NASA Astrophysics Data System (ADS)
Parmentier, Geneviève; Baumgardt, Holger
2012-12-01
We highlight the impact of cluster-mass-dependent evolutionary rates upon the evolution of the cluster mass function during violent relaxation, that is, while clusters dynamically respond to the expulsion of their residual star-forming gas. Mass-dependent evolutionary rates arise when the mean volume density of cluster-forming regions is mass-dependent. In that case, even if the initial conditions are such that the cluster mass function at the end of violent relaxation has the same shape as the embedded-cluster mass function (i.e. infant weight-loss is mass-independent), the shape of the cluster mass function does change transiently during violent relaxation. In contrast, for cluster-forming regions of constant mean volume density, the cluster mass function shape is preserved all through violent relaxation since all clusters then evolve at the same mass-independent rate. On the scale of individual clusters, we model the evolution of the ratio of the dynamical mass to luminous mass of a cluster after gas expulsion. Specifically, we map the radial dependence of the time-scale for a star cluster to return to equilibrium. We stress that fields of view a few pc in size only, typical of compact clusters with rapid evolutionary rates, are likely to reveal cluster regions which have returned to equilibrium even if the cluster experienced a major gas expulsion episode a few Myr earlier. We provide models with the aperture and time expressed in units of the initial half-mass radius and initial crossing-time, respectively, so that our results can be applied to clusters with initial densities, sizes, and apertures different from ours.
The emergence of the galactic stellar mass function from a non-universal IMF in clusters
NASA Astrophysics Data System (ADS)
Dib, Sami; Basu, Shantanu
2018-06-01
We investigate the dependence of a single-generation galactic mass function (SGMF) on variations in the initial stellar mass functions (IMF) of stellar clusters. We show that cluster-to-cluster variations of the IMF lead to a multi-component SGMF where each component in a given mass range can be described by a distinct power-law function. We also show that a dispersion of ≈0.3 M⊙ in the characteristic mass of the IMF, as observed for young Galactic clusters, leads to a low-mass slope of the SGMF that matches the observed Galactic stellar mass function even when the IMFs in the low-mass end of individual clusters are much steeper.
Low-luminosity stellar mass functions in globular clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richer, H.B.; Fahlman, G.G.; Buonanno, R.
New data are presented on cluster luminosity functions and mass functions for selected fields in the globular clusters M13 and M71, extending down the main sequence to at least 0.2 solar mass. In this experiment, CCD photometry data were obtained at the prime focus of the CFHT on the cluster fields that were far from the cluster center. Luminosity functions were constructed, using the ADDSTAR routine to correct for the background, and mass functions were derived using the available models. The mass functions obtained for M13 and M71 were compared to existing data for NGC 6397. Results show that (1)more » all three globular clusters display a marked change in slope at about 0.4 solar mass, with the slopes becoming considerably steeper toward lower masses; (2) there is no correlation between the slope of the mass function and metallicity; and (3) the low-mass slope of the mass function for M13 is much steeper than for NGC 6397 and M71. 22 refs.« less
Slicing cluster mass functions with a Bayesian razor
NASA Astrophysics Data System (ADS)
Sealfon, C. D.
2010-08-01
We apply a Bayesian ``razor" to forecast Bayes factors between different parameterizations of the galaxy cluster mass function. To demonstrate this approach, we calculate the minimum size N-body simulation needed for strong evidence favoring a two-parameter mass function over one-parameter mass functions and visa versa, as a function of the minimum cluster mass.
NASA Astrophysics Data System (ADS)
Paust, Nathaniel E. Q.; Reid, I. Neill; Piotto, Giampaolo; Aparicio, Antonio; Anderson, Jay; Sarajedini, Ata; Bedin, Luigi R.; Chaboyer, Brian; Dotter, Aaron; Hempel, Maren; Majewski, Steven; Marín-Franch, A.; Milone, Antonino; Rosenberg, Alfred; Siegel, Michael
2010-02-01
We have used observations obtained as part of the Hubble Space Telescope/ACS Survey of Galactic Globular Clusters to construct global present-day mass functions for 17 globular clusters utilizing multi-mass King models to extrapolate from our observations to the global cluster behavior. The global present-day mass functions for these clusters are well matched by power laws from the turnoff, ≈0.8 M sun, to 0.2-0.3 M sun on the lower main sequence. The slopes of those power-law fits, α, have been correlated with an extensive set of intrinsic and extrinsic cluster properties to investigate which parameters may influence the form of the present-day mass function. We do not confirm previous suggestions of correlations between α and either metallicity or Galactic location. However, we do find a strong statistical correlation with the related parameters central surface brightness, μ V , and inferred central density, ρ0. The correlation is such that clusters with denser cores (stronger binding energy) tend to have steeper mass functions (a higher proportion of low-mass stars), suggesting that dynamical evolution due to external interactions may have played a key role in determining α. Thus, the present-day mass function may owe more to nurture than to nature. Detailed modeling of external dynamical effects is therefore a requisite for determining the initial mass function for Galactic globular clusters.
Luminosity Function of Faint Globular Clusters in M87
NASA Astrophysics Data System (ADS)
Waters, Christopher Z.; Zepf, Stephen E.; Lauer, Tod R.; Baltz, Edward A.; Silk, Joseph
2006-10-01
We present the luminosity function to very faint magnitudes for the globular clusters in M87, based on a 30 orbit Hubble Space Telescope (HST) WFPC2 imaging program. The very deep images and corresponding improved false source rejection allow us to probe the mass function further beyond the turnover than has been done before. We compare our luminosity function to those that have been observed in the past, and confirm the similarity of the turnover luminosity between M87 and the Milky Way. We also find with high statistical significance that the M87 luminosity function is broader than that of the Milky Way. We discuss how determining the mass function of the cluster system to low masses can constrain theoretical models of the dynamical evolution of globular cluster systems. Our mass function is consistent with the dependence of mass loss on the initial cluster mass given by classical evaporation, and somewhat inconsistent with newer proposals that have a shallower mass dependence. In addition, the rate of mass loss is consistent with standard evaporation models, and not with the much higher rates proposed by some recent studies of very young cluster systems. We also find that the mass-size relation has very little slope, indicating that there is almost no increase in the size of a cluster with increasing mass.
The insignificant evolution of the richness-mass relation of galaxy clusters
NASA Astrophysics Data System (ADS)
Andreon, S.; Congdon, P.
2014-08-01
We analysed the richness-mass scaling of 23 very massive clusters at 0.15 < z < 0.55 with homogenously measured weak-lensing masses and richnesses within a fixed aperture of 0.5 Mpc radius. We found that the richness-mass scaling is very tight (the scatter is <0.09 dex with 90% probability) and independent of cluster evolutionary status and morphology. This implies a close association between infall and evolution of dark matter and galaxies in the central region of clusters. We also found that the evolution of the richness-mass intercept is minor at most, and, given the minor mass evolution across the studied redshift range, the richness evolution of individual massive clusters also turns out to be very small. Finally, it was paramount to account for the cluster mass function and the selection function. Ignoring them would lead to larger biases than the (otherwise quoted) errors. Our study benefits from: a) weak-lensing masses instead of proxy-based masses thereby removing the ambiguity between a real trend and one induced by an accounted evolution of the used mass proxy; b) the use of projected masses that simplify the statistical analysis thereby not requiring consideration of the unknown covariance induced by the cluster orientation/triaxiality; c) the use of aperture masses as they are free of the pseudo-evolution of mass definitions anchored to the evolving density of the Universe; d) a proper accounting of the sample selection function and of the Malmquist-like effect induced by the cluster mass function; e) cosmological simulations for the computation of the cluster mass function, its evolution, and the mass growth of each individual cluster.
NASA Astrophysics Data System (ADS)
Baumgardt, H.; Hilker, M.
2018-05-01
We have determined masses, stellar mass functions and structural parameters of 112 Milky Way globular clusters by fitting a large set of N-body simulations to their velocity dispersion and surface density profiles. The velocity dispersion profiles were calculated based on a combination of more than 15,000 high-precision radial velocities which we derived from archival ESO/VLT and Keck spectra together with ˜20, 000 published radial velocities from the literature. Our fits also include the stellar mass functions of the globular clusters, which are available for 47 clusters in our sample, allowing us to self-consistently take the effects of mass segregation and ongoing cluster dissolution into account. We confirm the strong correlation between the global mass functions of globular clusters and their relaxation times recently found by Sollima & Baumgardt (2017). We also find a correlation of the escape velocity from the centre of a globular cluster and the fraction of first generation stars (FG) in the cluster recently derived for 57 globular clusters by Milone et al. (2017), but no correlation between the FG star fraction and the global mass function of a globular cluster. This could indicate that the ability of a globular cluster to keep the wind ejecta from the polluting star(s) is the crucial parameter determining the presence and fraction of second generation stars and not its later dynamical mass loss.
Statistical Issues in Galaxy Cluster Cosmology
NASA Technical Reports Server (NTRS)
Mantz, Adam
2013-01-01
The number and growth of massive galaxy clusters are sensitive probes of cosmological structure formation. Surveys at various wavelengths can detect clusters to high redshift, but the fact that cluster mass is not directly observable complicates matters, requiring us to simultaneously constrain scaling relations of observable signals with mass. The problem can be cast as one of regression, in which the data set is truncated, the (cosmology-dependent) underlying population must be modeled, and strong, complex correlations between measurements often exist. Simulations of cosmological structure formation provide a robust prediction for the number of clusters in the Universe as a function of mass and redshift (the mass function), but they cannot reliably predict the observables used to detect clusters in sky surveys (e.g. X-ray luminosity). Consequently, observers must constrain observable-mass scaling relations using additional data, and use the scaling relation model in conjunction with the mass function to predict the number of clusters as a function of redshift and luminosity.
Starburst clusters in the Galactic center
NASA Astrophysics Data System (ADS)
Habibi, Maryam
2014-09-01
The central region of the Galaxy is the most active site of star formation in the Milky Way, where massive stars have formed very recently and are still forming today. The rich population of massive stars in the Galactic center provide a unique opportunity to study massive stars in their birth environment and probe their initial mass function, which is the spectrum of stellar masses at their birth. The Arches cluster is the youngest among the three massive clusters in the Galactic center, providing a collection of high-mass stars and a very dense core which makes this cluster an excellent site to address questions about massive star formation, the stellar mass function and the dynamical evolution of massive clusters in the Galactic center. In this thesis, I perform an observational study of the Arches cluster using K_{s}-band imaging obtained with NAOS/CONICA at the VLT combined with Subaru/Cisco J-band data to gain a full understanding of the cluster mass distribution out to its tidal radius for the first time. Since the light from the Galactic center reaches us through the Galactic disc, the extinction correction is crucial when studying this region. I use a Bayesian method to construct a realistic extinction map of the cluster. It is shown in this study that the determination of the mass of the most massive star in the Arches cluster, which had been used in previous studies to establish an upper mass limit for the star formation process in the Milky Way, strongly depends on the assumed slope of the extinction law. Assuming the two regimes of widely used infrared extinction laws, I show that the difference can reach up to 30% for individually derived stellar masses and Δ A_{Ks}˜ 1 magnitude in acquired K_{s}-band extinction, while the present-day mass function slope changes by ˜ 0.17 dex. The present-day mass function slope derived assuming the more recent extinction law, which suggests a steeper wavelength dependence for the infrared extinction law, reveals an overpopulation of massive stars in the core (r<0.2 pc) with a flat slope of α_{Nishi}=-1.50 ±0.35 in comparison to the Salpeter slope of α=-2.3. The slope of the mass function increases to α_{Nishi}=-2.21 ±0.27 in the intermediate annulus (0.2
Mass functions for globular cluster main sequences based on CCD photometry and stellar models
NASA Astrophysics Data System (ADS)
McClure, Robert D.; Vandenberg, Don A.; Smith, Graeme H.; Fahlman, Gregory G.; Richer, Harvey B.; Hesser, James E.; Harris, William E.; Stetson, Peter B.; Bell, R. A.
1986-08-01
Main-sequence luminosity functions constructed from CCD observations of globular clusters reveal a strong trend in slope with metal abundance. Theoretical luminosity functions constructed from VandenBerg and Bell's (1985) isochrones have been fitted to the observations and reveal a trend between x, the power-law index of the mass function, and metal abundance. The most metal-poor clusters require an index of about x = 2.5, whereas the most metal-rich clusters exhibit an index of x of roughly -0.5. The luminosity functions for two sparse clusters, E3 and Pal 5, are distinct from those of the more massive clusters, in that they show a turndown which is possibly a result of mass loss or tidal disruption.
Black hole binaries dynamically formed in globular clusters
NASA Astrophysics Data System (ADS)
Park, Dawoo; Kim, Chunglee; Lee, Hyung Mok; Bae, Yeong-Bok; Belczynski, Krzysztof
2017-08-01
We investigate properties of black hole (BH) binaries formed in globular clusters via dynamical processes, using directN-body simulations. We pay attention to effects of BH mass function on the total mass and mass ratio distributions of BH binaries ejected from clusters. First, we consider BH populations with two different masses in order to learn basic differences from models with single-mass BHs only. Secondly, we consider continuous BH mass functions adapted from recent studies on massive star evolution in a low metallicity environment, where globular clusters are formed. In this work, we consider only binaries that are formed by three-body processes and ignore stellar evolution and primordial binaries for simplicity. Our results imply that most BH binary mergers take place after they get ejected from the cluster. Also, mass ratios of dynamically formed binaries should be close to 1 or likely to be less than 2:1. Since the binary formation efficiency is larger for higher-mass BHs, it is likely that a BH mass function sampled by gravitational-wave observations would be weighed towards higher masses than the mass function of single BHs for a dynamically formed population. Applying conservative assumptions regarding globular cluster populations such as small BH mass fraction and no primordial binaries, the merger rate of BH binaries originated from globular clusters is estimated to be at least 6.5 yr-1 Gpc-3. Actual rate can be up to more than several times of our conservative estimate.
Counts of galaxy clusters as cosmological probes: the impact of baryonic physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balaguera-Antolínez, Andrés; Porciani, Cristiano, E-mail: abalan@astro.uni-bonn.de, E-mail: porciani@astro.uni-bonn.de
2013-04-01
The halo mass function from N-body simulations of collisionless matter is generally used to retrieve cosmological parameters from observed counts of galaxy clusters. This neglects the observational fact that the baryonic mass fraction in clusters is a random variable that, on average, increases with the total mass (within an overdensity of 500). Considering a mock catalog that includes tens of thousands of galaxy clusters, as expected from the forthcoming generation of surveys, we show that the effect of a varying baryonic mass fraction will be observable with high statistical significance. The net effect is a change in the overall normalizationmore » of the cluster mass function and a milder modification of its shape. Our results indicate the necessity of taking into account baryonic corrections to the mass function if one wants to obtain unbiased estimates of the cosmological parameters from data of this quality. We introduce the formalism necessary to accomplish this goal. Our discussion is based on the conditional probability of finding a given value of the baryonic mass fraction for clusters of fixed total mass. Finally, we show that combining information from the cluster counts with measurements of the baryonic mass fraction in a small subsample of clusters (including only a few tens of objects) will nearly optimally constrain the cosmological parameters.« less
NASA Astrophysics Data System (ADS)
Messa, M.; Adamo, A.; Östlin, G.; Calzetti, D.; Grasha, K.; Grebel, E. K.; Shabani, F.; Chandar, R.; Dale, D. A.; Dobbs, C. L.; Elmegreen, B. G.; Fumagalli, M.; Gouliermis, D. A.; Kim, H.; Smith, L. J.; Thilker, D. A.; Tosi, M.; Ubeda, L.; Walterbos, R.; Whitmore, B. C.; Fedorenko, K.; Mahadevan, S.; Andrews, J. E.; Bright, S. N.; Cook, D. O.; Kahre, L.; Nair, P.; Pellerin, A.; Ryon, J. E.; Ahmad, S. D.; Beale, L. P.; Brown, K.; Clarkson, D. A.; Guidarelli, G. C.; Parziale, R.; Turner, J.; Weber, M.
2018-01-01
Recently acquired WFC3 UV (F275W and F336W) imaging mosaics under the Legacy Extragalactic UV Survey (LEGUS), combined with archival ACS data of M51, are used to study the young star cluster (YSC) population of this interacting system. Our newly extracted source catalogue contains 2834 cluster candidates, morphologically classified to be compact and uniform in colour, for which ages, masses and extinction are derived. In this first work we study the main properties of the YSC population of the whole galaxy, considering a mass-limited sample. Both luminosity and mass functions follow a power-law shape with slope -2, but at high luminosities and masses a dearth of sources is observed. The analysis of the mass function suggests that it is best fitted by a Schechter function with slope -2 and a truncation mass at 1.00 ± 0.12 × 105 M⊙. Through Monte Carlo simulations, we confirm this result and link the shape of the luminosity function to the presence of a truncation in the mass function. A mass limited age function analysis, between 10 and 200 Myr, suggests that the cluster population is undergoing only moderate disruption. We observe little variation in the shape of the mass function at masses above 1 × 104 M⊙ over this age range. The fraction of star formation happening in the form of bound clusters in M51 is ∼ 20 per cent in the age range 10-100 Myr and little variation is observed over the whole range from 1 to 200 Myr.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goudfrooij, Paul, E-mail: goudfroo@stsci.edu
We study mass functions of globular clusters derived from Hubble Space Telescope/Advanced Camera for Surveys images of the early-type merger remnant galaxy NGC 1316, which hosts a significant population of metal-rich globular clusters of intermediate age ({approx}3 Gyr). For the old, metal-poor ({sup b}lue{sup )} clusters, the peak mass of the mass function M{sub p} increases with internal half-mass density {rho}{sub h} as M{sub p}{proportional_to}{rho}{sub h}{sup 0.44}, whereas it stays approximately constant with galactocentric distance R{sub gal}. The mass functions of these clusters are consistent with a simple scenario in which they formed with a Schechter initial mass function andmore » evolved subsequently by internal two-body relaxation. For the intermediate-age population of metal-rich ({sup r}ed{sup )} clusters, the faint end of the previously reported power-law luminosity function of the clusters with R{sub gal} > 9 kpc is due to many of those clusters having radii larger than the theoretical maximum value imposed by the tidal field of NGC 1316 at their R{sub gal}. This renders disruption by two-body relaxation ineffective. Only a few such diffuse clusters are found in the inner regions of NGC 1316. Completeness tests indicate that this is a physical effect. Using comparisons with star clusters in other galaxies and cluster disruption calculations using published models, we hypothesize that most red clusters in the low-{rho}{sub h} tail of the initial distribution have already been destroyed in the inner regions of NGC 1316 by tidal shocking, and that several remaining low-{rho}{sub h} clusters will evolve dynamically to become similar to 'faint fuzzies' that exist in several lenticular galaxies. Finally, we discuss the nature of diffuse red clusters in early-type galaxies.« less
The young star cluster population of M51 with LEGUS - II. Testing environmental dependences
NASA Astrophysics Data System (ADS)
Messa, Matteo; Adamo, A.; Calzetti, D.; Reina-Campos, M.; Colombo, D.; Schinnerer, E.; Chandar, R.; Dale, D. A.; Gouliermis, D. A.; Grasha, K.; Grebel, E. K.; Elmegreen, B. G.; Fumagalli, M.; Johnson, K. E.; Kruijssen, J. M. D.; Östlin, G.; Shabani, F.; Smith, L. J.; Whitmore, B. C.
2018-06-01
It has recently been established that the properties of young star clusters (YSCs) can vary as a function of the galactic environment in which they are found. We use the cluster catalogue produced by the Legacy Extragalactic UV Survey (LEGUS) collaboration to investigate cluster properties in the spiral galaxy M51. We analyse the cluster population as a function of galactocentric distance and in arm and inter-arm regions. The cluster mass function exhibits a similar shape at all radial bins, described by a power law with a slope close to -2 and an exponential truncation around 105 M⊙. While the mass functions of the YSCs in the spiral arm and inter-arm regions have similar truncation masses, the inter-arm region mass function has a significantly steeper slope than the one in the arm region, a trend that is also observed in the giant molecular cloud mass function and predicted by simulations. The age distribution of clusters is dependent on the region considered, and is consistent with rapid disruption only in dense regions, while little disruption is observed at large galactocentric distances and in the inter-arm region. The fraction of stars forming in clusters does not show radial variations, despite the drop in the H2 surface density measured as a function of galactocentric distance. We suggest that the higher disruption rate observed in the inner part of the galaxy is likely at the origin of the observed flat cluster formation efficiency radial profile.
Calibrating First-Order Strong Lensing Mass Estimates in Clusters of Galaxies
NASA Astrophysics Data System (ADS)
Reed, Brendan; Remolian, Juan; Sharon, Keren; Li, Nan; SPT Clusters Cooperation
2018-01-01
We investigate methods to reduce the statistical and systematic errors inherent to using the Einstein Radius as a first-order mass estimate in strong lensing galaxy clusters. By finding an empirical universal calibration function, we aim to enable a first-order mass estimate of large cluster data sets in a fraction of the time and effort of full-scale strong lensing mass modeling. We use 74 simulated cluster data from the Argonne National Laboratory in a lens redshift slice of [0.159, 0.667] with various source redshifts in the range of [1.23, 2.69]. From the simulated density maps, we calculate the exact mass enclosed within the Einstein Radius. We find that the mass inferred from the Einstein Radius alone produces an error width of ~39% with respect to the true mass. We explore an array of polynomial and exponential correction functions with dependence on cluster redshift and projected radii of the lensed images, aiming to reduce the statistical and systematic uncertainty. We find that the error on the the mass inferred from the Einstein Radius can be reduced significantly by using a universal correction function. Our study has implications for current and future large galaxy cluster surveys aiming to measure cluster mass, and the mass-concentration relation.
The Effects of Single and Close Binary Evolution on the Stellar Mass Function
NASA Astrophysics Data System (ADS)
Schneider, R. N. F.; Izzard, G. R.; de Mink, S.; Langer, N., Stolte, A., de Koter, A.; Gvaramadze, V. V.; Hussmann, B.; Liermann, A.; Sana, H.
2013-06-01
Massive stars are almost exclusively born in star clusters, where stars in a cluster are expected to be born quasi-simultaneously and with the same chemical composition. The distribution of their birth masses favors lower over higher stellar masses, such that the most massive stars are rare, and the existence of an stellar upper mass limit is still debated. The majority of massive stars are born as members of close binary systems and most of them will exchange mass with a close companion during their lifetime. We explore the influence of single and binary star evolution on the high mass end of the stellar mass function using a rapid binary evolution code. We apply our results to two massive Galactic star clusters and show how the shape of their mass functions can be used to determine cluster ages and comment on the stellar upper mass limit in view of our new findings.
Calibrating the Planck cluster mass scale with CLASH
NASA Astrophysics Data System (ADS)
Penna-Lima, M.; Bartlett, J. G.; Rozo, E.; Melin, J.-B.; Merten, J.; Evrard, A. E.; Postman, M.; Rykoff, E.
2017-08-01
We determine the mass scale of Planck galaxy clusters using gravitational lensing mass measurements from the Cluster Lensing And Supernova survey with Hubble (CLASH). We have compared the lensing masses to the Planck Sunyaev-Zeldovich (SZ) mass proxy for 21 clusters in common, employing a Bayesian analysis to simultaneously fit an idealized CLASH selection function and the distribution between the measured observables and true cluster mass. We used a tiered analysis strategy to explicitly demonstrate the importance of priors on weak lensing mass accuracy. In the case of an assumed constant bias, bSZ, between true cluster mass, M500, and the Planck mass proxy, MPL, our analysis constrains 1-bSZ = 0.73 ± 0.10 when moderate priors on weak lensing accuracy are used, including a zero-mean Gaussian with standard deviation of 8% to account for possible bias in lensing mass estimations. Our analysis explicitly accounts for possible selection bias effects in this calibration sourced by the CLASH selection function. Our constraint on the cluster mass scale is consistent with recent results from the Weighing the Giants program and the Canadian Cluster Comparison Project. It is also consistent, at 1.34σ, with the value needed to reconcile the Planck SZ cluster counts with Planck's base ΛCDM model fit to the primary cosmic microwave background anisotropies.
Spectroscopic constraints on the form of the stellar cluster mass function
NASA Astrophysics Data System (ADS)
Bastian, N.; Konstantopoulos, I. S.; Trancho, G.; Weisz, D. R.; Larsen, S. S.; Fouesneau, M.; Kaschinski, C. B.; Gieles, M.
2012-05-01
This contribution addresses the question of whether the initial cluster mass function (ICMF) has a fundamental limit (or truncation) at high masses. The shape of the ICMF at high masses can be studied using the most massive young (<10 Myr) clusters, however this has proven difficult due to low-number statistics. In this contribution we use an alternative method based on the luminosities of the brightest clusters, combined with their ages. The advantages are that more clusters can be used and that the ICMF leaves a distinct pattern on the global relation between the cluster luminosity and median age within a population. If a truncation is present, a generic prediction (nearly independent of the cluster disruption law adopted) is that the median age of bright clusters should be younger than that of fainter clusters. In the case of an non-truncated ICMF, the median age should be independent of cluster luminosity. Here, we present optical spectroscopy of twelve young stellar clusters in the face-on spiral galaxy NGC 2997. The spectra are used to estimate the age of each cluster, and the brightness of the clusters is taken from the literature. The observations are compared with the model expectations of Larsen (2009, A&A, 494, 539) for various ICMF forms and both mass dependent and mass independent cluster disruption. While there exists some degeneracy between the truncation mass and the amount of mass independent disruption, the observations favour a truncated ICMF. For low or modest amounts of mass independent disruption, a truncation mass of 5-6 × 105 M⊙ is estimated, consistent with previous determinations. Additionally, we investigate possible truncations in the ICMF in the spiral galaxy M 83, the interacting Antennae galaxies, and the collection of spiral and dwarf galaxies present in Larsen (2009, A&A, 494, 539) based on photometric catalogues taken from the literature, and find that all catalogues are consistent with having a truncation in the cluster mass functions. However for the case of the Antennae, we find a truncation mass of a few × 106M⊙ , suggesting a dependence on the environment, as has been previously suggested.
The Mass Function in h+(chi) Persei
NASA Astrophysics Data System (ADS)
Bragg, Ann; Kenyon, Scott
2000-08-01
Knowledge of the stellar initial mass function (IMF) is critical to understanding star formation and galaxy evolution. Past studies of the IMF in open clusters have primarily used luminosity functions to determine mass functions, frequently in relatively sparse clusters. Our goal with this project is to derive a reliable, well- sampled IMF for a pair of very dense young clusters (h+(chi) Persei) with ages, 1-2 × 10^7 yr (e.g., Vogt A& A 11:359), where stellar evolution theory is robust. We will construct the HR diagram using both photometry and spectral types to derive more accurate stellar masses and ages than are possible using photometry alone. Results from the two clusters will be compared to examine the universality of the IMF. We currently have a spectroscopic sample covering an area within 9 arc-minutes of the center of each cluster taken with the FAST Spectrograph. The sample is complete to V=15.4 and contains ~ 1000 stars. We request 2 nights at WIYN/HYDRA to extend this sample to deeper magnitudes, allowing us to determine the IMF of the clusters to a lower limiting mass and to search for a pre-main sequence, theoretically predicted to be present for clusters of this age. Note that both clusters are contained within a single HYDRA field.
The Mass Function of Abell Clusters
NASA Astrophysics Data System (ADS)
Chen, J.; Huchra, J. P.; McNamara, B. R.; Mader, J.
1998-12-01
The velocity dispersion and mass functions for rich clusters of galaxies provide important constraints on models of the formation of Large-Scale Structure (e.g., Frenk et al. 1990). However, prior estimates of the velocity dispersion or mass function for galaxy clusters have been based on either very small samples of clusters (Bahcall and Cen 1993; Zabludoff et al. 1994) or large but incomplete samples (e.g., the Girardi et al. (1998) determination from a sample of clusters with more than 30 measured galaxy redshifts). In contrast, we approach the problem by constructing a volume-limited sample of Abell clusters. We collected individual galaxy redshifts for our sample from two major galaxy velocity databases, the NASA Extragalactic Database, NED, maintained at IPAC, and ZCAT, maintained at SAO. We assembled a database with velocity information for possible cluster members and then selected cluster members based on both spatial and velocity data. Cluster velocity dispersions and masses were calculated following the procedures of Danese, De Zotti, and di Tullio (1980) and Heisler, Tremaine, and Bahcall (1985), respectively. The final velocity dispersion and mass functions were analyzed in order to constrain cosmological parameters by comparison to the results of N-body simulations. Our data for the cluster sample as a whole and for the individual clusters (spatial maps and velocity histograms) in our sample is available on-line at http://cfa-www.harvard.edu/ huchra/clusters. This website will be updated as more data becomes available in the master redshift compilations, and will be expanded to include more clusters and large groups of galaxies.
Evolution of the Black Hole Mass Function in Star Clusters from Multiple Mergers
NASA Astrophysics Data System (ADS)
Christian, Pierre; Mocz, Philip; Loeb, Abraham
2018-05-01
We investigate the effects of black hole (BH) mergers in star clusters on the black hole mass function (BHMF). As BHs are not produced in pair-instability supernovae, it is suggested that there is a dearth of high-mass stellar BHs. This dearth generates a gap in the upper end of the BHMF. Meanwhile, parameter fitting of X-ray binaries suggests the existence of a gap in the mass function under 5 solar masses. We show, through evolving a coagulation equation, that BH mergers can appreciably fill the upper mass gap, and that the lower mass gap generates potentially observable features at larger mass scales. We also explore the importance of ejections in such systems and whether dynamical clusters can be formation sites of intermediate-mass BH seeds.
Resolving the problem of galaxy clustering on small scales: any new physics needed?
NASA Astrophysics Data System (ADS)
Kang, X.
2014-02-01
Galaxy clustering sets strong constraints on the physics governing galaxy formation and evolution. However, most current models fail to reproduce the clustering of low-mass galaxies on small scales (r < 1 Mpc h-1). In this paper, we study the galaxy clusterings predicted from a few semi-analytical models. We first compare two Munich versions, Guo et al. and De Lucia & Blaizot. The Guo11 model well reproduces the galaxy stellar mass function, but overpredicts the clustering of low-mass galaxies on small scales. The DLB07 model provides a better fit to the clustering on small scales, but overpredicts the stellar mass function. These seem to be puzzling. The clustering on small scales is dominated by galaxies in the same dark matter halo, and there is slightly more fraction of satellite galaxies residing in massive haloes in the Guo11 model, which is the dominant contribution to the clustering discrepancy between the two models. However, both models still overpredict the clustering at 0.1 < r < 10 Mpc h-1 for low-mass galaxies. This is because both models overpredict the number of satellites by 30 per cent in massive haloes than the data. We show that the Guo11 model could be slightly modified to simultaneously fit the stellar mass function and clusterings, but that cannot be easily achieved in the DLB07 model. The better agreement of DLB07 model with the data actually comes as a coincidence as it predicts too many low-mass central galaxies which are less clustered and thus brings down the total clustering. Finally, we show the predictions from the semi-analytical models of Kang et al. We find that this model can simultaneously fit the stellar mass function and galaxy clustering if the supernova feedback in satellite galaxies is stronger. We conclude that semi-analytical models are now able to solve the small-scales clustering problem, without invoking of any other new physics or changing the dark matter properties, such as the recent favoured warm dark matter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popescu, Bogdan; Hanson, M. M.
2010-04-10
We present Monte Carlo models of open stellar clusters with the purpose of mapping out the behavior of integrated colors with mass and age. Our cluster simulation package allows for stochastic variations in the stellar mass function to evaluate variations in integrated cluster properties. We find that UBVK colors from our simulations are consistent with simple stellar population (SSP) models, provided the cluster mass is large, M {sub cluster} {>=} 10{sup 6} M {sub sun}. Below this mass, our simulations show two significant effects. First, the mean value of the distribution of integrated colors moves away from the SSP predictionsmore » and is less red, in the first 10{sup 7} to 10{sup 8} years in UBV colors, and for all ages in (V - K). Second, the 1{sigma} dispersion of observed colors increases significantly with lower cluster mass. We attribute the former to the reduced number of red luminous stars in most of the lower mass clusters and the latter to the increased stochastic effect of a few of these stars on lower mass clusters. This latter point was always assumed to occur, but we now provide the first public code able to quantify this effect. We are completing a more extensive database of magnitudes and colors as a function of stellar cluster age and mass that will allow the determination of the correlation coefficients among different bands, and improve estimates of cluster age and mass from integrated photometry.« less
Measuring the Mass Distribution in Z is Approximately 0.2 Cluster Lenses with XMM, HST and CFHT
NASA Technical Reports Server (NTRS)
2004-01-01
Being the most massive gravitationally bound objects in the Universe, clusters of galaxies are prime targets for studies of structure formation and evolution. Specifically the comoving space density of virialized clusters of a given mass (or X-ray temperature), but also the frequency and degree of substructure, as well as the shape of the cluster mass profile are quantities whose current values and evolution as a function of lookback time can provide important constraints on the cosmological and physical parameters of structure formation theories. The project funded by NASA grant NAG 5-10041 intended to take such studies to a new level by combining observations of a well-selected cluster sample by three state-of-the-art telescopes: HST, to accurately measure the mass distribution in the cluster core (approx. 0.5 h(sup -1)(sub 50) Mpc) via strong gravitational lensing; CFHT, to measure the large scale mass distribution out to approx. 3 Mpc via weak lensing; and XMM, to measure the gas density and temperature distribution accurately on intermediate scales < 1.5 Mpc. XMM plays a pivotal role in this context as the calibration of X-ray mass measurements through accurate, spatially resolved X-ray temperature measurements (particularly in the cosmologically most sensitive range of kT> 5 keV) is central to the questions outlined above. This set of observations promised to yield the best cluster mass measurements obtained so far for a representative sample, thus allowing us to: 1) Measure the high-mass end of the local cluster mass function; 2) Test predictions of a universal cluster mass profile; 3) calibrate the mass-temperature and temperature-luminosity relations for clusters and the scatter around these relations, which is vital for studies of cluster evolution using the X-ray temperature and X-ray luminosity functions.
On the mass of dense star clusters in starburst galaxies from spectrophotometry
NASA Astrophysics Data System (ADS)
Fleck, J.-J.; Boily, C. M.; Lançon, A.; Deiters, S.
2006-07-01
The mass of unresolved young star clusters derived from spectrophotometric data may well be off by a factor of 2 or more once the migration of massive stars driven by mass segregation is accounted for. We quantify this effect for a large set of cluster parameters, including variations in the stellar initial mass function (IMF), the intrinsic cluster mass, and mean mass density. Gas-dynamical models coupled with the Cambridge stellar evolution tracks allow us to derive a scheme to recover the real cluster mass given measured half-light radius, one-dimensional velocity dispersion and age. We monitor the evolution with time of the ratio of real to apparent mass through the parameter η. When we compute η for rich star clusters, we find non-monotonic evolution in time when the IMF stretches beyond a critical cut-off mass of 25.5Msolar. We also monitor the rise of colour gradients between the inner and outer volume of clusters: we find trends in time of the stellar IMF power indices overlapping well with those derived for the Large Magellanic Cloud cluster NGC 1818 at an age of 30Myr. We argue that the core region of massive Antennae clusters should have suffered from much segregation despite their low ages. We apply these results to a cluster mass function, and find that the peak of the mass distribution would appear to observers shifted to lower masses by as much as 0.2dex. The star formation rate derived for the cluster population is then underestimated by from 20 to 50 per cent.
NASA Astrophysics Data System (ADS)
Sirianni, Marco; Nota, Antonella; De Marchi, Guido; Leitherer, Claus; Clampin, Mark
2002-11-01
As part of a larger program aimed at investigating the universality of the initial mass function (IMF) at low masses in a number of young clusters in the LMC and SMC, we present a new study of the low end of the stellar IMF of NGC 330, the richest young star cluster in the SMC, from deep broadband V and I images obtained with HST/WFPC2. We detect stars down to a limiting magnitude of m555=24.9, which corresponds to stellar masses of ~0.8Msolar at the distance of the SMC. A comparison of the cluster color-magnitude diagram with theoretical evolutionary tracks indicates an age of ~30 Myr for NGC 330, in agreement with previous published results. We derive the cluster luminosity function, which we correct for background contamination using an adjacent SMC field, and construct the mass function in the 1-7Msolar mass range. Given the young cluster age, the MF can well approximate the IMF. We find that the IMF in the central cluster regions (within 30") is well reproduced by a power law with a slope consistent with Salpeter's. In addition, the richness of the cluster allows us to investigate the IMF as a function of radial distance from the center. We find that the IMF becomes steeper at increasing distances from the cluster center (between 30" and 90"), with the number of massive stars (>5Msolar) decreasing from the core to the outskirts of the cluster 5 times more rapidly than the less-massive objects (~=1Msolar). We believe the observed mass segregation to be of a primordial nature rather than dynamical since the age of NGC 330 is 10 times shorter than the expected relaxation time of the cluster. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by AURA for NASA under contract NAS5-26555.
The Mass Function of Young Star Clusters in the "Antennae" Galaxies.
Zhang; Fall
1999-12-20
We determine the mass function of young star clusters in the merging galaxies known as the "Antennae" (NGC 4038/9) from deep images taken with the Wide Field Planetary Camera 2 on the refurbished Hubble Space Telescope. This is accomplished by means of reddening-free parameters and a comparison with stellar population synthesis tracks to estimate the intrinsic luminosity and age, and hence the mass, of each cluster. We find that the mass function of the young star clusters (with ages less, similar160 Myr) is well represented by a power law of the form psi&parl0;M&parr0;~M-2 over the range 104 less, similarM less, similar106 M middle dot in circle. This result may have important implications for our understanding of the origin of globular clusters during the early phases of galactic evolution.
NASA Astrophysics Data System (ADS)
Webb, Jeremy J.; Vesperini, Enrico
2017-01-01
We make use of N-body simulations to determine the relationship between two observable parameters that are used to quantify mass segregation and energy equipartition in star clusters. Mass segregation can be quantified by measuring how the slope of a cluster's stellar mass function α changes with clustercentric distance r, and then calculating δ _α = d α (r)/d ln(r/r_m), where rm is the cluster's half-mass radius. The degree of energy equipartition in a cluster is quantified by η, which is a measure of how stellar velocity dispersion σ depends on stellar mass m via σ(m) ∝ m-η. Through a suite of N-body star cluster simulations with a range of initial sizes, binary fractions, orbits, black hole retention fractions, and initial mass functions, we present the co-evolution of δα and η. We find that measurements of the global η are strongly affected by the radial dependence of σ and mean stellar mass and the relationship between η and δα depends mainly on the cluster's initial conditions and the tidal field. Within rm, where these effects are minimized, we find that η and δα initially share a linear relationship. However, once the degree of mass segregation increases such that the radial dependence of σ and mean stellar mass become a factor within rm, or the cluster undergoes core collapse, the relationship breaks down. We propose a method for determining η within rm from an observational measurement of δα. In cases where η and δα can be measured independently, this new method offers a way of measuring the cluster's dynamical state.
A two-step initial mass function:. Consequences of clustered star formation for binary properties
NASA Astrophysics Data System (ADS)
Durisen, R. H.; Sterzik, M. F.; Pickett, B. K.
2001-06-01
If stars originate in transient bound clusters of moderate size, these clusters will decay due to dynamic interactions in which a hard binary forms and ejects most or all the other stars. When the cluster members are chosen at random from a reasonable initial mass function (IMF), the resulting binary characteristics do not match current observations. We find a significant improvement in the trends of binary properties from this scenario when an additional constraint is taken into account, namely that there is a distribution of total cluster masses set by the masses of the cloud cores from which the clusters form. Two distinct steps then determine final stellar masses - the choice of a cluster mass and the formation of the individual stars. We refer to this as a ``two-step'' IMF. Simple statistical arguments are used in this paper to show that a two-step IMF, combined with typical results from dynamic few-body system decay, tends to give better agreement between computed binary characteristics and observations than a one-step mass selection process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandar, Rupali; Fall, S. Michael; Whitmore, Bradley C., E-mail: Rupali.Chandar@utoledo.ed, E-mail: fall@stsci.ed, E-mail: whitmore@stsci.ed
We compare the observed bivariate distribution of masses (M) and ages (tau) of star clusters in the Large Magellanic Cloud (LMC) with the predicted distributions g(M, tau) from three idealized models for the disruption of star clusters: (1) sudden mass-dependent disruption, (2) gradual mass-dependent disruption, and (3) gradual mass-independent disruption. The model with mass-independent disruption provides a good, first-order description of these cluster populations, with g(M, tau) {proportional_to} M {sup beta}tau{sup g}amma, beta = -1.8 +- 0.2 and gamma = -0.8 +- 0.2, at least for clusters with ages tau {approx}< 10{sup 9} yr and masses M {approx}> 10{sup 3}more » M{sub sun} (more specifically, tau {approx}< 10{sup 7}(M/10{sup 2} M{sub sun}){sup 1.3} yr). This model predicts that the clusters should have a power-law luminosity function, dN/dL {proportional_to} L {sup -1.8}, in agreement with observations. The first two models, on the other hand, fare poorly when describing the observations, refuting previous claims that mass-dependent disruption of star clusters is observed in the LMC over the studied M-tau domain. Clusters in the SMC can be described by the same g(M, tau) distribution as for the LMC, but with smaller samples and hence larger uncertainties. The successful g(M, tau) model for clusters in the Magellanic Clouds is virtually the same as the one for clusters in the merging Antennae galaxies, but extends the domain of validity to lower masses and to older ages. This indicates that the dominant disruption processes are similar in these very different galaxies over at least tau {approx}< 10{sup 8} yr and possibly tau {approx}< 10{sup 9} yr. The mass functions for young clusters in the LMC are power laws, while that for ancient globular clusters is peaked. We show that the observed shapes of these mass functions are consistent with expectations from the simple evaporation model presented by McLaughlin and Fall.« less
Intermediate to low-mass stellar content of Westerlund 1
NASA Astrophysics Data System (ADS)
Brandner, W.; Clark, J. S.; Stolte, A.; Waters, R.; Negueruela, I.; Goodwin, S. P.
2008-01-01
We have analysed near-infrared NTT/SofI observations of the starburst cluster Westerlund 1, which is among the most massive young clusters in the Milky Way. A comparison of colour-magnitude diagrams with theoretical main-sequence and pre-main sequence evolutionary tracks yields improved extinction and distance estimates of AKs = 1.13 ± 0.03 mag and d = 3.55 ± 0.17 kpc (DM = 12.75 ± 0.10 mag). The pre-main sequence population is best fit by a Palla & Stahler isochrone for an age of 3.2 Myr, while the main sequence population is in agreement with a cluster age of 3 to 5 Myr. An analysis of the structural parameters of the cluster yields that the half-mass radius of the cluster population increases towards lower mass, indicative of the presence of mass segregation. The cluster is clearly elongated with an eccentricity of 0.20 for stars with masses between 10 and 32 M_⊙, and 0.15 for stars with masses in the range 3 to 10 M_⊙. We derive the slope of the stellar mass function for stars with masses between 3.4 and 27 M_⊙. In an annulus with radii between 0.75 and 1.5 pc from the cluster centre, we obtain a slope of Γ = -1.3. Closer in, the mass function of Westerlund 1 is shallower with Γ = -0.6. The extrapolation of the mass function for stars with masses from 0.08 to 120 M_⊙ yields an initial total stellar mass of ≈52 000 M_⊙, and a present-day mass of 20 000 to 45 000 M_⊙ (about 10 times the stellar mass of the Orion nebula cluster, and 2 to 4 times the mass of the NGC 3603 young cluster), indicating that Westerlund 1 is the most massive starburst cluster identified to date in the Milky Way. Based on observations collected at the European Southern Observatory, La Silla, Chile, and retrieved from the ESO archive (Prog ID 67.C-0514).
Low-mass stars in globular clusters. III. The mass function of 47 Tucanae.
NASA Astrophysics Data System (ADS)
de Marchi, G.; Paresce, F.
1995-12-01
We have used the WFPC2 on board HST to investigate the stellar population in a field located 4'6 E of the center of the globular cluster 47 Tuc (NGC 104), close to the half-mass radius, through wide band imaging at 606 and 812nm. A total of ~3000 stars are accurately classified by two-color photometry to form a color-magnitude diagram extending down to a limiting magnitude m_814_=~m_I_=~24. A rich cluster main sequence is detected spanning the range from m_814_=~18 through m_814_=~23, where it spreads considerably due to the increasing photometric uncertainty and galaxy contamination. A secondary sequence of objects is also detected, parallel to the main sequence, as expected for a population of binary stars. The measured binary fraction in the range 19
NASA Astrophysics Data System (ADS)
Okabe, Nobuhiro; Futamase, Toshifumi; Kajisawa, Masaru; Kuroshima, Risa
2014-04-01
We present a 4 deg2 weak gravitational lensing survey of subhalos in the very nearby Coma cluster using the Subaru/Suprime-Cam. The large apparent size of cluster subhalos allows us to measure the mass of 32 subhalos detected in a model-independent manner, down to the order of 10-3 of the virial mass of the cluster. Weak-lensing mass measurements of these shear-selected subhalos enable us to investigate subhalo properties and the correlation between subhalo masses and galaxy luminosities for the first time. The mean distortion profiles stacked over subhalos show a sharply truncated feature which is well-fitted by a Navarro-Frenk-White (NFW) mass model with the truncation radius, as expected due to tidal destruction by the main cluster. We also found that subhalo masses, truncation radii, and mass-to-light ratios decrease toward the cluster center. The subhalo mass function, dn/dln M sub, in the range of 2 orders of magnitude in mass, is well described by a single power law or a Schechter function. Best-fit power indices of 1.09^{+0.42}_{-0.32} for the former model and 0.99_{-0.23}^{+0.34} for the latter, are in remarkable agreement with slopes of ~0.9-1.0 predicted by the cold dark matter paradigm. The tangential distortion signals in the radial range of 0.02-2 h -1 Mpc from the cluster center show a complex structure which is well described by a composition of three mass components of subhalos, the NFW mass distribution as a smooth component of the main cluster, and a lensing model from a large scale structure behind the cluster. Although the lensing signals are 1 order of magnitude lower than those for clusters at z ~ 0.2, the total signal-to-noise ratio, S/N = 13.3, is comparable, or higher, because the enormous number of background source galaxies compensates for the low lensing efficiency of the nearby cluster. Based on data collected from the Subaru Telescope and obtained from SMOKA, operated by the Astronomy Data Center, National Astronomical Observatory of Japan.
The Secrets of the Nearest Starburst Cluster. II. The Present-Day Mass Function in NGC 3603
NASA Astrophysics Data System (ADS)
Stolte, Andrea; Brandner, Wolfgang; Brandl, Bernhard; Zinnecker, Hans
2006-07-01
Based on deep Very Large Telescope Infrared Spectrometer and Array Camera JHK photometry, we have derived the present-day mass function (MF) of the central starburst cluster NGC 3603 YC (Young Cluster) in the giant H II region NGC 3603. The effects of field contamination, individual reddening, and a possible binary contribution are investigated. The MF slopes resulting from the different methods are compared and lead to a surprisingly consistent cluster MF with a slope of Γ=-0.9+/-0.15. Analyzing different radial annuli around the cluster core, no significant change in the slope of the MF is observed. However, mass segregation in the cluster is evidenced by the increasing depletion of the high-mass tail of the stellar mass distribution with increasing radius. We discuss the indications of mass segregation with respect to the changes observed in the binned and cumulative stellar MFs and argue that the cumulative function, as well as the fraction of high- to low-mass stars, provides better indicators for mass segregation than the MF slope alone. Finally, the observed MF and starburst morphology of NGC 3603 YC are discussed in the context of massive local star-forming regions such as the Galactic center Arches cluster, R136/30 Dor in the LMC, and the Orion Trapezium cluster, all providing resolved templates for extragalactic star formation. Despite the similarity in the observed MF slopes, dynamical considerations suggest that the starburst clusters do not form gravitationally bound systems over a Hubble time. Both the environment (gravitational potential of the Milky Way) and the concentration of stars in the cluster core determine the dynamical stability of a dense star cluster, such that the long-term evolution of a starburst is not exclusively determined by the stellar evolution of its members, as frequently assumed for globular cluster systems. Based on observations obtained at the ESO Very Large Telescope on Paranal, Chile, under programs 63.I-0015 and 65.I-0135.
NEW CONSTRAINTS ON MASS-DEPENDENT DISRUPTION OF STAR CLUSTERS IN M51
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandar, Rupali; Whitmore, Bradley C.; Regan, Michael
2011-02-01
We use UBVI H{alpha} images of the Whirlpool galaxy, M51, taken with the Advanced Camera for Surveys and WFPC2 cameras on the Hubble Space Telescope (HST) to select star clusters, and to estimate their masses and ages by comparing their observed colors with predictions from population synthesis models. We construct the mass function of intermediate-age (1-4 x 10{sup 8} yr) clusters, and find that it is well described by a power law, {psi}(M) {proportional_to} M{sup {beta}}, with {beta} = -2.1 {+-} 0.2, for clusters more massive than M {approx} 6 x 10{sup 3} M{sub sun}. This extends the mass functionmore » of intermediate-age clusters in M51 to masses lower by nearly a factor of five over previous determinations. The mass function does not show evidence for curvature at either the high or low mass end. This shape indicates that there is no evidence for the earlier disruption of lower mass clusters compared with their higher mass counterparts (i.e., no mass-dependent disruption) over the observed range of masses and ages, or for a physical upper mass limit M{sub C} with which clusters in M51 can form. These conclusions differ from previous suggestions based on poorer-quality HST observations. We discuss their implications for the formation and disruption of the clusters. Ages of clusters in two 'feathers', stellar features extending from the outer portion of a spiral arm, show that the feather with a larger pitch angle formed earlier, and over a longer period, than the other.« less
Global survey of star clusters in the Milky Way. VI. Age distribution and cluster formation history
NASA Astrophysics Data System (ADS)
Piskunov, A. E.; Just, A.; Kharchenko, N. V.; Berczik, P.; Scholz, R.-D.; Reffert, S.; Yen, S. X.
2018-06-01
Context. The all-sky Milky Way Star Clusters (MWSC) survey provides uniform and precise ages, along with other relevant parameters, for a wide variety of clusters in the extended solar neighbourhood. Aims: In this study we aim to construct the cluster age distribution, investigate its spatial variations, and discuss constraints on cluster formation scenarios of the Galactic disk during the last 5 Gyrs. Methods: Due to the spatial extent of the MWSC, we have considered spatial variations of the age distribution along galactocentric radius RG, and along Z-axis. For the analysis of the age distribution we used 2242 clusters, which all lie within roughly 2.5 kpc of the Sun. To connect the observed age distribution to the cluster formation history we built an analytical model based on simple assumptions on the cluster initial mass function and on the cluster mass-lifetime relation, fit it to the observations, and determined the parameters of the cluster formation law. Results: Comparison with the literature shows that earlier results strongly underestimated the number of evolved clusters with ages t ≳ 100 Myr. Recent studies based on all-sky catalogues agree better with our data, but still lack the oldest clusters with ages t ≳ 1 Gyr. We do not observe a strong variation in the age distribution along RG, though we find an enhanced fraction of older clusters (t > 1 Gyr) in the inner disk. In contrast, the distribution strongly varies along Z. The high altitude distribution practically does not contain clusters with t < 1 Gyr. With simple assumptions on the cluster formation history, the cluster initial mass function and the cluster lifetime we can reproduce the observations. The cluster formation rate and the cluster lifetime are strongly degenerate, which does not allow us to disentangle different formation scenarios. In all cases the cluster formation rate is strongly declining with time, and the cluster initial mass function is very shallow at the high mass end.
The devil is in the tails: the role of globular cluster mass evolution on stream properties
NASA Astrophysics Data System (ADS)
Balbinot, Eduardo; Gieles, Mark
2018-02-01
We present a study of the effects of collisional dynamics on the formation and detectability of cold tidal streams. A semi-analytical model for the evolution of the stellar mass function was implemented and coupled to a fast stellar stream simulation code, as well as the synthetic cluster evolution code EMACSS for the mass evolution as a function of a globular cluster orbit. We find that the increase in the average mass of the escaping stars for clusters close to dissolution has a major effect on the observable stream surface density. As an example, we show that Palomar 5 would have undetectable streams (in an SDSS-like survey) if it was currently three times more massive, despite the fact that a more massive cluster loses stars at a higher rate. This bias due to the preferential escape of low-mass stars is an alternative explanation for the absence of tails near massive clusters, than a dark matter halo associated with the cluster. We explore the orbits of a large sample of Milky Way globular clusters and derive their initial masses and remaining mass fraction. Using properties of known tidal tails, we explore regions of parameter space that favour the detectability of a stream. A list of high-probability candidates is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, F. R. N.; Izzard, R. G.; Langer, N.
2014-01-10
Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters that can be used to infer their ages and to identify products of binary evolution. We model the observed present-day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. Wemore » find that the shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages as 3.5 ± 0.7 Myr and 4.8 ± 1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e., the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte Carlo simulations to probe stochastic sampling, which support the idea of the most massive stars being rejuvenated binary products. We find that the most massive star is expected to be a binary product after 1.0 ± 0.7 Myr in Arches and after 1.7 ± 1.0 Myr in Quintuplet. Today, the most massive 9 ± 3 stars in Arches and 8 ± 3 in Quintuplet are expected to be such objects. Our findings have strong implications for the stellar upper mass limit and solve the discrepancy between the claimed 150 M {sub ☉} limit and observations of four stars with initial masses of 165-320 M {sub ☉} in R136 and of supernova 2007bi, which is thought to be a pair-instability supernova from an initial 250 M {sub ☉} star. Using the stellar population of R136, we revise the upper mass limit to values in the range 200-500 M {sub ☉}.« less
NASA Astrophysics Data System (ADS)
Schneider, F. R. N.; Izzard, R. G.; de Mink, S. E.; Langer, N.; Stolte, A.; de Koter, A.; Gvaramadze, V. V.; Hußmann, B.; Liermann, A.; Sana, H.
2014-01-01
Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters that can be used to infer their ages and to identify products of binary evolution. We model the observed present-day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. We find that the shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages as 3.5 ± 0.7 Myr and 4.8 ± 1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e., the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte Carlo simulations to probe stochastic sampling, which support the idea of the most massive stars being rejuvenated binary products. We find that the most massive star is expected to be a binary product after 1.0 ± 0.7 Myr in Arches and after 1.7 ± 1.0 Myr in Quintuplet. Today, the most massive 9 ± 3 stars in Arches and 8 ± 3 in Quintuplet are expected to be such objects. Our findings have strong implications for the stellar upper mass limit and solve the discrepancy between the claimed 150 M ⊙ limit and observations of four stars with initial masses of 165-320 M ⊙ in R136 and of supernova 2007bi, which is thought to be a pair-instability supernova from an initial 250 M ⊙ star. Using the stellar population of R136, we revise the upper mass limit to values in the range 200-500 M ⊙.
NASA Astrophysics Data System (ADS)
Vulcani, Benedetta; De Lucia, Gabriella; Poggianti, Bianca M.; Bundy, Kevin; More, Surhud; Calvi, Rosa
2014-06-01
We present a comparison between the observed galaxy stellar mass function and the one predicted from the De Lucia & Blaizot semi-analytic model applied to the Millennium Simulation, for cluster satellites and galaxies in the field (meant as a wide portion of the sky, including all environments), in the local universe (z ~ 0.06), and at intermediate redshift (z ~ 0.6), with the aim to shed light on the processes which regulate the mass distribution in different environments. While the mass functions in the field and in its finer environments (groups, binary, and single systems) are well matched in the local universe down to the completeness limit of the observational sample, the model overpredicts the number of low-mass galaxies in the field at z ~ 0.6 and in clusters at both redshifts. Above M * = 1010.25 M ⊙, it reproduces the observed similarity of the cluster and field mass functions but not the observed evolution. Our results point out two shortcomings of the model: an incorrect treatment of cluster-specific environmental effects and an overefficient galaxy formation at early times (as already found by, e.g., Weinmann et al.). Next, we consider only simulations. Also using the Guo et al. model, we find that the high-mass end of the mass functions depends on halo mass: only very massive halos host massive galaxies, with the result that their mass function is flatter. Above M * = 109.4 M ⊙, simulations show an evolution in the number of the most massive galaxies in all environments. Mass functions obtained from the two prescriptions are different, however, results are qualitatively similar, indicating that the adopted methods to model the evolution of central and satellite galaxies still have to be better implemented in semi-analytic models.
Effects of cosmic string velocities and the origin of globular clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Ling; Yamanouchi, Shoma; Brandenberger, Robert, E-mail: ling.lin2@mail.mcgill.ca, E-mail: shoma.yamanouchi@mail.mcgill.ca, E-mail: rhb@physics.mcgill.ca
2015-12-01
With the hypothesis that cosmic string loops act as seeds for globular clusters in mind, we study the role that velocities of these strings will play in determining the mass distribution of globular clusters. Loops with high enough velocities will not form compact and roughly spherical objects and can hence not be the seeds for globular clusters. We compute the expected number density and mass function of globular clusters as a function of both the string tension and the peak loop velocity, and compare the results with the observational data on the mass distribution of globular clusters in our Milkymore » Way. We determine the critical peak string loop velocity above which the agreement between the string loop model for the origin of globular clusters (neglecting loop velocities) and observational data is lost.« less
Formation of young massive clusters from turbulent molecular clouds
NASA Astrophysics Data System (ADS)
Fujii, Michiko; Portegies Zwart, Simon
2015-08-01
We simulate the formation and evolution of young star clusters using smoothed-particle hydrodynamics (SPH) and direct N-body methods. We start by performing SPH simulations of the giant molecular cloud with a turbulent velocity field, a mass of 10^4 to 10^6 M_sun, and a density between 17 and 1700 cm^-3. We continue the SPH simulations for a free-fall time scale, and analyze the resulting structure of the collapsed cloud. We subsequently replace a density-selected subset of SPH particles with stars. As a consequence, the local star formation efficiency exceeds 30 per cent, whereas globally only a few per cent of the gas is converted to stars. The stellar distribution is very clumpy with typically a dozen bound conglomerates that consist of 100 to 10000 stars. We continue to evolve the stars dynamically using the collisional N-body method, which accurately treats all pairwise interactions, stellar collisions and stellar evolution. We analyze the results of the N-body simulations at 2 Myr and 10 Myr. From dense massive molecular clouds, massive clusters grow via hierarchical merging of smaller clusters. The shape of the cluster mass function that originates from an individual molecular cloud is consistent with a Schechter function with a power-law slope of beta = -1.73 at 2 Myr and beta = -1.67 at 10 Myr, which fits to observed cluster mass function of the Carina region. The superposition of mass functions have a power-law slope of < -2, which fits the observed mass function of star clusters in the Milky Way, M31 and M83. We further find that the mass of the most massive cluster formed in a single molecular cloud with a mass of M_g scales with 6.1 M_g^0.51 which also agrees with recent observation in M51. The molecular clouds which can form massive clusters are much denser than those typical in the Milky Way. The velocity dispersion of such molecular clouds reaches 20 km/s and it is consistent with the relative velocity of the molecular clouds observed near NGC 3603 and Westerlund 2, for which a triggered star formation by cloud-cloud collisions is suggested.
Testing light-traces-mass in Hubble Frontier Fields Cluster MACS-J0416.1-2403
Sebesta, Kevin; Williams, Liliya L. R.; Mohammed, Irshad; ...
2016-06-17
Here, we reconstruct the projected mass distribution of a massive merging Hubble Frontier Fields cluster MACSJ0416 using the genetic algorithm based free-form technique called Grale. The reconstructions are constrained by 149 lensed images identified by Jauzac et al. using HFF data. No information about cluster galaxies or light is used, which makes our reconstruction unique in this regard. Using visual inspection of the maps, as well as galaxy-mass correlation functions we conclude that overall light does follow mass. Furthermore, the fact that brighter galaxies are more strongly clustered with mass is an important confirmation of the standard biasing scenario inmore » galaxy clusters. On the smallest scales, approximately less than a few arcseconds, the resolution afforded by 149 images is still not sufficient to confirm or rule out galaxy-mass offsets of the kind observed in ACO 3827. We also compare the mass maps of MACSJ0416 obtained by three different groups: Grale, and two parametric Lenstool reconstructions from the CATS and Sharon/Johnson teams. Overall, the three agree well; one interesting discrepancy between Grale and Lenstool galaxy-mass correlation functions occurs on scales of tens of kpc and may suggest that cluster galaxies are more biased tracers of mass than parametric methods generally assume.« less
Testing light-traces-mass in Hubble Frontier Fields Cluster MACS-J0416.1-2403
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sebesta, Kevin; Williams, Liliya L. R.; Mohammed, Irshad
Here, we reconstruct the projected mass distribution of a massive merging Hubble Frontier Fields cluster MACSJ0416 using the genetic algorithm based free-form technique called Grale. The reconstructions are constrained by 149 lensed images identified by Jauzac et al. using HFF data. No information about cluster galaxies or light is used, which makes our reconstruction unique in this regard. Using visual inspection of the maps, as well as galaxy-mass correlation functions we conclude that overall light does follow mass. Furthermore, the fact that brighter galaxies are more strongly clustered with mass is an important confirmation of the standard biasing scenario inmore » galaxy clusters. On the smallest scales, approximately less than a few arcseconds, the resolution afforded by 149 images is still not sufficient to confirm or rule out galaxy-mass offsets of the kind observed in ACO 3827. We also compare the mass maps of MACSJ0416 obtained by three different groups: Grale, and two parametric Lenstool reconstructions from the CATS and Sharon/Johnson teams. Overall, the three agree well; one interesting discrepancy between Grale and Lenstool galaxy-mass correlation functions occurs on scales of tens of kpc and may suggest that cluster galaxies are more biased tracers of mass than parametric methods generally assume.« less
Galaxy clusters and cold dark matter - A low-density unbiased universe?
NASA Technical Reports Server (NTRS)
Bahcall, Neta A.; Cen, Renyue
1992-01-01
Large-scale simulations of a universe dominated by cold dark matter (CDM) are tested against two fundamental properties of clusters of galaxies: the cluster mass function and the cluster correlation function. We find that standard biased CDM models are inconsistent with these observations for any bias parameter b. A low-density, low-bias CDM-type model, with or without a cosmological constant, appears to be consistent with both the cluster mass function and the cluster correlations. The low-density model agrees well with the observed correlation function of the Abell, Automatic Plate Measuring Facility (APM), and Edinburgh-Durham cluster catalogs. The model is in excellent agreement with the observed dependence of the correlation strength on cluster mean separation, reproducing the measured universal dimensionless cluster correlation. The low-density model is also consistent with other large-scale structure observations, including the APM angular galaxy-correlations, and for lambda = 1-Omega with the COBE results of the microwave background radiation fluctuations.
New trial wave function for the nuclear cluster structure of nuclei
NASA Astrophysics Data System (ADS)
Zhou, Bo
2018-04-01
A new trial wave function is proposed for nuclear cluster physics, in which an exact solution to the long-standing center-of-mass problem is given. In the new approach, the widths of the single-nucleon Gaussian wave packets and the widths of the relative Gaussian wave functions describing correlations of nucleons or clusters are treated as variables in the explicit intrinsic wave function of the nuclear system. As an example, this new wave function was applied to study the typical {^{20}Ne} (α+{{^{16}}O}) cluster system. By removing exactly the spurious center-of-mass effect in a very simple way, the energy curve of {^{20}Ne} was obtained by variational calculations with the width of the α cluster, the width of the {{^{16}}O} cluster, and the size parameter of the nucleus. These are considered the three crucial variational variables in describing the {^{20}Ne} (α+{{^{16}}O}) cluster system. This shows that the new wave function can be a very interesting new tool for studying many-body and cluster effects in nuclear physics.
NASA Astrophysics Data System (ADS)
Habibi, Maryam; Stolte, Andrea; Brandner, Wolfgang; Hussman, Benjamin
2013-07-01
The Galactic Center is the most active site of star formation in the Milky Way Galaxy, where particularly high-mass stars have formed very recently and are still forming today. However, since we are looking at the Galactic Center through the Galactic disk, knowledge of extinction is crucial to study this region. The Arches cluster is a young, massive starburst cluster near the Galactic Center. We observed the Arches cluster out to its tidal radius using Ks-band imaging obtained with NAOS/CONICA at the VLT combined with Subaro/Cisco J-band data to gain a full understanding of the cluster mass distribution. We show that the determination of the mass of the most massive star in the Arches cluster, which had been used in previous studies to establish an upper-mass limit for the star formation process in the Milky Way, strongly depends on the assumed slope of the extinction law. Assuming the two regimes of widely used infrared extinction laws, we show that the difference can reach up to 30% for individually derived stellar masses and ∆AKs˜1 magnitude in acquired Ks-band extinction, while the present mass function slope changes by ˜0.17 dex. The present-day mass function slope derived assuming the Nishiyama et al. (2009) extinction law increases from a flat slope of α-Nishi = 1.50 ± 0.35 in the core (r<0.2 pc) to α-Nishi = 2.21±0.27 in the intermediate annulus (0.2
Testing Fundamental Physics with Distant Star Clusters: Analysis of Observational Data on Palomar 14
NASA Astrophysics Data System (ADS)
Jordi, K.; Grebel, E. K.; Hilker, M.; Baumgardt, H.; Frank, M.; Kroupa, P.; Haghi, H.; Côté, P.; Djorgovski, S. G.
2009-06-01
We use the distant outer halo globular cluster Palomar 14 as a test case for classical versus modified Newtonian dynamics (MOND). Previous theoretical calculations have shown that the line-of-sight velocity dispersion predicted by these theories can differ by up to a factor of 3 for such sparse, remote clusters like Pal 14. We determine the line-of-sight velocity dispersion of Palomar 14 by measuring radial velocities of 17 red giant cluster members obtained using the Very Large Telescope and Keck telescope. The systemic velocity of Palomar 14 is (72.28 ± 0.12) km s-1. The derived velocity dispersion of (0.38 ± 0.12) km s-1 of the 16 definite member stars is in agreement with the theoretical prediction for the classical Newtonian case according to Baumgardt et al. In order to exclude the possibility that a peculiar mass function might have influenced our measurements, we derived the cluster's main-sequence mass function down to 0.53 M sun using archival images obtained with the Hubble Space Telescope. We found a mass function slope of α = 1.27 ± 0.44, which is, compared to the canonical mass function, a significantly shallower slope. The derived lower limit on the cluster's mass is higher than the theoretically predicted mass in the case of MOND. Our data are consistent with a central density of ρ0 = 0.1 M sun pc-3. We need no dark matter in Palomar 14. If the cluster is on a circular orbit, our spectroscopic and photometric results argue against MOND, unless the cluster experienced significant mass loss. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitehead, Alfred J.; McMillan, Stephen L. W.; Vesperini, Enrico
2013-12-01
We perform a series of simulations of evolving star clusters using the Astrophysical Multipurpose Software Environment (AMUSE), a new community-based multi-physics simulation package, and compare our results to existing work. These simulations model a star cluster beginning with a King model distribution and a selection of power-law initial mass functions and contain a tidal cutoff. They are evolved using collisional stellar dynamics and include mass loss due to stellar evolution. After studying and understanding that the differences between AMUSE results and results from previous studies are understood, we explored the variation in cluster lifetimes due to the random realization noisemore » introduced by transforming a King model to specific initial conditions. This random realization noise can affect the lifetime of a simulated star cluster by up to 30%. Two modes of star cluster dissolution were identified: a mass evolution curve that contains a runaway cluster dissolution with a sudden loss of mass, and a dissolution mode that does not contain this feature. We refer to these dissolution modes as 'dynamical' and 'relaxation' dominated, respectively. For Salpeter-like initial mass functions, we determined the boundary between these two modes in terms of the dynamical and relaxation timescales.« less
The Initial Mass Function of the Arches Cluster
NASA Astrophysics Data System (ADS)
Hosek, Matthew; Lu, Jessica; Anderson, Jay; Ghez, Andrea; Morris, Mark; Do, Tuan; Clarkson, William; Albers, Saundra; Weisz, Daniel
2018-01-01
The Arches star cluster is only 26 pc (in projection) from Sgr A*, the supermassive black hole at the Galactic Center. This young massive cluster allows us to examine the impact of the extreme Galactic Center environment on the stellar Initial Mass Function (IMF). However, measuring the IMF of the Arches is challenging due to the highly variable extinction along the line of sight, which makes it difficult to separate cluster members from the field stars. We use high-precision proper motion and photometric measurements obtained with the Hubble Space Telescope to calculate cluster membership probabilities for stars down to ~2 M_sun out to the outskirts of the cluster (3 pc). In addition, we measure the effective temperatures of a small sample of cluster members in order to calibrate the mass-luminosity relationship using using Keck OSIRS K-band spectroscopy. We forward model these observations to simultaneously constrain the cluster IMF, age, distance, and extinction. We obtain an IMF that is shallower than what is observed locally, with a higher fraction of high-mass stars to low mass stars (i.e., “top-heavy”). We will compare the IMF of the Arches to similar clusters in the Galactic disk and quantify the effect of the GC environment on the star formation process.
Dynamical mass estimates in M13
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonard, P.J.T.; Richer, H.B.; Fahlman, G.G.
We have used the proper motion data of Cudworth Monet to make mass estimates in the globular cluster M13 by solving the spherical Jeans equation. We find a mass inside a spherical shell centered on the cluster with a radius corresponding to 390 arcsec on the sky of 5.5 or 7.6 {times} 10{sup 5} M{circle dot}, depending on the adopted cluster distance. This large dynamical mass estimate together with the observed fact that the mass function of M13 is rising steeply at the low-mass end suggest that much of the cluster mass may be in the form of low-mass starsmore » and brown dwarfs.« less
Dynamical mass estimates in M13
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonard, P.J.T.; Richer, H.B.; Fahlman, G.G.
We have used the proper motion data of Cudworth Monet to make mass estimates in the globular cluster M13 by solving the spherical Jeans equation. We find a mass inside a spherical shell centered on the cluster with a radius corresponding to 390 arcsec on the sky of 5.5 or 7.6 {times} 10{sup 5} M{circle_dot}, depending on the adopted cluster distance. This large dynamical mass estimate together with the observed fact that the mass function of M13 is rising steeply at the low-mass end suggest that much of the cluster mass may be in the form of low-mass stars andmore » brown dwarfs.« less
Stellar-to-halo mass relation of cluster galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niemiec, Anna; Jullo, Eric; Limousin, Marceau
In the formation of galaxy groups and clusters, the dark matter haloes containing satellite galaxies are expected to be tidally stripped in gravitational interactions with the host. We use galaxy-galaxy weak lensing to measure the average mass of dark matter haloes of satellite galaxies as a function of projected distance to the centre of the host, since stripping is expected to be greater for satellites closer to the centre of the cluster. We further classify the satellites according to their stellar mass: assuming that the stellar component of the galaxy is less disrupted by tidal stripping, stellar mass can bemore » used as a proxy of the infall mass. We study the stellar to halo mass relation of satellites as a function of the cluster-centric distance to measure tidal stripping. We use the shear catalogues of the DES science veri cation archive, the CFHTLenS and the CFHT Stripe 82 surveys, and we select satellites from the redMaPPer catalogue of clusters. For galaxies located in the outskirts of clusters, we nd a stellar to halo mass relation in good agreement with the theoretical expectations from Moster, Naab & White (2013) for central galaxies. In the centre of the cluster, we nd that this relation is shifted to smaller halo mass for a given stellar mass. We interpret this nding as further evidence for tidal stripping of dark matter haloes in high density environments.« less
Stellar-to-halo mass relation of cluster galaxies
Niemiec, Anna; Jullo, Eric; Limousin, Marceau; ...
2017-07-04
In the formation of galaxy groups and clusters, the dark matter haloes containing satellite galaxies are expected to be tidally stripped in gravitational interactions with the host. We use galaxy-galaxy weak lensing to measure the average mass of dark matter haloes of satellite galaxies as a function of projected distance to the centre of the host, since stripping is expected to be greater for satellites closer to the centre of the cluster. We further classify the satellites according to their stellar mass: assuming that the stellar component of the galaxy is less disrupted by tidal stripping, stellar mass can bemore » used as a proxy of the infall mass. We study the stellar to halo mass relation of satellites as a function of the cluster-centric distance to measure tidal stripping. We use the shear catalogues of the DES science veri cation archive, the CFHTLenS and the CFHT Stripe 82 surveys, and we select satellites from the redMaPPer catalogue of clusters. For galaxies located in the outskirts of clusters, we nd a stellar to halo mass relation in good agreement with the theoretical expectations from Moster, Naab & White (2013) for central galaxies. In the centre of the cluster, we nd that this relation is shifted to smaller halo mass for a given stellar mass. We interpret this nding as further evidence for tidal stripping of dark matter haloes in high density environments.« less
Exploring the IMF of star clusters: a joint SLUG and LEGUS effort
NASA Astrophysics Data System (ADS)
Ashworth, G.; Fumagalli, M.; Krumholz, M. R.; Adamo, A.; Calzetti, D.; Chandar, R.; Cignoni, M.; Dale, D.; Elmegreen, B. G.; Gallagher, J. S., III; Gouliermis, D. A.; Grasha, K.; Grebel, E. K.; Johnson, K. E.; Lee, J.; Tosi, M.; Wofford, A.
2017-08-01
We present the implementation of a Bayesian formalism within the Stochastically Lighting Up Galaxies (slug) stellar population synthesis code, which is designed to investigate variations in the initial mass function (IMF) of star clusters. By comparing observed cluster photometry to large libraries of clusters simulated with a continuously varying IMF, our formalism yields the posterior probability distribution function (PDF) of the cluster mass, age and extinction, jointly with the parameters describing the IMF. We apply this formalism to a sample of star clusters from the nearby galaxy NGC 628, for which broad-band photometry in five filters is available as part of the Legacy ExtraGalactic UV Survey (LEGUS). After allowing the upper-end slope of the IMF (α3) to vary, we recover PDFs for the mass, age and extinction that are broadly consistent with what is found when assuming an invariant Kroupa IMF. However, the posterior PDF for α3 is very broad due to a strong degeneracy with the cluster mass, and it is found to be sensitive to the choice of priors, particularly on the cluster mass. We find only a modest improvement in the constraining power of α3 when adding Hα photometry from the companion Hα-LEGUS survey. Conversely, Hα photometry significantly improves the age determination, reducing the frequency of multi-modal PDFs. With the aid of mock clusters, we quantify the degeneracy between physical parameters, showing how constraints on the cluster mass that are independent of photometry can be used to pin down the IMF properties of star clusters.
NASA Astrophysics Data System (ADS)
Contenta, Filippo; Gieles, Mark; Balbinot, Eduardo; Collins, Michelle L. M.
2017-04-01
In the last decade, several ultra faint objects (UFOs, MV ≳ -3.5) have been discovered in the outer halo of the Milky Way. For some of these objects, it is not clear whether they are star clusters or (ultra faint) dwarf galaxies. In this work, we quantify the contribution of star clusters to the population of UFOs. We extrapolated the mass and Galactocentric radius distribution of the globular clusters using a population model, finding that the Milky Way contains about 3.3^{+7.3}_{-1.6} star clusters with MV ≳ -3.5 and Galactocentric radius ≥20 kpc. To understand whether dissolving clusters can appear as UFOs, we run a suite of direct N-body models, varying the orbit, the Galactic potential, the binary fraction and the black hole (BH) natal kick velocities. In the analyses, we consider observational biases such as luminosity limit, field stars and line-of-sight projection. We find that star clusters contribute to both the compact and the extended population of UFOs: clusters without BHs appear compact with radii ˜5 pc, while clusters that retain their BHs after formation have radii ≳ 20 pc. The properties of the extended clusters are remarkably similar to those of dwarf galaxies: high-inferred mass-to-light ratios due to binaries, binary properties mildly affected by dynamical evolution, no observable mass segregation and flattened stellar mass function. We conclude that the slope of the stellar mass function as a function of Galactocentric radius and the presence/absence of cold streams can discriminate between dark matter-free and dark matter-dominated UFOs.
The NGC 7742 star cluster luminosity function: a population analysis revisited
NASA Astrophysics Data System (ADS)
de Grijs, Richard; Ma, Chao
2018-02-01
We re-examine the properties of the star cluster population in the circumnuclear starburst ring in the face-on spiral galaxy NGC 7742, whose young cluster mass function has been reported to exhibit significant deviations from the canonical power law. We base our reassessment on the clusters’ luminosities (an observational quantity) rather than their masses (a derived quantity), and confirm conclusively that the galaxy’s starburst-ring clusters—and particularly the youngest subsample, {log}(t {{{yr}}}-1)≤ 7.2—show evidence of a turnover in the cluster luminosity function well above the 90% completeness limit adopted to ensure the reliability of our results. This confirmation emphasizes the unique conundrum posed by this unusual cluster population.
NASA Astrophysics Data System (ADS)
Sarron, F.; Martinet, N.; Durret, F.; Adami, C.
2018-06-01
Obtaining large samples of galaxy clusters is important for cosmology: cluster counts as a function of redshift and mass can constrain the parameters of our Universe. They are also useful in order to understand the formation and evolution of clusters. We develop an improved version of the Adami & MAzure Cluster FInder (AMACFI), now the Adami, MAzure & Sarron Cluster FInder (AMASCFI), and apply it to the 154 deg2 of the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) to obtain a large catalogue of 1371 cluster candidates with mass M200 > 1014 M⊙ and redshift z ≤ 0.7. We derive the selection function of the algorithm from the Millennium simulation, and cluster masses from a richness-mass scaling relation built from matching our candidates with X-ray detections. We study the evolution of these clusters with mass and redshift by computing the i'-band galaxy luminosity functions (GLFs) for the early-type (ETGs) and late-type galaxies (LTGs). This sample is 90% pure and 70% complete, and therefore our results are representative of a large fraction of the cluster population in these redshift and mass ranges. We find an increase in both the ETG and LTG faint populations with decreasing redshift (with Schechter slopes αETG = -0.65 ± 0.03 and αLTG = -0.95 ± 0.04 at z = 0.6, and αETG = -0.79 ± 0.02 and αLTG = -1.26 ± 0.03 at z = 0.2) and also a decrease in the LTG (but not the ETG) bright end. Our large sample allows us to break the degeneracy between mass and redshift, finding that the redshift evolution is more pronounced in high-mass clusters, but that there is no significant dependence of the faint end on mass for a given redshift. These results show that the cluster red sequence is mainly formed at redshift z > 0.7, and that faint ETGs continue to enrich the red sequence through quenching of brighter LTGs at z ≤ 0.7. The efficiency of this quenching is higher in large-mass clusters, while the accretion rate of faint LTGs is lower as the more massive clusters have already emptied most of their environment at higher redshifts. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/IRFU, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at Terapix available at the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS.The candidate cluster catalog is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/613/A67
Cluster-lensing: A Python Package for Galaxy Clusters and Miscentering
NASA Astrophysics Data System (ADS)
Ford, Jes; VanderPlas, Jake
2016-12-01
We describe a new open source package for calculating properties of galaxy clusters, including Navarro, Frenk, and White halo profiles with and without the effects of cluster miscentering. This pure-Python package, cluster-lensing, provides well-documented and easy-to-use classes and functions for calculating cluster scaling relations, including mass-richness and mass-concentration relations from the literature, as well as the surface mass density {{Σ }}(R) and differential surface mass density {{Δ }}{{Σ }}(R) profiles, probed by weak lensing magnification and shear. Galaxy cluster miscentering is especially a concern for stacked weak lensing shear studies of galaxy clusters, where offsets between the assumed and the true underlying matter distribution can lead to a significant bias in the mass estimates if not accounted for. This software has been developed and released in a public GitHub repository, and is licensed under the permissive MIT license. The cluster-lensing package is archived on Zenodo. Full documentation, source code, and installation instructions are available at http://jesford.github.io/cluster-lensing/.
NASA Astrophysics Data System (ADS)
Tadross, A. L.
2005-12-01
The main physical parameters; the cluster center, distance, radius, age, reddening, and visual absorbtion; have been re-estimated and improved for the open cluster NGC 7086. The metal abundance, galactic distances, membership richness, luminosity function, mass function, and the total mass of NGC 7086 have been examined for the first time here using Monet et al. (2003) catalog.
Improved optical mass tracer for galaxy clusters calibrated using weak lensing measurements
NASA Astrophysics Data System (ADS)
Reyes, R.; Mandelbaum, R.; Hirata, C.; Bahcall, N.; Seljak, U.
2008-11-01
We develop an improved mass tracer for clusters of galaxies from optically observed parameters, and calibrate the mass relation using weak gravitational lensing measurements. We employ a sample of ~13000 optically selected clusters from the Sloan Digital Sky Survey (SDSS) maxBCG catalogue, with photometric redshifts in the range 0.1-0.3. The optical tracers we consider are cluster richness, cluster luminosity, luminosity of the brightest cluster galaxy (BCG) and combinations of these parameters. We measure the weak lensing signal around stacked clusters as a function of the various tracers, and use it to determine the tracer with the least amount of scatter. We further use the weak lensing data to calibrate the mass normalization. We find that the best mass estimator for massive clusters is a combination of cluster richness, N200, and the luminosity of the BCG, LBCG: , where is the observed mean BCG luminosity at a given richness. This improved mass tracer will enable the use of galaxy clusters as a more powerful tool for constraining cosmological parameters.
Imprints of dynamical interactions on brown dwarf pairing statistics and kinematics
NASA Astrophysics Data System (ADS)
Sterzik, M. F.; Durisen, R. H.
2003-03-01
We present statistically robust predictions of brown dwarf properties arising from dynamical interactions during their early evolution in small clusters. Our conclusions are based on numerical calculations of the internal cluster dynamics as well as on Monte-Carlo models. Accounting for recent observational constraints on the sub-stellar mass function and initial properties in fragmenting star forming clumps, we derive multiplicity fractions, mass ratios, separation distributions, and velocity dispersions. We compare them with observations of brown dwarfs in the field and in young clusters. Observed brown dwarf companion fractions around 15 +/- 7% for very low-mass stars as reported recently by Close et al. (\\cite{CSFB03}) are consistent with certain dynamical decay models. A significantly smaller mean separation distribution for brown dwarf binaries than for binaries of late-type stars can be explained by similar specific energy at the time of cluster formation for all cluster masses. Due to their higher velocity dispersions, brown-dwarfs and low-mass single stars will undergo time-dependent spatial segregation from higher-mass stars and multiple systems. This will cause mass functions and binary statistics in star forming regions to vary with the age of the region and the volume sampled.
Cosmic web type dependence of halo clustering
NASA Astrophysics Data System (ADS)
Fisher, J. D.; Faltenbacher, A.
2018-01-01
We use the Millennium Simulation to show that halo clustering varies significantly with cosmic web type. Haloes are classified as node, filament, sheet and void haloes based on the eigenvalue decomposition of the velocity shear tensor. The velocity field is sampled by the peculiar velocities of a fixed number of neighbouring haloes, and spatial derivatives are computed using a kernel borrowed from smoothed particle hydrodynamics. The classification scheme is used to examine the clustering of haloes as a function of web type for haloes with masses larger than 1011 h- 1 M⊙. We find that node haloes show positive bias, filament haloes show negligible bias and void and sheet haloes are antibiased independent of halo mass. Our findings suggest that the mass dependence of halo clustering is rooted in the composition of web types as a function of halo mass. The substantial fraction of node-type haloes for halo masses ≳ 2 × 1013 h- 1 M⊙ leads to positive bias. Filament-type haloes prevail at intermediate masses, 1012-1013 h- 1 M⊙, resulting in unbiased clustering. The large contribution of sheet-type haloes at low halo masses ≲ 1012 h- 1 M⊙ generates antibiasing.
NASA Astrophysics Data System (ADS)
Capuzzo-Dolcetta, Roberto
1993-10-01
Among the possible phenomena inducing evolution of the globular cluster system in an elliptical galaxy, dynamical friction due to field stars and tidal disruption caused by a central nucleus is of crucial importance. The aim of this paper is the study of the evolution of the globular cluster system in a triaxial galaxy in the presence of these phenomena. In particular, the possibility is examined that some galactic nuclei have been formed by frictionally decayed globular clusters moving in a triaxial potential. We find that the initial rapid growth of the nucleus, due mainly to massive clusters on box orbits falling in a short time scale into the galactic center, is later slowed by tidal disruption induced by the nucleus itself on less massive clusters in the way described by Ostriker, Binney, and Saha. The efficiency of dynamical friction is such to carry to the center of the galaxy enough globular cluster mass available to form a compact nucleus, but the actual modes and results of cluster-cluster encounters in the central potential well are complicated phenomena which remains to be investigated. The mass of the resulting nucleus is determined by the mutual feedback of the described processes, together with the initial spatial, velocity, and mass distributions of the globular cluster family. The effect on the system mass function is studied, showing the development of a low- and high-mass turnover even with an initially flat mass function. Moreover, in this paper is discussed the possibility that the globular cluster fall to the galactic center has been a cause of primordial violent galactic activity. An application of the model to M31 is presented.
An exactly solvable model of polymerization
NASA Astrophysics Data System (ADS)
Lushnikov, A. A.
2017-08-01
This paper considers the evolution of a polydisperse polymerizing system comprising g1,g2 … - mers carrying ϕ1,ϕ2 … functional groups reacting with one another and binding the g-mers together. In addition, the g-mers are assumed to be added at random by one at a time with a known rate depending on their mass g and functionality ϕ . Assuming that the rate of binding of two g-mers is proportional to the product of the numbers of nonreacted functional groups the kinetic equation for the distribution of clusters (g-mers) over their mass and functionalities is formulated and then solved by applying the generating function method. In contrast to existing approaches this kinetic equation operates with the efficiencies proportional to the product of the numbers of active functional groups in the clusters rather than to the product of their masses. The evolution process is shown to reveal a phase transition: the emergence of a giant linked cluster (the gel) whose mass is comparable to the total mass of the whole polymerizing system. The time dependence of the moments of the distribution of linked components over their masses and functionalities is investigated. The polymerization process terminates by forming a residual spectrum of sol particles in addition to the gel.
Cosmological Constraints from Galaxy Clustering and the Mass-to-number Ratio of Galaxy Clusters
NASA Astrophysics Data System (ADS)
Tinker, Jeremy L.; Sheldon, Erin S.; Wechsler, Risa H.; Becker, Matthew R.; Rozo, Eduardo; Zu, Ying; Weinberg, David H.; Zehavi, Idit; Blanton, Michael R.; Busha, Michael T.; Koester, Benjamin P.
2012-01-01
We place constraints on the average density (Ω m ) and clustering amplitude (σ8) of matter using a combination of two measurements from the Sloan Digital Sky Survey: the galaxy two-point correlation function, wp (rp ), and the mass-to-galaxy-number ratio within galaxy clusters, M/N, analogous to cluster M/L ratios. Our wp (rp ) measurements are obtained from DR7 while the sample of clusters is the maxBCG sample, with cluster masses derived from weak gravitational lensing. We construct nonlinear galaxy bias models using the Halo Occupation Distribution (HOD) to fit both wp (rp ) and M/N for different cosmological parameters. HOD models that match the same two-point clustering predict different numbers of galaxies in massive halos when Ω m or σ8 is varied, thereby breaking the degeneracy between cosmology and bias. We demonstrate that this technique yields constraints that are consistent and competitive with current results from cluster abundance studies, without the use of abundance information. Using wp (rp ) and M/N alone, we find Ω0.5 m σ8 = 0.465 ± 0.026, with individual constraints of Ω m = 0.29 ± 0.03 and σ8 = 0.85 ± 0.06. Combined with current cosmic microwave background data, these constraints are Ω m = 0.290 ± 0.016 and σ8 = 0.826 ± 0.020. All errors are 1σ. The systematic uncertainties that the M/N technique are most sensitive to are the amplitude of the bias function of dark matter halos and the possibility of redshift evolution between the SDSS Main sample and the maxBCG cluster sample. Our derived constraints are insensitive to the current level of uncertainties in the halo mass function and in the mass-richness relation of clusters and its scatter, making the M/N technique complementary to cluster abundances as a method for constraining cosmology with future galaxy surveys.
NASA Astrophysics Data System (ADS)
Habibi, M.; Stolte, A.; Brandner, W.; Hußmann, B.; Motohara, K.
2013-08-01
The Galactic center is the most active site of star formation in the Milky Way, where particularly high-mass stars have formed very recently and are still forming today. However, since we are looking at the Galactic center through the Galactic disk, knowledge of extinction is crucial when studying this region. The Arches cluster is a young, massive starburst cluster near the Galactic center. We observed the Arches cluster out to its tidal radius using Ks-band imaging obtained with NAOS/CONICA at the VLT combined with Subaru/CISCO J-band data to gain a full understanding of the cluster mass distribution. We show that the determination of the mass of the most massive star in the Arches cluster, which had been used in previous studies to establish an upper mass limit for the star formation process in the Milky Way, strongly depends on the assumed slope of the extinction law. Assuming the two regimes of widely used infrared extinction laws, we show that the difference can reach up to 30% for individually derived stellar masses and ΔAKs ~ 1 magnitude in acquired Ks-band extinction, while the present-day mass function slope changes by ~ 0.17 dex. The present-day mass function slope derived assuming the more recent extinction law increases from a flat slope of αNishi = -1.50 ± 0.35 in the core (r < 0.2 pc) to αNishi = -2.21 ± 0.27 in the intermediate annulus (0.2 < r < 0.4 pc), where the Salpeter slope is -2.3. The mass function steepens to αNishi = -3.21 ± 0.30 in the outer annulus (0.4 < r < 1.5 pc), indicating that the outer cluster region is depleted of high-mass stars. This picture is consistent with mass segregation owing to the dynamical evolution of the cluster. Based on observations collected at the ESO/VLT under Program ID 081.D-0572(B) (PI: Brandner) and ID 71.C-0344(A) (PI: Eisenhauer, retrieved from the ESO archive). Also based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.Full Table 5 is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/556/A26
Star Formation in NGC 6531-Evidence From the age Spread and Initial Mass Function
NASA Astrophysics Data System (ADS)
Forbes, Douglas
1996-09-01
The results of a photometric UBV study of the young open cluster NGC 6531 are presented. The cluster is found to have a mean reddening E(B-V)=0.28±0.04 (s.d.) and distance modulus (V0-Mv)=10.70±0.13 (s.e.), and 105±11 likely cluster members have been identified within the cluster coronal radius of 9 arcmin. A comparison of the high-luminosity end of the cluster color-magnitude diagram to the evolutionary models by Maeder & Meynet [A&AS, 76, 411(1988)] suggests a nuclear age of (8±2) Myr. The very clear gap in the distribution of stars with 0≤(B-V)0≤0.20, corresponding to the "burn-off" of 3He in stars contracting to the main sequence [Ulrich, ApJ, 168, 57 (1971)], implies a contraction age of (8±3) Myr. There would seem to be no evidence of a spread in the ages of cluster stars, as has been observed in several other young open clusters [Herbst & Miller, AJ, 87, 1478 (1982)]. The initial mass function (IMF) constructed from the cluster luminosity function and the mass-luminosity relation given by Scab (1986) shows good agreement with the field star IMF, and with the IMFS of a number of clusters of similar age and richness. The relative deficiency of low-mass stars seen by Herbst and Miller in NGC 3293 (a cluster of quite similar age and reddening) is not evident in NGC 6531.
