Sample records for cluster model

  1. Hierarchical modeling of cluster size in wildlife surveys

    USGS Publications Warehouse

    Royle, J. Andrew

    2008-01-01

    Clusters or groups of individuals are the fundamental unit of observation in many wildlife sampling problems, including aerial surveys of waterfowl, marine mammals, and ungulates. Explicit accounting of cluster size in models for estimating abundance is necessary because detection of individuals within clusters is not independent and detectability of clusters is likely to increase with cluster size. This induces a cluster size bias in which the average cluster size in the sample is larger than in the population at large. Thus, failure to account for the relationship between delectability and cluster size will tend to yield a positive bias in estimates of abundance or density. I describe a hierarchical modeling framework for accounting for cluster-size bias in animal sampling. The hierarchical model consists of models for the observation process conditional on the cluster size distribution and the cluster size distribution conditional on the total number of clusters. Optionally, a spatial model can be specified that describes variation in the total number of clusters per sample unit. Parameter estimation, model selection, and criticism may be carried out using conventional likelihood-based methods. An extension of the model is described for the situation where measurable covariates at the level of the sample unit are available. Several candidate models within the proposed class are evaluated for aerial survey data on mallard ducks (Anas platyrhynchos).

  2. Evaluating Mixture Modeling for Clustering: Recommendations and Cautions

    ERIC Educational Resources Information Center

    Steinley, Douglas; Brusco, Michael J.

    2011-01-01

    This article provides a large-scale investigation into several of the properties of mixture-model clustering techniques (also referred to as latent class cluster analysis, latent profile analysis, model-based clustering, probabilistic clustering, Bayesian classification, unsupervised learning, and finite mixture models; see Vermunt & Magdison,…

  3. Modelling baryonic effects on galaxy cluster mass profiles

    NASA Astrophysics Data System (ADS)

    Shirasaki, Masato; Lau, Erwin T.; Nagai, Daisuke

    2018-06-01

    Gravitational lensing is a powerful probe of the mass distribution of galaxy clusters and cosmology. However, accurate measurements of the cluster mass profiles are limited by uncertainties in cluster astrophysics. In this work, we present a physically motivated model of baryonic effects on the cluster mass profiles, which self-consistently takes into account the impact of baryons on the concentration as well as mass accretion histories of galaxy clusters. We calibrate this model using the Omega500 hydrodynamical cosmological simulations of galaxy clusters with varying baryonic physics. Our model will enable us to simultaneously constrain cluster mass, concentration, and cosmological parameters using stacked weak lensing measurements from upcoming optical cluster surveys.

  4. MOCCA-SURVEY Database I: Is NGC 6535 a dark star cluster harbouring an IMBH?

    NASA Astrophysics Data System (ADS)

    Askar, Abbas; Bianchini, Paolo; de Vita, Ruggero; Giersz, Mirek; Hypki, Arkadiusz; Kamann, Sebastian

    2017-01-01

    We describe the dynamical evolution of a unique type of dark star cluster model in which the majority of the cluster mass at Hubble time is dominated by an intermediate-mass black hole (IMBH). We analysed results from about 2000 star cluster models (Survey Database I) simulated using the Monte Carlo code MOnte Carlo Cluster simulAtor and identified these dark star cluster models. Taking one of these models, we apply the method of simulating realistic `mock observations' by utilizing the Cluster simulatiOn Comparison with ObservAtions (COCOA) and Simulating Stellar Cluster Observation (SISCO) codes to obtain the photometric and kinematic observational properties of the dark star cluster model at 12 Gyr. We find that the perplexing Galactic globular cluster NGC 6535 closely matches the observational photometric and kinematic properties of the dark star cluster model presented in this paper. Based on our analysis and currently observed properties of NGC 6535, we suggest that this globular cluster could potentially harbour an IMBH. If it exists, the presence of this IMBH can be detected robustly with proposed kinematic observations of NGC 6535.

  5. An incremental DPMM-based method for trajectory clustering, modeling, and retrieval.

    PubMed

    Hu, Weiming; Li, Xi; Tian, Guodong; Maybank, Stephen; Zhang, Zhongfei

    2013-05-01

    Trajectory analysis is the basis for many applications, such as indexing of motion events in videos, activity recognition, and surveillance. In this paper, the Dirichlet process mixture model (DPMM) is applied to trajectory clustering, modeling, and retrieval. We propose an incremental version of a DPMM-based clustering algorithm and apply it to cluster trajectories. An appropriate number of trajectory clusters is determined automatically. When trajectories belonging to new clusters arrive, the new clusters can be identified online and added to the model without any retraining using the previous data. A time-sensitive Dirichlet process mixture model (tDPMM) is applied to each trajectory cluster for learning the trajectory pattern which represents the time-series characteristics of the trajectories in the cluster. Then, a parameterized index is constructed for each cluster. A novel likelihood estimation algorithm for the tDPMM is proposed, and a trajectory-based video retrieval model is developed. The tDPMM-based probabilistic matching method and the DPMM-based model growing method are combined to make the retrieval model scalable and adaptable. Experimental comparisons with state-of-the-art algorithms demonstrate the effectiveness of our algorithm.

  6. Modeling of correlated data with informative cluster sizes: An evaluation of joint modeling and within-cluster resampling approaches.

    PubMed

    Zhang, Bo; Liu, Wei; Zhang, Zhiwei; Qu, Yanping; Chen, Zhen; Albert, Paul S

    2017-08-01

    Joint modeling and within-cluster resampling are two approaches that are used for analyzing correlated data with informative cluster sizes. Motivated by a developmental toxicity study, we examined the performances and validity of these two approaches in testing covariate effects in generalized linear mixed-effects models. We show that the joint modeling approach is robust to the misspecification of cluster size models in terms of Type I and Type II errors when the corresponding covariates are not included in the random effects structure; otherwise, statistical tests may be affected. We also evaluate the performance of the within-cluster resampling procedure and thoroughly investigate the validity of it in modeling correlated data with informative cluster sizes. We show that within-cluster resampling is a valid alternative to joint modeling for cluster-specific covariates, but it is invalid for time-dependent covariates. The two methods are applied to a developmental toxicity study that investigated the effect of exposure to diethylene glycol dimethyl ether.

  7. Resolving the problem of galaxy clustering on small scales: any new physics needed?

    NASA Astrophysics Data System (ADS)

    Kang, X.

    2014-02-01

    Galaxy clustering sets strong constraints on the physics governing galaxy formation and evolution. However, most current models fail to reproduce the clustering of low-mass galaxies on small scales (r < 1 Mpc h-1). In this paper, we study the galaxy clusterings predicted from a few semi-analytical models. We first compare two Munich versions, Guo et al. and De Lucia & Blaizot. The Guo11 model well reproduces the galaxy stellar mass function, but overpredicts the clustering of low-mass galaxies on small scales. The DLB07 model provides a better fit to the clustering on small scales, but overpredicts the stellar mass function. These seem to be puzzling. The clustering on small scales is dominated by galaxies in the same dark matter halo, and there is slightly more fraction of satellite galaxies residing in massive haloes in the Guo11 model, which is the dominant contribution to the clustering discrepancy between the two models. However, both models still overpredict the clustering at 0.1 < r < 10 Mpc h-1 for low-mass galaxies. This is because both models overpredict the number of satellites by 30 per cent in massive haloes than the data. We show that the Guo11 model could be slightly modified to simultaneously fit the stellar mass function and clusterings, but that cannot be easily achieved in the DLB07 model. The better agreement of DLB07 model with the data actually comes as a coincidence as it predicts too many low-mass central galaxies which are less clustered and thus brings down the total clustering. Finally, we show the predictions from the semi-analytical models of Kang et al. We find that this model can simultaneously fit the stellar mass function and galaxy clustering if the supernova feedback in satellite galaxies is stronger. We conclude that semi-analytical models are now able to solve the small-scales clustering problem, without invoking of any other new physics or changing the dark matter properties, such as the recent favoured warm dark matter.

  8. Effects of cluster-shell competition and BCS-like pairing in 12C

    NASA Astrophysics Data System (ADS)

    Matsuno, H.; Itagaki, N.

    2017-12-01

    The antisymmetrized quasi-cluster model (AQCM) was proposed to describe α-cluster and jj-coupling shell models on the same footing. In this model, the cluster-shell transition is characterized by two parameters, R representing the distance between α clusters and Λ describing the breaking of α clusters, and the contribution of the spin-orbit interaction, very important in the jj-coupling shell model, can be taken into account starting with the α-cluster model wave function. Not only the closure configurations of the major shells but also the subclosure configurations of the jj-coupling shell model can be described starting with the α-cluster model wave functions; however, the particle-hole excitations of single particles have not been fully established yet. In this study we show that the framework of AQCM can be extended even to the states with the character of single-particle excitations. For ^{12}C, two-particle-two-hole (2p2h) excitations from the subclosure configuration of 0p_{3/2} corresponding to a BCS-like pairing are described, and these shell model states are coupled with the three α-cluster model wave functions. The correlation energy from the optimal configuration can be estimated not only in the cluster part but also in the shell model part. We try to pave the way to establish a generalized description of the nuclear structure.

  9. Cluster-cluster clustering

    NASA Technical Reports Server (NTRS)

    Barnes, J.; Dekel, A.; Efstathiou, G.; Frenk, C. S.

    1985-01-01

    The cluster correlation function xi sub c(r) is compared with the particle correlation function, xi(r) in cosmological N-body simulations with a wide range of initial conditions. The experiments include scale-free initial conditions, pancake models with a coherence length in the initial density field, and hybrid models. Three N-body techniques and two cluster-finding algorithms are used. In scale-free models with white noise initial conditions, xi sub c and xi are essentially identical. In scale-free models with more power on large scales, it is found that the amplitude of xi sub c increases with cluster richness; in this case the clusters give a biased estimate of the particle correlations. In the pancake and hybrid models (with n = 0 or 1), xi sub c is steeper than xi, but the cluster correlation length exceeds that of the points by less than a factor of 2, independent of cluster richness. Thus the high amplitude of xi sub c found in studies of rich clusters of galaxies is inconsistent with white noise and pancake models and may indicate a primordial fluctuation spectrum with substantial power on large scales.

  10. Percolation of the site random-cluster model by Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Wang, Songsong; Zhang, Wanzhou; Ding, Chengxiang

    2015-08-01

    We propose a site random-cluster model by introducing an additional cluster weight in the partition function of the traditional site percolation. To simulate the model on a square lattice, we combine the color-assignation and the Swendsen-Wang methods to design a highly efficient cluster algorithm with a small critical slowing-down phenomenon. To verify whether or not it is consistent with the bond random-cluster model, we measure several quantities, such as the wrapping probability Re, the percolating cluster density P∞, and the magnetic susceptibility per site χp, as well as two exponents, such as the thermal exponent yt and the fractal dimension yh of the percolating cluster. We find that for different exponents of cluster weight q =1.5 , 2, 2.5 , 3, 3.5 , and 4, the numerical estimation of the exponents yt and yh are consistent with the theoretical values. The universalities of the site random-cluster model and the bond random-cluster model are completely identical. For larger values of q , we find obvious signatures of the first-order percolation transition by the histograms and the hysteresis loops of percolating cluster density and the energy per site. Our results are helpful for the understanding of the percolation of traditional statistical models.

  11. Testing Numerical Models of Cool Core Galaxy Cluster Formation with X-Ray Observations

    NASA Astrophysics Data System (ADS)

    Henning, Jason W.; Gantner, Brennan; Burns, Jack O.; Hallman, Eric J.

    2009-12-01

    Using archival Chandra and ROSAT data along with numerical simulations, we compare the properties of cool core and non-cool core galaxy clusters, paying particular attention to the region beyond the cluster cores. With the use of single and double β-models, we demonstrate a statistically significant difference in the slopes of observed cluster surface brightness profiles while the cluster cores remain indistinguishable between the two cluster types. Additionally, through the use of hardness ratio profiles, we find evidence suggesting cool core clusters are cooler beyond their cores than non-cool core clusters of comparable mass and temperature, both in observed and simulated clusters. The similarities between real and simulated clusters supports a model presented in earlier work by the authors describing differing merger histories between cool core and non-cool core clusters. Discrepancies between real and simulated clusters will inform upcoming numerical models and simulations as to new ways to incorporate feedback in these systems.

  12. Parameters of oscillation generation regions in open star cluster models

    NASA Astrophysics Data System (ADS)

    Danilov, V. M.; Putkov, S. I.

    2017-07-01

    We determine the masses and radii of central regions of open star cluster (OCL) models with small or zero entropy production and estimate the masses of oscillation generation regions in clustermodels based on the data of the phase-space coordinates of stars. The radii of such regions are close to the core radii of the OCL models. We develop a new method for estimating the total OCL masses based on the cluster core mass, the cluster and cluster core radii, and radial distribution of stars. This method yields estimates of dynamical masses of Pleiades, Praesepe, and M67, which agree well with the estimates of the total masses of the corresponding clusters based on proper motions and spectroscopic data for cluster stars.We construct the spectra and dispersion curves of the oscillations of the field of azimuthal velocities v φ in OCL models. Weak, low-amplitude unstable oscillations of v φ develop in cluster models near the cluster core boundary, and weak damped oscillations of v φ often develop at frequencies close to the frequencies of more powerful oscillations, which may reduce the non-stationarity degree in OCL models. We determine the number and parameters of such oscillations near the cores boundaries of cluster models. Such oscillations points to the possible role that gradient instability near the core of cluster models plays in the decrease of the mass of the oscillation generation regions and production of entropy in the cores of OCL models with massive extended cores.

  13. A cluster expansion model for predicting activation barrier of atomic processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rehman, Tafizur; Jaipal, M.; Chatterjee, Abhijit, E-mail: achatter@iitk.ac.in

    2013-06-15

    We introduce a procedure based on cluster expansion models for predicting the activation barrier of atomic processes encountered while studying the dynamics of a material system using the kinetic Monte Carlo (KMC) method. Starting with an interatomic potential description, a mathematical derivation is presented to show that the local environment dependence of the activation barrier can be captured using cluster interaction models. Next, we develop a systematic procedure for training the cluster interaction model on-the-fly, which involves: (i) obtaining activation barriers for handful local environments using nudged elastic band (NEB) calculations, (ii) identifying the local environment by analyzing the NEBmore » results, and (iii) estimating the cluster interaction model parameters from the activation barrier data. Once a cluster expansion model has been trained, it is used to predict activation barriers without requiring any additional NEB calculations. Numerical studies are performed to validate the cluster expansion model by studying hop processes in Ag/Ag(100). We show that the use of cluster expansion model with KMC enables efficient generation of an accurate process rate catalog.« less

  14. Finding gene clusters for a replicated time course study

    PubMed Central

    2014-01-01

    Background Finding genes that share similar expression patterns across samples is an important question that is frequently asked in high-throughput microarray studies. Traditional clustering algorithms such as K-means clustering and hierarchical clustering base gene clustering directly on the observed measurements and do not take into account the specific experimental design under which the microarray data were collected. A new model-based clustering method, the clustering of regression models method, takes into account the specific design of the microarray study and bases the clustering on how genes are related to sample covariates. It can find useful gene clusters for studies from complicated study designs such as replicated time course studies. Findings In this paper, we applied the clustering of regression models method to data from a time course study of yeast on two genotypes, wild type and YOX1 mutant, each with two technical replicates, and compared the clustering results with K-means clustering. We identified gene clusters that have similar expression patterns in wild type yeast, two of which were missed by K-means clustering. We further identified gene clusters whose expression patterns were changed in YOX1 mutant yeast compared to wild type yeast. Conclusions The clustering of regression models method can be a valuable tool for identifying genes that are coordinately transcribed by a common mechanism. PMID:24460656

  15. Cluster analysis of multiple planetary flow regimes

    NASA Technical Reports Server (NTRS)

    Mo, Kingtse; Ghil, Michael

    1987-01-01

    A modified cluster analysis method was developed to identify spatial patterns of planetary flow regimes, and to study transitions between them. This method was applied first to a simple deterministic model and second to Northern Hemisphere (NH) 500 mb data. The dynamical model is governed by the fully-nonlinear, equivalent-barotropic vorticity equation on the sphere. Clusters of point in the model's phase space are associated with either a few persistent or with many transient events. Two stationary clusters have patterns similar to unstable stationary model solutions, zonal, or blocked. Transient clusters of wave trains serve as way stations between the stationary ones. For the NH data, cluster analysis was performed in the subspace of the first seven empirical orthogonal functions (EOFs). Stationary clusters are found in the low-frequency band of more than 10 days, and transient clusters in the bandpass frequency window between 2.5 and 6 days. In the low-frequency band three pairs of clusters determine, respectively, EOFs 1, 2, and 3. They exhibit well-known regional features, such as blocking, the Pacific/North American (PNA) pattern and wave trains. Both model and low-pass data show strong bimodality. Clusters in the bandpass window show wave-train patterns in the two jet exit regions. They are related, as in the model, to transitions between stationary clusters.

  16. Clustering-based classification of road traffic accidents using hierarchical clustering and artificial neural networks.

    PubMed

    Taamneh, Madhar; Taamneh, Salah; Alkheder, Sharaf

    2017-09-01

    Artificial neural networks (ANNs) have been widely used in predicting the severity of road traffic crashes. All available information about previously occurred accidents is typically used for building a single prediction model (i.e., classifier). Too little attention has been paid to the differences between these accidents, leading, in most cases, to build less accurate predictors. Hierarchical clustering is a well-known clustering method that seeks to group data by creating a hierarchy of clusters. Using hierarchical clustering and ANNs, a clustering-based classification approach for predicting the injury severity of road traffic accidents was proposed. About 6000 road accidents occurred over a six-year period from 2008 to 2013 in Abu Dhabi were used throughout this study. In order to reduce the amount of variation in data, hierarchical clustering was applied on the data set to organize it into six different forms, each with different number of clusters (i.e., clusters from 1 to 6). Two ANN models were subsequently built for each cluster of accidents in each generated form. The first model was built and validated using all accidents (training set), whereas only 66% of the accidents were used to build the second model, and the remaining 34% were used to test it (percentage split). Finally, the weighted average accuracy was computed for each type of models in each from of data. The results show that when testing the models using the training set, clustering prior to classification achieves (11%-16%) more accuracy than without using clustering, while the percentage split achieves (2%-5%) more accuracy. The results also suggest that partitioning the accidents into six clusters achieves the best accuracy if both types of models are taken into account.

  17. Clustering of spontaneous recurrent seizures separated by long seizure-free periods: An extended video-EEG monitoring study of a pilocarpine mouse model.

    PubMed

    Lim, Jung-Ah; Moon, Jangsup; Kim, Tae-Joon; Jun, Jin-Sun; Park, Byeongsu; Byun, Jung-Ick; Sunwoo, Jun-Sang; Park, Kyung-Il; Lee, Soon-Tae; Jung, Keun-Hwa; Jung, Ki-Young; Kim, Manho; Jeon, Daejong; Chu, Kon; Lee, Sang Kun

    2018-01-01

    Seizure clustering is a common and significant phenomenon in patients with epilepsy. The clustering of spontaneous recurrent seizures (SRSs) in animal models of epilepsy, including mouse pilocarpine models, has been reported. However, most studies have analyzed seizures for a short duration after the induction of status epilepticus (SE). In this study, we investigated the detailed characteristics of seizure clustering in the chronic stage of a mouse pilocarpine-induced epilepsy model for an extended duration by continuous 24/7 video-EEG monitoring. A seizure cluster was defined as the occurrence of one or more seizures per day for at least three consecutive days and at least five seizures during the cluster period. We analyzed the cluster duration, seizure-free period, cluster interval, and numbers of seizures within and outside the seizure clusters. The video-EEG monitoring began 84.5±33.7 days after the induction of SE and continued for 53.7±20.4 days. Every mouse displayed seizure clusters, and 97.0% of the seizures occurred within a cluster period. The seizure clusters were followed by long seizure-free periods of 16.3±6.8 days, showing a cyclic pattern. The SRSs also occurred in a grouped pattern within a day. We demonstrate that almost all seizures occur in clusters with a cyclic pattern in the chronic stage of a mouse pilocarpine-induced epilepsy model. The seizure-free periods between clusters were long. These findings should be considered when performing in vivo studies using this animal model. Furthermore, this model might be appropriate for studying the unrevealed mechanism of ictogenesis.

  18. Galaxy clusters and cold dark matter - A low-density unbiased universe?

    NASA Technical Reports Server (NTRS)

    Bahcall, Neta A.; Cen, Renyue

    1992-01-01

    Large-scale simulations of a universe dominated by cold dark matter (CDM) are tested against two fundamental properties of clusters of galaxies: the cluster mass function and the cluster correlation function. We find that standard biased CDM models are inconsistent with these observations for any bias parameter b. A low-density, low-bias CDM-type model, with or without a cosmological constant, appears to be consistent with both the cluster mass function and the cluster correlations. The low-density model agrees well with the observed correlation function of the Abell, Automatic Plate Measuring Facility (APM), and Edinburgh-Durham cluster catalogs. The model is in excellent agreement with the observed dependence of the correlation strength on cluster mean separation, reproducing the measured universal dimensionless cluster correlation. The low-density model is also consistent with other large-scale structure observations, including the APM angular galaxy-correlations, and for lambda = 1-Omega with the COBE results of the microwave background radiation fluctuations.

  19. Clustering of European winter storms: A multi-model perspective

    NASA Astrophysics Data System (ADS)

    Renggli, Dominik; Buettner, Annemarie; Scherb, Anke; Straub, Daniel; Zimmerli, Peter

    2016-04-01

    The storm series over Europe in 1990 (Daria, Vivian, Wiebke, Herta) and 1999 (Anatol, Lothar, Martin) are very well known. Such clusters of severe events strongly affect the seasonally accumulated damage statistics. The (re)insurance industry has quantified clustering by using distribution assumptions deduced from the historical storm activity of the last 30 to 40 years. The use of storm series simulated by climate models has only started recently. Climate model runs can potentially represent 100s to 1000s of years, allowing a more detailed quantification of clustering than the history of the last few decades. However, it is unknown how sensitive the representation of clustering is to systematic biases. Using a multi-model ensemble allows quantifying that uncertainty. This work uses CMIP5 decadal ensemble hindcasts to study clustering of European winter storms from a multi-model perspective. An objective identification algorithm extracts winter storms (September to April) in the gridded 6-hourly wind data. Since the skill of European storm predictions is very limited on the decadal scale, the different hindcast runs are interpreted as independent realizations. As a consequence, the available hindcast ensemble represents several 1000 simulated storm seasons. The seasonal clustering of winter storms is quantified using the dispersion coefficient. The benchmark for the decadal prediction models is the 20th Century Reanalysis. The decadal prediction models are able to reproduce typical features of the clustering characteristics observed in the reanalysis data. Clustering occurs in all analyzed models over the North Atlantic and European region, in particular over Great Britain and Scandinavia as well as over Iberia (i.e. the exit regions of the North Atlantic storm track). Clustering is generally weaker in the models compared to reanalysis, although the differences between different models are substantial. In contrast to existing studies, clustering is driven by weak and moderate events, and not by extreme storms. Thus, the decision which climate model to use to quantify clustering can have a substantial impact on the risk assessment in the (re)insurance business.

  20. A theoretical study of water equilibria: The cluster distribution versus temperature and pressure for (H2O)n, n=1-60, and ice

    NASA Astrophysics Data System (ADS)

    Lenz, Annika; Ojamäe, Lars

    2009-10-01

    The size distribution of water clusters at equilibrium is studied using quantum-chemical calculations in combination with statistical thermodynamics. The necessary energetic data is obtained by quantum-chemical B3LYP computations and through extrapolations from the B3LYP results for the larger clusters. Clusters with up to 60 molecules are included in the equilibrium computations. Populations of different cluster sizes are calculated using both an ideal gas model with noninteracting clusters and a model where a correction for the interaction energy is included analogous to the van der Waals law. In standard vapor the majority of the water molecules are monomers. For the ideal gas model at 1 atm large clusters [56-mer (0-120 K) and 28-mer (100-260 K)] dominate at low temperatures and separate to smaller clusters [21-22-mer (170-280 K) and 4-6-mer (270-320 K) and to monomers (300-350 K)] when the temperature is increased. At lower pressure the transition from clusters to monomers lies at lower temperatures and fewer cluster sizes are formed. The computed size distribution exhibits enhanced peaks for the clusters consisting of 21 and 28 water molecules; these sizes are for protonated water clusters often referred to as magic numbers. If cluster-cluster interactions are included in the model the transition from clusters to monomers is sharper (i.e., occurs over a smaller temperature interval) than when the ideal-gas model is used. Clusters with 20-22 molecules dominate in the liquid region. When a large icelike cluster is included it will dominate for temperatures up to 325 K for the noninteracting clusters model. Thermodynamic properties (Cp, ΔH) were calculated with in general good agreement with experimental values for the solid and gas phase. A formula for the number of H-bond topologies in a given cluster structure is derived. For the 20-mer it is shown that the number of topologies contributes to making the population of dodecahedron-shaped cluster larger than that of a lower-energy fused prism cluster at high temperatures.

  1. A theoretical study of water equilibria: the cluster distribution versus temperature and pressure for (H2O)n, n = 1-60, and ice.

    PubMed

    Lenz, Annika; Ojamäe, Lars

    2009-10-07

    The size distribution of water clusters at equilibrium is studied using quantum-chemical calculations in combination with statistical thermodynamics. The necessary energetic data is obtained by quantum-chemical B3LYP computations and through extrapolations from the B3LYP results for the larger clusters. Clusters with up to 60 molecules are included in the equilibrium computations. Populations of different cluster sizes are calculated using both an ideal gas model with noninteracting clusters and a model where a correction for the interaction energy is included analogous to the van der Waals law. In standard vapor the majority of the water molecules are monomers. For the ideal gas model at 1 atm large clusters [56-mer (0-120 K) and 28-mer (100-260 K)] dominate at low temperatures and separate to smaller clusters [21-22-mer (170-280 K) and 4-6-mer (270-320 K) and to monomers (300-350 K)] when the temperature is increased. At lower pressure the transition from clusters to monomers lies at lower temperatures and fewer cluster sizes are formed. The computed size distribution exhibits enhanced peaks for the clusters consisting of 21 and 28 water molecules; these sizes are for protonated water clusters often referred to as magic numbers. If cluster-cluster interactions are included in the model the transition from clusters to monomers is sharper (i.e., occurs over a smaller temperature interval) than when the ideal-gas model is used. Clusters with 20-22 molecules dominate in the liquid region. When a large icelike cluster is included it will dominate for temperatures up to 325 K for the noninteracting clusters model. Thermodynamic properties (C(p), DeltaH) were calculated with in general good agreement with experimental values for the solid and gas phase. A formula for the number of H-bond topologies in a given cluster structure is derived. For the 20-mer it is shown that the number of topologies contributes to making the population of dodecahedron-shaped cluster larger than that of a lower-energy fused prism cluster at high temperatures.

  2. Robustness of cluster synchronous patterns in small-world networks with inter-cluster co-competition balance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jianbao; Ma, Zhongjun, E-mail: mzj1234402@163.com; Chen, Guanrong

    All edges in the classical Watts and Strogatz's small-world network model are unweighted and cooperative (positive). By introducing competitive (negative) inter-cluster edges and assigning edge weights to mimic more realistic networks, this paper develops a modified model which possesses co-competitive weighted couplings and cluster structures while maintaining the common small-world network properties of small average shortest path lengths and large clustering coefficients. Based on theoretical analysis, it is proved that the new model with inter-cluster co-competition balance has an important dynamical property of robust cluster synchronous pattern formation. More precisely, clusters will neither merge nor split regardless of adding ormore » deleting nodes and edges, under the condition of inter-cluster co-competition balance. Numerical simulations demonstrate the robustness of the model against the increase of the coupling strength and several topological variations.« less

  3. Robustness of cluster synchronous patterns in small-world networks with inter-cluster co-competition balance

    NASA Astrophysics Data System (ADS)

    Zhang, Jianbao; Ma, Zhongjun; Chen, Guanrong

    2014-06-01

    All edges in the classical Watts and Strogatz's small-world network model are unweighted and cooperative (positive). By introducing competitive (negative) inter-cluster edges and assigning edge weights to mimic more realistic networks, this paper develops a modified model which possesses co-competitive weighted couplings and cluster structures while maintaining the common small-world network properties of small average shortest path lengths and large clustering coefficients. Based on theoretical analysis, it is proved that the new model with inter-cluster co-competition balance has an important dynamical property of robust cluster synchronous pattern formation. More precisely, clusters will neither merge nor split regardless of adding or deleting nodes and edges, under the condition of inter-cluster co-competition balance. Numerical simulations demonstrate the robustness of the model against the increase of the coupling strength and several topological variations.

  4. Validating clustering of molecular dynamics simulations using polymer models.

    PubMed

    Phillips, Joshua L; Colvin, Michael E; Newsam, Shawn

    2011-11-14

    Molecular dynamics (MD) simulation is a powerful technique for sampling the meta-stable and transitional conformations of proteins and other biomolecules. Computational data clustering has emerged as a useful, automated technique for extracting conformational states from MD simulation data. Despite extensive application, relatively little work has been done to determine if the clustering algorithms are actually extracting useful information. A primary goal of this paper therefore is to provide such an understanding through a detailed analysis of data clustering applied to a series of increasingly complex biopolymer models. We develop a novel series of models using basic polymer theory that have intuitive, clearly-defined dynamics and exhibit the essential properties that we are seeking to identify in MD simulations of real biomolecules. We then apply spectral clustering, an algorithm particularly well-suited for clustering polymer structures, to our models and MD simulations of several intrinsically disordered proteins. Clustering results for the polymer models provide clear evidence that the meta-stable and transitional conformations are detected by the algorithm. The results for the polymer models also help guide the analysis of the disordered protein simulations by comparing and contrasting the statistical properties of the extracted clusters. We have developed a framework for validating the performance and utility of clustering algorithms for studying molecular biopolymer simulations that utilizes several analytic and dynamic polymer models which exhibit well-behaved dynamics including: meta-stable states, transition states, helical structures, and stochastic dynamics. We show that spectral clustering is robust to anomalies introduced by structural alignment and that different structural classes of intrinsically disordered proteins can be reliably discriminated from the clustering results. To our knowledge, our framework is the first to utilize model polymers to rigorously test the utility of clustering algorithms for studying biopolymers.

  5. Validating clustering of molecular dynamics simulations using polymer models

    PubMed Central

    2011-01-01

    Background Molecular dynamics (MD) simulation is a powerful technique for sampling the meta-stable and transitional conformations of proteins and other biomolecules. Computational data clustering has emerged as a useful, automated technique for extracting conformational states from MD simulation data. Despite extensive application, relatively little work has been done to determine if the clustering algorithms are actually extracting useful information. A primary goal of this paper therefore is to provide such an understanding through a detailed analysis of data clustering applied to a series of increasingly complex biopolymer models. Results We develop a novel series of models using basic polymer theory that have intuitive, clearly-defined dynamics and exhibit the essential properties that we are seeking to identify in MD simulations of real biomolecules. We then apply spectral clustering, an algorithm particularly well-suited for clustering polymer structures, to our models and MD simulations of several intrinsically disordered proteins. Clustering results for the polymer models provide clear evidence that the meta-stable and transitional conformations are detected by the algorithm. The results for the polymer models also help guide the analysis of the disordered protein simulations by comparing and contrasting the statistical properties of the extracted clusters. Conclusions We have developed a framework for validating the performance and utility of clustering algorithms for studying molecular biopolymer simulations that utilizes several analytic and dynamic polymer models which exhibit well-behaved dynamics including: meta-stable states, transition states, helical structures, and stochastic dynamics. We show that spectral clustering is robust to anomalies introduced by structural alignment and that different structural classes of intrinsically disordered proteins can be reliably discriminated from the clustering results. To our knowledge, our framework is the first to utilize model polymers to rigorously test the utility of clustering algorithms for studying biopolymers. PMID:22082218

  6. Bayesian hierarchical models for cost-effectiveness analyses that use data from cluster randomized trials.

    PubMed

    Grieve, Richard; Nixon, Richard; Thompson, Simon G

    2010-01-01

    Cost-effectiveness analyses (CEA) may be undertaken alongside cluster randomized trials (CRTs) where randomization is at the level of the cluster (for example, the hospital or primary care provider) rather than the individual. Costs (and outcomes) within clusters may be correlated so that the assumption made by standard bivariate regression models, that observations are independent, is incorrect. This study develops a flexible modeling framework to acknowledge the clustering in CEA that use CRTs. The authors extend previous Bayesian bivariate models for CEA of multicenter trials to recognize the specific form of clustering in CRTs. They develop new Bayesian hierarchical models (BHMs) that allow mean costs and outcomes, and also variances, to differ across clusters. They illustrate how each model can be applied using data from a large (1732 cases, 70 primary care providers) CRT evaluating alternative interventions for reducing postnatal depression. The analyses compare cost-effectiveness estimates from BHMs with standard bivariate regression models that ignore the data hierarchy. The BHMs show high levels of cost heterogeneity across clusters (intracluster correlation coefficient, 0.17). Compared with standard regression models, the BHMs yield substantially increased uncertainty surrounding the cost-effectiveness estimates, and altered point estimates. The authors conclude that ignoring clustering can lead to incorrect inferences. The BHMs that they present offer a flexible modeling framework that can be applied more generally to CEA that use CRTs.

  7. Isotropic model for cluster growth on a regular lattice

    NASA Astrophysics Data System (ADS)

    Yates, Christian A.; Baker, Ruth E.

    2013-08-01

    There exists a plethora of mathematical models for cluster growth and/or aggregation on regular lattices. Almost all suffer from inherent anisotropy caused by the regular lattice upon which they are grown. We analyze the little-known model for stochastic cluster growth on a regular lattice first introduced by Ferreira Jr. and Alves [J. Stat. Mech. Theo. & Exp.1742-546810.1088/1742-5468/2006/11/P11007 (2006) P11007], which produces circular clusters with no discernible anisotropy. We demonstrate that even in the noise-reduced limit the clusters remain circular. We adapt the model by introducing a specific rearrangement algorithm so that, rather than adding elements to the cluster from the outside (corresponding to apical growth), our model uses mitosis-like cell splitting events to increase the cluster size. We analyze the surface scaling properties of our model and compare it to the behavior of more traditional models. In “1+1” dimensions we discover and explore a new, nonmonotonic surface thickness scaling relationship which differs significantly from the Family-Vicsek scaling relationship. This suggests that, for models whose clusters do not grow through particle additions which are solely dependent on surface considerations, the traditional classification into “universality classes” may not be appropriate.

  8. Strong Lens Models for Massive Galaxy Clusters in the Reionization Lensing Cluster Survey

    NASA Astrophysics Data System (ADS)

    Cerny, Catherine; Sharon, Keren; Coe, Dan A.; Paterno-Mahler, Rachel; Jones, Christine; Czakon, Nicole G.; Umetsu, Keiichi; Stark, Daniel; Bradley, Larry D.; Trenti, Michele; Johnson, Traci; Bradac, Marusa; Dawson, William; Rodney, Steven A.; Strolger, Louis-Gregory; RELICS Team

    2017-01-01

    We present strong lensing models for five galaxy clusters from the Planck SZ cluster catalog as a part of the Reionization Lensing Cluster Survey (RELICS), a program that seeks to constrain the galaxy luminosity function past z~9 by conducting a wide field survey of massive galaxy clusters with HST (GO-14096, PI: Coe). The strong gravitational lensing effects of these clusters significantly magnify background galaxies, which enhances our ability to discover the large numbers of high redshift galaxies at z~9-12 needed to create a representative sample. We use strong lensing models for these clusters to study their mass distribution and magnification, which allows us to quantify the lensing effect on the background galaxies. These models can then be utilized in the RELICS survey in order to identify high redshift galaxy candidates that may be lensed by the clusters. The intrinsic properties of these galaxy candidates can be derived by removing the lensing effect as predicted by our models, which will meet the science goals of the RELICS survey. We use HST WFC3 and ACS imaging to create lensing models for the clusters RXC J0142.9+4438, ACO-2537, ACO-2163, RXCJ2211.7-0349, and ACT-CLJ0102-49151.

  9. A user credit assessment model based on clustering ensemble for broadband network new media service supervision

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Cao, San-xing; Lu, Rui

    2012-04-01

    This paper proposes a user credit assessment model based on clustering ensemble aiming to solve the problem that users illegally spread pirated and pornographic media contents within the user self-service oriented broadband network new media platforms. Its idea is to do the new media user credit assessment by establishing indices system based on user credit behaviors, and the illegal users could be found according to the credit assessment results, thus to curb the bad videos and audios transmitted on the network. The user credit assessment model based on clustering ensemble proposed by this paper which integrates the advantages that swarm intelligence clustering is suitable for user credit behavior analysis and K-means clustering could eliminate the scattered users existed in the result of swarm intelligence clustering, thus to realize all the users' credit classification automatically. The model's effective verification experiments are accomplished which are based on standard credit application dataset in UCI machine learning repository, and the statistical results of a comparative experiment with a single model of swarm intelligence clustering indicates this clustering ensemble model has a stronger creditworthiness distinguishing ability, especially in the aspect of predicting to find user clusters with the best credit and worst credit, which will facilitate the operators to take incentive measures or punitive measures accurately. Besides, compared with the experimental results of Logistic regression based model under the same conditions, this clustering ensemble model is robustness and has better prediction accuracy.

  10. Clustering of longitudinal data by using an extended baseline: A new method for treatment efficacy clustering in longitudinal data.

    PubMed

    Schramm, Catherine; Vial, Céline; Bachoud-Lévi, Anne-Catherine; Katsahian, Sandrine

    2018-01-01

    Heterogeneity in treatment efficacy is a major concern in clinical trials. Clustering may help to identify the treatment responders and the non-responders. In the context of longitudinal cluster analyses, sample size and variability of the times of measurements are the main issues with the current methods. Here, we propose a new two-step method for the Clustering of Longitudinal data by using an Extended Baseline. The first step relies on a piecewise linear mixed model for repeated measurements with a treatment-time interaction. The second step clusters the random predictions and considers several parametric (model-based) and non-parametric (partitioning, ascendant hierarchical clustering) algorithms. A simulation study compares all options of the clustering of longitudinal data by using an extended baseline method with the latent-class mixed model. The clustering of longitudinal data by using an extended baseline method with the two model-based algorithms was the more robust model. The clustering of longitudinal data by using an extended baseline method with all the non-parametric algorithms failed when there were unequal variances of treatment effect between clusters or when the subgroups had unbalanced sample sizes. The latent-class mixed model failed when the between-patients slope variability is high. Two real data sets on neurodegenerative disease and on obesity illustrate the clustering of longitudinal data by using an extended baseline method and show how clustering may help to identify the marker(s) of the treatment response. The application of the clustering of longitudinal data by using an extended baseline method in exploratory analysis as the first stage before setting up stratified designs can provide a better estimation of treatment effect in future clinical trials.

  11. Cluster-based analysis of multi-model climate ensembles

    NASA Astrophysics Data System (ADS)

    Hyde, Richard; Hossaini, Ryan; Leeson, Amber A.

    2018-06-01

    Clustering - the automated grouping of similar data - can provide powerful and unique insight into large and complex data sets, in a fast and computationally efficient manner. While clustering has been used in a variety of fields (from medical image processing to economics), its application within atmospheric science has been fairly limited to date, and the potential benefits of the application of advanced clustering techniques to climate data (both model output and observations) has yet to be fully realised. In this paper, we explore the specific application of clustering to a multi-model climate ensemble. We hypothesise that clustering techniques can provide (a) a flexible, data-driven method of testing model-observation agreement and (b) a mechanism with which to identify model development priorities. We focus our analysis on chemistry-climate model (CCM) output of tropospheric ozone - an important greenhouse gas - from the recent Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Tropospheric column ozone from the ACCMIP ensemble was clustered using the Data Density based Clustering (DDC) algorithm. We find that a multi-model mean (MMM) calculated using members of the most-populous cluster identified at each location offers a reduction of up to ˜ 20 % in the global absolute mean bias between the MMM and an observed satellite-based tropospheric ozone climatology, with respect to a simple, all-model MMM. On a spatial basis, the bias is reduced at ˜ 62 % of all locations, with the largest bias reductions occurring in the Northern Hemisphere - where ozone concentrations are relatively large. However, the bias is unchanged at 9 % of all locations and increases at 29 %, particularly in the Southern Hemisphere. The latter demonstrates that although cluster-based subsampling acts to remove outlier model data, such data may in fact be closer to observed values in some locations. We further demonstrate that clustering can provide a viable and useful framework in which to assess and visualise model spread, offering insight into geographical areas of agreement among models and a measure of diversity across an ensemble. Finally, we discuss caveats of the clustering techniques and note that while we have focused on tropospheric ozone, the principles underlying the cluster-based MMMs are applicable to other prognostic variables from climate models.

  12. fast_protein_cluster: parallel and optimized clustering of large-scale protein modeling data.

    PubMed

    Hung, Ling-Hong; Samudrala, Ram

    2014-06-15

    fast_protein_cluster is a fast, parallel and memory efficient package used to cluster 60 000 sets of protein models (with up to 550 000 models per set) generated by the Nutritious Rice for the World project. fast_protein_cluster is an optimized and extensible toolkit that supports Root Mean Square Deviation after optimal superposition (RMSD) and Template Modeling score (TM-score) as metrics. RMSD calculations using a laptop CPU are 60× faster than qcprot and 3× faster than current graphics processing unit (GPU) implementations. New GPU code further increases the speed of RMSD and TM-score calculations. fast_protein_cluster provides novel k-means and hierarchical clustering methods that are up to 250× and 2000× faster, respectively, than Clusco, and identify significantly more accurate models than Spicker and Clusco. fast_protein_cluster is written in C++ using OpenMP for multi-threading support. Custom streaming Single Instruction Multiple Data (SIMD) extensions and advanced vector extension intrinsics code accelerate CPU calculations, and OpenCL kernels support AMD and Nvidia GPUs. fast_protein_cluster is available under the M.I.T. license. (http://software.compbio.washington.edu/fast_protein_cluster) © The Author 2014. Published by Oxford University Press.

  13. Composition formulas of binary eutectics

    PubMed Central

    Ma, Y. P.; Dong, D. D.; Dong, C.; Luo, L. J.; Wang, Q.; Qiang, J. B.; Wang, Y. M.

    2015-01-01

    The present paper addresses the long-standing composition puzzle of eutectic points by introducing a new structural tool for the description of short-range-order structural unit, the cluster-plus-glue-atom model. In this model, any structure is dissociated into a 1st-neighbor cluster and a few glue atoms between the clusters, expressed by a cluster formula [cluster]gluex. This model is applied here to establish the structural model for eutectic liquids, assuming that a eutectic liquid consist of two subunits issued from the relevant eutectic phases, each being expressed by the cluster formula for ideal metallic glasses, i.e., [cluster](glue atom)1 or 3. A structural unit is then composed of two clusters from the relevant eutectic phases plus 2, 4, or 6 glue atoms. Such a dual cluster formulism is well validated in all boron-containing (except those located by the extreme phase diagram ends) and in some commonly-encountered binary eutectics, within accuracies below 1 at.%. The dual cluster formulas vary extensively and are rarely identical even for eutectics of close compositions. They are generally formed with two distinctly different cluster types, with special cluster matching rules such as cuboctahedron plus capped trigonal prism and rhombidodecahedron plus octahedral antiprism. PMID:26658618

  14. The Effects of Including Observed Means or Latent Means as Covariates in Multilevel Models for Cluster Randomized Trials

    ERIC Educational Resources Information Center

    Aydin, Burak; Leite, Walter L.; Algina, James

    2016-01-01

    We investigated methods of including covariates in two-level models for cluster randomized trials to increase power to detect the treatment effect. We compared multilevel models that included either an observed cluster mean or a latent cluster mean as a covariate, as well as the effect of including Level 1 deviation scores in the model. A Monte…

  15. Cluster management.

    PubMed

    Katz, R

    1992-11-01

    Cluster management is a management model that fosters decentralization of management, develops leadership potential of staff, and creates ownership of unit-based goals. Unlike shared governance models, there is no formal structure created by committees and it is less threatening for managers. There are two parts to the cluster management model. One is the formation of cluster groups, consisting of all staff and facilitated by a cluster leader. The cluster groups function for communication and problem-solving. The second part of the cluster management model is the creation of task forces. These task forces are designed to work on short-term goals, usually in response to solving one of the unit's goals. Sometimes the task forces are used for quality improvement or system problems. Clusters are groups of not more than five or six staff members, facilitated by a cluster leader. A cluster is made up of individuals who work the same shift. For example, people with job titles who work days would be in a cluster. There would be registered nurses, licensed practical nurses, nursing assistants, and unit clerks in the cluster. The cluster leader is chosen by the manager based on certain criteria and is trained for this specialized role. The concept of cluster management, criteria for choosing leaders, training for leaders, using cluster groups to solve quality improvement issues, and the learning process necessary for manager support are described.

  16. Modeling tensional homeostasis in multicellular clusters.

    PubMed

    Tam, Sze Nok; Smith, Michael L; Stamenović, Dimitrije

    2017-03-01

    Homeostasis of mechanical stress in cells, or tensional homeostasis, is essential for normal physiological function of tissues and organs and is protective against disease progression, including atherosclerosis and cancer. Recent experimental studies have shown that isolated cells are not capable of maintaining tensional homeostasis, whereas multicellular clusters are, with stability increasing with the size of the clusters. Here, we proposed simple mathematical models to interpret experimental results and to obtain insight into factors that determine homeostasis. Multicellular clusters were modeled as one-dimensional arrays of linearly elastic blocks that were either jointed or disjointed. Fluctuating forces that mimicked experimentally measured cell-substrate tractions were obtained from Monte Carlo simulations. These forces were applied to the cluster models, and the corresponding stress field in the cluster was calculated by solving the equilibrium equation. It was found that temporal fluctuations of the cluster stress field became attenuated with increasing cluster size, indicating that the cluster approached tensional homeostasis. These results were consistent with previously reported experimental data. Furthermore, the models revealed that key determinants of tensional homeostasis in multicellular clusters included the cluster size, the distribution of traction forces, and mechanical coupling between adjacent cells. Based on these findings, we concluded that tensional homeostasis was a multicellular phenomenon. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Variable selection based on clustering analysis for improvement of polyphenols prediction in green tea using synchronous fluorescence spectra.

    PubMed

    Shan, Jiajia; Wang, Xue; Zhou, Hao; Han, Shuqing; Riza, Dimas Firmanda Al; Kondo, Naoshi

    2018-03-13

    Synchronous fluorescence spectra, combined with multivariate analysis were used to predict flavonoids content in green tea rapidly and nondestructively. This paper presented a new and efficient spectral intervals selection method called clustering based partial least square (CL-PLS), which selected informative wavelengths by combining clustering concept and partial least square (PLS) methods to improve models' performance by synchronous fluorescence spectra. The fluorescence spectra of tea samples were obtained and k-means and kohonen-self organizing map clustering algorithms were carried out to cluster full spectra into several clusters, and sub-PLS regression model was developed on each cluster. Finally, CL-PLS models consisting of gradually selected clusters were built. Correlation coefficient (R) was used to evaluate the effect on prediction performance of PLS models. In addition, variable influence on projection partial least square (VIP-PLS), selectivity ratio partial least square (SR-PLS), interval partial least square (iPLS) models and full spectra PLS model were investigated and the results were compared. The results showed that CL-PLS presented the best result for flavonoids prediction using synchronous fluorescence spectra.

  18. Cluster-specific small airway modeling for imaging-based CFD analysis of pulmonary air flow and particle deposition in COPD smokers

    NASA Astrophysics Data System (ADS)

    Haghighi, Babak; Choi, Jiwoong; Choi, Sanghun; Hoffman, Eric A.; Lin, Ching-Long

    2017-11-01

    Accurate modeling of small airway diameters in patients with chronic obstructive pulmonary disease (COPD) is a crucial step toward patient-specific CFD simulations of regional airflow and particle transport. We proposed to use computed tomography (CT) imaging-based cluster membership to identify structural characteristics of airways in each cluster and use them to develop cluster-specific airway diameter models. We analyzed 284 COPD smokers with airflow limitation, and 69 healthy controls. We used multiscale imaging-based cluster analysis (MICA) to classify smokers into 4 clusters. With representative cluster patients and healthy controls, we performed multiple regressions to quantify variation of airway diameters by generation as well as by cluster. The cluster 2 and 4 showed more diameter decrease as generation increases than other clusters. The cluster 4 had more rapid decreases of airway diameters in the upper lobes, while cluster 2 in the lower lobes. We then used these regression models to estimate airway diameters in CT unresolved regions to obtain pressure-volume hysteresis curves using a 1D resistance model. These 1D flow solutions can be used to provide the patient-specific boundary conditions for 3D CFD simulations in COPD patients. Support for this study was provided, in part, by NIH Grants U01-HL114494, R01-HL112986 and S10-RR022421.

  19. Testing prediction methods: Earthquake clustering versus the Poisson model

    USGS Publications Warehouse

    Michael, A.J.

    1997-01-01

    Testing earthquake prediction methods requires statistical techniques that compare observed success to random chance. One technique is to produce simulated earthquake catalogs and measure the relative success of predicting real and simulated earthquakes. The accuracy of these tests depends on the validity of the statistical model used to simulate the earthquakes. This study tests the effect of clustering in the statistical earthquake model on the results. Three simulation models were used to produce significance levels for a VLF earthquake prediction method. As the degree of simulated clustering increases, the statistical significance drops. Hence, the use of a seismicity model with insufficient clustering can lead to overly optimistic results. A successful method must pass the statistical tests with a model that fully replicates the observed clustering. However, a method can be rejected based on tests with a model that contains insufficient clustering. U.S. copyright. Published in 1997 by the American Geophysical Union.

  20. Radiative Feedback of Forming Star Clusters on Their GMC Environments: Theory and Simulation

    NASA Astrophysics Data System (ADS)

    Howard, C. S.; Pudritz, R. E.; Harris, W. E.

    2013-07-01

    Star clusters form from dense clumps within a molecular cloud. Radiation from these newly formed clusters feeds back on their natal molecular cloud through heating and ionization which ultimately stops gas accretion into the cluster. Recent studies suggest that radiative feedback effects from a single cluster may be sufficient to disrupt an entire cloud over a short timescale. Simulating cluster formation on a large scale, however, is computationally demanding due to the high number of stars involved. For this reason, we present a model for representing the radiative output of an entire cluster which involves randomly sampling an initial mass function (IMF) as the cluster accretes mass. We show that this model is able to reproduce the star formation histories of observed clusters. To examine the degree to which radiative feedback shapes the evolution of a molecular cloud, we use the FLASH adaptive-mesh refinement hydrodynamics code to simulate cluster formation in a turbulent cloud. Unlike previous studies, sink particles are used to represent a forming cluster rather than individual stars. Our cluster model is then coupled with a raytracing scheme to treat radiative transfer as the clusters grow in mass. This poster will outline the details of our model and present preliminary results from our 3D hydrodynamical simulations.

  1. Cluster-based upper body marker models for three-dimensional kinematic analysis: Comparison with an anatomical model and reliability analysis.

    PubMed

    Boser, Quinn A; Valevicius, Aïda M; Lavoie, Ewen B; Chapman, Craig S; Pilarski, Patrick M; Hebert, Jacqueline S; Vette, Albert H

    2018-04-27

    Quantifying angular joint kinematics of the upper body is a useful method for assessing upper limb function. Joint angles are commonly obtained via motion capture, tracking markers placed on anatomical landmarks. This method is associated with limitations including administrative burden, soft tissue artifacts, and intra- and inter-tester variability. An alternative method involves the tracking of rigid marker clusters affixed to body segments, calibrated relative to anatomical landmarks or known joint angles. The accuracy and reliability of applying this cluster method to the upper body has, however, not been comprehensively explored. Our objective was to compare three different upper body cluster models with an anatomical model, with respect to joint angles and reliability. Non-disabled participants performed two standardized functional upper limb tasks with anatomical and cluster markers applied concurrently. Joint angle curves obtained via the marker clusters with three different calibration methods were compared to those from an anatomical model, and between-session reliability was assessed for all models. The cluster models produced joint angle curves which were comparable to and highly correlated with those from the anatomical model, but exhibited notable offsets and differences in sensitivity for some degrees of freedom. Between-session reliability was comparable between all models, and good for most degrees of freedom. Overall, the cluster models produced reliable joint angles that, however, cannot be used interchangeably with anatomical model outputs to calculate kinematic metrics. Cluster models appear to be an adequate, and possibly advantageous alternative to anatomical models when the objective is to assess trends in movement behavior. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. CHIMERA: Top-down model for hierarchical, overlapping and directed cluster structures in directed and weighted complex networks

    NASA Astrophysics Data System (ADS)

    Franke, R.

    2016-11-01

    In many networks discovered in biology, medicine, neuroscience and other disciplines special properties like a certain degree distribution and hierarchical cluster structure (also called communities) can be observed as general organizing principles. Detecting the cluster structure of an unknown network promises to identify functional subdivisions, hierarchy and interactions on a mesoscale. It is not trivial choosing an appropriate detection algorithm because there are multiple network, cluster and algorithmic properties to be considered. Edges can be weighted and/or directed, clusters overlap or build a hierarchy in several ways. Algorithms differ not only in runtime, memory requirements but also in allowed network and cluster properties. They are based on a specific definition of what a cluster is, too. On the one hand, a comprehensive network creation model is needed to build a large variety of benchmark networks with different reasonable structures to compare algorithms. On the other hand, if a cluster structure is already known, it is desirable to separate effects of this structure from other network properties. This can be done with null model networks that mimic an observed cluster structure to improve statistics on other network features. A third important application is the general study of properties in networks with different cluster structures, possibly evolving over time. Currently there are good benchmark and creation models available. But what is left is a precise sandbox model to build hierarchical, overlapping and directed clusters for undirected or directed, binary or weighted complex random networks on basis of a sophisticated blueprint. This gap shall be closed by the model CHIMERA (Cluster Hierarchy Interconnection Model for Evaluation, Research and Analysis) which will be introduced and described here for the first time.

  3. Internal velocity and mass distributions in simulated clusters of galaxies for a variety of cosmogonic models

    NASA Technical Reports Server (NTRS)

    Cen, Renyue

    1994-01-01

    The mass and velocity distributions in the outskirts (0.5-3.0/h Mpc) of simulated clusters of galaxies are examined for a suite of cosmogonic models (two Omega(sub 0) = 1 and two Omega(sub 0) = 0.2 models) utilizing large-scale particle-mesh (PM) simulations. Through a series of model computations, designed to isolate the different effects, we find that both Omega(sub 0) and P(sub k) (lambda less than or = 16/h Mpc) are important to the mass distributions in clusters of galaxies. There is a correlation between power, P(sub k), and density profiles of massive clusters; more power tends to point to the direction of a stronger correlation between alpha and M(r less than 1.5/h Mpc); i.e., massive clusters being relatively extended and small mass clusters being relatively concentrated. A lower Omega(sub 0) universe tends to produce relatively concentrated massive clusters and relatively extended small mass clusters compared to their counterparts in a higher Omega(sub 0) model with the same power. Models with little (initial) small-scale power, such as the hot dark matter (HDM) model, produce more extended mass distributions than the isothermal distribution for most of the mass clusters. But the cold dark matter (CDM) models show mass distributions of most of the clusters more concentrated than the isothermal distribution. X-ray and gravitational lensing observations are beginning providing useful information on the mass distribution in and around clusters; some interesting constraints on Omega(sub 0) and/or the (initial) power of the density fluctuations on scales lambda less than or = 16/h Mpc (where linear extrapolation is invalid) can be obtained when larger observational data sets, such as the Sloan Digital Sky Survey, become available.

  4. CORM: An R Package Implementing the Clustering of Regression Models Method for Gene Clustering

    PubMed Central

    Shi, Jiejun; Qin, Li-Xuan

    2014-01-01

    We report a new R package implementing the clustering of regression models (CORM) method for clustering genes using gene expression data and provide data examples illustrating each clustering function in the package. The CORM package is freely available at CRAN from http://cran.r-project.org. PMID:25452684

  5. Markov Chain Model-Based Optimal Cluster Heads Selection for Wireless Sensor Networks

    PubMed Central

    Ahmed, Gulnaz; Zou, Jianhua; Zhao, Xi; Sadiq Fareed, Mian Muhammad

    2017-01-01

    The longer network lifetime of Wireless Sensor Networks (WSNs) is a goal which is directly related to energy consumption. This energy consumption issue becomes more challenging when the energy load is not properly distributed in the sensing area. The hierarchal clustering architecture is the best choice for these kind of issues. In this paper, we introduce a novel clustering protocol called Markov chain model-based optimal cluster heads (MOCHs) selection for WSNs. In our proposed model, we introduce a simple strategy for the optimal number of cluster heads selection to overcome the problem of uneven energy distribution in the network. The attractiveness of our model is that the BS controls the number of cluster heads while the cluster heads control the cluster members in each cluster in such a restricted manner that a uniform and even load is ensured in each cluster. We perform an extensive range of simulation using five quality measures, namely: the lifetime of the network, stable and unstable region in the lifetime of the network, throughput of the network, the number of cluster heads in the network, and the transmission time of the network to analyze the proposed model. We compare MOCHs against Sleep-awake Energy Efficient Distributed (SEED) clustering, Artificial Bee Colony (ABC), Zone Based Routing (ZBR), and Centralized Energy Efficient Clustering (CEEC) using the above-discussed quality metrics and found that the lifetime of the proposed model is almost 1095, 2630, 3599, and 2045 rounds (time steps) greater than SEED, ABC, ZBR, and CEEC, respectively. The obtained results demonstrate that the MOCHs is better than SEED, ABC, ZBR, and CEEC in terms of energy efficiency and the network throughput. PMID:28241492

  6. Double Cluster Heads Model for Secure and Accurate Data Fusion in Wireless Sensor Networks

    PubMed Central

    Fu, Jun-Song; Liu, Yun

    2015-01-01

    Secure and accurate data fusion is an important issue in wireless sensor networks (WSNs) and has been extensively researched in the literature. In this paper, by combining clustering techniques, reputation and trust systems, and data fusion algorithms, we propose a novel cluster-based data fusion model called Double Cluster Heads Model (DCHM) for secure and accurate data fusion in WSNs. Different from traditional clustering models in WSNs, two cluster heads are selected after clustering for each cluster based on the reputation and trust system and they perform data fusion independently of each other. Then, the results are sent to the base station where the dissimilarity coefficient is computed. If the dissimilarity coefficient of the two data fusion results exceeds the threshold preset by the users, the cluster heads will be added to blacklist, and the cluster heads must be reelected by the sensor nodes in a cluster. Meanwhile, feedback is sent from the base station to the reputation and trust system, which can help us to identify and delete the compromised sensor nodes in time. Through a series of extensive simulations, we found that the DCHM performed very well in data fusion security and accuracy. PMID:25608211

  7. MACS J0416.1-2403: Impact of line-of-sight structures on strong gravitational lensing modelling of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Chirivì, G.; Suyu, S. H.; Grillo, C.; Halkola, A.; Balestra, I.; Caminha, G. B.; Mercurio, A.; Rosati, P.

    2018-06-01

    Exploiting the powerful tool of strong gravitational lensing by galaxy clusters to study the highest-redshift Universe and cluster mass distributions relies on precise lens mass modelling. In this work, we aim to present the first attempt at modelling line-of-sight (LOS) mass distribution in addition to that of the cluster, extending previous modelling techniques that assume mass distributions to be on a single lens plane. We have focussed on the Hubble Frontier Field cluster MACS J0416.1-2403, and our multi-plane model reproduces the observed image positions with a rms offset of 0.''53. Starting from this best-fitting model, we simulated a mock cluster that resembles MACS J0416.1-2403 in order to explore the effects of LOS structures on cluster mass modelling. By systematically analysing the mock cluster under different model assumptions, we find that neglecting the lensing environment has a significant impact on the reconstruction of image positions (rms 0.''3); accounting for LOS galaxies as if they were at the cluster redshift can partially reduce this offset. Moreover, foreground galaxies are more important to include into the model than the background ones. While the magnification factor of the lensed multiple images are recovered within 10% for 95% of them, those 5% that lie near critical curves can be significantly affected by the exclusion of the lensing environment in the models. In addition, LOS galaxies cannot explain the apparent discrepancy in the properties of massive sub-halos between MACS J0416.1-2403 and N-body simulated clusters. Since our model of MACS J0416.1-2403 with LOS galaxies only reduced modestly the rms offset in the image positions, we conclude that additional complexities would be needed in future models of MACS J0416.1-2403.

  8. Comparison of integrated clustering methods for accurate and stable prediction of building energy consumption data

    DOE PAGES

    Hsu, David

    2015-09-27

    Clustering methods are often used to model energy consumption for two reasons. First, clustering is often used to process data and to improve the predictive accuracy of subsequent energy models. Second, stable clusters that are reproducible with respect to non-essential changes can be used to group, target, and interpret observed subjects. However, it is well known that clustering methods are highly sensitive to the choice of algorithms and variables. This can lead to misleading assessments of predictive accuracy and mis-interpretation of clusters in policymaking. This paper therefore introduces two methods to the modeling of energy consumption in buildings: clusterwise regression,more » also known as latent class regression, which integrates clustering and regression simultaneously; and cluster validation methods to measure stability. Using a large dataset of multifamily buildings in New York City, clusterwise regression is compared to common two-stage algorithms that use K-means and model-based clustering with linear regression. Predictive accuracy is evaluated using 20-fold cross validation, and the stability of the perturbed clusters is measured using the Jaccard coefficient. These results show that there seems to be an inherent tradeoff between prediction accuracy and cluster stability. This paper concludes by discussing which clustering methods may be appropriate for different analytical purposes.« less

  9. Manual hierarchical clustering of regional geochemical data using a Bayesian finite mixture model

    USGS Publications Warehouse

    Ellefsen, Karl J.; Smith, David

    2016-01-01

    Interpretation of regional scale, multivariate geochemical data is aided by a statistical technique called “clustering.” We investigate a particular clustering procedure by applying it to geochemical data collected in the State of Colorado, United States of America. The clustering procedure partitions the field samples for the entire survey area into two clusters. The field samples in each cluster are partitioned again to create two subclusters, and so on. This manual procedure generates a hierarchy of clusters, and the different levels of the hierarchy show geochemical and geological processes occurring at different spatial scales. Although there are many different clustering methods, we use Bayesian finite mixture modeling with two probability distributions, which yields two clusters. The model parameters are estimated with Hamiltonian Monte Carlo sampling of the posterior probability density function, which usually has multiple modes. Each mode has its own set of model parameters; each set is checked to ensure that it is consistent both with the data and with independent geologic knowledge. The set of model parameters that is most consistent with the independent geologic knowledge is selected for detailed interpretation and partitioning of the field samples.

  10. The statistical average of optical properties for alumina particle cluster in aircraft plume

    NASA Astrophysics Data System (ADS)

    Li, Jingying; Bai, Lu; Wu, Zhensen; Guo, Lixin

    2018-04-01

    We establish a model for lognormal distribution of monomer radius and number of alumina particle clusters in plume. According to the Multi-Sphere T Matrix (MSTM) theory, we provide a method for finding the statistical average of optical properties for alumina particle clusters in plume, analyze the effect of different distributions and different detection wavelengths on the statistical average of optical properties for alumina particle cluster, and compare the statistical average optical properties under the alumina particle cluster model established in this study and those under three simplified alumina particle models. The calculation results show that the monomer number of alumina particle cluster and its size distribution have a considerable effect on its statistical average optical properties. The statistical average of optical properties for alumina particle cluster at common detection wavelengths exhibit obvious differences, whose differences have a great effect on modeling IR and UV radiation properties of plume. Compared with the three simplified models, the alumina particle cluster model herein features both higher extinction and scattering efficiencies. Therefore, we may find that an accurate description of the scattering properties of alumina particles in aircraft plume is of great significance in the study of plume radiation properties.

  11. Shaping Globular Clusters with Black Holes

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-03-01

    How many black holes lurk within the dense environments of globular clusters, and how do these powerful objects shape the properties of the cluster around them? One such cluster, NGC 3201, is now helping us to answer these questions.Hunting Stellar-Mass Black HolesSince the detection of merging black-hole binaries by the Laser Interferometer Gravitational-Wave Observatory (LIGO), the dense environments of globular clusters have received increasing attention as potential birthplaces of these compact binary systems.The central region of the globular star cluster NGC 3201, as viewed by Hubble. The black hole is in orbit with the star marked by the blue circle. [NASA/ESA]In addition, more and more stellar-mass black-hole candidates have been observed within globular clusters, lurking in binary pairs with luminous, non-compact companions. The most recent of these detections, found in the globular cluster NGC 3201, stands alone as the first stellar-mass black hole candidate discovered via radial velocity observations: the black holes main-sequence companion gave away its presence via a telltale wobble.Now a team of scientists led by Kyle Kremer (CIERA and Northwestern University) is using models of this system to better understand the impact that black holes might have on their host clusters.A Model ClusterThe relationship between black holes and their host clusters is complicated. Though the cluster environment can determine the dynamical evolution of the black holes, the retention rate of black holes in a globular cluster (i.e., how many remain in the cluster when they are born as supernovae, rather than being kicked out during the explosion) influences how the host cluster evolves.Kremer and collaborators track this complex relationship by modeling the evolution of a cluster similar to NGC 3201 with a Monte Carlo code. The code incorporates physics relevant to the evolution of black holes and black-hole binaries in globular clusters, such as two-body relaxation, single and binary star evolution, galactic tides, and multi-body encounters. From their grid of models with varying input parameters, the authors then determine which fit best to NGC 3201s final observational properties.Surface brightness profiles for all globular-cluster models at late times compared to observations of NGC 3201 (yellow circles). Blue lines represent models with few retained black holes; black lines represent models with many retained black holes. [Kremer et al. 2018]Retention MattersKremer and collaborators find that the models that best represent NGC 3201 all retain more than 200 black holes at the end of the simulation; models that lost too many black holes due to natal kicks did not match observations of NGC 3201 as well. The models with large numbers of retained black holes also harbored binaries just like the one recently detected in NGC 3201.Models that retain few black holes, on the other hand, may instead be good descriptions of so-called core-collapsed globular clusters observed in the Milky Way. The authors demonstrate that these clusters could contain black holes in binaries with stars known as blue stragglers, which may also be detectable with radial velocity techniques.Kremer and collaborators results suggest that globular clusters similar to NGC 3201 contain hundreds of invisible black holes waiting to be discovered, and they indicate some of the differences in cluster properties caused by hosting such a large population of black holes. We can hope that future observations and modeling will continue to illuminate the complicated relationship between globular clusters and the black holes that live in them.CitationKyle Kremer et al 2018 ApJL 855 L15. doi:10.3847/2041-8213/aab26c

  12. A Novel Information-Theoretic Approach for Variable Clustering and Predictive Modeling Using Dirichlet Process Mixtures

    PubMed Central

    Chen, Yun; Yang, Hui

    2016-01-01

    In the era of big data, there are increasing interests on clustering variables for the minimization of data redundancy and the maximization of variable relevancy. Existing clustering methods, however, depend on nontrivial assumptions about the data structure. Note that nonlinear interdependence among variables poses significant challenges on the traditional framework of predictive modeling. In the present work, we reformulate the problem of variable clustering from an information theoretic perspective that does not require the assumption of data structure for the identification of nonlinear interdependence among variables. Specifically, we propose the use of mutual information to characterize and measure nonlinear correlation structures among variables. Further, we develop Dirichlet process (DP) models to cluster variables based on the mutual-information measures among variables. Finally, orthonormalized variables in each cluster are integrated with group elastic-net model to improve the performance of predictive modeling. Both simulation and real-world case studies showed that the proposed methodology not only effectively reveals the nonlinear interdependence structures among variables but also outperforms traditional variable clustering algorithms such as hierarchical clustering. PMID:27966581

  13. Variable selection based on clustering analysis for improvement of polyphenols prediction in green tea using synchronous fluorescence spectra

    NASA Astrophysics Data System (ADS)

    Shan, Jiajia; Wang, Xue; Zhou, Hao; Han, Shuqing; Riza, Dimas Firmanda Al; Kondo, Naoshi

    2018-04-01

    Synchronous fluorescence spectra, combined with multivariate analysis were used to predict flavonoids content in green tea rapidly and nondestructively. This paper presented a new and efficient spectral intervals selection method called clustering based partial least square (CL-PLS), which selected informative wavelengths by combining clustering concept and partial least square (PLS) methods to improve models’ performance by synchronous fluorescence spectra. The fluorescence spectra of tea samples were obtained and k-means and kohonen-self organizing map clustering algorithms were carried out to cluster full spectra into several clusters, and sub-PLS regression model was developed on each cluster. Finally, CL-PLS models consisting of gradually selected clusters were built. Correlation coefficient (R) was used to evaluate the effect on prediction performance of PLS models. In addition, variable influence on projection partial least square (VIP-PLS), selectivity ratio partial least square (SR-PLS), interval partial least square (iPLS) models and full spectra PLS model were investigated and the results were compared. The results showed that CL-PLS presented the best result for flavonoids prediction using synchronous fluorescence spectra.

  14. A Novel Information-Theoretic Approach for Variable Clustering and Predictive Modeling Using Dirichlet Process Mixtures.

    PubMed

    Chen, Yun; Yang, Hui

    2016-12-14

    In the era of big data, there are increasing interests on clustering variables for the minimization of data redundancy and the maximization of variable relevancy. Existing clustering methods, however, depend on nontrivial assumptions about the data structure. Note that nonlinear interdependence among variables poses significant challenges on the traditional framework of predictive modeling. In the present work, we reformulate the problem of variable clustering from an information theoretic perspective that does not require the assumption of data structure for the identification of nonlinear interdependence among variables. Specifically, we propose the use of mutual information to characterize and measure nonlinear correlation structures among variables. Further, we develop Dirichlet process (DP) models to cluster variables based on the mutual-information measures among variables. Finally, orthonormalized variables in each cluster are integrated with group elastic-net model to improve the performance of predictive modeling. Both simulation and real-world case studies showed that the proposed methodology not only effectively reveals the nonlinear interdependence structures among variables but also outperforms traditional variable clustering algorithms such as hierarchical clustering.

