Lim, D; Laval, B L; Brady, A; Slater, G; Tripati, A K

    2015-01-01

    Quantitative tools for deciphering the environment of microbialite formation are relatively limited. For example, the oxygen isotope carbonate-water geothermometer requires assumptions about the isotopic composition of the water of formation. We explored the utility of using 'clumped' isotope thermometry as a tool to study the temperatures of microbialite formation. We studied microbialites recovered from water depths of 10-55 m in Pavilion Lake, and 10-25 m in Kelly Lake, spanning the thermocline in both lakes. We determined the temperature of carbonate growth and the (18)O/(16)O ratio of the waters that microbialites grew in. Results were then compared to current limnological data from the lakes to reconstruct the history of microbialite formation. Modern microbialites collected at shallow depths (11.7 m) in both lakes yield clumped isotope-based temperatures of formation that are within error of summer water temperatures, suggesting that clumped isotope analyses may be used to reconstruct past climates and to probe the environments in which microbialites formed. The deepest microbialites (21.7-55 m) were recovered from below the present-day thermoclines in both lakes and yield radioisotope ages indicating they primarily formed earlier in the Holocene. During this time, pollen data and our reconstructed water (18)O/(16)O ratios indicate a period of aridity, with lower lake levels. At present, there is a close association between both photosynthetic and heterotrophic communities, and carbonate precipitation/microbialite formation, with biosignatures of photosynthetic influences on carbonate detected in microbialites from the photic zone and above the thermocline (i.e., depths of generally <20 m). Given the deeper microbialites are receiving <1% of photosynthetically active radiation (PAR), it is likely these microbialites primarily formed when lower lake levels resulted in microbialites being located higher in the photic zone, in warm surface waters.

  6. A DELAUNAY TRIANGULATION APPROACH FOR SEGMENTING CLUMPS OF NUCLEI

    SciTech Connect

    Wen, Quan; Chang, Hang; Parvin, Bahram

    2009-05-07

    Cell-based fluorescence imaging assays have the potential to generate massive amount of data, which requires detailed quantitative analysis. Often, as a result of fixation, labeled nuclei overlap and create a clump of cells. However, it is important to quantify phenotypic read out on a cell-by-cell basis. In this paper, we propose a novel method for decomposing clumps of nuclei using high-level geometric constraints that are derived from low-level features of maximum curvature computed along the contour of each clump. Points of maximum curvature are used as vertices for Delaunay triangulation (DT), which provides a setof edge hypotheses for decomposing a clump of nuclei. Each hypothesis is subsequently tested against a constraint satisfaction network for a near optimum decomposition. The proposed method is compared with other traditional techniques such as the watershed method with/without markers. The experimental results show that our approach can overcome the deficiencies of the traditional methods and is very effective in separating severely touching nuclei.

  7. Investigating the origin of discrepancies in clumped isotope calibrations

    NASA Astrophysics Data System (ADS)

    Eagle, R.

    2015-12-01

    The abundance of 13C-18O 'clumps' in calcite or aragonite of corals skeletons are a potentially valuable tool for reconstructing past ocean temperatures. However, corals are known to exhibit significant "vital effects" (i.e., non-equilibrium mineral compositions) in δ18O, which complicates its application in paleoclimate studies, and may also exhibit clumped isotope disequilibrium. Here we determined mass 47 anomalies (Δ47) in CO2 derived from cultured shallow water and live-collected deep-sea coral. In a species of cultured surface water coral, we find disequilibrium Δ47 and δ18O values that are consistent with a pH effect driving disequilibrium isotopic signatures. We go on to show that culturing specimens at elevated CO2 conditions drives changes in both Δ47 and δ18O that follows the same relationship defined for pH effects in inorganic carbonate precipitation experiments. This suggests that dissolved inorganic carbon speciation at the site of calcification and therefore fluid pH can effect the clumped isotope composition of biogenic minerals. In two different live-collected deep-sea coral taxa, we find distinct clumped isotope signatures and Δ47-temperature calibration relationships.

  8. Chemistry of dense clumps near moving Herbig-Haro objects

    NASA Astrophysics Data System (ADS)

    Christie, H.; Viti, S.; Williams, D. A.; Girart, J. M.; Morata, O.

    2011-09-01

    Localized regions of enhanced emission from HCO+, NH3 and other species near Herbig-Haro objects (HHOs) have been interpreted as arising in a photochemistry stimulated by the HHO radiation on high-density quiescent clumps in molecular clouds. Static models of this process have been successful in accounting for the variety of molecular species arising ahead of the jet; however, recent observations show that the enhanced molecular emission is widespread along the jet as well as ahead. Hence, a realistic model must take into account the movement of the radiation field past the clump. It was previously unclear as to whether the short interaction time between the clump and the HHO in a moving source model would allow molecules such as HCO+ to reach high enough levels, and to survive for long enough to be observed. In this work we model a moving radiation source that approaches and passes a clump. The chemical picture is qualitatively unchanged by the addition of the moving source, strengthening the idea that enhancements are due to evaporation of molecules from dust grains. In addition, in the case of several molecules, the enhanced emission regions are longer lived. Some photochemically induced species, including methanol, are expected to maintain high abundances for ˜104 yr.

  9. The Staphylococcus aureus Global Regulator MgrA Modulates Clumping and Virulence by Controlling Surface Protein Expression

    PubMed Central

    Crosby, Heidi A.; Schlievert, Patrick M.; Merriman, Joseph A.; King, Jessica M.; Salgado-Pabón, Wilmara; Horswill, Alexander R.

    2016-01-01

    Staphylococcus aureus is a human commensal and opportunistic pathogen that causes devastating infections in a wide range of locations within the body. One of the defining characteristics of S. aureus is its ability to form clumps in the presence of soluble fibrinogen, which likely has a protective benefit and facilitates adhesion to host tissue. We have previously shown that the ArlRS two-component regulatory system controls clumping, in part by repressing production of the large surface protein Ebh. In this work we show that ArlRS does not directly regulate Ebh, but instead ArlRS activates expression of the global regulator MgrA. Strains lacking mgrA fail to clump in the presence of fibrinogen, and clumping can be restored to an arlRS mutant by overexpressing either arlRS or mgrA, indicating that ArlRS and MgrA constitute a regulatory pathway. We used RNA-seq to show that MgrA represses ebh, as well as seven cell wall-associated proteins (SraP, Spa, FnbB, SasG, SasC, FmtB, and SdrD). EMSA analysis showed that MgrA directly represses expression of ebh and sraP. Clumping can be restored to an mgrA mutant by deleting the genes for Ebh, SraP and SasG, suggesting that increased expression of these proteins blocks clumping by steric hindrance. We show that mgrA mutants are less virulent in a rabbit model of endocarditis, and virulence can be partially restored by deleting the genes for the surface proteins ebh, sraP, and sasG. While mgrA mutants are unable to clump, they are known to have enhanced biofilm capacity. We demonstrate that this increase in biofilm formation is partially due to up-regulation of SasG, a surface protein known to promote intercellular interactions. These results confirm that ArlRS and MgrA constitute a regulatory cascade, and that they control expression of a number of genes important for virulence, including those for eight large surface proteins. PMID:27144398

  10. Gas of 96 Planck Cold Clumps in the Second Quadrant

    NASA Astrophysics Data System (ADS)

    Zhang, Tianwei; Wu, Yuefang; Liu, Tie; Meng, Fanyi

    2016-06-01

    Ninety-six Planck cold dust clumps in the second quadrant were mapped with 12CO (1-0), 13CO (1-0), and C18O (1-0) lines at the 13.7 m telescope of Purple Mountain Observatory. 12CO (1-0) and 13CO (1-0) emissions were detected for all 96 clumps, while C18O (1-0) emissions were detected in 81 of them. Fifteen clumps have more than one velocity component. In the 115 mapped velocity components, 225 cores were obtained. We found that 23.1% of the cores have non-Gaussian profiles. We acquired the V lsr, FWHM, and T A of the lines. Distances, T ex, velocity dispersions, {N}{{{H}}2}, and masses were also derived. Generally, turbulence may dominant the cores because {σ }{NT}/{σ }{Therm}\\gt 1 in almost all of the cores and Larson’s relationship is not apparent in our massive cores. Virial parameters are adopted to test the gravitational stability of cores and 51% of the cores are likely collapsing. The core mass function of the cores in the range 0-1 kpc suggests a low core-to-star conversional efficiency (0.62%). Only 14 of 225 cores (6.2%) have associated stellar objects at their centers, while the others are starless. The morphologies of clumps are mainly filamentary structures. Seven clumps may be located on an extension of the new spiral arm in the second quadrant while three are on the known outer arm.

  11. Effects of Water on Carbonate Clumped Isotope Bond Reordering Kinetics

    NASA Astrophysics Data System (ADS)

    Brenner, D. C.; Passey, B. H.

    2015-12-01

    Carbonate clumped isotope geothermometry is a powerful tool for reconstructing past temperatures, both in surface environments and in the shallow crust. The method is based on heavy isotope "clumps" within single carbonate groups (e.g., 13C18O16O2-2), whose overabundance beyond levels predicted by chance is determined by mineralization temperature. The degree of clumped isotope overabundance can change at elevated temperatures (ca. >100ºC) owing to solid-state diffusion of C and O through the mineral lattice. Understanding the kinetics of this clumped isotope reordering process is a prerequisite for application to geological questions involving samples that have been heated in the subsurface. Thus far, the effect of water on reordering kinetics has not been explored. The presence of water dramatically increases rates of oxygen self-diffusion in calcite, but whether this water-enhanced diffusion is limited to the mineral surface or extends into the bulk crystal lattice is not clear. Here we present experimentally determined Arrhenius parameters for reordering rates in optical calcite heated under aqueous high pressure (100 MPa) conditions. We observe only marginal increases in reordering rates under these wet, high pressure conditions relative to rates observed for the same material reacted under dry, low pressure conditions. The near identical clumped isotope reordering rates for wet and dry conditions contrasts with the orders of magnitude increase in oxygen diffusivity at the mineral surface when water is present. This suggests the latter effect arises from surface reactions that have minimal influence on the diffusivity of C or O in the bulk mineral. Our results also imply that previously published reordering kinetics determined under dry, low pressure experimental conditions are applicable to geological samples that have been heated in the presence of water.

  12. Kinematics of a Massive Star Cluster in Formation

    NASA Astrophysics Data System (ADS)

    Tan, Jonathan

    2014-10-01

    We propose to measure the proper motion stellar kinematics of a massive (~10^4Msun), forming proto-star-cluster to test basic theoretical models of formation. This will be the first time such a measurement has been performed. It requires HST-WFC3/IR and is beyond the practical capabilities of ground-based adaptive optics (AO) observations. In contrast to previously-studied massive, young (<10 Myr-old), already-formed clusters, such as NGC3603, Westerlund 1 or the Arches, our target protocluster, G286.21+0.17 (hereafter G286), is still gas-dominated and undergoing active star formation. It has been carefully selected from a complete survey of ~300 dense molecular gas clumps in a 120 sq. deg. region of the Galactic plane. The cluster is also relatively nearby (~2.5 kpc), but not too close that it would span a prohibitively large angular area or suffer from significant saturation problems. Such massive systems are rare and indeed we are unaware of any equivalent, early-stage (i.e., gas dominated) cluster that is closer. Given the depth of its gravitational potential based on its mass and size, the expected proper motions of many independent sub-clusters of stars are detectable at the ~5 sigma level over a 2-year baseline and global contraction of the cluster can be seen if it is happening even at just ~10% of the free-fall rate.

  13. Early dynamical evolution of substructured stellar clusters

    NASA Astrophysics Data System (ADS)

    Dorval, Julien; Boily, Christian

    2015-08-01

    It is now widely accepted that stellar clusters form with a high level of substructure (Kuhn et al. 2014, Bate 2009), inherited from the molecular cloud and the star formation process. Evidence from observations and simulations also indicate the stars in such young clusters form a subvirial system (Kirk et al. 2007, Maschberger et al. 2010). The subsequent dynamical evolution can cause important mass loss, ejecting a large part of the birth population in the field. It can also imprint the stellar population and still be inferred from observations of evolved clusters. Nbody simulations allow a better understanding of these early twists and turns, given realistic initial conditions. Nowadays, substructured, clumpy young clusters are usually obtained through pseudo-fractal growth (Goodwin et al. 2004) and velocity inheritance. Such models are visually realistics and are very useful, they are however somewhat artificial in their velocity distribution. I introduce a new way to create clumpy initial conditions through a "Hubble expansion" which naturally produces self consistent clumps, velocity-wise. A velocity distribution analysis shows the new method produces realistic models, consistent with the dynamical state of the newly created cores in hydrodynamic simulation of cluster formation (Klessen & Burkert 2000). I use these initial conditions to investigate the dynamical evolution of young subvirial clusters, up to 80000 stars. I find an overall soft evolution, with hierarchical merging leading to a high level of mass segregation. I investigate the influence of the mass function on the fate of the cluster, specifically on the amount of mass loss induced by the early violent relaxation. Using a new binary detection algorithm, I also find a strong processing of the native binary population.

  14. ION AND NEUTRAL MOLECULES IN THE W43-MM1(G30.79 FIR 10) INFALLING CLUMP

    SciTech Connect

    Cortes, Paulo C.

    2011-12-20

    The high-mass star-forming clump W43-MM1 has been mapped in N{sub 2}H{sup +}(4 {yields} 3), C{sup 18}O(3 {yields} 2), SiO(8 {yields} 7), and in a single pointing in DCO{sup +}(5 {yields} 4) toward the center of the clump. Column densities from these observations as well as previous HCO{sup +}(4 {yields} 3), H{sup 13}CO{sup +}(4 {yields} 3), HCN(4 {yields} 3), H{sup 13}CN(4 {yields} 3), and CS(7 {yields} 6) data have been derived using the RADEX code; results later have been used to derive chemical abundances at selected points in the MM1 main axis. We compare with chemical models to estimate an evolutionary age of 10{sup 4} years for a remarkable warm hot core inside MM1. We also proposed that the dust temperature derived from the spectral energy distribution fitting in MM1 is not representative of the gas temperature deep inside the clump because dust emission may have become optically thick. By deriving a deuterium fractionation of 1.2 Multiplication-Sign 10{sup 3}, we estimate an electron fraction of X(e) = 6.5 Multiplication-Sign 10{sup -8}. Thus, the coupling between the neutral gas and the magnetic field is estimated by computing the ambipolar diffusion Reynolds number R{sub m} = 18 and the wave coupling number W = 110. Considering that the infalling speed is slightly supersonic (M = 1.1) but sub-Alfvenic, we conclude that the MM1 clump has recently been or is in the process of decoupling the field from the neutral fluid. Thus, the MM1 clump appears to be in an intermediate stage of evolution in which a hot core has developed while the envelope is still infalling and not fully decoupled from the ambient magnetic field.

  15. Probing the formation of intermediate- to high-mass stars in protoclusters. A detailed millimeter study of the NGC 2264 clumps

    NASA Astrophysics Data System (ADS)

    Peretto, N.; André, Ph.; Belloche, A.

    2006-01-01

    We present the results of dust continuum and molecular line observations of two massive cluster-forming clumps, NGC 2264-C and NGC 2264-D, including extensive mapping performed with the MAMBO bolometer array and the HERA heterodyne array on the IRAM 30 m telescope. Both NGC 2264 clumps are located in the Mon OB1 giant molecular cloud complex, adjacent to one another. Twelve and fifteen compact millimeter continuum sources (i.e. MMSs) were identified in clumps C and D, respectively. These MMSs have larger sizes and masses than the millimeter continuum condensations detected in well-known nearby protoclusters such as ρ Ophiuchi. The MMSs of NGC 2264 are closer in size to the DCO+ "cores" of ρ Oph, although they are somewhat denser and exhibit broader linewidths. Most of the MMSs of NGC 2264-C harbor candidate Class 0 protostars associated with shocked molecular hydrogen jets. Evidence of widespread infall motions was found in, e.g., HCO^+(3-2) or CS(3-2) in both NGC 2264-C and NGC 2264-D. A sharp velocity discontinuity 2 km s-1 in amplitude was observed in N2H^+(1-0) and H13CO^+(1-0) in the central, innermost part of NGC 2264-C, which we interpreted as the signature of a strong dynamical interaction between two MMSs and their possible merging with the central MMS C-MM3. Radiative transfer modelling supports the idea that NGC 2264-C is a highly unstable prolate clump in the process of collapsing along its long axis on a near free-fall dynamical timescale 1.7 × 10 5 yr. Our model fit of this large-scale collapse suggests a maximum mass inflow rate 3× 10-3 M⊙ yr-1 toward the central protostellar object C-MM3. In NGC 2264-D, we estimated a mass infall rate dot{M}_DMM1 ˜ 1.1 × 10 -4 M⊙ yr-1 toward the rotating Class 0 object D-MM1, also based on radiative transfer modelling of the observations. Such infall rates are sufficiently high to overcome radiation pressure and allow the formation of 20 M⊙ stars by accretion in 1.7× 105 yr, i.e., a time that is similar

  16. Far-infrared Dust Temperatures and Column Densities of the MALT90 Molecular Clump Sample

    NASA Astrophysics Data System (ADS)

    Guzmán, Andrés E.; Sanhueza, Patricio; Contreras, Yanett; Smith, Howard A.; Jackson, James M.; Hoq, Sadia; Rathborne, Jill M.

    2015-12-01

    We present dust column densities and dust temperatures for ˜3000 young, high-mass molecular clumps from the Millimeter Astronomy Legacy Team 90 GHz survey, derived from adjusting single-temperature dust emission models to the far-infrared intensity maps measured between 160 and 870 μm from the Herschel/Herschel Infrared Galactic Plane Survey (Hi-Gal) and APEX/APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) surveys. We discuss the methodology employed in analyzing the data, calculating physical parameters, and estimating their uncertainties. The population average dust temperature of the clumps are 16.8 ± 0.2 K for the clumps that do not exhibit mid-infrared signatures of star formation (quiescent clumps), 18.6 ± 0.2 K for the clumps that display mid-infrared signatures of ongoing star formation but have not yet developed an H ii region (protostellar clumps), and 23.7 ± 0.2 and 28.1 ± 0.3 K for clumps associated with H ii and photo-dissociation regions, respectively. These four groups exhibit large overlaps in their temperature distributions, with dispersions ranging between 4 and 6 K. The median of the peak column densities of the protostellar clump population is 0.20 ± 0.02 g cm-2, which is about 50% higher compared to the median of the peak column densities associated with clumps in the other evolutionary stages. We compare the dust temperatures and column densities measured toward the center of the clumps with the mean values of each clump. We find that in the quiescent clumps, the dust temperature increases toward the outer regions and that these clumps are associated with the shallowest column density profiles. In contrast, molecular clumps in the protostellar or H ii region phase have dust temperature gradients more consistent with internal heating and are associated with steeper column density profiles compared with the quiescent clumps.

  17. GLOBULAR CLUSTERS AND DARK SATELLITE GALAXIES THROUGH THE STREAM VELOCITY

    SciTech Connect

    Naoz, Smadar; Narayan, Ramesh

    2014-08-10

    The formation of purely baryonic globular clusters with no gravitationally bound dark matter is still a theoretical challenge. We show that these objects might form naturally whenever there is a relative stream velocity between baryons and dark matter. The stream velocity causes a phase shift between linear modes of baryonic and dark matter perturbations, which translates to a spatial offset between the two components when they collapse. For a 2σ (3σ) density fluctuation, baryonic clumps with masses in the range 10{sup 5}-2.5 × 10{sup 6} M {sub ☉} (10{sup 5}-4 × 10{sup 6} M {sub ☉}) collapse outside the virial radii of their counterpart dark matter halos. These objects could survive as long-lived, dark-matter-free objects and might conceivably become globular clusters. In addition, their dark matter counterparts, which were deprived of gas, might become dark satellite galaxies.

  18. THE PREPARATION OF CURRICULUM MATERIALS AND THE DEVELOPMENT OF TEACHERS FOR AN EXPERIMENTAL APPLICATION OF THE CLUSTER CONCEPT OF VOCATIONAL EDUCATION AT THE SECONDARY SCHOOL LEVEL. VOLUME III, INSTRUCTIONAL PLANS FOR THE METAL FORMING AND FABRICATION CLUSTER.

    ERIC Educational Resources Information Center

    MALEY, DONALD

    DESIGNED FOR USE WITH 11TH AND 12TH GRADE STUDENTS, THIS CURRICULUM GUIDE FOR THE OCCUPATIONAL CLUSTER IN METAL FORMING AND FABRICATION WAS DEVELOPED BY PARTICIPATING TEACHERS FROM RESULTS OF THE RESEARCH PROCEDURES DESCRIBED IN VOLUME I (VT 004 162). THE COURSE DESCRIPTION, NEED FOR THE COURSE, COURSE OBJECTIVES, PROCEDURES AND INSTRUCTIONAL PLAN…

  19. VizieR Online Data Catalog: Young clumps embedded in IRDC (Traficante+, 2015)

    NASA Astrophysics Data System (ADS)

    Traficante, A.; Fuller, G. A.; Peretto, N.; Pineda, J. E.; Molinari, S.

    2015-06-01

    Photometric parameters for 667 starless clumps (sources identified at 160um with a counterpart at 250 and 350um) and 1056 protostellar clumps (sources identified at 160um with a counterpart at 70, 250 and 350um). Photometric parameters obtained with Hyper photometry code (2015A&A...574A.119T). The photometry is corrected for aperture and colour corrections. The parameter list is the standard Hyper output (see description below). SED fit parameters for 650 starless clumps and 1034 protostellar clumps (all clumps with good SED fitting: Chi2<10, Temperature<40K. See the paper for details) (4 data files).

  20. Tracking pore-water evolution through clumped isotope analyses of a septarian concretion

    NASA Astrophysics Data System (ADS)

    Miles, B. E.; Loyd, S. J.; Hudson, J.; Dickson, T.; Tripati, A. K.

    2012-12-01

    later phases forming under the influence of meteoric fluids. These results highlight the utility in using the clumped isotope paleothermometer in diagenetic systems.

  1. Clumping in the Cassini Division and C Ring: Constraints from Stellar Occultations

    NASA Astrophysics Data System (ADS)

    Colwell, J. E.; Jerousek, R. G.; Esposito, L. W.

    2014-12-01

    Particles in Saturn's rings are engaged in a constant tug-of-war between interparticle gravitational and adhesive forces that lead to clumping, on the one hand, and Keplerian shear that inhibits accretion on the other. Depending on the surface mass density of the rings and the local orbital velocity, ephemeral clumps or self-gravity wakes can form, giving the rings granularity on the scale of the most-unstable length scale against gravitational collapse. The A ring and many regions of the B ring are dominated by self-gravity wakes with a typical radial wavelength of ~50-100 m. A characteristic of self-gravity wakes is that they can effectively shadow the relatively empty spaces in between them, depending on viewing geometry. This leads to geometry-dependent measurements of optical depth in occultations of the rings. The C ring and Cassini Division have significantly lower surface mass densities than the A and B ring such that in most of these regions the most-unstable wavelength is comparable to the size of the ring particles (~1 m) so that self-gravity wake formation is not expected nor have its characteristics in various measurements been observed. Here we present measurements of the optical depth of the C ring and Cassini Division with the Cassini Ultraviolet Imaging Spectrograph (UVIS) showing variations with viewing geometry in the "ramp" regions and the Cassini Division "triple band". These variations are characteristic of self-gravity wakes. We place limits on clumping in other regions of the C ring and Cassini Division.

  2. "Anticlumping" and Other Combinatorial Effects on Clumped Isotopes: Implications for Tracing Biogeochemical Cycling

    NASA Astrophysics Data System (ADS)

    Yeung, L.

    2015-12-01

    I present a mode of isotopic ordering that has purely combinatorial origins. It can be important when identical rare isotopes are paired by coincidence (e.g., they are neighbors on the same molecule), or when extrinsic factors govern the isotopic composition of the two atoms that share a chemical bond. By itself, combinatorial isotope pairing yields products with isotopes either randomly distributed or with a deficit relative to a random distribution of isotopes. These systematics arise because of an unconventional coupling between the formation of singly- and multiply-substituted isotopic moieties. In a random distribution, rare isotopes are symmetrically distributed: Single isotopic substitutions (e.g., H‒D and D‒H in H2) occur with equal probability, and double isotopic substitutions (e.g., D2) occur according to random chance. The absence of symmetry in a bond-making complex can yield unequal numbers of singly-substituted molecules (e.g., more H‒D than D‒H in H2), which is recorded in the product molecule as a deficit in doubly-substituted moieties and an "anticlumped" isotope distribution (i.e., Δn < 0). Enzymatic isotope pairing reactions, which can have site-specific isotopic fractionation factors and atom reservoirs, should express this class of combinatorial isotope effect. Chemical-kinetic isotope effects, which are related to the bond-forming transition state, arise independently and express second-order combinatorial effects. In general, both combinatorial and chemical factors are important for calculating and interpreting clumped-isotope signatures of individual reactions. In many reactions relevant to geochemical oxygen, carbon, and nitrogen cycling, combinatorial isotope pairing likely plays a strong role in the clumped isotope distribution of the products. These isotopic signatures, manifest as either directly bound isotope clumps or as features of a molecule's isotopic anatomy, could be exploited as tracers of biogeochemistry that can

  3. Dissociation and Re-Aggregation of Multicell-Ensheathed Fragments Responsible for Rapid Production of Massive Clumps of Leptothrix Sheaths.

    PubMed

    Kunoh, Tatsuki; Nagaoka, Noriyuki; McFarlane, Ian R; Tamura, Katsunori; El-Naggar, Mohamed Y; Kunoh, Hitoshi; Takada, Jun

    2016-01-01

    Species of the Fe/Mn-oxidizing bacteria Leptothrix produce tremendous amounts of microtubular, Fe/Mn-encrusted sheaths within a few days in outwells of groundwater that can rapidly clog water systems. To understand this mode of rapid sheath production and define the timescales involved, behaviors of sheath-forming Leptothrix sp. strain OUMS1 were examined using time-lapse video at the initial stage of sheath formation. OUMS1 formed clumps of tangled sheaths. Electron microscopy confirmed the presence of a thin layer of bacterial exopolymer fibrils around catenulate cells (corresponding to the immature sheath). In time-lapse videos, numerous sheath filaments that extended from the periphery of sheath clumps repeatedly fragmented at the apex of the same fragment, the fragments then aggregated and again elongated, eventually forming a large sheath clump comprising tangled sheaths within two days. In this study, we found that fast microscopic fragmentation, dissociation, re-aggregation and re-elongation events are the basis of the rapid, massive production of Leptothrix sheaths typically observed at macroscopic scales. PMID:27490579

  4. Dissociation and Re-Aggregation of Multicell-Ensheathed Fragments Responsible for Rapid Production of Massive Clumps of Leptothrix Sheaths

    PubMed Central

    Kunoh, Tatsuki; Nagaoka, Noriyuki; McFarlane, Ian R.; Tamura, Katsunori; El-Naggar, Mohamed Y.; Kunoh, Hitoshi; Takada, Jun

    2016-01-01

    Species of the Fe/Mn-oxidizing bacteria Leptothrix produce tremendous amounts of microtubular, Fe/Mn-encrusted sheaths within a few days in outwells of groundwater that can rapidly clog water systems. To understand this mode of rapid sheath production and define the timescales involved, behaviors of sheath-forming Leptothrix sp. strain OUMS1 were examined using time-lapse video at the initial stage of sheath formation. OUMS1 formed clumps of tangled sheaths. Electron microscopy confirmed the presence of a thin layer of bacterial exopolymer fibrils around catenulate cells (corresponding to the immature sheath). In time-lapse videos, numerous sheath filaments that extended from the periphery of sheath clumps repeatedly fragmented at the apex of the same fragment, the fragments then aggregated and again elongated, eventually forming a large sheath clump comprising tangled sheaths within two days. In this study, we found that fast microscopic fragmentation, dissociation, re-aggregation and re-elongation events are the basis of the rapid, massive production of Leptothrix sheaths typically observed at macroscopic scales. PMID:27490579

  5. Shock-Clump Interaction Studies in the Laboratory

    NASA Astrophysics Data System (ADS)

    Blue, B. E.; Hund, J. D.; Paguio, R. R.; Hansen, J. F.; Foster, J. M.; Rosen, P. A.; Williams, R. J. R.; Douglas, M.; Wilde, B. H.; Carver, R.; Palmer, J.; Hartigan, P.

    2009-11-01

    Large-scale directional outflows of supersonic plasma are driven by a wide variety of objects in the universe. Typical models of the outflows assume simplistic geometries; however, images of most outflows show a much more complex structure that consists of multiple clumps and shocks. To bridge the gap between the complex system in space and the simplified models, controlled scaled experiments were performed to elucidate the physics of a shock progressing through a clumpy medium. This talk will present experiments on the Omega Laser in which a shock impacts density discontinuities in order to understand the perturbed shock structure. Two types of discontinuities that had the same average density were tested: one with a uniformly distributed dopant and another with ˜47 randomly distributed high-density clumps. We have obtained high-resolution radiographs that detail the temporal evolution of the shock and density discontinuity.