NASA Astrophysics Data System (ADS)
Clark, D. M.; Eikenberry, S. S.; Brandl, B. R.; Wilson, J. C.; Carson, J. C.; Henderson, C. P.; Hayward, T. L.; Barry, D. J.; Ptak, A. F.; Colbert, E. J. M.
2008-05-01
We use the previously identified 15 infrared star cluster counterparts to X-ray point sources in the interacting galaxies NGC 4038/4039 (the Antennae) to study the relationship between total cluster mass and X-ray binary number. This significant population of X-Ray/IR associations allows us to perform, for the first time, a statistical study of X-ray point sources and their environments. We define a quantity, η, relating the fraction of X-ray sources per unit mass as a function of cluster mass in the Antennae. We compute cluster mass by fitting spectral evolutionary models to Ks luminosity. Considering that this method depends on cluster age, we use four different age distributions to explore the effects of cluster age on the value of η and find it varies by less than a factor of 4. We find a mean value of η for these different distributions of η = 1.7 × 10-8 M-1⊙ with ση = 1.2 × 10-8 M-1⊙. Performing a χ2 test, we demonstrate η could exhibit a positive slope, but that it depends on the assumed distribution in cluster ages. While the estimated uncertainties in η are factors of a few, we believe this is the first estimate made of this quantity to "order of magnitude" accuracy. We also compare our findings to theoretical models of open and globular cluster evolution, incorporating the X-ray binary fraction per cluster.
First results from the IllustrisTNG simulations: matter and galaxy clustering
NASA Astrophysics Data System (ADS)
Springel, Volker; Pakmor, Rüdiger; Pillepich, Annalisa; Weinberger, Rainer; Nelson, Dylan; Hernquist, Lars; Vogelsberger, Mark; Genel, Shy; Torrey, Paul; Marinacci, Federico; Naiman, Jill
2018-03-01
Hydrodynamical simulations of galaxy formation have now reached sufficient volume to make precision predictions for clustering on cosmologically relevant scales. Here, we use our new IllustrisTNG simulations to study the non-linear correlation functions and power spectra of baryons, dark matter, galaxies, and haloes over an exceptionally large range of scales. We find that baryonic effects increase the clustering of dark matter on small scales and damp the total matter power spectrum on scales up to k ˜ 10 h Mpc-1 by 20 per cent. The non-linear two-point correlation function of the stellar mass is close to a power-law over a wide range of scales and approximately invariant in time from very high redshift to the present. The two-point correlation function of the simulated galaxies agrees well with Sloan Digital Sky Survey at its mean redshift z ≃ 0.1, both as a function of stellar mass and when split according to galaxy colour, apart from a mild excess in the clustering of red galaxies in the stellar mass range of109-1010 h-2 M⊙. Given this agreement, the TNG simulations can make valuable theoretical predictions for the clustering bias of different galaxy samples. We find that the clustering length of the galaxy autocorrelation function depends strongly on stellar mass and redshift. Its power-law slope γ is nearly invariant with stellar mass, but declines from γ ˜ 1.8 at redshift z = 0 to γ ˜ 1.6 at redshift z ˜ 1, beyond which the slope steepens again. We detect significant scale dependences in the bias of different observational tracers of large-scale structure, extending well into the range of the baryonic acoustic oscillations and causing nominal (yet fortunately correctable) shifts of the acoustic peaks of around ˜ 5 per cent.
Searching for the missing baryons in clusters
Rasheed, Bilhuda; Bahcall, Neta; Bode, Paul
2011-01-01
Observations of clusters of galaxies suggest that they contain fewer baryons (gas plus stars) than the cosmic baryon fraction. This “missing baryon” puzzle is especially surprising for the most massive clusters, which are expected to be representative of the cosmic matter content of the universe (baryons and dark matter). Here we show that the baryons may not actually be missing from clusters, but rather are extended to larger radii than typically observed. The baryon deficiency is typically observed in the central regions of clusters (∼0.5 the virial radius). However, the observed gas-density profile is significantly shallower than the mass-density profile, implying that the gas is more extended than the mass and that the gas fraction increases with radius. We use the observed density profiles of gas and mass in clusters to extrapolate the measured baryon fraction as a function of radius and as a function of cluster mass. We find that the baryon fraction reaches the cosmic value near the virial radius for all groups and clusters above . This suggests that the baryons are not missing, they are simply located in cluster outskirts. Heating processes (such as shock-heating of the intracluster gas, supernovae, and Active Galactic Nuclei feedback) likely contribute to this expanded distribution. Upcoming observations should be able to detect these baryons. PMID:21321229
Extrinsic Sources of Scatter in the Richness-mass Relation of Galaxy Clusters
NASA Astrophysics Data System (ADS)
Rozo, Eduardo; Rykoff, Eli; Koester, Benjamin; Nord, Brian; Wu, Hao-Yi; Evrard, August; Wechsler, Risa
2011-10-01
Maximizing the utility of upcoming photometric cluster surveys requires a thorough understanding of the richness-mass relation of galaxy clusters. We use Monte Carlo simulations to study the impact of various sources of observational scatter on this relation. Cluster ellipticity, photometric errors, photometric redshift errors, and cluster-to-cluster variations in the properties of red-sequence galaxies contribute negligible noise. Miscentering, however, can be important, and likely contributes to the scatter in the richness-mass relation of galaxy maxBCG clusters at the low-mass end, where centering is more difficult. We also investigate the impact of projection effects under several empirically motivated assumptions about cluster environments. Using Sloan Digital Sky Survey data and the maxBCG cluster catalog, we demonstrate that variations in cluster environments can rarely (≈1%-5% of the time) result in significant richness boosts. Due to the steepness of the mass/richness function, the corresponding fraction of optically selected clusters that suffer from these projection effects is ≈5%-15%. We expect these numbers to be generic in magnitude, but a precise determination requires detailed, survey-specific modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krolewski, Alex G.; Eisenstein, Daniel J., E-mail: akrolewski@college.harvard.edu
2015-04-10
We study the dependence of quasar clustering on quasar luminosity and black hole mass by measuring the angular overdensity of photometrically selected galaxies imaged by the Wide-field Infrared Survey Explorer (WISE) about z ∼ 0.8 quasars from SDSS. By measuring the quasar–galaxy cross-correlation function and using photometrically selected galaxies, we achieve a higher density of tracer objects and a more sensitive detection of clustering than measurements of the quasar autocorrelation function. We test models of quasar formation and evolution by measuring the luminosity dependence of clustering amplitude. We find a significant overdensity of WISE galaxies about z ∼ 0.8 quasarsmore » at 0.2–6.4 h{sup −1} Mpc in projected comoving separation. We find no appreciable increase in clustering amplitude with quasar luminosity across a decade in luminosity, and a power-law fit between luminosity and clustering amplitude gives an exponent of −0.01 ± 0.06 (1 σ error). We also fail to find a significant relationship between clustering amplitude and black hole mass, although our dynamic range in true mass is suppressed due to the large uncertainties in virial black hole mass estimates. Our results indicate that a small range in host dark matter halo mass maps to a large range in quasar luminosity.« less
NASA Astrophysics Data System (ADS)
Marks, Michael; Kroupa, Pavel; Dabringhausen, Jörg; Pawlowski, Marcel S.
2012-05-01
Residual-gas expulsion after cluster formation has recently been shown to leave an imprint in the low-mass present-day stellar mass function (PDMF) which allowed the estimation of birth conditions of some Galactic globular clusters (GCs) such as mass, radius and star formation efficiency. We show that in order to explain their characteristics (masses, radii, metallicity and PDMF) their stellar initial mass function (IMF) must have been top heavy. It is found that the IMF is required to become more top heavy the lower the cluster metallicity and the larger the pre-GC cloud-core density are. The deduced trends are in qualitative agreement with theoretical expectation. The results are consistent with estimates of the shape of the high-mass end of the IMF in the Arches cluster, Westerlund 1, R136 and NGC 3603, as well as with the IMF independently constrained for ultra-compact dwarf galaxies (UCDs). The latter suggests that GCs and UCDs might have formed along the same channel or that UCDs formed via mergers of GCs. A Fundamental Plane is found which describes the variation of the IMF with density and metallicity of the pre-GC cloud cores. The implications for the evolution of galaxies and chemical enrichment over cosmological times are expected to be major.
The enhancement of rapidly quenched galaxies in distant clusters at 0.5 < z < 1.0
NASA Astrophysics Data System (ADS)
Socolovsky, Miguel; Almaini, Omar; Hatch, Nina A.; Wild, Vivienne; Maltby, David T.; Hartley, William G.; Simpson, Chris
2018-05-01
We investigate the relationship between environment and galaxy evolution in the redshift range 0.5 < z < 1.0. Galaxy overdensities are selected using a friends-of-friends algorithm, applied to deep photometric data in the Ultra-Deep Survey field. A study of the resulting stellar mass functions reveals clear differences between cluster and field environments, with a strong excess of low-mass rapidly quenched galaxies in cluster environments compared to the field. Cluster environments also show a corresponding deficit of young, low-mass star-forming galaxies, which show a sharp radial decline towards cluster centres. By comparing mass functions and radial distributions, we conclude that young star-forming galaxies are rapidly quenched as they enter overdense environments, becoming post-starburst galaxies before joining the red sequence. Our results also point to the existence of two environmental quenching pathways operating in galaxy clusters, operating on different time-scales. Fast quenching acts on galaxies with high specific star formation rates, operating on time-scales shorter than the cluster dynamical time (<1 Gyr). In contrast, slow quenching affects galaxies with moderate specific star formation rates, regardless of their stellar mass, and acts on longer time-scales (≳ 1 Gyr). Of the cluster galaxies in the stellar mass range 9.0 < log (M/M⊙) < 10.5 quenched during this epoch, we find that 73 per cent were transformed through fast quenching, while the remaining 27 per cent followed the slow quenching route.
Baryon content of massive galaxy clusters at 0.57 < z < 1.33
Chiu, I.; Mohr, J.; McDonald, M.; ...
2015-11-02
Here, we study the stellar, Brightest Cluster Galaxy (BCG) and intracluster medium (ICM) masses of 14 South Pole Telescope (SPT) selected galaxy clusters with median redshift z = 0.9 and median mass M 500 = 6 x 10 14M ⊙. We estimate stellar masses for each cluster and BCG using six photometric bands spanning the range from the ultraviolet to the near-infrared observed with the VLT, HST and Spitzer. The ICM masses are derived from Chandra and XMM-Newton X-ray observations, and the virial masses are derived from the SPT Sunyaev-Zel'dovich Effect signature. At z = 0.9 the BCG mass Mmore » * BCG constitutes 0.12 ± 0.01% of the halo mass for a 6 x 10 14M ⊙ cluster, and this fraction falls as M 500 -0.58±0.007. The cluster stellar mass function has a characteristic mass M 0 = 10 11.0±0.1M ⊙, and the number of galaxies per unit mass in clusters is larger than in the field by a factor 1.65 ± 0.2. Both results are consistent with measurements on group scales and at lower redshift.« less
Young Cluster Berkeley 59: Properties, Evolution, and Star Formation
NASA Astrophysics Data System (ADS)
Panwar, Neelam; Pandey, A. K.; Samal, Manash R.; Battinelli, Paolo; Ogura, K.; Ojha, D. K.; Chen, W. P.; Singh, H. P.
2018-01-01
Berkeley 59 is a nearby (∼1 kpc) young cluster associated with the Sh2-171 H II region. We present deep optical observations of the central ∼2.5 × 2.5 pc2 area of the cluster, obtained with the 3.58 m Telescopio Nazionale Galileo. The V/(V–I) color–magnitude diagram manifests a clear pre-main-sequence (PMS) population down to ∼0.2 M ⊙. Using the near-infrared and optical colors of the low-mass PMS members, we derive a global extinction of A V = 4 mag and a mean age of ∼1.8 Myr, respectively, for the cluster. We constructed the initial mass function and found that its global slopes in the mass ranges of 0.2–28 M ⊙ and 0.2–1.5 M ⊙ are ‑1.33 and ‑1.23, respectively, in good agreement with the Salpeter value in the solar neighborhood. We looked for the radial variation of the mass function and found that the slope is flatter in the inner region than in the outer region, indicating mass segregation. The dynamical status of the cluster suggests that the mass segregation is likely primordial. The age distribution of the PMS sources reveals that the younger sources appear to concentrate close to the inner region compared to the outer region of the cluster, a phenomenon possibly linked to the time evolution of star-forming clouds. Within the observed area, we derive a total mass of ∼103 M ⊙ for the cluster. Comparing the properties of Berkeley 59 with other young clusters, we suggest it resembles more closely the Trapezium cluster.
Two serendipitous low-mass LMC clusters discovered with HST1
NASA Astrophysics Data System (ADS)
Santiago, Basilio X.; Elson, Rebecca A. W.; Sigurdsson, Steinn; Gilmore, Gerard F.
1998-04-01
We present V and I photometry of two open clusters in the LMC down to V~26. The clusters were imaged with the Wide Field and Planetary Camera 2 (WFPC2) on board the Hubble Space Telescope (HST), as part of the Medium Deep Survey Key Project. Both are low-luminosity (M_V~-3.5), low-mass (M~10^3 Msolar) systems. The chance discovery of these two clusters in two parallel WFPC2 fields suggests a significant incompleteness in the LMC cluster census near the bar. One of the clusters is roughly elliptical and compact, with a steep light profile, a central surface brightness mu_V(0)~20.2 mag arcsec^-2, a half-light radius r_hl~0.9 pc (total visual major diameter D~3 pc) and an estimated mass M~1500 Msolar. From the colour-magnitude diagram and isochrone fits we estimate its age as tau~(2-5)x10^8 yr. Its mass function has a fitted slope of Gamma=Deltalogphi(M)/DeltalogM=-1.8+/-0.7 in the range probed (0.9<~M/Msolar<~4.5). The other cluster is more irregular and sparse, having shallower density and surface brightness profiles. We obtain Gamma=-1.2+/-0.4, and estimate its mass as M~400 Msolar. A derived upper limit for its age is tau<~5x10^8 yr. Both clusters have mass functions with slopes similar to that of R136, a massive LMC cluster, for which HST results indicate Gamma~-1.2. They also seem to be relaxed in their cores and well contained in their tidal radii.
The panchromatic Hubble Andromeda Treasury. V. Ages and masses of the year 1 stellar clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fouesneau, Morgan; Johnson, L. Clifton; Weisz, Daniel R.
We present ages and masses for 601 star clusters in M31 from the analysis of the six filter integrated light measurements from near-ultraviolet to near-infrared wavelengths, made as part of the Panchromatic Hubble Andromeda Treasury (PHAT). We derive the ages and masses using a probabilistic technique, which accounts for the effects of stochastic sampling of the stellar initial mass function. Tests on synthetic data show that this method, in conjunction with the exquisite sensitivity of the PHAT observations and their broad wavelength baseline, provides robust age and mass recovery for clusters ranging from ∼10{sup 2} to 2 × 10{sup 6}more » M {sub ☉}. We find that the cluster age distribution is consistent with being uniform over the past 100 Myr, which suggests a weak effect of cluster disruption within M31. The age distribution of older (>100 Myr) clusters falls toward old ages, consistent with a power-law decline of index –1, likely from a combination of fading and disruption of the clusters. We find that the mass distribution of the whole sample can be well described by a single power law with a spectral index of –1.9 ± 0.1 over the range of 10{sup 3}-3 × 10{sup 5} M {sub ☉}. However, if we subdivide the sample by galactocentric radius, we find that the age distributions remain unchanged. However, the mass spectral index varies significantly, showing best-fit values between –2.2 and –1.8, with the shallower slope in the highest star formation intensity regions. We explore the robustness of our study to potential systematics and conclude that the cluster mass function may vary with respect to environment.« less
The impact of baryons on massive galaxy clusters: halo structure and cluster mass estimates
NASA Astrophysics Data System (ADS)
Henson, Monique A.; Barnes, David J.; Kay, Scott T.; McCarthy, Ian G.; Schaye, Joop
2017-03-01
We use the BAHAMAS (BAryons and HAloes of MAssive Systems) and MACSIS (MAssive ClusterS and Intercluster Structures) hydrodynamic simulations to quantify the impact of baryons on the mass distribution and dynamics of massive galaxy clusters, as well as the bias in X-ray and weak lensing mass estimates. These simulations use the subgrid physics models calibrated in the BAHAMAS project, which include feedback from both supernovae and active galactic nuclei. They form a cluster population covering almost two orders of magnitude in mass, with more than 3500 clusters with masses greater than 1014 M⊙ at z = 0. We start by characterizing the clusters in terms of their spin, shape and density profile, before considering the bias in both weak lensing and hydrostatic mass estimates. Whilst including baryonic effects leads to more spherical, centrally concentrated clusters, the median weak lensing mass bias is unaffected by the presence of baryons. In both the dark matter only and hydrodynamic simulations, the weak lensing measurements underestimate cluster masses by ≈10 per cent for clusters with M200 ≤ 1015 M⊙ and this bias tends to zero at higher masses. We also consider the hydrostatic bias when using both the true density and temperature profiles, and those derived from X-ray spectroscopy. When using spectroscopic temperatures and densities, the hydrostatic bias decreases as a function of mass, leading to a bias of ≈40 per cent for clusters with M500 ≥ 1015 M⊙. This is due to the presence of cooler gas in the cluster outskirts. Using mass weighted temperatures and the true density profile reduces this bias to 5-15 per cent.
NASA Astrophysics Data System (ADS)
Bouy, H.; Bertin, E.; Sarro, L. M.; Barrado, D.; Moraux, E.; Bouvier, J.; Cuillandre, J.-C.; Berihuete, A.; Olivares, J.; Beletsky, Y.
2015-05-01
Context. The DANCe survey provides photometric and astrometric (position and proper motion) measurements for approximately 2 million unique sources in a region encompassing ~80 deg2 centered on the Pleiades cluster. Aims: We aim at deriving a complete census of the Pleiades and measure the mass and luminosity functions of the cluster. Methods: Using the probabilistic selection method previously described, we identified high probability members in the DANCe (i ≥ 14 mag) and Tycho-2 (V ≲ 12 mag) catalogues and studied the properties of the cluster over the corresponding luminosity range. Results: We find a total of 2109 high-probability members, of which 812 are new, making it the most extensive and complete census of the cluster to date. The luminosity and mass functions of the cluster are computed from the most massive members down to ~0.025 M⊙. The size, sensitivity, and quality of the sample result in the most precise luminosity and mass functions observed to date for a cluster. Conclusions: Our census supersedes previous studies of the Pleiades cluster populations, in terms of both sensitivity and accuracy. Based on service observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.Table 1 and Appendices are available in electronic form at http://www.aanda.orgDANCe catalogs (Tables 6 and 7) and full Tables 2-5 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/577/A148
HICOSMO - X-ray analysis of a complete sample of galaxy clusters
NASA Astrophysics Data System (ADS)
Schellenberger, G.; Reiprich, T.
2017-10-01
Galaxy clusters are known to be the largest virialized objects in the Universe. Based on the theory of structure formation one can use them as cosmological probes, since they originate from collapsed overdensities in the early Universe and witness its history. The X-ray regime provides the unique possibility to measure in detail the most massive visible component, the intra cluster medium. Using Chandra observations of a local sample of 64 bright clusters (HIFLUGCS) we provide total (hydrostatic) and gas mass estimates of each cluster individually. Making use of the completeness of the sample we quantify two interesting cosmological parameters by a Bayesian cosmological likelihood analysis. We find Ω_{M}=0.3±0.01 and σ_{8}=0.79±0.03 (statistical uncertainties) using our default analysis strategy combining both, a mass function analysis and the gas mass fraction results. The main sources of biases that we discuss and correct here are (1) the influence of galaxy groups (higher incompleteness in parent samples and a differing behavior of the L_{x} - M relation), (2) the hydrostatic mass bias (as determined by recent hydrodynamical simulations), (3) the extrapolation of the total mass (comparing various methods), (4) the theoretical halo mass function and (5) other cosmological (non-negligible neutrino mass), and instrumental (calibration) effects.
The Formation and Evolution of Star Clusters in Interacting Galaxies
NASA Astrophysics Data System (ADS)
Maji, Moupiya; Zhu, Qirong; Li, Yuexing; Charlton, Jane; Hernquist, Lars; Knebe, Alexander
2017-08-01
Observations of globular clusters show that they have universal lognormal mass functions with a characteristic peak at ˜ 2× {10}5 {M}⊙ , but the origin of this peaked distribution is highly debated. Here we investigate the formation and evolution of star clusters (SCs) in interacting galaxies using high-resolution hydrodynamical simulations performed with two different codes in order to mitigate numerical artifacts. We find that massive SCs in the range of ˜ {10}5.5{--}{10}7.5 {M}⊙ form preferentially in the highly shocked regions produced by galaxy interactions. The nascent cluster-forming clouds have high gas pressures in the range of P/k˜ {10}8{--}{10}12 {{K}} {{cm}}-3, which is ˜ {10}4{--}{10}8 times higher than the typical pressure of the interstellar medium but consistent with recent observations of a pre-super-SC cloud in the Antennae Galaxies. Furthermore, these massive SCs have quasi-lognormal initial mass functions with a peak around ˜ {10}6 {M}⊙ . The number of clusters declines with time due to destructive processes, but the shape and the peak of the mass functions do not change significantly during the course of galaxy collisions. Our results suggest that gas-rich galaxy mergers may provide a favorable environment for the formation of massive SCs such as globular clusters, and that the lognormal mass functions and the unique peak may originate from the extreme high-pressure conditions of the birth clouds and may survive the dynamical evolution.
Distant Massive Clusters and Cosmology
NASA Technical Reports Server (NTRS)
Donahue, Megan
1999-01-01
We present a status report of our X-ray study and analysis of a complete sample of distant (z=0.5-0.8), X-ray luminous clusters of galaxies. We have obtained ASCA and ROSAT observations of the five brightest Extended Medium Sensitivity (EMSS) clusters with z > 0.5. We have constructed an observed temperature function for these clusters, and measured iron abundances for all of these clusters. We have developed an analytic expression for the behavior of the mass-temperature relation in a low-density universe. We use this mass-temperature relation together with a Press-Schechter-based model to derive the expected temperature function for different values of Omega-M. We combine this analysis with the observed temperature functions at redshifts from 0 - 0.8 to derive maximum likelihood estimates for the value of Omega-M. We report preliminary results of this analysis.
HICOSMO: cosmology with a complete sample of galaxy clusters - II. Cosmological results
NASA Astrophysics Data System (ADS)
Schellenberger, G.; Reiprich, T. H.
2017-10-01
The X-ray bright, hot gas in the potential well of a galaxy cluster enables systematic X-ray studies of samples of galaxy clusters to constrain cosmological parameters. HIFLUGCS consists of the 64 X-ray brightest galaxy clusters in the Universe, building up a local sample. Here, we utilize this sample to determine, for the first time, individual hydrostatic mass estimates for all the clusters of the sample and, by making use of the completeness of the sample, we quantify constraints on the two interesting cosmological parameters, Ωm and σ8. We apply our total hydrostatic and gas mass estimates from the X-ray analysis to a Bayesian cosmological likelihood analysis and leave several parameters free to be constrained. We find Ωm = 0.30 ± 0.01 and σ8 = 0.79 ± 0.03 (statistical uncertainties, 68 per cent credibility level) using our default analysis strategy combining both a mass function analysis and the gas mass fraction results. The main sources of biases that we correct here are (1) the influence of galaxy groups (incompleteness in parent samples and differing behaviour of the Lx-M relation), (2) the hydrostatic mass bias, (3) the extrapolation of the total mass (comparing various methods), (4) the theoretical halo mass function and (5) other physical effects (non-negligible neutrino mass). We find that galaxy groups introduce a strong bias, since their number density seems to be over predicted by the halo mass function. On the other hand, incorporating baryonic effects does not result in a significant change in the constraints. The total (uncorrected) systematic uncertainties (∼20 per cent) clearly dominate the statistical uncertainties on cosmological parameters for our sample.
The star-forming history of the young cluster NGC 2264
NASA Technical Reports Server (NTRS)
Adams, M. T.; Strom, K. M.; Strom, S. E.
1983-01-01
UBVRI H-alpha photographic photometry was obtained for a sample of low-mass stars in the young open cluster NGC 2264 in order to investigate the star-forming history of this region. A theoretical H-R diagram was constructed for the sample of probable cluster members. Isochrones and evolutionary tracks were adopted from Cohen and Kuhi (1979). Evidence for a significant age spread in the cluster was found amounting to over ten million yr. In addition, the derived star formation rate as a function of stellar mass suggests that the principal star-forming mass range in NGC 2264 has proceeded sequentially in time from the lowest to the highest masses. The low-mass cluster stars were the first cluster members to form in significant numbers, although their present birth rate is much lower now than it was about ten million yr ago. The star-formation rate has risen to a peak at successively higher masses and then declined.
Dynamical Mass Measurements of Contaminated Galaxy Clusters Using Support Distribution Machines
NASA Astrophysics Data System (ADS)
Ntampaka, Michelle; Trac, Hy; Sutherland, Dougal; Fromenteau, Sebastien; Poczos, Barnabas; Schneider, Jeff
2018-01-01
We study dynamical mass measurements of galaxy clusters contaminated by interlopers and show that a modern machine learning (ML) algorithm can predict masses by better than a factor of two compared to a standard scaling relation approach. We create two mock catalogs from Multidark’s publicly available N-body MDPL1 simulation, one with perfect galaxy cluster membership infor- mation and the other where a simple cylindrical cut around the cluster center allows interlopers to contaminate the clusters. In the standard approach, we use a power-law scaling relation to infer cluster mass from galaxy line-of-sight (LOS) velocity dispersion. Assuming perfect membership knowledge, this unrealistic case produces a wide fractional mass error distribution, with a width E=0.87. Interlopers introduce additional scatter, significantly widening the error distribution further (E=2.13). We employ the support distribution machine (SDM) class of algorithms to learn from distributions of data to predict single values. Applied to distributions of galaxy observables such as LOS velocity and projected distance from the cluster center, SDM yields better than a factor-of-two improvement (E=0.67) for the contaminated case. Remarkably, SDM applied to contaminated clusters is better able to recover masses than even the scaling relation approach applied to uncon- taminated clusters. We show that the SDM method more accurately reproduces the cluster mass function, making it a valuable tool for employing cluster observations to evaluate cosmological models.
Are Binary Separations related to their System Mass?
NASA Astrophysics Data System (ADS)
Sterzik, M. F.; Durisen, R. H.
2004-08-01
We compile most recent multiplicity fractions and binary separation distributions for different primary masses, including very low-mass and brown dwarf primaries, and compare them with dynamical decay models of small-N clusters. The model predictions are based on detailed numerical calculations of the internal cluster dynamics, as well as on Monte-Carlo methods. Both observations and models reflect the same trends: (1) The multiplicity fraction is an increasing function of the primary mass. (2) The mean binary separations are increasing with the system mass in the sense that very low-mass binaries have average separations around ≈ 4AU, while the binary separation distribution for solar-type primaries peaks at ≈ 40AU. M-type binary systems apparently preferentially populate intermediate separations. Similar specific energy at the time of cluster formation for all cluster masses can possibly explain this trend.
FT-ICR mass spectrometric and density functional theory studies of sulfate prenucleation clusters
NASA Astrophysics Data System (ADS)
Lemke, K. H.
2012-12-01
Recent mass spectrometric1 and relaxation spectroscopic studies2 of metal sulfate salts have demonstrated that aqueous clusters play an important role in sulfate prenucleation processes. While such studies provide evidence that that ion clusters are nucleation relevant species, ultra-high resolution mass spectrumetry, in particular, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR/MS) can provide additional valuable information about the molecular composition and stability of individual ion clusters. Prompted by the above studies, our group has begun a systematic survey of metal sulfate clusters using FT-ICR mass spectrometry. Here, I report stoichiometries, structures and thermodynamic properties of calcium sulfate ion clusters, both "dry" and microsolvated, using electrospray ionization FT-ICR mass spectrometry in combination with semi-empirical methods and M062X/aug-cc-PVXZ level density functional theory calculations. In electrosprayed dilute aqueous solutions of CaSO4 (1-20mM), droplet desolvation results in the formation of stable doubly-charged clusters of [Ca(CaSO4)m(H2O)n]+2 (m≤10 & n≤9) as well as larger quadruply-charged ion clusters [Ca2(CaSO4)m(H2O)n]+4 with m≤23 and n≤10, demonstrating considerable sulfate nucleation potential in undersaturated electrolyte solutions. An attempt was also made to assess the extent of ion cluster aggregation in solution prior to electrospray ionization by measuring ion mass spectra at different solution concentrations. In brief, an increase in calcium sulfate concentration from 1-10mM results in a continuous increase in polynuclear ion cluster species, while smaller clusters, for instance, Ca[CaSO4]+2 and corresponding hydrated forms, become increasingly less abundant. Building on semi-empirical methods, M062X calculations have been applied to predict calcium sulfate cluster geometries, both "dry" and microsolvated, as well as the size-dependent evolution of clustering and hydration energies. 1Schoeder et al. (2011) J.Am.Chem.Soc., 133, 2444; 2Chen et al. (2005) J.Sol.Chem., 34, 1045;
Investigating Open Clusters Melotte 111 and NGC 6811
NASA Astrophysics Data System (ADS)
Gunshefski, Linda; Paust, Nathaniel E. Q.; van Belle, Gerard
2018-01-01
We present photometry and color-magnitude diagrams for the open clusters Melotte 111 (Coma Bernices) and NGC 6811. These clusters were observed with Lowell Observatory’s Discovery Channel Telescope Large Monolithic Imager in the V and I bands. The images were reduced with IRAF and photometry was performed with DAOPHOT/ALLSTAR. The resulting photometry extends many magnitudes below the main sequence turnoff. Both clusters are located nearby, (Melotte 111 d=86 pc and NGC 6811 d=1,107) and are evolutionarily young (Melotte 111, age=450 Myr and NGC 6811, age=1,000 Myr). This work marks the first step of a project to determine the cluster main sequence mass functions and examine how the mass functions evolve in young stellar populations.
The Herschel Virgo Cluster Survey - XVI. A cluster inventory
NASA Astrophysics Data System (ADS)
Davies, J. I.; Bianchi, S.; Baes, M.; Bendo, G. J.; Clemens, M.; De Looze, I.; di Serego Alighieri, S.; Fritz, J.; Fuller, C.; Pappalardo, C.; Hughes, T. M.; Madden, S.; Smith, M. W. L.; Verstappen, J.; Vlahakis, C.
2014-03-01
Herschel far-infrared (FIR) observations are used to construct Virgo cluster galaxy luminosity functions and to show that the cluster lacks the very bright and the numerous faint sources detected in field galaxy surveys. The FIR spectral energy distributions are fitted to obtain dust masses and temperatures and the dust mass function. The cluster is overdense in dust by about a factor of 100 compared to the field. The same emissivity (β)-temperature relation applies for different galaxies as that found for different regions of M31. We use optical and H I data to show that Virgo is overdense in stars and atomic gas by about a factor of 100 and 20, respectively. Metallicity values are used to measure the mass of metals in the gas phase. The mean metallicity is ˜0.7 solar, and ˜50 per cent of the metals are in the dust. For the cluster as a whole, the mass density of stars in galaxies is eight times that of the gas and the gas mass density is 130 times that of the metals. We use our data to consider the chemical evolution of the individual galaxies, inferring that the measured variations in the effective yield are due to galaxies having different ages, being affected to varying degrees by gas loss. Four galaxy scaling relations are considered: mass-metallicity, mass-velocity, mass-star formation rate and mass-radius - we suggest that initial galaxy mass is the prime driver of a galaxy's ultimate destiny. Finally, we use X-ray observations and galaxy dynamics to assess the dark and baryonic matter content compared to the cosmological model.
NASA Astrophysics Data System (ADS)
Miyaoka, Keita; Okabe, Nobuhiro; Kitaguchi, Takao; Oguri, Masamune; Fukazawa, Yasushi; Mandelbaum, Rachel; Medezinski, Elinor; Babazaki, Yasunori; Nishizawa, Atsushi J.; Hamana, Takashi; Lin, Yen-Ting; Akamatsu, Hiroki; Chiu, I.-Non; Fujita, Yutaka; Ichinohe, Yuto; Komiyama, Yutaka; Sasaki, Toru; Takizawa, Motokazu; Ueda, Shutaro; Umetsu, Keiichi; Coupon, Jean; Hikage, Chiaki; Hoshino, Akio; Leauthaud, Alexie; Matsushita, Kyoko; Mitsuishi, Ikuyuki; Miyatake, Hironao; Miyazaki, Satoshi; More, Surhud; Nakazawa, Kazuhiro; Ota, Naomi; Sato, Kousuke; Spergel, David; Tamura, Takayuki; Tanaka, Masayuki; Tanaka, Manobu M.; Utsumi, Yousuke
2018-01-01
We present a joint X-ray, optical, and weak-lensing analysis for X-ray luminous galaxy clusters selected from the MCXC (Meta-Catalog of X-Ray Detected Clusters of Galaxies) cluster catalog in the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) survey field with S16A data. As a pilot study for a series of papers, we measure hydrostatic equilibrium (HE) masses using XMM-Newton data for four clusters in the current coverage area out of a sample of 22 MCXC clusters. We additionally analyze a non-MCXC cluster associated with one MCXC cluster. We show that HE masses for the MCXC clusters are correlated with cluster richness from the CAMIRA catalog, while that for the non-MCXC cluster deviates from the scaling relation. The mass normalization of the relationship between cluster richness and HE mass is compatible with one inferred by matching CAMIRA cluster abundance with a theoretical halo mass function. The mean gas mass fraction based on HE masses for the MCXC clusters is
Star Cluster Formation in Cosmological Simulations. I. Properties of Young Clusters
NASA Astrophysics Data System (ADS)
Li, Hui; Gnedin, Oleg Y.; Gnedin, Nickolay Y.; Meng, Xi; Semenov, Vadim A.; Kravtsov, Andrey V.
2017-01-01
We present a new implementation of star formation in cosmological simulations by considering star clusters as a unit of star formation. Cluster particles grow in mass over several million years at the rate determined by local gas properties, with high time resolution. The particle growth is terminated by its own energy and momentum feedback on the interstellar medium. We test this implementation for Milky Way-sized galaxies at high redshift by comparing the properties of model clusters with observations of young star clusters. We find that the cluster initial mass function is best described by a Schechter function rather than a single power law. In agreement with observations, at low masses the logarithmic slope is α ≈ 1.8{--}2, while the cutoff at high mass scales with the star formation rate (SFR). A related trend is a positive correlation between the surface density of the SFR and fraction of stars contained in massive clusters. Both trends indicate that the formation of massive star clusters is preferred during bursts of star formation. These bursts are often associated with major-merger events. We also find that the median timescale for cluster formation ranges from 0.5 to 4 Myr and decreases systematically with increasing star formation efficiency. Local variations in the gas density and cluster accretion rate naturally lead to the scatter of the overall formation efficiency by an order of magnitude, even when the instantaneous efficiency is kept constant. Comparison of the formation timescale with the observed age spread of young star clusters provides an additional important constraint on the modeling of star formation and feedback schemes.
An X-Ray Flux-Limited Sample of Galaxy Clusters: Physical Properties and Cosmological Implications
NASA Astrophysics Data System (ADS)
Reiprich, Thomas H.
2001-07-01
An X-ray selected and X-ray flux-limited sample comprising the 63 X-ray brightest galaxy clusters in the sky (excluding the galactic band, called HIFLUGCS) has been constructed based on the ROSAT All-Sky Survey. The flux limit has been set at 2x10^-11 erg/s/cm^2 in the energy band 0.1-2.4 keV. It has been shown that a high completeness is indicated by several tests. Due to the high flux limit this sample can be used for a variety of applications requiring a statistical cluster sample without any corrections to the effective survey volume. Mainly high quality pointed observations have been used to determine fluxes and physical cluster parameters. It has been shown that a tight correlation exists between the X-ray luminosity and the gravitational mass using HIFLUGCS and an extended sample of 106 galaxy clusters. The relation and its scatter have been quantified using different fitting methods. A comparison to theoretical and numerical predictions shows an overall agreement. This relation may be directly applied in large X-ray cluster surveys or dark matter simulations for conversions between X-ray luminosity and gravitating mass. Data from the performance verification phase of the recently launched X-ray satellite observatory XMM-Newton on the galaxy cluster Abell 1835 has been analyzed, in order to test the assumption of isothermality of the cluster gas in the outer parts applied throughout the work. It has been found that the measured outer temperature profile is consistent with being isothermal. In the inner regions a clear drop of the temperature by a factor of two has been found. Physical properties of the cluster sample have been studied by analyzing relations between different cluster parameters. The overall properties are well understood but in detail deviations from simple expectations have been found. It has been found that the gas mass fraction (fgas) does not vary as a function of intracluster gas temperature. For galaxy groups (kTx < 2 keV), however, a steep drop of fgas has been observed. No clear trend of a variation of the shape of the surface brightness profile, i.e. beta, has been observed as a function of temperature. The Lx-Tx relation has been found to be steeper than expected from simple self similar models, as has been found by previous authors. But no clear deviations from a power law shape down to kTx = 0.7 keV have been found. The Mt-Tx relation found here is steeper than expected from self similar models and its normalization is lower compared to hydrodynamic simulations, in agreement with previous findings. Suggested scenarios to account for these deviations, including heating and cooling processes, and observational difficulties have been described. It appears that a blend of different effects, possibly including a variation of mean formation redshift with system mass, is needed to account for the observations presented here. Using HIFLUGCS the gravitational mass function has been determined for the mass interval 3.5x10^13 < M200 < 5.2x10^15 h50^-1 Msun. Comparison with Press-Schechter mass functions has yielded tight constraints on the mean matter density in the universe and the amplitude of density fluctuations. The large covered mass range has allowed to put constraints on the parameters individually. Specifically it has been found that OmegaM = 0.12^{+0.06}_{-0.04} and sigma8 = 0.96^{+0.15}_{-0.12} (90% c.l. statistical uncertainty). This result is consistent with two more estimates of OmegaM obtained in this work using different methods. The mean intracluster gas fraction of the 106 clusters in the extended sample combined with predictions from the theory of nucleosynthesis indicates OmegaM < 0.34. The cluster mass to light ratio multiplied by the mean luminosity density implies OmegaM 0.15. Various tests for systematic uncertainties have been performed, including comparison of the Press-Schechter mass function with the most recent results from large N-body simulations, yielding deviations smaller than the statistical uncertainties. For comparison the best fit OmegaM values for fixed sigma8 values have been determined yielding the relation sigma8 = 0.43OmegaM^-0.38. The mass function has been integrated to obtain the fraction of the total gravitating mass in the universe contained in galaxy clusters. Normalized to the critical density it has been found that Omega_Cluster = 0.012^{+0.003}_{-0.004} for cluster masses larger than 6.4^{+0.7}_{-0.6}x10^13 h50^-1 Msun. With the value for OmegaM determined here this implies that about 90% of the mass in the universe resides outside virialized cluster regions. Similarly it has been found that the fraction of the total gravitating mass which is contained in the intracluster gas, Omega_b,Cluster = 0.0015^{+0.0002}_{-0.0001} h50^-1.5 for gas masses larger than 6.9^{+1.4}_{-1.5}x10^12 h50^{-5/2}Msun, is very small.
The distribution of mass for spiral galaxies in clusters and in the field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forbes, D.A.; Whitmore, B.C.
1989-04-01
A comparison is made between the mass distributions of spiral galaxies in clusters and in the field using Burstein's mass-type methodology. Both the H-alpha emission-line rotation curves and more extended H I rotation curves are used. The fitting technique for determining mass types used by Burstein and coworkers has been replaced by an objective chi-sq method. Mass types are shown to be a function of both the Hubble type and luminosity, contrary to earlier results. The present data show a difference in the distribution of mass types for spiral galaxies in the field and in clusters, in the sense thatmore » mass type I galaxies, where the inner and outer velocity gradients are similar, are generally found in the field rather than in clusters. This can be understood in terms of the results of Whitmore, Forbes, and Rubin (1988), who find that the rotation curves of galaxies in the central region of clusters are generally failing, while the outer galaxies in a cluster and field galaxies tend to have flat or rising rotation curves. 15 refs.« less
NASA Astrophysics Data System (ADS)
Kalari, Venu M.; Carraro, Giovanni; Evans, Christopher J.; Rubio, Monica
2018-04-01
NGC 796 is a massive young cluster located 59 kpc from us in the diffuse intergalactic medium of the 1/5–1/10 Z⊙ Magellanic Bridge, allowing us to probe variations in star formation and stellar evolution processes as a function of metallicity in a resolved fashion, and providing a link between resolved studies of nearby solar-metallicity and unresolved distant metal-poor clusters located in high-redshift galaxies. In this paper, we present adaptive optics griHα imaging of NGC 796 (at 0.″5, which is ∼0.14 pc at the cluster distance) along with optical spectroscopy of two bright members to quantify the cluster properties. Our aim is to explore whether star formation and stellar evolution vary as a function of metallicity by comparing the properties of NGC 796 to higher-metallicity clusters. We find an age of {20}-5+12 Myr from isochronal fitting of the cluster main sequence in the color–magnitude diagram. Based on the cluster luminosity function, we derive a top-heavy stellar initial mass function (IMF) with a slope α = 1.99 ± 0.2, hinting at a metallicity and/or environmental dependence of the IMF, which may lead to a top-heavy IMF in the early universe. Study of the Hα emission-line stars reveals that classical Be stars constitute a higher fraction of the total B-type stars when compared with similar clusters at greater metallicity, providing some support to the chemically homogeneous theory of stellar evolution. Overall, NGC 796 has a total estimated mass of 990 ± 200 M⊙, and a core radius of 1.4 ± 0.3 pc, which classifies it as a massive young open cluster, unique in the diffuse interstellar medium of the Magellanic Bridge.
The Low-mass Population in the Young Cluster Stock 8: Stellar Properties and Initial Mass Function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jose, Jessy; Herczeg, Gregory J.; Fang, Qiliang
The evolution of H ii regions/supershells can trigger a new generation of stars/clusters at their peripheries, with environmental conditions that may affect the initial mass function, disk evolution, and star formation efficiency. In this paper we study the stellar content and star formation processes in the young cluster Stock 8, which itself is thought to be formed during the expansion of a supershell. We present deep optical photometry along with JHK and 3.6 and 4.5 μ m photometry from UKIDSS and Spitzer -IRAC. We use multicolor criteria to identify the candidate young stellar objects in the region. Using evolutionary models,more » we obtain a median log(age) of ∼6.5 (∼3.0 Myr) with an observed age spread of ∼0.25 dex for the cluster. Monte Carlo simulations of the population of Stock 8, based on estimates for the photometric uncertainty, differential reddening, binarity, and variability, indicate that these uncertainties introduce an age spread of ∼0.15 dex. The intrinsic age spread in the cluster is ∼0.2 dex. The fraction of young stellar objects surrounded by disks is ∼35%. The K -band luminosity function of Stock 8 is similar to that of the Trapezium cluster. The initial mass function (IMF) of Stock 8 has a Salpeter-like slope at >0.5 M {sub ⊙} and flattens and peaks at ∼0.4 M {sub ⊙}, below which it declines into the substellar regime. Although Stock 8 is surrounded by several massive stars, there seems to be no severe environmental effect in the form of the IMF due to the proximity of massive stars around the cluster.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papastergis, Emmanouil; Giovanelli, Riccardo; Haynes, Martha P.
We use a sample of ≈6000 galaxies detected by the Arecibo Legacy Fast ALFA (ALFALFA) 21 cm survey to measure the clustering properties of H I-selected galaxies. We find no convincing evidence for a dependence of clustering on galactic atomic hydrogen (H I) mass, over the range M{sub H{sub I}} ≈ 10{sup 8.5}-10{sup 10.5} M{sub ☉}. We show that previously reported results of weaker clustering for low H I mass galaxies are probably due to finite-volume effects. In addition, we compare the clustering of ALFALFA galaxies with optically selected samples drawn from the Sloan Digital Sky Survey (SDSS). We findmore » that H I-selected galaxies cluster more weakly than even relatively optically faint galaxies, when no color selection is applied. Conversely, when SDSS galaxies are split based on their color, we find that the correlation function of blue optical galaxies is practically indistinguishable from that of H I-selected galaxies. At the same time, SDSS galaxies with red colors are found to cluster significantly more than H I-selected galaxies, a fact that is evident in both the projected as well as the full two-dimensional correlation function. A cross-correlation analysis further reveals that gas-rich galaxies 'avoid' being located within ≈3 Mpc of optical galaxies with red colors. Next, we consider the clustering properties of halo samples selected from the Bolshoi ΛCDM simulation. A comparison with the clustering of ALFALFA galaxies suggests that galactic H I mass is not tightly related to host halo mass and that a sizable fraction of subhalos do not host H I galaxies. Lastly, we find that we can recover fairly well the correlation function of H I galaxies by just excluding halos with low spin parameter. This finding lends support to the hypothesis that halo spin plays a key role in determining the gas content of galaxies.« less
NASA Astrophysics Data System (ADS)
Sridhar, Srivatsan; Maurogordato, Sophie; Benoist, Christophe; Cappi, Alberto; Marulli, Federico
2017-04-01
Context. The next generation of galaxy surveys will provide cluster catalogues probing an unprecedented range of scales, redshifts, and masses with large statistics. Their analysis should therefore enable us to probe the spatial distribution of clusters with high accuracy and derive tighter constraints on the cosmological parameters and the dark energy equation of state. However, for the majority of these surveys, redshifts of individual galaxies will be mostly estimated by multiband photometry which implies non-negligible errors in redshift resulting in potential difficulties in recovering the real-space clustering. Aims: We investigate to which accuracy it is possible to recover the real-space two-point correlation function of galaxy clusters from cluster catalogues based on photometric redshifts, and test our ability to detect and measure the redshift and mass evolution of the correlation length r0 and of the bias parameter b(M,z) as a function of the uncertainty on the cluster redshift estimate. Methods: We calculate the correlation function for cluster sub-samples covering various mass and redshift bins selected from a 500 deg2 light-cone limited to H < 24. In order to simulate the distribution of clusters in photometric redshift space, we assign to each cluster a redshift randomly extracted from a Gaussian distribution having a mean equal to the cluster cosmological redshift and a dispersion equal to σz. The dispersion is varied in the range σ(z=0)=\\frac{σz{1+z_c} = 0.005,0.010,0.030} and 0.050, in order to cover the typical values expected in forthcoming surveys. The correlation function in real-space is then computed through estimation and deprojection of wp(rp). Four mass ranges (from Mhalo > 2 × 1013h-1M⊙ to Mhalo > 2 × 1014h-1M⊙) and six redshift slices covering the redshift range [0, 2] are investigated, first using cosmological redshifts and then for the four photometric redshift configurations. Results: From the analysis of the light-cone in cosmological redshifts we find a clear increase of the correlation amplitude as a function of redshift and mass. The evolution of the derived bias parameter b(M,z) is in fair agreement with theoretical expectations. We calculate the r0-d relation up to our highest mass, highest redshift sample tested (z = 2,Mhalo > 2 × 1014h-1M⊙). From our pilot sample limited to Mhalo > 5 × 1013h-1M⊙(0.4 < z < 0.7), we find that the real-space correlation function can be recovered by deprojection of wp(rp) within an accuracy of 5% for σz = 0.001 × (1 + zc) and within 10% for σz = 0.03 × (1 + zc). For higher dispersions (besides σz > 0.05 × (1 + zc)), the recovery becomes noisy and difficult. The evolution of the correlation in redshift and mass is clearly detected for all σz tested, but requires a large binning in redshift to be detected significantly between individual redshift slices when increasing σz. The best-fit parameters (r0 and γ) as well as the bias obtained from the deprojection method for all σz are within the 1σ uncertainty of the zc sample.
Low-end mass function of the Quintuplet cluster
NASA Astrophysics Data System (ADS)
Shin, Jihye; Kim, Sungsoo S.
2016-08-01
The Quintuplet and Arches clusters, which were formed in the harsh environment of the Galactic Centre (GC) a few million years ago, have been excellent targets for studying the effects of a star-forming environment on the initial mass function (IMF). In order to estimate the shape of the low-end IMF of the Arches cluster, Shin & Kim devised a novel photometric method that utilizes pixel intensity histograms (PIHs) of the observed images. Here, we apply the PIH method to the Quintuplet cluster and estimate the shape of its low-end IMF below the magnitude of completeness limit as set by conventional photometry. We found that the low-end IMF of the Quintuplet is consistent with that found for the Arches cluster-Kroupa MF, with a significant number of low-mass stars below 1 M⊙. We conclude that the most likely IMFs of the Quintuplet and the Arches clusters are not too different from the IMFs found in the Galactic disc. We also find that the observed PIHs and stellar number density profiles of both clusters are best reproduced when the clusters are assumed to be at three-dimensional distances of approximately 100 pc from the GC.
Galaxy cluster luminosities and colours, and their dependence on cluster mass and merger state
NASA Astrophysics Data System (ADS)
Mulroy, Sarah L.; McGee, Sean L.; Gillman, Steven; Smith, Graham P.; Haines, Chris P.; Démoclès, Jessica; Okabe, Nobuhiro; Egami, Eiichi
2017-12-01
We study a sample of 19 galaxy clusters in the redshift range 0.15 < z < 0.30 with highly complete spectroscopic membership catalogues (to K < K*(z) + 1.5) from the Arizona Cluster Redshift Survey, individual weak-lensing masses and near-infrared data from the Local Cluster Substructure Survey, and optical photometry from the Sloan Digital Sky Survey. We fit the scaling relations between total cluster luminosity in each of six bandpasses (grizJK) and cluster mass, finding cluster luminosity to be a promising mass proxy with low intrinsic scatter σln L|M of only ∼10-20 per cent for all relations. At fixed overdensity radius, the intercept increases with wavelength, consistent with an old stellar population. The scatter and slope are consistent across all wavelengths, suggesting that cluster colour is not a function of mass. Comparing colour with indicators of the level of disturbance in the cluster, we find a narrower variety in the cluster colours of 'disturbed' clusters than of 'undisturbed' clusters. This trend is more pronounced with indicators sensitive to the initial stages of a cluster merger, e.g. the Dressler Schectman statistic. We interpret this as possible evidence that the total cluster star formation rate is 'standardized' in mergers, perhaps through a process such as a system-wide shock in the intracluster medium.
NASA Astrophysics Data System (ADS)
Guo, Hong; Yang, Xiaohu; Lu, Yi
2018-05-01
We propose a novel method to constrain the missing fraction of galaxies using galaxy clustering measurements in the galaxy conditional stellar mass function (CSMF) framework, which is applicable to surveys that suffer significantly from sample selection effects. The clustering measurements, which are not sensitive to the random sampling (missing fraction) of galaxies, are widely used to constrain the stellar–halo mass relation (SHMR). By incorporating a missing fraction (incompleteness) component into the CSMF model (ICSMF), we use the incomplete stellar mass function and galaxy clustering to simultaneously constrain the missing fractions and the SHMRs. Tests based on mock galaxy catalogs with a few typical missing fraction models show that this method can accurately recover the missing fraction and the galaxy SHMR, hence providing us with reliable measurements of the galaxy stellar mass functions. We then apply it to the Baryon Oscillation Spectroscopic Survey (BOSS) over the redshift range of 0.1 < z < 0.8 for galaxies of M * > 1011 M ⊙. We find that the sample completeness for BOSS is over 80% at z < 0.6 but decreases at higher redshifts to about 30%. After taking these completeness factors into account, we provide accurate measurements of the stellar mass functions for galaxies with {10}11 {M}ȯ < {M}* < {10}12 {M}ȯ , as well as the SHMRs, over the redshift range 0.1 < z < 0.8 in this largest galaxy redshift survey.
A survey for low-mass stellar and substellar members of the Hyades open cluster
NASA Astrophysics Data System (ADS)
Melnikov, Stanislav; Eislöffel, Jochen
2018-03-01
Context. Unlike young open clusters (with ages < 250 Myr), the Hyades cluster (age 600 Myr) has a clear deficit of very low-mass stars (VLM) and brown dwarfs (BD). Since this open cluster has a low stellar density and covers several tens of square degrees on the sky, extended surveys are required to improve the statistics of the VLM/BD objects in the cluster. Aim. We search for new VLM stars and BD candidates in the Hyades cluster to improve the present-day cluster mass function down to substellar masses. Methods: An imaging survey of the Hyades with a completeness limit of 21.m5 in the R band and 20.m5 in the I band was carried out with the 2k × 2k CCD Schmidt camera at the 2 m Alfred Jensch Telescope in Tautenburg. We performed a photometric selection of the cluster member candidates by combining results of our survey with 2MASS JHKs photometry Results: We present a photometric and proper motion survey covering 23.4 deg2 in the Hyades cluster core region. Using optical/IR colour-magnitude diagrams, we identify 66 photometric cluster member candidates in the magnitude range 14.m7 < I < 20.m5. The proper motion measurements are based on several all-sky surveys with an epoch difference of 60-70 yr for the bright objects. The proper motions allowed us to discriminate the cluster members from field objects and resulted in 14 proper motion members of the Hyades. We rediscover Hy 6 as a proper motion member and classify it as a substellar object candidate (BD) based on the comparison of the observed colour-magnitude diagram with theoretical model isochrones. Conclusions: With our results, the mass function of the Hyades continues to be shallow below 0.15 M⊙ indicating that the Hyades have probably lost their lowest mass members by means of dynamical evolution. We conclude that the Hyades core represents the "VLM/BD desert" and that most of the substeller objects may have already left the volume of the cluster.
An Optical and X-Ray Study of Abell 576, a Galaxy Cluster with a Cold Core
NASA Astrophysics Data System (ADS)
Mohr, Joseph J.; Geller, Margaret J.; Fabricant, Daniel G.; Wegner, Gary; Thorstensen, John; Richstone, Douglas O.
1996-10-01
We analyze the galaxy population and dynamics of the galaxy cluster A576; the observational constraints include 281 redshifts (230 new), R- band CCD galaxy photometry over a 2 h^-1^ Mpc x 2 h^-1^ Mpc region centered on the cluster, an Einstein IPC X-ray image, and an Einstein MPC X-ray spectrum. We focus on an 86% complete magnitude-limited sample (R_23.5_ < 17) of 169 cluster galaxies. The cluster galaxies with emission lines in their spectra have a larger velocity dispersion and are significantly less clustered on this 2 h^-1^ Mpc scale than galaxies without emission lines. We show that excluding the emission-line galaxies from the cluster sample decreases the velocity dispersion by 18% and the virial mass estimate by a factor of 2. The central cluster region contains a nonemission galaxy population and an intracluster medium which is significantly cooler (σ_core_ = 387_-105_^+250^ km s^-1^ and T_x_ = 1.6_-0.3_^+0.4^ keV at 90% confidence) than the global populations (σ = 977_-96_^+124^ km s^- 1^ for the nonemission population and T_X_ > 4 keV at 90% confidence). Because (1) the low-dispersion galaxy population is no more luminous than the global population and (2) the evidence for a cooling flow is weak, we suggest that the core of A576 may contain the remnants of a lower mass subcluster. We examine the cluster mass, baryon fraction, and luminosity function. The cluster virial mass varies significantly depending on the galaxy sample used. Consistency between the hydrostatic and virial estimators can be achieved if (1) the gas temperature at r~1 h^-1^ Mpc is T_X_ ~ 8 keV (the best-fit value) and (2) several velocity outliers are excluded from the virial calculation. Although the best-fit Schechter function parameters and the ratio of galaxy to gas mass in A576 are typical of other clusters, the baryon fraction is relatively low. Using the consistent cluster binding mass, we show that the gas mass fraction is ~3 h^-3/2^% and the baryon fraction is ~4%.
Dynamical Mass Measurements of Contaminated Galaxy Clusters Using Machine Learning
NASA Astrophysics Data System (ADS)
Ntampaka, M.; Trac, H.; Sutherland, D. J.; Fromenteau, S.; Póczos, B.; Schneider, J.
2016-11-01
We study dynamical mass measurements of galaxy clusters contaminated by interlopers and show that a modern machine learning algorithm can predict masses by better than a factor of two compared to a standard scaling relation approach. We create two mock catalogs from Multidark’s publicly available N-body MDPL1 simulation, one with perfect galaxy cluster membership information and the other where a simple cylindrical cut around the cluster center allows interlopers to contaminate the clusters. In the standard approach, we use a power-law scaling relation to infer cluster mass from galaxy line-of-sight (LOS) velocity dispersion. Assuming perfect membership knowledge, this unrealistic case produces a wide fractional mass error distribution, with a width of {{Δ }}ε ≈ 0.87. Interlopers introduce additional scatter, significantly widening the error distribution further ({{Δ }}ε ≈ 2.13). We employ the support distribution machine (SDM) class of algorithms to learn from distributions of data to predict single values. Applied to distributions of galaxy observables such as LOS velocity and projected distance from the cluster center, SDM yields better than a factor-of-two improvement ({{Δ }}ε ≈ 0.67) for the contaminated case. Remarkably, SDM applied to contaminated clusters is better able to recover masses than even the scaling relation approach applied to uncontaminated clusters. We show that the SDM method more accurately reproduces the cluster mass function, making it a valuable tool for employing cluster observations to evaluate cosmological models.
The mass-ratio and eccentricity distributions of barium and S stars, and red giants in open clusters
NASA Astrophysics Data System (ADS)
Van der Swaelmen, M.; Boffin, H. M. J.; Jorissen, A.; Van Eck, S.
2017-01-01
Context. A complete set of orbital parameters for barium stars, including the longest orbits, has recently been obtained thanks to a radial-velocity monitoring with the HERMES spectrograph installed on the Flemish Mercator telescope. Barium stars are supposed to belong to post-mass-transfer systems. Aims: In order to identify diagnostics distinguishing between pre- and post-mass-transfer systems, the properties of barium stars (more precisely their mass-function distribution and their period-eccentricity (P-e) diagram) are compared to those of binary red giants in open clusters. As a side product, we aim to identify possible post-mass-transfer systems among the cluster giants from the presence of s-process overabundances. We investigate the relation between the s-process enrichment, the location in the (P-e) diagram, and the cluster metallicity and turn-off mass. Methods: To invert the mass-function distribution and derive the mass-ratio distribution, we used the method pioneered by Boffin et al. (1992) that relies on a Richardson-Lucy deconvolution algorithm. The derivation of s-process abundances in the open-cluster giants was performed through spectral synthesis with MARCS model atmospheres. Results: A fraction of 22% of post-mass-transfer systems is found among the cluster binary giants (with companion masses between 0.58 and 0.87 M⊙, typical for white dwarfs), and these systems occupy a wider area than barium stars in the (P-e) diagram. Barium stars have on average lower eccentricities at a given orbital period. When the sample of binary giant stars in clusters is restricted to the subsample of systems occupying the same locus as the barium stars in the (P-e) diagram, and with a mass function compatible with a WD companion, 33% (=4/12) show a chemical signature of mass transfer in the form of s-process overabundances (from rather moderate - about 0.3 dex - to more extreme - about 1 dex). The only strong barium star in our sample is found in the cluster with the lowest metallicity in the sample (I.e. star 173 in NGC 2420, with [Fe/H] = -0.26), whereas the barium stars with mild s-process abundance anomalies (from 0.25 to 0.6 dex) are found in the clusters with slightly subsolar metallicities. Our finding confirms the classical prediction that the s-process nucleosynthesis is more efficient at low metallicities, since the s-process overabundance is not clearly correlated with the cluster turn-off (TO) mass; such a correlation would instead hint at the importance of the dilution factor. We also find a mild barium star in NGC 2335, a cluster with a large TO mass of 4.3 M⊙, which implies that asymptotic giant branch stars that massive still operate the s-process and the third dredge-up. Based on observations made with the Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, and on observations made with the HARPS spectrograph installed on the 3.6 m telescope at the European Southern Observatory.
MODEL-FREE MULTI-PROBE LENSING RECONSTRUCTION OF CLUSTER MASS PROFILES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umetsu, Keiichi
2013-05-20
Lens magnification by galaxy clusters induces characteristic spatial variations in the number counts of background sources, amplifying their observed fluxes and expanding the area of sky, the net effect of which, known as magnification bias, depends on the intrinsic faint-end slope of the source luminosity function. The bias is strongly negative for red galaxies, dominated by the geometric area distortion, whereas it is mildly positive for blue galaxies, enhancing the blue counts toward the cluster center. We generalize the Bayesian approach of Umetsu et al. for reconstructing projected cluster mass profiles, by incorporating multiple populations of background sources for magnification-biasmore » measurements and combining them with complementary lens-distortion measurements, effectively breaking the mass-sheet degeneracy and improving the statistical precision of cluster mass measurements. The approach can be further extended to include strong-lensing projected mass estimates, thus allowing for non-parametric absolute mass determinations in both the weak and strong regimes. We apply this method to our recent CLASH lensing measurements of MACS J1206.2-0847, and demonstrate how combining multi-probe lensing constraints can improve the reconstruction of cluster mass profiles. This method will also be useful for a stacked lensing analysis, combining all lensing-related effects in the cluster regime, for a definitive determination of the averaged mass profile.« less
NASA Astrophysics Data System (ADS)
Weidner, Carsten; Kroupa, Pavel; Pflamm-Altenburg, Jan
2014-07-01
It has been claimed in the recent literature that a non-trivial relation between the mass of the most-massive star, mmax, in a star cluster and its embedded star cluster mass (the mmax - Mecl relation) is falsified by observations of the most-massive stars and the Hα luminosity of young star clusters in the starburst dwarf galaxy NGC 4214. Here, it is shown by comparing the NGC 4214 results with observations from the Milky Way that NGC 4214 agrees very well with the predictions of the mmax - Mecl relation and with the integrated galactic stellar initial mass function theory. The difference in conclusions is based on a high degree of degeneracy between expectations from random sampling and those from the mmax - Mecl relation, but are also due to interpreting mmax as a truncation mass in a randomly sampled initial mass function. Additional analysis of galaxies with lower SFRs than those currently presented in the literature will be required to break this degeneracy.
LoCuSS: The infall of X-ray groups onto massive clusters
NASA Astrophysics Data System (ADS)
Haines, C. P.; Finoguenov, A.; Smith, G. P.; Babul, A.; Egami, E.; Mazzotta, P.; Okabe, N.; Pereira, M. J.; Bianconi, M.; McGee, S. L.; Ziparo, F.; Campusano, L. E.; Loyola, C.
2018-03-01
Galaxy clusters are expected to form hierarchically in a ΛCDM universe, growing primarily through mergers with lower mass clusters and the continual accretion of group-mass halos. Galaxy clusters assemble late, doubling their masses since z ˜ 0.5, and so the outer regions of clusters should be replete with accreting group-mass systems. We present an XMM-Newton survey to search for X-ray groups in the infall regions of 23 massive galaxy clusters (
LoCuSS: The infall of X-ray groups on to massive clusters
NASA Astrophysics Data System (ADS)
Haines, C. P.; Finoguenov, A.; Smith, G. P.; Babul, A.; Egami, E.; Mazzotta, P.; Okabe, N.; Pereira, M. J.; Bianconi, M.; McGee, S. L.; Ziparo, F.; Campusano, L. E.; Loyola, C.
2018-07-01
Galaxy clusters are expected to form hierarchically in a Λ cold dark matter (ΛCDM) universe, growing primarily through mergers with lower mass clusters and the continual accretion of group-mass haloes. Galaxy clusters assemble late, doubling their masses since z ˜ 0.5, and so the outer regions of clusters should be replete with accreting group-mass systems. We present an XMM-Newton survey to search for X-ray groups in the infall regions of 23 massive galaxy clusters (
Star cluster formation in cosmological simulations. I. Properties of young clusters
Li, Hui; Gnedin, Oleg Y.; Gnedin, Nickolay Y.; ...
2017-01-03
We present a new implementation of star formation in cosmological simulations by considering star clusters as a unit of star formation. Cluster particles grow in mass over several million years at the rate determined by local gas properties, with high time resolution. The particle growth is terminated by its own energy and momentum feedback on the interstellar medium. We test this implementation for Milky Way-sized galaxies at high redshift by comparing the properties of model clusters with observations of young star clusters. We find that the cluster initial mass function is best described by a Schechter function rather than a single power law. In agreement with observations, at low masses the logarithmic slope ismore » $$\\alpha \\approx 1.8\\mbox{–}2$$, while the cutoff at high mass scales with the star formation rate (SFR). A related trend is a positive correlation between the surface density of the SFR and fraction of stars contained in massive clusters. Both trends indicate that the formation of massive star clusters is preferred during bursts of star formation. These bursts are often associated with major-merger events. We also find that the median timescale for cluster formation ranges from 0.5 to 4 Myr and decreases systematically with increasing star formation efficiency. Local variations in the gas density and cluster accretion rate naturally lead to the scatter of the overall formation efficiency by an order of magnitude, even when the instantaneous efficiency is kept constant. As a result, comparison of the formation timescale with the observed age spread of young star clusters provides an additional important constraint on the modeling of star formation and feedback schemes.« less
Star cluster formation in cosmological simulations. I. Properties of young clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hui; Gnedin, Oleg Y.; Gnedin, Nickolay Y.
We present a new implementation of star formation in cosmological simulations by considering star clusters as a unit of star formation. Cluster particles grow in mass over several million years at the rate determined by local gas properties, with high time resolution. The particle growth is terminated by its own energy and momentum feedback on the interstellar medium. We test this implementation for Milky Way-sized galaxies at high redshift by comparing the properties of model clusters with observations of young star clusters. We find that the cluster initial mass function is best described by a Schechter function rather than a single power law. In agreement with observations, at low masses the logarithmic slope ismore » $$\\alpha \\approx 1.8\\mbox{–}2$$, while the cutoff at high mass scales with the star formation rate (SFR). A related trend is a positive correlation between the surface density of the SFR and fraction of stars contained in massive clusters. Both trends indicate that the formation of massive star clusters is preferred during bursts of star formation. These bursts are often associated with major-merger events. We also find that the median timescale for cluster formation ranges from 0.5 to 4 Myr and decreases systematically with increasing star formation efficiency. Local variations in the gas density and cluster accretion rate naturally lead to the scatter of the overall formation efficiency by an order of magnitude, even when the instantaneous efficiency is kept constant. As a result, comparison of the formation timescale with the observed age spread of young star clusters provides an additional important constraint on the modeling of star formation and feedback schemes.« less
NASA Astrophysics Data System (ADS)
Armitage, Thomas J.; Barnes, David J.; Kay, Scott T.; Bahé, Yannick M.; Dalla Vecchia, Claudio; Crain, Robert A.; Theuns, Tom
2018-03-01
We use the Cluster-EAGLE simulations to explore the velocity bias introduced when using galaxies, rather than dark matter particles, to estimate the velocity dispersion of a galaxy cluster, a property known to be tightly correlated with cluster mass. The simulations consist of 30 clusters spanning a mass range 14.0 ≤ log10(M200 c/M⊙) ≤ 15.4, with their sophisticated subgrid physics modelling and high numerical resolution (subkpc gravitational softening), making them ideal for this purpose. We find that selecting galaxies by their total mass results in a velocity dispersion that is 5-10 per cent higher than the dark matter particles. However, selecting galaxies by their stellar mass results in an almost unbiased (<5 per cent) estimator of the velocity dispersion. This result holds out to z = 1.5 and is relatively insensitive to the choice of cluster aperture, varying by less than 5 per cent between r500 c and r200 m. We show that the velocity bias is a function of the time spent by a galaxy inside the cluster environment. Selecting galaxies by their total mass results in a larger bias because a larger fraction of objects have only recently entered the cluster and these have a velocity bias above unity. Galaxies that entered more than 4 Gyr ago become progressively colder with time, as expected from dynamical friction. We conclude that velocity bias should not be a major issue when estimating cluster masses from kinematic methods.
Super Star Cluster Velocity Dispersions and Virial Masses in the M82 Nuclear Starburst
NASA Astrophysics Data System (ADS)
McCrady, Nate; Graham, James R.
2007-07-01
We use high-resolution near-infrared spectroscopy from Keck Observatory to measure the stellar velocity dispersions of 19 super star clusters (SSCs) in the nuclear starburst of M82. The clusters have ages on the order of 10 Myr, which is many times longer than the crossing times implied by their velocity dispersions and radii. We therefore apply the virial theorem to derive the kinematic mass for 15 of the SSCs. The SSCs have masses of 2×105 to 4×106 Msolar, with a total population mass of 1.4×107 Msolar. Comparison of the loci of the young M82 SSCs and old Milky Way globular clusters in a plot of radius versus velocity dispersion suggests that the SSCs are a population of potential globular clusters. We present the mass function for the SSCs and find a power-law fit with an index of γ=-1.91+/-0.06. This result is nearly identical to the mass function of young SSCs in the Antennae galaxies. Based on observations made at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
Modeling and Testing Dark Energy and Gravity with Galaxy Cluster Data
NASA Astrophysics Data System (ADS)
Rapetti, David; Cataneo, Matteo; Heneka, Caroline; Mantz, Adam; Allen, Steven W.; Von Der Linden, Anja; Schmidt, Fabian; Lombriser, Lucas; Li, Baojiu; Applegate, Douglas; Kelly, Patrick; Morris, Glenn
2018-06-01
The abundance of galaxy clusters is a powerful probe to constrain the properties of dark energy and gravity at large scales. We employed a self-consistent analysis that includes survey, observable-mass scaling relations and weak gravitational lensing data to obtain constraints on f(R) gravity, which are an order of magnitude tighter than the best previously achieved, as well as on cold dark energy of negligible sound speed. The latter implies clustering of the dark energy fluid at all scales, allowing us to measure the effects of dark energy perturbations at cluster scales. For this study, we recalibrated the halo mass function using the following non-linear characteristic quantities: the spherical collapse threshold, the virial overdensity and an additional mass contribution for cold dark energy. We also presented a new modeling of the f(R) gravity halo mass function that incorporates novel corrections to capture key non-linear effects of the Chameleon screening mechanism, as found in high resolution N-body simulations. All these results permit us to predict, as I will also exemplify, and eventually obtain the next generation of cluster constraints on such models, and provide us with frameworks that can also be applied to other proposed dark energy and modified gravity models using cluster abundance observations.
Matilda: A mass filtered nanocluster source
NASA Astrophysics Data System (ADS)
Kwon, Gihan
Cluster science provides a good model system for the study of the size dependence of electronic properties, chemical reactivity, as well as magnetic properties of materials. One of the main interests in cluster science is the nanoscale understanding of chemical reactions and selectivity in catalysis. Therefore, a new cluster system was constructed to study catalysts for applications in renewable energy. Matilda, a nanocluster source, consists of a cluster source and a Retarding Field Analyzer (RFA). A moveable AJA A310 Series 1"-diameter magnetron sputtering gun enclosed in a water cooled aggregation tube served as the cluster source. A silver coin was used for the sputtering target. The sputtering pressure in the aggregation tube was controlled, ranging from 0.07 to 1torr, using a mass flow controller. The mean cluster size was found to be a function of relative partial pressure (He/Ar), sputtering power, and aggregation length. The kinetic energy distribution of ionized clusters was measured with the RFA. The maximum ion energy distribution was 2.9 eV/atom at a zero pressure ratio. At high Ar flow rates, the mean cluster size was 20 ˜ 80nm, and at a 9.5 partial pressure ratio, the mean cluster size was reduced to 1.6nm. Our results showed that the He gas pressure can be optimized to reduce the cluster size variations. Results from SIMION, which is an electron optics simulation package, supported the basic function of an RFA, a three-element lens and the magnetic sector mass filter. These simulated results agreed with experimental data. For the size selection experiment, the channeltron electron multiplier collected ionized cluster signal at different positions during Ag deposition on a TEM grid for four and half hours. The cluster signal was high at the position for neutral clusters, which was not bent by a magnetic field, and the signal decreased rapidly far away from the neutral cluster region. For cluster separation according to mass to charge ratio in a magnetic sector mass filter, the ion energy of the cluster and its distribution must be precisely controlled by acceleration or deceleration. To verify the size separation, a high resolution microscope was required. Matilda provided narrow particle sized distribution from atomic scale to 4nm in size with different pressure ratio without additional mass filter. It is very economical way to produce relatively narrow particle size distribution.
The Second Most Distant Cluster of Galaxies in the Extended Medium Sensitivity Survey
NASA Technical Reports Server (NTRS)
Donahue, Megan; Voit, G. Mark; Scharf, Caleb A.; Gioia, Isabella M.; Mullis, Christopher R.; Hughes, John P.; Stocke, John T.
1999-01-01
We report on our ASCA, Keck, and ROSAT observations of MS 1137.5+6625, the second most distant cluster of galaxies in the Einstein Extended Medium Sensitivity Survey (EMSS), at redshift 0.78. We now have a full set of X-ray temperatures, optical velocity dispersions, and X-ray images for a complete, high-redshift sample of clusters of galaxies drawn from the EMSS. Our ASCA observations of MS 1137.5 +6625 yield a temperature of 5.7 (+2.1)(-1.1) keV and a metallicity of 0.43 (+40)(-3.7) solar, with 90% confidence limits. Keck II spectroscopy of 22 cluster members reveals a velocity dispersion of 884 (+185)(-124) km 24/s. This cluster is the most distant in the sample with a detected iron line. We also derive a mean abundance at z = 0.8 by simultaneously fitting X-ray data for the two z = 0.8 clusters, and obtain an abundance of Z(sub Fe) = 0.33 (+.26)(-.23). Our ROSAT observations show that MS 1137.5+6625 is regular and highly centrally concentrated. Fitting of a Beta model to the X-ray surface brightness yields a core radius of only 71/h kpc (q(sub o) = 0.1) with Beta = 0.70(+.45)(-.15) The gas mass interior to 0.5/h Mpc is thus 1.2 (+0.2)(-0.3) X 10(exp 13) h(exp - 5/2) Solar Mass (q(sub o) = 0.1). If the cluster's gas is nearly isothermal and in hydrostatic equilibrium with the cluster potential, the total mass of the cluster within this same region is 2.1(+1.5)(-0.8) X 10exp 14)/h Solar Mass, giving a gas fraction of 0.06 +/-0.04 h (exp -3/2). This cluster is the highest redshift EMSS cluster showing evidence for a possible cooling flow (about 20-400 Solar Mass/yr). The velocity dispersion, temperature, gas fraction, and iron abundance of MS 1137.5+6625 are all statistically the same as those properties in lower red- shift clusters of similar luminosity. With this cluster's temperature now in hand, we derive a high-redshift temperature function for EMSS clusters at 0.5 < z < 0.9 and compare it with temperature functions at lower redshifts, showing that the evolution of the temperature function is relatively modest. Supplementing our high-redshift sample with other data from the literature, we demonstrate that neither the cluster luminosity-temperature relation, nor cluster metallicities, nor the cluster gas evolved with redshift. The very modest degree of evolution in the luminosity-temperature relation inferred from these data is inconsistent with the absence of evolution in the X-ray luminosity functions derived from ROSAT cluster surveys if a critical density structure formation model is assumed.
NASA Astrophysics Data System (ADS)
Saito, Shun; Leauthaud, Alexie; Hearin, Andrew P.; Bundy, Kevin; Zentner, Andrew R.; Behroozi, Peter S.; Reid, Beth A.; Sinha, Manodeep; Coupon, Jean; Tinker, Jeremy L.; White, Martin; Schneider, Donald P.
2016-08-01
We use subhalo abundance matching (SHAM) to model the stellar mass function (SMF) and clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) `CMASS' sample at z ˜ 0.5. We introduce a novel method which accounts for the stellar mass incompleteness of CMASS as a function of redshift, and produce CMASS mock catalogues which include selection effects, reproduce the overall SMF, the projected two-point correlation function wp, the CMASS dn/dz, and are made publicly available. We study the effects of assembly bias above collapse mass in the context of `age matching' and show that these effects are markedly different compared to the ones explored by Hearin et al. at lower stellar masses. We construct two models, one in which galaxy colour is stochastic (`AbM' model) as well as a model which contains assembly bias effects (`AgM' model). By confronting the redshift dependent clustering of CMASS with the predictions from our model, we argue that that galaxy colours are not a stochastic process in high-mass haloes. Our results suggest that the colours of galaxies in high-mass haloes are determined by other halo properties besides halo peak velocity and that assembly bias effects play an important role in determining the clustering properties of this sample.
Characterising large-scale structure with the REFLEX II cluster survey
NASA Astrophysics Data System (ADS)
Chon, Gayoung
2016-10-01
We study the large-scale structure with superclusters from the REFLEX X-ray cluster survey together with cosmological N-body simulations. It is important to construct superclusters with criteria such that they are homogeneous in their properties. We lay out our theoretical concept considering future evolution of superclusters in their definition, and show that the X-ray luminosity and halo mass functions of clusters in superclusters are found to be top-heavy, different from those of clusters in the field. We also show a promising aspect of using superclusters to study the local cluster bias and mass scaling relation with simulations.
Galaxy clusters in the SDSS Stripe 82 based on photometric redshifts
Durret, F.; Adami, C.; Bertin, E.; ...
2015-06-10
Based on a recent photometric redshift galaxy catalogue, we have searched for galaxy clusters in the Stripe ~82 region of the Sloan Digital Sky Survey by applying the Adami & MAzure Cluster FInder (AMACFI). Extensive tests were made to fine-tune the AMACFI parameters and make the cluster detection as reliable as possible. The same method was applied to the Millennium simulation to estimate our detection efficiency and the approximate masses of the detected clusters. Considering all the cluster galaxies (i.e. within a 1 Mpc radius of the cluster to which they belong and with a photoz differing by less thanmore » 0.05 from that of the cluster), we stacked clusters in various redshift bins to derive colour-magnitude diagrams and galaxy luminosity functions (GLFs). For each galaxy with absolute magnitude brighter than -19.0 in the r band, we computed the disk and spheroid components by applying SExtractor, and by stacking clusters we determined how the disk-to-spheroid flux ratio varies with cluster redshift and mass. We also detected 3663 clusters in the redshift range 0.1513 and a few 10 14 solar masses. Furthermore, by stacking the cluster galaxies in various redshift bins, we find a clear red sequence in the (g'-r') versus r' colour-magnitude diagrams, and the GLFs are typical of clusters, though with a possible contamination from field galaxies. The morphological analysis of the cluster galaxies shows that the fraction of late-type to early-type galaxies shows an increase with redshift (particularly in high mass clusters) and a decrease with detection level, i.e. cluster mass. From the properties of the cluster galaxies, the majority of the candidate clusters detected here seem to be real clusters with typical cluster properties.« less
Galaxy clusters in the SDSS Stripe 82 based on photometric redshifts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durret, F.; Adami, C.; Bertin, E.
Based on a recent photometric redshift galaxy catalogue, we have searched for galaxy clusters in the Stripe ~82 region of the Sloan Digital Sky Survey by applying the Adami & MAzure Cluster FInder (AMACFI). Extensive tests were made to fine-tune the AMACFI parameters and make the cluster detection as reliable as possible. The same method was applied to the Millennium simulation to estimate our detection efficiency and the approximate masses of the detected clusters. Considering all the cluster galaxies (i.e. within a 1 Mpc radius of the cluster to which they belong and with a photoz differing by less thanmore » 0.05 from that of the cluster), we stacked clusters in various redshift bins to derive colour-magnitude diagrams and galaxy luminosity functions (GLFs). For each galaxy with absolute magnitude brighter than -19.0 in the r band, we computed the disk and spheroid components by applying SExtractor, and by stacking clusters we determined how the disk-to-spheroid flux ratio varies with cluster redshift and mass. We also detected 3663 clusters in the redshift range 0.1513 and a few 10 14 solar masses. Furthermore, by stacking the cluster galaxies in various redshift bins, we find a clear red sequence in the (g'-r') versus r' colour-magnitude diagrams, and the GLFs are typical of clusters, though with a possible contamination from field galaxies. The morphological analysis of the cluster galaxies shows that the fraction of late-type to early-type galaxies shows an increase with redshift (particularly in high mass clusters) and a decrease with detection level, i.e. cluster mass. From the properties of the cluster galaxies, the majority of the candidate clusters detected here seem to be real clusters with typical cluster properties.« less
On the abundance of extreme voids II: a survey of void mass functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chongchitnan, Siri; Hunt, Matthew, E-mail: s.chongchitnan@hull.ac.uk, E-mail: m.d.hunt@2012.hull.ac.uk
2017-03-01
The abundance of cosmic voids can be described by an analogue of halo mass functions for galaxy clusters. In this work, we explore a number of void mass functions: from those based on excursion-set theory to new mass functions obtained by modifying halo mass functions. We show how different void mass functions vary in their predictions for the largest void expected in an observational volume, and compare those predictions to observational data. Our extreme-value formalism is shown to be a new practical tool for testing void theories against simulation and observation.
From Stars to Super-Planets: The Low-Mass IMF in the Young Cluster IC348
NASA Technical Reports Server (NTRS)
Najita, Joan R.; Tiede, Glenn P.; Carr, John S.
2000-01-01
We investigate the low-mass population of the young cluster IC348 down to the deuterium-burning limit, a fiducial boundary between brown dwarf and planetary mass objects, using a new and innovative method for the spectral classification of late-type objects. Using photometric indices, constructed from HST/NICMOS narrow-band imaging, that measure the strength of the 1.9 micron water band, we determine the spectral type and reddening for every M-type star in the field, thereby separating cluster members from the interloper population. Due to the efficiency of our spectral classification technique, our study is complete from approximately 0.7 solar mass to 0.015 solar mass. The mass function derived for the cluster in this interval, dN/d log M alpha M(sup 0.5), is similar to that obtained for the Pleiades, but appears significantly more abundant in brown dwarfs than the mass function for companions to nearby sun-like stars. This provides compelling observational evidence for different formation and evolutionary histories for substellar objects formed in isolation vs. as companions. Because our determination of the IMF is complete to very low masses, we can place interesting constraints on the role of physical processes such as fragmentation in the star and planet formation process and the fraction of dark matter in the Galactic halo that resides in substellar objects.
NASA Astrophysics Data System (ADS)
Schellenberger, G.; Reiprich, T. H.
2017-08-01
The X-ray regime, where the most massive visible component of galaxy clusters, the intracluster medium, is visible, offers directly measured quantities, like the luminosity, and derived quantities, like the total mass, to characterize these objects. The aim of this project is to analyse a complete sample of galaxy clusters in detail and constrain cosmological parameters, like the matter density, Ωm, or the amplitude of initial density fluctuations, σ8. The purely X-ray flux-limited sample (HIFLUGCS) consists of the 64 X-ray brightest galaxy clusters, which are excellent targets to study the systematic effects, that can bias results. We analysed in total 196 Chandra observations of the 64 HIFLUGCS clusters, with a total exposure time of 7.7 Ms. Here, we present our data analysis procedure (including an automated substructure detection and an energy band optimization for surface brightness profile analysis) that gives individually determined, robust total mass estimates. These masses are tested against dynamical and Planck Sunyaev-Zeldovich (SZ) derived masses of the same clusters, where good overall agreement is found with the dynamical masses. The Planck SZ masses seem to show a mass-dependent bias to our hydrostatic masses; possible biases in this mass-mass comparison are discussed including the Planck selection function. Furthermore, we show the results for the (0.1-2.4) keV luminosity versus mass scaling relation. The overall slope of the sample (1.34) is in agreement with expectations and values from literature. Splitting the sample into galaxy groups and clusters reveals, even after a selection bias correction, that galaxy groups exhibit a significantly steeper slope (1.88) compared to clusters (1.06).
NASA Astrophysics Data System (ADS)
Piskunov, A. E.; Belikov, A. N.; Kharchenko, N. V.; Sagar, R.; Subramaniam, A.
2004-04-01
We construct the observed luminosity functions of the remote young open clusters NGC 2383, 2384, 4103, 4755, 7510 and Hogg 15 from CCD observations of them. The observed LFs are corrected for field star contamination determined with the help of a Galactic star count model. In the case of Hogg 15 and NGC 2383 we also consider the additional contamination from neighbouring clusters NGC 4609 and 2384, respectively. These corrections provide a realistic pattern of cluster LF in the vicinity of the main-sequence (MS) turn-on point and at fainter magnitudes reveal the so-called H-feature arising as a result of the transition of the pre-MS phase to the MS, which is dependent on the cluster age. The theoretical LFs are constructed representing a cluster population model with continuous star formation for a short time-scale and a power-law initial mass function (IMF), and these are fitted to the observed LF. As a result, we are able to determine for each cluster a set of parameters describing the cluster population (the age, duration of star formation, IMF slope and percentage of field star contamination). It is found that in spite of the non-monotonic behaviour of observed LFs, cluster IMFs can be described as power-law functions with slopes similar to Salpeter's value. The present main-sequence turn-on cluster ages are several times lower than those derived from the fitting of theoretical isochrones to the turn-off region of the upper main sequences.
NASA Astrophysics Data System (ADS)
Mummery, Benjamin O.; McCarthy, Ian G.; Bird, Simeon; Schaye, Joop
2017-10-01
We use the cosmo-OWLS and bahamas suites of cosmological hydrodynamical simulations to explore the separate and combined effects of baryon physics (particularly feedback from active galactic nuclei, AGN) and free streaming of massive neutrinos on large-scale structure. We focus on five diagnostics: (I) the halo mass function, (II) halo mass density profiles, (III) the halo mass-concentration relation, (IV) the clustering of haloes and (v) the clustering of matter, and we explore the extent to which the effects of baryon physics and neutrino free streaming can be treated independently. Consistent with previous studies, we find that both AGN feedback and neutrino free streaming suppress the total matter power spectrum, although their scale and redshift dependences differ significantly. The inclusion of AGN feedback can significantly reduce the masses of groups and clusters, and increase their scale radii. These effects lead to a decrease in the amplitude of the mass-concentration relation and an increase in the halo autocorrelation function at fixed mass. Neutrinos also lower the masses of groups and clusters while having no significant effect on the shape of their density profiles (thus also affecting the mass-concentration relation and halo clustering in a qualitatively similar way to feedback). We show that, with only a small number of exceptions, the combined effects of baryon physics and neutrino free streaming on all five diagnostics can be estimated to typically better than a few per cent accuracy by treating these processes independently (I.e. by multiplying their separate effects).
NASA Astrophysics Data System (ADS)
Neichel, B.; Samal, M. R.; Plana, H.; Zavagno, A.; Bernard, A.; Fusco, T.
2015-04-01
Aims: We investigate the star formation activity in a young star forming cluster embedded at the edge of the RCW 41 H ii region. As a complementary goal, we aim to demonstrate the gain provided by wide-field adaptive optics (WFAO) instruments to study young clusters. Methods: We used deep, JHKs images from the newly commissioned Gemini-GeMS/GSAOI instrument, complemented with Spitzer IRAC observations, in order to study the photometric properties of the young stellar cluster. GeMS is a WFAO instrument that delivers almost diffraction-limited images over a field of ~2' across. The exquisite angular resolution allows us to reach a limiting magnitude of J ~ 22 for 98% completeness. The combination of the IRAC photometry with our JHKs catalog is used to build color-color diagrams, and select young stellar object (YSO) candidates. The JHKs photometry is also used in conjunction with pre-main sequence evolutionary models to infer masses and ages. The K-band luminosity function is derived, and then used to build the initial mass function (IMF) of the cluster. Results: We detect the presence of 80 YSO candidates. Those YSOs are used to infer the cluster age, which is found to be in the range 1 to 5 Myr. More precisely, we find that 1/3 of the YSOs are in a range between 3 to 5 Myr, while 2/3 of the YSO are ≤3 Myr. When looking at the spatial distribution of these two populations, we find evidence of a potential age gradient across the field that suggests sequential star formation. We construct the IMF and show that we can sample the mass distribution well into the brown dwarf regime (down to ~0.01 M⊙). The logarithmic mass function rises to peak at ~0.3 M⊙, before turning over and declining into the brown dwarf regime. The total cluster mass derived is estimated to be 78 ± 18 M⊙, while the ratio derived of brown dwarfs to star is 18 ± 5%. When comparing it with other young clusters, we find that the IMF shape of the young cluster embedded within RCW 41 is consistent with those of Trapezium, IC 348, or Chamaeleon I, except for the IMF peak, which happens to be at higher mass. This characteristic is also seen in clusters like NGC 6611 or even Taurus. These results suggest that the medium-to-low mass end of the IMF possibly depends on environment.
Probing the History of Galaxy Clusters with Metallicity and Entropy Measurements
NASA Astrophysics Data System (ADS)
Elkholy, Tamer Yohanna
Galaxy clusters are the largest gravitationally bound objects found today in our Universe. The gas they contain, the intra-cluster medium (ICM), is heated to temperatures in the approximate range of 1 to 10 keV, and thus emits X-ray radiation. Studying the ICM through the spatial and spectral analysis of its emission returns the richest information about both the overall cosmological context which governs the formation of clusters, as well as the physical processes occurring within. The aim of this thesis is to learn about the history of the physical processes that drive the evolution of galaxy clusters, through careful, spatially resolved measurements of their metallicity and entropy content. A sample of 45 nearby clusters observed with Chandra is analyzed to produce radial density, temperature, entropy and metallicity profiles. The entropy profiles are computed to larger radial extents than in previous Chandra analyses. The results of this analysis are made available to the scientific community in an electronic database. Comparing metallicity and entropy in the outskirts of clusters, we find no signature on the entropy profiles of the ensemble of supernovae that produced the observed metals. In the centers of clusters, we find that the metallicities of high-mass clusters are much less dispersed than those of low-mass clusters. A comparison of metallicity with the regularity of the X-ray emission morphology suggests that metallicities in low-mass clusters are more susceptible to increase from violent events such as mergers. We also find that the variation in the stellar-to-gas mass ratio as a function of cluster mass can explain the variation of central metallicity with cluster mass, only if we assume that there is a constant level of metallicity for clusters of all masses, above which the observed galaxies add more metals in proportion to their mass. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)
NASA Astrophysics Data System (ADS)
Howard, Corey S.; Pudritz, Ralph E.; Harris, William E.