  15. Prediction models for clustered data: comparison of a random intercept and standard regression model

    PubMed Central

    2013-01-01

    Background When study data are clustered, standard regression analysis is considered inappropriate and analytical techniques for clustered data need to be used. For prediction research in which the interest of predictor effects is on the patient level, random effect regression models are probably preferred over standard regression analysis. It is well known that the random effect parameter estimates and the standard logistic regression parameter estimates are different. Here, we compared random effect and standard logistic regression models for their ability to provide accurate predictions. Methods Using an empirical study on 1642 surgical patients at risk of postoperative nausea and vomiting, who were treated by one of 19 anesthesiologists (clusters), we developed prognostic models either with standard or random intercept logistic regression. External validity of these models was assessed in new patients from other anesthesiologists. We supported our results with simulation studies using intra-class correlation coefficients (ICC) of 5%, 15%, or 30%. Standard performance measures and measures adapted for the clustered data structure were estimated. Results The model developed with random effect analysis showed better discrimination than the standard approach, if the cluster effects were used for risk prediction (standard c-index of 0.69 versus 0.66). In the external validation set, both models showed similar discrimination (standard c-index 0.68 versus 0.67). The simulation study confirmed these results. For datasets with a high ICC (≥15%), model calibration was only adequate in external subjects, if the used performance measure assumed the same data structure as the model development method: standard calibration measures showed good calibration for the standard developed model, calibration measures adapting the clustered data structure showed good calibration for the prediction model with random intercept. Conclusion The models with random intercept discriminate better than the standard model only if the cluster effect is used for predictions. The prediction model with random intercept had good calibration within clusters. PMID:23414436

  16. Prediction models for clustered data: comparison of a random intercept and standard regression model.

    PubMed

    Bouwmeester, Walter; Twisk, Jos W R; Kappen, Teus H; van Klei, Wilton A; Moons, Karel G M; Vergouwe, Yvonne

    2013-02-15

    When study data are clustered, standard regression analysis is considered inappropriate and analytical techniques for clustered data need to be used. For prediction research in which the interest of predictor effects is on the patient level, random effect regression models are probably preferred over standard regression analysis. It is well known that the random effect parameter estimates and the standard logistic regression parameter estimates are different. Here, we compared random effect and standard logistic regression models for their ability to provide accurate predictions. Using an empirical study on 1642 surgical patients at risk of postoperative nausea and vomiting, who were treated by one of 19 anesthesiologists (clusters), we developed prognostic models either with standard or random intercept logistic regression. External validity of these models was assessed in new patients from other anesthesiologists. We supported our results with simulation studies using intra-class correlation coefficients (ICC) of 5%, 15%, or 30%. Standard performance measures and measures adapted for the clustered data structure were estimated. The model developed with random effect analysis showed better discrimination than the standard approach, if the cluster effects were used for risk prediction (standard c-index of 0.69 versus 0.66). In the external validation set, both models showed similar discrimination (standard c-index 0.68 versus 0.67). The simulation study confirmed these results. For datasets with a high ICC (≥15%), model calibration was only adequate in external subjects, if the used performance measure assumed the same data structure as the model development method: standard calibration measures showed good calibration for the standard developed model, calibration measures adapting the clustered data structure showed good calibration for the prediction model with random intercept. The models with random intercept discriminate better than the standard model only if the cluster effect is used for predictions. The prediction model with random intercept had good calibration within clusters.

  17. GraphTeams: a method for discovering spatial gene clusters in Hi-C sequencing data.

    PubMed

    Schulz, Tizian; Stoye, Jens; Doerr, Daniel

    2018-05-08

    Hi-C sequencing offers novel, cost-effective means to study the spatial conformation of chromosomes. We use data obtained from Hi-C experiments to provide new evidence for the existence of spatial gene clusters. These are sets of genes with associated functionality that exhibit close proximity to each other in the spatial conformation of chromosomes across several related species. We present the first gene cluster model capable of handling spatial data. Our model generalizes a popular computational model for gene cluster prediction, called δ-teams, from sequences to graphs. Following previous lines of research, we subsequently extend our model to allow for several vertices being associated with the same label. The model, called δ-teams with families, is particular suitable for our application as it enables handling of gene duplicates. We develop algorithmic solutions for both models. We implemented the algorithm for discovering δ-teams with families and integrated it into a fully automated workflow for discovering gene clusters in Hi-C data, called GraphTeams. We applied it to human and mouse data to find intra- and interchromosomal gene cluster candidates. The results include intrachromosomal clusters that seem to exhibit a closer proximity in space than on their chromosomal DNA sequence. We further discovered interchromosomal gene clusters that contain genes from different chromosomes within the human genome, but are located on a single chromosome in mouse. By identifying δ-teams with families, we provide a flexible model to discover gene cluster candidates in Hi-C data. Our analysis of Hi-C data from human and mouse reveals several known gene clusters (thus validating our approach), but also few sparsely studied or possibly unknown gene cluster candidates that could be the source of further experimental investigations.

  18. Kinetic model for binary homogeneous nucleation in the H2O-H2SO4 system: comparison with experiments and classical theory of nucleation.

    PubMed

    Sorokin, A; Vancassel, X; Mirabel, P

    2005-12-22

    A kinetic model to predict nucleation rates in the sulfuric acid-water system is presented. It allows calculating steady-state nucleation rates and the corresponding time lag, using a direct solution of a system of kinetic equations that describe the populations of sub- and near-critical clusters. This kinetic model takes into account cluster-cluster collisions and decay of clusters into smaller clusters. The model results are compared with some predictions obtained with the classical nucleation theory (CNT) and also with available measurement data obtained in smog chambers or flow tubes. It is shown that in the case of slow nucleation processes, the kinetic model and the CNT as used by Shugard et al. [J. Chem. Phys. 75, 5298 (1974)] give the same results. However, in the case of intensive nucleation, a large part of the nucleation flux is due to cluster-cluster collisions and the CNT underestimates the nucleation rates.

  19. Clustering of change patterns using Fourier coefficients.

    PubMed

    Kim, Jaehee; Kim, Haseong

    2008-01-15

    To understand the behavior of genes, it is important to explore how the patterns of gene expression change over a time period because biologically related gene groups can share the same change patterns. Many clustering algorithms have been proposed to group observation data. However, because of the complexity of the underlying functions there have not been many studies on grouping data based on change patterns. In this study, the problem of finding similar change patterns is induced to clustering with the derivative Fourier coefficients. The sample Fourier coefficients not only provide information about the underlying functions, but also reduce the dimension. In addition, as their limiting distribution is a multivariate normal, a model-based clustering method incorporating statistical properties would be appropriate. This work is aimed at discovering gene groups with similar change patterns that share similar biological properties. We developed a statistical model using derivative Fourier coefficients to identify similar change patterns of gene expression. We used a model-based method to cluster the Fourier series estimation of derivatives. The model-based method is advantageous over other methods in our proposed model because the sample Fourier coefficients asymptotically follow the multivariate normal distribution. Change patterns are automatically estimated with the Fourier representation in our model. Our model was tested in simulations and on real gene data sets. The simulation results showed that the model-based clustering method with the sample Fourier coefficients has a lower clustering error rate than K-means clustering. Even when the number of repeated time points was small, the same results were obtained. We also applied our model to cluster change patterns of yeast cell cycle microarray expression data with alpha-factor synchronization. It showed that, as the method clusters with the probability-neighboring data, the model-based clustering with our proposed model yielded biologically interpretable results. We expect that our proposed Fourier analysis with suitably chosen smoothing parameters could serve as a useful tool in classifying genes and interpreting possible biological change patterns. The R program is available upon the request.

  20. Warming rays in cluster cool cores

    NASA Astrophysics Data System (ADS)

    Colafrancesco, S.; Marchegiani, P.

    2008-06-01

    Context: Cosmic rays are confined in the atmospheres of galaxy clusters and, therefore, they can play a crucial role in the heating of their cool cores. Aims: We discuss here the thermal and non-thermal features of a model of cosmic ray heating of cluster cores that can provide a solution to the cooling-flow problems. To this aim, we generalize a model originally proposed by Colafrancesco, Dar & DeRujula (2004) and we show that our model predicts specific correlations between the thermal and non-thermal properties of galaxy clusters and enables various observational tests. Methods: The model reproduces the observed temperature distribution in clusters by using an energy balance condition in which the X-ray energy emitted by clusters is supplied, in a quasi-steady state, by the hadronic cosmic rays, which act as “warming rays” (WRs). The temperature profile of the intracluster (IC) gas is strictly correlated with the pressure distribution of the WRs and, consequently, with the non-thermal emission (radio, hard X-ray and gamma-ray) induced by the interaction of the WRs with the IC gas and the IC magnetic field. Results: The temperature distribution of the IC gas in both cool-core and non cool-core clusters is successfully predicted from the measured IC plasma density distribution. Under this contraint, the WR model is also able to reproduce the thermal and non-thermal pressure distribution in clusters, as well as their radial entropy distribution, as shown by the analysis of three clusters studied in detail: Perseus, A2199 and Hydra. The WR model provides other observable features of galaxy clusters: a correlation of the pressure ratio (WRs to thermal IC gas) with the inner cluster temperature (P_WR/P_th) ˜ (kT_inner)-2/3, a correlation of the gamma-ray luminosity with the inner cluster temperature Lγ ˜ (kT_inner)4/3, a substantial number of cool-core clusters observable with the GLAST-LAT experiment, a surface brightness of radio halos in cool-core clusters that recovers the observed one, a hard X-ray ICS emission from cool-core clusters that is systematically lower than the observed limits and yet observable with the next generation high-sensitivity and spatial resolution HXR experiments like Simbol-X. Conclusions: The specific theoretical properties and the multi-frequency distribution of the e.m. signals predicted in the WR model render it quite different from the other models so far proposed for the heating of clusters' cool-cores. Such differences make it possible to prove or disprove our model as an explanation for the cooling-flow problems on the basis of multi-frequency observations of galaxy clusters.

  1. Observing the clustering properties of galaxy clusters in dynamical dark-energy cosmologies

    NASA Astrophysics Data System (ADS)

    Fedeli, C.; Moscardini, L.; Bartelmann, M.

    2009-06-01

    We study the clustering properties of galaxy clusters expected to be observed by various forthcoming surveys both in the X-ray and sub-mm regimes by the thermal Sunyaev-Zel'dovich effect. Several different background cosmological models are assumed, including the concordance ΛCDM and various cosmologies with dynamical evolution of the dark energy. Particular attention is paid to models with a significant contribution of dark energy at early times which affects the process of structure formation. Past light cone and selection effects in cluster catalogs are carefully modeled by realistic scaling relations between cluster mass and observables and by properly taking into account the selection functions of the different instruments. The results show that early dark-energy models are expected to produce significantly lower values of effective bias and both spatial and angular correlation amplitudes with respect to the standard ΛCDM model. Among the cluster catalogs studied in this work, it turns out that those based on eRosita, Planck, and South Pole Telescope observations are the most promising for distinguishing between various dark-energy models.

  2. Inference from clustering with application to gene-expression microarrays.

    PubMed

    Dougherty, Edward R; Barrera, Junior; Brun, Marcel; Kim, Seungchan; Cesar, Roberto M; Chen, Yidong; Bittner, Michael; Trent, Jeffrey M

    2002-01-01

    There are many algorithms to cluster sample data points based on nearness or a similarity measure. Often the implication is that points in different clusters come from different underlying classes, whereas those in the same cluster come from the same class. Stochastically, the underlying classes represent different random processes. The inference is that clusters represent a partition of the sample points according to which process they belong. This paper discusses a model-based clustering toolbox that evaluates cluster accuracy. Each random process is modeled as its mean plus independent noise, sample points are generated, the points are clustered, and the clustering error is the number of points clustered incorrectly according to the generating random processes. Various clustering algorithms are evaluated based on process variance and the key issue of the rate at which algorithmic performance improves with increasing numbers of experimental replications. The model means can be selected by hand to test the separability of expected types of biological expression patterns. Alternatively, the model can be seeded by real data to test the expected precision of that output or the extent of improvement in precision that replication could provide. In the latter case, a clustering algorithm is used to form clusters, and the model is seeded with the means and variances of these clusters. Other algorithms are then tested relative to the seeding algorithm. Results are averaged over various seeds. Output includes error tables and graphs, confusion matrices, principal-component plots, and validation measures. Five algorithms are studied in detail: K-means, fuzzy C-means, self-organizing maps, hierarchical Euclidean-distance-based and correlation-based clustering. The toolbox is applied to gene-expression clustering based on cDNA microarrays using real data. Expression profile graphics are generated and error analysis is displayed within the context of these profile graphics. A large amount of generated output is available over the web.

  3. The effect of different distance measures in detecting outliers using clustering-based algorithm for circular regression model

    NASA Astrophysics Data System (ADS)

    Di, Nur Faraidah Muhammad; Satari, Siti Zanariah

    2017-05-01

    Outlier detection in linear data sets has been done vigorously but only a small amount of work has been done for outlier detection in circular data. In this study, we proposed multiple outliers detection in circular regression models based on the clustering algorithm. Clustering technique basically utilizes distance measure to define distance between various data points. Here, we introduce the similarity distance based on Euclidean distance for circular model and obtain a cluster tree using the single linkage clustering algorithm. Then, a stopping rule for the cluster tree based on the mean direction and circular standard deviation of the tree height is proposed. We classify the cluster group that exceeds the stopping rule as potential outlier. Our aim is to demonstrate the effectiveness of proposed algorithms with the similarity distances in detecting the outliers. It is found that the proposed methods are performed well and applicable for circular regression model.

  4. Mixture modelling for cluster analysis.

    PubMed

    McLachlan, G J; Chang, S U

    2004-10-01

    Cluster analysis via a finite mixture model approach is considered. With this approach to clustering, the data can be partitioned into a specified number of clusters g by first fitting a mixture model with g components. An outright clustering of the data is then obtained by assigning an observation to the component to which it has the highest estimated posterior probability of belonging; that is, the ith cluster consists of those observations assigned to the ith component (i = 1,..., g). The focus is on the use of mixtures of normal components for the cluster analysis of data that can be regarded as being continuous. But attention is also given to the case of mixed data, where the observations consist of both continuous and discrete variables.

  5. Cluster dynamics and cluster size distributions in systems of self-propelled particles

    NASA Astrophysics Data System (ADS)

    Peruani, F.; Schimansky-Geier, L.; Bär, M.

    2010-12-01

    Systems of self-propelled particles (SPP) interacting by a velocity alignment mechanism in the presence of noise exhibit rich clustering dynamics. Often, clusters are responsible for the distribution of (local) information in these systems. Here, we investigate the properties of individual clusters in SPP systems, in particular the asymmetric spreading behavior of clusters with respect to their direction of motion. In addition, we formulate a Smoluchowski-type kinetic model to describe the evolution of the cluster size distribution (CSD). This model predicts the emergence of steady-state CSDs in SPP systems. We test our theoretical predictions in simulations of SPP with nematic interactions and find that our simple kinetic model reproduces qualitatively the transition to aggregation observed in simulations.

  6. An algebraic cluster model based on the harmonic oscillator basis

    NASA Technical Reports Server (NTRS)

    Levai, Geza; Cseh, J.

    1995-01-01

    We discuss the semimicroscopic algebraic cluster model introduced recently, in which the internal structure of the nuclear clusters is described by the harmonic oscillator shell model, while their relative motion is accounted for by the Vibron model. The algebraic formulation of the model makes extensive use of techniques associated with harmonic oscillators and their symmetry group, SU(3). The model is applied to some cluster systems and is found to reproduce important characteristics of nuclei in the sd-shell region. An approximate SU(3) dynamical symmetry is also found to hold for the C-12 + C-12 system.

  7. Study of clusters and hypernuclei production within PHSD+FRIGA model

    NASA Astrophysics Data System (ADS)

    Kireyeu, Viktar; Le Fèvre, Arnaud; Bratkovskaya, Elena

    2017-03-01

    We report on the results on the dynamical modelling of cluster formation with the new combined PHSD+FRIGA model at Nuclotron and NICA energies. The FRIGA clusterization algorithm, which can be applied to the transport models, is based on the simulated annealing technique to obtain the most bound configuration of fragments and nucleons. The PHSD+FRIGA model is able to predict isotope yields as well as hypernucleus production. Based on present predictions of the combined model we study the possibility to detect such clusters and hypernuclei in the BM@N and MPD/NICA detectors.

  8. Estimating multilevel logistic regression models when the number of clusters is low: a comparison of different statistical software procedures.

    PubMed

    Austin, Peter C

    2010-04-22

    Multilevel logistic regression models are increasingly being used to analyze clustered data in medical, public health, epidemiological, and educational research. Procedures for estimating the parameters of such models are available in many statistical software packages. There is currently little evidence on the minimum number of clusters necessary to reliably fit multilevel regression models. We conducted a Monte Carlo study to compare the performance of different statistical software procedures for estimating multilevel logistic regression models when the number of clusters was low. We examined procedures available in BUGS, HLM, R, SAS, and Stata. We found that there were qualitative differences in the performance of different software procedures for estimating multilevel logistic models when the number of clusters was low. Among the likelihood-based procedures, estimation methods based on adaptive Gauss-Hermite approximations to the likelihood (glmer in R and xtlogit in Stata) or adaptive Gaussian quadrature (Proc NLMIXED in SAS) tended to have superior performance for estimating variance components when the number of clusters was small, compared to software procedures based on penalized quasi-likelihood. However, only Bayesian estimation with BUGS allowed for accurate estimation of variance components when there were fewer than 10 clusters. For all statistical software procedures, estimation of variance components tended to be poor when there were only five subjects per cluster, regardless of the number of clusters.

  9. Clustering of time-course gene expression profiles using normal mixture models with autoregressive random effects

    PubMed Central

    2012-01-01

    Background Time-course gene expression data such as yeast cell cycle data may be periodically expressed. To cluster such data, currently used Fourier series approximations of periodic gene expressions have been found not to be sufficiently adequate to model the complexity of the time-course data, partly due to their ignoring the dependence between the expression measurements over time and the correlation among gene expression profiles. We further investigate the advantages and limitations of available models in the literature and propose a new mixture model with autoregressive random effects of the first order for the clustering of time-course gene-expression profiles. Some simulations and real examples are given to demonstrate the usefulness of the proposed models. Results We illustrate the applicability of our new model using synthetic and real time-course datasets. We show that our model outperforms existing models to provide more reliable and robust clustering of time-course data. Our model provides superior results when genetic profiles are correlated. It also gives comparable results when the correlation between the gene profiles is weak. In the applications to real time-course data, relevant clusters of coregulated genes are obtained, which are supported by gene-function annotation databases. Conclusions Our new model under our extension of the EMMIX-WIRE procedure is more reliable and robust for clustering time-course data because it adopts a random effects model that allows for the correlation among observations at different time points. It postulates gene-specific random effects with an autocorrelation variance structure that models coregulation within the clusters. The developed R package is flexible in its specification of the random effects through user-input parameters that enables improved modelling and consequent clustering of time-course data. PMID:23151154

  10. Towards Accurate Modelling of Galaxy Clustering on Small Scales: Testing the Standard ΛCDM + Halo Model

    NASA Astrophysics Data System (ADS)

    Sinha, Manodeep; Berlind, Andreas A.; McBride, Cameron K.; Scoccimarro, Roman; Piscionere, Jennifer A.; Wibking, Benjamin D.

    2018-04-01

    Interpreting the small-scale clustering of galaxies with halo models can elucidate the connection between galaxies and dark matter halos. Unfortunately, the modelling is typically not sufficiently accurate for ruling out models statistically. It is thus difficult to use the information encoded in small scales to test cosmological models or probe subtle features of the galaxy-halo connection. In this paper, we attempt to push halo modelling into the "accurate" regime with a fully numerical mock-based methodology and careful treatment of statistical and systematic errors. With our forward-modelling approach, we can incorporate clustering statistics beyond the traditional two-point statistics. We use this modelling methodology to test the standard ΛCDM + halo model against the clustering of SDSS DR7 galaxies. Specifically, we use the projected correlation function, group multiplicity function and galaxy number density as constraints. We find that while the model fits each statistic separately, it struggles to fit them simultaneously. Adding group statistics leads to a more stringent test of the model and significantly tighter constraints on model parameters. We explore the impact of varying the adopted halo definition and cosmological model and find that changing the cosmology makes a significant difference. The most successful model we tried (Planck cosmology with Mvir halos) matches the clustering of low luminosity galaxies, but exhibits a 2.3σ tension with the clustering of luminous galaxies, thus providing evidence that the "standard" halo model needs to be extended. This work opens the door to adding interesting freedom to the halo model and including additional clustering statistics as constraints.

  11. Industry Cluster's Adaptive Co-competition Behavior Modeling Inspired by Swarm Intelligence

    NASA Astrophysics Data System (ADS)

    Xiang, Wei; Ye, Feifan

    Adaptation helps the individual enterprise to adjust its behavior to uncertainties in environment and hence determines a healthy growth of both the individuals and the whole industry cluster as well. This paper is focused on the study on co-competition adaptation behavior of industry cluster, which is inspired by swarm intelligence mechanisms. By referencing to ant cooperative transportation and ant foraging behavior and their related swarm intelligence approaches, the cooperative adaptation and competitive adaptation behavior are studied and relevant models are proposed. Those adaptive co-competition behaviors model can be integrated to the multi-agent system of industry cluster to make the industry cluster model more realistic.

  12. Exploring the Dynamics of Exoplanetary Systems in a Young Stellar Cluster

    NASA Astrophysics Data System (ADS)

    Thornton, Jonathan Daniel; Glaser, Joseph Paul; Wall, Joshua Edward

    2018-01-01

    I describe a dynamical simulation of planetary systems in a young star cluster. One rather arbitrary aspect of cluster simulations is the choice of initial conditions. These are typically chosen from some standard model, such as Plummer or King, or from a “fractal” distribution to try to model young clumpy systems. Here I adopt the approach of realizing an initial cluster model directly from a detailed magnetohydrodynamical model of cluster formation from a 1000-solar-mass interstellar gas cloud, with magnetic fields and radiative and wind feedback from massive stars included self-consistently. The N-body simulation of the stars and planets starts once star formation is largely over and feedback has cleared much of the gas from the region where the newborn stars reside. It continues until the cluster dissolves in the galactic field. Of particular interest is what would happen to the free-floating planets created in the gas cloud simulation. Are they captured by a star or are they ejected from the cluster? This method of building a dynamical cluster simulation directly from the results of a cluster formation model allows us to better understand the evolution of young star clusters and enriches our understanding of extrasolar planet development in them. These simulations were performed within the AMUSE simulation framework, and combine N-body, multiples and background potential code.

  13. Finding Groups Using Model-Based Cluster Analysis: Heterogeneous Emotional Self-Regulatory Processes and Heavy Alcohol Use Risk

    ERIC Educational Resources Information Center

    Mun, Eun Young; von Eye, Alexander; Bates, Marsha E.; Vaschillo, Evgeny G.

    2008-01-01

    Model-based cluster analysis is a new clustering procedure to investigate population heterogeneity utilizing finite mixture multivariate normal densities. It is an inferentially based, statistically principled procedure that allows comparison of nonnested models using the Bayesian information criterion to compare multiple models and identify the…

  14. 2-Way k-Means as a Model for Microbiome Samples.

    PubMed

    Jackson, Weston J; Agarwal, Ipsita; Pe'er, Itsik

    2017-01-01

    Motivation . Microbiome sequencing allows defining clusters of samples with shared composition. However, this paradigm poorly accounts for samples whose composition is a mixture of cluster-characterizing ones and which therefore lie in between them in the cluster space. This paper addresses unsupervised learning of 2-way clusters. It defines a mixture model that allows 2-way cluster assignment and describes a variant of generalized k -means for learning such a model. We demonstrate applicability to microbial 16S rDNA sequencing data from the Human Vaginal Microbiome Project.

  15. 2-Way k-Means as a Model for Microbiome Samples

    PubMed Central

    2017-01-01

    Motivation. Microbiome sequencing allows defining clusters of samples with shared composition. However, this paradigm poorly accounts for samples whose composition is a mixture of cluster-characterizing ones and which therefore lie in between them in the cluster space. This paper addresses unsupervised learning of 2-way clusters. It defines a mixture model that allows 2-way cluster assignment and describes a variant of generalized k-means for learning such a model. We demonstrate applicability to microbial 16S rDNA sequencing data from the Human Vaginal Microbiome Project. PMID:29177026

  16. On aggregation in CA models in biology

    NASA Astrophysics Data System (ADS)

    Alber, Mark S.; Kiskowski, Audi

    2001-12-01

    Aggregation of randomly distributed particles into clusters of aligned particles is modeled using a cellular automata (CA) approach. The CA model accounts for interactions between more than one type of particle, in which pressures for angular alignment with neighbors compete with pressures for grouping by cell type. In the case of only one particle type clusters tend to unite into one big cluster. In the case of several types of particles the dynamics of clusters is more complicated and for specific choices of parameters particle sorting occurs simultaneously with the formation of clusters of aligned particles.

  17. On the multi-scale description of micro-structured fluids composed of aggregating rods

    NASA Astrophysics Data System (ADS)

    Perez, Marta; Scheuer, Adrien; Abisset-Chavanne, Emmanuelle; Ammar, Amine; Chinesta, Francisco; Keunings, Roland

    2018-05-01

    When addressing the flow of concentrated suspensions composed of rods, dense clusters are observed. Thus, the adequate modelling and simulation of such a flow requires addressing the kinematics of these dense clusters and their impact on the flow in which they are immersed. In a former work, we addressed a first modelling framework of these clusters, assumed so dense that they were considered rigid and their kinematics (flow-induced rotation) were totally defined by a symmetric tensor c with unit trace representing the cluster conformation. Then, the rigid nature of the clusters was relaxed, assuming them deformable, and a model giving the evolution of both the cluster shape and its microstructural orientation descriptor (the so-called shape and orientation tensors) was proposed. This paper compares the predictions coming from those models with finer-scale discrete simulations inspired from molecular dynamics modelling.

  18. Focusing cosmic telescopes: systematics of strong lens modeling

    NASA Astrophysics Data System (ADS)

    Johnson, Traci Lin; Sharon, Keren q.

    2018-01-01

    The use of strong gravitational lensing by galaxy clusters has become a popular method for studying the high redshift universe. While diverse in computational methods, lens modeling techniques have grasped the means for determining statistical errors on cluster masses and magnifications. However, the systematic errors have yet to be quantified, arising from the number of constraints, availablity of spectroscopic redshifts, and various types of image configurations. I will be presenting my dissertation work on quantifying systematic errors in parametric strong lensing techniques. I have participated in the Hubble Frontier Fields lens model comparison project, using simulated clusters to compare the accuracy of various modeling techniques. I have extended this project to understanding how changing the quantity of constraints affects the mass and magnification. I will also present my recent work extending these studies to clusters in the Outer Rim Simulation. These clusters are typical of the clusters found in wide-field surveys, in mass and lensing cross-section. These clusters have fewer constraints than the HFF clusters and thus, are more susceptible to systematic errors. With the wealth of strong lensing clusters discovered in surveys such as SDSS, SPT, DES, and in the future, LSST, this work will be influential in guiding the lens modeling efforts and follow-up spectroscopic campaigns.

  19. Topic modeling for cluster analysis of large biological and medical datasets

    PubMed Central

    2014-01-01

    Background The big data moniker is nowhere better deserved than to describe the ever-increasing prodigiousness and complexity of biological and medical datasets. New methods are needed to generate and test hypotheses, foster biological interpretation, and build validated predictors. Although multivariate techniques such as cluster analysis may allow researchers to identify groups, or clusters, of related variables, the accuracies and effectiveness of traditional clustering methods diminish for large and hyper dimensional datasets. Topic modeling is an active research field in machine learning and has been mainly used as an analytical tool to structure large textual corpora for data mining. Its ability to reduce high dimensionality to a small number of latent variables makes it suitable as a means for clustering or overcoming clustering difficulties in large biological and medical datasets. Results In this study, three topic model-derived clustering methods, highest probable topic assignment, feature selection and feature extraction, are proposed and tested on the cluster analysis of three large datasets: Salmonella pulsed-field gel electrophoresis (PFGE) dataset, lung cancer dataset, and breast cancer dataset, which represent various types of large biological or medical datasets. All three various methods are shown to improve the efficacy/effectiveness of clustering results on the three datasets in comparison to traditional methods. A preferable cluster analysis method emerged for each of the three datasets on the basis of replicating known biological truths. Conclusion Topic modeling could be advantageously applied to the large datasets of biological or medical research. The three proposed topic model-derived clustering methods, highest probable topic assignment, feature selection and feature extraction, yield clustering improvements for the three different data types. Clusters more efficaciously represent truthful groupings and subgroupings in the data than traditional methods, suggesting that topic model-based methods could provide an analytic advancement in the analysis of large biological or medical datasets. PMID:25350106

  20. Topic modeling for cluster analysis of large biological and medical datasets.

    PubMed

    Zhao, Weizhong; Zou, Wen; Chen, James J

    2014-01-01

    The big data moniker is nowhere better deserved than to describe the ever-increasing prodigiousness and complexity of biological and medical datasets. New methods are needed to generate and test hypotheses, foster biological interpretation, and build validated predictors. Although multivariate techniques such as cluster analysis may allow researchers to identify groups, or clusters, of related variables, the accuracies and effectiveness of traditional clustering methods diminish for large and hyper dimensional datasets. Topic modeling is an active research field in machine learning and has been mainly used as an analytical tool to structure large textual corpora for data mining. Its ability to reduce high dimensionality to a small number of latent variables makes it suitable as a means for clustering or overcoming clustering difficulties in large biological and medical datasets. In this study, three topic model-derived clustering methods, highest probable topic assignment, feature selection and feature extraction, are proposed and tested on the cluster analysis of three large datasets: Salmonella pulsed-field gel electrophoresis (PFGE) dataset, lung cancer dataset, and breast cancer dataset, which represent various types of large biological or medical datasets. All three various methods are shown to improve the efficacy/effectiveness of clustering results on the three datasets in comparison to traditional methods. A preferable cluster analysis method emerged for each of the three datasets on the basis of replicating known biological truths. Topic modeling could be advantageously applied to the large datasets of biological or medical research. The three proposed topic model-derived clustering methods, highest probable topic assignment, feature selection and feature extraction, yield clustering improvements for the three different data types. Clusters more efficaciously represent truthful groupings and subgroupings in the data than traditional methods, suggesting that topic model-based methods could provide an analytic advancement in the analysis of large biological or medical datasets.

  1. How large are the consequences of covariate imbalance in cluster randomized trials: a simulation study with a continuous outcome and a binary covariate at the cluster level.

    PubMed

    Moerbeek, Mirjam; van Schie, Sander

    2016-07-11

    The number of clusters in a cluster randomized trial is often low. It is therefore likely random assignment of clusters to treatment conditions results in covariate imbalance. There are no studies that quantify the consequences of covariate imbalance in cluster randomized trials on parameter and standard error bias and on power to detect treatment effects. The consequences of covariance imbalance in unadjusted and adjusted linear mixed models are investigated by means of a simulation study. The factors in this study are the degree of imbalance, the covariate effect size, the cluster size and the intraclass correlation coefficient. The covariate is binary and measured at the cluster level; the outcome is continuous and measured at the individual level. The results show covariate imbalance results in negligible parameter bias and small standard error bias in adjusted linear mixed models. Ignoring the possibility of covariate imbalance while calculating the sample size at the cluster level may result in a loss in power of at most 25 % in the adjusted linear mixed model. The results are more severe for the unadjusted linear mixed model: parameter biases up to 100 % and standard error biases up to 200 % may be observed. Power levels based on the unadjusted linear mixed model are often too low. The consequences are most severe for large clusters and/or small intraclass correlation coefficients since then the required number of clusters to achieve a desired power level is smallest. The possibility of covariate imbalance should be taken into account while calculating the sample size of a cluster randomized trial. Otherwise more sophisticated methods to randomize clusters to treatments should be used, such as stratification or balance algorithms. All relevant covariates should be carefully identified, be actually measured and included in the statistical model to avoid severe levels of parameter and standard error bias and insufficient power levels.

  2. Galaxy cluster lensing masses in modified lensing potentials

    DOE PAGES

    Barreira, Alexandre; Li, Baojiu; Jennings, Elise; ...

    2015-10-28

    In this study, we determine the concentration–mass relation of 19 X-ray selected galaxy clusters from the Cluster Lensing and Supernova Survey with Hubble survey in theories of gravity that directly modify the lensing potential. We model the clusters as Navarro–Frenk–White haloes and fit their lensing signal, in the Cubic Galileon and Nonlocal gravity models, to the lensing convergence profiles of the clusters. We discuss a number of important issues that need to be taken into account, associated with the use of non-parametric and parametric lensing methods, as well as assumptions about the background cosmology. Our results show that the concentrationmore » and mass estimates in the modified gravity models are, within the error bars, the same as in Λ cold dark matter. This result demonstrates that, for the Nonlocal model, the modifications to gravity are too weak at the cluster redshifts, and for the Galileon model, the screening mechanism is very efficient inside the cluster radius. However, at distances ~ [2–20] Mpc/h from the cluster centre, we find that the surrounding force profiles are enhanced by ~ 20–40% in the Cubic Galileon model. This has an impact on dynamical mass estimates, which means that tests of gravity based on comparisons between lensing and dynamical masses can also be applied to the Cubic Galileon model.« less

  3. Conditions for the Evolution of Gene Clusters in Bacterial Genomes

    PubMed Central

    Ballouz, Sara; Francis, Andrew R.; Lan, Ruiting; Tanaka, Mark M.

    2010-01-01

    Genes encoding proteins in a common pathway are often found near each other along bacterial chromosomes. Several explanations have been proposed to account for the evolution of these structures. For instance, natural selection may directly favour gene clusters through a variety of mechanisms, such as increased efficiency of coregulation. An alternative and controversial hypothesis is the selfish operon model, which asserts that clustered arrangements of genes are more easily transferred to other species, thus improving the prospects for survival of the cluster. According to another hypothesis (the persistence model), genes that are in close proximity are less likely to be disrupted by deletions. Here we develop computational models to study the conditions under which gene clusters can evolve and persist. First, we examine the selfish operon model by re-implementing the simulation and running it under a wide range of conditions. Second, we introduce and study a Moran process in which there is natural selection for gene clustering and rearrangement occurs by genome inversion events. Finally, we develop and study a model that includes selection and inversion, which tracks the occurrence and fixation of rearrangements. Surprisingly, gene clusters fail to evolve under a wide range of conditions. Factors that promote the evolution of gene clusters include a low number of genes in the pathway, a high population size, and in the case of the selfish operon model, a high horizontal transfer rate. The computational analysis here has shown that the evolution of gene clusters can occur under both direct and indirect selection as long as certain conditions hold. Under these conditions the selfish operon model is still viable as an explanation for the evolution of gene clusters. PMID:20168992

  4. Fast Constrained Spectral Clustering and Cluster Ensemble with Random Projection

    PubMed Central

    Liu, Wenfen

    2017-01-01

    Constrained spectral clustering (CSC) method can greatly improve the clustering accuracy with the incorporation of constraint information into spectral clustering and thus has been paid academic attention widely. In this paper, we propose a fast CSC algorithm via encoding landmark-based graph construction into a new CSC model and applying random sampling to decrease the data size after spectral embedding. Compared with the original model, the new algorithm has the similar results with the increase of its model size asymptotically; compared with the most efficient CSC algorithm known, the new algorithm runs faster and has a wider range of suitable data sets. Meanwhile, a scalable semisupervised cluster ensemble algorithm is also proposed via the combination of our fast CSC algorithm and dimensionality reduction with random projection in the process of spectral ensemble clustering. We demonstrate by presenting theoretical analysis and empirical results that the new cluster ensemble algorithm has advantages in terms of efficiency and effectiveness. Furthermore, the approximate preservation of random projection in clustering accuracy proved in the stage of consensus clustering is also suitable for the weighted k-means clustering and thus gives the theoretical guarantee to this special kind of k-means clustering where each point has its corresponding weight. PMID:29312447

  5. A self-contamination model for the formation of globular star clusters

    NASA Astrophysics Data System (ADS)

    Brown, James Howard

    Described here is a model of globular cluster formation which allows the self contamination of the cluster by an earlier generation of massive stars. It is first shown that such self-contamination naturally produces an Fe/H in the range from -2.5 to -1.0, precisely the same range observed in the metal poor (halo) globular clusters; this also seems to require that the disk clusters started with a substantial initial metallicity. To minimize the problem of creating homogeneous globular clusters, the second (currently observed) generation of stars is assumed to form in the expanding supershell around the first generation stars. Both numerical and analytic models are used to address this problem. The most important result of this investigation was that the late evolution of the supershell is the most important, and that this phase of the evolution is dominated by the external medium in which the cloud is embedded. This result and the requirement that only the most tightly bound systems may become globular clusters lead to the conclusion that a globular cluster with the mass and binding energy typically observed can be formed at star formation efficiences as low as 10-20 percent. Furthermore, self contamination requires that the typical Fe/H of a bound system be about -1.6, independent of the free parameters of the model, allowing the clusters and field stars to form with different metallicity distributions in spite of their forming at the same time. Since the formation of globular clusters in this model is tied to the external pressure, the halo globular cluster masses and distribution can be used as probes of the early galactic structure. In particular, this model requires an increase in the typical globular cluster mass as one moves out from the galactic center; the masses of the halo clusters are examined, and they show considerable evidence for such a gradient. Based on a pressure distribution derived from this data, the effect of the galactic tidal field on the model is also investigated using an N-body simulation.

  6. The formation of magnetic silicide Fe3Si clusters during ion implantation

    NASA Astrophysics Data System (ADS)

    Balakirev, N.; Zhikharev, V.; Gumarov, G.

    2014-05-01

    A simple two-dimensional model of the formation of magnetic silicide Fe3Si clusters during high-dose Fe ion implantation into silicon has been proposed and the cluster growth process has been computer simulated. The model takes into account the interaction between the cluster magnetization and magnetic moments of Fe atoms random walking in the implanted layer. If the clusters are formed in the presence of the external magnetic field parallel to the implanted layer, the model predicts the elongation of the growing cluster in the field direction. It has been proposed that the cluster elongation results in the uniaxial magnetic anisotropy in the plane of the implanted layer, which is observed in iron silicide films ion-beam synthesized in the external magnetic field.

  7. Kinetics of carbon clustering in detonation of high explosives: Does theory match experiment?

    NASA Astrophysics Data System (ADS)

    Velizhanin, Kirill; Watkins, Erik; Dattelbaum, Dana; Gustavsen, Richard; Aslam, Tariq; Podlesak, David; Firestone, Millicent; Huber, Rachel; Ringstrand, Bryan; Willey, Trevor; Bagge-Hansen, Michael; Hodgin, Ralph; Lauderbach, Lisa; van Buuren, Tony; Sinclair, Nicholas; Rigg, Paulo; Seifert, Soenke; Gog, Thomas

    2017-06-01

    Chemical reactions in detonation of carbon-rich high explosives yield carbon clusters as major constituents of the products. Efforts to model carbon clustering as a diffusion-limited irreversible coagulation of carbon clusters go back to the seminal paper by Shaw and Johnson. However, first direct experimental observations of the kinetics of clustering yielded cluster growth one to two orders of magnitude slower than theoretical predictions. Multiple efforts were undertaken to test and revise the basic assumptions of the model in order to achieve better agreement with experiment. We discuss our very recent direct experimental observations of carbon clustering dynamics and demonstrate that these new results are in much better agreement with the modified Shaw-Johnson model. The implications of this much better agreement on our present understanding of detonation carbon clustering processes and possible ways to increase the agreement between theory and experiment even further are discussed.

  8. Low-temperature transonic cooling flows in galaxy clusters

    NASA Technical Reports Server (NTRS)

    Sulkanen, Martin E.; Burns, Jack O.; Norman, Michael L.

    1989-01-01

    Calculations are presented which demonstrate that cooling flow models with large sonic radii may be consistent with observed cluster gas properties. It is found that plausible cluster parameters and cooling flow mass accretion rates can produce sonic radii of 10-20 kpc for sonic point temperatures of 1-3 x 10 to the 6th K. The numerical calculations match these cooling flows to hydrostatic atmosphere solutions for the cluster gas beyond the cooling flow region. The cooling flows produce no appreciable 'holes' in the surface brightness toward the cluster center, and the model can be made to match the observed X-ray surface brightness of three clusters in which cooling flows had been believed to be absent. It is suggested that clusters with low velocity dispersion may be the natural location for such 'cool' cooling flows, and fits of these models to the X-ray surface brightness profiles for three clusters are presented.

  9. Elastic K-means using posterior probability.

    PubMed

    Zheng, Aihua; Jiang, Bo; Li, Yan; Zhang, Xuehan; Ding, Chris

    2017-01-01

    The widely used K-means clustering is a hard clustering algorithm. Here we propose a Elastic K-means clustering model (EKM) using posterior probability with soft capability where each data point can belong to multiple clusters fractionally and show the benefit of proposed Elastic K-means. Furthermore, in many applications, besides vector attributes information, pairwise relations (graph information) are also available. Thus we integrate EKM with Normalized Cut graph clustering into a single clustering formulation. Finally, we provide several useful matrix inequalities which are useful for matrix formulations of learning models. Based on these results, we prove the correctness and the convergence of EKM algorithms. Experimental results on six benchmark datasets demonstrate the effectiveness of proposed EKM and its integrated model.

  10. Nuclear quantum effects in water clusters: the role of the molecular flexibility.

    PubMed

    González, Briesta S; Noya, Eva G; Vega, Carlos; Sesé, Luis M

    2010-02-25

    With the objective of establishing the importance of water flexibility in empirical models which explicitly include nuclear quantum effects, we have carried out path integral Monte Carlo simulations in water clusters with up to seven molecules. Two recently developed models have been used for comparison: the rigid TIP4PQ/2005 and the flexible q-TIP4P/F models, both inspired by the rigid TIP4P/2005 model. To obtain a starting configuration for our simulations, we have located the global minima for the rigid TIP4P/2005 and TIP4PQ/2005 models and for the flexible q-TIP4P/F model. All the structures are similar to those predicted by the rigid TIP4P potential showing that the charge distribution mainly determines the global minimum structure. For the flexible q-TIP4P/F model, we have studied the geometrical distortion upon isotopic substitution by studying tritiated water clusters. Our results show that tritiated water clusters exhibit an r(OT) distance shorter than the r(OH) distance in water clusters, not significant changes in the Phi(HOH) angle, and a lower average dipole moment than water clusters. We have also carried out classical simulations with the rigid TIP4PQ/2005 model showing that the rotational kinetic energy is greatly affected by quantum effects, but the translational kinetic energy is only slightly modified. The potential energy is also noticeably higher than in classical simulations. Finally, as a concluding remark, we have calculated the formation energies of water clusters using both models, finding that the formation energies predicted by the rigid TIP4PQ/2005 model are lower by roughly 0.6 kcal/mol than those of the flexible q-TIP4P/F model for clusters of moderate size, the origin of this difference coming mainly from the geometrical distortion of the water molecule in the clusters that causes an increase in the intramolecular potential energy.

  11. Comparison of Cluster, Slab, and Analytic Potential Models for the Dimethyl Methylphosphonate (DMMP)/TiO2 (110) Intermolecular Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Li; Tunega, Daniel; Xu, Lai

    2013-08-29

    In a previous study (J. Phys. Chem. C 2011, 115, 12403) cluster models for the TiO2 rutile (110) surface and MP2 calculations were used to develop an analytic potential energy function for dimethyl methylphosphonate (DMMP) interacting with this surface. In the work presented here, this analytic potential and MP2 cluster models are compared with DFT "slab" calculations for DMMP interacting with the TiO2 (110) surface and with DFT cluster models for the TiO2 (110) surface. The DFT slab calculations were performed with the PW91 and PBE functionals. The analytic potential gives DMMP/ TiO2 (110) potential energy curves in excellent agreementmore » with those obtained from the slab calculations. The cluster models for the TiO2 (110) surface, used for the MP2 calculations, were extended to DFT calculations with the B3LYP, PW91, and PBE functional. These DFT calculations do not give DMMP/TiO2 (110) interaction energies which agree with those from the DFT slab calculations. Analyses of the wave functions for these cluster models show that they do not accurately represent the HOMO and LUMO for the surface, which should be 2p and 3d orbitals, respectively, and the models also do not give an accurate band gap. The MP2 cluster models do not accurately represent the LUMO and that they give accurate DMMP/TiO2 (110) interaction energies is apparently fortuitous, arising from their highly inaccurate band gaps. Accurate cluster models, consisting of 7, 10, and 15 Ti-atoms and which have the correct HOMO and LUMO properties, are proposed. The work presented here illustrates the care that must be taken in "constructing" cluster models which accurately model surfaces.« less

  12. Adapted managerial mathematical model to study the functions and interactions between enterprises in high-tech cluster

    NASA Astrophysics Data System (ADS)

    Anguelov, Kiril P.; Kaynakchieva, Vesela G.

    2017-12-01

    The aim of the current study is to research and analyze Adapted managerial mathematical model to study the functions and interactions between enterprises in high-tech cluster, and his approbation in given high-tech cluster; to create high-tech cluster, taking into account the impact of relationships between individual units in the cluster-Leading Enterprises, network of Enterprises subcontractors, economic infrastructure.

  13. The stable clustering ansatz, consistency relations and gravity dual of large-scale structure

    NASA Astrophysics Data System (ADS)

    Munshi, Dipak

    2018-02-01

    Gravitational clustering in the nonlinear regime remains poorly understood. Gravity dual of gravitational clustering has recently been proposed as a means to study the nonlinear regime. The stable clustering ansatz remains a key ingredient to our understanding of gravitational clustering in the highly nonlinear regime. We study certain aspects of violation of the stable clustering ansatz in the gravity dual of Large Scale Structure (LSS). We extend the recent studies of gravitational clustering using AdS gravity dual to take into account possible departure from the stable clustering ansatz and to arbitrary dimensions. Next, we extend the recently introduced consistency relations to arbitrary dimensions. We use the consistency relations to test the commonly used models of gravitational clustering including the halo models and hierarchical ansätze. In particular we establish a tower of consistency relations for the hierarchical amplitudes: Q, Ra, Rb, Sa,Sb,Sc etc. as a functions of the scaled peculiar velocity h. We also study the variants of popular halo models in this context. In contrast to recent claims, none of these models, in their simplest incarnation, seem to satisfy the consistency relations in the soft limit.

  14. Recommendations for choosing an analysis method that controls Type I error for unbalanced cluster sample designs with Gaussian outcomes.

    PubMed

    Johnson, Jacqueline L; Kreidler, Sarah M; Catellier, Diane J; Murray, David M; Muller, Keith E; Glueck, Deborah H

    2015-11-30

    We used theoretical and simulation-based approaches to study Type I error rates for one-stage and two-stage analytic methods for cluster-randomized designs. The one-stage approach uses the observed data as outcomes and accounts for within-cluster correlation using a general linear mixed model. The two-stage model uses the cluster specific means as the outcomes in a general linear univariate model. We demonstrate analytically that both one-stage and two-stage models achieve exact Type I error rates when cluster sizes are equal. With unbalanced data, an exact size α test does not exist, and Type I error inflation may occur. Via simulation, we compare the Type I error rates for four one-stage and six two-stage hypothesis testing approaches for unbalanced data. With unbalanced data, the two-stage model, weighted by the inverse of the estimated theoretical variance of the cluster means, and with variance constrained to be positive, provided the best Type I error control for studies having at least six clusters per arm. The one-stage model with Kenward-Roger degrees of freedom and unconstrained variance performed well for studies having at least 14 clusters per arm. The popular analytic method of using a one-stage model with denominator degrees of freedom appropriate for balanced data performed poorly for small sample sizes and low intracluster correlation. Because small sample sizes and low intracluster correlation are common features of cluster-randomized trials, the Kenward-Roger method is the preferred one-stage approach. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Recent developments of the quantum chemical cluster approach for modeling enzyme reactions.

    PubMed

    Siegbahn, Per E M; Himo, Fahmi

    2009-06-01

    The quantum chemical cluster approach for modeling enzyme reactions is reviewed. Recent applications have used cluster models much larger than before which have given new modeling insights. One important and rather surprising feature is the fast convergence with cluster size of the energetics of the reactions. Even for reactions with significant charge separation it has in some cases been possible to obtain full convergence in the sense that dielectric cavity effects from outside the cluster do not contribute to any significant extent. Direct comparisons between quantum mechanics (QM)-only and QM/molecular mechanics (MM) calculations for quite large clusters in a case where the results differ significantly have shown that care has to be taken when using the QM/MM approach where there is strong charge polarization. Insights from the methods used, generally hybrid density functional methods, have also led to possibilities to give reasonable error limits for the results. Examples are finally given from the most extensive study using the cluster model, the one of oxygen formation at the oxygen-evolving complex in photosystem II.

  16. A modified procedure for mixture-model clustering of regional geochemical data

    USGS Publications Warehouse

    Ellefsen, Karl J.; Smith, David B.; Horton, John D.

    2014-01-01

    A modified procedure is proposed for mixture-model clustering of regional-scale geochemical data. The key modification is the robust principal component transformation of the isometric log-ratio transforms of the element concentrations. This principal component transformation and the associated dimension reduction are applied before the data are clustered. The principal advantage of this modification is that it significantly improves the stability of the clustering. The principal disadvantage is that it requires subjective selection of the number of clusters and the number of principal components. To evaluate the efficacy of this modified procedure, it is applied to soil geochemical data that comprise 959 samples from the state of Colorado (USA) for which the concentrations of 44 elements are measured. The distributions of element concentrations that are derived from the mixture model and from the field samples are similar, indicating that the mixture model is a suitable representation of the transformed geochemical data. Each cluster and the associated distributions of the element concentrations are related to specific geologic and anthropogenic features. In this way, mixture model clustering facilitates interpretation of the regional geochemical data.

  17. Towards accurate modelling of galaxy clustering on small scales: testing the standard ΛCDM + halo model

    NASA Astrophysics Data System (ADS)

    Sinha, Manodeep; Berlind, Andreas A.; McBride, Cameron K.; Scoccimarro, Roman; Piscionere, Jennifer A.; Wibking, Benjamin D.

    2018-07-01

    Interpreting the small-scale clustering of galaxies with halo models can elucidate the connection between galaxies and dark matter haloes. Unfortunately, the modelling is typically not sufficiently accurate for ruling out models statistically. It is thus difficult to use the information encoded in small scales to test cosmological models or probe subtle features of the galaxy-halo connection. In this paper, we attempt to push halo modelling into the `accurate' regime with a fully numerical mock-based methodology and careful treatment of statistical and systematic errors. With our forward-modelling approach, we can incorporate clustering statistics beyond the traditional two-point statistics. We use this modelling methodology to test the standard Λ cold dark matter (ΛCDM) + halo model against the clustering of Sloan Digital Sky Survey (SDSS) seventh data release (DR7) galaxies. Specifically, we use the projected correlation function, group multiplicity function, and galaxy number density as constraints. We find that while the model fits each statistic separately, it struggles to fit them simultaneously. Adding group statistics leads to a more stringent test of the model and significantly tighter constraints on model parameters. We explore the impact of varying the adopted halo definition and cosmological model and find that changing the cosmology makes a significant difference. The most successful model we tried (Planck cosmology with Mvir haloes) matches the clustering of low-luminosity galaxies, but exhibits a 2.3σ tension with the clustering of luminous galaxies, thus providing evidence that the `standard' halo model needs to be extended. This work opens the door to adding interesting freedom to the halo model and including additional clustering statistics as constraints.

  18. Community detection using Kernel Spectral Clustering with memory

    NASA Astrophysics Data System (ADS)

    Langone, Rocco; Suykens, Johan A. K.

    2013-02-01

    This work is related to the problem of community detection in dynamic scenarios, which for instance arises in the segmentation of moving objects, clustering of telephone traffic data, time-series micro-array data etc. A desirable feature of a clustering model which has to capture the evolution of communities over time is the temporal smoothness between clusters in successive time-steps. In this way the model is able to track the long-term trend and in the same time it smooths out short-term variation due to noise. We use the Kernel Spectral Clustering with Memory effect (MKSC) which allows to predict cluster memberships of new nodes via out-of-sample extension and has a proper model selection scheme. It is based on a constrained optimization formulation typical of Least Squares Support Vector Machines (LS-SVM), where the objective function is designed to explicitly incorporate temporal smoothness as a valid prior knowledge. The latter, in fact, allows the model to cluster the current data well and to be consistent with the recent history. Here we propose a generalization of the MKSC model with an arbitrary memory, not only one time-step in the past. The experiments conducted on toy problems confirm our expectations: the more memory we add to the model, the smoother over time are the clustering results. We also compare with the Evolutionary Spectral Clustering (ESC) algorithm which is a state-of-the art method, and we obtain comparable or better results.

  19. State estimation and prediction using clustered particle filters.

    PubMed

    Lee, Yoonsang; Majda, Andrew J

    2016-12-20

    Particle filtering is an essential tool to improve uncertain model predictions by incorporating noisy observational data from complex systems including non-Gaussian features. A class of particle filters, clustered particle filters, is introduced for high-dimensional nonlinear systems, which uses relatively few particles compared with the standard particle filter. The clustered particle filter captures non-Gaussian features of the true signal, which are typical in complex nonlinear dynamical systems such as geophysical systems. The method is also robust in the difficult regime of high-quality sparse and infrequent observations. The key features of the clustered particle filtering are coarse-grained localization through the clustering of the state variables and particle adjustment to stabilize the method; each observation affects only neighbor state variables through clustering and particles are adjusted to prevent particle collapse due to high-quality observations. The clustered particle filter is tested for the 40-dimensional Lorenz 96 model with several dynamical regimes including strongly non-Gaussian statistics. The clustered particle filter shows robust skill in both achieving accurate filter results and capturing non-Gaussian statistics of the true signal. It is further extended to multiscale data assimilation, which provides the large-scale estimation by combining a cheap reduced-order forecast model and mixed observations of the large- and small-scale variables. This approach enables the use of a larger number of particles due to the computational savings in the forecast model. The multiscale clustered particle filter is tested for one-dimensional dispersive wave turbulence using a forecast model with model errors.

  20. State estimation and prediction using clustered particle filters

    PubMed Central

    Lee, Yoonsang; Majda, Andrew J.

    2016-01-01

    Particle filtering is an essential tool to improve uncertain model predictions by incorporating noisy observational data from complex systems including non-Gaussian features. A class of particle filters, clustered particle filters, is introduced for high-dimensional nonlinear systems, which uses relatively few particles compared with the standard particle filter. The clustered particle filter captures non-Gaussian features of the true signal, which are typical in complex nonlinear dynamical systems such as geophysical systems. The method is also robust in the difficult regime of high-quality sparse and infrequent observations. The key features of the clustered particle filtering are coarse-grained localization through the clustering of the state variables and particle adjustment to stabilize the method; each observation affects only neighbor state variables through clustering and particles are adjusted to prevent particle collapse due to high-quality observations. The clustered particle filter is tested for the 40-dimensional Lorenz 96 model with several dynamical regimes including strongly non-Gaussian statistics. The clustered particle filter shows robust skill in both achieving accurate filter results and capturing non-Gaussian statistics of the true signal. It is further extended to multiscale data assimilation, which provides the large-scale estimation by combining a cheap reduced-order forecast model and mixed observations of the large- and small-scale variables. This approach enables the use of a larger number of particles due to the computational savings in the forecast model. The multiscale clustered particle filter is tested for one-dimensional dispersive wave turbulence using a forecast model with model errors. PMID:27930332

  1. STRUCTURAL PARAMETERS FOR 10 HALO GLOBULAR CLUSTERS IN M33

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Jun, E-mail: majun@nao.cas.cn

    2015-05-15

    In this paper, we present the properties of 10 halo globular clusters (GCs) with luminosities L ≃ 5–7 × 10{sup 5} L{sub ⊙} in the Local Group galaxy M33 using images from the Hubble Space Telescope WFPC2 in the F555W and F814W bands. We obtained the ellipticities, position angles, and surface brightness profiles for each GC. In general, the ellipticities of the M33 sample clusters are similar to those of the M31 clusters. The structural and dynamical parameters are derived by fitting the profiles to three different models combined with mass-to-light ratios (M/L values) from population-synthesis models. The structural parametersmore » include core radii, concentration, half-light radii, and central surface brightness. The dynamical parameters include the integrated cluster mass, integrated binding energy, central surface mass density, and predicted line of sight velocity dispersion at the cluster center. The velocity dispersions of the four clusters predicted here agree well with the observed dispersions by Larsen et al. The results here showed that the majority of the sample halo GCs are better fitted by both the King model and the Wilson model than the Sérsic model. In general, the properties of the clusters in M33, M31, and the Milky Way fall in the same regions of parameter spaces. The tight correlations of cluster properties indicate a “fundamental plane” for clusters, which reflects some universal physical conditions and processes operating at the epoch of cluster formation.« less

  2. Consistency of Cluster Analysis for Cognitive Diagnosis: The Reduced Reparameterized Unified Model and the General Diagnostic Model.

    PubMed

    Chiu, Chia-Yi; Köhn, Hans-Friedrich

    2016-09-01

    The asymptotic classification theory of cognitive diagnosis (ACTCD) provided the theoretical foundation for using clustering methods that do not rely on a parametric statistical model for assigning examinees to proficiency classes. Like general diagnostic classification models, clustering methods can be useful in situations where the true diagnostic classification model (DCM) underlying the data is unknown and possibly misspecified, or the items of a test conform to a mix of multiple DCMs. Clustering methods can also be an option when fitting advanced and complex DCMs encounters computational difficulties. These can range from the use of excessive CPU times to plain computational infeasibility. However, the propositions of the ACTCD have only been proven for the Deterministic Input Noisy Output "AND" gate (DINA) model and the Deterministic Input Noisy Output "OR" gate (DINO) model. For other DCMs, there does not exist a theoretical justification to use clustering for assigning examinees to proficiency classes. But if clustering is to be used legitimately, then the ACTCD must cover a larger number of DCMs than just the DINA model and the DINO model. Thus, the purpose of this article is to prove the theoretical propositions of the ACTCD for two other important DCMs, the Reduced Reparameterized Unified Model and the General Diagnostic Model.

  3. Bootstrap-based methods for estimating standard errors in Cox's regression analyses of clustered event times.

    PubMed

    Xiao, Yongling; Abrahamowicz, Michal

    2010-03-30

    We propose two bootstrap-based methods to correct the standard errors (SEs) from Cox's model for within-cluster correlation of right-censored event times. The cluster-bootstrap method resamples, with replacement, only the clusters, whereas the two-step bootstrap method resamples (i) the clusters, and (ii) individuals within each selected cluster, with replacement. In simulations, we evaluate both methods and compare them with the existing robust variance estimator and the shared gamma frailty model, which are available in statistical software packages. We simulate clustered event time data, with latent cluster-level random effects, which are ignored in the conventional Cox's model. For cluster-level covariates, both proposed bootstrap methods yield accurate SEs, and type I error rates, and acceptable coverage rates, regardless of the true random effects distribution, and avoid serious variance under-estimation by conventional Cox-based standard errors. However, the two-step bootstrap method over-estimates the variance for individual-level covariates. We also apply the proposed bootstrap methods to obtain confidence bands around flexible estimates of time-dependent effects in a real-life analysis of cluster event times.

  4. Multiple co-clustering based on nonparametric mixture models with heterogeneous marginal distributions

    PubMed Central

    Yoshimoto, Junichiro; Shimizu, Yu; Okada, Go; Takamura, Masahiro; Okamoto, Yasumasa; Yamawaki, Shigeto; Doya, Kenji

    2017-01-01

    We propose a novel method for multiple clustering, which is useful for analysis of high-dimensional data containing heterogeneous types of features. Our method is based on nonparametric Bayesian mixture models in which features are automatically partitioned (into views) for each clustering solution. This feature partition works as feature selection for a particular clustering solution, which screens out irrelevant features. To make our method applicable to high-dimensional data, a co-clustering structure is newly introduced for each view. Further, the outstanding novelty of our method is that we simultaneously model different distribution families, such as Gaussian, Poisson, and multinomial distributions in each cluster block, which widens areas of application to real data. We apply the proposed method to synthetic and real data, and show that our method outperforms other multiple clustering methods both in recovering true cluster structures and in computation time. Finally, we apply our method to a depression dataset with no true cluster structure available, from which useful inferences are drawn about possible clustering structures of the data. PMID:29049392

  5. Version 4.0 of code Java for 3D simulation of the CCA model

    NASA Astrophysics Data System (ADS)

    Fan, Linyu; Liao, Jianwei; Zuo, Junsen; Zhang, Kebo; Li, Chao; Xiong, Hailing

    2018-07-01

    This paper presents a new version Java code for the three-dimensional simulation of Cluster-Cluster Aggregation (CCA) model to replace the previous version. Many redundant traverses of clusters-list in the program were totally avoided, so that the consumed simulation time is significantly reduced. In order to show the aggregation process in a more intuitive way, we have labeled different clusters with varied colors. Besides, a new function is added for outputting the particle's coordinates of aggregates in file to benefit coupling our model with other models.

  6. Formation and Assembly of Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    McMillan, Stephen

    The formation of stars and star clusters is a major unresolved problem in astrophysics. It is central to modeling stellar populations and understanding galaxy luminosity distributions in cosmological models. Young massive clusters are major components of starburst galaxies, while globular clusters are cornerstones of the cosmic distance scale and represent vital laboratories for studies of stellar dynamics and stellar evolution. Yet how these clusters form and how rapidly and efficiently they expel their natal gas remain unclear, as do the consequences of this gas expulsion for cluster structure and survival. Also unclear is how the properties of low-mass clusters, which form from small-scale instabilities in galactic disks and inform much of our understanding of cluster formation and star-formation efficiency, differ from those of more massive clusters, which probably formed in starburst events driven by fast accretion at high redshift, or colliding gas flows in merging galaxies. Modeling cluster formation requires simulating many simultaneous physical processes, placing stringent demands on both software and hardware. Simulations of galaxies evolving in cosmological contexts usually lack the numerical resolution to simulate star formation in detail. They do not include detailed treatments of important physical effects such as magnetic fields, radiation pressure, ionization, and supernova feedback. Simulations of smaller clusters include these effects, but fall far short of the mass of even single young globular clusters. With major advances in computing power and software, we can now directly address this problem. We propose to model the formation of massive star clusters by integrating the FLASH adaptive mesh refinement magnetohydrodynamics (MHD) code into the Astrophysical Multi-purpose Software Environment (AMUSE) framework, to work with existing stellar-dynamical and stellar evolution modules in AMUSE. All software will be freely distributed on-line, allowing open access to state-of- the-art simulation techniques within a modern, modular software environment. We will follow the gravitational collapse of 0.1-10 million-solar mass gas clouds through star formation and coalescence into a star cluster, modeling in detail the coupling of the gas and the newborn stars. We will study the effects of star formation by detecting accreting regions of gas in self-gravitating, turbulent, MHD, FLASH models that we will translate into collisional dynamical systems of stars modeled with an N-body code, coupled together in the AMUSE framework. Our FLASH models will include treatments of radiative transfer from the newly formed stars, including heating and radiative acceleration of the surrounding gas. Specific questions to be addressed are: (1) How efficiently does the gas in a star forming region form stars, how does this depend on mass, metallicity, and other parameters, and what terminates star formation? What observational predictions can be made to constrain our models? (2) How important are different mechanisms for driving turbulence and removing gas from a cluster: accretion, radiative feedback, and mechanical feedback? (3) How does the infant mortality rate of young clusters depend on the initial properties of the parent cloud? (4) What are the characteristic formation timescales of massive star clusters, and what observable imprints does the assembly process leave on their structure at an age of 10-20 Myr, when formation is essentially complete and many clusters can be observed? These studies are directly relevant to NASA missions at many electromagnetic wavelengths, including Chandra, GALEX, Hubble, and Spitzer. Each traces different aspects of cluster formation and evolution: X-rays trace supernovae, ultraviolet traces young stars, visible colors can distinguish between young blue stars and older red stars, and the infrared directly shows young embedded star clusters.

  7. Shape and dynamics of thermoregulating honey bee clusters.

    PubMed

    Sumpter, D J; Broomhead, D S

    2000-05-07

    A model of simple algorithmic "agents" acting in a discrete temperature field is used to investigate the movement of individuals in thermoregulating honey bee (Apis mellifera) clusters. Thermoregulation in over-wintering clusters is thought to be the result of individual bees attempting to regulate their own body temperatures. At ambient temperatures above 0( degrees )C, a clustering bee will move relative to its neighbours so as to put its local temperature within some ideal range. The proposed model incorporates this behaviour into an algorithm for bee agents moving on a two-dimensional lattice. Heat transport on the lattice is modelled by a discrete diffusion process. Computer simulation of this model demonstrates qualitative behaviour which agrees with that of real honey bee clusters. In particular, we observe the formation of both disc- and ring-like cluster shapes. The simulation also suggests that at lower ambient temperatures, clusters do not always have a stable shape but can oscillate between insulating rings of different sizes and densities. Copyright 2000 Academic Press.

  8. Combining Mixture Components for Clustering*

    PubMed Central

    Baudry, Jean-Patrick; Raftery, Adrian E.; Celeux, Gilles; Lo, Kenneth; Gottardo, Raphaël

    2010-01-01

    Model-based clustering consists of fitting a mixture model to data and identifying each cluster with one of its components. Multivariate normal distributions are typically used. The number of clusters is usually determined from the data, often using BIC. In practice, however, individual clusters can be poorly fitted by Gaussian distributions, and in that case model-based clustering tends to represent one non-Gaussian cluster by a mixture of two or more Gaussian distributions. If the number of mixture components is interpreted as the number of clusters, this can lead to overestimation of the number of clusters. This is because BIC selects the number of mixture components needed to provide a good approximation to the density, rather than the number of clusters as such. We propose first selecting the total number of Gaussian mixture components, K, using BIC and then combining them hierarchically according to an entropy criterion. This yields a unique soft clustering for each number of clusters less than or equal to K. These clusterings can be compared on substantive grounds, and we also describe an automatic way of selecting the number of clusters via a piecewise linear regression fit to the rescaled entropy plot. We illustrate the method with simulated data and a flow cytometry dataset. Supplemental Materials are available on the journal Web site and described at the end of the paper. PMID:20953302

  9. Network-based spatial clustering technique for exploring features in regional industry

    NASA Astrophysics Data System (ADS)

    Chou, Tien-Yin; Huang, Pi-Hui; Yang, Lung-Shih; Lin, Wen-Tzu

    2008-10-01

    In the past researches, industrial cluster mainly focused on single or particular industry and less on spatial industrial structure and mutual relations. Industrial cluster could generate three kinds of spillover effects, including knowledge, labor market pooling, and input sharing. In addition, industrial cluster indeed benefits industry development. To fully control the status and characteristics of district industrial cluster can facilitate to improve the competitive ascendancy of district industry. The related researches on industrial spatial cluster were of great significance for setting up industrial policies and promoting district economic development. In this study, an improved model, GeoSOM, that combines DBSCAN (Density-Based Spatial Clustering of Applications with Noise) and SOM (Self-Organizing Map) was developed for analyzing industrial cluster. Different from former distance-based algorithm for industrial cluster, the proposed GeoSOM model can calculate spatial characteristics between firms based on DBSCAN algorithm and evaluate the similarity between firms based on SOM clustering analysis. The demonstrative data sets, the manufacturers around Taichung County in Taiwan, were analyzed for verifying the practicability of the proposed model. The analyzed results indicate that GeoSOM is suitable for evaluating spatial industrial cluster.

  10. Observing Stellar Clusters in the Computer

    NASA Astrophysics Data System (ADS)

    Borch, A.; Spurzem, R.; Hurley, J.

    2006-08-01

    We present a new approach to combine direct N-body simulations to stellar population synthesis modeling in order to model the dynamical evolution and color evolution of globular clusters at the same time. This allows us to model the spectrum, colors and luminosities of each star in the simulated cluster. For this purpose the NBODY6++ code (Spurzem 1999) is used, which is a parallel version of the NBODY code. J. Hurley implemented simple recipes to follow the changes of stellar masses, radii, and luminosities due to stellar evolution into the NBODY6++ code (Hurley et al. 2001), in the sense that each simulation particle represents one star. These prescriptions cover all evolutionary phases and solar to globular cluster metallicities. We used the stellar parameters obtained by this stellar evolution routine and coupled them to the stellar library BaSeL 2.0 (Lejeune et al. 1997). As a first application we investigated the integrated broad band colors of simulated clusters. We modeled tidally disrupted globular clusters and compared the results with isolated globular clusters. Due to energy equipartition we expected a relative blueing of tidally disrupted clusters, because of the higher escape probability of red, low-mass stars. This behaviour we actually observe for concentrated globular clusters. The mass-to-light ratio of isolated clusters follows exactly a color-M/L correlation, similar as described in Bell and de Jong (2001) in the case of spiral galaxies. At variance to this correlation, in tidally disrupted clusters the M/L ratio becomes significantly lower at the time of cluster dissolution. Hence, for isolated clusters the behavior of the stellar population is not influenced by dynamical evolution, whereas the stellar population of tidally disrupted clusters is strongly influenced by dynamical effects.