  6. A CHANDRA STUDY OF THE ROSETTE STAR-FORMING COMPLEX. III. THE NGC 2237 CLUSTER AND THE REGION'S STAR FORMATION HISTORY

    SciTech Connect

    Wang Junfeng; Feigelson, Eric D.; Townsley, Leisa K.; Broos, Patrick S.; Garmire, Gordon; Roman-Zuniga, Carlos G.; Lada, Elizabeth

    2010-06-10

    We present high spatial resolution Chandra X-ray images of the NGC 2237 young stellar cluster on the periphery of the Rosette Nebula. We detect 168 X-ray sources, 80% of which have stellar counterparts in USNO, Two Micron All Sky Survey, and deep FLAMINGOS images. These constitute the first census of the cluster members with 0.2 {approx}< M {approx}< 2 M {sub sun}. Star locations in near-infrared color-magnitude diagrams indicate a cluster age around 2 Myr with a visual extinction of 1 {approx}< A{sub V} {approx}< 3 at 1.4 kpc, the distance of the Rosette Nebula's main cluster NGC 2244. We derive the K-band luminosity function and the X-ray luminosity function of the cluster, which indicate a population {approx}400-600 stars. The X-ray-selected sample shows a K-excess disk frequency of 13%. The young Class II counterparts are aligned in an arc {approx}3 pc long suggestive of a triggered formation process induced by the O stars in NGC 2244. The diskless Class III sources are more dispersed. Several X-ray emitting stars are located inside the molecular cloud and around gaseous pillars projecting from the cloud. These stars, together with a previously unreported optical outflow originating inside the cloud, indicate that star formation is continuing at a low level and the cluster is still growing. This X-ray view of young stars on the western side of the Rosette Nebula complements our earlier studies of the central cluster NGC 2244 and the embedded clusters on the eastern side of the Nebula. The large-scale distribution of the clusters and molecular material is consistent with a scenario in which the rich central NGC 2244 cluster formed first, and its expanding H II region triggered the formation of the now-unobscured satellite clusters Rosette Molecular Cloud (RMC) XA and NGC 2237. A large swept-up shell material around the H II region is now in a second phase of collect-and-collapse fragmentation, leading to the recent formation of subclusters. Other clusters deeper

  7. A Chandra Study of the Rosette Star-forming Complex. III. The NGC 2237 Cluster and the Region's Star Formation History

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Feigelson, Eric D.; Townsley, Leisa K.; Broos, Patrick S.; Román-Zúñiga, Carlos G.; Lada, Elizabeth; Garmire, Gordon

    2010-06-01

    We present high spatial resolution Chandra X-ray images of the NGC 2237 young stellar cluster on the periphery of the Rosette Nebula. We detect 168 X-ray sources, 80% of which have stellar counterparts in USNO, Two Micron All Sky Survey, and deep FLAMINGOS images. These constitute the first census of the cluster members with 0.2 <~ M <~ 2 M sun. Star locations in near-infrared color-magnitude diagrams indicate a cluster age around 2 Myr with a visual extinction of 1 <~ AV <~ 3 at 1.4 kpc, the distance of the Rosette Nebula's main cluster NGC 2244. We derive the K-band luminosity function and the X-ray luminosity function of the cluster, which indicate a population ~400-600 stars. The X-ray-selected sample shows a K-excess disk frequency of 13%. The young Class II counterparts are aligned in an arc ~3 pc long suggestive of a triggered formation process induced by the O stars in NGC 2244. The diskless Class III sources are more dispersed. Several X-ray emitting stars are located inside the molecular cloud and around gaseous pillars projecting from the cloud. These stars, together with a previously unreported optical outflow originating inside the cloud, indicate that star formation is continuing at a low level and the cluster is still growing. This X-ray view of young stars on the western side of the Rosette Nebula complements our earlier studies of the central cluster NGC 2244 and the embedded clusters on the eastern side of the Nebula. The large-scale distribution of the clusters and molecular material is consistent with a scenario in which the rich central NGC 2244 cluster formed first, and its expanding H II region triggered the formation of the now-unobscured satellite clusters Rosette Molecular Cloud (RMC) XA and NGC 2237. A large swept-up shell material around the H II region is now in a second phase of collect-and-collapse fragmentation, leading to the recent formation of subclusters. Other clusters deeper in the molecular cloud appear unaffected by the

  8. Thermal history of the Mississippian-Pennsylvanian boundary at Arrow Canyon, NV, USA: Insights from carbonate clumped isotopes and fluid inclusion microthermometry

    NASA Astrophysics Data System (ADS)

    Shenton, B.; Grossman, E. L.; Passey, B. H.; Henkes, G. A.; Becker, S. P.; Pottorf, R. J.

    2013-12-01

    Constraining the temperature-time history of sedimentary basins is critical for understanding basin evolution and related problems, such as petroleum systems analysis and genesis of metallic ore deposits. The importance of burial history studies is confirmed by the abundance and diversity of techniques aimed at acquiring thermal history information. Often, multiple techniques are required to fully characterize sediment thermal histories because each tool targets different burial temperatures (e.g., maximum burial temperature, T-t points, or cooling rates) and different indicators may be limited by suitable study material or geologic setting. Therefore it is important to test new techniques, such as clumped isotopes, that may aid in reconstructing basin thermal histories. The potential utility of clumped isotopes as a thermal history tool is suggested by the observation of elevated clumped isotope temperatures in nominally well-preserved fossils, and also from recent laboratory heating experiments showing that C-O bonds can reorder in the solid-state during heating. While this phenomenon conceals primary paleoclimate information, it may record burial temperatures useful for constraining basin thermal histories. Here we present clumped isotope measurements from brachiopods, crinoids, diagenetic cements, and bulk matrix material collected from within ~ 50 m of the global stratotype section and point (GSSP) for the Mississippian-Pennsylvanian boundary along with new fluid inclusion microthermometry data. Preliminary clumped isotope temperatures range from ~100-165 °C and generally cluster based on component type. Secondary fluid inclusion assemblages in blocky calcite cement indicate that strata surrounding the GSSP experienced at least 175-180 °C during burial in the Antler foreland basin. The fact that clumped isotope temperatures in all carbonate components are lower than independently constrained peak temperature estimates from fluid inclusions suggests that

  9. Mie scattering from submicron-sized CO2 clusters formed in a supersonic expansion of a gas mixture.

    PubMed

    Jinno, S; Fukuda, Y; Sakaki, H; Yogo, A; Kanasaki, M; Kondo, K; Faenov, A Ya; Skobelev, I Yu; Pikuz, T A; Boldarev, A S; Gasilov, V A

    2013-09-01

    A detailed mathematical model is presented for a submicron-sized cluster formation in a binary gas mixture flowing through a three-staged conical nozzle. By measuring the angular distribution of light scattered from the clusters, the size of CO(2) clusters, produced in a supersonic expansion of the mixture gas of CO(2)(30%)/H(2)(70%) or CO(2)(10%)/He(90%), has been evaluated using the Mie scattering method. The mean sizes of CO(2) clusters are estimated to be 0.28 ± 0.03 μm for CO(2)/H(2) and 0.26 ± 0.04 μm for CO(2)/He, respectively. In addition, total gas density profiles in radial direction of the gas jet, measuring the phase shift of the light passing through the target by utilizing an interferometer, are found to be agreed with the numerical modeling within a factor of two. The dryness (= monomer/(monomer + cluster) ratio) in the targets is found to support the numerical modeling. The apparatus developed to evaluate the cluster-gas targets proved that our mathematical model of cluster formation is reliable enough for the binary gas mixture.

  10. Platelet-mediated clumping of Plasmodium falciparum-infected erythrocytes is a common adhesive phenotype and is associated with severe malaria

    PubMed Central

    Pain, Arnab; Ferguson, David J. P.; Kai, Oscar; Urban, Britta C.; Lowe, Brett; Marsh, Kevin; Roberts, David J.

    2001-01-01

    Sequestration of malaria-infected erythrocytes in the peripheral circulation has been associated with the virulence of Plasmodium falciparum. Defining the adhesive phenotypes of infected erythrocytes may therefore help us to understand how severe disease is caused and how to prevent or treat it. We have previously shown that malaria-infected erythrocytes may form apparent autoagglutinates of infected erythrocytes. Here we show that such autoagglutination of a laboratory line of P. falciparum is mediated by platelets and that the formation of clumps of infected erythrocytes and platelets requires expression of the platelet surface glycoprotein CD36. Platelet-dependent clumping is a distinct adhesive phenotype, expressed by some but not all CD36-binding parasite lines, and is common in field isolates of P. falciparum. Finally, we have established that platelet-mediated clumping is strongly associated with severe malaria. Precise definition of the molecular basis of this intriguing adhesive phenotype may help to elucidate the complex pathophysiology of malaria. PMID:11172032

  11. The complete genomes of subgenotype IA hepatitis A virus strains from four different islands in Indonesia form a phylogenetic cluster.

    PubMed

    Mulyanto; Wibawa, I Dewa Nyoman; Suparyatmo, Joseph Benedictus; Amirudin, Rifai; Ohnishi, Hiroshi; Takahashi, Masaharu; Nishizawa, Tsutomu; Okamoto, Hiroaki

    2014-05-01

    Despite the high endemicity of hepatitis A virus (HAV) in Indonesia, genetic information on those HAV strains is limited. Serum samples obtained from 76 individuals during outbreaks of hepatitis A in Jember (East Java) in 2006 and Tangerang (West Java) in 2007 and those from 82 patients with acute hepatitis in Solo (Central Java), Denpasar on Bali Island, Mataram on Lombok Island, and Makassar on Sulawesi Island in 2003 or 2007 were tested for the presence of HAV RNA by reverse transcription PCR with primers targeting the VP1-2B region (481 nucleotides, primer sequences at both ends excluded). Overall, 34 serum samples had detectable HAV RNA, including at least one viremic sample from each of the six regions. These 34 strains were 96.3-100 % identical to each other and formed a phylogenetic cluster within genotype IA. Six representative HAV isolates from each region shared 98.3-98.9 % identity over the entire genome and constituted a IA sublineage with a bootstrap value of 100 %, consisting of only Indonesian strains. HAV strains recovered from Japanese patients who were presumed to have contracted HAV infection while visiting Indonesia were closest to the Indonesian IA HAV strains obtained in the present study, with a high identity of 99.5-99.7 %, supporting the Indonesian origin of the imported strains. These results indicate that genetic analysis of HAV strains indigenous to HAV-endemic countries, including Indonesia, are useful for tracing infectious sources in imported cases of acute hepatitis A and for defining the epidemiological features of HAV infection in that country.

  12. 13CO Molecular Clouds and Clumps in the Galactic Plane

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Stark, A. A.

    2004-12-01

    Using the 13CO Bell Laboratories Survey for one third of galactic plane, (l, b) = (-5° to 117°, -1° to +1°), and our revised cloud identification code, 13CO clouds have been identified and cataloged as a function of threshold temperature; 1,400 of molecular clouds with 1 K threshold temperature and with a 4-threshold number of pixels, 629 clouds with 2 K threshold temperature, and 263 clouds with 3 K. Clouds with the brightest cores (TR*(13CO) > 3 K) are confined to the 5 Kpc Molecular Ring (l<40°) and l=80° region. In addition to cloud identification, dense clump regions can be located using this 13CO survey and then combined with existing UMass-Stony Brook 12CO data for the first quadrant of the Galactic Plane. Numbers of identified clumps are 3,156 with 0.4 threshold 13CO optical depth, 2,134 with 0.6, 1,190 with 0.8, and 662 with 1.0. It is found that the hot clumps are heavily crowded between l = 10° to 20°. Good correlation is found between 13CO integrated intensity and column density. We discuss some statistical characteristics of clouds, cores, and the column density distribution.

  13. Star Formation Triggered by Low-Mass Clump Collisions

    NASA Astrophysics Data System (ADS)

    Kitsionas, Spyridon; Whitworth, Anthony P.

    We investigate by means of high-resolution numerical simulations the phenomenology of star formation triggered by low-velocity collisions between low-mass molecular clumps. The simulations are performed using an SPH code which satisfies the Jeans condition by invoking On-the-Fly Particle Splitting (Kitsionas & Whitworth 2002). The efficiency of star formation appears to increase with increasing clump mass and/or decreasing impact parameter b and/or increasing clump velocity. For b<0.5 the collisions produce shock-compressed layers which fragment into filaments that break up into cores. Protostellar objects then condense out of the cores and accrete from them. The resulting accretion rates are comparable to those of Class 0 objects. The densities in the filaments are sufficient that they could be mapped in ammonia or CS line radiation in nearby star formation regions. The phenomenology of star formation observed in our simulations compares rather well with the observed filamentary distribution of young stars in Taurus (Hartmann 2002).

  14. Another cluster of red supergiants close to RSGC1

    NASA Astrophysics Data System (ADS)

    Negueruela, I.; González-Fernández, C.; Marco, A.; Clark, J. S.; Martínez-Núñez, S.

    2010-04-01

    Context. Recent studies have revealed massive star clusters in a region of the Milky Way close to the tip of the Long Bar. These clusters are heavily obscured and are characterised by a population of red supergiants. Aims: We analyse a previously unreported concentration of bright red stars ~16' away from the cluster RSGC1 Methods: We utilised near IR photometry to identify candidate red supergiants and then K-band spectroscopy of a sample to characterise their properties. Results: We find a compact clump of eight red supergiants and five other candidates at some distance, one of which is spectroscopically confirmed as a red supergiant. These objects must form an open cluster, which we name Alicante 8. Because of the high reddening and strong field contamination, the cluster sequence is not clearly seen in 2MASS or UKIDSS near-IR photometry. From the analysis of the red supergiants, we infer an extinction AKS = 1.9 and an age close to 20 Myr. Conclusions: Though this cluster is smaller than the three known previously, its properties still suggest a mass in excess of 10 000 M⊙. Its discovery corroborates the hypothesis that star formation in this region has happened on a wide scale between ~10 and ~20 Myr ago.

  15. Coadsorption of nitric oxide and carbon monoxide on the nickel clusters deposited onto MgO(111) film formed on Mo(110)

    NASA Astrophysics Data System (ADS)

    Magkoev, Tamerlan T.

    2004-10-01

    Coadsorption of NO and CO molecules on the Ni clusters deposited on MgO(111) film formed on a Mo(110) crystal has been studied by reflection-absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD). It is found that adsorption of NO molecules strongly affects the state of CO molecules, which were initially adsorbed on the Ni clusters. The observed features in RAIRS and TPD spectra are attributed to the change of the CO adsorption site and geometry, which is induced by NO adsorption.

  16. Cluster self-organization of crystal-forming systems: Suprapolyhedral cluster precursors and self-assembly of the icosahedral structure of ZrZn22( cF184)

    NASA Astrophysics Data System (ADS)

    Ilyushin, G. D.; Blatov, V. A.

    2009-07-01

    The mechanism of self-assembly of symmetrically and topologically different chains and microlayers (in the form of planar nets) from cyclic three-node clusters A 3 is considered in the model system. The obtained nets correspond to the uninodal Shubnikov nets N 3 12 12 and N 3 6 3 6 and the new binodal net N1 3 6 3 6 + N2 3 3 6 6 (1: 2). A complete three-dimensional reconstruction of the self-assembly of the icosahedral structure of the ZrZn22 compound ( cF184) is performed using computer methods (with the TOPOS program package) according to the following scheme: cluster precursor → primary chain → microlayer → microframework (supraprecursor) → ... → framework. It is revealed that the suprapolyhedral cluster precursor (nanocluster ˜12 Å in size) of the AB 2 composition is formed by three polyhedra shared by vertices in a cyclic manner: the A-ZrZn16 polyhedron (sixteen-vertex polyhedron with the point symmetry bar 4 3 m) and two B-ZrZn12 polyhedra (icosahedra with the point symmetry bar 3 m). The AB 2 cluster precursor in the structure retains the symmetry m. It is established that the structural mechanism of self-assembly of the two-dimensional layer in the ZrZn22 structure is described by the binodal net N1 3 6 3 6 + N2 3 3 6 6 (1: 2) constructed in the modeling.

  17. Mutations in the Gene Encoding the Ancillary Pilin Subunit of the Streptococcus suis srtF Cluster Result in Pili Formed by the Major Subunit Only

    PubMed Central

    Fittipaldi, Nahuel; Takamatsu, Daisuke; la Cruz Domínguez-Punaro, María de; Lecours, Marie-Pier; Montpetit, Diane; Osaki, Makoto; Sekizaki, Tsutomu; Gottschalk, Marcelo

    2010-01-01

    Pili have been shown to contribute to the virulence of different Gram-positive pathogenic species. Among other critical steps of bacterial pathogenesis, these structures participate in adherence to host cells, colonization and systemic virulence. Recently, the presence of at least four discrete gene clusters encoding putative pili has been revealed in the major swine pathogen and emerging zoonotic agent Streptococcus suis. However, pili production by this species has not yet been demonstrated. In this study, we investigated the functionality of one of these pili clusters, known as the srtF pilus cluster, by the construction of mutant strains for each of the four genes of the cluster as well as by the generation of antibodies against the putative pilin subunits. Results revealed that the S. suis serotype 2 strain P1/7, as well as several other highly virulent invasive S. suis serotype 2 isolates express pili from this cluster. However, in most cases tested, and as a result of nonsense mutations at the 5′ end of the gene encoding the minor pilin subunit (a putative adhesin), pili were formed by the major pilin subunit only. We then evaluated the role these pili play in S. suis virulence. Abolishment of the expression of srtF cluster-encoded pili did not result in impaired interactions of S. suis with porcine brain microvascular endothelial cells. Furthermore, non-piliated mutants were as virulent as the wild type strain when evaluated in a murine model of S. suis sepsis. Our results show that srtF cluster-encoded, S. suis pili are atypical compared to other Gram-positive pili. In addition, since the highly virulent strains under investigation are unlikely to produce other pili, our results suggest that pili might be dispensable for critical steps of the S. suis pathogenesis of infection. PMID:20052283

  18. LBT/LUCIFER view of star-forming galaxies in the cluster 7C 1756+6520 at z ˜ 1.4

    NASA Astrophysics Data System (ADS)

    Magrini, Laura; Sommariva, Veronica; Cresci, Giovanni; Sani, Eleonora; Galametz, Audrey; Mannucci, Filippo; Petropoulou, Vasiliki; Fumana, Marco

    2012-10-01

    Galaxy clusters are key places to study the contribution of nature (i.e. mass and morphology) and nurture (i.e. environment) in the formation and evolution of galaxies. Recently, a number of clusters at z > 1, i.e. corresponding to the first epochs of the cluster formation, have been discovered and confirmed spectroscopically. We present new observations obtained with the LBT Near Infrared Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER) spectrograph at Large Binocular Telescope (LBT) of a sample of star-forming galaxies associated with a large-scale structure around the radio galaxy 7C 1756+6520 at z = 1.42. Combining our spectroscopic data and the literature photometric data, we derived some of the properties of these galaxies: star formation rate, metallicity and stellar mass. With the aim of analysing the effect of the cluster environment on galaxy evolution, we have located the galaxies in the plane of the so-called fundamental metallicity relation (FMR), which is known not to evolve with redshift up to z = 2.5 for field galaxies, but it is still unexplored in rich environments at low and high redshifts. We found that the properties of the galaxies in the cluster 7C 1756+6520 are compatible with the FMR which suggests that the effect of the environment on galaxy metallicity at this early epoch of cluster formation is marginal. As a side study, we also report the spectroscopic analysis of a bright active galactic nucleus, belonging to the cluster, which shows a significant outflow of gas.

  19. A Kinematic Approach to Assessing Environmental Effects: Star-forming Galaxies in a z ~ 0.9 SpARCS Cluster Using Spitzer 24 μm Observations

    NASA Astrophysics Data System (ADS)

    Noble, A. G.; Webb, T. M. A.; Muzzin, A.; Wilson, G.; Yee, H. K. C.; van der Burg, R. F. J.

    2013-05-01

    We present an infrared study of a z = 0.872 cluster, SpARCS J161314+564930, with the primary aim of distinguishing the dynamical histories of spectroscopically confirmed star-forming members to assess the role of cluster environment. We utilize deep MIPS imaging and a mass-limited sample of 85 spectroscopic members to identify 16 24 μm bright sources within the cluster, and measure their 24 μm star formation rates (SFRs) down to ~6 M ⊙ yr-1. Based on their line-of-sight velocities and stellar ages, MIPS cluster members appear to be an infalling population that was recently accreted from the field with minimal environmental dependency on their star formation. However, we identify a double-sequenced distribution of star-forming galaxies among the members, with one branch exhibiting declining specific SFRs with mass. The members along this sub-main sequence contain spectral features suggestive of passive galaxies. Using caustic diagrams, we kinematically identify these galaxies as a virialized and/or backsplash population. Moreover, we find a mix of dynamical histories at all projected radii, indicating that standard definitions of environment (i.e., radius and density) are contaminated with recently accreted interlopers, which could contribute to a lack of environmental trends for star-forming galaxies. A cleaner narrative of their dynamical past begins to unfold when using a proxy for accretion histories through profiles of constant (r/r 200) × (Δv/σ v ); galaxies accreted at earlier times possess lower values of (r/r 200) × (Δv/σ v ) with minimal contamination from the distinct infalling population. Therefore, adopting a time-averaged definition for density (as traced by accretion histories) rather than an instantaneous density yields a depressed specific SFR within the dynamical cluster core.

  20. Rates of formation and dissipation of clumping reveal lagged responses in tropical tree populations.

    PubMed

    Detto, Matteo; Muller-Landau, Helene C

    2016-05-01

    The dynamics of spatial patterns of plant populations can provide important information about underlying processes, yet they have received relatively little attention to date. Here we investigate the rates of formation and dissipation of clusters and the relationship of these rates to the degree of aggregation (clumping) in models and in empirical data for tropical trees. In univariate models, exact solutions and simulations show that the rate of change of spatial patterns has a specific, linear relationship to the degree of aggregation at all scales. Shorter dispersal and/or weaker negative density dependence (NDD) result in both denser and longer-lasting clusters. In multivariate host-parasite models in contrast, the rate of change of spatial pattern is faster relative to the level of aggrega- tion. We then analyzed the dynamics of spatial patterns of stems ≥ 1 cm diameter in 221 tropical tree species from seven censuses spanning 28 yr. We found that for most species, the rates of change in spatial patterns were faster than predicted from univariate models given their aggregation. This indicates that more complex dynamics involving multivariate interactions induce time lags in responses to aggregation in these species. Such lags could arise, for example, if it takes time for natural enemies to locate aggregations of their hosts. This combination of theoretical and empirical results thus shows that complex multilevel models are needed to capture spatiotemporal dynamics of tropical forests and provides new insights into the processes structuring tropical plant communities. PMID:27349094

  1. G0.253 + 0.016: A MOLECULAR CLOUD PROGENITOR OF AN ARCHES-LIKE CLUSTER

    SciTech Connect

    Longmore, Steven N.; Ascenso, Joana; Testi, Leonardo; Bressert, Eli; Rathborne, Jill; Bastian, Nate; Alves, Joao; Meingast, Stefan; Bally, John; Battersby, Cara; Longmore, Andy; Purcell, Cormac; Walsh, Andrew; Jackson, James; Foster, Jonathan; Molinari, Sergio; Amorim, A.; Lima, J.; Marques, R.; Moitinho, A.; and others

    2012-02-20

    Young massive clusters (YMCs) with stellar masses of 10{sup 4}-10{sup 5} M{sub Sun} and core stellar densities of 10{sup 4}-10{sup 5} stars per cubic pc are thought to be the 'missing link' between open clusters and extreme extragalactic super star clusters and globular clusters. As such, studying the initial conditions of YMCs offers an opportunity to test cluster formation models across the full cluster mass range. G0.253 + 0.016 is an excellent candidate YMC progenitor. We make use of existing multi-wavelength data including recently available far-IR continuum (Herschel/Herschel Infrared Galactic Plane Survey) and mm spectral line (H{sub 2}O Southern Galactic Plane Survey and Millimetre Astronomy Legacy Team 90 GHz Survey) data and present new, deep, multiple-filter, near-IR (Very Large Telescope/NACO) observations to study G0.253 + 0.016. These data show that G0.253 + 0.016 is a high-mass (1.3 Multiplication-Sign 10{sup 5} M{sub Sun }), low-temperature (T{sub dust} {approx} 20 K), high-volume, and column density (n {approx} 8 Multiplication-Sign 10{sup 4} cm{sup -3}; N{sub H{sub 2}}{approx}4 Multiplication-Sign 10{sup 23} cm{sup -2}) molecular clump which is close to virial equilibrium (M{sub dust} {approx} M{sub virial}) so is likely to be gravitationally bound. It is almost devoid of star formation and, thus, has exactly the properties expected for the initial conditions of a clump that may form an Arches-like massive cluster. We compare the properties of G0.253 + 0.016 to typical Galactic cluster-forming molecular clumps and find it is extreme, and possibly unique in the Galaxy. This uniqueness makes detailed studies of G0.253 + 0.016 extremely important for testing massive cluster formation models.

  2. Use of density functional theory method to calculate structures of neutral carbon clusters Cn (3 ≤ n ≤ 24) and study their variability of structural forms

    NASA Astrophysics Data System (ADS)

    Yen, T. W.; Lai, S. K.

    2015-02-01

    In this work, we present modifications to the well-known basin hopping (BH) optimization algorithm [D. J. Wales and J. P. Doye, J. Phys. Chem. A 101, 5111 (1997)] by incorporating in it the unique and specific nature of interactions among valence electrons and ions in carbon atoms through calculating the cluster's total energy by the density functional tight-binding (DFTB) theory, using it to find the lowest energy structures of carbon clusters and, from these optimized atomic and electronic structures, studying their varied forms of topological transitions, which include a linear chain, a monocyclic to a polycyclic ring, and a fullerene/cage-like geometry. In this modified BH (MBH) algorithm, we define a spatial volume within which the cluster's lowest energy structure is to be searched, and introduce in addition a cut-and-splice genetic operator to increase the searching performance of the energy minimum than the original BH technique. The present MBH/DFTB algorithm is, therefore, characteristically distinguishable from the original BH technique commonly applied to nonmetallic and metallic clusters, technically more thorough and natural in describing the intricate couplings between valence electrons and ions in a carbon cluster, and thus theoretically sound in putting these two charged components on an equal footing. The proposed modified minimization algorithm should be more appropriate, accurate, and precise in the description of a carbon cluster. We evaluate the present algorithm, its energy-minimum searching in particular, by its optimization robustness. Specifically, we first check the MBH/DFTB technique for two representative carbon clusters of larger size, i.e., C60 and C72 against the popular cut-and-splice approach [D. M. Deaven and K. M. Ho, Phys. Rev. Lett. 75, 288 (1995)] that normally is combined with the genetic algorithm method for finding the cluster's energy minimum, before employing it to investigate carbon clusters in the size range C3-C24

  3. Clumped isotope thermometry of modern and early Cretaceous molluscan carbonate from high-latitude seas (Invited)

    NASA Astrophysics Data System (ADS)

    Henkes, G. A.; Price, G. D.; Ambrose, W. G.; Carroll, M. L.; Passey, B. H.

    2010-12-01

    The carbonate clumped isotope thermometer is based on the temperature sensitivity of the relative abundance of carbonate ion groups containing 13C-18O bonds. One application of clumped isotope thermometry is to determine the temperature of ancient seawater from the skeletal material of calcium carbonate-secreting marine organisms. The relationship between Δ47, a parameter describing isotopic clumping, and the temperature of carbonate biomineralization has been well-defined for fish otoliths, corals, foraminifera, and coccolithophore tests, but few data have been published for brachiopods and bivalve mollusks. A comprehensive evaluation of the Δ47-temperature relationship for mollusks is required for paleotemperature interpretations from the marine fossil record. Here we present a more comprehensive calibration for modern mollusks, including bivalves, cephalopods, and gastropods. Further, we focus on a subset of cold water, high-latitude species collected in the northern Barents Sea. The observed Δ47-temperature relationship is similar to the theoretical relationship presented by Guo et al. (2009) but deviates at low temperatures from the original Ghosh et al. (2007) calibration curve. This divergence could be related to methodological differences or unaccounted differences in the biomineralization of mollusks versus that of other carbonate-secreting organisms at low temperature. One advantage of clumped isotope thermometry over traditional oxygen isotope thermometry is that it does not require assumptions about the isotopic composition of the water in which the carbonate formed. This may be particularly useful in Mesozoic paleoceanography where the oxygen isotope value of seawater is uncertain. Using clumped isotope thermometry applied to early Cretaceous (Valangian) belemnite carbonate from the Yatria River, sub-polar Urals, Siberia, we find shell growth temperatures of 20-26°C at a paleolatitude of ~60-65°N. Our data imply average seawater δ18O values of 0

  4. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    NASA Astrophysics Data System (ADS)

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew

    2015-10-01

    "Clumped-isotope" thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope "clumps"). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals. We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect. Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3- and CO32-. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many natural systems. The two

  5. Inter- and intra-annual variations of clumping index derived from the MODIS BRDF product

    NASA Astrophysics Data System (ADS)

    He, Liming; Liu, Jane; Chen, Jing M.; Croft, Holly; Wang, Rong; Sprintsin, Michael; Zheng, Ting; Ryu, Youngryel; Pisek, Jan; Gonsamo, Alemu; Deng, Feng; Zhang, Yongqin

    2016-02-01

    Clumping index quantifies the level of foliage aggregation, relative to a random distribution, and is a key structural parameter of plant canopies and is widely used in ecological and meteorological models. In this study, the inter- and intra-annual variations in clumping index values, derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) BRDF product, are investigated at six forest sites, including conifer forests, a mixed deciduous forest and an oak-savanna system. We find that the clumping index displays large seasonal variation, particularly for the deciduous sites, with the magnitude in clumping index values at each site comparable on an intra-annual basis, and the seasonality of clumping index well captured after noise removal. For broadleaved and mixed forest sites, minimum clumping index values are usually found during the season when leaf area index is at its maximum. The magnitude of MODIS clumping index is validated by ground data collected from 17 sites. Validation shows that the MODIS clumping index can explain 75% of variance in measured values (bias = 0.03 and rmse = 0.08), although with a narrower amplitude in variation. This study suggests that the MODIS BRDF product has the potential to produce good seasonal trajectories of clumping index values, but with an improved estimation of background reflectance.