2017-09-01
The process of radiative feedback in giant molecular clouds (GMCs) is an important mechanism for limiting star cluster formation through the heating and ionization of the surrounding gas. We explore the degree to which radiative feedback affects early (≲5 Myr) cluster formation in GMCs having masses that range from 104 to 106 M⊙ using the flash code. The inclusion of radiative feedback lowers the efficiency of cluster formation by 20-50 per cent relative to hydrodynamic simulations. Two models in particular - 5 × 104 and 105 M⊙ - show the largest suppression of the cluster formation efficiency, corresponding to a factor of ˜2. For these clouds only, the internal energy, a measure of the energy injected by radiative feedback, exceeds the gravitational potential for a significant amount of time. We find a clear relation between the maximum cluster mass, Mc,max, formed in a GMC and the mass of the GMC itself, MGMC: Mc,max ∝ M_{GMC}^{0.81}. This scaling result suggests that young globular clusters at the necessary scale of 106 M⊙ form within host GMCs of masses near ˜5 × 107 M⊙. We compare simulated cluster mass distributions to the observed embedded cluster mass function [d log (N)/dlog (M) ∝ Mβ where β = -1] and find good agreement (β = -0.99 ± 0.14) only for simulations including radiative feedback, indicating this process is important in controlling the growth of young clusters. However, the high star formation efficiencies, which range from 16 to 21 per cent, and high star formation rates compared to locally observed regions suggest other feedback mechanisms are also important during the formation and growth of stellar clusters.
NASA Astrophysics Data System (ADS)
Gunawardhana, M. L. P.; Norberg, P.; Zehavi, I.; Farrow, D. J.; Loveday, J.; Hopkins, A. M.; Davies, L. J. M.; Wang, L.; Alpaslan, M.; Bland-Hawthorn, J.; Brough, S.; Holwerda, B. W.; Owers, M. S.; Wright, A. H.
2018-06-01
Statistical studies of galaxy-galaxy interactions often utilise net change in physical properties of progenitors as a function of the separation between their nuclei to trace both the strength and the observable timescale of their interaction. In this study, we use two-point auto, cross and mark correlation functions to investigate the extent to which small-scale clustering properties of star forming galaxies can be used to gain physical insight into galaxy-galaxy interactions between galaxies of similar optical brightness and stellar mass. The Hα star formers, drawn from the highly spatially complete Galaxy And Mass Assembly (GAMA) survey, show an increase in clustering on small separations. Moreover, the clustering strength shows a strong dependence on optical brightness and stellar mass, where (1) the clustering amplitude of optically brighter galaxies at a given separation is larger than that of optically fainter systems, (2) the small scale clustering properties (e.g. the strength, the scale at which the signal relative to the fiducial power law plateaus) of star forming galaxies appear to differ as a function of increasing optical brightness of galaxies. According to cross and mark correlation analyses, the former result is largely driven by the increased dust content in optically bright star forming galaxies. The latter could be interpreted as evidence of a correlation between interaction-scale and optical brightness of galaxies, where physical evidence of interactions between optically bright star formers, likely hosted within relatively massive halos, persist over larger separations than those between optically faint star formers.
Kubáček, Pavel; Prokeš, Lubomír; Pamreddy, Annapurna; Peña-Méndez, Eladia María; Conde, José Elias; Alberti, Milan; Havel, Josef
2018-05-30
Only a few arsenic phosphides are known. A high potential for the generation of new compounds is offered by Laser Ablation Synthesis (LAS) and when Laser Desorption Ionization (LDI) is coupled with simultaneous Time-Of-Flight Mass Spectrometry (TOFMS), immediate identification of the clusters can be achieved. LAS was used for the generation of arsenic phosphides via laser ablation of phosphorus-arsenic mixtures while quadrupole ion trap time-of-flight mass spectrometry (QIT-TOFMS) was used to acquire the mass spectra. Many new As m P n ± clusters (479 binary and 369 mono-elemental) not yet described in the literature were generated in the gas phase and their stoichiometry determined. The likely structures for some of the observed clusters arbitrary selected (20) were computed by density functional theory (DFT) optimization. LAS is an advantageous approach for the generation of new As m P n clusters, while mass spectrometry was found to be an efficient technique for the determination of cluster stoichiometry. The results achieved might inspire the synthesis of new materials. Copyright © 2018 John Wiley & Sons, Ltd.
New Constraints on Dark Energy from the ObservedGrowth of the Most X-ray Luminous Galaxy Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mantz, A.; Allen, S.W.; Ebeling, H.
We present constraints on the mean matter density, {Omega}{sub m}, normalization of the density fluctuation power spectrum, {sigma}{sub 8}, and dark energy equation of state parameter, w, obtained from the X-ray luminosity function of the Massive Cluster Survey (MACS) in combination with the local BCS and REFLEX galaxy cluster samples. Our analysis incorporates the mass function predictions of Jenkins et al. (2001), a mass-luminosity relation calibrated using the data of Reiprich and Bohringer (2002), and standard priors on the Hubble constant, H{sub 0}, and mean baryon density, {Omega}{sub b} h{sup 2}. We find {Omega}{sub m}=0.27 {sup +0.06} {sub -0.05} andmore » {sigma}{sub 8}=0.77 {sup +0.07} {sub -0.06} for a spatially flat, cosmological constant model, and {Omega}{sub m}=0.28 {sup +0.08} {sub -0.06}, {sigma}{sub 8}=0.75 {+-} 0.08 and w=-0.97 {sup +0.20} {sub -0.19} for a flat, constant-w model. Our findings constitute the first precise determination of the dark energy equation of state from measurements of the growth of cosmic structure in galaxy clusters. The consistency of our result with w=-1 lends strong additional support to the cosmological constant model. The constraints are insensitive to uncertainties at the 10-20 percent level in the mass function and in the redshift evolution o the mass-luminosity relation; the constraint on dark energy is additionally robust against our choice of priors and known X-ray observational biases affecting the mass-luminosity relation. Our results compare favorably with those from recent analyses of type Ia supernovae, cosmic microwave background anisotropies, the X-ray gas mass fraction of relaxed galaxy clusters and cosmic shear. A simplified combination of the luminosity function data with supernova, cosmic microwave background and cluster gas fraction data using importance sampling yields the improved constraints {Omega}{sub m}=0.263 {+-} 0.014, {sigma}{sub 8}=0.79 {+-} 0.02 and w=-1.00 +- 0.05.« less
NASA Astrophysics Data System (ADS)
Raghunathan, Srinivasan; Patil, Sanjaykumar; Baxter, Eric J.; Bianchini, Federico; Bleem, Lindsey E.; Crawford, Thomas M.; Holder, Gilbert P.; Manzotti, Alessandro; Reichardt, Christian L.
2017-08-01
We develop a Maximum Likelihood estimator (MLE) to measure the masses of galaxy clusters through the impact of gravitational lensing on the temperature and polarization anisotropies of the cosmic microwave background (CMB). We show that, at low noise levels in temperature, this optimal estimator outperforms the standard quadratic estimator by a factor of two. For polarization, we show that the Stokes Q/U maps can be used instead of the traditional E- and B-mode maps without losing information. We test and quantify the bias in the recovered lensing mass for a comprehensive list of potential systematic errors. Using realistic simulations, we examine the cluster mass uncertainties from CMB-cluster lensing as a function of an experiment's beam size and noise level. We predict the cluster mass uncertainties will be 3 - 6% for SPT-3G, AdvACT, and Simons Array experiments with 10,000 clusters and less than 1% for the CMB-S4 experiment with a sample containing 100,000 clusters. The mass constraints from CMB polarization are very sensitive to the experimental beam size and map noise level: for a factor of three reduction in either the beam size or noise level, the lensing signal-to-noise improves by roughly a factor of two.
Optical and Near-infrared Spectra of σ Orionis Isolated Planetary-mass Objects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zapatero Osorio, M. R.; Béjar, V. J. S.; Ramírez, K. Peña, E-mail: mosorio@cab.inta-csic.es, E-mail: vbejar@iac.es, E-mail: karla.pena@uantof.cl
We have obtained low-resolution optical (0.7–0.98 μ m) and near-infrared (1.11–1.34 μ m and 0.8–2.5 μ m) spectra of 12 isolated planetary-mass candidates ( J = 18.2–19.9 mag) of the 3 Myr σ Orionis star cluster with the aim of determining the spectroscopic properties of very young, substellar dwarfs and assembling a complete cluster mass function. We have classified our targets by visual comparison with high- and low-gravity standards and by measuring newly defined spectroscopic indices. We derived L0–L4.5 and M9–L2.5 using high- and low-gravity standards, respectively. Our targets reveal clear signposts of youth, thus corroborating their cluster membership andmore » planetary masses (6–13 M {sub Jup}). These observations complete the σ Orionis mass function by spectroscopically confirming the planetary-mass domain to a confidence level of ∼75%. The comparison of our spectra with BT-Settl solar metallicity model atmospheres yields a temperature scale of 2350–1800 K and a low surface gravity of log g ≈ 4.0 [cm s{sup −2}], as would be expected for young planetary-mass objects. We discuss the properties of the cluster’s least-massive population as a function of spectral type. We have also obtained the first optical spectrum of S Ori 70, a T dwarf in the direction of σ Orionis. Our data provide reference optical and near-infrared spectra of very young L dwarfs and a mass function that may be used as templates for future studies of low-mass substellar objects and exoplanets. The extrapolation of the σ Orionis mass function to the solar neighborhood may indicate that isolated planetary-mass objects with temperatures of ∼200–300 K and masses in the interval 6–13 M {sub Jup} may be as numerous as very low-mass stars.« less
Cosmological constraints from Chandra observations of galaxy clusters.
Allen, Steven W
2002-09-15
Chandra observations of rich, relaxed galaxy clusters allow the properties of the X-ray gas and the total gravitating mass to be determined precisely. Here, we present results for a sample of the most X-ray luminous, dynamically relaxed clusters known. We show that the Chandra data and independent gravitational lensing studies provide consistent answers on the mass distributions in the clusters. The mass profiles exhibit a form in good agreement with the predictions from numerical simulations. Combining Chandra results on the X-ray gas mass fractions in the clusters with independent measurements of the Hubble constant and the mean baryonic matter density in the Universe, we obtain a tight constraint on the mean total matter density of the Universe, Omega(m), and an interesting constraint on the cosmological constant, Omega(Lambda). We also describe the 'virial relations' linking the masses, X-ray temperatures and luminosities of galaxy clusters. These relations provide a key step in linking the observed number density and spatial distribution of clusters to the predictions from cosmological models. The Chandra data confirm the presence of a systematic offset of ca. 40% between the normalization of the observed mass-temperature relation and the predictions from standard simulations. This finding leads to a significant revision of the best-fit value of sigma(8) inferred from the observed temperature and luminosity functions of clusters.
Evolution of the Mass and Luminosity Functions of Globular Star Clusters
NASA Astrophysics Data System (ADS)
Goudfrooij, Paul; Fall, S. Michael
2016-12-01
We reexamine the dynamical evolution of the mass and luminosity functions of globular star clusters (GCMF and GCLF). Fall & Zhang (2001, FZ01) showed that a power-law MF, as commonly seen among young cluster systems, would evolve by dynamical processes over a Hubble time into a peaked MF with a shape very similar to the observed GCMF in the Milky Way and other galaxies. To simplify the calculations, the semi-analytical FZ01 model adopted the “classical” theory of stellar escape from clusters, and neglected variations in the M/L ratios of clusters. Kruijssen & Portegies Zwart (2009, KPZ09) modified the FZ01 model to include “retarded” and mass-dependent stellar escape, the latter causing significant M/L variations. KPZ09 asserted that their model was compatible with observations, whereas the FZ01 model was not. We show here that this claim is not correct; the FZ01 and KPZ09 models fit the observed Galactic GCLF equally well. We also show that there is no detectable correlation between M/L and L for GCs in the Milky Way and Andromeda galaxies, in contradiction with the KPZ09 model. Our comparisons of the FZ01 and KPZ09 models with observations can be explained most simply if stars escape at rates approaching the classical limit for high-mass clusters, as expected on theoretical grounds.
Reconciling mass functions with the star-forming main sequence via mergers
NASA Astrophysics Data System (ADS)
Steinhardt, Charles L.; Yurk, Dominic; Capak, Peter
2017-06-01
We combine star formation along the 'main sequence', quiescence and clustering and merging to produce an empirical model for the evolution of individual galaxies. Main-sequence star formation alone would significantly steepen the stellar mass function towards low redshift, in sharp conflict with observation. However, a combination of star formation and merging produces a consistent result for correct choice of the merger rate function. As a result, we are motivated to propose a model in which hierarchical merging is disconnected from environmentally independent star formation. This model can be tested via correlation functions and would produce new constraints on clustering and merging.
Liu, Yi; Consta, Styliani; Shi, Yujun; Lipson, R H; Goddard, William A
2009-06-25
The size distributions and geometries of vapor clusters equilibrated with methanol-ethanol (Me-Et) liquid mixtures were recently studied by vacuum ultraviolet (VUV) laser time-of-flight (TOF) mass spectrometry and density functional theory (DFT) calculations (Liu, Y.; Consta, S.; Ogeer, F.; Shi, Y. J.; Lipson, R. H. Can. J. Chem. 2007, 85, 843-852). On the basis of the mass spectra recorded, it was concluded that the formation of neutral tetramers is particularly prominent. Here we develop grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) frameworks to compute cluster size distributions in vapor mixtures that allow a direct comparison with experimental mass spectra. Using the all-atom optimized potential for liquid simulations (OPLS-AA) force field, we systematically examined the neutral cluster size distributions as functions of pressure and temperature. These neutral cluster distributions were then used to derive ionized cluster distributions to compare directly with the experiments. The simulations suggest that supersaturation at 12 to 16 times the equilibrium vapor pressure at 298 K or supercooling at temperature 240 to 260 K at the equilibrium vapor pressure can lead to the relatively abundant tetramer population observed in the experiments. Our simulations capture the most distinct features observed in the experimental TOF mass spectra: Et(3)H(+) at m/z = 139 in the vapor corresponding to 10:90% Me-Et liquid mixture and Me(3)H(+) at m/z = 97 in the vapors corresponding to 50:50% and 90:10% Me-Et liquid mixtures. The hybrid GCMC scheme developed in this work extends the capability of studying the size distributions of neat clusters to mixed species and provides a useful tool for studying environmentally important systems such as atmospheric aerosols.
NASA Astrophysics Data System (ADS)
Chantereau, W.; Usher, C.; Bastian, N.
2018-05-01
It is now well-established that most (if not all) ancient globular clusters host multiple populations, that are characterised by distinct chemical features such as helium abundance variations along with N-C and Na-O anti-correlations, at fixed [Fe/H]. These very distinct chemical features are similar to what is found in the centres of the massive early-type galaxies and may influence measurements of the global properties of the galaxies. Additionally, recent results have suggested that M/L variations found in the centres of massive early-type galaxies might be due to a bottom-heavy stellar initial mass function. We present an analysis of the effects of globular cluster-like multiple populations on the integrated properties of early-type galaxies. In particular, we focus on spectral features in the integrated optical spectrum and the global mass-to-light ratio that have been used to infer variations in the stellar initial mass function. To achieve this we develop appropriate stellar population synthesis models and take into account, for the first time, an initial-final mass relation which takes into consideration a varying He abundance. We conclude that while the multiple populations may be present in massive early-type galaxies, they are likely not responsible for the observed variations in the mass-to-light ratio and IMF sensitive line strengths. Finally, we estimate the fraction of stars with multiple populations chemistry that come from disrupted globular clusters within massive ellipticals and find that they may explain some of the observed chemical patterns in the centres of these galaxies.
Centre-excised X-ray luminosity as an efficient mass proxy for future galaxy cluster surveys
Mantz, Adam B.; Allen, Steven W.; Morris, R. Glenn; ...
2017-10-02
The cosmological constraining power of modern galaxy cluster catalogues can be improved by obtaining low-scatter mass proxy measurements for even a small fraction of sources. In the context of large upcoming surveys that will reveal the cluster population down to the group scale and out to high redshifts, efficient strategies for obtaining such mass proxies will be valuable. Here in this work, we use high-quality weak-lensing and X-ray mass estimates for massive clusters in current X-ray-selected catalogues to revisit the scaling relations of the projected, centre-excised X-ray luminosity (L ce), which previous work suggests correlates tightly with total mass. Ourmore » data confirm that this is the case with Lce having an intrinsic scatter at fixed mass comparable to that of gas mass, temperature or YX. Compared to the other proxies, however, Lce is less susceptible to systematic uncertainties due to background modelling, and can be measured precisely with shorter exposures. This opens up the possibility of using L ce to estimate masses for large numbers of clusters discovered by new X-ray surveys (e.g. eROSITA) directly from the survey data, as well as for clusters discovered at other wavelengths with relatively short follow-up observations. We describe a simple procedure for making such estimates from X-ray surface brightness data, and comment on the spatial resolution required to apply this method as a function of cluster mass and redshift. Lastly, we also explore the potential impact of Chandra and XMM–Newton follow-up observations over the next decade on dark energy constraints from new cluster surveys.« less
Old, L.; Wojtak, R.; Mamon, G. A.; ...
2015-03-26
Our paper is the second in a series in which we perform an extensive comparison of various galaxy-based cluster mass estimation techniques that utilize the positions, velocities and colours of galaxies. Our aim is to quantify the scatter, systematic bias and completeness of cluster masses derived from a diverse set of 25 galaxy-based methods using two contrasting mock galaxy catalogues based on a sophisticated halo occupation model and a semi-analytic model. Analysing 968 clusters, we find a wide range in the rms errors in log M200c delivered by the different methods (0.18–1.08 dex, i.e. a factor of ~1.5–12), with abundance-matchingmore » and richness methods providing the best results, irrespective of the input model assumptions. In addition, certain methods produce a significant number of catastrophic cases where the mass is under- or overestimated by a factor greater than 10. Given the steeply falling high-mass end of the cluster mass function, we recommend that richness- or abundance-matching-based methods are used in conjunction with these methods as a sanity check for studies selecting high-mass clusters. We also see a stronger correlation of the recovered to input number of galaxies for both catalogues in comparison with the group/cluster mass, however, this does not guarantee that the correct member galaxies are being selected. Finally, we did not observe significantly higher scatter for either mock galaxy catalogues. These results have implications for cosmological analyses that utilize the masses, richnesses, or abundances of clusters, which have different uncertainties when different methods are used.« less
Centre-excised X-ray luminosity as an efficient mass proxy for future galaxy cluster surveys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mantz, Adam B.; Allen, Steven W.; Morris, R. Glenn
The cosmological constraining power of modern galaxy cluster catalogues can be improved by obtaining low-scatter mass proxy measurements for even a small fraction of sources. In the context of large upcoming surveys that will reveal the cluster population down to the group scale and out to high redshifts, efficient strategies for obtaining such mass proxies will be valuable. Here in this work, we use high-quality weak-lensing and X-ray mass estimates for massive clusters in current X-ray-selected catalogues to revisit the scaling relations of the projected, centre-excised X-ray luminosity (L ce), which previous work suggests correlates tightly with total mass. Ourmore » data confirm that this is the case with Lce having an intrinsic scatter at fixed mass comparable to that of gas mass, temperature or YX. Compared to the other proxies, however, Lce is less susceptible to systematic uncertainties due to background modelling, and can be measured precisely with shorter exposures. This opens up the possibility of using L ce to estimate masses for large numbers of clusters discovered by new X-ray surveys (e.g. eROSITA) directly from the survey data, as well as for clusters discovered at other wavelengths with relatively short follow-up observations. We describe a simple procedure for making such estimates from X-ray surface brightness data, and comment on the spatial resolution required to apply this method as a function of cluster mass and redshift. Lastly, we also explore the potential impact of Chandra and XMM–Newton follow-up observations over the next decade on dark energy constraints from new cluster surveys.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chaoli; Li, Chengyuan; De Grijs, Richard
2015-12-20
We use near-infrared observations obtained as part of the Visible and Infrared Survey Telescope for Astronomy (VISTA) Survey of the Magellanic Clouds (VMC), as well as two complementary Hubble Space Telescope (HST) data sets, to study the luminosity and mass functions (MFs) as a function of clustercentric radius of the main-sequence stars in the Galactic globular cluster 47 Tucanae. The HST observations indicate a relative deficit in the numbers of faint stars in the central region of the cluster compared with its periphery, for 18.75 ≤ m{sub F606W} ≤ 20.9 mag (corresponding to a stellar mass range of 0.55 < m{sub *}/M{sub ⊙} < 0.73). The stellar numbermore » counts at 6.′7 from the cluster core show a deficit for 17.62 ≤ m{sub F606W} ≤ 19.7 mag (i.e., 0.65 < m{sub *}/M{sub ⊙} < 0.82), which is consistent with expectations from mass segregation. The VMC-based stellar MFs exhibit power-law shapes for masses in the range 0.55 < m{sub *}/M{sub ⊙} < 0.82. These power laws are characterized by an almost constant slope, α. The radial distribution of the power-law slopes α thus shows evidence of the importance of both mass segregation and tidal stripping, for both the first- and second-generation stars in 47 Tuc.« less
Cool Core Bias in Sunyaev-Zel’dovich Galaxy Cluster Surveys
Lin, Henry W.; McDonald, Michael; Benson, Bradford; ...
2015-03-18
Sunyaev-Zeldovich (SZ) surveys find massive clusters of galaxies by measuring the inverse Compton scattering of cosmic microwave background off of intra-cluster gas. The cluster selection function from such surveys is expected to be nearly independent of redshift and cluster astrophysics. In this work, we estimate the effect on the observed SZ signal of centrally-peaked gas density profiles (cool cores) and radio emission from the brightest cluster galaxy (BCG) by creating mock observations of a sample of clusters that span the observed range of classical cooling rates and radio luminosities. For each cluster, we make simulated SZ observations by the Southmore » Pole Telescope and characterize the cluster selection function, but note that our results are broadly applicable to other SZ surveys. We find that the inclusion of a cool core can cause a change in the measured SPT significance of a cluster between 0.01%–10% at z > 0.3, increasing with cuspiness of the cool core and angular size on the sky of the cluster (i.e., decreasing redshift, increasing mass). We provide quantitative estimates of the bias in the SZ signal as a function of a gas density cuspiness parameter, redshift, mass, and the 1.4 GHz radio luminosity of the central AGN. Based on this work, we estimate that, for the Phoenix cluster (one of the strongest cool cores known), the presence of a cool core is biasing the SZ significance high by ~6%. The ubiquity of radio galaxies at the centers of cool core clusters will offset the cool core bias to varying degrees« less
NASA Astrophysics Data System (ADS)
Bernardi, M.; Meert, A.; Sheth, R. K.; Huertas-Company, M.; Maraston, C.; Shankar, F.; Vikram, V.
2016-02-01
We describe the luminosity function, based on Sérsic fits to the light profiles, of CMASS galaxies at z ˜ 0.55. Compared to previous estimates, our Sérsic-based reductions imply more luminous, massive galaxies, consistent with the effects of Sérsic- rather than Petrosian or de Vaucouleur-based photometry on the Sloan Digital Sky Survey (SDSS) main galaxy sample at z ˜ 0.1. This implies a significant revision of the high-mass end of the correlation between stellar and halo mass. Inferences about the evolution of the luminosity and stellar mass functions depend strongly on the assumed, and uncertain, k + e corrections. In turn, these depend on the assumed age of the population. Applying k + e corrections taken from fitting the models of Maraston et al. to the colours of both SDSS and CMASS galaxies, the evolution of the luminosity and stellar mass functions appears impressively passive, provided that the fits are required to return old ages. However, when matched in comoving number- or luminosity-density, the SDSS galaxies are less strongly clustered compared to their counterparts in CMASS. This rules out the passive evolution scenario, and, indeed, any minor merger scenarios which preserve the rank ordering in stellar mass of the population. Potential incompletenesses in the CMASS sample would further enhance this mismatch. Our analysis highlights the virtue of combining clustering measurements with number counts.
Raghunathan, Srinivasan; Patil, Sanjaykumar; Baxter, Eric J.; ...
2017-08-25
We develop a Maximum Likelihood estimator (MLE) to measure the masses of galaxy clusters through the impact of gravitational lensing on the temperature and polarization anisotropies of the cosmic microwave background (CMB). We show that, at low noise levels in temperature, this optimal estimator outperforms the standard quadratic estimator by a factor of two. For polarization, we show that the Stokes Q/U maps can be used instead of the traditional E- and B-mode maps without losing information. We test and quantify the bias in the recovered lensing mass for a comprehensive list of potential systematic errors. Using realistic simulations, wemore » examine the cluster mass uncertainties from CMB-cluster lensing as a function of an experiment’s beam size and noise level. We predict the cluster mass uncertainties will be 3 - 6% for SPT-3G, AdvACT, and Simons Array experiments with 10,000 clusters and less than 1% for the CMB-S4 experiment with a sample containing 100,000 clusters. The mass constraints from CMB polarization are very sensitive to the experimental beam size and map noise level: for a factor of three reduction in either the beam size or noise level, the lensing signal-to-noise improves by roughly a factor of two.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raghunathan, Srinivasan; Patil, Sanjaykumar; Baxter, Eric J.
We develop a Maximum Likelihood estimator (MLE) to measure the masses of galaxy clusters through the impact of gravitational lensing on the temperature and polarization anisotropies of the cosmic microwave background (CMB). We show that, at low noise levels in temperature, this optimal estimator outperforms the standard quadratic estimator by a factor of two. For polarization, we show that the Stokes Q/U maps can be used instead of the traditional E- and B-mode maps without losing information. We test and quantify the bias in the recovered lensing mass for a comprehensive list of potential systematic errors. Using realistic simulations, wemore » examine the cluster mass uncertainties from CMB-cluster lensing as a function of an experiment’s beam size and noise level. We predict the cluster mass uncertainties will be 3 - 6% for SPT-3G, AdvACT, and Simons Array experiments with 10,000 clusters and less than 1% for the CMB-S4 experiment with a sample containing 100,000 clusters. The mass constraints from CMB polarization are very sensitive to the experimental beam size and map noise level: for a factor of three reduction in either the beam size or noise level, the lensing signal-to-noise improves by roughly a factor of two.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raghunathan, Srinivasan; Patil, Sanjaykumar; Bianchini, Federico
We develop a Maximum Likelihood estimator (MLE) to measure the masses of galaxy clusters through the impact of gravitational lensing on the temperature and polarization anisotropies of the cosmic microwave background (CMB). We show that, at low noise levels in temperature, this optimal estimator outperforms the standard quadratic estimator by a factor of two. For polarization, we show that the Stokes Q/U maps can be used instead of the traditional E- and B-mode maps without losing information. We test and quantify the bias in the recovered lensing mass for a comprehensive list of potential systematic errors. Using realistic simulations, wemore » examine the cluster mass uncertainties from CMB-cluster lensing as a function of an experiment's beam size and noise level. We predict the cluster mass uncertainties will be 3 - 6% for SPT-3G, AdvACT, and Simons Array experiments with 10,000 clusters and less than 1% for the CMB-S4 experiment with a sample containing 100,000 clusters. The mass constraints from CMB polarization are very sensitive to the experimental beam size and map noise level: for a factor of three reduction in either the beam size or noise level, the lensing signal-to-noise improves by roughly a factor of two.« less
NoSOCS in SDSS - VI. The environmental dependence of AGN in clusters and field in the local Universe
NASA Astrophysics Data System (ADS)
Lopes, P. A. A.; Ribeiro, A. L. B.; Rembold, S. B.
2017-11-01
We investigated the variation in the fraction of optical active galactic nuclei (AGNs) hosts with stellar mass, as well as their local and global environments. Our sample is composed of cluster members and field galaxies at z ≤ 0.1 and we consider only strong AGN. We find a strong variation in the AGN fraction (FAGN) with stellar mass. The field population comprises a higher AGN fraction compared to the global cluster population, especially for objects with log M* > 10.6. Hence, we restricted our analysis to more massive objects. We detected a smooth variation in the FAGN with local stellar mass density for cluster objects, reaching a plateau in the field environment. As a function of cluster-centric distance we verify that FAGN is roughly constant for R > R200, but show a steep decline inwards. We have also verified the dependence of the AGN population on cluster velocity dispersion, finding a constant behaviour for low mass systems (σP ≲ 650-700 km s-1). However, there is a strong decline in FAGN for higher mass clusters (>700 km s-1). When comparing the FAGN in clusters with or without substructure, we only find different results for objects at large radii (R > R200), in the sense that clusters with substructure present some excess in the AGN fraction. Finally, we have found that the phase-space distribution of AGN cluster members is significantly different than other populations. Due to the environmental dependence of FAGN and their phase-space distribution, we interpret AGN to be the result of galaxy interactions, favoured in environments where the relative velocities are low, typical of the field, low mass groups or cluster outskirts.
Source selection for cluster weak lensing measurements in the Hyper Suprime-Cam survey
NASA Astrophysics Data System (ADS)
Medezinski, Elinor; Oguri, Masamune; Nishizawa, Atsushi J.; Speagle, Joshua S.; Miyatake, Hironao; Umetsu, Keiichi; Leauthaud, Alexie; Murata, Ryoma; Mandelbaum, Rachel; Sifón, Cristóbal; Strauss, Michael A.; Huang, Song; Simet, Melanie; Okabe, Nobuhiro; Tanaka, Masayuki; Komiyama, Yutaka
2018-03-01
We present optimized source galaxy selection schemes for measuring cluster weak lensing (WL) mass profiles unaffected by cluster member dilution from the Subaru Hyper Suprime-Cam Strategic Survey Program (HSC-SSP). The ongoing HSC-SSP survey will uncover thousands of galaxy clusters to z ≲ 1.5. In deriving cluster masses via WL, a critical source of systematics is contamination and dilution of the lensing signal by cluster members, and by foreground galaxies whose photometric redshifts are biased. Using the first-year CAMIRA catalog of ˜900 clusters with richness larger than 20 found in ˜140 deg2 of HSC-SSP data, we devise and compare several source selection methods, including selection in color-color space (CC-cut), and selection of robust photometric redshifts by applying constraints on their cumulative probability distribution function (P-cut). We examine the dependence of the contamination on the chosen limits adopted for each method. Using the proper limits, these methods give mass profiles with minimal dilution in agreement with one another. We find that not adopting either the CC-cut or P-cut methods results in an underestimation of the total cluster mass (13% ± 4%) and the concentration of the profile (24% ± 11%). The level of cluster contamination can reach as high as ˜10% at R ≈ 0.24 Mpc/h for low-z clusters without cuts, while employing either the P-cut or CC-cut results in cluster contamination consistent with zero to within the 0.5% uncertainties. Our robust methods yield a ˜60 σ detection of the stacked CAMIRA surface mass density profile, with a mean mass of M200c = [1.67 ± 0.05(stat)] × 1014 M⊙/h.
Order statistics applied to the most massive and most distant galaxy clusters
NASA Astrophysics Data System (ADS)
Waizmann, J.-C.; Ettori, S.; Bartelmann, M.
2013-06-01
In this work, we present an analytic framework for calculating the individual and joint distributions of the nth most massive or nth highest redshift galaxy cluster for a given survey characteristic allowing us to formulate Λ cold dark matter (ΛCDM) exclusion criteria. We show that the cumulative distribution functions steepen with increasing order, giving them a higher constraining power with respect to the extreme value statistics. Additionally, we find that the order statistics in mass (being dominated by clusters at lower redshifts) is sensitive to the matter density and the normalization of the matter fluctuations, whereas the order statistics in redshift is particularly sensitive to the geometric evolution of the Universe. For a fixed cosmology, both order statistics are efficient probes of the functional shape of the mass function at the high-mass end. To allow a quick assessment of both order statistics, we provide fits as a function of the survey area that allow percentile estimation with an accuracy better than 2 per cent. Furthermore, we discuss the joint distributions in the two-dimensional case and find that for the combination of the largest and the second largest observation, it is most likely to find them to be realized with similar values with a broadly peaked distribution. When combining the largest observation with higher orders, it is more likely to find a larger gap between the observations and when combining higher orders in general, the joint probability density function peaks more strongly. Having introduced the theory, we apply the order statistical analysis to the Southpole Telescope (SPT) massive cluster sample and metacatalogue of X-ray detected clusters of galaxies catalogue and find that the 10 most massive clusters in the sample are consistent with ΛCDM and the Tinker mass function. For the order statistics in redshift, we find a discrepancy between the data and the theoretical distributions, which could in principle indicate a deviation from the standard cosmology. However, we attribute this deviation to the uncertainty in the modelling of the SPT survey selection function. In turn, by assuming the ΛCDM reference cosmology, order statistics can also be utilized for consistency checks of the completeness of the observed sample and of the modelling of the survey selection function.
The immitigable nature of assembly bias: the impact of halo definition on assembly bias
NASA Astrophysics Data System (ADS)
Villarreal, Antonio S.; Zentner, Andrew R.; Mao, Yao-Yuan; Purcell, Chris W.; van den Bosch, Frank C.; Diemer, Benedikt; Lange, Johannes U.; Wang, Kuan; Campbell, Duncan
2017-11-01
Dark matter halo clustering depends not only on halo mass, but also on other properties such as concentration and shape. This phenomenon is known broadly as assembly bias. We explore the dependence of assembly bias on halo definition, parametrized by spherical overdensity parameter, Δ. We summarize the strength of concentration-, shape-, and spin-dependent halo clustering as a function of halo mass and halo definition. Concentration-dependent clustering depends strongly on mass at all Δ. For conventional halo definitions (Δ ∼ 200 - 600 m), concentration-dependent clustering at low mass is driven by a population of haloes that is altered through interactions with neighbouring haloes. Concentration-dependent clustering can be greatly reduced through a mass-dependent halo definition with Δ ∼ 20 - 40 m for haloes with M200 m ≲ 1012 h-1M⊙. Smaller Δ implies larger radii and mitigates assembly bias at low mass by subsuming altered, so-called backsplash haloes into now larger host haloes. At higher masses (M200 m ≳ 1013 h-1M⊙) larger overdensities, Δ ≳ 600 m, are necessary. Shape- and spin-dependent clustering are significant for all halo definitions that we explore and exhibit a relatively weaker mass dependence. Generally, both the strength and the sense of assembly bias depend on halo definition, varying significantly even among common definitions. We identify no halo definition that mitigates all manifestations of assembly bias. A halo definition that mitigates assembly bias based on one halo property (e.g. concentration) must be mass dependent. The halo definitions that best mitigate concentration-dependent halo clustering do not coincide with the expected average splashback radii at fixed halo mass.
Membership and Dynamical Parameters of the Open Cluster NGC 1039
NASA Astrophysics Data System (ADS)
Wang, Jiaxin; Ma, Jun; Wu, Zhenyu; Zhou, Xu
2017-11-01
In this paper, we analyze the open cluster NGC 1039. This young open cluster is observed as a part of Beijing-Arizona-Taiwan-Connecticut Multicolor Sky Survey. Combining our observations with the Sloan Digital Sky Survey photometric data, we employ the Padova stellar model and the zero-age main-sequence curve to the data to derive a reddening, E(B-V)=0.10+/- 0.02, and a distance modulus, {(m-M)}0=8.4+/- 0.2, for NGC 1039. The photometric membership probabilities of stars in the region of NGC 1039 are derived using the spectral energy distribution-fitting method. According to the membership probabilities ({P}{SED}) obtained here, 582 stars are cluster members with {P}{SED} larger than 60%. In addition, we determine the structural parameters of NGC 1039 by fitting its radial density profile with the King model. These parameters are a core radius, {R}{{c}}=4.44+/- 1.31 {pc}; a tidal radius, {R}{{t}}=13.57+/- 4.85 {pc}; and a concentration parameter of {C}0={log}({R}{{t}}/{R}{{c}})=0.49+/- 0.20. We also fit the observed mass function of NGC 1039 with masses from 0.3 {M}⊙ to 1.65 {M}⊙ with a power-law function {{Φ }}(m)\\propto {m}α to derive its slopes of mass functions of different spatial regions. The results obtained here show that the slope of the mass function of NGC 1039 is flatter in the central regions (α = 0.117), becomes steeper at larger radii (α = -2.878), and breaks at {m}{break}≈ 0.80 {M}⊙ . In particular, for the first time, our results show that the mass segregation appears in NGC 1039.
STAR CLUSTERS IN A NUCLEAR STAR FORMING RING: THE DISAPPEARING STRING OF PEARLS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Väisänen, Petri; Barway, Sudhanshu; Randriamanakoto, Zara, E-mail: petri@saao.ac.za
2014-12-20
An analysis of the star cluster population in a low-luminosity early-type galaxy, NGC 2328, is presented. The clusters are found in a tight star forming nuclear spiral/ring pattern and we also identify a bar from structural two-dimensional decomposition. These massive clusters are forming very efficiently in the circumnuclear environment and they are young, possibly all less than 30 Myr of age. The clusters indicate an azimuthal age gradient, consistent with a ''pearls-on-a-string'' formation scenario, suggesting bar-driven gas inflow. The cluster mass function has a robust down turn at low masses at all age bins. Assuming clusters are born with a power-lawmore » distribution, this indicates extremely rapid disruption at timescales of just several million years. If found to be typical, it means that clusters born in dense circumnuclear rings do not survive to become old globular clusters in non-interacting systems.« less
NASA Astrophysics Data System (ADS)
Marulli, F.; Bolzonella, M.; Branchini, E.; Davidzon, I.; de la Torre, S.; Granett, B. R.; Guzzo, L.; Iovino, A.; Moscardini, L.; Pollo, A.; Abbas, U.; Adami, C.; Arnouts, S.; Bel, J.; Bottini, D.; Cappi, A.; Coupon, J.; Cucciati, O.; De Lucia, G.; Fritz, A.; Franzetti, P.; Fumana, M.; Garilli, B.; Ilbert, O.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; McCracken, H. J.; Paioro, L.; Polletta, M.; Schlagenhaufer, H.; Scodeggio, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Di Porto, C.; Marchetti, A.; Marinoni, C.; Mellier, Y.; Nichol, R. C.; Peacock, J. A.; Percival, W. J.; Phleps, S.; Wolk, M.; Zamorani, G.
2013-09-01
Aims: We investigate the dependence of galaxy clustering on luminosity and stellar mass in the redshift range 0.5 < z < 1.1, using the first ~ 55 000 redshifts from the VIMOS Public Extragalactic Redshift Survey (VIPERS). Methods: We measured the redshift-space two-point correlation functions (2PCF), ξ(s) and ξ(rp,π) , and the projected correlation function, wp(rp), in samples covering different ranges of B-band absolute magnitudes and stellar masses. We considered both threshold and binned galaxy samples, with median B-band absolute magnitudes - 21.6 ≲ MB - 5log (h) ≲ - 19.5 and median stellar masses 9.8 ≲ log (M⋆ [h-2 M⊙]) ≲ 10.7. We assessed the real-space clustering in the data from the projected correlation function, which we model as a power law in the range 0.2 < rp [h-1 Mpc ] < 20. Finally, we estimated the galaxy bias as a function of luminosity, stellar mass, and redshift, assuming a flat Λ cold dark matter model to derive the dark matter 2PCF. Results: We provide the best-fit parameters of the power-law model assumed for the real-space 2PCF - the correlation length, r0, and the slope, γ - as well as the linear bias parameter, as a function of the B-band absolute magnitude, stellar mass, and redshift. We confirm and provide the tightest constraints on the dependence of clustering on luminosity at 0.5 < z < 1.1. We prove the complexity of comparing the clustering dependence on stellar mass from samples that are originally flux-limited and discuss the possible origin of the observed discrepancies. Overall, our measurements provide stronger constraints on galaxy formation models, which are now required to match, in addition to local observations, the clustering evolution measured by VIPERS galaxies between z = 0.5 and z = 1.1 for a broad range of luminosities and stellar masses. Based on observations collected at the European Southern Observatory, Paranal, Chile, under programmes 182.A-0886 (LP) at the Very Large Telescope, and also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. The VIPERS web site is http://vipers.inaf.it/
Radiative Feedback of Forming Star Clusters on Their GMC Environments: Theory and Simulation
NASA Astrophysics Data System (ADS)
Howard, C. S.; Pudritz, R. E.; Harris, W. E.
2013-07-01
Star clusters form from dense clumps within a molecular cloud. Radiation from these newly formed clusters feeds back on their natal molecular cloud through heating and ionization which ultimately stops gas accretion into the cluster. Recent studies suggest that radiative feedback effects from a single cluster may be sufficient to disrupt an entire cloud over a short timescale. Simulating cluster formation on a large scale, however, is computationally demanding due to the high number of stars involved. For this reason, we present a model for representing the radiative output of an entire cluster which involves randomly sampling an initial mass function (IMF) as the cluster accretes mass. We show that this model is able to reproduce the star formation histories of observed clusters. To examine the degree to which radiative feedback shapes the evolution of a molecular cloud, we use the FLASH adaptive-mesh refinement hydrodynamics code to simulate cluster formation in a turbulent cloud. Unlike previous studies, sink particles are used to represent a forming cluster rather than individual stars. Our cluster model is then coupled with a raytracing scheme to treat radiative transfer as the clusters grow in mass. This poster will outline the details of our model and present preliminary results from our 3D hydrodynamical simulations.
Simulating the Birth of Massive Star Clusters: Is Destruction Inevitable?
NASA Astrophysics Data System (ADS)
Rosen, Anna
2013-10-01
Very early in its operation, the Hubble Space Telescope {HST} opened an entirely new frontier: study of the demographics and properties of star clusters far beyond the Milky Way. However, interpretation of HST's observations has proven difficult, and has led to the development of two conflicting models. One view is that most massive star clusters are disrupted during their infancy by feedback from newly formed stars {i.e., "infant mortality"}, independent of cluster mass or environment. The other model is that most star clusters survive their infancy and are disrupted later by mass-dependent dynamical processes. Since observations at present have failed to discriminate between these views, we propose a theoretical investigation to provide new insight. We will perform radiation-hydrodynamic simulations of the formation of massive star clusters, including for the first time a realistic treatment of the most important stellar feedback processes. These simulations will elucidate the physics of stellar feedback, and allow us to determine whether cluster disruption is mass-dependent or -independent. We will also use our simulations to search for observational diagnostics that can distinguish bound from unbound clusters, and to predict how cluster disruption affects the cluster luminosity function in a variety of galactic environments.
YOUNG STELLAR CLUSTERS CONTAINING MASSIVE YOUNG STELLAR OBJECTS IN THE VVV SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borissova, J.; Alegría, S. Ramírez; Kurtev, R.
The purpose of this research is to study the connections of the global properties of eight young stellar clusters projected in the Vista Variables in the Via Lactea (VVV) ESO Large Public Survey disk area and their young stellar object (YSO) populations. The analysis is based on the combination of spectroscopic parallax-based reddening and distance determinations with main-sequence and pre-main-sequence ishochrone fitting to determine the basic parameters (reddening, age, distance) of the sample clusters. The lower mass limit estimations show that all clusters are low or intermediate mass (between 110 and 1800 M {sub ⊙}), the slope Γ of themore » obtained present-day mass functions of the clusters is close to the Kroupa initial mass function. The YSOs in the cluster’s surrounding fields are classified using low resolution spectra, spectral energy distribution fits with theoretical predictions, and variability, taking advantage of multi-epoch VVV observations. All spectroscopically confirmed YSOs (except one) are found to be massive (more than 8 M {sub ⊙}). Using VVV and GLIMPSE color–color cuts we have selected a large number of new YSO candidates, which are checked for variability and 57% are found to show at least low-amplitude variations. In few cases it was possible to distinguish between YSO and AGB classifications on the basis of light curves.« less
NASA Astrophysics Data System (ADS)
Bica, E.; Bonatto, C.
2008-03-01
We study the nature of the globular cluster (GC) candidates FSR 1603 and FSR1755 selected from the catalogue of Froebrich, Scholz & Raftery. Their properties are investigated with Two-Micron All-Sky Survey field-star decontaminated photometry, which is used to build colour-magnitude diagrams (CMDs) and stellar radial density profiles. FSR1603 has the open cluster Ruprecht 101 as optical counterpart, and we show it to be a massive intermediate-age cluster. Relevant parameters of FSR1603 are the age ~1Gyr, distance from the Sun dsolar ~ 2.7kpc, Galactocentric distance RGC ~ 6.4kpc, core radius RC ~ 1.1pc, mass function slope χ ~ 1.8, observed stellar mass (for stars with mass in the range 1.27 <= m <= 2.03Msolar) Mobs ~ 500Msolar and a total (extrapolated to m = 0.08Msolar) stellar mass Mtot ~ 2300Msolar. FSR1755, on the other hand, is not a populous cluster. It may be a sparse young cluster embedded in the HII region Sh2-3, subject to an absorption AV ~ 4.1, located at dsolar ~ 1.3kpc. Important field-star contamination, spatially variable heavy dust obscuration, even in Ks, and gas emission characterize its field. A nearly vertical, sparse blue stellar sequence shows up in the CMDs.
NASA Technical Reports Server (NTRS)
Romanishin, W.
1988-01-01
Preliminary results are given for a program to measure color gradients in the central galaxies in clusters with a variety of cooling flow rates. The objectives are to search for extended blue continuum regions indicative of star formation, to study the spatial distribution of star formation, and to make a quantitative measure of the amount of light from young stars, which can lead to a measure of the star formation rate (for an assumed initial mass function). Four clusters with large masses and large cluster H-alpha emission fluxes are found to have an excess of blue light concentrated to the centers of the cluster central galaxy. Assumption of a disk IMF leads to the conclusion that the starlight might play a major role in ionizing the emission line gas in these clusters.
Cold dark energy constraints from the abundance of galaxy clusters
Heneka, Caroline; Rapetti, David; Cataneo, Matteo; ...
2017-10-05
We constrain cold dark energy of negligible sound speed using galaxy cluster abundance observations. In contrast to standard quasi-homogeneous dark energy, negligible sound speed implies clustering of the dark energy fluid at all scales, allowing us to measure the effects of dark energy perturbations at cluster scales. We compare those models and set the stage for using non-linear information from semi-analytical modelling in cluster growth data analyses. For this, we recalibrate the halo mass function with non-linear characteristic quantities, the spherical collapse threshold and virial overdensity, that account for model and redshift-dependent behaviours, as well as an additional mass contributionmore » for cold dark energy. Here in this paper, we present the first constraints from this cold dark matter plus cold dark energy mass function using our cluster abundance likelihood, which self-consistently accounts for selection effects, covariances and systematic uncertainties. We combine cluster growth data with cosmic microwave background, supernovae Ia and baryon acoustic oscillation data, and find a shift between cold versus quasi-homogeneous dark energy of up to 1σ. We make a Fisher matrix forecast of constraints attainable with cluster growth data from the ongoing Dark Energy Survey (DES). For DES, we predict ~ 50 percent tighter constraints on (Ωm, w) for cold dark energy versus wCDM models, with the same free parameters. Overall, we show that cluster abundance analyses are sensitive to cold dark energy, an alternative, viable model that should be routinely investigated alongside the standard dark energy scenario.« less
Cold dark energy constraints from the abundance of galaxy clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heneka, Caroline; Rapetti, David; Cataneo, Matteo
We constrain cold dark energy of negligible sound speed using galaxy cluster abundance observations. In contrast to standard quasi-homogeneous dark energy, negligible sound speed implies clustering of the dark energy fluid at all scales, allowing us to measure the effects of dark energy perturbations at cluster scales. We compare those models and set the stage for using non-linear information from semi-analytical modelling in cluster growth data analyses. For this, we recalibrate the halo mass function with non-linear characteristic quantities, the spherical collapse threshold and virial overdensity, that account for model and redshift-dependent behaviours, as well as an additional mass contributionmore » for cold dark energy. Here in this paper, we present the first constraints from this cold dark matter plus cold dark energy mass function using our cluster abundance likelihood, which self-consistently accounts for selection effects, covariances and systematic uncertainties. We combine cluster growth data with cosmic microwave background, supernovae Ia and baryon acoustic oscillation data, and find a shift between cold versus quasi-homogeneous dark energy of up to 1σ. We make a Fisher matrix forecast of constraints attainable with cluster growth data from the ongoing Dark Energy Survey (DES). For DES, we predict ~ 50 percent tighter constraints on (Ωm, w) for cold dark energy versus wCDM models, with the same free parameters. Overall, we show that cluster abundance analyses are sensitive to cold dark energy, an alternative, viable model that should be routinely investigated alongside the standard dark energy scenario.« less
The SAMI Galaxy Survey: the cluster redshift survey, target selection and cluster properties
NASA Astrophysics Data System (ADS)
Owers, M. S.; Allen, J. T.; Baldry, I.; Bryant, J. J.; Cecil, G. N.; Cortese, L.; Croom, S. M.; Driver, S. P.; Fogarty, L. M. R.; Green, A. W.; Helmich, E.; de Jong, J. T. A.; Kuijken, K.; Mahajan, S.; McFarland, J.; Pracy, M. B.; Robotham, A. G. S.; Sikkema, G.; Sweet, S.; Taylor, E. N.; Verdoes Kleijn, G.; Bauer, A. E.; Bland-Hawthorn, J.; Brough, S.; Colless, M.; Couch, W. J.; Davies, R. L.; Drinkwater, M. J.; Goodwin, M.; Hopkins, A. M.; Konstantopoulos, I. S.; Foster, C.; Lawrence, J. S.; Lorente, N. P. F.; Medling, A. M.; Metcalfe, N.; Richards, S. N.; van de Sande, J.; Scott, N.; Shanks, T.; Sharp, R.; Thomas, A. D.; Tonini, C.
2017-06-01
We describe the selection of galaxies targeted in eight low-redshift clusters (APMCC0917, A168, A4038, EDCC442, A3880, A2399, A119 and A85; 0.029 < z < 0.058) as part of the Sydney-AAO Multi-Object Integral field spectrograph Galaxy Survey (SAMI-GS). We have conducted a redshift survey of these clusters using the AAOmega multi-object spectrograph on the 3.9-m Anglo-Australian Telescope. The redshift survey is used to determine cluster membership and to characterize the dynamical properties of the clusters. In combination with existing data, the survey resulted in 21 257 reliable redshift measurements and 2899 confirmed cluster member galaxies. Our redshift catalogue has a high spectroscopic completeness (˜94 per cent) for rpetro ≤ 19.4 and cluster-centric distances R < 2R200. We use the confirmed cluster member positions and redshifts to determine cluster velocity dispersion, R200, virial and caustic masses, as well as cluster structure. The clusters have virial masses 14.25 ≤ log(M200/M⊙) ≤ 15.19. The cluster sample exhibits a range of dynamical states, from relatively relaxed-appearing systems, to clusters with strong indications of merger-related substructure. Aperture- and point spread function matched photometry are derived from Sloan Digital Sky Survey and VLT Survey Telescope/ATLAS imaging and used to estimate stellar masses. These estimates, in combination with the redshifts, are used to define the input target catalogue for the cluster portion of the SAMI-GS. The primary SAMI-GS cluster targets have R
Globular Clusters Shine in a Galaxy Lacking Dark Matter
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2018-04-01
You may have seen recent news about NGC 1052DF2, a galaxy that was discovered to have little or no dark matter. Now, a new study explores what NGC 1052DF2 does have: an enigmatic population of unusually large and luminous globular clusters.Keck/LRIS spectra (left and right) and HST images (center) of the 11 clusters associated with NGC 1052DF2. The color images each span 1 1. [van Dokkum et al. 2018]An Unusual DwarfThe ultra-diffuse galaxy NGC 1052DF2, originally identified with the Dragonfly Telescope Array, has puzzled astronomers since the discovery that its dynamical mass determined by the motions of globular-cluster-like objects spotted within it is essentially the same as its stellar mass. This equivalence implies that the galaxy is strangely lacking dark matter; the upper limit set on its dark matter halo is 400 times smaller than what we would expect for such a dwarf galaxy.Led by Pieter van Dokkum (Yale University), the team that made this discovery has now followed up with detailed Hubble Space Telescope imaging and Keck spectroscopy. Their goal? To explore the objects that allowed them to make the dynamical-mass measurement: the oddly bright globular clusters of NGC 1052DF2.Sizes (circularized half-light radii) vs. absolute magnitudes for globular clusters in NGC1052DF2 (black) and the Milky Way (red). [Adapted from van Dokkum et al. 2018]Whats Up with the Globular Clusters?Van Dokkum and collaborators spectroscopically confirmed 11 compact objects associated with the faint galaxy. These objects are globular-cluster-like in their appearance, but the peak of their luminosity distribution is offset by a factor of four from globular clusters of other galaxies; these globular clusters are significantly brighter than is typical.Using the Hubble imaging, the authors determined that NGC 1052DF2s globular clusters are more than twice the size of the Milky Ways globular clusters in the same luminosity range. As is typical for globular clusters, they are an old ( 9.3 billion years) population and metal-poor.Rethinking Formation TheoriesThe long-standing picture of galaxies has closely connected old, metal-poor globular clusters to the galaxies dark-matter halos. Past studies have found that the ratio between the total globular-cluster mass and the overall mass of a galaxy (i.e., all dark + baryonic matter) holds remarkably constant across galaxies its typically 3 x 10-5. This has led researchers to believe that properties of the dark-matter halo may determine globular-cluster formation.The luminosity function of the compact objects in NGC 1052DF2. The red and blue curves show the luminosity functions of globular clusters in the Milky Way and in the typical ultra-diffuse galaxies of the Coma cluster, respectively. NGC 1052DF2s globular clusters peak at a significantly higher luminosity. [Adapted from van Dokkum et al. 2018]NGC 1052DF2, with a globular-cluster mass thats 3% of the mass of the galaxy ( 1000 times the expected ratio!), defies this picture. This unusual galaxy therefore demonstrates that the usual relation between globular-cluster mass and total galaxy mass probably isnt due to a fundamental connection between the dark-matter halo and globular-cluster formation. Instead, van Dokkum and collaborators suggest, globular-cluster formation may ultimately be a baryon-driven process.As with all unexpected discoveries in astronomy, we must now determine whether NGC 1052DF2 is simply a fluke, or whether it represents a new class of object we can expect to find more of. Either way, this unusual galaxy is forcing us to rethink what we know about galaxies and the star clusters they host.CitationPieter van Dokkum et al 2018 ApJL 856 L30. doi:10.3847/2041-8213/aab60b
Measuring the scatter in the cluster optical richness-mass relation with machine learning
NASA Astrophysics Data System (ADS)
Boada, Steven Alvaro
The distribution of massive clusters of galaxies depends strongly on the total cosmic mass density, the mass variance, and the dark energy equation of state. As such, measures of galaxy clusters can provide constraints on these parameters and even test models of gravity, but only if observations of clusters can lead to accurate estimates of their total masses. Here, we carry out a study to investigate the ability of a blind spectroscopic survey to recover accurate galaxy cluster masses through their line-of- sight velocity dispersions (LOSVD) using probability based and machine learning methods. We focus on the Hobby Eberly Telescope Dark Energy Experiment (HETDEX), which will employ new Visible Integral-Field Replicable Unit Spectrographs (VIRUS), over 420 degree2 on the sky with a 1/4.5 fill factor. VIRUS covers the blue/optical portion of the spectrum (3500 - 5500 A), allowing surveys to measure redshifts for a large sample of galaxies out to z < 0.5 based on their absorption or emission (e.g., [O II], Mg II, Ne V) features. We use a detailed mock galaxy catalog from a semi-analytic model to simulate surveys observed with VIRUS, including: (1) Survey, a blind, HETDEX-like survey with an incomplete but uniform spectroscopic selection function; and (2) Targeted, a survey which targets clusters directly, obtaining spectra of all galaxies in a VIRUS-sized field. For both surveys, we include realistic uncertainties from galaxy magnitude and line-flux limits. We benchmark both surveys against spectroscopic observations with perfect" knowledge of galaxy line-of-sight velocities. With Survey observations, we can recover cluster masses to ˜ 0.1 dex which can be further improved to < 0.1 dex with Targeted observations. This level of cluster mass recovery provides important measurements of the intrinsic scatter in the optical richness-cluster mass relation, and enables constraints on the key cosmological parameter, sigma 8, to < 20%. As a demonstration of the methods developed previously, we present a pilot survey with integral field spectroscopy of ten galaxy clusters optically selected from the Sloan Digital Sky Survey's DR8 at z = 0.2 - 0.3. Eight of the clusters are rich (lambda > 60) systems with total inferred masses (1.58 -17.37) x1014 M (M 200c), and two are poor (lambda < 15) systems with inferred total masses ˜ 0.5 x 1014 M? (M200c ). We use the Mitchell Spectrograph, (formerly the VIRUS-P spectrograph, a prototype of the HETDEX VIRUS instrument) located on the McDonald Observatory 2.7m telescope, to measure spectroscopic redshifts and line-of-sight velocities of the galaxies in and around each cluster, determine cluster membership and derive LOSVDs. We test both a LOSVD-cluster mass scaling relation and a machine learning based approach to infer total cluster mass. After comparing the cluster mass estimates to the literature, we use these independent cluster mass measurements to estimate the absolute cluster mass scale, and intrinsic scatter in the optical richness-mass relationship. We measure the intrinsic scatter in richness at fixed cluster mass to be sigmaM/lambda = 0.27 +/- 0.07 dex in excellent agreement with previous estimates of sigmaM/lambda ˜ 0.2 - 0.3 dex. We discuss the importance of the data used to train the machine learning methods and suggest various strategies to import the accuracy of the bias (offset) and scatter in the optical richness-cluster mass relation. This demonstrates the power of blind spectroscopic surveys such as HETDEX to provide robust cluster mass estimates which can aid in the determination of cosmological parameters and help to calibrate the observable-mass relation for future photometric large area-sky surveys.
VizieR Online Data Catalog: The Seven Sisters DANCe. I. Pleiades (Bouy+, 2015)
NASA Astrophysics Data System (ADS)
Bouy, H.; Bertin, E.; Sarro, L. M.; Barrado, D.; Moraux, E.; Bouvier, J.; Cuillandre, J.-C.; Berihuete, A.; Olivares, J.; Beletsky, Y.
2015-02-01
Position, proper motion, multi-wavelength ugrizYJHK photometry and membership probability to the Pleiades cluster for 1972245 sources. Present-day system bolometric luminosity and mass-functions of the Pleiades cluster. Empirical sequence of the Pleiades cluster in ugrizYJHK and BT,VT,JHK photometric systems. (7 data files).
A Database of Young Star Clusters for Five Hundred Galaxies
NASA Astrophysics Data System (ADS)
Whitmore, Brad
2009-07-01
We propose to use the source lists developed as part of the Hubble Legacy Archive {HLA: Data Release 1 - February 8, 2008} to obtain a large {N 50 galaxies for multi-wavelength, N 500 galaxies for ACS F814W}, uniform {ACS + WFPC2 + NICMOS: DAOphot used for object detection} database of super star clusters in nearby star-forming galaxies in order to address two fundamental astronomical questions: 1} To what degree is the cluster luminosity {and mass} function of star clusters universal ? 2} What fraction of super star clusters are "missing" in optical studies {i.e., are hidden by dust}? This database will also support comparisons with new Monte-Carlo simulations that have independently been developed in the past few years by co-I Larsen and PI Whitmore, and will be used to test the Whitmore, Chandar, Fall {2007} framework designed to understand the demographics of star clusters in all star forming galaxies. The catalogs will increase the number of galaxies with measured mass and luminosity functions by an order of magnitude, and will provide a powerful new tool for comparative studies, both ours and the community's.
Weighing the giants- V. Galaxy cluster scaling relations
NASA Astrophysics Data System (ADS)
Mantz, Adam B.; Allen, Steven W.; Morris, R. Glenn; von der Linden, Anja; Applegate, Douglas E.; Kelly, Patrick L.; Burke, David L.; Donovan, David; Ebeling, Harald
2016-12-01
We present constraints on the scaling relations of galaxy cluster X-ray luminosity, temperature and gas mass (and derived quantities) with mass and redshift, employing masses from robust weak gravitational lensing measurements. These are the first such results obtained from an analysis that simultaneously accounts for selection effects and the underlying mass function, and directly incorporates lensing data to constrain total masses. Our constraints on the scaling relations and their intrinsic scatters are in good agreement with previous studies, and reinforce a picture in which departures from self-similar scaling laws are primarily limited to cluster cores. However, the data are beginning to reveal new features that have implications for cluster astrophysics and provide new tests for hydrodynamical simulations. We find a positive correlation in the intrinsic scatters of luminosity and temperature at fixed mass, which is related to the dynamical state of the clusters. While the evolution of the nominal scaling relations over the redshift range 0.0 < z < 0.5 is consistent with self-similarity, we find tentative evidence that the luminosity and temperature scatters, respectively, decrease and increase with redshift. Physically, this likely related to the development of cool cores and the rate of major mergers. We also examine the scaling relations of redMaPPer richness and Compton Y from Planck. While the richness-mass relation is in excellent agreement with recent work, the measured Y-mass relation departs strongly from that assumed in the Planck cluster cosmology analysis. The latter result is consistent with earlier comparisons of lensing and Planck scaling relation-derived masses.
Erratum: Weighing the giants – V. Galaxy cluster scaling relations
Mantz, Adam B.; Allen, Steven W.; Morris, R. Glenn; ...
2017-02-21
We present constraints on the scaling relations of galaxy cluster X-ray luminosity, temperature and gas mass (and derived quantities) with mass and redshift, employing masses from robust weak gravitational lensing measurements. These are the first such results obtained from an analysis that simultaneously accounts for selection effects and the underlying mass function, and directly incorporates lensing data to constrain total masses. Our constraints on the scaling relations and their intrinsic scatters are in good agreement with previous studies, and reinforce a picture in which departures from self-similar scaling laws are primarily limited to cluster cores. However, the data are beginningmore » to reveal new features that have implications for cluster astrophysics and provide new tests for hydrodynamical simulations. We find a positive correlation in the intrinsic scatters of luminosity and temperature at fixed mass, which is related to the dynamical state of the clusters. While the evolution of the nominal scaling relations over the redshift range 0.0 < z < 0.5 is consistent with self similarity, we find tentative evidence that the luminosity and temperature scatters respectively decrease and increase with redshift. Physically, this likely related to the development of cool cores and the rate of major mergers. We also examine the scaling relations of redMaPPer richness and Compton Y from Planck. While the richness{mass relation is in excellent agreement with recent work, the measured Y {mass relation departs strongly from that assumed in the Planck cluster cosmology analysis. Furthermore, the latter result is consistent with earlier comparisons of lensing and Planck scaling-relation-derived masses.« less
Weighing the giants– V. Galaxy cluster scaling relations
Mantz, Adam B.; Allen, Steven W.; Morris, R. Glenn; ...
2016-09-07
Here, we present constraints on the scaling relations of galaxy cluster X-ray luminosity, temperature and gas mass (and derived quantities) with mass and redshift, employing masses from robust weak gravitational lensing measurements. These are the first such results obtained from an analysis that simultaneously accounts for selection effects and the underlying mass function, and directly incorporates lensing data to constrain total masses. Our constraints on the scaling relations and their intrinsic scatters are in good agreement with previous studies, and reinforce a picture in which departures from self-similar scaling laws are primarily limited to cluster cores. However, the data aremore » beginning to reveal new features that have implications for cluster astrophysics and provide new tests for hydrodynamical simulations. We find a positive correlation in the intrinsic scatters of luminosity and temperature at fixed mass, which is related to the dynamical state of the clusters. While the evolution of the nominal scaling relations over the redshift range 0.0 < z < 0.5 is consistent with self-similarity, we find tentative evidence that the luminosity and temperature scatters, respectively, decrease and increase with redshift. Physically, this likely related to the development of cool cores and the rate of major mergers. We also examine the scaling relations of redMaPPer richness and Compton Y from Planck. While the richness–mass relation is in excellent agreement with recent work, the measured Y–mass relation departs strongly from that assumed in the Planck cluster cosmology analysis. Furthermore, the latter result is consistent with earlier comparisons of lensing and Planck scaling relation-derived masses.« less
Deep spectroscopy of nearby galaxy clusters - II. The Hercules cluster
NASA Astrophysics Data System (ADS)
Agulli, I.; Aguerri, J. A. L.; Diaferio, A.; Dominguez Palmero, L.; Sánchez-Janssen, R.
2017-06-01
We carried out the deep spectroscopic observations of the nearby cluster A 2151 with AF2/WYFFOS@WHT. The caustic technique enables us to identify 360 members brighter than Mr = -16 and within 1.3R200. We separated the members into subsamples according to photometrical and dynamical properties such as colour, local environment and infall time. The completeness of the catalogue and our large sample allow us to analyse the velocity dispersion and the luminosity functions (LFs) of the identified populations. We found evidence of a cluster still in its collapsing phase. The LF of the red population of A 2151 shows a deficit of dwarf red galaxies. Moreover, the normalized LFs of the red and blue populations of A 2151 are comparable to the red and blue LFs of the field, even if the blue galaxies start dominating 1 mag fainter and the red LF is well represented by a single Schechter function rather than a double Schechter function. We discuss how the evolution of cluster galaxies depends on their mass: bright and intermediate galaxies are mainly affected by dynamical friction and internal/mass quenching, while the evolution of dwarfs is driven by environmental processes that need time and a hostile cluster environment to remove the gas reservoirs and halt the star formation.
STAR CLUSTER FORMATION AND DESTRUCTION IN THE MERGING GALAXY NGC 3256
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulia, A. J.; Chandar, R.; Whitmore, B. C.
2016-07-20
We use the Advanced Camera for Surveys on the Hubble Space Telescope to study the rich population of young massive star clusters in the main body of NGC 3256, a merging pair of galaxies with a high star formation rate (SFR) and SFR per unit area (Σ{sub SFR}). These clusters have luminosity and mass functions that follow power laws, dN / dL ∝ L{sup α} with α = 2.23 ± 0.07, and dN / dM ∝ M{sup β} with β = 1.86 ± 0.34 for τ < 10 Myr clusters, similar to those found in more quiescent galaxies. The agemore » distribution can be described by dN / dτ ∝ τ{sup γ}, with γ ≈ 0.67 ± 0.08 for clusters younger than about a few hundred million years, with no obvious dependence on cluster mass. This is consistent with a picture where ∼80% of the clusters are disrupted each decade in time. We investigate the claim that galaxies with high Σ{sub SFR} form clusters more efficiently than quiescent systems by determining the fraction of stars in bound clusters (Γ) and the CMF/SFR statistic (CMF is the cluster mass function) for NGC 3256 and comparing the results with those for other galaxies. We find that the CMF/SFR statistic for NGC 3256 agrees well with that found for galaxies with Σ{sub SFR} and SFRs that are lower by 1–3 orders of magnitude, but that estimates for Γ are only robust when the same sets of assumptions are applied. Currently, Γ values available in the literature have used different sets of assumptions, making it more difficult to compare the results between galaxies.« less
Star Cluster Formation and Destruction in the Merging Galaxy NGC 3256
NASA Astrophysics Data System (ADS)
Mulia, A. J.; Chandar, R.; Whitmore, B. C.
2016-07-01
We use the Advanced Camera for Surveys on the Hubble Space Telescope to study the rich population of young massive star clusters in the main body of NGC 3256, a merging pair of galaxies with a high star formation rate (SFR) and SFR per unit area (ΣSFR). These clusters have luminosity and mass functions that follow power laws, dN/dL ∝ L α with α = -2.23 ± 0.07, and dN/dM ∝ M β with β = -1.86 ± 0.34 for τ < 10 Myr clusters, similar to those found in more quiescent galaxies. The age distribution can be described by dN/dτ ∝ τ γ , with γ ≈ -0.67 ± 0.08 for clusters younger than about a few hundred million years, with no obvious dependence on cluster mass. This is consistent with a picture where ˜80% of the clusters are disrupted each decade in time. We investigate the claim that galaxies with high ΣSFR form clusters more efficiently than quiescent systems by determining the fraction of stars in bound clusters (Γ) and the CMF/SFR statistic (CMF is the cluster mass function) for NGC 3256 and comparing the results with those for other galaxies. We find that the CMF/SFR statistic for NGC 3256 agrees well with that found for galaxies with ΣSFR and SFRs that are lower by 1-3 orders of magnitude, but that estimates for Γ are only robust when the same sets of assumptions are applied. Currently, Γ values available in the literature have used different sets of assumptions, making it more difficult to compare the results between galaxies.
The First Photometric Analysis of the Open Clusters Dolidze 32 and 36
NASA Astrophysics Data System (ADS)
Amin, M. Y.; Elsanhory, W. H.; Haroon, A. A.
2018-06-01
We present a first study of two open clusters Dolidze 32 and Dolidze 36 in the near-infrared region JHKs with the aid of PPMXL catalog. In our study, we used a method able to separate open cluster stars from those that belong to the stellar background. Our results of calculations indicate that for both cluster Dolidze 32 and Dolidze 36 the number of probable member is 286 and 780, respectively. We have estimated the cluster center for Dolidze 32 and Dolidze 36 are α = 18h41m4s.188 , δ = -04°04'57''.144 , α = 20h02m29s.95 , δ = 42°05'49''.2 , respectively. The limiting radius for both clusters Dolidze 32 and Dolidze 36 is about 0.94 ± 0.03 pc and 0.81 ± 0.03 pc, respectively. The Color Magnitude Diagram allows us to estimate the reddening E(B - V) = 1.41 ± 0.03 mag. for Dolidze 32 and E(B - V) = 0.19 ± 0.04 mag. for Dolidze 36 in such a way that the distance modulus (m - M) is 11.36 ± 0.02 and 10.10 ± 0.03 for both clusters, respectively. On the other hand, the luminosity and mass functions of these two open clusters, Dolidze 32 and Dolidze 36, have been estimated, showing that the estimated masses are 437 ± 21 M⊙ and 678 ± 26 M⊙, respectively, while the mass function slopes are -2.56 ± 0.62 and -2.01 ± 0.70 for Dolidze 32 and Dolidze 36, respectively. Finally, the dynamical state of these two clusters shows that only Dolidze 36 can be considered as a dynamically relaxed cluster.
Evolution of the stellar mass function in multiple-population globular clusters
NASA Astrophysics Data System (ADS)
Vesperini, Enrico; Hong, Jongsuk; Webb, Jeremy J.; D'Antona, Franca; D'Ercole, Annibale
2018-05-01
We present the results of a survey of N-body simulations aimed at studying the effects of the long-term dynamical evolution on the stellar mass function (MF) of multiple stellar populations in globular clusters. Our simulations show that if first-(1G) and second-generation (2G) stars have the same initial MF (IMF), the global MFs of the two populations are affected similarly by dynamical evolution and no significant differences between the 1G and 2G MFs arise during the cluster's evolution. If the two populations have different IMFs, dynamical effects do not completely erase memory of the initial differences. Should observations find differences between the global 1G and 2G MFs, these would reveal the fingerprints of differences in their IMFs. Irrespective of whether the 1G and 2G populations have the same global IMF or not, dynamical effects can produce differences between the local (measured at various distances from the cluster centre) 1G and 2G MFs; these differences are a manifestation of the process of mass segregation in populations with different initial structural properties. In dynamically old and spatially mixed clusters, however, differences between the local 1G and 2G MFs can reveal differences between the 1G and 2G global MFs. In general, for clusters with any dynamical age, large differences between the local 1G and 2G MFs are more likely to be associated with differences in the global MF. Our study also reveals a dependence of the spatial mixing rate on the stellar mass, another dynamical consequence of the multiscale nature of multiple-population clusters.
Weak lensing magnification of SpARCS galaxy clusters
NASA Astrophysics Data System (ADS)
Tudorica, A.; Hildebrandt, H.; Tewes, M.; Hoekstra, H.; Morrison, C. B.; Muzzin, A.; Wilson, G.; Yee, H. K. C.; Lidman, C.; Hicks, A.; Nantais, J.; Erben, T.; van der Burg, R. F. J.; Demarco, R.
2017-12-01
Context. Measuring and calibrating relations between cluster observables is critical for resource-limited studies. The mass-richness relation of clusters offers an observationally inexpensive way of estimating masses. Its calibration is essential for cluster and cosmological studies, especially for high-redshift clusters. Weak gravitational lensing magnification is a promising and complementary method to shear studies, that can be applied at higher redshifts. Aims: We aim to employ the weak lensing magnification method to calibrate the mass-richness relation up to a redshift of 1.4. We used the Spitzer Adaptation of the Red-Sequence Cluster Survey (SpARCS) galaxy cluster candidates (0.2 < z < 1.4) and optical data from the Canada France Hawaii Telescope (CFHT) to test whether magnification can be effectively used to constrain the mass of high-redshift clusters. Methods: Lyman-break galaxies (LBGs) selected using the u-band dropout technique and their colours were used as a background sample of sources. LBG positions were cross-correlated with the centres of the sample of SpARCS clusters to estimate the magnification signal, which was optimally-weighted using an externally-calibrated LBG luminosity function. The signal was measured for cluster sub-samples, binned in both redshift and richness. Results: We measured the cross-correlation between the positions of galaxy cluster candidates and LBGs and detected a weak lensing magnification signal for all bins at a detection significance of 2.6-5.5σ. In particular, the significance of the measurement for clusters with z> 1.0 is 4.1σ; for the entire cluster sample we obtained an average M200 of 1.28 -0.21+0.23 × 1014 M⊙. Conclusions: Our measurements demonstrated the feasibility of using weak lensing magnification as a viable tool for determining the average halo masses for samples of high redshift galaxy clusters. The results also established the success of using galaxy over-densities to select massive clusters at z > 1. Additional studies are necessary for further modelling of the various systematic effects we discussed.
NASA Astrophysics Data System (ADS)
Mao, Tian-Xiang; Wang, Jie; Frenk, Carlos S.; Gao, Liang; Li, Ran; Wang, Qiao; Cao, Xiaoyue; Li, Ming
2018-07-01
Schwinn et al. have recently compared the abundance and distribution of massive substructures identified in a gravitational lensing analysis of Abell 2744 by Jauzac et al. and N-body simulation, and found no cluster in Lambda cold dark matter (ΛCDM) simulation that is similar to Abell 2744. Schwinn et al. identified the measured projected aperture masses with the actual masses associated with subhaloes in the Millenium XXL N-body simulation. We have used the high-resolution Phoenix cluster simulations to show that such an identification is incorrect: the aperture mass is dominated by mass in the body of the cluster that happens to be projected along the line of sight to the subhalo. This enhancement varies from factors of a few to factors of more than 100, particularly for subhaloes projected near the centre of the cluster. We calculate aperture masses for subhaloes in our simulation and compare them to the measurements for Abell 2744. We find that the data for Abell 2744 are in excellent agreement with the matched predictions from ΛCDM. We provide further predictions for aperture mass functions of subhaloes in idealized surveys with varying mass detection thresholds.
NASA Technical Reports Server (NTRS)
Silk, J.; Djorgovski, S.; Wyse, R. F. G.; Bruzual A., G.
1986-01-01
A self-consistent treatment of the heating by supernovae associated with star formation in a spherically symmetric cooling flow in a cluster core or elliptical galaxy is presented. An initial stellar mass function similar to that in the solar neighborhood is adopted. Inferred star-formation rates, within the cooling region - typically the inner 100 kpc around dominant galaxies at the centers of cooling flows in XD clusters - are reduced by about a factor of 2, relative to rates inferred when the heat input from star formation is ignored. Truncated initial mass functions (IMFs) are also considered, in which massive star formation is suppressed in accordance with previous treatments, and colors are predicted for star formation in cooling flows associated with central dominant elliptical galaxies and with isolated elliptical galaxies surrounded by gaseous coronae. The low inferred cooling-flow rates around isolated elliptical galaxies are found to be insensitive to the upper mass cutoff in the IMF, provided that the upper mass cutoff exceeds 2 M solar mass. Comparison with observed colors favors a cutoff in the IMF above 1 M solar mass in at least two well-studied cluster cooling flows, but a normal IMF cannot be excluded definitively. Models for NGC 1275 support a young (less than about 3 Gyr) cooling flow. As for the isolated elliptical galaxies, the spread in colors is consistent with a normal IMF. A definitive test of the IMF arising via star formation in cooling flows requires either UV spectral data or supernova searches in the cooling-flow-centered galaxies.
NASA Astrophysics Data System (ADS)
Moran, Sean; Smith, G.; Haines, C.; Egami, E.; Hardegree-Ullman, E.; Heckman, T.
2010-01-01
We present results from LoCuSS, the Local Cluster Substructure Survey, on the distribution and abundance of cluster galaxies showing signatures of recently quenched star formation, within a sample of 15 z 0.2 clusters. Combining LoCuSS' wide-field UV through NIR photometry with weak-lensing derived mass maps for these clusters, we identify passive galaxies that have undergone recent quenching via both rapid (100Myr) and slow (1Gyr) mechanisms. By studying their abundance in a statistically significant sample of z 0.2 clusters, we explore how the effectiveness of environmental quenching of star formation varies as a function of the level of cluster substructure, in addition to global cluster characteristics such as mass or X-ray luminosity and temperature, with the aim of understanding the role that pre-processing of galaxies within groups and filaments plays in the overall buildup of the morphology-density and SFR-density relations. We find that clusters with large levels of substructure indicative of recent assembly or cluster-cluster mergers host a higher fraction of galaxies with signs of recent ram-pressure stripping by the hot intra-cluster gas. In addition, we find that the fraction of post-starburst galaxies increases with cluster mass (M500), but fractions of optically-selected AGN and GALEX-defined "Green Valley" galaxies show the opposite trend, being most abundant in rather low-mass clusters. These trends suggest a picture where quenching of star formation occurs most vigorously in actively assembling structures, with comparatively little activity in the most massive structures where most of the nearby large-scale structure has already been accreted and Virialized into the main cluster body.
NASA Astrophysics Data System (ADS)
Adamo, A.; Ryon, J. E.; Messa, M.; Kim, H.; Grasha, K.; Cook, D. O.; Calzetti, D.; Lee, J. C.; Whitmore, B. C.; Elmegreen, B. G.; Ubeda, L.; Smith, L. J.; Bright, S. N.; Runnholm, A.; Andrews, J. E.; Fumagalli, M.; Gouliermis, D. A.; Kahre, L.; Nair, P.; Thilker, D.; Walterbos, R.; Wofford, A.; Aloisi, A.; Ashworth, G.; Brown, T. M.; Chandar, R.; Christian, C.; Cignoni, M.; Clayton, G. C.; Dale, D. A.; de Mink, S. E.; Dobbs, C.; Elmegreen, D. M.; Evans, A. S.; Gallagher, J. S., III; Grebel, E. K.; Herrero, A.; Hunter, D. A.; Johnson, K. E.; Kennicutt, R. C.; Krumholz, M. R.; Lennon, D.; Levay, K.; Martin, C.; Nota, A.; Östlin, G.; Pellerin, A.; Prieto, J.; Regan, M. W.; Sabbi, E.; Sacchi, E.; Schaerer, D.; Schiminovich, D.; Shabani, F.; Tosi, M.; Van Dyk, S. D.; Zackrisson, E.
2017-06-01
We report the large effort that is producing comprehensive high-level young star cluster (YSC) catalogs for a significant fraction of galaxies observed with the Legacy ExtraGalactic UV Survey (LEGUS) Hubble treasury program. We present the methodology developed to extract cluster positions, verify their genuine nature, produce multiband photometry (from NUV to NIR), and derive their physical properties via spectral energy distribution fitting analyses. We use the nearby spiral galaxy NGC 628 as a test case for demonstrating the impact that LEGUS will have on our understanding of the formation and evolution of YSCs and compact stellar associations within their host galaxy. Our analysis of the cluster luminosity function from the UV to the NIR finds a steepening at the bright end and at all wavelengths suggesting a dearth of luminous clusters. The cluster mass function of NGC 628 is consistent with a power-law distribution of slopes ˜ -2 and a truncation of a few times 105 {M}⊙ . After their formation, YSCs and compact associations follow different evolutionary paths. YSCs survive for a longer time frame, confirming their being potentially bound systems. Associations disappear on timescales comparable to hierarchically organized star-forming regions, suggesting that they are expanding systems. We find mass-independent cluster disruption in the inner region of NGC 628, while in the outer part of the galaxy there is little or no disruption. We observe faster disruption rates for low mass (≤104 {M}⊙ ) clusters, suggesting that a mass-dependent component is necessary to fully describe the YSC disruption process in NGC 628. Based on observations obtained with the NASA/ESA Hubble Space Telescope, at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.
No energy equipartition in globular clusters
NASA Astrophysics Data System (ADS)
Trenti, Michele; van der Marel, Roeland
2013-11-01
It is widely believed that globular clusters evolve over many two-body relaxation times towards a state of energy equipartition, so that velocity dispersion scales with stellar mass as σ ∝ m-η with η = 0.5. We show here that this is incorrect, using a suite of direct N-body simulations with a variety of realistic initial mass functions and initial conditions. No simulated system ever reaches a state close to equipartition. Near the centre, the luminous main-sequence stars reach a maximum ηmax ≈ 0.15 ± 0.03. At large times, all radial bins convergence on an asymptotic value η∞ ≈ 0.08 ± 0.02. The development of this `partial equipartition' is strikingly similar across our simulations, despite the range of different initial conditions employed. Compact remnants tend to have higher η than main-sequence stars (but still η < 0.5), due to their steeper (evolved) mass function. The presence of an intermediate-mass black hole (IMBH) decreases η, consistent with our previous findings of a quenching of mass segregation under these conditions. All these results can be understood as a consequence of the Spitzer instability for two-component systems, extended by Vishniac to a continuous mass spectrum. Mass segregation (the tendency of heavier stars to sink towards the core) has often been studied observationally, but energy equipartition has not. Due to the advent of high-quality proper motion data sets from the Hubble Space Telescope, it is now possible to measure η for real clusters. Detailed data-model comparisons open up a new observational window on globular cluster dynamics and evolution. A first comparison of our simulations to observations of Omega Cen yields good agreement, supporting the view that globular clusters are not generally in energy equipartition. Modelling techniques that assume equipartition by construction (e.g. multi-mass Michie-King models) are approximate at best.
Implicit Priors in Galaxy Cluster Mass and Scaling Relation Determinations
NASA Technical Reports Server (NTRS)
Mantz, A.; Allen, S. W.
2011-01-01
Deriving the total masses of galaxy clusters from observations of the intracluster medium (ICM) generally requires some prior information, in addition to the assumptions of hydrostatic equilibrium and spherical symmetry. Often, this information takes the form of particular parametrized functions used to describe the cluster gas density and temperature profiles. In this paper, we investigate the implicit priors on hydrostatic masses that result from this fully parametric approach, and the implications of such priors for scaling relations formed from those masses. We show that the application of such fully parametric models of the ICM naturally imposes a prior on the slopes of the derived scaling relations, favoring the self-similar model, and argue that this prior may be influential in practice. In contrast, this bias does not exist for techniques which adopt an explicit prior on the form of the mass profile but describe the ICM non-parametrically. Constraints on the slope of the cluster mass-temperature relation in the literature show a separation based the approach employed, with the results from fully parametric ICM modeling clustering nearer the self-similar value. Given that a primary goal of scaling relation analyses is to test the self-similar model, the application of methods subject to strong, implicit priors should be avoided. Alternative methods and best practices are discussed.
NASA Astrophysics Data System (ADS)
Jee, Myungkook James
2006-06-01
Clusters of galaxies, the largest gravitationally bound objects in the Universe, are useful tracers of cosmic evolution, and particularly detailed studies of still-forming clusters at high-redshifts can considerably enhance our understanding of the structure formation. We use two powerful methods that have become recently available for the study of these distant clusters: spaced- based gravitational weak-lensing and high-resolution X-ray observations. Detailed analyses of five high-redshift (0.8 < z < 1.3) clusters are presented based on the deep Advanced Camera for Surveys (ACS) and Chandra X-ray images. We show that, when the instrumental characteristics are properly understood, the newly installed ACS on the Hubble Space Telescope (HST) can detect subtle shape distortions of background galaxies down to the limiting magnitudes of the observations, which enables the mapping of the cluster dark matter in unprecedented high-resolution. The cluster masses derived from this HST /ACS weak-lensing study have been compared with those from the re-analyses of the archival Chandra X-ray data. We find that there are interesting offsets between the cluster galaxy, intracluster medium (ICM), and dark matter centroids, and possible scenarios are discussed. If the offset is confirmed to be uniquitous in other clusters, the explanation may necessitate major refinements in our current understanding of the nature of dark matter, as well as the cluster galaxy dynamics. CL0848+4452, the highest-redshift ( z = 1.27) cluster yet detected in weak-lensing, has a significant discrepancy between the weak- lensing and X-ray masses. If this trend is found to be severe and common also for other X-ray weak clusters at redshifts beyond the unity, the conventional X-ray determination of cluster mass functions, often inferred from their immediate X-ray properties such as the X-ray luminosity and temperature via the so-called mass-luminosity (M-L) and mass-temperature (M-T) relations, will become highly unstable in this redshift regime. Therefore, the relatively unbiased weak-lensing measurements of the cluster mass properties can be used to adequately calibrate the scaling relations in future high-redshift cluster investigations.
The Low Mass IMF in Young Open Clusters
NASA Astrophysics Data System (ADS)
Williams, Douglas M.
1995-01-01
We present the results of the investigation of the Initial Mass Function at the end of the Main Sequence in young open clusters. We find that over a large range in age and environment the IMFs are similar to each other, and to recent determinations of the field star IMF. We have obtained V, I, and K band photometry of fields in the three relatively unembedded open clusters. The photometry reaches down to various masses in each cluster: 0.08{cal M}_⊙ for Praesepe, 0.04{cal M}odot for the Pleiades, and 0.15{cal M}_⊙ for NGC 7160. We compare the methods for estimating the masses of young, embedded stars developed by Comeron et al. (1993 - CRBR) and by Strom, Kepner, & Strom (1995) and show them to be in good agreement. Spectra in the 2 mu m region of six low mass objects from CRBR are also in agreement with the mass estimates using these methods. The spectrum of a brown dwarf candidate is used to place an upper limit on its mass of 60% of the minimum required for hydrogen burning. The IMFs from these four clusters plus NGC 2024 are shown to be in agreement with each other. The composite MF can be fitted with a power law between 0.04 and 0.5 {cal M}_⊙ with a slope of -0.75 +/- 0.3. There is no evidence for a cutoff at the bottom of the main sequence (0.08{cal M}odot); brown dwarfs appear to be abundant in open clusters. However, the slope of the MF is well above the value of _sp {~}<-2 required for very low mass stars and brown dwarfs to contribute a significant portion of the mass of open clusters. The composite cluster MF also is in agreement with recent determinations of the field star IMF for stellar masses. The field star data do not extend into the brown dwarf range; however, if we extrapolate in accordance with the cluster MF, we conclude that brown dwarfs probably do not contribute significantly to the dark matter.
Stochastic Sampling in the IMF of Galactic Open Clusters
NASA Astrophysics Data System (ADS)
Kay, Christina; Hancock, M.; Canalizo, G.; Smith, B. J.; Giroux, M. L.
2010-01-01
We sought observational evidence of the effects of stochastic sampling of the initial mass function by investigating the integrated colors of a sample of Galactic open clusters. In particular we looked for scatter in the integrated (V-K) color as previous research resulted in little scatter in the (U-B) and (B-V) colors. Combining data from WEBDA and 2MASS we determined three different colors for 287 open clusters. Of these clusters, 39 have minimum uncertainties in age and formed a standard set. A plot of the (V-K) color versus age showed much more scatter than the (U-B) versus age. We also divided the sample into two groups based on a lowest luminosity limit which is a function of age and V magnitude. We expected the group of clusters fainter than this limit to show more scatter than the brighter group. Assuming the published ages, we compared the reddening corrected observed colors to those predicted by Starburst99. The presence of stochastic sampling should increase scatter in the distribution of the differences between observed and model colors of the fainter group relative to the brighter group. However, we found that K-S tests cannot rule out that the distribution of color difference for the brighter and fainter sets come from the same parent distribution. This indistinguishabilty may result from uncertainties in the parameters used to define the groups. This result constrains the size of the effects of stochastic sampling of the initial mass function.
Dynamical Friction in Multi-component Evolving Globular Clusters
NASA Astrophysics Data System (ADS)
Alessandrini, Emiliano; Lanzoni, Barbara; Miocchi, Paolo; Ciotti, Luca; Ferraro, Francesco R.
2014-11-01
We use the Chandrasekhar formalism and direct N-body simulations to study the effect of dynamical friction on a test object only slightly more massive than the field stars, orbiting a spherically symmetric background of particles with a mass spectrum. The main goal is to verify whether the dynamical friction time (t DF) develops a non-monotonic radial dependence that could explain the bimodality of the blue straggler radial distributions observed in globular clusters. In these systems, in fact, relaxation effects lead to a mass and velocity radial segregation of the different mass components, so that mass-spectrum effects on t DF are expected to be dependent on radius. We find that in spite of the presence of different masses, t DF is always a monotonic function of radius, at all evolutionary times and independently of the initial concentration of the simulated cluster. This is because the radial dependence of t DF is largely dominated by the total mass density profile of the background stars (which is monotonically decreasing with radius). Hence, a progressive temporal erosion of the blue straggler star (BSS) population at larger and larger distances from the cluster center remains the simplest and the most likely explanation of the shape of the observed BSS radial distributions, as suggested in previous works. We also confirm the theoretical expectation that approximating a multi-mass globular cluster as made of (averaged) equal-mass stars can lead to significant overestimations of t DF within the half-mass radius.
NASA Astrophysics Data System (ADS)
Nayak, P. K.; Subramaniam, A.; Choudhury, S.; Indu, G.; Sagar, Ram
2016-12-01
We have introduced a semi-automated quantitative method to estimate the age and reddening of 1072 star clusters in the Large Magellanic Cloud (LMC) using the Optical Gravitational Lensing Experiment III survey data. This study brings out 308 newly parametrized clusters. In a first of its kind, the LMC clusters are classified into groups based on richness/mass as very poor, poor, moderate and rich clusters, similar to the classification scheme of open clusters in the Galaxy. A major cluster formation episode is found to happen at 125 ± 25 Myr in the inner LMC. The bar region of the LMC appears prominently in the age range 60-250 Myr and is found to have a relatively higher concentration of poor and moderate clusters. The eastern and the western ends of the bar are found to form clusters initially, which later propagates to the central part. We demonstrate that there is a significant difference in the distribution of clusters as a function of mass, using a movie based on the propagation (in space and time) of cluster formation in various groups. The importance of including the low-mass clusters in the cluster formation history is demonstrated. The catalogue with parameters, classification, and cleaned and isochrone fitted colour-magnitude diagrams of 1072 clusters, which are available as online material, can be further used to understand the hierarchical formation of clusters in selected regions of the LMC.