  11. Nature of multiple-nucleus cluster galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merritt, D.

    1984-05-01

    In models for the evolution of galaxy clusters which include dynamical friction with the dark binding matter, the distribution of galaxies becomes more concentrated to the cluster center with time. In a cluster like Coma, this evolution could increase by a factor of approximately 3 the probability of finding a galaxy very close to the cluster center, without decreasing the typical velocity of such a galaxy significantly below the cluster mean. Such an enhancement is roughly what is needed to explain the large number of first-ranked cluster galaxies which are observed to have extra ''nuclei''; it is also consistent withmore » the high velocities typically measured for these ''nuclei.'' Unlike the cannibalism model, this model predicts that the majority of multiple-nucleus systems are transient phenomena, and not galaxies in the process of merging.« less

  12. Optimal Partitioning of a Data Set Based on the "p"-Median Model

    ERIC Educational Resources Information Center

    Brusco, Michael J.; Kohn, Hans-Friedrich

    2008-01-01

    Although the "K"-means algorithm for minimizing the within-cluster sums of squared deviations from cluster centroids is perhaps the most common method for applied cluster analyses, a variety of other criteria are available. The "p"-median model is an especially well-studied clustering problem that requires the selection of "p" objects to serve as…

  13. A Comprehensive Careers Cluster Curriculum Model. Health Occupations Cluster Curriculum Project and Health-Care Aide Curriculum Project.

    ERIC Educational Resources Information Center

    Bortz, Richard F.

    To prepare learning materials for health careers programs at the secondary level, the developmental phase of two curriculum projects--the Health Occupations Cluster Curriculum Project and Health-Care Aide Curriculum Project--utilized a model which incorporated a key factor analysis technique. Entitled "A Comprehensive Careers Cluster Curriculum…

  14. Elastic K-means using posterior probability

    PubMed Central

    Zheng, Aihua; Jiang, Bo; Li, Yan; Zhang, Xuehan; Ding, Chris

    2017-01-01

    The widely used K-means clustering is a hard clustering algorithm. Here we propose a Elastic K-means clustering model (EKM) using posterior probability with soft capability where each data point can belong to multiple clusters fractionally and show the benefit of proposed Elastic K-means. Furthermore, in many applications, besides vector attributes information, pairwise relations (graph information) are also available. Thus we integrate EKM with Normalized Cut graph clustering into a single clustering formulation. Finally, we provide several useful matrix inequalities which are useful for matrix formulations of learning models. Based on these results, we prove the correctness and the convergence of EKM algorithms. Experimental results on six benchmark datasets demonstrate the effectiveness of proposed EKM and its integrated model. PMID:29240756

  15. Clustering of financial time series

    NASA Astrophysics Data System (ADS)

    D'Urso, Pierpaolo; Cappelli, Carmela; Di Lallo, Dario; Massari, Riccardo

    2013-05-01

    This paper addresses the topic of classifying financial time series in a fuzzy framework proposing two fuzzy clustering models both based on GARCH models. In general clustering of financial time series, due to their peculiar features, needs the definition of suitable distance measures. At this aim, the first fuzzy clustering model exploits the autoregressive representation of GARCH models and employs, in the framework of a partitioning around medoids algorithm, the classical autoregressive metric. The second fuzzy clustering model, also based on partitioning around medoids algorithm, uses the Caiado distance, a Mahalanobis-like distance, based on estimated GARCH parameters and covariances that takes into account the information about the volatility structure of time series. In order to illustrate the merits of the proposed fuzzy approaches an application to the problem of classifying 29 time series of Euro exchange rates against international currencies is presented and discussed, also comparing the fuzzy models with their crisp version.

  16. Users matter : multi-agent systems model of high performance computing cluster users.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    North, M. J.; Hood, C. S.; Decision and Information Sciences

    2005-01-01

    High performance computing clusters have been a critical resource for computational science for over a decade and have more recently become integral to large-scale industrial analysis. Despite their well-specified components, the aggregate behavior of clusters is poorly understood. The difficulties arise from complicated interactions between cluster components during operation. These interactions have been studied by many researchers, some of whom have identified the need for holistic multi-scale modeling that simultaneously includes network level, operating system level, process level, and user level behaviors. Each of these levels presents its own modeling challenges, but the user level is the most complex duemore » to the adaptability of human beings. In this vein, there are several major user modeling goals, namely descriptive modeling, predictive modeling and automated weakness discovery. This study shows how multi-agent techniques were used to simulate a large-scale computing cluster at each of these levels.« less

  17. Clustering change patterns using Fourier transformation with time-course gene expression data.

    PubMed

    Kim, Jaehee

    2011-01-01

    To understand the behavior of genes, it is important to explore how the patterns of gene expression change over a period of time because biologically related gene groups can share the same change patterns. In this study, the problem of finding similar change patterns is induced to clustering with the derivative Fourier coefficients. This work is aimed at discovering gene groups with similar change patterns which share similar biological properties. We developed a statistical model using derivative Fourier coefficients to identify similar change patterns of gene expression. We used a model-based method to cluster the Fourier series estimation of derivatives. We applied our model to cluster change patterns of yeast cell cycle microarray expression data with alpha-factor synchronization. It showed that, as the method clusters with the probability-neighboring data, the model-based clustering with our proposed model yielded biologically interpretable results. We expect that our proposed Fourier analysis with suitably chosen smoothing parameters could serve as a useful tool in classifying genes and interpreting possible biological change patterns.

  18. Model selection for clustering of pharmacokinetic responses.

    PubMed

    Guerra, Rui P; Carvalho, Alexandra M; Mateus, Paulo

    2018-08-01

    Pharmacokinetics comprises the study of drug absorption, distribution, metabolism and excretion over time. Clinical pharmacokinetics, focusing on therapeutic management, offers important insights towards personalised medicine through the study of efficacy and toxicity of drug therapies. This study is hampered by subject's high variability in drug blood concentration, when starting a therapy with the same drug dosage. Clustering of pharmacokinetics responses has been addressed recently as a way to stratify subjects and provide different drug doses for each stratum. This clustering method, however, is not able to automatically determine the correct number of clusters, using an user-defined parameter for collapsing clusters that are closer than a given heuristic threshold. We aim to use information-theoretical approaches to address parameter-free model selection. We propose two model selection criteria for clustering pharmacokinetics responses, founded on the Minimum Description Length and on the Normalised Maximum Likelihood. Experimental results show the ability of model selection schemes to unveil the correct number of clusters underlying the mixture of pharmacokinetics responses. In this work we were able to devise two model selection criteria to determine the number of clusters in a mixture of pharmacokinetics curves, advancing over previous works. A cost-efficient parallel implementation in Java of the proposed method is publicly available for the community. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. A Model for Protostellar Cluster Luminosities and the Impact on the CO–H2 Conversion Factor

    NASA Astrophysics Data System (ADS)

    Gaches, Brandt A. L.; Offner, Stella S. R.

    2018-02-01

    We construct a semianalytic model to study the effect of far-ultraviolet (FUV) radiation on gas chemistry from embedded protostars. We use the protostellar luminosity function (PLF) formalism of Offner & McKee to calculate the total, FUV, and ionizing cluster luminosity for various protostellar accretion histories and cluster sizes. We2 compare the model predictions with surveys of Gould Belt star-forming regions and find that the tapered turbulent core model matches best the mean luminosities and the spread in the data. We combine the cluster model with the photodissociation region astrochemistry code, 3D-PDR, to compute the impact of the FUV luminosity from embedded protostars on the CO-to-H2 conversion factor, X CO, as a function of cluster size, gas mass, and star formation efficiency. We find that X CO has a weak dependence on the FUV radiation from embedded sources for large clusters owing to high cloud optical depths. In smaller and more efficient clusters the embedded FUV increases X CO to levels consistent with the average Milky Way values. The internal physical and chemical structures of the cloud are significantly altered, and X CO depends strongly on the protostellar cluster mass for small efficient clouds.

  20. Model selection for semiparametric marginal mean regression accounting for within-cluster subsampling variability and informative cluster size.

    PubMed

    Shen, Chung-Wei; Chen, Yi-Hau

    2018-03-13

    We propose a model selection criterion for semiparametric marginal mean regression based on generalized estimating equations. The work is motivated by a longitudinal study on the physical frailty outcome in the elderly, where the cluster size, that is, the number of the observed outcomes in each subject, is "informative" in the sense that it is related to the frailty outcome itself. The new proposal, called Resampling Cluster Information Criterion (RCIC), is based on the resampling idea utilized in the within-cluster resampling method (Hoffman, Sen, and Weinberg, 2001, Biometrika 88, 1121-1134) and accommodates informative cluster size. The implementation of RCIC, however, is free of performing actual resampling of the data and hence is computationally convenient. Compared with the existing model selection methods for marginal mean regression, the RCIC method incorporates an additional component accounting for variability of the model over within-cluster subsampling, and leads to remarkable improvements in selecting the correct model, regardless of whether the cluster size is informative or not. Applying the RCIC method to the longitudinal frailty study, we identify being female, old age, low income and life satisfaction, and chronic health conditions as significant risk factors for physical frailty in the elderly. © 2018, The International Biometric Society.

  1. Chaos theory perspective for industry clusters development

    NASA Astrophysics Data System (ADS)

    Yu, Haiying; Jiang, Minghui; Li, Chengzhang

    2016-03-01

    Industry clusters have outperformed in economic development in most developing countries. The contributions of industrial clusters have been recognized as promotion of regional business and the alleviation of economic and social costs. It is no doubt globalization is rendering clusters in accelerating the competitiveness of economic activities. In accordance, many ideas and concepts involve in illustrating evolution tendency, stimulating the clusters development, meanwhile, avoiding industrial clusters recession. The term chaos theory is introduced to explain inherent relationship of features within industry clusters. A preferred life cycle approach is proposed for industrial cluster recessive theory analysis. Lyapunov exponents and Wolf model are presented for chaotic identification and examination. A case study of Tianjin, China has verified the model effectiveness. The investigations indicate that the approaches outperform in explaining chaos properties in industrial clusters, which demonstrates industrial clusters evolution, solves empirical issues and generates corresponding strategies.

  2. Alternatives to Multilevel Modeling for the Analysis of Clustered Data

    ERIC Educational Resources Information Center

    Huang, Francis L.

    2016-01-01

    Multilevel modeling has grown in use over the years as a way to deal with the nonindependent nature of observations found in clustered data. However, other alternatives to multilevel modeling are available that can account for observations nested within clusters, including the use of Taylor series linearization for variance estimation, the design…

  3. Using Multilevel Factor Analysis with Clustered Data: Investigating the Factor Structure of the Positive Values Scale

    ERIC Educational Resources Information Center

    Huang, Francis L.; Cornell, Dewey G.

    2016-01-01

    Advances in multilevel modeling techniques now make it possible to investigate the psychometric properties of instruments using clustered data. Factor models that overlook the clustering effect can lead to underestimated standard errors, incorrect parameter estimates, and model fit indices. In addition, factor structures may differ depending on…

  4. Kernel spectral clustering with memory effect

    NASA Astrophysics Data System (ADS)

    Langone, Rocco; Alzate, Carlos; Suykens, Johan A. K.

    2013-05-01

    Evolving graphs describe many natural phenomena changing over time, such as social relationships, trade markets, metabolic networks etc. In this framework, performing community detection and analyzing the cluster evolution represents a critical task. Here we propose a new model for this purpose, where the smoothness of the clustering results over time can be considered as a valid prior knowledge. It is based on a constrained optimization formulation typical of Least Squares Support Vector Machines (LS-SVM), where the objective function is designed to explicitly incorporate temporal smoothness. The latter allows the model to cluster the current data well and to be consistent with the recent history. We also propose new model selection criteria in order to carefully choose the hyper-parameters of our model, which is a crucial issue to achieve good performances. We successfully test the model on four toy problems and on a real world network. We also compare our model with Evolutionary Spectral Clustering, which is a state-of-the-art algorithm for community detection of evolving networks, illustrating that the kernel spectral clustering with memory effect can achieve better or equal performances.

  5. Local-world and cluster-growing weighted networks with controllable clustering

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Xia; Tang, Min-Xuan; Tang, Hai-Qiang; Deng, Qiang-Qiang

    2014-12-01

    We constructed an improved weighted network model by introducing local-world selection mechanism and triangle coupling mechanism based on the traditional BBV model. The model gives power-law distributions of degree, strength and edge weight and presents the linear relationship both between the degree and strength and between the degree and the clustering coefficient. Particularly, the model is equipped with an ability to accelerate the speed increase of strength exceeding that of degree. Besides, the model is more sound and efficient in tuning clustering coefficient than the original BBV model. Finally, based on our improved model, we analyze the virus spread process and find that reducing the size of local-world has a great inhibited effect on virus spread.

  6. The E-MOSAICS project: simulating the formation and co-evolution of galaxies and their star cluster populations

    NASA Astrophysics Data System (ADS)

    Pfeffer, Joel; Kruijssen, J. M. Diederik; Crain, Robert A.; Bastian, Nate

    2018-04-01

    We introduce the MOdelling Star cluster population Assembly In Cosmological Simulations within EAGLE (E-MOSAICS) project. E-MOSAICS incorporates models describing the formation, evolution, and disruption of star clusters into the EAGLE galaxy formation simulations, enabling the examination of the co-evolution of star clusters and their host galaxies in a fully cosmological context. A fraction of the star formation rate of dense gas is assumed to yield a cluster population; this fraction and the population's initial properties are governed by the physical properties of the natal gas. The subsequent evolution and disruption of the entire cluster population are followed accounting for two-body relaxation, stellar evolution, and gravitational shocks induced by the local tidal field. This introductory paper presents a detailed description of the model and initial results from a suite of 10 simulations of ˜L⋆ galaxies with disc-like morphologies at z = 0. The simulations broadly reproduce key observed characteristics of young star clusters and globular clusters (GCs), without invoking separate formation mechanisms for each population. The simulated GCs are the surviving population of massive clusters formed at early epochs (z ≳ 1-2), when the characteristic pressures and surface densities of star-forming gas were significantly higher than observed in local galaxies. We examine the influence of the star formation and assembly histories of galaxies on their cluster populations, finding that (at similar present-day mass) earlier-forming galaxies foster a more massive and disruption-resilient cluster population, while galaxies with late mergers are capable of forming massive clusters even at late cosmic epochs. We find that the phenomenological treatment of interstellar gas in EAGLE precludes the accurate modelling of cluster disruption in low-density environments, but infer that simulations incorporating an explicitly modelled cold interstellar gas phase will overcome this shortcoming.

  7. Information Clustering Based on Fuzzy Multisets.

    ERIC Educational Resources Information Center

    Miyamoto, Sadaaki

    2003-01-01

    Proposes a fuzzy multiset model for information clustering with application to information retrieval on the World Wide Web. Highlights include search engines; term clustering; document clustering; algorithms for calculating cluster centers; theoretical properties concerning clustering algorithms; and examples to show how the algorithms work.…

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sills, Alison; Glebbeek, Evert; Chatterjee, Sourav

    We created artificial color-magnitude diagrams of Monte Carlo dynamical models of globular clusters and then used observational methods to determine the number of blue stragglers in those clusters. We compared these blue stragglers to various cluster properties, mimicking work that has been done for blue stragglers in Milky Way globular clusters to determine the dominant formation mechanism(s) of this unusual stellar population. We find that a mass-based prescription for selecting blue stragglers will select approximately twice as many blue stragglers than a selection criterion that was developed for observations of real clusters. However, the two numbers of blue stragglers aremore » well-correlated, so either selection criterion can be used to characterize the blue straggler population of a cluster. We confirm previous results that the simplified prescription for the evolution of a collision or merger product in the BSE code overestimates their lifetimes. We show that our model blue stragglers follow similar trends with cluster properties (core mass, binary fraction, total mass, collision rate) as the true Milky Way blue stragglers as long as we restrict ourselves to model clusters with an initial binary fraction higher than 5%. We also show that, in contrast to earlier work, the number of blue stragglers in the cluster core does have a weak dependence on the collisional parameter Γ in both our models and in Milky Way globular clusters.« less

  9. Particle Simulation of Oxidation Induced Band 3 Clustering in Human Erythrocytes

    PubMed Central

    Shimo, Hanae; Arjunan, Satya Nanda Vel; Machiyama, Hiroaki; Nishino, Taiko; Suematsu, Makoto; Fujita, Hideaki; Tomita, Masaru; Takahashi, Koichi

    2015-01-01

    Oxidative stress mediated clustering of membrane protein band 3 plays an essential role in the clearance of damaged and aged red blood cells (RBCs) from the circulation. While a number of previous experimental studies have observed changes in band 3 distribution after oxidative treatment, the details of how these clusters are formed and how their properties change under different conditions have remained poorly understood. To address these issues, a framework that enables the simultaneous monitoring of the temporal and spatial changes following oxidation is needed. In this study, we established a novel simulation strategy that incorporates deterministic and stochastic reactions with particle reaction-diffusion processes, to model band 3 cluster formation at single molecule resolution. By integrating a kinetic model of RBC antioxidant metabolism with a model of band 3 diffusion, we developed a model that reproduces the time-dependent changes of glutathione and clustered band 3 levels, as well as band 3 distribution during oxidative treatment, observed in prior studies. We predicted that cluster formation is largely dependent on fast reverse reaction rates, strong affinity between clustering molecules, and irreversible hemichrome binding. We further predicted that under repeated oxidative perturbations, clusters tended to progressively grow and shift towards an irreversible state. Application of our model to simulate oxidation in RBCs with cytoskeletal deficiency also suggested that oxidation leads to more enhanced clustering compared to healthy RBCs. Taken together, our model enables the prediction of band 3 spatio-temporal profiles under various situations, thus providing valuable insights to potentially aid understanding mechanisms for removing senescent and premature RBCs. PMID:26046580

  10. Particle Simulation of Oxidation Induced Band 3 Clustering in Human Erythrocytes.

    PubMed

    Shimo, Hanae; Arjunan, Satya Nanda Vel; Machiyama, Hiroaki; Nishino, Taiko; Suematsu, Makoto; Fujita, Hideaki; Tomita, Masaru; Takahashi, Koichi

    2015-06-01

    Oxidative stress mediated clustering of membrane protein band 3 plays an essential role in the clearance of damaged and aged red blood cells (RBCs) from the circulation. While a number of previous experimental studies have observed changes in band 3 distribution after oxidative treatment, the details of how these clusters are formed and how their properties change under different conditions have remained poorly understood. To address these issues, a framework that enables the simultaneous monitoring of the temporal and spatial changes following oxidation is needed. In this study, we established a novel simulation strategy that incorporates deterministic and stochastic reactions with particle reaction-diffusion processes, to model band 3 cluster formation at single molecule resolution. By integrating a kinetic model of RBC antioxidant metabolism with a model of band 3 diffusion, we developed a model that reproduces the time-dependent changes of glutathione and clustered band 3 levels, as well as band 3 distribution during oxidative treatment, observed in prior studies. We predicted that cluster formation is largely dependent on fast reverse reaction rates, strong affinity between clustering molecules, and irreversible hemichrome binding. We further predicted that under repeated oxidative perturbations, clusters tended to progressively grow and shift towards an irreversible state. Application of our model to simulate oxidation in RBCs with cytoskeletal deficiency also suggested that oxidation leads to more enhanced clustering compared to healthy RBCs. Taken together, our model enables the prediction of band 3 spatio-temporal profiles under various situations, thus providing valuable insights to potentially aid understanding mechanisms for removing senescent and premature RBCs.

  11. Groundwater source contamination mechanisms: Physicochemical profile clustering, risk factor analysis and multivariate modelling

    NASA Astrophysics Data System (ADS)

    Hynds, Paul; Misstear, Bruce D.; Gill, Laurence W.; Murphy, Heather M.

    2014-04-01

    An integrated domestic well sampling and "susceptibility assessment" programme was undertaken in the Republic of Ireland from April 2008 to November 2010. Overall, 211 domestic wells were sampled, assessed and collated with local climate data. Based upon groundwater physicochemical profile, three clusters have been identified and characterised by source type (borehole or hand-dug well) and local geological setting. Statistical analysis indicates that cluster membership is significantly associated with the prevalence of bacteria (p = 0.001), with mean Escherichia coli presence within clusters ranging from 15.4% (Cluster-1) to 47.6% (Cluster-3). Bivariate risk factor analysis shows that on-site septic tank presence was the only risk factor significantly associated (p < 0.05) with bacterial presence within all clusters. Point agriculture adjacency was significantly associated with both borehole-related clusters. Well design criteria were associated with hand-dug wells and boreholes in areas characterised by high permeability subsoils, while local geological setting was significant for hand-dug wells and boreholes in areas dominated by low/moderate permeability subsoils. Multivariate susceptibility models were developed for all clusters, with predictive accuracies of 84% (Cluster-1) to 91% (Cluster-2) achieved. Septic tank setback was a common variable within all multivariate models, while agricultural sources were also significant, albeit to a lesser degree. Furthermore, well liner clearance was a significant factor in all models, indicating that direct surface ingress is a significant well contamination mechanism. Identification and elucidation of cluster-specific contamination mechanisms may be used to develop improved overall risk management and wellhead protection strategies, while also informing future remediation and maintenance efforts.

  12. Model-based clustering for RNA-seq data.

    PubMed

    Si, Yaqing; Liu, Peng; Li, Pinghua; Brutnell, Thomas P

    2014-01-15

    RNA-seq technology has been widely adopted as an attractive alternative to microarray-based methods to study global gene expression. However, robust statistical tools to analyze these complex datasets are still lacking. By grouping genes with similar expression profiles across treatments, cluster analysis provides insight into gene functions and networks, and hence is an important technique for RNA-seq data analysis. In this manuscript, we derive clustering algorithms based on appropriate probability models for RNA-seq data. An expectation-maximization algorithm and another two stochastic versions of expectation-maximization algorithms are described. In addition, a strategy for initialization based on likelihood is proposed to improve the clustering algorithms. Moreover, we present a model-based hybrid-hierarchical clustering method to generate a tree structure that allows visualization of relationships among clusters as well as flexibility of choosing the number of clusters. Results from both simulation studies and analysis of a maize RNA-seq dataset show that our proposed methods provide better clustering results than alternative methods such as the K-means algorithm and hierarchical clustering methods that are not based on probability models. An R package, MBCluster.Seq, has been developed to implement our proposed algorithms. This R package provides fast computation and is publicly available at http://www.r-project.org

  13. COCOA code for creating mock observations of star cluster models

    NASA Astrophysics Data System (ADS)

    Askar, Abbas; Giersz, Mirek; Pych, Wojciech; Dalessandro, Emanuele

    2018-04-01

    We introduce and present results from the COCOA (Cluster simulatiOn Comparison with ObservAtions) code that has been developed to create idealized mock photometric observations using results from numerical simulations of star cluster evolution. COCOA is able to present the output of realistic numerical simulations of star clusters carried out using Monte Carlo or N-body codes in a way that is useful for direct comparison with photometric observations. In this paper, we describe the COCOA code and demonstrate its different applications by utilizing globular cluster (GC) models simulated with the MOCCA (MOnte Carlo Cluster simulAtor) code. COCOA is used to synthetically observe these different GC models with optical telescopes, perform point spread function photometry, and subsequently produce observed colour-magnitude diagrams. We also use COCOA to compare the results from synthetic observations of a cluster model that has the same age and metallicity as the Galactic GC NGC 2808 with observations of the same cluster carried out with a 2.2 m optical telescope. We find that COCOA can effectively simulate realistic observations and recover photometric data. COCOA has numerous scientific applications that maybe be helpful for both theoreticians and observers that work on star clusters. Plans for further improving and developing the code are also discussed in this paper.

  14. Simulating star clusters with the AMUSE software framework. I. Dependence of cluster lifetimes on model assumptions and cluster dissolution modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitehead, Alfred J.; McMillan, Stephen L. W.; Vesperini, Enrico

    2013-12-01

    We perform a series of simulations of evolving star clusters using the Astrophysical Multipurpose Software Environment (AMUSE), a new community-based multi-physics simulation package, and compare our results to existing work. These simulations model a star cluster beginning with a King model distribution and a selection of power-law initial mass functions and contain a tidal cutoff. They are evolved using collisional stellar dynamics and include mass loss due to stellar evolution. After studying and understanding that the differences between AMUSE results and results from previous studies are understood, we explored the variation in cluster lifetimes due to the random realization noisemore » introduced by transforming a King model to specific initial conditions. This random realization noise can affect the lifetime of a simulated star cluster by up to 30%. Two modes of star cluster dissolution were identified: a mass evolution curve that contains a runaway cluster dissolution with a sudden loss of mass, and a dissolution mode that does not contain this feature. We refer to these dissolution modes as 'dynamical' and 'relaxation' dominated, respectively. For Salpeter-like initial mass functions, we determined the boundary between these two modes in terms of the dynamical and relaxation timescales.« less

  15. A study of cooling flows in poor clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Kriss, Gerard A.; Dillingham, Stephen

    1995-01-01

    We observed three poor clusters with central dominant galaxies (AWM 4, MKW 4, and MKW 3's) using the Position Sensitive Proportional Counter on the ROSAT X-ray satellite. The images reveal smooth, symmetrical X-ray emission filling the cluster with a sharp peak on each central galaxy. The cluster surface brightness profiles can be decomposed using superposed King models for the central galaxy and the intracluster medium. The King model parameters for the cluster portions are consistent with previous observations of these clusters. The newly measured King model parameters for the central galaxies are typical of the X-ray surface brightness distributions of isolated elliptical galaxies. Spatially resolved temperature measurements in annular rings throughout the clusters show a nearly isothermal profile. Temperatures are consistent with previously measured values, but are much better determined. There is no significant drop in temperature noted in the innermost bins where cooling flows are likely to be present, nor is any excess absorption by cold gas required. All cold gas columns are consistent with galactic foreground absorption. We derive mass profiles for the clusters assuming both isothermal temperature profiles and cooling flow models with constant mass flow rates. Our results are consistent with previous Einstein IPC observations by Kriss, Cioffi, & Canizares, but extend the mass profiles out to 1 Mpc in these poor clusters.

  16. Investigation of the cluster formation in lithium niobate crystals by computer modeling method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voskresenskii, V. M.; Starodub, O. R., E-mail: ol-star@mail.ru; Sidorov, N. V.

    The processes occurring upon the formation of energetically equilibrium oxygen-octahedral clusters in the ferroelectric phase of a stoichiometric lithium niobate (LiNbO{sub 3}) crystal have been investigated by the computer modeling method within the semiclassical atomistic model. An energetically favorable cluster size (at which a structure similar to that of a congruent crystal is organized) is shown to exist. A stoichiometric cluster cannot exist because of the electroneutrality loss. The most energetically favorable cluster is that with a Li/Nb ratio of about 0.945, a value close to the lithium-to-niobium ratio for a congruent crystal.

  17. From the Superatom Model to a Diverse Array of Super-Elements: A Systematic Study of Dopant Influence on the Electronic Structure of Thiolate-Protected Gold Clusters.

    PubMed

    Schacht, Julia; Gaston, Nicola

    2016-10-18

    The electronic properties of doped thiolate-protected gold clusters are often referred to as tunable, but their study to date, conducted at different levels of theory, does not allow a systematic evaluation of this claim. Here, using density functional theory, the applicability of the superatomic model to these clusters is critically evaluated, and related to the degree of structural distortion and electronic inhomogeneity in the differently doped clusters, with dopant atoms Pd, Pt, Cu, and Ag. The effect of electron number is systematically evaluated by varying the charge on the overall cluster, and the nominal number of delocalized electrons, employed in the superatomic model, is compared to the numbers obtained from Bader analysis of individual atomic charges. We find that the superatomic model is highly applicable to all of these clusters, and is able to predict and explain the changing electronic structure as a function of charge. However, significant perturbations of the model arise due to doping, due to distortions of the core structure of the Au 13 [RS(AuSR) 2 ] 6 - cluster. In addition, analysis of the electronic structure indicates that the superatomic character is distributed further across the ligand shell in the case of the doped clusters, which may have implications for the self-assembly of these clusters into materials. The prediction of appropriate clusters for such superatomic solids relies critically on such quantitative analysis of the tunability of the electronic structure. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A Simple Model for the Earthquake Cycle Combining Self-Organized Criticality with Critical Point Behavior

    NASA Astrophysics Data System (ADS)

    Newman, W. I.; Turcotte, D. L.

    2002-12-01

    We have studied a hybrid model combining the forest-fire model with the site-percolation model in order to better understand the earthquake cycle. We consider a square array of sites. At each time step, a "tree" is dropped on a randomly chosen site and is planted if the site is unoccupied. When a cluster of "trees" spans the site (a percolating cluster), all the trees in the cluster are removed ("burned") in a "fire." The removal of the cluster is analogous to a characteristic earthquake and planting "trees" is analogous to increasing the regional stress. The clusters are analogous to the metastable regions of a fault over which an earthquake rupture can propagate once triggered. We find that the frequency-area statistics of the metastable regions are power-law with a negative exponent of two (as in the forest-fire model). This is analogous to the Gutenberg-Richter distribution of seismicity. This "self-organized critical behavior" can be explained in terms of an inverse cascade of clusters. Individual trees move from small to larger clusters until they are destroyed. This inverse cascade of clusters is self-similar and the power-law distribution of cluster sizes has been shown to have an exponent of two. We have quantified the forecasting of the spanning fires using error diagrams. The assumption that "fires" (earthquakes) are quasi-periodic has moderate predictability. The density of trees gives an improved degree of predictability, while the size of the largest cluster of trees provides a substantial improvement in forecasting a "fire."

  19. A Novel Wireless Power Transfer-Based Weighed Clustering Cooperative Spectrum Sensing Method for Cognitive Sensor Networks.

    PubMed

    Liu, Xin

    2015-10-30

    In a cognitive sensor network (CSN), the wastage of sensing time and energy is a challenge to cooperative spectrum sensing, when the number of cooperative cognitive nodes (CNs) becomes very large. In this paper, a novel wireless power transfer (WPT)-based weighed clustering cooperative spectrum sensing model is proposed, which divides all the CNs into several clusters, and then selects the most favorable CNs as the cluster heads and allows the common CNs to transfer the received radio frequency (RF) energy of the primary node (PN) to the cluster heads, in order to supply the electrical energy needed for sensing and cooperation. A joint resource optimization is formulated to maximize the spectrum access probability of the CSN, through jointly allocating sensing time and clustering number. According to the resource optimization results, a clustering algorithm is proposed. The simulation results have shown that compared to the traditional model, the cluster heads of the proposed model can achieve more transmission power and there exists optimal sensing time and clustering number to maximize the spectrum access probability.

  20. Modeling the Movement of Homicide by Type to Inform Public Health Prevention Efforts.

    PubMed

    Zeoli, April M; Grady, Sue; Pizarro, Jesenia M; Melde, Chris

    2015-10-01

    We modeled the spatiotemporal movement of hotspot clusters of homicide by motive in Newark, New Jersey, to investigate whether different homicide types have different patterns of clustering and movement. We obtained homicide data from the Newark Police Department Homicide Unit's investigative files from 1997 through 2007 (n = 560). We geocoded the address at which each homicide victim was found and recorded the date of and the motive for the homicide. We used cluster detection software to model the spatiotemporal movement of statistically significant homicide clusters by motive, using census tract and month of occurrence as the spatial and temporal units of analysis. Gang-motivated homicides showed evidence of clustering and diffusion through Newark. Additionally, gang-motivated homicide clusters overlapped to a degree with revenge and drug-motivated homicide clusters. Escalating dispute and nonintimate familial homicides clustered; however, there was no evidence of diffusion. Intimate partner and robbery homicides did not cluster. By tracking how homicide types diffuse through communities and determining which places have ongoing or emerging homicide problems by type, we can better inform the deployment of prevention and intervention efforts.

  1. ADPROCLUS: a graphical user interface for fitting additive profile clustering models to object by variable data matrices.

    PubMed

    Wilderjans, Tom F; Ceulemans, Eva; Van Mechelen, Iven; Depril, Dirk

    2011-03-01

    In many areas of psychology, one is interested in disclosing the underlying structural mechanisms that generated an object by variable data set. Often, based on theoretical or empirical arguments, it may be expected that these underlying mechanisms imply that the objects are grouped into clusters that are allowed to overlap (i.e., an object may belong to more than one cluster). In such cases, analyzing the data with Mirkin's additive profile clustering model may be appropriate. In this model: (1) each object may belong to no, one or several clusters, (2) there is a specific variable profile associated with each cluster, and (3) the scores of the objects on the variables can be reconstructed by adding the cluster-specific variable profiles of the clusters the object in question belongs to. Until now, however, no software program has been publicly available to perform an additive profile clustering analysis. For this purpose, in this article, the ADPROCLUS program, steered by a graphical user interface, is presented. We further illustrate its use by means of the analysis of a patient by symptom data matrix.

  2. A model for sputtering from solid surfaces bombarded by energetic clusters

    NASA Astrophysics Data System (ADS)

    Benguerba, Messaoud

    2018-04-01

    A model is developed to explain and predict the sputtering from solid surfaces bombarded by energetic clusters, on the basis of shock wave generated at the impact of cluster. Under the shock compression the temperature increases causing the vaporization of material that requires an internal energy behind the shock, at least, of about twice the cohesive energy of target. The sputtering is treated as a gas of vaporized particles from a hemispherical volume behind the shock front. The sputter yield per cluster atoms is given as a universal function depending on the ratio of target to cluster atomic density and the ratio of cluster velocity to the velocity calculated on the basis of an internal energy equals about twice cohesive energy. The predictions of the model for self sputter yield of copper, gold, tungsten and of silver bombarded by C60 clusters agree well, with the corresponding data simulated by molecular dynamics.

  3. Minimal Model of Quantum Kinetic Clusters for the Energy-Transfer Network of a Light-Harvesting Protein Complex.

    PubMed

    Wu, Jianlan; Tang, Zhoufei; Gong, Zhihao; Cao, Jianshu; Mukamel, Shaul

    2015-04-02

    The energy absorbed in a light-harvesting protein complex is often transferred collectively through aggregated chromophore clusters. For population evolution of chromophores, the time-integrated effective rate matrix allows us to construct quantum kinetic clusters quantitatively and determine the reduced cluster-cluster transfer rates systematically, thus defining a minimal model of energy-transfer kinetics. For Fenna-Matthews-Olson (FMO) and light-havrvesting complex II (LCHII) monomers, quantum Markovian kinetics of clusters can accurately reproduce the overall energy-transfer process in the long-time scale. The dominant energy-transfer pathways are identified in the picture of aggregated clusters. The chromophores distributed extensively in various clusters can assist a fast and long-range energy transfer.

  4. Mixed clusters from the coexpansion of C2F6 and n2 in a pulsed, supersonic expansion cluster ion source and beam deflection time-of-flight mass spectrometer: A first application

    NASA Astrophysics Data System (ADS)

    Thompson, Steven D.

    The following topics are discussed: (1) cluster ion genesis; (2) cluster ion detection; (3) Ion source; (4) pulse valve; (5) e-gun; (6) Ion optics; (7) a first order model; and (8) a modified Bakker's model.

  5. [Predicting Incidence of Hepatitis E in Chinausing Fuzzy Time Series Based on Fuzzy C-Means Clustering Analysis].

    PubMed

    Luo, Yi; Zhang, Tao; Li, Xiao-song

    2016-05-01

    To explore the application of fuzzy time series model based on fuzzy c-means clustering in forecasting monthly incidence of Hepatitis E in mainland China. Apredictive model (fuzzy time series method based on fuzzy c-means clustering) was developed using Hepatitis E incidence data in mainland China between January 2004 and July 2014. The incidence datafrom August 2014 to November 2014 were used to test the fitness of the predictive model. The forecasting results were compared with those resulted from traditional fuzzy time series models. The fuzzy time series model based on fuzzy c-means clustering had 0.001 1 mean squared error (MSE) of fitting and 6.977 5 x 10⁻⁴ MSE of forecasting, compared with 0.0017 and 0.0014 from the traditional forecasting model. The results indicate that the fuzzy time series model based on fuzzy c-means clustering has a better performance in forecasting incidence of Hepatitis E.

  6. Effect of Clustering Algorithm on Establishing Markov State Model for Molecular Dynamics Simulations.

    PubMed

    Li, Yan; Dong, Zigang

    2016-06-27

    Recently, the Markov state model has been applied for kinetic analysis of molecular dynamics simulations. However, discretization of the conformational space remains a primary challenge in model building, and it is not clear how the space decomposition by distinct clustering strategies exerts influence on the model output. In this work, different clustering algorithms are employed to partition the conformational space sampled in opening and closing of fatty acid binding protein 4 as well as inactivation and activation of the epidermal growth factor receptor. Various classifications are achieved, and Markov models are set up accordingly. On the basis of the models, the total net flux and transition rate are calculated between two distinct states. Our results indicate that geometric and kinetic clustering perform equally well. The construction and outcome of Markov models are heavily dependent on the data traits. Compared to other methods, a combination of Bayesian and hierarchical clustering is feasible in identification of metastable states.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandar, Rupali; Fall, S. Michael; Whitmore, Bradley C., E-mail: Rupali.Chandar@utoledo.ed, E-mail: fall@stsci.ed, E-mail: whitmore@stsci.ed

    We compare the observed bivariate distribution of masses (M) and ages (tau) of star clusters in the Large Magellanic Cloud (LMC) with the predicted distributions g(M, tau) from three idealized models for the disruption of star clusters: (1) sudden mass-dependent disruption, (2) gradual mass-dependent disruption, and (3) gradual mass-independent disruption. The model with mass-independent disruption provides a good, first-order description of these cluster populations, with g(M, tau) {proportional_to} M {sup beta}tau{sup g}amma, beta = -1.8 +- 0.2 and gamma = -0.8 +- 0.2, at least for clusters with ages tau {approx}< 10{sup 9} yr and masses M {approx}> 10{sup 3}more » M{sub sun} (more specifically, tau {approx}< 10{sup 7}(M/10{sup 2} M{sub sun}){sup 1.3} yr). This model predicts that the clusters should have a power-law luminosity function, dN/dL {proportional_to} L {sup -1.8}, in agreement with observations. The first two models, on the other hand, fare poorly when describing the observations, refuting previous claims that mass-dependent disruption of star clusters is observed in the LMC over the studied M-tau domain. Clusters in the SMC can be described by the same g(M, tau) distribution as for the LMC, but with smaller samples and hence larger uncertainties. The successful g(M, tau) model for clusters in the Magellanic Clouds is virtually the same as the one for clusters in the merging Antennae galaxies, but extends the domain of validity to lower masses and to older ages. This indicates that the dominant disruption processes are similar in these very different galaxies over at least tau {approx}< 10{sup 8} yr and possibly tau {approx}< 10{sup 9} yr. The mass functions for young clusters in the LMC are power laws, while that for ancient globular clusters is peaked. We show that the observed shapes of these mass functions are consistent with expectations from the simple evaporation model presented by McLaughlin and Fall.« less

  8. Rigid-Cluster Models of Conformational Transitions in Macromolecular Machines and Assemblies

    PubMed Central

    Kim, Moon K.; Jernigan, Robert L.; Chirikjian, Gregory S.

    2005-01-01

    We present a rigid-body-based technique (called rigid-cluster elastic network interpolation) to generate feasible transition pathways between two distinct conformations of a macromolecular assembly. Many biological molecules and assemblies consist of domains which act more or less as rigid bodies during large conformational changes. These collective motions are thought to be strongly related with the functions of a system. This fact encourages us to simply model a macromolecule or assembly as a set of rigid bodies which are interconnected with distance constraints. In previous articles, we developed coarse-grained elastic network interpolation (ENI) in which, for example, only Cα atoms are selected as representatives in each residue of a protein. We interpolate distance differences of two conformations in ENI by using a simple quadratic cost function, and the feasible conformations are generated without steric conflicts. Rigid-cluster interpolation is an extension of the ENI method with rigid-clusters replacing point masses. Now the intermediate conformations in an anharmonic pathway can be determined by the translational and rotational displacements of large clusters in such a way that distance constraints are observed. We present the derivation of the rigid-cluster model and apply it to a variety of macromolecular assemblies. Rigid-cluster ENI is then modified for a hybrid model represented by a mixture of rigid clusters and point masses. Simulation results show that both rigid-cluster and hybrid ENI methods generate sterically feasible pathways of large systems in a very short time. For example, the HK97 virus capsid is an icosahedral symmetric assembly composed of 60 identical asymmetric units. Its original Hessian matrix size for a Cα coarse-grained model is >(300,000)2. However, it reduces to (84)2 when we apply the rigid-cluster model with icosahedral symmetry constraints. The computational cost of the interpolation no longer scales heavily with the size of structures; instead, it depends strongly on the minimal number of rigid clusters into which the system can be decomposed. PMID:15833998

  9. TESTING STELLAR POPULATION SYNTHESIS MODELS WITH SLOAN DIGITAL SKY SURVEY COLORS OF M31's GLOBULAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peacock, Mark B.; Zepf, Stephen E.; Maccarone, Thomas J.

    2011-08-10

    Accurate stellar population synthesis models are vital in understanding the properties and formation histories of galaxies. In order to calibrate and test the reliability of these models, they are often compared with observations of star clusters. However, relatively little work has compared these models in the ugriz filters, despite the recent widespread use of this filter set. In this paper, we compare the integrated colors of globular clusters in the Sloan Digital Sky Survey (SDSS) with those predicted from commonly used simple stellar population (SSP) models. The colors are based on SDSS observations of M31's clusters and provide the largestmore » population of star clusters with accurate photometry available from the survey. As such, it is a unique sample with which to compare SSP models with SDSS observations. From this work, we identify a significant offset between the SSP models and the clusters' g - r colors, with the models predicting colors which are too red by g - r {approx} 0.1. This finding is consistent with previous observations of luminous red galaxies in the SDSS, which show a similar discrepancy. The identification of this offset in globular clusters suggests that it is very unlikely to be due to a minority population of young stars. The recently updated SSP model of Maraston and Stroembaeck better represents the observed g - r colors. This model is based on the empirical MILES stellar library, rather than theoretical libraries, suggesting an explanation for the g - r discrepancy.« less

  10. Selection of Variables in Cluster Analysis: An Empirical Comparison of Eight Procedures

    ERIC Educational Resources Information Center

    Steinley, Douglas; Brusco, Michael J.

    2008-01-01

    Eight different variable selection techniques for model-based and non-model-based clustering are evaluated across a wide range of cluster structures. It is shown that several methods have difficulties when non-informative variables (i.e., random noise) are included in the model. Furthermore, the distribution of the random noise greatly impacts the…

  11. Formation patterns of water clusters in CMK-3 and CMK-5 mesoporous carbons: a computational recognition study.

    PubMed

    Peng, Xuan; Jain, Surendra Kumar; Singh, Jayant Kumar; Liu, Anqi; Jin, Qibing

    2018-06-13

    Grand canonical Monte Carlo simulations are performed to study the adsorption of water in realistic CMK-3 and CMK-5 models at 300 K. The adsorption isotherms are characterized by negligible uptake at lower chemical potentials and complete pore filling once the threshold chemical potential is increased. Results for the isosteric heat of adsorption, radial distribution function (O-O and O-H), hydrogen bond statistics and the cluster size distribution of water molecules are presented. The snapshots of GCMC simulations in CMK-3 and CMK-5 models show that the adsorption happens via the formation of water clusters. For the CMK-3 model, it was found that the pore filling occurred via the formation of a single water cluster and a few very small clusters. The water cluster size increased with an increase in pore size of the CMK-3 model. For the CMK-5 model, it was found that the adsorption first occurred in the inner porosity (via cluster formation). There was no adsorption of water in the outer porosity during the filling of the inner porosity. After the inner porosity was completely filled, the water begins to fill the outer porosity. Snapshots from GCMC simulations of the CMK-5 model clearly show that the water adsorption in the outer porosity occurs via the formation and growth of clusters and there was no formation of layers of water in the porosity as seen for nonpolar fluids like nitrogen.

  12. Large-scale motions in the universe: Using clusters of galaxies as tracers

    NASA Technical Reports Server (NTRS)

    Gramann, Mirt; Bahcall, Neta A.; Cen, Renyue; Gott, J. Richard

    1995-01-01

    Can clusters of galaxies be used to trace the large-scale peculiar velocity field of the universe? We answer this question by using large-scale cosmological simulations to compare the motions of rich clusters of galaxies with the motion of the underlying matter distribution. Three models are investigated: Omega = 1 and Omega = 0.3 cold dark matter (CDM), and Omega = 0.3 primeval baryonic isocurvature (PBI) models, all normalized to the Cosmic Background Explorer (COBE) background fluctuations. We compare the cluster and mass distribution of peculiar velocities, bulk motions, velocity dispersions, and Mach numbers as a function of scale for R greater than or = 50/h Mpc. We also present the large-scale velocity and potential maps of clusters and of the matter. We find that clusters of galaxies trace well the large-scale velocity field and can serve as an efficient tool to constrain cosmological models. The recently reported bulk motion of clusters 689 +/- 178 km/s on approximately 150/h Mpc scale (Lauer & Postman 1994) is larger than expected in any of the models studied (less than or = 190 +/- 78 km/s).

  13. Small-Scale Drop-Size Variability: Empirical Models for Drop-Size-Dependent Clustering in Clouds

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Knyazikhin, Yuri; Larsen, Michael L.; Wiscombe, Warren J.

    2005-01-01

    By analyzing aircraft measurements of individual drop sizes in clouds, it has been shown in a companion paper that the probability of finding a drop of radius r at a linear scale l decreases as l(sup D(r)), where 0 less than or equals D(r) less than or equals 1. This paper shows striking examples of the spatial distribution of large cloud drops using models that simulate the observed power laws. In contrast to currently used models that assume homogeneity and a Poisson distribution of cloud drops, these models illustrate strong drop clustering, especially with larger drops. The degree of clustering is determined by the observed exponents D(r). The strong clustering of large drops arises naturally from the observed power-law statistics. This clustering has vital consequences for rain physics, including how fast rain can form. For radiative transfer theory, clustering of large drops enhances their impact on the cloud optical path. The clustering phenomenon also helps explain why remotely sensed cloud drop size is generally larger than that measured in situ.

  14. Students' Changing Attitudes and Aspirations Towards Physics During Secondary School

    NASA Astrophysics Data System (ADS)

    Sheldrake, Richard; Mujtaba, Tamjid; Reiss, Michael J.

    2017-11-01

    Many countries desire more students to study science subjects, although relatively few students decide to study non-compulsory physics at upper-secondary school and at university. To gain insight into students' intentions to study non-compulsory physics, a longitudinal sample (covering 2258 students across 88 secondary schools in England) was surveyed in year 8 (age 12/13) and again in year 10 (age 14/15). Predictive modelling highlighted that perceived advice, perceived utility of physics, interest in physics, self-concept beliefs (students' subjective beliefs of their current abilities and performance) and home support specifically orientated to physics were key predictors of students' intentions. Latent-transition analysis via Markov models revealed clusters of students, given these factors at years 8 and 10. Students' intentions varied across the clusters, and at year 10 even varied when accounting for the students' underlying attitudes and beliefs, highlighting that considering clusters offered additional explanatory power and insight. Regardless of whether three-cluster, four-cluster, or five-cluster models were considered, the majority of students remained in the same cluster over time; for those who transitioned clusters, more students changed clusters reflecting an increase in attitudes than changed clusters reflecting a decrease. Students in the cluster with the most positive attitudes were most likely to remain within that cluster, while students in clusters with less positive attitudes were more likely to change clusters. Overall, the cluster profiles highlighted that students' attitudes and beliefs may be more closely related than previously assumed, but that changes in their attitudes and beliefs were indeed possible.

  15. Towards semantically sensitive text clustering: a feature space modeling technology based on dimension extension.

    PubMed

    Liu, Yuanchao; Liu, Ming; Wang, Xin

    2015-01-01

    The objective of text clustering is to divide document collections into clusters based on the similarity between documents. In this paper, an extension-based feature modeling approach towards semantically sensitive text clustering is proposed along with the corresponding feature space construction and similarity computation method. By combining the similarity in traditional feature space and that in extension space, the adverse effects of the complexity and diversity of natural language can be addressed and clustering semantic sensitivity can be improved correspondingly. The generated clusters can be organized using different granularities. The experimental evaluations on well-known clustering algorithms and datasets have verified the effectiveness of our approach.

  16. Towards Semantically Sensitive Text Clustering: A Feature Space Modeling Technology Based on Dimension Extension

    PubMed Central

    Liu, Yuanchao; Liu, Ming; Wang, Xin

    2015-01-01

    The objective of text clustering is to divide document collections into clusters based on the similarity between documents. In this paper, an extension-based feature modeling approach towards semantically sensitive text clustering is proposed along with the corresponding feature space construction and similarity computation method. By combining the similarity in traditional feature space and that in extension space, the adverse effects of the complexity and diversity of natural language can be addressed and clustering semantic sensitivity can be improved correspondingly. The generated clusters can be organized using different granularities. The experimental evaluations on well-known clustering algorithms and datasets have verified the effectiveness of our approach. PMID:25794172

  17. ClusCo: clustering and comparison of protein models.

    PubMed

    Jamroz, Michal; Kolinski, Andrzej

    2013-02-22

    The development, optimization and validation of protein modeling methods require efficient tools for structural comparison. Frequently, a large number of models need to be compared with the target native structure. The main reason for the development of Clusco software was to create a high-throughput tool for all-versus-all comparison, because calculating similarity matrix is the one of the bottlenecks in the protein modeling pipeline. Clusco is fast and easy-to-use software for high-throughput comparison of protein models with different similarity measures (cRMSD, dRMSD, GDT_TS, TM-Score, MaxSub, Contact Map Overlap) and clustering of the comparison results with standard methods: K-means Clustering or Hierarchical Agglomerative Clustering. The application was highly optimized and written in C/C++, including the code for parallel execution on CPU and GPU, which resulted in a significant speedup over similar clustering and scoring computation programs.

  18. I. Excluded volume effects in Ising cluster distributions and nuclear multifragmentation. II. Multiple-chance effects in alpha-particle evaporation

    NASA Astrophysics Data System (ADS)

    Breus, Dimitry Eugene

    In Part I, geometric clusters of the Ising model are studied as possible model clusters for nuclear multifragmentation. These clusters may not be considered as non-interacting (ideal gas) due to excluded volume effect which predominantly is the artifact of the cluster's finite size. Interaction significantly complicates the use of clusters in the analysis of thermodynamic systems. Stillinger's theory is used as a basis for the analysis, which within the RFL (Reiss, Frisch, Lebowitz) fluid-of-spheres approximation produces a prediction for cluster concentrations well obeyed by geometric clusters of the Ising model. If thermodynamic condition of phase coexistence is met, these concentrations can be incorporated into a differential equation procedure of moderate complexity to elucidate the liquid-vapor phase diagram of the system with cluster interaction included. The drawback of increased complexity is outweighted by the reward of greater accuracy of the phase diagram, as it is demonstrated by the Ising model. A novel nuclear-cluster analysis procedure is developed by modifying Fisher's model to contain cluster interaction and employing the differential equation procedure to obtain thermodynamic variables. With this procedure applied to geometric clusters, the guidelines are developed to look for excluded volume effect in nuclear multifragmentation. In Part II, an explanation is offered for the recently observed oscillations in the energy spectra of alpha-particles emitted from hot compound nuclei. Contrary to what was previously expected, the oscillations are assumed to be caused by the multiple-chance nature of alpha-evaporation. In a semi-empirical fashion this assumption is successfully confirmed by a technique of two-spectra decomposition which treats experimental alpha-spectra as having contributions from at least two independent emitters. Building upon the success of the multiple-chance explanation of the oscillations, Moretto's single-chance evaporation theory is augmented to include multiple-chance emission and tested on experimental data to yield positive results.

  19. Development of a two-fluid drag law for clustered particles using direct numerical simulation and validation through experiments

    NASA Astrophysics Data System (ADS)

    Abbasi Baharanchi, Ahmadreza

    This dissertation focused on development and utilization of numerical and experimental approaches to improve the CFD modeling of fluidization flow of cohesive micron size particles. The specific objectives of this research were: (1) Developing a cluster prediction mechanism applicable to Two-Fluid Modeling (TFM) of gas-solid systems (2) Developing more accurate drag models for Two-Fluid Modeling (TFM) of gas-solid fluidization flow with the presence of cohesive interparticle forces (3) using the developed model to explore the improvement of accuracy of TFM in simulation of fluidization flow of cohesive powders (4) Understanding the causes and influential factor which led to improvements and quantification of improvements (5) Gathering data from a fast fluidization flow and use these data for benchmark validations. Simulation results with two developed cluster-aware drag models showed that cluster prediction could effectively influence the results in both the first and second cluster-aware models. It was proven that improvement of accuracy of TFM modeling using three versions of the first hybrid model was significant and the best improvements were obtained by using the smallest values of the switch parameter which led to capturing the smallest chances of cluster prediction. In the case of the second hybrid model, dependence of critical model parameter on only Reynolds number led to the fact that improvement of accuracy was significant only in dense section of the fluidized bed. This finding may suggest that a more sophisticated particle resolved DNS model, which can span wide range of solid volume fraction, can be used in the formulation of the cluster-aware drag model. The results of experiment suing high speed imaging indicated the presence of particle clusters in the fluidization flow of FCC inside the riser of FIU-CFB facility. In addition, pressure data was successfully captured along the fluidization column of the facility and used as benchmark validation data for the second hybrid model developed in the present dissertation. It was shown the second hybrid model could predict the pressure data in the dense section of the fluidization column with better accuracy.

  20. Chemical models for simulating single-walled nanotube production in arc vaporization and laser ablation processes

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.

    2004-01-01

    Chemical kinetic models for the nucleation and growth of clusters and single-walled carbon nanotube (SWNT) growth are developed for numerical simulations of the production of SWNTs. Two models that involve evaporation and condensation of carbon and metal catalysts, a full model involving all carbon clusters up to C80, and a reduced model are discussed. The full model is based on a fullerene model, but nickel and carbon/nickel cluster reactions are added to form SWNTs from soot and fullerenes. The full model has a large number of species--so large that to incorporate them into a flow field computation for simulating laser ablation and arc processes requires that they be simplified. The model is reduced by defining large clusters that represent many various sized clusters. Comparisons are given between these models for cases that may be applicable to arc and laser ablation production. Solutions to the system of chemical rate equations of these models for a ramped temperature profile show that production of various species, including SWNTs, agree to within about 50% for a fast ramp, and within 10% for a slower temperature decay time.

  1. A class of spherical, truncated, anisotropic models for application to globular clusters

    NASA Astrophysics Data System (ADS)

    de Vita, Ruggero; Bertin, Giuseppe; Zocchi, Alice

    2016-05-01

    Recently, a class of non-truncated, radially anisotropic models (the so-called f(ν)-models), originally constructed in the context of violent relaxation and modelling of elliptical galaxies, has been found to possess interesting qualities in relation to observed and simulated globular clusters. In view of new applications to globular clusters, we improve this class of models along two directions. To make them more suitable for the description of small stellar systems hosted by galaxies, we introduce a "tidal" truncation by means of a procedure that guarantees full continuity of the distribution function. The new fT(ν)-models are shown to provide a better fit to the observed photometric and spectroscopic profiles for a sample of 13 globular clusters studied earlier by means of non-truncated models; interestingly, the best-fit models also perform better with respect to the radial-orbit instability. Then, we design a flexible but simple two-component family of truncated models to study the separate issues of mass segregation and multiple populations. We do not aim at a fully realistic description of globular clusters to compete with the description currently obtained by means of dedicated simulations. The goal here is to try to identify the simplest models, that is, those with the smallest number of free parameters, but still have the capacity to provide a reasonable description for clusters that are evidently beyond the reach of one-component models. With this tool, we aim at identifying the key factors that characterize mass segregation or the presence of multiple populations. To reduce the relevant parameter space, we formulate a few physical arguments based on recent observations and simulations. A first application to two well-studied globular clusters is briefly described and discussed.

  2. Using Cluster Bootstrapping to Analyze Nested Data With a Few Clusters.

    PubMed

    Huang, Francis L

    2018-04-01

    Cluster randomized trials involving participants nested within intact treatment and control groups are commonly performed in various educational, psychological, and biomedical studies. However, recruiting and retaining intact groups present various practical, financial, and logistical challenges to evaluators and often, cluster randomized trials are performed with a low number of clusters (~20 groups). Although multilevel models are often used to analyze nested data, researchers may be concerned of potentially biased results due to having only a few groups under study. Cluster bootstrapping has been suggested as an alternative procedure when analyzing clustered data though it has seen very little use in educational and psychological studies. Using a Monte Carlo simulation that varied the number of clusters, average cluster size, and intraclass correlations, we compared standard errors using cluster bootstrapping with those derived using ordinary least squares regression and multilevel models. Results indicate that cluster bootstrapping, though more computationally demanding, can be used as an alternative procedure for the analysis of clustered data when treatment effects at the group level are of primary interest. Supplementary material showing how to perform cluster bootstrapped regressions using R is also provided.

  3. A Linear Algebra Measure of Cluster Quality.

    ERIC Educational Resources Information Center

    Mather, Laura A.

    2000-01-01

    Discussion of models for information retrieval focuses on an application of linear algebra to text clustering, namely, a metric for measuring cluster quality based on the theory that cluster quality is proportional to the number of terms that are disjoint across the clusters. Explains term-document matrices and clustering algorithms. (Author/LRW)

  4. Clusternomics: Integrative context-dependent clustering for heterogeneous datasets

    PubMed Central

    Wernisch, Lorenz

    2017-01-01

    Integrative clustering is used to identify groups of samples by jointly analysing multiple datasets describing the same set of biological samples, such as gene expression, copy number, methylation etc. Most existing algorithms for integrative clustering assume that there is a shared consistent set of clusters across all datasets, and most of the data samples follow this structure. However in practice, the structure across heterogeneous datasets can be more varied, with clusters being joined in some datasets and separated in others. In this paper, we present a probabilistic clustering method to identify groups across datasets that do not share the same cluster structure. The proposed algorithm, Clusternomics, identifies groups of samples that share their global behaviour across heterogeneous datasets. The algorithm models clusters on the level of individual datasets, while also extracting global structure that arises from the local cluster assignments. Clusters on both the local and the global level are modelled using a hierarchical Dirichlet mixture model to identify structure on both levels. We evaluated the model both on simulated and on real-world datasets. The simulated data exemplifies datasets with varying degrees of common structure. In such a setting Clusternomics outperforms existing algorithms for integrative and consensus clustering. In a real-world application, we used the algorithm for cancer subtyping, identifying subtypes of cancer from heterogeneous datasets. We applied the algorithm to TCGA breast cancer dataset, integrating gene expression, miRNA expression, DNA methylation and proteomics. The algorithm extracted clinically meaningful clusters with significantly different survival probabilities. We also evaluated the algorithm on lung and kidney cancer TCGA datasets with high dimensionality, again showing clinically significant results and scalability of the algorithm. PMID:29036190

  5. Clusternomics: Integrative context-dependent clustering for heterogeneous datasets.

    PubMed

    Gabasova, Evelina; Reid, John; Wernisch, Lorenz

    2017-10-01

    Integrative clustering is used to identify groups of samples by jointly analysing multiple datasets describing the same set of biological samples, such as gene expression, copy number, methylation etc. Most existing algorithms for integrative clustering assume that there is a shared consistent set of clusters across all datasets, and most of the data samples follow this structure. However in practice, the structure across heterogeneous datasets can be more varied, with clusters being joined in some datasets and separated in others. In this paper, we present a probabilistic clustering method to identify groups across datasets that do not share the same cluster structure. The proposed algorithm, Clusternomics, identifies groups of samples that share their global behaviour across heterogeneous datasets. The algorithm models clusters on the level of individual datasets, while also extracting global structure that arises from the local cluster assignments. Clusters on both the local and the global level are modelled using a hierarchical Dirichlet mixture model to identify structure on both levels. We evaluated the model both on simulated and on real-world datasets. The simulated data exemplifies datasets with varying degrees of common structure. In such a setting Clusternomics outperforms existing algorithms for integrative and consensus clustering. In a real-world application, we used the algorithm for cancer subtyping, identifying subtypes of cancer from heterogeneous datasets. We applied the algorithm to TCGA breast cancer dataset, integrating gene expression, miRNA expression, DNA methylation and proteomics. The algorithm extracted clinically meaningful clusters with significantly different survival probabilities. We also evaluated the algorithm on lung and kidney cancer TCGA datasets with high dimensionality, again showing clinically significant results and scalability of the algorithm.

  6. Reconstruction of a digital core containing clay minerals based on a clustering algorithm.

    PubMed

    He, Yanlong; Pu, Chunsheng; Jing, Cheng; Gu, Xiaoyu; Chen, Qingdong; Liu, Hongzhi; Khan, Nasir; Dong, Qiaoling

    2017-10-01

    It is difficult to obtain a core sample and information for digital core reconstruction of mature sandstone reservoirs around the world, especially for an unconsolidated sandstone reservoir. Meanwhile, reconstruction and division of clay minerals play a vital role in the reconstruction of the digital cores, although the two-dimensional data-based reconstruction methods are specifically applicable as the microstructure reservoir simulation methods for the sandstone reservoir. However, reconstruction of clay minerals is still challenging from a research viewpoint for the better reconstruction of various clay minerals in the digital cores. In the present work, the content of clay minerals was considered on the basis of two-dimensional information about the reservoir. After application of the hybrid method, and compared with the model reconstructed by the process-based method, the digital core containing clay clusters without the labels of the clusters' number, size, and texture were the output. The statistics and geometry of the reconstruction model were similar to the reference model. In addition, the Hoshen-Kopelman algorithm was used to label various connected unclassified clay clusters in the initial model and then the number and size of clay clusters were recorded. At the same time, the K-means clustering algorithm was applied to divide the labeled, large connecting clusters into smaller clusters on the basis of difference in the clusters' characteristics. According to the clay minerals' characteristics, such as types, textures, and distributions, the digital core containing clay minerals was reconstructed by means of the clustering algorithm and the clay clusters' structure judgment. The distributions and textures of the clay minerals of the digital core were reasonable. The clustering algorithm improved the digital core reconstruction and provided an alternative method for the simulation of different clay minerals in the digital cores.

  7. DARK MATTER SUBHALOS AND THE X-RAY MORPHOLOGY OF THE COMA CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrade-Santos, Felipe; Nulsen, Paul E. J.; Kraft, Ralph P.

    2013-04-01

    Structure formation models predict that clusters of galaxies contain numerous massive subhalos. The gravity of a subhalo in a cluster compresses the surrounding intracluster gas and enhances its X-ray emission. We present a simple model, which treats subhalos as slow moving and gasless, for computing this effect. Recent weak lensing measurements by Okabe et al. have determined masses of {approx}10{sup 13} M{sub Sun} for three mass concentrations projected within 300 kpc of the center of the Coma Cluster, two of which are centered on the giant elliptical galaxies NGC 4889 and NGC 4874. Adopting a smooth spheroidal {beta}-model for themore » gas distribution in the unperturbed cluster, we model the effect of these subhalos on the X-ray morphology of the Coma Cluster, comparing our results to Chandra and XMM-Newton X-ray data. The agreement between the models and the X-ray morphology of the central Coma Cluster is striking. With subhalo parameters from the lensing measurements, the distances of the three subhalos from the Coma Cluster midplane along our line of sight are all tightly constrained. Using the model to fit the subhalo masses for NGC 4889 and NGC 4874 gives 9.1 Multiplication-Sign 10{sup 12} M{sub Sun} and 7.6 Multiplication-Sign 10{sup 12} M{sub Sun }, respectively, in good agreement with the lensing masses. These results lend strong support to the argument that NGC 4889 and NGC 4874 are each associated with a subhalo that resides near the center of the Coma Cluster. In addition to constraining the masses and 3-d location of subhalos, the X-ray data show promise as a means of probing the structure of central subhalos.« less

  8. Intermediate and advanced topics in multilevel logistic regression analysis.

    PubMed

    Austin, Peter C; Merlo, Juan

    2017-09-10

    Multilevel data occur frequently in health services, population and public health, and epidemiologic research. In such research, binary outcomes are common. Multilevel logistic regression models allow one to account for the clustering of subjects within clusters of higher-level units when estimating the effect of subject and cluster characteristics on subject outcomes. A search of the PubMed database demonstrated that the use of multilevel or hierarchical regression models is increasing rapidly. However, our impression is that many analysts simply use multilevel regression models to account for the nuisance of within-cluster homogeneity that is induced by clustering. In this article, we describe a suite of analyses that can complement the fitting of multilevel logistic regression models. These ancillary analyses permit analysts to estimate the marginal or population-average effect of covariates measured at the subject and cluster level, in contrast to the within-cluster or cluster-specific effects arising from the original multilevel logistic regression model. We describe the interval odds ratio and the proportion of opposed odds ratios, which are summary measures of effect for cluster-level covariates. We describe the variance partition coefficient and the median odds ratio which are measures of components of variance and heterogeneity in outcomes. These measures allow one to quantify the magnitude of the general contextual effect. We describe an R 2 measure that allows analysts to quantify the proportion of variation explained by different multilevel logistic regression models. We illustrate the application and interpretation of these measures by analyzing mortality in patients hospitalized with a diagnosis of acute myocardial infarction. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

  9. Multi-exemplar affinity propagation.

    PubMed

    Wang, Chang-Dong; Lai, Jian-Huang; Suen, Ching Y; Zhu, Jun-Yong

    2013-09-01

    The affinity propagation (AP) clustering algorithm has received much attention in the past few years. AP is appealing because it is efficient, insensitive to initialization, and it produces clusters at a lower error rate than other exemplar-based methods. However, its single-exemplar model becomes inadequate when applied to model multisubclasses in some situations such as scene analysis and character recognition. To remedy this deficiency, we have extended the single-exemplar model to a multi-exemplar one to create a new multi-exemplar affinity propagation (MEAP) algorithm. This new model automatically determines the number of exemplars in each cluster associated with a super exemplar to approximate the subclasses in the category. Solving the model is NP-hard and we tackle it with the max-sum belief propagation to produce neighborhood maximum clusters, with no need to specify beforehand the number of clusters, multi-exemplars, and superexemplars. Also, utilizing the sparsity in the data, we are able to reduce substantially the computational time and storage. Experimental studies have shown MEAP's significant improvements over other algorithms on unsupervised image categorization and the clustering of handwritten digits.

  10. Physical model of protein cluster positioning in growing bacteria

    NASA Astrophysics Data System (ADS)

    Wasnik, Vaibhav; Wang, Hui; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    2017-10-01

    Chemotaxic receptors in bacteria form clusters at cell poles and also laterally, and this clustering plays an important role in signal transduction. These clusters were found to be periodically arranged on the surface of the bacterium Escherichia coli, independent of any known positioning mechanism. In this work we extend a model based on diffusion and aggregation to more realistic geometries and present a means based on ‘bursty’ protein production to distinguish spontaneous positioning from an independently existing positioning mechanism. We also consider the case of isotropic cellular growth and characterize the degree of order arising spontaneously. Our model could also be relevant for other examples of periodically positioned protein clusters in bacteria.

  11. A Clustered Extragalactic Foreground Model for the EoR

    NASA Astrophysics Data System (ADS)

    Murray, S. G.; Trott, C. M.; Jordan, C. H.

    2018-05-01

    We review an improved statistical model of extra-galactic point-source foregrounds first introduced in Murray et al. (2017), in the context of the Epoch of Reionization. This model extends the instrumentally-convolved foreground covariance used in inverse-covariance foreground mitigation schemes, by considering the cosmological clustering of the sources. In this short work, we show that over scales of k ~ (0.6, 40.)hMpc-1, ignoring source clustering is a valid approximation. This is in contrast to Murray et al. (2017), who found a possibility of false detection if the clustering was ignored. The dominant cause for this change is the introduction of a Galactic synchrotron component which shadows the clustering of sources.

  12. Multi-Parent Clustering Algorithms from Stochastic Grammar Data Models

    NASA Technical Reports Server (NTRS)

    Mjoisness, Eric; Castano, Rebecca; Gray, Alexander

    1999-01-01

    We introduce a statistical data model and an associated optimization-based clustering algorithm which allows data vectors to belong to zero, one or several "parent" clusters. For each data vector the algorithm makes a discrete decision among these alternatives. Thus, a recursive version of this algorithm would place data clusters in a Directed Acyclic Graph rather than a tree. We test the algorithm with synthetic data generated according to the statistical data model. We also illustrate the algorithm using real data from large-scale gene expression assays.

  13. [Bibliometrics and visualization analysis of land use regression models in ambient air pollution research].

    PubMed

    Zhang, Y J; Zhou, D H; Bai, Z P; Xue, F X

    2018-02-10

    Objective: To quantitatively analyze the current status and development trends regarding the land use regression (LUR) models on ambient air pollution studies. Methods: Relevant literature from the PubMed database before June 30, 2017 was analyzed, using the Bibliographic Items Co-occurrence Matrix Builder (BICOMB 2.0). Keywords co-occurrence networks, cluster mapping and timeline mapping were generated, using the CiteSpace 5.1.R5 software. Relevant literature identified in three Chinese databases was also reviewed. Results: Four hundred sixty four relevant papers were retrieved from the PubMed database. The number of papers published showed an annual increase, in line with the growing trend of the index. Most papers were published in the journal of Environmental Health Perspectives . Results from the Co-word cluster analysis identified five clusters: cluster#0 consisted of birth cohort studies related to the health effects of prenatal exposure to air pollution; cluster#1 referred to land use regression modeling and exposure assessment; cluster#2 was related to the epidemiology on traffic exposure; cluster#3 dealt with the exposure to ultrafine particles and related health effects; cluster#4 described the exposure to black carbon and related health effects. Data from Timeline mapping indicated that cluster#0 and#1 were the main research areas while cluster#3 and#4 were the up-coming hot areas of research. Ninety four relevant papers were retrieved from the Chinese databases with most of them related to studies on modeling. Conclusion: In order to better assess the health-related risks of ambient air pollution, and to best inform preventative public health intervention policies, application of LUR models to environmental epidemiology studies in China should be encouraged.

  14. Nonpolytropic model for the Coma Cluster

    NASA Technical Reports Server (NTRS)

    Fusco-Femiano, R.; Hughes, John P.