  6. Analysis of Clumps in Saturn’s F Ring from Voyager and Cassini Observations

    NASA Astrophysics Data System (ADS)

    French, Robert S.; Hicks, S. K.; Showalter, M. R.; Antonsen, A. K.; Packard, D. R.

    2013-10-01

    Saturn's F ring is well known for its unique and dynamic features that change on timescales from hours to months. Among these features are clumps, localized bright areas spanning ~3-30 degrees in longitude. 34 clumps tracked in Voyager images (Showalter 2004, Icarus, 171, 356-371) were found to live for several months and have a ~100 km spread in semi-major axis around the F ring core. Several clumps appeared to "split" during their lifetimes. Unfortunately, the poor resolution of the Voyager images and limited temporal and longitudinal coverage prevented a more detailed analysis. In this study, we performed a similar analysis using six years' worth of images from the Cassini Orbiter. We tracked 96 clumps and found similar angular widths, lifetimes, and semi-major axes to those observed by Voyager. However, the number of clumps present at one time appears to have decreased and the clumps are generally less bright; there are also many fewer extremely bright clumps. The better quality images allowed us to investigate five "splitting" clumps and we found that the apparent splits were often caused by the passage of the inner shepherd moon Prometheus. We further found that the birth and death of clumps appears uncorrelated with the position of Prometheus or with other features such as "mini-jets" or "jets" often found in the ring. We speculate on the changes in the population of embedded moonlets that may have resulted in these changes.

  7. The complex structure of Abell 2345: a galaxy cluster with non-symmetric radio relics

    NASA Astrophysics Data System (ADS)

    Boschin, W.; Barrena, R.; Girardi, M.

    2010-10-01

    Context. The connection of cluster mergers with the presence of extended, diffuse radio sources in galaxy clusters is still debated. Aims: We aim to obtain new insights into the internal dynamics of the cluster Abell 2345. This cluster exhibits two non-symmetric radio relics well studied through recent, deep radio data. Methods: Our analysis is based on redshift data for 125 galaxies acquired at the Telescopio Nazionale Galileo and on new photometric data acquired at the Isaac Newton Telescope. We also use ROSAT/HRI archival X-ray data. We combine galaxy velocities and positions to select 98 cluster galaxies and analyze the internal dynamics of the cluster. Results: We estimate a mean redshift < z > = 0.1789 and a line-of-sight (LOS) velocity dispersion σV ~ 1070 km s-1. The two-dimensional galaxy distribution reveals the presence of three significant peaks within a region of ~1 h70-1 Mpc (the E, NW, and SW peaks). The spectroscopic catalog confirms the presence of these three clumps. The SW and NW clumps have similar mean velocities, while the E clump has a larger mean velocity (Δ Vrf ~ 800 km s-1); this structure causes the presence of the two peaks we find in the cluster velocity distribution. The difficulty in separating the galaxy clumps leads to a very uncertain mass estimate M ~ 2 × 1015 h70-1 M⊙. Moreover, the E clump well coincides with the main mass peak as recovered from the weak gravitational lensing analysis and is off-set to the east from the BCG by ~1.3´. The ROSAT X-ray data also show a very complex structure, mainly elongated in the E-W direction, with two (likely three) peaks in the surface brightness distribution, which, however, are off-set from the position of the peaks in the galaxy density. The observed phenomenology agrees with the hypothesis that we are looking at a complex cluster merger occurring along two directions: a major merger along the ~E-W direction (having a component along the LOS) and a minor merger in the western cluster

  8. Decay of the compound nucleus *297118 formed in the reaction 249Cf+48Ca using the dynamical cluster-decay model

    NASA Astrophysics Data System (ADS)

    Sawhney, Gudveen; Kaur, Amandeep; Sharma, Manoj K.; Gupta, Raj K.

    2015-12-01

    The decay of the Z =118 , *297118 compound system, formed in the 249Cf+48Ca reaction, is studied for 2 n , 3 n , and 4 n emissions, by using the dynamical cluster-decay model (DCM) at compound-nucleus (CN) excitation energies ECN*=29.2 and 34.4 MeV. A parallel attempt is made to analyze the 294118 residue nucleus synthesized in the 250Cf+48Ca reaction, subsequent to the 4 n emission from the *298118 nucleus, to check the possibility of isotopic mixing in the 249Cf target used in the 249Cf+48Ca reaction. The possible role of deformations and orientations, together with different nuclear proximity potentials, is also investigated. In addition, an exclusive analysis of the mass distributions of Z =113 to 118 superheavy nuclei, formed in 48Ca -induced reactions, is explored within the DCM. A comparative importance of Prox-1977 and Prox-2000 potentials on the α -decay chains is also investigated, first by using the preformed cluster model (PCM) for spontaneous decays (T =0 ), the PCM (T =0 ), and then analyzing the possible role of excitation energy in PCM, i.e., PCM (T ≠0 ) , via the measured recoil energy of the residual 294118 nucleus left after 3 n emission from *297118 CN. The branching of α decay to the most-probable clusters is also examined for *294118 and its subsequent *290116 and *286114 parents occurring in the α -decay chain. Interestingly, the calculated decay half-lives for some clusters such as 86Kr , 84Se , and 80Ge , referring to doubly magic 208Pb or its neighboring daughter nucleus, present themselves as exciting new possibilities, though to date difficult to observe, of heavy cluster emissions in superheavy mass region.

  9. Gravitational Vortices And Clump Formation In Saturn's F ring During An Encounter With Prometheus

    PubMed Central

    Sutton, Phil J.; Kusmartsev, Feodor V.

    2013-01-01

    Saturn rings are most beautiful and dynamic places in the solar system, consisting of ice particles in a constant battle between the gravitational forces of Saturn and its many moons. Fan, spiral, propellers, moonlets and streamer-channels observed by CASSINI in the F-ring have been attributed to encounters by Prometheus on the F ring, with investigations of optical thickness revealing large populations of transient moonlets. Taking into account gravitational interaction between particles and a multi-stranded F-ring structure we show that Prometheus' encounters create rotational flows, like atmospheric vortices and the self-gravity enhances the accelerated growth and size of moonlets. Vortex patches form caustics, which is a primary cause of the transient particle density clumps of 20 km width and 100 km length, and they are elongated to cover an area of 1600 km by 150 km, which may eventually combine into a vortex sheet. PMID:23429480

  10. Gravitational vortices and clump formation in Saturn's F ring during an encounter with Prometheus.

    PubMed

    Sutton, Phil J; Kusmartsev, Feodor V

    2013-01-01

    Saturn rings are most beautiful and dynamic places in the solar system, consisting of ice particles in a constant battle between the gravitational forces of Saturn and its many moons. Fan, spiral, propellers, moonlets and streamer-channels observed by CASSINI in the F-ring have been attributed to encounters by Prometheus on the F ring, with investigations of optical thickness revealing large populations of transient moonlets. Taking into account gravitational interaction between particles and a multi-stranded F-ring structure we show that Prometheus' encounters create rotational flows, like atmospheric vortices and the self-gravity enhances the accelerated growth and size of moonlets. Vortex patches form caustics, which is a primary cause of the transient particle density clumps of 20 km width and 100 km length, and they are elongated to cover an area of 1600 km by 150 km, which may eventually combine into a vortex sheet.

  11. Gravitational Vortices And Clump Formation In Saturn's F ring During An Encounter With Prometheus

    NASA Astrophysics Data System (ADS)

    Sutton, Phil J.; Kusmartsev, Feodor V.

    2013-02-01

    Saturn rings are most beautiful and dynamic places in the solar system, consisting of ice particles in a constant battle between the gravitational forces of Saturn and its many moons. Fan, spiral, propellers, moonlets and streamer-channels observed by CASSINI in the F-ring have been attributed to encounters by Prometheus on the F ring, with investigations of optical thickness revealing large populations of transient moonlets. Taking into account gravitational interaction between particles and a multi-stranded F-ring structure we show that Prometheus' encounters create rotational flows, like atmospheric vortices and the self-gravity enhances the accelerated growth and size of moonlets. Vortex patches form caustics, which is a primary cause of the transient particle density clumps of 20 km width and 100 km length, and they are elongated to cover an area of 1600 km by 150 km, which may eventually combine into a vortex sheet.

  12. A Chandra Study of the Rosette Star-Forming Complex. II. Clusters in the Rosette Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Feigelson, Eric D.; Townsley, Leisa K.; Román-Zúñiga, Carlos G.; Lada, Elizabeth; Garmire, Gordon

    2009-05-01

    We explore here the young stellar populations in the Rosette Molecular Cloud (RMC) region with high spatial resolution X-ray images from the Chandra X-ray Observatory, which are effective in locating weak-lined T Tauri stars as well as disk-bearing young stars. A total of 395 X-ray point sources are detected, 299 of which (76%) have an optical or near-infrared (NIR) counterpart identified from deep FLAMINGOS images. From X-ray and mass sensitivity limits, we infer a total population of ~1700 young stars in the survey region. Based on smoothed stellar surface density maps, we investigate the spatial distribution of the X-ray sources and define three distinctive structures and substructures within them. Structures B and C are associated with previously known embedded IR clusters, while structure A is a new X-ray-identified unobscured cluster. A high-mass protostar RMCX #89 = IRAS 06306+0437 and its associated sparse cluster are studied. The different subregions are not coeval but do not show a simple spatial-age pattern. Disk fractions vary between subregions and are generally lsim20% of the total stellar population inferred from the X-ray survey. The data are consistent with speculations that triggered star formation around the H II region is present in the RMC, but do not support a simple sequential triggering process through the cloud interior. While a significant fraction of young stars are located in a distributed population throughout the RMC region, it is not clear if they originated in clustered environments.

  13. A CHANDRA STUDY OF THE ROSETTE STAR-FORMING COMPLEX. II. CLUSTERS IN THE ROSETTE MOLECULAR CLOUD

    SciTech Connect

    Wang Junfeng; Feigelson, Eric D.; Townsley, Leisa K.; Garmire, Gordon; Roman-Zuniga, Carlos G.; Lada, Elizabeth E-mail: edf@astro.psu.edu

    2009-05-01

    We explore here the young stellar populations in the Rosette Molecular Cloud (RMC) region with high spatial resolution X-ray images from the Chandra X-ray Observatory, which are effective in locating weak-lined T Tauri stars as well as disk-bearing young stars. A total of 395 X-ray point sources are detected, 299 of which (76%) have an optical or near-infrared (NIR) counterpart identified from deep FLAMINGOS images. From X-ray and mass sensitivity limits, we infer a total population of {approx}1700 young stars in the survey region. Based on smoothed stellar surface density maps, we investigate the spatial distribution of the X-ray sources and define three distinctive structures and substructures within them. Structures B and C are associated with previously known embedded IR clusters, while structure A is a new X-ray-identified unobscured cluster. A high-mass protostar RMCX no. 89 = IRAS 06306+0437 and its associated sparse cluster are studied. The different subregions are not coeval but do not show a simple spatial-age pattern. Disk fractions vary between subregions and are generally {approx}<20% of the total stellar population inferred from the X-ray survey. The data are consistent with speculations that triggered star formation around the H II region is present in the RMC, but do not support a simple sequential triggering process through the cloud interior. While a significant fraction of young stars are located in a distributed population throughout the RMC region, it is not clear if they originated in clustered environments.

  14. A simple protocol for platelet-mediated clumping of Plasmodium falciparum-infected erythrocytes in a resource poor setting.

    PubMed

    Tembo, Dumizulu L; Montgomery, Jacqui; Craig, Alister G; Wassmer, Samuel C

    2013-01-01

    most recently described P. falciparum cytoadherence phenotypes is the ability of the pRBC to form platelet-mediated clumps in vitro. The formation of such pRBC clumps requires CD36, a glycoprotein expressed on the surface of platelets. Another human receptor, gC1qR/HABP1/p32, expressed on diverse cell types including endothelial cells and platelets, has also been shown to facilitate pRBC adhesion on platelets to form clumps (10). Whether clumping occurs in vivo remains unclear, but it may account for the significant accumulation of platelets described in brain microvasculature of Malawian children who died from CM (11). In addition, the ability of clinical isolate cultures to clump in vitro was directly linked to the severity of disease in Malawian (12) and Mozambican patients (13), (although not in Malian (14)). With several aspects of the pRBC clumping phenotype poorly characterized, current studies on this subject have not followed a standardized procedure. This is an important issue because of the known high variability inherent in the assay (15). Here, we present a method for in vitro platelet-mediated clumping of P. falciparum with hopes that it will provide a platform for a consistent method for other groups and raise awareness of the limitations in investigating this phenotype in future studies. Being based in Malawi, we provide a protocol specifically designed for a limited resource setting, with the advantage that freshly collected clinical isolates can be examined for phenotype without need for cryopreservation. PMID:23711755

  15. A simple protocol for platelet-mediated clumping of Plasmodium falciparum-infected erythrocytes in a resource poor setting.

    PubMed

    Tembo, Dumizulu L; Montgomery, Jacqui; Craig, Alister G; Wassmer, Samuel C

    2013-01-01

    most recently described P. falciparum cytoadherence phenotypes is the ability of the pRBC to form platelet-mediated clumps in vitro. The formation of such pRBC clumps requires CD36, a glycoprotein expressed on the surface of platelets. Another human receptor, gC1qR/HABP1/p32, expressed on diverse cell types including endothelial cells and platelets, has also been shown to facilitate pRBC adhesion on platelets to form clumps (10). Whether clumping occurs in vivo remains unclear, but it may account for the significant accumulation of platelets described in brain microvasculature of Malawian children who died from CM (11). In addition, the ability of clinical isolate cultures to clump in vitro was directly linked to the severity of disease in Malawian (12) and Mozambican patients (13), (although not in Malian (14)). With several aspects of the pRBC clumping phenotype poorly characterized, current studies on this subject have not followed a standardized procedure. This is an important issue because of the known high variability inherent in the assay (15). Here, we present a method for in vitro platelet-mediated clumping of P. falciparum with hopes that it will provide a platform for a consistent method for other groups and raise awareness of the limitations in investigating this phenotype in future studies. Being based in Malawi, we provide a protocol specifically designed for a limited resource setting, with the advantage that freshly collected clinical isolates can be examined for phenotype without need for cryopreservation.

  16. Clumped isotope perturbation in tropospheric nitrous oxide from stratospheric photolysis

    NASA Astrophysics Data System (ADS)

    Schmidt, Johan A.; Johnson, Matthew S.

    2015-05-01

    Nitrous oxide (N2O) is potent greenhouse gas and source of ozone depleting NO to the stratosphere. Recent advances in mass spectrometry allow accurate measurement of multiply substituted ("clumped") N2O isotopocules, providing new constraints on the N2O source budget. However, this requires a quantification of the "clumped" N2O fractionation from stratospheric photolysis (main sink). We use time-dependent quantum dynamics and a 1-D atmospheric model to determine the effect of stratospheric photolysis on the abundances of multisubstituted N2O isotopocules in the atmosphere. The ultraviolet absorption cross sections of 557 (i.e., 15N15N17O), 458, 548, 457, and 547 are presented for the first time and used to derive altitude-dependent photolysis rates and fractionation constants. We find that photolysis alters the N2O isotopic composition with multisubstituted mass 47 isotopocules being less abundant than expected from stochastics (Δ47 = -1.7‰ in the troposphere and down to -12‰ in the upper stratosphere).

  17. Aggregated clumps of lithistid sponges: a singular, reef-like bathyal habitat with relevant paleontological connections.

    PubMed

    Maldonado, Manuel; Aguilar, Ricardo; Blanco, Jorge; García, Silvia; Serrano, Alberto; Punzón, Antonio

    2015-01-01

    The advent of deep-sea exploration using video cameras has uncovered extensive sponge aggregations in virtually all oceans. Yet, a distinct type is herein reported from the Mediterranean: a monospecific reef-like formation built by the lithistid demosponge Leiodermatium pfeifferae. Erect, plate-like individuals (up to 80 cm) form bulky clumps, making up to 1.8 m high mounds (1.14 m on average) on the bottom, at a 760 m-deep seamount named SSS. The siliceous skeletal frameworks of the lithistids persist after sponge death, serving as a complex 3D substratum where new lithistids recruit, along with a varied fauna of other sessile and vagile organisms. The intricate aggregation of lithistid mounds functions as a "reef" formation, architecturally different from the archetypal "demosponge gardens" with disaggregating siliceous skeletons. Leiodermatium pfeifferae also occurred at two additional, close seamounts (EBJ and EBS), but, unlike at SSS, the isolated individuals never formed accretive clumps. The general oceanographic variables (temperature, salinity, dissolved nutrients, chlorophyll, and oxygen) revealed only minimal between-seamount differences, which cannot explain why sponge abundance at SSS is about two orders of magnitude higher than at EBJ or EBS. Large areas of the dense SSS aggregation were damaged, with detached and broken sponges and a few tangled fishing lines. Satellite vessel monitoring revealed low fishing activity around these seamounts. In contrast, international plans for gas and oil extraction at those locations raise serious concerns over the need for protecting urgently this unique, vulnerable habitat to avoid further alteration. Modern lithistids are a relict fauna from Jurassic and Cretaceous reefs and the roots of the very genus Leiodermatium can be traced back to those fossil formations. Therefore, understanding the causes behind the discovered lithistid aggregation is critical not only to its preservation, but also to elucidate how the

  18. Aggregated Clumps of Lithistid Sponges: A Singular, Reef-Like Bathyal Habitat with Relevant Paleontological Connections

    PubMed Central

    Maldonado, Manuel; Aguilar, Ricardo; Blanco, Jorge; García, Silvia; Serrano, Alberto; Punzón, Antonio

    2015-01-01

    The advent of deep-sea exploration using video cameras has uncovered extensive sponge aggregations in virtually all oceans. Yet, a distinct type is herein reported from the Mediterranean: a monospecific reef-like formation built by the lithistid demosponge Leiodermatium pfeifferae. Erect, plate-like individuals (up to 80 cm) form bulky clumps, making up to 1.8 m high mounds (1.14 m on average) on the bottom, at a 760 m-deep seamount named SSS. The siliceous skeletal frameworks of the lithistids persist after sponge death, serving as a complex 3D substratum where new lithistids recruit, along with a varied fauna of other sessile and vagile organisms. The intricate aggregation of lithistid mounds functions as a “reef” formation, architecturally different from the archetypal "demosponge gardens" with disaggregating siliceous skeletons. Leiodermatium pfeifferae also occurred at two additional, close seamounts (EBJ and EBS), but, unlike at SSS, the isolated individuals never formed accretive clumps. The general oceanographic variables (temperature, salinity, dissolved nutrients, chlorophyll, and oxygen) revealed only minimal between-seamount differences, which cannot explain why sponge abundance at SSS is about two orders of magnitude higher than at EBJ or EBS. Large areas of the dense SSS aggregation were damaged, with detached and broken sponges and a few tangled fishing lines. Satellite vessel monitoring revealed low fishing activity around these seamounts. In contrast, international plans for gas and oil extraction at those locations raise serious concerns over the need for protecting urgently this unique, vulnerable habitat to avoid further alteration. Modern lithistids are a relict fauna from Jurassic and Cretaceous reefs and the roots of the very genus Leiodermatium can be traced back to those fossil formations. Therefore, understanding the causes behind the discovered lithistid aggregation is critical not only to its preservation, but also to elucidate how

  19. Aggregated clumps of lithistid sponges: a singular, reef-like bathyal habitat with relevant paleontological connections.

    PubMed

    Maldonado, Manuel; Aguilar, Ricardo; Blanco, Jorge; García, Silvia; Serrano, Alberto; Punzón, Antonio

    2015-01-01

    The advent of deep-sea exploration using video cameras has uncovered extensive sponge aggregations in virtually all oceans. Yet, a distinct type is herein reported from the Mediterranean: a monospecific reef-like formation built by the lithistid demosponge Leiodermatium pfeifferae. Erect, plate-like individuals (up to 80 cm) form bulky clumps, making up to 1.8 m high mounds (1.14 m on average) on the bottom, at a 760 m-deep seamount named SSS. The siliceous skeletal frameworks of the lithistids persist after sponge death, serving as a complex 3D substratum where new lithistids recruit, along with a varied fauna of other sessile and vagile organisms. The intricate aggregation of lithistid mounds functions as a "reef" formation, architecturally different from the archetypal "demosponge gardens" with disaggregating siliceous skeletons. Leiodermatium pfeifferae also occurred at two additional, close seamounts (EBJ and EBS), but, unlike at SSS, the isolated individuals never formed accretive clumps. The general oceanographic variables (temperature, salinity, dissolved nutrients, chlorophyll, and oxygen) revealed only minimal between-seamount differences, which cannot explain why sponge abundance at SSS is about two orders of magnitude higher than at EBJ or EBS. Large areas of the dense SSS aggregation were damaged, with detached and broken sponges and a few tangled fishing lines. Satellite vessel monitoring revealed low fishing activity around these seamounts. In contrast, international plans for gas and oil extraction at those locations raise serious concerns over the need for protecting urgently this unique, vulnerable habitat to avoid further alteration. Modern lithistids are a relict fauna from Jurassic and Cretaceous reefs and the roots of the very genus Leiodermatium can be traced back to those fossil formations. Therefore, understanding the causes behind the discovered lithistid aggregation is critical not only to its preservation, but also to elucidate how the

  20. Evaluation of meteoric calcite cements as a proxy material for mass-47 clumped isotope thermometry

    NASA Astrophysics Data System (ADS)

    Defliese, William F.; Lohmann, Kyger C.

    2016-01-01

    Meteoric diagenetic cements are ubiquitous throughout geologic history, affecting most carbonate exposures worldwide. They can often be difficult to interpret, as it is usually difficult to separate the influences of water δ18O and temperature on isotopic signals contained within the carbonate rock body. Despite this difficulty in interpretation, meteoric phreatic cements can potentially be a useful proxy material, as they form slowly in equilibrium at mean annual temperature and are not affected by any biogenic effects that can bias other proxy materials. We applied the mass-47 clumped isotope paleothermometer to Pleistocene and Holocene carbonates from Bermuda and Barbados in order to investigate the effects of meteoric diagenesis on Δ47 signals, and to determine their suitability as a paleotemperature proxy. Phreatic calcite cements are found to record the same temperatures as unaltered carbonate sediments, while any sample exhibiting vadose characteristics is biased towards unreasonably hot apparent formation temperatures. Burial heating and re-equilibration are not geologically viable explanations for the anomalously hot temperatures recorded in vadose cements, as neither Bermuda or Barbados has any burial history. Instead, it is likely that precipitation in the vadose zone occurs on timescales quicker than isotopic equilibrium can be achieved, driven by a combination of CO2 degassing and evaporation, which have been previously shown to cause problems in speleothems and pedogenic carbonates. We conclude by suggesting that meteoric phreatic calcites may be an ideal phase for paleotemperature reconstruction, as they accurately record mean annual temperatures and form under equilibrium conditions, while also being resistant to further mineral driven diagenesis. Vadose cements, and any sample likely affected by processes similar to vadose diagenesis, should be avoided for climate reconstructions using the mass-47 clumped isotope thermometer.

  1. Magnetohydrodynamical simulation of the formation of clumps and filaments in quiescent diffuse medium by thermal instability

    NASA Astrophysics Data System (ADS)

    Wareing, C. J.; Pittard, J. M.; Falle, S. A. E. G.; Van Loo, S.

    2016-06-01

    We have used the adaptive mesh refinement hydrodynamic code, MG, to perform idealized 3D magnetohydrodynamical simulations of the formation of clumpy and filamentary structure in a thermally unstable medium without turbulence. A stationary thermally unstable spherical diffuse atomic cloud with uniform density in pressure equilibrium with low density surroundings was seeded with random density variations and allowed to evolve. A range of magnetic field strengths threading the cloud have been explored, from β = 0.1 to 1.0 to the zero magnetic field case (β = ∞), where β is the ratio of thermal pressure to magnetic pressure. Once the density inhomogeneities had developed to the point where gravity started to become important, self-gravity was introduced to the simulation. With no magnetic field, clouds and clumps form within the cloud with aspect ratios of around unity, whereas in the presence of a relatively strong field (β = 0.1) these become filaments, then evolve into interconnected corrugated sheets that are predominantly perpendicular to the magnetic field. With magnetic and thermal pressure equality (β = 1.0), filaments, clouds and clumps are formed. At any particular instant, the projection of the 3D structure on to a plane parallel to the magnetic field, i.e. a line of sight perpendicular to the magnetic field, resembles the appearance of filamentary molecular clouds. The filament densities, widths, velocity dispersions and temperatures resemble those observed in molecular clouds. In contrast, in the strong field case β = 0.1, projection of the 3D structure along a line of sight parallel to the magnetic field reveals a remarkably uniform structure.

  2. Photoevaporation of Disks and Clumps by Nearby Massive Stars: Application to Disk Destruction in the Orion Nebula

    NASA Astrophysics Data System (ADS)

    Johnstone, Doug; Hollenbach, David; Bally, John

    1998-05-01

    We present a model for the photoevaporation of circumstellar disks or dense clumps of gas by an external source of ultraviolet radiation. Our model includes the thermal and dynamic effects of 6-13.6 eV far-ultraviolet (FUV) photons and Lyman continuum EUV photons incident upon disks or clumps idealized as spheres of radius rd and enclosed mass M*. For sufficiently large values of rd/M*, the radiation field evaporates the surface gas and dust. Analytical and numerical approximations to the resulting flows are presented; the model depends on rd, M*, the flux of FUV and EUV photons, and the column density of neutral gas heated by FUV photons to high temperatures. Application of this model shows that the circumstellar disks (rd ~ 1014-1015 cm) in the Orion Nebula (``proplyds'') are rapidly destroyed by the external UV radiation field. Close (d <~ 1017 cm) to θ1 Ori C, the ionizing EUV photon flux controls the mass-loss rate, and the ionization front (IF) is approximately coincident with the disk surface. Gas evaporated from the cold disk moves subsonically through a relatively thin photodissociation region (PDR) dominated by FUV photons and heated to ~1000 K. As the distance from θ1 Ori C increases, the Lyman continuum flux declines, the PDR thickens, and the IF moves away from the disk surface. At d ~ 3 × 1017 cm, the thickness of the PDR becomes comparable to the disk radius. Between 3 × 1017 cm <~ d <~ 1018 cm, spherical divergence and the resultant pressure gradient in the 103 K PDR forms a mildly supersonic (~3-6 km s-1) but neutral Parker wind. This wind flows outward until it passes through a shock, beyond which gas moves subsonically through a stationary D-type IF. The IF is moved away from the disk surface to a standoff distance rIF >~ 2.5rd. In this regime, the mass-loss rate is determined by the incident FUV photon flux and not the ionizing flux. However, at very large distances, d >~ 1018 cm, the FUV photon flux drops to values that cannot maintain the

  3. FAR-INFRARED DUST TEMPERATURES AND COLUMN DENSITIES OF THE MALT90 MOLECULAR CLUMP SAMPLE

    SciTech Connect

    Guzmán, Andrés E.; Smith, Howard A.; Sanhueza, Patricio; Contreras, Yanett; Rathborne, Jill M.; Jackson, James M.; Hoq, Sadia

    2015-12-20

    We present dust column densities and dust temperatures for ∼3000 young, high-mass molecular clumps from the Millimeter Astronomy Legacy Team 90 GHz survey, derived from adjusting single-temperature dust emission models to the far-infrared intensity maps measured between 160 and 870 μm from the Herschel/Herschel Infrared Galactic Plane Survey (Hi-Gal) and APEX/APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) surveys. We discuss the methodology employed in analyzing the data, calculating physical parameters, and estimating their uncertainties. The population average dust temperature of the clumps are 16.8 ± 0.2 K for the clumps that do not exhibit mid-infrared signatures of star formation (quiescent clumps), 18.6 ± 0.2 K for the clumps that display mid-infrared signatures of ongoing star formation but have not yet developed an H ii region (protostellar clumps), and 23.7 ± 0.2 and 28.1 ± 0.3 K for clumps associated with H ii and photo-dissociation regions, respectively. These four groups exhibit large overlaps in their temperature distributions, with dispersions ranging between 4 and 6 K. The median of the peak column densities of the protostellar clump population is 0.20 ± 0.02 g cm{sup −2}, which is about 50% higher compared to the median of the peak column densities associated with clumps in the other evolutionary stages. We compare the dust temperatures and column densities measured toward the center of the clumps with the mean values of each clump. We find that in the quiescent clumps, the dust temperature increases toward the outer regions and that these clumps are associated with the shallowest column density profiles. In contrast, molecular clumps in the protostellar or H ii region phase have dust temperature gradients more consistent with internal heating and are associated with steeper column density profiles compared with the quiescent clumps.

  4. Molecular Line Emission Towards High-Mass Clumps: The MALT90 Catalogue

    NASA Astrophysics Data System (ADS)

    Rathborne, J. M.; Whitaker, J. S.; Jackson, J. M.; Foster, J. B.; Contreras, Y.; Stephens, I. W.; Guzmán, A. E.; Longmore, S. N.; Sanhueza, P.; Schuller, F.; Wyrowski, F.; Urquhart, J. S.

    2016-07-01

    The Millimetre Astronomy Legacy Team 90 GHz survey aims to characterise the physical and chemical evolution of high-mass clumps. Recently completed, it mapped 90 GHz line emission towards 3 246 high-mass clumps identified from the ATLASGAL 870 μm Galactic plane survey. By utilising the broad frequency coverage of the Mopra telescope's spectrometer, maps in 16 different emission lines were simultaneously obtained. Here, we describe the first catalogue of the detected line emission, generated by Gaussian profile fitting to spectra extracted towards each clumps' 870 μm dust continuum peak. Synthetic spectra show that the catalogue has a completeness of > 95%, a probability of a false-positive detection of < 0.3%, and a relative uncertainty in the measured quantities of < 20% over the range of detection criteria. The detection rates are highest for the (1-0) transitions of HCO+, HNC, N2H+, and HCN (~77-89%). Almost all clumps (~95%) are detected in at least one of the molecular transitions, just over half of the clumps (~53%) are detected in four or more of the transitions, while only one clump is detected in 13 transitions. We find several striking trends in the ensemble of properties for the different molecular transitions when plotted as a function of the clumps' evolutionary state as estimated from Spitzer mid-IR images, including (1) HNC is relatively brighter in colder, less evolved clumps than those that show active star formation, (2) N2H+ is relatively brighter in the earlier stages, (3) that the observed optical depth decreases as the clumps evolve, and (4) the optically thickest HCO+ emission shows a `blue-red asymmetry' indicating overall collapse that monotonically decreases as the clumps evolve. This catalogue represents the largest compiled database of line emission towards high-mass clumps and is a valuable data set for detailed studies of these objects.