Low-Mass Star Formation and the Initial Mass Function in Young Clusters
NASA Astrophysics Data System (ADS)
Luhman, Kevin Lee
I have used optical and near-infrared spectroscopy and imaging to measure spectral types and luminosities for young (/tau<10 Myr), embedded (AV=0[-]50), low-mass (0.1-1 Msolar) stars in three nearby (d<300 pc) clusters: L1495E, IC 348, and ρ Ophiuchi. In conjunction with theoretical evolutionary tracks, I have derived the star formation history and initial mass function for each stellar population. A large number of brown dwarf candidates have been identified in the photometry, several of which are confirmed through spectroscopy. Finally, I have measured the frequency and survival times of circumstellar disks and investigated the photometric and spectroscopic properties of protostars. In S 2, I apply observational tests to the available sets of evolutionary models for low-mass stars, concluding that the calculations of D'Antona & Mazzitelli are preferred for the range of masses and ages considered here. In S 3 and S 4, I examine in detail the spectroscopic characteristics and substellar nature of two brown dwarf candidates. The study then expands to include the populations within the clusters L1495E (S 5), IC 348 (S 6), and ρ Ophiuchi (S 7). In S 8, I briefly discuss the past, present, and future of scientific research related to this thesis.
The JCMT Gould Belt Survey: Dense Core Clusters in Orion B
NASA Astrophysics Data System (ADS)
Kirk, H.; Johnstone, D.; Di Francesco, J.; Lane, J.; Buckle, J.; Berry, D. S.; Broekhoven-Fiene, H.; Currie, M. J.; Fich, M.; Hatchell, J.; Jenness, T.; Mottram, J. C.; Nutter, D.; Pattle, K.; Pineda, J. E.; Quinn, C.; Salji, C.; Tisi, S.; Hogerheijde, M. R.; Ward-Thompson, D.; The JCMT Gould Belt Survey Team
2016-04-01
The James Clerk Maxwell Telescope Gould Belt Legacy Survey obtained SCUBA-2 observations of dense cores within three sub-regions of Orion B: LDN 1622, NGC 2023/2024, and NGC 2068/2071, all of which contain clusters of cores. We present an analysis of the clustering properties of these cores, including the two-point correlation function and Cartwright’s Q parameter. We identify individual clusters of dense cores across all three regions using a minimal spanning tree technique, and find that in each cluster, the most massive cores tend to be centrally located. We also apply the independent M-Σ technique and find a strong correlation between core mass and the local surface density of cores. These two lines of evidence jointly suggest that some amount of mass segregation in clusters has happened already at the dense core stage.
CCD photometry of NGC 6101 - Another globular cluster with blue straggler stars
NASA Technical Reports Server (NTRS)
Sarajedini, Ata; Da Costa, G. S.
1991-01-01
Results are presented on CCD photometric observations of a large sample of stars in the southern globular cluster NGC 6101, and the procedures used to derive the color-magnitude (C-M) diagram of the cluster are described. No indication was found of any difference in age, at the less than 2 Gyr level, between NGC 6101 cluster and other clusters of similar abundance, such as M92. The C-M diagram revealed a significant blue straggler population. It was found that, in NGC 6101, these stars are more centrally concentrated than the cluster subgiants of similar magnitude, indicating that the blue stragglers have larger masses. Results on the magnitude and luminosity function of the sample are consistent with the bianry mass transfer or merger hypotheses for the origin of blue straggler stars.
A Model for Protostellar Cluster Luminosities and the Impact on the CO–H2 Conversion Factor
NASA Astrophysics Data System (ADS)
Gaches, Brandt A. L.; Offner, Stella S. R.
2018-02-01
We construct a semianalytic model to study the effect of far-ultraviolet (FUV) radiation on gas chemistry from embedded protostars. We use the protostellar luminosity function (PLF) formalism of Offner & McKee to calculate the total, FUV, and ionizing cluster luminosity for various protostellar accretion histories and cluster sizes. We2 compare the model predictions with surveys of Gould Belt star-forming regions and find that the tapered turbulent core model matches best the mean luminosities and the spread in the data. We combine the cluster model with the photodissociation region astrochemistry code, 3D-PDR, to compute the impact of the FUV luminosity from embedded protostars on the CO-to-H2 conversion factor, X CO, as a function of cluster size, gas mass, and star formation efficiency. We find that X CO has a weak dependence on the FUV radiation from embedded sources for large clusters owing to high cloud optical depths. In smaller and more efficient clusters the embedded FUV increases X CO to levels consistent with the average Milky Way values. The internal physical and chemical structures of the cloud are significantly altered, and X CO depends strongly on the protostellar cluster mass for small efficient clouds.
NASA Astrophysics Data System (ADS)
Jeřábková, T.; Kroupa, P.; Dabringhausen, J.; Hilker, M.; Bekki, K.
2017-12-01
The stellar initial mass function (IMF) has been described as being invariant, bottom-heavy, or top-heavy in extremely dense star-burst conditions. To provide usable observable diagnostics, we calculate redshift dependent spectral energy distributions of stellar populations in extreme star-burst clusters, which are likely to have been the precursors of present day massive globular clusters (GCs) and of ultra compact dwarf galaxies (UCDs). The retention fraction of stellar remnants is taken into account to assess the mass to light ratios of the ageing star-burst. Their redshift dependent photometric properties are calculated as predictions for James Webb Space Telescope (JWST) observations. While the present day GCs and UCDs are largely degenerate concerning bottom-heavy or top-heavy IMFs, a metallicity- and density-dependent top-heavy IMF implies the most massive UCDs, at ages < 100 Myr, to appear as objects with quasar-like luminosities with a 0.1-10% variability on a monthly timescale due to core collapse supernovae.
Star Formation in the Orion Nebula Cluster
NASA Astrophysics Data System (ADS)
Palla, Francesco; Stahler, Steven W.
1999-11-01
We study the record of star formation activity within the dense cluster associated with the Orion Nebula. The bolometric luminosity function of 900 visible members is well matched by a simplified theoretical model for cluster formation. This model assumes that stars are produced at a constant rate and distributed according to the field-star initial mass function. Our best-fit age for the system, within this framework, is 2×106 yr. To undertake a more detailed analysis, we present a new set of theoretical pre-main-sequence tracks. These cover all masses from 0.1 to 6.0 Msolar, and start from a realistic stellar birthline. The tracks end along a zero-age main-sequence that is in excellent agreement with the empirical one. As a further aid to cluster studies, we offer an heuristic procedure for the correction of pre-main-sequence luminosities and ages to account for the effects of unresolved binary companions. The Orion Nebula stars fall neatly between our birthline and zero-age main-sequence in the H-R diagram. All those more massive than about 8 Msolar lie close to the main sequence, as also predicted by theory. After accounting for the finite sensitivity of the underlying observations, we confirm that the population between 0.4 and 6.0 Msolar roughly follows a standard initial mass function. We see no evidence for a turnover at lower masses. We next use our tracks to compile stellar ages, also between 0.4 and 6.0 Msolar. Our age histogram reveals that star formation began at a low level some 107 yr ago and has gradually accelerated to the present epoch. The period of most active formation is indeed confined to a few×106 yr, and has recently ended with gas dispersal from the Trapezium. We argue that the acceleration in stellar births, which extends over a wide range in mass, reflects the gravitational contraction of the parent cloud spawning this cluster.
Estudio de la población estelar de varios cúmulos en Carina
NASA Astrophysics Data System (ADS)
Molina-Lera, J. A.; Baume, G. L.; Carraro, G.; Costa, E.
2015-08-01
Based on deep photometric data in the bands, complemented with infrared 2MASS data, we conducted an analysis of the fundamental parameters of six open clusters located in the Carina region. To perform a systematic study we developed a specialized code. In particular, we investigated the behavior of the respective lower main sequences. Our analysis indicated the presence of a significant population of pre-sequence stars in several of the clusters. We therefore obtained estimated values of contraction ages. Furthermore, we have determined the slopes of the initial mass functions of the studied clusters.
Update on ONC's Substellar IMF: A Second Peak in the Brown Dwarf Regime
NASA Astrophysics Data System (ADS)
Drass, Holger; Bayo, A.; Chini, R.; Haas, M.
2017-06-01
The Orion Nebular Cluster (ONC) has become the prototype cluster for studying the Initial Mass Function (IMF). In a deep JHK survey of the ONC with HAWK-I we detected a large population of 900 Brown Dwarfs and Planetary Mass Object candidates presenting a pronounced second peak in the substellar IMF. One of the most obvious issues of this result is the verification of cluster membership. The analysis so far was mainly based on statistical consideration. In this presentation I will show the results from using different high-resolution extinction map to determine the ONC membership.
The MUSIC of CLASH: Predictions on the Concentration-Mass Relation
NASA Astrophysics Data System (ADS)
Meneghetti, M.; Rasia, E.; Vega, J.; Merten, J.; Postman, M.; Yepes, G.; Sembolini, F.; Donahue, M.; Ettori, S.; Umetsu, K.; Balestra, I.; Bartelmann, M.; Benítez, N.; Biviano, A.; Bouwens, R.; Bradley, L.; Broadhurst, T.; Coe, D.; Czakon, N.; De Petris, M.; Ford, H.; Giocoli, C.; Gottlöber, S.; Grillo, C.; Infante, L.; Jouvel, S.; Kelson, D.; Koekemoer, A.; Lahav, O.; Lemze, D.; Medezinski, E.; Melchior, P.; Mercurio, A.; Molino, A.; Moscardini, L.; Monna, A.; Moustakas, J.; Moustakas, L. A.; Nonino, M.; Rhodes, J.; Rosati, P.; Sayers, J.; Seitz, S.; Zheng, W.; Zitrin, A.
2014-12-01
We present an analysis of the MUSIC-2 N-body/hydrodynamical simulations aimed at estimating the expected concentration-mass relation for the CLASH (Cluster Lensing and Supernova Survey with Hubble) cluster sample. We study nearly 1,400 halos simulated at high spatial and mass resolution. We study the shape of both their density and surface-density profiles and fit them with a variety of radial functions, including the Navarro-Frenk-White (NFW), the generalized NFW, and the Einasto density profiles. We derive concentrations and masses from these fits. We produce simulated Chandra observations of the halos, and we use them to identify objects resembling the X-ray morphologies and masses of the clusters in the CLASH X-ray-selected sample. We also derive a concentration-mass relation for strong-lensing clusters. We find that the sample of simulated halos that resembles the X-ray morphology of the CLASH clusters is composed mainly of relaxed halos, but it also contains a significant fraction of unrelaxed systems. For such a heterogeneous sample we measure an average two-dimensional concentration that is ~11% higher than is found for the full sample of simulated halos. After accounting for projection and selection effects, the average NFW concentrations of CLASH clusters are expected to be intermediate between those predicted in three dimensions for relaxed and super-relaxed halos. Matching the simulations to the individual CLASH clusters on the basis of the X-ray morphology, we expect that the NFW concentrations recovered from the lensing analysis of the CLASH clusters are in the range [3-6], with an average value of 3.87 and a standard deviation of 0.61.
The music of clash: predictions on the concentration-mass relation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meneghetti, M.; Rasia, E.; Vega, J.
We present an analysis of the MUSIC-2 N-body/hydrodynamical simulations aimed at estimating the expected concentration-mass relation for the CLASH (Cluster Lensing and Supernova Survey with Hubble) cluster sample. We study nearly 1,400 halos simulated at high spatial and mass resolution. We study the shape of both their density and surface-density profiles and fit them with a variety of radial functions, including the Navarro-Frenk-White (NFW), the generalized NFW, and the Einasto density profiles. We derive concentrations and masses from these fits. We produce simulated Chandra observations of the halos, and we use them to identify objects resembling the X-ray morphologies andmore » masses of the clusters in the CLASH X-ray-selected sample. We also derive a concentration-mass relation for strong-lensing clusters. We find that the sample of simulated halos that resembles the X-ray morphology of the CLASH clusters is composed mainly of relaxed halos, but it also contains a significant fraction of unrelaxed systems. For such a heterogeneous sample we measure an average two-dimensional concentration that is ∼11% higher than is found for the full sample of simulated halos. After accounting for projection and selection effects, the average NFW concentrations of CLASH clusters are expected to be intermediate between those predicted in three dimensions for relaxed and super-relaxed halos. Matching the simulations to the individual CLASH clusters on the basis of the X-ray morphology, we expect that the NFW concentrations recovered from the lensing analysis of the CLASH clusters are in the range [3-6], with an average value of 3.87 and a standard deviation of 0.61.« less
Cluster cosmology with next-generation surveys.
NASA Astrophysics Data System (ADS)
Ascaso, B.
2017-03-01
The advent of next-generation surveys will provide a large number of cluster detections that will serve the basis for constraining cos mological parameters using cluster counts. The main two observational ingredients needed are the cluster selection function and the calibration of the mass-observable relation. In this talk, we present the methodology designed to obtain robust predictions of both ingredients based on realistic cosmological simulations mimicking the following next-generation surveys: J-PAS, LSST and Euclid. We display recent results on the selection functions for these mentioned surveys together with others coming from other next-generation surveys such as eROSITA, ACTpol and SPTpol. We notice that the optical and IR surveys will reach the lowest masses between 0.3
Towards a comprehensive knowledge of the open cluster Haffner 9
NASA Astrophysics Data System (ADS)
Piatti, Andrés E.
2017-03-01
We turn our attention to Haffner 9, a Milky Way open cluster whose previous fundamental parameter estimates are far from being in agreement. In order to provide with accurate estimates, we present high-quality Washington CT1 and Johnson BVI photometry of the cluster field. We put particular care in statistically cleaning the colour-magnitude diagrams (CMDs) from field star contamination, which was found a common source in previous works for the discordant fundamental parameter estimates. The resulting cluster CMD fiducial features were confirmed from a proper motion membership analysis. Haffner 9 is a moderately young object (age ∼350 Myr), placed in the Perseus arm - at a heliocentric distance of ∼3.2 kpc - , with a lower limit for its present mass of ∼160 M⊙ and of nearly metal solar content. The combination of the cluster structural and fundamental parameters suggest that it is in an advanced stage of internal dynamical evolution, possibly in the phase typical of those with mass segregation in their core regions. However, the cluster still keeps its mass function close to that of the Salpeter's law.
Neutron stars and millisecond pulsars from accretion-induced collapse in globular clusters
NASA Technical Reports Server (NTRS)
Bailyn, Charles D.; Grindlay, Jonathan E.
1990-01-01
This paper examines the limits on the number of millisecond pulsars which could be formed in globular clusters by the generally accepted scenario (in which a neutron star is created by the supernova of an initially massive star and subsequently captures a companion to form a low-mass X-ray binary which eventually becomes a millisecond pulsar). It is found that, while the number of observed low-mass X-ray binaries can be adequately explained in this way, the reasonable assumption that the pulsar luminosity function in clusters extends below the current observational limits down to the luminosity of the faintest millisecond pulsars in the field suggests a cluster population of millisecond pulsars which is substantially larger than the standard model can produce. Alleviating this problem by postulating much shorter lifetimes for the X-ray binaries requires massive star populations sufficiently large that the mass loss resulting from their evolution would be likely to unbind the cluster. It is argued that neutron star formation in globular clusters by accretion-induced collapse of white dwarfs may resolve the discrepancy in birthrates.
NASA Astrophysics Data System (ADS)
Cai, K.; Durisen, R. H.; Deliyannis, C. P.
2003-05-01
Binary stars in Galactic open clusters are difficult to detect without spectroscopic observations. However, from theoretical isochrones, we find that binary stars with different primary masses M1 and mass ratios q = M2/M1 have measurably different behaviors in various UBVRI color-magnitude and color-color diagrams. By using appropriate Yonsei-Yale Isochrones, in the best cases we can evaluate M1 and q to within about +/- 0.1Msun and +/- 0.1, respectively, for individual proper-motion members that have multiple WOCS UBVRI measurements of high quality. The cluster metallicity, reddening, and distance modulus and best-fit isochrones are determined self-consistently from the same WOCS data. This technique allows us to detect binaries and determine their mass ratios in open clusters without time-consuming spectrocopy, which is only sensitive to a limited range of binary separations. We will report results from this photometric technique for WOCS cluster M35 for M1 in the range of 1 to 4 Msun. For the lower main sequence, we used the empirical colors to reduce the error introduced by the problematic color transformations of Y2 Isochrones. In addition to other sources of uncertainty, we have considered effects of rapid rotation and pulsational instability. We plan to apply our method to other WOCS clusters in the future and explore differences in binary fractions and/or mass ratio distributions as a function of cluster age, metallicity, and other parameters.
LOW-METALLICITY YOUNG CLUSTERS IN THE OUTER GALAXY. II. SH 2-208
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yasui, Chikako; Kobayashi, Naoto; Izumi, Natsuko
We obtained deep near-infrared images of Sh 2-208, one of the lowest-metallicity H ii regions in the Galaxy, [O/H] = −0.8 dex. We detected a young cluster in the center of the H ii region with a limiting magnitude of K = 18.0 mag (10 σ ), which corresponds to a mass detection limit of ∼0.2 M {sub ⊙}. This enables the comparison of star-forming properties under low metallicity with those of the solar neighborhood. We identified 89 cluster members. From the fitting of the K -band luminosity function (KLF), the age and distance of the cluster are estimated to be ∼0.5more » Myr and ∼4 kpc, respectively. The estimated young age is consistent with the detection of strong CO emission in the cluster region and the estimated large extinction of cluster members ( A{sub V} ∼ 4–25 mag). The observed KLF suggests that the underlying initial mass function (IMF) of the low-metallicity cluster is not significantly different from canonical IMFs in the solar neighborhood in terms of both high-mass slope and IMF peak (characteristic mass). Despite the very young age, the disk fraction of the cluster is estimated at only 27% ± 6%, which is significantly lower than those in the solar metallicity. Those results are similar to Sh 2-207, which is another star-forming region close to Sh 2-208 with a separation of 12 pc, suggesting that their star-forming activities in low-metallicity environments are essentially identical to those in the solar neighborhood, except for the disk dispersal timescale. From large-scale mid-infrared images, we suggest that sequential star formation is taking place in Sh 2-207, Sh 2-208, and the surrounding region, triggered by an expanding bubble with a ∼30 pc radius.« less
OPTICAL PHOTOMETRIC AND POLARIMETRIC INVESTIGATION OF NGC 1931
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandey, A. K.; Eswaraiah, C.; Sharma, Saurabh
We present optical photometric and polarimetric observations of stars toward NGC 1931 with the aim of deriving cluster parameters such as distance, reddening, age, and luminosity/mass function as well as understanding dust properties and star formation in the region. The distance to the cluster is found to be 2.3 {+-} 0.3 kpc and the reddening E(B - V) in the region is found to be variable. The stellar density contours reveal two clusters in the region. The observations suggest a differing reddening law within the cluster region. Polarization efficiency of the dust grains toward the direction of the cluster ismore » found to be less than that for the general diffuse interstellar medium (ISM). The slope of the mass function (-0.98 {+-} 0.22) in the southern region in the mass range of 0.8 < M/M {sub Sun} < 9.8 is found to be shallower in comparison to that in the northern region (-1.26 {+-} 0.23), which is comparable to the Salpeter value (-1.35). The K-band luminosity function (KLF) of the region is found to be comparable to the average value of the slope ({approx}0.4) for young clusters obtained by Lada and Lada; however, the slope of the KLF is steeper in the northern region as compared to the southern region. The region is probably ionized by two B2 main-sequence-type stars. The mean age of the young stellar objects (YSOs) is found to be 2 {+-} 1 Myr, which suggests that the identified YSOs could be younger than the ionizing sources of the region. The morphology of the region, the distribution and ages of the YSOs, and ionizing sources indicate a triggered star formation in the region.« less
NASA Astrophysics Data System (ADS)
Jee, M. James; Ko, Jongwan; Perlmutter, Saul; Gonzalez, Anthony; Brodwin, Mark; Linder, Eric; Eisenhardt, Peter
2017-10-01
We present a weak-lensing study of SPT-CL J2040-4451 and IDCS J1426+3508 at z = 1.48 and 1.75, respectively. The two clusters were observed in our “See Change” program, a Hubble Space Telescope survey of 12 massive high-redshift clusters aimed at high-z supernova measurements and weak-lensing estimation of accurate cluster masses. We detect weak but significant galaxy shape distortions using infrared images from the Wide Field Camera 3 (WFC3), which has not yet been used for weak-lensing studies. Both clusters appear to possess relaxed morphology in projected mass distribution, and their mass centroids agree nicely with those defined by both the galaxy luminosity and X-ray emission. Using a Navarro-Frenk-White profile, for which we assume that the mass is tightly correlated with the concentration parameter, we determine the masses of SPT-CL J2040-4451 and IDCS J1426 + 3508 to be {M}200={8.6}-1.4+1.7× {10}14 {M}⊙ and {2.2}-0.7+1.1× {10}14 {M}⊙ , respectively. The weak-lensing mass of SPT-CL J2040-4451 shows that the cluster is clearly a rare object. Adopting the central value, the expected abundance of such a massive cluster at z≳ 1.48 is only ˜ 0.07 in the parent 2500 sq. deg. survey. However, it is yet premature to claim that the presence of this cluster creates a serious tension with the current ΛCDM paradigm unless that tension will remain in future studies after marginalizing over many sources of uncertainties such as the accuracy of the mass function and the mass-concentration relation at the high-mass end. The mass of IDCS J1426+3508 is in excellent agreement with our previous Advanced Camera for Surveys-based weak-lensing result, while the much higher source density from our WFC3 imaging data makes the current statistical uncertainty ˜ 40% smaller.
The rates and time-delay distribution of multiply imaged supernovae behind lensing clusters
NASA Astrophysics Data System (ADS)
Li, Xue; Hjorth, Jens; Richard, Johan
2012-11-01
Time delays of gravitationally lensed sources can be used to constrain the mass model of a deflector and determine cosmological parameters. We here present an analysis of the time-delay distribution of multiply imaged sources behind 17 strong lensing galaxy clusters with well-calibrated mass models. We find that for time delays less than 1000 days, at z = 3.0, their logarithmic probability distribution functions are well represented by P(log Δt) = 5.3 × 10-4Δttilde beta/M2502tilde beta, with tilde beta = 0.77, where M250 is the projected cluster mass inside 250 kpc (in 1014M⊙), and tilde beta is the power-law slope of the distribution. The resultant probability distribution function enables us to estimate the time-delay distribution in a lensing cluster of known mass. For a cluster with M250 = 2 × 1014M⊙, the fraction of time delays less than 1000 days is approximately 3%. Taking Abell 1689 as an example, its dark halo and brightest galaxies, with central velocity dispersions σ>=500kms-1, mainly produce large time delays, while galaxy-scale mass clumps are responsible for generating smaller time delays. We estimate the probability of observing multiple images of a supernova in the known images of Abell 1689. A two-component model of estimating the supernova rate is applied in this work. For a magnitude threshold of mAB = 26.5, the yearly rate of Type Ia (core-collapse) supernovae with time delays less than 1000 days is 0.004±0.002 (0.029±0.001). If the magnitude threshold is lowered to mAB ~ 27.0, the rate of core-collapse supernovae suitable for time delay observation is 0.044±0.015 per year.
The X-Ray Luminosity-Mass Relation for Local Clusters of Galaxies
NASA Astrophysics Data System (ADS)
Stanek, Rebecca; Evrard, A.; Boehringer, H.; Schuecker, P.; Nord, B.
2006-12-01
My thesis is centered on investigating scaling relations of galaxy clusters. Focusing on the relationship between soft X-ray luminosity and mass (L-M) for low-redshift clusters of galaxies, I have determined the mean parameters to 5%, and calculated a formal measure of the scatter in the L-M relation. I model the L-M relation with a conditional probability function including a mean power-law scaling relation, L Mpρsc(z), and log-normal scatter in mass at fixed luminosity, σlnM. Convolving with the halo mass function, I compute expected counts in redshift and flux that, after appropriate survey effects are included, are compared to REFLEX survey data. Combining the likelihood analysis with the measured variance in L-T relation from HIFLUGCS, I obtain fit parameters p=1.59+/-0.05, lnL15,0=1.34+/-0.09, and σlnM=0.37+/-0.05 for self-similar redshift evolution (s = 7/6) in a concordance (Ωm=0.3, ΩΛ=0.7, σ8=0.9) universe. I find a substantially (factor 2) dimmer intercept and slightly steeper slope than the values published using hydrostatic mass estimates of the HIFLUGCS sample and show that a Malmquist bias of the X-ray flux-limited sample accounts for this effect. I accommodate the new WMAP constraints with a compromise model with Ωm=0.24, σ8=0.85, and somewhat lower scatter σlnM=0.25. I will also present work in progress from galaxy cluster population statistics in the Millennium Simulation with Gas (MSG), specifically focusing on the scatter and covariance between cluster properties at a fixed epoch.
A comprehensive study of the rich open star cluster NGC 2099 based on deep BVI CCD observations
NASA Astrophysics Data System (ADS)
Nilakshi,; Sagar, R.
2002-01-01
The CCD observations of the rich open star cluster NGC 2099 and its surrounding field region have been carried out up to a limiting magnitude of V ~ 22 mag in B, V and I passbands for the first time. A total of ~ 12 000 stars have been observed in the area of about 24arcmin x 34arcmin in the cluster region, as well as ~ 2180 stars in the ~ 12arcmin x 12arcmin area of the field region located ~ 45arcmin away from the cluster center. The cluster parameters determined by fitting the convective core overshoot isochrones in the V, (B-V) and V, (V-I) diagrams are E(B-V) = 0.30+/-0.04 mag, distance = 1360+/- 100 pc, age = 400 Myr and metallicity Z = 0.008. A well-defined cluster main sequence spread over about 8 mag in range is observed for the first time. Its intrinsic spread amounting to ~ 0.06 mag in colour is almost the same over the entire brightness and can be understood in terms of the presence of physical/optical binaries. The core and cluster radii determined from the radial stellar density profiles are 185 arcsec and 1000 arcsec respectively. Only about 22% of cluster members are present in the core region. The effects of mass segregation, most probably due to dynamical evolution, have been observed in the cluster. The mass function slope of the entire cluster is ~ -0.67+/-0.12. It becomes closer to the Salpeter value of -1.35, if flattening in the cluster mass function due to presence of both binaries and a much more extended corona is considered. Full Table 4 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/381/65
The evolution of active galactic nuclei in clusters of galaxies from the Dark Energy Survey
Bufanda, E.; Hollowood, D.; Jeltema, T. E.; ...
2016-12-13
The correlation between active galactic nuclei (AGN) and environment provides important clues to AGN fueling and the relationship of black hole growth to galaxy evolution. Here, we analyze the fraction of galaxies in clusters hosting AGN as a function of redshift and cluster richness for X-ray detected AGN associated with clusters of galaxies in Dark Energy Survey (DES) Science Verification data. The present sample includes 33 AGN with L_X > 10 43 ergs s -1 in non-central, host galaxies with luminosity greater than 0.5 L* from a total sample of 432 clusters in the redshift range of 0.10.7. Our resultmore » is in good agreement with previous work and parallels the increase in star formation in cluster galaxies over the same redshift range. But, the AGN fraction in clusters is observed to have no significant correlation with cluster mass. Future analyses with DES Year 1 through Year 3 data will be able to clarify whether AGN activity is correlated to cluster mass and will tightly constrain the relationship between cluster AGN populations and redshift.« less
New insights into the origin and evolution of the old, metal-rich open cluster NGC 6791
NASA Astrophysics Data System (ADS)
Martinez-Medina, Luis A.; Gieles, Mark; Pichardo, Barbara; Peimbert, Antonio
2018-02-01
NGC 6791 is one of the most studied open clusters, it is massive (˜5000 M⊙), located at the solar circle, old (˜8 Gyr) and yet the most metal-rich cluster ([Fe/H] ≃ 0.4) known in the Milky Way. By performing an orbital analysis within a Galactic model including spiral arms and a bar, we found that it is plausible that NGC 6791 formed in the inner thin disc or in the bulge, and later displaced by radial migration to its current orbit. We apply different tools to simulate NGC 6791, including direct N-body summation in time-varying potentials, to test its survivability when going through different Galactic environments. In order to survive the 8-Gyr journey moving on a migrating orbit, NGC 6791 must have been more massive, M0 ≥ 5 × 104 M⊙, when formed. We find independent confirmation of this initial mass in the stellar mass function, which is observed to be flat; this can only be explained if the average tidal field strength experienced by the cluster is stronger than what it is at its current orbit. Therefore, the birth place and journeys of NGC 6791 are imprinted in its chemical composition, in its mass-loss and in its flat stellar mass function, supporting its origin in the inner thin disc or in the bulge.
Probing the Initial Mass Function in Extended Ultraviolet (XUV) Disks
NASA Astrophysics Data System (ADS)
Koda, Jin
2012-01-01
"The GALEX UV satellite discovered tantalizing evidence of star formation (SF) far beyond the optical edge of galactic disks (i.e. extended UV disk, or XUV disk). This discovery provides a new opportunity for studying SF in the exceedingly low-density environment (˜1/10 of typical SF density), spurring intense debate on the universality of the initial mass function (IMF) in such exceptional environments. Our pilot S-Cam study of M83’s XUV disk led to support for the universal IMF at least in M83 (Koda et al. 2012). We propose an expansion of the pilot study, observing 6 XUV disks in NA656(Hα), B, I, and R-band with S-Cam. In conjunction with GALEX UV bands, these images will reveal the presence of O stars (Hα; NA656-R) and O&B stars (UV) in stellar clusters -thus, constraining the high-mass end of the IMF. The multi-broadband images will enable us to determine the masses of the clusters with much improved accuracy (previously, relied only on R). The proposed observations will not only increase the statistical significance of our previous result, but also enable us to analyze the stochastic effect of IMF sampling in very low-mass clusters (10^{2+3} M_sun) - the regime about which there is much ongoing debate."
HST-WFPC2 Observations of the Star Clusters in the Giant H II Regions of M33
NASA Astrophysics Data System (ADS)
Lee, Myung Gyoon; Park, Hong Soo; Kim, Sang Chul; Waller, William H.; Parker, Joel Wm.; Malumuth, Eliot M.; Hodge, Paul W.
We present a photometric study of the stars in ionizing star clusters embedded in several giant H II regions of M33 (CC93, IC 142, NGC 595, MA2, NGC 604 and NGC 588). Our photometry is based on the HST-WFPC2 images of these clusters. Color-magnitude diagrams and color-color diagrams of these clusters are obtained and are used for estimating the reddenings and ages of the clusters. The luminosity functions (LFs) and initial mass functions (IMFs) of the massive stars in these clusters are also derived. The slopes of the IMFs range from Γ = -0.5 to -2.1. Interestingly, it is found that the IMFs get steeper with increasing galactocentric distance and with decreasing [O/H] abundance.
ALMA Detects CO(3-2) within a Super Star Cluster in NGC 5253
NASA Astrophysics Data System (ADS)
Turner, Jean L.; Consiglio, S. Michelle; Beck, Sara C.; Goss, W. M.; Ho, Paul. T. P.; Meier, David S.; Silich, Sergiy; Zhao, Jun-Hui
2017-09-01
We present observations of CO(3-2) and 13CO(3-2) emission near the supernebula in the dwarf galaxy NGC 5253, which contains one of the best examples of a potential globular cluster in formation. The 0.″3 resolution images reveal an unusual molecular cloud, “Cloud D1,” that is coincident with the radio-infrared supernebula. The ˜6 pc diameter cloud has a linewidth, Δ v = 21.7 {km} {{{s}}}-1, that reflects only the gravitational potential of the star cluster residing within it. The corresponding virial mass is 2.5 × 105 {M}⊙ . The cluster appears to have a top-heavy initial mass function, with M * ≳ 1-2 {M}⊙ . Cloud D1 is optically thin in CO(3-2), probably because the gas is hot. Molecular gas mass is very uncertain but constitutes <35% of the dynamical mass within the cloud boundaries. In spite of the presence of an estimated ˜1500-2000 O stars within the small cloud, the CO appears relatively undisturbed. We propose that Cloud D1 consists of molecular clumps or cores, possibly star-forming, orbiting with more evolved stars in the core of the giant cluster.
VizieR Online Data Catalog: Post-merger cluster A2255 membership (Tyler+, 2014)
NASA Astrophysics Data System (ADS)
Tyler, K. D.; Bai, L.; Rieke, G. H.
2017-04-01
A2255 was initially chosen from the Popesso et al. (2007, J/A+A/461/397) sample because it is a large cluster with complete SDSS photometric and spectroscopic coverage out to ~3 r200. It has incomplete areal spectroscopic coverage from 3 r200<~rproj<~5 r200 - about half of this region is covered. The SDSS photometric survey provides a uniform data set to study galaxy properties in the cluster. The model magnitudes are the linear combinations of best-fit exponential and de Vaucouleurs profiles and are recommended as the best estimates of magnitude by SDSS. As such, we use the model magnitudes (except where explicitly stated otherwise) and correct them for Galactic extinction (O'Donnell, 1994ApJ...422..158O). We used these photometric data to estimate galactic stellar masses with the SDSS_KCORRECT routine within KCORRECT (v. 4.2; Blanton & Roweis 2007AJ....133..734B). KCORRECT uses different cosmological values and initial mass function, so we corrected the original stellar mass output to the cosmology and initial mass function (Kroupa, 2001MNRAS.322..231K) adopted in this paper. (1 data file).
NASA Astrophysics Data System (ADS)
Martínez-Galarza, Rafael; Protopapas, Pavlos; Smith, Howard A.; Morales, Esteban
2018-01-01
From an observational point of view, the early life of massive stars is difficult to understand partly because star formation occurs in crowded clusters where individual stars often appear blended together in the beams of infrared telescopes. This renders the characterization of the physical properties of young embedded clusters via spectral energy distribution (SED) fitting a challenging task. Of particular relevance for the testing of star formation models is the question of whether the claimed universality of the IMF (references) is reflected in an equally universal integrated galactic initial mass function (IGIMF) of stars. In other words, is the set of all stellar masses in the galaxy sampled from a single universal IMF, or does the distribution of masses depend on the environment, making the IGIMF different from the canonical IMF? If the latter is true, how different are the two? We present a infrared SED analysis of ~70 Spitzer-selected, low mass ($<100~\\rm{M}_{\\odot}$), galactic blended clusters. For all of the clusters we obtain the most probable individual SED of each member and derive their physical properties, effectively deblending the confused emission from individual YSOs. Our algorithm incorporates a combined probabilistic model of the blended SEDs and the unresolved images in the long-wavelength end. We find that our results are compatible with competitive accretion in the central regions of young clusters, with the most massive stars forming early on in the process and less massive stars forming about 1Myr later. We also find evidence for a relationship between the total stellar mass of the cluster and the mass of the most massive member that favors optimal sampling in the cluster and disfavors random sampling for the canonical IMF, implying that star formation is self-regulated, and that the mass of the most massive star in a cluster depends on the available resources. The method presented here is easily adapted to future observations of clustered regions of star formation with JWST and other high resolution facilities.
NASA Astrophysics Data System (ADS)
Bekki, Kenji
2017-05-01
Most old globular clusters (GCs) in the Galaxy are observed to have internal chemical abundance spreads in light elements. We discuss a new GC formation scenario based on hierarchical star formation within fractal molecular clouds. In the new scenario, a cluster of bound and unbound star clusters ('star cluster complex', SCC) that have a power-law cluster mass function with a slope (β) of 2 is first formed from a massive gas clump developed in a dwarf galaxy. Such cluster complexes and β = 2 are observed and expected from hierarchical star formation. The most massive star cluster ('main cluster'), which is the progenitor of a GC, can accrete gas ejected from asymptotic giant branch (AGB) stars initially in the cluster and other low-mass clusters before the clusters are tidally stripped or destroyed to become field stars in the dwarf. The SCC is initially embedded in a giant gas hole created by numerous supernovae of the SCC so that cold gas outside the hole can be accreted on to the main cluster later. New stars formed from the accreted gas have chemical abundances that are different from those of the original SCC. Using hydrodynamical simulations of GC formation based on this scenario, we show that the main cluster with the initial mass as large as [2-5] × 105 M⊙ can accrete more than 105 M⊙ gas from AGB stars of the SCC. We suggest that merging of hierarchical SSCs can play key roles in stellar halo formation around GCs and self-enrichment processes in the early phase of GC formation.
Deep and wide photometry of two open clusters NGC 1245 and NGC 2506: dynamical evolution and halo
NASA Astrophysics Data System (ADS)
Lee, S. H.; Kang, Y.-W.; Ann, H. B.
2013-06-01
We studied the structure of two old open clusters, NGC 1245 and NGC 2506, from a wide and deep VI photometry data acquired using the CFH12K CCD camera at Canada-France-Hawaii Telescope. We devised a new method for assigning cluster membership probability to individual stars using both spatial positions and positions in the colour-magnitude diagram. From analyses of the luminosity functions at several cluster-centric radii and the radial surface density profiles derived from stars with different luminosity ranges, we found that the two clusters are dynamically relaxed to drive significant mass segregation and evaporation of some fraction of low-mass stars. There seems to be a signature of tidal tail in NGC 1245 but the signal is too low to be confirmed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisz, Daniel R.; Fouesneau, Morgan; Dalcanton, Julianne J.
2013-01-10
We present a probabilistic approach for inferring the parameters of the present-day power-law stellar mass function (MF) of a resolved young star cluster. This technique (1) fully exploits the information content of a given data set; (2) can account for observational uncertainties in a straightforward way; (3) assigns meaningful uncertainties to the inferred parameters; (4) avoids the pitfalls associated with binning data; and (5) can be applied to virtually any resolved young cluster, laying the groundwork for a systematic study of the high-mass stellar MF (M {approx}> 1 M {sub Sun }). Using simulated clusters and Markov Chain Monte Carlomore » sampling of the probability distribution functions, we show that estimates of the MF slope, {alpha}, are unbiased and that the uncertainty, {Delta}{alpha}, depends primarily on the number of observed stars and on the range of stellar masses they span, assuming that the uncertainties on individual masses and the completeness are both well characterized. Using idealized mock data, we compute the theoretical precision, i.e., lower limits, on {alpha}, and provide an analytic approximation for {Delta}{alpha} as a function of the observed number of stars and mass range. Comparison with literature studies shows that {approx}3/4 of quoted uncertainties are smaller than the theoretical lower limit. By correcting these uncertainties to the theoretical lower limits, we find that the literature studies yield ({alpha}) = 2.46, with a 1{sigma} dispersion of 0.35 dex. We verify that it is impossible for a power-law MF to obtain meaningful constraints on the upper mass limit of the initial mass function, beyond the lower bound of the most massive star actually observed. We show that avoiding substantial biases in the MF slope requires (1) including the MF as a prior when deriving individual stellar mass estimates, (2) modeling the uncertainties in the individual stellar masses, and (3) fully characterizing and then explicitly modeling the completeness for stars of a given mass. The precision on MF slope recovery in this paper are lower limits, as we do not explicitly consider all possible sources of uncertainty, including dynamical effects (e.g., mass segregation), unresolved binaries, and non-coeval populations. We briefly discuss how each of these effects can be incorporated into extensions of the present framework. Finally, we emphasize that the technique and lessons learned are applicable to more general problems involving power-law fitting.« less
Supergiants and their shells in young globular clusters
NASA Astrophysics Data System (ADS)
Szécsi, Dorottya; Mackey, Jonathan; Langer, Norbert
2018-04-01
Context. Anomalous surface abundances are observed in a fraction of the low-mass stars of Galactic globular clusters, that may originate from hot-hydrogen-burning products ejected by a previous generation of massive stars. Aims: We aim to present and investigate a scenario in which the second generation of polluted low-mass stars can form in shells around cool supergiant stars within a young globular cluster. Methods: Simulations of low-metallicity massive stars (Mi 150-600 M⊙) show that both core-hydrogen-burning cool supergiants and hot ionizing stellar sources are expected to be present simulaneously in young globular clusters. Under these conditions, photoionization-confined shells form around the supergiants. We have simulated such a shell, investigated its stability and analysed its composition. Results: We find that the shell is gravitationally unstable on a timescale that is shorter than the lifetime of the supergiant, and the Bonnor-Ebert mass of the overdense regions is low enough to allow star formation. Since the low-mass stellar generation formed in this shell is made up of the material lost from the supergiant, its composition necessarily reflects the composition of the supergiant wind. We show that the wind contains hot-hydrogen-burning products, and that the shell-stars therefore have very similar abundance anomalies that are observed in the second generation stars of globular clusters. Considering the mass-budget required for the second generation star-formation, we offer two solutions. Either a top-heavy initial mass function is needed with an index of -1.71 to -2.07. Alternatively, we suggest the shell-stars to have a truncated mass distribution, and solve the mass budget problem by justifiably accounting for only a fraction of the first generation. Conclusions: Star-forming shells around cool supergiants could form the second generation of low-mass stars in Galactic globular clusters. Even without forming a photoionizaton-confined shell, the cool supergiant stars predicted at low-metallicity could contribute to the pollution of the interstellar medium of the cluster from which the second generation was born. Thus, the cool supergiant stars should be regarded as important contributors to the evolution of globular clusters.
FRAGMENTATION AND EVOLUTION OF MOLECULAR CLOUDS. II. THE EFFECT OF DUST HEATING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urban, Andrea; Evans, Neal J.; Martel, Hugo
2010-02-20
We investigate the effect of heating by luminosity sources in a simulation of clustered star formation. Our heating method involves a simplified continuum radiative transfer method that calculates the dust temperature. The gas temperature is set by the dust temperature. We present the results of four simulations; two simulations assume an isothermal equation of state and the two other simulations include dust heating. We investigate two mass regimes, i.e., 84 M{sub sun} and 671 M{sub sun}, using these two different energetics algorithms. The mass functions for the isothermal simulations and simulations that include dust heating are drastically different. In themore » isothermal simulation, we do not form any objects with masses above 1 M{sub sun}. However, the simulation with dust heating, while missing some of the low-mass objects, forms high-mass objects ({approx}20 M{sub sun}) which have a distribution similar to the Salpeter initial mass function. The envelope density profiles around the stars formed in our simulation match observed values around isolated, low-mass star-forming cores. We find the accretion rates to be highly variable and, on average, increasing with final stellar mass. By including radiative feedback from stars in a cluster-scale simulation, we have determined that it is a very important effect which drastically affects the mass function and yields important insights into the formation of massive stars.« less
Galaxy And Mass Assembly (GAMA): the effect of galaxy group environment on active galactic nuclei
NASA Astrophysics Data System (ADS)
Gordon, Yjan A.; Pimbblet, Kevin A.; Owers, Matt S.; Bland-Hawthorn, Joss; Brough, Sarah; Brown, Michael J. I.; Cluver, Michelle E.; Croom, Scott M.; Holwerda, Benne W.; Loveday, Jonathan; Mahajan, Smriti; Wang, Lingyu
2018-04-01
In galaxy clusters, efficiently accreting active galactic nuclei (AGNs) are preferentially located in the infall regions of the cluster projected phase-space, and are rarely found in the cluster core. This has been attributed to both an increase in triggering opportunities for infalling galaxies, and a reduction of those mechanisms in the hot, virialized, cluster core. Exploiting the depth and completeness (98 per cent at r < 19.8 mag) of the Galaxy And Mass Assembly survey (GAMA), we probe down the group halo mass function to assess whether AGNs are found in the same regions in groups as they are in clusters. We select 451 optical AGNs from 7498 galaxies with log10(M*/M⊙) > 9.9 in 695 groups with 11.53 ≤ log10(M200/M⊙) ≤ 14.56 at z < 0.15. By analysing the projected phase-space positions of these galaxies, we demonstrate that when split both radially, and into physically derived infalling and core populations, AGN position within group projected phase-space is dependent on halo mass. For groups with log10(M200/M⊙) > 13.5, AGNs are preferentially found in the infalling galaxy population with 3.6σ confidence. At lower halo masses, we observe no difference in AGN fraction between core and infalling galaxies. These observations support a model where a reduced number of low-speed interactions, ram pressure stripping and intra-group/cluster medium temperature, the dominance of which increase with halo mass, work to inhibit AGN in the cores of groups and clusters with log10(M200/M⊙) > 13.5, but do not significantly affect nuclear activity in cores of less massive structures.
NASA Astrophysics Data System (ADS)
Rood, R. T.; Renzini, A.
1997-01-01
The present volume on stellar evolution discusses fundamentals of stellar evolution and star clusters, variable stars, AGB stars and planetary nebulae, white dwarfs, binary star evolution, and stars in galaxies. Attention is given to the stellar population in the Galactic bulge, a photometric study of NGC 458, and HST observations of high-density globular clusters. Other topics addressed include the Cepheid instability strip in external galaxies, Hyades cluster white dwarfs and the initial-final mass relation, element diffusion in novae, mass function of the stars in the solar neighborhood, synthetic spectral indices for elliptical galaxies, and stars at the Galactic center.
NASA Astrophysics Data System (ADS)
Marcolli, C.; Canagaratna, M. R.; Worsnop, D. R.; Bahreini, R.; de Gouw, J. A.; Warneke, C.; Goldan, P. D.; Kuster, W. C.; Williams, E. J.; Lerner, B. M.; Roberts, J. M.; Meagher, J. F.; Fehsenfeld, F. C.; Marchewka, M. L.; Bertman, S. B.; Middlebrook, A. M.
2006-06-01
We applied hierarchical cluster analysis to an Aerodyne aerosol mass spectrometer (AMS) bulk mass spectral dataset collected aboard the NOAA research vessel Ronald H. Brown during the 2002 New England Air Quality Study off the east coast of the United States. Emphasizing the organic peaks, the cluster analysis yielded a series of categories that are distinguishable with respect to their mass spectra and their occurrence as a function of time. The differences between the categories mainly arise from relative intensity changes rather than from the presence or absence of specific peaks. The most frequent category exhibits a strong signal at m/z 44 and represents oxidized organic matter most probably originating from both, anthropogenic as well as biogenic sources. On the basis of spectral and trace gas correlations, the second most common category with strong signals at m/z 29, 43, and 44 contains contributions from isoprene oxidation products. The third through the fifth most common categories have peak patterns characteristic of monoterpene oxidation products and were most frequently observed when air masses from monoterpene rich regions were sampled. Taken together, the second through the fifth most common categories represent as much as 5 µg/m3 organic aerosol mass - 17% of the total organic mass - that can be attributed to biogenic sources. These numbers have to be viewed as lower limits since the most common category was attributed to anthropogenic sources for this calculation. The cluster analysis was also very effective in identifying a few contaminated mass spectra that were not removed during pre-processing. This study demonstrates that hierarchical clustering is a useful tool to analyze the complex patterns of the organic peaks in bulk aerosol mass spectra from a field study.
The cosmological analysis of X-ray cluster surveys. III. 4D X-ray observable diagrams
NASA Astrophysics Data System (ADS)
Pierre, M.; Valotti, A.; Faccioli, L.; Clerc, N.; Gastaud, R.; Koulouridis, E.; Pacaud, F.
2017-11-01
Context. Despite compelling theoretical arguments, the use of clusters as cosmological probes is, in practice, frequently questioned because of the many uncertainties surrounding cluster-mass estimates. Aims: Our aim is to develop a fully self-consistent cosmological approach of X-ray cluster surveys, exclusively based on observable quantities rather than masses. This procedure is justified given the possibility to directly derive the cluster properties via ab initio modelling, either analytically or by using hydrodynamical simulations. In this third paper, we evaluate the method on cluster toy-catalogues. Methods: We model the population of detected clusters in the count-rate - hardness-ratio - angular size - redshift space and compare the corresponding four-dimensional diagram with theoretical predictions. The best cosmology+physics parameter configuration is determined using a simple minimisation procedure; errors on the parameters are estimated by averaging the results from ten independent survey realisations. The method allows a simultaneous fit of the cosmological parameters of the cluster evolutionary physics and of the selection effects. Results: When using information from the X-ray survey alone plus redshifts, this approach is shown to be as accurate as the modelling of the mass function for the cosmological parameters and to perform better for the cluster physics, for a similar level of assumptions on the scaling relations. It enables the identification of degenerate combinations of parameter values. Conclusions: Given the considerably shorter computer times involved for running the minimisation procedure in the observed parameter space, this method appears to clearly outperform traditional mass-based approaches when X-ray survey data alone are available.
Crack, Jason C.; Thomson, Andrew J.
2017-01-01
The iron-sulfur cluster containing protein Fumarate and Nitrate Reduction (FNR) is the master regulator for the switch between anaerobic and aerobic respiration in Escherichia coli and many other bacteria. The [4Fe-4S] cluster functions as the sensory module, undergoing reaction with O2 that leads to conversion to a [2Fe-2S] form with loss of high-affinity DNA binding. Here, we report studies of the FNR cluster conversion reaction using time-resolved electrospray ionization mass spectrometry. The data provide insight into the reaction, permitting the detection of cluster conversion intermediates and products, including a [3Fe-3S] cluster and persulfide-coordinated [2Fe-2S] clusters [[2Fe-2S](S)n, where n = 1 or 2]. Analysis of kinetic data revealed a branched mechanism in which cluster sulfide oxidation occurs in parallel with cluster conversion and not as a subsequent, secondary reaction to generate [2Fe-2S](S)n species. This methodology shows great potential for broad application to studies of protein cofactor–small molecule interactions. PMID:28373574
Shedding light on baryonic dark matter.
Silk, J
1991-02-01
Halo dark matter, if it is baryonic, may plausibly consist of compact stellar remnants. Jeans mass clouds containing 10(6) to 10(8) solar masses could have efficiently formed stars in the early universe and could plausibly have generated, for a suitably top-heavy stellar initial mass function, a high abundance of neutron stars as well as a small admixture of long-lived low mass stars. Within the resulting clusters of dark remnants, which eventually are tidally disrupted when halos eventually form, captures of neutron stars by non-degenerate stars resulted in formation of close binaries. These evolve to produce, by the present epoch, an observable x-ray signal associated with dark matter aggregations in galaxy halos and galaxy cluster cores.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geller, Aaron M.; Grijs, Richard de; Li, Chengyuan
2015-05-20
The two Large Magellanic Cloud star clusters, NGC 1805 and NGC 1818, are approximately the same chronological age (∼30 Myr), but show different radial trends in binary frequency. The F-type stars (1.3–2.2 M{sub ⊙}) in NGC 1818 have a binary frequency that decreases toward the core, while the binary frequency for stars of similar mass in NGC 1805 is flat with radius, or perhaps bimodal (with a peak in the core). We show here, through detailed N-body modeling, that both clusters could have formed with the same primordial binary frequency and with binary orbital elements and masses drawn from themore » same distributions (defined from observations of open clusters and the field of our Galaxy). The observed radial trends in binary frequency for both clusters are best matched with models that have initial substructure. Furthermore, both clusters may be evolving along a very similar dynamical sequence, with the key difference that NGC 1805 is dynamically older than NGC 1818. The F-type binaries in NGC 1818 still show evidence of an initial period of rapid dynamical disruptions (which occur preferentially in the core), while NGC 1805 has already begun to recover a higher core binary frequency, owing to mass segregation (which will eventually produce a distribution in binary frequency that rises only toward the core, as is observed in old Milky Way star clusters). This recovery rate increases for higher-mass binaries, and therefore even at one age in one cluster, we predict a similar dynamical sequence in the radial distribution of the binary frequency as a function of binary primary mass.« less
ARE SOME MILKY WAY GLOBULAR CLUSTERS HOSTED BY UNDISCOVERED GALAXIES?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaritsky, Dennis; Crnojević, Denija; Sand, David J., E-mail: dennis.zaritsky@gmail.com
2016-07-20
The confirmation of a globular cluster (GC) in the recently discovered ultrafaint galaxy Eridanus II (Eri II) motivated us to examine the question posed in the title. After estimating the halo mass of Eri II using a published stellar mass—halo mass relation, the one GC in this galaxy supports extending the relationship between the number of GCs hosted by a galaxy and the galaxy’s total mass about two orders of magnitude in stellar mass below the previous limit. For this empirically determined specific frequency of between 0.06 and 0.39 GCs per 10{sup 9} M {sub ⊙} of total mass, themore » surviving Milky Way (MW) subhalos with masses smaller than 10{sup 10} M {sub ⊙} could host as many as 5–31 GCs, broadly consistent with the actual population of outer halo MW GCs, although matching the radial distribution in detail remains a challenge. Using a subhalo mass function from published high-resolution numerical simulations and a Poissonian model for populating those halos with the aforementioned empirically constrained frequency, we find that about 90% of these GCs lie in lower-mass subhalos than that of Eri II. From what we know about the stellar mass–halo mass function, the subhalo mass function, and the mass-normalized GC specific frequency, we conclude that some of the MW’s outer halo GCs are likely to be hosted by undetected subhalos with extremely modest stellar populations.« less
Source clustering in the Hi-GAL survey determined using a minimum spanning tree method
NASA Astrophysics Data System (ADS)
Beuret, M.; Billot, N.; Cambrésy, L.; Eden, D. J.; Elia, D.; Molinari, S.; Pezzuto, S.; Schisano, E.
2017-01-01
Aims: The aims are to investigate the clustering of the far-infrared sources from the Herschel infrared Galactic Plane Survey (Hi-GAL) in the Galactic longitude range of -71 to 67 deg. These clumps, and their spatial distribution, are an imprint of the original conditions within a molecular cloud. This will produce a catalogue of over-densities. Methods: The minimum spanning tree (MST) method was used to identify the over-densities in two dimensions. The catalogue was further refined by folding in heliocentric distances, resulting in more reliable over-densities, which are cluster candidates. Results: We found 1633 over-densities with more than ten members. Of these, 496 are defined as cluster candidates because of the reliability of the distances, with a further 1137 potential cluster candidates. The spatial distributions of the cluster candidates are different in the first and fourth quadrants, with all clusters following the spiral structure of the Milky Way. The cluster candidates are fractal. The clump mass functions of the clustered and isolated are statistically indistinguishable from each other and are consistent with Kroupa's initial mass function. Hi-GAL is a key-project of the Herschel Space Observatory survey (Pilbratt et al. 2010) and uses the PACS (Poglitsch et al. 2010) and SPIRE (Griffin et al. 2010) cameras in parallel mode.The catalogues of cluster candidates and potential clusters are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/597/A114
Mass spectrometric and theoretical investigation of sulfate clusters in nanoscale water droplets
NASA Astrophysics Data System (ADS)
Lemke, K.
2017-12-01
The solvation of sulfate clusters of varying size and charge in water clusters and in nanoscale water droplets has been studied using electrospray ionization (ESI) FT-MS and density functional theory (DFT) molecular simulations. ESI mass spectra of solvated [Mg(MgSO4)m]2+(H2O)n with m≤10 and up to 15 water molecules have been recorded, and ion cluster experiments have been undertaken using a custom-modified FT-ICR mass spectrometer with the ability of IRMPD for ion dissociation. We present equilibrium geometries and energies for [Mg(MgSO4)m]2+(H2O)n, water-free and solvated with up to 100 water molecules, using swarm-based optimizers and DFT level calculations. Dominant cluster species identified following ESI of dilute (1-5 mM) MgSO4 solutions include hexa- and octa-nuclear magnesium sulfate ions, water-free and with a full first shell of water molecules. The largest clusters identified are magnesium sulfate decamers, i.e. [Mg(MgSO4)10]2+(H2O)n, with n≤15. As a very first step towards understanding the distribution and intensity of ESI ion mass spectra, we have identified the global minima of [Mg(MgSO4)m]2+(H2O)n with m≤10 and n≤100, and located likely global minima of magnesium sulfate clusters in the gas phase and in nano-scale water droplets. We will present a summary of the structural and energetic trends of solvated magnesium sulfate clusters, with a particular focus on structural transitions induced by cluster growth and solvation, the occurrence of "magic" number cluster species, their energetic properties and their potential role as atmospheric aqueous species.
A Massive Star Census of the Starburst Cluster R136
NASA Astrophysics Data System (ADS)
Crowther, Paul
2011-10-01
We propose to carry out a comprehensive census of the most massive stars in the central parsec {4"} of the starburst cluster, R136, which powers the Tarantula Nebula in the LMC. R136 is both sufficiently massive that the upper mass function is richly populated and young enough that its most massive stars have yet to explode as supernovae. The identification of very massive stars in R136, up to 300 solar masses, raises general questions of star formation, binarity and feedback in young massive clusters. The proposed STIS spectral survey of 36 stars more massive than 50 solar masses within R136 is ground-breaking, of legacy value, and is specifically tailored to a} yield physical properties; b} detect the majority of binaries by splitting observations between Cycles 19 and 20; c} measure rotational velocities, relevant for predictions of rotational mixing; d} quantify mass-loss properties for very massive stars; e} determine surface compositions; f} measure radial velocities, relevant for runaway stars and cluster dynamics; g} quantify radiative and mechanical feedback. This census will enable the mass function of very massive stars to be measured for the first time, as a result of incomplete and inadequate spectroscopy to date. It will also perfectly complement our Tarantula Survey, a ground-based VLT Large Programme, by including the most massive stars that are inaccessible to ground-based visual spectroscopy due to severe crowding. These surveys, together with existing integrated UV and optical studies will enable 30 Doradus to serve as a bona-fide template for unresolved extragalactic starburst regions.
A Massive Star Census of the Starburst Cluster R136
NASA Astrophysics Data System (ADS)
Crowther, Paul
2012-10-01
We propose to carry out a comprehensive census of the most massive stars in the central parsec {4"} of the starburst cluster, R136, which powers the Tarantula Nebula in the LMC. R136 is both sufficiently massive that the upper mass function is richly populated and young enough that its most massive stars have yet to explode as supernovae. The identification of very massive stars in R136, up to 300 solar masses, raises general questions of star formation, binarity and feedback in young massive clusters. The proposed STIS spectral survey of 36 stars more massive than 50 solar masses within R136 is ground-breaking, of legacy value, and is specifically tailored to a} yield physical properties; b} detect the majority of binaries by splitting observations between Cycles 19 and 20; c} measure rotational velocities, relevant for predictions of rotational mixing; d} quantify mass-loss properties for very massive stars; e} determine surface compositions; f} measure radial velocities, relevant for runaway stars and cluster dynamics; g} quantify radiative and mechanical feedback. This census will enable the mass function of very massive stars to be measured for the first time, as a result of incomplete and inadequate spectroscopy to date. It will also perfectly complement our Tarantula Survey, a ground-based VLT Large Programme, by including the most massive stars that are inaccessible to ground-based visual spectroscopy due to severe crowding. These surveys, together with existing integrated UV and optical studies will enable 30 Doradus to serve as a bona-fide template for unresolved extragalactic starburst regions.
NASA Astrophysics Data System (ADS)
Baldwin, A. T.; Watkins, L. L.; van der Marel, R. P.; Bianchini, P.; Bellini, A.; Anderson, J.
2016-08-01
We make use of the Hubble Space Telescope proper-motion catalogs derived by Bellini et al. to produce the first radial velocity dispersion profiles σ (R) for blue straggler stars (BSSs) in Galactic globular clusters (GCs), as well as the first dynamical estimates for the average mass of the entire BSS population. We show that BSSs typically have lower velocity dispersions than stars with mass equal to the main-sequence turnoff mass, as one would expect for a more massive population of stars. Since GCs are expected to experience some degree of energy equipartition, we use the relation σ \\propto {M}-η , where η is related to the degree of energy equipartition, along with our velocity dispersion profiles to estimate BSS masses. We estimate η as a function of cluster relaxation from recent Monte Carlo cluster simulations by Bianchini et al. and then derive an average mass ratio {M}{BSS}/{M}{MSTO}=1.50+/- 0.14 and an average mass {M}{BSS}=1.22+/- 0.12 M ⊙ from 598 BSSs across 19 GCs. The final error bars include any systematic errors that are random between different clusters, but not any potential biases inherent to our methodology. Our results are in good agreement with the average mass of {M}{BSS}=1.22+/- 0.06 M ⊙ for the 35 BSSs in Galactic GCs in the literature with properties that have allowed individual mass determination. Based on proprietary and archival observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.
NASA Astrophysics Data System (ADS)
Middlebrook, A. M.; Marcolli, C.; Canagaratna, M. R.; Worsnop, D. R.; Bahreini, R.; de Gouw, J. A.; Warneke, C.; Goldan, P. D.; Kuster, W. C.; Williams, E. J.; Lerner, B. M.; Roberts, J. M.; Meagher, J. F.; Fehsenfeld, F. C.; Marchewka, M. L.; Bertman, S. B.
2006-12-01
We applied hierarchical cluster analysis to an Aerodyne aerosol mass spectrometer (AMS) bulk mass spectral dataset collected aboard the NOAA research vessel Ronald H. Brown during the 2002 New England Air Quality Study off the east coast of the United States. Emphasizing the organic peaks, the cluster analysis yielded a series of categories that are distinguishable with respect to their mass spectra and their occurrence as a function of time. The differences between the categories mainly arise from relative intensity changes rather than from the presence or absence of specific peaks. The most frequent category exhibits a strong signal at m/z 44 and represents oxidized organic matter probably originating from both anthropogenic as well as biogenic sources. On the basis of spectral and trace gas correlations, the second most common category with strong signals at m/z 29, 43, and 44 contains contributions from isoprene oxidation products. The third through the fifth most common categories have peak patterns characteristic of monoterpene oxidation products and were most frequently observed when air masses from monoterpene rich regions were sampled. Taken together, the second through the fifth most common categories represent on average 17% of the total organic mass that stems likely from biogenic sources during the ship's cruise. These numbers have to be viewed as lower limits since the most common category was attributed to anthropogenic sources for this calculation. The cluster analysis was also very effective in identifying a few contaminated mass spectra that were not removed during pre-processing. This study demonstrates that hierarchical clustering is a useful tool to analyze the complex patterns of the organic peaks in bulk aerosol mass spectra from a field study.
NASA Astrophysics Data System (ADS)
Marcolli, C.; Canagaratna, M. R.; Worsnop, D. R.; Bahreini, R.; de Gouw, J. A.; Warneke, C.; Goldan, P. D.; Kuster, W. C.; Williams, E. J.; Lerner, B. M.; Roberts, J. M.; Meagher, J. F.; Fehsenfeld, F. C.; Marchewka, M.; Bertman, S. B.; Middlebrook, A. M.
2006-12-01
We applied hierarchical cluster analysis to an Aerodyne aerosol mass spectrometer (AMS) bulk mass spectral dataset collected aboard the NOAA research vessel R. H. Brown during the 2002 New England Air Quality Study off the east coast of the United States. Emphasizing the organic peaks, the cluster analysis yielded a series of categories that are distinguishable with respect to their mass spectra and their occurrence as a function of time. The differences between the categories mainly arise from relative intensity changes rather than from the presence or absence of specific peaks. The most frequent category exhibits a strong signal at m/z 44 and represents oxidized organic matter probably originating from both anthropogenic as well as biogenic sources. On the basis of spectral and trace gas correlations, the second most common category with strong signals at m/z 29, 43, and 44 contains contributions from isoprene oxidation products. The third through the fifth most common categories have peak patterns characteristic of monoterpene oxidation products and were most frequently observed when air masses from monoterpene rich regions were sampled. Taken together, the second through the fifth most common categories represent on average 17% of the total organic mass that stems likely from biogenic sources during the ship's cruise. These numbers have to be viewed as lower limits since the most common category was attributed to anthropogenic sources for this calculation. The cluster analysis was also very effective in identifying a few contaminated mass spectra that were not removed during pre-processing. This study demonstrates that hierarchical clustering is a useful tool to analyze the complex patterns of the organic peaks in bulk aerosol mass spectra from a field study.
BINARY FORMATION MECHANISMS: CONSTRAINTS FROM THE COMPANION MASS RATIO DISTRIBUTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reggiani, Maddalena M.; Meyer, Michael R., E-mail: reggiani@phys.ethz.ch
2011-09-01
We present a statistical comparison of the mass ratio distribution of companions, as observed in different multiplicity surveys, to the most recent estimate of the single-object mass function. The main goal of our analysis is to test whether or not the observed companion mass ratio distribution (CMRD) as a function of primary star mass and star formation environment is consistent with having been drawn from the field star initial mass function (IMF). We consider samples of companions for M dwarfs, solar-type stars, and intermediate-mass stars, both in the field as well as clusters or associations, and compare them with populationsmore » of binaries generated by random pairing from the assumed IMF for a fixed primary mass. With regard to the field we can reject the hypothesis that the CMRD was drawn from the IMF for different primary mass ranges: the observed CMRDs show a larger number of equal-mass systems than predicted by the IMF. This is in agreement with fragmentation theories of binary formation. For the open clusters {alpha} Persei and the Pleiades we also reject the IMF random-pairing hypothesis. Concerning young star-forming regions, currently we can rule out a connection between the CMRD and the field IMF in Taurus but not in Chamaeleon I. Larger and different samples are needed to better constrain the result as a function of the environment. We also consider other companion mass functions and we compare them with observations. Moreover the CMRD both in the field and clusters or associations appears to be independent of separation in the range covered by the observations. Combining therefore the CMRDs of M (1-2400 AU) and G (28-1590 AU) primaries in the field and intermediate-mass primary binaries in Sco OB2 (29-1612 AU) for mass ratios, q = M{sub 2}/M{sub 1}, from 0.2 to 1, we find that the best chi-square fit follows a power law dN/dq{proportional_to}q {sup {beta}}, with {beta} = -0.50 {+-} 0.29, consistent with previous results. Finally, we note that the Kolmogorov-Smirnov test gives a {approx}1% probability of the observed CMRD in the Pleiades and Taurus being consistent with that observed for solar-type primaries in the field over comparable primary mass range. This highlights the value of using CMRDs to understand which star formation events contribute most to the field.« less
Neutrino constraints: what large-scale structure and CMB data are telling us?
NASA Astrophysics Data System (ADS)
Costanzi, Matteo; Sartoris, Barbara; Viel, Matteo; Borgani, Stefano
2014-10-01
We discuss the reliability of neutrino mass constraints, either active or sterile, from the combination of different low redshift Universe probes with measurements of CMB anisotropies. In our analyses we consider WMAP 9-year or Planck Cosmic Microwave Background (CMB) data in combination with Baryonic Acoustic Oscillations (BAO) measurements from BOSS DR11, galaxy shear measurements from CFHTLenS, SDSS Ly α forest constraints and galaxy cluster mass function from Chandra observations. At odds with recent similar studies, to avoid model dependence of the constraints we perform a full likelihood analysis for all the datasets employed. As for the cluster data analysis we rely on to the most recent calibration of massive neutrino effects in the halo mass function and we explore the impact of the uncertainty in the mass bias and re-calibration of the halo mass function due to baryonic feedback processes on cosmological parameters. We find that none of the low redshift probes alone provide evidence for massive neutrino in combination with CMB measurements, while a larger than 2σ detection of non zero neutrino mass, either active or sterile, is achieved combining cluster or shear data with CMB and BAO measurements. Yet, the significance of the detection exceeds 3σ if we combine all four datasets. For a three active neutrino scenario, from the joint analysis of CMB, BAO, shear and cluster data including the uncertainty in the mass bias we obtain ∑ mν =0.29+0.18-0.21 eV and ∑ mν =0.22+0.17-0.18 eV 95%CL) using WMAP9 or Planck as CMB dataset, respectively. The preference for massive neutrino is even larger in the sterile neutrino scenario, for which we get mseff=0.44+0.28-0.26 eV and Δ Neff=0.78+0.60-0.59 95%CL) from the joint analysis of Planck, BAO, shear and cluster datasets. For this data combination the vanilla ΛCDM model is rejected at more than 3σ and a sterile neutrino mass as motivated by accelerator anomaly is within the 2σ errors. Conversely, the Ly α data favour vanishing neutrino masses and from the data combination Planck+BAO+Ly α we get the tight upper limits ∑ mν <0.14 eV and mseff<0.22 eV—Δ Neff<1.11 95%CL) for the active and sterile neutrino model, respectively. Finally, results from the full data combination reflect the tension between the σ8 constraints obtained from cluster and shear data and that inferred from Ly α forest measurements; in the active neutrino scenario for both CMB datasets employed, the full data combination yields only an upper limits on ∑ mν, while assuming an extra sterile neutrino we still get preference for non-vanishing mass, mseff=0.26+0.22-0.24 eV, and dark contribution to the radiation content, Δ Neff=0.82±0.55.
Weak Lensing by Galaxy Clusters: from Pixels to Cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruen, Daniel
The story of the origin and evolution of our Universe is told, equivalently, by space-time itself and by the structures that grow inside of it. Clusters of galaxies are the frontier of bottom-up structure formation. They are the most massive objects to have collapsed at the present epoch. By that virtue, their abundance and structural parameters are highly sensitive to the composition and evolution of the Universe. The most common probe of cluster cosmology, abundance, uses samples of clusters selected by some observable. Applying a mass-observable relation (MOR), cosmological parameters can be constrained by comparing the sample to predicted clustermore » abundances as a function of observable and redshift. Arguably, however, cluster probes have not yet entered the era of per cent level precision cosmology. The primary reason for this is our imperfect understanding of the MORs. The overall normalization, the slope of mass vs. observable, the redshift evolution, and the degree and correlation of intrinsic scatters of observables at fixed mass have to be constrained for interpreting abundances correctly. Mass measurement of clusters by means of the differential deflection of light from background sources in their gravitational field, i.e. weak lensing, is a powerful approach for achieving this. This thesis presents new methods for and scientific results of weak lensing measurements of clusters of galaxies. The former include, on the data reduction side, (i) the correction of CCD images for non-linear effects due to the electric fields of accumulated charges and (ii) a method for masking artifact features in sets of overlapping images of the sky by comparison to the median image. Also, (iii) I develop a method for the selection of background galaxy samples based on their color and apparent magnitude that includes a new correction for contamination with cluster member galaxies. The main scientific results are the following. (i) For the Hubble Frontier Field cluster RXC J2248.7--4431 our lensing analysis constrains mass and concentration of the cluster halo and we confirm the large mass predicted by X-ray and Sunyaev-Zel’dovich (SZ) observations. The study of cluster members shows the relation of galaxy morphology to luminosity and environment. (ii) Our lensing mass measurements for 12 clusters are consistent with X-ray masses derived under the assumption of hydrostatic equilibrium of the intra-cluster gas. We confirm the MORs derived by the South Pole Telescope collaboration for the detection significance of the cluster SZ signal in their survey. We find discrepancies, however, with the Planck SZ MOR. We hypothesize that these are related either to a shallower slope of the MOR or a size-, redshift- or noise-dependent bias in SZ signal extraction. (iii) Finally, using a combination of simulations and theoretical models for the variation of cluster profiles at fixed mass, we find that the latter is a significant contribution to the uncertainty of cluster lensing mass measurements. A cosmic variance model, such as the one we develop, is necessary for MOR constraints to be accurate at the level required for future surveys.« less
NASA Astrophysics Data System (ADS)
Lee, S. H.; Kang, Y.-W.; Ann, H. B.
2012-09-01
We have conducted VI CCD photometry of the two open clusters NGC 1245 and NGC 2506 using the CFH12K CCD camera. Our photometry covers a sky area of 84 × 82 and 42 × 81 arcmin2 for the two clusters, respectively, and reaches down to V ≈ 23. We derived the physical parameters using detailed theoretical isochrone fittings using χ2 minimization. The derived cluster parameters are E(B - V) = 0.24 ± 0.05 and 0.03 ± 0.04, (V - MV)0 = 12.25 ± 0.12 and 12.47 ± 0.08, age (Gyr) = 1.08 ± 0.09 and 2.31 ± 0.16, and [Fe/H] = -0.08 ± 0.06 and -0.24 ± 0.06, respectively, for NGC 1245 and NGC 2506. We present the luminosity functions of the two clusters, which reach down to MV ≈ 10, and derive mass functions with slopes of Γ = -1.29 for NGC 1245 and Γ = -1.26 for NGC 2506. The slopes are slightly shallower than that of the solar neighbourhood, implying the existence of dynamical evolution that drives the evaporation of the low-mass stars in the clusters.
Galaxy masses in large surveys: Connecting luminous and dark matter with weak lensing and kinematics
NASA Astrophysics Data System (ADS)
Reyes, Reinabelle
2011-01-01
Galaxy masses are difficult to determine because light traces stars and gas in a non-trivial way, and does not trace dark matter, which extends well beyond the luminous regions of galaxies. In this thesis, I use the most direct probes of dark matter available---weak gravitational lensing and galaxy kinematics---to trace the total mass in galaxies (and galaxy clusters) in large surveys. In particular, I use the large, homogeneous dataset from the Sloan Digital Sky Survey (SDSS), which provides spectroscopic redshifts for a large sample of galaxies at z ≲ 0.2 and imaging data to a depth of r < 22. By combining complementary probes, I am able to obtain robust observational constraints that cannot be obtained from any single technique alone. First, I use weak lensing of galaxy clusters to derive an optimal optical tracer of cluster mass, which was found to be a combination of cluster richness and the luminosity of the brightest cluster galaxy. Next, I combine weak lensing of luminous red galaxies with redshift distortions and clustering measurements to derive a robust probe of gravity on cosmological scales. Finally, I combine weak lensing with the kinematics of disk galaxies to constrain the total mass profile over several orders of magnitude. I derive a minimal-scatter relation between disk velocity and stellar mass (also known as the Tully-Fisher relation) that can be used, by construction, on a similarly-selected lens sample. Then, I combine this relation with halo mass measurements from weak lensing to place constraints on the ratio of the optical to virial velocities, as well as the ratio of halo to stellar masses, both as a function of stellar mass. These results will serve as inputs to and constraints on disk galaxy formation models, which will be explored in future work.
Long-Slit Spectroscopy of R136 in 30 Doradus
NASA Astrophysics Data System (ADS)
Bostroem, K. A.; Crowther, P.; Lennon, D.; Walborn, N. R.
2013-01-01
R136 is a young, large starburst cluster in 30 Doradus. Its size and age make R136 an ideal cluster in which to study the massive end of the initial mass function (IMF), including stars up to 300 solar masses. In HST GO programs 12465 and 13052, the 52x0.2 arcsec slit of the Space Telescope Imaging Spectrograph (STIS) is stepped across the inner 4 arcsecs of R136. Seventeen consecutive slit locations in both the far ultra-violet (FUV) and optical provide low and medium resolution long-slit spectroscopy of over 100 stars in the region, many of which have never been resolved. The FUV data are combined into a single spectrum to simulate the observation of a more distant unresolved cluster. We present a comparison of individual spectra with the integrated cluster spectrum to determine the relative flux contributions of the brightest cluster members.
Star cluster formation in a turbulent molecular cloud self-regulated by photoionization feedback
NASA Astrophysics Data System (ADS)
Gavagnin, Elena; Bleuler, Andreas; Rosdahl, Joakim; Teyssier, Romain
2017-12-01
Most stars in the Galaxy are believed to be formed within star clusters from collapsing molecular clouds. However, the complete process of star formation, from the parent cloud to a gas-free star cluster, is still poorly understood. We perform radiation-hydrodynamical simulations of the collapse of a turbulent molecular cloud using the RAMSES-RT code. Stars are modelled using sink particles, from which we self-consistently follow the propagation of the ionizing radiation. We study how different feedback models affect the gas expulsion from the cloud and how they shape the final properties of the emerging star cluster. We find that the star formation efficiency is lower for stronger feedback models. Feedback also changes the high-mass end of the stellar mass function. Stronger feedback also allows the establishment of a lower density star cluster, which can maintain a virial or sub-virial state. In the absence of feedback, the star formation efficiency is very high, as well as the final stellar density. As a result, high-energy close encounters make the cluster evaporate quickly. Other indicators, such as mass segregation, statistics of multiple systems and escaping stars confirm this picture. Observations of young star clusters are in best agreement with our strong feedback simulation.
Large-Angular-Scale Clustering as a Clue to the Source of UHECRs
NASA Astrophysics Data System (ADS)
Berlind, Andreas A.; Farrar, Glennys R.
We explore what can be learned about the sources of UHECRs from their large-angular-scale clustering (referred to as their "bias" by the cosmology community). Exploiting the clustering on large scales has the advantage over small-scale correlations of being insensitive to uncertainties in source direction from magnetic smearing or measurement error. In a Cold Dark Matter cosmology, the amplitude of large-scale clustering depends on the mass of the system, with more massive systems such as galaxy clusters clustering more strongly than less massive systems such as ordinary galaxies or AGN. Therefore, studying the large-scale clustering of UHECRs can help determine a mass scale for their sources, given the assumption that their redshift depth is as expected from the GZK cutoff. We investigate the constraining power of a given UHECR sample as a function of its cutoff energy and number of events. We show that current and future samples should be able to distinguish between the cases of their sources being galaxy clusters, ordinary galaxies, or sources that are uncorrelated with the large-scale structure of the universe.
An Enigmatic Population of Luminous Globular Clusters in a Galaxy Lacking Dark Matter
NASA Astrophysics Data System (ADS)
van Dokkum, Pieter; Cohen, Yotam; Danieli, Shany; Kruijssen, J. M. Diederik; Romanowsky, Aaron J.; Merritt, Allison; Abraham, Roberto; Brodie, Jean; Conroy, Charlie; Lokhorst, Deborah; Mowla, Lamiya; O’Sullivan, Ewan; Zhang, Jielai
2018-04-01
We recently found an ultra diffuse galaxy (UDG) with a half-light radius of R e = 2.2 kpc and little or no dark matter. The total mass of NGC1052–DF2 was measured from the radial velocities of bright compact objects that are associated with the galaxy. Here, we analyze these objects using a combination of Hubble Space Telescope (HST) imaging and Keck spectroscopy. Their average size is < {r}h> =6.2+/- 0.5 pc and their average ellipticity is < ε > =0.18+/- 0.02. From a stacked Keck spectrum we derive an age of ≳9 Gyr and a metallicity of [Fe/H] = ‑1.35 ± 0.12. Their properties are similar to ω Centauri, the brightest and largest globular cluster in the Milky Way, and our results demonstrate that the luminosity function of metal-poor globular clusters is not universal. The fraction of the total stellar mass that is in the globular cluster system is similar to that in other UDGs, and consistent with “failed galaxy” scenarios, where star formation terminated shortly after the clusters were formed. However, the galaxy is a factor of ∼1000 removed from the relation between globular cluster mass and total galaxy mass that has been found for other galaxies, including other UDGs. We infer that a dark matter halo is not a prerequisite for the formation of metal-poor globular cluster-like objects in high-redshift galaxies.
NASA Astrophysics Data System (ADS)
Hunter, Deidre A.; Adamo, Angela; Elmegreen, Bruce G.; Gallardo, Samavarti; Lee, Janice C.; Cook, David O.; Thilker, David; Kayitesi, Bridget; Kim, Hwihyun; Kahre, Lauren; Ubeda, Leonardo; Bright, Stacey N.; Ryon, Jenna E.; Calzetti, Daniela; Tosi, Monica; Grasha, Kathryn; Messa, Matteo; Fumagalli, Michele; Dale, Daniel A.; Sabbi, Elena; Cignoni, Michele; Smith, Linda J.; Gouliermis, Dimitrios M.; Grebel, Eva K.; Aloisi, Alessandra; Whitmore, Bradley C.; Chandar, Rupali; Johnson, Kelsey E.
2018-07-01
We have explored the role environmental factors play in determining characteristics of young stellar objects in nearby dwarf irregular and blue compact dwarf galaxies. Star clusters are characterized by concentrations, masses, and formation rates; OB associations by mass and mass surface density; O stars by their numbers and near-ultraviolet absolute magnitudes; and H II regions by Hα surface brightnesses. These characteristics are compared to surrounding galactic pressure, stellar mass density, H I surface density, and star formation rate (SFR) surface density. We find no trend of cluster characteristics with environmental properties, implying that larger-scale effects are more important in determining cluster characteristics or that rapid dynamical evolution erases any memory of the initial conditions. On the other hand, the most massive OB associations are found at higher pressure and H I surface density, and there is a trend of higher H II region Hα surface brightness with higher pressure, suggesting that a higher concentration of massive stars and gas is found preferentially in regions of higher pressure. At low pressures we find massive stars but not bound clusters and OB associations. We do not find evidence for an increase of cluster formation efficiency as a function of SFR density. However, there is an increase in the ratio of the number of clusters to the number of O stars with increasing pressure, perhaps reflecting an increase in clustering properties with SFR.
Quantifying the coexistence of massive black holes and dense nuclear star clusters
NASA Astrophysics Data System (ADS)
Graham, Alister W.; Spitler, Lee R.
2009-08-01
In large spheroidal stellar systems, such as elliptical galaxies, one invariably finds a 106-109Msolar supermassive black hole at their centre. In contrast, within dwarf elliptical galaxies one predominantly observes a 105-107Msolar nuclear star cluster. To date, few galaxies have been found with both types of nuclei coexisting and even less have had the masses determined for both central components. Here, we identify one dozen galaxies housing nuclear star clusters and supermassive black holes whose masses have been measured. This doubles the known number of such hermaphrodite nuclei - which are expected to be fruitful sources of gravitational radiation. Over the host spheroid (stellar) mass range 108-1011Msolar, we find that a galaxy's nucleus-to-spheroid (baryon) mass ratio is not a constant value but decreases from a few per cent to ~0.3 per cent such that log[(MBH + MNC)/Msph] = -(0.39 +/- 0.07) log[Msph/1010Msolar] - (2.18 +/- 0.07). Once dry merging commences and the nuclear star clusters disappear, this ratio is expected to become a constant value. As a byproduct of our investigation, we have found that the projected flux from resolved nuclear star clusters is well approximated with Sérsic functions having a range of indices from ~0.5 to ~3, the latter index describing the Milky Way's nuclear star cluster.
NASA Astrophysics Data System (ADS)
Panwar, Neelam; Samal, M. R.; Pandey, A. K.; Jose, J.; Chen, W. P.; Ojha, D. K.; Ogura, K.; Singh, H. P.; Yadav, R. K.
2017-07-01
W4 is a giant H II region ionized by the OB stars of the cluster IC 1805. The H II region/cluster complex has been a subject of numerous investigations as it is an excellent laboratory for studying the feedback effect of massive stars on the surrounding region. However, the low-mass stellar content of the cluster IC 1805 remains poorly studied till now. With the aim to unravel the low-mass stellar population of the cluster, we present the results of a multiwavelength study based on deep optical data obtained with the Canada-France-Hawaii Telescope, infrared data from Two Micron All Sky Survey and Spitzer Space Telescope and X-ray data from Chandra Space Telescope. The present optical data set is complete enough to detect stars down to 0.2 M⊙, which is the deepest optical observation so far for the cluster. We identified 384 candidate young stellar objects (YSOs; 101 Class I/II and 283 Class III) within the cluster using various colour-colour and colour-magnitude diagrams. We inferred the mean age of the identified YSOs to be ˜2.5 Myr and mass in the range 0.3-2.5 M⊙. The mass function of our YSO sample has a power-law index of -1.23 ± 0.23, close to the Salpeter value (-1.35), and consistent with those of other star-forming complexes. We explored the disc evolution of the cluster members and found that the disc-less sources are relatively older compared to the disc bearing YSO candidates. We examined the effect of high-mass stars on the circumstellar discs and within uncertainties, the influence of massive stars on the disc fraction seems to be insignificant. We also studied the spatial correlation of the YSOs with the distribution of gas and dust of the complex to conclude that IC 1805 would have formed in a large filamentary cloud.
Galaxy evolution in the cluster Abell 85: new insights from the dwarf population
NASA Astrophysics Data System (ADS)
Habas, Rebecca; Fadda, Dario; Marleau, Francine R.; Biviano, Andrea; Durret, Florence
2018-04-01
We present the first results of a new spectroscopic survey of the cluster Abell 85 targeting 1466 candidate cluster members within the central ˜1 deg2 of the cluster and having magnitudes mr < 20.5 using the VIsible MultiObject Spectrograph on the VLT and the Hydra spectrograh on WIYN. A total of 520 galaxies are confirmed as either relaxed cluster members or part of an infalling population. A significant fraction are low mass; the median stellar mass of the sample is 109.6 M⊙, and 25 per cent have stellar masses below 109 M⊙ (i.e. 133 dwarf galaxies). We also identify seven active galactic nuclei (AGN), four of which reside in dwarf host galaxies. We probe the evolution of star formation rates, based on Hα emission and continuum modelling, as a function of both mass and environment. We find that more star-forming galaxies are observed at larger clustercentric distances, while infalling galaxies show evidence for recently enhanced star-forming activity. Main-sequence galaxies, defined by their continuum star formation rates, show different evolutionary behaviour based on their mass. At the low-mass end, the galaxies have had their star formation recently quenched, while more massive galaxies show no significant change. The time-scales probed here favour fast quenching mechanisms, such as ram-pressure stripping. Galaxies within the green valley, defined similarly, do not show evidence of quenching. Instead, the low-mass galaxies maintain their levels of star-forming activity, while the more massive galaxies have experienced a recent burst.
New cataclysmic variables and other exotic binaries in the globular cluster 47 Tucanae*
NASA Astrophysics Data System (ADS)
Rivera Sandoval, L. E.; van den Berg, M.; Heinke, C. O.; Cohn, H. N.; Lugger, P. M.; Anderson, J.; Cool, A. M.; Edmonds, P. D.; Wijnands, R.; Ivanova, N.; Grindlay, J. E.
2018-04-01
We present 22 new (+3 confirmed) cataclysmic variables (CVs) in the non-core-collapsed globular cluster 47 Tucanae (47 Tuc). The total number of CVs in the cluster is now 43, the largest sample in any globular cluster so far. For the identifications we used near-ultraviolet (NUV) and optical images from the Hubble Space Telescope, in combination with X-ray results from the Chandra X-ray Observatory. This allowed us to build the deepest NUV CV luminosity function of the cluster to date. We found that the CVs in 47 Tuc are more concentrated towards the cluster centre than the main-sequence turn-off stars. We compared our results to the CV populations of the core-collapsed globular clusters NGC 6397 and NGC 6752. We found that 47 Tuc has fewer bright CVs per unit mass than those two other clusters. That suggests that dynamical interactions in core-collapsed clusters play a major role creating new CVs. In 47 Tuc, the CV population is probably dominated by primordial and old dynamically formed systems. We estimated that the CVs in 47 Tuc have total masses of ˜1.4 M⊙. We also found that the X-ray luminosity function of the CVs in the three clusters is bimodal. Additionally, we discuss a possible double degenerate system and an intriguing/unclassified object. Finally, we present four systems that could be millisecond pulsar companions given their X-ray and NUV/optical colours. For one of them we present very strong evidence for being an ablated companion. The other three could be CO or He white dwarfs.
Galaxy Cluster Bulk Flows and Collision Velocities in QUMOND
NASA Astrophysics Data System (ADS)
Katz, Harley; McGaugh, Stacy; Teuben, Peter; Angus, G. W.
2013-07-01
We examine the formation of clusters of galaxies in numerical simulations of a QUMOND cosmogony with massive sterile neutrinos. Clusters formed in these exploratory simulations develop higher velocities than those found in ΛCDM simulations. The bulk motions of clusters attain ~1000 km s-1 by low redshift, comparable to observations whereas ΛCDM simulated clusters tend to fall short. Similarly, high pairwise velocities are common in cluster-cluster collisions like the Bullet Cluster. There is also a propensity for the most massive clusters to be larger in QUMOND and to appear earlier than in ΛCDM, potentially providing an explanation for "pink elephants" like El Gordo. However, it is not obvious that the cluster mass function can be recovered.
Illuminating the star clusters and satellite galaxies with multi-scale baryonic simulations
NASA Astrophysics Data System (ADS)
Maji, Moupiya; Zhu, Qirong; Li, Yuexing; Marinacci, Federico; Charlton, Jane; Hernquist, Lars; Knebe, Alexander
2018-01-01
Over the past decade, advances in computational architecture have made it possible for the first time to investigate some of the fundamental questions around the formation, evolution and assembly of the building blocks of the universe; star clusters and galaxies. In this talk, I will focus on two major questions: What is the origin of the observed universal lognormal mass function in globular clusters? What is the statistical distribution of the properties of satellite planes in a large sample of satellite systems?Observations of globular clusters show that they have universal lognormal mass functions with a characteristic peak at 2X105 MSun, although the origin of this peaked distribution is unclear. We investigate the formation of star clusters in interacting galaxies using baryonic simulations and found that massive clusters preferentially form in extremely high pressure gas clouds which reside in highly shocked regions produced by galaxy interactions. These massive clusters have quasi-lognormal initial mass functions with a peak around ~106MSun which may survive dynamical evolution and slowly evolve into the universal lognormal profiles observed today.The classical Milky Way (MW) satellites are observed to be distributed in a highly-flattened plane, called Disk of Satellites (DoS). However the significance, coherence and origin of DoS is highly debated. To understand this, we first analyze all MW satellites and find that a small sample size can artificially produce a highly anisotropic spatial distribution and a strong clustering of their angular momentum. Comparing a baryonic simulation of a MW-sized galaxy with its N-body counterpart we find that an anisotropic DoS can originate from baryonic processes. Furthermore, we explore the statistical distribution of DoS properties by analyzing 2591 satellite systems in the cosmological hydrodynamic simulation Illustris. We find that the DoS becomes more isotropic with increasing sample sizes and most (~90%) satellite systems have no clear coherent rotation. Their overall evolution indicate that the DoS may be part of large scale filamentary structure. Our results show that baryonic processes may be the key to solve many long standing theoretical problems.
Young massive star clusters in the era of HST and integral field spectroscopy
NASA Astrophysics Data System (ADS)
Zeidler, Peter; Nota, Antonella; Sabbi, Elena; Grebel, Eva K.; Pasquali, Anna
2018-01-01
With an age of 1 – 2 Myr at a distance of 4 kpc and a total stellar mass of 3.7×104 M⊙, Westerlund 2 (Wd2) is one of the most massive young star clusters in the Milky Way. We present a detailed analysis of its prominent pre-main-sequence population using the data of a high-resolution multi-band survey in the optical and near-infrared with the Hubble Space Telescope (HST), in combination with our spectroscopic survey, observed with the VLT/MUSE integral field unit. With our derived high-resolution extinction map of the region, which is absolutely essential giving the dominating presences of the gas and dust, we derived the spatial dependence of the mass function and quantify the degree of mass segregation down to 0.65 M⊙ with a completeness level better than 50%. Studying the radial dependence of the mass function of Wd2 and quantifying the degree of mass segregation in this young massive star cluster showed that it consists of two sub-clumps, namely the main cluster and the northern clump. From the MUSE data, we can extract individual stellar spectra and spectral energy distributions of the stars, based on the astrometry, provided by our high-resolution HST photometric catalog. This data will provide us with an almost complete spectral classification of a young massive star cluster down to 1.0 M⊙. The combination of the MUSE data, together with 3 more years of approved HST data will allow us to obtain, for the first time, the 3D motions of the stars with an accuracy of 1-2 km s-2 to determine the stellar velocity dispersion in order to study the fate of Wd2. This information is of great importance to adjust the initial conditions in cluster evolution models in order to connect these young massive star clusters and the old globular cluster population. Additionally, the combination of the photometric and spectroscopic datasets allows us to study the stars and their feedback onto the surrounding HII region simultaneously, as well as peculiar objects such as the massive, eclipsing Wolf-Rayet binary, WR20a or a possible Herbig-Haro object in the northern clump.