    1994-01-01

    In this article we demonstrate, for the first time, how a physically motivated static model for both the gas and galaxies in the Coma Cluster of galaxies can jointly fit all available X-ray and optical imaging and spectroscopic data. The principal assumption of this nonpolytropic model (Cavaliere & Fusco-Femiano 1981, hereafter CFF), is that the intracluster gas temperature is proportional to the square of the galaxy velocity dispersion everywhere throughout the cluster; no other assumption about the gas temperature distribution is required. After demonstrating that the CFF nonpolytropic model is an adequate representation of the gas and galaxy distributions, the radial velocity dispersion profile, and the gas temperature distribution, we derive the following information about the Coma Cluster: 1. The central temperature is about 9 keV and the central density is 2.8 x 10(exp -3)/cm(exp 3) for the X-ray emitting plasma; 2. The binding mass of the cluster is approximately 2 x 10(exp 15) solar mass within 5 Mpc for (H(sub 0) = 50 km/sec/Mpc), with a mass-to-light ratio of approximately 160 solar mass/solar luminosity; 3. The contribution of the gas to the total virial mass increases with distance from the cluster center, and we estimate that this ratio is no greater than approximately 50% within 5 Mpc. The ability of the CFF nonpolytropic model to describe the current X-ray and optical data for the Coma Cluster suggests that a significant fraction of the thermal energy contained in the hot gas in this as well as other rich galaxy clusters may have come from the interaction between the galaxies and the ambient cluster medium. interaction between the galaxies and the ambient cluster medium.

  15. A model for the infrared emission from an OB star cluster environment

    NASA Technical Reports Server (NTRS)

    Leisawitz, D.

    1991-01-01

    A model for the infrared emission from the neighborhood of an OB star cluster is described. The distribution of gas and dust around the stars, properties of the dust, and the cluster and interstellar radiation fields are variable. The model can be applied to regions around clusters embedded to various degrees in their parental molecular clouds (i.e., compact H II regions, blister-type H II regions, and the tenuous H II regions ionized by naked O stars). The model is used to simulate IRAS observations of a typical blister H II region. Infrared surface brightness and spectral energy distributions are predicted and the impact of limited spatial resolution is illustrated. The model results are shown to be consistent with observations of the exemplary outer Galaxy OB cluster NGC 7380. It is planned to use the model as a diagnostic tool to probe the physical conditions and dust properties in star-formation regions and, ultimately, in an interpretation of the spectral energy distributions of spiral galaxies.

  16. Role of radial nonuniformities in the interaction of an intense laser with atomic clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holkundkar, Amol R.; Gupta, N. K.

    A model for the interaction of an intense laser with atomic clusters is presented. The model takes into account the spatial nonuniformities of the cluster as it evolves in time. The cluster is treated as a stratified sphere having an arbitrary number of layers. Electric and magnetic fields are obtained by solving the vector Helmholtz equation coupled with one-dimensional Lagrangian hydrodynamics. Results are compared with the uniform density nanoplasma model. Enhancement in the amount of energy absorbed is seen over the uniform density model. In some cases the absorbed energy increases by as much as a factor of 40.

  17. Modeling fractal cities using the correlated percolation model.

    NASA Astrophysics Data System (ADS)

    Makse, Hernán A.; Havlin, Shlomo; Stanley, H. Eugene

    1996-03-01

    Cities grow in a way that might be expected to resemble the growth of two-dimensional aggregates of particles, and this has led to recent attempts to model urban growth using ideas from the statistical physics of clusters. In particular, the model of diffusion limited aggregation (DLA) has been invoked to rationalize the apparently fractal nature of urban morphologies(M. Batty and P. Longley, Fractal Cities) (Academic, San Diego, 1994). The DLA model predicts that there should exist only one large fractal cluster, which is almost perfectly screened from incoming 'development units' (representing, for example, people, capital or resources), so that almost all of the cluster growth takes place at the tips of the cluster's branches. We show that an alternative model(H. A. Makse, S. Havlin, H. E. Stanley, Nature 377), 608 (1995), in which development units are correlated rather than being added to the cluster at random, is better able to reproduce the observed morphology of cities and the area distribution of sub-clusters ('towns') in an urban system, and can also describe urban growth dynamics. Our physical model, which corresponds to the correlated percolation model in the presence of a density gradient, is motivated by the fact that in urban areas development attracts further development. The model offers the possibility of predicting the global properties (such as scaling behavior) of urban morphologies.

  18. Cluster Cooperation in Wireless-Powered Sensor Networks: Modeling and Performance Analysis.

    PubMed

    Zhang, Chao; Zhang, Pengcheng; Zhang, Weizhan

    2017-09-27

    A wireless-powered sensor network (WPSN) consisting of one hybrid access point (HAP), a near cluster and the corresponding far cluster is investigated in this paper. These sensors are wireless-powered and they transmit information by consuming the harvested energy from signal ejected by the HAP. Sensors are able to harvest energy as well as store the harvested energy. We propose that if sensors in near cluster do not have their own information to transmit, acting as relays, they can help the sensors in a far cluster to forward information to the HAP in an amplify-and-forward (AF) manner. We use a finite Markov chain to model the dynamic variation process of the relay battery, and give a general analyzing model for WPSN with cluster cooperation. Though the model, we deduce the closed-form expression for the outage probability as the metric of this network. Finally, simulation results validate the start point of designing this paper and correctness of theoretical analysis and show how parameters have an effect on system performance. Moreover, it is also known that the outage probability of sensors in far cluster can be drastically reduced without sacrificing the performance of sensors in near cluster if the transmit power of HAP is fairly high. Furthermore, in the aspect of outage performance of far cluster, the proposed scheme significantly outperforms the direct transmission scheme without cooperation.

  19. On the applicability of one- and many-electron quantum chemistry models for hydrated electron clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turi, László, E-mail: turi@chem.elte.hu

    2016-04-21

    We evaluate the applicability of a hierarchy of quantum models in characterizing the binding energy of excess electrons to water clusters. In particular, we calculate the vertical detachment energy of an excess electron from water cluster anions with methods that include one-electron pseudopotential calculations, density functional theory (DFT) based calculations, and ab initio quantum chemistry using MP2 and eom-EA-CCSD levels of theory. The examined clusters range from the smallest cluster size (n = 2) up to nearly nanosize clusters with n = 1000 molecules. The examined cluster configurations are extracted from mixed quantum-classical molecular dynamics trajectories of cluster anions withmore » n = 1000 water molecules using two different one-electron pseudopotenial models. We find that while MP2 calculations with large diffuse basis set provide a reasonable description for the hydrated electron system, DFT methods should be used with precaution and only after careful benchmarking. Strictly tested one-electron psudopotentials can still be considered as reasonable alternatives to DFT methods, especially in large systems. The results of quantum chemistry calculations performed on configurations, that represent possible excess electron binding motifs in the clusters, appear to be consistent with the results using a cavity structure preferring one-electron pseudopotential for the hydrated electron, while they are in sharp disagreement with the structural predictions of a non-cavity model.« less

  20. Cluster Cooperation in Wireless-Powered Sensor Networks: Modeling and Performance Analysis

    PubMed Central

    Zhang, Chao; Zhang, Pengcheng; Zhang, Weizhan

    2017-01-01

    A wireless-powered sensor network (WPSN) consisting of one hybrid access point (HAP), a near cluster and the corresponding far cluster is investigated in this paper. These sensors are wireless-powered and they transmit information by consuming the harvested energy from signal ejected by the HAP. Sensors are able to harvest energy as well as store the harvested energy. We propose that if sensors in near cluster do not have their own information to transmit, acting as relays, they can help the sensors in a far cluster to forward information to the HAP in an amplify-and-forward (AF) manner. We use a finite Markov chain to model the dynamic variation process of the relay battery, and give a general analyzing model for WPSN with cluster cooperation. Though the model, we deduce the closed-form expression for the outage probability as the metric of this network. Finally, simulation results validate the start point of designing this paper and correctness of theoretical analysis and show how parameters have an effect on system performance. Moreover, it is also known that the outage probability of sensors in far cluster can be drastically reduced without sacrificing the performance of sensors in near cluster if the transmit power of HAP is fairly high. Furthermore, in the aspect of outage performance of far cluster, the proposed scheme significantly outperforms the direct transmission scheme without cooperation. PMID:28953231

  1. On the applicability of one- and many-electron quantum chemistry models for hydrated electron clusters

    NASA Astrophysics Data System (ADS)

    Turi, László

    2016-04-01

    We evaluate the applicability of a hierarchy of quantum models in characterizing the binding energy of excess electrons to water clusters. In particular, we calculate the vertical detachment energy of an excess electron from water cluster anions with methods that include one-electron pseudopotential calculations, density functional theory (DFT) based calculations, and ab initio quantum chemistry using MP2 and eom-EA-CCSD levels of theory. The examined clusters range from the smallest cluster size (n = 2) up to nearly nanosize clusters with n = 1000 molecules. The examined cluster configurations are extracted from mixed quantum-classical molecular dynamics trajectories of cluster anions with n = 1000 water molecules using two different one-electron pseudopotenial models. We find that while MP2 calculations with large diffuse basis set provide a reasonable description for the hydrated electron system, DFT methods should be used with precaution and only after careful benchmarking. Strictly tested one-electron psudopotentials can still be considered as reasonable alternatives to DFT methods, especially in large systems. The results of quantum chemistry calculations performed on configurations, that represent possible excess electron binding motifs in the clusters, appear to be consistent with the results using a cavity structure preferring one-electron pseudopotential for the hydrated electron, while they are in sharp disagreement with the structural predictions of a non-cavity model.

  2. MODEL-BASED CLUSTERING FOR CLASSIFICATION OF AQUATIC SYSTEMS AND DIAGNOSIS OF ECOLOGICAL STRESS

    EPA Science Inventory

    Clustering approaches were developed using the classification likelihood, the mixture likelihood, and also using a randomization approach with a model index. Using a clustering approach based on the mixture and classification likelihoods, we have developed an algorithm that...

  3. The Scale Sizes of Globular Clusters: Tidal Limits, Evolution, and the Outer Halo

    NASA Astrophysics Data System (ADS)

    Harris, William

    2011-10-01

    The physical factors that determine the linear sizes of massive star clusters are not well understood. Their scale sizes were long thought to be governed by the tidal field of the parent galaxy, but major questions are now emerging. Globular clusters, for example, have mean sizes nearly independent of location in the halo. Paradoxically, the recently discovered "anomalous extended clusters" in M31 and elsewhere have scale sizes that fit much better with tidal theory, but they are puzzlingly rare. Lastly, the persistent size difference between metal-poor and metal-rich clusters still lacks a quantitative explanation. Many aspects of these observations call for better modelling of dynamical evolution in the outskirts of clusters, and also their conditions of formation including the early rapid mass loss phase of protoclusters. A new set of accurate measurements of scale sizes and structural parameters, for a large and homogeneous set of globular clusters, would represent a major advance in this subject. We propose to carry out a {WFC3+ACS} imaging survey of the globular clusters in the supergiant Virgo elliptical M87 to cover the complete run of the halo. M87 is an optimum target system because of its huge numbers of clusters and HST's ability to resolve the cluster profiles accurately. We will derive cluster effective radii, central concentrations, luminosities, and colors for more than 4000 clusters using PSF-convolved King-model profile fitting. In parallel, we are developing theoretical tools to model the expected distribution of cluster sizes versus galactocentric distance as functions of cluster mass, concentration, and orbital anisotropy.

  4. Competitive repetition suppression (CoRe) clustering: a biologically inspired learning model with application to robust clustering.

    PubMed

    Bacciu, Davide; Starita, Antonina

    2008-11-01

    Determining a compact neural coding for a set of input stimuli is an issue that encompasses several biological memory mechanisms as well as various artificial neural network models. In particular, establishing the optimal network structure is still an open problem when dealing with unsupervised learning models. In this paper, we introduce a novel learning algorithm, named competitive repetition-suppression (CoRe) learning, inspired by a cortical memory mechanism called repetition suppression (RS). We show how such a mechanism is used, at various levels of the cerebral cortex, to generate compact neural representations of the visual stimuli. From the general CoRe learning model, we derive a clustering algorithm, named CoRe clustering, that can automatically estimate the unknown cluster number from the data without using a priori information concerning the input distribution. We illustrate how CoRe clustering, besides its biological plausibility, posses strong theoretical properties in terms of robustness to noise and outliers, and we provide an error function describing CoRe learning dynamics. Such a description is used to analyze CoRe relationships with the state-of-the art clustering models and to highlight CoRe similitude with rival penalized competitive learning (RPCL), showing how CoRe extends such a model by strengthening the rival penalization estimation by means of loss functions from robust statistics.

  5. Off-stoichiometric defect clustering in irradiated oxides

    NASA Astrophysics Data System (ADS)

    Khalil, Sarah; Allen, Todd; EL-Azab, Anter

    2017-04-01

    A cluster dynamics model describing the formation of vacancy and interstitial clusters in irradiated oxides has been developed. The model, which tracks the composition of the oxide matrix and the defect clusters, was applied to the early stage formation of voids and dislocation loops in UO2, and the effects of irradiation temperature and dose rate on the evolution of their densities and composition was investigated. The results show that Frenkel defects dominate the nucleation process in irradiated UO2. The results also show that oxygen vacancies drive vacancy clustering while the migration energy of uranium vacancies is a rate-limiting factor for the nucleation and growth of voids. In a stoichiometric UO2 under irradiation, off-stoichiometric vacancy clusters exist with a higher concentration of hyper-stoichiometric clusters. Similarly, off-stoichiometric interstitial clusters form with a higher concentration of hyper-stoichiometric clusters. The UO2 matrix was found to be hyper-stoichiometric due to the accumulation of uranium vacancies.

  6. Density-based cluster algorithms for the identification of core sets

    NASA Astrophysics Data System (ADS)

    Lemke, Oliver; Keller, Bettina G.

    2016-10-01

    The core-set approach is a discretization method for Markov state models of complex molecular dynamics. Core sets are disjoint metastable regions in the conformational space, which need to be known prior to the construction of the core-set model. We propose to use density-based cluster algorithms to identify the cores. We compare three different density-based cluster algorithms: the CNN, the DBSCAN, and the Jarvis-Patrick algorithm. While the core-set models based on the CNN and DBSCAN clustering are well-converged, constructing core-set models based on the Jarvis-Patrick clustering cannot be recommended. In a well-converged core-set model, the number of core sets is up to an order of magnitude smaller than the number of states in a conventional Markov state model with comparable approximation error. Moreover, using the density-based clustering one can extend the core-set method to systems which are not strongly metastable. This is important for the practical application of the core-set method because most biologically interesting systems are only marginally metastable. The key point is to perform a hierarchical density-based clustering while monitoring the structure of the metric matrix which appears in the core-set method. We test this approach on a molecular-dynamics simulation of a highly flexible 14-residue peptide. The resulting core-set models have a high spatial resolution and can distinguish between conformationally similar yet chemically different structures, such as register-shifted hairpin structures.

  7. THE BLUE HOOK POPULATIONS OF MASSIVE GLOBULAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Thomas M.; Smith, Ed; Sweigart, Allen V.

    2010-08-01

    We present new Hubble Space Telescope ultraviolet color-magnitude diagrams of five massive Galactic globular clusters: NGC 2419, NGC 6273, NGC 6715, NGC 6388, and NGC 6441. These observations were obtained to investigate the 'blue hook' (BH) phenomenon previously observed in UV images of the globular clusters {omega} Cen and NGC 2808. Blue hook stars are a class of hot (approximately 35,000 K) subluminous horizontal branch stars that occupy a region of the HR diagram that is unexplained by canonical stellar evolution theory. By coupling new stellar evolution models to appropriate non-LTE synthetic spectra, we investigate various theoretical explanations for thesemore » stars. Specifically, we compare our photometry to canonical models at standard cluster abundances, canonical models with enhanced helium (consistent with cluster self-enrichment at early times), and flash-mixed models formed via a late helium-core flash on the white dwarf cooling curve. We find that flash-mixed models are required to explain the faint luminosity of the BH stars, although neither the canonical models nor the flash-mixed models can explain the range of color observed in such stars, especially those in the most metal-rich clusters. Aside from the variation in the color range, no clear trends emerge in the morphology of the BH population with respect to metallicity.« less

  8. Modeling the Movement of Homicide by Type to Inform Public Health Prevention Efforts

    PubMed Central

    Grady, Sue; Pizarro, Jesenia M.; Melde, Chris

    2015-01-01

    Objectives. We modeled the spatiotemporal movement of hotspot clusters of homicide by motive in Newark, New Jersey, to investigate whether different homicide types have different patterns of clustering and movement. Methods. We obtained homicide data from the Newark Police Department Homicide Unit’s investigative files from 1997 through 2007 (n = 560). We geocoded the address at which each homicide victim was found and recorded the date of and the motive for the homicide. We used cluster detection software to model the spatiotemporal movement of statistically significant homicide clusters by motive, using census tract and month of occurrence as the spatial and temporal units of analysis. Results. Gang-motivated homicides showed evidence of clustering and diffusion through Newark. Additionally, gang-motivated homicide clusters overlapped to a degree with revenge and drug-motivated homicide clusters. Escalating dispute and nonintimate familial homicides clustered; however, there was no evidence of diffusion. Intimate partner and robbery homicides did not cluster. Conclusions. By tracking how homicide types diffuse through communities and determining which places have ongoing or emerging homicide problems by type, we can better inform the deployment of prevention and intervention efforts. PMID:26270315

  9. A Symmetric Time-Varying Cluster Rate of Descent Model

    NASA Technical Reports Server (NTRS)

    Ray, Eric S.

    2015-01-01

    A model of the time-varying rate of descent of the Orion vehicle was developed based on the observed correlation between canopy projected area and drag coefficient. This initial version of the model assumes cluster symmetry and only varies the vertical component of velocity. The cluster fly-out angle is modeled as a series of sine waves based on flight test data. The projected area of each canopy is synchronized with the primary fly-out angle mode. The sudden loss of projected area during canopy collisions is modeled at minimum fly-out angles, leading to brief increases in rate of descent. The cluster geometry is converted to drag coefficient using empirically derived constants. A more complete model is under development, which computes the aerodynamic response of each canopy to its local incidence angle.

  10. Cluster-cluster correlations and constraints on the correlation hierarchy

    NASA Technical Reports Server (NTRS)

    Hamilton, A. J. S.; Gott, J. R., III

    1988-01-01

    The hypothesis that galaxies cluster around clusters at least as strongly as they cluster around galaxies imposes constraints on the hierarchy of correlation amplitudes in hierachical clustering models. The distributions which saturate these constraints are the Rayleigh-Levy random walk fractals proposed by Mandelbrot; for these fractal distributions cluster-cluster correlations are all identically equal to galaxy-galaxy correlations. If correlation amplitudes exceed the constraints, as is observed, then cluster-cluster correlations must exceed galaxy-galaxy correlations, as is observed.

  11. Lifetime of Major Histocompatibility Complex Class-I Membrane Clusters Is Controlled by the Actin Cytoskeleton

    PubMed Central

    Lavi, Yael; Gov, Nir; Edidin, Michael; Gheber, Levi A.

    2012-01-01

    Lateral heterogeneity of cell membranes has been demonstrated in numerous studies showing anomalous diffusion of membrane proteins; it has been explained by models and experiments suggesting dynamic barriers to free diffusion, that temporarily confine membrane proteins into microscopic patches. This picture, however, comes short of explaining a steady-state patchy distribution of proteins, in face of the transient opening of the barriers. In our previous work we directly imaged persistent clusters of MHC-I, a type I transmembrane protein, and proposed a model of a dynamic equilibrium between proteins newly delivered to the cell surface by vesicle traffic, temporary confinement by dynamic barriers to lateral diffusion, and dispersion of the clusters by diffusion over the dynamic barriers. Our model predicted that the clusters are dynamic, appearing when an exocytic vesicle fuses with the plasma membrane and dispersing with a typical lifetime that depends on lateral diffusion and the dynamics of barriers. In a subsequent work, we showed this to be the case. Here we test another prediction of the model, and show that changing the stability of actin barriers to lateral diffusion changes cluster lifetimes. We also develop a model for the distribution of cluster lifetimes, consistent with the function of barriers to lateral diffusion in maintaining MHC-I clusters. PMID:22500754

  12. A spatial hazard model for cluster detection on continuous indicators of disease: application to somatic cell score.

    PubMed

    Gay, Emilie; Senoussi, Rachid; Barnouin, Jacques

    2007-01-01

    Methods for spatial cluster detection dealing with diseases quantified by continuous variables are few, whereas several diseases are better approached by continuous indicators. For example, subclinical mastitis of the dairy cow is evaluated using a continuous marker of udder inflammation, the somatic cell score (SCS). Consequently, this study proposed to analyze spatialized risk and cluster components of herd SCS through a new method based on a spatial hazard model. The dataset included annual SCS for 34 142 French dairy herds for the year 2000, and important SCS risk factors: mean parity, percentage of winter and spring calvings, and herd size. The model allowed the simultaneous estimation of the effects of known risk factors and of potential spatial clusters on SCS, and the mapping of the estimated clusters and their range. Mean parity and winter and spring calvings were significantly associated with subclinical mastitis risk. The model with the presence of 3 clusters was highly significant, and the 3 clusters were attractive, i.e. closeness to cluster center increased the occurrence of high SCS. The three localizations were the following: close to the city of Troyes in the northeast of France; around the city of Limoges in the center-west; and in the southwest close to the city of Tarbes. The semi-parametric method based on spatial hazard modeling applies to continuous variables, and takes account of both risk factors and potential heterogeneity of the background population. This tool allows a quantitative detection but assumes a spatially specified form for clusters.

  13. Cold dark energy constraints from the abundance of galaxy clusters

    DOE PAGES

    Heneka, Caroline; Rapetti, David; Cataneo, Matteo; ...

    2017-10-05

    We constrain cold dark energy of negligible sound speed using galaxy cluster abundance observations. In contrast to standard quasi-homogeneous dark energy, negligible sound speed implies clustering of the dark energy fluid at all scales, allowing us to measure the effects of dark energy perturbations at cluster scales. We compare those models and set the stage for using non-linear information from semi-analytical modelling in cluster growth data analyses. For this, we recalibrate the halo mass function with non-linear characteristic quantities, the spherical collapse threshold and virial overdensity, that account for model and redshift-dependent behaviours, as well as an additional mass contributionmore » for cold dark energy. Here in this paper, we present the first constraints from this cold dark matter plus cold dark energy mass function using our cluster abundance likelihood, which self-consistently accounts for selection effects, covariances and systematic uncertainties. We combine cluster growth data with cosmic microwave background, supernovae Ia and baryon acoustic oscillation data, and find a shift between cold versus quasi-homogeneous dark energy of up to 1σ. We make a Fisher matrix forecast of constraints attainable with cluster growth data from the ongoing Dark Energy Survey (DES). For DES, we predict ~ 50 percent tighter constraints on (Ωm, w) for cold dark energy versus wCDM models, with the same free parameters. Overall, we show that cluster abundance analyses are sensitive to cold dark energy, an alternative, viable model that should be routinely investigated alongside the standard dark energy scenario.« less

  14. Cold dark energy constraints from the abundance of galaxy clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heneka, Caroline; Rapetti, David; Cataneo, Matteo

    We constrain cold dark energy of negligible sound speed using galaxy cluster abundance observations. In contrast to standard quasi-homogeneous dark energy, negligible sound speed implies clustering of the dark energy fluid at all scales, allowing us to measure the effects of dark energy perturbations at cluster scales. We compare those models and set the stage for using non-linear information from semi-analytical modelling in cluster growth data analyses. For this, we recalibrate the halo mass function with non-linear characteristic quantities, the spherical collapse threshold and virial overdensity, that account for model and redshift-dependent behaviours, as well as an additional mass contributionmore » for cold dark energy. Here in this paper, we present the first constraints from this cold dark matter plus cold dark energy mass function using our cluster abundance likelihood, which self-consistently accounts for selection effects, covariances and systematic uncertainties. We combine cluster growth data with cosmic microwave background, supernovae Ia and baryon acoustic oscillation data, and find a shift between cold versus quasi-homogeneous dark energy of up to 1σ. We make a Fisher matrix forecast of constraints attainable with cluster growth data from the ongoing Dark Energy Survey (DES). For DES, we predict ~ 50 percent tighter constraints on (Ωm, w) for cold dark energy versus wCDM models, with the same free parameters. Overall, we show that cluster abundance analyses are sensitive to cold dark energy, an alternative, viable model that should be routinely investigated alongside the standard dark energy scenario.« less

  15. "K"-Means May Perform as well as Mixture Model Clustering but May Also Be Much Worse: Comment on Steinley and Brusco (2011)

    ERIC Educational Resources Information Center

    Vermunt, Jeroen K.

    2011-01-01

    Steinley and Brusco (2011) presented the results of a huge simulation study aimed at evaluating cluster recovery of mixture model clustering (MMC) both for the situation where the number of clusters is known and is unknown. They derived rather strong conclusions on the basis of this study, especially with regard to the good performance of…

  16. Mechanism for Collective Cell Alignment in Myxococcus xanthus Bacteria

    PubMed Central

    Balagam, Rajesh; Igoshin, Oleg A.

    2015-01-01

    Myxococcus xanthus cells self-organize into aligned groups, clusters, at various stages of their lifecycle. Formation of these clusters is crucial for the complex dynamic multi-cellular behavior of these bacteria. However, the mechanism underlying the cell alignment and clustering is not fully understood. Motivated by studies of clustering in self-propelled rods, we hypothesized that M. xanthus cells can align and form clusters through pure mechanical interactions among cells and between cells and substrate. We test this hypothesis using an agent-based simulation framework in which each agent is based on the biophysical model of an individual M. xanthus cell. We show that model agents, under realistic cell flexibility values, can align and form cell clusters but only when periodic reversals of cell directions are suppressed. However, by extending our model to introduce the observed ability of cells to deposit and follow slime trails, we show that effective trail-following leads to clusters in reversing cells. Furthermore, we conclude that mechanical cell alignment combined with slime-trail-following is sufficient to explain the distinct clustering behaviors observed for wild-type and non-reversing M. xanthus mutants in recent experiments. Our results are robust to variation in model parameters, match the experimentally observed trends and can be applied to understand surface motility patterns of other bacterial species. PMID:26308508

  17. Geospatial clustering in sugar-sweetened beverage consumption among Boston youth.

    PubMed

    Tamura, Kosuke; Duncan, Dustin T; Athens, Jessica K; Bragg, Marie A; Rienti, Michael; Aldstadt, Jared; Scott, Marc A; Elbel, Brian

    2017-09-01

    The objective was to detect geospatial clustering of sugar-sweetened beverage (SSB) intake in Boston adolescents (age = 16.3 ± 1.3 years [range: 13-19]; female = 56.1%; White = 10.4%, Black = 42.6%, Hispanics = 32.4%, and others = 14.6%) using spatial scan statistics. We used data on self-reported SSB intake from the 2008 Boston Youth Survey Geospatial Dataset (n = 1292). Two binary variables were created: consumption of SSB (never versus any) on (1) soda and (2) other sugary drinks (e.g., lemonade). A Bernoulli spatial scan statistic was used to identify geospatial clusters of soda and other sugary drinks in unadjusted models and models adjusted for age, gender, and race/ethnicity. There was no statistically significant clustering of soda consumption in the unadjusted model. In contrast, a cluster of non-soda SSB consumption emerged in the middle of Boston (relative risk = 1.20, p = .005), indicating that adolescents within the cluster had a 20% higher probability of reporting non-soda SSB intake than outside the cluster. The cluster was no longer significant in the adjusted model, suggesting spatial variation in non-soda SSB drink intake correlates with the geographic distribution of students by race/ethnicity, age, and gender.

  18. Buried landmine detection using multivariate normal clustering

    NASA Astrophysics Data System (ADS)

    Duston, Brian M.

    2001-10-01

    A Bayesian classification algorithm is presented for discriminating buried land mines from buried and surface clutter in Ground Penetrating Radar (GPR) signals. This algorithm is based on multivariate normal (MVN) clustering, where feature vectors are used to identify populations (clusters) of mines and clutter objects. The features are extracted from two-dimensional images created from ground penetrating radar scans. MVN clustering is used to determine the number of clusters in the data and to create probability density models for target and clutter populations, producing the MVN clustering classifier (MVNCC). The Bayesian Information Criteria (BIC) is used to evaluate each model to determine the number of clusters in the data. An extension of the MVNCC allows the model to adapt to local clutter distributions by treating each of the MVN cluster components as a Poisson process and adaptively estimating the intensity parameters. The algorithm is developed using data collected by the Mine Hunter/Killer Close-In Detector (MH/K CID) at prepared mine lanes. The Mine Hunter/Killer is a prototype mine detecting and neutralizing vehicle developed for the U.S. Army to clear roads of anti-tank mines.

  19. Cosmological study with galaxy clusters detected by the Sunyaev-Zel'dovich effect

    NASA Astrophysics Data System (ADS)

    Mak, Suet-Ying

    In this work, we present various studies to forecast the power of the galaxy clusters detected by the Sunyaev-Zel'dovich (SZ) effect in constraining cosmological models. The SZ effect is regarded as one of the new and promising technique to identify and study cluster physics. With the latest data being released in recent years from the SZ telescopes, it is essential to explore their potentials in providing cosmological information and investigate their relative strengths with respect to galaxy cluster data from X-ray and optical, as well as other cosmological probes such as Cosmic Microwave Background (CMB). One of the topics regard resolving the debate on the existence of an anomalous large scale bulk flow as measured from the kinetic SZ signal of galaxy clusters in the WMAP CMB data. We predict that if such measurement is done with the latest CMB data from the Planck satellite, the sensitivity will be improved by a factor of >5 and thus be able to provide an independent view of its existence. As it turns out, the Planck data, when using the technique developed in this work, find that the observed bulk flow amplitude is consistent with those expected from the LambdaCDM, which is in clear contradiction to the previous claim of a significant bulk flow detection in the WMAP data. We also forecast on the capability of the ongoing and future cluster surveys identified through thermal SZ (tSZ) in constraining three extended models to the LambdaCDM model: modified gravity f( R) model, primordial non-Gaussianity of density perturbation, and the presence of massive neutrinos. We do so by employing their effects on the cluster number count and power spectrum and using Fisher Matrix analysis to estimate the errors on the model parameters. We find that SZ cluster surveys can provide vital complementary information to those expected from non-cluster probes. Our results therefore give the confidence for pursuing these extended cosmological models with SZ clusters.

  20. Optimizing the maximum reported cluster size in the spatial scan statistic for ordinal data.

    PubMed

    Kim, Sehwi; Jung, Inkyung

    2017-01-01

    The spatial scan statistic is an important tool for spatial cluster detection. There have been numerous studies on scanning window shapes. However, little research has been done on the maximum scanning window size or maximum reported cluster size. Recently, Han et al. proposed to use the Gini coefficient to optimize the maximum reported cluster size. However, the method has been developed and evaluated only for the Poisson model. We adopt the Gini coefficient to be applicable to the spatial scan statistic for ordinal data to determine the optimal maximum reported cluster size. Through a simulation study and application to a real data example, we evaluate the performance of the proposed approach. With some sophisticated modification, the Gini coefficient can be effectively employed for the ordinal model. The Gini coefficient most often picked the optimal maximum reported cluster sizes that were the same as or smaller than the true cluster sizes with very high accuracy. It seems that we can obtain a more refined collection of clusters by using the Gini coefficient. The Gini coefficient developed specifically for the ordinal model can be useful for optimizing the maximum reported cluster size for ordinal data and helpful for properly and informatively discovering cluster patterns.

  1. Optimizing the maximum reported cluster size in the spatial scan statistic for ordinal data

    PubMed Central

    Kim, Sehwi

    2017-01-01

    The spatial scan statistic is an important tool for spatial cluster detection. There have been numerous studies on scanning window shapes. However, little research has been done on the maximum scanning window size or maximum reported cluster size. Recently, Han et al. proposed to use the Gini coefficient to optimize the maximum reported cluster size. However, the method has been developed and evaluated only for the Poisson model. We adopt the Gini coefficient to be applicable to the spatial scan statistic for ordinal data to determine the optimal maximum reported cluster size. Through a simulation study and application to a real data example, we evaluate the performance of the proposed approach. With some sophisticated modification, the Gini coefficient can be effectively employed for the ordinal model. The Gini coefficient most often picked the optimal maximum reported cluster sizes that were the same as or smaller than the true cluster sizes with very high accuracy. It seems that we can obtain a more refined collection of clusters by using the Gini coefficient. The Gini coefficient developed specifically for the ordinal model can be useful for optimizing the maximum reported cluster size for ordinal data and helpful for properly and informatively discovering cluster patterns. PMID:28753674

  2. Significance of flow clustering and sequencing on sediment transport: 1D sediment transport modelling

    NASA Astrophysics Data System (ADS)

    Hassan, Kazi; Allen, Deonie; Haynes, Heather

    2016-04-01

    This paper considers 1D hydraulic model data on the effect of high flow clusters and sequencing on sediment transport. Using observed flow gauge data from the River Caldew, England, a novel stochastic modelling approach was developed in order to create alternative 50 year flow sequences. Whilst the observed probability density of gauge data was preserved in all sequences, the order in which those flows occurred was varied using the output from a Hidden Markov Model (HMM) with generalised Pareto distribution (GP). In total, one hundred 50 year synthetic flow series were generated and used as the inflow boundary conditions for individual flow series model runs using the 1D sediment transport model HEC-RAS. The model routed graded sediment through the case study river reach to define the long-term morphological changes. Comparison of individual simulations provided a detailed understanding of the sensitivity of channel capacity to flow sequence. Specifically, each 50 year synthetic flow sequence was analysed using a 3-month, 6-month or 12-month rolling window approach and classified for clusters in peak discharge. As a cluster is described as a temporal grouping of flow events above a specified threshold, the threshold condition used herein is considered as a morphologically active channel forming discharge event. Thus, clusters were identified for peak discharges in excess of 10%, 20%, 50%, 100% and 150% of the 1 year Return Period (RP) event. The window of above-peak flows also required cluster definition and was tested for timeframes 1, 2, 10 and 30 days. Subsequently, clusters could be described in terms of the number of events, maximum peak flow discharge, cumulative flow discharge and skewness (i.e. a description of the flow sequence). The model output for each cluster was analysed for the cumulative flow volume and cumulative sediment transport (mass). This was then compared to the total sediment transport of a single flow event of equivalent flow volume. Results illustrate that clustered flood events generated sediment loads up to an order of magnitude greater than that of individual events of the same flood volume. Correlations were significant for sediment volume compared to both maximum flow discharge (R2<0.8) and number of events (R2 -0.5 to -0.7) within the cluster. The strongest correlations occurred for clusters with a greater number of flow events only slightly above-threshold. This illustrates that the numerical model can capture a degree of the non-linear morphological response to flow magnitude. Analysis of the relationship between morphological change and the skewness of flow events within each cluster was also determined, illustrating only minor sensitivity to cluster peak distribution skewness. This is surprising and discussion is presented on model limitations, including the capability of sediment transport formulae to effectively account for temporal processes of antecedent flow, hysteresis, local supply etc.

  3. Molecular dynamics modelling of EGCG clusters on ceramide bilayers

    NASA Astrophysics Data System (ADS)

    Yeo, Jingjie; Cheng, Yuan; Li, Weifeng; Zhang, Yong-Wei

    2015-12-01

    A novel method of atomistic modelling and characterization of both pure ceramide and mixed lipid bilayers is being developed, using only the General Amber ForceField. Lipid bilayers modelled as pure ceramides adopt hexagonal packing after equilibration, and the area per lipid and bilayer thickness are consistent with previously reported theoretical results. Mixed lipid bilayers are modelled as a combination of ceramides, cholesterol, and free fatty acids. This model is shown to be stable after equilibration. Green tea extract, also known as epigallocatechin-3-gallate, is introduced as a spherical cluster on the surface of the mixed lipid bilayer. It is demonstrated that the cluster is able to bind to the bilayers as a cluster without diffusing into the surrounding water.

  4. FACTOR ANALYTIC MODELS OF CLUSTERED MULTIVARIATE DATA WITH INFORMATIVE CENSORING

    EPA Science Inventory

    This paper describes a general class of factor analytic models for the analysis of clustered multivariate data in the presence of informative missingness. We assume that there are distinct sets of cluster-level latent variables related to the primary outcomes and to the censorin...

  5. Changes in tropical precipitation cluster size distributions under global warming

    NASA Astrophysics Data System (ADS)

    Neelin, J. D.; Quinn, K. M.

    2016-12-01

    The total amount of precipitation integrated across a tropical storm or other precipitation feature (contiguous clusters of precipitation exceeding a minimum rain rate) is a useful measure of the aggregate size of the disturbance. To establish baseline behavior in current climate, the probability distribution of cluster sizes from multiple satellite retrievals and National Center for Environmental Prediction (NCEP) reanalysis is compared to those from Coupled Model Intercomparison Project (CMIP5) models and the Geophysical Fluid Dynamics Laboratory high-resolution atmospheric model (HIRAM-360 and -180). With the caveat that a minimum rain rate threshold is important in the models (which tend to overproduce low rain rates), the models agree well with observations in leading properties. In particular, scale-free power law ranges in which the probability drops slowly with increasing cluster size are well modeled, followed by a rapid drop in probability of the largest clusters above a cutoff scale. Under the RCP 8.5 global warming scenario, the models indicate substantial increases in probability (up to an order of magnitude) of the largest clusters by the end of century. For models with continuous time series of high resolution output, there is substantial spread on when these probability increases for the largest precipitation clusters should be detectable, ranging from detectable within the observational period to statistically significant trends emerging only in the second half of the century. Examination of NCEP reanalysis and SSMI/SSMIS series of satellite retrievals from 1979 to present does not yield reliable evidence of trends at this time. The results suggest improvements in inter-satellite calibration of the SSMI/SSMIS retrievals could aid future detection.

  6. Semiempirical limits on the thermal conductivity of intracluster gas

    NASA Technical Reports Server (NTRS)

    David, Laurence P.; Hughes, John P.; Tucker, Wallace H.

    1992-01-01

    A semiempirical method for establishing lower limits on the thermal conductivity of hot gas in clusters of galaxies is described. The method is based on the observation that the X-ray imaging data (e.g., Einstein IPC) for clusters are well described by the hydrostatic-isothermal beta model, even for cooling flow clusters beyond about one core radius. In addition, there are strong indications that noncooling flow clusters (like the Coma Cluster) have a large central region (up to several core radii) of nearly constant gas temperature. This suggests that thermal conduction is an effective means of transporting and redistributing the thermal energy of the gas. This in turn has implications for the extent to which magnetic fields in the cluster are effective in reducing the thermal conductivity of the gas. Time-dependent hydrodynamic simulations for the gas in the Coma Cluster under two separate evolutionary scenarios are presented. One scenario assumes that the cluster potential is static and that the gas has an initial adiabatic distribution. The second scenario uses an evolving cluster potential. These models along with analytic results show that the thermal conductivity of the gas in the Coma Cluster cannot be less than 0.1 of full Spitzer conductivity. These models also show that high gas conductivity assists rather than hinders the development of radiative cooling in the central regions of clusters.

  7. Baseline adjustments for binary data in repeated cross-sectional cluster randomized trials.

    PubMed

    Nixon, R M; Thompson, S G

    2003-09-15

    Analysis of covariance models, which adjust for a baseline covariate, are often used to compare treatment groups in a controlled trial in which individuals are randomized. Such analysis adjusts for any baseline imbalance and usually increases the precision of the treatment effect estimate. We assess the value of such adjustments in the context of a cluster randomized trial with repeated cross-sectional design and a binary outcome. In such a design, a new sample of individuals is taken from the clusters at each measurement occasion, so that baseline adjustment has to be at the cluster level. Logistic regression models are used to analyse the data, with cluster level random effects to allow for different outcome probabilities in each cluster. We compare the estimated treatment effect and its precision in models that incorporate a covariate measuring the cluster level probabilities at baseline and those that do not. In two data sets, taken from a cluster randomized trial in the treatment of menorrhagia, the value of baseline adjustment is only evident when the number of subjects per cluster is large. We assess the generalizability of these findings by undertaking a simulation study, and find that increased precision of the treatment effect requires both large cluster sizes and substantial heterogeneity between clusters at baseline, but baseline imbalance arising by chance in a randomized study can always be effectively adjusted for. Copyright 2003 John Wiley & Sons, Ltd.

  8. Electron attenuation in free, neutral ethane clusters.

    PubMed

    Winkler, M; Myrseth, V; Harnes, J; Børve, K J

    2014-10-28

    The electron effective attenuation length (EAL) in free, neutral ethane clusters has been determined at 40 eV kinetic energy by combining carbon 1s x-ray photoelectron spectroscopy and theoretical lineshape modeling. More specifically, theory is employed to form model spectra on a grid in cluster size (N) and EAL (λ), allowing N and λ to be determined by optimizing the goodness-of-fit χ(2)(N, λ) between model and observed spectra. Experimentally, the clusters were produced in an adiabatic-expansion setup using helium as the driving gas, spanning a range of 100-600 molecules in mean cluster size. The effective attenuation length was determined to be 8.4 ± 1.9 Å, in good agreement with an independent estimate of 10 Å formed on the basis of molecular electron-scattering data and Monte Carlo simulations. The aggregation state of the clusters as well as the cluster temperature and its importance to the derived EAL value are discussed in some depth.

  9. Hierarchical Dirichlet process model for gene expression clustering

    PubMed Central

    2013-01-01

    Clustering is an important data processing tool for interpreting microarray data and genomic network inference. In this article, we propose a clustering algorithm based on the hierarchical Dirichlet processes (HDP). The HDP clustering introduces a hierarchical structure in the statistical model which captures the hierarchical features prevalent in biological data such as the gene express data. We develop a Gibbs sampling algorithm based on the Chinese restaurant metaphor for the HDP clustering. We apply the proposed HDP algorithm to both regulatory network segmentation and gene expression clustering. The HDP algorithm is shown to outperform several popular clustering algorithms by revealing the underlying hierarchical structure of the data. For the yeast cell cycle data, we compare the HDP result to the standard result and show that the HDP algorithm provides more information and reduces the unnecessary clustering fragments. PMID:23587447

  10. CHARGING AND COAGULATION OF DUST IN PROTOPLANETARY PLASMA ENVIRONMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, L. S.; Land, V.; Hyde, T. W., E-mail: lorin_matthews@baylor.edu

    2012-01-01

    Combining a particle-particle, particle-cluster, and cluster-cluster agglomeration model with an aggregate charging model, the coagulation and charging of dust particles in plasma environments relevant for protoplanetary disks have been investigated, including the effect of electron depletion in high dust density environments. The results show that charged aggregates tend to grow by adding small particles and clusters to larger particles and clusters, and that cluster-cluster aggregation is significantly more effective than particle-cluster aggregation. Comparisons of the grain structure show that with increasing aggregate charge the compactness factor, {phi}{sub {sigma}}, decreases and has a narrower distribution, indicating a fluffier structure. Neutral aggregatesmore » are more compact, with larger {phi}{sub {sigma}}, and exhibit a larger variation in fluffiness. Overall, increased aggregate charge leads to larger, fluffier, and more massive aggregates.« less

  11. DIMM-SC: a Dirichlet mixture model for clustering droplet-based single cell transcriptomic data.

    PubMed

    Sun, Zhe; Wang, Ting; Deng, Ke; Wang, Xiao-Feng; Lafyatis, Robert; Ding, Ying; Hu, Ming; Chen, Wei

    2018-01-01

    Single cell transcriptome sequencing (scRNA-Seq) has become a revolutionary tool to study cellular and molecular processes at single cell resolution. Among existing technologies, the recently developed droplet-based platform enables efficient parallel processing of thousands of single cells with direct counting of transcript copies using Unique Molecular Identifier (UMI). Despite the technology advances, statistical methods and computational tools are still lacking for analyzing droplet-based scRNA-Seq data. Particularly, model-based approaches for clustering large-scale single cell transcriptomic data are still under-explored. We developed DIMM-SC, a Dirichlet Mixture Model for clustering droplet-based Single Cell transcriptomic data. This approach explicitly models UMI count data from scRNA-Seq experiments and characterizes variations across different cell clusters via a Dirichlet mixture prior. We performed comprehensive simulations to evaluate DIMM-SC and compared it with existing clustering methods such as K-means, CellTree and Seurat. In addition, we analyzed public scRNA-Seq datasets with known cluster labels and in-house scRNA-Seq datasets from a study of systemic sclerosis with prior biological knowledge to benchmark and validate DIMM-SC. Both simulation studies and real data applications demonstrated that overall, DIMM-SC achieves substantially improved clustering accuracy and much lower clustering variability compared to other existing clustering methods. More importantly, as a model-based approach, DIMM-SC is able to quantify the clustering uncertainty for each single cell, facilitating rigorous statistical inference and biological interpretations, which are typically unavailable from existing clustering methods. DIMM-SC has been implemented in a user-friendly R package with a detailed tutorial available on www.pitt.edu/∼wec47/singlecell.html. wei.chen@chp.edu or hum@ccf.org. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  12. Exploring the Internal Dynamics of Globular Clusters

    NASA Astrophysics Data System (ADS)

    Watkins, Laura L.; van der Marel, Roeland; Bellini, Andrea; Luetzgendorf, Nora; HSTPROMO Collaboration

    2018-01-01

    Exploring the Internal Dynamics of Globular ClustersThe formation histories and structural properties of globular clusters are imprinted on their internal dynamics. Energy equipartition results in velocity differences for stars of different mass, and leads to mass segregation, which results in different spatial distributions for stars of different mass. Intermediate-mass black holes significantly increase the velocity dispersions at the centres of clusters. By combining accurate measurements of their internal kinematics with state-of-the-art dynamical models, we can characterise both the velocity dispersion and mass profiles of clusters, tease apart the different effects, and understand how clusters may have formed and evolved.Using proper motions from the Hubble Space Telescope Proper Motion (HSTPROMO) Collaboration for a set of 22 Milky Way globular clusters, and our discrete dynamical modelling techniques designed to work with large, high-quality datasets, we are studying a variety of internal cluster properties. We will present the results of theoretical work on simulated clusters that demonstrates the efficacy of our approach, and preliminary results from application to real clusters.

  13. Strong Lensing Analysis of the Galaxy Cluster MACS J1319.9+7003 and the Discovery of a Shell Galaxy

    NASA Astrophysics Data System (ADS)

    Zitrin, Adi

    2017-01-01

    We present a strong-lensing (SL) analysis of the galaxy cluster MACS J1319.9+7003 (z = 0.33, also known as Abell 1722), as part of our ongoing effort to analyze massive clusters with archival Hubble Space Telescope (HST) imaging. We spectroscopically measured with Keck/Multi-Object Spectrometer For Infra-Red Exploration (MOSFIRE) two galaxies multiply imaged by the cluster. Our analysis reveals a modest lens, with an effective Einstein radius of {θ }e(z=2)=12+/- 1\\prime\\prime , enclosing 2.1+/- 0.3× {10}13 M⊙. We briefly discuss the SL properties of the cluster, using two different modeling techniques (see the text for details), and make the mass models publicly available (ftp://wise-ftp.tau.ac.il/pub/adiz/MACS1319/). Independently, we identified a noteworthy, young shell galaxy (SG) system forming around two likely interacting cluster members, 20″ north of the brightest cluster galaxy. SGs are rare in galaxy clusters, and indeed, a simple estimate reveals that they are only expected in roughly one in several dozen, to several hundred, massive galaxy clusters (the estimate can easily change by an order of magnitude within a reasonable range of characteristic values relevant for the calculation). Taking advantage of our lens model best-fit, mass-to-light scaling relation for cluster members, we infer that the total mass of the SG system is ˜ 1.3× {10}11 {M}⊙ , with a host-to-companion mass ratio of about 10:1. Despite being rare in high density environments, the SG constitutes an example to how stars of cluster galaxies are efficiently redistributed to the intra-cluster medium. Dedicated numerical simulations for the observed shell configuration, perhaps aided by the mass model, might cast interesting light on the interaction history and properties of the two galaxies. An archival HST search in galaxy cluster images can reveal more such systems.

  14. Quantitative properties of clustering within modern microscopic nuclear models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volya, A.; Tchuvil’sky, Yu. M., E-mail: tchuvl@nucl-th.sinp.msu.ru

    2016-09-15

    A method for studying cluster spectroscopic properties of nuclear fragmentation, such as spectroscopic amplitudes, cluster form factors, and spectroscopic factors, is developed on the basis of modern precision nuclear models that take into account the mixing of large-scale shell-model configurations. Alpha-cluster channels are considered as an example. A mathematical proof of the need for taking into account the channel-wave-function renormalization generated by exchange terms of the antisymmetrization operator (Fliessbach effect) is given. Examples where this effect is confirmed by a high quality of the description of experimental data are presented. By and large, the method in question extends substantially themore » possibilities for studying clustering phenomena in nuclei and for improving the quality of their description.« less

  15. A clustering approach applied to time-lapse ERT interpretation - Case study of Lascaux cave

    NASA Astrophysics Data System (ADS)

    Xu, Shan; Sirieix, Colette; Riss, Joëlle; Malaurent, Philippe

    2017-09-01

    The Lascaux cave, located in southwest France, is one of the most important prehistoric cave in the world that shows Paleolithic paintings. This study aims to characterize the structure of the weathered epikarst setting located above the cave using Time-Lapse Electrical Resistivity Tomography (ERT) combined with local hydrogeological and climatic environmental data. Twenty ERT profiles were carried out for two years and helped us to record the seasonal and spatial variations of the electrical resistivity of the hydraulic upstream area of the Lascaux cave. The 20 interpreted resistivity models were merged into a single synthetic model using a multidimensional statistical method (Hierarchical Agglomerative Clustering). The individual blocks from the synthetic model associated with a similar resistivity variability were gathered into 7 clusters. We combined the resistivity temporal variations with climatic and hydrogeological data to propose a geo-electrical model that relates to a conceptual geological model. We provide a geological interpretation for each cluster regarding epikarst features. The superficial clusters (no 1 & 2) are linked to effective rainfall and trees, probably a fractured limestone. Another two clusters (no 6 & 7) are linked to detrital formations (sand and clay respectively). The cluster 3 may correspond to a marly limestone that forms a non-permeable horizon. Finally, the electrical behavior of the last two clusters (no 4 & 5) is correlated with the variation of flow rate; they may be a privileged feed zone of the flow in the cave.

  16. ODE, RDE and SDE models of cell cycle dynamics and clustering in yeast.

    PubMed

    Boczko, Erik M; Gedeon, Tomas; Stowers, Chris C; Young, Todd R

    2010-07-01

    Biologists have long observed periodic-like oxygen consumption oscillations in yeast populations under certain conditions, and several unsatisfactory explanations for this phenomenon have been proposed. These ‘autonomous oscillations’ have often appeared with periods that are nearly integer divisors of the calculated doubling time of the culture. We hypothesize that these oscillations could be caused by a form of cell cycle synchronization that we call clustering. We develop some novel ordinary differential equation models of the cell cycle. For these models, and for random and stochastic perturbations, we give both rigorous proofs and simulations showing that both positive and negative growth rate feedback within the cell cycle are possible agents that can cause clustering of populations within the cell cycle. It occurs for a variety of models and for a broad selection of parameter values. These results suggest that the clustering phenomenon is robust and is likely to be observed in nature. Since there are necessarily an integer number of clusters, clustering would lead to periodic-like behaviour with periods that are nearly integer divisors of the period of the cell cycle. Related experiments have shown conclusively that cell cycle clustering occurs in some oscillating yeast cultures.

  17. A Note on Cluster Effects in Latent Class Analysis

    ERIC Educational Resources Information Center

    Kaplan, David; Keller, Bryan

    2011-01-01

    This article examines the effects of clustering in latent class analysis. A comprehensive simulation study is conducted, which begins by specifying a true multilevel latent class model with varying within- and between-cluster sample sizes, varying latent class proportions, and varying intraclass correlations. These models are then estimated under…

  18. The "p"-Median Model as a Tool for Clustering Psychological Data

    ERIC Educational Resources Information Center

    Kohn, Hans-Friedrich; Steinley, Douglas; Brusco, Michael J.

    2010-01-01

    The "p"-median clustering model represents a combinatorial approach to partition data sets into disjoint, nonhierarchical groups. Object classes are constructed around "exemplars", that is, manifest objects in the data set, with the remaining instances assigned to their closest cluster centers. Effective, state-of-the-art implementations of…

  19. Study of cluster behavior in the riser of CFB by the DSMC method

    NASA Astrophysics Data System (ADS)

    Liu, H. P.; Liu, D. Y.; Liu, H.

    2010-03-01

    The flow behaviors of clusters in the riser of a two-dimensional (2D) circulating fluidized bed was numerically studied based on the Euler-Lagrangian approach. Gas turbulence was modeled by means of Large Eddy Simulation (LES). Particle collision was modeled by means of the direct simulation Monte Carlo (DSMC) method. Clusters' hydrodynamic characteristics are obtained using a cluster identification method proposed by sharrma et al. (2000). The descending clusters near the wall region and the up- and down-flowing clusters in the core were studied separately due to their different flow behaviors. The effects of superficial gas velocity on the cluster behavior were analyzed. Simulated results showed that near wall clusters flow downward and the descent velocity is about -45 cm/s. The occurrence frequency of the up-flowing cluster is higher than that of down-flowing cluster in the core of riser. With the increase of superficial gas velocity, the solid concentration and occurrence frequency of clusters decrease, while the cluster axial velocity increase. Simulated results were in agreement with experimental data. The stochastic method used in present paper is feasible for predicting the cluster flow behavior in CFBs.

  20. DIRECT N-BODY MODELING OF THE OLD OPEN CLUSTER NGC 188: A DETAILED COMPARISON OF THEORETICAL AND OBSERVED BINARY STAR AND BLUE STRAGGLER POPULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geller, Aaron M.; Hurley, Jarrod R.; Mathieu, Robert D., E-mail: a-geller@northwestern.edu, E-mail: mathieu@astro.wisc.edu, E-mail: jhurley@astro.swin.edu.au

    2013-01-01

    Following on from a recently completed radial-velocity survey of the old (7 Gyr) open cluster NGC 188 in which we studied in detail the solar-type hard binaries and blue stragglers of the cluster, here we investigate the dynamical evolution of NGC 188 through a sophisticated N-body model. Importantly, we employ the observed binary properties of the young (180 Myr) open cluster M35, where possible, to guide our choices for parameters of the initial binary population. We apply pre-main-sequence tidal circularization and a substantial increase to the main-sequence tidal circularization rate, both of which are necessary to match the observed tidalmore » circularization periods in the literature, including that of NGC 188. At 7 Gyr the main-sequence solar-type hard-binary population in the model matches that of NGC 188 in both binary frequency and distributions of orbital parameters. This agreement between the model and observations is in a large part due to the similarities between the NGC 188 and M35 solar-type binaries. Indeed, among the 7 Gyr main-sequence binaries in the model, only those with P {approx}> 1000 days begin to show potentially observable evidence for modifications by dynamical encounters, even after 7 Gyr of evolution within the star cluster. This emphasizes the importance of defining accurate initial conditions for star cluster models, which we propose is best accomplished through comparisons with observations of young open clusters like M35. Furthermore, this finding suggests that observations of the present-day binaries in even old open clusters can provide valuable information on their primordial binary populations. However, despite the model's success at matching the observed solar-type main-sequence population, the model underproduces blue stragglers and produces an overabundance of long-period circular main-sequence-white-dwarf binaries as compared with the true cluster. We explore several potential solutions to the paucity of blue stragglers and conclude that the model dramatically underproduces blue stragglers through mass-transfer processes. We suggest that common-envelope evolution may have been incorrectly imposed on the progenitors of the spurious long-period circular main-sequence-white-dwarf binaries, which perhaps instead should have gone through stable mass transfer to create blue stragglers, thereby bringing both the number and binary frequency of the blue straggler population in the model into agreement with the true blue stragglers in NGC 188. Thus, improvements in the physics of mass transfer and common-envelope evolution employed in the model may in fact solve both discrepancies with the observations. This project highlights the unique accessibility of open clusters to both comprehensive observational surveys and full-scale N-body simulations, both of which have only recently matured sufficiently to enable such a project, and underscores the importance of open clusters to the study of star cluster dynamics.« less

  1. Diffusion Of Mass In Evaporating Multicomponent Drops

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth G.

    1992-01-01

    Report summarizes study of diffusion of mass and related phenomena occurring in evaporation of dense and dilute clusters of drops of multicomponent liquids intended to represent fuels as oil, kerosene, and gasoline. Cluster represented by simplified mathematical model, including global conservation equations for entire cluster and conditions on boundary between cluster and ambient gas. Differential equations of model integrated numerically. One of series of reports by same authors discussing evaporation and combustion of sprayed liquid fuels.

  2. Cluster adsorption on amorphous and crystalline surfaces - A molecular dynamics study of model Pt on Cu and model Pd on Pt

    NASA Technical Reports Server (NTRS)

    Garofalini, S. H.; Halicioglu, T.; Pound, G. M.

    1981-01-01

    Molecular dynamics was used to study the structure, dispersion and short-time behavior of ten-atom clusters adsorbed onto amorphous and crystalline substrates, in which the cluster atoms differed from the substrate atoms. Two adatom-substrate model systems were chosen; one, in which the interaction energy between adatom pairs was greater than that between substrate pairs, and the other, in which the reverse was true. At relatively low temperature ranges, increased dispersion of cluster atoms occurred: (a) on the amorphous substrate as compared to the FCC(100) surface, (b) with increasing reduced temperature, and (c) with adatom-substrate interaction energy stronger than adatom-adatom interaction. Two-dimensional clusters (rafts) on the FCC(100) surface displayed migration of edge atoms only, indicating a mechanism for the cluster rotation and shape changes found in experimental studies.

  3. Scattering of clusters of spherical particles—Modeling and inverse problem solution in the Rayleigh-Gans approximation

    NASA Astrophysics Data System (ADS)

    Eliçabe, Guillermo E.

    2013-09-01

    In this work, an exact scattering model for a system of clusters of spherical particles, based on the Rayleigh-Gans approximation, has been parameterized in such a way that it can be solved in inverse form using Thikhonov Regularization to obtain the morphological parameters of the clusters. That is to say, the average number of particles per cluster, the size of the primary spherical units that form the cluster, and the Discrete Distance Distribution Function from which the z-average square radius of gyration of the system of clusters is obtained. The methodology is validated through a series of simulated and experimental examples of x-ray and light scattering that show that the proposed methodology works satisfactorily in unideal situations such as: presence of error in the measurements, presence of error in the model, and several types of unideallities present in the experimental cases.

  4. RELICS: Strong Lens Models for Five Galaxy Clusters from the Reionization Lensing Cluster Survey

    NASA Astrophysics Data System (ADS)

    Cerny, Catherine; Sharon, Keren; Andrade-Santos, Felipe; Avila, Roberto J.; Bradač, Maruša; Bradley, Larry D.; Carrasco, Daniela; Coe, Dan; Czakon, Nicole G.; Dawson, William A.; Frye, Brenda L.; Hoag, Austin; Huang, Kuang-Han; Johnson, Traci L.; Jones, Christine; Lam, Daniel; Lovisari, Lorenzo; Mainali, Ramesh; Oesch, Pascal A.; Ogaz, Sara; Past, Matthew; Paterno-Mahler, Rachel; Peterson, Avery; Riess, Adam G.; Rodney, Steven A.; Ryan, Russell E.; Salmon, Brett; Sendra-Server, Irene; Stark, Daniel P.; Strolger, Louis-Gregory; Trenti, Michele; Umetsu, Keiichi; Vulcani, Benedetta; Zitrin, Adi

    2018-06-01

    Strong gravitational lensing by galaxy clusters magnifies background galaxies, enhancing our ability to discover statistically significant samples of galaxies at {\\boldsymbol{z}}> 6, in order to constrain the high-redshift galaxy luminosity functions. Here, we present the first five lens models out of the Reionization Lensing Cluster Survey (RELICS) Hubble Treasury Program, based on new HST WFC3/IR and ACS imaging of the clusters RXC J0142.9+4438, Abell 2537, Abell 2163, RXC J2211.7–0349, and ACT-CLJ0102–49151. The derived lensing magnification is essential for estimating the intrinsic properties of high-redshift galaxy candidates, and properly accounting for the survey volume. We report on new spectroscopic redshifts of multiply imaged lensed galaxies behind these clusters, which are used as constraints, and detail our strategy to reduce systematic uncertainties due to lack of spectroscopic information. In addition, we quantify the uncertainty on the lensing magnification due to statistical and systematic errors related to the lens modeling process, and find that in all but one cluster, the magnification is constrained to better than 20% in at least 80% of the field of view, including statistical and systematic uncertainties. The five clusters presented in this paper span the range of masses and redshifts of the clusters in the RELICS program. We find that they exhibit similar strong lensing efficiencies to the clusters targeted by the Hubble Frontier Fields within the WFC3/IR field of view. Outputs of the lens models are made available to the community through the Mikulski Archive for Space Telescopes.

  5. Modeling online social signed networks

    NASA Astrophysics Data System (ADS)

    Li, Le; Gu, Ke; Zeng, An; Fan, Ying; Di, Zengru

    2018-04-01

    People's online rating behavior can be modeled by user-object bipartite networks directly. However, few works have been devoted to reveal the hidden relations between users, especially from the perspective of signed networks. We analyze the signed monopartite networks projected by the signed user-object bipartite networks, finding that the networks are highly clustered with obvious community structure. Interestingly, the positive clustering coefficient is remarkably higher than the negative clustering coefficient. Then, a Signed Growing Network model (SGN) based on local preferential attachment is proposed to generate a user's signed network that has community structure and high positive clustering coefficient. Other structural properties of the modeled networks are also found to be similar to the empirical networks.

  6. Multilevel models for cost-effectiveness analyses that use cluster randomised trial data: An approach to model choice.

    PubMed

    Ng, Edmond S-W; Diaz-Ordaz, Karla; Grieve, Richard; Nixon, Richard M; Thompson, Simon G; Carpenter, James R

    2016-10-01

    Multilevel models provide a flexible modelling framework for cost-effectiveness analyses that use cluster randomised trial data. However, there is a lack of guidance on how to choose the most appropriate multilevel models. This paper illustrates an approach for deciding what level of model complexity is warranted; in particular how best to accommodate complex variance-covariance structures, right-skewed costs and missing data. Our proposed models differ according to whether or not they allow individual-level variances and correlations to differ across treatment arms or clusters and by the assumed cost distribution (Normal, Gamma, Inverse Gaussian). The models are fitted by Markov chain Monte Carlo methods. Our approach to model choice is based on four main criteria: the characteristics of the data, model pre-specification informed by the previous literature, diagnostic plots and assessment of model appropriateness. This is illustrated by re-analysing a previous cost-effectiveness analysis that uses data from a cluster randomised trial. We find that the most useful criterion for model choice was the deviance information criterion, which distinguishes amongst models with alternative variance-covariance structures, as well as between those with different cost distributions. This strategy for model choice can help cost-effectiveness analyses provide reliable inferences for policy-making when using cluster trials, including those with missing data. © The Author(s) 2013.

  7. Local resonances in STM manipulation of chlorobenzene on Si(111)-7×7: performance of different cluster models and density functionals

    NASA Astrophysics Data System (ADS)

    Utecht, Manuel; Klamroth, Tillmann

    2018-07-01

    Hot localised charge carriers on the Si(111)-7×7 surface are modelled by small charged clusters. Such resonances induce non-local desorption, i.e. more than 10 nm away from the injection site, of chlorobenzene in scanning tunnelling microscope experiments. We used such a cluster model to characterise resonance localisation and vibrational activation for positive and negative resonances recently. In this work, we investigate to which extent the model depends on details of the used cluster or quantum chemistry methods and try to identify the smallest possible cluster suitable for a description of the neutral surface and the ion resonances. Furthermore, a detailed analysis for different chemisorption orientations is performed. While some properties, as estimates of the resonance energy or absolute values for atomic changes, show such a dependency, the main findings are very robust with respect to changes in the model and/or the chemisorption geometry.

  8. Degradation of Perfluorinated Ether Lubricants on Pure Aluminum Surfaces: Semiempirical Quantum Chemical Modeling

    NASA Technical Reports Server (NTRS)

    Slaby, Scott M.; Ewing, David W.; Zehe, Michael J.

    1997-01-01

    The AM1 semiempirical quantum chemical method was used to model the interaction of perfluoroethers with aluminum surfaces. Perfluorodimethoxymethane and perfluorodimethyl ether were studied interacting with aluminum surfaces, which were modeled by a five-atom cluster and a nine-atom cluster. Interactions were studied for edge (high index) sites and top (low index) sites of the clusters. Both dissociative binding and nondissociative binding were found, with dissociative binding being stronger. The two different ethers bound and dissociated on the clusters in different ways: perfluorodimethoxymethane through its oxygen atoms, but perfluorodimethyl ether through its fluorine atoms. The acetal linkage of perfluorodimeth-oxymethane was the key structural feature of this molecule in its binding and dissociation on the aluminum surface models. The high-index sites of the clusters caused the dissociation of both ethers. These results are consistent with the experimental observation that perfluorinated ethers decompose in contact with sputtered aluminum surfaces.

  9. Multi-mode clustering model for hierarchical wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Hu, Xiangdong; Li, Yongfu; Xu, Huifen

    2017-03-01

    The topology management, i.e., clusters maintenance, of wireless sensor networks (WSNs) is still a challenge due to its numerous nodes, diverse application scenarios and limited resources as well as complex dynamics. To address this issue, a multi-mode clustering model (M2 CM) is proposed to maintain the clusters for hierarchical WSNs in this study. In particular, unlike the traditional time-trigger model based on the whole-network and periodic style, the M2 CM is proposed based on the local and event-trigger operations. In addition, an adaptive local maintenance algorithm is designed for the broken clusters in the WSNs using the spatial-temporal demand changes accordingly. Numerical experiments are performed using the NS2 network simulation platform. Results validate the effectiveness of the proposed model with respect to the network maintenance costs, node energy consumption and transmitted data as well as the network lifetime.

  10. Biclustering Models for Two-Mode Ordinal Data.

    PubMed

    Matechou, Eleni; Liu, Ivy; Fernández, Daniel; Farias, Miguel; Gjelsvik, Bergljot

    2016-09-01

    The work in this paper introduces finite mixture models that can be used to simultaneously cluster the rows and columns of two-mode ordinal categorical response data, such as those resulting from Likert scale responses. We use the popular proportional odds parameterisation and propose models which provide insights into major patterns in the data. Model-fitting is performed using the EM algorithm, and a fuzzy allocation of rows and columns to corresponding clusters is obtained. The clustering ability of the models is evaluated in a simulation study and demonstrated using two real data sets.

  11. Factors that cause genotype by environment interaction and use of a multiple-trait herd-cluster model for milk yield of Holstein cattle from Brazil and Colombia.

    PubMed

    Cerón-Muñoz, M F; Tonhati, H; Costa, C N; Rojas-Sarmiento, D; Echeverri Echeverri, D M

    2004-08-01

    Descriptive herd variables (DVHE) were used to explain genotype by environment interactions (G x E) for milk yield (MY) in Brazilian and Colombian production environments and to develop a herd-cluster model to estimate covariance components and genetic parameters for each herd environment group. Data consisted of 180,522 lactation records of 94,558 Holstein cows from 937 Brazilian and 400 Colombian herds. Herds in both countries were jointly grouped in thirds according to 8 DVHE: production level, phenotypic variability, age at first calving, calving interval, percentage of imported semen, lactation length, and herd size. For each DVHE, REML bivariate animal model analyses were used to estimate genetic correlations for MY between upper and lower thirds of the data. Based on estimates of genetic correlations, weights were assigned to each DVHE to group herds in a cluster analysis using the FASTCLUS procedure in SAS. Three clusters were defined, and genetic and residual variance components were heterogeneous among herd clusters. Estimates of heritability in clusters 1 and 3 were 0.28 and 0.29, respectively, but the estimate was larger (0.39) in Cluster 2. The genetic correlations of MY from different clusters ranged from 0.89 to 0.97. The herd-cluster model based on DVHE properly takes into account G x E by grouping similar environments accordingly and seems to be an alternative to simply considering country borders to distinguish between environments.

  12. Testing modified gravity with globular clusters: the case of NGC 2419

    NASA Astrophysics Data System (ADS)

    Llinares, Claudio

    2018-05-01

    The dynamics of globular clusters has been studied in great detail in the context of general relativity as well as with modifications of gravity that strongly depart from the standard paradigm such as Modified Newtonian Dynamics. However, at present there are no studies that aim to test the impact that less extreme modifications of gravity (e.g. models constructed as alternatives to dark energy) have on the behaviour of globular clusters. This Letter presents fits to the velocity dispersion profile of the cluster NGC 2419 under the symmetron-modified gravity model. The data show an increase in the velocity dispersion towards the centre of the cluster which could be difficult to explain within general relativity. By finding the best-fitting solution associated with the symmetron model, we show that this tension does not exist in modified gravity. However, the best-fitting parameters give a model that is inconsistent with the dynamics of the Solar system. Exploration of different screening mechanisms should give us the chance to understand if it is possible to maintain the appealing properties of the symmetron model when it comes to globular clusters and at the same time recover the Solar system dynamics properly.

  13. Cluster-size entropy in the Axelrod model of social influence: Small-world networks and mass media

    NASA Astrophysics Data System (ADS)

    Gandica, Y.; Charmell, A.; Villegas-Febres, J.; Bonalde, I.

    2011-10-01

    We study the Axelrod's cultural adaptation model using the concept of cluster-size entropy Sc, which gives information on the variability of the cultural cluster size present in the system. Using networks of different topologies, from regular to random, we find that the critical point of the well-known nonequilibrium monocultural-multicultural (order-disorder) transition of the Axelrod model is given by the maximum of the Sc(q) distributions. The width of the cluster entropy distributions can be used to qualitatively determine whether the transition is first or second order. By scaling the cluster entropy distributions we were able to obtain a relationship between the critical cultural trait qc and the number F of cultural features in two-dimensional regular networks. We also analyze the effect of the mass media (external field) on social systems within the Axelrod model in a square network. We find a partially ordered phase whose largest cultural cluster is not aligned with the external field, in contrast with a recent suggestion that this type of phase cannot be formed in regular networks. We draw a q-B phase diagram for the Axelrod model in regular networks.