  5. WFC3 GRISM CONFIRMATION OF THE DISTANT CLUSTER Cl J1449+0856 AT (z) = 2.00: QUIESCENT AND STAR-FORMING GALAXY POPULATIONS

    SciTech Connect

    Gobat, R.; Strazzullo, V.; Daddi, E.; Renzini, A.; Finoguenov, A.; Cimatti, A.; Scarlata, C.; Arimoto, N.

    2013-10-10

    We present deep Hubble Space Telescope Wide Field Camera 3 (HST/WFC3) slitless spectroscopic observations of the distant cluster Cl J1449+0856. These cover a single pointing with 18 orbits of G141 spectroscopy and F140W imaging, allowing us to derive secure redshifts down to M{sub 140} ∼ 25.5 AB and 3σ line fluxes of ∼5 × 10{sup –18} erg s{sup –1} cm{sup –2}. In particular, we were able to spectroscopically confirm 12 early-type galaxies (ETGs) in the field up to z ∼ 3, 6 of which are in the cluster core, which represents the first direct spectroscopic confirmation of quiescent galaxies in a z = 2 cluster environment. With 140 redshifts in a ∼6 arcmin{sup 2} field, we can trace the spatial and redshift galaxy distribution in the cluster core and background field. We find two strong peaks at z = 2.00 and z = 2.07, where only one was seen in our previously published ground-based data. Due to the spectroscopic confirmation of the cluster ETGs, we can now reevaluate the redshift of Cl J1449+0856 at z = 2.00, rather than z = 2.07, with the background overdensity being revealed to be sparse and {sup s}heet{sup -}like. This presents an interesting case of chance alignment of two close yet unrelated structures, each one preferentially selected by different observing strategies. With 6 quiescent or early-type spectroscopic members and 20 star-forming ones, Cl J1449+0856 is now reliably confirmed to be at z = 2.00. The identified members can now allow for a detailed study of galaxy properties in the densest environment at z = 2.

  6. The Spatial Structure of Young Stellar Clusters. III. Physical Properties and Evolutionary States

    NASA Astrophysics Data System (ADS)

    Kuhn, Michael A.; Feigelson, Eric D.; Getman, Konstantin V.; Sills, Alison; Bate, Matthew R.; Borissova, Jordanka

    2015-10-01

    We analyze the physical properties of stellar clusters that are detected in massive star-forming regions in the MYStIX project—a comparative, multiwavelength study of young stellar clusters within 3.6 kpc that contain at least one O-type star. Tabulated properties of subclusters in these regions include physical sizes and shapes, intrinsic numbers of stars, absorptions by the molecular clouds, and median subcluster ages. Physical signs of dynamical evolution are present in the relations of these properties, including statistically significant correlations between subcluster size, central density, and age, which are likely the result of cluster expansion after gas removal. We argue that many of the subclusters identified in Paper I are gravitationally bound because their radii are significantly less than what would be expected from freely expanding clumps of stars with a typical initial stellar velocity dispersion of ˜3 km s-1 for star-forming regions. We explore a model for cluster formation in which structurally simpler clusters are built up hierarchically through the mergers of subclusters—subcluster mergers are indicated by an inverse relation between the numbers of stars in a subcluster and their central densities (also seen as a density versus radius relation that is less steep than would be expected from pure expansion). We discuss implications of these effects for the dynamical relaxation of young stellar clusters.

  7. THE SPATIAL STRUCTURE OF YOUNG STELLAR CLUSTERS. III. PHYSICAL PROPERTIES AND EVOLUTIONARY STATES

    SciTech Connect

    Kuhn, Michael A.; Feigelson, Eric D.; Getman, Konstantin V.; Sills, Alison; Bate, Matthew R.; Borissova, Jordanka

    2015-10-20

    We analyze the physical properties of stellar clusters that are detected in massive star-forming regions in the MYStIX project—a comparative, multiwavelength study of young stellar clusters within 3.6 kpc that contain at least one O-type star. Tabulated properties of subclusters in these regions include physical sizes and shapes, intrinsic numbers of stars, absorptions by the molecular clouds, and median subcluster ages. Physical signs of dynamical evolution are present in the relations of these properties, including statistically significant correlations between subcluster size, central density, and age, which are likely the result of cluster expansion after gas removal. We argue that many of the subclusters identified in Paper I are gravitationally bound because their radii are significantly less than what would be expected from freely expanding clumps of stars with a typical initial stellar velocity dispersion of ∼3 km s{sup −1} for star-forming regions. We explore a model for cluster formation in which structurally simpler clusters are built up hierarchically through the mergers of subclusters—subcluster mergers are indicated by an inverse relation between the numbers of stars in a subcluster and their central densities (also seen as a density versus radius relation that is less steep than would be expected from pure expansion). We discuss implications of these effects for the dynamical relaxation of young stellar clusters.

  8. Chemotaxis cluster 1 proteins form cytoplasmic arrays in Vibrio cholerae and are stabilized by a double signaling domain receptor DosM.

    PubMed

    Briegel, Ariane; Ortega, Davi R; Mann, Petra; Kjær, Andreas; Ringgaard, Simon; Jensen, Grant J

    2016-09-13

    Nearly all motile bacterial cells use a highly sensitive and adaptable sensory system to detect changes in nutrient concentrations in the environment and guide their movements toward attractants and away from repellents. The best-studied bacterial chemoreceptor arrays are membrane-bound. Many motile bacteria contain one or more additional, sometimes purely cytoplasmic, chemoreceptor systems. Vibrio cholerae contains three chemotaxis clusters (I, II, and III). Here, using electron cryotomography, we explore V. cholerae's cytoplasmic chemoreceptor array and establish that it is formed by proteins from cluster I. We further identify a chemoreceptor with an unusual domain architecture, DosM, which is essential for formation of the cytoplasmic arrays. DosM contains two signaling domains and spans the two-layered cytoplasmic arrays. Finally, we present evidence suggesting that this type of receptor is important for the structural stability of the cytoplasmic array. PMID:27573843

  9. A process-based model for non-equilibrium clumped isotope effects in carbonates

    NASA Astrophysics Data System (ADS)

    Watkins, J. M.; Hunt, J. D.

    2015-12-01

    The equilibrium clumped isotope composition of carbonate minerals is independent of the composition of the aqueous solution. However, many carbonate minerals grow at rates that place them in a non-equilibrium regime with respect to carbon and oxygen isotopes with unknown consequences for clumped isotopes. We develop a process-based model that allows one to calculate the oxygen, carbon, and clumped isotope composition of calcite as a function of temperature, crystal growth rate, and solution pH. In the model, carbon and oxygen isotope fractionation occurs through the mass-dependent attachment/detachment kinetics of the isotopologues of HCO-3 and CO2-3 to and from the calcite surface, which in turn, influence the clumped isotope composition of calcite. At experimental and biogenic growth rates, the mineral is expected to inherit a clumped isotopic composition that is similar to that of the DIC pool, which helps to explain (1) why different organisms share the same clumped isotope versus temperature calibration curves, (2) why many inorganic calibration curves are slightly different from one another, and (3) why foraminifera, coccoliths, and deep sea corals can have near-equilibrium clumped isotope compositions but far-from-equilibrium carbon and oxygen isotope compositions. Some aspects of the model can be generalized to other mineral systems and should serve as a useful reference in future efforts to quantify kinetic clumped isotope effects.

  10. MAGNETOHYDRODYNAMIC SHOCK-CLUMP EVOLUTION WITH SELF-CONTAINED MAGNETIC FIELDS

    SciTech Connect

    Li Shule; Frank, Adam; Blackman, Eric G.

    2013-09-10

    We study the interaction of strong shock waves with magnetized clumps. Previous numerical work focused on a simplified scenario in which shocked clumps are immersed in a globally uniform magnetic field that extends through both the clump and the ambient medium. Here, we consider the complementary circumstance in which the field is completely self-contained within the clumps. This situation could arise naturally during clump formation via dynamical or thermal instabilities, for example, as a magnetic field pinches off from the ambient medium. Using our adaptive mesh refinement magnetohydrodynamics code AstroBEAR, we carry out a series of simulations with magnetized clumps that have different self-contained magnetic field configurations. We find that the clump and magnetic evolution are sensitive to the fraction of the magnetic field aligned with, or perpendicular to, the shock normal. The relative strength of magnetic pressure and tension in the different field configurations allows us to analytically understand the different cases of post-shock evolution. We also show how turbulence and the mixing it implies depends of the initial field configuration and suggest ways in which the observed shock-clump morphology may be used as a proxy for identifying internal field topologies a posteriori.

  11. Atomic-scale dynamics of a model glass-forming metallic liquid: Dynamical crossover, dynamical decoupling, and dynamical clustering

    DOE PAGES

    Jaiswal, Abhishek; Egami, Takeshi; Zhang, Yang

    2015-04-01

    The phase behavior of multi-component metallic liquids is exceedingly complex because of the convoluted many-body and many-elemental interactions. Herein, we present systematic studies of the dynamic aspects of such a model ternary metallic liquid Cu40Zr51Al9 using molecular dynamics simulation with embedded atom method. We observed a dynamical crossover from Arrhenius to super-Arrhenius behavior in the transport properties (diffusion coefficient, relaxation times, and shear viscosity) bordered at Tx ~1300K. Unlike in many molecular and macromolecular liquids, this crossover phenomenon occurs in the equilibrium liquid state well above the melting temperature of the system (Tm ~ 900K), and the crossover temperature ismore » roughly twice of the glass-transition temperature (Tg). Below Tx, we found the elemental dynamics decoupled and the Stokes-Einstein relation broke down, indicating the onset of heterogeneous spatially correlated dynamics in the system mediated by dynamic communications among local configurational excitations. To directly characterize and visualize the correlated dynamics, we employed a non-parametric, unsupervised machine learning technique and identified dynamical clusters of atoms with similar atomic mobility. The revealed average dynamical cluster size shows an accelerated increase below Tx and mimics the trend observed in other ensemble averaged quantities that are commonly used to quantify the spatially heterogeneous dynamics such as the non-Gaussian parameter and the four-point correlation function.« less

  12. Atomic-scale dynamics of a model glass-forming metallic liquid: Dynamical crossover, dynamical decoupling, and dynamical clustering

    NASA Astrophysics Data System (ADS)

    Jaiswal, Abhishek; Egami, Takeshi; Zhang, Yang

    2015-04-01

    The phase behavior of multicomponent metallic liquids is exceedingly complex because of the convoluted many-body and many-elemental interactions. Herein, we present systematic studies of the dynamical aspects of a model ternary metallic liquid Cu40Zr51Al9 using molecular dynamics simulations with embedded atom method. We observed a dynamical crossover from Arrhenius to super-Arrhenius behavior in the transport properties (self diffusion coefficient, self relaxation time, and shear viscosity) bordered at Tx˜1300 K. Unlike in many molecular and macromolecular liquids, this crossover phenomenon occurs well above the melting point of the system (Tm˜900 K) in the equilibrium liquid state; and the crossover temperature Tx is roughly twice of the glass-transition temperature of the system (Tg). Below Tx, we found the elemental dynamics decoupled and the Stokes-Einstein relation broke down, indicating the onset of heterogeneous spatially correlated dynamics in the system mediated by dynamic communications among local configurational excitations. To directly characterize and visualize the correlated dynamics, we employed a nonparametric, unsupervised machine learning technique and identified dynamical clusters of atoms with similar atomic mobility. The revealed average dynamical cluster size shows an accelerated increase below Tx and mimics the trend observed in other ensemble averaged quantities that are commonly used to quantify the spatially heterogeneous dynamics such as the non-Gaussian parameter α2 and the four-point correlation function χ4.

  13. Ribosomal genes in focus: new transcripts label the dense fibrillar components and form clusters indicative of "Christmas trees" in situ.

    PubMed

    Koberna, Karel; Malínský, Jan; Pliss, Artem; Masata, Martin; Vecerova, Jaromíra; Fialová, Markéta; Bednár, Jan; Raska, Ivan

    2002-05-27

    T he organization of transcriptionally active ribosomal genes in animal cell nucleoli is investigated in this study in order to address the long-standing controversy with regard to the intranucleolar localization of these genes. Detailed analyses of HeLa cell nucleoli include direct localization of ribosomal genes by in situ hybridization and their indirect localization via nascent ribosomal transcript mappings. On the light microscopy (LM) level, ribosomal genes map in 10-40 fluorescence foci per nucleus, and transcription activity is associated with most foci. We demonstrate that each nucleolar focus observed by LM corresponds, on the EM level, to an individual fibrillar center (FC) and surrounding dense fibrillar components (DFCs). The EM data identify the DFC as the nucleolar subcompartment in which rRNA synthesis takes place, consistent with detection of rDNA within the DFC. The highly sensitive method for mapping nascent transcripts in permeabilized cells on ultrastructural level provides intense and unambiguous clustered immunogold signal over the DFC, whereas very little to no label is detected over the FC. This signal is strongly indicative of nascent "Christmas trees" of rRNA associated with individual rDNA genes, sampled on the surface of thin sections. Stereological analysis of the clustered transcription signal further suggests that these Christmas trees may be contorted in space and exhibit a DNA compaction ratio on the order of 4-5.5.

  14. Combined 13C-D and D-D clumping in methane: Methods and preliminary results

    NASA Astrophysics Data System (ADS)

    Stolper, D. A.; Sessions, A. L.; Ferreira, A. A.; Santos Neto, E. V.; Schimmelmann, A.; Shusta, S. S.; Valentine, D. L.; Eiler, J. M.

    2014-02-01

    The stable isotopic composition of methane (e.g., δD and δ13C values) is often used as a tracer for its sources and sinks. Conventional δD and δ13C measurements represent the average isotope ratios of all ten isotopologues of methane, though they are effectively controlled by the relative abundances of the three most abundant species: 12CH4, 13CH4, and 12CH3D. The precise relative abundances of the other seven isotopologues remains largely unexplored because these species contain multiple rare isotopes and are thus rare themselves. These multiply substituted (or 'clumped') isotopologues each have their own distinctive chemical and physical properties, which could provide additional constraints on the geochemistry of methane. This work focuses on quantifying the abundances of two rare isotopologues, 13CH3D and 12CH2D2, of methane in order to assess their utility as a window into methane's geochemistry. Specifically, we seek to assess whether clumped isotope distributions might be useful to quantify the temperature at which methane formed and/or equilibrated. To this end, we report the first highly precise combined measurements of the relative abundances of 13CH3D and 12CH2D2 at natural abundances (i.e., unlabeled) via the high-resolution magnetic-sector mass spectrometry of intact methane. We calibrate the use of these measurements as a geothermometer using both theory and experiment, and apply this geothermometer to representative natural samples. The method yields accurate average (i.e., bulk) isotopic ratios based on comparison with conventional techniques. We demonstrate the accuracy and precision of measurements of 13CH3D and 12CH2D2 through analyses of methane driven to high temperature (>200 °C) equilibrium in the laboratory. Application of this thermometer to natural samples yields apparent temperatures consistent with their known formation environments and appears to distinguish between biogenic and thermogenic methane.

  15. U-Pb Dating of Carbonates: A Complement to Clumped Isotope Analyses

    NASA Astrophysics Data System (ADS)

    Rasbury, T.; Suarez, M. B.

    2014-12-01

    Carbonates are ubiquitous in nature, forming in a variety of settings at the surface and through burial. The field and petrographic relationships of carbonate phases can often be linked to the depositional setting and burial path(s) that the sedimentary pile has experienced. Clumped isotopes are taking on an important role of testing the temperature of formation of the carbonates, and combined with other approaches such as fluid inclusion analyses offers tremendous potential for testing basin evolution models. However, while the relative ages of carbonates are often fairly easily elucidated, the absolute ages of the events recorded in carbonates are not. U-Pb dating of carbonates offers the best potential for constraining the ages. However, not all fluids have favorable U/Ca ratios. U-Pb dated groundwater carbonates from the Late Triassic New Haven Arkose give an age of 211 +/- 2 Ma, consistent with the known age of deposition. Late bright luminescent calcite from the same formation gives an age of 81+/-11 Ma, constraining the age (both primary and secondary) of carbonate formation. Clumped isotope analyses of primary carbonate phases show somewhat elevated temperatures between 50-60o C, some 30 degrees hotter than other estimates for this Triassic equatorial setting, and are more likely the result of re-ordering of 13C-18O bonds at depth. Apparently the primary calcite, appears to have preserved its depositional U-Pb systematics, however bond re-ordering or recrystallization of these carbonates appear to reflect values closer to thermal equilibrium with the last phase of carbonate formation (bright luminescent calcite, 81 ± 11 Ma). Further work on these samples will target these younger calcites to determine if this later calcite phase records similar temperatures.

  16. The Planck Catalogue of Galactic Cold Clumps : Looking at the early stages of star-formation

    NASA Astrophysics Data System (ADS)

    Montier, Ludovic

    2015-08-01

    The Planck satellite has provided an unprecedented view of the submm sky, allowing us to search for the dust emission of Galactic cold sources. Combining Planck-HFI all-sky maps in the high frequency channels with the IRAS map at 100um, we built the Planck catalogue of Galactic Cold Clumps (PGCC, Planck 2015 results XXVIII 2015), counting 13188 sources distributed over the whole sky, and following mainly the Galactic structures at low and intermediate latitudes. This is the first all-sky catalogue of Galactic cold sources obtained with a single instrument at this resolution and sensitivity, which opens a new window on star-formation processes in our Galaxy.I will briefly describe the colour detection method used to extract the Galactic cold sources, i.e., the Cold Core Colour Detection Tool (CoCoCoDeT, Montier et al. 2010), and its application to the Planck data. I will discuss the statistical distribution of the properties of the PGCC sources (in terms of dust temperature, distance, mass, density and luminosity), which illustrates that the PGCC catalogue spans a large variety of environments and objects, from molecular clouds to cold cores, and covers various stages of evolution. The Planck catalogue is a very powerful tool to study the formation and the evolution of prestellar objects and star-forming regions.I will finally present an overview of the Herschel Key Program Galactic Cold Cores (PI. M.Juvela), which allowed us to follow-up about 350 Planck Galactic Cold Clumps, in various stages of evolution and environments. With this program, the nature and the composition of the 5' Planck sources have been revealed at a sub-arcmin resolution, showing very different configurations, such as starless cold cores or multiple Young Stellar objects still embedded in their cold envelope.

  17. Clumped isotope disequilibrium during rapid CO2 uptake and carbonate precipitation in subaerial alkaline springs associated with ongoing serpentinization

    NASA Astrophysics Data System (ADS)

    Falk, E. S.; Guo, W.; Kelemen, P. B.

    2014-12-01

    Ongoing serpentinization in tectonically exposed ultramafic bodies is manifested at the surface in alkaline springs (pH >11). Where these high-pH waters come in contact with CO2 at the surface, rapid calcite precipitation forms extensive travertines. We study natural travertine samples from Oman and synthetic witherite (BaCO3) from high-pH experiments to identify disequilibrium signals in δ18O, δ13C and clumped isotopes (measured as Δ47) that characterize rapid uptake of atmospheric CO2 and carbonate precipitation from high pH fluids. Kinetic effects preclude the use of clumped or oxygen isotopes for carbonate thermometry in these environments, but trends in δ18O, δ13C and Δ47 could help identify extinct alkaline systems or distinguish CO2 sources. Oman travertines formed at peridotite-hosted alkaline springs have long been known to exhibit a large range of kinetically depleted δ18O and δ13C values. We find fresh carbonate precipitated at these alkaline springs also exhibit large enrichments in Δ47 that covary with the depletions in δ18O and δ13C, thought to arise during hydroxylation of CO2 in high-pH fluids. Witherite precipitated during rapid CO2 uptake and carbonate precipitation in high pH experiments also exhibits disequilibrium values in δ18O, δ13C and Δ47, with the Δ47 of carbonate precipitates strongly affected by the Δ47 the reactant CO2. δ18O, δ13C and Δ47 trends could serve as a marker for carbonates formed in subaerial alkaline environments and track carbon sources in these systems. For example, the δ18O-δ13C slope in carbonates from Martian meteorites is similar to that observed in carbonates from terrestrial alkaline springs, so if corresponding enrichments in Δ47 could be identified in Martian carbonates, it could suggest that alkaline springs were present on the surface of Mars. Clumped isotope signals could also help distinguish carbon sources: kinetic enrichments in Δ47 would be absent or diminished in high-pH carbonates

  18. Formation of compact clusters from high resolution hybrid cosmological simulations

    SciTech Connect

    Richardson, Mark L. A.; Scannapieco, Evan; Gray, William J.

    2013-11-20

    The early universe hosted a large population of small dark matter 'minihalos' that were too small to cool and form stars on their own. These existed as static objects around larger galaxies until acted upon by some outside influence. Outflows, which have been observed around a variety of galaxies, can provide this influence in such a way as to collapse, rather than disperse, the minihalo gas. Gray and Scannapieco performed an investigation in which idealized spherically symmetric minihalos were struck by enriched outflows. Here we perform high-resolution cosmological simulations that form realistic minihalos, which we then extract to perform a large suite of simulations of outflow-minihalo interactions including non-equilibrium chemical reactions. In all models, the shocked minihalo forms molecules through non-equilibrium reaction, and then cools to form dense, chemically homogenous clumps of star-forming gas. The formation of these high-redshift clusters may be observable with the next generation of telescopes and the largest of them should survive to the present-day, having properties similar to halo globular clusters.

  19. Shock-Clump Interaction Studies in the Laboratory

    NASA Astrophysics Data System (ADS)

    Blue, B. E.; Back, C. A.; Hund, J. F.; Foster, J. M.; Rosen, P. A.; Williams, R. J. R.; Wilde, B. H.; Douglas, M.; Carver, R.; Palmer, J.; Hartigan, P.; Hansen, J. F.

    2008-11-01

    Large-scale directional outflows of supersonic plasma are driven by a wide variety of objects in the universe such as young stars, compact binaries, and supernovae. Typical models of the outflows assume simplistic geometries; however, images of most outflows show a much more complex structure that consists of multiple clumps and shocks with a variety of sizes. To bridge the gap between the complex system in space and the simplified models, controlled scaled experiments were performed to elucidate the physics of a shock progressing through a clumpy medium. This talk will present experiments on the Omega Laser in which a shock impacts density discontinuities in order to understand the perturbed shock structure as well as the evolution of the discontinuity in a localized area of a clumpy medium. We have obtained high-resolution radiographs that detail the temporal evolution of the shock and density discontinuity.

  20. Massive Cold Clumps in NGC 7538 revealed by Herschel

    NASA Astrophysics Data System (ADS)

    Fallscheer, Cassandra L.; Reid, M.; Di Francesco, J.; Herschel HOBYS Team

    2014-01-01

    Observations of the high-mass star formation region NGC 7538 taken with the Herschel Space Observatory were made at 70, 160, 250, 350, and 500 micron as part of the Herschel imaging study of OB Yound Stellar objects (HOBYS) Key Programme. Within the one square degree field, we identify 780 dense sources and further analyze 224 of those. We fit spectral energy distributions to the subset of sources and classify 17 objects for further investigation as possible instances of cold starless clumps which may be precursors of high mass star formation. A peculiar feature in the observations is a large, nearly complete ring of material. The ring is of unknown origin and hosts a number of the detected sources.

  1. Towards Understanding Artifacts in the Clumped Isotope System

    NASA Astrophysics Data System (ADS)

    Swart, P. K.; Staudigel, P. T.; Murray, S.

    2015-12-01

    The clumped isotope system in carbonates (Δ47) relies on the extraction of CO2 from the carbonate minerals using phosphoric acid. Despite the fact that this method dates back to the original stable isotopic work in the 1950s, there are significant aspects of the fractionation of the 18O/16O (and by inference the ratio of mass 47 to 44) which are not understood. We believe that subtle variations in the isotopic fractionation as a function of temperature, acid density (and acid preparation method), and extraction line design cause variation between the clumped isotope data produced by different laboratories. One of the most obvious of these is difference in reaction temperatures. While most laboratories employ temperatures of between 75 and 90oC, the original method employed a temperature of 25oC. Although various estimate of the difference in fractionation of Δ47 between 25 and 90oC have been made, we have measured significantly different values for dolomites compared to published data. In order to understand this we have performed experiments in sealed Pyrex vessels to measure the exchange between CO2 and 103% phosphoric acid. We have determined there to be significant and measurable changes in the Δ47 of CO2 when exposed to phosphoric acid. This exchange is a function of temperature, time, acid strength, and the surface area of the acid exposed to the CO2. We postulate that, perhaps as a result of the lower reaction rate of dolomite, compared to calcite, that there is greater opportunity for CO2 to exchange with the phosphoric acid as bubbles of CO2 are retained within the acid for longer periods of time. Such a mechanism would predict that well-ordered dolomites will have different fractionation compared to protodolomite. Similar differences might account for different fractionation for other carbonate minerals.

  2. DENSE CLUMPS AND CANDIDATES FOR MOLECULAR OUTFLOWS IN W40

    SciTech Connect

    Shimoikura, Tomomi; Dobashi, Kazuhito; Nakamura, Fumitaka; Hara, Chihomi; Kawabe, Ryohei; Tanaka, Tomohiro; Shimajiri, Yoshito

    2015-06-20

    We report the results of the {sup 12}CO (J = 3−2) and HCO{sup +} (J = 4−3) observations of the W40 H ii region with the Atacama Submillimeter Telescope Experiment (ASTE) 10 m telescope (HPBW ≃ 22″) to search for molecular outflows and dense clumps. We found that the velocity field in the region is highly complex, consisting of at least four distinct velocity components at V{sub LSR} ≃ 3, 5, 7, and 10 km s{sup −1}. The ∼7 km s{sup −1} component represents the systemic velocity of cold gas surrounding the entire region, and causes heavy absorption in the {sup 12}CO spectra over the velocity range 6 ≲ V{sub LSR} ≲ 9 km s{sup −1}. The ∼5 and ∼10 km s{sup −1} components exhibit high {sup 12}CO temperature (≳40 K) and are found mostly around the H ii region, suggesting that these components are likely to be tracing dense gas interacting with the expanding shell around the H ii region. Based on the {sup 12}CO data, we identified 13 regions of high velocity gas, which we interpret as candidate outflow lobes. Using the HCO{sup +} data, we also identified six clumps and estimated their physical parameters. On the basis of the ASTE data and near-infrared images from 2MASS, we present an updated three-dimensional model of this region. In order to investigate molecular outflows in W40, the SiO (J = 1−0, v = 0) emission line and some other emission lines at 40 GHz were also observed with the 45 m telescope at the Nobeyama Radio Observatory, but they were not detected at the present sensitivity.

  3. Atomic-scale dynamics of a model glass-forming metallic liquid: Dynamical crossover, dynamical decoupling, and dynamical clustering

    SciTech Connect

    Jaiswal, Abhishek; Egami, Takeshi; Zhang, Yang

    2015-04-01

    The phase behavior of multi-component metallic liquids is exceedingly complex because of the convoluted many-body and many-elemental interactions. Herein, we present systematic studies of the dynamic aspects of such a model ternary metallic liquid Cu40Zr51Al9 using molecular dynamics simulation with embedded atom method. We observed a dynamical crossover from Arrhenius to super-Arrhenius behavior in the transport properties (diffusion coefficient, relaxation times, and shear viscosity) bordered at Tx ~1300K. Unlike in many molecular and macromolecular liquids, this crossover phenomenon occurs in the equilibrium liquid state well above the melting temperature of the system (Tm ~ 900K), and the crossover temperature is roughly twice of the glass-transition temperature (Tg). Below Tx, we found the elemental dynamics decoupled and the Stokes-Einstein relation broke down, indicating the onset of heterogeneous spatially correlated dynamics in the system mediated by dynamic communications among local configurational excitations. To directly characterize and visualize the correlated dynamics, we employed a non-parametric, unsupervised machine learning technique and identified dynamical clusters of atoms with similar atomic mobility. The revealed average dynamical cluster size shows an accelerated increase below Tx and mimics the trend observed in other ensemble averaged quantities that are commonly used to quantify the spatially heterogeneous dynamics such as the non-Gaussian parameter and the four-point correlation function.

  4. A parsec-resolution simulation of the Antennae galaxies: formation of star clusters during the merger

    NASA Astrophysics Data System (ADS)

    Renaud, Florent; Bournaud, Frédéric; Duc, Pierre-Alain

    2015-01-01

    We present a hydrodynamical simulation of an Antennae-like galaxy merger at parsec resolution, including a multicomponent model for stellar feedback and reaching numerical convergence in the global star formation rate for the first time. We analyse the properties of the dense stellar objects formed during the different stages of the interaction. Each galactic encounter triggers a starburst activity, but the varying physical conditions change the triggering mechanism of each starburst. During the first two pericentre passages, the starburst is spatially extended and forms many star clusters. However, the starburst associated with the third, final passage is more centrally concentrated: stars form almost exclusively in the galactic nucleus and no new star cluster is formed. The maximum mass of stars clusters in this merger is more than 30 times higher than those in a simulation of an isolated Milky Way-like galaxy. Antennae-like mergers are therefore a formation channel of young massive clusters possibly leading to globular clusters. Monitoring the evolution of a few clusters reveals the diversity of formation scenarios including the gathering and merger of gas clumps, the monolithic formation and the hierarchical formation in sub-structures inside a single cloud. Two stellar objects formed in the simulation yield the same properties as ultracompact dwarf galaxies. They share the same formation scenario than the most massive clusters, but have a larger radius either since birth, or get it after a violent interaction with the galactic centre. The diversity of environments across space and time in a galaxy merger can account for the diversity of the stellar objects formed, both in terms of mass and size.