Probing the Initial Mass Function in Extended Ultraviolet (XUV) Disks
NASA Astrophysics Data System (ADS)
Koda, Jin
2013-01-01
"The GALEX UV satellite discovered tantalizing evidence of star formation (SF) far beyond the optical edge of galactic disks (i.e. extended UV disk, or XUV disk). This discovery provides a new opportunity for studying SF in the exceedingly low-density environment (˜1/10 of typical SF density), spurring intense debate on the universality of the initial mass function (IMF) in such exceptional environments. Our pilot S-Cam study of M83’s XUV disk led to support for the universal IMF at least in M83 (Koda et al. 2012). We propose an expansion of the pilot study by an order of magnitude, by observing additional 6 XUV disks in NA656(Hα), B, I, and R-band with S-Cam in S13A. In conjunction with GALEX UV bands, these images will reveal the presence of O stars (Hα; NA656-R) and O&B stars (UV) in stellar clusters -thus, constraining the high-mass end of the IMF. These multi-broadband images will enable us to determine the masses of the clusters with much improved accuracy (previously, relied only on R). The proposed observations will not only increase the statistical significance of our previous result, but also enable us to analyze the stochastic effect of IMF sampling in very low-mass - clusters (10^(2+3) M_sun) - the regime about which there is much ongoing debate."
Probing the Initial Mass Function in Extended Ultraviolet (XUV) Disks
NASA Astrophysics Data System (ADS)
Koda, Jin
2013-01-01
"The GALEX UV satellite discovered tantalizing evidence of star formation (SF) far beyond the optical edge of galactic disks (i.e. extended UV disk, or XUV disk). This discovery provides a new opportunity for studying SF in the exceedingly low-density environment (˜1/10 of typical SF density), spurring intense debate on the universality of the initial mass function (IMF) in such exceptional environments. Our pilot S-Cam study of M83’s XUV disk led to support for the universal IMF at least in M83 (Koda et al. 2012). We propose an expansion of the pilot study by about an order of magnitude, by observing 6 XUV disks in NA656(Hα), B, I, and R-band with S-Cam in S13B. In conjunction with GALEX UV bands, these images will reveal the presence of O stars (Hα) and O&B stars (UV) in stellar clusters -thus, constraining the high-mass end of the IMF. These multi-broadband images will enable us to determine the masses of the clusters with much improved accuracy (previously, relied only on R). The proposed observations will not only increase the statistical significance of our previous result, but also enable us to analyze the stochastic effect of IMF sampling in very low-mass - clusters (10^{2+3} M_sun) - the regime of ongoing debate. Previously allocated 1+2 nights were cancelled (telescope failures)."
Probing the Initial Mass Function in Extended Ultraviolet (XUV) Disks
NASA Astrophysics Data System (ADS)
Koda, Jin
2014-01-01
The GALEX UV satellite discovered tantalizing evidence of star formation (SF) far beyond the optical edge of galactic disks (i.e. XUV disk). This discovery provides a new opportunity for studying SF in the exceedingly low-density environment (~1/10 of typical SF density), spurring intense debate on the universality of the initial mass function (IMF) in such exceptional environments. Our pilot study led to support for the universal IMF at least in M83’s XUV disk (Koda et al. 2012). We propose an expansion of the pilot study by about an order of magnitude, by observing total ~ 10 XUV disks (6 disks in S14A) in NA656(Halpha), B, I, and R-band with S-Cam. In conjunction with GALEX UV bands, these images will reveal the presence of O stars (Halpha) and O&B stars (UV) in stellar clusters -thus, constraining the high-mass end of the IMF. These multi-broadband images will enable us to determine the masses of the clusters with much improved accuracy (previously, relied only on R). This project will not only increase the statistical significance of our previous result, but also enable us to analyze the stochastic effect of IMF sampling in very low-mass clusters (102-3 Msun) - the regime of ongoing debate. This proposal will complete this on-going project with S-Cam.
Deep luminosity function of the globular cluster M13
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drukier, G.A.; Fahlman, G.G.; Richter, H.B.
The luminosity function in a field of M13 at 14 core radii has been observed to M(V) = +12.0, and new theoretical, low-mass, stellar models appropriate to M13 are used to convert the function to a mass function which extends to M = 0.18 solar, within a factor of two of brown dwarf masses at this metal abundance. As the number of stars observed in each magnitude bin is still increasing at the limit of the data, the presence of stars with masses lower than 0.18 solar is probable. This result sets an upper limit of 0.18 solar mass formore » low-mass cutoffs in dynamical models of M13. No single power law mass function fits all the observations. The trend of the data supports the idea of a steep increase in the slope of the mass function for M less than 0.4 solar. The results imply that the total mass in low-mass stars in M13, and by implication elsewhere, is higher than was previously thought. 26 references.« less
From the Cluster Temperature Function to the Mass Function at Low Z
NASA Technical Reports Server (NTRS)
Mushotzky, Richard (Technical Monitor); Markevitch, Maxim
2004-01-01
This XMM project consisted of three observations of the nearby, hot galaxy cluster Triangulum Australis, one of the cluster center and two offsets. The goal was to measure the radial gas temperature profile out to large radii and derive the total gravitating mass within the radius of average mass overdensity 500. The central pointing also provides data for a detailed two-dimensional gas temperature map of this interesting cluster. We have analyzed all three observations. The derivation of the temperature map using the central pointing is complete, and the paper is soon to be submitted. During the course of this study and of the analysis of archival XMM cluster observations, it became apparent that the commonly used XMM background flare screening techniques are often not accurate enough for studies of the cluster outer regions. The information on the cluster's total masses is contained at large off-center distances, and it is precisely the temperatures for those low-brightness regions that are most affected by the detector background anomalies. In particular, our two offset observations of the Triangulum have been contaminated by the background flares ("bad cosmic weather") to a degree where they could not be used for accurate spectral analysis. This forced us to expand the scope of our project. We needed to devise a more accurate method of screening and modeling the background flares, and to evaluate the uncertainty of the XMM background modeling. To do this, we have analyzed a large number of archival EPIC blank-field and closed-cover observations. As a result, we have derived stricter background screening criteria. It also turned out that mild flares affecting EPIC-pn can be modeled with an adequate accuracy. Such modeling has been used to derive our Triangulum temperature map. The results of our XMM background analysis, including the modeling recipes, are presented in a paper which is in final preparation and will be submitted soon. It will be useful not only for our future analysis but for other XMM cluster observations as well.
Shedding light on baryonic dark matter
NASA Technical Reports Server (NTRS)
Silk, Joseph
1991-01-01
Halo dark matter, if it is baryonic, may plausibly consist of compact stellar remnants. Jeans mass clouds containing 10 to the 6th to 10 to the 8th solar masses could have efficiently formed stars in the early universe and could plausibly have generated, for a suitably top-heavy stellar initial mass function, a high abundance of neutron stars as well as a small admixture of long-lived low mass stars. Within the resulting clusters of dark remnants, which eventually are tidally disrupted when halos eventually form, captures of neutron stars by nondegenerate stars resulted in formation of close binaries. These evolve to produce, by the present epoch, an observable X-ray signal associated with dark matter aggregations in galaxy cluster cores.
A novel look at energy equipartition in globular clusters
NASA Astrophysics Data System (ADS)
Bianchini, P.; van de Ven, G.; Norris, M. A.; Schinnerer, E.; Varri, A. L.
2016-06-01
Two-body interactions play a major role in shaping the structural and dynamical properties of globular clusters (GCs) over their long-term evolution. In particular, GCs evolve towards a state of partial energy equipartition that induces a mass dependence in their kinematics. By using a set of Monte Carlo cluster simulations evolved in quasi-isolation, we show that the stellar mass dependence of the velocity dispersion σ(m) can be described by an exponential function σ2 ∝ exp (-m/meq), with the parameter meq quantifying the degree of partial energy equipartition of the systems. This simple parametrization successfully captures the behaviour of the velocity dispersion at lower as well as higher stellar masses, that is, the regime where the system is expected to approach full equipartition. We find a tight correlation between the degree of equipartition reached by a GC and its dynamical state, indicating that clusters that are more than about 20 core relaxation times old, have reached a maximum degree of equipartition. This equipartition-dynamical state relation can be used as a tool to characterize the relaxation condition of a cluster with a kinematic measure of the meq parameter. Vice versa, the mass dependence of the kinematics can be predicted knowing the relaxation time solely on the basis of photometric measurements. Moreover, any deviations from this tight relation could be used as a probe of a peculiar dynamical history of a cluster. Finally, our novel approach is important for the interpretation of state-of-the-art Hubble Space Telescope proper motion data, for which the mass dependence of kinematics can now be measured, and for the application of modelling techniques which take into consideration multimass components and mass segregation.
Takenouchi, Masato; Kudoh, Satoshi; Miyajima, Ken; Mafuné, Fumitaka
2015-07-02
Adsorption and desorption of hydrogen by gas-phase Pd clusters, Pdn(+), were investigated by thermal desorption spectroscopy (TDS) experiments and density functional theory (DFT) calculations. The desorption processes were examined by heating the clusters that had adsorbed hydrogen at room temperature. The clusters remaining after heating were monitored by mass spectrometry as a function of temperature up to 1000 K, and the temperature-programmed desorption (TPD) curve was obtained for each Pdn(+). It was found that hydrogen molecules were released from the clusters into the gas phase with increasing temperature until bare Pdn(+) was formed. The threshold energy for desorption, estimated from the TPD curve, was compared to the desorption energy calculated by using DFT, indicating that smaller Pdn(+) clusters (n ≤ 6) tended to have weakly adsorbed hydrogen molecules, whereas larger Pdn(+) clusters (n ≥ 7) had dissociatively adsorbed hydrogen atoms on the surface. Highly likely, the nonmetallic nature of the small Pd clusters prevents hydrogen molecule from adsorbing dissociatively on the surface.
Exact hierarchical clustering in one dimension. [in universe
NASA Technical Reports Server (NTRS)
Williams, B. G.; Heavens, A. F.; Peacock, J. A.; Shandarin, S. F.
1991-01-01
The present adhesion model-based one-dimensional simulations of gravitational clustering have yielded bound-object catalogs applicable in tests of analytical approaches to cosmological structure formation. Attention is given to Press-Schechter (1974) type functions, as well as to their density peak-theory modifications and the two-point correlation function estimated from peak theory. The extent to which individual collapsed-object locations can be predicted by linear theory is significant only for objects of near-characteristic nonlinear mass.
NASA Astrophysics Data System (ADS)
Massey, P.
Massive stars in the Magellanic Clouds provide an instantaneous "snapshot" of star-formation. In this talk I will review what we have learned both about star formation, and stellar evolution. Studies over the past decade have shown that the initial mass function (IMF) is the same for massive stars born in OB associations in the LMC and SMC as in associations and clusters in the Milky Way; the slope of the IMF is essentially Salpeter (Gamma ~ -1.3), despite the factor of 10 difference in metallicity between these systems. Recent work on the R136 cluster (described in Hunter's review talk) suggest that there is no such thing as an upper mass cutoff to the IMF, at least not one that has been found observationally: for the youngest clusters (2 Myr and younger), the mass of the highest mass star present is simply dependent upon how populous the cluster is; i.e., the IMF is truncated by statistics, not physics. There does appear to be a significant population of massive stars that are born in the "field" (not part of a large OB association or cluster); the IMF of these stars is quite a bit steeper (Gamma ~ -4), although stars as massive as those found in associations are also found in the field. The mixed-age population of the MCs as a whole can be used to test stellar evolutionary models; the agreement with the work of the Geneva group is found to be excellent, for stars with masses >25 Mo, although the youngest stars may be missing in the HRD. The discovery that clusters born in associations are quite coeval (Delta tau <1-2 Myr) allows us to use the "turn-off masses" to determine what mass objects become Wolf-Rayet stars of various types, and new results will be reviewed.
THE PROPERTIES OF DYNAMICALLY EJECTED RUNAWAY AND HYPER-RUNAWAY STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perets, Hagai B.; Subr, Ladislav
2012-06-01
Runaway stars are stars observed to have large peculiar velocities. Two mechanisms are thought to contribute to the ejection of runaway stars, both of which involve binarity (or higher multiplicity). In the binary supernova scenario, a runaway star receives its velocity when its binary massive companion explodes as a supernova (SN). In the alternative dynamical ejection scenario, runaway stars are formed through gravitational interactions between stars and binaries in dense, compact clusters or cluster cores. Here we study the ejection scenario. We make use of extensive N-body simulations of massive clusters, as well as analytic arguments, in order to characterizemore » the expected ejection velocity distribution of runaway stars. We find that the ejection velocity distribution of the fastest runaways (v {approx}> 80 km s{sup -1}) depends on the binary distribution in the cluster, consistent with our analytic toy model, whereas the distribution of lower velocity runaways appears independent of the binaries' properties. For a realistic log constant distribution of binary separations, we find the velocity distribution to follow a simple power law: {Gamma}(v){proportional_to}v{sup -8/3} for the high-velocity runaways and v{sup -3/2} for the low-velocity ones. We calculate the total expected ejection rates of runaway stars from our simulated massive clusters and explore their mass function and their binarity. The mass function of runaway stars is biased toward high masses and strongly depends on their velocity. The binarity of runaways is a decreasing function of their ejection velocity, with no binaries expected to be ejected with v > 150 km s{sup -1}. We also find that hyper-runaways with velocities of hundreds of km s{sup -1} can be dynamically ejected from stellar clusters, but only at very low rates, which cannot account for a significant fraction of the observed population of hyper-velocity stars in the Galactic halo.« less
NASA Astrophysics Data System (ADS)
Weisz, Daniel R.; Fouesneau, Morgan; Hogg, David W.; Rix, Hans-Walter; Dolphin, Andrew E.; Dalcanton, Julianne J.; Foreman-Mackey, Daniel T.; Lang, Dustin; Johnson, L. Clifton; Beerman, Lori C.; Bell, Eric F.; Gordon, Karl D.; Gouliermis, Dimitrios; Kalirai, Jason S.; Skillman, Evan D.; Williams, Benjamin F.
2013-01-01
We present a probabilistic approach for inferring the parameters of the present-day power-law stellar mass function (MF) of a resolved young star cluster. This technique (1) fully exploits the information content of a given data set; (2) can account for observational uncertainties in a straightforward way; (3) assigns meaningful uncertainties to the inferred parameters; (4) avoids the pitfalls associated with binning data; and (5) can be applied to virtually any resolved young cluster, laying the groundwork for a systematic study of the high-mass stellar MF (M >~ 1 M ⊙). Using simulated clusters and Markov Chain Monte Carlo sampling of the probability distribution functions, we show that estimates of the MF slope, α, are unbiased and that the uncertainty, Δα, depends primarily on the number of observed stars and on the range of stellar masses they span, assuming that the uncertainties on individual masses and the completeness are both well characterized. Using idealized mock data, we compute the theoretical precision, i.e., lower limits, on α, and provide an analytic approximation for Δα as a function of the observed number of stars and mass range. Comparison with literature studies shows that ~3/4 of quoted uncertainties are smaller than the theoretical lower limit. By correcting these uncertainties to the theoretical lower limits, we find that the literature studies yield langαrang = 2.46, with a 1σ dispersion of 0.35 dex. We verify that it is impossible for a power-law MF to obtain meaningful constraints on the upper mass limit of the initial mass function, beyond the lower bound of the most massive star actually observed. We show that avoiding substantial biases in the MF slope requires (1) including the MF as a prior when deriving individual stellar mass estimates, (2) modeling the uncertainties in the individual stellar masses, and (3) fully characterizing and then explicitly modeling the completeness for stars of a given mass. The precision on MF slope recovery in this paper are lower limits, as we do not explicitly consider all possible sources of uncertainty, including dynamical effects (e.g., mass segregation), unresolved binaries, and non-coeval populations. We briefly discuss how each of these effects can be incorporated into extensions of the present framework. Finally, we emphasize that the technique and lessons learned are applicable to more general problems involving power-law fitting. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.
Mean Occupation Function of High-redshift Quasars from the Planck Cluster Catalog
NASA Astrophysics Data System (ADS)
Chakraborty, Priyanka; Chatterjee, Suchetana; Dutta, Alankar; Myers, Adam D.
2018-06-01
We characterize the distribution of quasars within dark matter halos using a direct measurement technique for the first time at redshifts as high as z ∼ 1. Using the Planck Sunyaev-Zeldovich (SZ) catalog for galaxy groups and the Sloan Digital Sky Survey (SDSS) DR12 quasar data set, we assign host clusters/groups to the quasars and make a measurement of the mean number of quasars within dark matter halos as a function of halo mass. We find that a simple power-law fit of {log}< N> =(2.11+/- 0.01) {log}(M)-(32.77+/- 0.11) can be used to model the quasar fraction in dark matter halos. This suggests that the quasar fraction increases monotonically as a function of halo mass even to redshifts as high as z ∼ 1.
Data mining in the young open cluster IC2391
NASA Astrophysics Data System (ADS)
Dodd, R. J.
2004-12-01
Large-scale astrometric and photometric data bases have been used to search for and confirm stellar membership of the open cluster IC2391. 125 stars were found that satisfied criteria for membership based on proper motion components and BRI photometry from the United States Naval Observatory B (USNO-B) catalogue and JHK photometry from the Two Micron All Sky Survey (2MASS) catalogue. This listing was compared with others recently published. A distance to the cluster of 147.7 +/- 5.5 pc was found with mean proper motion components, from the Tycho2 catalogue of (-25.04 +/- 1.53 masyr-1+23.19+/-1.23 masyr-1). A revised Trumpler classification of II3r is suggested. Luminosity and mass functions for the candidate stars were constructed and compared with those of field stars and other clusters.
Medium resolution spectroscopy and chemical composition of Galactic globular clusters
NASA Astrophysics Data System (ADS)
Khamidullina, D. A.; Sharina, M. E.; Shimansky, V. V.; Davoust, E.
We used integrated-light medium-resolution spectra of six Galactic globular clusters and model stellar atmospheres to carry out population synthesis and to derive chemical composition and age of the clusters. We used medium-resolution spectra of globular clusters published by Schiavon et al. (2005), as well as our long-slit observations with the 1.93 m telescope of the Haute Provence Observatory. The observed spectra were fitted to the theoretical ones interactively. As an initial approach, we used masses, radii and log g of stars in the clusters corresponding to the best fitting isochrones in the observed color-magnitude diagrams. The computed synthetic blanketed spectra of stars were summed according to the Chabrier mass function. To improve the determination of age and helium content, the shape and depth of the Balmer absorption lines was analysed. The abundances of Mg, Ca, C and several other elements were derived. A reasonable agreement with the literature data both in chemical composition and in age of the clusters is found. Our method might be useful for the development of stellar population models and for a better understanding of extragalactic star clusters.
Mass Function of Galaxy Clusters in Relativistic Inhomogeneous Cosmology
NASA Astrophysics Data System (ADS)
Ostrowski, Jan J.; Buchert, Thomas; Roukema, Boudewijn F.
The current cosmological model (ΛCDM) with the underlying FLRW metric relies on the assumption of local isotropy, hence homogeneity of the Universe. Difficulties arise when one attempts to justify this model as an average description of the Universe from first principles of general relativity, since in general, the Einstein tensor built from the averaged metric is not equal to the averaged stress-energy tensor. In this context, the discrepancy between these quantities is called "cosmological backreaction" and has been the subject of scientific debate among cosmologists and relativists for more than 20 years. Here we present one of the methods to tackle this problem, i.e. averaging the scalar parts of the Einstein equations, together with its application, the cosmological mass function of galaxy clusters.
Modelling baryonic effects on galaxy cluster mass profiles
NASA Astrophysics Data System (ADS)
Shirasaki, Masato; Lau, Erwin T.; Nagai, Daisuke
2018-06-01
Gravitational lensing is a powerful probe of the mass distribution of galaxy clusters and cosmology. However, accurate measurements of the cluster mass profiles are limited by uncertainties in cluster astrophysics. In this work, we present a physically motivated model of baryonic effects on the cluster mass profiles, which self-consistently takes into account the impact of baryons on the concentration as well as mass accretion histories of galaxy clusters. We calibrate this model using the Omega500 hydrodynamical cosmological simulations of galaxy clusters with varying baryonic physics. Our model will enable us to simultaneously constrain cluster mass, concentration, and cosmological parameters using stacked weak lensing measurements from upcoming optical cluster surveys.
Saro, A.
2015-10-12
In this study, we cross-match galaxy cluster candidates selected via their Sunyaev–Zel'dovich effect (SZE) signatures in 129.1 deg 2 of the South Pole Telescope 2500d SPT-SZ survey with optically identified clusters selected from the Dark Energy Survey science verification data. We identify 25 clusters between 0.1 ≲ z ≲ 0.8 in the union of the SPT-SZ and redMaPPer (RM) samples. RM is an optical cluster finding algorithm that also returns a richness estimate for each cluster. We model the richness λ-mass relation with the following function 500> ∝ B λlnM 500 + C λlnE(z) and use SPT-SZ cluster masses andmore » RM richnesses λ to constrain the parameters. We find B λ = 1.14 +0.21 –0.18 and C λ = 0.73 +0.77 –0.75. The associated scatter in mass at fixed richness is σ lnM|λ = 0.18 +0.08 –0.05 at a characteristic richness λ = 70. We demonstrate that our model provides an adequate description of the matched sample, showing that the fraction of SPT-SZ-selected clusters with RM counterparts is consistent with expectations and that the fraction of RM-selected clusters with SPT-SZ counterparts is in mild tension with expectation. We model the optical-SZE cluster positional offset distribution with the sum of two Gaussians, showing that it is consistent with a dominant, centrally peaked population and a subdominant population characterized by larger offsets. We also cross-match the RM catalogue with SPT-SZ candidates below the official catalogue threshold significance ξ = 4.5, using the RM catalogue to provide optical confirmation and redshifts for 15 additional clusters with ξ ϵ [4, 4.5].« less
GALAXY CLUSTER BULK FLOWS AND COLLISION VELOCITIES IN QUMOND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katz, Harley; McGaugh, Stacy; Teuben, Peter
We examine the formation of clusters of galaxies in numerical simulations of a QUMOND cosmogony with massive sterile neutrinos. Clusters formed in these exploratory simulations develop higher velocities than those found in {Lambda}CDM simulations. The bulk motions of clusters attain {approx}1000 km s{sup -1} by low redshift, comparable to observations whereas {Lambda}CDM simulated clusters tend to fall short. Similarly, high pairwise velocities are common in cluster-cluster collisions like the Bullet Cluster. There is also a propensity for the most massive clusters to be larger in QUMOND and to appear earlier than in {Lambda}CDM, potentially providing an explanation for ''pink elephants''more » like El Gordo. However, it is not obvious that the cluster mass function can be recovered.« less
N-body simulations of star clusters
NASA Astrophysics Data System (ADS)
Engle, Kimberly Anne
1999-10-01
We investigate the structure and evolution of underfilling (i.e. non-Roche-lobe-filling) King model globular star clusters using N-body simulations. We model clusters with various underfilling factors and mass distributions to determine their evolutionary tracks and lifetimes. These models include a self-consistent galactic tidal field, mass loss due to stellar evolution, ejection, and evaporation, and binary evolution. We find that a star cluster that initially does not fill its Roche lobe can live many times longer than one that does initially fill its Roche lobe. After a few relaxation times, the cluster expands to fill its Roche lobe. We also find that the choice of initial mass function significantly affects the lifetime of the cluster. These simulations were performed on the GRAPE-4 (GRAvity PipE) special-purpose hardware with the stellar dynamics package ``Starlab.'' The GRAPE-4 system is a massively-parallel computer designed to calculate the force (and its first time derivative) due to N particles. Starlab's integrator ``kira'' employs a 4th- order Hermite scheme with hierarchical (block) time steps to evolve the stellar system. We discuss, in some detail, the design of the GRAPE-4 system and the manner in which the Hermite integration scheme with block time steps is implemented in the hardware.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campa, Julia; Estrada, Juan; Flaugher, Brenna
2017-02-03
The knowledge of the scatter in the mass-observable relation is a key ingredient for a cosmological analysis based on galaxy clusters in a photometric survey. We demonstrate here how the linear bias measured in the correlation function for clusters can be used to determine the value of the scatter. The new method is tested in simulations of a 5.000 square degrees optical survey up to z~1, similar to the ongoing Dark Energy Survey. The results indicate that the scatter can be measured with a precision of 5% using this technique.
The IMF in extreme star-forming environments: Searching for variations vs. initial conditions
NASA Astrophysics Data System (ADS)
Andersen, Morten; Meyer, M. R.; Greissl, J.; Oppenheimer, B. D.; Kenworthy, M. A.; McCarthy, D. W.; Zinnecker, H.
Any predictive theory of star formation must explain observed variations (or lack thereof) in the initial mass function. Recent work suggests that we might expect quantitative variations in the IMF as a function of metallicity (Larson 2005) or magnetic field strength (Shu et al. 2004). We summarize results from several on-going studies attempting to constrain the ratio of high to low mass stars, as well as stars to sub- stellar objects, in a variety of different environments, all containing high mass stars.First, we examine the ratio of stars to sub-stellar objects in the nearby Mon R2 region utilizing NICMOS/HST data. We compare our results to the IMF by Kroupa (2002) and to the observed ratios for IC 348 and Orion. Second, we present preliminary results for the ratio of high to low mass stars in W51, the most luminous HII region in the galaxy. Based on ground-based multi-colour images of the cluster obtained with the MMT adaptive optics system, we derive a lower limit to the ratio of high-mass to low-mass stars and compare it to the ratios for nearby clusters. Finally, we present the derived IMF for the R136 region in the LMC where the metallicity is 1/4 solar using HST/NICMOS data. We find that the IMF is consistent with that characterizing the field (Chabrier 2003), as well as nearby star-forming regions, down to 1.0 M_⊙ outside 2 pc. Whereas the results for both Mon R2 and R136 are consistent with the nearby clusters, the ratio of high to low mass stars in W51 tentatively indicates a lack of low-mass objects.
Ing, Alex; Schwarzbauer, Christian
2014-01-01
Functional connectivity has become an increasingly important area of research in recent years. At a typical spatial resolution, approximately 300 million connections link each voxel in the brain with every other. This pattern of connectivity is known as the functional connectome. Connectivity is often compared between experimental groups and conditions. Standard methods used to control the type 1 error rate are likely to be insensitive when comparisons are carried out across the whole connectome, due to the huge number of statistical tests involved. To address this problem, two new cluster based methods--the cluster size statistic (CSS) and cluster mass statistic (CMS)--are introduced to control the family wise error rate across all connectivity values. These methods operate within a statistical framework similar to the cluster based methods used in conventional task based fMRI. Both methods are data driven, permutation based and require minimal statistical assumptions. Here, the performance of each procedure is evaluated in a receiver operator characteristic (ROC) analysis, utilising a simulated dataset. The relative sensitivity of each method is also tested on real data: BOLD (blood oxygen level dependent) fMRI scans were carried out on twelve subjects under normal conditions and during the hypercapnic state (induced through the inhalation of 6% CO2 in 21% O2 and 73%N2). Both CSS and CMS detected significant changes in connectivity between normal and hypercapnic states. A family wise error correction carried out at the individual connection level exhibited no significant changes in connectivity.
Ing, Alex; Schwarzbauer, Christian
2014-01-01
Functional connectivity has become an increasingly important area of research in recent years. At a typical spatial resolution, approximately 300 million connections link each voxel in the brain with every other. This pattern of connectivity is known as the functional connectome. Connectivity is often compared between experimental groups and conditions. Standard methods used to control the type 1 error rate are likely to be insensitive when comparisons are carried out across the whole connectome, due to the huge number of statistical tests involved. To address this problem, two new cluster based methods – the cluster size statistic (CSS) and cluster mass statistic (CMS) – are introduced to control the family wise error rate across all connectivity values. These methods operate within a statistical framework similar to the cluster based methods used in conventional task based fMRI. Both methods are data driven, permutation based and require minimal statistical assumptions. Here, the performance of each procedure is evaluated in a receiver operator characteristic (ROC) analysis, utilising a simulated dataset. The relative sensitivity of each method is also tested on real data: BOLD (blood oxygen level dependent) fMRI scans were carried out on twelve subjects under normal conditions and during the hypercapnic state (induced through the inhalation of 6% CO2 in 21% O2 and 73%N2). Both CSS and CMS detected significant changes in connectivity between normal and hypercapnic states. A family wise error correction carried out at the individual connection level exhibited no significant changes in connectivity. PMID:24906136
Mobility of large clusters on a semiconductor surface: Kinetic Monte Carlo simulation results
NASA Astrophysics Data System (ADS)
M, Esen; A, T. Tüzemen; M, Ozdemir
2016-01-01
The mobility of clusters on a semiconductor surface for various values of cluster size is studied as a function of temperature by kinetic Monte Carlo method. The cluster resides on the surface of a square grid. Kinetic processes such as the diffusion of single particles on the surface, their attachment and detachment to/from clusters, diffusion of particles along cluster edges are considered. The clusters considered in this study consist of 150-6000 atoms per cluster on average. A statistical probability of motion to each direction is assigned to each particle where a particle with four nearest neighbors is assumed to be immobile. The mobility of a cluster is found from the root mean square displacement of the center of mass of the cluster as a function of time. It is found that the diffusion coefficient of clusters goes as D = A(T)Nα where N is the average number of particles in the cluster, A(T) is a temperature-dependent constant and α is a parameter with a value of about -0.64 < α < -0.75. The value of α is found to be independent of cluster sizes and temperature values (170-220 K) considered in this study. As the diffusion along the perimeter of the cluster becomes prohibitive, the exponent approaches a value of -0.5. The diffusion coefficient is found to change by one order of magnitude as a function of cluster size.
NASA Astrophysics Data System (ADS)
Thölken, Sophia; Schrabback, Tim; Reiprich, Thomas H.; Lovisari, Lorenzo; Allen, Steven W.; Hoekstra, Henk; Applegate, Douglas; Buddendiek, Axel; Hicks, Amalia
2018-03-01
Context. Observations of relaxed, massive, and distant clusters can provide important tests of standard cosmological models, for example by using the gas mass fraction. To perform this test, the dynamical state of the cluster and its gas properties have to be investigated. X-ray analyses provide one of the best opportunities to access this information and to determine important properties such as temperature profiles, gas mass, and the total X-ray hydrostatic mass. For the last of these, weak gravitational lensing analyses are complementary independent probes that are essential in order to test whether X-ray masses could be biased. Aims: We study the very luminous, high redshift (z = 0.902) galaxy cluster Cl J120958.9+495352 using XMM-Newton data. We measure global cluster properties and study the temperature profile and the cooling time to investigate the dynamical status with respect to the presence of a cool core. We use Hubble Space Telescope (HST) weak lensing data to estimate its total mass and determine the gas mass fraction. Methods: We perform a spectral analysis using an XMM-Newton observation of 15 ks cleaned exposure time. As the treatment of the background is crucial, we use two different approaches to account for the background emission to verify our results. We account for point spread function effects and deproject our results to estimate the gas mass fraction of the cluster. We measure weak lensing galaxy shapes from mosaic HST imaging and select background galaxies photometrically in combination with imaging data from the William Herschel Telescope. Results: The X-ray luminosity of Cl J120958.9+495352 in the 0.1-2.4 keV band estimated from our XMM-Newton data is LX = (13.4+1.2-1.0) × 1044 erg/s and thus it is one of the most X-ray luminous clusters known at similarly high redshift. We find clear indications for the presence of a cool core from the temperature profile and the central cooling time, which is very rare at such high redshifts. Based on the weak lensing analysis, we estimate a cluster mass of M500/1014 M⊙ = 4.4+2.2-2.0 (stat.) + 0.6 (sys.) and a gas mass fraction of fgas,2500 = 0.11-0.03+0.06 in good agreement with previous findings for high redshift and local clusters.
Ionization-induced star formation - IV. Triggering in bound clusters
NASA Astrophysics Data System (ADS)
Dale, J. E.; Ercolano, B.; Bonnell, I. A.
2012-12-01
We present a detailed study of star formation occurring in bound star-forming clouds under the influence of internal ionizing feedback from massive stars across a spectrum of cloud properties. We infer which objects are triggered by comparing our feedback simulations with control simulations in which no feedback was present. We find that feedback always results in a lower star formation efficiency and usually but not always results in a larger number of stars or clusters. Cluster mass functions are not strongly affected by feedback, but stellar mass functions are biased towards lower masses. Ionization also affects the geometrical distribution of stars in ways that are robust against projection effects, but may make the stellar associations more or less subclustered depending on the background cloud environment. We observe a prominent pillar in one simulation which is the remains of an accretion flow feeding the central ionizing cluster of its host cloud and suggest that this may be a general formation mechanism for pillars such as those observed in M16. We find that the association of stars with structures in the gas such as shells or pillars is a good but by no means foolproof indication that those stars have been triggered and we conclude overall that it is very difficult to deduce which objects have been induced to form and which formed spontaneously simply from observing the system at a single time.
Early dynamical evolution of substructured stellar clusters
NASA Astrophysics Data System (ADS)
Dorval, Julien; Boily, Christian
2015-08-01
It is now widely accepted that stellar clusters form with a high level of substructure (Kuhn et al. 2014, Bate 2009), inherited from the molecular cloud and the star formation process. Evidence from observations and simulations also indicate the stars in such young clusters form a subvirial system (Kirk et al. 2007, Maschberger et al. 2010). The subsequent dynamical evolution can cause important mass loss, ejecting a large part of the birth population in the field. It can also imprint the stellar population and still be inferred from observations of evolved clusters. Nbody simulations allow a better understanding of these early twists and turns, given realistic initial conditions. Nowadays, substructured, clumpy young clusters are usually obtained through pseudo-fractal growth (Goodwin et al. 2004) and velocity inheritance. Such models are visually realistics and are very useful, they are however somewhat artificial in their velocity distribution. I introduce a new way to create clumpy initial conditions through a "Hubble expansion" which naturally produces self consistent clumps, velocity-wise. A velocity distribution analysis shows the new method produces realistic models, consistent with the dynamical state of the newly created cores in hydrodynamic simulation of cluster formation (Klessen & Burkert 2000). I use these initial conditions to investigate the dynamical evolution of young subvirial clusters, up to 80000 stars. I find an overall soft evolution, with hierarchical merging leading to a high level of mass segregation. I investigate the influence of the mass function on the fate of the cluster, specifically on the amount of mass loss induced by the early violent relaxation. Using a new binary detection algorithm, I also find a strong processing of the native binary population.
The cluster galaxy circular velocity function
NASA Astrophysics Data System (ADS)
Desai, V.; Dalcanton, J. J.; Mayer, L.; Reed, D.; Quinn, T.; Governato, F.
2004-06-01
We present galaxy circular velocity functions (GCVFs) for 34 low-redshift (z<~ 0.15) clusters identified in the Sloan Digital Sky Survey (SDSS), for 15 clusters drawn from dark matter simulations of hierarchical structure growth in a ΛCDM cosmology, and for ~22 000 SDSS field galaxies. We find that the simulations successfully reproduce the shape, amplitude and scatter in the observed distribution of cluster galaxy circular velocities. The power-law slope of the observed cluster GCVF is ~-2.4, independent of cluster velocity dispersion. The average slope of the simulated GCVFs is somewhat steeper, although formally consistent given the errors. We find that the effects of baryons on galaxy rotation curves is to flatten the simulated cluster GCVF into better agreement with observations. The cumulative GCVFs of the simulated clusters are very similar across a wide range of cluster masses, provided individual subhalo circular velocities are scaled by the circular velocities of the parent cluster. The scatter is consistent with that measured in the cumulative, scaled observed cluster GCVF. Finally, the observed field GCVF deviates significantly from a power law, being flatter than the cluster GCVF at circular velocities less than 200 km s-1.
NASA Astrophysics Data System (ADS)
Konstantopoulos, I. S.; Smith, L. J.; Adamo, A.; Silva-Villa, E.; Gallagher, J. S.; Bastian, N.; Ryon, J. E.; Westmoquette, M. S.; Zackrisson, E.; Larsen, S. S.; Weisz, D. R.; Charlton, J. C.
2013-05-01
We present the Snapshot Hubble U-band Cluster Survey (SHUCS), a project aimed at characterizing the star cluster populations of 10 nearby galaxies (d < 23 Mpc, half within ≈12 Mpc) through new F336W (U-band equivalent) imaging from Wide Field Camera 3, and archival BVI-equivalent data with the Hubble Space Telescope. Completing the UBVI baseline reduces the age-extinction degeneracy of optical colors, thus enabling the measurement of reliable ages and masses for the thousands of clusters covered by our survey. The sample consists chiefly of face-on spiral galaxies at low inclination, in various degrees of isolation (isolated, in group, merging), and includes two active galactic nucleus hosts. This first paper outlines the survey itself, the observational datasets, the analysis methods, and presents a proof-of-concept study of the large-scale properties and star cluster population of NGC 4041, a massive SAbc galaxy at a distance of ≈23 Mpc, and part of a small grouping of six giant members. We resolve two structural components with distinct stellar populations, a morphology more akin to merging and interacting systems. We also find strong evidence of a truncated, Schechter-type mass function, and a similarly segmented luminosity function. These results indicate that binning must erase much of the substructure present in the mass and luminosity functions, and might account for the conflicting reports on the intrinsic shape of these functions in the literature. We also note a tidal feature in the outskirts of the galaxy in Galaxy Evolution Explorer UV imaging, and follow it up with a comprehensive multi-wavelength study of NGC 4041 and its parent group. We deduce a minor merger as a likely cause of its segmented structure and the observed pattern of a radially decreasing star formation rate. We propose that combining the study of star cluster populations with broadband metrics is not only advantageous, but often easily achievable thorough archival datasets. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program SNAP 12229.
Measuring subhalo mass in redMaPPer clusters with CFHT Stripe 82 Survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ran; Shan, Huanyuan; Kneib, Jean -Paul
Here, we use the shear catalogue from the CFHT Stripe-82 Survey to measure the subhalo masses of satellite galaxies in redMaPPer clusters. Assuming a Chabrier initial mass function and a truncated NFW model for the subhalo mass distribution, we find that the subhalo mass to galaxy stellar mass ratio increases as a function of projected halo-centric radius r p, from M sub/M star = 4.43 +6.63 –2.23 at r p ε [0.1, 0.3] h –1 Mpc to M sub/M star = 75.40 +19.73 –19.09 at r p ε [0.6, 0.9] h –1 Mpc. We also investigate the dependence of subhalomore » masses on stellar mass by splitting satellite galaxies into two stellar mass bins: 10 < log (M star/h –1M ⊙) < 10.5 and 11 < log (M star/h –1 M ⊙) < 12. The best-fitting subhalo mass of the more massive satellite galaxy bin is larger than that of the less massive satellites: log(M sub/h –1M ⊙) = 11.14 +0.66 –0.73 (M sub/M star = 19.5 +19.8 –17.9) versus log(M sub/h –1M ⊙) = 12.38 +0.16 –0.16 (M sub/M star = 21.1 +7.4 –7.7).« less
Measuring subhalo mass in redMaPPer clusters with CFHT Stripe 82 Survey
Li, Ran; Shan, Huanyuan; Kneib, Jean -Paul; ...
2016-03-07
Here, we use the shear catalogue from the CFHT Stripe-82 Survey to measure the subhalo masses of satellite galaxies in redMaPPer clusters. Assuming a Chabrier initial mass function and a truncated NFW model for the subhalo mass distribution, we find that the subhalo mass to galaxy stellar mass ratio increases as a function of projected halo-centric radius r p, from M sub/M star = 4.43 +6.63 –2.23 at r p ε [0.1, 0.3] h –1 Mpc to M sub/M star = 75.40 +19.73 –19.09 at r p ε [0.6, 0.9] h –1 Mpc. We also investigate the dependence of subhalomore » masses on stellar mass by splitting satellite galaxies into two stellar mass bins: 10 < log (M star/h –1M ⊙) < 10.5 and 11 < log (M star/h –1 M ⊙) < 12. The best-fitting subhalo mass of the more massive satellite galaxy bin is larger than that of the less massive satellites: log(M sub/h –1M ⊙) = 11.14 +0.66 –0.73 (M sub/M star = 19.5 +19.8 –17.9) versus log(M sub/h –1M ⊙) = 12.38 +0.16 –0.16 (M sub/M star = 21.1 +7.4 –7.7).« less
A Database of Young Star Clusters for Five Hundred Galaxies
NASA Astrophysics Data System (ADS)
Evans, Jessica; Whitmore, B. C.; Lindsay, K.; Chandar, R.; Larsen, S.
2009-01-01
The study of young massive stellar clusters has faced a series of observational challenges, such as the use of inconsistent data sets and low number statistics. To rectify these shortcomings, this project will use the source lists developed as part of the Hubble Legacy Archive to obtain a large, uniform database of super star clusters in nearby star-forming galaxies in order to address two fundamental astronomical questions: 1) To what degree is the cluster luminosity (and mass) function of star clusters universal? 2) What fraction of super star clusters are "missing" in optical studies (i.e., are hidden by dust)? The archive's recent data release (Data Release 2 - September, 2008) will help us achieve the large sample necessary (N 50 galaxies for multi-wavelength, N 500 galaxies for ACS F814W). The uniform data set will comprise of ACS, WFPC2, and NICMOS data, with DAOphot used for object detection. This database will also support comparisons with new Monte-Carlo simulations that have independently been developed in the past few years, and will be used to test the Whitmore, Chandar, Fall (2007) framework designed to understand the demographics of star clusters in all star forming galaxies. The catalogs will increase the number of galaxies with measured mass and luminosity functions by an order of magnitude, and will provide a powerful new tool for comparative studies, both ours and the community's. The poster will describe our preliminary investigation for the first 30 galaxies in the sample.
Photometric and Structural Properties of NGC 6544: A Combined VVV-Hubble Space Telescope Study
NASA Astrophysics Data System (ADS)
Cohen, Roger E.; Mauro, Francesco; Geisler, Doug; Moni Bidin, Christian; Dotter, Aaron; Bonatto, Charles
2014-07-01
We combine archival Hubble Space Telescope imaging with wide-field near-infrared photometry to study the neglected metal-poor Galactic globular cluster NGC 6544. A high spatial resolution map of differential reddening over the inner portion of the cluster is constructed, revealing variations of up to half of the total reddening, and the resulting corrected color-magnitude diagrams reveal a sparse blue horizontal branch and centrally concentrated blue straggler population, verified via relative proper motions. Using the corrected photometry to investigate the cluster distance, reddening, and age via direct comparison to well-calibrated photometry of clusters with similar metallicities, we estimate (m - M)0 = 11.96, E(B - V) = 0.79, and an age coeval with M13 to within the relevant uncertainties. Although our data are insufficient to place tight constraints on the reddening law toward NGC 6544, we find no strong evidence that it is non-standard at optical or near-infrared wavelengths. We also provide near-infrared fiducial sequences extending nearly 2 mag below the cluster main sequence turnoff, generated from a statistically decontaminated sample of cluster stars. Lastly, we redetermine the cluster center and construct a radial number density profile which is well fit by an atypically flat power law with a slope of about 1.7. We discuss this result, together with a flattened main sequence luminosity function and inverted mass function, in the context of mass segregation and tidal stripping via interactions with Milky Way potential.
NASA Astrophysics Data System (ADS)
Tanaka, Hiromasa; Neukermans, Sven; Janssens, Ewald; Silverans, Roger E.; Lievens, Peter
2003-10-01
A systematic study on the structure and stability of zinc doped gold clusters has been performed by density functional theory calculations. All the lowest-energy isomers found have a planar structure and resemble pure gold clusters in shape. Stable isomers tend to equally delocalize valence s electrons of the constituent atoms over the entire structure and maximize the number of Au-Zn bonds in the structure. This is because the Au-Zn bond is stronger than the Au-Au bond and gives an extra σ-bonding interaction by the overlap between vacant Zn 4p and valence Au 6s(5d) orbitals. No three-dimensional isomers were found for Au5Zn+ and Au4Zn clusters containing six delocalized valence electrons. This result reflects that these clusters have a magic number of delocalized electrons for two-dimensional systems. Calculated vertical ionization energies and dissociation energies as a function of the cluster size show odd-even behavior, in agreement with recent mass spectrometric observations [Tanaka et al., J. Am. Chem. Soc. 125, 2862 (2003)].
X-ray insights into star and planet formation.
Feigelson, Eric D
2010-04-20
Although stars and planets form in cold environments, X-rays are produced in abundance by young stars. This review examines the implications of stellar X-rays for star and planet formation studies, highlighting the contributions of NASA's (National Aeronautics and Space Administration) Chandra X-ray Observatory. Seven topics are covered: X-rays from protostellar outflow shocks, X-rays from the youngest protostars, the stellar initial mass function, the structure of young stellar clusters, the fate of massive stellar winds, X-ray irradiation of protoplanetary disks, and X-ray flare effects on ancient meteorites. Chandra observations of star-forming regions often show dramatic star clusters, powerful magnetic reconnection flares, and parsec-scale diffuse plasma. X-ray selected samples of premain sequence stars significantly advance studies of star cluster formation, the stellar initial mass function, triggered star-formation processes, and protoplanetary disk evolution. Although X-rays themselves may not play a critical role in the physics of star formation, they likely have important effects on protoplanetary disks by heating and ionizing disk gases.
X-ray insights into star and planet formation
Feigelson, Eric D.
2010-01-01
Although stars and planets form in cold environments, X-rays are produced in abundance by young stars. This review examines the implications of stellar X-rays for star and planet formation studies, highlighting the contributions of NASA’s (National Aeronautics and Space Administration) Chandra X-ray Observatory. Seven topics are covered: X-rays from protostellar outflow shocks, X-rays from the youngest protostars, the stellar initial mass function, the structure of young stellar clusters, the fate of massive stellar winds, X-ray irradiation of protoplanetary disks, and X-ray flare effects on ancient meteorites. Chandra observations of star-forming regions often show dramatic star clusters, powerful magnetic reconnection flares, and parsec-scale diffuse plasma. X-ray selected samples of premain sequence stars significantly advance studies of star cluster formation, the stellar initial mass function, triggered star-formation processes, and protoplanetary disk evolution. Although X-rays themselves may not play a critical role in the physics of star formation, they likely have important effects on protoplanetary disks by heating and ionizing disk gases. PMID:20404197
NASA Astrophysics Data System (ADS)
Gupta, Anshu; Yuan, Tiantian; Torrey, Paul; Vogelsberger, Mark; Martizzi, Davide; Tran, Kim-Vy H.; Kewley, Lisa J.; Marinacci, Federico; Nelson, Dylan; Pillepich, Annalisa; Hernquist, Lars; Genel, Shy; Springel, Volker
2018-06-01
We use the IllustrisTNG simulations to investigate the evolution of the mass-metallicity relation (MZR) for star-forming cluster galaxies as a function of the formation history of their cluster host. The simulations predict an enhancement in the gas-phase metallicities of star-forming cluster galaxies (109 < M* < 1010 M⊙ h-1) at z ≤ 1.0 in comparisons to field galaxies. This is qualitatively consistent with observations. We find that the metallicity enhancement of cluster galaxies appears prior to their infall into the central cluster potential, indicating for the first time a systematic `chemical pre-processing' signature for infalling cluster galaxies. Namely, galaxies that will fall into a cluster by z = 0 show a ˜0.05 dex enhancement in the MZR compared to field galaxies at z ≤ 0.5. Based on the inflow rate of gas into cluster galaxies and its metallicity, we identify that the accretion of pre-enriched gas is the key driver of the chemical evolution of such galaxies, particularly in the stellar mass range (109 < M* < 1010 M⊙ h-1). We see signatures of an environmental dependence of the ambient/inflowing gas metallicity that extends well outside the nominal virial radius of clusters. Our results motivate future observations looking for pre-enrichment signatures in dense environments.
NASA Astrophysics Data System (ADS)
Hoag, A.; Huang, K.-H.; Treu, T.; Bradač, M.; Schmidt, K. B.; Wang, X.; Brammer, G. B.; Broussard, A.; Amorin, R.; Castellano, M.; Fontana, A.; Merlin, E.; Schrabback, T.; Trenti, M.; Vulcani, B.
2016-11-01
We present a model using both strong and weak gravitational lensing of the galaxy cluster MACS J0416.1-2403, constrained using spectroscopy from the Grism Lens-Amplified Survey from Space (GLASS) and Hubble Frontier Fields (HFF) imaging data. We search for emission lines in known multiply imaged sources in the GLASS spectra, obtaining secure spectroscopic redshifts of 30 multiple images belonging to 15 distinct source galaxies. The GLASS spectra provide the first spectroscopic measurements for five of the source galaxies. The weak lensing signal is acquired from 884 galaxies in the F606W HFF image. By combining the weak lensing constraints with 15 multiple image systems with spectroscopic redshifts and nine multiple image systems with photometric redshifts, we reconstruct the gravitational potential of the cluster on an adaptive grid. The resulting map of total mass density is compared with a map of stellar mass density obtained from the deep Spitzer Frontier Fields imaging data to study the relative distribution of stellar and total mass in the cluster. We find that the projected stellar mass to total mass ratio, f ⋆, varies considerably with the stellar surface mass density. The mean projected stellar mass to total mass ratio is < {f}\\star > =0.009+/- 0.003 (stat.), but with a systematic error as large as 0.004-0.005, dominated by the choice of the initial mass function. We find agreement with several recent measurements of f ⋆ in massive cluster environments. The lensing maps of convergence, shear, and magnification are made available to the broader community in the standard HFF format.
Old, L.; Wojtak, R.; Pearce, F. R.; ...
2017-12-20
With the advent of wide-field cosmological surveys, we are approaching samples of hundreds of thousands of galaxy clusters. While such large numbers will help reduce statistical uncertainties, the control of systematics in cluster masses is crucial. Here we examine the effects of an important source of systematic uncertainty in galaxy-based cluster mass estimation techniques: the presence of significant dynamical substructure. Dynamical substructure manifests as dynamically distinct subgroups in phase-space, indicating an ‘unrelaxed’ state. This issue affects around a quarter of clusters in a generally selected sample. We employ a set of mock clusters whose masses have been measured homogeneously withmore » commonly used galaxy-based mass estimation techniques (kinematic, richness, caustic, radial methods). We use these to study how the relation between observationally estimated and true cluster mass depends on the presence of substructure, as identified by various popular diagnostics. We find that the scatter for an ensemble of clusters does not increase dramatically for clusters with dynamical substructure. However, we find a systematic bias for all methods, such that clusters with significant substructure have higher measured masses than their relaxed counterparts. This bias depends on cluster mass: the most massive clusters are largely unaffected by the presence of significant substructure, but masses are significantly overestimated for lower mass clusters, by ~ 10 percent at 10 14 and ≳ 20 percent for ≲ 10 13.5. Finally, the use of cluster samples with different levels of substructure can therefore bias certain cosmological parameters up to a level comparable to the typical uncertainties in current cosmological studies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Old, L.; Wojtak, R.; Pearce, F. R.
With the advent of wide-field cosmological surveys, we are approaching samples of hundreds of thousands of galaxy clusters. While such large numbers will help reduce statistical uncertainties, the control of systematics in cluster masses is crucial. Here we examine the effects of an important source of systematic uncertainty in galaxy-based cluster mass estimation techniques: the presence of significant dynamical substructure. Dynamical substructure manifests as dynamically distinct subgroups in phase-space, indicating an ‘unrelaxed’ state. This issue affects around a quarter of clusters in a generally selected sample. We employ a set of mock clusters whose masses have been measured homogeneously withmore » commonly used galaxy-based mass estimation techniques (kinematic, richness, caustic, radial methods). We use these to study how the relation between observationally estimated and true cluster mass depends on the presence of substructure, as identified by various popular diagnostics. We find that the scatter for an ensemble of clusters does not increase dramatically for clusters with dynamical substructure. However, we find a systematic bias for all methods, such that clusters with significant substructure have higher measured masses than their relaxed counterparts. This bias depends on cluster mass: the most massive clusters are largely unaffected by the presence of significant substructure, but masses are significantly overestimated for lower mass clusters, by ~ 10 percent at 10 14 and ≳ 20 percent for ≲ 10 13.5. Finally, the use of cluster samples with different levels of substructure can therefore bias certain cosmological parameters up to a level comparable to the typical uncertainties in current cosmological studies.« less
Novikov, Alexey; Caroff, Martine; Della-Negra, Serge; Depauw, Joël; Fallavier, Mireille; Le Beyec, Yvon; Pautrat, Michèle; Schultz, J Albert; Tempez, Agnès; Woods, Amina S
2005-01-01
A Au-Si liquid metal ion source which produces Au(n) clusters over a large range of sizes was used to study the dependence of both the molecular ion desorption yield and the damage cross-section on the size (n = 1 to 400) and on the kinetic energy (E = 10 to 500 keV) of the clusters used to bombard bioorganic surfaces. Three pure peptides with molecular masses between 750 and 1200 Da were used without matrix. [M+H](+) and [M+cation](+) ion emission yields were enhanced by as much as three orders of magnitude when bombarding with Au(400) (4+) instead of monatomic Au(+), yet very little damage was induced in the samples. A 100-fold increase in the molecular ion yield was observed when the incident energy of Au(9) (+) was varied from 10 to 180 keV. Values of emission yields and damage cross-sections are presented as a function of cluster size and energy. The possibility to adjust both cluster size and energy, depending on the application, makes the analysis of biomolecules by secondary ion mass spectrometry an extremely powerful and flexible technique, particularly when combined with orthogonal time-of-flight mass spectrometry that then allows fast measurements using small primary ion beam currents. Copyright (c) 2005 John Wiley & Sons, Ltd.
Single-Photon Ionization Soft-X-Ray Laser Mass Spectrometry of Potential Hydrogen Storage Materials
NASA Astrophysics Data System (ADS)
Dong, F.; Bernstein, E. R.; Rocca, J. J.
A desk-top size capillary discharge 46.9 nm lasear is applied in the gas phase study of nanoclusters. The high photon energy allows for single-photon ionization mass spectrometry with reduced cluster fragmentation. In the present studies, neutral Al m C n and Al m C n H x cluster are investigation for the first time. Single photon ionization through 46.9 nm, 118 nm, 193 nm lasers is used to detect neutral cluster distributions through time of flight mass spectrometry. Al m C n clusters are generated through laser ablation of a mixture of Al and C powders pressed into a disk. An oscillation of the vertical ionization energies (VIEs) of Al m C n clusters is observed in the experiments. The VIEs of Al m C n clusters changes as a function of the numbers of Al and C atoms in the clusters. Al m C n H x clusters are generated through an Al ablation plasma-hydrocarbon reaction, an Al-C ablation plasma reacting with H2 gas, or through cold Al m C n clusters reacting with H2 gas in a fast flow reactor. DFT and ab inito calculations are carried out to explore the structures, IEs, and electronic structures of Al m C n H x clusters. C=C bonds are favored for the lowest energy structures for Al m C n clusters. Be m C n H x are generated through a beryllium ablation plasma-hydrocarbon reaction and detected by single photon ionization of 193 nm laser. Both Al m C n H x and Be m C n H x are considered as potential hydrogen storage materials.
Cosmological parameter estimation from CMB and X-ray cluster after Planck
NASA Astrophysics Data System (ADS)
Hu, Jian-Wei; Cai, Rong-Gen; Guo, Zong-Kuan; Hu, Bin
2014-05-01
We investigate constraints on cosmological parameters in three 8-parameter models with the summed neutrino mass as a free parameter, by a joint analysis of CCCP X-ray cluster data, the newly released Planck CMB data as well as some external data sets including baryon acoustic oscillation measurements from the 6dFGS, SDSS DR7 and BOSS DR9 surveys, and Hubble Space Telescope H0 measurement. We find that the combined data strongly favor a non-zero neutrino masses at more than 3σ confidence level in these non-vanilla models. Allowing the CMB lensing amplitude AL to vary, we find AL > 1 at 3σ confidence level. For dark energy with a constant equation of state w, we obtain w < -1 at 3σ confidence level. The estimate of the matter power spectrum amplitude σ8 is discrepant with the Planck value at 2σ confidence level, which reflects some tension between X-ray cluster data and Planck data in these non-vanilla models. The tension can be alleviated by adding a 9% systematic shift in the cluster mass function.
Chandra X-ray observation of the young stellar cluster NGC 3293 in the Carina Nebula Complex
NASA Astrophysics Data System (ADS)
Preibisch, T.; Flaischlen, S.; Gaczkowski, B.; Townsley, L.; Broos, P.
2017-09-01
Context. NGC 3293 is a young stellar cluster at the northwestern periphery of the Carina Nebula Complex that has remained poorly explored until now. Aims: We characterize the stellar population of NGC 3293 in order to evaluate key parameters of the cluster population such as the age and the mass function, and to test claims of an abnormal IMF and a deficit of M ≤ 2.5 M⊙ stars. Methods: We performed a deep (70 ks) X-ray observation of NGC 3293 with Chandra and detected 1026 individual X-ray point sources. These X-ray data directly probe the low-mass (M ≤ 2 M⊙) stellar population by means of the strong X-ray emission of young low-mass stars. We identify counterparts for 74% of the X-ray sources in our deep near-infrared images. Results: Our data clearly show that NGC 3293 hosts a large population of ≈solar-mass stars, refuting claims of a lack of M ≤ 2.5 M⊙ stars. The analysis of the color magnitude diagram suggests an age of 8-10 Myr for the low-mass population of the cluster. There are at least 511 X-ray detected stars with color magnitude positions that are consistent with young stellar members within 7 arcmin of the cluster center. The number ratio of X-ray detected stars in the [1-2 ] M⊙ range versus the M ≥ 5 M⊙ stars (known from optical spectroscopy) is consistent with the expectation from a normal field initial mass function. Most of the early B-type stars and ≈20% of the later B-type stars are detected as X-ray sources. Conclusions: Our data shows that NGC 3293 is one of the most populous stellar clusters in the entire Carina Nebula Complex (very similar to Tr 16 and Tr 15; only Tr 14 is more populous). The cluster probably harbored several O-type stars, whose supernova explosions may have had an important impact on the early evolution of the Carina Nebula Complex. The Chandra data described in this paper have been obtained in the open time project with ObsID 16648 (PI: T. Preibisch) ivo://ADS/Sa.CXO#obs/16648.Tables 1-3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/A85
NASA Astrophysics Data System (ADS)
Zhang, Yu-Ying; Reiprich, Thomas H.; Schneider, Peter; Clerc, Nicolas; Merloni, Andrea; Schwope, Axel; Borm, Katharina; Andernach, Heinz; Caretta, César A.; Wu, Xiang-Ping
2017-03-01
We present the relation of X-ray luminosity versus dynamical mass for 63 nearby clusters of galaxies in a flux-limited sample, the HIghest X-ray FLUx Galaxy Cluster Sample (HIFLUGCS, consisting of 64 clusters). The luminosity measurements are obtained based on 1.3 Ms of clean XMM-Newton data and ROSAT pointed observations. The masses are estimated using optical spectroscopic redshifts of 13647 cluster galaxies in total. We classify clusters into disturbed and undisturbed based on a combination of the X-ray luminosity concentration and the offset between the brightest cluster galaxy and X-ray flux-weighted center. Given sufficient numbers (I.e., ≥45) of member galaxies when the dynamical masses are computed, the luminosity versus mass relations agree between the disturbed and undisturbed clusters. The cool-core clusters still dominate the scatter in the luminosity versus mass relation even when a core-corrected X-ray luminosity is used, which indicates that the scatter of this scaling relation mainly reflects the structure formation history of the clusters. As shown by the clusters with only few spectroscopically confirmed members, the dynamical masses can be underestimated and thus lead to a biased scaling relation. To investigate the potential of spectroscopic surveys to follow up high-redshift galaxy clusters or groups observed in X-ray surveys for the identifications and mass calibrations, we carried out Monte Carlo resampling of the cluster galaxy redshifts and calibrated the uncertainties of the redshift and dynamical mass estimates when only reduced numbers of galaxy redshifts per cluster are available. The resampling considers the SPIDERS and 4MOST configurations, designed for the follow-up of the eROSITA clusters, and was carried out for each cluster in the sample at the actual cluster redshift as well as at the assigned input cluster redshifts of 0.2, 0.4, 0.6, and 0.8. To follow up very distant clusters or groups, we also carried out the mass calibration based on the resampling with only ten redshifts per cluster, and redshift calibration based on the resampling with only five and ten redshifts per cluster, respectively. Our results demonstrate the power of combining upcoming X-ray and optical spectroscopic surveys for mass calibration of clusters. The scatter in the dynamical mass estimates for the clusters with at least ten members is within 50%.
NASA Technical Reports Server (NTRS)
Loewenstein, M.
1994-01-01
A simple method for deriving well-behaved temperature solutions to the equation of hydrostatic equilibrium for intracluster media with X-ray imaging observations is presented and applied to a series of generalized models as well as to observations of the Perseus cluster and Abell 2256. In these applications the allowed range in the ratio of nonbaryons to baryons as a function of radius is derived, taking into account the uncertainties and crude spatial resolution of the X-ray spectra and considering a range of physically reasonable mass models with various scale heights. Particular attention is paid to the central regions of the cluster, and it is found that the dark matter can be sufficiently concentrated to be consistent with the high central mass surface densities for moderate-redshift clusters from their gravitational lensing properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Kaylea; Nagai, Daisuke; Yu, Liang
2014-02-20
The use of galaxy clusters as cosmological probes hinges on our ability to measure their masses accurately and with high precision. Hydrostatic mass is one of the most common methods for estimating the masses of individual galaxy clusters, which suffer from biases due to departures from hydrostatic equilibrium. Using a large, mass-limited sample of massive galaxy clusters from a high-resolution hydrodynamical cosmological simulation, in this work we show that in addition to turbulent and bulk gas velocities, acceleration of gas introduces biases in the hydrostatic mass estimate of galaxy clusters. In unrelaxed clusters, the acceleration bias is comparable to themore » bias due to non-thermal pressure associated with merger-induced turbulent and bulk gas motions. In relaxed clusters, the mean mass bias due to acceleration is small (≲ 3%), but the scatter in the mass bias can be reduced by accounting for gas acceleration. Additionally, this acceleration bias is greater in the outskirts of higher redshift clusters where mergers are more frequent and clusters are accreting more rapidly. Since gas acceleration cannot be observed directly, it introduces an irreducible bias for hydrostatic mass estimates. This acceleration bias places limits on how well we can recover cluster masses from future X-ray and microwave observations. We discuss implications for cluster mass estimates based on X-ray, Sunyaev-Zel'dovich effect, and gravitational lensing observations and their impact on cluster cosmology.« less
NASA Astrophysics Data System (ADS)
Nelson, Kaylea; Lau, Erwin T.; Nagai, Daisuke; Rudd, Douglas H.; Yu, Liang
2014-02-01
The use of galaxy clusters as cosmological probes hinges on our ability to measure their masses accurately and with high precision. Hydrostatic mass is one of the most common methods for estimating the masses of individual galaxy clusters, which suffer from biases due to departures from hydrostatic equilibrium. Using a large, mass-limited sample of massive galaxy clusters from a high-resolution hydrodynamical cosmological simulation, in this work we show that in addition to turbulent and bulk gas velocities, acceleration of gas introduces biases in the hydrostatic mass estimate of galaxy clusters. In unrelaxed clusters, the acceleration bias is comparable to the bias due to non-thermal pressure associated with merger-induced turbulent and bulk gas motions. In relaxed clusters, the mean mass bias due to acceleration is small (lsim 3%), but the scatter in the mass bias can be reduced by accounting for gas acceleration. Additionally, this acceleration bias is greater in the outskirts of higher redshift clusters where mergers are more frequent and clusters are accreting more rapidly. Since gas acceleration cannot be observed directly, it introduces an irreducible bias for hydrostatic mass estimates. This acceleration bias places limits on how well we can recover cluster masses from future X-ray and microwave observations. We discuss implications for cluster mass estimates based on X-ray, Sunyaev-Zel'dovich effect, and gravitational lensing observations and their impact on cluster cosmology.
Low oxidation state aluminum-containing cluster anions: Cp{sup ∗}Al{sub n}H{sup −}, n = 1–3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xinxing; Ganteför, Gerd; Bowen, Kit, E-mail: AKandalam@wcupa.edu, E-mail: kbowen@jhu.edu
Three new, low oxidation state, aluminum-containing cluster anions, Cp*Al{sub n}H{sup −}, n = 1–3, were prepared via reactions between aluminum hydride cluster anions, Al{sub n}H{sub m}{sup −}, and Cp*H ligands. These were characterized by mass spectrometry, anion photoelectron spectroscopy, and density functional theory based calculations. Agreement between the experimentally and theoretically determined vertical detachment energies and adiabatic detachment energies validated the computed geometrical structures. Reactions between aluminum hydride cluster anions and ligands provide a new avenue for discovering low oxidation state, ligated aluminum clusters.
Towards high accuracy tests on the substellar IMF in young clusters. A survey in NGC 2024.
NASA Astrophysics Data System (ADS)
Da Rio, Nicola
2017-08-01
Measuring the Initial Mass Function in young clusters, and testing its universality, is a fundamental benchmark to constrain the physical processes and theoretical models of star formation. The shape and universality of the stellar IMF are well known. Our observational characterization of the substellar IMF, on the other hand, remains more uncertain, along with its possible environmental variations. Because of this, the physical processes that play a role in the formation of brown dwarfs are not fully constrained. In Cycle 22 we were awarded HST time to carry out the deepest spectro-photometric census of BDs in a young cluster: the Orion Nebula Cluster. Through deep WFC3/IR narrow band imaging, we are able to obtain Teff and A_V down to 15Mjup. Preliminary analysis limited to a portion of the total field of view allows us to classify several hundreds BDs, place them in the HRD and obtain, for an extinction limited sample, the complete and consistent IMF down to planetary masses. The substellar slope is consistent with the Galactic IMF but a rapid drop is found at the H-burning limit. We propose to carry out a nearly identical survey with HST in a younger, less massive nearby cluster: NGC2024 in the Flame Nebula. This will allow us to derive the complete census of the young population down to planetary masses, derive the IMF, enabling a consistent comparison with the results in the ONC. We will specifically look for statistically significant IMF variations with environmental properties (cluster mass, density) and investigate primordial mass segregation in the substellar regime. These results will significantly help to constrain the mechanisms involved in BD formation.
Cluster-collision frequency. I. The long-range intercluster potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amadon, A.S.; Marlow, W.H.
1991-05-15
In recent years, gas-borne atomic and molecular clusters have emerged as subjects of basic physical and chemical interest and are gaining recognition for their importance in numerous applications. To calculate the evolution of the mass distribution of these clusters, their thermal collision rates are required. For computing these collision rates, the long-range interaction energy between clusters is required and is the subject of this paper. Utilizing a formulation of the iterated van der Waals interaction over discrete molecules that can be shown to converge with increasing numbers of atoms to the Lifshitz--van der Waals interaction for condensed matter, we calculatemore » the interaction energy as a function of center-of-mass separation for identical pairs of clusters of 13, 33, and 55 molecules of carbon tetrachloride in icosahedral and dodecahedral configurations. Two different relative orientations are chosen for each pair of clusters, and the energies are compared with energies calculated from the standard formula for continuum matter derived by summing over pair interactions with the Hamaker constant calculated according to Lifshitz theory. The results of these calculations give long-range interaction energies that assume typical adhesion-type values at cluster contact, unlike the unbounded results for the Lifshitz-Hamaker model. The relative difference between the discrete molecular energies and the continuum energies vanishes for {ital r}{sup *}{approx}2, where {ital r}{sup *} is the center-of-mass separation distance in units of cluster diameter. For larger separations, the relative difference changes sign, showing a value of approximately 15%, with the difference diminishing for increasing-sized clusters.« less
A deep view on the Virgo cluster core
NASA Astrophysics Data System (ADS)
Lieder, S.; Lisker, T.; Hilker, M.; Misgeld, I.; Durrell, P.
2012-02-01
Studies of dwarf spheroidal (dSph) galaxies with statistically significant sample sizes are still rare beyond the Local Group, since these low surface brightness objects can only be identified with deep imaging data. In galaxy clusters, where they constitute the dominant population in terms of number, they represent the faint end slope of the galaxy luminosity function and provide important insight on the interplay between galaxy mass and environment. In this study we investigate the optical photometric properties of early-type galaxies (dwarf ellipticals (dEs) and dSphs) in the Virgo cluster core region, by analysing their location on the colour magnitude relation (CMR) and the structural scaling relations down to faint magnitudes, and by constructing the luminosity function to compare it with theoretical expectations. Our work is based on deep CFHT V- and I-band data covering several square degrees of the Virgo cluster core that were obtained in 1999 using the CFH12K instrument. We visually select potential cluster members based on morphology and angular size, excluding spiral galaxies. A photometric analysis has been carried out for 295 galaxies, using surface brightness profile shape and colour as further criteria to identify probable background contaminants. 216 galaxies are considered to be certain or probable Virgo cluster members. Our study reveals 77 galaxies not catalogued in the VCC (with 13 of them already found in previous studies) that are very likely Virgo cluster members because they follow the Virgo CMR and exhibit low Sérsic indices. Those galaxies reach MV = -8.7 mag. The CMR shows a clear change in slope from dEs to dSphs, while the scatter of the CMR in the dSph regime does not increase significantly. Our sample might, however, be somewhat biased towards redder colours. The scaling relations given by the dEs appear to be continued by the dSphs indicating a similar origin. The observed change in the CMR slope may mark the point at which gas loss prevented significant metal enrichment. The almost constant scatter around the CMR possibly indicates a short formation period, resulting in similar stellar populations. The luminosity function shows a Schechter function's faint end slope of α = -1.50 ± 0.17, implying a lack of galaxies related to the expected number of low-mass dark matter haloes from theoretical models. Our findings could be explained by suppressed star formation in low-mass dark matter halos or by tidal disruption of dwarfs in the dense core region of the cluster. Tables 3 and 4 are available in electronic form at http://www.aanda.org
NASA Technical Reports Server (NTRS)
Pacholczyk, A. G.; Stepinski, T. F.
1988-01-01
An accreting cluster of black holes in an active galactic nucleus is a natural site for a system of shock structures with a hierarchy of sizes, corresponding to the distribution of masses in the cluster. Accreted gas containing some magnetic fields and supersonically falling onto the core forms shocks on the outside of each hole and these shocks are capable of accelerating relativistic particles. The energies reached in a single shock are size rather than acceleration time limited and are proportional to the mass of the hole with a proportionality constant being a function of the position of the hole within a cluster and the model of the cluster and the shock formation. These energies are adequate to explain the observed properties of synchrotron and inverse-Compton radiation from these objects. The resulting energy spectrum of particles in the cluster in 'zeroth' approximation has the form of a doubly broken power law with indices of two and three on both extremes of the energy domain respectively, bridged by an index of about 2.5.
Gas Dynamics in Galaxy Clusters
NASA Astrophysics Data System (ADS)
McCourt, Michael Kingsley, Jr.
Galaxy clusters are the most massive structures in the universe and, in the hierarchical pattern of cosmological structure formation, the largest objects in the universe form last. Galaxy clusters are thus interesting objects for a number of reasons. Three examples relevant to this thesis are: 1. Constraining the properties of dark energy: Due to the hierarchical nature of structure formation, the largest objects in the universe form last. The cluster mass function is thus sensitive to the entire expansion history of the universe and can be used to constrain the properties of dark energy. This constraint complements others derived from the CMB or from Type Ia supernovae and provides an important, independent confirmation of such methods. In particular, clusters provide detailed information about the equation of state parameter w because they sample a large redshift range z ˜ 0 - 1. 2. Probing galaxy formation: Clusters contain the most massive galaxies in the uni- verse, and the most massive black holes; because clusters form so late, we can still witness the assembly of these objects in the nearby universe. Clusters thus provide a more detailed view of galaxy formation than is possible in studies of lower-mass ob- jects. An important example comes from x-ray studies of clusters, which unexpectedly found that star formation in massive galaxies in clusters is closely correlated with the properties of the hot, virialized gas in their halos. This correlation persists despite the enormous separation in temperature, in dynamical time-scales, and in length-scales between the virialized gas in the halo and the star-forming regions in the galaxy. This remains a challenge to interpret theoretically. 3. Developing our knowledge of dilute plasmas: The masses and sizes of galaxy clusters imply that the plasma which permeates them is both very hot (˜ 108 K) and very dilute (˜ 10 -2 cm-3). This plasma is collisional enough to be considered a fluid, but collisionless enough to develop significant anisotropies with respect to the local magnetic field. This interesting regime is one of the frontiers in theoretical studies of fluid dynamics. Unlike other astrophysical environments of similar collisionality (e. g. accretion disk coronae), galaxy clusters are optically thin and subtend large angles on the sky. Thus, they are easily observed in the x-ray (to constrain thermal processes) and in the radio (to constrain non-thermal processes) and provide a wonderful environment to develop our understanding of dilute plasmas. This thesis studies the dynamics of the hot gas in galaxy clusters, which touches on all three of the above topics. Chapter 2 shows that galaxy clusters are likely to be unstable to a new, vigorous form of convection. As a dynamical process which involves thermodynamic and magnetic properties of the gas, this convection bears directly on our understanding of the physics of dilute plas- mas. Furthermore, by moving metals and thermal energy through the cluster, convection may change the cooling rate of the gas and thus significantly impact the process of galaxy formation. Cluster convection also impacts the use of clusters as cosmological probes. Convection may drive turbulence in clusters with mean Mach numbers of order-unity. This changes the force balance in clusters, decreasing the thermal energy of a cluster of a given mass. Current methods for using clusters to constrain dark energy rely on observational probes of the thermal energy as a proxy for total mass. The accuracy of these methods depends on how vigorous cluster convection is. Chapter 3 studies thermal instability in galaxy clusters. I argue that clusters are all likely to be thermally unstable, but that this instability only grows to large amplitude in a subset of systems. Later studies have applied this result to galaxy formation in clusters and shown that one can reproduce some features of the well-known non-self-similarity at the high mass end of the galaxy luminosity function. Chapters 4 and 5 extends my work on convection (and, eventually, thermal instability) to consider the cosmological context of galaxy formation. This work aims to remove any arbitrary initial and boundary conditions from my simulations and is an important step toward a self-consistent model for the plasma physics in clusters.
The cosmological analysis of X-ray cluster surveys - I. A new method for interpreting number counts
NASA Astrophysics Data System (ADS)
Clerc, N.; Pierre, M.; Pacaud, F.; Sadibekova, T.
2012-07-01
We present a new method aimed at simplifying the cosmological analysis of X-ray cluster surveys. It is based on purely instrumental observable quantities considered in a two-dimensional X-ray colour-magnitude diagram (hardness ratio versus count rate). The basic principle is that even in rather shallow surveys, substantial information on cluster redshift and temperature is present in the raw X-ray data and can be statistically extracted; in parallel, such diagrams can be readily predicted from an ab initio cosmological modelling. We illustrate the methodology for the case of a 100-deg2XMM survey having a sensitivity of ˜10-14 erg s-1 cm-2 and fit at the same time, the survey selection function, the cluster evolutionary scaling relations and the cosmology; our sole assumption - driven by the limited size of the sample considered in the case study - is that the local cluster scaling relations are known. We devote special attention to the realistic modelling of the count-rate measurement uncertainties and evaluate the potential of the method via a Fisher analysis. In the absence of individual cluster redshifts, the count rate and hardness ratio (CR-HR) method appears to be much more efficient than the traditional approach based on cluster counts (i.e. dn/dz, requiring redshifts). In the case where redshifts are available, our method performs similar to the traditional mass function (dn/dM/dz) for the purely cosmological parameters, but constrains better parameters defining the cluster scaling relations and their evolution. A further practical advantage of the CR-HR method is its simplicity: this fully top-down approach totally bypasses the tedious steps consisting in deriving cluster masses from X-ray temperature measurements.
A phase cell cluster expansion for Euclidean field theories
NASA Astrophysics Data System (ADS)
Battle, Guy A., III; Federbush, Paul
1982-08-01
We adapt the cluster expansion first used to treat infrared problems for lattice models (a mass zero cluster expansion) to the usual field theory situation. The field is expanded in terms of special block spin functions and the cluster expansion given in terms of the expansion coefficients (phase cell variables); the cluster expansion expresses correlation functions in terms of contributions from finite coupled subsets of these variables. Most of the present work is carried through in d space time dimensions (for φ24 the details of the cluster expansion are pursued and convergence is proven). Thus most of the results in the present work will apply to a treatment of φ34 to which we hope to return in a succeeding paper. Of particular interest in this paper is a substitute for the stability of the vacuum bound appropriate to this cluster expansion (for d = 2 and d = 3), and a new method for performing estimates with tree graphs. The phase cell cluster expansions have the renormalization group incorporated intimately into their structure. We hope they will be useful ultimately in treating four dimensional field theories.
The gamma-ray pulsar population of globular clusters: implications for the GeV excess
NASA Astrophysics Data System (ADS)
Hooper, Dan; Linden, Tim
2016-08-01
It has been suggested that the GeV excess, observed from the region surrounding the Galactic Center, might originate from a population of millisecond pulsars that formed in globular clusters. With this in mind, we employ the publicly available Fermi data to study the gamma-ray emission from 157 globular clusters, identifying a statistically significant signal from 25 of these sources (ten of which are not found in existing gamma-ray catalogs). We combine these observations with the predicted pulsar formation rate based on the stellar encounter rate of each globular cluster to constrain the gamma-ray luminosity function of millisecond pulsars in the Milky Way's globular cluster system. We find that this pulsar population exhibits a luminosity function that is quite similar to those millisecond pulsars observed in the field of the Milky Way (i.e. the thick disk). After pulsars are expelled from a globular cluster, however, they continue to lose rotational kinetic energy and become less luminous, causing their luminosity function to depart from the steady-state distribution. Using this luminosity function and a model for the globular cluster disruption rate, we show that millisecond pulsars born in globular clusters can account for only a few percent or less of the observed GeV excess. Among other challenges, scenarios in which the entire GeV excess is generated from such pulsars are in conflict with the observed mass of the Milky Way's Central Stellar Cluster.
The gamma-ray pulsar population of globular clusters: implications for the GeV excess
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hooper, Dan; Linden, Tim, E-mail: dhooper@fnal.gov, E-mail: linden.70@osu.edu
It has been suggested that the GeV excess, observed from the region surrounding the Galactic Center, might originate from a population of millisecond pulsars that formed in globular clusters. With this in mind, we employ the publicly available Fermi data to study the gamma-ray emission from 157 globular clusters, identifying a statistically significant signal from 25 of these sources (ten of which are not found in existing gamma-ray catalogs). We combine these observations with the predicted pulsar formation rate based on the stellar encounter rate of each globular cluster to constrain the gamma-ray luminosity function of millisecond pulsars in themore » Milky Way's globular cluster system. We find that this pulsar population exhibits a luminosity function that is quite similar to those millisecond pulsars observed in the field of the Milky Way (i.e. the thick disk). After pulsars are expelled from a globular cluster, however, they continue to lose rotational kinetic energy and become less luminous, causing their luminosity function to depart from the steady-state distribution. Using this luminosity function and a model for the globular cluster disruption rate, we show that millisecond pulsars born in globular clusters can account for only a few percent or less of the observed GeV excess. Among other challenges, scenarios in which the entire GeV excess is generated from such pulsars are in conflict with the observed mass of the Milky Way's Central Stellar Cluster.« less
The gamma-ray pulsar population of globular clusters: Implications for the GeV excess
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hooper, Dan; Linden, Tim
In this study, it has been suggested that the GeV excess, observed from the region surrounding the Galactic Center, might originate from a population of millisecond pulsars that formed in globular clusters. With this in mind, we employ the publicly available Fermi data to study the gamma-ray emission from 157 globular clusters, identifying a statistically significant signal from 25 of these sources (ten of which are not found in existing gamma-ray catalogs). We combine these observations with the predicted pulsar formation rate based on the stellar encounter rate of each globular cluster to constrain the gamma-ray luminosity function of millisecondmore » pulsars in the Milky Way's globular cluster system. We find that this pulsar population exhibits a luminosity function that is quite similar to those millisecond pulsars observed in the field of the Milky Way (i.e. the thick disk). After pulsars are expelled from a globular cluster, however, they continue to lose rotational kinetic energy and become less luminous, causing their luminosity function to depart from the steady-state distribution. Using this luminosity function and a model for the globular cluster disruption rate, we show that millisecond pulsars born in globular clusters can account for only a few percent or less of the observed GeV excess. Among other challenges, scenarios in which the entire GeV excess is generated from such pulsars are in conflict with the observed mass of the Milky Way's Central Stellar Cluster.« less
The gamma-ray pulsar population of globular clusters: Implications for the GeV excess
Hooper, Dan; Linden, Tim
2016-08-09
In this study, it has been suggested that the GeV excess, observed from the region surrounding the Galactic Center, might originate from a population of millisecond pulsars that formed in globular clusters. With this in mind, we employ the publicly available Fermi data to study the gamma-ray emission from 157 globular clusters, identifying a statistically significant signal from 25 of these sources (ten of which are not found in existing gamma-ray catalogs). We combine these observations with the predicted pulsar formation rate based on the stellar encounter rate of each globular cluster to constrain the gamma-ray luminosity function of millisecondmore » pulsars in the Milky Way's globular cluster system. We find that this pulsar population exhibits a luminosity function that is quite similar to those millisecond pulsars observed in the field of the Milky Way (i.e. the thick disk). After pulsars are expelled from a globular cluster, however, they continue to lose rotational kinetic energy and become less luminous, causing their luminosity function to depart from the steady-state distribution. Using this luminosity function and a model for the globular cluster disruption rate, we show that millisecond pulsars born in globular clusters can account for only a few percent or less of the observed GeV excess. Among other challenges, scenarios in which the entire GeV excess is generated from such pulsars are in conflict with the observed mass of the Milky Way's Central Stellar Cluster.« less
The clustering of primordial black holes
NASA Astrophysics Data System (ADS)
Chisholm, James R.
2005-12-01
We investigate the spatial clustering properties of primordial black holes (PBHs). With minimal assumptions, we show that PBHs are created highly clustered. They constitute an isocurvature perturbation that is non-linear upon horizon entry. Using the peak-background split model of bias, we compute the PBH two-point correlation function and power spectrum. A consequence of this is that PBHs cannot serve as the majority of dark matter in the universe. We show that this clustering leads to PBH mergers which spoil the mass-creation time relation. We examine the prospect of PBHs being the seeds of Supermassive Black Holes as well.
Infrared Multiple Photon Dissociation Spectroscopy Of Metal Cluster-Adducts
NASA Astrophysics Data System (ADS)
Cox, D. M.; Kaldor, A.; Zakin, M. R.
1987-01-01
Recent development of the laser vaporization technique combined with mass-selective detection has made possible new studies of the fundamental chemical and physical properties of unsupported transition metal clusters as a function of the number of constituent atoms. A variety of experimental techniques have been developed in our laboratory to measure ionization threshold energies, magnetic moments, and gas phase reactivity of clusters. However, studies have so far been unable to determine the cluster structure or the chemical state of chemisorbed species on gas phase clusters. The application of infrared multiple photon dissociation IRMPD to obtain the IR absorption properties of metal cluster-adsorbate species in a molecular beam is described here. Specifically using a high power, pulsed CO2 laser as the infrared source, the IRMPD spectrum for methanol chemisorbed on small iron clusters is measured as a function of the number of both iron atoms and methanols in the complex for different methanol isotopes. Both the feasibility and potential utility of IRMPD for characterizing metal cluster-adsorbate interactions are demonstrated. The method is generally applicable to any cluster or cluster-adsorbate system dependent only upon the availability of appropriate high power infrared sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia
2012-11-29
The ionic charge state of monodisperse cationic gold clusters on surfaces may be controlled by selecting the coverage of mass-selected ions soft landed onto a substrate. Polydisperse diphosphine-capped gold clusters were synthesized in solution by reduction of chloro(triphenylphosphine)gold(I) with borane tert-butylamine in the presence of 1,3-bis(diphenylphosphino)propane. The polydisperse gold clusters were introduced into the gas phase by electrospray ionization and mass selection was employed to select a multiply charged cationic cluster species (Au11L53+, m/z = 1409, L = 1,3-bis(diphenylphosphino)propane) which was delivered to the surfaces of four different self-assembled monolayers on gold (SAMs) at coverages of 1011 and 1012 clusters/mm2.more » Employing the spatial profiling capabilities of in-situ time-of-flight secondary ion mass spectrometry (TOF-SIMS) it is shown that, in addition to the chemical functionality of the monolayer (as demonstrated previously: ACS Nano, 2012, 6, 573) the coverage of cationic gold clusters on the surface may be used to control the distribution of ionic charge states of the soft-landed multiply charged clusters. In the case of a 1H,1H,2H,2H-perfluorodecanethiol SAM (FSAM) almost complete retention of charge by the deposited Au11L53+ clusters was observed at a lower coverage of 1011 clusters/mm2. In contrast, at a higher coverage of 1012 clusters/mm2, pronounced reduction of charge to Au11L52+ and Au11L5+ was observed on the FSAM. When soft landed onto 16- and 11-mercaptohexadecanoic acid surfaces on gold (16,11-COOH-SAMs), the mass-selected Au11L53+ clusters exhibited partial reduction of charge to Au11L52+ at lower coverage and additional reduction of charge to both Au11L52+ and Au11L5+ at higher coverage. The reduction of charge was found to be more pronounced on the surface of the shorter (thinner) C11 than the longer (thicker) C16-COOH-SAM. On the surface of the 1-dodecanethiol (HSAM) monolayer, the most abundant charge state was found to be Au11L52+ at lower coverage and Au11L5+ at higher coverage, respectively. A coverage-dependent electron tunneling mechanism is proposed to account for the observed reduction of charge of mass-selected multiply charged gold clusters soft landed on SAMs. The results demonstrate that one of the critical parameters that influence the chemical and physical properties of supported metal clusters, ionic charge state, may be controlled by selecting the coverage of charged species soft landed onto surfaces.« less
Ljungman, Petter L; Wilker, Elissa H; Rice, Mary B; Austin, Elena; Schwartz, Joel; Gold, Diane R; Koutrakis, Petros; Benjamin, Emelia J; Vita, Joseph A; Mitchell, Gary F; Vasan, Ramachandran S; Hamburg, Naomi M; Mittleman, Murray A
2016-03-01
Prior studies including the Framingham Heart Study have suggested associations between single components of air pollution and vascular function; however, underlying mixtures of air pollution may have distinct associations with vascular function. We used a k-means approach to construct five distinct pollution mixtures from elemental analyses of particle filters, air pollution monitoring data, and meteorology. Exposure was modeled as an interaction between fine particle mass (PM2.5), and concurrent pollution cluster. Outcome variables were two measures of microvascular function in the fingertip in the Framingham Offspring and Third Generation cohorts from 2003 to 2008. In 1,720 participants, associations between PM2.5 and baseline pulse amplitude tonometry differed by air pollution cluster (interaction P value 0.009). Higher PM2.5 on days with low mass concentrations but high proportion of ultrafine particles from traffic was associated with 18% (95% confidence interval: 4.6%, 33%) higher baseline pulse amplitude per 5 μg/m and days with high contributions of oil and wood combustion with 16% (95% confidence interval: 0.2%, 34%) higher baseline pulse amplitude. We observed no variation in associations of PM2.5 with hyperemic response to ischemia observed across air pollution clusters. PM2.5 exposure from air pollution mixtures with large contributions of local ultrafine particles from traffic, heating oil, and wood combustion was associated with higher baseline pulse amplitude but not hyperemic response. Our findings suggest little association between acute exposure to air pollution clusters reflective of select sources and hyperemic response to ischemia, but possible associations with excessive small artery pulsatility with potentially deleterious microvascular consequences.
Ljungman, Petter L.; Wilker, Elissa H.; Rice, Mary B.; Austin, Elena; Schwartz, Joel; Gold, Diane R.; Koutrakis, Petros; Benjamin, Emelia J.; Vita, Joseph A.; Mitchell, Gary F.; Vasan, Ramachandran S.