  14. Model-based Clustering of Categorical Time Series with Multinomial Logit Classification

    NASA Astrophysics Data System (ADS)

    Frühwirth-Schnatter, Sylvia; Pamminger, Christoph; Winter-Ebmer, Rudolf; Weber, Andrea

    2010-09-01

    A common problem in many areas of applied statistics is to identify groups of similar time series in a panel of time series. However, distance-based clustering methods cannot easily be extended to time series data, where an appropriate distance-measure is rather difficult to define, particularly for discrete-valued time series. Markov chain clustering, proposed by Pamminger and Frühwirth-Schnatter [6], is an approach for clustering discrete-valued time series obtained by observing a categorical variable with several states. This model-based clustering method is based on finite mixtures of first-order time-homogeneous Markov chain models. In order to further explain group membership we present an extension to the approach of Pamminger and Frühwirth-Schnatter [6] by formulating a probabilistic model for the latent group indicators within the Bayesian classification rule by using a multinomial logit model. The parameters are estimated for a fixed number of clusters within a Bayesian framework using an Markov chain Monte Carlo (MCMC) sampling scheme representing a (full) Gibbs-type sampler which involves only draws from standard distributions. Finally, an application to a panel of Austrian wage mobility data is presented which leads to an interesting segmentation of the Austrian labour market.

  15. Cluster-size entropy in the Axelrod model of social influence: small-world networks and mass media.

    PubMed

    Gandica, Y; Charmell, A; Villegas-Febres, J; Bonalde, I

    2011-10-01

    We study the Axelrod's cultural adaptation model using the concept of cluster-size entropy S(c), which gives information on the variability of the cultural cluster size present in the system. Using networks of different topologies, from regular to random, we find that the critical point of the well-known nonequilibrium monocultural-multicultural (order-disorder) transition of the Axelrod model is given by the maximum of the S(c)(q) distributions. The width of the cluster entropy distributions can be used to qualitatively determine whether the transition is first or second order. By scaling the cluster entropy distributions we were able to obtain a relationship between the critical cultural trait q(c) and the number F of cultural features in two-dimensional regular networks. We also analyze the effect of the mass media (external field) on social systems within the Axelrod model in a square network. We find a partially ordered phase whose largest cultural cluster is not aligned with the external field, in contrast with a recent suggestion that this type of phase cannot be formed in regular networks. We draw a q-B phase diagram for the Axelrod model in regular networks.

  16. Presentation on systems cluster research

    NASA Technical Reports Server (NTRS)

    Morgenthaler, George W.

    1989-01-01

    This viewgraph presentation presents an overview of systems cluster research performed by the Center for Space Construction. The goals of the research are to develop concepts, insights, and models for space construction and to develop systems engineering/analysis curricula for training future aerospace engineers. The following topics are covered: CSC systems analysis/systems engineering (SIMCON) model, CSC systems cluster schedule, system life-cycle, model optimization techniques, publications, cooperative efforts, and sponsored research.

  17. Study of Clusters and Hypernuclei production within PHSD+FRIGA model

    NASA Astrophysics Data System (ADS)

    Kireyeu, V.; Le Fèvre, A.; Bratkovskaya, E.

    2017-01-01

    We report on the results on the dynamical modelling of cluster formation with the new combined PHSD+FRIGA model at Nuclotron and NICA energies. The FRIGA clusterisation algorithm, which can be applied to the transport models, is based on the simulated annealing technique to obtain the most bound configuration of fragments and nucleons. The PHSD+FRIGA model is able to predict isotope yields as well as hyper-nucleus production. Based on present predictions of the combined model we study the possibility to detect such clusters and hypernuclei in the BM@N and MPD/NICA detectors.

  18. Dealing with Dependence (Part II): A Gentle Introduction to Hierarchical Linear Modeling

    ERIC Educational Resources Information Center

    McCoach, D. Betsy

    2010-01-01

    In education, most naturally occurring data are clustered within contexts. Students are clustered within classrooms, classrooms are clustered within schools, and schools are clustered within districts. When people are clustered within naturally occurring organizational units such as schools, classrooms, or districts, the responses of people from…

  19. Confronting models of star formation quenching in galaxy clusters with archival Spitzer data

    NASA Astrophysics Data System (ADS)

    Rudnick, Gregory

    Large scale structures in the universe form hierarchically: small structures merge to form larger ones. Over the same epoch where these structures experience significant growth, the fraction of star forming galaxies within them decreases, and at a faster rate than for field galaxies. It is now widely accepted that there must be physical processes at work in these dense environments to actively quench star formation. However, despite no shortage of candidate mechanisms, sophisticated cosmological simulations still cannot reproduce the star formation rate distributions within dense environments, such as galaxy clusters. Insufficient observational constraints are a primary obstacle to further progress. In particular, the interpretation of observations of nearby clusters relies on untested assumptions about the properties of galaxies before they entered the dense cluster environment at higher redshifts. Clearly, direct constraints on these properties are required. Our group has assembled two data sets designed to address these concerns. The first focuses on an intermediate wide-field cluster sample and the second focuses on a well-matched low-redshift cluster sample. We will use these samples, along with sophisticated models of hierarchical galaxy formation, to meet the following objectives: 1. Directly measure the SFR distribution of the progenitors of present-day cluster galaxies. We will use ground-based spectroscopy to identify cluster members within four virial radii of eight intermediate-redshift clusters. We will couple this with archival Spitzer/MIPS data to measure the SFRs of galaxies out to the cluster outskirts. 2. Measure the SFR distribution of the present-day cluster galaxies using Spitzer and WISE. Robust N-body simulations tell us statistically which galaxies at intermediate redshifts will have entered the cluster virial radius by the current epoch. By combining our wide-field coverage at high redshift with our local cluster sample, we will determine the evolution in cluster galaxy SFRs over 6 billion years making minimal assumptions about the infalling galaxy population. 3. Provide a rigorous test of the quenching processes embedded in the theoretical models. We will create observed realizations of the theoretical models by subjecting them to our observational selection. This will enable a fair comparison between the models and the data, which will provide a valuable test of current theoretical implementations of quenching processes. We will also modify the quenching prescriptions in the models to determine the parameters required to reproduce the observations. The proposed research is novel for several reasons. 1) We have wide-field Spitzer/MIPS data that allows us to robustly measure SFRs in our distant cluster galaxies. WISE data on local clusters will provide us with analogous measurements in the nearby Universe. 2) Our significant investment in ancillary spectroscopy allows us to identify infalling galaxies that will eventually join the central regions of the cluster z=0. 3) Our intermediate redshift cluster sample was chosen to have characteristics expected for the progenitors of a large fraction of the known clusters at z=0. 4) We will take advantage of our own cosmological simulations of structure growth to interpret our data. 5) We have optical photometry over the full infall region, allowing us to control for stellar masses and to distinguish passive from dusty star-forming galaxies. We will learn which, if any, of the quenching prescriptions currently employed in semi-analytic models correctly reproduces the observed characteristics of the galaxies that will become cluster galaxies at z=0. We will pinpoint the cluster-centric radii over which quenching takes place between. We will determine the timescale (as a function of stellar mass) over which it must take place. This program will cement the legacy of Spitzer and WISE as tools for studying galaxy formation in clusters.

  20. Cooperative effects in the structuring of fluoride water clusters: Ab initio hybrid quantum mechanical/molecular mechanical model incorporating polarizable fluctuating charge solvent

    NASA Astrophysics Data System (ADS)

    Bryce, Richard A.; Vincent, Mark A.; Malcolm, Nathaniel O. J.; Hillier, Ian H.; Burton, Neil A.

    1998-08-01

    A new hybrid quantum mechanical/molecular mechanical model of solvation is developed and used to describe the structure and dynamics of small fluoride/water clusters, using an ab initio wave function to model the ion and a fluctuating charge potential to model the waters. Appropriate parameters for the water-water and fluoride-water interactions are derived, with the fluoride anion being described by density functional theory and a large Gaussian basis. The role of solvent polarization in determining the structure and energetics of F(H2O)4- clusters is investigated, predicting a slightly greater stability of the interior compared to the surface structure, in agreement with ab initio studies. An extended Lagrangian treatment of the polarizable water, in which the water atomic charges fluctuate dynamically, is used to study the dynamics of F(H2O)4- cluster. A simulation using a fixed solvent charge distribution indicates principally interior, solvated states for the cluster. However, a preponderance of trisolvated configurations is observed using the polarizable model at 300 K, which involves only three direct fluoride-water hydrogen bonds. Ab initio calculations confirm this trisolvated species as a thermally accessible state at room temperature, in addition to the tetrasolvated interior and surface structures. Extension of this polarizable water model to fluoride clusters with five and six waters gave less satisfactory agreement with experimental energies and with ab initio geometries. However, our results do suggest that a quantitative model of solvent polarization is fundamental for an accurate understanding of the properties of anionic water clusters.

  1. Sample size calculation for stepped wedge and other longitudinal cluster randomised trials.

    PubMed

    Hooper, Richard; Teerenstra, Steven; de Hoop, Esther; Eldridge, Sandra

    2016-11-20

    The sample size required for a cluster randomised trial is inflated compared with an individually randomised trial because outcomes of participants from the same cluster are correlated. Sample size calculations for longitudinal cluster randomised trials (including stepped wedge trials) need to take account of at least two levels of clustering: the clusters themselves and times within clusters. We derive formulae for sample size for repeated cross-section and closed cohort cluster randomised trials with normally distributed outcome measures, under a multilevel model allowing for variation between clusters and between times within clusters. Our formulae agree with those previously described for special cases such as crossover and analysis of covariance designs, although simulation suggests that the formulae could underestimate required sample size when the number of clusters is small. Whether using a formula or simulation, a sample size calculation requires estimates of nuisance parameters, which in our model include the intracluster correlation, cluster autocorrelation, and individual autocorrelation. A cluster autocorrelation less than 1 reflects a situation where individuals sampled from the same cluster at different times have less correlated outcomes than individuals sampled from the same cluster at the same time. Nuisance parameters could be estimated from time series obtained in similarly clustered settings with the same outcome measure, using analysis of variance to estimate variance components. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Regression analysis of clustered failure time data with informative cluster size under the additive transformation models.

    PubMed

    Chen, Ling; Feng, Yanqin; Sun, Jianguo

    2017-10-01

    This paper discusses regression analysis of clustered failure time data, which occur when the failure times of interest are collected from clusters. In particular, we consider the situation where the correlated failure times of interest may be related to cluster sizes. For inference, we present two estimation procedures, the weighted estimating equation-based method and the within-cluster resampling-based method, when the correlated failure times of interest arise from a class of additive transformation models. The former makes use of the inverse of cluster sizes as weights in the estimating equations, while the latter can be easily implemented by using the existing software packages for right-censored failure time data. An extensive simulation study is conducted and indicates that the proposed approaches work well in both the situations with and without informative cluster size. They are applied to a dental study that motivated this study.

  3. The effect of mining data k-means clustering toward students profile model drop out potential

    NASA Astrophysics Data System (ADS)

    Purba, Windania; Tamba, Saut; Saragih, Jepronel

    2018-04-01

    The high of student success and the low of student failure can reflect the quality of a college. One of the factors of fail students was drop out. To solve the problem, so mining data with K-means Clustering was applied. K-Means Clustering method would be implemented to clustering the drop out students potentially. Firstly the the result data would be clustering to get the information of all students condition. Based on the model taken was found that students who potentially drop out because of the unexciting students in learning, unsupported parents, diffident students and less of students behavior time. The result of process of K-Means Clustering could known that students who more potentially drop out were in Cluster 1 caused Credit Total System, Quality Total, and the lowest Grade Point Average (GPA) compared between cluster 2 and 3.

  4. Hidden electronic rule in the “cluster-plus-glue-atom” model

    PubMed Central

    Du, Jinglian; Dong, Chuang; Melnik, Roderick; Kawazoe, Yoshiyuki; Wen, Bin

    2016-01-01

    Electrons and their interactions are intrinsic factors to affect the structure and properties of materials. Based on the “cluster-cluster-plus-glue-atom” model, an electron counting rule for complex metallic alloys (CMAs) has been revealed in this work (i. e. the CPGAMEC rule). Our results on the cluster structure and electron concentration of CMAs with apparent cluster features, indicate that the valence electrons’ number per unit cluster formula for these CMAs are specific constants of eight-multiples and twelve-multiples. It is thus termed as specific electrons cluster formula. This CPGAMEC rule has been demonstrated as a useful guidance to direct the design of CMAs with desired properties, while its practical applications and underlying mechanism have been illustrated on the basis of CMAs’ cluster structural features. Our investigation provides an aggregate picture with intriguing electronic rule and atomic structural features of CMAs. PMID:27642002

  5. Properties of highly clustered networks

    NASA Astrophysics Data System (ADS)

    Newman, M. E.

    2003-08-01

    We propose and solve exactly a model of a network that has both a tunable degree distribution and a tunable clustering coefficient. Among other things, our results indicate that increased clustering leads to a decrease in the size of the giant component of the network. We also study susceptible/infective/recovered type epidemic processes within the model and find that clustering decreases the size of epidemics, but also decreases the epidemic threshold, making it easier for diseases to spread. In addition, clustering causes epidemics to saturate sooner, meaning that they infect a near-maximal fraction of the network for quite low transmission rates.

  6. Evolution of the Mass and Luminosity Functions of Globular Star Clusters

    NASA Astrophysics Data System (ADS)

    Goudfrooij, Paul; Fall, S. Michael

    2016-12-01

    We reexamine the dynamical evolution of the mass and luminosity functions of globular star clusters (GCMF and GCLF). Fall & Zhang (2001, FZ01) showed that a power-law MF, as commonly seen among young cluster systems, would evolve by dynamical processes over a Hubble time into a peaked MF with a shape very similar to the observed GCMF in the Milky Way and other galaxies. To simplify the calculations, the semi-analytical FZ01 model adopted the “classical” theory of stellar escape from clusters, and neglected variations in the M/L ratios of clusters. Kruijssen & Portegies Zwart (2009, KPZ09) modified the FZ01 model to include “retarded” and mass-dependent stellar escape, the latter causing significant M/L variations. KPZ09 asserted that their model was compatible with observations, whereas the FZ01 model was not. We show here that this claim is not correct; the FZ01 and KPZ09 models fit the observed Galactic GCLF equally well. We also show that there is no detectable correlation between M/L and L for GCs in the Milky Way and Andromeda galaxies, in contradiction with the KPZ09 model. Our comparisons of the FZ01 and KPZ09 models with observations can be explained most simply if stars escape at rates approaching the classical limit for high-mass clusters, as expected on theoretical grounds.

  7. Special and general superatoms.

    PubMed

    Luo, Zhixun; Castleman, A Welford

    2014-10-21

    Bridging the gap between atoms and macroscopic matter, clusters continue to be a subject of increasing research interest. Among the realm of cluster investigations, an exciting development is the realization that chosen stable clusters can mimic the chemical behavior of an atom or a group of the periodic table of elements. This major finding known as a superatom concept was originated experimentally from the study of aluminum cluster reactivity conducted in 1989 by noting a dramatic size dependence of the reactivity where cluster anions containing a certain number of Al atoms were unreactive toward oxygen while the other species were etched away. This observation was well interpreted by shell closings on the basis of the jellium model, and the related concept (originally termed "unified atom") spawned a wide range of pioneering studies in the 1990s pertaining to the understanding of factors governing the properties of clusters. Under the inspiration of a superatom concept, advances in cluster science in finding stable species not only shed light on magic clusters (i.e., superatomic noble gas) but also enlightened the exploration of stable clusters to mimic the chemical behavior of atoms leading to the discovery of superhalogens, alkaline-earth metals, superalkalis, etc. Among them, certain clusters could enable isovalent isomorphism of precious metals, indicating application potential for inexpensive superatoms for industrial catalysis, while a few superalkalis were found to validate the interesting "harpoon mechanism" involved in the superatomic cluster reactivity; recently also found were the magnetic superatoms of which the cluster-assembled materials could be used in spin electronics. Up to now, extensive studies in cluster science have allowed the stability of superatomic clusters to be understood within a few models, including the jellium model, also aromaticity and Wade-Mingos rules depending on the geometry and metallicity of the cluster. However, the scope of application of the jellium model and modification of the theory to account for nonspherical symmetry and nonmetal-doped metal clusters are still illusive to be further developed. It is still worth mentioning that a superatom concept has also been introduced in ligand-stabilized metal clusters which could also follow the major shell-closing electron count for a spherical, square-well potential. By proposing a new concept named as special and general superatoms, herein we try to summarize all these investigations in series, expecting to provide an overview of this field with a primary focus on the joint undertakings which have given rise to the superatom concept. To be specific, for special superatoms, we limit to clusters under a strict jellium model and simply classify them into groups based on their valence electron counts. While for general superatoms we emphasize on nonmetal-doped metal clusters and ligand-stabilized metal clusters, as well as a few isovalent cluster systems. Hopefully this summary of special and general superatoms benefits the further development of cluster-related theory, and lights up the prospect of using them as building blocks of new materials with tailored properties, such as inexpensive isovalent systems for industrial catalysis, semiconductive superatoms for transistors, and magnetic superatoms for spin electronics.

  8. Dynamical Organization of Syntaxin-1A at the Presynaptic Active Zone

    PubMed Central

    Ullrich, Alexander; Böhme, Mathias A.; Schöneberg, Johannes; Depner, Harald; Sigrist, Stephan J.; Noé, Frank

    2015-01-01

    Synaptic vesicle fusion is mediated by SNARE proteins forming in between synaptic vesicle (v-SNARE) and plasma membrane (t-SNARE), one of which is Syntaxin-1A. Although exocytosis mainly occurs at active zones, Syntaxin-1A appears to cover the entire neuronal membrane. By using STED super-resolution light microscopy and image analysis of Drosophila neuro-muscular junctions, we show that Syntaxin-1A clusters are more abundant and have an increased size at active zones. A computational particle-based model of syntaxin cluster formation and dynamics is developed. The model is parametrized to reproduce Syntaxin cluster-size distributions found by STED analysis, and successfully reproduces existing FRAP results. The model shows that the neuronal membrane is adjusted in a way to strike a balance between having most syntaxins stored in large clusters, while still keeping a mobile fraction of syntaxins free or in small clusters that can efficiently search the membrane or be traded between clusters. This balance is subtle and can be shifted toward almost no clustering and almost complete clustering by modifying the syntaxin interaction energy on the order of only 1 kBT. This capability appears to be exploited at active zones. The larger active-zone syntaxin clusters are more stable and provide regions of high docking and fusion capability, whereas the smaller clusters outside may serve as flexible reserve pool or sites of spontaneous ectopic release. PMID:26367029

  9. Comparison between volatility return intervals of the S&P 500 index and two common models

    NASA Astrophysics Data System (ADS)

    Vodenska-Chitkushev, I.; Wang, F. Z.; Weber, P.; Yamasaki, K.; Havlin, S.; Stanley, H. E.

    2008-01-01

    We analyze the S&P 500 index data for the 13-year period, from January 1, 1984 to December 31, 1996, with one data point every 10 min. For this database, we study the distribution and clustering of volatility return intervals, which are defined as the time intervals between successive volatilities above a certain threshold q. We find that the long memory in the volatility leads to a clustering of above-median as well as below-median return intervals. In addition, it turns out that the short return intervals form larger clusters compared to the long return intervals. When comparing the empirical results to the ARMA-FIGARCH and fBm models for volatility, we find that the fBm model predicts scaling better than the ARMA-FIGARCH model, which is consistent with the argument that both ARMA-FIGARCH and fBm capture the long-term dependence in return intervals to a certain extent, but only fBm accounts for the scaling. We perform the Student's t-test to compare the empirical data with the shuffled records, ARMA-FIGARCH and fBm. We analyze separately the clusters of above-median return intervals and the clusters of below-median return intervals for different thresholds q. We find that the empirical data are statistically different from the shuffled data for all thresholds q. Our results also suggest that the ARMA-FIGARCH model is statistically different from the S&P 500 for intermediate q for both above-median and below-median clusters, while fBm is statistically different from S&P 500 for small and large q for above-median clusters and for small q for below-median clusters. Neither model can fully explain the entire regime of q studied.

  10. Regional SAR Image Segmentation Based on Fuzzy Clustering with Gamma Mixture Model

    NASA Astrophysics Data System (ADS)

    Li, X. L.; Zhao, Q. H.; Li, Y.

    2017-09-01

    Most of stochastic based fuzzy clustering algorithms are pixel-based, which can not effectively overcome the inherent speckle noise in SAR images. In order to deal with the problem, a regional SAR image segmentation algorithm based on fuzzy clustering with Gamma mixture model is proposed in this paper. First, initialize some generating points randomly on the image, the image domain is divided into many sub-regions using Voronoi tessellation technique. Each sub-region is regarded as a homogeneous area in which the pixels share the same cluster label. Then, assume the probability of the pixel to be a Gamma mixture model with the parameters respecting to the cluster which the pixel belongs to. The negative logarithm of the probability represents the dissimilarity measure between the pixel and the cluster. The regional dissimilarity measure of one sub-region is defined as the sum of the measures of pixels in the region. Furthermore, the Markov Random Field (MRF) model is extended from pixels level to Voronoi sub-regions, and then the regional objective function is established under the framework of fuzzy clustering. The optimal segmentation results can be obtained by the solution of model parameters and generating points. Finally, the effectiveness of the proposed algorithm can be proved by the qualitative and quantitative analysis from the segmentation results of the simulated and real SAR images.

  11. Million-body star cluster simulations: comparisons between Monte Carlo and direct N-body

    NASA Astrophysics Data System (ADS)

    Rodriguez, Carl L.; Morscher, Meagan; Wang, Long; Chatterjee, Sourav; Rasio, Frederic A.; Spurzem, Rainer

    2016-12-01

    We present the first detailed comparison between million-body globular cluster simulations computed with a Hénon-type Monte Carlo code, CMC, and a direct N-body code, NBODY6++GPU. Both simulations start from an identical cluster model with 106 particles, and include all of the relevant physics needed to treat the system in a highly realistic way. With the two codes `frozen' (no fine-tuning of any free parameters or internal algorithms of the codes) we find good agreement in the overall evolution of the two models. Furthermore, we find that in both models, large numbers of stellar-mass black holes (>1000) are retained for 12 Gyr. Thus, the very accurate direct N-body approach confirms recent predictions that black holes can be retained in present-day, old globular clusters. We find only minor disagreements between the two models and attribute these to the small-N dynamics driving the evolution of the cluster core for which the Monte Carlo assumptions are less ideal. Based on the overwhelming general agreement between the two models computed using these vastly different techniques, we conclude that our Monte Carlo approach, which is more approximate, but dramatically faster compared to the direct N-body, is capable of producing an accurate description of the long-term evolution of massive globular clusters even when the clusters contain large populations of stellar-mass black holes.

  12. A dynamical study of Galactic globular clusters under different relaxation conditions

    NASA Astrophysics Data System (ADS)

    Zocchi, A.; Bertin, G.; Varri, A. L.

    2012-03-01

    Aims: We perform a systematic combined photometric and kinematic analysis of a sample of globular clusters under different relaxation conditions, based on their core relaxation time (as listed in available catalogs), by means of two well-known families of spherical stellar dynamical models. Systems characterized by shorter relaxation time scales are expected to be better described by isotropic King models, while less relaxed systems might be interpreted by means of non-truncated, radially-biased anisotropic f(ν) models, originally designed to represent stellar systems produced by a violent relaxation formation process and applied here for the first time to the study of globular clusters. Methods: The comparison between dynamical models and observations is performed by fitting simultaneously surface brightness and velocity dispersion profiles. For each globular cluster, the best-fit model in each family is identified, along with a full error analysis on the relevant parameters. Detailed structural properties and mass-to-light ratios are also explicitly derived. Results: We find that King models usually offer a good representation of the observed photometric profiles, but often lead to less satisfactory fits to the kinematic profiles, independently of the relaxation condition of the systems. For some less relaxed clusters, f(ν) models provide a good description of both observed profiles. Some derived structural characteristics, such as the total mass or the half-mass radius, turn out to be significantly model-dependent. The analysis confirms that, to answer some important dynamical questions that bear on the formation and evolution of globular clusters, it would be highly desirable to acquire larger numbers of accurate kinematic data-points, well distributed over the cluster field. Appendices are available in electronic form at http://www.aanda.org

  13. STAR CLUSTER FORMATION WITH STELLAR FEEDBACK AND LARGE-SCALE INFLOW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzner, Christopher D.; Jumper, Peter H., E-mail: matzner@astro.utoronto.ca

    2015-12-10

    During star cluster formation, ongoing mass accretion is resisted by stellar feedback in the form of protostellar outflows from the low-mass stars and photo-ionization and radiation pressure feedback from the massive stars. We model the evolution of cluster-forming regions during a phase in which both accretion and feedback are present and use these models to investigate how star cluster formation might terminate. Protostellar outflows are the strongest form of feedback in low-mass regions, but these cannot stop cluster formation if matter continues to flow in. In more massive clusters, radiation pressure and photo-ionization rapidly clear the cluster-forming gas when itsmore » column density is too small. We assess the rates of dynamical mass ejection and of evaporation, while accounting for the important effect of dust opacity on photo-ionization. Our models are consistent with the census of protostellar outflows in NGC 1333 and Serpens South and with the dust temperatures observed in regions of massive star formation. Comparing observations of massive cluster-forming regions against our model parameter space, and against our expectations for accretion-driven evolution, we infer that massive-star feedback is a likely cause of gas disruption in regions with velocity dispersions less than a few kilometers per second, but that more massive and more turbulent regions are too strongly bound for stellar feedback to be disruptive.« less

  14. First assembly times and equilibration in stochastic coagulation-fragmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D’Orsogna, Maria R.; Department of Mathematics, CSUN, Los Angeles, California 91330-8313; Lei, Qi

    2015-07-07

    We develop a fully stochastic theory for coagulation and fragmentation (CF) in a finite system with a maximum cluster size constraint. The process is modeled using a high-dimensional master equation for the probabilities of cluster configurations. For certain realizations of total mass and maximum cluster sizes, we find exact analytical results for the expected equilibrium cluster distributions. If coagulation is fast relative to fragmentation and if the total system mass is indivisible by the mass of the largest allowed cluster, we find a mean cluster-size distribution that is strikingly broader than that predicted by the corresponding mass-action equations. Combinations ofmore » total mass and maximum cluster size under which equilibration is accelerated, eluding late-stage coarsening, are also delineated. Finally, we compute the mean time it takes particles to first assemble into a maximum-sized cluster. Through careful state-space enumeration, the scaling of mean assembly times is derived for all combinations of total mass and maximum cluster size. We find that CF accelerates assembly relative to monomer kinetic only in special cases. All of our results hold in the infinite system limit and can be only derived from a high-dimensional discrete stochastic model, highlighting how classical mass-action models of self-assembly can fail.« less

  15. Star Streams and the Assembly History of the Galaxy

    NASA Astrophysics Data System (ADS)

    Carlberg, Raymond G.

    2017-03-01

    Thin halo star streams originate from the evaporation of globular clusters and therefore provide information about the early epoch globular cluster population. The observed tidal tails from halo globular clusters in the Milky Way are much shorter than expected from a star cluster orbiting for 10 Gyr. The discrepancy is likely the result of the assumptions that nearly nonevolving clusters have been orbiting in a nonevolving galactic halo for a Hubble time. As a first step toward more realistic stream histories, a toy model that combines an idealized merger model with a simplified model of the internal collisional relaxation of individual star clusters is developed. On average, the resulting stream velocity dispersion increases with distance, causing the density of the stream to decline with distance. The accretion time sets an upper limit to the length of the readily visible stream, with the internal evolution of the cluster usually playing the dominant role in limiting the sky visibility of the older parts of streams. Nevertheless, the high surface density segment of the stellar streams created from the evaporation of the more massive globular clusters should all be visible in low-obscuration parts of the sky if closer than about 30 kpc. The Pan-STARRS1 halo volume is used to compare the numbers of halo streams and globular clusters.

  16. Comparison of cluster-based and source-attribution methods for estimating transmission risk using large HIV sequence databases.

    PubMed

    Le Vu, Stéphane; Ratmann, Oliver; Delpech, Valerie; Brown, Alison E; Gill, O Noel; Tostevin, Anna; Fraser, Christophe; Volz, Erik M

    2018-06-01

    Phylogenetic clustering of HIV sequences from a random sample of patients can reveal epidemiological transmission patterns, but interpretation is hampered by limited theoretical support and statistical properties of clustering analysis remain poorly understood. Alternatively, source attribution methods allow fitting of HIV transmission models and thereby quantify aspects of disease transmission. A simulation study was conducted to assess error rates of clustering methods for detecting transmission risk factors. We modeled HIV epidemics among men having sex with men and generated phylogenies comparable to those that can be obtained from HIV surveillance data in the UK. Clustering and source attribution approaches were applied to evaluate their ability to identify patient attributes as transmission risk factors. We find that commonly used methods show a misleading association between cluster size or odds of clustering and covariates that are correlated with time since infection, regardless of their influence on transmission. Clustering methods usually have higher error rates and lower sensitivity than source attribution method for identifying transmission risk factors. But neither methods provide robust estimates of transmission risk ratios. Source attribution method can alleviate drawbacks from phylogenetic clustering but formal population genetic modeling may be required to estimate quantitative transmission risk factors. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Cluster-cluster aggregation with particle replication and chemotaxy: a simple model for the growth of animal cells in culture

    NASA Astrophysics Data System (ADS)

    Alves, S. G.; Martins, M. L.

    2010-09-01

    Aggregation of animal cells in culture comprises a series of motility, collision and adhesion processes of basic relevance for tissue engineering, bioseparations, oncology research and in vitro drug testing. In the present paper, a cluster-cluster aggregation model with stochastic particle replication and chemotactically driven motility is investigated as a model for the growth of animal cells in culture. The focus is on the scaling laws governing the aggregation kinetics. Our simulations reveal that in the absence of chemotaxy the mean cluster size and the total number of clusters scale in time as stretched exponentials dependent on the particle replication rate. Also, the dynamical cluster size distribution functions are represented by a scaling relation in which the scaling function involves a stretched exponential of the time. The introduction of chemoattraction among the particles leads to distribution functions decaying as power laws with exponents that decrease in time. The fractal dimensions and size distributions of the simulated clusters are qualitatively discussed in terms of those determined experimentally for several normal and tumoral cell lines growing in culture. It is shown that particle replication and chemotaxy account for the simplest cluster size distributions of cellular aggregates observed in culture.

  18. Exemplar-Based Clustering via Simulated Annealing

    ERIC Educational Resources Information Center

    Brusco, Michael J.; Kohn, Hans-Friedrich

    2009-01-01

    Several authors have touted the p-median model as a plausible alternative to within-cluster sums of squares (i.e., K-means) partitioning. Purported advantages of the p-median model include the provision of "exemplars" as cluster centers, robustness with respect to outliers, and the accommodation of a diverse range of similarity data. We developed…

  19. Machine learning approaches for estimation of prediction interval for the model output.

    PubMed

    Shrestha, Durga L; Solomatine, Dimitri P

    2006-03-01

    A novel method for estimating prediction uncertainty using machine learning techniques is presented. Uncertainty is expressed in the form of the two quantiles (constituting the prediction interval) of the underlying distribution of prediction errors. The idea is to partition the input space into different zones or clusters having similar model errors using fuzzy c-means clustering. The prediction interval is constructed for each cluster on the basis of empirical distributions of the errors associated with all instances belonging to the cluster under consideration and propagated from each cluster to the examples according to their membership grades in each cluster. Then a regression model is built for in-sample data using computed prediction limits as targets, and finally, this model is applied to estimate the prediction intervals (limits) for out-of-sample data. The method was tested on artificial and real hydrologic data sets using various machine learning techniques. Preliminary results show that the method is superior to other methods estimating the prediction interval. A new method for evaluating performance for estimating prediction interval is proposed as well.

  20. An Efficient Data Compression Model Based on Spatial Clustering and Principal Component Analysis in Wireless Sensor Networks.

    PubMed

    Yin, Yihang; Liu, Fengzheng; Zhou, Xiang; Li, Quanzhong

    2015-08-07

    Wireless sensor networks (WSNs) have been widely used to monitor the environment, and sensors in WSNs are usually power constrained. Because inner-node communication consumes most of the power, efficient data compression schemes are needed to reduce the data transmission to prolong the lifetime of WSNs. In this paper, we propose an efficient data compression model to aggregate data, which is based on spatial clustering and principal component analysis (PCA). First, sensors with a strong temporal-spatial correlation are grouped into one cluster for further processing with a novel similarity measure metric. Next, sensor data in one cluster are aggregated in the cluster head sensor node, and an efficient adaptive strategy is proposed for the selection of the cluster head to conserve energy. Finally, the proposed model applies principal component analysis with an error bound guarantee to compress the data and retain the definite variance at the same time. Computer simulations show that the proposed model can greatly reduce communication and obtain a lower mean square error than other PCA-based algorithms.

  1. A scan statistic for binary outcome based on hypergeometric probability model, with an application to detecting spatial clusters of Japanese encephalitis.

    PubMed

    Zhao, Xing; Zhou, Xiao-Hua; Feng, Zijian; Guo, Pengfei; He, Hongyan; Zhang, Tao; Duan, Lei; Li, Xiaosong

    2013-01-01

    As a useful tool for geographical cluster detection of events, the spatial scan statistic is widely applied in many fields and plays an increasingly important role. The classic version of the spatial scan statistic for the binary outcome is developed by Kulldorff, based on the Bernoulli or the Poisson probability model. In this paper, we apply the Hypergeometric probability model to construct the likelihood function under the null hypothesis. Compared with existing methods, the likelihood function under the null hypothesis is an alternative and indirect method to identify the potential cluster, and the test statistic is the extreme value of the likelihood function. Similar with Kulldorff's methods, we adopt Monte Carlo test for the test of significance. Both methods are applied for detecting spatial clusters of Japanese encephalitis in Sichuan province, China, in 2009, and the detected clusters are identical. Through a simulation to independent benchmark data, it is indicated that the test statistic based on the Hypergeometric model outweighs Kulldorff's statistics for clusters of high population density or large size; otherwise Kulldorff's statistics are superior.

  2. A Test for Cluster Bias: Detecting Violations of Measurement Invariance across Clusters in Multilevel Data

    ERIC Educational Resources Information Center

    Jak, Suzanne; Oort, Frans J.; Dolan, Conor V.

    2013-01-01

    We present a test for cluster bias, which can be used to detect violations of measurement invariance across clusters in 2-level data. We show how measurement invariance assumptions across clusters imply measurement invariance across levels in a 2-level factor model. Cluster bias is investigated by testing whether the within-level factor loadings…

  3. Missing continuous outcomes under covariate dependent missingness in cluster randomised trials

    PubMed Central

    Diaz-Ordaz, Karla; Bartlett, Jonathan W

    2016-01-01

    Attrition is a common occurrence in cluster randomised trials which leads to missing outcome data. Two approaches for analysing such trials are cluster-level analysis and individual-level analysis. This paper compares the performance of unadjusted cluster-level analysis, baseline covariate adjusted cluster-level analysis and linear mixed model analysis, under baseline covariate dependent missingness in continuous outcomes, in terms of bias, average estimated standard error and coverage probability. The methods of complete records analysis and multiple imputation are used to handle the missing outcome data. We considered four scenarios, with the missingness mechanism and baseline covariate effect on outcome either the same or different between intervention groups. We show that both unadjusted cluster-level analysis and baseline covariate adjusted cluster-level analysis give unbiased estimates of the intervention effect only if both intervention groups have the same missingness mechanisms and there is no interaction between baseline covariate and intervention group. Linear mixed model and multiple imputation give unbiased estimates under all four considered scenarios, provided that an interaction of intervention and baseline covariate is included in the model when appropriate. Cluster mean imputation has been proposed as a valid approach for handling missing outcomes in cluster randomised trials. We show that cluster mean imputation only gives unbiased estimates when missingness mechanism is the same between the intervention groups and there is no interaction between baseline covariate and intervention group. Multiple imputation shows overcoverage for small number of clusters in each intervention group. PMID:27177885

  4. Missing continuous outcomes under covariate dependent missingness in cluster randomised trials.

    PubMed

    Hossain, Anower; Diaz-Ordaz, Karla; Bartlett, Jonathan W

    2017-06-01

    Attrition is a common occurrence in cluster randomised trials which leads to missing outcome data. Two approaches for analysing such trials are cluster-level analysis and individual-level analysis. This paper compares the performance of unadjusted cluster-level analysis, baseline covariate adjusted cluster-level analysis and linear mixed model analysis, under baseline covariate dependent missingness in continuous outcomes, in terms of bias, average estimated standard error and coverage probability. The methods of complete records analysis and multiple imputation are used to handle the missing outcome data. We considered four scenarios, with the missingness mechanism and baseline covariate effect on outcome either the same or different between intervention groups. We show that both unadjusted cluster-level analysis and baseline covariate adjusted cluster-level analysis give unbiased estimates of the intervention effect only if both intervention groups have the same missingness mechanisms and there is no interaction between baseline covariate and intervention group. Linear mixed model and multiple imputation give unbiased estimates under all four considered scenarios, provided that an interaction of intervention and baseline covariate is included in the model when appropriate. Cluster mean imputation has been proposed as a valid approach for handling missing outcomes in cluster randomised trials. We show that cluster mean imputation only gives unbiased estimates when missingness mechanism is the same between the intervention groups and there is no interaction between baseline covariate and intervention group. Multiple imputation shows overcoverage for small number of clusters in each intervention group.

  5. Individualization as Driving Force of Clustering Phenomena in Humans

    PubMed Central

    Mäs, Michael; Flache, Andreas; Helbing, Dirk

    2010-01-01

    One of the most intriguing dynamics in biological systems is the emergence of clustering, in the sense that individuals self-organize into separate agglomerations in physical or behavioral space. Several theories have been developed to explain clustering in, for instance, multi-cellular organisms, ant colonies, bee hives, flocks of birds, schools of fish, and animal herds. A persistent puzzle, however, is the clustering of opinions in human populations, particularly when opinions vary continuously, such as the degree to which citizens are in favor of or against a vaccination program. Existing continuous opinion formation models predict “monoculture” in the long run, unless subsets of the population are perfectly separated from each other. Yet, social diversity is a robust empirical phenomenon, although perfect separation is hardly possible in an increasingly connected world. Considering randomness has not overcome the theoretical shortcomings so far. Small perturbations of individual opinions trigger social influence cascades that inevitably lead to monoculture, while larger noise disrupts opinion clusters and results in rampant individualism without any social structure. Our solution to the puzzle builds on recent empirical research, combining the integrative tendencies of social influence with the disintegrative effects of individualization. A key element of the new computational model is an adaptive kind of noise. We conduct computer simulation experiments demonstrating that with this kind of noise a third phase besides individualism and monoculture becomes possible, characterized by the formation of metastable clusters with diversity between and consensus within clusters. When clusters are small, individualization tendencies are too weak to prohibit a fusion of clusters. When clusters grow too large, however, individualization increases in strength, which promotes their splitting. In summary, the new model can explain cultural clustering in human societies. Strikingly, model predictions are not only robust to “noise”—randomness is actually the central mechanism that sustains pluralism and clustering. PMID:20975937

  6. Analysis of the convective evaporation of nondilute clusters of drops

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Harstad, K.

    1987-01-01

    The penetration distance of an outer flow into a drop cluster volume is the critical, evaporation mode-controlling parameter in the present model for nondilute drop clusters' convective evaporation. The model is found to perform well for such low penetration distances as those obtained for dense clusters in hot environments and low relative velocities between the outer gases and the cluster. For large penetration distances, however, the predictive power of the model deteriorates; in addition, the evaporation time is found to be a weak function of the initial relative velocity and a strong function of the initial drop temperature. The results generally show that the interior drop temperature was transient throughout the drop lifetime, although temperature nonuniformities persisted up to the first third of the total evaporation time at most.

  7. Star clusters: age, metallicity and extinction from integrated spectra

    NASA Astrophysics Data System (ADS)

    González Delgado, Rosa M.; Cid Fernandes, Roberto

    2010-01-01

    Integrated optical spectra of star clusters in the Magellanic Clouds and a few Galactic globular clusters are fitted using high-resolution spectral models for single stellar populations. The goal is to estimate the age, metallicity and extinction of the clusters, and evaluate the degeneracies among these parameters. Several sets of evolutionary models that were computed with recent high-spectral-resolution stellar libraries (MILES, GRANADA, STELIB), are used as inputs to the starlight code to perform the fits. The comparison of the results derived from this method and previous estimates available in the literature allow us to evaluate the pros and cons of each set of models to determine star cluster properties. In addition, we quantify the uncertainties associated with the age, metallicity and extinction determinations resulting from variance in the ingredients for the analysis.

  8. Joint Analysis of X-Ray and Sunyaev-Zel'Dovich Observations of Galaxy Clusters Using an Analytic Model of the Intracluster Medium

    NASA Technical Reports Server (NTRS)

    Hasler, Nicole; Bulbul, Esra; Bonamente, Massimiliano; Carlstrom, John E.; Culverhouse, Thomas L.; Gralla, Megan; Greer, Christopher; Lamb, James W.; Hawkins, David; Hennessy, Ryan; hide

    2012-01-01

    We perform a joint analysis of X-ray and Sunyaev-Zel'dovich effect data using an analytic model that describes the gas properties of galaxy clusters. The joint analysis allows the measurement of the cluster gas mass fraction profile and Hubble constant independent of cosmological parameters. Weak cosmological priors are used to calculate the overdensity radius within which the gas mass fractions are reported. Such an analysis can provide direct constraints on the evolution of the cluster gas mass fraction with redshift. We validate the model and the joint analysis on high signal-to-noise data from the Chandra X-ray Observatory and the Sunyaev-Zel'dovich Array for two clusters, A2631 and A2204.

  9. Using hierarchical cluster models to systematically identify groups of jobs with similar occupational questionnaire response patterns to assist rule-based expert exposure assessment in population-based studies.

    PubMed

    Friesen, Melissa C; Shortreed, Susan M; Wheeler, David C; Burstyn, Igor; Vermeulen, Roel; Pronk, Anjoeka; Colt, Joanne S; Baris, Dalsu; Karagas, Margaret R; Schwenn, Molly; Johnson, Alison; Armenti, Karla R; Silverman, Debra T; Yu, Kai

    2015-05-01

    Rule-based expert exposure assessment based on questionnaire response patterns in population-based studies improves the transparency of the decisions. The number of unique response patterns, however, can be nearly equal to the number of jobs. An expert may reduce the number of patterns that need assessment using expert opinion, but each expert may identify different patterns of responses that identify an exposure scenario. Here, hierarchical clustering methods are proposed as a systematic data reduction step to reproducibly identify similar questionnaire response patterns prior to obtaining expert estimates. As a proof-of-concept, we used hierarchical clustering methods to identify groups of jobs (clusters) with similar responses to diesel exhaust-related questions and then evaluated whether the jobs within a cluster had similar (previously assessed) estimates of occupational diesel exhaust exposure. Using the New England Bladder Cancer Study as a case study, we applied hierarchical cluster models to the diesel-related variables extracted from the occupational history and job- and industry-specific questionnaires (modules). Cluster models were separately developed for two subsets: (i) 5395 jobs with ≥1 variable extracted from the occupational history indicating a potential diesel exposure scenario, but without a module with diesel-related questions; and (ii) 5929 jobs with both occupational history and module responses to diesel-relevant questions. For each subset, we varied the numbers of clusters extracted from the cluster tree developed for each model from 100 to 1000 groups of jobs. Using previously made estimates of the probability (ordinal), intensity (µg m(-3) respirable elemental carbon), and frequency (hours per week) of occupational exposure to diesel exhaust, we examined the similarity of the exposure estimates for jobs within the same cluster in two ways. First, the clusters' homogeneity (defined as >75% with the same estimate) was examined compared to a dichotomized probability estimate (<5 versus ≥5%; <50 versus ≥50%). Second, for the ordinal probability metric and continuous intensity and frequency metrics, we calculated the intraclass correlation coefficients (ICCs) between each job's estimate and the mean estimate for all jobs within the cluster. Within-cluster homogeneity increased when more clusters were used. For example, ≥80% of the clusters were homogeneous when 500 clusters were used. Similarly, ICCs were generally above 0.7 when ≥200 clusters were used, indicating minimal within-cluster variability. The most within-cluster variability was observed for the frequency metric (ICCs from 0.4 to 0.8). We estimated that using an expert to assign exposure at the cluster-level assignment and then to review each job in non-homogeneous clusters would require ~2000 decisions per expert, in contrast to evaluating 4255 unique questionnaire patterns or 14983 individual jobs. This proof-of-concept shows that using cluster models as a data reduction step to identify jobs with similar response patterns prior to obtaining expert ratings has the potential to aid rule-based assessment by systematically reducing the number of exposure decisions needed. While promising, additional research is needed to quantify the actual reduction in exposure decisions and the resulting homogeneity of exposure estimates within clusters for an exposure assessment effort that obtains cluster-level expert assessments as part of the assessment process. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2014.

  10. Bias and inference from misspecified mixed-effect models in stepped wedge trial analysis.

    PubMed

    Thompson, Jennifer A; Fielding, Katherine L; Davey, Calum; Aiken, Alexander M; Hargreaves, James R; Hayes, Richard J

    2017-10-15

    Many stepped wedge trials (SWTs) are analysed by using a mixed-effect model with a random intercept and fixed effects for the intervention and time periods (referred to here as the standard model). However, it is not known whether this model is robust to misspecification. We simulated SWTs with three groups of clusters and two time periods; one group received the intervention during the first period and two groups in the second period. We simulated period and intervention effects that were either common-to-all or varied-between clusters. Data were analysed with the standard model or with additional random effects for period effect or intervention effect. In a second simulation study, we explored the weight given to within-cluster comparisons by simulating a larger intervention effect in the group of the trial that experienced both the control and intervention conditions and applying the three analysis models described previously. Across 500 simulations, we computed bias and confidence interval coverage of the estimated intervention effect. We found up to 50% bias in intervention effect estimates when period or intervention effects varied between clusters and were treated as fixed effects in the analysis. All misspecified models showed undercoverage of 95% confidence intervals, particularly the standard model. A large weight was given to within-cluster comparisons in the standard model. In the SWTs simulated here, mixed-effect models were highly sensitive to departures from the model assumptions, which can be explained by the high dependence on within-cluster comparisons. Trialists should consider including a random effect for time period in their SWT analysis model. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

  11. Bias and inference from misspecified mixed‐effect models in stepped wedge trial analysis

    PubMed Central

    Fielding, Katherine L.; Davey, Calum; Aiken, Alexander M.; Hargreaves, James R.; Hayes, Richard J.

    2017-01-01

    Many stepped wedge trials (SWTs) are analysed by using a mixed‐effect model with a random intercept and fixed effects for the intervention and time periods (referred to here as the standard model). However, it is not known whether this model is robust to misspecification. We simulated SWTs with three groups of clusters and two time periods; one group received the intervention during the first period and two groups in the second period. We simulated period and intervention effects that were either common‐to‐all or varied‐between clusters. Data were analysed with the standard model or with additional random effects for period effect or intervention effect. In a second simulation study, we explored the weight given to within‐cluster comparisons by simulating a larger intervention effect in the group of the trial that experienced both the control and intervention conditions and applying the three analysis models described previously. Across 500 simulations, we computed bias and confidence interval coverage of the estimated intervention effect. We found up to 50% bias in intervention effect estimates when period or intervention effects varied between clusters and were treated as fixed effects in the analysis. All misspecified models showed undercoverage of 95% confidence intervals, particularly the standard model. A large weight was given to within‐cluster comparisons in the standard model. In the SWTs simulated here, mixed‐effect models were highly sensitive to departures from the model assumptions, which can be explained by the high dependence on within‐cluster comparisons. Trialists should consider including a random effect for time period in their SWT analysis model. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. PMID:28556355

  12. Choosing appropriate analysis methods for cluster randomised cross-over trials with a binary outcome.

    PubMed

    Morgan, Katy E; Forbes, Andrew B; Keogh, Ruth H; Jairath, Vipul; Kahan, Brennan C

    2017-01-30

    In cluster randomised cross-over (CRXO) trials, clusters receive multiple treatments in a randomised sequence over time. In such trials, there is usual correlation between patients in the same cluster. In addition, within a cluster, patients in the same period may be more similar to each other than to patients in other periods. We demonstrate that it is necessary to account for these correlations in the analysis to obtain correct Type I error rates. We then use simulation to compare different methods of analysing a binary outcome from a two-period CRXO design. Our simulations demonstrated that hierarchical models without random effects for period-within-cluster, which do not account for any extra within-period correlation, performed poorly with greatly inflated Type I errors in many scenarios. In scenarios where extra within-period correlation was present, a hierarchical model with random effects for cluster and period-within-cluster only had correct Type I errors when there were large numbers of clusters; with small numbers of clusters, the error rate was inflated. We also found that generalised estimating equations did not give correct error rates in any scenarios considered. An unweighted cluster-level summary regression performed best overall, maintaining an error rate close to 5% for all scenarios, although it lost power when extra within-period correlation was present, especially for small numbers of clusters. Results from our simulation study show that it is important to model both levels of clustering in CRXO trials, and that any extra within-period correlation should be accounted for. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Transient Properties of Probability Distribution for a Markov Process with Size-dependent Additive Noise

    NASA Astrophysics Data System (ADS)

    Yamada, Yuhei; Yamazaki, Yoshihiro

    2018-04-01

    This study considered a stochastic model for cluster growth in a Markov process with a cluster size dependent additive noise. According to this model, the probability distribution of the cluster size transiently becomes an exponential or a log-normal distribution depending on the initial condition of the growth. In this letter, a master equation is obtained for this model, and derivation of the distributions is discussed.

  14. Using experimental data to test an n -body dynamical model coupled with an energy-based clusterization algorithm at low incident energies

    NASA Astrophysics Data System (ADS)

    Kumar, Rohit; Puri, Rajeev K.

    2018-03-01

    Employing the quantum molecular dynamics (QMD) approach for nucleus-nucleus collisions, we test the predictive power of the energy-based clusterization algorithm, i.e., the simulating annealing clusterization algorithm (SACA), to describe the experimental data of charge distribution and various event-by-event correlations among fragments. The calculations are constrained into the Fermi-energy domain and/or mildly excited nuclear matter. Our detailed study spans over different system masses, and system-mass asymmetries of colliding partners show the importance of the energy-based clusterization algorithm for understanding multifragmentation. The present calculations are also compared with the other available calculations, which use one-body models, statistical models, and/or hybrid models.

  15. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K.

    PubMed

    Kopelman, Naama M; Mayzel, Jonathan; Jakobsson, Mattias; Rosenberg, Noah A; Mayrose, Itay

    2015-09-01

    The identification of the genetic structure of populations from multilocus genotype data has become a central component of modern population-genetic data analysis. Application of model-based clustering programs often entails a number of steps, in which the user considers different modelling assumptions, compares results across different predetermined values of the number of assumed clusters (a parameter typically denoted K), examines multiple independent runs for each fixed value of K, and distinguishes among runs belonging to substantially distinct clustering solutions. Here, we present Clumpak (Cluster Markov Packager Across K), a method that automates the postprocessing of results of model-based population structure analyses. For analysing multiple independent runs at a single K value, Clumpak identifies sets of highly similar runs, separating distinct groups of runs that represent distinct modes in the space of possible solutions. This procedure, which generates a consensus solution for each distinct mode, is performed by the use of a Markov clustering algorithm that relies on a similarity matrix between replicate runs, as computed by the software Clumpp. Next, Clumpak identifies an optimal alignment of inferred clusters across different values of K, extending a similar approach implemented for a fixed K in Clumpp and simplifying the comparison of clustering results across different K values. Clumpak incorporates additional features, such as implementations of methods for choosing K and comparing solutions obtained by different programs, models, or data subsets. Clumpak, available at http://clumpak.tau.ac.il, simplifies the use of model-based analyses of population structure in population genetics and molecular ecology. © 2015 John Wiley & Sons Ltd.

  16. Neck formation and deformation effects in a preformed cluster model of exotic cluster decays

    NASA Astrophysics Data System (ADS)

    Kumar, Satish; Gupta, Raj K.

    1997-01-01

    Using the nuclear proximity approach and the two center nuclear shape parametrization, the interaction potential between two deformed and pole-to-pole oriented nuclei forming a necked configuration in the overlap region is calculated and its role is studied for the cluster decay half-lives. The barrier is found to move to a larger relative separation, with its proximity minimum lying in the neighborhood of the Q value of decay and its height and width reduced considerably. For cluster decay calculations in the preformed cluster model of Malik and Gupta, due to deformations and orientations of nuclei, the (empirical) preformation factor is found to get reduced considerably and agrees nicely with other model calculations known to be successful for their predictions of cluster decay half-lives. Comparison with the earlier case of nuclei treated as spheres suggests that the effects of both deformations and neck formation get compensated by choosing the position of cluster preformation and the inner classical turning point for penetrability calculations at the touching configuration of spherical nuclei.

  17. Semisupervised Clustering by Iterative Partition and Regression with Neuroscience Applications

    PubMed Central

    Qian, Guoqi; Wu, Yuehua; Ferrari, Davide; Qiao, Puxue; Hollande, Frédéric

    2016-01-01

    Regression clustering is a mixture of unsupervised and supervised statistical learning and data mining method which is found in a wide range of applications including artificial intelligence and neuroscience. It performs unsupervised learning when it clusters the data according to their respective unobserved regression hyperplanes. The method also performs supervised learning when it fits regression hyperplanes to the corresponding data clusters. Applying regression clustering in practice requires means of determining the underlying number of clusters in the data, finding the cluster label of each data point, and estimating the regression coefficients of the model. In this paper, we review the estimation and selection issues in regression clustering with regard to the least squares and robust statistical methods. We also provide a model selection based technique to determine the number of regression clusters underlying the data. We further develop a computing procedure for regression clustering estimation and selection. Finally, simulation studies are presented for assessing the procedure, together with analyzing a real data set on RGB cell marking in neuroscience to illustrate and interpret the method. PMID:27212939

  18. Light clusters in nuclear matter: Excluded volume versus quantum many-body approaches

    NASA Astrophysics Data System (ADS)

    Hempel, Matthias; Schaffner-Bielich, Jürgen; Typel, Stefan; Röpke, Gerd

    2011-11-01

    The formation of clusters in nuclear matter is investigated, which occurs, e.g., in low-energy heavy-ion collisions or core-collapse supernovae. In astrophysical applications, the excluded volume concept is commonly used for the description of light clusters. Here we compare a phenomenological excluded volume approach to two quantum many-body models, the quantum statistical model and the generalized relativistic mean-field model. All three models contain bound states of nuclei with mass number A≤4. It is explored to which extent the complex medium effects can be mimicked by the simpler excluded volume model, regarding the chemical composition and thermodynamic variables. Furthermore, the role of heavy nuclei and excited states is investigated by use of the excluded volume model. At temperatures of a few MeV the excluded volume model gives a poor description of the medium effects on the light clusters, but there the composition is actually dominated by heavy nuclei. At larger temperatures there is a rather good agreement, whereas some smaller differences and model dependencies remain.

  19. Prospects for Determining the Mass Distributions of Galaxy Clusters on Large Scales Using Weak Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Fong, M.; Bowyer, R.; Whitehead, A.; Lee, B.; King, L.; Applegate, D.; McCarthy, I.

    2018-05-01

    For more than two decades, the Navarro, Frenk, and White (NFW) model has stood the test of time; it has been used to describe the distribution of mass in galaxy clusters out to their outskirts. Stacked weak lensing measurements of clusters are now revealing the distribution of mass out to and beyond their virial radii, where the NFW model is no longer applicable. In this study we assess how well the parameterised Diemer & Kravstov (DK) density profile describes the characteristic mass distribution of galaxy clusters extracted from cosmological simulations. This is determined from stacked synthetic lensing measurements of the 50 most massive clusters extracted from the Cosmo-OWLS simulations, using the Dark Matter Only run and also the run that most closely matches observations. The characteristics of the data reflect the Weighing the Giants survey and data from the future Large Synoptic Survey Telescope (LSST). In comparison with the NFW model, the DK model favored by the stacked data, in particular for the future LSST data, where the number density of background galaxies is higher. The DK profile depends on the accretion history of clusters which is specified in the current study. Eventually however subsamples of galaxy clusters with qualities indicative of disparate accretion histories could be studied.

  20. Spectral constraints on models of gas in clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Henriksen, M. J.; Mushotzky, R.

    1985-01-01

    The HEAO 1A2 spectra of clusters of galaxies are used to determine the temperature profile which characterizes the X-ray emitting gas. Strong evidence of nonisothermality is found for the Coma, A85, and A1795 clusters. Properties of the cluster potential which binds the gas are calculated for a range of model parameters. The typical binding mass, if the gas is adiabatic, is 2-4E14 solar masses and is quite centrally concentrated. In addition, the Fe abundance in Coma is .26 + or - .06 solar, less than the typical value (.5) found for rich clusters. The results for the gas in Coma may imply a physical description of the cluster which is quite different from what was previously believed.

  1. Using Hierarchical Cluster Models to Systematically Identify Groups of Jobs With Similar Occupational Questionnaire Response Patterns to Assist Rule-Based Expert Exposure Assessment in Population-Based Studies

    PubMed Central

    Friesen, Melissa C.; Shortreed, Susan M.; Wheeler, David C.; Burstyn, Igor; Vermeulen, Roel; Pronk, Anjoeka; Colt, Joanne S.; Baris, Dalsu; Karagas, Margaret R.; Schwenn, Molly; Johnson, Alison; Armenti, Karla R.; Silverman, Debra T.; Yu, Kai

    2015-01-01

    Objectives: Rule-based expert exposure assessment based on questionnaire response patterns in population-based studies improves the transparency of the decisions. The number of unique response patterns, however, can be nearly equal to the number of jobs. An expert may reduce the number of patterns that need assessment using expert opinion, but each expert may identify different patterns of responses that identify an exposure scenario. Here, hierarchical clustering methods are proposed as a systematic data reduction step to reproducibly identify similar questionnaire response patterns prior to obtaining expert estimates. As a proof-of-concept, we used hierarchical clustering methods to identify groups of jobs (clusters) with similar responses to diesel exhaust-related questions and then evaluated whether the jobs within a cluster had similar (previously assessed) estimates of occupational diesel exhaust exposure. Methods: Using the New England Bladder Cancer Study as a case study, we applied hierarchical cluster models to the diesel-related variables extracted from the occupational history and job- and industry-specific questionnaires (modules). Cluster models were separately developed for two subsets: (i) 5395 jobs with ≥1 variable extracted from the occupational history indicating a potential diesel exposure scenario, but without a module with diesel-related questions; and (ii) 5929 jobs with both occupational history and module responses to diesel-relevant questions. For each subset, we varied the numbers of clusters extracted from the cluster tree developed for each model from 100 to 1000 groups of jobs. Using previously made estimates of the probability (ordinal), intensity (µg m−3 respirable elemental carbon), and frequency (hours per week) of occupational exposure to diesel exhaust, we examined the similarity of the exposure estimates for jobs within the same cluster in two ways. First, the clusters’ homogeneity (defined as >75% with the same estimate) was examined compared to a dichotomized probability estimate (<5 versus ≥5%; <50 versus ≥50%). Second, for the ordinal probability metric and continuous intensity and frequency metrics, we calculated the intraclass correlation coefficients (ICCs) between each job’s estimate and the mean estimate for all jobs within the cluster. Results: Within-cluster homogeneity increased when more clusters were used. For example, ≥80% of the clusters were homogeneous when 500 clusters were used. Similarly, ICCs were generally above 0.7 when ≥200 clusters were used, indicating minimal within-cluster variability. The most within-cluster variability was observed for the frequency metric (ICCs from 0.4 to 0.8). We estimated that using an expert to assign exposure at the cluster-level assignment and then to review each job in non-homogeneous clusters would require ~2000 decisions per expert, in contrast to evaluating 4255 unique questionnaire patterns or 14983 individual jobs. Conclusions: This proof-of-concept shows that using cluster models as a data reduction step to identify jobs with similar response patterns prior to obtaining expert ratings has the potential to aid rule-based assessment by systematically reducing the number of exposure decisions needed. While promising, additional research is needed to quantify the actual reduction in exposure decisions and the resulting homogeneity of exposure estimates within clusters for an exposure assessment effort that obtains cluster-level expert assessments as part of the assessment process. PMID:25477475

  2. Application of clustering analysis in the prediction of photovoltaic power generation based on neural network

    NASA Astrophysics Data System (ADS)

    Cheng, K.; Guo, L. M.; Wang, Y. K.; Zafar, M. T.

    2017-11-01

    In order to select effective samples in the large number of data of PV power generation years and improve the accuracy of PV power generation forecasting model, this paper studies the application of clustering analysis in this field and establishes forecasting model based on neural network. Based on three different types of weather on sunny, cloudy and rainy days, this research screens samples of historical data by the clustering analysis method. After screening, it establishes BP neural network prediction models using screened data as training data. Then, compare the six types of photovoltaic power generation prediction models before and after the data screening. Results show that the prediction model combining with clustering analysis and BP neural networks is an effective method to improve the precision of photovoltaic power generation.

  3. CLUSTERING SOUTH AFRICAN HOUSEHOLDS BASED ON THEIR ASSET STATUS USING LATENT VARIABLE MODELS

    PubMed Central

    McParland, Damien; Gormley, Isobel Claire; McCormick, Tyler H.; Clark, Samuel J.; Kabudula, Chodziwadziwa Whiteson; Collinson, Mark A.

    2014-01-01

    The Agincourt Health and Demographic Surveillance System has since 2001 conducted a biannual household asset survey in order to quantify household socio-economic status (SES) in a rural population living in northeast South Africa. The survey contains binary, ordinal and nominal items. In the absence of income or expenditure data, the SES landscape in the study population is explored and described by clustering the households into homogeneous groups based on their asset status. A model-based approach to clustering the Agincourt households, based on latent variable models, is proposed. In the case of modeling binary or ordinal items, item response theory models are employed. For nominal survey items, a factor analysis model, similar in nature to a multinomial probit model, is used. Both model types have an underlying latent variable structure—this similarity is exploited and the models are combined to produce a hybrid model capable of handling mixed data types. Further, a mixture of the hybrid models is considered to provide clustering capabilities within the context of mixed binary, ordinal and nominal response data. The proposed model is termed a mixture of factor analyzers for mixed data (MFA-MD). The MFA-MD model is applied to the survey data to cluster the Agincourt households into homogeneous groups. The model is estimated within the Bayesian paradigm, using a Markov chain Monte Carlo algorithm. Intuitive groupings result, providing insight to the different socio-economic strata within the Agincourt region. PMID:25485026

  4. Dynamical Formation of Low-mass Merging Black Hole Binaries like GW151226

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Sourav; Rodriguez, Carl L.; Kalogera, Vicky

    2017-02-20

    Using numerical models for star clusters spanning a wide range in ages and metallicities (Z) we study the masses of binary black holes (BBHs) produced dynamically and merging in the local universe ( z ≲ 0.2). After taking into account cosmological constraints on star formation rate and metallicity evolution, which realistically relate merger delay times obtained from models with merger redshifts, we show here for the first time that while old, metal-poor globular clusters can naturally produce merging BBHs with heavier components, as observed in GW150914, lower-mass BBHs like GW151226 are easily formed dynamically in younger, higher-metallicity clusters. More specifically,more » we show that the mass of GW151226 is well within 1 σ of the mass distribution obtained from our models for clusters with Z/Z{sub ⊙} ≳ 0.5. Indeed, dynamical formation of a system like GW151226 likely requires a cluster that is younger and has a higher metallicity than typical Galactic globular clusters. The LVT151012 system, if real, could have been created in any cluster with Z/Z{sub ⊙} ≲ 0.25. On the other hand, GW150914 is more massive (beyond 1 σ ) than typical BBHs from even the lowest-metallicity (Z/Z{sub ⊙} = 0.005) clusters we consider, but is within 2 σ of the intrinsic mass distribution from our cluster models with Z/Z{sub ⊙} ≲ 0.05; of course, detection biases also push the observed distributions toward higher masses.« less

  5. The Computation of Orthogonal Independent Cluster Solutions and Their Oblique Analogs in Factor Analysis.

    ERIC Educational Resources Information Center

    Hofmann, Richard J.

    A very general model for the computation of independent cluster solutions in factor analysis is presented. The model is discussed as being either orthogonal or oblique. Furthermore, it is demonstrated that for every orthogonal independent cluster solution there is an oblique analog. Using three illustrative examples, certain generalities are made…

  6. A comprehensive comparative test of seven widely used spectral synthesis models against multi-band photometry of young massive-star clusters

    NASA Astrophysics Data System (ADS)

    Wofford, A.; Charlot, S.; Bruzual, G.; Eldridge, J. J.; Calzetti, D.; Adamo, A.; Cignoni, M.; de Mink, S. E.; Gouliermis, D. A.; Grasha, K.; Grebel, E. K.; Lee, J. C.; Östlin, G.; Smith, L. J.; Ubeda, L.; Zackrisson, E.

    2016-04-01

    We test the predictions of spectral synthesis models based on seven different massive-star prescriptions against Legacy ExtraGalactic UV Survey (LEGUS) observations of eight young massive clusters in two local galaxies, NGC 1566 and NGC 5253, chosen because predictions of all seven models are available at the published galactic metallicities. The high angular resolution, extensive cluster inventory, and full near-ultraviolet to near-infrared photometric coverage make the LEGUS data set excellent for this study. We account for both stellar and nebular emission in the models and try two different prescriptions for attenuation by dust. From Bayesian fits of model libraries to the observations, we find remarkably low dispersion in the median E(B - V) (˜0.03 mag), stellar masses (˜104 M⊙), and ages (˜1 Myr) derived for individual clusters using different models, although maximum discrepancies in these quantities can reach 0.09 mag and factors of 2.8 and 2.5, respectively. This is for ranges in median properties of 0.05-0.54 mag, 1.8-10 × 104 M⊙, and 1.6-40 Myr spanned by the clusters in our sample. In terms of best fit, the observations are slightly better reproduced by models with interacting binaries and least well reproduced by models with single rotating stars. Our study provides a first quantitative estimate of the accuracies and uncertainties of the most recent spectral synthesis models of young stellar populations, demonstrates the good progress of models in fitting high-quality observations, and highlights the needs for a larger cluster sample and more extensive tests of the model parameter space.

  7. Validation of gait analysis with dynamic radiostereometric analysis (RSA) in patients operated with total hip arthroplasty.

    PubMed

    Zügner, Roland; Tranberg, Roy; Lisovskaja, Vera; Shareghi, Bita; Kärrholm, Johan

    2017-07-01

    We simultaneously examined 14 patients with OTS and dynamic radiostereometric analysis (RSA) to evaluate the accuracy of both skin- and a cluster-marker models. The mean differences between the OTS and RSA system in hip flexion, abduction, and rotation varied up to 9.5° for the skin-marker and up to 11.3° for the cluster-marker models, respectively. Both models tended to underestimate the amount of flexion and abduction, but a significant systematic difference between the marker and RSA evaluations could only be established for recordings of hip abduction using cluster markers (p = 0.04). The intra-class correlation coefficient (ICC) was 0.7 or higher during flexion for both models and during abduction using skin markers, but decreased to 0.5-0.6 when abduction motion was studied with cluster markers. During active hip rotation, the two marker models tended to deviate from the RSA recordings in different ways with poor correlations at the end of the motion (ICC ≤0.4). During active hip motions soft tissue displacements occasionally induced considerable differences when compared to skeletal motions. The best correlation between RSA recordings and the skin- and cluster-marker model was found for studies of hip flexion and abduction with the skin-marker model. Studies of hip abduction with use of cluster markers were associated with a constant underestimation of the motion. Recordings of skeletal motions with use of skin or cluster markers during hip rotation were associated with high mean errors amounting up to about 10° at certain positions. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1515-1522, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  8. Control of clustered action potential firing in a mathematical model of entorhinal cortex stellate cells.

    PubMed

    Tait, Luke; Wedgwood, Kyle; Tsaneva-Atanasova, Krasimira; Brown, Jon T; Goodfellow, Marc

    2018-07-14

    The entorhinal cortex is a crucial component of our memory and spatial navigation systems and is one of the first areas to be affected in dementias featuring tau pathology, such as Alzheimer's disease and frontotemporal dementia. Electrophysiological recordings from principle cells of medial entorhinal cortex (layer II stellate cells, mEC-SCs) demonstrate a number of key identifying properties including subthreshold oscillations in the theta (4-12 Hz) range and clustered action potential firing. These single cell properties are correlated with network activity such as grid firing and coupling between theta and gamma rhythms, suggesting they are important for spatial memory. As such, experimental models of dementia have revealed disruption of organised dorsoventral gradients in clustered action potential firing. To better understand the mechanisms underpinning these different dynamics, we study a conductance based model of mEC-SCs. We demonstrate that the model, driven by extrinsic noise, can capture quantitative differences in clustered action potential firing patterns recorded from experimental models of tau pathology and healthy animals. The differential equation formulation of our model allows us to perform numerical bifurcation analyses in order to uncover the dynamic mechanisms underlying these patterns. We show that clustered dynamics can be understood as subcritical Hopf/homoclinic bursting in a fast-slow system where the slow sub-system is governed by activation of the persistent sodium current and inactivation of the slow A-type potassium current. In the full system, we demonstrate that clustered firing arises via flip bifurcations as conductance parameters are varied. Our model analyses confirm the experimentally suggested hypothesis that the breakdown of clustered dynamics in disease occurs via increases in AHP conductance. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Features of asthma which provide meaningful insights for understanding the disease heterogeneity.