  5. How Escherichia coli lands and forms cell clusters on a surface: a new role of surface topography

    PubMed Central

    Gu, Huan; Chen, Aaron; Song, Xinran; Brasch, Megan E.; Henderson, James H.; Ren, Dacheng

    2016-01-01

    Bacterial response to surface topography during biofilm formation was studied using 5 μm tall line patterns of poly (dimethylsiloxane) (PDMS). Escherichia coli cells attached on top of protruding line patterns were found to align more perpendicularly to the orientation of line patterns when the pattern narrowed. Consistently, cell cluster formation per unit area on 5 μm wide line patterns was reduced by 14-fold compared to flat PDMS. Contrasting the reduced colony formation, cells attached on narrow patterns were longer and had higher transcriptional activities, suggesting that such unfavorable topography may present a stress to attached cells. Results of mutant studies indicate that flagellar motility is involved in the observed preference in cell orientation on narrow patterns, which was corroborated by the changes in cell rotation pattern before settling on different surface topographies. These findings led to a set of new design principles for creating antifouling topographies, which was validated using 10 μm tall hexagonal patterns. PMID:27412365

  6. How Escherichia coli lands and forms cell clusters on a surface: a new role of surface topography.

    PubMed

    Gu, Huan; Chen, Aaron; Song, Xinran; Brasch, Megan E; Henderson, James H; Ren, Dacheng

    2016-01-01

    Bacterial response to surface topography during biofilm formation was studied using 5 μm tall line patterns of poly (dimethylsiloxane) (PDMS). Escherichia coli cells attached on top of protruding line patterns were found to align more perpendicularly to the orientation of line patterns when the pattern narrowed. Consistently, cell cluster formation per unit area on 5 μm wide line patterns was reduced by 14-fold compared to flat PDMS. Contrasting the reduced colony formation, cells attached on narrow patterns were longer and had higher transcriptional activities, suggesting that such unfavorable topography may present a stress to attached cells. Results of mutant studies indicate that flagellar motility is involved in the observed preference in cell orientation on narrow patterns, which was corroborated by the changes in cell rotation pattern before settling on different surface topographies. These findings led to a set of new design principles for creating antifouling topographies, which was validated using 10 μm tall hexagonal patterns. PMID:27412365

  7. Detection of a dense clump in a filament interacting with W51e2

    NASA Astrophysics Data System (ADS)

    Mookerjea, B.; Vastel, C.; Hassel, G. E.; Gerin, M.; Pety, J.; Goldsmith, P. F.; Black, J. H.; Giesen, T.; Harrison, T.; Persson, C. M.; Stutzki, J.

    2014-06-01

    In the framework of the Herschel/PRISMAS guaranteed time key program, the line of sight to the distant ultracompact H ii region W51e2 has been observed using several selected molecular species. Most of the detected absorption features are not associated with the background high-mass star-forming region and probe the diffuse matter along the line of sight. We present here the detection of an additional narrow absorption feature at ~70 km s-1 in the observed spectra of HDO, NH3 and C3. The 70 km s-1 feature is not uniquely identifiable with the dynamic components (the main cloud and the large-scale foreground filament) so-far identified toward this region. The narrow absorption feature is similar to the one found toward low-mass protostars, which is characteristic of the presence of a cold external envelope. The far-infrared spectroscopic data were combined with existing ground-based observations of 12CO, 13CO, CCH, CN, and C3H2 to characterize the 70 km s-1 component. Using a non-LTE analysis of multiple transitions of NH3 and CN, we estimated the density (n(H2) ~ (1-5) × 105 cm-3) and temperature (10-30 K) for this narrow feature. We used a gas-grain warm-up based chemical model with physical parameters derived from the NH3 data to explain the observed abundances of the different chemical species. We propose that the 70 km s-1 narrow feature arises in a dense and cold clump that probably undergoes collapse to form a low-mass protostar, formed on the trailing side of the high-velocity filament, which is thought to be interacting with the W51 main cloud. While the fortuitous coincidence of the dense clump along the line of sight with the continuum-bright W51e2 compact H ii region has contributed to its nondetection in the continuum images, this same attribute makes it an appropriate source for absorption studies and in particular for ice studies of star-forming regions. Based on data acquired with Herschel and IRAM observatories. Herschel is an ESA space observatory

  8. Mutational analysis of the [4Fe-4S]-cluster converting iron regulatory factor from its RNA-binding form to cytoplasmic aconitase.

    PubMed Central

    Hirling, H; Henderson, B R; Kühn, L C

    1994-01-01

    The control of cellular iron homeostasis involves the coordinate post-transcriptional regulation of ferritin mRNA translation and transferring receptor mRNA stability. These regulatory events are mediated by a soluble cytoplasmic protein, iron regulatory factor (IRF), which binds specifically to mRNA hairpin structures, termed iron-responsive elements (IREs), in the respective mRNAs. IRF is modulated by variations of cellular iron levels and exists as either an apo-protein or a [4Fe-4S]-cluster protein. The two conformations show distinct, mutually exclusive functions. High-affinity IRE binding is observed with the apo-form induced by iron deprivation, but is lost under high iron conditions when IRF is converted to the [4Fe-4S]-cluster form which shows cytoplasmic aconitase activity. Moreover, IRE binding is inactivated by the sulfhydryl-oxidizing agent diamide and fully activated in vitro by 2% 2-mercapto-ethanol, whereas alkylation of IRF inhibits IRE binding. In the present study, we analyzed each of the above features using site-directed mutants of recombinant human IRF. The results support the bifunctional nature of IRF. We conclude that cysteines 437, 503 and 506 anchor the [4Fe-4S]-cluster, and are essential to the aconitase activity. Mutagenesis changing any of the cysteines to serine leads to constitutive RNA binding in 0.02% 2-mercaptoethanol. Cysteine 437 is particularly critical to the RNA-protein interaction. The spontaneous or diamide-induced formation of disulfide bonds between cysteines 437 and 503 or 437 and 506, in apo-IRF, as well as its alkylation by N-ethylmaleimide, inhibit binding to the IRE.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:7508861

  9. Comparison of clumped isotope signatures of dolomite cements to fluid inclusion thermometry in the temperature range of 74-180 °C

    NASA Astrophysics Data System (ADS)

    Came, R. E.; Azmy, K.; Tripati, A. K.

    2015-12-01

    Widespread application of the novel clumped isotope paleothermometer (Δ47) using carbonate samples from shallow crustal settings has been hindered by a lack of knowledge about clumped isotope systematics in carbonate minerals forming at temperatures greater than 50ºC. Furthermore, the utility of the Δ47 proxy in the mineral dolomite is limited because calibration data for dolomites that formed at any temperature are lacking. Consequently, applications involving diagenetic temperatures have required extrapolations beyond the range of most Δ47-temperature calibrations. Here we compare Δ47 values in dolomite cements to temperatures independently determined using fluid-inclusion microthermometry, and compare this rock-based "calibration" to previously published laboratory-derived calibrations for synthetic carbonates. This combination of approaches yields results that are consistent with the shallow calibration slope that has been reported from some laboratory experiments.

  10. Clumped isotope composition of cold-water corals: A role for vital effects?

    NASA Astrophysics Data System (ADS)

    Spooner, Peter T.; Guo, Weifu; Robinson, Laura F.; Thiagarajan, Nivedita; Hendry, Katharine R.; Rosenheim, Brad E.; Leng, Melanie J.

    2016-04-01

    The carbonate clumped isotope thermometer is a promising tool for determining past ocean temperatures. It is based on the temperature dependence of rare isotopes 'clumping' into the same carbonate ion group in the carbonate mineral lattice. The extent of this clumping effect is independent of the isotope composition of the water from which carbonate precipitates, providing unique advantages over many other paleotemperature proxies. Existing calibrations of this thermometer in cold-water and warm-water corals suggest clumped isotope 'vital effects' are negligible in cold-water corals but may be significant in warm-water corals. Here, we test the calibration of the carbonate clumped isotope thermometer in cold-water corals with a recently collected and well characterised sample set spanning a range of coral genera (Balanophyllia, Caryophyllia, Dasmosmilia, Desmophyllum, Enallopsammia and Javania). The clumped isotope compositions (Δ47) of these corals exhibit systematic dependences on their growth temperatures, confirming the basis of the carbonate clumped isotope thermometer. However, some cold-water coral genera show Δ47 values that are higher than the expected equilibrium values by up to 0.05‰ (equivalent to underestimating temperature by ∼9 °C) similar to previous findings for some warm-water corals. This finding suggests that the vital effects affecting corals Δ47 are common to both warm- and cold-water corals. By comparison with models of the coral calcification process we suggest that the clumped isotope offsets in these genera are related to the kinetic isotope effects associated with CO2 hydration/hydroxylation reactions in the corals' calcifying fluid. Our findings complicate the use of the carbonate clumped isotope thermometer in corals, but suggest that species- or genus-specific calibrations could be useful for the future application of this paleotemperature proxy.

  11. An Infrared Through Radio Study of the Properties and Evolution of IRDC Clumps

    NASA Astrophysics Data System (ADS)

    Battersby, Cara; Bally, John; Jackson, James M.; Ginsburg, Adam; Shirley, Yancy L.; Schlingman, Wayne; Glenn, Jason

    2010-09-01

    We examine the physical properties and evolutionary stages of a sample of 17 clumps within 8 Infrared Dark Clouds (IRDCs) by combining existing infrared, millimeter, and radio data with new Bolocam Galactic Plane Survey (BGPS) 1.1 mm data, Very Large Array radio continuum data, and Heinrich Hertz Telescope dense gas (HCO+ and N2H+) spectroscopic data. We combine literature studies of star formation tracers and dust temperatures within IRDCs with our search for ultracompact (UC) H II regions to discuss a possible evolutionary sequence for IRDC clumps. In addition, we perform an analysis of mass tracers in IRDCs and find that 8 μm extinction masses and 1.1 mm BGPS masses are complementary mass tracers in IRDCs except for the most active clumps (notably those containing UC H II regions), for which both mass tracers suffer biases. We find that the measured virial masses in IRDC clumps are uniformly higher than the measured dust continuum masses on the scale of ~1 pc. We use 13CO, HCO+, and N2H+ to study the molecular gas properties of IRDCs and do not see any evidence of chemical differentiation between hot and cold clumps on the scale of ~1 pc. However, both HCO+ and N2H+ are brighter in active clumps, due to an increase in temperature and/or density. We report the identification of four UC H II regions embedded within IRDC clumps and find that UC H II regions are associated with bright (gsim1 Jy) 24 μm point sources, and that the brightest UC H II regions are associated with "diffuse red clumps" (an extended enhancement at 8 μm). The broad stages of the discussed evolutionary sequence (from a quiescent clump to an embedded H II region) are supported by literature dust temperature estimates; however, no sequential nature can be inferred between the individual star formation tracers.

  12. Formation and internal structure of superdense dark matter clumps and ultracompact minihaloes

    NASA Astrophysics Data System (ADS)

    Berezinsky, V. S.; Dokuchaev, V. I.; Eroshenko, Yu. N.

    2013-11-01

    We discuss the formation mechanisms and structure of the superdense dark matter clumps (SDMC) and ultracompact minihaloes (UCMH), outlining the differences between these types of DM objects. We define as SDMC the gravitationally bounded DM objects which have come into virial equilibrium at the radiation-dominated (RD) stage of the universe evolution. Such objects can be formed from the isocurvature (entropy) density perturbations or from the peaks in the spectrum of curvature (adiabatic) perturbation. The axion miniclusters (Kolb and Tkachev 1994) are the example of the former model. The system of central compact mass (e.g. in the form of SDMC or primordial black hole (PBH)) with the outer DM envelope formed in the process of secondary accretion we refer to as UCMH. Therefore, the SDMC can serve as the seed for the UCMH in some scenarios. Recently, the SDMC and UCMH were considered in the many works, and we try to systematize them here. We consider also the effect of asphericity of the initial density perturbation in the gravitational evolution, which decreases the SDMC amount and, as the result, suppresses the gamma-ray signal from DM annihilation.

  13. Vertical velocities from proper motions of red clump giants

    NASA Astrophysics Data System (ADS)

    López-Corredoira, M.; Abedi, H.; Garzón, F.; Figueras, F.

    2014-12-01

    Aims: We derive the vertical velocities of disk stars in the range of Galactocentric radii of R = 5 - 16 kpc within 2 kpc in height from the Galactic plane. This kinematic information is connected to dynamical aspects in the formation and evolution of the Milky Way, such as the passage of satellites and vertical resonance and determines whether the warp is a long-lived or a transient feature. Methods: We used the PPMXL survey, which contains the USNO-B1 proper motions catalog cross-correlated with the astrometry and near-infrared photometry of the 2MASS point source catalog. To improve the accuracy of the proper motions, the systematic shifts from zero were calculated by using the average proper motions of quasars in this PPMXL survey, and we applied the corresponding correction to the proper motions of the whole survey, which reduces the systematic error. From the color-magnitude diagram K versus (J - K) we selected the standard candles corresponding to red clump giants and used the information of their proper motions to build a map of the vertical motions of our Galaxy. We derived the kinematics of the warp both analytically and through a particle simulation to fit these data. Complementarily, we also carried out the same analysis with red clump giants spectroscopically selected with APOGEE data, and we predict the improvements in accuracy that will be reached with future Gaia data. Results: A simple model of warp with the height of the disk zw(R,φ) = γ(R - R⊙)sin(φ - φw) fits the vertical motions if dot {γ }/γ = -34±17 Gyr-1; the contribution to dot {γ } comes from the southern warp and is negligible in the north. If we assume this 2σ detection to be real, the period of this oscillation is shorter than 0.43 Gyr at 68.3% C.L. and shorter than 4.64 Gyr at 95.4% C.L., which excludes with high confidence the slow variations (periods longer than 5 Gyr) that correspond to long-lived features. Our particle simulation also indicates a probable abrupt decrease

  14. Clumped Isotopes Kinetic Effects: Insight from Synthetic Carbonate and its Implication for Speleothems

    NASA Astrophysics Data System (ADS)

    Affek, H. P.; Zaarur, S.; Kluge, T.; Saenger, C. P.; Douglas, P. M.

    2010-12-01

    Carbonate clumped isotopes is a new paleothermometer based on the relative abundance of 13C-18O bonds in CaCO3 (Δ47). Being an internal property of the carbonate lattice, it provides a temperature estimate that is independent of the isotopic composition of the water in which the carbonate was formed. As such it is most relevant on land where the complexity of water δ18O, associated with the hydrological cycle, makes temperature reconstruction difficult. A large variety of marine biogenic carbonates adheres to a common Δ47-T calibration relationship, developed through calcite synthesized at known temperatures. This relationship is therefore assumed to reflect equilibrium conditions. The application of clumped isotopes on land, however, has been elusive due to non-equilibrium, kinetic isotope effects, that are observed primarily in speleothems. These effects are associated with the degassing of CO2, and reflect the long time required for the solution to regain isotopic equilibrium. We observe that the time required for regaining equilibrium through isotope exchange between DIC and water is similar for Δ47 and δ18O; therefore Δ47 non-equilibrium also implies δ18O non-equilibrium in speleothems. We hypothesize that these kinetic isotope effects are related to speleothems formation occurring from a thin film of solution, where fast degassing lead to an isotopic offset in DIC, that is recorded in CaCO3 which is forming soon thereafter. To gain further insight we synthesized CaCO3 from a stagnant solution, leading to crystals forming at the water-air interface, the site of CO2 degassing, thus mimicking carbonate formation in thin films. The temperature dependence of Δ47 in these samples was significantly less steep than that observed in marine biogenic carbonates, consistent with a kinetic effect that offsets Δ47 to lower values, especially at low temperatures. The observed Δ47-T relationship, although not a direct calibration, is consistent with modern

  15. BLAST: CORRELATIONS IN THE COSMIC FAR-INFRARED BACKGROUND AT 250, 350, AND 500 mum REVEAL CLUSTERING OF STAR-FORMING GALAXIES

    SciTech Connect

    Viero, Marco P.; Martin, Peter G.; Netterfield, Calvin B.; Ade, Peter A. R.; Griffin, Matthew; Hargrave, Peter C.; Mauskopf, Philip; Moncelsi, Lorenzo; Pascale, Enzo; Bock, James J.; Chapin, Edward L.; Halpern, Mark; Marsden, Gaelen; Devlin, Mark J.; Klein, Jeff; Gundersen, Joshua O.; Hughes, David H.; MacTavish, Carrie J.; Negrello, Mattia; Olmi, Luca

    2009-12-20

    We detect correlations in the cosmic far-infrared background due to the clustering of star-forming galaxies in observations made with the Balloon-borne Large Aperture Submillimeter Telescope, at 250, 350, and 500 mum. We perform jackknife and other tests to confirm the reality of the signal. The measured correlations are well fitted by a power law over scales of 5'-25', with DELTAI/I = 15.1% +- 1.7%. We adopt a specific model for submillimeter sources in which the contribution to clustering comes from sources in the redshift ranges 1.3 <= z <= 2.2, 1.5 <= z <= 2.7, and 1.7 <= z <= 3.2, at 250, 350, and 500 mum, respectively. With these distributions, our measurement of the power spectrum, P(k{sub t}heta), corresponds to linear bias parameters, b = 3.8 +- 0.6, 3.9 +- 0.6, and 4.4 +- 0.7, respectively. We further interpret the results in terms of the halo model, and find that at the smaller scales, the simplest halo model fails to fit our results. One way to improve the fit is to increase the radius at which dark matter halos are artificially truncated in the model, which is equivalent to having some star-forming galaxies at z >= 1 located in the outskirts of groups and clusters. In the context of this model, we find a minimum halo mass required to host a galaxy is log(M{sub min}/M{sub sun}) = 11.5{sup +0.4}{sub -0.1}, and we derive effective biases b{sub eff} = 2.2 +- 0.2, 2.4 +- 0.2, and 2.6 +- 0.2, and effective masses log(M{sub eff}/M{sub odot})=12.9+-0.3, 12.8 +- 0.2, and 12.7 +- 0.2, at 250, 350 and 500 mum, corresponding to spatial correlation lengths of r{sub 0} = 4.9, 5.0, and 5.2+-0.7 h{sup -1}Mpc, respectively. Finally, we discuss implications for clustering measurement strategies with Herschel and Planck.

  16. The clumped isotopic record of Neoproterozoic carbonates, Sultanate of Oman

    NASA Astrophysics Data System (ADS)

    Bergmann, K. D.; Eiler, J. M.; Fischer, W. W.; Osburn, M. R.; Grotzinger, J. P.

    2011-12-01

    The Huqf Supergroup of the Sultanate of Oman records several important events in latest Precambrian time, including two glaciations in the Abu Mahara Group (ca. 725 - <645 Ma), the enigmatic Shuram carbon isotope excursion in the Nafun Group (ca. <645-547 Ma), and the Precambrian-Cambrian boundary in the Ara Group (ca. 547-540 Ma). This interval contains several extreme isotopic excursions, hypothesized to record perturbations of the surficial Earth carbon cycle or post-depositional diagenetic processes. Rigorous interpretation of these records requires a more thorough assessment of diagenetic processes. To better understand the significance and cause of these large amplitude isotopic excursions, we employed carbonate clumped isotope thermometry. This method allows us to estimate the absolute temperature of carbonate precipitation, including recrystallization, based on the temperature dependent abundance of carbonate ions containing both 13C and 18O. These estimates are accompanied by a measurement of carbonate δ18O, which in conjunction with temperature, can be used to calculate the oxygen isotopic composition of the fluid from which the carbonate precipitated. We analyzed stratigraphically constrained samples from a range of paleoenvironments with differing burial histories (1 - >10km maximum burial depth) to constrain the temperature and fluid composition of recrystallization. Clumped isotope temperatures from Huqf Supergroup samples range from 35-175°C. The isotopic composition of the fluid these rocks equilibrated with ranges from -3.7 to 15.7% VSMOW. This large range in temperature and fluid composition separates into distinct populations that differ systematically with independent constraints on petrography, stratigraphy and burial history. The data indicate the Abu Mahara, Nafun and Ara groups have unique diagenetic histories. In central Oman, the post-glacial Abu Mahara cap dolostone shows high temperature, rock buffered diagenesis (Tavg = 176°C; δ18

  17. Anion Recognition and Induced Self-Assembly of an α,γ-Cyclic Peptide To Form Spherical Clusters.

    PubMed

    Rodríguez-Vázquez, Nuria; Amorín, Manuel; Alfonso, Ignacio; Granja, Juan R

    2016-03-24

    A cyclic octapeptide composed of hydroxy-functionalized γ-amino acids folds in a "V-shaped" conformation that allows the selective recognition of anions such as chloride, nitrate, and carbonate. The process involves the simultaneous self-assembly of six peptide subunits and the recognition of four anions to form a tetrahedral structure, in which the anions are located at the corners of the resulting structure. Each anion is coordinated to three different peptides. The structure was fully characterized by several techniques, including NMR spectroscopy and X-ray diffraction, and the material was able to facilitate the transmembrane transport of chloride ions. PMID:26945782

  18. Cluster generator

    DOEpatents

    Donchev, Todor I.; Petrov, Ivan G.

    2011-05-31

    Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.

  19. [Comparison of three outpatient therapy forms for treatment of chronic low back pain-- findings of a multicentre, cluster randomized study].

    PubMed

    Kainz, B; Gülich, M; Engel, E-M; Jäckel, W H

    2006-04-01

    The AOK Baden-Württemberg health insurance fund initiated a study on the outpatient rehabilitation of patients with chronic low back pain, aimed at improving the treatment concept for its insurees with chronic low back pain (START). This model project was scientifically guided by the Hochrhein-Institute in Bad Säckingen. The paper compares the effectiveness of Enhanced Outpatient Physiotherapy (Erweiterte Ambulante Physiotherapie, EAP), Outpatient Rehabilitation (Ambulante Rehabilitation, AR) and Medical Training Therapy (Medizinische Trainingstherapie, MTT) in patients with low back pain. In seven regions in Baden-Württemberg, one of these three intervention forms was provided to the patients. A total of 1,274 patients were included in the study. The AOK Baden-Württemberg patients receiving treatment in one of the three intervention forms were seriously restricted in both the physical dimension of their health status and in their physical mobility in everyday life and at the workplace. Besides, they frequently reported considerable psychosocial strain. The three interventions led to significant and relevant decreases in pain intensity and to an improved health-related quality of life. There were no significant differences between the various treatments in terms of effectiveness. The patients shared an equally high satisfaction with the treatment received. In MTT, the total therapy length of 15 weeks was by far longer than in AR and EAP (about 5 and 8 weeks). Unlike AR and, in parts, EAP, patients may continue to work while participating in MTT. Therefore an immediate therapy start within a week was more likely possible in MTT (59 %) than in AR (10 %) or EAP (23 %). In evaluating the results a number of restrictions have to be considered. Nevertheless, based on our research findings, the following can be concluded: MTT is a suitable therapy concept in patients with low back pain characterized by a rapid start and-- compared to the other two concepts-- by lower

  20. Data Clustering

    NASA Astrophysics Data System (ADS)

    Wagstaff, Kiri L.

    2012-03-01

    particular application involves considerations of the kind of data being analyzed, algorithm runtime efficiency, and how much prior knowledge is available about the problem domain, which can dictate the nature of clusters sought. Fundamentally, the clustering method and its representations of clusters carries with it a definition of what a cluster is, and it is important that this be aligned with the analysis goals for the problem at hand. In this chapter, I emphasize this point by identifying for each algorithm the cluster representation as a model, m_j , even for algorithms that are not typically thought of as creating a “model.” This chapter surveys a basic collection of clustering methods useful to any practitioner who is interested in applying clustering to a new data set. The algorithms include k-means (Section 25.2), EM (Section 25.3), agglomerative (Section 25.4), and spectral (Section 25.5) clustering, with side mentions of variants such as kernel k-means and divisive clustering. The chapter also discusses each algorithm’s strengths and limitations and provides pointers to additional in-depth reading for each subject. Section 25.6 discusses methods for incorporating domain knowledge into the clustering process. This chapter concludes with a brief survey of interesting applications of clustering methods to astronomy data (Section 25.7). The chapter begins with k-means because it is both generally accessible and so widely used that understanding it can be considered a necessary prerequisite for further work in the field. EM can be viewed as a more sophisticated version of k-means that uses a generative model for each cluster and probabilistic item assignments. Agglomerative clustering is the most basic form of hierarchical clustering and provides a basis for further exploration of algorithms in that vein. Spectral clustering permits a departure from feature-vector-based clustering and can operate on data sets instead represented as affinity, or similarity

  1. Internal dynamics of the galaxy cluster Abell 545. The ideal case where to study the simultaneous formation of a galaxy system and its brightest galaxy

    NASA Astrophysics Data System (ADS)

    Barrena, R.; Girardi, M.; Boschin, W.; de Grandi, S.; Eckert, D.; Rossetti, M.

    2011-05-01

    the CBCG. Both the star pile and the CBCG are at rest in the cluster rest frame. The elongation of the star pile and its relative position with respect to the CBCG indicate the same direction pointed out by the NE clump. Conclusions: The emerging picture of Abell 545 is that of a massive, M(R < 1.6 h70-1 Mpc) = (1.1-1.8) × 1015 h70-1 M⊙, very complex cluster with merging occurring along two directions. Abell 545 gives another proof in the favor of the connection between cluster merger and extended, diffuse radio emission. The star pile, likely due to the process of a brightest galaxy forming in the cluster core, is related to the accretion along the NE direction. Abell 545 represents a textbook cluster where to study the simultaneous formation of a galaxy system and its brightest galaxy.

  2. A MALT90 study of the chemical properties of massive clumps and filaments of infrared dark clouds

    NASA Astrophysics Data System (ADS)

    Miettinen, O.

    2014-02-01

    Context. Infrared dark clouds (IRDCs) provide a useful testbed in which to investigate the genuine initial conditions and early stages of massive-star formation. Aims: We attempt to characterise the chemical properties of a sample of 35 massive clumps of IRDCs through multi-molecular line observations. We also search for possible evolutionary trends among the derived chemical parameters. Methods: The clumps are studied using the MALT90 (Millimetre Astronomy Legacy Team 90 GHz) line survey data obtained with the Mopra 22 m telescope. The survey covers 16 different transitions near 90 GHz. The spectral-line data are used in concert with our previous LABOCA (Large APEX BOlometer CAmera) 870 μm dust emission data. Results: Eleven MALT90 transitions are detected towards the clumps at least at the 3σ level. Most of the detected species (SiO, C2H, HNCO, HCN, HCO+, HNC, HC3N, and N2H+) show spatially extended emission towards many of the sources. Most of the fractional abundances of the molecules with respect to H2 are found to be comparable to those determined in other recent similar studies of IRDC clumps. We found that the abundances of SiO, HNCO, and HCO+ are higher in IR-bright clumps than in IR-dark sources, reflecting a possible evolutionary trend. A hint of this trend is also seen for HNC and HC3N. An opposite trend is seen for the C2H and N2H+ abundances. Moreover, a positive correlation is found between the abundances of HCO+ and HNC, and between those of HNC and HCN. The HCN and HNC abundances also appear to increase as a function of the N2H+ abundance. The HNC/HCN and N2H+/HNC abundance ratios are derived to be near unity on average, while that of HC3N/HCN is ~10%. The N2H+/HNC ratio appears to increase as the clump evolves, while the HNC/HCO+ ratio shows the opposite behaviour. Conclusions: The detected SiO emission is probably caused by shocks driven by outflows in most cases, although shocks resulting from the cloud formation process could also play a role

  3. Clumped-Isotope Thermometry of Carbonate Veins from the SAFOD Borehole

    NASA Astrophysics Data System (ADS)

    Luetkemeyer, P. B.; Kirschner, D. L.; Huntington, K. W.

    2014-12-01

    We present clumped-isotope and stable-isotope data from carbonate veins obtained from the San Andreas Fault Observatory at Depth (SAFOD) borehole. A number of models proposed to explain the apparent weakness of the San Andreas Fault (SAF) require fluids to be present in the fault zone. However, little is known about the presence, source(s), temperature, and migration pathways of these fluids. We investigate spatial trends in isotopic composition of veins within meters of two actively deforming strands of the SAF - the southern deformation zone (SDZ) and central deformation zone (CDZ). Two populations of veins are present based on the isotopic data. The first group of veins with calcite δ18O values < +15 ‰ (VSMOW) and δ 13C values > +1 ‰ (VPDB) are present in foliated siltstone and shale cataclasites from 3186 to 3194 meters MD and in sheared siltstones and sandstones of the CDZ from 3297 to 3301 meters MD. Clumped-isotope analyses for a subset of samples from this vein set indicate temperatures between 72 and 99 °C and calculated pore fluid δ18O values of -3.4 to +0.1‰ (VSMOW). A second group of veins with δ18O values between +17 and +25 ‰ (VSMOW) and δ13C values between +1 and -18 (VPDB) is present in the serpentinite-bearing SDZ from 3196 to 3197 meters MD and in siltstones from 3302 to 3310 meters MD. Veins in the SDZ record temperatures from 80 to 118 °C and calculated pore fluid δ18O values of -0.3 to +3.1‰ (VSMOW). Both vein populations record temperatures less than or within uncertainty of present-day borehole temperature of ca. 120 °C. We propose the first group of veins formed by precipitating from fluids charged with soil CO2 or biogenic methane that flowed along preexisting diagenetic fracture networks or fractures formed early in the evolution of the SAF. The second group of veins precipitated from fluids charged with thermogenic methane near present-day ambient temperatures and localized in a ~50 meter wide zone of damage along the

  4. Red clump stars from the LAMOST data I: identification and distance

    NASA Astrophysics Data System (ADS)

    Wan, Jun-Chen; Liu, Chao; Deng, Li-Cai; Cui, Wen-Yuan; Zhang, Yong; Hou, Yong-Hui; Yang, Ming; Wu, Yue

    2015-08-01

    We present a sample of about 120 000 red clump candidates selected from the LAMOST DR2 catalog based on the empirical distribution model in the effective temperature vs. surface gravity plane. Although, in general, red clump stars are considered as standard candles, they do not exactly stay in a narrow range of absolute magnitude, but may have a range of more than one magnitude depending on their initial mass. Consequently, conventional oversimplified distance estimations with the assumption of a fixed luminosity may lead to systematic bias related to the initial mass or age, which can potentially affect the study of the evolution of the Galaxy with red clump stars. We therefore employ an isochrone-based method to estimate the absolute magnitude of red clump stars from their observed surface gravities, effective temperatures and metallicities. We verify that the estimation removes the systematics well and provides initial mass/age estimates that are independent of distance with accuracy better than 10%.