2016-01-01
Background Prior studies including the Framingham Heart Study have suggested associations between single components of air pollution and vascular function; however, underlying mixtures of air pollution may have distinct associations with vascular function. Methods We used a k-means approach to construct five distinct pollution mixtures from elemental analyses of particle filters, air pollution monitoring data, and meteorology. Exposure was modeled as an interaction between fine particle mass (PM2.5), and concurrent pollution cluster. Outcome variables were two measures of microvascular function in the fingertip in the Framingham Offspring and Third Generation cohorts from 2003-2008. Results In 1,720 participants, associations between PM2.5 and baseline pulse amplitude tonometry differed by air pollution cluster (interaction p value 0.009). Higher PM2.5 on days with low mass concentrations but high proportion of ultrafine particles from traffic was associated with 18% (95% CI 4.6%; 33%) higher baseline pulse amplitude per 5 μg/m3 and days with high contributions of oil and wood combustion with 16% (95% CI 0.2%; 34%) higher baseline pulse amplitude. We observed no variation in associations of PM2.5 with hyperemic response to ischemia observed across air pollution clusters. Conclusions PM2.5 exposure from air pollution mixtures with large contributions of local ultrafine particles from traffic, heating oil and wood combustion was associated with higher baseline pulse amplitude but not PAT ratio. Our findings suggest little association between acute exposure to air pollution clusters reflective of select sources and hyperemic response to ischemia, but possible associations with excessive small artery pulsatility with potentially deleterious microvascular consequences. PMID:26562062
Statistical analysis of ALFALFA galaxies: Insights in galaxy formation & near-field cosmology
NASA Astrophysics Data System (ADS)
Papastergis, Emmanouil
2013-03-01
The Arecibo Legacy Fast ALFA (ALFALFA) survey is a blind, extragalactic survey in the 21cm emission line of atomic hydrogen (HI). Presently, sources have been cataloged over ≈4,000 deg2 of sky (~60% of its final area), resulting in the largest HI-selected sample to date. We use the rich ALFALFA dataset to measure the statistical properties of HI-bearing galaxies, such as their mass distribution and clustering characteristics. These statistical distributions are determined by the properties of darkmatter on galactic scales, and by the complex baryonic processes through which galaxies form over cosmic time. As a result, detailed studies of these distributions can lead to important insights in galaxy formation & evolution and near-field cosmology. In particular, we measure the space density of HI-bearing galaxies as a function of the width of their HI profile (i.e. the velocity width function of galaxies), and find substantial disagreement with the distribution expected in a lambda cold dark matter (ΛCDM) universe. In particular, the number of galaxies with maximum rotational velocities upsilonrot ≈ 35 kms--1 (as judged by their HI velocity width) is about an order of magnitude lower than what predicted based on populating ΛCDM halos with modeled galaxies. We identify two possible solutions to the discrepancy: First, an alternative dark matter scenario in which the formation of low-mass halos is heavily suppressed (e.g. a warm dark matter universe with keV-scale dark matter particles). Secondly, we consider the possibility that rotational velocitites of dwarf galaxies derived from HI velocity widths may systematically underestimate the true mass of the host halo, due to the shape of their rotation curves. In this latter scenario, quantitative predictions for the internal kinematics of dwarf galaxies can be made, which can be checked in the future to probe the nature of dark matter. Furthermore, we take advantage of the overlap of ALFALFA with the Sloan Digital Sky Survey (SDSS), to measure the number density of galaxies as a function of their "baryonic" mass (stars + atomic gas). In the context of a ΛCDM cosmological model, the measured distribution reveals that low-mass halos are heavily "baryon depleted", i.e. their baryonic-to-dark mass ratio is much lower than the cosmological value. These baryon deficits are usually attributed to stellar feedback (e.g. supernova-driven gas outflows), but the efficiency implied by our measurement is extremely high. Whether such efficient feedback can be accommodated in a consistent picture of galaxy formation is an open question, and remains one of the principle scientific drivers for hydrodynamic simulations of galaxy formation. Lastly, we measure the clustering properties of HI-selected samples, through the two-point correlation function of ALFALFA galaxies. We find no compelling evidence for a dependence of clustering on HI mass, suggesting that the relationship between galactic gas mass and host halo mass is not tight. We furthermore find that HI galaxies cluster more weakly than optically selected ones, when no color selection is applied. However, SDSS galaxies with blue colors have very similar clustering characteristics with ALFALFA galaxies, both in real as well as in redshift space. On the other hand, HI galaxies cluster much more weakly than optical galaxies with red colors, and in fact "avoid" being located within ≈3 Mpc from the latter. By considering the clustering properties of ΛCDM halos, we confirm our previous intuition for an MHI-Mh relation with large scatter, and find that spin parameter may be a key halo property related to the gas content of present-day galaxies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidge, T. J.
2012-12-20
The stellar contents of the open clusters King 12, NGC 7788, and NGC 7790 are investigated using MegaCam images. Comparisons with isochrones yield an age <20 Myr for King 12, 20-40 Myr for NGC 7788, and 60-80 Myr for NGC 7790 based on the properties of stars near the main-sequence turnoff (MSTO) in each cluster. The reddening of NGC 7788 is much larger than previously estimated. The luminosity functions (LFs) of King 12 and NGC 7788 show breaks that are attributed to the onset of pre-main-sequence (PMS) objects, and comparisons with models of PMS evolution yield ages that are consistentmore » with those measured from stars near the MSTO. In contrast, the r' LF of main-sequence stars in NGC 7790 is matched to r' = 20 by a model that is based on the solar neighborhood mass function. The structural properties of all three clusters are investigated by examining the two-point angular correlation function of blue main-sequence stars. King 12 and NGC 7788 are each surrounded by a stellar halo that extends out to a radius of 5 arcmin ({approx}3.4 pc). It is suggested that these halos form in response to large-scale mass ejection early in the evolution of the clusters, as predicted by models. In contrast, blue main-sequence stars in NGC 7790 are traced out to a radius of {approx}7.5 arcmin ({approx}5.5 pc), with no evidence of a halo. It is suggested that all three clusters may have originated in the same star-forming complex, but not in the same giant molecular cloud.« less
A clustered origin for isolated massive stars
NASA Astrophysics Data System (ADS)
Lucas, William E.; Rybak, Matus; Bonnell, Ian A.; Gieles, Mark
2018-03-01
High-mass stars are commonly found in stellar clusters promoting the idea that their formation occurs due to the physical processes linked with a young stellar cluster. It has recently been reported that isolated high-mass stars are present in the Large Magellanic Cloud. Due to their low velocities, it has been argued that these are high-mass stars which formed without a surrounding stellar cluster. In this paper, we present an alternative explanation for the origin of these stars in which they formed in a cluster environment but are subsequently dispersed into the field as their natal cluster is tidally disrupted in a merger with a higher mass cluster. They escape the merged cluster with relatively low velocities typical of the cluster interaction and thus of the larger scale velocity dispersion, similarly to the observed stars. N-body simulations of cluster mergers predict a sizeable population of low-velocity (≤20 km s-1), high-mass stars at distances of >20 pc from the cluster. High-mass clusters in which gas poor mergers are frequent would be expected to commonly have haloes of young stars, including high-mass stars, which were actually formed in a cluster environment.
Halo Intrinsic Alignment: Dependence on Mass, Formation Time, and Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Qianli; Kang, Xi; Wang, Peng
In this paper we use high-resolution cosmological simulations to study halo intrinsic alignment and its dependence on mass, formation time, and large-scale environment. In agreement with previous studies using N -body simulations, it is found that massive halos have stronger alignment. For the first time, we find that for a given halo mass older halos have stronger alignment and halos in cluster regions also have stronger alignment than those in filaments. To model these dependencies, we extend the linear alignment model with inclusion of halo bias and find that the halo alignment with its mass and formation time dependence canmore » be explained by halo bias. However, the model cannot account for the environment dependence, as it is found that halo bias is lower in clusters and higher in filaments. Our results suggest that halo bias and environment are independent factors in determining halo alignment. We also study the halo alignment correlation function and find that halos are strongly clustered along their major axes and less clustered along the minor axes. The correlated halo alignment can extend to scales as large as 100 h {sup −1} Mpc, where its feature is mainly driven by the baryon acoustic oscillation effect.« less
MASSIVE+: The Growth Histories of MASSIVE Survey Galaxies from their Globular Cluster Colors
NASA Astrophysics Data System (ADS)
Blakeslee, John
2017-08-01
The MASSIVE survey is targeting the 100 most massive galaxies within 108 Mpc that are visible in the northern sky. These most massive galaxies in the present-day universe reside in a surprisingly wide variety of environments, from rich clusters to fossil groups to near isolation. We propose to use WFC3/UVIS and ACS to carry out a deep imaging study of the globular cluster populations around a selected subset of the MASSIVE targets. Though much is known about GC systems of bright galaxies in rich clusters, we know surprisingly little about the effects of environment on these systems. The MASSIVE sample provides a golden opportunity to learn about the systematics of GC systems and what they can tell us about environmental drivers on the evolution of the highest mass galaxies. The most pressing questions to be addressed include: (1) Do isolated giants have the same constant mass fraction of GCs to total halo mass as BCGs of similar luminosity? (2) Do their GC systems show the same color (metallicity) distribution, which is an outcome of the mass spectrum of gas-rich halos during hierarchical growth? (3) Do the GCs in isolated high-mass galaxies follow the same radial distribution versus metallicity as in rich environments (a test of the relative importance of growth by accretion)? (4) Do the GCs of galaxies in sparse environments follow the same mass function? Our proposed second-band imaging will enable us to secure answers to these questions and add enormously to the legacy value of existing HST imaging of the highest mass galaxies in the universe.
An X-Ray Survey of the Open Cluster NGC 6475 (M7) with ROSAT
NASA Technical Reports Server (NTRS)
Prosser, Charles F.; Stauffer, John R.; Caillault, J.-P.; Balachandran, Suchitra; Stern, Robert A.; Randich, Sofia
1995-01-01
A ROSAT x-ray survey, with complimentary optical photometry, of the open cluster NGC 6475 has enabled the detection of approx. 50 late-F to K0 and approx. 70 K/M dwarf new candidate members, providing the first reliable detection of low-mass stars in this low. galactic latitude, 220 Myr old cluster. The x-ray observations reported here have a typical limiting sensitivity of L(sub x) approx. equal to 10(exp 29) erg/s. The detection frequency of early type cluster members is consistent with the hypothesis that the x-ray emitting early type stars are binary systems with an unseen, low-mass secondary producing the x rays. The ratio between x-ray and bolometric luminosity among NGC 6475 members saturates at a spectral-type/color which is intermediate between that in much younger and in much older clusters, consistent with rotational spindown of solar-type stars upon their arrival on the ZAMS. The upper envelope of x-ray luminosity as a function of spectral type is comparable to that of the Pleiades, with the observed spread in x-ray luminosity among low-mass members being likely due to the presence of binaries and relatively rapid rotators. However, the list of x-ray selected candidate members is likely biased against low-mass, slowly rotating single stars. While some preliminary spectroscopic information is given in an appendix, further spectroscopic observations of the new candidate members will aid in interpreting the coronal activity among solar-type NGC 6475 members and their relation to similar stars in older and younger open clusters.
On Iron Enrichment, Star Formation, and Type Ia Supernovae in Galaxy Clusters
NASA Technical Reports Server (NTRS)
Loewenstein, Michael
2006-01-01
The nature of star formation and Type Ia supernovae (SNIa) in galaxies in the field and in rich galaxy clusters are contrasted by juxtaposing the buildup of heavy metals in the universe inferred from observed star formation and supernovae rate histories with data on the evolution of Fe abundances in the intracluster medium (ICM). Models for the chemical evolution of Fe in these environments are constructed, subject to observational constraints, for this purpose. While models with a mean delay for SNIa of 3 Gyr and standard initial mass function (IMF) are fully consistent with observations in the field, cluster Fe enrichment immediately tracked a rapid, top-heavy phase of star formation - although transport of Fe into the ICM may have been more prolonged and star formation likely continued beyond redshift 1. The means of this prompt enrichment consisted of SNII yielding greater than or equal to 0.1 solar mass per explosion (if the SNIa rate normalization is scaled down from its value in the field according to the relative number of candidate progenitor stars in the 3 - 8 solar mass range) and/or SNIa with short delay times originating during the rapid star formation epoch. Star formation is greater than 3 times more efficient in rich clusters than in the field, mitigating the overcooling problem in numerical cluster simulations. Both the fraction of baryons cycled through stars, and the fraction of the total present-day stellar mass in the form of stellar remnants, are substantially greater in clusters than in the field.
The weak lensing analysis of the CFHTLS and NGVS RedGOLD galaxy clusters
NASA Astrophysics Data System (ADS)
Parroni, C.; Mei, S.; Erben, T.; Van Waerbeke, L.; Raichoor, A.; Ford, J.; Licitra, R.; Meneghetti, M.; Hildebrandt, H.; Miller, L.; Côté, P.; Covone, G.; Cuillandre, J.-C.; Duc, P.-A.; Ferrarese, L.; Gwyn, S. D. J.; Puzia, T. H.
2017-12-01
An accurate estimation of galaxy cluster masses is essential for their use in cosmological and astrophysical studies. We studied the accuracy of the optical richness obtained by our RedGOLD cluster detection algorithm tep{licitra2016a, licitra2016b} as a mass proxy, using weak lensing and X-ray mass measurements. We measured stacked weak lensing cluster masses for a sample of 1323 galaxy clusters in the Canada-France-Hawaii Telescope Legacy Survey W1 and the Next Generation Virgo Cluster Survey at 0.2
RELICS: Strong-lensing Analysis of the Massive Clusters MACS J0308.9+2645 and PLCK G171.9‑40.7
NASA Astrophysics Data System (ADS)
Acebron, Ana; Cibirka, Nathália; Zitrin, Adi; Coe, Dan; Agulli, Irene; Sharon, Keren; Bradač, Maruša; Frye, Brenda; Livermore, Rachael C.; Mahler, Guillaume; Salmon, Brett; Umetsu, Keiichi; Bradley, Larry; Andrade-Santos, Felipe; Avila, Roberto; Carrasco, Daniela; Cerny, Catherine; Czakon, Nicole G.; Dawson, William A.; Hoag, Austin T.; Huang, Kuang-Han; Johnson, Traci L.; Jones, Christine; Kikuchihara, Shotaro; Lam, Daniel; Lovisari, Lorenzo; Mainali, Ramesh; Oesch, Pascal A.; Ogaz, Sara; Ouchi, Masami; Past, Matthew; Paterno-Mahler, Rachel; Peterson, Avery; Ryan, Russell E.; Sendra-Server, Irene; Stark, Daniel P.; Strait, Victoria; Toft, Sune; Trenti, Michele; Vulcani, Benedetta
2018-05-01
Strong gravitational lensing by galaxy clusters has become a powerful tool for probing the high-redshift universe, magnifying distant and faint background galaxies. Reliable strong-lensing (SL) models are crucial for determining the intrinsic properties of distant, magnified sources and for constructing their luminosity function. We present here the first SL analysis of MACS J0308.9+2645 and PLCK G171.9‑40.7, two massive galaxy clusters imaged with the Hubble Space Telescope, in the framework of the Reionization Lensing Cluster Survey (RELICS). We use the light-traces-mass modeling technique to uncover sets of multiply imaged galaxies and constrain the mass distribution of the clusters. Our SL analysis reveals that both clusters have particularly large Einstein radii (θ E > 30″ for a source redshift of z s = 2), providing fairly large areas with high magnifications, useful for high-redshift galaxy searches (∼2 arcmin2 with μ > 5 to ∼1 arcmin2 with μ > 10, similar to a typical Hubble Frontier Fields cluster). We also find that MACS J0308.9+2645 hosts a promising, apparently bright (J ∼ 23.2–24.6 AB), multiply imaged high-redshift candidate at z ∼ 6.4. These images are among the brightest high-redshift candidates found in RELICS. Our mass models, including magnification maps, are made publicly available for the community through the Mikulski Archive for Space Telescopes.
Understanding ligand effects in gold clusters using mass spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Grant E.; Laskin, Julia
This review summarizes recent research on the influence of phosphine ligands on the size, stability, and reactivity of gold clusters synthesized in solution. Sub-nanometer clusters exhibit size- and composition-dependent properties that are unique from those of larger nanoparticles. The highly tunable properties of clusters and their high surface-to-volume ratio make them promising candidates for a variety of technological applications. However, because “each-atom-counts” toward defining cluster properties it is critically important to develop robust synthesis methods to efficiently prepare clusters of predetermined size. For decades phosphines have been known to direct the size-selected synthesis of gold clusters. Despite the preparation ofmore » numerous species it is still not understood how different functional groups at phosphine centers affect the size and properties of gold clusters. Using electrospray ionization mass spectrometry (ESI-MS) it is possible to characterize the effect of ligand substitution on the distribution of clusters formed in solution at defined reaction conditions. In addition, ligand exchange reactions on preformed clusters may be monitored using ESI-MS. Collision induced dissociation (CID) may also be employed to obtain qualitative insight into the fragmentation of mixed ligand clusters and the relative binding energies of differently substituted phosphines. Quantitative ligand binding energies and cluster stability may be determined employing surface induced dissociation (SID) in a custom-built Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS). Rice-Ramsperger-Kassel-Marcus (RRKM) based modeling of the SID data allows dissociation energies and entropy values to be extracted that may be compared with the results of high-level theoretical calculations. The charge reduction and reactivity of atomically precise gold clusters, including partially ligated species generated in the gas-phase by in source CID, on well-defined surfaces may be explored using ion soft landing (SL) in a custom-built instrument combined with in situ time of flight secondary ion mass spectrometry (TOF-SIMS). Jointly, this multipronged experimental approach allows characterization of the full spectrum of relevant phenomena including cluster synthesis, ligand exchange, thermochemistry, surface immobilization, and reactivity. The fundamental insights obtained from this work will facilitate the directed synthesis of gold clusters with predetermined size and properties for specific applications.« less
Characterizing Intracluster Light in the Hubble Frontier Fields
NASA Astrophysics Data System (ADS)
Morishita, Takahiro; Abramson, Louis E.; Treu, Tommaso; Schmidt, Kasper B.; Vulcani, Benedetta; Wang, Xin
2017-09-01
We investigate the intracluster light (ICL) in the six Hubble Frontier Field clusters at 0.3< z< 0.6. We employ a new method, which is free from any functional form of the ICL profile, and exploit the unprecedented depth of this Hubble Space Telescope imaging to map the ICL’s diffuse light out to clustrocentric radii R˜ 300 {kpc} ({μ }{ICL}˜ 27 mag arcsec-2). From these maps, we construct radial color and stellar mass profiles via SED fitting and find clear negative color gradients in all systems with increasing distance from the Brightest Cluster Galaxy (BCG). While this implies older/more metal-rich stellar components in the inner part of the ICL, we find that the ICL mostly consists of a ≲ 2 {Gyr} population, and plausibly originated with {log}{M}* /{M}⊙ ≲ 10 cluster galaxies. Furthermore, we find that 10%-15% of the ICL’s mass at large radii (≳ 150 kpc) lies in a younger/bluer stellar population (˜1 Gyr), a phenomenon not seen in local samples. We attribute this light to the higher fraction of star-forming/(post-)starburst galaxies in clusters at z˜ 0.5. Ultimately, we find the ICL’s total mass to be {log}{M}* {ICL}/{M}⊙ ˜ 11-12, constituting 5%-20% of the clusters’ total stellar mass, or about half of the value at z˜ 0. The above implies distinct formation histories for the ICL and BCGs/other massive cluster galaxies; I.e., the ICL at this epoch is still being constructed rapidly (˜ 40 {M}⊙ yr-1), while the BCGs have mostly completed their evolution. To be consistent with the ICL measurements of local massive clusters, such as Virgo, our data suggest mass acquisition mainly from quiescent cluster galaxies is the principal source of ICL material in the subsequent ˜5 Gyr of cosmic time.
Integral field spectroscopy with GEMINI: Extragalactic star cluster in NGC1275
NASA Astrophysics Data System (ADS)
Trancho, Gelys; Miller, Bryan; García-Lorenzo, Begoña; Sánchez, Sebastián F.
2006-01-01
Studies of globular cluster systems play a critical role in our understanding of galaxy formation. Imaging with the Hubble Space Telescope has revealed that young star clusters are formed copiously in galaxy mergers, strengthening theories in which giant elliptical galaxies are formed by the merger of spirals [e.g. Whitmore, B.C., Schweizer, F., Leitherer, C., Borne, K., Robert, C., 1993. Astronomical Journal. 106, 1354; Miller, B.W., Whitmore, B.C., Schweizer, F., Fall, S.M., 1997. Astronomical Journal. 114, 2381; Zepf, S.E., Ashman, K.M., English, J., Freeman, K.C., Sharples, R.M., 1999. Astronomical Journal. 118, 752; Ashman, K.M., Zepf, S.E., 1992. Astrophysical Journal. 384, 50]. However, the formation and evolution of globular cluster systems is still not well understood. Ages and metallicities of the clusters are uncertain either because of degeneracy in the broad-band colors or due to variable reddening. Also, the luminosity function of the young clusters, which depends critically on the metallicities and ages of the clusters, appears to be single power-laws while the luminosity function of old clusters has a well-defined break. Either there is significant dynamical evolution of the cluster systems or metallicity affects the mass function of forming clusters. Spectroscopy of these clusters are needed to improve the metallicity and age measurements and to study the kinematics of young cluster systems. Therefore, we have obtained GMOS IFU data of 4 clusters in NGC1275. We will present preliminary results like metallicities, ages, and velocities of the star clusters from IFU spectroscopy.
NASA Astrophysics Data System (ADS)
Rodriguez, Carl L.; Chatterjee, Sourav; Rasio, Frederic A.
2016-04-01
The recent discovery of GW150914, the binary black hole merger detected by Advanced LIGO, has the potential to revolutionize observational astrophysics. But to fully utilize this new window into the Universe, we must compare these new observations to detailed models of binary black hole formation throughout cosmic time. Expanding upon our previous work [C. L. Rodriguez, M. Morscher, B. Pattabiraman, S. Chatterjee, C.-J. Haster, and F. A. Rasio, Phys. Rev. Lett. 115, 051101 (2015).], we study merging binary black holes formed in globular clusters using our Monte Carlo approach to stellar dynamics. We have created a new set of 52 cluster models with different masses, metallicities, and radii to fully characterize the binary black hole merger rate. These models include all the relevant dynamical processes (such as two-body relaxation, strong encounters, and three-body binary formation) and agree well with detailed direct N -body simulations. In addition, we have enhanced our stellar evolution algorithms with updated metallicity-dependent stellar wind and supernova prescriptions, allowing us to compare our results directly to the most recent population synthesis predictions for merger rates from isolated binary evolution. We explore the relationship between a cluster's global properties and the population of binary black holes that it produces. In particular, we derive a numerically calibrated relationship between the merger times of ejected black hole binaries and a cluster's mass and radius. With our improved treatment of stellar evolution, we find that globular clusters can produce a significant population of massive black hole binaries that merge in the local Universe. We explore the masses and mass ratios of these binaries as a function of redshift, and find a merger rate of ˜5 Gpc-3yr-1 in the local Universe, with 80% of sources having total masses from 32 M⊙ to 64 M⊙. Under standard assumptions, approximately one out of every seven binary black hole mergers in the local Universe will have originated in a globular cluster, but we also explore the sensitivity of this result to different assumptions for binary stellar evolution. If black holes were born with significant natal kicks, comparable to those of neutron stars, then the merger rate of binary black holes from globular clusters would be comparable to that from the field, with approximately 1 /2 of mergers originating in clusters. Finally we point out that population synthesis results for the field may also be modified by dynamical interactions of binaries taking place in dense star clusters which, unlike globular clusters, dissolved before the present day.
Autocorrelations of stellar light and mass at z˜ 0 and ˜1: from SDSS to DEEP2
NASA Astrophysics Data System (ADS)
Li, Cheng; White, Simon D. M.; Chen, Yanmei; Coil, Alison L.; Davis, Marc; De Lucia, Gabriella; Guo, Qi; Jing, Y. P.; Kauffmann, Guinevere; Willmer, Christopher N. A.; Zhang, Wei
2012-01-01
We present measurements of projected autocorrelation functions wp(rp) for the stellar mass of galaxies and for their light in the U, B and V bands, using data from the third data release of the DEEP2 Galaxy Redshift Survey and the final data release of the Sloan Digital Sky Survey (SDSS). We investigate the clustering bias of stellar mass and light by comparing these to projected autocorrelations of dark matter estimated from the Millennium Simulations (MS) at z= 1 and 0.07, the median redshifts of our galaxy samples. All of the autocorrelation and bias functions show systematic trends with spatial scale and waveband which are impressively similar at the two redshifts. This shows that the well-established environmental dependence of stellar populations in the local Universe is already in place at z= 1. The recent MS-based galaxy formation simulation of Guo et al. reproduces the scale-dependent clustering of luminosity to an accuracy better than 30 per cent in all bands and at both redshifts, but substantially overpredicts mass autocorrelations at separations below about 2 Mpc. Further comparison of the shapes of our stellar mass bias functions with those predicted by the model suggests that both the SDSS and DEEP2 data prefer a fluctuation amplitude of σ8˜ 0.8 rather than the σ8= 0.9 assumed by the MS.
NASA Astrophysics Data System (ADS)
Mantz, A. B.; Allen, S. W.; Morris, R. G.; Schmidt, R. W.
2016-03-01
This is the third in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Our sample comprises 40 clusters identified as being dynamically relaxed and hot (I.e. massive) in Papers I and II of this series. Here we consider the thermodynamics of the intracluster medium, in particular the profiles of density, temperature and related quantities, as well as integrated measurements of gas mass, average temperature, total luminosity and centre-excluded luminosity. We fit power-law scaling relations of each of these quantities as a function of redshift and cluster mass, which can be measured precisely and with minimal bias for these relaxed clusters using hydrostatic arguments. For the thermodynamic profiles, we jointly model the density and temperature and their intrinsic scatter as a function of radius, thus also capturing the behaviour of the gas pressure and entropy. For the integrated quantities, we also jointly fit a multidimensional intrinsic covariance. Our results reinforce the view that simple hydrodynamical models provide a good description of relaxed clusters outside their centres, but that additional heating and cooling processes are important in the inner regions (radii r ≲ 0.5 r2500 ≈ 0.15 r500). The thermodynamic profiles remain regular, with small intrinsic scatter, down to the smallest radii where deprojection is straightforward (˜20 kpc); within this radius, even the most relaxed systems show clear departures from spherical symmetry. Our results suggest that heating and cooling are continuously regulated in a tight feedback loop, allowing the cluster atmosphere to remain stratified on these scales.
Photometric and structural properties of NGC 6544: A combined VVV-Hubble space telescope study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, Roger E.; Mauro, Francesco; Geisler, Doug
We combine archival Hubble Space Telescope imaging with wide-field near-infrared photometry to study the neglected metal-poor Galactic globular cluster NGC 6544. A high spatial resolution map of differential reddening over the inner portion of the cluster is constructed, revealing variations of up to half of the total reddening, and the resulting corrected color-magnitude diagrams reveal a sparse blue horizontal branch and centrally concentrated blue straggler population, verified via relative proper motions. Using the corrected photometry to investigate the cluster distance, reddening, and age via direct comparison to well-calibrated photometry of clusters with similar metallicities, we estimate (m – M){sub 0}more » = 11.96, E(B – V) = 0.79, and an age coeval with M13 to within the relevant uncertainties. Although our data are insufficient to place tight constraints on the reddening law toward NGC 6544, we find no strong evidence that it is non-standard at optical or near-infrared wavelengths. We also provide near-infrared fiducial sequences extending nearly 2 mag below the cluster main sequence turnoff, generated from a statistically decontaminated sample of cluster stars. Lastly, we redetermine the cluster center and construct a radial number density profile which is well fit by an atypically flat power law with a slope of about 1.7. We discuss this result, together with a flattened main sequence luminosity function and inverted mass function, in the context of mass segregation and tidal stripping via interactions with Milky Way potential.« less
The Evolution of Stellar Coronae: Initial Results from a ROSAT PSPC Observation of IC 2391
NASA Technical Reports Server (NTRS)
Patten, Brian M.; Simon, Theodore
1993-01-01
A 23 ks ROSAT PSPC image of the young star cluster, IC 2391, reveals 76 soft x-ray sources with L(sub x)(0.2-2.0 keV) greater than or equal to 2 x 10(exp 28) ergs/s in the direction of the cluster center. Nineteen of these sources are associated with known cluster members. We find that x-ray emission from the IC 2391 B stars deviates widely from the L(sub x)/L(sub bol) = 10(exp -7) relation based on Einstein observations of O and early B stars. Instead, we observe a wide range in L(sub x) with an order of magnitude spread at any given mass and no apparent dependence on spectral type. A comparison of the spread of L(sub x) as a function of B-V for low-mass stars between IC 2391 and the much older Hyades cluster shows that despite the factor of approx. 10 difference in their ages, these two clusters exhibit very similar dispersions in levels of stellar activity. We conclude that the low-mass stars in IC 2391 have arrived on the ZAMS with a wide range of coronal activity levels, from very strong to very weak, and that existing empirical activity-age scaling laws therefore cannot be valid.
Perspectives on Intracluster Enrichment and the Stellar Initial Mass Function in Elliptical Galaxies
NASA Technical Reports Server (NTRS)
Lowenstein, Michael
2013-01-01
The amount of metals in the Intracluster Medium (ICM) in rich galaxy clusters exceeds that expected based on the observed stellar population by a large factor. We quantify this discrepancy--which we term the "cluster elemental abundance paradox"--and investigate the required properties of the ICM-enriching population. The necessary enhancement in metal enrichment may, in principle, originate in the observed stellar population if a larger fraction of stars in the supernova-progenitor mass range form from an initial mass function (IMF) that is either bottom-light or top-heavy, with the latter in some conflict with observed ICM abundance ratios. Other alternatives that imply more modest revisions to the IMF, mass return and remnant fractions, and primordial fraction, posit an increase in the fraction of 3-8 solar mass stars that explode as SNIa or assume that there are more stars than conventionally thought--although the latter implies a high star formation efficiency. We discuss the feasibility of these various solutions and the implications for the diversity of star formation, the process of elliptical galaxy formation, and the nature of this hidden source of ICM metal enrichment in light of recent evidence of an elliptical galaxy IMF that, because it is skewed to low masses, deepens the paradox.
The relation between the mass-to-light ratio and the relaxation state of globular clusters
NASA Astrophysics Data System (ADS)
Bianchini, P.; Sills, A.; van de Ven, G.; Sippel, A. C.
2017-08-01
The internal dynamics of globular clusters (GCs) is strongly affected by two-body interactions that bring the systems to a state of partial energy equipartition. Using a set of Monte Carlo clusters simulations, we investigate the role of the onset of energy equipartition in shaping the mass-to-light ratio (M/L) in GCs. Our simulations show that the M/L profiles cannot be considered constant and their specific shape strongly depends on the dynamical age of the clusters. Dynamically younger clusters display a central peak up to M/L ≃ 25 M⊙/L⊙ caused by the retention of dark remnants; this peak flattens out for dynamically older clusters. Moreover, we find that also the global values of M/L correlate with the dynamical state of a cluster quantified as either the number of relaxation times a system has experienced nrel or the equipartition parameter meq: clusters closer to full equipartition (higher nrel or lower meq) display a lower M/L. We show that the decrease of M/L is primarily driven by the dynamical ejection of dark remnants, rather than by the escape of low-mass stars. The predictions of our models are in good agreement with observations of GCs in the Milky Way and M31, indicating that differences in relaxation state alone can explain variations of M/L up to a factor of ≃3. Our characterization of the M/L as a function of relaxation state is of primary relevance for the application and interpretation of dynamical models.
Cosmological constraints from Galaxy Clusters in 2500 square-degree SPT-SZ survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haan, T. de; Benson, B. A.; Bleem, L. E.
We present cosmological parameter constraints obtained from galaxy clusters identified by their SunyaevZel'dovich effect signature in the 2500 square-degree South Pole Telescope Sunyaev Zel'dovich (SPT-SZ) survey. We consider the 377 cluster candidates identified at z > 0.25 with a detection significance greater than five, corresponding to the 95% purity threshold for the survey. We compute constraints on cosmological models using the measured cluster abundance as a function of mass and redshift. We include additional constraints from multi-wavelength observations, including Chandra X-ray data for 82 clusters and a weak lensing-based prior on the normalization of the mass-observable scaling relations. Assuming amore » spatially flat Lambda CDM cosmology, we combine the cluster data with a prior on H-0 and find sigma(8)= 0.784. +/- 0.039 and Omega(m) = 0.289. +/- 0.042, with the parameter combination sigma(8) (Omega(m)/0.27)(0.3) = 0.797 +/- 0.031. These results are in good agreement with constraints from the cosmic microwave background (CMB) from SPT, WMAP, and Planck, as well as with constraints from other cluster data sets. We also consider several extensions to Lambda CDM, including models in which the equation of state of dark energy w, the species-summed neutrino mass, and/or the effective number of relativistic species (N-eff) are free parameters. When combined with constraints from the Planck CMB, H-0, baryon acoustic oscillation, and SNe, adding the SPT cluster data improves the w constraint by 14%, to w = -1.023 +/- 0.042.« less
NASA Astrophysics Data System (ADS)
Farahi, Arya; Evrard, August E.; McCarthy, Ian; Barnes, David J.; Kay, Scott T.
2018-05-01
Using tens of thousands of halos realized in the BAHAMAS and MACSIS simulations produced with a consistent astrophysics treatment that includes AGN feedback, we validate a multi-property statistical model for the stellar and hot gas mass behavior in halos hosting groups and clusters of galaxies. The large sample size allows us to extract fine-scale mass-property relations (MPRs) by performing local linear regression (LLR) on individual halo stellar mass (Mstar) and hot gas mass (Mgas) as a function of total halo mass (Mhalo). We find that: 1) both the local slope and variance of the MPRs run with mass (primarily) and redshift (secondarily); 2) the conditional likelihood, p(Mstar, Mgas| Mhalo, z) is accurately described by a multivariate, log-normal distribution, and; 3) the covariance of Mstar and Mgas at fixed Mhalo is generally negative, reflecting a partially closed baryon box model for high mass halos. We validate the analytical population model of Evrard et al. (2014), finding sub-percent accuracy in the log-mean halo mass selected at fixed property, ⟨ln Mhalo|Mgas⟩ or ⟨ln Mhalo|Mstar⟩, when scale-dependent MPR parameters are employed. This work highlights the potential importance of allowing for running in the slope and scatter of MPRs when modeling cluster counts for cosmological studies. We tabulate LLR fit parameters as a function of halo mass at z = 0, 0.5 and 1 for two popular mass conventions.
Neutrino constraints: what large-scale structure and CMB data are telling us?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costanzi, Matteo; Sartoris, Barbara; Borgani, Stefano
We discuss the reliability of neutrino mass constraints, either active or sterile, from the combination of different low redshift Universe probes with measurements of CMB anisotropies. In our analyses we consider WMAP 9-year or Planck Cosmic Microwave Background (CMB) data in combination with Baryonic Acoustic Oscillations (BAO) measurements from BOSS DR11, galaxy shear measurements from CFHTLenS, SDSS Ly α forest constraints and galaxy cluster mass function from Chandra observations. At odds with recent similar studies, to avoid model dependence of the constraints we perform a full likelihood analysis for all the datasets employed. As for the cluster data analysis wemore » rely on to the most recent calibration of massive neutrino effects in the halo mass function and we explore the impact of the uncertainty in the mass bias and re-calibration of the halo mass function due to baryonic feedback processes on cosmological parameters. We find that none of the low redshift probes alone provide evidence for massive neutrino in combination with CMB measurements, while a larger than 2σ detection of non zero neutrino mass, either active or sterile, is achieved combining cluster or shear data with CMB and BAO measurements. Yet, the significance of the detection exceeds 3σ if we combine all four datasets. For a three active neutrino scenario, from the joint analysis of CMB, BAO, shear and cluster data including the uncertainty in the mass bias we obtain ∑ m{sub ν} =0.29{sup +0.18}{sub -0.21} eV and ∑ m{sub ν} =0.22{sup +0.17}{sub -0.18} eV 95%CL) using WMAP9 or Planck as CMB dataset, respectively. The preference for massive neutrino is even larger in the sterile neutrino scenario, for which we get m{sub s}{sup eff}=0.44{sup +0.28}{sub -0.26} eV and Δ N{sub eff}=0.78{sup +0.60}{sub -0.59} 95%CL) from the joint analysis of Planck, BAO, shear and cluster datasets. For this data combination the vanilla ΛCDM model is rejected at more than 3σ and a sterile neutrino mass as motivated by accelerator anomaly is within the 2σ errors. Conversely, the Ly α data favour vanishing neutrino masses and from the data combination Planck+BAO+Ly α we get the tight upper limits ∑ m{sub ν} <0.14 eV and m{sub s}{sup eff}<0.22 eV—Δ N{sub eff}<1.11 95%CL) for the active and sterile neutrino model, respectively. Finally, results from the full data combination reflect the tension between the σ{sub 8} constraints obtained from cluster and shear data and that inferred from Ly α forest measurements; in the active neutrino scenario for both CMB datasets employed, the full data combination yields only an upper limits on ∑ m{sub ν}, while assuming an extra sterile neutrino we still get preference for non-vanishing mass, m{sub s}{sup eff}=0.26{sup +0.22}{sub -0.24} eV, and dark contribution to the radiation content, Δ N{sub eff}=0.82±0.55.« less
NASA Astrophysics Data System (ADS)
Caputo, F.
1987-01-01
It is shown that the pulsational properties of RR Lyrae variables in globular clusters can be used together with the Red Giant Branch location to derive reliable information on the cluster reddening and distance modulus. By demanding full agreement with some key observables, the reddening and distance modulus of the globular clusters M4 and M15 are derived as a function of the mass of the variables and of the adopted cluster metallicity. Thus, from the comparison between observations and theoretical isochrones, the cluster age can be evaluated. A best guess for the age of M4 and M15 can be presented: 16×109yr, with a total uncertainty of 2 billion years.
Alma Survey of Circumstellar Disks in the Young Stellar Cluster IC 348
NASA Astrophysics Data System (ADS)
Ruíz-Rodríguez, D.; Cieza, L. A.; Williams, J. P.; Andrews, S. M.; Principe, D. A.; Caceres, C.; Canovas, H.; Casassus, S.; Schreiber, M. R.; Kastner, J. H.
2018-05-01
We present a 1.3 mm continuum survey of the young (2-3 Myr) stellar cluster IC 348, which lies at a distance of 310 pc, and is dominated by low-mass stars (M⋆ ˜ 0.1-0.6 M⊙). We observed 136 Class II sources (disks that are optically thick in the infrared) at 0.8″ (200 au) resolution with a 3σ sensitivity of ˜ 0.45 mJy (Mdust ˜ 1.3 M⊕). We detect 40 of the targets and construct a mm-continuum luminosity function. We compare the disk mass distribution in IC 348 to those of younger and older regions, taking into account the dependence on stellar mass. We find a clear evolution in disk masses from 1 to 5-10 Myr. The disk masses in IC 348 are significantly lower than those in Taurus (1-3 Myr) and Lupus (1-3 Myr), similar to those of Chamaleon I, (2-3 Myr) and σ Ori (3-5 Myr) and significantly higher than in Upper Scorpius (5-10 Myr). About 20 disks in our sample (˜5% of the cluster members) have estimated masses (dust + gas) >1 MJup and hence might be the precursors of giant planets in the cluster. Some of the most massive disks include transition objects with inner opacity holes based on their infrared SEDs. From a stacking analysis of the 96 non-detections, we find that these disks have a typical dust mass of just ≲ 0.4 M⊕, even though the vast majority of their infrared SEDs remain optically thick and show little signs of evolution. Such low-mass disks may be the precursors of the small rocky planets found by Kepler around M-type stars.
Little Blue Dots in the Hubble Space Telescope Frontier Fields: Precursors to Globular Clusters?
NASA Astrophysics Data System (ADS)
Elmegreen, Debra Meloy; Elmegreen, Bruce G.
2017-12-01
Galaxies with stellar masses < {10}7.4 {M}ȯ and specific star formation rates {sSFR}> {10}-7.4 yr‑1 were examined on images of the Hubble Space Telescope Frontier Field Parallels for Abell 2744 and MACS J0416.1-02403. They appear as unresolved “Little Blue Dots” (LBDs). They are less massive and have higher specific star formation rates (sSFRs) than “blueberries” studied by Yang et al. and higher sSFRs than “Blue Nuggets” studied by Tacchella et al. We divided the LBDs into three redshift bins and, for each, stacked the B435, V606, and I814 images convolved to the same stellar point-spread function (PSF). Their radii were determined from PSF deconvolution to be ∼80 to ∼180 pc. The high sSFRs suggest that their entire stellar mass has formed in only 1% of the local age of the universe. The sSFRs at similar epochs in local dwarf galaxies are lower by a factor of ∼100. Assuming that the star formation rate is {ε }{ff}{M}{gas}/{t}{ff} for efficiency {ε }{ff}, gas mass M gas, and free-fall time, t ff, the gas mass and gas-to-star mass ratio are determined. This ratio exceeds 1 for reasonable efficiencies, and is likely to be ∼5 even with a high {ε }{ff} of 0.1. We consider whether these regions are forming today’s globular clusters. With their observed stellar masses, the maximum likely cluster mass is ∼ {10}5 {M}ȯ , but if star formation continues at the current rate for ∼ 10{t}{ff}∼ 50 {Myr} before feedback and gas exhaustion stop it, then the maximum cluster mass could become ∼ {10}6 {M}ȯ .
ALMA Survey of Class II Disks in the Young Stellar Cluster IC 348
NASA Astrophysics Data System (ADS)
Ruiz, Dary; Cieza, Lucas; Williams, Jonathan; Andrews, Sean; Principe, David
2018-01-01
We present a 1.3 mm continuum survey of the young (2-3 Myr) stellar cluster IC 348 at a distance of 270 pc, which is dominated by low-mass stars. We observed 146 Class II sources (disks that are optically thick in the infrared) at 0.8 '' (200 au) resolution with a 3σ sensitivity of 0.2 MEarth. We detect 46 of the targets and construct a disk luminosity function. We compare the disk mass distribution in IC 348 to those of younger and older regions, taking into account the dependence on stellar mass. We find a clear evolution in disk masses from 1 to 5-10 Myr. The disk masses in IC 348 are significantly lower than those in Taurus (1-2 Myr) and Lupus (1-3 Myr), similar to those of Chamaleon I, (2-3 Myr) and σ-Ori (3-5 Myr) and significantly higher than in Upper Scorpius (5-10 Myr). About 20 disks in our sample (~5% of the cluster members) have estimated masses (dust + gas) of >1 MJUP. and might be the precursors of giant planets in the cluster. Some of the most massive disks include transition objects with inner opacity holes based on their infrared SEDs. From an stacking analysis of the 90 non-detections, we find that these disks have a typical dust mass of just ≤ 0.1 MEarth, even though the vast majority of their infrared SEDs remain optically thick and show little signs of evolution. Such low-mass disks are likely to be the precursors of the small rocky planets found by Kepler around M-type stars.
Rigid-Cluster Models of Conformational Transitions in Macromolecular Machines and Assemblies
Kim, Moon K.; Jernigan, Robert L.; Chirikjian, Gregory S.
2005-01-01
We present a rigid-body-based technique (called rigid-cluster elastic network interpolation) to generate feasible transition pathways between two distinct conformations of a macromolecular assembly. Many biological molecules and assemblies consist of domains which act more or less as rigid bodies during large conformational changes. These collective motions are thought to be strongly related with the functions of a system. This fact encourages us to simply model a macromolecule or assembly as a set of rigid bodies which are interconnected with distance constraints. In previous articles, we developed coarse-grained elastic network interpolation (ENI) in which, for example, only Cα atoms are selected as representatives in each residue of a protein. We interpolate distance differences of two conformations in ENI by using a simple quadratic cost function, and the feasible conformations are generated without steric conflicts. Rigid-cluster interpolation is an extension of the ENI method with rigid-clusters replacing point masses. Now the intermediate conformations in an anharmonic pathway can be determined by the translational and rotational displacements of large clusters in such a way that distance constraints are observed. We present the derivation of the rigid-cluster model and apply it to a variety of macromolecular assemblies. Rigid-cluster ENI is then modified for a hybrid model represented by a mixture of rigid clusters and point masses. Simulation results show that both rigid-cluster and hybrid ENI methods generate sterically feasible pathways of large systems in a very short time. For example, the HK97 virus capsid is an icosahedral symmetric assembly composed of 60 identical asymmetric units. Its original Hessian matrix size for a Cα coarse-grained model is >(300,000)2. However, it reduces to (84)2 when we apply the rigid-cluster model with icosahedral symmetry constraints. The computational cost of the interpolation no longer scales heavily with the size of structures; instead, it depends strongly on the minimal number of rigid clusters into which the system can be decomposed. PMID:15833998
Halo correlations in nonlinear cosmic density fields
NASA Astrophysics Data System (ADS)
Bernardeau, F.; Schaeffer, R.
1999-09-01
The question we address in this paper is the determination of the correlation properties of the dark matter halos appearing in cosmic density fields once they underwent a strongly nonlinear evolution induced by gravitational dynamics. A series of previous works have given indications that kind of non-Gaussian features are induced by nonlinear evolution in term of the high-order correlation functions. Assuming such patterns for the matter field, i.e. that the high-order correlation functions behave as products of two-body correlation functions, we derive the correlation properties of the halos, that are assumed to represent the correlation properties of galaxies or clusters. The hierarchical pattern originally induced by gravity is shown to be conserved for the halos. The strength of their correlations at any order varies, however, but is found to depend only on their internal properties, namely on the parameter x~ m/r(3-gamma ) where m is the mass of the halo, r its size and gamma is the power law index of the two-body correlation function. This internal parameter is seen to be close to the depth of the internal potential well of virialized objects. We were able to derive the explicit form of the generating function of the moments of the halo counts probability distribution function. In particular we show explicitly that, generically, S_P(x)-> P(P-2) in the rare halo limit. Various illustrations of our general results are presented. As a function of the properties of the underlying matter field, we construct the count probabilities for halos and in particular discuss the halo void probability. We evaluate the dependence of the halo mass function on the environment: within clusters, hierarchical clustering implies the higher masses are favored. These properties solely arise from what is a natural bias (ie, naturally induced by gravity) between the observed objects and the unseen matter field, and how it manifests itself depending on which selection effects are imposed.
Truncation of the Binary Distribution Function in Globular Cluster Formation
NASA Astrophysics Data System (ADS)
Vesperini, E.; Chernoff, David F.
1996-02-01
We investigate a population of primordial binaries during the initial stage of evolution of a star cluster. For our calculations we assume that equal-mass stars form rapidly in a tidally truncated gas cloud, that ˜10% of the stars are in binaries, and that the resulting star cluster undergoes an epoch of violent relaxation. We study the collisional interaction of the binaries and single stars, in particular, the ionization of the binaries and the energy exchange between binaries and single stars. We find that for large N systems (N > 1000), even the most violent beginning leaves the binary distribution function largely intact. Hence, the binding energy originally tied up in the cloud's protostellar pairs is preserved during the relaxation process, and the binaries are available to interact at later times within the virialized cluster.
NASA Astrophysics Data System (ADS)
Caputo, F.; Castellani, V.; Quarta, M. L.
1985-02-01
It is shown that pulsational properties of RR Lyrae variables in globular clusters can be used to put theoretical constraints on the values of cluster reddening and distance modulus. By requiring that the HR diagram location of pulsators agrees with the period distribution observed and with the theoretical boundaries of the instability strip, reddening and distance modulus of the globular cluster M4 are derived as a (slow) function of the pulsator masses. Thus, a best guess is presented for the cluster age (t = 12.2 billion years), some evidence for a non-canonical evolutionary having been taken into account.
Multipolar moments of weak lensing signal around clusters. Weighing filaments in harmonic space
NASA Astrophysics Data System (ADS)
Gouin, C.; Gavazzi, R.; Codis, S.; Pichon, C.; Peirani, S.; Dubois, Y.
2017-09-01
Context. Upcoming weak lensing surveys such as Euclid will provide an unprecedented opportunity to quantify the geometry and topology of the cosmic web, in particular in the vicinity of lensing clusters. Aims: Understanding the connectivity of the cosmic web with unbiased mass tracers, such as weak lensing, is of prime importance to probe the underlying cosmology, seek dynamical signatures of dark matter, and quantify environmental effects on galaxy formation. Methods: Mock catalogues of galaxy clusters are extracted from the N-body PLUS simulation. For each cluster, the aperture multipolar moments of the convergence are calculated in two annuli (inside and outside the virial radius). By stacking their modulus, a statistical estimator is built to characterise the angular mass distribution around clusters. The moments are compared to predictions from perturbation theory and spherical collapse. Results: The main weakly chromatic excess of multipolar power on large scales is understood as arising from the contraction of the primordial cosmic web driven by the growing potential well of the cluster. Besides this boost, the quadrupole prevails in the cluster (ellipsoidal) core, while at the outskirts, harmonic distortions are spread on small angular modes, and trace the non-linear sharpening of the filamentary structures. Predictions for the signal amplitude as a function of the cluster-centric distance, mass, and redshift are presented. The prospects of measuring this signal are estimated for current and future lensing data sets. Conclusions: The Euclid mission should provide all the necessary information for studying the cosmic evolution of the connectivity of the cosmic web around lensing clusters using multipolar moments and probing unique signatures of, for example, baryons and warm dark matter.
A SURVEY FOR NEW MEMBERS OF THE TAURUS STAR-FORMING REGION WITH THE SLOAN DIGITAL SKY SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luhman, K. L.; Mamajek, E. E.; Shukla, S. J.
Previous studies have found that ∼1 deg{sup 2} fields surrounding the stellar aggregates in the Taurus star-forming region exhibit a surplus of solar-mass stars relative to denser clusters like IC 348 and the Orion Nebula Cluster. To test whether this difference reflects mass segregation in Taurus or a variation in the initial mass function, we have performed a survey for members of Taurus across a large field (∼40 deg{sup 2}) that was imaged by the Sloan Digital Sky Survey (SDSS). We obtained optical and near-infrared spectra of candidate members identified with those images and the Two Micron All Sky Survey, as wellmore » as miscellaneous candidates that were selected with several other diagnostics of membership. We have classified 22 of the candidates as new members of Taurus, which includes one of the coolest known members (M9.75). Our updated census of members within the SDSS field shows a surplus of solar-mass stars relative to clusters, although it is less pronounced than in the smaller fields toward the stellar aggregates that were surveyed for previously measured mass functions in Taurus. In addition to spectra of our new members, we include in our study near-IR spectra of roughly half of the known members of Taurus, which are used to refine their spectral types and extinctions. We also present an updated set of near-IR standard spectra for classifying young stars and brown dwarfs at M and L types.« less
From Stars to Superplanets: The Low-Mass Initial Mass Function in the Young Cluster IC 348
2000-10-01
both baryonic dark matter in the Galaxy and, perhaps more importantly, the formation processes governing stars, brown dwarfs, and planets. In the...on the role of physical processes such as fragmentation in the star and planet formation process and the fraction of dark matter in the Galactic halo
An order statistics approach to the halo model for galaxies
NASA Astrophysics Data System (ADS)
Paul, Niladri; Paranjape, Aseem; Sheth, Ravi K.
2017-04-01
We use the halo model to explore the implications of assuming that galaxy luminosities in groups are randomly drawn from an underlying luminosity function. We show that even the simplest of such order statistics models - one in which this luminosity function p(L) is universal - naturally produces a number of features associated with previous analyses based on the 'central plus Poisson satellites' hypothesis. These include the monotonic relation of mean central luminosity with halo mass, the lognormal distribution around this mean and the tight relation between the central and satellite mass scales. In stark contrast to observations of galaxy clustering; however, this model predicts no luminosity dependence of large-scale clustering. We then show that an extended version of this model, based on the order statistics of a halo mass dependent luminosity function p(L|m), is in much better agreement with the clustering data as well as satellite luminosities, but systematically underpredicts central luminosities. This brings into focus the idea that central galaxies constitute a distinct population that is affected by different physical processes than are the satellites. We model this physical difference as a statistical brightening of the central luminosities, over and above the order statistics prediction. The magnitude gap between the brightest and second brightest group galaxy is predicted as a by-product, and is also in good agreement with observations. We propose that this order statistics framework provides a useful language in which to compare the halo model for galaxies with more physically motivated galaxy formation models.
Electron-induced chemistry in microhydrated sulfuric acid clusters
NASA Astrophysics Data System (ADS)
Lengyel, Jozef; Pysanenko, Andriy; Fárník, Michal
2017-11-01
We investigate the mixed sulfuric acid-water clusters in a molecular beam experiment with electron attachment and negative ion mass spectrometry and complement the experiment by density functional theory (DFT) calculations. The microhydration of (H2SO4)m(H2O)n clusters is controlled by the expansion conditions, and the electron attachment yields the main cluster ion series (H2SO4)m(H2O)nHSO4- and (H2O)nH2SO4-. The mass spectra provide an experimental evidence for the onset of the ionic dissociation of sulfuric acid and ion-pair (HSO4- ṡ ṡ ṡ H3O+) formation in the neutral H2SO4(H2O)n clusters with n ≥ 5 water molecules, in excellent agreement with the theoretical predictions. In the clusters with two sulfuric acid molecules (H2SO4)2(H2O)n this process starts as early as n ≥ 2 water molecules. The (H2SO4)m(H2O)nHSO4- clusters are formed after the dissociative electron attachment to the clusters containing the (HSO4- ṡ ṡ ṡ H3O+) ion-pair structure, which leads to the electron recombination with the H3O+ moiety generating H2O molecule and the H-atom dissociation from the cluster. The (H2O)nH2SO4- cluster ions point to an efficient caging of the H atom by the surrounding water molecules. The electron-energy dependencies exhibit an efficient electron attachment at low electron energies below 3 eV, and no resonances above this energy, for all the measured mass peaks. This shows that in the atmospheric chemistry only the low-energy electrons can be efficiently captured by the sulfuric acid-water clusters and converted into the negative ions. Possible atmospheric consequences of the acidic dissociation in the clusters and the electron attachment to the sulfuric acid-water aerosols are discussed.
Intrinsic scatter of caustic masses and hydrostatic bias: An observational study
NASA Astrophysics Data System (ADS)
Andreon, S.; Trinchieri, G.; Moretti, A.; Wang, J.
2017-10-01
All estimates of cluster mass have some intrinsic scatter and perhaps some bias with true mass even in the absence of measurement errors for example caused by cluster triaxiality and large scale structure. Knowledge of the bias and scatter values is fundamental for both cluster cosmology and astrophysics. In this paper we show that the intrinsic scatter of a mass proxy can be constrained by measurements of the gas fraction because masses with higher values of intrinsic scatter with true mass produce more scattered gas fractions. Moreover, the relative bias of two mass estimates can be constrained by comparing the mean gas fraction at the same (nominal) cluster mass. Our observational study addresses the scatter between caustic (I.e., dynamically estimated) and true masses, and the relative bias of caustic and hydrostatic masses. For these purposes, we used the X-ray Unbiased Cluster Sample, a cluster sample selected independently from the intracluster medium content with reliable masses: 34 galaxy clusters in the nearby (0.050 < z < 0.135) Universe, mostly with 14 < log M500/M⊙ ≲ 14.5, and with caustic masses. We found a 35% scatter between caustic and true masses. Furthermore, we found that the relative bias between caustic and hydrostatic masses is small, 0.06 ± 0.05 dex, improving upon past measurements. The small scatter found confirms our previous measurements of a highly variable amount of feedback from cluster to cluster, which is the cause of the observed large variety of core-excised X-ray luminosities and gas masses.
An expanded set of brown dwarf and very low mass star models
NASA Technical Reports Server (NTRS)
Burrows, A.; Hubbard, W. B.; Saumon, D.; Lunine, J. I.
1993-01-01
We present in this paper updated and improved theoretical models of brown dwarfs and late M dwarfs. The evolution and characteristics of objects between 0.01 and 0.2 solar mass are exhaustively investigated and special emphasis is placed on their properties at early ages. The dependence on the helium fraction, deuterium fraction, and metallicity of the masses, effective temperature and luminosities at the edge of the hydrogen main sequence are calculated. We derive luminosity functions for representative mass functions and compare our predictions to recent cluster data. We show that there are distinctive features in the theoretical luminosity functions that can serve as diagnostics of brown dwarf physics. A zero-metallicity model is presented as a bound to or approximation of a putative extreme halo population.
On the Stellar Population and Star-Forming History of the Orion Nebula Cluster
NASA Astrophysics Data System (ADS)
Hillenbrand, Lynne A.
1997-05-01
We report on the first phase of a study of the stellar population comprising the Orion Nebula Cluster (ONC). Approximately 50% of the ~ 3500 stars identified to date within ~ 2.5 pc of the namesake Trapezium stars are optically visible, and in this paper we focus on that sample with I < 17.5 mag. The large number and number density (npeak > 10(4) pc(-3) ) of stars, the wide range in stellar mass ( ~ 0.1-50 M_⊙), and the extreme youth (< 1-2 Myr) of the stellar population, make the ONC the best site for investigating: 1) the detailed shape of a truly ``initial'' mass spectrum; 2) the apparent age spread in a region thought to have undergone triggered star formation; 3) the time sequence of star formation as a function of stellar mass; and 4) trends of all of the above with cluster radius. Nearly 60% of the ~ 1600 optical stars have sufficient data (spectroscopy and photometry) for placement on a theoretical HR diagram; this subsample is unbiased with respect to apparent brightness or cluster radius, complete down to ~ 1 M_⊙, and representative of the total optical sample below ~ 1 M_⊙ for the age and extinction ranges characteristic of the cluster. Comparison of the derived HR diagram with traditional pre-main sequence evolutionary calculations shows a trend of increasing stellar age with increasing stellar mass. To avoid the implication of earlier characteristic formation times for higher-mass stars than for lower-mass stars, refinement of early evolutionary theory in a manner similar to the birthline hypothesis of Palla & Stahler (1993), is required. Subject to uncertainties in the tracks and isochrones, we can still investigate stellar mass and age distributions in the ONC. We find the ONC as a whole to be characterized by a mass spectrum which is not grossly inconsistent with ``standard'' stellar mass spectra. In particular, although there are structural differences between the detailed ONC mass spectrum and various models constructed from solar neighborhood data, the observed mass spectrum appears to a peak at ~ 0.2 M_⊙ and to fall off rapidly towards lower masses; several substellar objects are present. The abundance of low-mass stars relative to high-mass stars suggests that there is no bi-modal star formation mode; somewhat ironically, the ONC probably contains fractionally more low-mass stars than the solar neighborhood since the population not yet located on the HR diagram is dominated by sub-solar-mass stars. Nonetheless, the ONC mass spectrum is biased towards higher-mass stars within the innermost cluster radii (rprojected < 0.3 pc). We find the ONC as a whole to be characterized by a mean age of < 1 Myr and an age spread which is probably less than 2 Myr, but also by a bias towards younger stars at smaller projected cluster radii. Although the most massive stars and the youngest stars are found preferentially towards the center of the ONC it does not follow that the most massive stars are the youngest stars. A lower limit to the total cluster mass in stars is Mstars ~ 900 M_⊙ (probably a factor of < 2 underestimate). A lower limit to the recent star formation rate is ~ 10(-4) M_⊙ yr(-1) . All observational data in this study as well as stellar parameters derived from them are available in electronic format.
The Effect of Star Formation History on the Inferred Stellar Initial Mass Function
NASA Astrophysics Data System (ADS)
Elmegreen, Bruce G.; Scalo, John
2006-01-01
Peaks and lulls in the star formation rate (SFR) over the history of the Galaxy produce plateaus and declines in the present-day mass function (PDMF) where the main-sequence lifetime overlaps the age and duration of the SFR variation. These PDMF features can be misinterpreted as the form of the intrinsic stellar initial mass function (IMF) if the star formation rate is assumed to be constant or slowly varying with time. This effect applies to all regions that have formed stars for longer than the age of the most massive stars, including OB associations, star complexes, and especially galactic field stars. Related problems may apply to embedded clusters. Evidence is summarized for temporal SFR variations from parsec scales to entire galaxies, all of which should contribute to inferred IMF distortions. We give examples of various star formation histories to demonstrate the types of false IMF structures that might be seen. These include short-duration bursts, stochastic histories with lognormal amplitude distributions, and oscillating histories with various periods and phases. The inferred IMF should appear steeper than the intrinsic IMF over mass ranges where the stellar lifetimes correspond to times of decreasing SFRs; shallow portions of the inferred IMF correspond to times of increasing SFRs. If field regions are populated by dispersed clusters and defined by their low current SFRs, then they should have steeper inferred IMFs than the clusters. The SFRs required to give the steep field IMFs in the LMC and SMC are determined. Structure observed in several determinations of the Milky Way field star IMF can be accounted for by a stochastic and bursty star formation history.
Cosmological parameter estimation from CMB and X-ray cluster after Planck
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Jian-Wei; Cai, Rong-Gen; Guo, Zong-Kuan
We investigate constraints on cosmological parameters in three 8-parameter models with the summed neutrino mass as a free parameter, by a joint analysis of CCCP X-ray cluster data, the newly released Planck CMB data as well as some external data sets including baryon acoustic oscillation measurements from the 6dFGS, SDSS DR7 and BOSS DR9 surveys, and Hubble Space Telescope H{sub 0} measurement. We find that the combined data strongly favor a non-zero neutrino masses at more than 3σ confidence level in these non-vanilla models. Allowing the CMB lensing amplitude A{sub L} to vary, we find A{sub L} > 1 atmore » 3σ confidence level. For dark energy with a constant equation of state w, we obtain w < −1 at 3σ confidence level. The estimate of the matter power spectrum amplitude σ{sub 8} is discrepant with the Planck value at 2σ confidence level, which reflects some tension between X-ray cluster data and Planck data in these non-vanilla models. The tension can be alleviated by adding a 9% systematic shift in the cluster mass function.« less
The Scale Sizes of Globular Clusters: Tidal Limits, Evolution, and the Outer Halo
NASA Astrophysics Data System (ADS)
Harris, William
2011-10-01
The physical factors that determine the linear sizes of massive star clusters are not well understood. Their scale sizes were long thought to be governed by the tidal field of the parent galaxy, but major questions are now emerging. Globular clusters, for example, have mean sizes nearly independent of location in the halo. Paradoxically, the recently discovered "anomalous extended clusters" in M31 and elsewhere have scale sizes that fit much better with tidal theory, but they are puzzlingly rare. Lastly, the persistent size difference between metal-poor and metal-rich clusters still lacks a quantitative explanation. Many aspects of these observations call for better modelling of dynamical evolution in the outskirts of clusters, and also their conditions of formation including the early rapid mass loss phase of protoclusters. A new set of accurate measurements of scale sizes and structural parameters, for a large and homogeneous set of globular clusters, would represent a major advance in this subject. We propose to carry out a {WFC3+ACS} imaging survey of the globular clusters in the supergiant Virgo elliptical M87 to cover the complete run of the halo. M87 is an optimum target system because of its huge numbers of clusters and HST's ability to resolve the cluster profiles accurately. We will derive cluster effective radii, central concentrations, luminosities, and colors for more than 4000 clusters using PSF-convolved King-model profile fitting. In parallel, we are developing theoretical tools to model the expected distribution of cluster sizes versus galactocentric distance as functions of cluster mass, concentration, and orbital anisotropy.
NASA Astrophysics Data System (ADS)
Mantz, A. B.; Allen, S. W.; Morris, R. G.
2016-10-01
This is the fifth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Our sample comprises 40 clusters identified as being dynamically relaxed and hot in Papers I and II of this series. Here we use constraints on cluster mass profiles from X-ray data to test some of the basic predictions of cosmological structure formation in the cold dark matter (CDM) paradigm. We present constraints on the concentration-mass relation for massive clusters, finding a power-law mass dependence with a slope of κm = -0.16 ± 0.07, in agreement with CDM predictions. For this relaxed sample, the relation is consistent with a constant as a function of redshift (power-law slope with 1 + z of κζ = -0.17 ± 0.26), with an intrinsic scatter of σln c = 0.16 ± 0.03. We investigate the shape of cluster mass profiles over the radial range probed by the data (typically ˜50 kpc-1 Mpc), and test for departures from the simple Navarro-Frenk-White (NFW) form, for which the logarithmic slope of the density profile tends to -1 at small radii. Specifically, we consider as alternatives the generalized NFW (GNFW) and Einasto parametrizations. For the GNFW model, we find an average value of (minus) the logarithmic inner slope of β = 1.02 ± 0.08, with an intrinsic scatter of σβ = 0.22 ± 0.07, while in the Einasto case we constrain the average shape parameter to be α = 0.29 ± 0.04 with an intrinsic scatter of σα = 0.12 ± 0.04. Our results are thus consistent with the simple NFW model on average, but we clearly detect the presence of intrinsic, cluster-to-cluster scatter about the average.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mantz, A. B.; Allen, S. W.; Morris, R. G.
This is the fifth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Our sample comprises 40 clusters identified as being dynamically relaxed and hot in Papers I and II of this series. Here we use constraints on cluster mass profiles from X-ray data to test some of the basic predictions of cosmological structure formation in the cold dark matter (CDM) paradigm. In addition, we present constraints on the concentration–mass relation for massive clusters, finding a power-law mass dependence with a slope of κ m = –0.16 ± 0.07, in agreement with CDMmore » predictions. For this relaxed sample, the relation is consistent with a constant as a function of redshift (power-law slope with 1 + z of κ ζ = –0.17 ± 0.26), with an intrinsic scatter of σln c = 0.16 ± 0.03. We investigate the shape of cluster mass profiles over the radial range probed by the data (typically ~50 kpc–1 Mpc), and test for departures from the simple Navarro–Frenk–White (NFW) form, for which the logarithmic slope of the density profile tends to –1 at small radii. Specifically, we consider as alternatives the generalized NFW (GNFW) and Einasto parametrizations. For the GNFW model, we find an average value of (minus) the logarithmic inner slope of β = 1.02 ± 0.08, with an intrinsic scatter of σ β = 0.22 ± 0.07, while in the Einasto case we constrain the average shape parameter to be α = 0.29 ± 0.04 with an intrinsic scatter of σ α = 0.12 ± 0.04. Our results are thus consistent with the simple NFW model on average, but we clearly detect the presence of intrinsic, cluster-to-cluster scatter about the average.« less
Mantz, A. B.; Allen, S. W.; Morris, R. G.
2016-07-15
This is the fifth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Our sample comprises 40 clusters identified as being dynamically relaxed and hot in Papers I and II of this series. Here we use constraints on cluster mass profiles from X-ray data to test some of the basic predictions of cosmological structure formation in the cold dark matter (CDM) paradigm. In addition, we present constraints on the concentration–mass relation for massive clusters, finding a power-law mass dependence with a slope of κ m = –0.16 ± 0.07, in agreement with CDMmore » predictions. For this relaxed sample, the relation is consistent with a constant as a function of redshift (power-law slope with 1 + z of κ ζ = –0.17 ± 0.26), with an intrinsic scatter of σln c = 0.16 ± 0.03. We investigate the shape of cluster mass profiles over the radial range probed by the data (typically ~50 kpc–1 Mpc), and test for departures from the simple Navarro–Frenk–White (NFW) form, for which the logarithmic slope of the density profile tends to –1 at small radii. Specifically, we consider as alternatives the generalized NFW (GNFW) and Einasto parametrizations. For the GNFW model, we find an average value of (minus) the logarithmic inner slope of β = 1.02 ± 0.08, with an intrinsic scatter of σ β = 0.22 ± 0.07, while in the Einasto case we constrain the average shape parameter to be α = 0.29 ± 0.04 with an intrinsic scatter of σ α = 0.12 ± 0.04. Our results are thus consistent with the simple NFW model on average, but we clearly detect the presence of intrinsic, cluster-to-cluster scatter about the average.« less
NASA Astrophysics Data System (ADS)
Crowther, Paul A.; Schnurr, Olivier; Hirschi, Raphael; Yusof, Norhasliza; Parker, Richard J.; Goodwin, Simon P.; Kassim, Hasan Abu
2010-10-01
Spectroscopic analyses of hydrogen-rich WN5-6 stars within the young star clusters NGC3603 and R136 are presented, using archival Hubble Space Telescope and Very Large Telescope spectroscopy, and high spatial resolution near-IR photometry, including Multi-Conjugate Adaptive Optics Demonstrator (MAD) imaging of R136. We derive high stellar temperatures for the WN stars in NGC3603 (T* ~ 42 +/- 2kK) and R136 (T* ~ 53 +/- 3kK) plus clumping-corrected mass-loss rates of 2-5 × 10-5Msolaryr-1 which closely agree with theoretical predictions from Vink et al. These stars make a disproportionate contribution to the global ionizing and mechanical wind power budget of their host clusters. Indeed, R136a1 alone supplies ~7 per cent of the ionizing flux of the entire 30Doradus region. Comparisons with stellar models calculated for the main-sequence evolution of 85-500Msolar accounting for rotation suggest ages of ~1.5Myr and initial masses in the range 105-170Msolar for three systems in NGC3603, plus 165-320Msolar for four stars in R136. Our high stellar masses are supported by consistent spectroscopic and dynamical mass determinations for the components of NGC3603A1. We consider the predicted X-ray luminosity of the R136 stars if they were close, colliding wind binaries. R136c is consistent with a colliding wind binary system. However, short period, colliding wind systems are excluded for R136a WN stars if mass ratios are of order unity. Widely separated systems would have been expected to harden owing to early dynamical encounters with other massive stars within such a high-density environment. From simulated star clusters, whose constituents are randomly sampled from the Kroupa initial mass function, both NGC3603 and R136 are consistent with an tentative upper mass limit of ~300Msolar. The Arches cluster is either too old to be used to diagnose the upper mass limit, exhibits a deficiency of very massive stars, or more likely stellar masses have been underestimated - initial masses for the most luminous stars in the Arches cluster approach 200Msolar according to contemporary stellar and photometric results. The potential for stars greatly exceeding 150Msolar within metal-poor galaxies suggests that such pair-instability supernovae could occur within the local universe, as has been claimed for SN2007bi.
Hot and solid gallium clusters: too small to melt.
Breaux, Gary A; Benirschke, Robert C; Sugai, Toshiki; Kinnear, Brian S; Jarrold, Martin F
2003-11-21
A novel multicollision induced dissociation scheme is employed to determine the energy content for mass-selected gallium cluster ions as a function of their temperature. Measurements were performed for Ga(+)(n) (n=17 39, and 40) over a 90-720 K temperature range. For Ga+39 and Ga+40 a broad maximum in the heat capacity-a signature of a melting transition for a small cluster-occurs at around 550 K. Thus small gallium clusters melt at substantially above the 302.9 K melting point of bulk gallium, in conflict with expectations that they will remain liquid to below 150 K. No melting transition is observed for Ga+17.
Do All O Stars Form in Star Clusters?
NASA Astrophysics Data System (ADS)
Weidner, C.; Gvaramadze, V. V.; Kroupa, P.; Pflamm-Altenburg, J.
The question whether or not massive stars can form in isolation or only in star clusters is of great importance for the theory of (massive) star formation as well as for the stellar initial mass function of whole galaxies (IGIMF-theory). While a seemingly easy question it is rather difficult to answer. Several physical processes (e.g. star-loss due to stellar dynamics or gas expulsion) and observational limitations (e.g. dust obscuration of young clusters, resolution) pose severe challenges to answer this question. In this contribution we will present the current arguments in favour and against the idea that all O stars form in clusters.
The XXL Survey. II. The bright cluster sample: catalogue and luminosity function
NASA Astrophysics Data System (ADS)
Pacaud, F.; Clerc, N.; Giles, P. A.; Adami, C.; Sadibekova, T.; Pierre, M.; Maughan, B. J.; Lieu, M.; Le Fèvre, J. P.; Alis, S.; Altieri, B.; Ardila, F.; Baldry, I.; Benoist, C.; Birkinshaw, M.; Chiappetti, L.; Démoclès, J.; Eckert, D.; Evrard, A. E.; Faccioli, L.; Gastaldello, F.; Guennou, L.; Horellou, C.; Iovino, A.; Koulouridis, E.; Le Brun, V.; Lidman, C.; Liske, J.; Maurogordato, S.; Menanteau, F.; Owers, M.; Poggianti, B.; Pomarède, D.; Pompei, E.; Ponman, T. J.; Rapetti, D.; Reiprich, T. H.; Smith, G. P.; Tuffs, R.; Valageas, P.; Valtchanov, I.; Willis, J. P.; Ziparo, F.
2016-06-01
Context. The XXL Survey is the largest survey carried out by the XMM-Newton satellite and covers a total area of 50 square degrees distributed over two fields. It primarily aims at investigating the large-scale structures of the Universe using the distribution of galaxy clusters and active galactic nuclei as tracers of the matter distribution. The survey will ultimately uncover several hundreds of galaxy clusters out to a redshift of ~2 at a sensitivity of ~10-14 erg s-1 cm-2 in the [0.5-2] keV band. Aims: This article presents the XXL bright cluster sample, a subsample of 100 galaxy clusters selected from the full XXL catalogue by setting a lower limit of 3 × 10-14 erg s-1 cm-2 on the source flux within a 1' aperture. Methods: The selection function was estimated using a mixture of Monte Carlo simulations and analytical recipes that closely reproduce the source selection process. An extensive spectroscopic follow-up provided redshifts for 97 of the 100 clusters. We derived accurate X-ray parameters for all the sources. Scaling relations were self-consistently derived from the same sample in other publications of the series. On this basis, we study the number density, luminosity function, and spatial distribution of the sample. Results: The bright cluster sample consists of systems with masses between M500 = 7 × 1013 and 3 × 1014 M⊙, mostly located between z = 0.1 and 0.5. The observed sky density of clusters is slightly below the predictions from the WMAP9 model, and significantly below the prediction from the Planck 2015 cosmology. In general, within the current uncertainties of the cluster mass calibration, models with higher values of σ8 and/or ΩM appear more difficult to accommodate. We provide tight constraints on the cluster differential luminosity function and find no hint of evolution out to z ~ 1. We also find strong evidence for the presence of large-scale structures in the XXL bright cluster sample and identify five new superclusters. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. Based on observations made with ESO Telescopes at the La Silla and Paranal Observatories under programme ID 089.A-0666 and LP191.A-0268.The Master Catalogue is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A2
Formation of high mass carbon cluster ions from laser ablation of polymers and thin carbon films
NASA Astrophysics Data System (ADS)
Creasy, William R.; Brenna, J. T.
1990-02-01
Three materials were studied by laser ablation/Fourier transform mass spectrometry, using 266 nm laser radiation: a copolymer of ethylene and tetrafluoroethylene (ETFE), polyphenylene sulfide (PPS), and a diamond-like carbon film (DLC). In each case, positive ion mass spectra exhibit primarily even-numbered, high mass carbon clusters (``fullerenes'') of the type previously reported for graphite ablation. In the case of ETFE, a large C+60 peak (``buckminsterfullerene'') was observed. The polymer spectra showed a strong dependence on the number of laser pulses on one spot and the laser power density. For ETFE, the fullerene ion relative intensity first increases and then decreases as a function of the number of laser pulses. For the DLC film, fullerenes are observed with a single laser pulse on a fresh spot of the sample. The results are interpreted in terms of a gas phase growth model for the fullerene ion formation.
A Census of Baryons in Galaxy Clusters and Groups
NASA Astrophysics Data System (ADS)
Gonzalez, Anthony H.; Zaritsky, Dennis; Zabludoff, Ann I.
2007-09-01
We determine the contribution of stars in galaxies, intracluster stars, and the intracluster medium to the total baryon budget in nearby galaxy clusters and groups. We find that the baryon mass fraction (fb≡Ωb/Ωm) within r500 is constant for systems with M500 between 6×1013 and 1×1015 Msolar. Although fb is lower than the WMAP value, the shortfall is on the order of both the observational systematic uncertainties and the depletion of baryons within r500 that is predicted by simulations. The data therefore provide no compelling evidence for undetected baryonic components, particularly any that would be expected to vary in importance with cluster mass. A unique feature of the current analysis is direct inclusion of the contribution of intracluster light (ICL) in the baryon budget. With the addition of the ICL to the stellar mass in galaxies, the increase in X-ray gas mass fraction with increasing total mass is entirely accounted for by a decrease in the total stellar mass fraction, supporting the argument that the behavior of both the stellar and X-ray gas components is dominated by a decrease in star formation efficiency in more massive environments. Within just the stellar component, the fraction of the total stellar luminosity in the central, giant brightest cluster galaxy (BCG) and ICL (hereafter the BCG+ICL component) decreases as velocity dispersion (σ) increases for systems with 145 km s-1<=σ<=1026 km s-1, suggesting that the BCG+ICL component, and in particular the dominant ICL component, grows less efficiently in higher mass environments. The degree to which this behavior arises from our sample selection, which favored systems with central, giant elliptical galaxies, remains unclear. A more robust result is the identification of low-mass groups with large BCG+ICL components, demonstrating that the creation of ``intracluster'' stars does not require a massive cluster environment. Within r500 and r200, the BCG+ICL contributes on average 40% and 33% of the total stellar light, respectively, for the clusters and groups in our sample. Because these fractions are functions of both enclosed radius and system mass, care should be exercised when comparing these values with other studies and simulations.
Kinematics of Globular Cluster: new Perspectives of Energy Equipartition from N-body Simulations
NASA Astrophysics Data System (ADS)
Kim, Hyunwoo; Pasquato, Mario; Yoon, Suk-jin
2018-01-01
Globular clusters (GCs) evolve dynamically through gravitational two-body interactions between stars. We investigated the evolution towards energy equipartition in GCs using direct n-body simulations in NBODY6. If a GC reaches full energy equipartition, the velocity dispersion as a function of stars’ mass becomes a power law with exponent -1/2. However, our n-body simulations never reach full equipartition, which is similar to Trenti & van de Marel (2013) results. Instead we found that in simulations with a shallow mass spectrum the best fit exponent becomes positive slightly before core collapse time. This inversion is a new result, which can be used as a kinematic predictor of core collapse. We are currently exploring applications of this inversion indicator to the detection of intermediate mass black holes.
Optical and near-infrared photometric study of NGC 6724
NASA Astrophysics Data System (ADS)
Bendary, Reda; Tadross, Ashraf; Hasan, Priya; Osman, Anas; Essam, Ahmed
2018-02-01
BVRI CCD photometry of the poorly studied open cluster NGC 6724 has been carried out down to a limiting magnitude of V∼20 mag. The stars of the cluster have been observed using the Newtonian focus (f/4.84) of the 74-inch telescope at Kottamia Astronomical Observatory in Egypt. Also, the 2MASS - JHK system is used to confirm the results we obtained. The main photometric parameters have been estimated for the present object; the diameter is found to be 6 arcmin, the distance is 1530±60 pc from the Sun and the age is 900±50 Myr. The optical reddening E(B-V)=0.65 {mag}, while the infrared reddening is E(J-H)=0.20 {mag}. The slope of the mass function distribution and the relaxation time estimations indicate that cluster NGC 6724 is dynamically relaxed.
Extreme magnification of an individual star at redshift 1.5 by a galaxy-cluster lens
NASA Astrophysics Data System (ADS)
Kelly, Patrick L.; Diego, Jose M.; Rodney, Steven; Kaiser, Nick; Broadhurst, Tom; Zitrin, Adi; Treu, Tommaso; Pérez-González, Pablo G.; Morishita, Takahiro; Jauzac, Mathilde; Selsing, Jonatan; Oguri, Masamune; Pueyo, Laurent; Ross, Timothy W.; Filippenko, Alexei V.; Smith, Nathan; Hjorth, Jens; Cenko, S. Bradley; Wang, Xin; Howell, D. Andrew; Richard, Johan; Frye, Brenda L.; Jha, Saurabh W.; Foley, Ryan J.; Norman, Colin; Bradac, Marusa; Zheng, Weikang; Brammer, Gabriel; Benito, Alberto Molino; Cava, Antonio; Christensen, Lise; de Mink, Selma E.; Graur, Or; Grillo, Claudio; Kawamata, Ryota; Kneib, Jean-Paul; Matheson, Thomas; McCully, Curtis; Nonino, Mario; Pérez-Fournon, Ismael; Riess, Adam G.; Rosati, Piero; Schmidt, Kasper Borello; Sharon, Keren; Weiner, Benjamin J.
2018-04-01
Galaxy-cluster gravitational lenses can magnify background galaxies by a total factor of up to 50. Here we report an image of an individual star at redshift z = 1.49 (dubbed MACS J1149 Lensed Star 1) magnified by more than ×2,000. A separate image, detected briefly 0.26″ from Lensed Star 1, is probably a counterimage of the first star demagnified for multiple years by an object of ≳3 solar masses in the cluster. For reasonable assumptions about the lensing system, microlensing fluctuations in the stars' light curves can yield evidence about the mass function of intracluster stars and compact objects, including binary fractions and specific stellar evolution and supernova models. Dark-matter subhaloes or massive compact objects may help to account for the two images' long-term brightness ratio.
The relative impact of baryons and cluster shape on weak lensing mass estimates of galaxy clusters
NASA Astrophysics Data System (ADS)
Lee, B. E.; Le Brun, A. M. C.; Haq, M. E.; Deering, N. J.; King, L. J.; Applegate, D.; McCarthy, I. G.
2018-05-01
Weak gravitational lensing depends on the integrated mass along the line of sight. Baryons contribute to the mass distribution of galaxy clusters and the resulting mass estimates from lensing analysis. We use the cosmo-OWLS suite of hydrodynamic simulations to investigate the impact of baryonic processes on the bias and scatter of weak lensing mass estimates of clusters. These estimates are obtained by fitting NFW profiles to mock data using MCMC techniques. In particular, we examine the difference in estimates between dark matter-only runs and those including various prescriptions for baryonic physics. We find no significant difference in the mass bias when baryonic physics is included, though the overall mass estimates are suppressed when feedback from AGN is included. For lowest-mass systems for which a reliable mass can be obtained (M200 ≈ 2 × 1014M⊙), we find a bias of ≈-10 per cent. The magnitude of the bias tends to decrease for higher mass clusters, consistent with no bias for the most massive clusters which have masses comparable to those found in the CLASH and HFF samples. For the lowest mass clusters, the mass bias is particularly sensitive to the fit radii and the limits placed on the concentration prior, rendering reliable mass estimates difficult. The scatter in mass estimates between the dark matter-only and the various baryonic runs is less than between different projections of individual clusters, highlighting the importance of triaxiality.
NASA Astrophysics Data System (ADS)
Neumaier, Marco; Weigend, Florian; Hampe, Oliver; Kappes, Manfred M.
2006-09-01
Near thermal energy reactive collisions of small mixed metal cluster cations AgmAun+ (m +n=4, 5, and 6) with carbon monoxide have been studied in the room temperature Penning trap of a Fourier transform ion-cyclotron-resonance mass spectrometer as a function of cluster size and composition. The tetrameric species AgAu3+ and Ag2Au2+ are found to react dissociatively by way of Au or Ag atom loss, respectively, to form the cluster carbonyl AgAu2CO+. In contrast, measurements on a selection of pentamers and hexamers show that CO is added with absolute rate constants that decrease with increasing silver content. Experimentally determined absolute rate constants for CO adsorption were analyzed using the radiative association kinetics model to obtain cluster cation-CO binding energies ranging from 0.77to1.09eV. High-level ab initio density functional theory (DFT) computations identifying the lowest-energy cluster isomers and the respective CO adsorption energies are in good agreement with the experimental findings clearly showing that CO binds in a "head-on" fashion to a gold atom in the mixed clusters. DFT exploration of reaction pathways in the case of Ag2Au2+ suggests that exoergicities are high enough to access the minimum energy products for all reactive clusters probed.
NASA Technical Reports Server (NTRS)
Prescod-Weinstein, Chanda; Afshordi, Niayesh
2011-01-01
Structure formation provides a strong test of any cosmic acceleration model because a successful dark energy model must not inhibit or overpredict the development of observed large-scale structures. Traditional approaches to studies of structure formation in the presence of dark energy or a modified gravity implement a modified Press-Schechter formalism, which relates the linear overdensities to the abundance of dark matter haloes at the same time. We critically examine the universality of the Press-Schechter formalism for different cosmologies, and show that the halo abundance is best correlated with spherical linear overdensity at 94% of collapse (or observation) time. We then extend this argument to ellipsoidal collapse (which decreases the fractional time of best correlation for small haloes), and show that our results agree with deviations from modified Press-Schechter formalism seen in simulated mass functions. This provides a novel universal prescription to measure linear density evolution, based on current and future observations of cluster (or dark matter) halo mass function. In particular, even observations of cluster abundance in a single epoch will constrain the entire history of linear growth of cosmological of perturbations.
Measuring consistent masses for 25 Milky Way globular clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimmig, Brian; Seth, Anil; Ivans, Inese I.
2015-02-01
We present central velocity dispersions, masses, mass-to-light ratios (M/Ls ), and rotation strengths for 25 Galactic globular clusters (GCs). We derive radial velocities of 1951 stars in 12 GCs from single order spectra taken with Hectochelle on the MMT telescope. To this sample we add an analysis of available archival data of individual stars. For the full set of data we fit King models to derive consistent dynamical parameters for the clusters. We find good agreement between single-mass King models and the observed radial dispersion profiles. The large, uniform sample of dynamical masses we derive enables us to examine trendsmore » of M/L with cluster mass and metallicity. The overall values of M/L and the trends with mass and metallicity are consistent with existing measurements from a large sample of M31 clusters. This includes a clear trend of increasing M/L with cluster mass and lower than expected M/Ls for the metal-rich clusters. We find no clear trend of increasing rotation with increasing cluster metallicity suggested in previous work.« less
Generalizing MOND to explain the missing mass in galaxy clusters
NASA Astrophysics Data System (ADS)
Hodson, Alistair O.; Zhao, Hongsheng
2017-02-01
Context. MOdified Newtonian Dynamics (MOND) is a gravitational framework designed to explain the astronomical observations in the Universe without the inclusion of particle dark matter. MOND, in its current form, cannot explain the missing mass in galaxy clusters without the inclusion of some extra mass, be it in the form of neutrinos or non-luminous baryonic matter. We investigate whether the MOND framework can be generalized to account for the missing mass in galaxy clusters by boosting gravity in high gravitational potential regions. We examine and review Extended MOND (EMOND), which was designed to increase the MOND scale acceleration in high potential regions, thereby boosting the gravity in clusters. Aims: We seek to investigate galaxy cluster mass profiles in the context of MOND with the primary aim at explaining the missing mass problem fully without the need for dark matter. Methods: Using the assumption that the clusters are in hydrostatic equilibrium, we can compute the dynamical mass of each cluster and compare the result to the predicted mass of the EMOND formalism. Results: We find that EMOND has some success in fitting some clusters, but overall has issues when trying to explain the mass deficit fully. We also investigate an empirical relation to solve the cluster problem, which is found by analysing the cluster data and is based on the MOND paradigm. We discuss the limitations in the text.
NASA Astrophysics Data System (ADS)
Lin, Yen-Ting; Hsieh, Bau-Ching; Lin, Sheng-Chieh; Oguri, Masamune; Chen, Kai-Feng; Tanaka, Masayuki; Chiu, I.-non; Huang, Song; Kodama, Tadayuki; Leauthaud, Alexie; More, Surhud; Nishizawa, Atsushi J.; Bundy, Kevin; Lin, Lihwai; Miyazaki, Satoshi; HSC Collaboration
2018-01-01
The unprecedented depth and area surveyed by the Subaru Strategic Program with the Hyper Suprime-Cam (HSC-SSP) have enabled us to construct and publish the largest distant cluster sample out to z~1 to date. In this exploratory study of cluster galaxy evolution from z=1 to z=0.3, we investigate the stellar mass assembly history of brightest cluster galaxies (BCGs), and evolution of stellar mass and luminosity distributions, stellar mass surface density profile, as well as the population of radio galaxies. Our analysis is the first high redshift application of the top N richest cluster selection, which is shown to allow us to trace the cluster galaxy evolution faithfully. Our stellar mass is derived from a machine-learning algorithm, which we show to be unbiased and accurate with respect to the COSMOS data. We find very mild stellar mass growth in BCGs, and no evidence for evolution in both the total stellar mass-cluster mass correlation and the shape of the stellar mass surface density profile. The clusters are found to contain more red galaxies compared to the expectations from the field, even after the differences in density between the two environments have been taken into account. We also present the first measurement of the radio luminosity distribution in clusters out to z~1.
NASA Astrophysics Data System (ADS)
Annunziatella, M.; Bonamigo, M.; Grillo, C.; Mercurio, A.; Rosati, P.; Caminha, G.; Biviano, A.; Girardi, M.; Gobat, R.; Lombardi, M.; Munari, E.
2017-12-01
We present a high-resolution dissection of the two-dimensional total mass distribution in the core of the Hubble Frontier Fields galaxy cluster MACS J0416.1‑2403, at z = 0.396. We exploit HST/WFC3 near-IR (F160W) imaging, VLT/Multi Unit Spectroscopic Explorer spectroscopy, and Chandra data to separate the stellar, hot gas, and dark-matter mass components in the inner 300 kpc of the cluster. We combine the recent results of our refined strong lensing analysis, which includes the contribution of the intracluster gas, with the modeling of the surface brightness and stellar mass distributions of 193 cluster members, of which 144 are spectroscopically confirmed. We find that, moving from 10 to 300 kpc from the cluster center, the stellar to total mass fraction decreases from 12% to 1% and the hot gas to total mass fraction increases from 3% to 9%, resulting in a baryon fraction of approximatively 10% at the outermost radius. We measure that the stellar component represents ∼30%, near the cluster center, and 15%, at larger clustercentric distances, of the total mass in the cluster substructures. We subtract the baryonic mass component from the total mass distribution and conclude that within 30 kpc (∼3 times the effective radius of the brightest cluster galaxy) from the cluster center the surface mass density profile of the total mass and global (cluster plus substructures) dark-matter are steeper and that of the diffuse (cluster) dark-matter is shallower than an NFW profile. Our current analysis does not point to a significant offset between the cluster stellar and dark-matter components. This detailed and robust reconstruction of the inner dark-matter distribution in a larger sample of galaxy clusters will set a new benchmark for different structure formation scenarios.
Diffuse Optical Light in Galaxy Clusters. II. Correlations with Cluster Properties
NASA Astrophysics Data System (ADS)
Krick, J. E.; Bernstein, R. A.
2007-08-01
We have measured the flux, profile, color, and substructure in the diffuse intracluster light (ICL) in a sample of 10 galaxy clusters with a range of mass, morphology, redshift, and density. Deep, wide-field observations for this project were made in two bands at the 1 m Swope and 2.5 m du Pont telescopes at Las Campanas Observatory. Careful attention in reduction and analysis was paid to the illumination correction, background subtraction, point-spread function determination, and galaxy subtraction. ICL flux is detected in both bands in all 10 clusters ranging from 7.6×1010 to 7.0×1011 h-170 Lsolar in r and 1.4×1010 to 1.2×1011 h-170 Lsolar in the B band. These fluxes account for 6%-22% of the total cluster light within one-quarter of the virial radius in r and 4%-21% in the B band. Average ICL B-r colors range from 1.5 to 2.8 mag when k- and evolution corrected to the present epoch. In several clusters we also detect ICL in group environments near the cluster center and up to 1 h-170 Mpc distant from the cluster center. Our sample, having been selected from the Abell sample, is incomplete in that it does not include high-redshift clusters with low density, low flux, or low mass, and it does not include low-redshift clusters with high flux, high mass, or high density. This bias makes it difficult to interpret correlations between ICL flux and cluster properties. Despite this selection bias, we do find that the presence of a cD galaxy corresponds to both centrally concentrated galaxy profiles and centrally concentrated ICL profiles. This is consistent with ICL either forming from galaxy interactions at the center or forming at earlier times in groups and later combining in the center.
Testing the Reliability of Cluster Mass Indicators with a Systematics Limited Dataset
NASA Technical Reports Server (NTRS)
Juett, Adrienne M.; Davis, David S.; Mushotzky, Richard
2009-01-01
We present the mass X-ray observable scaling relationships for clusters of galaxies using the XMM-Newton cluster catalog of Snowden et al. Our results are roughly consistent with previous observational and theoretical work, with one major exception. We find 2-3 times the scatter around the best fit mass scaling relationships as expected from cluster simulations or seen in other observational studies. We suggest that this is a consequence of using hydrostatic mass, as opposed to virial mass, and is due to the explicit dependence of the hydrostatic mass on the gradients of the temperature and gas density profiles. We find a larger range of slope in the cluster temperature profiles at radii 500 than previous observational studies. Additionally, we find only a weak dependence of the gas mass fraction on cluster mass, consistent with a constant. Our average gas mass fraction results also argue for a closer study of the systematic errors due to instrumental calibration and modeling method variations between analyses. We suggest that a more careful study of the differences between various observational results and with cluster simulations is needed to understand sources of bias and scatter in cosmological studies of galaxy clusters.