    PubMed

    Deliu, M; Yavuz, T S; Sperrin, M; Belgrave, D; Sahiner, U M; Sackesen, C; Kalayci, O; Custovic, A

    2018-01-01

    Data-driven methods such as hierarchical clustering (HC) and principal component analysis (PCA) have been used to identify asthma subtypes, with inconsistent results. To develop a framework for the discovery of stable and clinically meaningful asthma subtypes. We performed HC in a rich data set from 613 asthmatic children, using 45 clinical variables (Model 1), and after PCA dimensionality reduction (Model 2). Clinical experts then identified a set of asthma features/domains which informed clusters in the two analyses. In Model 3, we reclustered the data using these features to ascertain whether this improved the discovery process. Cluster stability was poor in Models 1 and 2. Clinical experts highlighted four asthma features/domains which differentiated the clusters in two models: age of onset, allergic sensitization, severity, and recent exacerbations. In Model 3 (HC using these four features), cluster stability improved substantially. The cluster assignment changed, providing more clinically interpretable results. In a 5-cluster model, we labelled the clusters as: "Difficult asthma" (n = 132); "Early-onset mild atopic" (n = 210); "Early-onset mild non-atopic: (n = 153); "Late-onset" (n = 105); and "Exacerbation-prone asthma" (n = 13). Multinomial regression demonstrated that lung function was significantly diminished among children with "Difficult asthma"; blood eosinophilia was a significant feature of "Difficult," "Early-onset mild atopic," and "Late-onset asthma." Children with moderate-to-severe asthma were present in each cluster. An integrative approach of blending the data with clinical expert domain knowledge identified four features, which may be informative for ascertaining asthma endotypes. These findings suggest that variables which are key determinants of asthma presence, severity, or control may not be the most informative for determining asthma subtypes. Our results indicate that exacerbation-prone asthma may be a separate asthma endotype and that severe asthma is not a single entity, but an extreme end of the spectrum of several different asthma endotypes. © 2017 The Authors. Clinical & Experimental Allergy published by John Wiley & Sons Ltd.

  10. Simulation modeling for stratified breast cancer screening - a systematic review of cost and quality of life assumptions.

    PubMed

    Arnold, Matthias

    2017-12-02

    The economic evaluation of stratified breast cancer screening gains momentum, but produces also very diverse results. Systematic reviews so far focused on modeling techniques and epidemiologic assumptions. However, cost and utility parameters received only little attention. This systematic review assesses simulation models for stratified breast cancer screening based on their cost and utility parameters in each phase of breast cancer screening and care. A literature review was conducted to compare economic evaluations with simulation models of personalized breast cancer screening. Study quality was assessed using reporting guidelines. Cost and utility inputs were extracted, standardized and structured using a care delivery framework. Studies were then clustered according to their study aim and parameters were compared within the clusters. Eighteen studies were identified within three study clusters. Reporting quality was very diverse in all three clusters. Only two studies in cluster 1, four studies in cluster 2 and one study in cluster 3 scored high in the quality appraisal. In addition to the quality appraisal, this review assessed if the simulation models were consistent in integrating all relevant phases of care, if utility parameters were consistent and methodological sound and if cost were compatible and consistent in the actual parameters used for screening, diagnostic work up and treatment. Of 18 studies, only three studies did not show signs of potential bias. This systematic review shows that a closer look into the cost and utility parameter can help to identify potential bias. Future simulation models should focus on integrating all relevant phases of care, using methodologically sound utility parameters and avoiding inconsistent cost parameters.

  11. Dissociation of doubly charged clusters of lithium acetate: Asymmetric fission and breakdown of the liquid drop model: Dissociation of doubly charged clusters of lithium acetate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, Anil

    2016-06-08

    Unimolecular and collision-induced dissociation of doubly charged lithium acetate clusters, (CH3COOLi)nLi22+, demonstrated that Coulomb fission via charge separation is the dominant dissociation process with no contribution from the neutral evaporation processes for all such ions from the critical limit to larger cluster ions, although latter process have normally been observed in all earlier studies. These results are clearly in disagreement with the Rayleigh’s liquid drop model that has been used successfully to predict the critical size and explain the fragmentation behavior of multiply charged clusters.

  12. Strategy Generalization across Orientation Tasks: Testing a Computational Cognitive Model

    DTIC Science & Technology

    2008-07-01

    arranged in groups ( clusters ). The space, itself, was divided into four quadrants, which had 1, 2, 3, and 4 objects, respectively. The arrangement of... clusters , of objects play an important role in the model’s performance, by providing some context for narrowing the search for the target to a portion of the...model uses a hierarchical approach to accomplish this. First, the model identifies a group or cluster of objects that contains the target. The number of

  13. A grand unified model for liganded gold clusters

    NASA Astrophysics Data System (ADS)

    Xu, Wen Wu; Zhu, Beien; Zeng, Xiao Cheng; Gao, Yi

    2016-12-01

    A grand unified model (GUM) is developed to achieve fundamental understanding of rich structures of all 71 liganded gold clusters reported to date. Inspired by the quark model by which composite particles (for example, protons and neutrons) are formed by combining three quarks (or flavours), here gold atoms are assigned three `flavours' (namely, bottom, middle and top) to represent three possible valence states. The `composite particles' in GUM are categorized into two groups: variants of triangular elementary block Au3(2e) and tetrahedral elementary block Au4(2e), all satisfying the duet rule (2e) of the valence shell, akin to the octet rule in general chemistry. The elementary blocks, when packed together, form the cores of liganded gold clusters. With the GUM, structures of 71 liganded gold clusters and their growth mechanism can be deciphered altogether. Although GUM is a predictive heuristic and may not be necessarily reflective of the actual electronic structure, several highly stable liganded gold clusters are predicted, thereby offering GUM-guided synthesis of liganded gold clusters by design.

  14. Composition Formulas of Inorganic Compounds in Terms of Cluster Plus Glue Atom Model.

    PubMed

    Ma, Yanping; Dong, Dandan; Wu, Aimin; Dong, Chuang

    2018-01-16

    The present paper attempts to identify the molecule-like structural units in inorganic compounds, by applying the so-called "cluster plus glue atom model". This model, originating from metallic glasses and quasi-crystals, describes any structure in terms of a nearest-neighbor cluster and a few outer-shell glue atoms, expressed in the cluster formula [cluster](glue atoms). Similar to the case for normal molecules where the charge transfer occurs within the molecule to meet the commonly known octet electron rule, the octet state is reached after matching the nearest-neighbor cluster with certain outer-shell glue atoms. These kinds of structural units contain information on local atomic configuration, chemical composition, and electron numbers, just as for normal molecules. It is shown that the formulas of typical inorganic compounds, such as fluorides, oxides, and nitrides, satisfy a similar octet electron rule, with the total number of valence electrons per unit formula being multiples of eight.

  15. Formation and decay of resonance states in 9Be and 9B nuclei: Microscopic three-cluster model investigations

    NASA Astrophysics Data System (ADS)

    Vasilevsky, V. S.; Katō, K.; Takibayev, N. Zh.

    2017-09-01

    We study the nature of the low-lying resonance states in mirror nuclei 9Be and 9B. Investigations are performed within a three-cluster model. The model makes use of the hyperspherical harmonics, which provides a convenient description of the three-cluster continuum. The dominant three-cluster configurations α +α +n and α +α +p in 9Be and 9B, respectively, are taken into account. Dominant decay channels for all resonance states in 9Be and 9B are explored. Much attention is paid to the controversial 1 /2+ resonance states in both nuclei. We study effects of the Coulomb interaction on the energy and width of three-cluster resonances in the mirror nuclei 9Be and 9B. We also search for the Hoyle-analog state, which is a key step for alternative ways to synthesize 9Be and 9B in triple collisions of clusters in a stellar environment.

  16. Infrared spectroscopy of protonated trimethylamine-(benzene)(n) (n = 1-4) as model clusters of the quaternary ammonium-aromatic ring interaction.

    PubMed

    Shishido, Ryunosuke; Kawai, Yuki; Fujii, Asuka

    2014-09-04

    The essence of the molecular recognition of the neurotransmitter acetylcholine has been attributed to the attractive interaction between a quaternary ammonium and aromatic rings. We employed protonated trimethylamine-(benzene)n clusters (n = 1-4) in the gas phase as a model to study the recognition mechanism of acetylcholine at the microscopic level. We applied size-selective infrared spectroscopy to the clusters and observed the NH and CH stretching vibrational regions. We also performed density functional theory calculations of stable structures, charge distributions, and infrared spectra of the clusters. It was shown that the methyl groups of protonated trimethylamine are solvated by benzene one at a time in the n > 1 clusters, and the validity of these clusters as a model system of the acetylcholine recognition was demonstrated. The nature of the interactions between a quaternary ammonium and aromatic rings is discussed on the basis of the observed infrared spectra and the theoretical calculations.

  17. Gravitational lens models of arcs in clusters

    NASA Technical Reports Server (NTRS)

    Bergmann, Anton G.; Petrosian, Vahe; Lynds, Roger

    1990-01-01

    It is now well established that the luminous arcs discovered in clusters of galaxies, in particular those in Abell 370 and Cluster 2244-02, are produced by gravitational lensing of background sources. The arcs are modeled and constraints are placed on the distribution of the mass in the clusters and the shape and size of the sources. The models require, as expected, a large amount of dark matter in the clusters and a mass-to blue-light ratio for the cluster which exceeds 100 solar mass/solar luminosity and could be as high as 1000 solar mass/solar luminosity depending on cosmological parameters and the distribution of the dark matter. Furthermore, it is found that in the case of the arc in A370 the dark matter must have a different distribution than the luminous galaxies, while for the arc in Cl 2244 the dark matter can have a distribution similar to that of the light matter (galaxies) or a separate distribution.

  18. Automated modal parameter estimation using correlation analysis and bootstrap sampling

    NASA Astrophysics Data System (ADS)

    Yaghoubi, Vahid; Vakilzadeh, Majid K.; Abrahamsson, Thomas J. S.

    2018-02-01

    The estimation of modal parameters from a set of noisy measured data is a highly judgmental task, with user expertise playing a significant role in distinguishing between estimated physical and noise modes of a test-piece. Various methods have been developed to automate this procedure. The common approach is to identify models with different orders and cluster similar modes together. However, most proposed methods based on this approach suffer from high-dimensional optimization problems in either the estimation or clustering step. To overcome this problem, this study presents an algorithm for autonomous modal parameter estimation in which the only required optimization is performed in a three-dimensional space. To this end, a subspace-based identification method is employed for the estimation and a non-iterative correlation-based method is used for the clustering. This clustering is at the heart of the paper. The keys to success are correlation metrics that are able to treat the problems of spatial eigenvector aliasing and nonunique eigenvectors of coalescent modes simultaneously. The algorithm commences by the identification of an excessively high-order model from frequency response function test data. The high number of modes of this model provides bases for two subspaces: one for likely physical modes of the tested system and one for its complement dubbed the subspace of noise modes. By employing the bootstrap resampling technique, several subsets are generated from the same basic dataset and for each of them a model is identified to form a set of models. Then, by correlation analysis with the two aforementioned subspaces, highly correlated modes of these models which appear repeatedly are clustered together and the noise modes are collected in a so-called Trashbox cluster. Stray noise modes attracted to the mode clusters are trimmed away in a second step by correlation analysis. The final step of the algorithm is a fuzzy c-means clustering procedure applied to a three-dimensional feature space to assign a degree of physicalness to each cluster. The proposed algorithm is applied to two case studies: one with synthetic data and one with real test data obtained from a hammer impact test. The results indicate that the algorithm successfully clusters similar modes and gives a reasonable quantification of the extent to which each cluster is physical.

  19. Hard X-ray emission from accretion shocks around galaxy clusters

    NASA Astrophysics Data System (ADS)

    Kushnir, Doron; Waxman, Eli

    2010-02-01

    We show that the hard X-ray (HXR) emission observed from several galaxy clusters is consistent with a simple model, in which the nonthermal emission is produced by inverse Compton scattering of cosmic microwave background photons by electrons accelerated in cluster accretion shocks: The dependence of HXR surface brightness on cluster temperature is consistent with that predicted by the model, and the observed HXR luminosity is consistent with the fraction of shock thermal energy deposited in relativistic electrons being lesssim0.1. Alternative models, where the HXR emission is predicted to be correlated with the cluster thermal emission, are disfavored by the data. The implications of our predictions to future HXR observations (e.g. by NuStar, Simbol-X) and to (space/ground based) γ-ray observations (e.g. by Fermi, HESS, MAGIC, VERITAS) are discussed.

  20. Dynamic Fuzzy Model Development for a Drum-type Boiler-turbine Plant Through GK Clustering

    NASA Astrophysics Data System (ADS)

    Habbi, Ahcène; Zelmat, Mimoun

    2008-10-01

    This paper discusses a TS fuzzy model identification method for an industrial drum-type boiler plant using the GK fuzzy clustering approach. The fuzzy model is constructed from a set of input-output data that covers a wide operating range of the physical plant. The reference data is generated using a complex first-principle-based mathematical model that describes the key dynamical properties of the boiler-turbine dynamics. The proposed fuzzy model is derived by means of fuzzy clustering method with particular attention on structure flexibility and model interpretability issues. This may provide a basement of a new way to design model based control and diagnosis mechanisms for the complex nonlinear plant.

  1. Emergence of clustering in an acquaintance model without homophily

    NASA Astrophysics Data System (ADS)

    Bhat, Uttam; Krapivsky, P. L.; Redner, S.

    2014-11-01

    We introduce an agent-based acquaintance model in which social links are created by processes in which there is no explicit homophily. In spite of the homogeneous nature of the social interactions, highly-clustered social networks can arise. The crucial feature of our model is that of variable transitive interactions. Namely, when an agent introduces two unconnected friends, the rate at which a connection actually occurs between them depends on the number of their mutual acquaintances. As this transitive interaction rate is varied, the social network undergoes a dramatic clustering transition. Close to the transition, the network consists of a collection of well-defined communities. As a function of time, the network can also undergo an incomplete gelation transition, in which the gel, or giant cluster, does not constitute the entire network, even at infinite time. Some of the clustering properties of our model also arise, but in a more gradual manner, in Facebook networks. Finally, we discuss a more realistic variant of our original model in which network realizations can be constructed that quantitatively match Facebook networks.

  2. Generic, network schema agnostic sparse tensor factorization for single-pass clustering of heterogeneous information networks

    PubMed Central

    Meng, Qinggang; Deng, Su; Huang, Hongbin; Wu, Yahui; Badii, Atta

    2017-01-01

    Heterogeneous information networks (e.g. bibliographic networks and social media networks) that consist of multiple interconnected objects are ubiquitous. Clustering analysis is an effective method to understand the semantic information and interpretable structure of the heterogeneous information networks, and it has attracted the attention of many researchers in recent years. However, most studies assume that heterogeneous information networks usually follow some simple schemas, such as bi-typed networks or star network schema, and they can only cluster one type of object in the network each time. In this paper, a novel clustering framework is proposed based on sparse tensor factorization for heterogeneous information networks, which can cluster multiple types of objects simultaneously in a single pass without any network schema information. The types of objects and the relations between them in the heterogeneous information networks are modeled as a sparse tensor. The clustering issue is modeled as an optimization problem, which is similar to the well-known Tucker decomposition. Then, an Alternating Least Squares (ALS) algorithm and a feasible initialization method are proposed to solve the optimization problem. Based on the tensor factorization, we simultaneously partition different types of objects into different clusters. The experimental results on both synthetic and real-world datasets have demonstrated that our proposed clustering framework, STFClus, can model heterogeneous information networks efficiently and can outperform state-of-the-art clustering algorithms as a generally applicable single-pass clustering method for heterogeneous network which is network schema agnostic. PMID:28245222

  3. Intracluster age gradients in numerous young stellar clusters

    NASA Astrophysics Data System (ADS)

    Getman, K. V.; Feigelson, E. D.; Kuhn, M. A.; Bate, M. R.; Broos, P. S.; Garmire, G. P.

    2018-05-01

    The pace and pattern of star formation leading to rich young stellar clusters is quite uncertain. In this context, we analyse the spatial distribution of ages within 19 young (median t ≲ 3 Myr on the Siess et al. time-scale), morphologically simple, isolated, and relatively rich stellar clusters. Our analysis is based on young stellar object (YSO) samples from the Massive Young Star-Forming Complex Study in Infrared and X-ray and Star Formation in Nearby Clouds surveys, and a new estimator of pre-main sequence (PMS) stellar ages, AgeJX, derived from X-ray and near-infrared photometric data. Median cluster ages are computed within four annular subregions of the clusters. We confirm and extend the earlier result of Getman et al. (2014): 80 per cent of the clusters show age trends where stars in cluster cores are younger than in outer regions. Our cluster stacking analyses establish the existence of an age gradient to high statistical significance in several ways. Time-scales vary with the choice of PMS evolutionary model; the inferred median age gradient across the studied clusters ranges from 0.75 to 1.5 Myr pc-1. The empirical finding reported in the present study - late or continuing formation of stars in the cores of star clusters with older stars dispersed in the outer regions - has a strong foundation with other observational studies and with the astrophysical models like the global hierarchical collapse model of Vázquez-Semadeni et al.

  4. An Approach to Cluster EU Member States into Groups According to Pathways of Salmonella in the Farm-to-Consumption Chain for Pork Products.

    PubMed

    Vigre, Håkan; Domingues, Ana Rita Coutinho Calado; Pedersen, Ulrik Bo; Hald, Tine

    2016-03-01

    The aim of the project as the cluster analysis was to in part to develop a generic structured quantitative microbiological risk assessment (QMRA) model of human salmonellosis due to pork consumption in EU member states (MSs), and the objective of the cluster analysis was to group the EU MSs according to the relative contribution of different pathways of Salmonella in the farm-to-consumption chain of pork products. In the development of the model, by selecting a case study MS from each cluster the model was developed to represent different aspects of pig production, pork production, and consumption of pork products across EU states. The objective of the cluster analysis was to aggregate MSs into groups of countries with similar importance of different pathways of Salmonella in the farm-to-consumption chain using available, and where possible, universal register data related to the pork production and consumption in each country. Based on MS-specific information about distribution of (i) small and large farms, (ii) small and large slaughterhouses, (iii) amount of pork meat consumed, and (iv) amount of sausages consumed we used nonhierarchical and hierarchical cluster analysis to group the MSs. The cluster solutions were validated internally using statistic measures and externally by comparing the clustered MSs with an estimated human incidence of salmonellosis due to pork products in the MSs. Finally, each cluster was characterized qualitatively using the centroids of the clusters. © 2016 Society for Risk Analysis.

  5. Generic, network schema agnostic sparse tensor factorization for single-pass clustering of heterogeneous information networks.

    PubMed

    Wu, Jibing; Meng, Qinggang; Deng, Su; Huang, Hongbin; Wu, Yahui; Badii, Atta

    2017-01-01

    Heterogeneous information networks (e.g. bibliographic networks and social media networks) that consist of multiple interconnected objects are ubiquitous. Clustering analysis is an effective method to understand the semantic information and interpretable structure of the heterogeneous information networks, and it has attracted the attention of many researchers in recent years. However, most studies assume that heterogeneous information networks usually follow some simple schemas, such as bi-typed networks or star network schema, and they can only cluster one type of object in the network each time. In this paper, a novel clustering framework is proposed based on sparse tensor factorization for heterogeneous information networks, which can cluster multiple types of objects simultaneously in a single pass without any network schema information. The types of objects and the relations between them in the heterogeneous information networks are modeled as a sparse tensor. The clustering issue is modeled as an optimization problem, which is similar to the well-known Tucker decomposition. Then, an Alternating Least Squares (ALS) algorithm and a feasible initialization method are proposed to solve the optimization problem. Based on the tensor factorization, we simultaneously partition different types of objects into different clusters. The experimental results on both synthetic and real-world datasets have demonstrated that our proposed clustering framework, STFClus, can model heterogeneous information networks efficiently and can outperform state-of-the-art clustering algorithms as a generally applicable single-pass clustering method for heterogeneous network which is network schema agnostic.

  6. Effects of Cluster Location on Human Performance on the Traveling Salesperson Problem

    ERIC Educational Resources Information Center

    MacGregor, James N.

    2013-01-01

    Most models of human performance on the traveling salesperson problem involve clustering of nodes, but few empirical studies have examined effects of clustering in the stimulus array. A recent exception varied degree of clustering and concluded that the more clustered a stimulus array, the easier a TSP is to solve (Dry, Preiss, & Wagemans,…

  7. Cluster analysis of dynamic contrast enhanced MRI reveals tumor subregions related to locoregional relapse for cervical cancer patients.

    PubMed

    Torheim, Turid; Groendahl, Aurora R; Andersen, Erlend K F; Lyng, Heidi; Malinen, Eirik; Kvaal, Knut; Futsaether, Cecilia M

    2016-11-01

    Solid tumors are known to be spatially heterogeneous. Detection of treatment-resistant tumor regions can improve clinical outcome, by enabling implementation of strategies targeting such regions. In this study, K-means clustering was used to group voxels in dynamic contrast enhanced magnetic resonance images (DCE-MRI) of cervical cancers. The aim was to identify clusters reflecting treatment resistance that could be used for targeted radiotherapy with a dose-painting approach. Eighty-one patients with locally advanced cervical cancer underwent DCE-MRI prior to chemoradiotherapy. The resulting image time series were fitted to two pharmacokinetic models, the Tofts model (yielding parameters K trans and ν e ) and the Brix model (A Brix , k ep and k el ). K-means clustering was used to group similar voxels based on either the pharmacokinetic parameter maps or the relative signal increase (RSI) time series. The associations between voxel clusters and treatment outcome (measured as locoregional control) were evaluated using the volume fraction or the spatial distribution of each cluster. One voxel cluster based on the RSI time series was significantly related to locoregional control (adjusted p-value 0.048). This cluster consisted of low-enhancing voxels. We found that tumors with poor prognosis had this RSI-based cluster gathered into few patches, making this cluster a potential candidate for targeted radiotherapy. None of the voxels clusters based on Tofts or Brix parameter maps were significantly related to treatment outcome. We identified one group of tumor voxels significantly associated with locoregional relapse that could potentially be used for dose painting. This tumor voxel cluster was identified using the raw MRI time series rather than the pharmacokinetic maps.

  8. The Atacama Cosmology Telescope: Cosmology from Galaxy Clusters Detected Via the Sunyaev-Zel'dovich Effect

    NASA Technical Reports Server (NTRS)

    Sehgal, Neelima; Trac, Hy; Acquaviva, Viviana; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John W.; Barrientos, L. Felipe; Battistelli, Elia S.; Bond, J. Richard; hide

    2010-01-01

    We present constraints on cosmological parameters based on a sample of Sunyaev-Zel'dovich-selected galaxy clusters detected in a millimeter-wave survey by the Atacama Cosmology Telescope. The cluster sample used in this analysis consists of 9 optically-confirmed high-mass clusters comprising the high-significance end of the total cluster sample identified in 455 square degrees of sky surveyed during 2008 at 148 GHz. We focus on the most massive systems to reduce the degeneracy between unknown cluster astrophysics and cosmology derived from SZ surveys. We describe the scaling relation between cluster mass and SZ signal with a 4-parameter fit. Marginalizing over the values of the parameters in this fit with conservative priors gives (sigma)8 = 0.851 +/- 0.115 and w = -1.14 +/- 0.35 for a spatially-flat wCDM cosmological model with WMAP 7-year priors on cosmological parameters. This gives a modest improvement in statistical uncertainty over WMAP 7-year constraints alone. Fixing the scaling relation between cluster mass and SZ signal to a fiducial relation obtained from numerical simulations and calibrated by X-ray observations, we find (sigma)8 + 0.821 +/- 0.044 and w = -1.05 +/- 0.20. These results are consistent with constraints from WMAP 7 plus baryon acoustic oscillations plus type Ia supernova which give (sigma)8 = 0.802 +/- 0.038 and w = -0.98 +/- 0.053. A stacking analysis of the clusters in this sample compared to clusters simulated assuming the fiducial model also shows good agreement. These results suggest that, given the sample of clusters used here, both the astrophysics of massive clusters and the cosmological parameters derived from them are broadly consistent with current models.

  9. Next Generation Virgo Cluster Survey. XXI. The Weak Lensing Masses of the CFHTLS and NGVS RedGOLD Galaxy Clusters and Calibration of the Optical Richness

    NASA Astrophysics Data System (ADS)

    Parroni, Carolina; Mei, Simona; Erben, Thomas; Van Waerbeke, Ludovic; Raichoor, Anand; Ford, Jes; Licitra, Rossella; Meneghetti, Massimo; Hildebrandt, Hendrik; Miller, Lance; Côté, Patrick; Covone, Giovanni; Cuillandre, Jean-Charles; Duc, Pierre-Alain; Ferrarese, Laura; Gwyn, Stephen D. J.; Puzia, Thomas H.

    2017-10-01

    We measured stacked weak lensing cluster masses for a sample of 1323 galaxy clusters detected by the RedGOLD algorithm in the Canada-France-Hawaii Telescope Legacy Survey W1 and the Next Generation Virgo Cluster Survey at 0.2< z< 0.5, in the optical richness range 10< λ < 70. This is the most comprehensive lensing study of a ˜ 100 % complete and ˜ 80 % pure optical cluster catalog in this redshift range. We test different mass models, and our final model includes a basic halo model with a Navarro Frenk and White profile, as well as correction terms that take into account cluster miscentering, non-weak shear, the two-halo term, the contribution of the Brightest Cluster Galaxy, and an a posteriori correction for the intrinsic scatter in the mass-richness relation. With this model, we obtain a mass-richness relation of {log}{M}200/{M}⊙ =(14.46+/- 0.02)+(1.04+/- 0.09){log}(λ /40) (statistical uncertainties). This result is consistent with other published lensing mass-richness relations. We give the coefficients of the scaling relations between the lensing mass and X-ray mass proxies, L X and T X, and compare them with previous results. When compared to X-ray masses and mass proxies, our results are in agreement with most previous results and simulations, and consistent with the expected deviations from self-similarity.

  10. A Gaia study of the Hyades open cluster

    NASA Astrophysics Data System (ADS)

    Reino, Stella; de Bruijne, Jos; Zari, Eleonora; d'Antona, Francesca; Ventura, Paolo

    2018-03-01

    We present a study of the membership of the Hyades open cluster, derive kinematically-modelled parallaxes of its members, and study the colour-absolute magnitude diagram of the cluster. We use Gaia DR1 Tycho-Gaia Astrometric Solution (TGAS) data complemented by Hipparcos-2 data for bright stars not contained in TGAS. We supplement the astrometric data with radial velocities collected from a dozen literature sources. By assuming that all cluster members move with the mean cluster velocity to within the velocity dispersion, we use the observed and the expected motions of the stars to determine individual cluster membership probabilities. We subsequently derive improved parallaxes through maximum-likelihood kinematic modelling of the cluster. This method has an iterative component to deal with 'outliers', caused for instance by double stars or escaping members. Our method extends an existing method and supports the mixed presence of stars with and without radial velocities. We find 251 candidate members, 200 of which have a literature radial velocity, and 70 of which are new candidate members with TGAS astrometry. The cluster is roughly spherical in its centre but significantly flattened at larger radii. The observed colour-absolute magnitude diagram shows a clear binary sequence. The kinematically-modelled parallaxes that we derive are a factor ˜1.7 / 2.9 more precise than the TGAS / Hipparcos-2 values and allow to derive an extremely sharp main sequence. This sequence shows evidence for fine-detailed structure which is elegantly explained by the full spectrum turbulence model of convection.

  11. A Game Theoretic Optimization Method for Energy Efficient Global Connectivity in Hybrid Wireless Sensor Networks

    PubMed Central

    Lee, JongHyup; Pak, Dohyun

    2016-01-01

    For practical deployment of wireless sensor networks (WSN), WSNs construct clusters, where a sensor node communicates with other nodes in its cluster, and a cluster head support connectivity between the sensor nodes and a sink node. In hybrid WSNs, cluster heads have cellular network interfaces for global connectivity. However, when WSNs are active and the load of cellular networks is high, the optimal assignment of cluster heads to base stations becomes critical. Therefore, in this paper, we propose a game theoretic model to find the optimal assignment of base stations for hybrid WSNs. Since the communication and energy cost is different according to cellular systems, we devise two game models for TDMA/FDMA and CDMA systems employing power prices to adapt to the varying efficiency of recent wireless technologies. The proposed model is defined on the assumptions of the ideal sensing field, but our evaluation shows that the proposed model is more adaptive and energy efficient than local selections. PMID:27589743

  12. No-Enclave Percolation Corresponds to Holes in the Cluster Backbone.

    PubMed

    Hu, Hao; Ziff, Robert M; Deng, Youjin

    2016-10-28

    The no-enclave percolation (NEP) model introduced recently by Sheinman et al. can be mapped to a problem of holes within a standard percolation backbone, and numerical measurements of such holes give the same size-distribution exponent τ=1.82(1) as found for the NEP model. An argument is given that τ=1+d_{B}/2≈1.822 for backbone holes, where d_{B} is the backbone dimension. On the other hand, a model of simple holes within a percolation cluster yields τ=1+d_{f}/2=187/96≈1.948, where d_{f} is the fractal dimension of the cluster, and this value is consistent with the experimental results of gel collapse of Sheinman et al., which give τ=1.91(6). This suggests that the gel clusters are of the universality class of percolation cluster holes. Both models give a discontinuous maximum hole size at p_{c}, signifying explosive percolation behavior.

  13. Energy spectra of vibron and cluster models in molecular and nuclear systems

    NASA Astrophysics Data System (ADS)

    Jalili Majarshin, A.; Sabri, H.; Jafarizadeh, M. A.

    2018-03-01

    The relation of the algebraic cluster model, i.e., of the vibron model and its extension, to the collective structure, is discussed. In the first section of the paper, we study the energy spectra of vibron model, for diatomic molecule then we derive the rotation-vibration spectrum of 2α, 3α and 4α configuration in the low-lying spectrum of 8Be, 12C and 16O nuclei. All vibrational and rotational states with ground and excited A, E and F states appear to have been observed, moreover the transitional descriptions of the vibron model and α-cluster model were considered by using an infinite-dimensional algebraic method based on the affine \\widehat{SU(1,1)} Lie algebra. The calculated energy spectra are compared with experimental data. Applications to the rotation-vibration spectrum for the diatomic molecule and many-body nuclear clusters indicate that there are solvable models and they can be approximated very well using the transitional theory.

  14. Intergalactic stellar populations in intermediate redshift clusters

    NASA Astrophysics Data System (ADS)

    Melnick, J.; Giraud, E.; Toledo, I.; Selman, F.; Quintana, H.

    2012-11-01

    A substantial fraction of the total stellar mass in rich clusters of galaxies resides in a diffuse intergalactic component usually referred to as the intracluster light (ICL). Theoretical models indicate that these intergalactic stars originate mostly from the tidal interaction of the cluster galaxies during the assembly history of the cluster, and that a significant fraction of these stars could have formed in situ from the late infall of cold metal-poor gas clouds on to the cluster. However, these models also overpredict the fraction of stellar mass in the ICL by a substantial margin, something that is still not well understood. The models also make predictions about the age distribution of the ICL stars, which may provide additional observational constraints. Here we present population synthesis models for the ICL of an intermediate redshift (z = 0.29) X-ray cluster that we have extensively studied in previous papers. The advantage of observing intermediate redshift clusters rather than nearby ones is that the former fit the field of view of multi-object spectrographs in 8-m telescopes and therefore permit us to encompass most of the ICL with only a few well-placed slits. In this paper we show that by stacking spectra at different locations within the ICL it is possible to reach sufficiently high signal-to-noise ratios to fit population synthesis models and derive meaningful results. The models provide ages and metallicities for the dominant populations at several different locations within the ICL and the brightest cluster galaxies (BCG) halo, as well as measures of the kinematics of the stars as a function of distance from the BCG. We thus find that the ICL in our cluster is dominated by old metal-rich stars, at odds with what has been found in nearby clusters where the stars that dominate the ICL are old and metal poor. While we see weak evidence of a young, metal-poor component, if real, these young stars would amount to less than 1 per cent of the total ICL mass, much less than the up to 30 per cent predicted by the models. We propose that the very metal-rich (i.e. 2.5× solar) stars in the ICL of our cluster, which comprise ˜40 per cent of the total mass, originate mostly from the central dumb-bell galaxy, while the remaining solar and metal-poor stars come from spiral, post-starburst (E+A) and metal-poor dwarf galaxies. About 16 per cent of the ICL stars are old and metal poor.

  15. Bayesian investigation of isochrone consistency using the old open cluster NGC 188

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hills, Shane; Courteau, Stéphane; Von Hippel, Ted

    2015-03-01

    This paper provides a detailed comparison of the differences in parameters derived for a star cluster from its color–magnitude diagrams (CMDs) depending on the filters and models used. We examine the consistency and reliability of fitting three widely used stellar evolution models to 15 combinations of optical and near-IR photometry for the old open cluster NGC 188. The optical filter response curves match those of theoretical systems and are thus not the source of fit inconsistencies. NGC 188 is ideally suited to this study thanks to a wide variety of high-quality photometry and available proper motions and radial velocities thatmore » enable us to remove non-cluster members and many binaries. Our Bayesian fitting technique yields inferred values of age, metallicity, distance modulus, and absorption as a function of the photometric band combinations and stellar models. We show that the historically favored three-band combinations of UBV and VRI can be meaningfully inconsistent with each other and with longer baseline data sets such as UBVRIJHK{sub S}. Differences among model sets can also be substantial. For instance, fitting Yi et al. (2001) and Dotter et al. (2008) models to UBVRIJHK{sub S} photometry for NGC 188 yields the following cluster parameters: age = (5.78 ± 0.03, 6.45 ± 0.04) Gyr, [Fe/H] = (+0.125 ± 0.003, −0.077 ± 0.003) dex, (m−M){sub V} = (11.441 ± 0.007, 11.525 ± 0.005) mag, and A{sub V} = (0.162 ± 0.003, 0.236 ± 0.003) mag, respectively. Within the formal fitting errors, these two fits are substantially and statistically different. Such differences among fits using different filters and models are a cautionary tale regarding our current ability to fit star cluster CMDs. Additional modeling of this kind, with more models and star clusters, and future Gaia parallaxes are critical for isolating and quantifying the most relevant uncertainties in stellar evolutionary models.« less

  16. Towards Effective Clustering Techniques for the Analysis of Electric Power Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, Emilie A.; Cotilla Sanchez, Jose E.; Halappanavar, Mahantesh

    2013-11-30

    Clustering is an important data analysis technique with numerous applications in the analysis of electric power grids. Standard clustering techniques are oblivious to the rich structural and dynamic information available for power grids. Therefore, by exploiting the inherent topological and electrical structure in the power grid data, we propose new methods for clustering with applications to model reduction, locational marginal pricing, phasor measurement unit (PMU or synchrophasor) placement, and power system protection. We focus our attention on model reduction for analysis based on time-series information from synchrophasor measurement devices, and spectral techniques for clustering. By comparing different clustering techniques onmore » two instances of realistic power grids we show that the solutions are related and therefore one could leverage that relationship for a computational advantage. Thus, by contrasting different clustering techniques we make a case for exploiting structure inherent in the data with implications for several domains including power systems.« less

  17. Heterogeneous Tensor Decomposition for Clustering via Manifold Optimization.

    PubMed

    Sun, Yanfeng; Gao, Junbin; Hong, Xia; Mishra, Bamdev; Yin, Baocai

    2016-03-01

    Tensor clustering is an important tool that exploits intrinsically rich structures in real-world multiarray or Tensor datasets. Often in dealing with those datasets, standard practice is to use subspace clustering that is based on vectorizing multiarray data. However, vectorization of tensorial data does not exploit complete structure information. In this paper, we propose a subspace clustering algorithm without adopting any vectorization process. Our approach is based on a novel heterogeneous Tucker decomposition model taking into account cluster membership information. We propose a new clustering algorithm that alternates between different modes of the proposed heterogeneous tensor model. All but the last mode have closed-form updates. Updating the last mode reduces to optimizing over the multinomial manifold for which we investigate second order Riemannian geometry and propose a trust-region algorithm. Numerical experiments show that our proposed algorithm compete effectively with state-of-the-art clustering algorithms that are based on tensor factorization.

  18. Precipitation Cluster Distributions: Current Climate Storm Statistics and Projected Changes Under Global Warming

    NASA Astrophysics Data System (ADS)

    Quinn, Kevin Martin

    The total amount of precipitation integrated across a precipitation cluster (contiguous precipitating grid cells exceeding a minimum rain rate) is a useful measure of the aggregate size of the disturbance, expressed as the rate of water mass lost or latent heat released, i.e. the power of the disturbance. Probability distributions of cluster power are examined during boreal summer (May-September) and winter (January-March) using satellite-retrieved rain rates from the Tropical Rainfall Measuring Mission (TRMM) 3B42 and Special Sensor Microwave Imager and Sounder (SSM/I and SSMIS) programs, model output from the High Resolution Atmospheric Model (HIRAM, roughly 0.25-0.5 0 resolution), seven 1-2° resolution members of the Coupled Model Intercomparison Project Phase 5 (CMIP5) experiment, and National Center for Atmospheric Research Large Ensemble (NCAR LENS). Spatial distributions of precipitation-weighted centroids are also investigated in observations (TRMM-3B42) and climate models during winter as a metric for changes in mid-latitude storm tracks. Observed probability distributions for both seasons are scale-free from the smallest clusters up to a cutoff scale at high cluster power, after which the probability density drops rapidly. When low rain rates are excluded by choosing a minimum rain rate threshold in defining clusters, the models accurately reproduce observed cluster power statistics and winter storm tracks. Changes in behavior in the tail of the distribution, above the cutoff, are important for impacts since these quantify the frequency of the most powerful storms. End-of-century cluster power distributions and storm track locations are investigated in these models under a "business as usual" global warming scenario. The probability of high cluster power events increases by end-of-century across all models, by up to an order of magnitude for the highest-power events for which statistics can be computed. For the three models in the suite with continuous time series of high resolution output, there is substantial variability on when these probability increases for the most powerful precipitation clusters become detectable, ranging from detectable within the observational period to statistically significant trends emerging only after 2050. A similar analysis of National Centers for Environmental Prediction (NCEP) Reanalysis 2 and SSM/I-SSMIS rain rate retrievals in the recent observational record does not yield reliable evidence of trends in high-power cluster probabilities at this time. Large impacts to mid-latitude storm tracks are projected over the West Coast and eastern North America, with no less than 8 of the 9 models examined showing large increases by end-of-century in the probability density of the most powerful storms, ranging up to a factor of 6.5 in the highest range bin for which historical statistics are computed. However, within these regional domains, there is considerable variation among models in pinpointing exactly where the largest increases will occur.

  19. The shape of galaxy dark matter halos in massive galaxy clusters: Insights from strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Jauzac, Mathilde; Harvey, David; Massey, Richard

    2018-04-01

    We assess how much unused strong lensing information is available in the deep Hubble Space Telescope imaging and VLT/MUSE spectroscopy of the Frontier Field clusters. As a pilot study, we analyse galaxy cluster MACS J0416.1-2403 (z=0.397, M(R < 200 kpc)=1.6×1014M⊙), which has 141 multiple images with spectroscopic redshifts. We find that many additional parameters in a cluster mass model can be constrained, and that adding even small amounts of extra freedom to a model can dramatically improve its figures of merit. We use this information to constrain the distribution of dark matter around cluster member galaxies, simultaneously with the cluster's large-scale mass distribution. We find tentative evidence that some galaxies' dark matter has surprisingly similar ellipticity to their stars (unlike in the field, where it is more spherical), but that its orientation is often misaligned. When non-coincident dark matter and stellar halos are allowed, the model improves by 35%. This technique may provide a new way to investigate the processes and timescales on which dark matter is stripped from galaxies as they fall into a massive cluster. Our preliminary conclusions will be made more robust by analysing the remaining five Frontier Field clusters.

  20. The shape of galaxy dark matter haloes in massive galaxy clusters: insights from strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Jauzac, Mathilde; Harvey, David; Massey, Richard

    2018-07-01

    We assess how much unused strong lensing information is available in the deep Hubble Space Telescope imaging and Very Large Telescope/Multi Unit Spectroscopic Explorer spectroscopy of the Frontier Field clusters. As a pilot study, we analyse galaxy cluster MACS J0416.1-2403 (z = 0.397, M(R < 200 kpc) = 1.6 × 1014 M⊙), which has 141 multiple images with spectroscopic redshifts. We find that many additional parameters in a cluster mass model can be constrained, and that adding even small amounts of extra freedom to a model can dramatically improve its figures of merit. We use this information to constrain the distribution of dark matter around cluster member galaxies, simultaneously with the cluster's large-scale mass distribution. We find tentative evidence that some galaxies' dark matter has surprisingly similar ellipticity to their stars (unlike in the field, where it is more spherical), but that its orientation is often misaligned. When non-coincident dark matter and stellar haloes are allowed, the model improves by 35 per cent. This technique may provide a new way to investigate the processes and time-scales on which dark matter is stripped from galaxies as they fall into a massive cluster. Our preliminary conclusions will be made more robust by analysing the remaining five Frontier Field clusters.

  1. Mid-infrared Integrated-light Photometry Of LMC Star Clusters

    NASA Astrophysics Data System (ADS)

    Pessev, Peter; Goudfrooij, P.; Puzia, T.; Chandar, R.

    2008-03-01

    Massive star clusters (Galactic Globular Clusters and Populous Clusters in the Magellanic Clouds) are the best available approximation of Simple Stellar Populations (SSPs). Since the stellar populations in these nearby objects are studied in details, they provide fundamental age/metallicity templates for interpretation of the galaxy properties, testing and calibration of the SSP Models. Magellanic Cloud clusters are particularly important since they populate a region of the age/metallicity parameter space that is not easily accessible in our Galaxy. We present the first Mid-IR integrated-light measurements for six LMC clusters based on our Spitzer IRAC imaging program. Since we are targeting a specific group of intermediate-age clusters, our imaging goes deeper compared to SAGE-LMC survey data. We present a literature compilation of clusters' properties along with multi-wavelength integrated light photometry database spanning from the optical (Johnson U band) to the Mid-IR (IRAC Channel 4). This data provides an important empirical baseline for the interpretation of galaxy colors in the Mid-IR (especially high-z objects whose integrated-light is dominated by TP-AGB stars emission). It is also a valuable tool to check the SSP model predictions in the intermediate-age regime and provides calibration data for the next generation of SSP models.

  2. Classical plasma dynamics of Mie-oscillations in atomic clusters

    NASA Astrophysics Data System (ADS)

    Kull, H.-J.; El-Khawaldeh, A.

    2018-04-01

    Mie plasmons are of basic importance for the absorption of laser light by atomic clusters. In this work we first review the classical Rayleigh-theory of a dielectric sphere in an external electric field and Thomson’s plum-pudding model applied to atomic clusters. Both approaches allow for elementary discussions of Mie oscillations, however, they also indicate deficiencies in describing the damping mechanisms by electrons crossing the cluster surface. Nonlinear oscillator models have been widely studied to gain an understanding of damping and absorption by outer ionization of the cluster. In the present work, we attempt to address the issue of plasmon relaxation in atomic clusters in more detail based on classical particle simulations. In particular, we wish to study the role of thermal motion on plasmon relaxation, thereby extending nonlinear models of collective single-electron motion. Our simulations are particularly adopted to the regime of classical kinetics in weakly coupled plasmas and to cluster sizes extending the Debye-screening length. It will be illustrated how surface scattering leads to the relaxation of Mie oscillations in the presence of thermal motion and of electron spill-out at the cluster surface. This work is intended to give, from a classical perspective, further insight into recent work on plasmon relaxation in quantum plasmas [1].

  3. To center or not to center? Investigating inertia with a multilevel autoregressive model.

    PubMed

    Hamaker, Ellen L; Grasman, Raoul P P P

    2014-01-01

    Whether level 1 predictors should be centered per cluster has received considerable attention in the multilevel literature. While most agree that there is no one preferred approach, it has also been argued that cluster mean centering is desirable when the within-cluster slope and the between-cluster slope are expected to deviate, and the main interest is in the within-cluster slope. However, we show in a series of simulations that if one has a multilevel autoregressive model in which the level 1 predictor is the lagged outcome variable (i.e., the outcome variable at the previous occasion), cluster mean centering will in general lead to a downward bias in the parameter estimate of the within-cluster slope (i.e., the autoregressive relationship). This is particularly relevant if the main question is whether there is on average an autoregressive effect. Nonetheless, we show that if the main interest is in estimating the effect of a level 2 predictor on the autoregressive parameter (i.e., a cross-level interaction), cluster mean centering should be preferred over other forms of centering. Hence, researchers should be clear on what is considered the main goal of their study, and base their choice of centering method on this when using a multilevel autoregressive model.

  4. To center or not to center? Investigating inertia with a multilevel autoregressive model

    PubMed Central

    Hamaker, Ellen L.; Grasman, Raoul P. P. P.

    2015-01-01

    Whether level 1 predictors should be centered per cluster has received considerable attention in the multilevel literature. While most agree that there is no one preferred approach, it has also been argued that cluster mean centering is desirable when the within-cluster slope and the between-cluster slope are expected to deviate, and the main interest is in the within-cluster slope. However, we show in a series of simulations that if one has a multilevel autoregressive model in which the level 1 predictor is the lagged outcome variable (i.e., the outcome variable at the previous occasion), cluster mean centering will in general lead to a downward bias in the parameter estimate of the within-cluster slope (i.e., the autoregressive relationship). This is particularly relevant if the main question is whether there is on average an autoregressive effect. Nonetheless, we show that if the main interest is in estimating the effect of a level 2 predictor on the autoregressive parameter (i.e., a cross-level interaction), cluster mean centering should be preferred over other forms of centering. Hence, researchers should be clear on what is considered the main goal of their study, and base their choice of centering method on this when using a multilevel autoregressive model. PMID:25688215

  5. A Bimodal Hybrid Model for Time-Dependent Probabilistic Seismic Hazard Analysis

    NASA Astrophysics Data System (ADS)

    Yaghmaei-Sabegh, Saman; Shoaeifar, Nasser; Shoaeifar, Parva

    2018-03-01

    The evaluation of evidence provided by geological studies and historical catalogs indicates that in some seismic regions and faults, multiple large earthquakes occur in cluster. Then, the occurrences of large earthquakes confront with quiescence and only the small-to-moderate earthquakes take place. Clustering of large earthquakes is the most distinguishable departure from the assumption of constant hazard of random occurrence of earthquakes in conventional seismic hazard analysis. In the present study, a time-dependent recurrence model is proposed to consider a series of large earthquakes that occurs in clusters. The model is flexible enough to better reflect the quasi-periodic behavior of large earthquakes with long-term clustering, which can be used in time-dependent probabilistic seismic hazard analysis with engineering purposes. In this model, the time-dependent hazard results are estimated by a hazard function which comprises three parts. A decreasing hazard of last large earthquake cluster and an increasing hazard of the next large earthquake cluster, along with a constant hazard of random occurrence of small-to-moderate earthquakes. In the final part of the paper, the time-dependent seismic hazard of the New Madrid Seismic Zone at different time intervals has been calculated for illustrative purpose.

  6. Finding Groups Using Model-based Cluster Analysis: Heterogeneous Emotional Self-regulatory Processes and Heavy Alcohol Use Risk

    PubMed Central

    Mun, Eun-Young; von Eye, Alexander; Bates, Marsha E.; Vaschillo, Evgeny G.

    2010-01-01

    Model-based cluster analysis is a new clustering procedure to investigate population heterogeneity utilizing finite mixture multivariate normal densities. It is an inferentially based, statistically principled procedure that allows comparison of non-nested models using the Bayesian Information Criterion (BIC) to compare multiple models and identify the optimum number of clusters. The current study clustered 36 young men and women based on their baseline heart rate (HR) and HR variability (HRV), chronic alcohol use, and reasons for drinking. Two cluster groups were identified and labeled High Alcohol Risk and Normative groups. Compared to the Normative group, individuals in the High Alcohol Risk group had higher levels of alcohol use and more strongly endorsed disinhibition and suppression reasons for use. The High Alcohol Risk group showed significant HRV changes in response to positive and negative emotional and appetitive picture cues, compared to neutral cues. In contrast, the Normative group showed a significant HRV change only to negative cues. Findings suggest that the individuals with autonomic self-regulatory difficulties may be more susceptible to heavy alcohol use and use alcohol for emotional regulation. PMID:18331138

  7. Impact-parameter dependence of the energy loss of fast molecular clusters in hydrogen

    NASA Astrophysics Data System (ADS)

    Fadanelli, R. C.; Grande, P. L.; Schiwietz, G.

    2008-03-01

    The electronic energy loss of molecular clusters as a function of impact parameter is far less understood than atomic energy losses. For instance, there are no analytical expressions for the energy loss as a function of impact parameter for cluster ions. In this work, we describe two procedures to evaluate the combined energy loss of molecules: Ab initio calculations within the semiclassical approximation and the coupled-channels method using atomic orbitals; and simplified models for the electronic cluster energy loss as a function of the impact parameter, namely the molecular perturbative convolution approximation (MPCA, an extension of the corresponding atomic model PCA) and the molecular unitary convolution approximation (MUCA, a molecular extension of the previous unitary convolution approximation UCA). In this work, an improved ansatz for MPCA is proposed, extending its validity for very compact clusters. For the simplified models, the physical inputs are the oscillators strengths of the target atoms and the target-electron density. The results from these models applied to an atomic hydrogen target yield remarkable agreement with their corresponding ab initio counterparts for different angles between cluster axis and velocity direction at specific energies of 150 and 300 keV/u.

  8. Nonthermal emission from clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Kushnir, Doron; Waxman, Eli

    2009-08-01

    We show that the spectral and radial distribution of the nonthermal emission of massive, M gtrsim 1014.5Msun, galaxy clusters may be approximately described by simple analytic expressions, which depend on the cluster thermal X-ray properties and on two model parameter, βcore and ηe. βcore is the ratio of the cosmic-ray (CR) energy density (within a logarithmic CR energy interval) and the thermal energy density at the cluster core, and ηe(p) is the fraction of the thermal energy generated in strong collisionless shocks, which is deposited in CR electrons (protons). Using a simple analytic model for the evolution of intra-cluster medium CRs, which are produced by accretion shocks, we find that βcore simeq ηp/200, nearly independent of cluster mass and with a scatter Δln βcore simeq 1 between clusters of given mass. We show that the hard X-ray (HXR) and γ-ray luminosities produced by inverse Compton scattering of CMB photons by electrons accelerated in accretion shocks (primary electrons) exceed the luminosities produced by secondary particles (generated in hadronic interactions within the cluster) by factors simeq 500(ηe/ηp)(T/10 keV)-1/2 and simeq 150(ηe/ηp)(T/10 keV)-1/2 respectively, where T is the cluster temperature. Secondary particle emission may dominate at the radio and very high energy (gtrsim 1 TeV) γ-ray bands. Our model predicts, in contrast with some earlier work, that the HXR and γ-ray emission from clusters of galaxies are extended, since the emission is dominated at these energies by primary (rather than by secondary) electrons. Our predictions are consistent with the observed nonthermal emission of the Coma cluster for ηp ~ ηe ~ 0.1. The implications of our predictions to future HXR observations (e.g. by NuStar, Simbol-X) and to (space/ground based) γ-ray observations (e.g. by Fermi, HESS, MAGIC, VERITAS) are discussed. In particular, we identify the clusters which are the best candidates for detection in γ-rays. Finally, we show that our model's results agree with results of detailed numerical calculations, and that discrepancies between the results of various numerical simulations (and between such results and our model) are due to inaccuracies in the numerical calculations.

  9. Accurate Modeling of Galaxy Clustering on Small Scales: Testing the Standard ΛCDM + Halo Model

    NASA Astrophysics Data System (ADS)

    Sinha, Manodeep; Berlind, Andreas A.; McBride, Cameron; Scoccimarro, Roman

    2015-01-01

    The large-scale distribution of galaxies can be explained fairly simply by assuming (i) a cosmological model, which determines the dark matter halo distribution, and (ii) a simple connection between galaxies and the halos they inhabit. This conceptually simple framework, called the halo model, has been remarkably successful at reproducing the clustering of galaxies on all scales, as observed in various galaxy redshift surveys. However, none of these previous studies have carefully modeled the systematics and thus truly tested the halo model in a statistically rigorous sense. We present a new accurate and fully numerical halo model framework and test it against clustering measurements from two luminosity samples of galaxies drawn from the SDSS DR7. We show that the simple ΛCDM cosmology + halo model is not able to simultaneously reproduce the galaxy projected correlation function and the group multiplicity function. In particular, the more luminous sample shows significant tension with theory. We discuss the implications of our findings and how this work paves the way for constraining galaxy formation by accurate simultaneous modeling of multiple galaxy clustering statistics.

  10. Hydrodynamic clustering of droplets in turbulence

    NASA Astrophysics Data System (ADS)

    Kunnen, Rudie; Yavuz, Altug; van Heijst, Gertjan; Clercx, Herman

    2017-11-01

    Small, inertial particles are known to cluster in turbulent flows: particles are centrifuged out of eddies and gather in the strain-dominated regions. This so-called preferential concentration is reflected in the radial distribution function (RDF; a quantitative measure of clustering). We study clustering of water droplets in a loudspeaker-driven turbulence chamber. We track the motion of droplets in 3D and calculate the RDF. At moderate scales (a few Kolmogorov lengths) we find the typical power-law scaling of preferential concentration in the RDF. However, at even smaller scales (a few droplet diameters), we encounter a hitherto unobserved additional clustering. We postulate that the additional clustering is due to hydrodynamic interactions, an effect which is typically disregarded in modeling. Using a perturbative expansion of inertial effects in a Stokes-flow description of two interacting spheres, we obtain an expression for the RDF which indeed includes the additional clustering. The additional clustering enhances the collision probability of droplets, which enhances their growth rate due to coalescence. The additional clustering is thus an essential effect in precipitation modeling.

  11. Weak lensing calibration of mass bias in the REFLEX+BCS X-ray galaxy cluster catalogue

    NASA Astrophysics Data System (ADS)

    Simet, Melanie; Battaglia, Nicholas; Mandelbaum, Rachel; Seljak, Uroš

    2017-04-01

    The use of large, X-ray-selected Galaxy cluster catalogues for cosmological analyses requires a thorough understanding of the X-ray mass estimates. Weak gravitational lensing is an ideal method to shed light on such issues, due to its insensitivity to the cluster dynamical state. We perform a weak lensing calibration of 166 galaxy clusters from the REFLEX and BCS cluster catalogue and compare our results to the X-ray masses based on scaled luminosities from that catalogue. To interpret the weak lensing signal in terms of cluster masses, we compare the lensing signal to simple theoretical Navarro-Frenk-White models and to simulated cluster lensing profiles, including complications such as cluster substructure, projected large-scale structure and Eddington bias. We find evidence of underestimation in the X-ray masses, as expected, with = 0.75 ± 0.07 stat. ±0.05 sys. for our best-fitting model. The biases in cosmological parameters in a typical cluster abundance measurement that ignores this mass bias will typically exceed the statistical errors.

  12. Submillimeter Galaxy Number Counts and Magnification by Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Lima, Marcos; Jain, Bhuvnesh; Devlin, Mark; Aguirre, James

    2010-07-01

    We present an analytical model that reproduces measured galaxy number counts from surveys in the wavelength range of 500 μm-2 mm. The model involves a single high-redshift galaxy population with a Schechter luminosity function that has been gravitationally lensed by galaxy clusters in the mass range 1013-1015 M sun. This simple model reproduces both the low-flux and the high-flux end of the number counts reported by the BLAST, SCUBA, AzTEC, and South Pole Telescope (SPT) surveys. In particular, our model accounts for the most luminous galaxies detected by SPT as the result of high magnifications by galaxy clusters (magnification factors of 10-30). This interpretation implies that submillimeter (submm) and millimeter surveys of this population may prove to be a useful addition to ongoing cluster detection surveys. The model also implies that the bulk of submm galaxies detected at wavelengths larger than 500 μm lie at redshifts greater than 2.

  13. MIXOR: a computer program for mixed-effects ordinal regression analysis.

    PubMed

    Hedeker, D; Gibbons, R D

    1996-03-01

    MIXOR provides maximum marginal likelihood estimates for mixed-effects ordinal probit, logistic, and complementary log-log regression models. These models can be used for analysis of dichotomous and ordinal outcomes from either a clustered or longitudinal design. For clustered data, the mixed-effects model assumes that data within clusters are dependent. The degree of dependency is jointly estimated with the usual model parameters, thus adjusting for dependence resulting from clustering of the data. Similarly, for longitudinal data, the mixed-effects approach can allow for individual-varying intercepts and slopes across time, and can estimate the degree to which these time-related effects vary in the population of individuals. MIXOR uses marginal maximum likelihood estimation, utilizing a Fisher-scoring solution. For the scoring solution, the Cholesky factor of the random-effects variance-covariance matrix is estimated, along with the effects of model covariates. Examples illustrating usage and features of MIXOR are provided.

  14. Electronic and geometric properties of ETS-10: QM/MM studies of cluster models.

    PubMed

    Zimmerman, Anne Marie; Doren, Douglas J; Lobo, Raul F

    2006-05-11

    Hybrid DFT/MM methods have been used to investigate the electronic and geometric properties of the microporous titanosilicate ETS-10. A comparison of finite length and periodic models demonstrates that band gap energies for ETS-10 can be well represented with relatively small cluster models. Optimization of finite clusters leads to different local geometries for bulk and end sites, where the local bulk TiO6 geometry is in good agreement with recent experimental results. Geometry optimizations reveal that any asymmetry within the axial O-Ti-O chain is negligible. The band gap in the optimized model corresponds to a O(2p) --> Tibulk(3d) transition. The results suggest that the three Ti atom, single chain, symmetric, finite cluster is an effective model for the geometric and electronic properties of bulk and end TiO6 groups in ETS-10.

  15. Stochastic fire-diffuse-fire model with realistic cluster dynamics.

    PubMed

    Calabrese, Ana; Fraiman, Daniel; Zysman, Daniel; Ponce Dawson, Silvina

    2010-09-01

    Living organisms use waves that propagate through excitable media to transport information. Ca2+ waves are a paradigmatic example of this type of processes. A large hierarchy of Ca2+ signals that range from localized release events to global waves has been observed in Xenopus laevis oocytes. In these cells, Ca2+ release occurs trough inositol 1,4,5-trisphosphate receptors (IP3Rs) which are organized in clusters of channels located on the membrane of the endoplasmic reticulum. In this article we construct a stochastic model for a cluster of IP3R 's that replicates the experimental observations reported in [D. Fraiman, Biophys. J. 90, 3897 (2006)]. We then couple this phenomenological cluster model with a reaction-diffusion equation, so as to have a discrete stochastic model for calcium dynamics. The model we propose describes the transition regimes between isolated release and steadily propagating waves as the IP3 concentration is increased.

  16. Price Formation Based on Particle-Cluster Aggregation

    NASA Astrophysics Data System (ADS)

    Wang, Shijun; Zhang, Changshui

    In the present work, we propose a microscopic model of financial markets based on particle-cluster aggregation on a two-dimensional small-world information network in order to simulate the dynamics of the stock markets. "Stylized facts" of the financial market time series, such as fat-tail distribution of returns, volatility clustering and multifractality, are observed in the model. The results of the model agree with empirical data taken from historical records of the daily closures of the NYSE composite index.

  17. Globular clusters and environmental effects in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Sales, Laura

    2016-10-01

    Globular clusters are old compact stellar systems orbiting around galaxies of all types. Tens of thousands of them can also be found populating the intra-cluster regions of nearby galaxy clusters like Virgo and Coma. Thanks to the HST Frontier Fields program, GCs are starting now to be detected also in intermediate redshift clusters. Yet, despite their ubiquity, a theoretical model for the formation and evolution of GCs is still missing, especially within the cosmological context.Here we propose to use cosmological hydrodynamical simulations of 18 galaxy clusters coupled to a post-processing GC formation model to explore the assembly of galaxies in clusters together with their expected GC population. The method, which has already been implemented and tested, will allow us to characterize for the first time the number, radial distribution and kinematics of GCs in clusters, with products directly comparable to observational maps. We will explore cluster-to-cluster variations and also characterize the build up of the intra-cluster component of GCs with time.As the method relies on a detailed study of the star-formation history of galaxies, we will jointly constrain the predicted quenching time-scales for satellites and the occurrence of starburst events associated to infall and orbital pericenters of galaxies in massive clusters. This will inform further studies on the distribution, velocity and properties of post-starburst galaxies in past, ongoing and future HST programs.

  18. A simulation of the intracluster medium with feedback from cluster galaxies

    NASA Technical Reports Server (NTRS)

    Metzler, Christopher A.; Evrard, August E.

    1994-01-01

    We detail method and report first results from a three-dimensional hydrodynamical and N-body simulation of the formation and evolution of a Coma-sized cluster of galaxies, with the intent of studying the history of the hot, X-ray emitting intracluster medium. Cluster gas, galaxies, and dark matter are included in the model. The galaxies and dark matter fell gravitational forces; the cluster gas also undergoes hydrodynamical effects such as shock heating and PdV work. For the first time in three dimensions, we include modeling of ejection of processed gas from the simulated galaxies by winds, including heating and heavy element enrichment. For comparison, we employ a `pure infall' simulation using the same initial conditions but with no galaxies or winds. We employ an extreme ejection history for galactic feedback in order to define the boundary of likely models. As expected, feedback raises the entropy of the intracluster gas, preventing it from collapsing to densities as high as those attained in the infall model. The effect is more pronounced in subclusters formed at high redshift. The cluster with feedback is always less X-ray luminous, but experiences more rapid luminosity evolution, than the pure infall cluster. Even employing an extreme ejection model, the final gas temperature is only approximately 15% larger than in the infall model. The radial temperature profile is very nearly isothermal within 1.5 Mpc. The cluster galaxies in the feedback model have a velocity dispersion approximately 15% lower than the dark matter. This results in the true ratio of specific energies in galaxies to gas being less than one, beta(sub spec) approximately 0.7. The infall model predicts beta(sub spec) approximately 1.2. Large excursions in these values occur over time, following the complex dynamical history of the cluster. The morphology of the X-ray emission is little affected by feedback. The emission profiles of both clusters are well described by the standard beta-model with beta(sub fit) approximately equal to 0.7 - 0.9. X-ray mass estimates based on the assumptions of hydrostatic equilibrium and the applicability of the beta-model are quite accurate in both cases. A strong, radial iron abundance gradient is present, which develops as a consequence of the steepening of the galaxy density profile over time. Spectroscopic observations using nonimaging detectors with wide (approximately 45 min) fields of view dramatically smear the gradient. Observations with arcminute resolution, made available with the ASCA satellite, would readily resolve the gradient.

  19. A general framework to test gravity using galaxy clusters - I. Modelling the dynamical mass of haloes in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Mitchell, Myles A.; He, Jian-hua; Arnold, Christian; Li, Baojiu

    2018-06-01

    We propose a new framework for testing gravity using cluster observations, which aims to provide an unbiased constraint on modified gravity models from Sunyaev-Zel'dovich (SZ) and X-ray cluster counts and the cluster gas fraction, among other possible observables. Focusing on a popular f(R) model of gravity, we propose a novel procedure to recalibrate mass scaling relations from Λ cold dark matter (ΛCDM) to f(R) gravity for SZ and X-ray cluster observables. We find that the complicated modified gravity effects can be simply modelled as a dependence on a combination of the background scalar field and redshift, fR(z)/(1 + z), regardless of the f(R) model parameter. By employing a large suite of N-body simulations, we demonstrate that a theoretically derived tanh fitting formula is in excellent agreement with the dynamical mass enhancement of dark matter haloes for a large range of background field parameters and redshifts. Our framework is sufficiently flexible to allow for tests of other models and inclusion of further observables, and the one-parameter description of the dynamical mass enhancement can have important implications on the theoretical modelling of observables and on practical tests of gravity.

  20. Analytical halo model of galactic conformity

    NASA Astrophysics Data System (ADS)

    Pahwa, Isha; Paranjape, Aseem

    2017-09-01

    We present a fully analytical halo model of colour-dependent clustering that incorporates the effects of galactic conformity in a halo occupation distribution framework. The model, based on our previous numerical work, describes conformity through a correlation between the colour of a galaxy and the concentration of its parent halo, leading to a correlation between central and satellite galaxy colours at fixed halo mass. The strength of the correlation is set by a tunable 'group quenching efficiency', and the model can separately describe group-level correlations between galaxy colour (1-halo conformity) and large-scale correlations induced by assembly bias (2-halo conformity). We validate our analytical results using clustering measurements in mock galaxy catalogues, finding that the model is accurate at the 10-20 per cent level for a wide range of luminosities and length-scales. We apply the formalism to interpret the colour-dependent clustering of galaxies in the Sloan Digital Sky Survey (SDSS). We find good overall agreement between the data and a model that has 1-halo conformity at a level consistent with previous results based on an SDSS group catalogue, although the clustering data require satellites to be redder than suggested by the group catalogue. Within our modelling uncertainties, however, we do not find strong evidence of 2-halo conformity driven by assembly bias in SDSS clustering.

  1. To Aggregate or Not and Potentially Better Questions for Clustered Data: The Need for Hierarchical Linear Modeling in CTE Research

    ERIC Educational Resources Information Center

    Nimon, Kim

    2012-01-01

    Using state achievement data that are openly accessible, this paper demonstrates the application of hierarchical linear modeling within the context of career technical education research. Three prominent approaches to analyzing clustered data (i.e., modeling aggregated data, modeling disaggregated data, modeling hierarchical data) are discussed…

  2. A multi-point perspective on the formation of polar cap arcs: kinetic modeling and observations by Cluster and TIMED

    NASA Astrophysics Data System (ADS)

    de Keyser, J. M.; Maggiolo, R.; Echim, M.; Simon, C.; Zhang, Y.; Trotignon, J.

    2010-12-01

    On April 1st, 2004 the GUVI imager onboard the TIMED spacecraft spots an isolated and elongated polar cap arc. Simultaneously, the Cluster spacecraft detects an isolated upflowing ion beam above the polar cap. Cluster observations show that the ions are accelerated upward by a quasi-stationary electric field. The field-aligned potential drop is estimated to about 600 V and the upflowing ions are accompanied by a tenuous population of isotropic protons with a temperature of about 300eV. The footprint of the magnetic field line on which the Cluster spacecraft are situated, is located just outside the GUVI field of view in the prolongation of the polar cap arc. This suggests that the upflowing ion beam and the polar cap arc may be different signatures of the same phenomenon, as suggested by a recent statistical study of polar cap ion beams using Cluster data. We use Cluster observations at high altitude as input to a quasi-stationary magnetosphere-ionosphere (MI) coupling model. Using a Knight-type current-voltage relationship and the current continuity at the topside ionosphere, the model computes the energy spectrum of precipitating electrons at ionospheric altitudes corresponding to the generator electric field observed by Cluster. The MI coupling model provides a field-aligned potential drop in agreement with Cluster observations of upflowing ions and a spatial scale of the polar cap arc consistent with the optical observations by TIMED. The energy spectrum of the precipitating electrons provided by the model is introduced as input to the Trans4 ionospheric transport code. This 1-D model, based on Boltzmann's kinetic formalism, takes into account ionospheric processes like photoionisation and electron/proton precipitation, and computes the optical and UV emissions due to precipitating electrons. The emission rates provided by the Trans4 code are then compared to the optical observations by TIMED. Data and modeling results are consistent with quasi-static acceleration of precipitating magnetospheric electrons. We also discuss possible implications of our modeling results for optical observations of polar cap arcs.

  3. Prediction of settled water turbidity and optimal coagulant dosage in drinking water treatment plant using a hybrid model of k-means clustering and adaptive neuro-fuzzy inference system

    NASA Astrophysics Data System (ADS)

    Kim, Chan Moon; Parnichkun, Manukid

    2017-11-01

    Coagulation is an important process in drinking water treatment to attain acceptable treated water quality. However, the determination of coagulant dosage is still a challenging task for operators, because coagulation is nonlinear and complicated process. Feedback control to achieve the desired treated water quality is difficult due to lengthy process time. In this research, a hybrid of k-means clustering and adaptive neuro-fuzzy inference system ( k-means-ANFIS) is proposed for the settled water turbidity prediction and the optimal coagulant dosage determination using full-scale historical data. To build a well-adaptive model to different process states from influent water, raw water quality data are classified into four clusters according to its properties by a k-means clustering technique. The sub-models are developed individually on the basis of each clustered data set. Results reveal that the sub-models constructed by a hybrid k-means-ANFIS perform better than not only a single ANFIS model, but also seasonal models by artificial neural network (ANN). The finally completed model consisting of sub-models shows more accurate and consistent prediction ability than a single model of ANFIS and a single model of ANN based on all five evaluation indices. Therefore, the hybrid model of k-means-ANFIS can be employed as a robust tool for managing both treated water quality and production costs simultaneously.

  4. Simulating the Birth of Massive Star Clusters: Is Destruction Inevitable?

    NASA Astrophysics Data System (ADS)

    Rosen, Anna

    2013-10-01

    Very early in its operation, the Hubble Space Telescope {HST} opened an entirely new frontier: study of the demographics and properties of star clusters far beyond the Milky Way. However, interpretation of HST's observations has proven difficult, and has led to the development of two conflicting models. One view is that most massive star clusters are disrupted during their infancy by feedback from newly formed stars {i.e., "infant mortality"}, independent of cluster mass or environment. The other model is that most star clusters survive their infancy and are disrupted later by mass-dependent dynamical processes. Since observations at present have failed to discriminate between these views, we propose a theoretical investigation to provide new insight. We will perform radiation-hydrodynamic simulations of the formation of massive star clusters, including for the first time a realistic treatment of the most important stellar feedback processes. These simulations will elucidate the physics of stellar feedback, and allow us to determine whether cluster disruption is mass-dependent or -independent. We will also use our simulations to search for observational diagnostics that can distinguish bound from unbound clusters, and to predict how cluster disruption affects the cluster luminosity function in a variety of galactic environments.

  5. Helium segregation on surfaces of plasma-exposed tungsten

    DOE PAGES

    Maroudas, Dimitrios; Blondel, Sophie; Hu, Lin; ...