  5. The effect of clumped population structure on the variability of spreading dynamics.

    PubMed

    Black, Andrew J; House, Thomas; Keeling, Matt J; Ross, Joshua V

    2014-10-21

    Processes that spread through local contact, including outbreaks of infectious diseases, are inherently noisy, and are frequently observed to be far noisier than predicted by standard stochastic models that assume homogeneous mixing. One way to reproduce the observed levels of noise is to introduce significant individual-level heterogeneity with respect to infection processes, such that some individuals are expected to generate more secondary cases than others. Here we consider a population where individuals can be naturally aggregated into clumps (subpopulations) with stronger interaction within clumps than between them. This clumped structure induces significant increases in the noisiness of a spreading process, such as the transmission of infection, despite complete homogeneity at the individual level. Given the ubiquity of such clumped aggregations (such as homes, schools and workplaces for humans or farms for livestock) we suggest this as a plausible explanation for noisiness of many epidemic time series. PMID:24911778

  6. Polygalacturonase-Inhibiting Protein Interacts with Pectin through a Binding Site Formed by Four Clustered Residues of Arginine and Lysine1

    PubMed Central

    Spadoni, Sara; Zabotina, Olga; Di Matteo, Adele; Mikkelsen, Jørn Dalgaard; Cervone, Felice; De Lorenzo, Giulia; Mattei, Benedetta; Bellincampi, Daniela

    2006-01-01

    Polygalacturonase-inhibiting protein (PGIP) is a cell wall protein that inhibits fungal polygalacturonases (PGs) and retards the invasion of plant tissues by phytopathogenic fungi. Here, we report the interaction of two PGIP isoforms from Phaseolus vulgaris (PvPGIP1 and PvPGIP2) with both polygalacturonic acid and cell wall fractions containing uronic acids. We identify in the three-dimensional structure of PvPGIP2 a motif of four clustered arginine and lysine residues (R183, R206, K230, and R252) responsible for this binding. The four residues were mutated and the protein variants were expressed in Pichia pastoris. The ability of both wild-type and mutated proteins to bind pectins was investigated by affinity chromatography. Single mutations impaired the binding and double mutations abolished the interaction, thus indicating that the four clustered residues form the pectin-binding site. Remarkably, the binding of PGIP to pectin is displaced in vitro by PGs, suggesting that PGIP interacts with pectin and PGs through overlapping although not identical regions. The specific interaction of PGIP with polygalacturonic acid may be strategic to protect pectins from the degrading activity of fungal PGs. PMID:16648220

  7. A free-form mass model of the Hubble Frontier Fields cluster AS1063 (RXC J2248.7-4431) with over one hundred constraints

    NASA Astrophysics Data System (ADS)

    Diego, Jose M.; Broadhurst, Tom; Wong, Jess; Silk, Joseph; Lim, Jeremy; Zheng, Wei; Lam, Daniel; Ford, Holland

    2016-07-01

    We derive a free-form mass distribution for the massive cluster AS1063 (z = 0.348) using the completed optical imaging from the Hubble Frontier Fields programmme. Based on a subset of 11 multiply lensed systems with spectroscopic redshift, we produce a lens model that is accurate enough to secure new multiply lensed systems, totalling over a 100 arclets, and to estimate their redshifts geometrically. Consistency is found between this precise model and that obtained using only the subset of lensed sources with spectroscopically measured redshifts. Although a relatively large elongation of the mass distribution is apparent relative to the X-ray map, no significant offset is found between the centroid of our mass distribution and that of the X-ray emission map, suggesting a relatively relaxed state for this cluster. For the well-resolved lensed images, we provide detailed model comparisons to illustrate the precision of our model and hence the reliability of our de-lensed sources. A clear linear structure is associated with one such source extending 23 kpc in length, that could be an example of jet-induced star formation, at redshift z ≈ 3.1.

  8. IONIZED GAS KINEMATICS AT HIGH RESOLUTION. V. [Ne ii], MULTIPLE CLUSTERS, HIGH EFFICIENCY STAR FORMATION, AND BLUE FLOWS IN HE 2–10

    SciTech Connect

    Beck, Sara; Turner, Jean; Lacy, John; Greathouse, Thomas

    2015-11-20

    We measured the 12.8 μm [Ne ii] line in the dwarf starburst galaxy He 2–10 with the high-resolution spectrometer TEXES on the NASA IRTF. The data cube has a diffraction-limited spatial resolution of ∼1″ and a total velocity resolution, including thermal broadening, of ∼5 km s{sup −1}. This makes it possible to compare the kinematics of individual star-forming clumps and molecular clouds in the three dimensions of space and velocity, and allows us to determine star formation efficiencies. The kinematics of the ionized gas confirm that the starburst contains multiple dense clusters. From the M/R of the clusters and the ≃30%–40% star formation efficiencies, the clusters are likely to be bound and long lived, like globulars. Non-gravitational features in the line profiles show how the ionized gas flows through the ambient molecular material, as well as a narrow velocity feature, which we identify with the interface of the H ii region and a cold dense clump. These data offer an unprecedented view of the interaction of embedded H ii regions with their environment.

  9. A STARBURSTING PROTO-CLUSTER IN MAKING ASSOCIATED WITH A RADIO GALAXY AT z = 2.53 DISCOVERED BY H{alpha} IMAGING

    SciTech Connect

    Hayashi, Masao; Kodama, Tadayuki; Tadaki, Ken-ichi; Koyama, Yusei; Tanaka, Ichi

    2012-09-20

    We report a discovery of a proto-cluster in vigorous assembly and hosting strong star-forming activities, associated with a radio galaxy USS 1558-003 at z = 2.53, as traced by wide-field narrow-band H{alpha} imaging with MOIRCS on the Subaru Telescope. We find 68 H{alpha} emitters with dust-uncorrected star formation rates (SFRs) down to 8.6 M{sub Sun} yr{sup -1}. Their spatial distribution indicates that there are three prominent clumps of H{alpha} emitters: one surrounding the radio galaxy, the second located at {approx}1.5 Mpc away to the southwest, and the third located between the two. These contiguous three systems are very likely to merge together in the near future and may grow to a single more massive cluster at a later time. While most H{alpha} emitters reside in the 'blue cloud' on the color-magnitude diagram, some emitters have very red colors with J - K{sub s} > 1.38(AB). Interestingly, such red H{alpha} emitters are located toward the faint end of the red sequence, and they tend to be located in high density clumps. We do not see any statistically significant difference in the distributions of individual SFRs or stellar masses of the H{alpha} emitters between the dense clumps and the other regions, suggesting that this is one of the notable sites where the progenitors of massive galaxies in the present-day clusters were in their vigorous formation phase. Finally, we find that H{alpha} emission of the radio galaxy is fairly extended spatially over {approx}4.''5. However, it is not as widespread as its Ly{alpha} halo, meaning that the Ly{alpha} emission is indeed severely extended by resonant scattering.

  10. Similarity analysis of soils formed on limestone/marl-alluvial parent material and different topography using some physical and chemical properties via cluster and multidimensional scaling methods.

    PubMed

    Sağlam, Mustafa; Dengiz, Orhan

    2015-03-01

    The aim of this study is to analyze the similarity of soils formed on limestone/marl alluvial parent material and different topography using some physical and chemical properties via cluster analysis (CA) and multidimensional scaling analysis (MDSA). Physical and chemical soil properties included in this study are texture, CaCO3, organic matter, pH, electrical conductivity, cation exchange capacity, and available water content. The study was carried out in Çetinkaya region located on Bafra Deltaic Plain. The study area has two main physiographic units. The first one is the flat or gently slope alluvial lands (0-2 %), and the other one involves hills with slopes ranging from middle to steep (3-20 %). The soil in the study area is mainly classified as entisol, inceptisol and vertisol. According to the CA results, while C horizons of the soils formed on alluvial deposits (typic ustifluvent and typic ustipsamment) bear similarity, Ap horizons of the soils formed on lime/marl parent material (vertic ustorhent, vertic calciustept, and calci haplustert) appear in the same group. Additionally, in order to support CA, MDSA was performed. Significant correlations were observed between the results of both analyses.

  11. Molecular gas and a new young stellar cluster in the far outer Galaxy

    NASA Astrophysics Data System (ADS)

    Yun, J. L.; Elia, D.; Palmeirim, P. M.; Gomes, J. I.; Martins, A. M.

    2009-06-01

    Aims: We investigate the star-formation ocurring in the region towards IRAS 07527-3446 in the molecular cloud [MAB97]250.63-3.63, in the far outer Galaxy. We report the discovery of a new young stellar cluster, and describe its properties and those of its parent molecular cloud. Methods: Near-infrared JHKS images were obtained with VLT/ISAAC, and millimetre line CO spectra were obtained with the SEST telescope. VLA archive date were also used. Results: The cloud and cluster are located at a distance of 10.3 kpc and a Galactocentric distance of 15.4 kpc, in the far outer Galaxy. Morphologically, IRAS 07527-3446 appears as a young embedded cluster of a few hundred stars seen towards the position of the IRAS source, extending for about 2-4 pc and exhibiting sub-clustering. The cluster contains low and intermediate-mass young reddened stars, a large fraction having cleared the inner regions of their circumstellar discs responsible for (H-K_S) colour excess. The observations are compatible with a ≤5 Myr cluster with variable spatial extinction of between A_V=5 and A_V=11. Decomposition of CO emission in clumps, reveals a clump clearly associated with the cluster position, of mass 3.3 × 103 M_⊙. Estimates of the slopes of the K_S-band luminosity function and of the star-formation efficiency yield values similar to those seen in nearby star-formation sites. These findings reinforce previous results that the distant outer Galaxy continues to be active in the production of new and rich stellar clusters, with the physical conditions required for the formation of rich clusters continuing to be met in the very distant environment of the outer Galactic disc. Based on observations collected at the ESO 8.2-m VLT-UT1 Antu telescope (program 66.C-0015A). Table 2 is only available in electonic form at http://www.aanda.org

  12. Clumped isotope thermometry of carbonatites as an indicator of diagenetic alteration

    NASA Astrophysics Data System (ADS)

    Dennis, Kate J.; Schrag, Daniel P.

    2010-07-01

    We measure the clumped isotopic signature of carbonatites to assess the integrity of the clumped isotope paleothermometer over long timescales (10 7-10 9 years) and the susceptibility of the proxy to closed system re-equilibration of isotopes during burial diagenesis. We find pristine carbonatites that have primary oxygen isotope signatures, along with a Carrara marble standard, do not record clumped isotope signatures lighter than 0.31‰ suggesting atoms of carbon and oxygen freely exchange within the carbonate lattice at temperatures above 250-300 °C. There is no systematic trend in the clumped isotope signature of pristine carbonatites with age, although partial re-equilibration to lower temperatures can occur if a carbonatite has been exposed to burial temperatures for long periods of time. We conclude that the solid-state re-ordering of carbon and oxygen atoms is sufficiently slow to enable the use of clumped isotope paleothermometry on timescales of 10 8 years, but that diagenetic resetting can still occur, even without bulk recrystallization. In addition to the carbonatite data, an inorganic calibration of the clumped isotope paleothermometer for low temperature carbonates (7.5-77 °C) is presented and highlights the need for further inter-lab standardization.

  13. Isolation of dihydrocurcuminoids from cell clumps and their distribution in various parts of turmeric (Curcuma longa).

    PubMed

    Kita, Tomoko; Imai, Shinsuke; Sawada, Hiroshi; Seto, Haruo

    2009-05-01

    In addition to well-known curcuminoids, three colored metabolites were isolated from cultured cell clumps that had been induced from buds on turmeric rhizomes. The isolated compounds were identified as dihydro derivatives of curcuminoids, dihydrocurcumin (dihydroCurc), dihydrodesmethoxycurcumin-a (dihydroDMC-a), and dihydrobisdesmethoxycurcumin (dihydroBDMC). The cell clumps did not contain dihydroDMC-b, an isomer of dihydroDMC-a. A comparison of the distribution profiles of curcuminoids and dihydrocurcuminoids in the cell clumps with those in the rhizomes, leaves, and roots revealed the following differences: Unlike rhizomes, the cell clumps, leaves, and roots contained dihydrocurcuminoids as the major colored constituents. Whereas dimethoxy compounds, curcumin and dihydrocurcumin, respectively, were most abundant in the rhizomes and leaves, one of the monomethoxy derivatives, dihydroDMC-a, was found most abundantly in the cell clumps and roots. While both dihydroDMC-a and b were detected in the rhizomes, dihydroDMC-b was not detectable in the cell clumps, leaves, or roots. The occurrence of only one of the two possible isomers of dihydroDMC suggests biosynthetic formation of dihydrocurcuminoids in turmeric.

  14. Formation and evolution of magnetised filaments in wind-swept turbulent clumps

    NASA Astrophysics Data System (ADS)

    Banda-Barragan, Wladimir Eduardo; Federrath, Christoph; Crocker, Roland M.; Bicknell, Geoffrey Vincent; Parkin, Elliot Ross

    2015-08-01

    Using high-resolution three-dimensional simulations, we examine the formation and evolution of filamentary structures arising from magnetohydrodynamic interactions between supersonic winds and turbulent clumps in the interstellar medium. Previous numerical studies assumed homogenous density profiles, null velocity fields, and uniformly distributed magnetic fields as the initial conditions for interstellar clumps. Here, we have, for the first time, incorporated fractal clumps with log-normal density distributions, random velocity fields and turbulent magnetic fields (superimposed on top of a uniform background field). Disruptive processes, instigated by dynamical instabilities and akin to those observed in simulations with uniform media, lead to stripping of clump material and the subsequent formation of filamentary tails. The evolution of filaments in uniform and turbulent models is, however, radically different as evidenced by comparisons of global quantities in both scenarios. We show, for example, that turbulent clumps produce tails with higher velocity dispersions, increased gas mixing, greater kinetic energy, and lower plasma beta than their uniform counterparts. We attribute the observed differences to: 1) the turbulence-driven enhanced growth of dynamical instabilities (e.g. Kelvin-Helmholtz and Rayleigh-Taylor instabilities) at fluid interfaces, and 2) the localised amplification of magnetic fields caused by the stretching of field lines trapped in the numerous surface deformations of fractal clumps. We briefly discuss the implications of this work to the physics of the optical filaments observed in the starburst galaxy M82.

  15. Kinetic isotope effect in CO2 degassing: Insight from clumped and oxygen isotopes in laboratory precipitation experiments

    NASA Astrophysics Data System (ADS)

    Affek, Hagit P.; Zaarur, Shikma

    2014-10-01

    Laboratory precipitation experiments provide the basis for the common calibration of both the oxygen isotope and the clumped isotope thermometers. These focus on CaCO3 crystals that form deep in the bulk of the solution, often by the bubbling of N2(g) through a saturated Ca(HCO3)2 solution, following the classic experiments on McCrea (1950). Here we examine oxygen and clumped isotopes in CaCO3 that was precipitated at the surface of a solution that undergoes passive CO2 degassing. This CaCO3 is affected by enhanced disequilibrium that is associated with degassing, and has therefore higher δ18O and lower Δ47 values than those of the accepted thermometer calibrations. These offsets from the common thermometers calibrations increase with decreasing temperature for Δ47 but decrease with decreasing temperature for δ18O. The Δ47-δ18O co-variance is therefore strongly temperature dependent, in contrast to theoretical predictions. This suggests an influence of additional fractionation in fast growing minerals, between DIC and calcite, that affects δ18O and counteracts some of the degassing related enrichment. This effect seems not to influence Δ47. The physical setup of CaCO3 minerals growing at the solution surface is analogous to the degassing and precipitation processes that occur in stalagmites, such that these laboratory experiments may help shed light on the isotopic disequilibrium that is observed in speleothems.

  16. Variations in soil carbonate formation and seasonal bias over >4 km of relief in the western Andes (30°S) revealed by clumped isotope thermometry

    NASA Astrophysics Data System (ADS)

    Burgener, Landon; Huntington, Katharine W.; Hoke, Gregory D.; Schauer, Andrew; Ringham, Mallory C.; Latorre, Claudio; Díaz, Francisca P.

    2016-05-01

    Carbonate clumped isotope thermometry provides a new method for investigating long-standing questions regarding seasonal biases in soil carbonate formation and the relationship between soil carbonate formation temperatures recorded by clumped isotopes (T (Δ47)) and surface temperatures. We address these questions by comparing C, O, and clumped isotope data from Holocene soil carbonates to meteorological and in situ soil monitoring data along a 170 km transect with >4 km of relief in Chile (30°S). This arid transect experiences a winter wet season, and a >20 °C range in mean annual air temperature. We test the hypothesis that, regardless of soil moisture conditions, soil carbonates from arid regions record warm season biases and form in isotopic equilibrium with soil water and soil CO2. Below 3200 m, precipitation falls as rain and soil carbonate T (Δ47) values at depths >40 cm resemble summer soil temperatures. Above 3200 m, precipitation falls as snow and T (Δ47) values resemble mean annual soil temperatures. Soil carbonates from the highest site yield anomalous δ18 O, δ13 C, and T (Δ47) values indicative of kinetic isotope effects consistent with cryogenic carbonate formation. Our findings (1) demonstrate that soil carbonate T (Δ47) values from shallow (<40 cm) depths can be affected by short-term temperature changes following precipitation events; (2) suggest that only the largest precipitation events affect soil moisture at depths >40 cm; (3) highlight the role of the soil moisture regime in modulating the timing of soil carbonate formation, which affects the resulting carbonate T (Δ47) values; and (4) show that soil carbonates from high elevation or high latitude sites may form under non-equilibrium conditions. These findings underscore the importance of understanding past soil moisture conditions when attempting to reconstruct paleotemperatures using carbonate clumped isotope thermometry.

  17. Kinematics of Tycho-2 red giant clump stars

    NASA Astrophysics Data System (ADS)

    Bobylev, V. V.; Stepanishchev, A. S.; Bajkova, A. T.; Gontcharov, G. A.

    2009-12-01

    Based on the Ogorodnikov-Milne model, we analyze the proper motions of 95,633 red giant clump (RGC) stars from the Tycho-2 Catalogue. The following Oort constants have been found: A = 15.9 ± 0.2 km s-1 kpc-1 and B = -12.0±0.2 km s-1 kpc-1. Using 3632 RGC stars with known proper motions, radial velocities, and photometric distances, we show that, apart from the star centroid velocity components relative to the Sun, only the model parameters that describe the stellar motions in the XY plane differ significantly from zero. We have studied the contraction (a negative K effect) of the system of RGC stars as a function of their heliocentric distance and elevation above the Galactic plane. For a sample of distant (500-1000 pc) RGC stars located near the Galactic plane (|z| < 200 pc) with an average distance of d = 0.7 kpc, the contraction velocity is shown to be Kd = -3.5 ±0.9 km s-1; a noticeable vertex deviation, lxy = 9.1° ± 0.5°, is also observed for them. For stars located well above the Galactic plane (|z| ≥200 pc), these effects are less pronounced, Kd = -1.7 ± 0.5 km s-1 and lxy = 4.9° ± 0.6°. Using RGC stars, we have found a rotation around the Galactic X axis directed toward the Galactic center with an angular velocity of -2.5 ± 0.3 km s-1 kpc-1, which we associate with the warp of the Galactic stellar-gaseous disk.

  18. The Origin of OB Clusters: From 10 pc to 0.1 pc

    NASA Astrophysics Data System (ADS)

    Liu, Hauyu Baobab; Quintana-Lacaci, Guillermo; Wang, Ke; Ho, Paul T. P.; Li, Zhi-Yun; Zhang, Qizhou; Zhang, Zhi-Yu

    2012-01-01

    We observe the 1.2 mm continuum emission around the OB cluster-forming region G10.6-0.4, using the MAMBO-2 bolometer array of the IRAM 30 m telescope and the Submillimeter Array (SMA). Comparison of the Spitzer 24 μm and 8 μm images with our 1.2 mm continuum maps reveal an ionization front of an H II region, the photon-dominated layer, and several 5 pc scale filaments that follow the outer edge of the photon-dominated layer. The filaments, which are resolved in the MAMBO-2 observations, show regularly spaced parsec-scale molecular clumps, embedded with a cluster of dense molecular cores as shown in the SMA 0.87 mm observations. Toward the center of the G10.6-0.4 region, the combined SMA+IRAM 30 m continuum image reveals several parsec-scale protrusions. They may continue down to within 0.1 pc of the geometric center of a dense 3 pc scale structure, where a 200 M ⊙ OB cluster resides. The observed filaments may facilitate mass accretion onto the central cluster-forming region in the presence of strong radiative and mechanical stellar feedback. Their filamentary geometry may also facilitate fragmentation. We did not detect any significant polarized emission at 0.87 mm in the inner 1 pc region with SMA.

  19. ATLASGAL-selected massive clumps in the inner Galaxy. II. Characterisation of different evolutionary stages and their SiO emission

    NASA Astrophysics Data System (ADS)

    Csengeri, T.; Leurini, S.; Wyrowski, F.; Urquhart, J. S.; Menten, K. M.; Walmsley, M.; Bontemps, S.; Wienen, M.; Beuther, H.; Motte, F.; Nguyen-Luong, Q.; Schilke, P.; Schuller, F.; Zavagno, A.; Sanna, C.

    2016-02-01

    Context. The processes leading to the birth of high-mass stars are poorly understood. The key first step to reveal their formation processes is characterising the clumps and cores from which they form. Aims: We define a representative sample of massive clumps in different evolutionary stages selected from the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL), from which we aim to establish a census of molecular tracers of their evolution. As a first step, we study the shock tracer, SiO, mainly associated with shocks from jets probing accretion processes. In low-mass young stellar objects (YSOs), outflow and jet activity decreases with time during the star formation processes. Recently, a similar scenario was suggested for massive clumps based on SiO observations. Here we analyse observations of the SiO (2-1) and (5-4) lines in a statistically significant sample to constrain the change of SiO abundance and the excitation conditions as a function of evolutionary stage of massive star-forming clumps. Methods: We performed an unbiased spectral line survey covering the 3-mm atmospheric window between 84-117 GHz with the IRAM 30 m telescope of a sample of 430 sources of the ATLASGAL survey, covering various evolutionary stages of massive clumps. A smaller sample of 128 clumps has been observed in the SiO (5-4) transition with the APEX telescope to complement the (2-1) line and probe the excitation conditions of the emitting gas. We derived detection rates to assess the star formation activity of the sample, and we estimated the column density and abundance using both an LTE approximation and non-LTE calculations for a smaller subsample, where both transitions have been observed. Results: We characterise the physical properties of the selected sources, which greatly supersedes the largest samples studied so far, and show that they are representative of different evolutionary stages. We report a high detection rate of >75% of the SiO (2-1) line and a >90% detection

  20. Featured Image: A Double Cluster

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-11-01

    This is a color composite image from Hubble of the very young star cluster Westerlund 2, seen near the center of the image (click for the full view!). The image was produced using visible-light data from the Advanced Camera for Surveys and near-infrared data from the Wide Field Camera 3. A recently-published study, led by Peter Zeidler (Center for Astronomy at Heidelberg University), reports the results of a high-resolution multi-band survey of the Westerlund 2 region with Hubble. In their detailed analysis of the cluster, the authors cataloged over 17,000 objects in six different filters! They find that the cluster actually consists of two separate clumps that were born at the same time but have different stellar densities. For more information and the original image, see the paper here:CitationPeter Zeidler et al 2015 AJ 150 78. doi:10.1088/0004-6256/150/3/78

  1. Clustering of CdSe/CdS Quantum Dot/Quantum Rods into Micelles Can Form Bright, Non-blinking, Stable, and Biocompatible Probes.

    PubMed

    Rafipoor, Mona; Schmidtke, Christian; Wolter, Christopher; Strelow, Christian; Weller, Horst; Lange, Holger

    2015-09-01

    We investigate clustered CdSe/CdS quantum dots/quantum rods, ranging from single to multiple encapsulated rods within amphiphilic diblock copolymer micelles, by time-resolved optical spectroscopy. The effect of the clustering and the cluster size on the optical properties is addressed. The clusters are bright and stable and show no blinking while retaining the fundamental optical properties of the individual quantum dots/quantum rods. Cell studies show neither unspecific uptake nor morphological changes of the cells, despite the increased sizes of the clusters.

  2. Genes Involved in Degradation of para-Nitrophenol Are Differentially Arranged in Form of Non-Contiguous Gene Clusters in Burkholderia sp. strain SJ98

    PubMed Central

    Vikram, Surendra; Pandey, Janmejay; Kumar, Shailesh; Raghava, Gajendra Pal Singh

    2013-01-01

    Biodegradation of para-Nitrophenol (PNP) proceeds via two distinct pathways, having 1,2,3-benzenetriol (BT) and hydroquinone (HQ) as their respective terminal aromatic intermediates. Genes involved in these pathways have already been studied in different PNP degrading bacteria. Burkholderia sp. strain SJ98 degrades PNP via both the pathways. Earlier, we have sequenced and analyzed a ~41 kb fragment from the genomic library of strain SJ98. This DNA fragment was found to harbor all the lower pathway genes; however, genes responsible for the initial transformation of PNP could not be identified within this fragment. Now, we have sequenced and annotated the whole genome of strain SJ98 and found two ORFs (viz., pnpA and pnpB) showing maximum identity at amino acid level with p-nitrophenol 4-monooxygenase (PnpM) and p-benzoquinone reductase (BqR). Unlike the other PNP gene clusters reported earlier in different bacteria, these two ORFs in SJ98 genome are physically separated from the other genes of PNP degradation pathway. In order to ascertain the identity of ORFs pnpA and pnpB, we have performed in-vitro assays using recombinant proteins heterologously expressed and purified to homogeneity. Purified PnpA was found to be a functional PnpM and transformed PNP into benzoquinone (BQ), while PnpB was found to be a functional BqR which catalyzed the transformation of BQ into hydroquinone (HQ). Noticeably, PnpM from strain SJ98 could also transform a number of PNP analogues. Based on the above observations, we propose that the genes for PNP degradation in strain SJ98 are arranged differentially in form of non-contiguous gene clusters. This is the first report for such arrangement for gene clusters involved in PNP degradation. Therefore, we propose that PNP degradation in strain SJ98 could be an important model system for further studies on differential evolution of PNP degradation functions. PMID:24376843

  3. 3D cluster members and near-infrared distance of open cluster NGC 6819

    NASA Astrophysics Data System (ADS)

    Gao, Xin-Hua; Xu, Shou-Kun; Chen, Li

    2015-12-01

    In order to obtain clean members of the open cluster NGC 6819, the proper motions and radial velocities of 1691 stars are used to construct a three-dimensional (3D) velocity space. Based on the DBSCAN clustering algorithm, 537 3D cluster members are obtained. From the 537 3D cluster members, the average radial velocity and absolute proper motion of the cluster are Vr = +2.30 ± 0.04 km s-1 and (PMRA, PMDec) = (-2.5 ± 0.5, -4.3 ± 0.5) mas yr-1, respectively. The proper motions, radial velocities, spatial positions and color-magnitude diagram of the 537 3D members indicate that our membership determination is effective. Among the 537 3D cluster members, 15 red clump giants can be easily identified by eye and are used as reliable standard candles for the distance estimate of the cluster. The distance modulus of the cluster is determined to be (m - M)0 = 11.86 ± 0.05 mag (2355 ± 54 pc), which is quite consistent with published values. The uncertainty of our distance modulus is dominated by the intrinsic dispersion in the luminosities of red clump giants (˜ 0.04 mag).

  4. Clumped Isotope Composition of Cold-Water Corals: A Role for Vital Effects?

    NASA Astrophysics Data System (ADS)

    Spooner, P.; Guo, W.; Robinson, L. F.

    2014-12-01

    Measurements on a set of cold-water corals (mainly Desmophyllum dianthus) have suggested that their clumped isotope composition could serve as a promising proxy for reconstructing paleocean temperatures. Such measurements have also offered support for certain isotope models of coral calcification. However, there are differences in the clumped isotope compositions between warm-water and cold-water corals, suggesting that different kinds of corals could have differences in their biocalcification processes. In order to understand the systematics of clumped isotope variations in cold-water corals more fully, we present clumped isotope data from a range of cold-water coral species from the tropical Atlantic and the Southern Ocean.Our samples were either collected live or recently dead (14C ages < 1,000 yrs) with associated temperature data. They include a total of 11 solitary corals and 1 colonial coral from the Atlantic, and 8 solitary corals from the Southern Ocean. The data indicate that coral clumped isotope systematics may be more complicated than previously thought. For example, for the genus Caryophyllia we observe significant variations in clumped isotope compositions for corals which grew at the same temperature with an apparent negative correlation between Δ47 and δ18O, different to patterns previously observed in Desmophyllum. These results indicate that existing isotope models of biocalcification may not apply equally well to all corals. Clumped isotope vital effects may be present in certain cold-water corals as they are in warm-water corals, complicating the use of this paleoclimate proxy.