Cosmological constraints from galaxy clustering in the presence of massive neutrinos
NASA Astrophysics Data System (ADS)
Zennaro, M.; Bel, J.; Dossett, J.; Carbone, C.; Guzzo, L.
2018-06-01
The clustering ratio is defined as the ratio between the correlation function and the variance of the smoothed overdensity field. In Λ cold dark matter (ΛCDM) cosmologies without massive neutrinos, it has already been proven to be independent of bias and redshift space distortions on a range of linear scales. It therefore can provide us with a direct comparison of predictions (for matter in real space) against measurements (from galaxies in redshift space). In this paper we first extend the applicability of such properties to cosmologies that account for massive neutrinos, by performing tests against simulated data. We then investigate the constraining power of the clustering ratio on cosmological parameters such as the total neutrino mass and the equation of state of dark energy. We analyse the joint posterior distribution of the parameters that satisfy both measurements of the galaxy clustering ratio in the SDSS-DR12, and the angular power spectra of cosmic microwave background temperature and polarization anisotropies measured by the Planck satellite. We find the clustering ratio to be very sensitive to the CDM density parameter, but less sensitive to the total neutrino mass. We also forecast the constraining power the clustering ratio will achieve, predicting the amplitude of its errors with a Euclid-like galaxy survey. First we compute parameter forecasts using the Planck covariance matrix alone, then we add information from the clustering ratio. We find a significant improvement on the constraint of all considered parameters, and in particular an improvement of 40 per cent for the CDM density and 14 per cent for the total neutrino mass.
THE MASS-RICHNESS RELATION OF MaxBCG CLUSTERS FROM QUASAR LENSING MAGNIFICATION USING VARIABILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Anne H.; Baltay, Charles; Ellman, Nancy
2012-04-10
Accurate measurement of galaxy cluster masses is an essential component not only in studies of cluster physics but also for probes of cosmology. However, different mass measurement techniques frequently yield discrepant results. The Sloan Digital Sky Survey MaxBCG catalog's mass-richness relation has previously been constrained using weak lensing shear, Sunyaev-Zeldovich (SZ), and X-ray measurements. The mass normalization of the clusters as measured by weak lensing shear is {approx}>25% higher than that measured using SZ and X-ray methods, a difference much larger than the stated measurement errors in the analyses. We constrain the mass-richness relation of the MaxBCG galaxy cluster catalogmore » by measuring the gravitational lensing magnification of type I quasars in the background of the clusters. The magnification is determined using the quasars' variability and the correlation between quasars' variability amplitude and intrinsic luminosity. The mass-richness relation determined through magnification is in agreement with that measured using shear, confirming that the lensing strength of the clusters implies a high mass normalization and that the discrepancy with other methods is not due to a shear-related systematic measurement error. We study the dependence of the measured mass normalization on the cluster halo orientation. As expected, line-of-sight clusters yield a higher normalization; however, this minority of haloes does not significantly bias the average mass-richness relation of the catalog.« less
Influence of Cr doping on the stability and structure of small cobalt oxide clusters.
Tung, Nguyen Thanh; Tam, Nguyen Minh; Nguyen, Minh Tho; Lievens, Peter; Janssens, Ewald
2014-07-28
The stability of mass-selected pure cobalt oxide and chromium doped cobalt oxide cluster cations, ConO+m and Con-1CrO+m (n = 2, 3; m = 2-6 and n = 4; m = 3-8), has been investigated using photodissociation mass spectrometry. Oxygen-rich ConO+m clusters (m ≥ n + 1 for n = 2, 4 and m ≥ n + 2 for n = 3) prefer to photodissociate via the loss of an oxygen molecule, whereas oxygen poorer clusters favor the evaporation of oxygen atoms. Substituting a single Co atom by a single Cr atom alters the dissociation behavior. All investigated Con-1 CrO+m clusters, except CoCrO+2 and CoCrO+3, prefer to decay by eliminating a neutral oxygen molecule. Co2O+2, Co4O+3, Co4O+4, and CoCrO+2 are found to be relatively difficult to dissociate and appear as fragmentation product of several larger clusters, suggesting that they are particularly stable. The geometric structures of pure and Cr doped cobalt oxide species are studied using density functional theory calculations. Dissociation energies for different evaporation channels are calculated and compared with the experimental observations. The influence of the dopant atom on the structure and the stability of the clusters is discussed.
Wavelength Dependent Luminosity Functions for Super Star Clusters
NASA Astrophysics Data System (ADS)
Garmany, Catharine
1997-07-01
Starburst galaxies, considered to exhibit enhanced star formation on a galaxy-wide scale, have now been found with HST to contain very intense knots of star formation, referred to as ``super star clusters'', or SSCs. A steepening of the luminosity function with increasing wavelength for young burst populations, such as SSCs, has recently been predicted by Hogg & Phinney {1997}. This prediction, not previously addressed in the literature, is straightforward to test with multi- wavelength photometry. Using the colors of the SSCs in a galaxy in combination with the difference in slopes of the luminosity functions derived from different wavelength bands and applying population synthesis models, we can also constrain the high mass stellar initial mass function {IMF}. Recent work has suggested that the slope of the IMF is roughly constant in a variety of local environments, from galactic OB associations to the closest analog of a super star cluster, R136 in the LMC. This investigation will allow us to compare the IMFs in the extreme environments of SSCs in starburst galaxies to IMFs found locally in the Galaxy, LMC, and SMC. Archival imaging data in both the UV and optical bands is available for about 10 young starburst systems. These data will allow us to test the predictions of Hogg & Phinney, as well as constrain the IMF for environments not found in the nearby universe.
Cosmological constraints from galaxy clusters in the 2500 square-degree SPT-SZ survey
Haan, T. de; Benson, B. A.; Bleem, L. E.; ...
2016-11-18
Here, we present cosmological parameter constraints obtained from galaxy clusters identified by their Sunyaev–Zel’dovich effect signature in the 2500 square-degree South Pole Telescope Sunyaev Zel’dovich (SPT-SZ) survey. We consider the 377 cluster candidates identified atmore » $$z\\gt 0.25$$ with a detection significance greater than five, corresponding to the 95% purity threshold for the survey. We compute constraints on cosmological models using the measured cluster abundance as a function of mass and redshift. We include additional constraints from multi-wavelength observations, including Chandra X-ray data for 82 clusters and a weak lensing-based prior on the normalization of the mass-observable scaling relations. Assuming a spatially flat ΛCDM cosmology, we combine the cluster data with a prior on H (0) and find $${\\sigma }_{8}=0.784\\pm 0.039$$ and $${{\\rm{\\Omega }}}_{m}=0.289\\pm 0.042$$, with the parameter combination $${\\sigma }_{8}{({{\\rm{\\Omega }}}_{m}/0.27)}^{0.3}=0.797\\pm 0.031$$. These results are in good agreement with constraints from the cosmic microwave background (CMB) from SPT, WMAP, and Planck, as well as with constraints from other cluster data sets. We also consider several extensions to ΛCDM, including models in which the equation of state of dark energy w, the species-summed neutrino mass, and/or the effective number of relativistic species ($${N}_{\\mathrm{eff}}$$) are free parameters. When combined with constraints from the Planck CMB, H (0), baryon acoustic oscillation, and SNe, adding the SPT cluster data improves the w constraint by 14%, to $$w=-1.023\\pm 0.042$$.« less
Cosmological constraints from galaxy clusters in the 2500 square-degree SPT-SZ survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haan, T. de; Benson, B. A.; Bleem, L. E.
Here, we present cosmological parameter constraints obtained from galaxy clusters identified by their Sunyaev–Zel’dovich effect signature in the 2500 square-degree South Pole Telescope Sunyaev Zel’dovich (SPT-SZ) survey. We consider the 377 cluster candidates identified atmore » $$z\\gt 0.25$$ with a detection significance greater than five, corresponding to the 95% purity threshold for the survey. We compute constraints on cosmological models using the measured cluster abundance as a function of mass and redshift. We include additional constraints from multi-wavelength observations, including Chandra X-ray data for 82 clusters and a weak lensing-based prior on the normalization of the mass-observable scaling relations. Assuming a spatially flat ΛCDM cosmology, we combine the cluster data with a prior on H (0) and find $${\\sigma }_{8}=0.784\\pm 0.039$$ and $${{\\rm{\\Omega }}}_{m}=0.289\\pm 0.042$$, with the parameter combination $${\\sigma }_{8}{({{\\rm{\\Omega }}}_{m}/0.27)}^{0.3}=0.797\\pm 0.031$$. These results are in good agreement with constraints from the cosmic microwave background (CMB) from SPT, WMAP, and Planck, as well as with constraints from other cluster data sets. We also consider several extensions to ΛCDM, including models in which the equation of state of dark energy w, the species-summed neutrino mass, and/or the effective number of relativistic species ($${N}_{\\mathrm{eff}}$$) are free parameters. When combined with constraints from the Planck CMB, H (0), baryon acoustic oscillation, and SNe, adding the SPT cluster data improves the w constraint by 14%, to $$w=-1.023\\pm 0.042$$.« less
Luminosity segregation in galaxy clusters as an indication of dynamical evolution
NASA Technical Reports Server (NTRS)
Baier, F. W.; Schmidt, K.-H.
1993-01-01
Theoretical models describing the dynamical evolution of self-gravitating systems predict a spatial mass segregation for more evolved systems, with the more massive objects concentrated toward the center of the configuration. From the observational point of view, however, the existence of mass segregation in galaxy clusters seems to be a matter of controversy. A special problem in this connection is the formation of cD galaxies in the centers of galaxy clusters. The most promising scenarios of their formation are galaxy cannibalism (merger scenario) and growing by cooling flows. It seems to be plausible to consider the swallowing of smaller systems by a dominant galaxy as an important process in the evolution of a cD galaxy. The stage of the evolution of the dominant galaxy should be reflected by the surrounding galaxy population, especially by possible mass segregation effects. Assuming that mass segregation is tantamount to luminosity segregation we analyzed luminosity segregation in roughly 40 cD galaxy clusters. Obviously there are three different groups of clusters: (1) clusters with luminosity segregation, (2) clusters without luminosity segregation, and (3) such objects exhibiting a phenomenon which we call antisegregation in luminosity, i.e. a deficiency of bright galaxies in the central regions of clusters. This result is interpreted in the sense of different degrees of mass segregation and as an indication for different evolution stages of these clusters. The clusters are arranged in the three segregation classes 2, 1, and 0 (S2 = strong mass segregation, S1 = moderate mass segregation, S0 = weak or absent mass segregation). We assume that a galaxy cluster starts its dynamical evolution after virialization without any radial mass segregation. Energy exchange during encounters of cluster members as well as merger processes between cluster galaxies lead to an increasing radial mass segregation in the cluster (S1). If a certain degree of segregation (S2) has been established, an essential number of slow-moving and relative massive cluster members in the center will be cannibalized by the initial brightest cluster galaxy. This process should lead to the growing of the predominate galaxy, which is accompanied by a diminution of the mass segregation (transition to S1 and S0, respectively) in the neighborhood of the central very massive galaxy. An increase of the areal density of brighter galaxies towards the outer cluster regions (antisegregation of luminosity), i.e. an extreme low degree of mass segregation was estimated for a substantial percentage of cD clusters. This result favors the cannibalism scenario for the formation of cD galaxies.
Deducing the Milky Way's Massive Cluster Population
NASA Astrophysics Data System (ADS)
Hanson, M. M.; Popescu, B.; Larsen, S. S.; Ivanov, V. D.
2010-11-01
Recent near-infrared surveys of the galactic plane have been used to identify new massive cluster candidates. Follow up study indicates about half are not true, gravitationally-bound clusters. These false positives are created by high density fields of unassociated stars, often due to a sight-line of reduced extinction. What is not so easy to estimate is the number of false negatives, clusters which exist but are not currently being detected by our surveys. In order to derive critical characteristics of the Milky Way's massive cluster population, such as cluster mass function and cluster lifetimes, one must be able to estimate the characteristics of these false negatives. Our group has taken on the daunting task of attempting such an estimate by first creating the stellar cluster imaging simulation program, MASSCLEAN. I will present our preliminary models and methods for deriving the biases of current searches.
NASA Astrophysics Data System (ADS)
Brandl, B.; Sams, B. J.; Bertoldi, F.; Eckart, A.; Genzel, R.; Drapatz, S.; Hofmann, R.; Loewe, M.; Quirrenbach, A.
1996-07-01
We report 0".15 resolution near-infrared (NIR) imaging of R136, the central region of 30 Doradus in the large Magellanic Cloud. Our 12".8 x 12".8 images were recorded with the MPE camera SHARP II at the 3.6 m ESO telescope, using the adaptive optics system COME ON+. The high spatial resolution and sensitivity (20th magnitude in K) of our observations allow our H- and K-band images to be compared and combined with recent Hubble Space Telescope (HST) WFPC2 data of R136. We fit theoretical models with variable foreground extinction to the observed magnitudes of ˜1000 stars (roughly half of which were detected in HST and NIR bands) and derive the stellar population in this starburst region. We find no red giants or supergiants; however, we detect ˜110 extremely red sources which are probably young, pre-main-sequence low- or intermediate-mass stars. We obtained narrow-band images to identify known and new Wolf-Rayet stars by their He 11(2.189 μm) and Bry (2.166 μm) emission lines. The presence of W-R stars and absence of red supergiants narrow the cluster age to ˜3-5 Myr, while the derived ratio of W-R to 0 stars of 0.05 in the central region favors an age of 3.5 Myr, with a relatively short starburst duration. For the 0 stars, the core radius is found to be 0.1 pc and appears to decrease with increasing stellar mass. The slope of the mass function function is Γ = -1.6 on average, but it steepens with increasing distance from the cluster center from Γ = -1.3 in the inner 0.4 pc to Γ = -2.2 outside 0.8 pc for stars more massive than 12 Msun. The radial variation of the mass function reveals strong mass segregation that is probably due to the cluster's dynamical evolution.
Small scale clustering of late forming dark matter
NASA Astrophysics Data System (ADS)
Agarwal, S.; Corasaniti, P.-S.; Das, S.; Rasera, Y.
2015-09-01
We perform a study of the nonlinear clustering of matter in the late-forming dark matter (LFDM) scenario in which dark matter results from the transition of a nonminimally coupled scalar field from radiation to collisionless matter. A distinct feature of this model is the presence of a damped oscillatory cutoff in the linear matter power spectrum at small scales. We use a suite of high-resolution N-body simulations to study the imprints of LFDM on the nonlinear matter power spectrum, the halo mass and velocity functions and the halo density profiles. The model largely satisfies high-redshift matter power spectrum constraints from Lyman-α forest measurements, while it predicts suppressed abundance of low-mass halos (˜109- 1010 h-1 M⊙ ) at all redshifts compared to a vanilla Λ CDM model. The analysis of the LFDM halo velocity function shows a better agreement than the Λ CDM prediction with the observed abundance of low-velocity galaxies in the local volume. Halos with mass M ≳1011 h-1 M⊙ show minor departures of the density profiles from Λ CDM expectations, while smaller-mass halos are less dense, consistent with the fact that they form later than their Λ CDM counterparts.
NASA Astrophysics Data System (ADS)
Do, Tuan; Ghez, Andrea; Lu, Jessica R.; Morris, Mark R.; Yelda, Sylvana; Martinez, Gregory D.; Peter, Annika H. G.; Wright, Shelley; Bullock, James; Kaplinghat, Manoj; Matthews, K.
2012-07-01
We report on measurements of the luminosity function of early (young) and late-type (old) stars in the central 0.5 pc of the Milky Way nuclear star cluster as well as the density profiles of both components. The young (~ 6 Myr) and old stars (> 1 Gyr) in this region provide different physical probes of the environment around a supermassive black hole; the luminosity function of the young stars offers us a way to measure the initial mass function from star formation in an extreme environment, while the density profile of the old stars offers us a probe of the dynamical interaction of a star cluster with a massive black hole. The two stellar populations are separated through a near-infrared spectroscopic survey using the integral-field spectrograph OSIRIS on Keck II behind the laser guide star adaptive optics system. This spectroscopic survey is able to separate early-type (young) and late-type (old) stars with a completeness of 50% at K' = 15.5. We describe our method of completeness correction using a combination of star planting simulations and Bayesian inference. The completeness corrected luminosity function of the early-type stars contains significantly more young stars at faint magnitudes compared to previous surveys with similar depth. In addition, by using proper motion and radial velocity measurements along with anisotropic spherical Jeans modeling of the cluster, it is possible to measure the spatial density profile of the old stars, which has been difficult to constrain with number counts alone. The most probable model shows that the spatial density profile, n(r) propto r-γ, to be shallow with γ = 0.4 ± 0.2, which is much flatter than the dynamically relaxed case of γ = 3/2 to 7/4, but does rule out a 'hole' in the distribution of old stars. We show, for the first time, that the spatial density profile, the black hole mass, and velocity anisotropy can be fit simultaneously to obtain a black hole mass that is consistent with that derived from individual orbits of stars at distances < 1000 AU from the Galactic center.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luhman, K. L.; Esplin, T. L.; Loutrel, N. P., E-mail: kluhman@astro.psu.edu
We have obtained optical and near-infrared spectra of candidate members of the star-forming clusters IC 348 and NGC 1333. We classify 100 and 42 candidates as new members of the clusters, respectively, which brings the total numbers of known members to 478 and 203. We also have performed spectroscopy on a large majority of the previously known members of NGC 1333 in order to provide spectral classifications that are measured with the same scheme that has been applied to IC 348 in previous studies. The new census of members is nearly complete for K {sub s}< 16.8 at A {submore » J}< 1.5 in IC 348 and for K {sub s}< 16.2 at A {sub J}< 3 in NGC 1333, which correspond to masses of ≳0.01 M {sub ⊙} for ages of 3 Myr according to theoretical evolutionary models. The faintest known members extend below these completeness limits and appear to have masses of ∼0.005 M {sub ⊙}. In extinction-limited samples of cluster members, NGC 1333 exhibits a higher abundance of objects at lower masses than IC 348. It would be surprising if the initial mass functions of these clusters differ significantly given their similar stellar densities and formation environments. Instead, it is possible that average extinctions are lower for less massive members of star-forming clusters, in which case extinction-limited samples could be biased in favor of low-mass objects in the more heavily embedded clusters like NGC 1333. In the Hertzsprung–Russell diagram, the median sequences of IC 348 and NGC 1333 coincide with each other for the adopted distances of 300 and 235 pc, which would suggest that they have similar ages. However, NGC 1333 is widely believed to be younger than IC 348 based on its higher abundance of disks and protostars and its greater obscuration. Errors in the adopted distances may be responsible for this discrepancy.« less
IPC two-color analysis of x ray galaxy clusters
NASA Technical Reports Server (NTRS)
White, Raymond E., III
1990-01-01
The mass distributions were determined of several clusters of galaxies by using X ray surface brightness data from the Einstein Observatory Imaging Proportional Counter (IPC). Determining cluster mass distributions is important for constraining the nature of the dark matter which dominates the mass of galaxies, galaxy clusters, and the Universe. Galaxy clusters are permeated with hot gas in hydrostatic equilibrium with the gravitational potentials of the clusters. Cluster mass distributions can be determined from x ray observations of cluster gas by using the equation of hydrostatic equilibrium and knowledge of the density and temperature structure of the gas. The x ray surface brightness at some distance from the cluster is the result of the volume x ray emissivity being integrated along the line of sight in the cluster.
LUMINOSITY FUNCTIONS OF LMXBs IN CENTAURUS A: GLOBULAR CLUSTERS VERSUS THE FIELD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voss, Rasmus; Gilfanov, Marat; Sivakoff, Gregory R.
2009-08-10
We study the X-ray luminosity function (XLF) of low-mass X-ray binaries (LMXB) in the nearby early-type galaxy Centaurus A, concentrating primarily on two aspects of binary populations: the XLF behavior at the low-luminosity limit and the comparison between globular cluster and field sources. The 800 ksec exposure of the deep Chandra VLP program allows us to reach a limiting luminosity of {approx}8 x 10{sup 35} erg s{sup -1}, about {approx}2-3 times deeper than previous investigations. We confirm the presence of the low-luminosity break of the overall LMXB XLF at log(L{sub X} ) {approx} 37.2-37.6, below which the luminosity distribution followsmore » a dN/d(ln L) {approx} const law. Separating globular cluster and field sources, we find a statistically significant difference between the two luminosity distributions with a relative underabundance of faint sources in the globular cluster population. This demonstrates that the samples are drawn from distinct parent populations and may disprove the hypothesis that the entire LMXB population in early-type galaxies is created dynamically in globular clusters. As a plausible explanation for this difference in the XLFs, we suggest an enhanced fraction of helium-accreting systems in globular clusters, which are created in collisions between red giants and neutron stars. Due to the four times higher ionization temperature of He, such systems are subject to accretion disk instabilities at {approx}20 times higher mass accretion rate and, therefore, are not observed as persistent sources at low luminosities.« less
NASA Astrophysics Data System (ADS)
Cohen, Roger
2015-10-01
The primary aim of this program is to undertake a systematic investigation of highly reddened Galactic globular clusters (GGCs) located towards the Galactic bulge. These clusters have been excluded from deep space-based photometric surveys due to their severe total and differential extinction. We will exploit the photometric depth and homogeneity of two existing Treasury programs (the ACS GGC Treasury Survey and the WFC3 Bulge Treasury Program) along with the unique optical+IR parallel imaging capabilities of HST to finally place the bulge GGCs in the context of their optically well-studied counterparts. Specifically, by leveraging ACS/WFC together with WFC3/IR, we first exploit the reddening sensitivity at optical wavelengths to map severe, small-scale differential reddening in the cluster cores. Corrected two-color WFC3/IR photometry will then be used to measure cluster ages to better than 1 Gyr relative precision, finally completing the age-metallicity relation of the Milky Way GGC system. Ages are obtained using a demonstrated procedure which is strictly differential, and therefore insensitive to total distance, reddening, reddening law, or photometric calibration uncertainties. At the same time, deep archival Treasury survey imaging of the Galactic bulge will be used to decontaminate cluster luminosity functions, yielding measurements of bulge GGC mass functions and mass segregation on par with results from the ACS GGC Treasury survey. Finally, the imaging which we propose will be combined with existing wide-field near-IR PSF photometry, yielding complete radial number density profiles, structural and morphological parameters.
Determination of the masses of globular clusters using proper motions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ninkovich, S.
1984-09-01
Published proper motions of stars in the fields of the globular clusters M 15, M 92, and M 13 (Cudworth, 1976 Cudworth and Monet, 1979) are compiled in tables and used to estimate the masses of the clusters by the method of Naumova and Ogorodnikov (1973). Masses of the order of 10 to the 8th solar mass are calculated, as compared to an M 13 mass of about 10 to the 6th solar mass determined by the virial theorem. The higher masses are considered indicative of the actual cluster masses despite the distortion introduced by the presence in the fieldmore » of stars not belonging to the clusters. It is suggested that the difference between these estimates and the smaller masses proposed by previous authors may represent unobservable peripheral dwarf stars or some invisible mass (like the so-called missing mass of the Galaxy).« less
VizieR Online Data Catalog: Arches cluster: IR phot., extinction and masses (Habibi+, 2013)
NASA Astrophysics Data System (ADS)
Habibi, M.; Stolte, A.; Brandner, W.; Hussmann, B.; Motohara, K.
2013-05-01
We observed the Arches cluster out to its tidal radius using Ks-band and H-band imaging obtained on June 6-10 2008 with NAOS/CONICA at the VLT combined with Subaro/Cisco J-band data to gain a full understanding of the cluster mass distribution. The acquired Ks-band images cover four fields of 27.8*27.8(arcsec) each, provided by the medium resolution camera (S27) with a pixel scale of 0.027(arcsec). During the Ks-band observations, the natural visual seeing varied from 0.61" to 0.98". We achieved typical spatial resolutions of 0.081-0.135(arcsec) on individual frames using this AO setup. Seeing-limited J-band observations, on July 17, 2000, were performed with the CISCO spectrograph and camera which provided a pixel scale of 0.116(arcsec) and a field of view of 2*2(arcmin). An average seeing of 0.49(arcsec) resulted into a Full Width at Half Maximum (FWHM) of the point-spread function (PSF) of 0.39(arcsec) on the combined image. The catalogue includes derived infrared-photometry in J, H and Ks bands as well as derived individual extinction value and stellar masses. We used the NAOS-CONICA observations obtained in March 2002 in the central part of the Arches cluster to cover the whole cluster area. (1 data file).
Measuring the X-ray luminosities of SDSS DR7 clusters from ROSAT All Sky Survey
NASA Astrophysics Data System (ADS)
Wang, Lei; Yang, Xiaohu; Shen, Shiyin; Mo, H. J.; van den Bosch, Frank C.; Luo, Wentao; Wang, Yu; Lau, Erwin T.; Wang, Q. D.; Kang, Xi; Li, Ran
2014-03-01
We use ROSAT All Sky Survey broad-band X-ray images and the optical clusters identified from Sloan Digital Sky Survey Data Release 7 to estimate the X-ray luminosities around ˜65 000 candidate clusters with masses ≳ 1013 h- 1 M⊙ based on an optical to X-ray (OTX) code we develop. We obtain a catalogue with X-ray luminosity for each cluster. This catalogue contains 817 clusters (473 at redshift z ≤ 0.12) with signal-to-noise ratio >3 in X-ray detection. We find about 65 per cent of these X-ray clusters have their most massive member located near the X-ray flux peak; for the rest 35 per cent, the most massive galaxy is separated from the X-ray peak, with the separation following a distribution expected from a Navarro-Frenk-White profile. We investigate a number of correlations between the optical and X-ray properties of these X-ray clusters, and find that the cluster X-ray luminosity is correlated with the stellar mass (luminosity) of the clusters, as well as with the stellar mass (luminosity) of the central galaxy and the mass of the halo, but the scatter in these correlations is large. Comparing the properties of X-ray clusters of similar halo masses but having different X-ray luminosities, we find that massive haloes with masses ≳ 1014 h- 1 M⊙ contain a larger fraction of red satellite galaxies when they are brighter in X-ray. An opposite trend is found in central galaxies in relative low-mass haloes with masses ≲ 1014 h- 1 M⊙ where X-ray brighter clusters have smaller fraction of red central galaxies. Clusters with masses ≳ 1014 h- 1 M⊙ that are strong X-ray emitters contain many more low-mass satellite galaxies than weak X-ray emitters. These results are also confirmed by checking X-ray clusters of similar X-ray luminosities but having different characteristic stellar masses. A cluster catalogue containing the optical properties of member galaxies and the X-ray luminosity is available at http://gax.shao.ac.cn/data/Group.html.
A weak lensing analysis of the PLCK G100.2-30.4 cluster
NASA Astrophysics Data System (ADS)
Radovich, M.; Formicola, I.; Meneghetti, M.; Bartalucci, I.; Bourdin, H.; Mazzotta, P.; Moscardini, L.; Ettori, S.; Arnaud, M.; Pratt, G. W.; Aghanim, N.; Dahle, H.; Douspis, M.; Pointecouteau, E.; Grado, A.
2015-07-01
We present a mass estimate of the Planck-discovered cluster PLCK G100.2-30.4, derived from a weak lensing analysis of deep Subaru griz images. We perform a careful selection of the background galaxies using the multi-band imaging data, and undertake the weak lensing analysis on the deep (1 h) r -band image. The shape measurement is based on the Kaiser-Squires-Broadhurst algorithm; we adopt the PSFex software to model the point spread function (PSF) across the field and correct for this in the shape measurement. The weak lensing analysis is validated through extensive image simulations. We compare the resulting weak lensing mass profile and total mass estimate to those obtained from our re-analysis of XMM-Newton observations, derived under the hypothesis of hydrostatic equilibrium. The total integrated mass profiles agree remarkably well, within 1σ across their common radial range. A mass M500 ~ 7 × 1014M⊙ is derived for the cluster from our weak lensing analysis. Comparing this value to that obtained from our reanalysis of XMM-Newton data, we obtain a bias factor of (1-b) = 0.8 ± 0.1. This is compatible within 1σ with the value of (1-b) obtained in Planck 2015 from the calibration of the bias factor using newly available weak lensing reconstructed masses. Based on data collected at Subaru Telescope (University of Tokyo).
NASA Astrophysics Data System (ADS)
Lin, Yen-Ting; Hsieh, Bau-Ching; Lin, Sheng-Chieh; Oguri, Masamune; Chen, Kai-Feng; Tanaka, Masayuki; Chiu, I.-Non; Huang, Song; Kodama, Tadayuki; Leauthaud, Alexie; More, Surhud; Nishizawa, Atsushi J.; Bundy, Kevin; Lin, Lihwai; Miyazaki, Satoshi
2017-12-01
The unprecedented depth and area surveyed by the Subaru Strategic Program with the Hyper Suprime-Cam (HSC-SSP) have enabled us to construct and publish the largest distant cluster sample out to z∼ 1 to date. In this exploratory study of cluster galaxy evolution from z = 1 to z = 0.3, we investigate the stellar mass assembly history of brightest cluster galaxies (BCGs), the evolution of stellar mass and luminosity distributions, the stellar mass surface density profile, as well as the population of radio galaxies. Our analysis is the first high-redshift application of the top N richest cluster selection, which is shown to allow us to trace the cluster galaxy evolution faithfully. Over the 230 deg2 area of the current HSC-SSP footprint, selecting the top 100 clusters in each of the four redshift bins allows us to observe the buildup of galaxy population in descendants of clusters whose z≈ 1 mass is about 2× {10}14 {M}ȯ . Our stellar mass is derived from a machine-learning algorithm, which is found to be unbiased and accurate with respect to the COSMOS data. We find very mild stellar mass growth in BCGs (about 35% between z = 1 and 0.3), and no evidence for evolution in both the total stellar mass–cluster mass correlation and the shape of the stellar mass surface density profile. We also present the first measurement of the radio luminosity distribution in clusters out to z∼ 1, and show hints of changes in the dominant accretion mode powering the cluster radio galaxies at z∼ 0.8.
LITHIUM-RICH GIANTS IN GLOBULAR CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirby, Evan N.; Cohen, Judith G.; Guhathakurta, Puragra
Although red giants deplete lithium on their surfaces, some giants are Li-rich. Intermediate-mass asymptotic giant branch (AGB) stars can generate Li through the Cameron–Fowler conveyor, but the existence of Li-rich, low-mass red giant branch (RGB) stars is puzzling. Globular clusters are the best sites to examine this phenomenon because it is straightforward to determine membership in the cluster and to identify the evolutionary state of each star. In 72 hours of Keck/DEIMOS exposures in 25 clusters, we found four Li-rich RGB and two Li-rich AGB stars. There were 1696 RGB and 125 AGB stars with measurements or upper limits consistentmore » with normal abundances of Li. Hence, the frequency of Li-richness in globular clusters is (0.2 ± 0.1)% for the RGB, (1.6 ± 1.1)% for the AGB, and (0.3 ± 0.1)% for all giants. Because the Li-rich RGB stars are on the lower RGB, Li self-generation mechanisms proposed to occur at the luminosity function bump or He core flash cannot explain these four lower RGB stars. We propose the following origin for Li enrichment: (1) All luminous giants experience a brief phase of Li enrichment at the He core flash. (2) All post-RGB stars with binary companions on the lower RGB will engage in mass transfer. This scenario predicts that 0.1% of lower RGB stars will appear Li-rich due to mass transfer from a recently Li-enhanced companion. This frequency is at the lower end of our confidence interval.« less
Exploring the Internal Dynamics of Globular Clusters
NASA Astrophysics Data System (ADS)
Watkins, Laura L.; van der Marel, Roeland; Bellini, Andrea; Luetzgendorf, Nora; HSTPROMO Collaboration
2018-01-01
Exploring the Internal Dynamics of Globular ClustersThe formation histories and structural properties of globular clusters are imprinted on their internal dynamics. Energy equipartition results in velocity differences for stars of different mass, and leads to mass segregation, which results in different spatial distributions for stars of different mass. Intermediate-mass black holes significantly increase the velocity dispersions at the centres of clusters. By combining accurate measurements of their internal kinematics with state-of-the-art dynamical models, we can characterise both the velocity dispersion and mass profiles of clusters, tease apart the different effects, and understand how clusters may have formed and evolved.Using proper motions from the Hubble Space Telescope Proper Motion (HSTPROMO) Collaboration for a set of 22 Milky Way globular clusters, and our discrete dynamical modelling techniques designed to work with large, high-quality datasets, we are studying a variety of internal cluster properties. We will present the results of theoretical work on simulated clusters that demonstrates the efficacy of our approach, and preliminary results from application to real clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchard, Peter K.; Bayliss, Matthew B.; McDonald, Michael
2013-07-20
The process by which the mass density profile of certain galaxy clusters becomes centrally concentrated enough to produce high strong lensing (SL) cross-sections is not well understood. It has been suggested that the baryonic condensation of the intracluster medium (ICM) due to cooling may drag dark matter to the cores and thus steepen the profile. In this work, we search for evidence of ongoing ICM cooling in the first large, well-defined sample of SL selected galaxy clusters in the range 0.1 < z < 0.6. Based on known correlations between the ICM cooling rate and both optical emission line luminositymore » and star formation, we measure, for a sample of 89 SL clusters, the fraction of clusters that have [O II]{lambda}{lambda}3727 emission in their brightest cluster galaxy (BCG). We find that the fraction of line-emitting BCGs is constant as a function of redshift for z > 0.2 and shows no statistically significant deviation from the total cluster population. Specific star formation rates, as traced by the strength of the 4000 A break, D{sub 4000}, are also consistent with the general cluster population. Finally, we use optical imaging of the SL clusters to measure the angular separation, R{sub arc}, between the arc and the center of mass of each lensing cluster in our sample and test for evidence of changing [O II] emission and D{sub 4000} as a function of R{sub arc}, a proxy observable for SL cross-sections. D{sub 4000} is constant with all values of R{sub arc}, and the [O II] emission fractions show no dependence on R{sub arc} for R{sub arc} > 10'' and only very marginal evidence of increased weak [O II] emission for systems with R{sub arc} < 10''. These results argue against the ability of baryonic cooling associated with cool core activity in the cores of galaxy clusters to strongly modify the underlying dark matter potential, leading to an increase in SL cross-sections.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristensen, Lars E.; Bergin, Edwin A., E-mail: lkristensen@cfa.harvard.edu
2015-07-10
Most low-mass protostars form in clusters, in particular high-mass clusters; however, how low-mass stars form in high-mass clusters and what the mass distribution is are still open questions both in our own Galaxy and elsewhere. To access the population of forming embedded low-mass protostars observationally, we propose using molecular outflows as tracers. Because the outflow emission scales with mass, the effective contrast between low-mass protostars and their high-mass cousins is greatly lowered. In particular, maps of methanol emission at 338.4 GHz (J = 7{sub 0}–6{sub 0} A{sup +}) in low-mass clusters illustrate that this transition is an excellent probe ofmore » the low-mass population. We present here a model of a forming cluster where methanol emission is assigned to every embedded low-mass protostar. The resulting model image of methanol emission is compared to recent ALMA observations toward a high-mass cluster and the similarity is striking: the toy model reproduces observations to better than a factor of two and suggests that approximately 50% of the total flux originates in low-mass outflows. Future fine-tuning of the model will eventually make it a tool for interpreting the embedded low-mass population of distant regions within our own Galaxy and ultimately higher-redshift starburst galaxies, not just for methanol emission but also water and high-J CO.« less
The Dynamical Evolution of Stellar-Mass Black Holes in Dense Star Clusters
NASA Astrophysics Data System (ADS)
Morscher, Maggie
Globular clusters are gravitationally bound systems containing up to millions of stars, and are found ubiquitously in massive galaxies, including the Milky Way. With densities as high as a million stars per cubic parsec, they are one of the few places in the Universe where stars interact with one another. They therefore provide us with a unique laboratory for studying how gravitational interactions can facilitate the formation of exotic systems, such as X-ray binaries containing black holes, and merging double black hole binaries, which are produced much less efficiently in isolation. While telescopes can provide us with a snapshot of what these dense clusters look like at present, we must rely on detailed numerical simulations to learn about their evolution. These simulations are quite challenging, however, since dense star clusters are described by a complicated set of physical processes occurring on many different length and time scales, including stellar and binary evolution, weak gravitational scattering encounters, strong resonant binary interactions, and tidal stripping by the host galaxy. Until very recently, it was not possible to model the evolution of systems with millions of stars, the actual number contained in the largest clusters, including all the relevant physics required describe these systems accurately. The Northwestern Group's Henon Monte Carlo code, CMC, which has been in development for over a decade, is a powerful tool that can be used to construct detailed evolutionary models of large star clusters. With its recent parallelization, CMC is now capable of addressing a particularly interesting unsolved problem in astrophysics: the dynamical evolution of stellar black holes in dense star clusters. Our current understanding of the stellar initial mass function and massive star evolution suggests that young globular clusters may have formed hundreds to thousands of stellar-mass black holes, the remnants of stars with initial masses from 20 - 100 Solar masses. Birth kicks from supernova explosions may eject some black holes from their birth clusters, but most should be retained initially. Using our Monte Carlo code, we have investigated the long-term dynamical evolution of globular clusters containing large numbers of stellar black holes. Our study is the first to explore in detail the dynamics of BHs in clusters through a large number of realistic simulations covering a wide range of initial conditions (cluster masses from 105 -- 106 Solar masses, as well as variation in other key parameters, such as the virial radius, central concentration, and metallicity), that also includes all the required physics. In almost all of our models we find that significant numbers of black holes (up to about a 1000) are retained all the way to the present. This is in contrast to previous theoretical expectations that most black holes should be ejected dynamically within a few Gyr. The main reason for this difference is that core collapse driven by black holes (through the Spitzer "mass segregation instability'') is easily reverted through three-body processes, and involves only a small number of the most massive black holes, while lower-mass black holes remain well-mixed with ordinary stars far from the central cusp. Thus the rapid segregation of stellar black holes does not lead to a long-term physical separation of most black holes into a dynamically decoupled inner core, as often assumed previously; this is one of the most important results of this dissertation. Combined with the recent detections of several black hole X-ray binary candidates in Galactic globular clusters, our results suggest that stellar black holes could still be present in large numbers in many globular clusters today, and that they may play a significant role in shaping the long-term dynamical evolution and the present-day dynamical structure of many clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yasui, Chikako; Kobayashi, Naoto; Izumi, Natsuko
To study star formation in low-metallicity environments ([M/H] ∼ −1 dex), we obtained deep near-infrared (NIR) images of Sh 2-207 (S207), which is an H ii region in the outer Galaxy with a spectroscopically determined metallicity of [O/H] ≃ −0.8 dex. We identified a young cluster in the western region of S207 with a limiting magnitude of K{sub S} = 19.0 mag (10σ) that corresponds to a mass detection limit of ≲0.1 M{sub ⊙} and enables the comparison of star-forming properties under low metallicity with those of the solar neighborhood. From the fitting of the K-band luminosity function (KLF), the age and distance of the S207more » cluster are estimated at 2–3 Myr and ∼4 kpc, respectively. The estimated age is consistent with the suggestion of small extinctions of stars in the cluster (A{sub V} ∼ 3 mag) and the non-detection of molecular clouds. The reasonably good fit between the observed KLF and the model KLF suggests that the underlying initial mass function (IMF) of the cluster down to the detection limit is not significantly different from the typical IMFs in the solar metallicity. From the fraction of stars with NIR excesses, a low disk fraction (<10%) in the cluster with a relatively young age is suggested, as we had previously proposed.« less
Planck/SDSS Cluster Mass and Gas Scaling Relations for a Volume-Complete redMaPPer Sample
NASA Astrophysics Data System (ADS)
Jimeno, Pablo; Diego, Jose M.; Broadhurst, Tom; De Martino, I.; Lazkoz, Ruth
2018-04-01
Using Planck satellite data, we construct Sunyaev-Zel'dovich (SZ) gas pressure profiles for a large, volume-complete sample of optically selected clusters. We have defined a sample of over 8,000 redMaPPer clusters from the Sloan Digital Sky Survey (SDSS), within the volume-complete redshift region 0.100 < z < 0.325, for which we construct SZ effect maps by stacking Planck data over the full range of richness. Dividing the sample into richness bins we simultaneously solve for the mean cluster mass in each bin together with the corresponding radial pressure profile parameters, employing an MCMC analysis. These profiles are well detected over a much wider range of cluster mass and radius than previous work, showing a clear trend towards larger break radius with increasing cluster mass. Our SZ-based masses fall ˜16% below the mass-richness relations from weak lensing, in a similar fashion as the "hydrostatic bias" related with X-ray derived masses. Finally, we derive a tight Y500-M500 relation over a wide range of cluster mass, with a power law slope equal to 1.70 ± 0.07, that agrees well with the independent slope obtained by the Planck team with an SZ-selected cluster sample, but extends to lower masses with higher precision.
Weak lensing calibration of mass bias in the REFLEX+BCS X-ray galaxy cluster catalogue
NASA Astrophysics Data System (ADS)
Simet, Melanie; Battaglia, Nicholas; Mandelbaum, Rachel; Seljak, Uroš
2017-04-01
The use of large, X-ray-selected Galaxy cluster catalogues for cosmological analyses requires a thorough understanding of the X-ray mass estimates. Weak gravitational lensing is an ideal method to shed light on such issues, due to its insensitivity to the cluster dynamical state. We perform a weak lensing calibration of 166 galaxy clusters from the REFLEX and BCS cluster catalogue and compare our results to the X-ray masses based on scaled luminosities from that catalogue. To interpret the weak lensing signal in terms of cluster masses, we compare the lensing signal to simple theoretical Navarro-Frenk-White models and to simulated cluster lensing profiles, including complications such as cluster substructure, projected large-scale structure and Eddington bias. We find evidence of underestimation in the X-ray masses, as expected, with
NASA Astrophysics Data System (ADS)
Georgakakis, A.; Mountrichas, G.; Salvato, M.; Rosario, D.; Pérez-González, P. G.; Lutz, D.; Nandra, K.; Coil, A.; Cooper, M. C.; Newman, J. A.; Berta, S.; Magnelli, B.; Popesso, P.; Pozzi, F.
2014-10-01
We combine multi-wavelength data in the AEGIS-XD and C-COSMOS surveys to measure the typical dark matter halo mass of X-ray selected active galactic nuclei (AGN) [LX(2-10 keV) > 1042 erg s- 1] in comparison with far-infrared selected star-forming galaxies detected in the Herschel/PEP survey (PACS Evolutionary Probe; LIR > 1011 L⊙) and quiescent systems at z ≈ 1. We develop a novel method to measure the clustering of extragalactic populations that uses photometric redshift probability distribution functions in addition to any spectroscopy. This is advantageous in that all sources in the sample are used in the clustering analysis, not just the subset with secure spectroscopy. The method works best for large samples. The loss of accuracy because of the lack of spectroscopy is balanced by increasing the number of sources used to measure the clustering. We find that X-ray AGN, far-infrared selected star-forming galaxies and passive systems in the redshift interval 0.6 < z < 1.4 are found in haloes of similar mass, log MDMH/(M⊙ h-1) ≈ 13.0. We argue that this is because the galaxies in all three samples (AGN, star-forming, passive) have similar stellar mass distributions, approximated by the J-band luminosity. Therefore, all galaxies that can potentially host X-ray AGN, because they have stellar masses in the appropriate range, live in dark matter haloes of log MDMH/(M⊙ h-1) ≈ 13.0 independent of their star formation rates. This suggests that the stellar mass of X-ray AGN hosts is driving the observed clustering properties of this population. We also speculate that trends between AGN properties (e.g. luminosity, level of obscuration) and large-scale environment may be related to differences in the stellar mass of the host galaxies.
Clustering Properties of Emission Line Selected Galaxies over the past 12.5 Gyrs
NASA Astrophysics Data System (ADS)
Khostovan, Ali Ahmad; Sobral, David; Mobasher, Bahram; Best, Philip N.; Smail, Ian; Matthee, Jorryt; Darvish, Behnam; Nayyeri, Hooshang; Hemmati, Shoubaneh; Stott, John P.
2018-01-01
In this talk, I will present my latest results on the clustering and dark matter halo (DMH) mass properties of ~7000 narrowband-selected [OIII] and [OII] emitters. I will briefly describe the past work that has been done with our samples (e.g., luminosity functions, evolution of equivalent widths) as motivation of using [OIII] and [OII] emitters to study clustering/halo properties. My talk will focus on our findings regarding the line luminosity and stellar mass dependencies with DMH mass. We find strongly increasing and redshift-independent trends between line luminosity and DMH mass with evidence for a shallower slope at the bright end consistent with halo masses of ~ 1012.5-13 M⊙. Similar, but weaker, trends between stellar mass and halo mass have also been found. We investigate the inter-dependencies of these trends on halo mass and find that the correlation with line luminosity is stronger than with stellar mass. This suggest that active galaxies may be connected with their host DMHs simply based on their emission line luminosity. If time permits, I will briefly present our most recent results using our sample of ~4000 Lyα emitters, where we find similar trends to that seen with the [OIII] and [OII] samples, as well as previous Hα measurements, which suggests galaxies selected based on emission lines may be tracing the same subpopulation of star forming galaxies. I will conclude my talk with an interpretation of this connection and suggest that the shallower slope seen for the brightest emitters is evidence for a transitional halo mass as suggested in models where quenching mechanisms truncate star formation activity and reduce the fraction of star forming galaxies with increasing halo mass.
NASA Astrophysics Data System (ADS)
Wang, Q. Daniel; Dong, Hui; Lang, Cornelia
2006-09-01
The Galactic centre (GC) provides a unique laboratory for a detailed examination of the interplay between massive star formation and the nuclear environment of our Galaxy. Here, we present a 100-ks Chandra Advanced CCD Imaging Spectrometer (ACIS) observation of the Arches and Quintuplet star clusters. We also report on a complementary mapping of the dense molecular gas near the Arches cluster made with the Owens Valley Millimeter Array. We present a catalogue of 244 point-like X-ray sources detected in the observation. Their number-flux relation indicates an overpopulation of relatively bright X-ray sources, which are apparently associated with the clusters. The sources in the core of the Arches and Quintuplet clusters are most likely extreme colliding wind massive star binaries. The diffuse X-ray emission from the core of the Arches cluster has a spectrum showing a 6.7-keV emission line and a surface intensity profile declining steeply with radius, indicating an origin in a cluster wind. In the outer regions near the Arches cluster, the overall diffuse X-ray enhancement demonstrates a bow shock morphology and is prominent in the Fe Kα 6.4-keV line emission with an equivalent width of ~1.4 keV. Much of this enhancement may result from an ongoing collision between the cluster and the adjacent molecular cloud, which have a relative velocity >~120km-1. The older and less-compact Quintuplet cluster contains much weaker X-ray sources and diffuse emission, probably originating from low-mass stellar objects as well as a cluster wind. However, the overall population of these objects, constrained by the observed total diffuse X-ray luminosities, is substantially smaller than expected for both clusters, if they have normal Miller & Scalo initial mass functions. This deficiency of low-mass objects may be a manifestation of the unique star formation environment of the GC, where high-velocity cloud-cloud and cloud-cluster collisions are frequent.
The effect of clulstering of galaxies on the statistics of gravitational lenses
NASA Technical Reports Server (NTRS)
Anderson, N.; Alcock, C.
1986-01-01
It is examined whether clustering of galaxies can significantly alter the statistical properties of gravitational lenses? Only models of clustering that resemble the observed distribution of galaxies in the properties of the two-point correlation function are considered. Monte-Carlo simulations of the imaging process are described. It is found that the effect of clustering is too small to be significant, unless the mass of the deflectors is so large that gravitational lenses become common occurrences. A special model is described which was concocted to optimize the effect of clustering on gravitational lensing but still resemble the observed distribution of galaxies; even this simulation did not satisfactorily produce large numbers of wide-angle lenses.
The Cluster Environment of Two High-mass Protostars
NASA Astrophysics Data System (ADS)
Montes, Virginie; Hofner, Peter
2017-06-01
Characterizing the environment and stellar population in which high-mass stars form is an important step to decide between the main massive star formation theories. In the monolithic collapse model, the mass of the core will determine the final stellar mass (e.g., McKee & Tan 2003). In contrast, in the competitive accretion model (e.g., Bonnell & Bate 2006), the mass of the high-mass star is related to the properties of the cluster. As dynamical processes substantially affect the appearance of a cluster, we study early stages of high-mass star formation. These regions often show extended emission from hot dust at infrared wavelengths, which can cause difficulties to define the cluster. We use a multi-wavelength technique to study nearby high-mass star clusters, based on X-ray observations with the Chandra X-Ray Telescope, in conjunction with infrared data and VLA data. The technique relies on the fact that YSOs are particularly bright in X-ray and that contamination is relatively small. X-ray observations allow us to determine the cluster size. The cluster membership and YSOs classification is established using infrared identification of the X-ray sources, and color-color and color-magnitude diagrams.In this talk, I will present our findings on the cluster study of two high-mass star forming regions: IRAS 20126+4104 and IRAS 16562-3959. While most massive stars appear to be formed in rich a cluster environment, those two sources are candidates for the formation of massive stars in a relatively poor cluster. In contrast to what was found in previous studies (Qiu et al. 2008), the dominant B0-type protostar in IRAS 20126+4104 is associated with a small cluster of low-mass stars. I will also show our current work on IRAS 16562-3959, which contains one of the most luminous O-type protostars in the Galaxy. In the vicinity of this particularly interesting region there is a multitude of small clusters, for which I will present how their stellar population differ from the high-mass star-forming cluster IRAS 16562-3959.
Galaxies at the Extremes: Ultradiffuse Galaxies in the Virgo Cluster
NASA Astrophysics Data System (ADS)
Mihos, Chris
2017-08-01
The ultradiffuse galaxies (UDGs) recently discovered in massive galaxy clusters presents both challenges and opportunities for our understanding of galaxy evolution in dense clusters. Such large, low density galaxies should be most vulnerable to gravitational destruction within the cluster environment. Thus their presence in cluster cores argues either that they must be stabilized by massive dark halos or else be short-lived objects undergoing rapid transformation, perhaps leading to the formation of ultracompact dwarf galaxies (UCDs) if their destruction leaves only a compact nucleus behind. We propose deep imaging of four Virgo Cluster UDGs to probe their local environment within Virgo via accurate tip of the red giant branch (TRGB) distances. With a distance precision of 1 Mpc, we will accurately place the objects in the Virgo core, cluster outskirts, or intervening field. When coupled with our extant kinematic data, we can determine whether they are infalling objects or instead have already passed through the cluster core. We will also compare their compact nuclei to Virgo UCDs, and study their globular cluster (GC) populations in detail. Probing three magnitudes beyond the turnover in the GC luminosity function, we will construct larger and cleaner GC samples than possible with ground-based imaging, using the total mass and radial extent of the globular cluster systems to estimate the dark halo mass and tidal radius for each UDG. The new information provided by HST about the local environment and intrinsic properties of these Virgo UDGs will be used in conjunction with simulation data to study cluster-driven evolution and transformation of low density galaxies.
NASA Astrophysics Data System (ADS)
Park, Jaehong; Kim, Han-Seek; Liu, Chuanwu; Trenti, Michele; Duffy, Alan R.; Geil, Paul M.; Mutch, Simon J.; Poole, Gregory B.; Mesinger, Andrei; Wyithe, J. Stuart B.
2017-12-01
We investigate the clustering properties of Lyman-break galaxies (LBGs) at z ∼ 6 - 8. Using the semi-analytical model MERAXES constructed as part of the dark-ages reionization and galaxy-formation observables from numerical simulation (DRAGONS) project, we predict the angular correlation function (ACF) of LBGs at z ∼ 6 - 8. Overall, we find that the predicted ACFs are in good agreement with recent measurements at z ∼ 6 and z ∼ 7.2 from observations consisting of the Hubble eXtreme Deep Field, the Hubble Ultra Deep Field and cosmic sssembly near-infrared deep extragalactic legacy survey field. We confirm the dependence of clustering on luminosity, with more massive dark matter haloes hosting brighter galaxies, remains valid at high redshift. The predicted galaxy bias at fixed luminosity is found to increase with redshift, in agreement with observations. We find that LBGs of magnitude MAB(1600) < -19.4 at 6 ≲ z ≲ 8 reside in dark matter haloes of mean mass ∼1011.0-1011.5 M⊙, and this dark matter halo mass does not evolve significantly during reionisation.
NASA Technical Reports Server (NTRS)
Cen, Renyue
1994-01-01
The mass and velocity distributions in the outskirts (0.5-3.0/h Mpc) of simulated clusters of galaxies are examined for a suite of cosmogonic models (two Omega(sub 0) = 1 and two Omega(sub 0) = 0.2 models) utilizing large-scale particle-mesh (PM) simulations. Through a series of model computations, designed to isolate the different effects, we find that both Omega(sub 0) and P(sub k) (lambda less than or = 16/h Mpc) are important to the mass distributions in clusters of galaxies. There is a correlation between power, P(sub k), and density profiles of massive clusters; more power tends to point to the direction of a stronger correlation between alpha and M(r less than 1.5/h Mpc); i.e., massive clusters being relatively extended and small mass clusters being relatively concentrated. A lower Omega(sub 0) universe tends to produce relatively concentrated massive clusters and relatively extended small mass clusters compared to their counterparts in a higher Omega(sub 0) model with the same power. Models with little (initial) small-scale power, such as the hot dark matter (HDM) model, produce more extended mass distributions than the isothermal distribution for most of the mass clusters. But the cold dark matter (CDM) models show mass distributions of most of the clusters more concentrated than the isothermal distribution. X-ray and gravitational lensing observations are beginning providing useful information on the mass distribution in and around clusters; some interesting constraints on Omega(sub 0) and/or the (initial) power of the density fluctuations on scales lambda less than or = 16/h Mpc (where linear extrapolation is invalid) can be obtained when larger observational data sets, such as the Sloan Digital Sky Survey, become available.
Galaxy Kinematics and Mass Calibration in Massive SZE Selected Galaxy Clusters to z=1.3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capasso, R.; et al.
The galaxy phase-space distribution in galaxy clusters provides insights into the formation and evolution of cluster galaxies, and it can also be used to measure cluster mass profiles. We present a dynamical study based onmore » $$\\sim$$3000 passive, non-emission line cluster galaxies drawn from 110 galaxy clusters. The galaxy clusters were selected using the Sunyaev-Zel'dovich effect (SZE) in the 2500 deg$^2$ SPT-SZ survey and cover the redshift range $0.2 < z < 1.3$. We model the clusters using the Jeans equation, while adopting NFW mass profiles and a broad range of velocity dispersion anisotropy profiles. The data prefer velocity dispersion anisotropy profiles that are approximately isotropic near the center and increasingly radial toward the cluster virial radius, and this is true for all redshifts and masses we study. The pseudo-phase-space density profile of the passive galaxies is consistent with expectations for dark matter particles and subhalos from cosmological $N$-body simulations. The dynamical mass constraints are in good agreement with external mass estimates of the SPT cluster sample from either weak lensing, velocity dispersions, or X-ray $$Y_X$$ measurements. However, the dynamical masses are lower (at the 2.2$$\\sigma$$ level) when compared to the mass calibration favored when fitting the SPT cluster data to a LCDM model with external cosmological priors, including CMB anisotropy data from Planck. The tension grows with redshift, where in the highest redshift bin the ratio of dynamical to SPT+Planck masses is $$\\eta=0.63^{+0.13}_{-0.08}\\pm0.05$$ (statistical and systematic), corresponding to 2.6$$\\sigma$$ tension.« less
Quasars, clusters and cosmology
NASA Astrophysics Data System (ADS)
Dhanda, Neelam
PART A: Acceleration of the Universe and Modified Gravity: We study the power of next-generation galaxy cluster surveys (such as eROSITA and WFXT) in constraining the cosmological parameters and especially the growth history of the Universe, using the information from galaxy cluster redshift and mass-function evolution and from cluster power spectrum. We use the Fisher Matrix formalism to evaluate the potential for the galaxy cluster surveys to make predictions about cosmological parameters like the gravitational growth index gamma. The primary purpose of this study has been to check whether we can rule out one or the other of the underlying gravity theories in light of the present uncertainty of mass-observable relations and their scatter evolution. We found that these surveys will provide better constraints on various cosmological parameters even after we admit a lack of complete knowledge about the galaxy cluster structure, and when we combine the information from the cluster number count redshift and mass evolution with that from the cluster power spectrum. Based on this, we studied the ability of different surveys to constrain the growth history of the Universe. It was found that whereas eROSITA surveys will need strong priors on cluster structure evolution to conclusively rule out one or the other of the two gravity models, General Relativity and DGP Braneworld Gravity; WFXT surveys do hold the special promise of differentiating growth and telling us whether it is GR or not, with its wide-field survey having the ability to say so even with 99% confidence. PART B: Chemical Evolution in Quasars: We studied chemical evolution in the broad emission line region (BELR) of nitrogen rich quasars drawn from the SDSS Quasar Catalogue IV. Using tools of emission-line spectroscopy, we made detailed abundance measurements of ˜ 40 quasars and estimated their metallicities using the line-intensity ratio method. It was found that quasars with strong nitrogen lines are indicators of high metallicities. Some of these quasars have reached metallicities as high as Z ˜ 20 Z⊙ . Our detailed analysis showed that except in three QSOs, most of the different line-intensity ratios implied the similar metallicities. This verifies that this abundance analysis technique does produce meaningful results. The exceptions are the line-intensity ratio NIV]/CIV, which gives systematically low metallicities and the line-intensity ratio NV/He II, which gives systematically high metallicities. We compared our findings with the predictions of the galactic chemical evolution models. From this study it was concluded that such high metallicities are reached either by requiring a top-heavy Initial Mass Function (IMF) for the quasar host galaxy as suggested by theoretical models, or by physically catastrophic events such as mergers that trigger star formation in already evolved systems which then leads to extreme metallicities in such quasars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, I.; et al.
2017-11-02
We estimate total mass (more » $$M_{500}$$), intracluster medium (ICM) mass ($$M_{\\mathrm{ICM}}$$) and stellar mass ($$M_{\\star}$$) in a Sunyaev-Zel'dovich effect (SZE) selected sample of 91 galaxy clusters with masses $$M_{500}\\gtrsim2.5\\times10^{14}M_{\\odot}$$ and redshift $0.2 < z < 1.25$ from the 2500 deg$^2$ South Pole Telescope SPT-SZ survey. The total masses $$M_{500}$$ are estimated from the SZE observable, the ICM masses $$M_{\\mathrm{ICM}}$$ are obtained from the analysis of $Chandra$ X-ray observations, and the stellar masses $$M_{\\star}$$ are derived by fitting spectral energy distribution templates to Dark Energy Survey (DES) $griz$ optical photometry and $WISE$ or $Spitzer$ near-infrared photometry. We study trends in the stellar mass, the ICM mass, the total baryonic mass and the cold baryonic fraction with cluster mass and redshift. We find significant departures from self-similarity in the mass scaling for all quantities, while the redshift trends are all statistically consistent with zero, indicating that the baryon content of clusters at fixed mass has changed remarkably little over the past $$\\approx9$$ Gyr. We compare our results to the mean baryon fraction (and the stellar mass fraction) in the field, finding that these values lie above (below) those in cluster virial regions in all but the most massive clusters at low redshift. Using a simple model of the matter assembly of clusters from infalling groups with lower masses and from infalling material from the low density environment or field surrounding the parent halos, we show that the measured mass trends without strong redshift trends in the stellar mass scaling relation could be explained by a mass and redshift dependent fractional contribution from field material. Similar analyses of the ICM and baryon mass scaling relations provide evidence for the so-called "missing baryons" outside cluster virial regions.« less
Chiu, I.; Mohr, J. J.; McDonald, M.; ...
2018-05-16
Here, we estimate total mass (more » $$M_{500}$$), intracluster medium (ICM) mass ($$M_{\\mathrm{ICM}}$$) and stellar mass ($$M_{\\star}$$) in a Sunyaev-Zel'dovich effect (SZE) selected sample of 91 galaxy clusters with masses $$M_{500}\\gtrsim2.5\\times10^{14}M_{\\odot}$$ and redshift $0.2 < z < 1.25$ from the 2500 deg$^2$ South Pole Telescope SPT-SZ survey. The total masses $$M_{500}$$ are estimated from the SZE observable, the ICM masses $$M_{\\mathrm{ICM}}$$ are obtained from the analysis of $Chandra$ X-ray observations, and the stellar masses $$M_{\\star}$$ are derived by fitting spectral energy distribution templates to Dark Energy Survey (DES) $griz$ optical photometry and $WISE$ or $Spitzer$ near-infrared photometry. We study trends in the stellar mass, the ICM mass, the total baryonic mass and the cold baryonic fraction with cluster mass and redshift. We find significant departures from self-similarity in the mass scaling for all quantities, while the redshift trends are all statistically consistent with zero, indicating that the baryon content of clusters at fixed mass has changed remarkably little over the past $$\\approx9$$ Gyr. We compare our results to the mean baryon fraction (and the stellar mass fraction) in the field, finding that these values lie above (below) those in cluster virial regions in all but the most massive clusters at low redshift. Using a simple model of the matter assembly of clusters from infalling groups with lower masses and from infalling material from the low density environment or field surrounding the parent halos, we show that the measured mass trends without strong redshift trends in the stellar mass scaling relation could be explained by a mass and redshift dependent fractional contribution from field material. Similar analyses of the ICM and baryon mass scaling relations provide evidence for the so-called "missing baryons" outside cluster virial regions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, I.; et al.
2017-11-02
We estimate total mass (more » $$M_{500}$$), intracluster medium (ICM) mass ($$M_{\\mathrm{ICM}}$$) and stellar mass ($$M_{\\star}$$) in a Sunyaev-Zel'dovich effect (SZE) selected sample of 91 galaxy clusters with masses $$M_{500}\\gtrsim2.5\\times10^{14}M_{\\odot}$$ and redshift $0.2 < z < 1.25$ from the 2500 deg$^2$ South Pole Telescope SPT-SZ survey. The total masses $$M_{500}$$ are estimated from the SZE observable, the ICM masses $$M_{\\mathrm{ICM}}$$ are obtained from the analysis of $Chandra$ X-ray observations, and the stellar masses $$M_{\\star}$$ are derived by fitting spectral energy distribution templates to Dark Energy Survey (DES) $griz$ optical photometry and $WISE$ or $Spitzer$ near-infrared photometry. We study trends in the stellar mass, the ICM mass, the total baryonic mass and the cold baryonic fraction with cluster mass and redshift. We find significant departures from self-similarity in the mass scaling for all quantities, while the redshift trends are all statistically consistent with zero, indicating that the baryon content of clusters at fixed mass has changed remarkably little over the past $$\\approx9$$ Gyr. We compare our results to the mean baryon fraction (and the stellar mass fraction) in the field, finding that these values lie above (below) those in cluster virial regions in all but the most massive clusters at low redshift. Using a simple model of the matter assembly of clusters from infalling groups with lower masses and from infalling material from the low density environment or field surrounding the parent halos, we show that the strong mass and weak redshift trends in the stellar mass scaling relation suggest a mass and redshift dependent fractional contribution from field material. Similar analyses of the ICM and baryon mass scaling relations provide evidence for the so-called 'missing baryons' outside cluster virial regions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, I.; Mohr, J. J.; McDonald, M.
Here, we estimate total mass (more » $$M_{500}$$), intracluster medium (ICM) mass ($$M_{\\mathrm{ICM}}$$) and stellar mass ($$M_{\\star}$$) in a Sunyaev-Zel'dovich effect (SZE) selected sample of 91 galaxy clusters with masses $$M_{500}\\gtrsim2.5\\times10^{14}M_{\\odot}$$ and redshift $0.2 < z < 1.25$ from the 2500 deg$^2$ South Pole Telescope SPT-SZ survey. The total masses $$M_{500}$$ are estimated from the SZE observable, the ICM masses $$M_{\\mathrm{ICM}}$$ are obtained from the analysis of $Chandra$ X-ray observations, and the stellar masses $$M_{\\star}$$ are derived by fitting spectral energy distribution templates to Dark Energy Survey (DES) $griz$ optical photometry and $WISE$ or $Spitzer$ near-infrared photometry. We study trends in the stellar mass, the ICM mass, the total baryonic mass and the cold baryonic fraction with cluster mass and redshift. We find significant departures from self-similarity in the mass scaling for all quantities, while the redshift trends are all statistically consistent with zero, indicating that the baryon content of clusters at fixed mass has changed remarkably little over the past $$\\approx9$$ Gyr. We compare our results to the mean baryon fraction (and the stellar mass fraction) in the field, finding that these values lie above (below) those in cluster virial regions in all but the most massive clusters at low redshift. Using a simple model of the matter assembly of clusters from infalling groups with lower masses and from infalling material from the low density environment or field surrounding the parent halos, we show that the measured mass trends without strong redshift trends in the stellar mass scaling relation could be explained by a mass and redshift dependent fractional contribution from field material. Similar analyses of the ICM and baryon mass scaling relations provide evidence for the so-called "missing baryons" outside cluster virial regions.« less
NASA Astrophysics Data System (ADS)
Chiu, I.; Mohr, J. J.; McDonald, M.; Bocquet, S.; Desai, S.; Klein, M.; Israel, H.; Ashby, M. L. N.; Stanford, A.; Benson, B. A.; Brodwin, M.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Bayliss, M.; Benoit-Lévy, A.; Bertin, E.; Bleem, L.; Brooks, D.; Buckley-Geer, E.; Bulbul, E.; Capasso, R.; Carlstrom, J. E.; Rosell, A. Carnero; Carretero, J.; Castander, F. J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Davis, C.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Drlica-Wagner, A.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; García-Bellido, J.; Garmire, G.; Gaztanaga, E.; Gerdes, D. W.; Gonzalez, A.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gupta, N.; Gutierrez, G.; Hlavacek-L, J.; Honscheid, K.; James, D. J.; Jeltema, T.; Kraft, R.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Miquel, R.; Murray, S.; Nord, B.; Ogando, R. L. C.; Plazas, A. A.; Rapetti, D.; Reichardt, C. L.; Romer, A. K.; Roodman, A.; Sanchez, E.; Saro, A.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sharon, K.; Smith, R. C.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Stalder, B.; Stern, C.; Strazzullo, V.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Vikram, V.; Walker, A. R.; Weller, J.; Zhang, Y.
2018-05-01
We estimate total mass (M500), intracluster medium (ICM) mass (MICM) and stellar mass (M⋆) in a Sunyaev-Zel'dovich effect (SZE) selected sample of 91 galaxy clusters with masses M500 ≳ 2.5 × 1014M⊙ and redshift 0.2 < z < 1.25 from the 2500 ° ^2 South Pole Telescope SPT-SZ survey. The total masses M500 are estimated from the SZE observable, the ICM masses MICM are obtained from the analysis of Chandra X-ray observations, and the stellar masses M⋆ are derived by fitting spectral energy distribution templates to Dark Energy Survey (DES) griz optical photometry and WISE or Spitzer near-infrared photometry. We study trends in the stellar mass, the ICM mass, the total baryonic mass and the cold baryonic fraction with cluster halo mass and redshift. We find significant departures from self-similarity in the mass scaling for all quantities, while the redshift trends are all statistically consistent with zero, indicating that the baryon content of clusters at fixed mass has changed remarkably little over the past ≈9 Gyr. We compare our results to the mean baryon fraction (and the stellar mass fraction) in the field, finding that these values lie above (below) those in cluster virial regions in all but the most massive clusters at low redshift. Using a simple model of the matter assembly of clusters from infalling groups with lower masses and from infalling material from the low density environment or field surrounding the parent halos, we show that the measured mass trends without strong redshift trends in the stellar mass scaling relation could be explained by a mass and redshift dependent fractional contribution from field material. Similar analyses of the ICM and baryon mass scaling relations provide evidence for the so-called "missing baryons" outside cluster virial regions.
The impact of galaxy geometry and mass evolution on the survival of star clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madrid, Juan P.; Hurley, Jarrod R.; Martig, Marie
2014-04-01
Direct N-body simulations of globular clusters in a realistic Milky-Way-like potential are carried out using the code NBODY6 to determine the impact of the host galaxy disk mass and geometry on the survival of star clusters. A relation between disk mass and star-cluster dissolution timescale is derived. These N-body models show that doubling the mass of the disk from 5 × 10{sup 10} M {sub ☉} to 10 × 10{sup 10} M {sub ☉} halves the dissolution time of a satellite star cluster orbiting the host galaxy at 6 kpc from the galactic center. Different geometries in a disk ofmore » identical mass can determine either the survival or dissolution of a star cluster orbiting within the inner 6 kpc of the galactic center. Furthermore, disk geometry has measurable effects on the mass loss of star clusters up to 15 kpc from the galactic center. N-body simulations performed with a fine output time step show that at each disk crossing the outer layers of star clusters experiences an increase in velocity dispersion of ∼5% of the average velocity dispersion in the outer section of star clusters. This leads to an enhancement of mass loss—a clearly discernable effect of disk shocking. By running models with different inclinations, we determine that star clusters with an orbit that is perpendicular to the Galactic plane have larger mass loss rates than do clusters that evolve in the Galactic plane or in an inclined orbit.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marrone, Daniel P.; Culverhouse, Thomas; Carlstrom, John E.
2009-08-20
We present the first measurement of the relationship between the Sunyaev-Zel'dovich effect (SZE) signal and the mass of galaxy clusters that uses gravitational lensing to measure cluster mass, based on 14 X-ray luminous clusters at z {approx_equal} 0.2 from the Local Cluster Substructure Survey. We measure the integrated Compton y-parameter, Y, and total projected mass of the clusters (M {sub GL}) within a projected clustercentric radius of 350 kpc, corresponding to mean overdensities of 4000-8000 relative to the critical density. We find self-similar scaling between M {sub GL} and Y, with a scatter in mass at fixed Y of 32%.more » This scatter exceeds that predicted from numerical cluster simulations, however, it is smaller than comparable measurements of the scatter in mass at fixed T{sub X} . We also find no evidence of segregation in Y between disturbed and undisturbed clusters, as had been seen with T{sub X} on the same physical scales. We compare our scaling relation to the Bonamente et al. relation based on mass measurements that assume hydrostatic equilibrium, finding no evidence for a hydrostatic mass bias in cluster cores (M {sub GL} = 0.98 {+-} 0.13 M {sub HSE}), consistent with both predictions from numerical simulations and lensing/X-ray-based measurements of mass-observable scaling relations at larger radii. Overall our results suggest that the SZE may be less sensitive than X-ray observations to the details of cluster physics in cluster cores.« less
Revealing the Cosmic Web-dependent Halo Bias
NASA Astrophysics Data System (ADS)
Yang, Xiaohu; Zhang, Youcai; Lu, Tianhuan; Wang, Huiyuan; Shi, Feng; Tweed, Dylan; Li, Shijie; Luo, Wentao; Lu, Yi; Yang, Lei
2017-10-01
Halo bias is the one of the key ingredients of the halo models. It was shown at a given redshift to be only dependent, to the first order, on the halo mass. In this study, four types of cosmic web environments—clusters, filaments, sheets, and voids—are defined within a state-of-the-art high-resolution N-body simulation. Within these environments, we use both halo-dark matter cross correlation and halo-halo autocorrelation functions to probe the clustering properties of halos. The nature of the halo bias differs strongly between the four different cosmic web environments described here. With respect to the overall population, halos in clusters have significantly lower biases in the {10}11.0˜ {10}13.5 {h}-1 {M}⊙ mass range. In other environments, however, halos show extremely enhanced biases up to a factor 10 in voids for halos of mass ˜ {10}12.0 {h}-1 {M}⊙ . Such a strong cosmic web environment dependence in the halo bias may play an important role in future cosmological and galaxy formation studies. Within this cosmic web framework, the age dependency of halo bias is found to be only significant in clusters and filaments for relatively small halos ≲ {10}12.5 {h}-1 {M}⊙ .
NASA Astrophysics Data System (ADS)
Belloni, Diogo; Kroupa, Pavel; Rocha-Pinto, Helio J.; Giersz, Mirek
2018-03-01
In order to allow a better understanding of the origin of Galactic field populations, dynamical equivalence of stellar-dynamical systems has been postulated by Kroupa and Belloni et al. to allow mapping of solutions of the initial conditions of embedded clusters such that they yield, after a period of dynamical processing, the Galactic field population. Dynamically equivalent systems are defined to initially and finally have the same distribution functions of periods, mass ratios and eccentricities of binary stars. Here, we search for dynamically equivalent clusters using the MOCCA code. The simulations confirm that dynamically equivalent solutions indeed exist. The result is that the solution space is next to identical to the radius-mass relation of Marks & Kroupa, ( r_h/pc )= 0.1^{+0.07}_{-0.04} ( M_ecl/M_{⊙} )^{0.13± 0.04}. This relation is in good agreement with the oIMF. This is achieved by applying a similar procedurebserved density of molecular cloud clumps. According to the solutions, the time-scale to reach dynamical equivalence is about 0.5 Myr which is, interestingly, consistent with the lifetime of ultra-compact H II regions and the time-scale needed for gas expulsion to be active in observed very young clusters as based on their dynamical modelling.
Zeng, Huan-Chang; Bae, Yangjin; Dawson, Brian C.; Chen, Yuqing; Bertin, Terry; Munivez, Elda; Campeau, Philippe M.; Tao, Jianning; Chen, Rui; Lee, Brendan H.
2017-01-01
Osteocytes are the terminally differentiated cell type of the osteoblastic lineage and have important functions in skeletal homeostasis. Although the transcriptional regulation of osteoblast differentiation has been well characterized, the factors that regulate differentiation of osteocytes from mature osteoblasts are poorly understood. Here we show that miR-23a∼27a∼24-2 (miR-23a cluster) promotes osteocyte differentiation. Osteoblast-specific miR-23a cluster gain-of-function mice have low bone mass associated with decreased osteoblast but increased osteocyte numbers. By contrast, loss-of-function transgenic mice overexpressing microRNA decoys for either miR-23a or miR-27a, but not miR24-2, show decreased osteocyte numbers. Moreover, RNA-sequencing analysis shows altered transforming growth factor-β (TGF-β) signalling. Prdm16, a negative regulator of the TGF-β pathway, is directly repressed by miR-27a with concomitant alteration of sclerostin expression, and pharmacological inhibition of TGF-β rescues the phenotypes observed in the gain-of-function transgenic mice. Taken together, the miR-23a cluster regulates osteocyte differentiation by modulating the TGF-β signalling pathway through targeting of Prdm16. PMID:28397831
Features of globular cluster's dynamics with an intermediate-mass black hole
NASA Astrophysics Data System (ADS)
Ryabova, Marina V.; Gorban, Alena S.; Shchekinov, Yuri A.; Vasiliev, Evgenii O.
2018-02-01
In this paper, we address the question of how a central intermediate-mass black hole (IMBH) in a globular cluster (GC) affects dynamics, core collapse, and formation of the binary population. It is shown that the central IMBH forms a binary system that affects dynamics of stars in the cluster significantly. The presence of an intermediate-mass black hole with mass ≥ 1.0-1.7%of the total stellar mass in the cluster inhibits the formation of binary stars population.
Cluster Dynamical Mass from Magellan Multi-Object Spectroscopy for SGAS Clusters
NASA Astrophysics Data System (ADS)
Murray, Katherine; Sharon, Keren; Johnson, Traci; Gifford, Daniel; Gladders, Michael; Bayliss, Matthew; Florian, Michael; Rigby, Jane R.; Miller, Christopher J.
2016-01-01
Galaxy clusters are giant structures in space consisting of hundreds or thousands of galaxies, interstellar matter, and dark matter, all bound together by gravity. We analyze the spectra of the cluster members of several strong lensing clusters from a large program, the Sloan Giant Arcs Survey, to determine the total mass of the lensing clusters. From spectra obtained with the LDSS3 and IMACS cameras on the Magellan 6.5m telescopes, we measure the spectroscopic redshifts of about 50 galaxies in each cluster, and calculate the velocity distributions within the galaxy clusters, as well as their projected cluster-centric radii. From these two pieces of information, we measure the size and total dynamical mass of each cluster. We can combine this calculation with other measurements of mass of the same galaxy clusters (like measurements from strong lensing or X-ray) to determine the spatial distribution of luminous and dark matter out to the virial radius of the cluster.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pizzuti, L.; Sartoris, B.; Borgani, S.
We use high-precision kinematic and lensing measurements of the total mass profile of the dynamically relaxed galaxy cluster MACS J1206.2-0847 at z=0.44 to estimate the value of the ratio η=Ψ/Φ between the two scalar potentials in the linear perturbed Friedmann-Lemaitre-Robertson-Walker metric. An accurate measurement of this ratio, called anisotropic stress, could show possible, interesting deviations from the predictions of the theory of General Relativity, according to which Ψ should be equal to Φ. Complementary kinematic and lensing mass profiles were derived from exhaustive analyses using the data from the Cluster Lensing And Supernova survey with Hubble (CLASH) and the spectroscopicmore » follow-up with the Very Large Telescope (CLASH-VLT). Whereas the kinematic mass profile tracks only the time-time part of the perturbed metric (i.e. only Φ), the lensing mass profile reflects the contribution of both time-time and space-space components (i.e. the sum Φ+Ψ). We thus express η as a function of the mass profiles and perform our analysis over the radial range 0.5 Mpc≤ r≤ r{sub 200}=1.96 Mpc. Using a spherical Navarro-Frenk-White mass profile, which well fits the data, we obtain η(r{sub 200})=1.01 {sub −0.28}{sup +0.31} at the 68% C.L. We discuss the effect of assuming different functional forms for mass profiles and of the orbit anisotropy in the kinematic reconstruction. Interpreting this result within the well-studied f(R) modified gravity model, the constraint on η translates into an upper bound to the interaction length (inverse of the scalaron mass) smaller than 2 Mpc. This tight constraint on the f(R) interaction range is however substantially relaxed when systematic uncertainties in the analysis are considered. Our analysis highlights the potential of this method to detect deviations from general relativity, while calling for the need of further high-quality data on the total mass distribution of clusters and improved control on systematic effects.« less
NASA Astrophysics Data System (ADS)
Pereira, Maria E. S.; Soares-Santos, Marcelle; Makler, Martin; Annis, James; Lin, Huan; Palmese, Antonella; Vitorelli, André Z.; Welch, Brian; Caminha, Gabriel B.; Erben, Thomas; Moraes, Bruno; Shan, Huanyuan
2018-02-01
We present the first weak lensing calibration of μ⋆, a new galaxy cluster mass proxy corresponding to the total stellar mass of red and blue members, in two cluster samples selected from the SDSS Stripe 82 data: 230 red-sequence Matched-filter Probabilistic Percolation (redMaPPer) clusters at redshift 0.1 ≤ z < 0.33 and 136 Voronoi Tessellation (VT) clusters at 0.1 ≤ z < 0.6. We use the CS82 shear catalogue and stack the clusters in μ⋆ bins to measure a mass-observable power-law relation. For redMaPPer clusters we obtain M0 = (1.77 ± 0.36) × 1014 h-1M⊙, α = 1.74 ± 0.62. For VT clusters, we find M0 = (4.31 ± 0.89) × 1014 h-1M⊙, α = 0.59 ± 0.54 and M0 = (3.67 ± 0.56) × 1014 h-1M⊙, α = 0.68 ± 0.49 for a low and a high redshift bin, respectively. Our results are consistent, internally and with the literature, indicating that our method can be applied to any cluster-finding algorithm. In particular, we recommend that μ⋆ be used as the mass proxy for VT clusters. Catalogues including μ⋆ measurements will enable its use in studies of galaxy evolution in clusters and cluster cosmology.
NASA Astrophysics Data System (ADS)
Kravtsov, V. V.
2006-09-01
Peak metallicities of metal-rich populations of globular clusters (MRGCs) belonging to early-type galaxies and spheroidal subsystems of spiral galaxies (spheroids) of different mass fall within the somewhat conservative -0.7<=[Fe/H]<=-0.3 range. Indeed, if possible age effects are taken into account, this metallicity range might become smaller. Irregular galaxies such as the Large Magellanic Cloud (LMC), with longer timescales of formation and lower star formation (SF) efficiency, do not contain old MRGCs with [Fe/H]>-1.0, but they are observed to form populations of young/intermediate-age massive star clusters (MSCs) with masses exceeding 104 Msolar. Their formation is widely believed to be an accidental process fully dependent on external factors. From the analysis of available data on the populations and their hosts, including intermediate-age populous star clusters in the LMC, we find that their most probable mean metallicities fall within -0.7<=[Fe/H]<=-0.3, as the peak metallicities of MRGCs do, irrespective of signs of interaction. Moreover, both the disk giant metallicity distribution function (MDF) in the LMC and the MDFs for old giants in the halos of massive spheroids exhibit a significant increase toward [Fe/H]~-0.5. That is in agreement with a correlation found between SF activity in galaxies and their metallicity. The formation of both the old MRGCs in spheroids and MSC populations in irregular galaxies probably occurs at approximately the same stage of the host galaxies' chemical evolution and is related to the essentially increased SF activity in the hosts around the same metallicity that is achieved very early in massive spheroids, later in lower mass spheroids, and much later in irregular galaxies. Changes in the interstellar dust, particularly in elemental abundances in dust grains and in the mass distribution function of the grains, may be among the factors regulating star and MSC formation activity in galaxies. Strong interactions and mergers affecting the MSC formation presumably play an additional role, although they can substantially intensify the internally regulated MSC formation process. Several implications of our suggestions are briefly discussed.
First assembly times and equilibration in stochastic coagulation-fragmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
D’Orsogna, Maria R.; Department of Mathematics, CSUN, Los Angeles, California 91330-8313; Lei, Qi
2015-07-07
We develop a fully stochastic theory for coagulation and fragmentation (CF) in a finite system with a maximum cluster size constraint. The process is modeled using a high-dimensional master equation for the probabilities of cluster configurations. For certain realizations of total mass and maximum cluster sizes, we find exact analytical results for the expected equilibrium cluster distributions. If coagulation is fast relative to fragmentation and if the total system mass is indivisible by the mass of the largest allowed cluster, we find a mean cluster-size distribution that is strikingly broader than that predicted by the corresponding mass-action equations. Combinations ofmore » total mass and maximum cluster size under which equilibration is accelerated, eluding late-stage coarsening, are also delineated. Finally, we compute the mean time it takes particles to first assemble into a maximum-sized cluster. Through careful state-space enumeration, the scaling of mean assembly times is derived for all combinations of total mass and maximum cluster size. We find that CF accelerates assembly relative to monomer kinetic only in special cases. All of our results hold in the infinite system limit and can be only derived from a high-dimensional discrete stochastic model, highlighting how classical mass-action models of self-assembly can fail.« less
The Excursion Set Theory of Halo Mass Functions, Halo Clustering, and Halo Growth
NASA Astrophysics Data System (ADS)
Zentner, Andrew R.
I review the excursion set theory with particular attention toward applications to cold dark matter halo formation and growth, halo abundance, and halo clustering. After a brief introduction to notation and conventions, I begin by recounting the heuristic argument leading to the mass function of bound objects given by Press and Schechter. I then review the more formal derivation of the Press-Schechter halo mass function that makes use of excursion sets of the density field. The excursion set formalism is powerful and can be applied to numerous other problems. I review the excursion set formalism for describing both halo clustering and bias and the properties of void regions. As one of the most enduring legacies of the excursion set approach and one of its most common applications, I spend considerable time reviewing the excursion set theory of halo growth. This section of the review culminates with the description of two Monte Carlo methods for generating ensembles of halo mass accretion histories. In the last section, I emphasize that the standard excursion set approach is the result of several simplifying assumptions. Dropping these assumptions can lead to more faithful predictions and open excursion set theory to new applications. One such assumption is that the height of the barriers that define collapsed objects is a constant function of scale. I illustrate the implementation of the excursion set approach for barriers of arbitrary shape. One such application is the now well-known improvement of the excursion set mass function derived from the "moving" barrier for ellipsoidal collapse. I also emphasize that the statement that halo accretion histories are independent of halo environment in the excursion set approach is not a general prediction of the theory. It is a simplifying assumption. I review the method for constructing correlated random walks of the density field in the more general case. I construct a simple toy model to illustrate that excursion set theory (with a constant barrier height) makes a simple and general prediction for the relation between halo accretion histories and the large-scale environments of halos: regions of high density preferentially contain late-forming halos and conversely for regions of low density. I conclude with a brief discussion of the importance of this prediction relative to recent numerical studies of the environmental dependence of halo properties.
NeAT: a toolbox for the analysis of biological networks, clusters, classes and pathways.
Brohée, Sylvain; Faust, Karoline; Lima-Mendez, Gipsi; Sand, Olivier; Janky, Rekin's; Vanderstocken, Gilles; Deville, Yves; van Helden, Jacques
2008-07-01
The network analysis tools (NeAT) (http://rsat.ulb.ac.be/neat/) provide a user-friendly web access to a collection of modular tools for the analysis of networks (graphs) and clusters (e.g. microarray clusters, functional classes, etc.). A first set of tools supports basic operations on graphs (comparison between two graphs, neighborhood of a set of input nodes, path finding and graph randomization). Another set of programs makes the connection between networks and clusters (graph-based clustering, cliques discovery and mapping of clusters onto a network). The toolbox also includes programs for detecting significant intersections between clusters/classes (e.g. clusters of co-expression versus functional classes of genes). NeAT are designed to cope with large datasets and provide a flexible toolbox for analyzing biological networks stored in various databases (protein interactions, regulation and metabolism) or obtained from high-throughput experiments (two-hybrid, mass-spectrometry and microarrays). The web interface interconnects the programs in predefined analysis flows, enabling to address a series of questions about networks of interest. Each tool can also be used separately by entering custom data for a specific analysis. NeAT can also be used as web services (SOAP/WSDL interface), in order to design programmatic workflows and integrate them with other available resources.
Cluster Masses Derived from X-ray and Sunyaev-Zeldovich Effect Measurements
NASA Technical Reports Server (NTRS)
Laroque, S.; Joy, Marshall; Bonamente, M.; Carlstrom, J.; Dawson, K.
2003-01-01
We infer the gas mass and total gravitational mass of 11 clusters using two different methods; analysis of X-ray data from the Chandra X-ray Observatory and analysis of centimeter-wave Sunyaev-Zel'dovich Effect (SZE) data from the BIMA and OVRO interferometers. This flux-limited sample of clusters from the BCS cluster catalogue was chosen so as to be well above the surface brightness limit of the ROSAT All Sky Survey; this is therefore an orientation unbiased sample. The gas mass fraction, f_g, is calculated for each cluster using both X-ray and SZE data, and the results are compared at a fiducial radius of r_500. Comparison of the X-ray and SZE results for this orientation unbiased sample allows us to constrain cluster systematics, such as clumping of the intracluster medium. We derive an upper limit on Omega_M assuming that the mass composition of clusters within r_500 reflects the universal mass composition Omega_M h_100 is greater than Omega _B / f-g. We also demonstrate how the mean f_g derived from the sample can be used to estimate the masses of clusters discovered by upcoming deep SZE surveys.
Parameters of oscillation generation regions in open star cluster models
NASA Astrophysics Data System (ADS)
Danilov, V. M.; Putkov, S. I.
2017-07-01
We determine the masses and radii of central regions of open star cluster (OCL) models with small or zero entropy production and estimate the masses of oscillation generation regions in clustermodels based on the data of the phase-space coordinates of stars. The radii of such regions are close to the core radii of the OCL models. We develop a new method for estimating the total OCL masses based on the cluster core mass, the cluster and cluster core radii, and radial distribution of stars. This method yields estimates of dynamical masses of Pleiades, Praesepe, and M67, which agree well with the estimates of the total masses of the corresponding clusters based on proper motions and spectroscopic data for cluster stars.We construct the spectra and dispersion curves of the oscillations of the field of azimuthal velocities v φ in OCL models. Weak, low-amplitude unstable oscillations of v φ develop in cluster models near the cluster core boundary, and weak damped oscillations of v φ often develop at frequencies close to the frequencies of more powerful oscillations, which may reduce the non-stationarity degree in OCL models. We determine the number and parameters of such oscillations near the cores boundaries of cluster models. Such oscillations points to the possible role that gradient instability near the core of cluster models plays in the decrease of the mass of the oscillation generation regions and production of entropy in the cores of OCL models with massive extended cores.
Formation of intermediate-mass black holes through runaway collisions in the first star clusters
NASA Astrophysics Data System (ADS)
Sakurai, Yuya; Yoshida, Naoki; Fujii, Michiko S.; Hirano, Shingo
2017-12-01
We study the formation of massive black holes in the first star clusters. We first locate star-forming gas clouds in protogalactic haloes of ≳107 M⊙ in cosmological hydrodynamics simulations and use them to generate the initial conditions for star clusters with masses of ∼105 M⊙. We then perform a series of direct-tree hybrid N-body simulations to follow runaway stellar collisions in the dense star clusters. In all the cluster models except one, runaway collisions occur within a few million years, and the mass of the central, most massive star reaches ∼400-1900 M⊙. Such very massive stars collapse to leave intermediate-mass black holes (IMBHs). The diversity of the final masses may be attributed to the differences in a few basic properties of the host haloes such as mass, central gas velocity dispersion and mean gas density of the central core. Finally, we derive the IMBH mass to cluster mass ratios, and compare them with the observed black hole to bulge mass ratios in the present-day Universe.
Planck/SDSS cluster mass and gas scaling relations for a volume-complete redMaPPer sample
NASA Astrophysics Data System (ADS)
Jimeno, Pablo; Diego, Jose M.; Broadhurst, Tom; De Martino, I.; Lazkoz, Ruth
2018-07-01
Using Planck satellite data, we construct Sunyaev-Zel'dovich (SZ) gas pressure profiles for a large, volume-complete sample of optically selected clusters. We have defined a sample of over 8000 redMaPPer clusters from the Sloan Digital Sky Survey, within the volume-complete redshift region 0.100
NASA Astrophysics Data System (ADS)
Forbes, Duncan A.; Bastian, Nate; Gieles, Mark; Crain, Robert A.; Kruijssen, J. M. Diederik; Larsen, Søren S.; Ploeckinger, Sylvia; Agertz, Oscar; Trenti, Michele; Ferguson, Annette M. N.; Pfeffer, Joel; Gnedin, Oleg Y.