    2016-01-21

    Here we report a hierarchical multi-scale modeling study of implanted helium segregation on surfaces of tungsten, considered as a plasma facing component in nuclear fusion reactors. We employ a hierarchy of atomic-scale simulations based on a reliable interatomic interaction potential, including molecular-statics simulations to understand the origin of helium surface segregation, targeted molecular-dynamics (MD) simulations of near-surface cluster reactions, and large-scale MD simulations of implanted helium evolution in plasma-exposed tungsten. We find that small, mobile He-n (1 <= n <= 7) clusters in the near-surface region are attracted to the surface due to an elastic interaction force that provides themore » thermodynamic driving force for surface segregation. Elastic interaction force induces drift fluxes of these mobile Hen clusters, which increase substantially as the migrating clusters approach the surface, facilitating helium segregation on the surface. Moreover, the clusters' drift toward the surface enables cluster reactions, most importantly trap mutation, in the near-surface region at rates much higher than in the bulk material. Moreover, these near-surface cluster dynamics have significant effects on the surface morphology, near-surface defect structures, and the amount of helium retained in the material upon plasma exposure. We integrate the findings of such atomic-scale simulations into a properly parameterized and validated spatially dependent, continuum-scale reaction-diffusion cluster dynamics model, capable of predicting implanted helium evolution, surface segregation, and its near-surface effects in tungsten. This cluster-dynamics model sets the stage for development of fully atomistically informed coarse-grained models for computationally efficient simulation predictions of helium surface segregation, as well as helium retention and surface morphological evolution, toward optimal design of plasma facing components.« less

  6. Beyond the Young-Laplace model for cluster growth during dewetting of thin films: effective coarsening exponents and the role of long range dewetting interactions.

    PubMed

    Constantinescu, Adi; Golubović, Leonardo; Levandovsky, Artem

    2013-09-01

    Long range dewetting forces acting across thin films, such as the fundamental van der Waals interactions, may drive the formation of large clusters (tall multilayer islands) and pits, observed in thin films of diverse materials such as polymers, liquid crystals, and metals. In this study we further develop the methodology of the nonequilibrium statistical mechanics of thin films coarsening within continuum interface dynamics model incorporating long range dewetting interactions. The theoretical test bench model considered here is a generalization of the classical Mullins model for the dynamics of solid film surfaces. By analytic arguments and simulations of the model, we study the coarsening growth laws of clusters formed in thin films due to the dewetting interactions. The ultimate cluster growth scaling laws at long times are strongly universal: Short and long range dewetting interactions yield the same coarsening exponents. However, long range dewetting interactions, such as the van der Waals forces, introduce a distinct long lasting early time scaling behavior characterized by a slow growth of the cluster height/lateral size aspect ratio (i.e., a time-dependent Young angle) and by effective coarsening exponents that depend on cluster size. In this study, we develop a theory capable of analytically calculating these effective size-dependent coarsening exponents characterizing the cluster growth in the early time regime. Such a pronounced early time scaling behavior has been indeed seen in experiments; however, its physical origin has remained elusive to this date. Our theory attributes these observed phenomena to ubiquitous long range dewetting interactions acting across thin solid and liquid films. Our results are also applicable to cluster growth in initially very thin fluid films, formed by depositing a few monolayers or by a submonolayer deposition. Under this condition, the dominant coarsening mechanism is diffusive intercluster mass transport while the cluster coalescence plays a minor role, both in solid and in fluid films.

  7. Globin gene structure in a reptile supports the transpositional model for amniote α- and β-globin gene evolution.

    PubMed

    Patel, Vidushi S; Ezaz, Tariq; Deakin, Janine E; Graves, Jennifer A Marshall

    2010-12-01

    The haemoglobin protein, required for oxygen transportation in the body, is encoded by α- and β-globin genes that are arranged in clusters. The transpositional model for the evolution of distinct α-globin and β-globin clusters in amniotes is much simpler than the previously proposed whole genome duplication model. According to this model, all jawed vertebrates share one ancient region containing α- and β-globin genes and several flanking genes in the order MPG-C16orf35-(α-β)-GBY-LUC7L that has been conserved for more than 410 million years, whereas amniotes evolved a distinct β-globin cluster by insertion of a transposed β-globin gene from this ancient region into a cluster of olfactory receptors flanked by CCKBR and RRM1. It could not be determined whether this organisation is conserved in all amniotes because of the paucity of information from non-avian reptiles. To fill in this gap, we examined globin gene organisation in a squamate reptile, the Australian bearded dragon lizard, Pogona vitticeps (Agamidae). We report here that the α-globin cluster (HBK, HBA) is flanked by C16orf35 and GBY and is located on a pair of microchromosomes, whereas the β-globin cluster is flanked by RRM1 on the 3' end and is located on the long arm of chromosome 3. However, the CCKBR gene that flanks the β-globin cluster on the 5' end in other amniotes is located on the short arm of chromosome 5 in P. vitticeps, indicating that a chromosomal break between the β-globin cluster and CCKBR occurred at least in the agamid lineage. Our data from a reptile species provide further evidence to support the transpositional model for the evolution of β-globin gene cluster in amniotes.

  8. The mass function and dynamical mass of young star clusters: why their initial crossing-time matters crucially

    NASA Astrophysics Data System (ADS)

    Parmentier, Geneviève; Baumgardt, Holger

    2012-12-01

    We highlight the impact of cluster-mass-dependent evolutionary rates upon the evolution of the cluster mass function during violent relaxation, that is, while clusters dynamically respond to the expulsion of their residual star-forming gas. Mass-dependent evolutionary rates arise when the mean volume density of cluster-forming regions is mass-dependent. In that case, even if the initial conditions are such that the cluster mass function at the end of violent relaxation has the same shape as the embedded-cluster mass function (i.e. infant weight-loss is mass-independent), the shape of the cluster mass function does change transiently during violent relaxation. In contrast, for cluster-forming regions of constant mean volume density, the cluster mass function shape is preserved all through violent relaxation since all clusters then evolve at the same mass-independent rate. On the scale of individual clusters, we model the evolution of the ratio of the dynamical mass to luminous mass of a cluster after gas expulsion. Specifically, we map the radial dependence of the time-scale for a star cluster to return to equilibrium. We stress that fields of view a few pc in size only, typical of compact clusters with rapid evolutionary rates, are likely to reveal cluster regions which have returned to equilibrium even if the cluster experienced a major gas expulsion episode a few Myr earlier. We provide models with the aperture and time expressed in units of the initial half-mass radius and initial crossing-time, respectively, so that our results can be applied to clusters with initial densities, sizes, and apertures different from ours.

  9. Spatial scan statistics for detection of multiple clusters with arbitrary shapes.

    PubMed

    Lin, Pei-Sheng; Kung, Yi-Hung; Clayton, Murray

    2016-12-01

    In applying scan statistics for public health research, it would be valuable to develop a detection method for multiple clusters that accommodates spatial correlation and covariate effects in an integrated model. In this article, we connect the concepts of the likelihood ratio (LR) scan statistic and the quasi-likelihood (QL) scan statistic to provide a series of detection procedures sufficiently flexible to apply to clusters of arbitrary shape. First, we use an independent scan model for detection of clusters and then a variogram tool to examine the existence of spatial correlation and regional variation based on residuals of the independent scan model. When the estimate of regional variation is significantly different from zero, a mixed QL estimating equation is developed to estimate coefficients of geographic clusters and covariates. We use the Benjamini-Hochberg procedure (1995) to find a threshold for p-values to address the multiple testing problem. A quasi-deviance criterion is used to regroup the estimated clusters to find geographic clusters with arbitrary shapes. We conduct simulations to compare the performance of the proposed method with other scan statistics. For illustration, the method is applied to enterovirus data from Taiwan. © 2016, The International Biometric Society.

  10. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    NASA Astrophysics Data System (ADS)

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G.; Hummer, Gerhard

    2014-09-01

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.

  11. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G., E-mail: yannis@princeton.edu, E-mail: gerhard.hummer@biophys.mpg.de

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlapmore » with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.« less

  12. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    PubMed Central

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G.; Hummer, Gerhard

    2014-01-01

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space. PMID:25240340

  13. A hybrid algorithm for clustering of time series data based on affinity search technique.

    PubMed

    Aghabozorgi, Saeed; Ying Wah, Teh; Herawan, Tutut; Jalab, Hamid A; Shaygan, Mohammad Amin; Jalali, Alireza

    2014-01-01

    Time series clustering is an important solution to various problems in numerous fields of research, including business, medical science, and finance. However, conventional clustering algorithms are not practical for time series data because they are essentially designed for static data. This impracticality results in poor clustering accuracy in several systems. In this paper, a new hybrid clustering algorithm is proposed based on the similarity in shape of time series data. Time series data are first grouped as subclusters based on similarity in time. The subclusters are then merged using the k-Medoids algorithm based on similarity in shape. This model has two contributions: (1) it is more accurate than other conventional and hybrid approaches and (2) it determines the similarity in shape among time series data with a low complexity. To evaluate the accuracy of the proposed model, the model is tested extensively using syntactic and real-world time series datasets.

  14. A Model-Based Cluster Analysis of Maternal Emotion Regulation and Relations to Parenting Behavior.

    PubMed

    Shaffer, Anne; Whitehead, Monica; Davis, Molly; Morelen, Diana; Suveg, Cynthia

    2017-10-15

    In a diverse community sample of mothers (N = 108) and their preschool-aged children (M age  = 3.50 years), this study conducted person-oriented analyses of maternal emotion regulation (ER) based on a multimethod assessment incorporating physiological, observational, and self-report indicators. A model-based cluster analysis was applied to five indicators of maternal ER: maternal self-report, observed negative affect in a parent-child interaction, baseline respiratory sinus arrhythmia (RSA), and RSA suppression across two laboratory tasks. Model-based cluster analyses revealed four maternal ER profiles, including a group of mothers with average ER functioning, characterized by socioeconomic advantage and more positive parenting behavior. A dysregulated cluster demonstrated the greatest challenges with parenting and dyadic interactions. Two clusters of intermediate dysregulation were also identified. Implications for assessment and applications to parenting interventions are discussed. © 2017 Family Process Institute.

  15. Clustering promotes switching dynamics in networks of noisy neurons

    NASA Astrophysics Data System (ADS)

    Franović, Igor; Klinshov, Vladimir

    2018-02-01

    Macroscopic variability is an emergent property of neural networks, typically manifested in spontaneous switching between the episodes of elevated neuronal activity and the quiescent episodes. We investigate the conditions that facilitate switching dynamics, focusing on the interplay between the different sources of noise and heterogeneity of the network topology. We consider clustered networks of rate-based neurons subjected to external and intrinsic noise and derive an effective model where the network dynamics is described by a set of coupled second-order stochastic mean-field systems representing each of the clusters. The model provides an insight into the different contributions to effective macroscopic noise and qualitatively indicates the parameter domains where switching dynamics may occur. By analyzing the mean-field model in the thermodynamic limit, we demonstrate that clustering promotes multistability, which gives rise to switching dynamics in a considerably wider parameter region compared to the case of a non-clustered network with sparse random connection topology.

  16. A Hybrid Algorithm for Clustering of Time Series Data Based on Affinity Search Technique

    PubMed Central

    Aghabozorgi, Saeed; Ying Wah, Teh; Herawan, Tutut; Jalab, Hamid A.; Shaygan, Mohammad Amin; Jalali, Alireza

    2014-01-01

    Time series clustering is an important solution to various problems in numerous fields of research, including business, medical science, and finance. However, conventional clustering algorithms are not practical for time series data because they are essentially designed for static data. This impracticality results in poor clustering accuracy in several systems. In this paper, a new hybrid clustering algorithm is proposed based on the similarity in shape of time series data. Time series data are first grouped as subclusters based on similarity in time. The subclusters are then merged using the k-Medoids algorithm based on similarity in shape. This model has two contributions: (1) it is more accurate than other conventional and hybrid approaches and (2) it determines the similarity in shape among time series data with a low complexity. To evaluate the accuracy of the proposed model, the model is tested extensively using syntactic and real-world time series datasets. PMID:24982966

  17. Spiking neural networks on high performance computer clusters

    NASA Astrophysics Data System (ADS)

    Chen, Chong; Taha, Tarek M.

    2011-09-01

    In this paper we examine the acceleration of two spiking neural network models on three clusters of multicore processors representing three categories of processors: x86, STI Cell, and NVIDIA GPGPUs. The x86 cluster utilized consists of 352 dualcore AMD Opterons, the Cell cluster consists of 320 Sony Playstation 3s, while the GPGPU cluster contains 32 NVIDIA Tesla S1070 systems. The results indicate that the GPGPU platform can dominate in performance compared to the Cell and x86 platforms examined. From a cost perspective, the GPGPU is more expensive in terms of neuron/s throughput. If the cost of GPGPUs go down in the future, this platform will become very cost effective for these models.

  18. Small traveling clusters in attractive and repulsive Hamiltonian mean-field models.

    PubMed

    Barré, Julien; Yamaguchi, Yoshiyuki Y

    2009-03-01

    Long-lasting small traveling clusters are studied in the Hamiltonian mean-field model by comparing between attractive and repulsive interactions. Nonlinear Landau damping theory predicts that a Gaussian momentum distribution on a spatially homogeneous background permits the existence of traveling clusters in the repulsive case, as in plasma systems, but not in the attractive case. Nevertheless, extending the analysis to a two-parameter family of momentum distributions of Fermi-Dirac type, we theoretically predict the existence of traveling clusters in the attractive case; these findings are confirmed by direct N -body numerical simulations. The parameter region with the traveling clusters is much reduced in the attractive case with respect to the repulsive case.

  19. LoCuSS: connecting the dominance and shape of brightest cluster galaxies with the assembly history of massive clusters

    NASA Astrophysics Data System (ADS)

    Smith, Graham P.; Khosroshahi, Habib G.; Dariush, A.; Sanderson, A. J. R.; Ponman, T. J.; Stott, J. P.; Haines, C. P.; Egami, E.; Stark, D. P.

    2010-11-01

    We study the luminosity gap, Δm12, between the first- and second-ranked galaxies in a sample of 59 massive (~1015Msolar) galaxy clusters, using data from the Hale Telescope, the Hubble Space Telescope, Chandra and Spitzer. We find that the Δm12 distribution, p(Δm12), is a declining function of Δm12 to which we fitted a straight line: p(Δm12) ~ -(0.13 +/- 0.02)Δm12. The fraction of clusters with `large' luminosity gaps is p(Δm12 >= 1) = 0.37 +/- 0.08, which represents a 3σ excess over that obtained from Monte Carlo simulations of a Schechter function that matches the mean cluster galaxy luminosity function. We also identify four clusters with `extreme' luminosity gaps, Δm12 >= 2, giving a fraction of . More generally, large luminosity gap clusters are relatively homogeneous, with elliptical/discy brightest cluster galaxies (BCGs), cuspy gas density profiles (i.e. strong cool cores), high concentrations and low substructure fractions. In contrast, small luminosity gap clusters are heterogeneous, spanning the full range of boxy/elliptical/discy BCG morphologies, the full range of cool core strengths and dark matter concentrations, and have large substructure fractions. Taken together, these results imply that the amplitude of the luminosity gap is a function of both the formation epoch and the recent infall history of the cluster. `BCG dominance' is therefore a phase that a cluster may evolve through and is not an evolutionary `cul-de-sac'. We also compare our results with semi-analytic model predictions based on the Millennium Simulation. None of the models is able to reproduce all of the observational results on Δm12, underlining the inability of the current generation of models to match the empirical properties of BCGs. We identify the strength of active galactic nucleus feedback and the efficiency with which cluster galaxies are replenished after they merge with the BCG in each model as possible causes of these discrepancies.

  20. Data Clustering

    NASA Astrophysics Data System (ADS)

    Wagstaff, Kiri L.

    2012-03-01

    On obtaining a new data set, the researcher is immediately faced with the challenge of obtaining a high-level understanding from the observations. What does a typical item look like? What are the dominant trends? How many distinct groups are included in the data set, and how is each one characterized? Which observable values are common, and which rarely occur? Which items stand out as anomalies or outliers from the rest of the data? This challenge is exacerbated by the steady growth in data set size [11] as new instruments push into new frontiers of parameter space, via improvements in temporal, spatial, and spectral resolution, or by the desire to "fuse" observations from different modalities and instruments into a larger-picture understanding of the same underlying phenomenon. Data clustering algorithms provide a variety of solutions for this task. They can generate summaries, locate outliers, compress data, identify dense or sparse regions of feature space, and build data models. It is useful to note up front that "clusters" in this context refer to groups of items within some descriptive feature space, not (necessarily) to "galaxy clusters" which are dense regions in physical space. The goal of this chapter is to survey a variety of data clustering methods, with an eye toward their applicability to astronomical data analysis. In addition to improving the individual researcher’s understanding of a given data set, clustering has led directly to scientific advances, such as the discovery of new subclasses of stars [14] and gamma-ray bursts (GRBs) [38]. All clustering algorithms seek to identify groups within a data set that reflect some observed, quantifiable structure. Clustering is traditionally an unsupervised approach to data analysis, in the sense that it operates without any direct guidance about which items should be assigned to which clusters. There has been a recent trend in the clustering literature toward supporting semisupervised or constrained clustering, in which some partial information about item assignments or other components of the resulting output are already known and must be accommodated by the solution. Some algorithms seek a partition of the data set into distinct clusters, while others build a hierarchy of nested clusters that can capture taxonomic relationships. Some produce a single optimal solution, while others construct a probabilistic model of cluster membership. More formally, clustering algorithms operate on a data set X composed of items represented by one or more features (dimensions). These could include physical location, such as right ascension and declination, as well as other properties such as brightness, color, temporal change, size, texture, and so on. Let D be the number of dimensions used to represent each item, xi ∈ RD. The clustering goal is to produce an organization P of the items in X that optimizes an objective function f : P -> R, which quantifies the quality of solution P. Often f is defined so as to maximize similarity within a cluster and minimize similarity between clusters. To that end, many algorithms make use of a measure d : X x X -> R of the distance between two items. A partitioning algorithm produces a set of clusters P = {c1, . . . , ck} such that the clusters are nonoverlapping (c_i intersected with c_j = empty set, i != j) subsets of the data set (Union_i c_i=X). Hierarchical algorithms produce a series of partitions P = {p1, . . . , pn }. For a complete hierarchy, the number of partitions n’= n, the number of items in the data set; the top partition is a single cluster containing all items, and the bottom partition contains n clusters, each containing a single item. For model-based clustering, each cluster c_j is represented by a model m_j , such as the cluster center or a Gaussian distribution. The wide array of available clustering algorithms may seem bewildering, and covering all of them is beyond the scope of this chapter. Choosing among them for a particular application involves considerations of the kind of data being analyzed, algorithm runtime efficiency, and how much prior knowledge is available about the problem domain, which can dictate the nature of clusters sought. Fundamentally, the clustering method and its representations of clusters carries with it a definition of what a cluster is, and it is important that this be aligned with the analysis goals for the problem at hand. In this chapter, I emphasize this point by identifying for each algorithm the cluster representation as a model, m_j , even for algorithms that are not typically thought of as creating a “model.” This chapter surveys a basic collection of clustering methods useful to any practitioner who is interested in applying clustering to a new data set. The algorithms include k-means (Section 25.2), EM (Section 25.3), agglomerative (Section 25.4), and spectral (Section 25.5) clustering, with side mentions of variants such as kernel k-means and divisive clustering. The chapter also discusses each algorithm’s strengths and limitations and provides pointers to additional in-depth reading for each subject. Section 25.6 discusses methods for incorporating domain knowledge into the clustering process. This chapter concludes with a brief survey of interesting applications of clustering methods to astronomy data (Section 25.7). The chapter begins with k-means because it is both generally accessible and so widely used that understanding it can be considered a necessary prerequisite for further work in the field. EM can be viewed as a more sophisticated version of k-means that uses a generative model for each cluster and probabilistic item assignments. Agglomerative clustering is the most basic form of hierarchical clustering and provides a basis for further exploration of algorithms in that vein. Spectral clustering permits a departure from feature-vector-based clustering and can operate on data sets instead represented as affinity, or similarity matrices—cases in which only pairwise information is known. The list of algorithms covered in this chapter is representative of those most commonly in use, but it is by no means comprehensive. There is an extensive collection of existing books on clustering that provide additional background and depth. Three early books that remain useful today are Anderberg’s Cluster Analysis for Applications [3], Hartigan’s Clustering Algorithms [25], and Gordon’s Classification [22]. The latter covers basics on similarity measures, partitioning and hierarchical algorithms, fuzzy clustering, overlapping clustering, conceptual clustering, validations methods, and visualization or data reduction techniques such as principal components analysis (PCA),multidimensional scaling, and self-organizing maps. More recently, Jain et al. provided a useful and informative survey [27] of a variety of different clustering algorithms, including those mentioned here as well as fuzzy, graph-theoretic, and evolutionary clustering. Everitt’s Cluster Analysis [19] provides a modern overview of algorithms, similarity measures, and evaluation methods.

  1. Intermediate and advanced topics in multilevel logistic regression analysis

    PubMed Central

    Merlo, Juan

    2017-01-01

    Multilevel data occur frequently in health services, population and public health, and epidemiologic research. In such research, binary outcomes are common. Multilevel logistic regression models allow one to account for the clustering of subjects within clusters of higher‐level units when estimating the effect of subject and cluster characteristics on subject outcomes. A search of the PubMed database demonstrated that the use of multilevel or hierarchical regression models is increasing rapidly. However, our impression is that many analysts simply use multilevel regression models to account for the nuisance of within‐cluster homogeneity that is induced by clustering. In this article, we describe a suite of analyses that can complement the fitting of multilevel logistic regression models. These ancillary analyses permit analysts to estimate the marginal or population‐average effect of covariates measured at the subject and cluster level, in contrast to the within‐cluster or cluster‐specific effects arising from the original multilevel logistic regression model. We describe the interval odds ratio and the proportion of opposed odds ratios, which are summary measures of effect for cluster‐level covariates. We describe the variance partition coefficient and the median odds ratio which are measures of components of variance and heterogeneity in outcomes. These measures allow one to quantify the magnitude of the general contextual effect. We describe an R 2 measure that allows analysts to quantify the proportion of variation explained by different multilevel logistic regression models. We illustrate the application and interpretation of these measures by analyzing mortality in patients hospitalized with a diagnosis of acute myocardial infarction. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. PMID:28543517

  2. Possible world based consistency learning model for clustering and classifying uncertain data.

    PubMed

    Liu, Han; Zhang, Xianchao; Zhang, Xiaotong

    2018-06-01

    Possible world has shown to be effective for handling various types of data uncertainty in uncertain data management. However, few uncertain data clustering and classification algorithms are proposed based on possible world. Moreover, existing possible world based algorithms suffer from the following issues: (1) they deal with each possible world independently and ignore the consistency principle across different possible worlds; (2) they require the extra post-processing procedure to obtain the final result, which causes that the effectiveness highly relies on the post-processing method and the efficiency is also not very good. In this paper, we propose a novel possible world based consistency learning model for uncertain data, which can be extended both for clustering and classifying uncertain data. This model utilizes the consistency principle to learn a consensus affinity matrix for uncertain data, which can make full use of the information across different possible worlds and then improve the clustering and classification performance. Meanwhile, this model imposes a new rank constraint on the Laplacian matrix of the consensus affinity matrix, thereby ensuring that the number of connected components in the consensus affinity matrix is exactly equal to the number of classes. This also means that the clustering and classification results can be directly obtained without any post-processing procedure. Furthermore, for the clustering and classification tasks, we respectively derive the efficient optimization methods to solve the proposed model. Experimental results on real benchmark datasets and real world uncertain datasets show that the proposed model outperforms the state-of-the-art uncertain data clustering and classification algorithms in effectiveness and performs competitively in efficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Inductive Approaches to Improving Diagnosis and Design for Diagnosability

    NASA Technical Reports Server (NTRS)

    Fisher, Douglas H. (Principal Investigator)

    1995-01-01

    The first research area under this grant addresses the problem of classifying time series according to their morphological features in the time domain. A supervised learning system called CALCHAS, which induces a classification procedure for signatures from preclassified examples, was developed. For each of several signature classes, the system infers a model that captures the class's morphological features using Bayesian model induction and the minimum message length approach to assign priors. After induction, a time series (signature) is classified in one of the classes when there is enough evidence to support that decision. Time series with sufficiently novel features, belonging to classes not present in the training set, are recognized as such. A second area of research assumes two sources of information about a system: a model or domain theory that encodes aspects of the system under study and data from actual system operations over time. A model, when it exists, represents strong prior expectations about how a system will perform. Our work with a diagnostic model of the RCS (Reaction Control System) of the Space Shuttle motivated the development of SIG, a system which combines information from a model (or domain theory) and data. As it tracks RCS behavior, the model computes quantitative and qualitative values. Induction is then performed over the data represented by both the 'raw' features and the model-computed high-level features. Finally, work on clustering for operating mode discovery motivated some important extensions to the clustering strategy we had used. One modification appends an iterative optimization technique onto the clustering system; this optimization strategy appears to be novel in the clustering literature. A second modification improves the noise tolerance of the clustering system. In particular, we adapt resampling-based pruning strategies used by supervised learning systems to the task of simplifying hierarchical clusterings, thus making post-clustering analysis easier.

  4. A spatial scan statistic for nonisotropic two-level risk cluster.

    PubMed

    Li, Xiao-Zhou; Wang, Jin-Feng; Yang, Wei-Zhong; Li, Zhong-Jie; Lai, Sheng-Jie

    2012-01-30

    Spatial scan statistic methods are commonly used for geographical disease surveillance and cluster detection. The standard spatial scan statistic does not model any variability in the underlying risks of subregions belonging to a detected cluster. For a multilevel risk cluster, the isotonic spatial scan statistic could model a centralized high-risk kernel in the cluster. Because variations in disease risks are anisotropic owing to different social, economical, or transport factors, the real high-risk kernel will not necessarily take the central place in a whole cluster area. We propose a spatial scan statistic for a nonisotropic two-level risk cluster, which could be used to detect a whole cluster and a noncentralized high-risk kernel within the cluster simultaneously. The performance of the three methods was evaluated through an intensive simulation study. Our proposed nonisotropic two-level method showed better power and geographical precision with two-level risk cluster scenarios, especially for a noncentralized high-risk kernel. Our proposed method is illustrated using the hand-foot-mouth disease data in Pingdu City, Shandong, China in May 2009, compared with two other methods. In this practical study, the nonisotropic two-level method is the only way to precisely detect a high-risk area in a detected whole cluster. Copyright © 2011 John Wiley & Sons, Ltd.

  5. Use of DAVID algorithms for gene functional classification in a non-model organism, rainbow trout

    USDA-ARS?s Scientific Manuscript database

    Gene functional clustering is essential in transcriptome data analysis but software programs are not always suitable for use with non-model species. The DAVID Gene Functional Classification Tool has been widely used for soft clustering in model species, but requires adaptations for use in non-model ...

  6. A segmentation/clustering model for the analysis of array CGH data.

    PubMed

    Picard, F; Robin, S; Lebarbier, E; Daudin, J-J

    2007-09-01

    Microarray-CGH (comparative genomic hybridization) experiments are used to detect and map chromosomal imbalances. A CGH profile can be viewed as a succession of segments that represent homogeneous regions in the genome whose representative sequences share the same relative copy number on average. Segmentation methods constitute a natural framework for the analysis, but they do not provide a biological status for the detected segments. We propose a new model for this segmentation/clustering problem, combining a segmentation model with a mixture model. We present a new hybrid algorithm called dynamic programming-expectation maximization (DP-EM) to estimate the parameters of the model by maximum likelihood. This algorithm combines DP and the EM algorithm. We also propose a model selection heuristic to select the number of clusters and the number of segments. An example of our procedure is presented, based on publicly available data sets. We compare our method to segmentation methods and to hidden Markov models, and we show that the new segmentation/clustering model is a promising alternative that can be applied in the more general context of signal processing.

  7. Charging of nanoparticles in stationary plasma in a gas aggregation cluster source

    NASA Astrophysics Data System (ADS)

    Blažek, J.; Kousal, J.; Biederman, H.; Kylián, O.; Hanuš, J.; Slavínská, D.

    2015-10-01

    Clusters that grow into nanoparticles near the magnetron target of the gas aggregation cluster source (GAS) may acquire electric charge by collecting electrons and ions or through other mechanisms like secondary- or photo-electron emissions. The region of the GAS close to magnetron may be considered as stationary plasma. The steady state charge distribution on nanoparticles can be determined by means of three possible models—fluid model, kinetic model and model employing Monte Carlo simulations—of cluster charging. In the paper the mathematical and numerical aspects of these models are analyzed in detail and close links between them are clarified. Among others it is shown that Monte Carlo simulation may be considered as a particular numerical technique of solving kinetic equations. Similarly the equations of the fluid model result, after some approximation, from averaged kinetic equations. A new algorithm solving an in principle unlimited set of kinetic equations is suggested. Its efficiency is verified on physical models based on experimental input data.

  8. Young star clusters in nearby molecular clouds

    NASA Astrophysics Data System (ADS)

    Getman, K. V.; Kuhn, M. A.; Feigelson, E. D.; Broos, P. S.; Bate, M. R.; Garmire, G. P.

    2018-06-01

    The SFiNCs (Star Formation in Nearby Clouds) project is an X-ray/infrared study of the young stellar populations in 22 star-forming regions with distances ≲ 1 kpc designed to extend our earlier MYStIX (Massive Young Star-Forming Complex Study in Infrared and X-ray) survey of more distant clusters. Our central goal is to give empirical constraints on cluster formation mechanisms. Using parametric mixture models applied homogeneously to the catalogue of SFiNCs young stars, we identify 52 SFiNCs clusters and 19 unclustered stellar structures. The procedure gives cluster properties including location, population, morphology, association with molecular clouds, absorption, age (AgeJX), and infrared spectral energy distribution (SED) slope. Absorption, SED slope, and AgeJX are age indicators. SFiNCs clusters are examined individually, and collectively with MYStIX clusters, to give the following results. (1) SFiNCs is dominated by smaller, younger, and more heavily obscured clusters than MYStIX. (2) SFiNCs cloud-associated clusters have the high ellipticities aligned with their host molecular filaments indicating morphology inherited from their parental clouds. (3) The effect of cluster expansion is evident from the radius-age, radius-absorption, and radius-SED correlations. Core radii increase dramatically from ˜0.08 to ˜0.9 pc over the age range 1-3.5 Myr. Inferred gas removal time-scales are longer than 1 Myr. (4) Rich, spatially distributed stellar populations are present in SFiNCs clouds representing early generations of star formation. An appendix compares the performance of the mixture models and non-parametric minimum spanning tree to identify clusters. This work is a foundation for future SFiNCs/MYStIX studies including disc longevity, age gradients, and dynamical modelling.

  9. Net-zero Building Cluster Simulations and On-line Energy Forecasting for Adaptive and Real-Time Control and Decisions

    NASA Astrophysics Data System (ADS)

    Li, Xiwang

    Buildings consume about 41.1% of primary energy and 74% of the electricity in the U.S. Moreover, it is estimated by the National Energy Technology Laboratory that more than 1/4 of the 713 GW of U.S. electricity demand in 2010 could be dispatchable if only buildings could respond to that dispatch through advanced building energy control and operation strategies and smart grid infrastructure. In this study, it is envisioned that neighboring buildings will have the tendency to form a cluster, an open cyber-physical system to exploit the economic opportunities provided by a smart grid, distributed power generation, and storage devices. Through optimized demand management, these building clusters will then reduce overall primary energy consumption and peak time electricity consumption, and be more resilient to power disruptions. Therefore, this project seeks to develop a Net-zero building cluster simulation testbed and high fidelity energy forecasting models for adaptive and real-time control and decision making strategy development that can be used in a Net-zero building cluster. The following research activities are summarized in this thesis: 1) Development of a building cluster emulator for building cluster control and operation strategy assessment. 2) Development of a novel building energy forecasting methodology using active system identification and data fusion techniques. In this methodology, a systematic approach for building energy system characteristic evaluation, system excitation and model adaptation is included. The developed methodology is compared with other literature-reported building energy forecasting methods; 3) Development of the high fidelity on-line building cluster energy forecasting models, which includes energy forecasting models for buildings, PV panels, batteries and ice tank thermal storage systems 4) Small scale real building validation study to verify the performance of the developed building energy forecasting methodology. The outcomes of this thesis can be used for building cluster energy forecasting model development and model based control and operation optimization. The thesis concludes with a summary of the key outcomes of this research, as well as a list of recommendations for future work.

  10. Clustering of diet- and activity-related parenting practices: cross-sectional findings of the INPACT study

    PubMed Central

    2013-01-01

    Background Various diet- and activity-related parenting practices are positive determinants of child dietary and activity behaviour, including home availability, parental modelling and parental policies. There is evidence that parenting practices cluster within the dietary domain and within the activity domain. This study explores whether diet- and activity-related parenting practices cluster across the dietary and activity domain. Also examined is whether the clusters are related to child and parental background characteristics. Finally, to indicate the relevance of the clusters in influencing child dietary and activity behaviour, we examined whether clusters of parenting practices are related to these behaviours. Methods Data were used from 1480 parent–child dyads participating in the Dutch IVO Nutrition and Physical Activity Child cohorT (INPACT). Parents of children aged 8–11 years completed questionnaires at home assessing their diet- and activity-related parenting practices, child and parental background characteristics, and child dietary and activity behaviours. Principal component analysis (PCA) was used to identify clusters of parenting practices. Backward regression analysis was used to examine the relationship between child and parental background characteristics with cluster scores, and partial correlations to examine associations between cluster scores and child dietary and activity behaviours. Results PCA revealed five clusters of parenting practices: 1) high visibility and accessibility of screens and unhealthy food, 2) diet- and activity-related rules, 3) low availability of unhealthy food, 4) diet- and activity-related positive modelling, and 5) positive modelling on sports and fruit. Low parental education was associated with unhealthy cluster 1, while high(er) education was associated with healthy clusters 2, 3 and 5. Separate clusters were related to both child dietary and activity behaviour in the hypothesized directions: healthy clusters were positively related to obesity-reducing behaviours and negatively to obesity-inducing behaviours. Conclusion Parenting practices cluster across the dietary and activity domain. Parental education can be seen as an indicator of a broader parental context in which clusters of parenting practices operate. Separate clusters are related to both child dietary and activity behaviour. Interventions that focus on clusters of parenting practices to assist parents (especially low-educated parents) in changing their child’s dietary and activity behaviour seems justified. PMID:23531232

  11. Minimum number of clusters and comparison of analysis methods for cross sectional stepped wedge cluster randomised trials with binary outcomes: A simulation study.

    PubMed

    Barker, Daniel; D'Este, Catherine; Campbell, Michael J; McElduff, Patrick

    2017-03-09

    Stepped wedge cluster randomised trials frequently involve a relatively small number of clusters. The most common frameworks used to analyse data from these types of trials are generalised estimating equations and generalised linear mixed models. A topic of much research into these methods has been their application to cluster randomised trial data and, in particular, the number of clusters required to make reasonable inferences about the intervention effect. However, for stepped wedge trials, which have been claimed by many researchers to have a statistical power advantage over the parallel cluster randomised trial, the minimum number of clusters required has not been investigated. We conducted a simulation study where we considered the most commonly used methods suggested in the literature to analyse cross-sectional stepped wedge cluster randomised trial data. We compared the per cent bias, the type I error rate and power of these methods in a stepped wedge trial setting with a binary outcome, where there are few clusters available and when the appropriate adjustment for a time trend is made, which by design may be confounding the intervention effect. We found that the generalised linear mixed modelling approach is the most consistent when few clusters are available. We also found that none of the common analysis methods for stepped wedge trials were both unbiased and maintained a 5% type I error rate when there were only three clusters. Of the commonly used analysis approaches, we recommend the generalised linear mixed model for small stepped wedge trials with binary outcomes. We also suggest that in a stepped wedge design with three steps, at least two clusters be randomised at each step, to ensure that the intervention effect estimator maintains the nominal 5% significance level and is also reasonably unbiased.

  12. Strong Lensing Mass Reconstruction: from Frontier Fields to the Typical Lensing Clusters of Future Surveys

    NASA Astrophysics Data System (ADS)

    Sharon, Keren; Gladders, Michael D.; Rigby, Jane R.; Bayliss, Matthew B.; Wuyts, Eva; Dahle, Håkon; Johnson, Traci L.; Florian, Michael K.; Dunham, Samuel; Murray, Katherine; Whitaker, Kate; Li, Nan

    Driven by the unprecedented wealth of high quality data that is accumulating for the Frontier Fields, they are becoming some of the best-studied strong lensing clusters to date, and probably the next few years. As will be discussed intensively in this focus meeting, the FF prove transformative for many fields: from studies of the high redshift Universe, to the assembly and structure of the clusters themselves. The FF data and the extensive collaborative effort around this program will also allow us to examine and improve upon current lens modeling techniques. Strong lensing is a powerful tool for mass reconstruction of the cores of galaxy clusters of all scales, providing an estimate of the total (dark and seen) projected mass density distribution out to 0.5 Mpc. Though SL mass may be biased by contribution from structures along the line of sight, its strength is that it is relatively insensitive to assumptions on cluster baryon astrophysics and dynamical state. Like the Frontier Fields clusters, the most ``famous'' strong lensing clusters are at the high mass end; they lens dozens of background sources into multiple images, providing ample lensing constraints. In this talk, I will focus on how we can leverage what we learn from modeling the FF clusters in strong lensing studies of the hundreds of clusters that will be discovered in upcoming surveys. In typical clusters, unlike the Frontier Fields, the Bullet Cluster and A1689, we observe only one to a handful of background sources, and have limited lensing constraints. I will describe the limitations that such a configuration imposes on strong lens modeling, highlight measurements that are robust to the richness of lensing evidence, and address the sources of uncertainty and what sort of information can help reduce those uncertainties. This category of lensing clusters is most relevant to the wide cluster surveys of the future.

  13. Strong Lensing Mass Reconstruction: from Frontier Fields to the Typical Lensing Clusters of Future Surveys

    NASA Astrophysics Data System (ADS)

    Sharon, Keren

    2015-08-01

    Driven by the unprecedented wealth of high quality data that is accumulating for the Frontier Fields, they are becoming some of the best-studied strong lensing clusters to date, and probably the next few years. As will be discussed intensively in this focus meeting, the FF prove transformative for many fields: from studies of the high redshift Universe, to the assembly and structure of the clusters themselves. The FF data and the extensive collaborative effort around this program will also allow us to examine and improve upon current lens modeling techniques. Strong lensing is a powerful tool for mass reconstruction of the cores of galaxy clusters of all scales, providing an estimate of the total (dark and seen) projected mass density distribution out to ~0.5 Mpc. Though SL mass may be biased by contribution from structures along the line of sight, its strength is that it is relatively insensitive to assumptions on cluster baryon astrophysics and dynamical state. Like the Frontier Fields clusters, the most "famous" strong lensing clusters are at the high mass end; they lens dozens of background sources into multiple images, providing ample lensing constraints. In this talk, I will focus on how we can leverage what we learn from modeling the FF clusters in strong lensing studies of the hundreds of clusters that will be discovered in upcoming surveys. In typical clusters, unlike the Frontier Fields, the Bullet Cluster and A1689, we observe only one to a handful of background sources, and have limited lensing constraints. I will describe the limitations that such a configuration imposes on strong lens modeling, highlight measurements that are robust to the richness of lensing evidence, and address the sources of uncertainty and what sort of information can help reduce those uncertainties. This category of lensing clusters is most relevant to the wide cluster surveys of the future.

  14. Comparisons of non-Gaussian statistical models in DNA methylation analysis.

    PubMed

    Ma, Zhanyu; Teschendorff, Andrew E; Yu, Hong; Taghia, Jalil; Guo, Jun

    2014-06-16

    As a key regulatory mechanism of gene expression, DNA methylation patterns are widely altered in many complex genetic diseases, including cancer. DNA methylation is naturally quantified by bounded support data; therefore, it is non-Gaussian distributed. In order to capture such properties, we introduce some non-Gaussian statistical models to perform dimension reduction on DNA methylation data. Afterwards, non-Gaussian statistical model-based unsupervised clustering strategies are applied to cluster the data. Comparisons and analysis of different dimension reduction strategies and unsupervised clustering methods are presented. Experimental results show that the non-Gaussian statistical model-based methods are superior to the conventional Gaussian distribution-based method. They are meaningful tools for DNA methylation analysis. Moreover, among several non-Gaussian methods, the one that captures the bounded nature of DNA methylation data reveals the best clustering performance.

  15. Comparisons of Non-Gaussian Statistical Models in DNA Methylation Analysis

    PubMed Central

    Ma, Zhanyu; Teschendorff, Andrew E.; Yu, Hong; Taghia, Jalil; Guo, Jun

    2014-01-01

    As a key regulatory mechanism of gene expression, DNA methylation patterns are widely altered in many complex genetic diseases, including cancer. DNA methylation is naturally quantified by bounded support data; therefore, it is non-Gaussian distributed. In order to capture such properties, we introduce some non-Gaussian statistical models to perform dimension reduction on DNA methylation data. Afterwards, non-Gaussian statistical model-based unsupervised clustering strategies are applied to cluster the data. Comparisons and analysis of different dimension reduction strategies and unsupervised clustering methods are presented. Experimental results show that the non-Gaussian statistical model-based methods are superior to the conventional Gaussian distribution-based method. They are meaningful tools for DNA methylation analysis. Moreover, among several non-Gaussian methods, the one that captures the bounded nature of DNA methylation data reveals the best clustering performance. PMID:24937687

  16. Running and rotating: modelling the dynamics of migrating cell clusters

    NASA Astrophysics Data System (ADS)

    Copenhagen, Katherine; Gov, Nir; Gopinathan, Ajay

    Collective motion of cells is a common occurrence in many biological systems, including tissue development and repair, and tumor formation. Recent experiments have shown cells form clusters in a chemical gradient, which display three different phases of motion: translational, rotational, and random. We present a model for cell clusters based loosely on other models seen in the literature that involves a Vicsek-like alignment as well as physical collisions and adhesions between cells. With this model we show that a mechanism for driving rotational motion in this kind of system is an increased motility of rim cells. Further, we examine the details of the relationship between rim and core cells, and find that the phases of the cluster as a whole are correlated with the creation and annihilation of topological defects in the tangential component of the velocity field.

  17. Development of deformation band clusters in porous quartz sandstones - Contribution from microstructural analysis and numerical modeling

    NASA Astrophysics Data System (ADS)

    Philit, S.; Soliva, R.; Chemenda, A. I.

    2017-12-01

    Because sandstones form good reservoirs for hydrocarbon, water or C02 storage, the understanding of the deformation processes in sandstones is major. The deformation band clusters result from the localization of the deformation in porous sandstones under the form of gathered low-permeability cataclastic deformation bands. It has recently been shown that this localization is favored in extensional tectonics. The clusters measure tens to hundreds of meters in extent and propagate vertically as long as the sandstone is clean. Because the clusters can form several kilometers long networks, they are likely to hamper fluid flow during reservoir exploitation. Yet, the processes of band accumulation linked to the evolution of the clusters to a potential faulting are poorly understood. An integrated study coupling a microscopic analysis of the deformed granular material in clusters from 7 sites in the world and distinct element numerical modeling permits to propose a model for cluster growth. Our microscopic analysis reveals that the clusters display varying degree of cataclasis, with the most important degrees in the bands. This cataclasis is accompanied by porosity reduction (more reduced in thrust Andersonian regime), and increased Particle Size Distribution. This testifies of an important packing and implies an increased number of particle coordination. During deformation, the grain shape is both smoothened and roughened; the averaged values of the roundness and circularity indicate a rapid roughening of the clasts at the first stages of deformation followed by a slight smoothening. The roughening of the clasts in densely packed material induces high friction and strengthens the material. High residual porosity at some band edges suggests a local dilatant behavior of sheared material. Our distinct element numerical models and other particle models in the literature confirm this observation. The development of force chains with low particle coordination at these locations would weaken the stress resistance at the contact points. Hence, the cluster growth would be promoted by the successive localization of bands the edges of preexisting bands. Faulting could occur at any stage of the cluster development, probably favored along interfaces of minimized strength with smooth geometry.

  18. A detection of wobbling brightest cluster galaxies within massive galaxy clusters

    NASA Astrophysics Data System (ADS)

    Harvey, David; Courbin, F.; Kneib, J. P.; McCarthy, Ian G.

    2017-12-01

    A striking signal of dark matter beyond the standard model is the existence of cores in the centre of galaxy clusters. Recent simulations predict that a brightest cluster galaxy (BCG) inside a cored galaxy cluster will exhibit residual wobbling due to previous major mergers, long after the relaxation of the overall cluster. This phenomenon is absent with standard cold dark matter where a cuspy density profile keeps a BCG tightly bound at the centre. We test this hypothesis using cosmological simulations and deep observations of 10 galaxy clusters acting as strong gravitational lenses. Modelling the BCG wobble as a simple harmonic oscillator, we measure the wobble amplitude, Aw, in the BAHAMAS suite of cosmological hydrodynamical simulations, finding an upper limit for the cold dark matter paradigm of Aw < 2 kpc at the 95 per cent confidence limit. We carry out the same test on the data finding a non-zero amplitude of A_w=11.82^{+7.3}_{-3.0} kpc, with the observations dis-favouring Aw = 0 at the 3σ confidence level. This detection of BCG wobbling is evidence for a dark matter core at the heart of galaxy clusters. It also shows that strong lensing models of clusters cannot assume that the BCG is exactly coincident with the large-scale halo. While our small sample of galaxy clusters already indicates a non-zero Aw, with larger surveys, e.g. Euclid, we will be able to not only confirm the effect but also to use it to determine whether or not the wobbling finds its origin in new fundamental physics or astrophysical process.

  19. Relative efficiency of unequal versus equal cluster sizes in cluster randomized trials using generalized estimating equation models.

    PubMed

    Liu, Jingxia; Colditz, Graham A

    2018-05-01

    There is growing interest in conducting cluster randomized trials (CRTs). For simplicity in sample size calculation, the cluster sizes are assumed to be identical across all clusters. However, equal cluster sizes are not guaranteed in practice. Therefore, the relative efficiency (RE) of unequal versus equal cluster sizes has been investigated when testing the treatment effect. One of the most important approaches to analyze a set of correlated data is the generalized estimating equation (GEE) proposed by Liang and Zeger, in which the "working correlation structure" is introduced and the association pattern depends on a vector of association parameters denoted by ρ. In this paper, we utilize GEE models to test the treatment effect in a two-group comparison for continuous, binary, or count data in CRTs. The variances of the estimator of the treatment effect are derived for the different types of outcome. RE is defined as the ratio of variance of the estimator of the treatment effect for equal to unequal cluster sizes. We discuss a commonly used structure in CRTs-exchangeable, and derive the simpler formula of RE with continuous, binary, and count outcomes. Finally, REs are investigated for several scenarios of cluster size distributions through simulation studies. We propose an adjusted sample size due to efficiency loss. Additionally, we also propose an optimal sample size estimation based on the GEE models under a fixed budget for known and unknown association parameter (ρ) in the working correlation structure within the cluster. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A phase field model for segregation and precipitation induced by irradiation in alloys

    NASA Astrophysics Data System (ADS)

    Badillo, A.; Bellon, P.; Averback, R. S.

    2015-04-01

    A phase field model is introduced to model the evolution of multicomponent alloys under irradiation, including radiation-induced segregation and precipitation. The thermodynamic and kinetic components of this model are derived using a mean-field model. The mobility coefficient and the contribution of chemical heterogeneity to free energy are rescaled by the cell size used in the phase field model, yielding microstructural evolutions that are independent of the cell size. A new treatment is proposed for point defect clusters, using a mixed discrete-continuous approach to capture the stochastic character of defect cluster production in displacement cascades, while retaining the efficient modeling of the fate of these clusters using diffusion equations. The model is tested on unary and binary alloy systems using two-dimensional simulations. In a unary system, the evolution of point defects under irradiation is studied in the presence of defect clusters, either pre-existing ones or those created by irradiation, and compared with rate theory calculations. Binary alloys with zero and positive heats of mixing are then studied to investigate the effect of point defect clustering on radiation-induced segregation and precipitation in undersaturated solid solutions. Lastly, irradiation conditions and alloy parameters leading to irradiation-induced homogeneous precipitation are investigated. The results are discussed in the context of experimental results reported for Ni-Si and Al-Zn undersaturated solid solutions subjected to irradiation.

  1. Modeling of the HiPco process for carbon nanotube production. II. Reactor-scale analysis

    NASA Technical Reports Server (NTRS)

    Gokcen, Tahir; Dateo, Christopher E.; Meyyappan, M.

    2002-01-01

    The high-pressure carbon monoxide (HiPco) process, developed at Rice University, has been reported to produce single-walled carbon nanotubes from gas-phase reactions of iron carbonyl in carbon monoxide at high pressures (10-100 atm). Computational modeling is used here to develop an understanding of the HiPco process. A detailed kinetic model of the HiPco process that includes of the precursor, decomposition metal cluster formation and growth, and carbon nanotube growth was developed in the previous article (Part I). Decomposition of precursor molecules is necessary to initiate metal cluster formation. The metal clusters serve as catalysts for carbon nanotube growth. The diameter of metal clusters and number of atoms in these clusters are some of the essential information for predicting carbon nanotube formation and growth, which is then modeled by the Boudouard reaction with metal catalysts. Based on the detailed model simulations, a reduced kinetic model was also developed in Part I for use in reactor-scale flowfield calculations. Here this reduced kinetic model is integrated with a two-dimensional axisymmetric reactor flow model to predict reactor performance. Carbon nanotube growth is examined with respect to several process variables (peripheral jet temperature, reactor pressure, and Fe(CO)5 concentration) with the use of the axisymmetric model, and the computed results are compared with existing experimental data. The model yields most of the qualitative trends observed in the experiments and helps to understanding the fundamental processes in HiPco carbon nanotube production.

  2. Frequency-sensitive competitive learning for scalable balanced clustering on high-dimensional hyperspheres.

    PubMed

    Banerjee, Arindam; Ghosh, Joydeep

    2004-05-01

    Competitive learning mechanisms for clustering, in general, suffer from poor performance for very high-dimensional (>1000) data because of "curse of dimensionality" effects. In applications such as document clustering, it is customary to normalize the high-dimensional input vectors to unit length, and it is sometimes also desirable to obtain balanced clusters, i.e., clusters of comparable sizes. The spherical kmeans (spkmeans) algorithm, which normalizes the cluster centers as well as the inputs, has been successfully used to cluster normalized text documents in 2000+ dimensional space. Unfortunately, like regular kmeans and its soft expectation-maximization-based version, spkmeans tends to generate extremely imbalanced clusters in high-dimensional spaces when the desired number of clusters is large (tens or more). This paper first shows that the spkmeans algorithm can be derived from a certain maximum likelihood formulation using a mixture of von Mises-Fisher distributions as the generative model, and in fact, it can be considered as a batch-mode version of (normalized) competitive learning. The proposed generative model is then adapted in a principled way to yield three frequency-sensitive competitive learning variants that are applicable to static data and produced high-quality and well-balanced clusters for high-dimensional data. Like kmeans, each iteration is linear in the number of data points and in the number of clusters for all the three algorithms. A frequency-sensitive algorithm to cluster streaming data is also proposed. Experimental results on clustering of high-dimensional text data sets are provided to show the effectiveness and applicability of the proposed techniques. Index Terms-Balanced clustering, expectation maximization (EM), frequency-sensitive competitive learning (FSCL), high-dimensional clustering, kmeans, normalized data, scalable clustering, streaming data, text clustering.

  3. Lens models under the microscope: comparison of Hubble Frontier Field cluster magnification maps

    NASA Astrophysics Data System (ADS)

    Priewe, Jett; Williams, Liliya L. R.; Liesenborgs, Jori; Coe, Dan; Rodney, Steven A.

    2017-02-01

    Using the power of gravitational lensing magnification by massive galaxy clusters, the Hubble Frontier Fields provide deep views of six patches of the high-redshift Universe. The combination of deep Hubble imaging and exceptional lensing strength has revealed the greatest numbers of multiply-imaged galaxies available to constrain models of cluster mass distributions. However, even with O(100) images per cluster, the uncertainties associated with the reconstructions are not negligible. The goal of this paper is to show the diversity of model magnification predictions. We examine seven and nine mass models of Abell 2744 and MACS J0416, respectively, submitted to the Mikulski Archive for Space Telescopes for public distribution in 2015 September. The dispersion between model predictions increases from 30 per cent at common low magnifications (μ ˜ 2) to 70 per cent at rare high magnifications (μ ˜ 40). MACS J0416 exhibits smaller dispersions than Abell 2744 for 2 < μ < 10. We show that magnification maps based on different lens inversion techniques typically differ from each other by more than their quoted statistical errors. This suggests that some models underestimate the true uncertainties, which are primarily due to various lensing degeneracies. Though the exact mass sheet degeneracy is broken, its generalized counterpart is not broken at least in Abell 2744. Other local degeneracies are also present in both clusters. Our comparison of models is complementary to the comparison of reconstructions of known synthetic mass distributions. By focusing on observed clusters, we can identify those that are best constrained, and therefore provide the clearest view of the distant Universe.

  4. Combining symmetry collective states with coupled-cluster theory: Lessons from the Agassi model Hamiltonian

    NASA Astrophysics Data System (ADS)

    Hermes, Matthew R.; Dukelsky, Jorge; Scuseria, Gustavo E.

    2017-06-01

    The failures of single-reference coupled-cluster theory for strongly correlated many-body systems is flagged at the mean-field level by the spontaneous breaking of one or more physical symmetries of the Hamiltonian. Restoring the symmetry of the mean-field determinant by projection reveals that coupled-cluster theory fails because it factorizes high-order excitation amplitudes incorrectly. However, symmetry-projected mean-field wave functions do not account sufficiently for dynamic (or weak) correlation. Here we pursue a merger of symmetry projection and coupled-cluster theory, following previous work along these lines that utilized the simple Lipkin model system as a test bed [J. Chem. Phys. 146, 054110 (2017), 10.1063/1.4974989]. We generalize the concept of a symmetry-projected mean-field wave function to the concept of a symmetry projected state, in which the factorization of high-order excitation amplitudes in terms of low-order ones is guided by symmetry projection and is not exponential, and combine them with coupled-cluster theory in order to model the ground state of the Agassi Hamiltonian. This model has two separate channels of correlation and two separate physical symmetries which are broken under strong correlation. We show how the combination of symmetry collective states and coupled-cluster theory is effective in obtaining correlation energies and order parameters of the Agassi model throughout its phase diagram.

  5. Young LMC clusters: the role of red supergiants and multiple stellar populations in their integrated light and CMDs

    NASA Astrophysics Data System (ADS)

    Asa'd, Randa S.; Vazdekis, Alexandre; Cerviño, Miguel; Noël, Noelia E. D.; Beasley, Michael A.; Kassab, Mahmoud

    2017-11-01

    The optical integrated spectra of three Large Magellanic Cloud young stellar clusters (NGC 1984, NGC 1994 and NGC 2011) exhibit concave continua and prominent molecular bands which deviate significantly from the predictions of single stellar population (SSP) models. In order to understand the appearance of these spectra, we create a set of young stellar population (MILES) models, which we make available to the community. We use archival International Ultraviolet Explorer integrated UV spectra to independently constrain the cluster masses and extinction, and rule out strong stochastic effects in the optical spectra. In addition, we also analyse deep colour-magnitude diagrams of the clusters to provide independent age determinations based on isochrone fitting. We explore hypotheses, including age spreads in the clusters, a top-heavy initial mass function, different SSP models and the role of red supergiant stars (RSG). We find that the strong molecular features in the optical spectra can be only reproduced by modelling an increased fraction of about ˜20 per cent by luminosity of RSG above what is predicted by canonical stellar evolution models. Given the uncertainties in stellar evolution at Myr ages, we cannot presently rule out the presence of Myr age spreads in these clusters. Our work combines different wavelengths as well as different approaches (resolved data as well as integrated spectra for the same sample) in order to reveal the complete picture. We show that each approach provides important information but in combination we can better understand the cluster stellar populations.

  6. Hubble Frontier Fields: systematic errors in strong lensing models of galaxy clusters - implications for cosmography

    NASA Astrophysics Data System (ADS)

    Acebron, Ana; Jullo, Eric; Limousin, Marceau; Tilquin, André; Giocoli, Carlo; Jauzac, Mathilde; Mahler, Guillaume; Richard, Johan

    2017-09-01

    Strong gravitational lensing by galaxy clusters is a fundamental tool to study dark matter and constrain the geometry of the Universe. Recently, the Hubble Space Telescope Frontier Fields programme has allowed a significant improvement of mass and magnification measurements but lensing models still have a residual root mean square between 0.2 arcsec and few arcseconds, not yet completely understood. Systematic errors have to be better understood and treated in order to use strong lensing clusters as reliable cosmological probes. We have analysed two simulated Hubble-Frontier-Fields-like clusters from the Hubble Frontier Fields Comparison Challenge, Ares and Hera. We use several estimators (relative bias on magnification, density profiles, ellipticity and orientation) to quantify the goodness of our reconstructions by comparing our multiple models, optimized with the parametric software lenstool, with the input models. We have quantified the impact of systematic errors arising, first, from the choice of different density profiles and configurations and, secondly, from the availability of constraints (spectroscopic or photometric redshifts, redshift ranges of the background sources) in the parametric modelling of strong lensing galaxy clusters and therefore on the retrieval of cosmological parameters. We find that substructures in the outskirts have a significant impact on the position of the multiple images, yielding tighter cosmological contours. The need for wide-field imaging around massive clusters is thus reinforced. We show that competitive cosmological constraints can be obtained also with complex multimodal clusters and that photometric redshifts improve the constraints on cosmological parameters when considering a narrow range of (spectroscopic) redshifts for the sources.

  7. A machine learning approach for ranking clusters of docked protein‐protein complexes by pairwise cluster comparison

    PubMed Central

    Pfeiffenberger, Erik; Chaleil, Raphael A.G.; Moal, Iain H.

    2017-01-01

    ABSTRACT Reliable identification of near‐native poses of docked protein–protein complexes is still an unsolved problem. The intrinsic heterogeneity of protein–protein interactions is challenging for traditional biophysical or knowledge based potentials and the identification of many false positive binding sites is not unusual. Often, ranking protocols are based on initial clustering of docked poses followed by the application of an energy function to rank each cluster according to its lowest energy member. Here, we present an approach of cluster ranking based not only on one molecular descriptor (e.g., an energy function) but also employing a large number of descriptors that are integrated in a machine learning model, whereby, an extremely randomized tree classifier based on 109 molecular descriptors is trained. The protocol is based on first locally enriching clusters with additional poses, the clusters are then characterized using features describing the distribution of molecular descriptors within the cluster, which are combined into a pairwise cluster comparison model to discriminate near‐native from incorrect clusters. The results show that our approach is able to identify clusters containing near‐native protein–protein complexes. In addition, we present an analysis of the descriptors with respect to their power to discriminate near native from incorrect clusters and how data transformations and recursive feature elimination can improve the ranking performance. Proteins 2017; 85:528–543. © 2016 Wiley Periodicals, Inc. PMID:27935158

  8. Lensed Type Ia supernovae as probes of cluster mass models

    Science.gov Websites

    SAO/NASA ADS Astronomy Abstract Service Title: Lensed Type Ia supernovae as probes of cluster mass Origin: OUP Astronomy Keywords: gravitational lensing: strong, supernovae: general, galaxies: clusters

  9. Cluster analysis of multiple planetary flow regimes

    NASA Technical Reports Server (NTRS)

    Mo, Kingtse; Ghil, Michael

    1988-01-01

    A modified cluster analysis method developed for the classification of quasi-stationary events into a few planetary flow regimes and for the examination of transitions between these regimes is described. The method was applied first to a simple deterministic model and then to a 500-mbar data set for Northern Hemisphere (NH), for which cluster analysis was carried out in the subspace of the first seven empirical orthogonal functions (EOFs). Stationary clusters were found in the low-frequency band of more than 10 days, while transient clusters were found in the band-pass frequency window between 2.5 and 6 days. In the low-frequency band, three pairs of clusters determined EOFs 1, 2, and 3, respectively; they exhibited well-known regional features, such as blocking, the Pacific/North American pattern, and wave trains. Both model and low-pass data exhibited strong bimodality.

  10. Impact of a star formation efficiency profile on the evolution of open clusters

    NASA Astrophysics Data System (ADS)

    Shukirgaliyev, B.; Parmentier, G.; Berczik, P.; Just, A.

    2017-09-01

    Aims: We study the effect of the instantaneous expulsion of residual star-forming gas on star clusters in which the residual gas has a density profile that is shallower than that of the embedded cluster. This configuration is expected if star formation proceeds with a given star-formation efficiency per free-fall time in a centrally concentrated molecular gas clump. Methods: We performed direct N-body simulations whose initial conditions were generated by the program "mkhalo" from the package "falcON", adapted for our models. Our model clusters initially had a Plummer profile and are in virial equilibrium with the gravitational potential of the cluster-forming clump. The residual gas contribution was computed based on a local-density driven clustered star formation model. Our simulations included mass loss by stellar evolution and the tidal field of a host galaxy. Results: We find that a star cluster with a minimum global star formation efficiency (SFE) of 15 percent is able to survive instantaneous gas expulsion and to produce a bound cluster. Its violent relaxation lasts no longer than 20 Myr, independently of its global SFE and initial stellar mass. At the end of violent relaxation, the bound fractions of the surviving clusters with the same global SFEs are similar, regardless of their initial stellar mass. Their subsequent lifetime in the gravitational field of the Galaxy depends on their bound stellar masses. Conclusions: We therefore conclude that the critical SFE needed to produce a bound cluster is 15 percent, which is roughly half the earlier estimates of 33 percent. Thus we have improved the survival likelihood of young clusters after instantaneous gas expulsion. Young clusters can now survive instantaneous gas expulsion with a global SFEs as low as the SFEs observed for embedded clusters in the solar neighborhood (15-30 percent). The reason is that the star cluster density profile is steeper than that of the residual gas. However, in terms of the effective SFE, measured by the virial ratio of the cluster at gas expulsion, our results are in agreement with previous studies.

  11. Spatial cluster detection using dynamic programming.

    PubMed

    Sverchkov, Yuriy; Jiang, Xia; Cooper, Gregory F

    2012-03-25

    The task of spatial cluster detection involves finding spatial regions where some property deviates from the norm or the expected value. In a probabilistic setting this task can be expressed as finding a region where some event is significantly more likely than usual. Spatial cluster detection is of interest in fields such as biosurveillance, mining of astronomical data, military surveillance, and analysis of fMRI images. In almost all such applications we are interested both in the question of whether a cluster exists in the data, and if it exists, we are interested in finding the most accurate characterization of the cluster. We present a general dynamic programming algorithm for grid-based spatial cluster detection. The algorithm can be used for both Bayesian maximum a-posteriori (MAP) estimation of the most likely spatial distribution of clusters and Bayesian model averaging over a large space of spatial cluster distributions to compute the posterior probability of an unusual spatial clustering. The algorithm is explained and evaluated in the context of a biosurveillance application, specifically the detection and identification of Influenza outbreaks based on emergency department visits. A relatively simple underlying model is constructed for the purpose of evaluating the algorithm, and the algorithm is evaluated using the model and semi-synthetic test data. When compared to baseline methods, tests indicate that the new algorithm can improve MAP estimates under certain conditions: the greedy algorithm we compared our method to was found to be more sensitive to smaller outbreaks, while as the size of the outbreaks increases, in terms of area affected and proportion of individuals affected, our method overtakes the greedy algorithm in spatial precision and recall. The new algorithm performs on-par with baseline methods in the task of Bayesian model averaging. We conclude that the dynamic programming algorithm performs on-par with other available methods for spatial cluster detection and point to its low computational cost and extendability as advantages in favor of further research and use of the algorithm.

  12. Spatial cluster detection using dynamic programming

    PubMed Central

    2012-01-01

    Background The task of spatial cluster detection involves finding spatial regions where some property deviates from the norm or the expected value. In a probabilistic setting this task can be expressed as finding a region where some event is significantly more likely than usual. Spatial cluster detection is of interest in fields such as biosurveillance, mining of astronomical data, military surveillance, and analysis of fMRI images. In almost all such applications we are interested both in the question of whether a cluster exists in the data, and if it exists, we are interested in finding the most accurate characterization of the cluster. Methods We present a general dynamic programming algorithm for grid-based spatial cluster detection. The algorithm can be used for both Bayesian maximum a-posteriori (MAP) estimation of the most likely spatial distribution of clusters and Bayesian model averaging over a large space of spatial cluster distributions to compute the posterior probability of an unusual spatial clustering. The algorithm is explained and evaluated in the context of a biosurveillance application, specifically the detection and identification of Influenza outbreaks based on emergency department visits. A relatively simple underlying model is constructed for the purpose of evaluating the algorithm, and the algorithm is evaluated using the model and semi-synthetic test data. Results When compared to baseline methods, tests indicate that the new algorithm can improve MAP estimates under certain conditions: the greedy algorithm we compared our method to was found to be more sensitive to smaller outbreaks, while as the size of the outbreaks increases, in terms of area affected and proportion of individuals affected, our method overtakes the greedy algorithm in spatial precision and recall. The new algorithm performs on-par with baseline methods in the task of Bayesian model averaging. Conclusions We conclude that the dynamic programming algorithm performs on-par with other available methods for spatial cluster detection and point to its low computational cost and extendability as advantages in favor of further research and use of the algorithm. PMID:22443103

  13. Scaling Relations from Sunyaev-Zel'dovich Effect and Chandra X-ray Measurements of High-Redshift Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Bonamente, Massimiliano; Joy, Marshall; LaRoque, Samuel J.; Carlstrom, John E.; Nagai, Daisuke; Marrone, Dan

    2007-01-01

    We present Sunyaev-Zel'dovich Effect (SZE) scaling relations for 38 massive galaxy clusters at redshifts 0.14 less than or equal to z less than or equal to 0.89, observed with both the Chandra X-ray Observatory and the centimeter-wave SZE imaging system at the BIMA and OVRO interferometric arrays. An isothermal ,Beta-model with central 100 kpc excluded from the X-ray data is used to model the intracluster medium and to measure global cluster properties. For each Cluster, we measure the X-ray spectroscopic temperature, SZE gas mass, total mass. and integrated Compton-gamma parameters within r(sub 2500). Our measurements are in agreement with the expectations based on a simple self-similar model of cluster formation and evolution. We compare the cluster properties derived from our SZE observations with and without Chandra spatial and spectral information and find them to be in good agreement: We compare our results with cosmological numerical simulations, and find that simulations that include radiative cooling, star formation and feedback match well both the slope and normalization of our SZE scaling relations.

  14. Shortest-path constraints for 3D multiobject semiautomatic segmentation via clustering and Graph Cut.

    PubMed

    Kéchichian, Razmig; Valette, Sébastien; Desvignes, Michel; Prost, Rémy

    2013-11-01

    We derive shortest-path constraints from graph models of structure adjacency relations and introduce them in a joint centroidal Voronoi image clustering and Graph Cut multiobject semiautomatic segmentation framework. The vicinity prior model thus defined is a piecewise-constant model incurring multiple levels of penalization capturing the spatial configuration of structures in multiobject segmentation. Qualitative and quantitative analyses and comparison with a Potts prior-based approach and our previous contribution on synthetic, simulated, and real medical images show that the vicinity prior allows for the correct segmentation of distinct structures having identical intensity profiles and improves the precision of segmentation boundary placement while being fairly robust to clustering resolution. The clustering approach we take to simplify images prior to segmentation strikes a good balance between boundary adaptivity and cluster compactness criteria furthermore allowing to control the trade-off. Compared with a direct application of segmentation on voxels, the clustering step improves the overall runtime and memory footprint of the segmentation process up to an order of magnitude without compromising the quality of the result.

  15. A grand unified model for liganded gold clusters

    PubMed Central

    Xu, Wen Wu; Zhu, Beien; Zeng, Xiao Cheng; Gao, Yi

    2016-01-01

    A grand unified model (GUM) is developed to achieve fundamental understanding of rich structures of all 71 liganded gold clusters reported to date. Inspired by the quark model by which composite particles (for example, protons and neutrons) are formed by combining three quarks (or flavours), here gold atoms are assigned three ‘flavours' (namely, bottom, middle and top) to represent three possible valence states. The ‘composite particles' in GUM are categorized into two groups: variants of triangular elementary block Au3(2e) and tetrahedral elementary block Au4(2e), all satisfying the duet rule (2e) of the valence shell, akin to the octet rule in general chemistry. The elementary blocks, when packed together, form the cores of liganded gold clusters. With the GUM, structures of 71 liganded gold clusters and their growth mechanism can be deciphered altogether. Although GUM is a predictive heuristic and may not be necessarily reflective of the actual electronic structure, several highly stable liganded gold clusters are predicted, thereby offering GUM-guided synthesis of liganded gold clusters by design. PMID:27910848

  16. Implementation of Self Organizing Map (SOM) as decision support: Indonesian telematics services MSMEs empowerment

    NASA Astrophysics Data System (ADS)

    Tosida, E. T.; Maryana, S.; Thaheer, H.; Hardiani

    2017-01-01

    Information technology and communication (telematics) is one of the most rapidly developing business sectors in Indonesia. It has strategic position in its contribution towards planning and implementation of developmental, economics, social, politics and defence strategies in business, communication and education. Aid absorption for the national telecommunication SMEs is relatively low; therefore, improvement is needed using analysis on business support cluster of which basis is types of business. In the study, the business support cluster analysis is specifically implemented for Indonesian telecommunication service. The data for the business are obtained from the National Census of Economic (Susenas 2006). The method used to develop cluster model is an Artificial Neural Network (ANN) system called Self-Organizing Maps (SOM) algorithm. Based on Index of Davies Bouldin (IDB), the accuracy level of the cluster model is 0.37 or can be categorized as good. The cluster model is developed to find out telecommunication business clusters that has influence towards the national economy so that it is easier for the government to supervise telecommunication business.