  5. Applying clumped isotopes of O2 to atmospheric and biogeochemical problems

    NASA Astrophysics Data System (ADS)

    Yeung, Laurence

    2016-04-01

    I will describe recent measurements of isotopic "clumps" in diatomic molecules, e.g., 18O18O in O2, which are being utilized to constrain atmospheric circulation on glacial-interglacial timescales and biogeochemical cycling in the oceans. While our understanding of these tracers is still evolving, several features of their geochemistry are apparent: (1) the proportional abundance of these isotopic "clumps" is governed by traditional chemical effects as well as combinatorial effects unique to clumped isotopes, and (2) when isotopic exchange reactions are disfavoured, chemical-kinetic and/or reservoir effects, rather than thermodynamic equilibrium, determine their clumped-isotope composition. Combinatorial clumped-isotope signatures imparted during photosynthesis are being developed as endmember signatures of gross primary productivity in the oceans. In addition, clumped-isotope measurements of O2 in the atmosphere (i.e., Δ36 values) suggest that isotopic clumping in O2 is continuously being altered by ozone photochemistry in the troposphere and stratosphere. Yet, the contrast in isotope-exchange rates between the stratosphere (where exchange is fast) and the troposphere (where exchange is slow) results in a gradient in Δ36 values with altitude, wherein stratospheric intrusions are detectable as elevated Δ36 values. Moreover, global chemical-transport model simulations suggest that ozone photochemistry in the troposphere re-orders the O2 reservoir in the troposphere on annual timescales. The Δ36 value at the surface is therefore sensitive to the tropospheric residence time of O2 with respect to stratosphere-troposphere exchange. Consequently, Δ36 values at the surface likely respond to changes in the strength of the global overturning circulation.

  6. Chemistry in Infrared Dark Cloud Clumps: A Molecular Line Survey at 3 mm

    NASA Astrophysics Data System (ADS)

    Sanhueza, Patricio; Jackson, James M.; Foster, Jonathan B.; Garay, Guido; Silva, Andrea; Finn, Susanna C.

    2012-09-01

    We have observed 37 Infrared Dark Clouds (IRDCs), containing a total of 159 clumps, in high-density molecular tracers at 3 mm using the 22 m ATNF Mopra Telescope located in Australia. After determining kinematic distances, we eliminated clumps that are not located in IRDCs and clumps with a separation between them of less than one Mopra beam. Our final sample consists of 92 IRDC clumps. The most commonly detected molecular lines are (detection rates higher than 8%) N2H+, HNC, HN13C, HCO+, H13CO+, HCN, C2H, HC3N, HNCO, and SiO. We investigate the behavior of the different molecular tracers and look for chemical variations as a function of an evolutionary sequence based on Spitzer IRAC and MIPS emission. We find that the molecular tracers behave differently through the evolutionary sequence and some of them can be used to yield useful relative age information. The presence of HNC and N2H+ lines does not depend on the star formation activity. On the other hand, HC3N, HNCO, and SiO are predominantly detected in later stages of evolution. Optical depth calculations show that in IRDC clumps the N2H+ line is optically thin, the C2H line is moderately optically thick, and HNC and HCO+ are optically thick. The HCN hyperfine transitions are blended, and, in addition, show self-absorbed line profiles and extended wing emission. These factors combined prevent the use of HCN hyperfine transitions for the calculation of physical parameters. Total column densities of the different molecules, except C2H, increase with the evolutionary stage of the clumps. Molecular abundances increase with the evolutionary stage for N2H+ and HCO+. The N2H+/HCO+ and N2H+/HNC abundance ratios act as chemical clocks, increasing with the evolution of the clumps.

  7. A novel variant of the immunoglobulin fold in surface adhesins of Staphylococcus aureus: crystal structure of the fibrinogen-binding MSCRAMM, clumping factor A

    PubMed Central

    Deivanayagam, Champion C.S.; Wann, Elisabeth R.; Chen, Wei; Carson, Mike; Rajashankar, Kanagalaghatta R.; Höök, Magnus; Narayana, Sthanam V.L.

    2002-01-01

    We report here the crystal structure of the minimal ligand-binding segment of the Staphylococcus aureus MSCRAMM, clumping factor A. This fibrinogen-binding segment contains two similarly folded domains. The fold observed is a new variant of the immunoglobulin motif that we have called DE-variant or the DEv-IgG fold. This subgroup includes the ligand-binding domain of the collagen-binding S.aureus MSCRAMM CNA, and many other structures previously classified as jelly rolls. Structure predictions suggest that the four fibrinogen-binding S.aureus MSCRAMMs identified so far would also contain the same DEv-IgG fold. A systematic docking search using the C-terminal region of the fibrinogen γ-chain as a probe suggested that a hydrophobic pocket formed between the two DEv-IgG domains of the clumping factor as the ligand-binding site. Mutagenic substitution of residues Tyr256, Pro336, Tyr338 and Lys389 in the clumping factor, which are proposed to contact the terminal residues 408AGDV411 of the γ-chain, resulted in proteins with no or markedly reduced affinity for fibrinogen. PMID:12485987

  8. Ooid formation in the Great Salt Lake, Utah: Insights from clumped isotope paleothermometry

    NASA Astrophysics Data System (ADS)

    Anderson, R. P.; Bird, J. T.; Meneske, M.; Stefurak, E. J.; Berelson, W.; Petryshyn, V. A.; Shapiro, R. S.; Sessions, A. L.; Tripati, A.; Corsetti, F. A.

    2013-12-01

    Ooids (coated grains formed in agitated environments) are a relatively common constituent of the sedimentary record through time, but details of their formation remain enigmatic. Although not as abundant today as at other times in the past, ooids are known from several key carbonate environments, including the Bahamas, Persian Gulf, Shark Bay, and the Great Salt Lake. We collected ooids from the Great Salt Lake in association with the International GeoBiology Summer Course in 2012 and 2013 from the north shore of Antelope Island and Spiral Jetty in order to investigate their origin. Petrographic investigation reveals the ooids are composed of aragonite, and display an alternating radial, concentric, and radial-concentric fabric. The delicate nature of the radial fabric is suggestive, but not conclusive, that they form currently (agitation would abrade the fabric). The nuclei are typically rod shaped micritic peloids (up to 80%) or siliciclastic mineral grains. The Great Salt Lake surface water temperature undergoes a predictable annual cycle, with summer months approaching 25 degrees C or more, and winter months dipping to 5 degrees C or less, depending on the region of the lake. Clumped isotope temperatures allow us to constrain ooid formation to the warm months. A contrast between the isotopic composition of the waters for Antelope Island (~0 per mill), likely affected by spring runoff, and the ooids of the same location (~4.5 per mill) further suggest ooid formation took place after the spring runoff, constraining ooid formation to between mid-June and October. We calculated the summer and winter carbonate saturation state of the lake, and while the lake is supersaturated throughout the year, it is significantly more saturated during the summer months. Our results give new insight into ooid formation in the Great Salt Lake, and suggest that the ooids form predominantly during the warm months following the spring runoff.

  9. Probing the Peak Epoch of Cosmic Star Formation (1forming Galaxies Behind the Lensing Clusters: UV Luminosity Function and the Dust Attenuation

    NASA Astrophysics Data System (ADS)

    Alavi, Anahita; Siana, Brian D.; Richard, Johan; Rafelski, Marc; Jauzac, Mathilde; Limousin, Marceau; Stark, Daniel; Teplitz, Harry I.

    2016-01-01

    Obtaining a complete census of cosmic star formation requires an understanding of faint star-forming galaxies that are far below the detection limits of current surveys. To search for the faint galaxies, we use the power of strong gravitational lensing from foreground galaxy clusters to boost the detection limits of HST to much fainter luminosities. Using the WFC3/UVIS on board the HST, we obtain deep UV images of 4 lensing clusters with existing deep optical and near-infrared data (three from Frontier Fields survey). Building multiband photometric catalogs and applying a photometric redshift selection, we uncover a large population of dwarf galaxies (-18.5forming galaxies keeps increasing steeply toward very faint magnitudes (MUV=-12.5). As an important implication of a steep faint-end slope LF, we show that the faint galaxies (-18.550%) at these redshifts. We use this unique sample to investigate further the various properties of dwarf galaxies as it is claimed to deviate from the trends seen for the more massive galaxies. Recent hydro-dynamical simulations and observations of local dwarfs show that these galaxies have episodic bursts of star formation on short time scales (< 10 Myr). We find that the bursty star formation histories (SFHs) cause a large intrinsic scatter in UV colors (β) at MUV > -16, comparing a sample of low mass galaxies from simulations with bursty SFHs with our comprehensive measurements of the observed β values. As this scatter can also be due to the dust extinction, we distinguish these two effects by measuring the dust attenuation using Balmer decrement (Hα/Hβ) ratios from our MOSFIRE/Keck spectroscopy.

  10. AN INFRARED THROUGH RADIO STUDY OF THE PROPERTIES AND EVOLUTION OF IRDC CLUMPS

    SciTech Connect

    Battersby, Cara; Bally, John; Ginsburg, Adam; Glenn, Jason; Jackson, James M.; Shirley, Yancy L.; Schlingman, Wayne

    2010-09-20

    We examine the physical properties and evolutionary stages of a sample of 17 clumps within 8 Infrared Dark Clouds (IRDCs) by combining existing infrared, millimeter, and radio data with new Bolocam Galactic Plane Survey (BGPS) 1.1 mm data, Very Large Array radio continuum data, and Heinrich Hertz Telescope dense gas (HCO{sup +} and N{sub 2}H{sup +}) spectroscopic data. We combine literature studies of star formation tracers and dust temperatures within IRDCs with our search for ultracompact (UC) H II regions to discuss a possible evolutionary sequence for IRDC clumps. In addition, we perform an analysis of mass tracers in IRDCs and find that 8 {mu}m extinction masses and 1.1 mm BGPS masses are complementary mass tracers in IRDCs except for the most active clumps (notably those containing UC H II regions), for which both mass tracers suffer biases. We find that the measured virial masses in IRDC clumps are uniformly higher than the measured dust continuum masses on the scale of {approx}1 pc. We use {sup 13}CO, HCO{sup +}, and N{sub 2}H{sup +} to study the molecular gas properties of IRDCs and do not see any evidence of chemical differentiation between hot and cold clumps on the scale of {approx}1 pc. However, both HCO{sup +} and N{sub 2}H{sup +} are brighter in active clumps, due to an increase in temperature and/or density. We report the identification of four UC H II regions embedded within IRDC clumps and find that UC H II regions are associated with bright ({approx}>1 Jy) 24 {mu}m point sources, and that the brightest UC H II regions are associated with 'diffuse red clumps' (an extended enhancement at 8 {mu}m). The broad stages of the discussed evolutionary sequence (from a quiescent clump to an embedded H II region) are supported by literature dust temperature estimates; however, no sequential nature can be inferred between the individual star formation tracers.

  11. Modeling active galactic nucleus feedback in cool-core clusters: The balance between heating and cooling

    SciTech Connect

    Li, Yuan; Bryan, Greg L.

    2014-07-01

    We study the long-term evolution of an idealized cool-core galaxy cluster under the influence of momentum-driven active galactic nucleus (AGN) feedback using three-dimensional high-resolution (60 pc) adaptive mesh refinement simulations. The feedback is modeled with a pair of precessing jets whose power is calculated based on the accretion rate of the cold gas surrounding the supermassive black hole (SMBH). The intracluster medium first cools into clumps along the propagation direction of the jets. As the jet power increases, gas condensation occurs isotropically, forming spatially extended structures that resemble the observed Hα filaments in Perseus and many other cool-core clusters. Jet heating elevates the gas entropy, halting clump formation. The cold gas that is not accreted onto the SMBH settles into a rotating disk of ∼10{sup 11} M {sub ☉}. The hot gas cools directly onto the disk while the SMBH accretes from its innermost region, powering the AGN that maintains a thermally balanced state for a few Gyr. The mass cooling rate averaged over 7 Gyr is ∼30 M {sub ☉} yr{sup –1}, an order of magnitude lower than the classic cooling flow value. Medium resolution simulations produce similar results, while in low resolution runs, the cluster experiences cycles of gas condensation and AGN outbursts. Owing to its self-regulating mechanism, AGN feedback can successfully balance cooling with a wide range of model parameters. Our model also produces cold structures in early stages that are in good agreement with the observations. However, the long-lived massive cold disk is unrealistic, suggesting that additional physical processes are still needed.

  12. Siderite 'clumped' isotope thermometry: A new paleoclimate proxy for humid continental environments

    NASA Astrophysics Data System (ADS)

    Fernandez, Alvaro; Tang, Jianwu; Rosenheim, Brad E.

    2014-02-01

    Clumped isotope measurements can be used to exploit the paleoclimatic potential of pedogenic siderite (FeCO3); however, the applicability of this method is held back by the lack of clumped isotope calibrations of mineralogies other than calcite and aragonite. Here we present an inorganic calibration of siderites grown in the laboratory between 21 and 51 °C. Linear regression of Δ47 values and temperature (106/T2, K) yields the following relationship (r2 = 0.997): Δ={(0.0356±0.0018)×106}/{T}+(0.172±0.019) We demonstrate that this calibration is indistinguishable from calcite at current levels of analytical precision. Our observations suggest that there is likely no large systematic bias in the clumped isotope acid fractionation factors between the two different carbonate minerals. We also present clumped isotope measurements of a natural siderite collected from Holocene sediments of the Mississippi River Delta. We find that siderites record warm season marsh water temperatures instead of mean annual temperatures as it has long been presumed. This finding has important implications for the accuracy of siderite stable isotope and clumped isotope based climate reconstructions.

  13. A Predator-Prey Model for Moon-Triggered Clumping in Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Esposito, L. W.; Albers, N.; Meinke, B. K.; Sremcevic, M.; Madhusudhanan, P.; Colwell, J. E.; Jerousek, R. E.

    2011-10-01

    UVIS occultation data show clumping in Saturn's F ring and at the B ring outer edge, indicating aggregation and disaggregation at these locations that are perturbed by Mimas and by Prometheus. Timescales range from hours to months. Structure near the B ring edge is seen in power spectral analysis at scales 200m - 2000m. We quantify this sub-km structure using wavelet analysis that estimates the statistical significance of the features. Similar structure is also seen at the strongest density waves, with significance increasing with resonance strength (FIGURE 1). For the B ring outer edge, the strongest structure is seen at longitudes 90° and 270° relative to Mimas. This indicates a direct relation between the moon and the ring clumping. We propose that the collective behavior of the ring particles resembles a predatorprey system: the mean aggregate size is the prey, which feeds the velocity dispersion; conversely, increasing dispersion breaks up the aggregates. Moons may trigger clumping by streamline crowding, which reduces the relative velocity, leading to more aggregation and more clumping. Disaggregation may follow from disruptive collisions or tidal shedding as the clumps stir the relative velocity. For realistic values of the parameters this yields a limit cycle behavior, as for the ecology of foxes and hares or the "boom-bust" economic cycle. Solving for the longterm behavior of this forced system gives a periodic response at the perturbing frequency, with a phase lag roughly consistent with the UVIS occultation measurements (FIGURE 2).

  14. Gemini spectroscopy of the outer disk star cluster BH176

    NASA Astrophysics Data System (ADS)

    Sharina, M. E.; Donzelli, C. J.; Davoust, E.; Shimansky, V. V.; Charbonnel, C.

    2014-10-01

    Context. BH176 is an old metal-rich star cluster. It is spatially and kinematically consistent with belonging to the Monoceros Ring. It is larger in size and more distant from the Galactic plane than typical open clusters, and it does not belong to the Galactic bulge. Aims: Our aim is to determine the origin of this unique object by accurately determining its distance, metallicity, and age. The best way to reach this goal is to combine spectroscopic and photometric methods. Methods: We present medium-resolution observations of red clump and red giant branch stars in BH176 obtained with the Gemini South Multi-Object Spectrograph. We derive radial velocities, metallicities, effective temperatures, and surface gravities of the observed stars and use these parameters to distinguish member stars from field objects. Results: We determine the following parameters for BH176: Vh = 0 ± 15 km s-1, [Fe/H] = -0.1 ± 0.1, age 7 ± 0.5 Gyr, E(V - I) = 0.79 ± 0.03, distance 15.2 ± 0.2 kpc, α-element abundance [α/Fe] ~ 0.25 dex (the mean of [Mg/Fe], and [Ca/Fe]). Conclusions: BH176 is a member of old Galactic open clusters that presumably belong to the thick disk. It may have originated as a massive star cluster after the encounter of the forming thin disk with a high-velocity gas cloud or as a satellite dwarf galaxy. Appendix A is available in electronic form at http://www.aanda.org

  15. A Computational Study of the Factors Influencing the PVC-Triggering Ability of a Cluster of Early Afterdepolarization-Capable Myocytes

    PubMed Central

    Zimik, Soling; Nayak, Alok Ranjan; Pandit, Rahul

    2015-01-01

    Premature ventricular complexes (PVCs), which are abnormal impulse propagations in cardiac tissue, can develop because of various reasons including early afterdepolarizations (EADs). We show how a cluster of EAD-generating cells (EAD clump) can lead to PVCs in a model of cardiac tissue, and also investigate the factors that assist such clumps in triggering PVCs. In particular, we study, through computer simulations, the effects of the following factors on the PVC-triggering ability of an EAD clump: (1) the repolarization reserve (RR) of the EAD cells; (2) the size of the EAD clump; (3) the coupling strength between the EAD cells in the clump; and (4) the presence of fibroblasts in the EAD clump. We find that, although a low value of RR is necessary to generate EADs and hence PVCs, a very low value of RR leads to low-amplitude EAD oscillations that decay with time and do not lead to PVCs. We demonstrate that a certain threshold size of the EAD clump, or a reduction in the coupling strength between the EAD cells, in the clump, is required to trigger PVCs. We illustrate how randomly distributed inexcitable obstacles, which we use to model collagen deposits, affect PVC-triggering by an EAD clump. We show that the gap-junctional coupling of fibroblasts with myocytes can either assist or impede the PVC-triggering ability of an EAD clump, depending on the resting membrane potential of the fibroblasts and the coupling strength between the myocyte and fibroblasts. We also find that the triggering of PVCs by an EAD clump depends sensitively on factors like the pacing cycle length and the distribution pattern of the fibroblasts. PMID:26675670

  16. A Computational Study of the Factors Influencing the PVC-Triggering Ability of a Cluster of Early Afterdepolarization-Capable Myocytes.

    PubMed

    Zimik, Soling; Nayak, Alok Ranjan; Pandit, Rahul

    2015-01-01

    Premature ventricular complexes (PVCs), which are abnormal impulse propagations in cardiac tissue, can develop because of various reasons including early afterdepolarizations (EADs). We show how a cluster of EAD-generating cells (EAD clump) can lead to PVCs in a model of cardiac tissue, and also investigate the factors that assist such clumps in triggering PVCs. In particular, we study, through computer simulations, the effects of the following factors on the PVC-triggering ability of an EAD clump: (1) the repolarization reserve (RR) of the EAD cells; (2) the size of the EAD clump; (3) the coupling strength between the EAD cells in the clump; and (4) the presence of fibroblasts in the EAD clump. We find that, although a low value of RR is necessary to generate EADs and hence PVCs, a very low value of RR leads to low-amplitude EAD oscillations that decay with time and do not lead to PVCs. We demonstrate that a certain threshold size of the EAD clump, or a reduction in the coupling strength between the EAD cells, in the clump, is required to trigger PVCs. We illustrate how randomly distributed inexcitable obstacles, which we use to model collagen deposits, affect PVC-triggering by an EAD clump. We show that the gap-junctional coupling of fibroblasts with myocytes can either assist or impede the PVC-triggering ability of an EAD clump, depending on the resting membrane potential of the fibroblasts and the coupling strength between the myocyte and fibroblasts. We also find that the triggering of PVCs by an EAD clump depends sensitively on factors like the pacing cycle length and the distribution pattern of the fibroblasts. PMID:26675670

  17. Clumped Isotope Thermometry of Geologic Methane (13CH3D) using Tunable Laser Mid-Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ono, S.; Zahniser, M. S.; McManus, J. B.; Nelson, D. D.

    2013-12-01

    Methane is both an alternative energy source as well as a significant greenhouse gas, and holds the potential for rapid release to the atmosphere, possibly triggering abrupt climate change in the past and in the future. The majority of methane on the Earth is biogenic, originating from microbial methanogenesis, or thermogenic sourced from previously formed biogenic organic materials. Methane can be also produced abiogenically during serpentinization and even mantle-sourced methane has been implicated. Carbon (13C/12C) and hydrogen (D/H) isotope ratios of methane and associated short chain hydrocarbons provide critical information about the abiogenic/biogenic origin of methane but data can be inconclusive. We have developed and tested a Tunable Infrared Laser Direct Absorption Spectroscopy (TILDAS) Instrument to be used for precise measurements of the abundance of doubly isotope-substituted methane (13CH3D). The TILDAS instrument measures direct absorption in the mid-infrared (~ 8 μm) region using continuous wave quantum cascade laser combined with a 76 m pathlength astigmatic absorption cell. Initial test result indicates the precision for 13CH4, 12CH3D and 13CH3D for 0.2 ‰ or better for comparison between two reference gases. Accuracy of the methods for δ13C and δD is evaluated by comparing measurements by conventional isotope ratio mass spectrometry. Calibration of clumped isotope scale (δ13CH3D) is underway using methane produced at various temperatures. Following an isotope exchange reaction (13CH4 + 12CH3D ↔ 13CH3D + 12CH4), precise measurements of 13CH3D abundance is expected to provide new and critical information about the temperature at which methane was formed (or thermally equilibrated). Biogenic origin becomes highly unlikely, for example, if the estimated temperature is higher than 120°C, i.e., current high-temperature limit of microbial methanogenesis. Although significant questions remain regarding isotope exchange kinetics, and clumped

  18. Intricate interactions between the bloom-forming cyanobacterium Microcystis aeruginosa and foreign genetic elements, revealed by diversified clustered regularly interspaced short palindromic repeat (CRISPR) signatures.

    PubMed

    Kuno, Sotaro; Yoshida, Takashi; Kaneko, Takakazu; Sako, Yoshihiko

    2012-08-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) confer sequence-dependent, adaptive resistance in prokaryotes against viruses and plasmids via incorporation of short sequences, called spacers, derived from foreign genetic elements. CRISPR loci are thus considered to provide records of past infections. To describe the host-parasite (i.e., cyanophages and plasmids) interactions involving the bloom-forming freshwater cyanobacterium Microcystis aeruginosa, we investigated CRISPR in four M. aeruginosa strains and in two previously sequenced genomes. The number of spacers in each locus was larger than the average among prokaryotes. All spacers were strain specific, except for a string of 11 spacers shared in two closely related strains, suggesting diversification of the loci. Using CRISPR repeat-based PCR, 24 CRISPR genotypes were identified in a natural cyanobacterial community. Among 995 unique spacers obtained, only 10 sequences showed similarity to M. aeruginosa phage Ma-LMM01. Of these, six spacers showed only silent or conservative nucleotide mutations compared to Ma-LMM01 sequences, suggesting a strategy by the cyanophage to avert CRISPR immunity dependent on nucleotide identity. These results imply that host-phage interactions can be divided into M. aeruginosa-cyanophage combinations rather than pandemics of population-wide infectious cyanophages. Spacer similarity also showed frequent exposure of M. aeruginosa to small cryptic plasmids that were observed only in a few strains. Thus, the diversification of CRISPR implies that M. aeruginosa has been challenged by diverse communities (almost entirely uncharacterized) of cyanophages and plasmids.

  19. Tropical Silurian Paleotemperatures from Clumped Isotope Analysis of Coexisting Dolomite and Calcite

    NASA Astrophysics Data System (ADS)

    Winkelstern, I. Z.; Lohmann, K. C.

    2013-12-01

    In many instances, pervasive diagenetic alteration of original material prevents the use of quantitative climate proxies on Paleozoic or older rocks. As an inherently diagenetic phase, dolomite may provide a more resilient paleotemperature resource. The Δ47 carbonate clumped isotope thermometer has been shown to be an accurate paleothermometer and, in a limited way, has been shown to be applicable to dolomites. The shallow water carbonates of the Pipe Creek Jr. Reef in central Indiana offer an opportunity to test the viability of the technique in ancient dolomite. After formation in the late Silurian, a sea level drop resulted in a diagenetic sequence of meteoric phreatic alteration of marine cement and biotic components, which included precipitation of dolomite cements inter-grown within the meteoric phreatic calcite cement. This was post-dated by a coarse void filling calcite spar formed at burial temperatures of ~100°C (based on fluid inclusion analysis). Preliminary analyses of coexisting dolomite and calcite suggest that near-surface temperatures are preserved in dolomites despite having experienced elevated thermal diagenetic effects.. In contrast, co-existing early-formed calcites exhibit resetting of earth surface temperatures to elevated values. Δ47 measurements in dolomites yield temperatures around 30°C using the Guo et al., (2009) theoretical calibration. This contrasts with analyses of early (original) and late (hydrothermal) calcites, which record temperatures greater than ~80°C using the Δ47-calcite calibration of Dennis and Schrag (2010). These data support the hypothesis that dolomite can be a more resilient paleotemperature proxy relative to calcite in deep-time studies. Temperatures from dolomites compare reasonably with other late Silurian paleoclimate studies, and offer insight into regional-scale paleoclimate.

  20. The formation of NGC 3603 young starburst cluster: `prompt' hierarchical assembly or monolithic starburst?

    NASA Astrophysics Data System (ADS)

    Banerjee, Sambaran; Kroupa, Pavel

    2015-02-01

    The formation of very young massive clusters or `starburst' clusters is currently one of the most widely debated topic in astronomy. The classical notion dictates that a star cluster is formed in situ in a dense molecular gas clump. The stellar radiative and mechanical feedback to the residual gas energizes the latter until it escapes the system. The newly born gas-free young cluster eventually readjusts with the corresponding mass-loss. Based on the observed substructured morphologies of many young stellar associations, it is alternatively suggested that even the smooth-profiled massive clusters are also assembled from migrating less massive subclusters. A very young (age ≈ 1 Myr), massive (>104 M⊙) star cluster like the Galactic NGC 3603 young cluster (HD 97950) is an appropriate testbed for distinguishing between the above `monolithic' and `hierarchical' formation scenarios. A recent study by Banerjee & Kroupa demonstrates that the monolithic scenario remarkably reproduces the HD 97950 cluster. In particular, its shape, internal motion and the mass distribution of stars are found to follow naturally and consistently from a single model calculation undergoing ≈70 per cent by mass gas dispersal. In this work, we explore the possibility of the formation of the above cluster via hierarchical assembly of subclusters. These subclusters are initially distributed over a wide range of spatial volumes and have various modes of subclustering in both absence and presence of a background gas potential. Unlike the above monolithic initial system that reproduces HD 97950 very well, the same is found to be prohibitive with hierarchical assembly alone (with/without a gas potential). Only those systems which assemble promptly into a single cluster (in ≲1 Myr) from a close separation (all within ≲2 pc) could match the observed density profile of HD 97950 after a similar gas removal. These results therefore suggest that the NGC 3603 young cluster has formed essentially

  1. Properties of the galaxy population in hydrodynamical simulations of clusters

    NASA Astrophysics Data System (ADS)

    Saro, A.; Borgani, S.; Tornatore, L.; Dolag, K.; Murante, G.; Biviano, A.; Calura, F.; Charlot, S.

    2006-11-01

    We present a study of the galaxy population predicted by hydrodynamical simulations of galaxy clusters. These simulations, which are based on the GADGET-2 TREE + SPH code, include gas cooling, star formation, a detailed treatment of stellar evolution and chemical enrichment, as well as supernova energy feedback in the form of galactic winds. As such, they can be used to extract the spectrophotometric properties of the simulated galaxies, which are identified as clumps in the distribution of star particles. Simulations have been carried out for a representative set of 19 cluster-sized haloes, having mass M200 in the range 5 × 1013-1.8 × 1015h-1Msolar. All simulations have been performed for two choices of the stellar initial mass function (IMF), namely using a standard Salpeter IMF with power-law index x = 1.35, and a top-heavy IMF with x = 0.95. In general, we find that several of the observational properties of the galaxy population in nearby clusters are reproduced fairly well by simulations. A Salpeter IMF is successful in accounting for the slope and the normalization of the colour-magnitude relation for the bulk of the galaxy population. In contrast, the top-heavy IMF produces too red galaxies, as a consequence of their exceedingly large metallicity. Simulated clusters have a relation between mass and optical luminosity, which generally agrees with observations, both in normalization and in slope. Also in keeping with observational results, galaxies are generally bluer, younger and more star forming in the cluster outskirts. However, we find that our simulated clusters have a total number of galaxies which is significantly smaller than the observed one, falling short by about a factor of 2-3. We have verified that this problem does not have an obvious numerical origin, such as lack of mass and force resolution. Finally, the brightest cluster galaxies are always predicted to be too massive and too blue, when compared to observations. This is due to gas

  2. SOFIA follow-ups of massive clumps from the ATLASGAL galactic plane survey

    NASA Astrophysics Data System (ADS)

    Wyrowski, F.; Güsten, R.; Menten, K. M.; Wiesemeyer, H.; Csengeri, T.; König, C.; Urquhart, J. S.