2018-02-01
We discuss some of the key open questions regarding the formation and evolution of globular clusters (GCs) during galaxy formation and assembly within a cosmological framework. The current state of the art for both observations and simulations is described, and we briefly mention directions for future research. The oldest GCs have ages greater than or equal to 12.5 Gyr and formed around the time of reionization. Resolved colour-magnitude diagrams of Milky Way GCs and direct imaging of lensed proto-GCs at z˜6 with the James Webb Space Telescope (JWST) promise further insight. GCs are known to host multiple populations of stars with variations in their chemical abundances. Recently, such multiple populations have been detected in ˜2 Gyr old compact, massive star clusters. This suggests a common, single pathway for the formation of GCs at high and low redshift. The shape of the initial mass function for GCs remains unknown; however, for massive galaxies a power-law mass function is favoured. Significant progress has been made recently modelling GC formation in the context of galaxy formation, with success in reproducing many of the observed GC-galaxy scaling relations.
Stellar Content and Star Formation in Young Clusters Influenced by Massive Stars
NASA Astrophysics Data System (ADS)
Jose, J.
2014-09-01
Star Formation (SF) in extreme environment is always challenging and can be significantly different from that in quiet environments. This study presents the comprehensive multi-wavelength (optical, NIR, MIR and radio) observational analysis of three Galactic starforming regions associated with H II regions/young clusters and located at > 2 kpc, which are found to be evolving under the influence of massive stars within their vicinity. The candidate massive stars, young stellar objects, their mass, age, age spread, the form of K-band Luminosity Function (KLF), Initial Mass Function (IMF) and a possible formation history of each region are studied. The major results on Sh2-252, an extended H II region that appears to be undergoing multiple episodes of SF, are highlighted. Our analysis shows that all the regions are undergoing complex SF activity and the new generation of stars in each region seem to be an outcome of the influence by the presence of massive stars within them. SF process in these regions are likely to be multi-fold and the results suggest that multiple modes of triggering mechanism and hierarchial modes of SF are a common phenomena within young clusters.
Forbes, Duncan A; Bastian, Nate; Gieles, Mark; Crain, Robert A; Kruijssen, J M Diederik; Larsen, Søren S; Ploeckinger, Sylvia; Agertz, Oscar; Trenti, Michele; Ferguson, Annette M N; Pfeffer, Joel; Gnedin, Oleg Y
2018-02-01
We discuss some of the key open questions regarding the formation and evolution of globular clusters (GCs) during galaxy formation and assembly within a cosmological framework. The current state of the art for both observations and simulations is described, and we briefly mention directions for future research. The oldest GCs have ages greater than or equal to 12.5 Gyr and formed around the time of reionization. Resolved colour-magnitude diagrams of Milky Way GCs and direct imaging of lensed proto-GCs at z ∼6 with the James Webb Space Telescope (JWST) promise further insight. GCs are known to host multiple populations of stars with variations in their chemical abundances. Recently, such multiple populations have been detected in ∼2 Gyr old compact, massive star clusters. This suggests a common, single pathway for the formation of GCs at high and low redshift. The shape of the initial mass function for GCs remains unknown; however, for massive galaxies a power-law mass function is favoured. Significant progress has been made recently modelling GC formation in the context of galaxy formation, with success in reproducing many of the observed GC-galaxy scaling relations.
Bastian, Nate; Gieles, Mark; Crain, Robert A.; Kruijssen, J. M. Diederik; Larsen, Søren S.; Ploeckinger, Sylvia; Agertz, Oscar; Trenti, Michele; Ferguson, Annette M. N.; Pfeffer, Joel; Gnedin, Oleg Y.
2018-01-01
We discuss some of the key open questions regarding the formation and evolution of globular clusters (GCs) during galaxy formation and assembly within a cosmological framework. The current state of the art for both observations and simulations is described, and we briefly mention directions for future research. The oldest GCs have ages greater than or equal to 12.5 Gyr and formed around the time of reionization. Resolved colour-magnitude diagrams of Milky Way GCs and direct imaging of lensed proto-GCs at z∼6 with the James Webb Space Telescope (JWST) promise further insight. GCs are known to host multiple populations of stars with variations in their chemical abundances. Recently, such multiple populations have been detected in ∼2 Gyr old compact, massive star clusters. This suggests a common, single pathway for the formation of GCs at high and low redshift. The shape of the initial mass function for GCs remains unknown; however, for massive galaxies a power-law mass function is favoured. Significant progress has been made recently modelling GC formation in the context of galaxy formation, with success in reproducing many of the observed GC-galaxy scaling relations. PMID:29507511
2002-10-30
atomic anions and methanol: Anion photoelectron spectroscopy and density functional theory calculations on HNiCO-, PdCO - and PtCO-,” Bappaditya...HNiC2H, Ni(C2H)2, PdCO , PdCN, PdC2H, PtCO, PtCN, PtC2H), they are not included in this report, but can be found in the papers cited above. PE
Environment-based selection effects of Planck clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosyra, R.; Gruen, D.; Seitz, S.
2015-07-24
We investigate whether the large-scale structure environment of galaxy clusters imprints a selection bias on Sunyaev–Zel'dovich (SZ) catalogues. Such a selection effect might be caused by line of sight (LoS) structures that add to the SZ signal or contain point sources that disturb the signal extraction in the SZ survey. We use the Planck PSZ1 union catalogue in the Sloan Digital Sky Survey (SDSS) region as our sample of SZ-selected clusters. We calculate the angular two-point correlation function (2pcf) for physically correlated, foreground and background structure in the RedMaPPer SDSS DR8 catalogue with respect to each cluster. We compare ourmore » results with an optically selected comparison cluster sample and with theoretical predictions. In contrast to the hypothesis of no environment-based selection, we find a mean 2pcf for background structures of -0.049 on scales of ≲40 arcmin, significantly non-zero at ~4σ, which means that Planck clusters are more likely to be detected in regions of low background density. We hypothesize this effect arises either from background estimation in the SZ survey or from radio sources in the background. We estimate the defect in SZ signal caused by this effect to be negligibly small, of the order of ~10 -4 of the signal of a typical Planck detection. Analogously, there are no implications on X-ray mass measurements. However, the environmental dependence has important consequences for weak lensing follow up of Planck galaxy clusters: we predict that projection effects account for half of the mass contained within a 15 arcmin radius of Planck galaxy clusters. We did not detect a background underdensity of CMASS LRGs, which also leaves a spatially varying redshift dependence of the Planck SZ selection function as a possible cause for our findings.« less
NASA Astrophysics Data System (ADS)
Parroni, Carolina; Mei, Simona; Erben, Thomas; Van Waerbeke, Ludovic; Raichoor, Anand; Ford, Jes; Licitra, Rossella; Meneghetti, Massimo; Hildebrandt, Hendrik; Miller, Lance; Côté, Patrick; Covone, Giovanni; Cuillandre, Jean-Charles; Duc, Pierre-Alain; Ferrarese, Laura; Gwyn, Stephen D. J.; Puzia, Thomas H.
2017-10-01
We measured stacked weak lensing cluster masses for a sample of 1323 galaxy clusters detected by the RedGOLD algorithm in the Canada-France-Hawaii Telescope Legacy Survey W1 and the Next Generation Virgo Cluster Survey at 0.2< z< 0.5, in the optical richness range 10< λ < 70. This is the most comprehensive lensing study of a ˜ 100 % complete and ˜ 80 % pure optical cluster catalog in this redshift range. We test different mass models, and our final model includes a basic halo model with a Navarro Frenk and White profile, as well as correction terms that take into account cluster miscentering, non-weak shear, the two-halo term, the contribution of the Brightest Cluster Galaxy, and an a posteriori correction for the intrinsic scatter in the mass-richness relation. With this model, we obtain a mass-richness relation of {log}{M}200/{M}⊙ =(14.46+/- 0.02)+(1.04+/- 0.09){log}(λ /40) (statistical uncertainties). This result is consistent with other published lensing mass-richness relations. We give the coefficients of the scaling relations between the lensing mass and X-ray mass proxies, L X and T X, and compare them with previous results. When compared to X-ray masses and mass proxies, our results are in agreement with most previous results and simulations, and consistent with the expected deviations from self-similarity.
Correction of Hydrostatic Cluster Masses through Power Ratios and Weak Lensing
NASA Astrophysics Data System (ADS)
Mahdavi, Andisheh
2009-09-01
The evolution of rich, X-ray emitting clusters of galaxies has given us precise measurements of the cosmological parameters, with dramatic constraints on the dark energy equation of state. Built into these measurements are wholesale corrections for the infamous "X-ray mass underestimate"---the fact that X-ray masses are systematically low due to the incomplete thermalization of the intracluster plasma. We seek to refine the mass correction for cosmological use through morphological power ratios. Power ratios deliver more accurate correction factors because they take into account variations in substructure from cluster to cluster. We will test their ability to correct X-ray masses by comparing hydrostatic and weak lensing mass profiles for a sample of 44 rich clusters of galaxies.
Sejong Open Cluster Survey (SOS). 0. Target Selection and Data Analysis
NASA Astrophysics Data System (ADS)
Sung, Hwankyung; Lim, Beomdu; Bessell, Michael S.; Kim, Jinyoung S.; Hur, Hyeonoh; Chun, Moo-Young; Park, Byeong-Gon
2013-06-01
Star clusters are superb astrophysical laboratories containing cospatial and coeval samples of stars with similar chemical composition. We initiate the Sejong Open cluster Survey (SOS) - a project dedicated to providing homogeneous photometry of a large number of open clusters in the SAAO Johnson-Cousins' UBVI system. To achieve our main goal, we pay much attention to the observation of standard stars in order to reproduce the SAAO standard system. Many of our targets are relatively small sparse clusters that escaped previous observations. As clusters are considered building blocks of the Galactic disk, their physical properties such as the initial mass function, the pattern of mass segregation, etc. give valuable information on the formation and evolution of the Galactic disk. The spatial distribution of young open clusters will be used to revise the local spiral arm structure of the Galaxy. In addition, the homogeneous data can also be used to test stellar evolutionary theory, especially concerning rare massive stars. In this paper we present the target selection criteria, the observational strategy for accurate photometry, and the adopted calibrations for data analysis such as color-color relations, zero-age main sequence relations, Sp - M_V relations, Sp - T_{eff} relations, Sp - color relations, and T_{eff} - BC relations. Finally we provide some data analysis such as the determination of the reddening law, the membership selection criteria, and distance determination.
Black Hole and Galaxy Coevolution from Continuity Equation and Abundance Matching
NASA Astrophysics Data System (ADS)
Aversa, R.; Lapi, A.; de Zotti, G.; Shankar, F.; Danese, L.
2015-09-01
We investigate the coevolution of galaxies and hosted supermassive black holes (BHs) throughout the history of the universe by a statistical approach based on the continuity equation and the abundance matching technique. Specifically, we present analytical solutions of the continuity equation without source terms to reconstruct the supermassive BH mass function from the active galactic nucleus (AGN) luminosity functions. Such an approach includes physically motivated AGN light curves tested on independent data sets, which describe the evolution of the Eddington ratio and radiative efficiency from slim- to thin-disk conditions. We nicely reproduce the local estimates of the BH mass function, the AGN duty cycle as a function of mass and redshift, along with the Eddington ratio function and the fraction of galaxies with given stellar mass hosting an AGN with given Eddington ratio. We exploit the same approach to reconstruct the observed stellar mass function at different redshift from the ultraviolet and far-IR luminosity functions associated with star formation in galaxies. These results imply that the build-up of stars and BHs in galaxies occurs via in situ processes, with dry mergers playing a marginal role at least for stellar masses ≲ 3× {10}11 {M}⊙ and BH masses ≲ {10}9 {M}⊙ , where the statistical data are more secure and less biased by systematic errors. In addition, we develop an improved abundance matching technique to link the stellar and BH content of galaxies to the gravitationally dominant dark matter (DM) component. The resulting relationships constitute a testbed for galaxy evolution models, highlighting the complementary role of stellar and AGN feedback in the star formation process. In addition, they may be operationally implemented in numerical simulations to populate DM halos or to gauge subgrid physics. Moreover, they may be exploited to investigate the galaxy/AGN clustering as a function of redshift, mass, and/or luminosity. In fact, the clustering properties of BHs and galaxies are found to be in full agreement with current observations, thus further validating our results from the continuity equation. Finally, our analysis highlights that (i) the fraction of AGNs observed in the slim-disk regime, where most of the BH mass is accreted, increases with redshift; and (ii) already at z≳ 6 a substantial amount of dust must have formed over timescales ≲ {10}8 yr in strongly star-forming galaxies, making these sources well within the reach of ALMA surveys in (sub)millimeter bands.
Yohannan, Jithin; He, Bing; Wang, Jiangxia; Greene, Gregory; Schein, Yvette; Mkocha, Harran; Munoz, Beatriz; Quinn, Thomas C.; Gaydos, Charlotte; West, Sheila K.
2014-01-01
Purpose. We detected spatial clustering of households with Chlamydia trachomatis infection (CI) and active trachoma (AT) in villages undergoing mass treatment with azithromycin (MDA) over time. Methods. We obtained global positioning system (GPS) coordinates for all households in four villages in Kongwa District, Tanzania. Every 6 months for a period of 42 months, our team examined all children under 10 for AT, and tested for CI with ocular swabbing and Amplicor. Villages underwent four rounds of annual MDA. We classified households as having ≥1 child with CI (or AT) or having 0 children with CI (or AT). We calculated the difference in the K function between households with and without CI or AT to detect clustering at each time point. Results. Between 918 and 991 households were included over the 42 months of this analysis. At baseline, 306 households (32.59%) had ≥1 child with CI, which declined to 73 households (7.50%) at 42 months. We observed borderline clustering of households with CI at 12 months after one round of MDA and statistically significant clustering with growing cluster sizes between 18 and 24 months after two rounds of MDA. Clusters diminished in size at 30 months after 3 rounds of MDA. Active trachoma did not cluster at any time point. Conclusions. This study demonstrates that CI clusters after multiple rounds of MDA. Clusters of infection may increase in size if the annual antibiotic pressure is removed. The absence of growth after the three rounds suggests the start of control of transmission. PMID:24906862
The XXL survey XV: evidence for dry merger driven BCG growth in XXL-100-GC X-ray clusters
NASA Astrophysics Data System (ADS)
Lavoie, S.; Willis, J. P.; Démoclès, J.; Eckert, D.; Gastaldello, F.; Smith, G. P.; Lidman, C.; Adami, C.; Pacaud, F.; Pierre, M.; Clerc, N.; Giles, P.; Lieu, M.; Chiappetti, L.; Altieri, B.; Ardila, F.; Baldry, I.; Bongiorno, A.; Desai, S.; Elyiv, A.; Faccioli, L.; Gardner, B.; Garilli, B.; Groote, M. W.; Guennou, L.; Guzzo, L.; Hopkins, A. M.; Liske, J.; McGee, S.; Melnyk, O.; Owers, M. S.; Poggianti, B.; Ponman, T. J.; Scodeggio, M.; Spitler, L.; Tuffs, R. J.
2016-11-01
The growth of brightest cluster galaxies (BCGs) is closely related to the properties of their host cluster. We present evidence for dry mergers as the dominant source of BCG mass growth at z ≲ 1 in the XXL 100 brightest cluster sample. We use the global red sequence, Hα emission and mean star formation history to show that BCGs in the sample possess star formation levels comparable to field ellipticals of similar stellar mass and redshift. XXL 100 brightest clusters are less massive on average than those in other X-ray selected samples such as LoCuSS or HIFLUGCS. Few clusters in the sample display high central gas concentration, rendering inefficient the growth of BCGs via star formation resulting from the accretion of cool gas. Using measures of the relaxation state of their host clusters, we show that BCGs grow as relaxation proceeds. We find that the BCG stellar mass corresponds to a relatively constant fraction 1 per cent of the total cluster mass in relaxed systems. We also show that, following a cluster scale merger event, the BCG stellar mass lags behind the expected value from the Mcluster-MBCG relation but subsequently accretes stellar mass via dry mergers as the BCG and cluster evolve towards a relaxed state.
Mass to Luminosity Ratios of Some Clusters in the Large Magellanic Cloud
NASA Astrophysics Data System (ADS)
Sohn, Young-Jong; Chun, Mun-Suk
1990-12-01
Luminosity profiles and dynamical parameters of 12 globular clusters in the Large Magellanic Cloud(SB(s)m) are obtained from the concentric aperture photoelectric photometry of 3 different aged clusters and the collected photometric data of 9 clusters. The total masses of the globular clusters are the calculated using the equation M = Mrt3(4¥Ø2-k2), which is derived from the theoretical rotation curve for the exponential disk(Chun 1987). These masses lie between 0.3 x 104 and 15.8 x 104 M . From the determined total mass and luminosity ratios are also derived. The M/L ratio of a cluster increases with the cluster age; about 0.03 for the youngest clusters(SWB ¥°) and about 0.24 for the oldest clusters(SUB ¥¶). There is a difference in M/L by a factor of 10 between the galactic globular clusters and the old globular clusters in the LCM.
Larson, Julie E; Sheley, Roger L; Hardegree, Stuart P; Doescher, Paul S; James, Jeremy J
2016-05-01
Seedling recruitment is a critical driver of population dynamics and community assembly, yet we know little about functional traits that define different recruitment strategies. For the first time, we examined whether trait relatedness across germination and seedling stages allows the identification of general recruitment strategies which share core functional attributes and also correspond to recruitment outcomes in applied settings. We measured six seed and eight seedling traits (lab- and field-collected, respectively) for 47 varieties of dryland grasses and used principal component analysis (PCA) and cluster analysis to identify major dimensions of trait variation and to isolate trait-based recruitment groups, respectively. PCA highlighted some links between seed and seedling traits, suggesting that relative growth rate and root elongation rate are simultaneously but independently associated with seed mass and initial root mass (first axis), and with leaf dry matter content, specific leaf area, coleoptile tissue density and germination rate (second axis). Third and fourth axes captured separate tradeoffs between hydrothermal time and base water potential for germination, and between specific root length and root mass ratio, respectively. Cluster analysis separated six recruitment types along dimensions of germination and growth rates, but classifications did not correspond to patterns of germination, emergence or recruitment in the field under either of two watering treatments. Thus, while we have begun to identify major threads of functional variation across seed and seedling stages, our understanding of how this variation influences demographic processes-particularly germination and emergence-remains a key gap in functional ecology.
Star formation history of Canis Major R1. I. Wide-Field X-ray study of the young stellar population
NASA Astrophysics Data System (ADS)
Gregorio-Hetem, J.; Montmerle, T.; Rodrigues, C. V.; Marciotto, E.; Preibisch, T.; Zinnecker, H.
2009-11-01
Aims: The CMa R1 star-forming region contains several compact clusters as well as many young early-B stars. It is associated with a well-known bright rimmed nebula, the nature of which is unclear (fossil HII region or supernova remnant). To help elucidate the nature of the nebula, our goal was to reconstruct the star-formation history of the CMa R1 region, including the previously unknown older, fainter low-mass stellar population, using X-rays. Methods: We analyzed images obtained with the ROSAT satellite, covering 5 sq. deg. Complementary VRI photometry was performed with the Gemini South telescope. Colour-magnitude and colour-colour diagrams were used in conjunction with pre-main sequence evolutionary tracks to derive the masses and ages of the X-ray sources. Results: The ROSAT images show two distinct clusters. One is associated with the known optical clusters near Z CMa, to which 40 members are added. The other, which we name the “GU CMa” cluster, is new, and contains 60 members. The ROSAT sources are young stars with masses down to M_star 0.5 M_⊙, and ages up to 10 Myr. The mass functions of the two clusters are similar, but the GU CMa cluster is older than the cluster around Z CMa by at least a few Myr. Also, the GU CMa cluster is away from any molecular cloud, implying that star formation must have ceased; on the contrary (as already known), star formation is very active in the Z CMa region. Based in part on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).
NASA Astrophysics Data System (ADS)
von der Linden, Anja; Allen, Mark T.; Applegate, Douglas E.; Kelly, Patrick L.; Allen, Steven W.; Ebeling, Harald; Burchat, Patricia R.; Burke, David L.; Donovan, David; Morris, R. Glenn; Blandford, Roger; Erben, Thomas; Mantz, Adam
2014-03-01
This is the first in a series of papers in which we measure accurate weak-lensing masses for 51 of the most X-ray luminous galaxy clusters known at redshifts 0.15 ≲ zCl ≲ 0.7, in order to calibrate X-ray and other mass proxies for cosmological cluster experiments. The primary aim is to improve the absolute mass calibration of cluster observables, currently the dominant systematic uncertainty for cluster count experiments. Key elements of this work are the rigorous quantification of systematic uncertainties, high-quality data reduction and photometric calibration, and the `blind' nature of the analysis to avoid confirmation bias. Our target clusters are drawn from X-ray catalogues based on the ROSAT All-Sky Survey, and provide a versatile calibration sample for many aspects of cluster cosmology. We have acquired wide-field, high-quality imaging using the Subaru Telescope and Canada-France-Hawaii Telescope for all 51 clusters, in at least three bands per cluster. For a subset of 27 clusters, we have data in at least five bands, allowing accurate photometric redshift estimates of lensed galaxies. In this paper, we describe the cluster sample and observations, and detail the processing of the SuprimeCam data to yield high-quality images suitable for robust weak-lensing shape measurements and precision photometry. For each cluster, we present wide-field three-colour optical images and maps of the weak-lensing mass distribution, the optical light distribution and the X-ray emission. These provide insights into the large-scale structure in which the clusters are embedded. We measure the offsets between X-ray flux centroids and the brightest cluster galaxies in the clusters, finding these to be small in general, with a median of 20 kpc. For offsets ≲100 kpc, weak-lensing mass measurements centred on the brightest cluster galaxies agree well with values determined relative to the X-ray centroids; miscentring is therefore not a significant source of systematic uncertainty for our weak-lensing mass measurements. In accompanying papers, we discuss the key aspects of our photometric calibration and photometric redshift measurements (Kelly et al.), and measure cluster masses using two methods, including a novel Bayesian weak-lensing approach that makes full use of the photometric redshift probability distributions for individual background galaxies (Applegate et al.). In subsequent papers, we will incorporate these weak-lensing mass measurements into a self-consistent framework to simultaneously determine cluster scaling relations and cosmological parameters.
Galaxy and Mass Assembly (GAMA): Exploring the WISE Web in G12
NASA Astrophysics Data System (ADS)
Jarrett, T. H.; Cluver, M. E.; Magoulas, C.; Bilicki, M.; Alpaslan, M.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Croom, S.; Driver, S.; Holwerda, B. W.; Hopkins, A. M.; Loveday, J.; Norberg, P.; Peacock, J. A.; Popescu, C. C.; Sadler, E. M.; Taylor, E. N.; Tuffs, R. J.; Wang, L.
2017-02-01
We present an analysis of the mid-infrared Wide-field Infrared Survey Explorer (WISE) sources seen within the equatorial GAMA G12 field, located in the North Galactic Cap. Our motivation is to study and characterize the behavior of WISE source populations in anticipation of the deep multiwavelength surveys that will define the next decade, with the principal science goal of mapping the 3D large-scale structures and determining the global physical attributes of the host galaxies. In combination with cosmological redshifts, we identify galaxies from their WISE W1 (3.4 μm) resolved emission, and we also perform a star-galaxy separation using apparent magnitude, colors, and statistical modeling of star counts. The resulting galaxy catalog has ≃590,000 sources in 60 deg2, reaching a W1 5σ depth of 31 μJy. At the faint end, where redshifts are not available, we employ a luminosity function analysis to show that approximately 27% of all WISE extragalactic sources to a limit of 17.5 mag (31 μJy) are at high redshift, z> 1. The spatial distribution is investigated using two-point correlation functions and a 3D source density characterization at 5 Mpc and 20 Mpc scales. For angular distributions, we find that brighter and more massive sources are strongly clustered relative to fainter sources with lower mass; likewise, based on WISE colors, spheroidal galaxies have the strongest clustering, while late-type disk galaxies have the lowest clustering amplitudes. In three dimensions, we find a number of distinct groupings, often bridged by filaments and superstructures. Using special visualization tools, we map these structures, exploring how clustering may play a role with stellar mass and galaxy type.
Formation of black hole x-ray binaries in globular clusters
NASA Astrophysics Data System (ADS)
Kremer, Kyle; Chatterjee, Sourav; Rodriguez, Carl; Rasio, Frederic
2018-01-01
We explore the formation of mass-transferring binary systems containing black holes within globular clusters. We show that it is possible to form mass-transferring binaries with main sequence, giant, and white dwarf companions with a variety of orbital parameters in globular clusters spanning a large range in present-day properties. We show that the presence of mass-transferring black hole systems has little correlation with the total number of black holes within the cluster at any time. In addition to mass-transferring binaries retained within their host clusters at late times, we also examine the black hole and neutron star binaries that are ejected from their host clusters. These ejected systems may contribute to the low-mass x-ray binary population in the galactic field.
ON THE BIRTH MASSES OF THE ANCIENT GLOBULAR CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conroy, Charlie; Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA
All globular clusters (GCs) studied to date show evidence for internal (star-to-star) variation in their light-element abundances (including Li, C, N, O, F, Na, Mg, Al, and probably He). These variations have been interpreted as evidence for multiple star formation episodes within GCs, with secondary episodes fueled, at least in part, by the ejecta of asymptotic giant branch (AGB) stars from a first generation of stars. A major puzzle emerging from this otherwise plausible scenario is that the fraction of stars associated with the second episode of star formation is observed to be much larger than expected for a standardmore » initial mass function. The present work investigates this tension by modeling the observed anti-correlation between [Na/Fe] and [O/Fe] for 20 Galactic GCs. If the abundance pattern of the retained AGB ejecta does not depend on GC mass at fixed [Fe/H], then a strong correlation is found between the fraction of current GC stellar mass composed of pure AGB ejecta, f{sub p} , and GC mass. This fraction varies from 0.20 at low masses (10{sup 4.5} M{sub Sun }) to 0.45 at high masses (10{sup 6.5} M{sub Sun }). The fraction of mass associated with pure AGB ejecta is directly related to the total mass of the cluster at birth; the ratio between the initial and present mass in stars can therefore be derived. Assuming a star formation efficiency of 50%, the observed Na-O anti-correlations imply that GCs were at least 10-20 times more massive at birth, a conclusion that is in qualitative agreement with previous work. These factors are lower limits because any mass-loss mechanism that removes first- and second-generation stars equally will leave f{sub p} unchanged. The mass dependence of f{sub p} probably arises because lower mass GCs are unable to retain all of the AGB ejecta from the first stellar generation. Recent observations of elemental abundances in intermediate-age Large Magellanic Cloud clusters are re-interpreted and shown to be consistent with this basic scenario. The small scatter in f{sub p} at fixed GC mass argues strongly that the process responsible for the large mass loss is internal to GCs. A satisfactory explanation of these trends is currently lacking.« less
NASA Astrophysics Data System (ADS)
Donahue, Megan; Voit, G. Mark; Mahdavi, Andisheh; Umetsu, Keiichi; Ettori, Stefano; Merten, Julian; Postman, Marc; Hoffer, Aaron; Baldi, Alessandro; Coe, Dan; Czakon, Nicole; Bartelmann, Mattias; Benitez, Narciso; Bouwens, Rychard; Bradley, Larry; Broadhurst, Tom; Ford, Holland; Gastaldello, Fabio; Grillo, Claudio; Infante, Leopoldo; Jouvel, Stephanie; Koekemoer, Anton; Kelson, Daniel; Lahav, Ofer; Lemze, Doron; Medezinski, Elinor; Melchior, Peter; Meneghetti, Massimo; Molino, Alberto; Moustakas, John; Moustakas, Leonidas A.; Nonino, Mario; Rosati, Piero; Sayers, Jack; Seitz, Stella; Van der Wel, Arjen; Zheng, Wei; Zitrin, Adi
2014-10-01
We present profiles of temperature, gas mass, and hydrostatic mass estimated from new and archival X-ray observations of CLASH clusters. We compare measurements derived from XMM and Chandra observations with one another and compare both to gravitational lensing mass profiles derived with CLASH Hubble Space Telescope and Subaru Telescope lensing data. Radial profiles of Chandra and XMM measurements of electron density and enclosed gas mass are nearly identical, indicating that differences in hydrostatic masses inferred from X-ray observations arise from differences in gas-temperature measurements. Encouragingly, gas temperatures measured in clusters by XMM and Chandra are consistent with one another at ~100-200 kpc radii, but XMM temperatures systematically decline relative to Chandra temperatures at larger radii. The angular dependence of the discrepancy suggests that additional investigation on systematics such as the XMM point-spread function correction, vignetting, and off-axis responses is yet required. We present the CLASH-X mass-profile comparisons in the form of cosmology-independent and redshift-independent circular-velocity profiles. We argue that comparisons of circular-velocity profiles are the most robust way to assess mass bias. Ratios of Chandra hydrostatic equilibrium (HSE) mass profiles to CLASH lensing profiles show no obvious radial dependence in the 0.3-0.8 Mpc range. However, the mean mass biases inferred from the weak-lensing (WL) and SaWLens data are different. As an example, the weighted-mean value at 0.5 Mpc is langbrang = 0.12 for the WL comparison and langbrang = -0.11 for the SaWLens comparison. The ratios of XMM HSE mass profiles to CLASH lensing profiles show a pronounced radial dependence in the 0.3-1.0 Mpc range, with a weighted mean mass bias value rising to langbrang >~ 0.3 at ~1 Mpc for the WL comparison and langbrang ≈ 0.25 for the SaWLens comparison. The enclosed gas mass profiles from both Chandra and XMM rise to a value ≈1/8 times the total-mass profiles inferred from lensing at ≈0.5 Mpc and remain constant outside of that radius, suggesting that M gas × 8 profiles may be an excellent proxy for total-mass profiles at >~ 0.5 Mpc in massive galaxy clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donahue, Megan; Voit, G. Mark; Hoffer, Aaron
2014-10-20
We present profiles of temperature, gas mass, and hydrostatic mass estimated from new and archival X-ray observations of CLASH clusters. We compare measurements derived from XMM and Chandra observations with one another and compare both to gravitational lensing mass profiles derived with CLASH Hubble Space Telescope and Subaru Telescope lensing data. Radial profiles of Chandra and XMM measurements of electron density and enclosed gas mass are nearly identical, indicating that differences in hydrostatic masses inferred from X-ray observations arise from differences in gas-temperature measurements. Encouragingly, gas temperatures measured in clusters by XMM and Chandra are consistent with one another atmore » ∼100-200 kpc radii, but XMM temperatures systematically decline relative to Chandra temperatures at larger radii. The angular dependence of the discrepancy suggests that additional investigation on systematics such as the XMM point-spread function correction, vignetting, and off-axis responses is yet required. We present the CLASH-X mass-profile comparisons in the form of cosmology-independent and redshift-independent circular-velocity profiles. We argue that comparisons of circular-velocity profiles are the most robust way to assess mass bias. Ratios of Chandra hydrostatic equilibrium (HSE) mass profiles to CLASH lensing profiles show no obvious radial dependence in the 0.3-0.8 Mpc range. However, the mean mass biases inferred from the weak-lensing (WL) and SaWLens data are different. As an example, the weighted-mean value at 0.5 Mpc is (b) = 0.12 for the WL comparison and (b) = –0.11 for the SaWLens comparison. The ratios of XMM HSE mass profiles to CLASH lensing profiles show a pronounced radial dependence in the 0.3-1.0 Mpc range, with a weighted mean mass bias value rising to (b) ≳ 0.3 at ∼1 Mpc for the WL comparison and (b) ≈ 0.25 for the SaWLens comparison. The enclosed gas mass profiles from both Chandra and XMM rise to a value ≈1/8 times the total-mass profiles inferred from lensing at ≈0.5 Mpc and remain constant outside of that radius, suggesting that M {sub gas} × 8 profiles may be an excellent proxy for total-mass profiles at ≳ 0.5 Mpc in massive galaxy clusters.« less
Direct Numerical Simulation of Fluid Flow and Mass Transfer in Particle Clusters
2018-01-01
In this paper, an efficient ghost-cell based immersed boundary method is applied to perform direct numerical simulation (DNS) of mass transfer problems in particle clusters. To be specific, a nine-sphere cuboid cluster and a random-generated spherical cluster consisting of 100 spheres are studied. In both cases, the cluster is composed of active catalysts and inert particles, and the mutual influence of particles on their mass transfer performance is studied. To simulate active catalysts the Dirichlet boundary condition is imposed at the external surface of spheres, while the zero-flux Neumann boundary condition is applied for inert particles. Through our studies, clustering is found to have negative influence on the mass transfer performance, which can be then improved by dilution with inert particles and higher Reynolds numbers. The distribution of active/inert particles may lead to large variations of the cluster mass transfer performance, and individual particle deep inside the cluster may possess a high Sherwood number. PMID:29657359
Using numerical simulations to study the ICM metallicity fields in clusters and groups
NASA Astrophysics Data System (ADS)
Mazzei, Renato; Vijayaraghavan, Rukmani; Sarazin, Craig L.
2018-01-01
Most baryonic matter in clusters resides in the intracluster medium (ICM) as hot and diffuse gas. The metal content of this gas is deposited from dying stars, typically synthesized in type Ia or core-collapse supernovae. The ICM gas traces the formation history of the cluster and the compositional signature of its constituent galaxies as a function of time. Studying the metallicity content thus aids in understanding the gradual evolution of the cluster as it is constructed. Within this framework, galaxy and star formation and evolution can be studied by tracing metals in the ICM. In this work we use numerical simulations to study the evolution of ICM metallicity due to the stripping of galaxies’ gas. We model metallicity fields using cloud-in-cell techniques, to determine the ratio between the mass of particles tracing galaxy outflows and the mass of ICM gas at different spatial locations in each simulation time step. Integrated abundance maps are produced. We then project photons and construct mock X-ray images to investigate the relationship between ICM metallicity and observable information.
CODEX weak lensing: concentration of galaxy clusters at z ~ 0.5
Cibirka, N.; Cypriano, E. S.; Brimioulle, F.; ...
2017-03-04
Here, we present a stacked weak-lensing analysis of 27 richness selected galaxy clusters at 0.40 ≤ z ≤ 0.62 in the COnstrain Dark Energy with X-ray galaxy clusters (CODEX) survey. The fields were observed in five bands with the Canada–France–Hawaii Telescope (CFHT). We measure the stacked surface mass density profile with a 14σ significance in the radial range 0.1 < RMpch -1 < 2.5. The profile is well described by the halo model, with the main halo term following a Navarro–Frenk–White profile (NFW) profile and including the off-centring effect. We select the background sample using a conservative colour–magnitude method to reduce the potential systematic errors and contamination by cluster member galaxies. We perform a Bayesian analysis for the stacked profile and constrain the best-fitting NFW parameters M 200c=6.6more » $$+1.0\\atop{-0.8}$$×10 14h -1 M⊙ and c 200c=3.7$$+0.7\\atop{-0.6}$$. The off-centring effect was modelled based on previous observational results found for redMaPPer Sloan Digital Sky Survey clusters. Our constraints on M200c and c200c allow us to investigate the consistency with numerical predictions and select a concentration–mass relation to describe the high richness CODEX sample. Comparing our best-fitting values for M200c and c200c with other observational surveys at different redshifts, we find no evidence for evolution in the concentration–mass relation, though it could be mitigated by particular selection functions. Similar to previous studies investigating the X-ray luminosity–mass relation, our data suggest a lower evolution than expected from self-similarity.« less
Runaway Massive Stars from R136: VFTS 682 is Very Likely a "Slow Runaway"
NASA Astrophysics Data System (ADS)
Banerjee, Sambaran; Kroupa, Pavel; Oh, Seungkyung
2012-02-01
We conduct a theoretical study on the ejection of runaway massive stars from R136—the central massive, starburst cluster in the 30 Doradus complex of the Large Magellanic Cloud. Specifically, we investigate the possibility of the very massive star (VMS) VFTS 682 being a runaway member of R136. Recent observations of the above VMS, by virtue of its isolated location and its moderate peculiar motion, have raised the fundamental question of whether isolated massive star formation is indeed possible. We perform the first realistic N-body computations of fully mass-segregated R136-type star clusters in which all the massive stars are in primordial binary systems. These calculations confirm that the dynamical ejection of a VMS from an R136-like cluster, with kinematic properties similar to those of VFTS 682, is common. Hence, the conjecture of isolated massive star formation is unnecessary to account for this VMS. Our results are also quite consistent with the ejection of 30 Dor 016, another suspected runaway VMS from R136. We further note that during the clusters' evolution, mergers of massive binaries produce a few single stars per cluster with masses significantly exceeding the canonical upper limit of 150 M ⊙. The observations of such single super-canonical stars in R136, therefore, do not imply an initial mass function with an upper limit greatly exceeding the accepted canonical 150 M ⊙ limit, as has been suggested recently, and they are consistent with the canonical upper limit.
Comparison and Evaluation of Clustering Algorithms for Tandem Mass Spectra.
Rieder, Vera; Schork, Karin U; Kerschke, Laura; Blank-Landeshammer, Bernhard; Sickmann, Albert; Rahnenführer, Jörg
2017-11-03
In proteomics, liquid chromatography-tandem mass spectrometry (LC-MS/MS) is established for identifying peptides and proteins. Duplicated spectra, that is, multiple spectra of the same peptide, occur both in single MS/MS runs and in large spectral libraries. Clustering tandem mass spectra is used to find consensus spectra, with manifold applications. First, it speeds up database searches, as performed for instance by Mascot. Second, it helps to identify novel peptides across species. Third, it is used for quality control to detect wrongly annotated spectra. We compare different clustering algorithms based on the cosine distance between spectra. CAST, MS-Cluster, and PRIDE Cluster are popular algorithms to cluster tandem mass spectra. We add well-known algorithms for large data sets, hierarchical clustering, DBSCAN, and connected components of a graph, as well as the new method N-Cluster. All algorithms are evaluated on real data with varied parameter settings. Cluster results are compared with each other and with peptide annotations based on validation measures such as purity. Quality control, regarding the detection of wrongly (un)annotated spectra, is discussed for exemplary resulting clusters. N-Cluster proves to be highly competitive. All clustering results benefit from the so-called DISMS2 filter that integrates additional information, for example, on precursor mass.
Copper cluster size effect in methanol synthesis from CO 2
Yang, Bing; Liu, Cong; Halder, Avik; ...
2017-05-08
Here, size-selected Cu n catalysts ( n = 3, 4, 20) were synthesized on Al 2O 3 thin films using mass-selected cluster deposition. A systematic study of size and support effects was carried out for CO 2 hydrogenation at atmospheric pressure using a combination of in situ grazing incidence X-ray absorption spectroscopy, catalytic activity measurement, and first-principles calculations. The catalytic activity for methanol synthesis is found to strongly vary as a function of the cluster size; the Cu 4/Al 2O 3 catalyst shows the highest turnover rate for CH 3OH production. With only one atom less than Cu 4, Cumore » 3 showed less than 50% activity. Density functional theory calculations predict that the activities of the gas-phase Cu clusters increase as the cluster size decreases; however, the stronger charge transfer interaction with Al 2O 3 support for Cu 3 than for Cu 4 leads to remarkably reduced binding strength between the adsorbed intermediates and supported Cu 3, which subsequently results in a less favorable energetic pathway to transform carbon dioxide to methanol.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pereira, Maria E.S.; Soares-Santos, Marcelle; Makler, Martin
2017-08-10
We present the first weak lensing calibration ofmore » $$\\mu_{\\star}$$, a new galaxy cluster mass proxy corresponding to the total stellar mass of red and blue members, in two cluster samples selected from the SDSS Stripe 82 data: 230 redMaPPer clusters at redshift $$0.1\\leq z<0.33$$ and 136 Voronoi Tessellation (VT) clusters at $$0.1 \\leq z < 0.6$$. We use the CS82 shear catalog and stack the clusters in $$\\mu_{\\star}$$ bins to measure a mass-observable power law relation. For redMaPPer clusters we obtain $$M_0 = (1.77 \\pm 0.36) \\times 10^{14}h^{-1} M_{\\odot}$$, $$\\alpha = 1.74 \\pm 0.62$$. For VT clusters, we find $$M_0 = (4.31 \\pm 0.89) \\times 10^{14}h^{-1} M_{\\odot}$$, $$\\alpha = 0.59 \\pm 0.54$$ and $$M_0 = (3.67 \\pm 0.56) \\times 10^{14}h^{-1} M_{\\odot}$$, $$\\alpha = 0.68 \\pm 0.49$$ for a low and a high redshift bin, respectively. Our results are consistent, internally and with the literature, indicating that our method can be applied to any cluster finding algorithm. In particular, we recommend that $$\\mu_{\\star}$$ be used as the mass proxy for VT clusters. Catalogs including $$\\mu_{\\star}$$ measurements will enable its use in studies of galaxy evolution in clusters and cluster cosmology.« less
Pereira, Maria E. S.; Soares-Santos, Marcelle; Makler, Martin; ...
2017-11-01
Here, we present the first weak lensing calibration of μ*, a new galaxy cluster mass proxy corresponding to the total stellar mass of red and blue members, in two cluster samples selected from the SDSS Stripe 82 data: 230 red-sequence Matched-filter Probabilistic Percolation (redMaPPer) clusters at redshift 0.1 ≤ z < 0.33 and 136 Voronoi Tessellation (VT) clusters at 0.1 ≤ z < 0.6. We use the CS82 shear catalogue and stack the clusters in μ* bins to measure a mass-observable power-law relation. For redMaPPer clusters we obtain M0 = (1.77 ± 0.36) × 10 14 h –1M ⊙, αmore » = 1.74 ± 0.62. For VT clusters, we find M 0 = (4.31 ± 0.89) × 10 14 h –1M ⊙, α = 0.59 ± 0.54 and M0 = (3.67 ± 0.56) × 10 14 h –1M ⊙, α = 0.68 ± 0.49 for a low and a high redshift bin, respectively. Our results are consistent, internally and with the literature, indicating that our method can be applied to any cluster-finding algorithm. In particular, we recommend that μ* be used as the mass proxy for VT clusters. Catalogues including μ* measurements will enable its use in studies of galaxy evolution in clusters and cluster cosmology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pereira, Maria E. S.; Soares-Santos, Marcelle; Makler, Martin
Here, we present the first weak lensing calibration of μ*, a new galaxy cluster mass proxy corresponding to the total stellar mass of red and blue members, in two cluster samples selected from the SDSS Stripe 82 data: 230 red-sequence Matched-filter Probabilistic Percolation (redMaPPer) clusters at redshift 0.1 ≤ z < 0.33 and 136 Voronoi Tessellation (VT) clusters at 0.1 ≤ z < 0.6. We use the CS82 shear catalogue and stack the clusters in μ* bins to measure a mass-observable power-law relation. For redMaPPer clusters we obtain M0 = (1.77 ± 0.36) × 10 14 h –1M ⊙, αmore » = 1.74 ± 0.62. For VT clusters, we find M 0 = (4.31 ± 0.89) × 10 14 h –1M ⊙, α = 0.59 ± 0.54 and M0 = (3.67 ± 0.56) × 10 14 h –1M ⊙, α = 0.68 ± 0.49 for a low and a high redshift bin, respectively. Our results are consistent, internally and with the literature, indicating that our method can be applied to any cluster-finding algorithm. In particular, we recommend that μ* be used as the mass proxy for VT clusters. Catalogues including μ* measurements will enable its use in studies of galaxy evolution in clusters and cluster cosmology.« less
Biases on Initial Mass Function Determinations. II. Real Multiple Systems and Chance Superpositions
NASA Astrophysics Data System (ADS)
Maíz Apellániz, J.
2008-04-01
When calculating stellar initial mass functions (IMFs) for young clusters, one has to take into account that (1) most massive stars are born in multiple systems, (2) most IMFs are derived from data that cannot resolve such systems, and (3) multiple chance superpositions between members are expected to happen if the cluster is too distant. In this article I use numerical experiments to model the consequences of those phenomena on the observed color-magnitude diagrams and the IMFs derived from them. Real multiple systems affect the observed or apparent massive-star MF slope little but can create a significant population of apparently ultramassive stars. Chance superpositions produce only small biases when the number of superimposed stars is low but, once a certain number threshold is reached, they can affect both the observed slope and the apparent stellar upper mass limit. I apply these experiments to two well known massive young clusters in the Local Group, NGC 3603 and R136. In both cases I show that the observed population of stars with masses above 120 M⊙ can be explained by the effects of unresolved objects, mostly real multiple systems for NGC 3603 and a combination of real and chance-alignment multiple systems for R136. Therefore, the case for the reality of a stellar upper mass limit at solar or near-solar metallicities is strengthened, with a possible value even lower than 150 M⊙. An IMF slope somewhat flatter than Salpeter or Kroupa with γ between -1.6 and -2.0 is derived for the central region of NGC 3603, with a significant contribution to the uncertainty arising from the imprecise knowledge of the distance to the cluster. The IMF at the very center of R136 cannot be measured with the currently available data but the situation could change with new HST observations. This article is partially based on observations made with the NASA/ESA Hubble Space Telescope (HST), some of them associated with GO program 10602 and the rest gathered from the archive, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.
MASSCLEANage—Stellar Cluster Ages from Integrated Colors
NASA Astrophysics Data System (ADS)
Popescu, Bogdan; Hanson, M. M.
2010-11-01
We present the recently updated and expanded MASSCLEANcolors, a database of 70 million Monte Carlo models selected to match the properties (metallicity, ages, and masses) of stellar clusters found in the Large Magellanic Cloud (LMC). This database shows the rather extreme and non-Gaussian distribution of integrated colors and magnitudes expected with different cluster age and mass and the enormous age degeneracy of integrated colors when mass is unknown. This degeneracy could lead to catastrophic failures in estimating age with standard simple stellar population models, particularly if most of the clusters are of intermediate or low mass, like in the LMC. Utilizing the MASSCLEANcolors database, we have developed MASSCLEANage, a statistical inference package which assigns the most likely age and mass (solved simultaneously) to a cluster based only on its integrated broadband photometric properties. Finally, we use MASSCLEANage to derive the age and mass of LMC clusters based on integrated photometry alone. First, we compare our cluster ages against those obtained for the same seven clusters using more accurate integrated spectroscopy. We find improved agreement with the integrated spectroscopy ages over the original photometric ages. A close examination of our results demonstrates the necessity of solving simultaneously for mass and age to reduce degeneracies in the cluster ages derived via integrated colors. We then selected an additional subset of 30 photometric clusters with previously well-constrained ages and independently derive their age using the MASSCLEANage with the same photometry with very good agreement. The MASSCLEANage program is freely available under GNU General Public License.
Precise strong lensing mass profile of the CLASH galaxy cluster MACS 2129
NASA Astrophysics Data System (ADS)
Monna, A.; Seitz, S.; Balestra, I.; Rosati, P.; Grillo, C.; Halkola, A.; Suyu, S. H.; Coe, D.; Caminha, G. B.; Frye, B.; Koekemoer, A.; Mercurio, A.; Nonino, M.; Postman, M.; Zitrin, A.
2017-04-01
We present a detailed strong lensing (SL) mass reconstruction of the core of the galaxy cluster MACS J2129.4-0741 (zcl = 0.589) obtained by combining high-resolution Hubble Space Telescope photometry from the CLASH (Cluster Lensing And Supernovae survey with Hubble) survey with new spectroscopic observations from the CLASH-VLT (Very Large Telescope) survey. A background bright red passive galaxy at zsp = 1.36, sextuply lensed in the cluster core, has four radial lensed images located over the three central cluster members. Further 19 background lensed galaxies are spectroscopically confirmed by our VLT survey, including 3 additional multiple systems. A total of 31 multiple images are used in the lensing analysis. This allows us to trace with high precision the total mass profile of the cluster in its very inner region (R < 100 kpc). Our final lensing mass model reproduces the multiple images systems identified in the cluster core with high accuracy of 0.4 arcsec. This translates to a high-precision mass reconstruction of MACS 2129, which is constrained at a level of 2 per cent. The cluster has Einstein parameter ΘE = (29 ± 4) arcsec and a projected total mass of Mtot(<ΘE) = (1.35 ± 0.03) × 1014 M⊙ within such radius. Together with the cluster mass profile, we provide here also the complete spectroscopic data set for the cluster members and lensed images measured with VLT/Visible Multi-Object Spectrograph within the CLASH-VLT survey.
Mass profile and dynamical status of the z ~ 0.8 galaxy cluster LCDCS 0504
NASA Astrophysics Data System (ADS)
Guennou, L.; Biviano, A.; Adami, C.; Limousin, M.; Lima Neto, G. B.; Mamon, G. A.; Ulmer, M. P.; Gavazzi, R.; Cypriano, E. S.; Durret, F.; Clowe, D.; LeBrun, V.; Allam, S.; Basa, S.; Benoist, C.; Cappi, A.; Halliday, C.; Ilbert, O.; Johnston, D.; Jullo, E.; Just, D.; Kubo, J. M.; Márquez, I.; Marshall, P.; Martinet, N.; Maurogordato, S.; Mazure, A.; Murphy, K. J.; Plana, H.; Rostagni, F.; Russeil, D.; Schirmer, M.; Schrabback, T.; Slezak, E.; Tucker, D.; Zaritsky, D.; Ziegler, B.
2014-06-01
Context. Constraints on the mass distribution in high-redshift clusters of galaxies are currently not very strong. Aims: We aim to constrain the mass profile, M(r), and dynamical status of the z ~ 0.8 LCDCS 0504 cluster of galaxies that is characterized by prominent giant gravitational arcs near its center. Methods: Our analysis is based on deep X-ray, optical, and infrared imaging as well as optical spectroscopy, collected with various instruments, which we complemented with archival data. We modeled the mass distribution of the cluster with three different mass density profiles, whose parameters were constrained by the strong lensing features of the inner cluster region, by the X-ray emission from the intracluster medium, and by the kinematics of 71 cluster members. Results: We obtain consistent M(r) determinations from three methods based on kinematics (dispersion-kurtosis, caustics, and MAMPOSSt), out to the cluster virial radius, ≃1.3 Mpc and beyond. The mass profile inferred by the strong lensing analysis in the central cluster region is slightly higher than, but still consistent with, the kinematics estimate. On the other hand, the X-ray based M(r) is significantly lower than the kinematics and strong lensing estimates. Theoretical predictions from ΛCDM cosmology for the concentration-mass relation agree with our observational results, when taking into account the uncertainties in the observational and theoretical estimates. There appears to be a central deficit in the intracluster gas mass fraction compared with nearby clusters. Conclusions: Despite the relaxed appearance of this cluster, the determinations of its mass profile by different probes show substantial discrepancies, the origin of which remains to be determined. The extension of a dynamical analysis similar to that of other clusters of the DAFT/FADA survey with multiwavelength data of sufficient quality will allow shedding light on the possible systematics that affect the determination of mass profiles of high-z clusters, which is possibly related to our incomplete understanding of intracluster baryon physics. Table 2 is available in electronic form at http://www.aanda.org
Loss of Mass and Stability of Galaxies in Modified Newtonian Dynamics
NASA Astrophysics Data System (ADS)
Wu, Xufen; Zhao, HongSheng; Famaey, Benoit; Gentile, G.; Tiret, O.; Combes, F.; Angus, G. W.; Robin, A. C.
2007-08-01
The self-binding energy and stability of a galaxy in MOND-based gravity are curiously decreasing functions of its center-of-mass acceleration (of the order of 10-12 to 10-10 m s-2) toward neighboring mass concentrations. A tentative indication of this breaking of the strong equivalence principle in field galaxies is the RAVE-observed escape speed in the Milky Way. Another consequence is that satellites of field galaxies will move on nearly Keplerian orbits at large radii (100-500 kpc), with a declining speed below the asymptotically constant naive MOND prediction. But the consequences of an environment-sensitive gravity are even more severe in clusters, where member galaxies accelerate fast; no dark halo-like potential is present to support galaxies, meaning that extended axisymmetric disks of gas and stars are likely unstable. These predicted reappearances of asymptotic Keplerian velocity curves and disappearances of ``stereotypic galaxies'' in clusters are falsifiable with targeted surveys.
Optimizing weak lensing mass estimates for cluster profile uncertainty
Gruen, D.; Bernstein, G. M.; Lam, T. Y.; ...
2011-09-11
Weak lensing measurements of cluster masses are necessary for calibrating mass-observable relations (MORs) to investigate the growth of structure and the properties of dark energy. However, the measured cluster shear signal varies at fixed mass M 200m due to inherent ellipticity of background galaxies, intervening structures along the line of sight, and variations in the cluster structure due to scatter in concentrations, asphericity and substructure. We use N-body simulated halos to derive and evaluate a weak lensing circular aperture mass measurement M ap that minimizes the mass estimate variance <(M ap - M 200m) 2> in the presence of allmore » these forms of variability. Depending on halo mass and observational conditions, the resulting mass estimator improves on M ap filters optimized for circular NFW-profile clusters in the presence of uncorrelated large scale structure (LSS) about as much as the latter improve on an estimator that only minimizes the influence of shape noise. Optimizing for uncorrelated LSS while ignoring the variation of internal cluster structure puts too much weight on the profile near the cores of halos, and under some circumstances can even be worse than not accounting for LSS at all. As a result, we discuss the impact of variability in cluster structure and correlated structures on the design and performance of weak lensing surveys intended to calibrate cluster MORs.« less
The Large Local Hole in the Galaxy Distribution: The 2MASS Galaxy Angular Power Spectrum
NASA Astrophysics Data System (ADS)
Frith, W. J.; Outram, P. J.; Shanks, T.
2005-06-01
We present new evidence for a large deficiency in the local galaxy distribution situated in the ˜4000 deg2 APM survey area. We use models guided by the 2dF Galaxy Redshift Survey (2dFGRS) n(z) as a probe of the underlying large-scale structure. We first check the usefulness of this technique by comparing the 2dFGRS n(z) model prediction with the K-band and B-band number counts extracted from the 2MASS and 2dFGRS parent catalogues over the 2dFGRS Northern and Southern declination strips, before turning to a comparison with the APM counts. We find that the APM counts in both the B and K-bands indicate a deficiency in the local galaxy distribution of ˜30% to z ≈ 0.1 over the entire APM survey area. We examine the implied significance of such a large local hole, considering several possible forms for the real-space correlation function. We find that such a deficiency in the APM survey area indicates an excess of power at large scales over what is expected from the correlation function observed in 2dFGRS correlation function or predicted from ΛCDM Hubble Volume mock catalogues. In order to check further the clustering at large scales in the 2MASS data, we have calculated the angular power spectrum for 2MASS galaxies. Although in the linear regime (l<30), ΛCDM models can give a good fit to the 2MASS angular power spectrum, over a wider range (l<100) the power spectrum from Hubble Volume mock catalogues suggests that scale-dependent bias may be needed for ΛCDM to fit. However, the modest increase in large-scale power observed in the 2MASS angular power spectrum is still not enough to explain the local hole. If the APM survey area really is 25% deficient in galaxies out to z≈0.1, explanations for the disagreement with observed galaxy clustering statistics include the possibilities that the galaxy clustering is non-Gaussian on large scales or that the 2MASS volume is still too small to represent a `fair sample' of the Universe. Extending the 2dFGRS redshift survey over the whole APM area would resolve many of the remaining questions about the existence and interpretation of this local hole.
LoCuSS: weak-lensing mass calibration of galaxy clusters
NASA Astrophysics Data System (ADS)
Okabe, Nobuhiro; Smith, Graham P.
2016-10-01
We present weak-lensing mass measurements of 50 X-ray luminous galaxy clusters at 0.15 ≤ z ≤ 0.3, based on uniform high-quality observations with Suprime-Cam mounted on the 8.2-m Subaru telescope. We pay close attention to possible systematic biases, aiming to control them at the ≲4 per cent level. The dominant source of systematic bias in weak-lensing measurements of the mass of individual galaxy clusters is contamination of background galaxy catalogues by faint cluster and foreground galaxies. We extend our conservative method for selecting background galaxies with (V - I') colours redder than the red sequence of cluster members to use a colour-cut that depends on cluster-centric radius. This allows us to define background galaxy samples that suffer ≤1 per cent contamination, and comprise 13 galaxies per square arcminute. Thanks to the purity of our background galaxy catalogue, the largest systematic that we identify in our analysis is a shape measurement bias of 3 per cent, that we measure using simulations that probe weak shears up to g = 0.3. Our individual cluster mass and concentration measurements are in excellent agreement with predictions of the mass-concentration relation. Equally, our stacked shear profile is in excellent agreement with the Navarro Frenk and White profile. Our new Local Cluster Substructure Survey mass measurements are consistent with the Canadian Cluster Cosmology Project and Cluster Lensing And Supernova Survey with Hubble surveys, and in tension with the Weighing the Giants at ˜1σ-2σ significance. Overall, the consensus at z ≤ 0.3 that is emerging from these complementary surveys represents important progress for cluster mass calibration, and augurs well for cluster cosmology.
Reconstruction of cluster masses using particle based lensing
NASA Astrophysics Data System (ADS)
Deb, Sanghamitra
Clusters of galaxies are among the richest astrophysical data systems, but to truly understand these systems, we need a detailed study of the relationship between observables and the underlying cluster dark matter distribution. Gravitational lensing is the most direct probe of dark matter, but many mass reconstruction techniques assume that cluster light traces mass, or combine different lensing signals in an ad hoc way. In this talk, we will describe "Particle Based Lensing" (PBL), a new method for cluster mass reconstruction, that avoids many of the pitfalls of previous techniques. PBL optimally combines lensing information of varying signal-to-noise, and makes no assumptions about the relationship between mass and light. We will describe mass reconstructions in three very different, but very illuminating cluster systems: the "Bullet Cluster" (lE 0657-56), A901/902 and A1689. The "Bullet Cluster" is a system of merging clusters made famous by the first unambiguous lensing detection of dark matter. A901/902 is a multi-cluster system with four peaks, and provides an ideal laboratory for studying cluster interaction. We are particularly interested in measuring and correlating the dark matter clump ellipticities. A1689 is one of the richest clusters known, and has significant substructure at the core. It is also my first exercise in optimally combining weak and strong gravitational lensing in a cluster reconstruction. We find that the dark matter distribution is significantly clumpier than indicated by X-ray maps of the gas. We conclude by discussing various potential applications of PBL to existing and future data.
30 Doradus: The Low-Mass Stars
NASA Astrophysics Data System (ADS)
Zinnecker, H.; Brandl, B.; Brandner, W.; Moneti, A.; Hunter, D.
We have obtained HST/NICMOS H-band images of the central 1'x1' field around the R136 starburst cluster in the 30 Doradus HII region, in an attempt to reveal the presence (or absence) of a low-mass stellar population (M < 1 Mo). We will discuss the fascinating prospect of 30 Dor/R136 being a proto-globular cluster and a template starburst unit. At the time of writing, we are still working to determine which method and photometry package is best suited to our 0.15" NICMOS images, which are characterised by extreme crowding in the cluster center and a peculiar and slightly undersampled NICMOS PSF. The main difficulty with the PSF is identifying the many "dots" that appear outside the Airy ring as PSF features and not as faint stars. Prelimininary analysis suggests that the H-band luminosity function rises at least until H = 20 (2 Mo). We have detected numerous stars with 20.0 < H < 22.5 (the latter corresponding to 0.4 Mo) beyond about 7" from the cluster centre, but we have not yet determined the completeness in that magnitude range, and we are not yet in a position to make a statement about the shape of the H-band luminosity function there. We have combined our infrared data with the optical WFPC2 images of Hunter et al. (1995) to produce a VIH 3-colour image of the central 30" x 30" area. The result clearly shows unexpected patches of extinction, with one patch only about 5" from the cluster core.
NASA Astrophysics Data System (ADS)
Fassbender, R.; Böhringer, H.; Nastasi, A.; Šuhada, R.; Mühlegger, M.; de Hoon, A.; Kohnert, J.; Lamer, G.; Mohr, J. J.; Pierini, D.; Pratt, G. W.; Quintana, H.; Rosati, P.; Santos, J. S.; Schwope, A. D.
2011-12-01
We present the largest sample to date of spectroscopically confirmed x-ray luminous high-redshift galaxy clusters comprising 22 systems in the range 0.9 as part of the XMM-Newton Distant Cluster Project (XDCP). All systems were initially selected as extended x-ray sources over 76.1 deg2 of non-contiguous deep archival XMM-Newton coverage, of which 49.4 deg2 are part of the core survey with a quantifiable selection function and 17.7 deg2 are classified as ‘gold’ coverage as the starting point for upcoming cosmological applications. Distant cluster candidates were followed up with moderately deep optical and near-infrared imaging in at least two bands to photometrically identify the cluster galaxy populations and obtain redshift estimates based on the colors of simple stellar population models. We test and calibrate the most promising redshift estimation techniques based on the R-z and z-H colors for efficient distant cluster identifications and find a good redshift accuracy performance of the z-H color out to at least z ˜ 1.5, while the redshift evolution of the R-z color leads to increasingly large uncertainties at z ≳ 0.9. Photometrically identified high-z systems are spectroscopically confirmed with VLT/FORS 2 with a minimum of three concordant cluster member redshifts. We present first details of two newly identified clusters, XDCP J0338.5+0029 at z = 0.916 and XDCP J0027.2+1714 at z = 0.959, and investigate the x-ray properties of SpARCS J003550-431224 at z = 1.335, which shows evidence for ongoing major merger activity along the line-of-sight. We provide x-ray properties and luminosity-based total mass estimates for the full sample of 22 high-z clusters, of which 17 are at z ⩾ 1.0 and seven populate the highest redshift bin at z > 1.3. The median system mass of the sample is M200 ≃ 2 × 1014 M⊙, while the probed mass range for the distant clusters spans approximately (0.7-7) × 1014 M⊙. The majority (>70%) of the x-ray selected clusters show rather regular x-ray morphologies, albeit in most cases with a discernible elongation along one axis. In contrast to local clusters, the z > 0.9 systems mostly do not harbor central dominant galaxies coincident with the x-ray centroid position, but rather exhibit significant brightest cluster galaxy (BCG) offsets from the x-ray center with a median value of about 50 kpc in projection and a smaller median luminosity gap to the second-ranked galaxy of Δm12 ≃ 0.3 mag. We estimate a fraction of cluster-associated NVSS 1.4 GHz radio sources of about 30%, preferentially located within 1‧ from the x-ray center. This value suggests an increase of the fraction of very luminous cluster-associated radio sources by about a factor of 2.5-5 relative to low-z systems. The galaxy populations in z ≳ 1.5 cluster environments show first evidence for drastic changes on the high-mass end of galaxies and signs of a gradual disappearance of a well-defined cluster red-sequence as strong star formation activity is observed in an increasing fraction of massive galaxies down to the densest core regions. The presented XDCP high-z sample will allow first detailed studies of the cluster population during the critical cosmic epoch at lookback times of 7.3-9.5 Gyr on the aggregation and evolution of baryons in the cold and hot phases as a function of redshift and system mass. Based on observations under program IDs 079.A-0634 and 085.A-0647 collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, and observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).
A comprehensive study of large-scale structures in the GOODS-SOUTH field up to z ˜ 2.5
NASA Astrophysics Data System (ADS)
Salimbeni, S.; Castellano, M.; Pentericci, L.; Trevese, D.; Fiore, F.; Grazian, A.; Fontana, A.; Giallongo, E.; Boutsia, K.; Cristiani, S.; de Santis, C.; Gallozzi, S.; Menci, N.; Nonino, M.; Paris, D.; Santini, P.; Vanzella, E.
2009-07-01
Aims: The aim of the present paper is to identify and study the properties and galactic content of groups and clusters in the GOODS-South field up to z˜ 2.5, and to analyse the physical properties of galaxies as a continuous function of environmental density up to high redshift. Methods: We used the deep (z850˜ 26), multi-wavelength GOODS-MUSIC catalogue, which has a 15% of spectroscopic redshifts and accurate photometric redshifts for the remaining fraction. On these data, we applied a (2+1)D algorithm, previously developed by our group, that provides an adaptive estimate of the 3D density field. We supported our analysis with simulations to evaluate the purity and the completeness of the cluster catalogue produced by our algorithm. Results: We find several high-density peaks embedded in larger structures in the redshift range 0.4-2.5. From the analysis of their physical properties (mass profile, M200, σ_v, L_X, U-B vs. B diagram), we find that most of them are groups of galaxies, while two are poor clusters with masses a few times 1014~M_⊙. For these two clusters we find from the Chandra 2Ms data an X-ray emission significantly lower than expected from their optical properties, suggesting that the two clusters are either not virialised or are gas poor. We find that the slope of the colour magnitude relation, for these groups and clusters, is constant at least up to z ˜ 1. We also analyse the dependence on environment of galaxy colours, luminosities, stellar masses, ages, and star formations. We find that galaxies in high-density regions are, on average, more luminous and massive than field galaxies up to z ˜ 2. The fraction of red galaxies increases with luminosity and with density up to z˜ 1.2. At higher z this dependence on density disappears. The variation of galaxy properties as a function of redshift and density suggests that a significant change occurs at z ˜ 1.5-2.
Galactic Stellar and Substellar Initial Mass Function
NASA Astrophysics Data System (ADS)
Chabrier, Gilles
2003-07-01
We review recent determinations of the present-day mass function (PDMF) and initial mass function (IMF) in various components of the Galaxy-disk, spheroid, young, and globular clusters-and in conditions characteristic of early star formation. As a general feature, the IMF is found to depend weakly on the environment and to be well described by a power-law form for m>~1 Msolar and a lognormal form below, except possibly for early star formation conditions. The disk IMF for single objects has a characteristic mass around mc~0.08 Msolar and a variance in logarithmic mass σ~0.7, whereas the IMF for multiple systems has mc~0.2 Msolar and σ~0.6. The extension of the single MF into the brown dwarf regime is in good agreement with present estimates of L- and T-dwarf densities and yields a disk brown dwarf number density comparable to the stellar one, nBD~n*~0.1 pc-3. The IMF of young clusters is found to be consistent with the disk field IMF, providing the same correction for unresolved binaries, confirming the fact that young star clusters and disk field stars represent the same stellar population. Dynamical effects, yielding depletion of the lowest mass objects, are found to become consequential for ages >~130 Myr. The spheroid IMF relies on much less robust grounds. The large metallicity spread in the local subdwarf photometric sample, in particular, remains puzzling. Recent observations suggest that there is a continuous kinematic shear between the thick-disk population, present in local samples, and the genuine spheroid one. This enables us to derive only an upper limit for the spheroid mass density and IMF. Within all the uncertainties, the latter is found to be similar to the one derived for globular clusters and is well represented also by a lognormal form with a characteristic mass slightly larger than for the disk, mc~0.2-0.3 Msolar, excluding a significant population of brown dwarfs in globular clusters and in the spheroid. The IMF characteristic of early star formation at large redshift remains undetermined, but different observational constraints suggest that it does not extend below ~1 Msolar. These results suggest a characteristic mass for star formation that decreases with time, from conditions prevailing at large redshift to conditions characteristic of the spheroid (or thick disk) to present-day conditions. These conclusions, however, remain speculative, given the large uncertainties in the spheroid and early star IMF determinations. These IMFs allow a reasonably robust determination of the Galactic present-day and initial stellar and brown dwarf contents. They also have important galactic implications beyond the Milky Way in yielding more accurate mass-to-light ratio determinations. The mass-to-light ratios obtained with the disk and the spheroid IMF yield values 1.8-1.4 times smaller than for a Salpeter IMF, respectively, in agreement with various recent dynamical determinations. This general IMF determination is examined in the context of star formation theory. None of the theories based on a Jeans-type mechanism, where fragmentation is due only to gravity, can fulfill all the observational constraints on star formation and predict a large number of substellar objects. On the other hand, recent numerical simulations of compressible turbulence, in particular in super-Alfvénic conditions, seem to reproduce both qualitatively and quantitatively the stellar and substellar IMF and thus provide an appealing theoretical foundation. In this picture, star formation is induced by the dissipation of large-scale turbulence to smaller scales through radiative MHD shocks, producing filamentary structures. These shocks produce local nonequilibrium structures with large density contrasts, which collapse eventually in gravitationally bound objects under the combined influence of turbulence and gravity. The concept of a single Jeans mass is replaced by a distribution of local Jeans masses, representative of the lognormal probability density function of the turbulent gas. Objects below the mean thermal Jeans mass still have a possibility to collapse, although with a decreasing probability. The page charges for this Review were partially covered by a generous gift from a PASP supporter.
Constraints on the Mass–Richness Relation from the Abundance and Weak Lensing of SDSS Clusters
NASA Astrophysics Data System (ADS)
Murata, Ryoma; Nishimichi, Takahiro; Takada, Masahiro; Miyatake, Hironao; Shirasaki, Masato; More, Surhud; Takahashi, Ryuichi; Osato, Ken
2018-02-01
We constrain the scaling relation between optical richness (λ) and halo mass (M) for a sample of Sloan Digital Sky Survey (SDSS) red-sequence Matched-filter Probabilistic Percolation (redMaPPer) galaxy clusters within the context of the Planck cosmological model. We use a forward modeling approach where we model the probability distribution of optical richness for a given mass, P({ln}λ | M). To model the abundance and the stacked lensing profiles, we use an emulator specifically built to interpolate the halo mass function and the stacked lensing profile for an arbitrary set of halo mass and redshift, which is calibrated based on a suite of high-resolution N-body simulations. We apply our method to 8312 SDSS redMaPPer clusters with 20 ≤ λ ≤ 100 and 0.10 ≤ z λ ≤ 0.33 and show that the lognormal distribution model for P(λ | M), with four free parameters, well reproduces the measured abundances and lensing profiles simultaneously. The constraints are characterized by the mean relation, < {ln}λ > (M)=A+B{ln}(M/{M}pivot}), with A={3.207}-0.046+0.044 and B={0.993}-0.055+0.041 (68% CL), where the pivot mass scale M pivot = 3 × 1014 h ‑1 M ⊙, and the scatter {σ }lnλ | M}={σ }0+q{ln}(M/{M}pivot}) with {σ }0={0.456}-0.039+0.047 and q=-{0.169}-0.026+0.035. We find that a large scatter in halo masses is required at the lowest-richness bins (20 ≤ λ ≲ 30) in order to reproduce the measurements. Without such a large scatter, the model prediction for the lensing profiles tends to overestimate the measured amplitudes. This might imply a possible contamination of intrinsically low-richness clusters due to the projection effects. Such a low-mass halo contribution is significantly reduced when applying our method to the sample of 30 ≤ λ ≤ 100.
Discovery of a Strong Lensing Galaxy Embedded in a Cluster at z = 1.62
NASA Astrophysics Data System (ADS)
Wong, Kenneth C.; Tran, Kim-Vy H.; Suyu, Sherry H.; Momcheva, Ivelina G.; Brammer, Gabriel B.; Brodwin, Mark; Gonzalez, Anthony H.; Halkola, Aleksi; Kacprzak, Glenn G.; Koekemoer, Anton M.; Papovich, Casey J.; Rudnick, Gregory H.
2014-07-01
We identify a strong lensing galaxy in the cluster IRC 0218 (also known as XMM-LSS J02182-05102) that is spectroscopically confirmed to be at z = 1.62, making it the highest-redshift strong lens galaxy known. The lens is one of the two brightest cluster galaxies and lenses a background source galaxy into an arc and a counterimage. With Hubble Space Telescope (HST) grism and Keck/LRIS spectroscopy, we measure the source redshift to be z S = 2.26. Using HST imaging in ACS/F475W, ACS/F814W, WFC3/F125W, and WFC3/F160W, we model the lens mass distribution with an elliptical power-law profile and account for the effects of the cluster halo and nearby galaxies. The Einstein radius is θ _E=0.38+0.02-0.01 arcsec (3.2-0.1+0.2 kpc) and the total enclosed mass is M _tot (< θ _E)=1.8+0.2-0.1× 1011 M⊙ . We estimate that the cluster environment contributes ~10% of this total mass. Assuming a Chabrier initial mass function (IMF), the dark matter fraction within θE is f_DMChab = 0.3-0.3+0.1, while a Salpeter IMF is marginally inconsistent with the enclosed mass (f_DMSalp = -0.3-0.5+0.2). The total magnification of the source is μ _tot=2.1-0.3+0.4. The source has at least one bright compact region offset from the source center. Emission from Lyα and [O III] are likely to probe different regions in the source. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program No. 12590.
Formation of massive black holes through runaway collisions in dense young star clusters.
Zwart, Simon F Portegies; Baumgardt, Holger; Hut, Piet; Makino, Junichiro; McMillan, Stephen L W
2004-04-15
A luminous X-ray source is associated with MGG 11--a cluster of young stars approximately 200 pc from the centre of the starburst galaxy M 82 (refs 1, 2). The properties of this source are best explained by invoking a black hole with a mass of at least 350 solar masses (350 M(o)), which is intermediate between stellar-mass and supermassive black holes. A nearby but somewhat more massive cluster (MGG 9) shows no evidence of such an intermediate-mass black hole, raising the issue of just what physical characteristics of the clusters can account for this difference. Here we report numerical simulations of the evolution and motion of stars within the clusters, where stars are allowed to merge with each other. We find that for MGG 11 dynamical friction leads to the massive stars sinking rapidly to the centre of the cluster, where they participate in a runaway collision. This produces a star of 800-3,000 M(o) which ultimately collapses to a black hole of intermediate mass. No such runaway occurs in the cluster MGG 9, because the larger cluster radius leads to a mass segregation timescale a factor of five longer than for MGG 11.
Clusters of Monoisotopic Elements for Calibration in (TOF) Mass Spectrometry
NASA Astrophysics Data System (ADS)
Kolářová, Lenka; Prokeš, Lubomír; Kučera, Lukáš; Hampl, Aleš; Peňa-Méndez, Eladia; Vaňhara, Petr; Havel, Josef
2017-03-01
Precise calibration in TOF MS requires suitable and reliable standards, which are not always available for high masses. We evaluated inorganic clusters of the monoisotopic elements gold and phosphorus (Au n +/Au n - and P n +/P n -) as an alternative to peptides or proteins for the external and internal calibration of mass spectra in various experimental and instrumental scenarios. Monoisotopic gold or phosphorus clusters can be easily generated in situ from suitable precursors by laser desorption/ionization (LDI) or matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Their use offers numerous advantages, including simplicity of preparation, biological inertness, and exact mass determination even at lower mass resolution. We used citrate-stabilized gold nanoparticles to generate gold calibration clusters, and red phosphorus powder to generate phosphorus clusters. Both elements can be added to samples to perform internal calibration up to mass-to-charge ( m/z) 10-15,000 without significantly interfering with the analyte. We demonstrated the use of the gold and phosphorous clusters in the MS analysis of complex biological samples, including microbial standards and total extracts of mouse embryonic fibroblasts. We believe that clusters of monoisotopic elements could be used as generally applicable calibrants for complex biological samples.
Looking Wider and Further: The Evolution of Galaxies Inside Galaxy Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuanyuan
2016-01-01
Galaxy clusters are rare objects in the universe, but on-going wide field optical surveys are identifying many thousands of them to redshift 1.0 and beyond. Using early data from the Dark Energy Survey (DES) and publicly released data from the Sloan Digital Sky Survey (SDSS), this dissertation explores the evolution of cluster galaxies in the redshift range from 0 to 1.0. As it is common for deep wide field sky surveys like DES to struggle with galaxy detection efficiency at cluster core, the first component of this dissertation describes an efficient package that helps resolving the issue. The second partmore » focuses on the formation of cluster galaxies. The study quantifies the growth of cluster bright central galaxies (BCGs), and argues for the importance of merging and intra-cluster light production during BCG evolution. An analysis of cluster red sequence galaxy luminosity function is also performed, demonstrating that the abundance of these galaxies is mildly dependent on cluster mass and redshift. The last component of the dissertation characterizes the properties of galaxy filaments to help understanding cluster environments« less
Dark Energy Survey Year 1 Results: Weak Lensing Mass Calibration of redMaPPer Galaxy Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClintock, T.; et al.
We constrain the mass--richness scaling relation of redMaPPer galaxy clusters identified in the Dark Energy Survey Year 1 data using weak gravitational lensing. We split clusters intomore » $$4\\times3$$ bins of richness $$\\lambda$$ and redshift $z$ for $$\\lambda\\geq20$$ and $$0.2 \\leq z \\leq 0.65$$ and measure the mean masses of these bins using their stacked weak lensing signal. By modeling the scaling relation as $$\\langle M_{\\rm 200m}|\\lambda,z\\rangle = M_0 (\\lambda/40)^F ((1+z)/1.35)^G$$, we constrain the normalization of the scaling relation at the 5.0 per cent level as $$M_0 = [3.081 \\pm 0.075 ({\\rm stat}) \\pm 0.133 ({\\rm sys})] \\cdot 10^{14}\\ {\\rm M}_\\odot$$ at $$\\lambda=40$$ and $z=0.35$. The richness scaling index is constrained to be $$F=1.356 \\pm 0.051\\ ({\\rm stat})\\pm 0.008\\ ({\\rm sys})$$ and the redshift scaling index $$G=-0.30\\pm 0.30\\ ({\\rm stat})\\pm 0.06\\ ({\\rm sys})$$. These are the tightest measurements of the normalization and richness scaling index made to date. We use a semi-analytic covariance matrix to characterize the statistical errors in the recovered weak lensing profiles. Our analysis accounts for the following sources of systematic error: shear and photometric redshift errors, cluster miscentering, cluster member dilution of the source sample, systematic uncertainties in the modeling of the halo--mass correlation function, halo triaxiality, and projection effects. We discuss prospects for reducing this systematic error budget, which dominates the uncertainty on $$M_0$$. Our result is in excellent agreement with, but has significantly smaller uncertainties than, previous measurements in the literature, and augurs well for the power of the DES cluster survey as a tool for precision cosmology and upcoming galaxy surveys such as LSST, Euclid and WFIRST.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, Nicholas; Graham, Alister W.
2013-02-15
We investigate whether or not nuclear star clusters and supermassive black holes (SMBHs) follow a common set of mass scaling relations with their host galaxy's properties, and hence can be considered to form a single class of central massive object (CMO). We have compiled a large sample of galaxies with measured nuclear star cluster masses and host galaxy properties from the literature and fit log-linear scaling relations. We find that nuclear star cluster mass, M {sub NC}, correlates most tightly with the host galaxy's velocity dispersion: log M {sub NC} = (2.11 {+-} 0.31)log ({sigma}/54) + (6.63 {+-} 0.09), butmore » has a slope dramatically shallower than the relation defined by SMBHs. We find that the nuclear star cluster mass relations involving host galaxy (and spheroid) luminosity and stellar and dynamical mass, intercept with but are in general shallower than the corresponding black hole scaling relations. In particular, M {sub NC}{proportional_to}M {sup 0.55{+-}0.15} {sub Gal,dyn}; the nuclear cluster mass is not a constant fraction of its host galaxy or spheroid mass. We conclude that nuclear stellar clusters and SMBHs do not form a single family of CMOs.« less
NASA Astrophysics Data System (ADS)
Pillepich, Annalisa; Nelson, Dylan; Hernquist, Lars; Springel, Volker; Pakmor, Rüdiger; Torrey, Paul; Weinberger, Rainer; Genel, Shy; Naiman, Jill P.; Marinacci, Federico; Vogelsberger, Mark
2018-03-01
The IllustrisTNG project is a new suite of cosmological magnetohydrodynamical simulations of galaxy formation performed with the AREPO code and updated models for feedback physics. Here, we introduce the first two simulations of the series, TNG100 and TNG300, and quantify the stellar mass content of about 4000 massive galaxy groups and clusters (1013 ≤ M200c/M⊙ ≤ 1015) at recent times (z ≤ 1). The richest clusters have half of their total stellar mass bound to satellite galaxies, with the other half being associated with the central galaxy and the diffuse intracluster light. Haloes more massive than about 5 × 1014 M⊙ have more diffuse stellar mass outside 100 kpc than within 100 kpc, with power-law slopes of the radial mass density distribution as shallow as the dark matter's ( - 3.5 ≲ α3D ≲ -3). Total halo mass is a very good predictor of stellar mass, and vice versa: at z = 0, the 3D stellar mass measured within 30 kpc scales as ∝(M500c)0.49 with a ˜0.12 dex scatter. This is possibly too steep in comparison to the available observational constraints, even though the abundance of The Next Generation less-massive galaxies ( ≲ 1011 M⊙ in stars) is in good agreement with the measured galaxy stellar mass functions at recent epochs. The 3D sizes of massive galaxies fall too on a tight (˜0.16 dex scatter) power-law relation with halo mass, with r^stars_0.5 ∝ (M_200c)^{0.53}. Even more fundamentally, halo mass alone is a good predictor for the whole stellar mass profiles beyond the inner few kiloparsecs, and we show how on average these can be precisely recovered given a single-mass measurement of the galaxy or its halo.
The effect of AGN feedback on the X-ray morphologies of clusters: Simulations vs. observations
NASA Astrophysics Data System (ADS)
Chon, Gayoung; Puchwein, Ewald; Böhringer, Hans
2016-07-01
Clusters of galaxies probe the large-scale distribution of matter and are a useful tool to test the cosmological models by constraining cosmic structure growth and the expansion of the Universe. It is the scaling relations between mass observables and the true mass of a cluster through which we obtain the cosmological constraints by comparing to theoretical cluster mass functions. These scaling relations are, however, heavily influenced by cluster morphology. The presence of the slight tension in recent cosmological constraints on Ωm and σ8 based on the CMB and clusters has boosted the interests in looking for possible sources for the discrepancy. Therefore we study here the effect of active galactic nucleus (AGN) feedback as one of the major mechanisms modifying the cluster morphology influencing scaling relations. It is known that AGN feedback injects energies up to 1062 erg into the intracluster medium, controls the heating and cooling of a cluster, and re-distributes cold gas from the centre to outer radii. We have also learned that cluster simulations with AGN feedback can reproduce observed cluster properties, for example, the X-ray luminosity, temperature, and cooling rate at the centre better than without the AGN feedback. In this paper using cosmological hydrodynamical simulations we investigate how the AGN feedback changes the X-ray morphology of the simulated systems, and compare this to the observed Representative XMM-Newton Cluster Structure Survey (REXCESS) clusters. We apply two substructure measures, centre shifts (w) and power ratios (e.g. P3/P0), to characterise the cluster morphology, and find that our simulated clusters are more substructured than the observed clusters based on the values of w and P3/P0. We also show that the degree of this discrepancy is affected by the inclusion of AGN feedback. While the clusters simulated with the AGN feedback are in much better agreement with the REXCESS LX-T relation, they are also more substructured, which increases the tension with observations. When classified as non-relaxed or relaxed according to their w and P3/P0 values, we find that there are no relaxed clusters in the simulations with the AGN feedback. This suggests that not only global cluster properties, like LX and T, and radial profiles should be used to compare and to calibrate simulations with observations, but also substructure measures like centre shifts and power ratios. Finally, we discuss what changes in the simulations might ease the tension with observational constraints on these quantities.
NASA Astrophysics Data System (ADS)
Marchesini, Danilo
2015-10-01
We propose to construct public multi-wavelength and value-added catalogs for the HST Frontier Fields (HFF), a multi-cycle imaging program of 6 deep fields centered on strong lensing galaxy clusters and 6 deep blank fields. Whereas the main goal of the HFF is to explore the first billion years of galaxy evolution, this dataset has a unique combination of area and depth that will propel forward our knowledge of galaxy evolution down to and including the foreground cluster redshift (z=0.3-0.5). However, such scientific exploitation requires high-quality, homogeneous, multi-wavelength (from the UV to the mid-infrared) photometric catalogs, supplemented by photometric redshifts, rest-frame colors and luminosities, stellar masses, star-formation rates, and structural parameters. We will use our expertise and existing infrastructure - created for the 3D-HST and CANDELS projects - to build such a data product for the 12 fields of the HFF, using all available imaging data (from HST, Spitzer, and ground-based facilities) as well as all available HST grism data (e.g., GLASS). A broad range of research topics will benefit from such a public database, including but not limited to the faint end of the cluster mass function, the field mass function at z>2, and the build-up of the quiescent population at z>4. In addition, our work will provide an essential basis for follow-up studies and future planning with, for example, ALMA and JWST.
NASA Astrophysics Data System (ADS)
Khan, Mohammad S.; Abdullah, Mohamed H.; Ali, Gamal B.
2014-05-01
We derive analytical expression for the velocity dispersion of galaxy clusters, using the statistical mechanical approach. We compare the observed velocity dispersion profiles for 20 nearby ( z≤0.1) galaxy clusters with the analytical ones. It is interesting to find that the analytical results closely match with the observed velocity dispersion profiles only if the presence of the diffuse matter in clusters is taken into consideration. This takes us to introduce a new approach to detect the ratio of diffuse mass, M diff , within a galaxy cluster. For the present sample, the ratio f= M diff / M, where M the cluster's total mass is found to has an average value of 45±12 %. This leads us to the result that nearly 45 % of the cluster mass is impeded outside the galaxies, while around 55 % of the cluster mass is settled in the galaxies.
NASA Astrophysics Data System (ADS)
Ballantyne, D. R.
2017-01-01
The orientation-based unification model of active galactic nuclei (AGNs) posits that the principle difference between obscured (Type 2) and unobscured (Type 1) AGNs is the line of sight into the central engine. If this model is correct then there should be no difference in many of the properties of AGN host galaxies (e.g. the mass of the surrounding dark matter haloes). However, recent clustering analyses of Type 1 and Type 2 AGNs have provided some evidence for a difference in the halo mass, in conflict with the orientation-based unified model. In this work, a method to compute the conditional luminosity function (CLF) of Type 2 and Type 1 AGNs is presented. The CLF allows many fundamental halo properties to be computed as a function of AGN luminosity, which we apply to the question of the host halo masses of Type 1 and 2 AGNs. By making use of the total AGN CLF, the Type 1 X-ray luminosity function, and the luminosity-dependent Type 2 AGN fraction, the CLFs of Type 1 and 2 AGNs are calculated at z ≈ 0 and 0.9. At both z, there is no statistically significant difference in the mean halo mass of Type 2 and 1 AGNs at any luminosity. There is marginal evidence that Type 1 AGNs may have larger halo masses than Type 2s, which would be consistent with an evolutionary picture where quasars are initially obscured and then subsequently reveal themselves as Type 1s. As the Type 1 lifetime is longer, the host halo will increase somewhat in mass during the Type 1 phase. The CLF technique will be a powerful way to study the properties of many AGNs subsets (e.g. radio-loud, Compton-thick) as future wide-area X-ray and optical surveys substantially increase our ability to place AGNs in their cosmological context.
A search for novae in M 31 globular clusters
NASA Astrophysics Data System (ADS)
Ciardullo, Robin; Tamblyn, Peter; Phillips, A. C.
1990-10-01
By combining a local sky-fitting algorithm with a Fourier point-spread-function matching technique, nova outbursts have been searched for inside 54 of the globular clusters contained on the Ciardullo et al. (1987 and 1990) H-alpha survey frames of M 31. Over a mean effective survey time of about 2.0 years, no cluster exhibited a magnitude increase indicative of a nova explosion. If the cataclysmic variables (CVs) contained within globular clusters are similar to those found in the field, then these data imply that the overdensity of CVs within globulars is at least several times less than that of the high-luminosity X-ray sources. If tidal capture is responsible for the high density of hard binaries within globulars, then the probability of capturing condensed objects inside globular clusters may depend strongly on the mass of the remnant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dietrich, J.P.; et al.
Uncertainty in the mass-observable scaling relations is currently the limiting factor for galaxy cluster based cosmology. Weak gravitational lensing can provide a direct mass calibration and reduce the mass uncertainty. We present new ground-based weak lensing observations of 19 South Pole Telescope (SPT) selected clusters and combine them with previously reported space-based observations of 13 galaxy clusters to constrain the cluster mass scaling relations with the Sunyaev-Zel'dovich effect (SZE), the cluster gas massmore » $$M_\\mathrm{gas}$$, and $$Y_\\mathrm{X}$$, the product of $$M_\\mathrm{gas}$$ and X-ray temperature. We extend a previously used framework for the analysis of scaling relations and cosmological constraints obtained from SPT-selected clusters to make use of weak lensing information. We introduce a new approach to estimate the effective average redshift distribution of background galaxies and quantify a number of systematic errors affecting the weak lensing modelling. These errors include a calibration of the bias incurred by fitting a Navarro-Frenk-White profile to the reduced shear using $N$-body simulations. We blind the analysis to avoid confirmation bias. We are able to limit the systematic uncertainties to 6.4% in cluster mass (68% confidence). Our constraints on the mass-X-ray observable scaling relations parameters are consistent with those obtained by earlier studies, and our constraints for the mass-SZE scaling relation are consistent with the the simulation-based prior used in the most recent SPT-SZ cosmology analysis. We can now replace the external mass calibration priors used in previous SPT-SZ cosmology studies with a direct, internal calibration obtained on the same clusters.« less
Zhang, Y.; Miller, C.; McKay, T.; ...
2016-01-10
Using the science verification data of the Dark Energy Survey for a new sample of 106 X-ray selected clusters and groups, we study the stellar mass growth of bright central galaxies (BCGs) since redshift z ~ 1.2. Compared with the expectation in a semi-analytical model applied to the Millennium Simulation, the observed BCGs become under-massive/under-luminous with decreasing redshift. We incorporate the uncertainties associated with cluster mass, redshift, and BCG stellar mass measurements into analysis of a redshift-dependent BCG-cluster mass relation.
Climbing the Ladder of Star Formation Feedback
NASA Astrophysics Data System (ADS)
Frank, Adam
2012-10-01
While much is understood about isolated star formation, the opposite is true for star formation in clusters of both low and high mass. In particular the mechanisms by which many coevally formed stars affect their parent cloud environment remains poorly characterized. Fundamental questions such as interplay between multiple outflows, ionization fronts and turbulence are just beginning to be fully articulated. Distinguishing between the nature of feedback in clusters of different mass is also critical. In high mass clusters O stars are expected to dominate energetics while in low mass clusters multiple collimated outflows may represent the dominant feedback mechanism. Thus the issue of feedback modalities in clusters of different masses represents one of the major challenges to the next generation of star formation studies. In this proposal we seek to carry forward a focused theoretical study of feedback in both low and high-mass cluster environments with direct connections to observations. Using a state-of-the-art Adaptive Mesh Refinement MHD multi-physics code {developed by our group} we propose two computational studies: {1} multiple, interacting outflows and their role in altering the properties of a parent low mass cluster {2} Poorly collimated outburst/outflows from massive star{s} and their effect on high mass cluster star forming environments. In both cases we will use initial conditions derived from high-resolution AMR MHD simulations of cloud/cluster formation. Synthetic observations derived from the simulations {in a variety of emission lines from ions to atoms to molecules} will allow for direct contact with HST and other star formation databases.