    2016-05-01

    With the GREAT receiver at the Stratospheric Observatory for Infrared Astronomy (SOFIA) we started a concerted observing effort towards a well selected sample of clumps with high masses covering a range of evolutionary stages based on their infrared properties. The sources were selected from the ATLASGAL sub-millimeter dust continuum survey of our Galaxy. The goal is threefold: (i) SOFIA/GREAT allows to study the cooling budget of the clumps, in particular with observations of the CII and OI cooling lines. (ii) With SOFIA/GREAT high-J CO lines can be observed to measure in combination with ground based data the CO SEDs of the sources. (iii) Using rotational transitions of ammonia at THz frequencies the kinematics of the clumps can be probed with absorption spectroscopy to search for infall. Here we will describe these efforts and in particular report new results from the ammonia 32+ - 22- (1.8 THz) observing program.

  3. Paired stable isotopes (O, C) and clumped isotope thermometry of magnesite and silica veins in the New Caledonia Peridotite Nappe

    NASA Astrophysics Data System (ADS)

    Quesnel, Benoît; Boulvais, Philippe; Gautier, Pierre; Cathelineau, Michel; John, Cédric M.; Dierick, Malorie; Agrinier, Pierre; Drouillet, Maxime

    2016-06-01

    The stable isotope compositions of veins provide information on the conditions of fluid-rock interaction and on the origin of fluids and temperatures. In New Caledonia, magnesite and silica veins occur throughout the Peridotite Nappe. In this work, we present stable isotope and clumped isotope data in order to constrain the conditions of fluid circulation and the relationship between fluid circulation and nickel ore-forming laterization focusing on the Koniambo Massif. For magnesite veins occurring at the base of the nappe, the high δ18O values between 27.8‰ and 29.5‰ attest to a low temperature formation. Clumped isotope analyses on magnesite give temperatures between 26 °C and 42 °C that are consistent with amorphous silica-magnesite oxygen isotope equilibrium. The meteoric origin of the fluid is indicated by calculated δ18Owater values between -3.4‰ to +1.5‰. Amorphous silica associated with magnesite or occurring in the coarse saprolite level displays a narrow range of δ18O values between 29.7‰ and 35.3‰. For quartz veins occurring at the top of the bedrock and at the saprolite level, commonly in association with Ni-talc-like minerals, the δ18O values are lower, between 21.8‰ and 29.0‰ and suggest low-temperature hydrothermal conditions (∼40-95 °C). Thermal equilibration of the fluid along the geothermic gradient before upward flow through the nappe and/or influence of exothermic reactions of serpentinization could be the source(s) of heat needed to form quartz veins under such conditions.

  4. Fracture-controlled fluid flow in the Farnham Dome anticline: Insights from combined fluid-inclusion analysis and clumped-isotope thermometry of carbonate veins

    NASA Astrophysics Data System (ADS)

    Luetkemeyer, P. Benjamin; Kirschner, David L.; Huntington, Katharine W.

    2015-04-01

    This study presents clumped-isotope, stable-isotope, and fluid-inclusion analyses of carbonate veins in the context of their structural and stratigraphic positions in order to characterize the fracture-controlled fluid flow system in the Farnham Dome anticline, east-central, Utah. Four sets of open- and shear-mode fractures and veins are recognized throughout the fold and are represented in the shale-sandstone-shale sequence at outcrop scale. Samples were selected from each vein set in different structural and stratigraphic positions. There is no correlation between the isotopic values of the veins and inclusion fluids with vein type, but there is a correlation with structural stratigraphic position. δ13C values of calcite veins within the footwall and fold hinge units (Cedar Mountain Shale and Dakota Sandstone) fall within the range of about -3 to -8 ‰ (VPDB), while calcite veins located within the hangingwall (Tununk Member of the Mancos Shale) have δ13C values that fall within a narrow range of -0.3 to -0.8 ‰ (VPDB). δ18O values of calcite veins from the Cedar Mountain and Tununk shales cluster between +17 to +20 ‰ (VSMOW), consistent with syn-fold faulting that creates structural fluid pathways and separates portions of the fold into fluid compartments. δ13C and δ18O values of veins tend to be lower than those of their host rocks consistent with fluid-dominated or fluid-buffered system, likely related to significant fluid flow through discrete planes of fractures. Homogenization temperatures (Th) and salinities of sparse two-phase inclusions were measured on selected samples. Salinities for all units are between 0 to 3.5 wt% NaCl equivalent and Th values between 80 to 130 °C. The Th and salinities differ slightly among host rocks. Salinities are systematically higher with lower Th values in both shale units. Th and salinity do not vary systematically in the Dakota sandstone. These results are consistent with higher hydraulic connectivity in

  5. Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Miller, Christopher J. Miller

    2012-03-01

    There are many examples of clustering in astronomy. Stars in our own galaxy are often seen as being gravitationally bound into tight globular or open clusters. The Solar System's Trojan asteroids cluster at the gravitational Langrangian in front of Jupiter’s orbit. On the largest of scales, we find gravitationally bound clusters of galaxies, the Virgo cluster (in the constellation of Virgo at a distance of ˜50 million light years) being a prime nearby example. The Virgo cluster subtends an angle of nearly 8◦ on the sky and is known to contain over a thousand member galaxies. Galaxy clusters play an important role in our understanding of theUniverse. Clusters exist at peaks in the three-dimensional large-scale matter density field. Their sky (2D) locations are easy to detect in astronomical imaging data and their mean galaxy redshifts (redshift is related to the third spatial dimension: distance) are often better (spectroscopically) and cheaper (photometrically) when compared with the entire galaxy population in large sky surveys. Photometric redshift (z) [Photometric techniques use the broad band filter magnitudes of a galaxy to estimate the redshift. Spectroscopic techniques use the galaxy spectra and emission/absorption line features to measure the redshift] determinations of galaxies within clusters are accurate to better than delta_z = 0.05 [7] and when studied as a cluster population, the central galaxies form a line in color-magnitude space (called the the E/S0 ridgeline and visible in Figure 16.3) that contains galaxies with similar stellar populations [15]. The shape of this E/S0 ridgeline enables astronomers to measure the cluster redshift to within delta_z = 0.01 [23]. The most accurate cluster redshift determinations come from spectroscopy of the member galaxies, where only a fraction of the members need to be spectroscopically observed [25,42] to get an accurate redshift to the whole system. If light traces mass in the Universe, then the locations

  6. The population of giant clumps in simulated high-z galaxies: in situ and ex situ migration and survival

    NASA Astrophysics Data System (ADS)

    Mandelker, Nir; Dekel, Avishai; Ceverino, Daniel; Tweed, Dylan; Moody, Christopher E.; Primack, Joel

    2014-10-01

    We study the properties of giant clumps and their radial gradients in high-z disc galaxies using AMR cosmological simulations. Our sample consists of 770 snapshots in the redshift range z = 4-1 from 29 galaxies that at z = 2 span the stellar mass range (0.2-3) × 1011 M⊙. Extended gas discs exist in 83 per cent of the snapshots. Clumps are identified by gas density in 3D and their stellar and dark matter components are considered thereafter. While most of the overdensities are diffuse and elongated, 91 per cent of their mass and 83 per cent of their star formation rate (SFR) are in compact round clumps. Nearly all galaxies have a central, massive bulge clump, while 70 per cent of the discs show off-centre clumps, 3-4 per galaxy. The fraction of clumpy discs peaks at intermediate disc masses. Clumps are divided based on dark matter content into in situ and ex situ originating from violent disc instability (VDI) and minor mergers, respectively. 60 per cent of the discs are in a VDI phase showing off-centre in situ clumps, which contribute 1-7 per cent of the disc mass and 5-45 per cent of its SFR. The in situ clumps constitute 75 per cent of the off-centre clumps in terms of number and SFR but only half the mass, each clump containing on average 1 per cent of the disc mass and 6 per cent of its SFR. They have young stellar ages, 100-400 Myr, and high specific SFR (sSFR), 1-10 Gyr-1. They exhibit gradients resulting from inward clump migration, where the inner clumps are somewhat more massive and older, with lower gas fraction and sSFR and higher metallicity. Similar observed gradients indicate that clumps survive outflows. The ex situ clumps have stellar ages 0.5-3 Gyr and sSFR ˜0.1-2 Gyr-1, and they exhibit weaker gradients. Massive clumps of old stars at large radii are likely ex situ mergers, though half of them share the disc rotation.

  7. Record of seasonal body fluid composition in Black Clam (Bivalve) using clumped isotope thermometric approach

    NASA Astrophysics Data System (ADS)

    Rahman, H.; Naidu, P. K.; Ghosh, P.

    2012-12-01

    Application of clumped isotope thermometry (Ghosh et al., 2006) is highly debated while resolving the issue of kinetic effect during biogenic carbonate precipitation. Mollusks are particularly attractive target to study the kinetic effect (Eiler, 2011) in the biological system owing to its incremental growth ring patterns. This allows understanding the role of environmental parameters other than temperature driving the distribution of heavier isotopologues. Guo et al., (2010) indicated role of pH in driving the distribution of heavier isotopolgues in the carbonates. We investigated here clumped isotopic composition of Black Calm (bivalve shell) caught live from a location in Southern Indian Estuary. The region experiences large change in seasonal condition. The physical environmental parameters at that location were monitored for last 3 years at monthly interval. The salinity, temperature, pH information are available for all the months when mollusc growth bands are deposited. The bottom water of estuary, where bivalve thrives experience maximum temperature of 32°C during November and December, while temperature during Monsoon months (July, August) drops lows to 26°C. Initial results on clumped isotope thermometry on the growth bands precipitated suggests that during the time in a year when pH level is alkaline i.e. 8.0±0.2 there is large consistency between actual temperature and estimated temperature using clumped isotope based thermometry. While the pH drops towards acidic i.e. 6.8±0.1 lower temperature estimates compared to actual was recorded. The effect of metabolic rate and body temperature variability is not been investigated as suggested in case of land snails based clumped isotope thermometry (Zaarur et al., 2011). Mollusc shell can be used to trace the composition of environmental water while pH variation is minimal. In this presentation analyses of more shell specimen and explore the role of pH and osmo-regulation in mollusc determining the clumped

  8. Carbonate clumped isotope compositions of modern marine mollusk and brachiopod shells

    NASA Astrophysics Data System (ADS)

    Henkes, Gregory A.; Passey, Benjamin H.; Wanamaker, Alan D.; Grossman, Ethan L.; Ambrose, William G.; Carroll, Michael L.

    2013-04-01

    We present an empirical calibration of the carbonate clumped isotope thermometer based on mollusk and brachiopod shells from natural and controlled environments spanning water temperatures of -1.0 to 29.5 °C. The clumped isotope data (Δ47) are normalized to CO2 gases with equilibrium distributions of clumped isotopologues at high temperature (1000 °C) and low temperature (27 or 30 °C), and thus the calibration is unique in being directly referenced to a carbon dioxide equilibrium reference frame (Dennis et al., 2011, Defining an absolute reference frame for clumped isotope studies of CO2, Geochimica et Cosmochimica Acta, 75, 7117-7131). The shell clumped isotope data define the following relation as a function of temperature (in kelvin): Δ47=0.0327×106/T2+0.3286(r2=0.84). The temperature sensitivity (slope) of this relation is lower than those based on corals, fish otoliths, foraminifera, and coccoliths, but is similar to theoretical predictions for calcite based on lattice dynamics calculations. We find no convincing methodological or biological explanations for the difference in temperature sensitivity between this calibration and the previous calibrations, and suggest that the discrepancy might represent real but unknown differences in mineral-DIC clumped isotope fractionation between mollusks/brachiopods and other taxa. Nevertheless, revised analytical methods similar to those used in this study are now in wide use, and it will be important to develop calibrations for other taxonomic groups using these updated methods, with analyses directly referenced to the carbon dioxide equilibrium reference frame.

  9. Formation of a protocluster: A virialized structure from gravoturbulent collapse. I. Simulation of cluster formation in a collapsing molecular cloud

    NASA Astrophysics Data System (ADS)

    Lee, Yueh-Ning; Hennebelle, Patrick

    2016-06-01

    Context. Stars are often observed to form in clusters and it is therefore important to understand how such a region of concentrated mass is assembled out of the diffuse medium. The properties of such a region eventually prescribe the important physical mechanisms and determine the characteristics of the stellar cluster. Aims: We study the formation of a gaseous protocluster inside a molecular cloud and associate its internal properties with those of the parent cloud by varying the level of the initial turbulence of the cloud with a view to better characterize the subsequent stellar cluster formation. Methods: We performed high resolution magnetohydrodynamic (MHD) simulations of gaseous protoclusters forming in molecular clouds collapsing under self-gravity. We determined ellipsoidal cluster regions via gas kinematics and sink particle distribution, permitting us to determine the mass, size, and aspect ratio of the cluster. We studied the cluster properties, such as kinetic and gravitational energy, and made links to the parent cloud. Results: The gaseous protocluster is formed out of global collapse of a molecular cloud and has non-negligible rotation owing to angular momentum conservation during the collapse of the object. Most of the star formation occurs in this region, which occupies only a small volume fraction of the whole cloud. This dense entity is a result of the interplay between turbulence and gravity. We identify such regions in simulations and compare the gas and sink particles to observed star-forming clumps and embedded clusters, respectively. The gaseous protocluster inferred from simulation results presents a mass-size relation that is compatible with observations. We stress that the stellar cluster radius, although clearly correlated with the gas cluster radius, depends sensitively on its definition. Energy analysis is performed to confirm that the gaseous protocluster is a product of gravoturbulent reprocessing and that the support of turbulent

  10. Effects of Brine Salinity on Clumped Isotopes and Implications for Applications to Carbonate Diagenesis

    NASA Astrophysics Data System (ADS)

    Kluge, T.; John, C. M.; Jourdan, A.

    2012-12-01

    Carbonate clumped isotope thermometry relies on the overabundance of 13C-18O bonds in the crystal lattice compared to a stochastic distribution and was calibrated in laboratory experiments using carbonates precipitated from (mainly) de-ionized water that was supersaturated with calcium carbonate (Ghosh et al., 2006). However, the clumped isotope method has also been applied to carbonates that precipitated in the marine and subsurface environments from fluids with significant salt concentrations. These saline fluids differ markedly from the solution used for laboratory calibration. Variations in the electro-chemical potential due to changes in the ion composition and concentration of the solution could influence the physical properties of the clumped isotope bonding and lead to deviations from the commonly used temperature calibration. Consequently, calibrations at high salinities and high temperatures are needed to confidently extend the application of clumped isotopes to diagenetic processes. We investigated the effect of salinity on clumping by precipitating carbonates (mainly calcite) in the laboratory between 23 and 90 °C using a setup analogous to the experiments of Ghosh et al. (2006). A first subset of experiments was performed at low salinities, while during a second subset of experiments we saturated the solution with NaCl (about 35 g/100 ml) in order to mimic a highly saline brine. Since the same experimental procedures were used for both sub-sets (same temperatures of precipitation and rates of nitrogen gas bubbling), we can directly compare clumped isotope values in highly saline versus low-salinity solutions. The initial clumped isotope results obtained from the brine solution agree within uncertainty with results from carbonates precipitated from a NaCl-free solution at the same temperatures. This suggests that clumped isotopes can be applied to carbonates precipitated under highly saline conditions. We acknowledge the financial support of QCCSRC

  11. Nearby Clumpy, Gas Rich, Star-forming Galaxies: Local Analogs of High-redshift Clumpy Galaxies

    NASA Astrophysics Data System (ADS)

    Garland, C. A.; Pisano, D. J.; Mac Low, M.-M.; Kreckel, K.; Rabidoux, K.; Guzmán, R.

    2015-07-01

    Luminous compact blue galaxies (LCBGs) have enhanced star formation rates (SFRs) and compact morphologies. We combine Sloan Digital Sky Survey data with H i data of 29 LCBGs at redshift z ∼ 0 to understand their nature. We find that local LCBGs have high atomic gas fractions (∼50%) and SFRs per stellar mass consistent with some high-redshift star-forming galaxies (SFGs). Many local LCBGs also have clumpy morphologies, with clumps distributed across their disks. Although rare, these galaxies appear to be similar to the clumpy SFGs commonly observed at z ∼ 1–3. Local LCBGs separate into three groups: (1) interacting galaxies (∼20%) (2) clumpy spirals (∼40%) and (3) non-clumpy, non-spirals with regular shapes and smaller effective radii and stellar masses (∼40%). It seems that the method of building up a high gas fraction, which then triggers star formation, is not the same for all local LCBGs. This may lead to a dichotomy in galaxy characteristics. We consider possible gas delivery scenarios and suggest that clumpy spirals, preferentially located in clusters and with companions, are smoothly accreting gas from tidally disrupted companions and/or intracluster gas enriched by stripped satellites. Conversely, as non-clumpy galaxies are preferentially located in the field and tend to be isolated, we suggest clumpy, cold streams, which destroy galaxy disks and prevent clump formation, as a likely gas delivery mechanism for these systems. Other possibilities include smooth cold streams, a series of minor mergers, or major interactions.

  12. NEARBY CLUMPY, GAS RICH, STAR-FORMING GALAXIES: LOCAL ANALOGS OF HIGH-REDSHIFT CLUMPY GALAXIES

    SciTech Connect

    Garland, C. A.; Pisano, D. J.; Rabidoux, K.; Low, M.-M. Mac; Kreckel, K.; Guzmán, R. E-mail: djpisano@mail.wvu.edu E-mail: mordecai@amnh.org E-mail: guzman@astro.ufl.edu

    2015-07-10

    Luminous compact blue galaxies (LCBGs) have enhanced star formation rates (SFRs) and compact morphologies. We combine Sloan Digital Sky Survey data with H i data of 29 LCBGs at redshift z ∼ 0 to understand their nature. We find that local LCBGs have high atomic gas fractions (∼50%) and SFRs per stellar mass consistent with some high-redshift star-forming galaxies (SFGs). Many local LCBGs also have clumpy morphologies, with clumps distributed across their disks. Although rare, these galaxies appear to be similar to the clumpy SFGs commonly observed at z ∼ 1–3. Local LCBGs separate into three groups: (1) interacting galaxies (∼20%); (2) clumpy spirals (∼40%); and (3) non-clumpy, non-spirals with regular shapes and smaller effective radii and stellar masses (∼40%). It seems that the method of building up a high gas fraction, which then triggers star formation, is not the same for all local LCBGs. This may lead to a dichotomy in galaxy characteristics. We consider possible gas delivery scenarios and suggest that clumpy spirals, preferentially located in clusters and with companions, are smoothly accreting gas from tidally disrupted companions and/or intracluster gas enriched by stripped satellites. Conversely, as non-clumpy galaxies are preferentially located in the field and tend to be isolated, we suggest clumpy, cold streams, which destroy galaxy disks and prevent clump formation, as a likely gas delivery mechanism for these systems. Other possibilities include smooth cold streams, a series of minor mergers, or major interactions.

  13. Clumped isotopes reveal the influence of deformation style on fluid flow and cementation along the Moab Fault, Paradox Basin, Utah

    NASA Astrophysics Data System (ADS)

    Huntington, K. W.; Bergman, S.; Crider, J. G.

    2012-12-01

    Brittle fault systems can serve as either conduits or barriers to fluid flow, impacting mass and heat transfer in the crust and influencing the potential storage and migration of hydrocarbons and geothermal fluids. For fault systems in porous sandstones, different classes of structures control both hydrological and mechanical behavior during fault evolution: while cataclastic deformation bands form zones of localized deformation and crushed grains that reduce permeability within and across fault zones, joints can act as significant conduits for fluid. We investigate the relationship between structures and fluid flow in porous sandstones by studying calcite cements along the Moab Fault, a large normal fault system in the Paradox Basin, Utah. We use clumped isotope thermometry of fault cements to independently determine both the temperature and δ18O of the water from which the cements grew, placing new constraints on the source and path of diagenetic fluids in the basin. Based on fluid inclusion micro-thermometry and stable isotopic analysis of calcite cements from the Moab Fault, previous workers have hypothesized that joints served as conduits for the ascension of warm (84-125 °C) basinal fluids and deeply circulating meteoric waters. At the minor joint-dominated fault segment from which these data were collected, clumped isotope temperatures range from 57±10 to 101±2°C (2 SE), consistent with this hypothesis. However, at the nearby intersection of two major fault segments - in a zone characterized by both deformation bands and abundant joints - we find a broad range of temperatures (12±4 to 78±4°C) that vary spatially with distance from the fault and correlate with variations in secondary deformation structures (joints and deformation bands). These data provide the first evidence for cement growth from Earth surface-temperature fluids along the Moab Fault and suggests that the Fault served as a conduit for both ascending and descending fluids. The spatial

  14. On the interpretation of sub-giant branch morphologies of intermediate-age star clusters with extended main sequence turnoffs

    NASA Astrophysics Data System (ADS)

    Goudfrooij, Paul; Girardi, Léo; Rosenfield, Philip; Bressan, Alessandro; Marigo, Paola; Correnti, Matteo; Puzia, Thomas H.

    2015-06-01

    High-quality photometry of many star clusters in the Magellanic Clouds with ages of 1-2 Gyr revealed main sequence turnoffs (MSTOs) that are significantly wider than can be accounted for by a simple stellar population (SSP). Such extended MSTOs (eMSTOs) are often interpreted in terms of an age spread of several 108 yr, challenging the traditional view of star clusters as being formed in a single star formation episode. Li et al. and Bastian & Niederhofer recently investigated the sub-giant branches (SGBs) of NGC 1651, NGC 1806, and NGC 1846, three star clusters in the Large Magellanic Cloud (LMC) that exhibit an eMSTO. They argued that the SGB of these star clusters can be explained only by an SSP. We study these and two other similar star clusters in the LMC, using extensive simulations of SSPs including unresolved binaries. We find that the shapes of the cross-SGB profiles of all star clusters in our sample are in fact consistent with their cross-MSTO profiles when the latter are interpreted as age distributions. Conversely, SGB morphologies of star clusters with eMSTOs are found to be inconsistent with those of simulated SSPs. Finally, we create PARSEC isochrones from tracks featuring a grid of convective overshoot levels and a very fine grid of stellar masses. A comparison of the observed photometry with these isochrones shows that the morphology of the red clump (RC) of such star clusters is also consistent with that implied by their MSTO in the age spread scenario. We conclude that the SGB and RC morphologies of star clusters featuring eMSTOs are consistent with the scenario in which the eMSTOs are caused by a distribution of stellar ages.

  15. Staphylococcus aureus clumping factor B mediates biofilm formation in the absence of calcium

    PubMed Central

    Abraham, Nabil M.

    2012-01-01

    Staphylococcus aureus is the leading cause of nosocomial infections and a major cause of community-acquired infections. Biofilm formation is a key virulence determinant in certain types of S. aureus infection, especially those involving inserted medical devices. We found in a previous study that the calcium chelators sodium citrate and EGTA inhibit biofilm formation in certain strains of S. aureus but actually augment biofilm formation in other strains. Even two closely related strains, Newman and 10833, exhibited strikingly different biofilm phenotypes in the presence of calcium chelators, in that biofilm formation was inhibited in Newman but augmented in 10833. We also found that the surface protein clumping factor B (ClfB) plays a role in this phenomenon. In this study, we confirm that ClfB is required for biofilm formation under calcium-depleted conditions. We investigated the post-translational regulation of ClfB-mediated biofilm formation and found evidence that both calcium and the protease aureolysin disrupt established ClfB-dependent biofilms. Finally, we investigated the genetic basis for the biofilm-negative phenotype in strain Newman versus the biofilm-positive phenotype in strain 10833 under calcium-depleted conditions and found that strain 10833 contains a deletion that results in a stop codon within the aureolysin gene (aur). When 10833 expressed Newman aur, surface-associated ClfB and the ability to form a biofilm in chelating conditions was lost. Thus, the positive effect of chelating agents on biofilm formation in certain strains can be explained by increased ClfB activity in the absence of calcium and the discrepancy in the response of strains 10833 and Newman can be explained by point mutations in aur. This study reveals a previously unknown, to our knowledge, role for ClfB in biofilm formation and underscores the potential for striking phenotypic variability resulting from minor differences in strain background. PMID:22442307

  16. Risk group characteristics and viral transmission clusters in South-East Asian patients infected with HIV-1 circulating recombinant form (CRF)01_AE and subtype B

    PubMed Central

    Oyomopito, Rebecca A; Chen, Yen-Ju; Sungkanuparph, Somnuek; Kantor, Rami; Merati, Tuti; Yam, Wing-Cheong; Sirisanthana, Thira; Li, Patrick CK; Kantipong, Pacharee; Phanuphak, Praphan; Lee, Chris KC; Kamarulzaman, Adeeba; Ditangco, Rossana; Huang, Szu-Wei; Sohn, Annette H; Law, Matthew; Chen, Yi Ming A

    2016-01-01

    HIV-1 epidemics in Asian countries are driven by varying exposures. The epidemiology of the regional pandemic has been changing with the spread of HIV-1 to lower-risk populations through sexual transmission. Common HIV-1 genotypes include subtype B and circulating recombinant form (CRF)01_AE. Our objective was to use HIV-1 genotypic data to better quantify local epidemics. TASER-M is a multi-centre prospective cohort of HIV-infected patients. Associations between HIV-exposure, patient gender, country of sample origin and HIV-1 genotype were evaluated by multivariate logistic regression. Phylogenetic methods were used on genotypic data to investigate transmission relationships. A total of 1086 patients from Thailand, Hong Kong, Malaysia and the Philippines were included in analyses. Proportions of males within countries varied (Thailand: 55.6%, Hong Kong: 86.1%, Malaysia: 81.4%, Philippines: 93.8%; p <0.001) as did HIV exposures (Heterosexual contact: Thailand: 85.7%, Hong Kong, 46.2%, Malaysia: 47.8%, Philippines: 25.0%; p <0.001). After adjustment, we found increased subtype B infection among men-who-have-sex with-men, relative to heterosexual-reported exposures (OR = 2.4, p <0.001). We further describe four transmission clusters of 8–15 treatment naive, predominantly symptomatic patients (two each for subtype B and CRF01_AE). Risk-group sub-populations differed with respect to the infecting HIV-1 genotype. Homosexual exposure patients had a higher odds of being infected with subtype B. Where HIV-1 genotypes circulate within countries or patient risk-groups, local monitoring of genotype-specific transmissions may play a role in focussing public health prevention strategies. Phylogenetic evaluations provide complementary information for surveillance and monitoring of viruses with high mutation rates such as HIV-1 and Ebola. PMID:26362956

  17. A Wide-Field Hubble Space Telescope Study of the Cluster Cl 0024+1654 at z=0.4. II. The Cluster Mass Distribution

    NASA Astrophysics Data System (ADS)

    Kneib, Jean-Paul; Hudelot, Patrick; Ellis, Richard S.; Treu, Tommaso; Smith, Graham P.; Marshall, Phil; Czoske, Oliver; Smail, Ian; Natarajan, Priyamvada

    2003-12-01

    We present a comprehensive lensing analysis of the rich cluster Cl 0024+1654 (z=0.395) based on panoramic sparse-sampled imaging conducted with the WFPC2 and STIS cameras on board the Hubble Space Telescope. By comparing higher fidelity signals in the limited STIS data with the wider field data available from WFPC2, we demonstrate an ability to detect reliably weak-lensing signals to a cluster radius of ~=5 h-165 Mpc, where the mean shear is around 1%. This enables us to study the distribution of dark matter with respect to the cluster light over an unprecedented range of cluster radii and environments. The projected mass distribution reveals a secondary concentration representing 30% of the overall cluster mass, which is also visible in the distribution of cluster member galaxies. We develop a method to derive the projected mass profile of the main cluster taking into account the influence of the secondary clump. We normalize the mass profile determined from the shear by assuming that background galaxies selected with 23cluster is independently determined from strong-lensing constraints according to a detailed model that utilizes the multiply imaged arc at z=1.675. Combining strong and weak constraints, we are able to probe the mass profile of the cluster on scales of 0.1-5 Mpc, thus providing a valuable test of the universal form proposed by Navarro, Frenk, & White (NFW) on large scales. A generalized power-law fit indicates an asymptotic three-dimensional density distribution of ρ~r-n with n>2.4. An isothermal mass profile is therefore strongly rejected, whereas an NFW profile with M200=6.1+1.2-1.1×1014 h-165 Msolar provides a good fit to the lensing data. We isolate cluster members according to their optical/near-infrared colors; the red cluster light closely traces the dark matter with a mean

  18. Reinforcing the link between the double red clump and the X-shaped bulge of the Milky Way

    NASA Astrophysics Data System (ADS)

    Gonzalez, O. A.; Zoccali, M.; Debattista, V. P.; Alonso-García, J.; Valenti, E.; Minniti, D.

    2015-11-01

    The finding of a double red clump in the luminosity function of the Milky Way bulge has been interpreted as evidence for an X-shaped structure. Recently, an alternative explanation has been suggested, where the double red clump is an effect of multiple stellar populations in a classical spheroid. In this Letter we provide an observational assessment of this scenario and show that it is not consistent with the behaviour of the red clump across different lines of sight, particularly at high distances from the Galactic plane. Instead, we confirm that the shape of the red clump magnitude distribution closely follows the distance distribution expected for an X-shaped bulge at critical Galactic latitudes. We also emphasize some key observational properties of the bulge red clump that should not be neglected in the search for alternative scenarios. Based on observations taken within the ESO VISTA Public Survey VVV, Programme ID 179.B-2002.

  19. MLAOS: A Multi-Point Linear Array of Optical Sensors for Coniferous Foliage Clumping Index Measurement

    PubMed Central

    Qu, Yonghua; Fu, Lizhe; Han, Wenchao; Zhu, Yeqing; Wang, Jindi

    2014-01-01

    The canopy foliage clumping effect is primarily caused by the non-random distribution of canopy foliage. Currently, measurements of clumping index (CI) by handheld instruments is typically time- and labor-intensive. We propose a low-cost and low-power automatic measurement sys