  17. Copula based flexible modeling of associations between clustered event times.

    PubMed

    Geerdens, Candida; Claeskens, Gerda; Janssen, Paul

    2016-07-01

    Multivariate survival data are characterized by the presence of correlation between event times within the same cluster. First, we build multi-dimensional copulas with flexible and possibly symmetric dependence structures for such data. In particular, clustered right-censored survival data are modeled using mixtures of max-infinitely divisible bivariate copulas. Second, these copulas are fit by a likelihood approach where the vast amount of copula derivatives present in the likelihood is approximated by finite differences. Third, we formulate conditions for clustered right-censored survival data under which an information criterion for model selection is either weakly consistent or consistent. Several of the familiar selection criteria are included. A set of four-dimensional data on time-to-mastitis is used to demonstrate the developed methodology.

  18. Strong Lens Models for 10 Galaxy Clusters from the Sloan Giant Arcs Survey

    NASA Astrophysics Data System (ADS)

    Dunham, Samuel; Sharon, Keren; Bayliss, Matthew; Dahle, Hakon; Florian, Michael; Gladders, Michael; Johnson, Traci; Murray, Katherine; Rigby, Jane R.; Whitaker, Katherine E.; Wuyts, Eva

    2016-01-01

    We present the results from modeling several strong gravitational lenses as part of the Sloan Giant Arcs Survey (SGAS). HST cannot resolve star-formation in galaxies at redshifts >~1 because they are too far away, but by using the magnification by galaxy clusters at these redshifts (1

  19. Transformation and model choice for RNA-seq co-expression analysis.

    PubMed

    Rau, Andrea; Maugis-Rabusseau, Cathy

    2018-05-01

    Although a large number of clustering algorithms have been proposed to identify groups of co-expressed genes from microarray data, the question of if and how such methods may be applied to RNA sequencing (RNA-seq) data remains unaddressed. In this work, we investigate the use of data transformations in conjunction with Gaussian mixture models for RNA-seq co-expression analyses, as well as a penalized model selection criterion to select both an appropriate transformation and number of clusters present in the data. This approach has the advantage of accounting for per-cluster correlation structures among samples, which can be strong in RNA-seq data. In addition, it provides a rigorous statistical framework for parameter estimation, an objective assessment of data transformations and number of clusters and the possibility of performing diagnostic checks on the quality and homogeneity of the identified clusters. We analyze four varied RNA-seq data sets to illustrate the use of transformations and model selection in conjunction with Gaussian mixture models. Finally, we propose a Bioconductor package coseq (co-expression of RNA-seq data) to facilitate implementation and visualization of the recommended RNA-seq co-expression analyses.

  20. Assessing variation in life-history tactics within a population using mixture regression models: a practical guide for evolutionary ecologists.

    PubMed

    Hamel, Sandra; Yoccoz, Nigel G; Gaillard, Jean-Michel

    2017-05-01

    Mixed models are now well-established methods in ecology and evolution because they allow accounting for and quantifying within- and between-individual variation. However, the required normal distribution of the random effects can often be violated by the presence of clusters among subjects, which leads to multi-modal distributions. In such cases, using what is known as mixture regression models might offer a more appropriate approach. These models are widely used in psychology, sociology, and medicine to describe the diversity of trajectories occurring within a population over time (e.g. psychological development, growth). In ecology and evolution, however, these models are seldom used even though understanding changes in individual trajectories is an active area of research in life-history studies. Our aim is to demonstrate the value of using mixture models to describe variation in individual life-history tactics within a population, and hence to promote the use of these models by ecologists and evolutionary ecologists. We first ran a set of simulations to determine whether and when a mixture model allows teasing apart latent clustering, and to contrast the precision and accuracy of estimates obtained from mixture models versus mixed models under a wide range of ecological contexts. We then used empirical data from long-term studies of large mammals to illustrate the potential of using mixture models for assessing within-population variation in life-history tactics. Mixture models performed well in most cases, except for variables following a Bernoulli distribution and when sample size was small. The four selection criteria we evaluated [Akaike information criterion (AIC), Bayesian information criterion (BIC), and two bootstrap methods] performed similarly well, selecting the right number of clusters in most ecological situations. We then showed that the normality of random effects implicitly assumed by evolutionary ecologists when using mixed models was often violated in life-history data. Mixed models were quite robust to this violation in the sense that fixed effects were unbiased at the population level. However, fixed effects at the cluster level and random effects were better estimated using mixture models. Our empirical analyses demonstrated that using mixture models facilitates the identification of the diversity of growth and reproductive tactics occurring within a population. Therefore, using this modelling framework allows testing for the presence of clusters and, when clusters occur, provides reliable estimates of fixed and random effects for each cluster of the population. In the presence or expectation of clusters, using mixture models offers a suitable extension of mixed models, particularly when evolutionary ecologists aim at identifying how ecological and evolutionary processes change within a population. Mixture regression models therefore provide a valuable addition to the statistical toolbox of evolutionary ecologists. As these models are complex and have their own limitations, we provide recommendations to guide future users. © 2016 Cambridge Philosophical Society.

  1. Maritime Continent seasonal climate biases in AMIP experiments of the CMIP5 multimodel ensemble

    NASA Astrophysics Data System (ADS)

    Toh, Ying Ying; Turner, Andrew G.; Johnson, Stephanie J.; Holloway, Christopher E.

    2018-02-01

    The fidelity of 28 Coupled Model Intercomparison Project phase 5 (CMIP5) models in simulating mean climate over the Maritime Continent in the Atmospheric Model Intercomparison Project (AMIP) experiment is evaluated in this study. The performance of AMIP models varies greatly in reproducing seasonal mean climate and the seasonal cycle. The multi-model mean has better skill at reproducing the observed mean climate than the individual models. The spatial pattern of 850 hPa wind is better simulated than the precipitation in all four seasons. We found that model horizontal resolution is not a good indicator of model performance. Instead, a model's local Maritime Continent biases are somewhat related to its biases in the local Hadley circulation and global monsoon. The comparison with coupled models in CMIP5 shows that AMIP models generally performed better than coupled models in the simulation of the global monsoon and local Hadley circulation but less well at simulating the Maritime Continent annual cycle of precipitation. To characterize model systematic biases in the AMIP runs, we performed cluster analysis on Maritime Continent annual cycle precipitation. Our analysis resulted in two distinct clusters. Cluster I models are able to capture both the winter monsoon and summer monsoon shift, but they overestimate the precipitation; especially during the JJA and SON seasons. Cluster II models simulate weaker seasonal migration than observed, and the maximum rainfall position stays closer to the equator throughout the year. The tropics-wide properties of these clusters suggest a connection between the skill of simulating global properties of the monsoon circulation and the skill of simulating the regional scale of Maritime Continent precipitation.

  2. A comparison of heuristic and model-based clustering methods for dietary pattern analysis.

    PubMed

    Greve, Benjamin; Pigeot, Iris; Huybrechts, Inge; Pala, Valeria; Börnhorst, Claudia

    2016-02-01

    Cluster analysis is widely applied to identify dietary patterns. A new method based on Gaussian mixture models (GMM) seems to be more flexible compared with the commonly applied k-means and Ward's method. In the present paper, these clustering approaches are compared to find the most appropriate one for clustering dietary data. The clustering methods were applied to simulated data sets with different cluster structures to compare their performance knowing the true cluster membership of observations. Furthermore, the three methods were applied to FFQ data assessed in 1791 children participating in the IDEFICS (Identification and Prevention of Dietary- and Lifestyle-Induced Health Effects in Children and Infants) Study to explore their performance in practice. The GMM outperformed the other methods in the simulation study in 72 % up to 100 % of cases, depending on the simulated cluster structure. Comparing the computationally less complex k-means and Ward's methods, the performance of k-means was better in 64-100 % of cases. Applied to real data, all methods identified three similar dietary patterns which may be roughly characterized as a 'non-processed' cluster with a high consumption of fruits, vegetables and wholemeal bread, a 'balanced' cluster with only slight preferences of single foods and a 'junk food' cluster. The simulation study suggests that clustering via GMM should be preferred due to its higher flexibility regarding cluster volume, shape and orientation. The k-means seems to be a good alternative, being easier to use while giving similar results when applied to real data.

  3. INTER- AND INTRA-CLUSTER AGE GRADIENTS IN MASSIVE STAR FORMING REGIONS AND INDIVIDUAL NEARBY STELLAR CLUSTERS REVEALED BY MYStIX

    NASA Astrophysics Data System (ADS)

    Getman, Konstantin V.; Feigelson, Eric; Kuhn, Michael A.; Broos, Patrick S; Townsley, Leisa K.; Naylor, Tim; Povich, Matthew S.; Luhman, Kevin; Garmire, Gordon

    2014-08-01

    The MYStIX (Massive Young Star-Forming Complex Study in Infrared and X-ray) project seeks to characterize 20 OB-dominated young star forming regions (SFRs) at distances <4 kpc using photometric catalogs from the Chandra X-ray Observatory, Spitzer Space Telescope, UKIRT and 2MASS surveys. As part of the MYStIX project, we developed a new stellar chronometer that employs near-infrared and X-ray photometry data, AgeJX. Computing AgeJX averaged over MYStIX (sub)clusters reveals previously unknown age gradients across most of the MYStIX regions as well as within some individual rich clusters. Within the SFRs, the inferred AgeJX ages are youngest in obscured locations in molecular clouds, intermediate in revealed stellar clusters, and oldest in distributed stellar populations. Noticeable intra-cluster gradients are seen in the NGC 2024 (Flame Nebula) star cluster and the Orion Nebula Cluster (ONC): stars in cluster cores appear younger and thus were formed later than stars in cluster halos. The latter result has two important implications for the formation of young stellar clusters. Clusters likely form slowly: they do not arise from a single nearly-instantaneous burst of star formation. The simple models where clusters form inside-out are likely incorrect, and more complex models are needed. We provide several star formation scenarios that alone or in combination may lead to the observed core-halo age gradients.

  4. An empirical comparison of methods for analyzing correlated data from a discrete choice survey to elicit patient preference for colorectal cancer screening

    PubMed Central

    2012-01-01

    Background A discrete choice experiment (DCE) is a preference survey which asks participants to make a choice among product portfolios comparing the key product characteristics by performing several choice tasks. Analyzing DCE data needs to account for within-participant correlation because choices from the same participant are likely to be similar. In this study, we empirically compared some commonly-used statistical methods for analyzing DCE data while accounting for within-participant correlation based on a survey of patient preference for colorectal cancer (CRC) screening tests conducted in Hamilton, Ontario, Canada in 2002. Methods A two-stage DCE design was used to investigate the impact of six attributes on participants' preferences for CRC screening test and willingness to undertake the test. We compared six models for clustered binary outcomes (logistic and probit regressions using cluster-robust standard error (SE), random-effects and generalized estimating equation approaches) and three models for clustered nominal outcomes (multinomial logistic and probit regressions with cluster-robust SE and random-effects multinomial logistic model). We also fitted a bivariate probit model with cluster-robust SE treating the choices from two stages as two correlated binary outcomes. The rank of relative importance between attributes and the estimates of β coefficient within attributes were used to assess the model robustness. Results In total 468 participants with each completing 10 choices were analyzed. Similar results were reported for the rank of relative importance and β coefficients across models for stage-one data on evaluating participants' preferences for the test. The six attributes ranked from high to low as follows: cost, specificity, process, sensitivity, preparation and pain. However, the results differed across models for stage-two data on evaluating participants' willingness to undertake the tests. Little within-patient correlation (ICC ≈ 0) was found in stage-one data, but substantial within-patient correlation existed (ICC = 0.659) in stage-two data. Conclusions When small clustering effect presented in DCE data, results remained robust across statistical models. However, results varied when larger clustering effect presented. Therefore, it is important to assess the robustness of the estimates via sensitivity analysis using different models for analyzing clustered data from DCE studies. PMID:22348526

  5. Cluster analysis applied to localized dispersion curves in East Asia: the limits of surface wave resolution

    NASA Astrophysics Data System (ADS)

    Witek, M.; van der Lee, S.; Kang, T. S.; Chang, S. J.; Ning, J.; Ning, S.

    2017-12-01

    We have measured Rayleigh wave group velocity dispersion curves from one year of station-pair cross-correlations of continuous vertical-component broadband data from 1082 seismic stations in regional networks across China, Korea, Taiwan, and Japan for the year 2011. We use the measurements to map local dispersion anomalies for periods in the range 6-40 s. We combined our ambient noise data set with the earthquake group velocity data set of Ma et al. (2014), and then applied agglomerative hierarchical clustering to the localized dispersion curves. We find that the dispersion curves naturally organize themselves into distinct tectonic regions. For our distribution of interstation distances, only 8 distinct regions need to be defined. Additional clusters reduce the overall data misfit by increasingly smaller amounts. The size and number of clusters needed to suitably predict the data may give an indication of the resolving power of the data set. The regions that emerge from the cluster analysis include Tibet, the Sea of Japan, the South China Block and the Korean peninsula, the Ordos and Yangtze cratons, and Mesozoic rift basins such as the Songliao, Bohai Bay and Ulleung basins. We also performed a traditional inversion for 3D S-velocity structure, and the resulting model fits the data as well as the 8-cluster model, while both models fit the earthquake data and ambient noise data better than the LITHO1.0 model of Pasyanos et al. (2014). Our 3D model of the crust and upper mantle confirms many of the features seen in previous studies of the region, most notably the lithospheric thinning going from west to east and low velocity zones in the crust on the Tibetan periphery. We conclude that cluster analysis is able to greatly reduce the dimensionality of surface wave dispersion data, in the sense that a data set of over half a million dispersion curves is sufficiently predicted by appropriately averaging over a relatively small set of distinct tectonic regions. The resulting clustered model objectively quantifies the more intuitive ways in which we usually tend to interpret tomographic models.

  6. A multiple-feature and multiple-kernel scene segmentation algorithm for humanoid robot.

    PubMed

    Liu, Zhi; Xu, Shuqiong; Zhang, Yun; Chen, Chun Lung Philip

    2014-11-01

    This technical correspondence presents a multiple-feature and multiple-kernel support vector machine (MFMK-SVM) methodology to achieve a more reliable and robust segmentation performance for humanoid robot. The pixel wise intensity, gradient, and C1 SMF features are extracted via the local homogeneity model and Gabor filter, which would be used as inputs of MFMK-SVM model. It may provide multiple features of the samples for easier implementation and efficient computation of MFMK-SVM model. A new clustering method, which is called feature validity-interval type-2 fuzzy C-means (FV-IT2FCM) clustering algorithm, is proposed by integrating a type-2 fuzzy criterion in the clustering optimization process to improve the robustness and reliability of clustering results by the iterative optimization. Furthermore, the clustering validity is employed to select the training samples for the learning of the MFMK-SVM model. The MFMK-SVM scene segmentation method is able to fully take advantage of the multiple features of scene image and the ability of multiple kernels. Experiments on the BSDS dataset and real natural scene images demonstrate the superior performance of our proposed method.

  7. Effects of Combined Stellar Feedback on Star Formation in Stellar Clusters

    NASA Astrophysics Data System (ADS)

    Wall, Joshua Edward; McMillan, Stephen; Pellegrino, Andrew; Mac Low, Mordecai; Klessen, Ralf; Portegies Zwart, Simon

    2018-01-01

    We present results of hybrid MHD+N-body simulations of star cluster formation and evolution including self consistent feedback from the stars in the form of radiation, winds, and supernovae from all stars more massive than 7 solar masses. The MHD is modeled with the adaptive mesh refinement code FLASH, while the N-body computations are done with a direct algorithm. Radiation is modeled using ray tracing along long characteristics in directions distributed using the HEALPIX algorithm, and causes ionization and momentum deposition, while winds and supernova conserve momentum and energy during injection. Stellar evolution is followed using power-law fits to evolution models in SeBa. We use a gravity bridge within the AMUSE framework to couple the N-body dynamics of the stars to the gas dynamics in FLASH. Feedback from the massive stars alters the structure of young clusters as gas ejection occurs. We diagnose this behavior by distinguishing between fractal distribution and central clustering using a Q parameter computed from the minimum spanning tree of each model cluster. Global effects of feedback in our simulations will also be discussed.

  8. A clustering algorithm for sample data based on environmental pollution characteristics

    NASA Astrophysics Data System (ADS)

    Chen, Mei; Wang, Pengfei; Chen, Qiang; Wu, Jiadong; Chen, Xiaoyun

    2015-04-01

    Environmental pollution has become an issue of serious international concern in recent years. Among the receptor-oriented pollution models, CMB, PMF, UNMIX, and PCA are widely used as source apportionment models. To improve the accuracy of source apportionment and classify the sample data for these models, this study proposes an easy-to-use, high-dimensional EPC algorithm that not only organizes all of the sample data into different groups according to the similarities in pollution characteristics such as pollution sources and concentrations but also simultaneously detects outliers. The main clustering process consists of selecting the first unlabelled point as the cluster centre, then assigning each data point in the sample dataset to its most similar cluster centre according to both the user-defined threshold and the value of similarity function in each iteration, and finally modifying the clusters using a method similar to k-Means. The validity and accuracy of the algorithm are tested using both real and synthetic datasets, which makes the EPC algorithm practical and effective for appropriately classifying sample data for source apportionment models and helpful for better understanding and interpreting the sources of pollution.

  9. REMOVING COOL CORES AND CENTRAL METALLICITY PEAKS IN GALAXY CLUSTERS WITH POWERFUL ACTIVE GALACTIC NUCLEUS OUTBURSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo Fulai; Mathews, William G., E-mail: fulai@ucolick.or

    2010-07-10

    Recent X-ray observations of galaxy clusters suggest that cluster populations are bimodally distributed according to central gas entropy and are separated into two distinct classes: cool core (CC) and non-cool core (NCC) clusters. While it is widely accepted that active galactic nucleus (AGN) feedback plays a key role in offsetting radiative losses and maintaining many clusters in the CC state, the origin of NCC clusters is much less clear. At the same time, a handful of extremely powerful AGN outbursts have recently been detected in clusters, with a total energy {approx}10{sup 61}-10{sup 62} erg. Using two-dimensional hydrodynamic simulations, we showmore » that if a large fraction of this energy is deposited near the centers of CC clusters, which is likely common due to dense cores, these AGN outbursts can completely remove CCs, transforming them to NCC clusters. Our model also has interesting implications for cluster abundance profiles, which usually show a central peak in CC systems. Our calculations indicate that during the CC to NCC transformation, AGN outbursts efficiently mix metals in cluster central regions and may even remove central abundance peaks if they are not broad enough. For CC clusters with broad central abundance peaks, AGN outbursts decrease peak abundances, but cannot effectively destroy the peaks. Our model may simultaneously explain the contradictory (possibly bimodal) results of abundance profiles in NCC clusters, some of which are nearly flat, while others have strong central peaks similar to those in CC clusters. A statistical analysis of the sizes of central abundance peaks and their redshift evolution may shed interesting insights on the origin of both types of NCC clusters and the evolution history of thermodynamics and AGN activity in clusters.« less

  10. The Role of Inflammation in the Pain, Fatigue, and Sleep Disturbance Symptom Cluster in Advanced Cancer.

    PubMed

    Kwekkeboom, Kristine L; Tostrud, Lauren; Costanzo, Erin; Coe, Christopher L; Serlin, Ronald C; Ward, Sandra E; Zhang, Yingzi

    2018-05-01

    Symptom researchers have proposed a model of inflammatory cytokine activity and dysregulation in cancer to explain co-occurring symptoms including pain, fatigue, and sleep disturbance. We tested the hypothesis that psychological stress accentuates inflammation and that stress and inflammation contribute to one's experience of the pain, fatigue, and sleep disturbance symptom cluster (symptom cluster severity, symptom cluster distress) and its impact (symptom cluster interference with daily life, quality of life). We used baseline data from a symptom cluster management trial. Adult participants (N = 158) receiving chemotherapy for advanced cancer reported pain, fatigue, and sleep disturbance on enrollment. Before intervention, participants completed measures of demographics, perceived stress, symptom cluster severity, symptom cluster distress, symptom cluster interference with daily life, and quality of life and provided a blood sample for four inflammatory biomarkers (interleukin-1β, interleukin-6, tumor necrosis factor-α, and C-reactive protein). Stress was not directly related to any inflammatory biomarker. Stress and tumor necrosis factor-α were positively related to symptom cluster distress, although not symptom cluster severity. Tumor necrosis factor-α was indirectly related to symptom cluster interference with daily life, through its effect on symptom cluster distress. Stress was positively associated with symptom cluster interference with daily life and inversely with quality of life. Stress also had indirect effects on symptom cluster interference with daily life, through its effect on symptom cluster distress. The proposed inflammatory model of symptoms was partially supported. Investigators should test interventions that target stress as a contributing factor in co-occurring pain, fatigue, and sleep disturbance and explore other factors that may influence inflammatory biomarker levels within the context of an advanced cancer diagnosis and treatment. Copyright © 2018 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  11. A multi-Poisson dynamic mixture model to cluster developmental patterns of gene expression by RNA-seq.

    PubMed

    Ye, Meixia; Wang, Zhong; Wang, Yaqun; Wu, Rongling

    2015-03-01

    Dynamic changes of gene expression reflect an intrinsic mechanism of how an organism responds to developmental and environmental signals. With the increasing availability of expression data across a time-space scale by RNA-seq, the classification of genes as per their biological function using RNA-seq data has become one of the most significant challenges in contemporary biology. Here we develop a clustering mixture model to discover distinct groups of genes expressed during a period of organ development. By integrating the density function of multivariate Poisson distribution, the model accommodates the discrete property of read counts characteristic of RNA-seq data. The temporal dependence of gene expression is modeled by the first-order autoregressive process. The model is implemented with the Expectation-Maximization algorithm and model selection to determine the optimal number of gene clusters and obtain the estimates of Poisson parameters that describe the pattern of time-dependent expression of genes from each cluster. The model has been demonstrated by analyzing a real data from an experiment aimed to link the pattern of gene expression to catkin development in white poplar. The usefulness of the model has been validated through computer simulation. The model provides a valuable tool for clustering RNA-seq data, facilitating our global view of expression dynamics and understanding of gene regulation mechanisms. © The Author 2014. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  12. Data-driven modeling and predictive control for boiler-turbine unit using fuzzy clustering and subspace methods.

    PubMed

    Wu, Xiao; Shen, Jiong; Li, Yiguo; Lee, Kwang Y

    2014-05-01

    This paper develops a novel data-driven fuzzy modeling strategy and predictive controller for boiler-turbine unit using fuzzy clustering and subspace identification (SID) methods. To deal with the nonlinear behavior of boiler-turbine unit, fuzzy clustering is used to provide an appropriate division of the operation region and develop the structure of the fuzzy model. Then by combining the input data with the corresponding fuzzy membership functions, the SID method is extended to extract the local state-space model parameters. Owing to the advantages of the both methods, the resulting fuzzy model can represent the boiler-turbine unit very closely, and a fuzzy model predictive controller is designed based on this model. As an alternative approach, a direct data-driven fuzzy predictive control is also developed following the same clustering and subspace methods, where intermediate subspace matrices developed during the identification procedure are utilized directly as the predictor. Simulation results show the advantages and effectiveness of the proposed approach. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Automated method to differentiate between native and mirror protein models obtained from contact maps.

    PubMed

    Kurczynska, Monika; Kotulska, Malgorzata

    2018-01-01

    Mirror protein structures are often considered as artifacts in modeling protein structures. However, they may soon become a new branch of biochemistry. Moreover, methods of protein structure reconstruction, based on their residue-residue contact maps, need methodology to differentiate between models of native and mirror orientation, especially regarding the reconstructed backbones. We analyzed 130 500 structural protein models obtained from contact maps of 1 305 SCOP domains belonging to all 7 structural classes. On average, the same numbers of native and mirror models were obtained among 100 models generated for each domain. Since their structural features are often not sufficient for differentiating between the two types of model orientations, we proposed to apply various energy terms (ETs) from PyRosetta to separate native and mirror models. To automate the procedure for differentiating these models, the k-means clustering algorithm was applied. Using total energy did not allow to obtain appropriate clusters-the accuracy of the clustering for class A (all helices) was no more than 0.52. Therefore, we tested a series of different k-means clusterings based on various combinations of ETs. Finally, applying two most differentiating ETs for each class allowed to obtain satisfying results. To unify the method for differentiating between native and mirror models, independent of their structural class, the two best ETs for each class were considered. Finally, the k-means clustering algorithm used three common ETs: probability of amino acid assuming certain values of dihedral angles Φ and Ψ, Ramachandran preferences and Coulomb interactions. The accuracies of clustering with these ETs were in the range between 0.68 and 0.76, with sensitivity and selectivity in the range between 0.68 and 0.87, depending on the structural class. The method can be applied to all fully-automated tools for protein structure reconstruction based on contact maps, especially those analyzing big sets of models.

  14. Cluster kinetics model for mixtures of glassformers

    NASA Astrophysics Data System (ADS)

    Brenskelle, Lisa A.; McCoy, Benjamin J.

    2007-10-01

    For glassformers we propose a binary mixture relation for parameters in a cluster kinetics model previously shown to represent pure compound data for viscosity and dielectric relaxation as functions of either temperature or pressure. The model parameters are based on activation energies and activation volumes for cluster association-dissociation processes. With the mixture parameters, we calculated dielectric relaxation times and compared the results to experimental values for binary mixtures. Mixtures of sorbitol and glycerol (seven compositions), sorbitol and xylitol (three compositions), and polychloroepihydrin and polyvinylmethylether (three compositions) were studied.

  15. An Integrated Intrusion Detection Model of Cluster-Based Wireless Sensor Network

    PubMed Central

    Sun, Xuemei; Yan, Bo; Zhang, Xinzhong; Rong, Chuitian

    2015-01-01

    Considering wireless sensor network characteristics, this paper combines anomaly and mis-use detection and proposes an integrated detection model of cluster-based wireless sensor network, aiming at enhancing detection rate and reducing false rate. Adaboost algorithm with hierarchical structures is used for anomaly detection of sensor nodes, cluster-head nodes and Sink nodes. Cultural-Algorithm and Artificial-Fish–Swarm-Algorithm optimized Back Propagation is applied to mis-use detection of Sink node. Plenty of simulation demonstrates that this integrated model has a strong performance of intrusion detection. PMID:26447696

  16. An Integrated Intrusion Detection Model of Cluster-Based Wireless Sensor Network.

    PubMed

    Sun, Xuemei; Yan, Bo; Zhang, Xinzhong; Rong, Chuitian

    2015-01-01

    Considering wireless sensor network characteristics, this paper combines anomaly and mis-use detection and proposes an integrated detection model of cluster-based wireless sensor network, aiming at enhancing detection rate and reducing false rate. Adaboost algorithm with hierarchical structures is used for anomaly detection of sensor nodes, cluster-head nodes and Sink nodes. Cultural-Algorithm and Artificial-Fish-Swarm-Algorithm optimized Back Propagation is applied to mis-use detection of Sink node. Plenty of simulation demonstrates that this integrated model has a strong performance of intrusion detection.

  17. Cluster-model calculations of exotic decays from heavy nuclei

    NASA Astrophysics Data System (ADS)

    Buck, B.; Merchant, A. C.

    1989-05-01

    A cluster model employing a local, effective cluster-core potential is used to investigate exotic decay from heavy nuclei as a quantum tunneling phenomenon within a semiclassical approximation. Excellent agreement with all reported experimental measurements of the decay widths for 14C and 24Ne emission is obtained. As an added bonus, the width for alpha particle emission from 212Po is also calculated in good agreement with experiment.

  18. Configurational coupled cluster approach with applications to magnetic model systems

    NASA Astrophysics Data System (ADS)

    Wu, Siyuan; Nooijen, Marcel

    2018-05-01

    A general exponential, coupled cluster like, approach is discussed to extract an effective Hamiltonian in configurational space, as a sum of 1-body, 2-body up to n-body operators. The simplest two-body approach is illustrated by calculations on simple magnetic model systems. A key feature of the approach is that equations up to a certain rank do not depend on higher body cluster operators.

  19. A hierarchical linear model for tree height prediction.

    Treesearch

    Vicente J. Monleon

    2003-01-01

    Measuring tree height is a time-consuming process. Often, tree diameter is measured and height is estimated from a published regression model. Trees used to develop these models are clustered into stands, but this structure is ignored and independence is assumed. In this study, hierarchical linear models that account explicitly for the clustered structure of the data...

  20. Some Unsolved Problems, Questions, and Applications of the Brightsen Nucleon Cluster Model

    NASA Astrophysics Data System (ADS)

    Smarandache, Florentin

    2010-10-01

    Brightsen Model is opposite to the Standard Model, and it was build on John Weeler's Resonating Group Structure Model and on Linus Pauling's Close-Packed Spheron Model. Among Brightsen Model's predictions and applications we cite the fact that it derives the average number of prompt neutrons per fission event, it provides a theoretical way for understanding the low temperature / low energy reactions and for approaching the artificially induced fission, it predicts that forces within nucleon clusters are stronger than forces between such clusters within isotopes; it predicts the unmatter entities inside nuclei that result from stable and neutral union of matter and antimatter, and so on. But these predictions have to be tested in the future at the new CERN laboratory.

  1. Modeling and Testing Dark Energy and Gravity with Galaxy Cluster Data

    NASA Astrophysics Data System (ADS)

    Rapetti, David; Cataneo, Matteo; Heneka, Caroline; Mantz, Adam; Allen, Steven W.; Von Der Linden, Anja; Schmidt, Fabian; Lombriser, Lucas; Li, Baojiu; Applegate, Douglas; Kelly, Patrick; Morris, Glenn

    2018-06-01

    The abundance of galaxy clusters is a powerful probe to constrain the properties of dark energy and gravity at large scales. We employed a self-consistent analysis that includes survey, observable-mass scaling relations and weak gravitational lensing data to obtain constraints on f(R) gravity, which are an order of magnitude tighter than the best previously achieved, as well as on cold dark energy of negligible sound speed. The latter implies clustering of the dark energy fluid at all scales, allowing us to measure the effects of dark energy perturbations at cluster scales. For this study, we recalibrated the halo mass function using the following non-linear characteristic quantities: the spherical collapse threshold, the virial overdensity and an additional mass contribution for cold dark energy. We also presented a new modeling of the f(R) gravity halo mass function that incorporates novel corrections to capture key non-linear effects of the Chameleon screening mechanism, as found in high resolution N-body simulations. All these results permit us to predict, as I will also exemplify, and eventually obtain the next generation of cluster constraints on such models, and provide us with frameworks that can also be applied to other proposed dark energy and modified gravity models using cluster abundance observations.

  2. Critical thinking in higher education: The influence of teaching styles and peer collaboration on science and math learning

    NASA Astrophysics Data System (ADS)

    Quitadamo, Ian Joseph

    Many higher education faculty perceive a deficiency in students' ability to reason, evaluate, and make informed judgments, skills that are deemed necessary for academic and job success in science and math. These skills, often collected within a domain called critical thinking (CT), have been studied and are thought to be influenced by teaching styles (the combination of beliefs, behavior, and attitudes used when teaching) and small group collaborative learning (SGCL). However, no existing studies show teaching styles and SGCL cause changes in student CT performance. This study determined how combinations of teaching styles called clusters and peer-facilitated SGCL (a specific form of SGCL) affect changes in undergraduate student CT performance using a quasi-experimental pre-test/post-test research design and valid and reliable CT performance indicators. Quantitative analyses of three teaching style cluster models (Grasha's cluster model, a weighted cluster model, and a student-centered/teacher-centered cluster model) and peer-facilitated SGCL were performed to evaluate their ability to cause measurable changes in student CT skills. Based on results that indicated weighted teaching style clusters and peer-facilitated SGCL are associated with significant changes in student CT, we conclude that teaching styles and peer-facilitated SGCL influence the development of undergraduate CT in higher education science and math.

  3. Mechanism of cell alignment in groups of Myxococcus xanthus bacteria

    NASA Astrophysics Data System (ADS)

    Balgam, Rajesh; Igoshin, Oleg

    2015-03-01

    Myxococcus xanthus is a model for studying self-organization in bacteria. These flexible cylindrical bacteria move along. In groups, M. xanthus cells align themselves into dynamic cell clusters but the mechanism underlying their formation is unknown. It has been shown that steric interactions can cause alignment in self-propelled hard rods but it is not clear how flexibility and reversals affect the alignment and cluster formation. We have investigated cell alignment process using our biophysical model of M. xanthus cell in an agent-based simulation framework under realistic cell flexibility values. We observed that flexible model cells can form aligned cell clusters when reversals are suppressed but these clusters disappeared when reversals frequency becomes similar to the observed value. However, M. xanthus cells follow slime (polysaccharide gel like material) trails left by other cells and we show that implementing this into our model rescues cell clustering for reversing cells. Our results show that slime following along with periodic cell reversals act as positive feedback to reinforce existing slime trails and recruit more cells. Furthermore, we have observed that mechanical cell alignment combined with slime following is sufficient to explain the distinct clustering patterns of reversing and non-reversing cells as observed in recent experiments. This work is supported by NSF MCB 0845919 and 1411780.

  4. Analyzing Patients' Values by Applying Cluster Analysis and LRFM Model in a Pediatric Dental Clinic in Taiwan

    PubMed Central

    Lin, Shih-Yen; Liu, Chih-Wei

    2014-01-01

    This study combines cluster analysis and LRFM (length, recency, frequency, and monetary) model in a pediatric dental clinic in Taiwan to analyze patients' values. A two-stage approach by self-organizing maps and K-means method is applied to segment 1,462 patients into twelve clusters. The average values of L, R, and F excluding monetary covered by national health insurance program are computed for each cluster. In addition, customer value matrix is used to analyze customer values of twelve clusters in terms of frequency and monetary. Customer relationship matrix considering length and recency is also applied to classify different types of customers from these twelve clusters. The results show that three clusters can be classified into loyal patients with L, R, and F values greater than the respective average L, R, and F values, while three clusters can be viewed as lost patients without any variable above the average values of L, R, and F. When different types of patients are identified, marketing strategies can be designed to meet different patients' needs. PMID:25045741

  5. Measuring consistent masses for 25 Milky Way globular clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimmig, Brian; Seth, Anil; Ivans, Inese I.

    2015-02-01

    We present central velocity dispersions, masses, mass-to-light ratios (M/Ls ), and rotation strengths for 25 Galactic globular clusters (GCs). We derive radial velocities of 1951 stars in 12 GCs from single order spectra taken with Hectochelle on the MMT telescope. To this sample we add an analysis of available archival data of individual stars. For the full set of data we fit King models to derive consistent dynamical parameters for the clusters. We find good agreement between single-mass King models and the observed radial dispersion profiles. The large, uniform sample of dynamical masses we derive enables us to examine trendsmore » of M/L with cluster mass and metallicity. The overall values of M/L and the trends with mass and metallicity are consistent with existing measurements from a large sample of M31 clusters. This includes a clear trend of increasing M/L with cluster mass and lower than expected M/Ls for the metal-rich clusters. We find no clear trend of increasing rotation with increasing cluster metallicity suggested in previous work.« less

  6. Analyzing patients' values by applying cluster analysis and LRFM model in a pediatric dental clinic in Taiwan.

    PubMed

    Wu, Hsin-Hung; Lin, Shih-Yen; Liu, Chih-Wei

    2014-01-01

    This study combines cluster analysis and LRFM (length, recency, frequency, and monetary) model in a pediatric dental clinic in Taiwan to analyze patients' values. A two-stage approach by self-organizing maps and K-means method is applied to segment 1,462 patients into twelve clusters. The average values of L, R, and F excluding monetary covered by national health insurance program are computed for each cluster. In addition, customer value matrix is used to analyze customer values of twelve clusters in terms of frequency and monetary. Customer relationship matrix considering length and recency is also applied to classify different types of customers from these twelve clusters. The results show that three clusters can be classified into loyal patients with L, R, and F values greater than the respective average L, R, and F values, while three clusters can be viewed as lost patients without any variable above the average values of L, R, and F. When different types of patients are identified, marketing strategies can be designed to meet different patients' needs.

  7. Recognition of genetically modified product based on affinity propagation clustering and terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Jianjun; Kan, Jianquan

    2018-04-01

    In this paper, based on the terahertz spectrum, a new identification method of genetically modified material by support vector machine (SVM) based on affinity propagation clustering is proposed. This algorithm mainly uses affinity propagation clustering algorithm to make cluster analysis and labeling on unlabeled training samples, and in the iterative process, the existing SVM training data are continuously updated, when establishing the identification model, it does not need to manually label the training samples, thus, the error caused by the human labeled samples is reduced, and the identification accuracy of the model is greatly improved.

  8. Logistics Enterprise Evaluation Model Based On Fuzzy Clustering Analysis

    NASA Astrophysics Data System (ADS)

    Fu, Pei-hua; Yin, Hong-bo

    In this thesis, we introduced an evaluation model based on fuzzy cluster algorithm of logistics enterprises. First of all,we present the evaluation index system which contains basic information, management level, technical strength, transport capacity,informatization level, market competition and customer service. We decided the index weight according to the grades, and evaluated integrate ability of the logistics enterprises using fuzzy cluster analysis method. In this thesis, we introduced the system evaluation module and cluster analysis module in detail and described how we achieved these two modules. At last, we gave the result of the system.

  9. Distributive Education Competency-Based Curriculum Models by Occupational Clusters. Final Report.

    ERIC Educational Resources Information Center

    Davis, Rodney E.; Husted, Stewart W.

    To meet the needs of distributive education teachers and students, a project was initiated to develop competency-based curriculum models for marketing and distributive education clusters. The models which were developed incorporate competencies, materials and resources, teaching methodologies/learning activities, and evaluative criteria for the…

  10. Handling Correlations between Covariates and Random Slopes in Multilevel Models

    ERIC Educational Resources Information Center

    Bates, Michael David; Castellano, Katherine E.; Rabe-Hesketh, Sophia; Skrondal, Anders

    2014-01-01

    This article discusses estimation of multilevel/hierarchical linear models that include cluster-level random intercepts and random slopes. Viewing the models as structural, the random intercepts and slopes represent the effects of omitted cluster-level covariates that may be correlated with included covariates. The resulting correlations between…

  11. The cluster model of a hot dense vapor

    NASA Astrophysics Data System (ADS)

    Zhukhovitskii, D. I.

    2015-04-01

    We explore thermodynamic properties of a vapor in the range of state parameters where the contribution to thermodynamic functions from bound states of atoms (clusters) dominates over the interaction between the components of the vapor in free states. The clusters are assumed to be light and sufficiently "hot" for the number of bonds to be minimized. We use the technique of calculation of the cluster partition function for the cluster with a minimum number of interatomic bonds to calculate the caloric properties (heat capacity and velocity of sound) for an ideal mixture of the lightest clusters. The problem proves to be exactly solvable and resulting formulas are functions solely of the equilibrium constant of the dimer formation. These formulas ensure a satisfactory correlation with the reference data for the vapors of cesium, mercury, and argon up to moderate densities in both the sub- and supercritical regions. For cesium, we extend the model to the densities close to the critical one by inclusion of the clusters of arbitrary size. Knowledge of the cluster composition of the cesium vapor makes it possible to treat nonequilibrium phenomena such as nucleation of the supersaturated vapor, for which the effect of the cluster structural transition is likely to be significant.

  12. STELLAR ENCOUNTER RATE IN GALACTIC GLOBULAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahramian, Arash; Heinke, Craig O.; Sivakoff, Gregory R.

    2013-04-01

    The high stellar densities in the cores of globular clusters cause significant stellar interactions. These stellar interactions can produce close binary mass-transferring systems involving compact objects and their progeny, such as X-ray binaries and radio millisecond pulsars. Comparing the numbers of these systems and interaction rates in different clusters drives our understanding of how cluster parameters affect the production of close binaries. In this paper we estimate stellar encounter rates ({Gamma}) for 124 Galactic globular clusters based on observational data as opposed to the methods previously employed, which assumed 'King-model' profiles for all clusters. By deprojecting cluster surface brightness profilesmore » to estimate luminosity density profiles, we treat 'King-model' and 'core-collapsed' clusters in the same way. In addition, we use Monte Carlo simulations to investigate the effects of uncertainties in various observational parameters (distance, reddening, surface brightness) on {Gamma}, producing the first catalog of globular cluster stellar encounter rates with estimated errors. Comparing our results with published observations of likely products of stellar interactions (numbers of X-ray binaries, numbers of radio millisecond pulsars, and {gamma}-ray luminosity) we find both clear correlations and some differences with published results.« less

  13. Nonthermal Particles and Radiation Produced by Cluster Merger Shocks

    DTIC Science & Technology

    2003-09-10

    NONTHERMAL PARTICLES AND RADIATION PRODUCED BY CLUSTER MERGER SHOCKS Robert C. Berrington and Charles D. Dermer Naval Research Laboratory, Code 7653...of the merging cluster and is assumed to be constant as the shock propagates outward from the cluster center. In this paper , we model the cluster ...emission in the60–250 eV band for a number of clus- ters. These clusters include Virgo , Coma, Fornax, A2199, A1795, and A4059 (Lieu et al. 1996a, 1996b

  14. Modeling solute clustering in the diffusion layer around a growing crystal.

    PubMed

    Shiau, Lie-Ding; Lu, Yung-Fang

    2009-03-07

    The mechanism of crystal growth from solution is often thought to consist of a mass transfer diffusion step followed by a surface reaction step. Solute molecules might form clusters in the diffusion step before incorporating into the crystal lattice. A model is proposed in this work to simulate the evolution of the cluster size distribution due to the simultaneous aggregation and breakage of solute molecules in the diffusion layer around a growing crystal in the stirred solution. The crystallization of KAl(SO(4))(2)12H(2)O from aqueous solution is studied to illustrate the effect of supersaturation and diffusion layer thickness on the number-average degree of clustering and the size distribution of solute clusters in the diffusion layer.

  15. Spatially Compact Neural Clusters in the Dorsal Striatum Encode Locomotion Relevant Information.

    PubMed

    Barbera, Giovanni; Liang, Bo; Zhang, Lifeng; Gerfen, Charles R; Culurciello, Eugenio; Chen, Rong; Li, Yun; Lin, Da-Ting

    2016-10-05

    An influential striatal model postulates that neural activities in the striatal direct and indirect pathways promote and inhibit movement, respectively. Normal behavior requires coordinated activity in the direct pathway to facilitate intended locomotion and indirect pathway to inhibit unwanted locomotion. In this striatal model, neuronal population activity is assumed to encode locomotion relevant information. Here, we propose a novel encoding mechanism for the dorsal striatum. We identified spatially compact neural clusters in both the direct and indirect pathways. Detailed characterization revealed similar cluster organization between the direct and indirect pathways, and cluster activities from both pathways were correlated with mouse locomotion velocities. Using machine-learning algorithms, cluster activities could be used to decode locomotion relevant behavioral states and locomotion velocity. We propose that neural clusters in the dorsal striatum encode locomotion relevant information and that coordinated activities of direct and indirect pathway neural clusters are required for normal striatal controlled behavior. VIDEO ABSTRACT. Published by Elsevier Inc.

  16. Effect of Policy Analysis on Indonesia’s Maritime Cluster Development Using System Dynamics Modeling

    NASA Astrophysics Data System (ADS)

    Nursyamsi, A.; Moeis, A. O.; Komarudin

    2018-03-01

    As an archipelago with two third of its territory consist of water, Indonesia should address more attention to its maritime industry development. One of the catalyst to fasten the maritime industry growth is by developing a maritime cluster. The purpose of this research is to gain understanding of the effect if Indonesia implement maritime cluster policy to the growth of maritime economic and its role to enhance the maritime cluster performance, hence enhancing Indonesia’s maritime industry as well. The result of the constructed system dynamic model simulation shows that with the effect of maritime cluster, the growth of employment rate and maritime economic is much bigger that the business as usual case exponentially. The result implies that the government should act fast to form a legitimate cluster maritime organizer institution so that there will be a synergize, sustainable, and positive maritime cluster environment that will benefit the performance of Indonesia’s maritime industry.

  17. Using Cluster Analysis and ICP-MS to Identify Groups of Ecstasy Tablets in Sao Paulo State, Brazil.

    PubMed

    Maione, Camila; de Oliveira Souza, Vanessa Cristina; Togni, Loraine Rezende; da Costa, José Luiz; Campiglia, Andres Dobal; Barbosa, Fernando; Barbosa, Rommel Melgaço

    2017-11-01

    The variations found in the elemental composition in ecstasy samples result in spectral profiles with useful information for data analysis, and cluster analysis of these profiles can help uncover different categories of the drug. We provide a cluster analysis of ecstasy tablets based on their elemental composition. Twenty-five elements were determined by ICP-MS in tablets apprehended by Sao Paulo's State Police, Brazil. We employ the K-means clustering algorithm along with C4.5 decision tree to help us interpret the clustering results. We found a better number of two clusters within the data, which can refer to the approximated number of sources of the drug which supply the cities of seizures. The C4.5 model was capable of differentiating the ecstasy samples from the two clusters with high prediction accuracy using the leave-one-out cross-validation. The model used only Nd, Ni, and Pb concentration values in the classification of the samples. © 2017 American Academy of Forensic Sciences.

  18. Accelerating three-dimensional FDTD calculations on GPU clusters for electromagnetic field simulation.

    PubMed

    Nagaoka, Tomoaki; Watanabe, Soichi

    2012-01-01

    Electromagnetic simulation with anatomically realistic computational human model using the finite-difference time domain (FDTD) method has recently been performed in a number of fields in biomedical engineering. To improve the method's calculation speed and realize large-scale computing with the computational human model, we adapt three-dimensional FDTD code to a multi-GPU cluster environment with Compute Unified Device Architecture and Message Passing Interface. Our multi-GPU cluster system consists of three nodes. The seven GPU boards (NVIDIA Tesla C2070) are mounted on each node. We examined the performance of the FDTD calculation on multi-GPU cluster environment. We confirmed that the FDTD calculation on the multi-GPU clusters is faster than that on a multi-GPU (a single workstation), and we also found that the GPU cluster system calculate faster than a vector supercomputer. In addition, our GPU cluster system allowed us to perform the large-scale FDTD calculation because were able to use GPU memory of over 100 GB.

  19. Statistical Issues in Galaxy Cluster Cosmology

    NASA Technical Reports Server (NTRS)

    Mantz, Adam

    2013-01-01

    The number and growth of massive galaxy clusters are sensitive probes of cosmological structure formation. Surveys at various wavelengths can detect clusters to high redshift, but the fact that cluster mass is not directly observable complicates matters, requiring us to simultaneously constrain scaling relations of observable signals with mass. The problem can be cast as one of regression, in which the data set is truncated, the (cosmology-dependent) underlying population must be modeled, and strong, complex correlations between measurements often exist. Simulations of cosmological structure formation provide a robust prediction for the number of clusters in the Universe as a function of mass and redshift (the mass function), but they cannot reliably predict the observables used to detect clusters in sky surveys (e.g. X-ray luminosity). Consequently, observers must constrain observable-mass scaling relations using additional data, and use the scaling relation model in conjunction with the mass function to predict the number of clusters as a function of redshift and luminosity.

  20. Ceria nanoclusters on graphene/Ru(0001): A new model catalyst system

    DOE PAGES

    Novotny, Z.; Netzer, F. P.; Dohnalek, Z.

    2016-03-22

    In this study, the growth of ceria nanoclusters on single-layer graphene on Ru(0001) has been examined, with a view towards fabricating a stable system for model catalysis studies. The surface morphology and cluster distribution as a function of oxide coverage and substrate temperature has been monitored by scanning tunneling microscopy (STM), whereas the chemical composition of the cluster deposits has been determined by Auger electron spectroscopy (AES). The ceria nanoparticles are of the CeO 2(111)-type and are anchored at the intrinsic defects of the graphene surface, resulting in a variation of the cluster densities across the macroscopic sample surface. Themore » ceria clusters on graphene display a remarkable stability against reduction in ultrahigh vacuum up to 900 K, but some sintering of clusters is observed for temperatures > 450 K. The evolution of the cluster size distribution suggests that the sintering proceeds via a Smoluchowski ripening mechanism, i.e. diffusion and aggregation of entire clusters.« less

  1. A model of metastable dynamics during ongoing and evoked cortical activity

    NASA Astrophysics Data System (ADS)

    La Camera, Giancarlo

    The dynamics of simultaneously recorded spike trains in alert animals often evolve through temporal sequences of metastable states. Little is known about the network mechanisms responsible for the genesis of such sequences, or their potential role in neural coding. In the gustatory cortex of alert rates, state sequences can be observed also in the absence of overt sensory stimulation, and thus form the basis of the so-called `ongoing activity'. This activity is characterized by a partial degree of coordination among neurons, sharp transitions among states, and multi-stability of single neurons' firing rates. A recurrent spiking network model with clustered topology can account for both the spontaneous generation of state sequences and the (network-generated) multi-stability. In the model, each network state results from the activation of specific neural clusters with potentiated intra-cluster connections. A mean field solution of the model shows a large number of stable states, each characterized by a subset of simultaneously active clusters. The firing rate in each cluster during ongoing activity depends on the number of active clusters, so that the same neuron can have different firing rates depending on the state of the network. Because of dense intra-cluster connectivity and recurrent inhibition, in finite networks the stable states lose stability due to finite size effects. Simulations of the dynamics show that the model ensemble activity continuously hops among the different states, reproducing the ongoing dynamics observed in the data. Moreover, when probed with external stimuli, the model correctly predicts the quenching of single neuron multi-stability into bi-stability, the reduction of dimensionality of the population activity, the reduction of trial-to-trial variability, and a potential role for metastable states in the anticipation of expected events. Altogether, these results provide a unified mechanistic model of ongoing and evoked cortical dynamics. NSF IIS-1161852, NIDCD K25-DC013557, NIDCD R01-DC010389.

  2. Does faint galaxy clustering contradict gravitational instability?

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.

    1992-01-01

    It has been argued, based on the weakness of clustering of faint galaxies, that these objects cannot be the precursors of present galaxies in a simple Einstein-de Sitter model universe with clustering driven by gravitational instability. It is shown that the assumptions made about the growth of clustering were too restrictive. In such a universe, the growth of clustering can easily be fast enough to match the data.

  3. Clustering mechanism of oxocarboxylic acids involving hydration reaction: Implications for the atmospheric models

    NASA Astrophysics Data System (ADS)

    Liu, Ling; Kupiainen-Määttä, Oona; Zhang, Haijie; Li, Hao; Zhong, Jie; Kurtén, Theo; Vehkamäki, Hanna; Zhang, Shaowen; Zhang, Yunhong; Ge, Maofa; Zhang, Xiuhui; Li, Zesheng

    2018-06-01

    The formation of atmospheric aerosol particles from condensable gases is a dominant source of particulate matter in the boundary layer, but the mechanism is still ambiguous. During the clustering process, precursors with different reactivities can induce various chemical reactions in addition to the formation of hydrogen bonds. However, the clustering mechanism involving chemical reactions is rarely considered in most of the nucleation process models. Oxocarboxylic acids are common compositions of secondary organic aerosol, but the role of oxocarboxylic acids in secondary organic aerosol formation is still not fully understood. In this paper, glyoxylic acid, the simplest and the most abundant atmospheric oxocarboxylic acid, has been selected as a representative example of oxocarboxylic acids in order to study the clustering mechanism involving hydration reactions using density functional theory combined with the Atmospheric Clusters Dynamic Code. The hydration reaction of glyoxylic acid can occur either in the gas phase or during the clustering process. Under atmospheric conditions, the total conversion ratio of glyoxylic acid to its hydration reaction product (2,2-dihydroxyacetic acid) in both gas phase and clusters can be up to 85%, and the product can further participate in the clustering process. The differences in cluster structures and properties induced by the hydration reaction lead to significant differences in cluster formation rates and pathways at relatively low temperatures.

  4. Interaction of intense ultrashort pulse lasers with clusters.

    NASA Astrophysics Data System (ADS)

    Petrov, George

    2007-11-01

    The last ten years have witnessed an explosion of activity involving the interaction of clusters with intense ultrashort pulse lasers. Atomic or molecular clusters are targets with unique properties, as they are halfway between solid and gases. The intense laser radiation creates hot dense plasma, which can provide a compact source of x-rays and energetic particles. The focus of this investigation is to understand the salient features of energy absorption and Coulomb explosion by clusters. The evolution of clusters is modeled with a relativistic time-dependent 3D Molecular Dynamics (MD) model [1]. The Coulomb interaction between particles is handled by a fast tree algorithm, which allows large number of particles to be used in simulations [2]. The time histories of all particles in a cluster are followed in time and space. The model accounts for ionization-ignition effects (enhancement of the laser field in the vicinity of ions) and a variety of elementary processes for free electrons and charged ions, such as optical field and collisional ionization, outer ionization and electron recapture. The MD model was applied to study small clusters (1-20 nm) irradiated by a high-intensity (10^16-10^20 W/cm^2) sub-picosecond laser pulse. We studied fundamental cluster features such as energy absorption, x-ray emission, particle distribution, average charge per atom, and cluster explosion as a function of initial cluster radius, laser peak intensity and wavelength. Simulations of novel applications, such as table-top nuclear fusion from exploding deuterium clusters [3] and high power synchrotron radiation for biological applications and imaging [4] have been performed. The application for nuclear fusion was motivated by the efficient absorption of laser energy (˜100%) and its high conversion efficiency into ion kinetic energy (˜50%), resulting in neutron yield of 10^6 neutrons/Joule laser energy. Contributors: J. Davis and A. L. Velikovich. [1] G. M. Petrov, et al Phys. Plasmas 12 063103 (2005); 13 033106 (2006) [2] G. M. Petrov, J. Davis, European Phys. J. D 41 629 (2007) [3] G. M. Petrov, J. Davis, A. L. Velikovich, Plasma Phys. Contr. Fusion 48 1721 (2006) [4] G. M. Petrov, J. Davis, A. L. Velikovich, J. Phys. B 39 4617 (2006)

  5. Subaru Weak-lensing Survey of Dark Matter Subhalos in the Coma Cluster: Subhalo Mass Function and Statistical Properties

    NASA Astrophysics Data System (ADS)

    Okabe, Nobuhiro; Futamase, Toshifumi; Kajisawa, Masaru; Kuroshima, Risa

    2014-04-01

    We present a 4 deg2 weak gravitational lensing survey of subhalos in the very nearby Coma cluster using the Subaru/Suprime-Cam. The large apparent size of cluster subhalos allows us to measure the mass of 32 subhalos detected in a model-independent manner, down to the order of 10-3 of the virial mass of the cluster. Weak-lensing mass measurements of these shear-selected subhalos enable us to investigate subhalo properties and the correlation between subhalo masses and galaxy luminosities for the first time. The mean distortion profiles stacked over subhalos show a sharply truncated feature which is well-fitted by a Navarro-Frenk-White (NFW) mass model with the truncation radius, as expected due to tidal destruction by the main cluster. We also found that subhalo masses, truncation radii, and mass-to-light ratios decrease toward the cluster center. The subhalo mass function, dn/dln M sub, in the range of 2 orders of magnitude in mass, is well described by a single power law or a Schechter function. Best-fit power indices of 1.09^{+0.42}_{-0.32} for the former model and 0.99_{-0.23}^{+0.34} for the latter, are in remarkable agreement with slopes of ~0.9-1.0 predicted by the cold dark matter paradigm. The tangential distortion signals in the radial range of 0.02-2 h -1 Mpc from the cluster center show a complex structure which is well described by a composition of three mass components of subhalos, the NFW mass distribution as a smooth component of the main cluster, and a lensing model from a large scale structure behind the cluster. Although the lensing signals are 1 order of magnitude lower than those for clusters at z ~ 0.2, the total signal-to-noise ratio, S/N = 13.3, is comparable, or higher, because the enormous number of background source galaxies compensates for the low lensing efficiency of the nearby cluster. Based on data collected from the Subaru Telescope and obtained from SMOKA, operated by the Astronomy Data Center, National Astronomical Observatory of Japan.

  6. Probing dark matter physics with galaxy clusters

    NASA Astrophysics Data System (ADS)

    Dalal, Neal

    2016-10-01

    We propose a theoretical investigation of the effects of a class of dark matter (DM) self-interactions on the properties of galaxy clusters and their host dark matter halos. Recent work using HST has claimed the detection of a particular form of DM self-interaction, which can lead to observable displacements between satellite galaxies within clusters and the DM subhalos hosting them. This form of self-interaction is highly anisotropic, favoring forward scattering with low momentum transfer, unlike isotropically scattering self-interacting dark matter (SIDM) models. This class of models has not been simulated numerically, clouding the interpretation of the claimed offsets between galaxies and lensing peaks observed by HST. We propose to perform high resolution simulations of cosmological structure formation for this class of SIDM model, focusing on three observables accessible to existing HST observations of clusters. First, we will quantify the extent to which offsets between baryons and DM can arise in these models, as a function of the cross section. Secondly, we will also quantify the effects of this type of DM self-interaction on halo concentrations, to determine the range of cross-sections allowed by existing stringent constraints from HST. Finally we will compute the so-called splashback feature in clusters, specifically focusing on whether SIDM can resolve the current discrepancy between observed values of splashback radii in clusters compared to theoretical predictions for CDM. The proposed investigations will add value to all existing deep HST observations of galaxy clusters by allowing them to probe dark matter physics in three independent ways.

  7. TRACING EMBEDDED STELLAR POPULATIONS IN CLUSTERS AND GALAXIES USING MOLECULAR EMISSION: METHANOL AS A SIGNATURE OF THE LOW-MASS END OF THE IMF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristensen, Lars E.; Bergin, Edwin A., E-mail: lkristensen@cfa.harvard.edu

    2015-07-10

    Most low-mass protostars form in clusters, in particular high-mass clusters; however, how low-mass stars form in high-mass clusters and what the mass distribution is are still open questions both in our own Galaxy and elsewhere. To access the population of forming embedded low-mass protostars observationally, we propose using molecular outflows as tracers. Because the outflow emission scales with mass, the effective contrast between low-mass protostars and their high-mass cousins is greatly lowered. In particular, maps of methanol emission at 338.4 GHz (J = 7{sub 0}–6{sub 0} A{sup +}) in low-mass clusters illustrate that this transition is an excellent probe ofmore » the low-mass population. We present here a model of a forming cluster where methanol emission is assigned to every embedded low-mass protostar. The resulting model image of methanol emission is compared to recent ALMA observations toward a high-mass cluster and the similarity is striking: the toy model reproduces observations to better than a factor of two and suggests that approximately 50% of the total flux originates in low-mass outflows. Future fine-tuning of the model will eventually make it a tool for interpreting the embedded low-mass population of distant regions within our own Galaxy and ultimately higher-redshift starburst galaxies, not just for methanol emission but also water and high-J CO.« less

  8. A roadmap of clustering algorithms: finding a match for a biomedical application.

    PubMed

    Andreopoulos, Bill; An, Aijun; Wang, Xiaogang; Schroeder, Michael

    2009-05-01

    Clustering is ubiquitously applied in bioinformatics with hierarchical clustering and k-means partitioning being the most popular methods. Numerous improvements of these two clustering methods have been introduced, as well as completely different approaches such as grid-based, density-based and model-based clustering. For improved bioinformatics analysis of data, it is important to match clusterings to the requirements of a biomedical application. In this article, we present a set of desirable clustering features that are used as evaluation criteria for clustering algorithms. We review 40 different clustering algorithms of all approaches and datatypes. We compare algorithms on the basis of desirable clustering features, and outline algorithms' benefits and drawbacks as a basis for matching them to biomedical applications.

  9. Age determination of 15 old to intermediate-age small Magellanic cloud star clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parisi, M. C.; Clariá, J. J.; Piatti, A. E.

    2014-04-01

    We present color-magnitude diagrams in the V and I bands for 15 star clusters in the Small Magellanic Cloud (SMC) based on data taken with the Very Large Telescope (VLT, Chile). We selected these clusters from our previous work, wherein we derived cluster radial velocities and metallicities from calcium II infrared triplet (CaT) spectra also taken with the VLT. We discovered that the ages of six of our clusters have been appreciably underestimated by previous studies, which used comparatively small telescopes, graphically illustrating the need for large apertures to obtain reliable ages of old and intermediate-age SMC star clusters. Inmore » particular, three of these clusters, L4, L6, and L110, turn out to be among the oldest SMC clusters known, with ages of 7.9 ± 1.1, 8.7 ± 1.2, and 7.6 ± 1.0 Gyr, respectively, helping to fill a possible 'SMC cluster age gap'. Using the current ages and metallicities from Parisi et al., we analyze the age distribution, age gradient, and age-metallicity relation (AMR) of a sample of SMC clusters measured homogeneously. There is a suggestion of bimodality in the age distribution but it does not show a constant slope for the first 4 Gyr, and we find no evidence for an age gradient. Due to the improved ages of our cluster sample, we find that our AMR is now better represented in the intermediate/old period than we had derived in Parisi et al., where we simply took ages available in the literature. Additionally, clusters younger than ∼4 Gyr now show better agreement with the bursting model of Pagel and Tautvaišienė, but we confirm that this model is not a good representation of the AMR during the intermediate/old period. A more complicated model is needed to explain the SMC chemical evolution in that period.« less

  10. The peculiar velocities of rich clusters in the hot and cold dark matter scenarios

    NASA Technical Reports Server (NTRS)

    Rhee, George F.; West, Michael J.; Villumsen, Jens V.

    1993-01-01

    We present the results of a study of the peculiar velocities of rich clusters of galaxies. The peculiar motion of rich clusters in various cosmological scenarios is of interest for a number of reasons. Observationally, one can measure the peculiar motion of clusters to greater distances than galaxies because cluster peculiar motions can be determined to greater accuracy. One can also test the slope of distance indicator relations using clusters to see if galaxy properties vary with environment. We have used N-body simulations to measure the amplitude and rms cluster peculiar velocity as a function of bias parameter in the hot and cold dark matter scenarios. In addition to measuring the mean and rms peculiar velocity of clusters in the two models, we determined whether the peculiar velocity vector of a given cluster is well aligned with the gravity vector due to all the particles in the simulation and the gravity vector due to the particles present only in the clusters. We have investigated the peculiar velocities of rich clusters of galaxies in the cold dark matter and hot dark matter galaxy formation scenarios. We have derived peculiar velocities and associated errors for the scenarios using four values of the bias parameter ranging from b = 1 to b = 2.5. The growth of the mean peculiar velocity with scale factor has been determined and compared to that predicted by linear theory. In addition, we have compared the orientation of force and velocity in these simulations to see if a program such as that proposed by Bertschinger and Dekel (1989) for elliptical galaxy peculiar motions can be applied to clusters. The method they describe enables one to recover the density field from large scale redshift distance samples. The method makes it possible to do this when only radial velocities are known by assuming that the velocity field is curl free. Our analysis suggests that this program if applied to clusters is only realizable for models with a low value of the bias parameter, i.e., models in which the peculiar velocities of clusters are large enough that the errors do not render the analysis impracticable.

  11. Star cluster formation in a turbulent molecular cloud self-regulated by photoionization feedback

    NASA Astrophysics Data System (ADS)

    Gavagnin, Elena; Bleuler, Andreas; Rosdahl, Joakim; Teyssier, Romain

    2017-12-01

    Most stars in the Galaxy are believed to be formed within star clusters from collapsing molecular clouds. However, the complete process of star formation, from the parent cloud to a gas-free star cluster, is still poorly understood. We perform radiation-hydrodynamical simulations of the collapse of a turbulent molecular cloud using the RAMSES-RT code. Stars are modelled using sink particles, from which we self-consistently follow the propagation of the ionizing radiation. We study how different feedback models affect the gas expulsion from the cloud and how they shape the final properties of the emerging star cluster. We find that the star formation efficiency is lower for stronger feedback models. Feedback also changes the high-mass end of the stellar mass function. Stronger feedback also allows the establishment of a lower density star cluster, which can maintain a virial or sub-virial state. In the absence of feedback, the star formation efficiency is very high, as well as the final stellar density. As a result, high-energy close encounters make the cluster evaporate quickly. Other indicators, such as mass segregation, statistics of multiple systems and escaping stars confirm this picture. Observations of young star clusters are in best agreement with our strong feedback simulation.

  12. Dynamical Competition of IC-Industry Clustering from Taiwan to China

    NASA Astrophysics Data System (ADS)

    Tsai, Bi-Huei; Tsai, Kuo-Hui

    2009-08-01

    Most studies employ qualitative approach to explore the industrial clusters; however, few research has objectively quantified the evolutions of industry clustering. The purpose of this paper is to quantitatively analyze clustering among IC design, IC manufacturing as well as IC packaging and testing industries by using the foreign direct investment (FDI) data. The Lotka-Volterra system equations are first adopted here to capture the competition or cooperation among such three industries, thus explaining their clustering inclinations. The results indicate that the evolution of FDI into China for IC design industry significantly inspire the subsequent FDI of IC manufacturing as well as IC packaging and testing industries. Since IC design industry lie in the upstream stage of IC production, the middle-stream IC manufacturing and downstream IC packing and testing enterprises tend to cluster together with IC design firms, in order to sustain a steady business. Finally, Taiwan IC industry's FDI amount into China is predicted to cumulatively increase, which supports the industrial clustering tendency for Taiwan IC industry. Particularly, the FDI prediction of Lotka-Volterra model performs superior to that of the conventional Bass model after the forecast accuracy of these two models are compared. The prediction ability is dramatically improved as the industrial mutualism among each IC production stage is taken into account.

  13. Collective thermoregulation in bee clusters

    PubMed Central

    Ocko, Samuel A.; Mahadevan, L.

    2014-01-01

    Swarming is an essential part of honeybee behaviour, wherein thousands of bees cling onto each other to form a dense cluster that may be exposed to the environment for several days. This cluster has the ability to maintain its core temperature actively without a central controller. We suggest that the swarm cluster is akin to an active porous structure whose functional requirement is to adjust to outside conditions by varying its porosity to control its core temperature. Using a continuum model that takes the form of a set of advection–diffusion equations for heat transfer in a mobile porous medium, we show that the equalization of an effective ‘behavioural pressure’, which propagates information about the ambient temperature through variations in density, leads to effective thermoregulation. Our model extends and generalizes previous models by focusing the question of mechanism on the form and role of the behavioural pressure, and allows us to explain the vertical asymmetry of the cluster (as a consequence of buoyancy-driven flows), the ability of the cluster to overpack at low ambient temperatures without breaking up at high ambient temperatures, and the relative insensitivity to large variations in the ambient temperature. Our theory also makes testable hypotheses for the response of the cluster to external temperature inhomogeneities and suggests strategies for biomimetic thermoregulation. PMID:24335563

  14. Mass Modeling of Frontier Fields Cluster MACS J1149.5+2223 Using Strong and Weak Lensing

    NASA Astrophysics Data System (ADS)

    Finney, Emily Quinn; Bradač, Maruša; Huang, Kuang-Han; Hoag, Austin; Morishita, Takahiro; Schrabback, Tim; Treu, Tommaso; Borello Schmidt, Kasper; Lemaux, Brian C.; Wang, Xin; Mason, Charlotte

    2018-05-01

    We present a gravitational-lensing model of MACS J1149.5+2223 using ultra-deep Hubble Frontier Fields imaging data and spectroscopic redshifts from HST grism and Very Large Telescope (VLT)/MUSE spectroscopic data. We create total mass maps using 38 multiple images (13 sources) and 608 weak-lensing galaxies, as well as 100 multiple images of 31 star-forming regions in the galaxy that hosts supernova Refsdal. We find good agreement with a range of recent models within the HST field of view. We present a map of the ratio of projected stellar mass to total mass (f ⋆) and find that the stellar mass fraction for this cluster peaks on the primary BCG. Averaging within a radius of 0.3 Mpc, we obtain a value of < {f}\\star > ={0.012}-0.003+0.004, consistent with other recent results for this ratio in cluster environments, though with a large global error (up to δf ⋆ = 0.005) primarily due to the choice of IMF. We compare values of f ⋆ and measures of star formation efficiency for this cluster to other Hubble Frontier Fields clusters studied in the literature, finding that MACS1149 has a higher stellar mass fraction than these other clusters but a star formation efficiency typical of massive clusters.

  15. Statistical detection of geographic clusters of resistant Escherichia coli in a regional network with WHONET and SaTScan.

    PubMed

    Park, Rachel; O'Brien, Thomas F; Huang, Susan S; Baker, Meghan A; Yokoe, Deborah S; Kulldorff, Martin; Barrett, Craig; Swift, Jamie; Stelling, John

    2016-11-01

    While antimicrobial resistance threatens the prevention, treatment, and control of infectious diseases, systematic analysis of routine microbiology laboratory test results worldwide can alert new threats and promote timely response. This study explores statistical algorithms for recognizing geographic clustering of multi-resistant microbes within a healthcare network and monitoring the dissemination of new strains over time. Escherichia coli antimicrobial susceptibility data from a three-year period stored in WHONET were analyzed across ten facilities in a healthcare network utilizing SaTScan's spatial multinomial model with two models for defining geographic proximity. We explored geographic clustering of multi-resistance phenotypes within the network and changes in clustering over time. Geographic clustering identified from both latitude/longitude and non-parametric facility groupings geographic models were similar, while the latter was offers greater flexibility and generalizability. Iterative application of the clustering algorithms suggested the possible recognition of the initial appearance of invasive E. coli ST131 in the clinical database of a single hospital and subsequent dissemination to others. Systematic analysis of routine antimicrobial resistance susceptibility test results supports the recognition of geographic clustering of microbial phenotypic subpopulations with WHONET and SaTScan, and iterative application of these algorithms can detect the initial appearance in and dissemination across a region prompting early investigation, response, and containment measures.

  16. Optical Materials with a Genome: Nanophotonics with DNA-Stabilized Silver Clusters

    NASA Astrophysics Data System (ADS)

    Copp, Stacy M.

    Fluorescent silver clusters with unique rod-like geometries are stabilized by DNA. The sizes and colors of these clusters, or AgN-DNA, are selected by DNA base sequence, which can tune peak emission from blue-green into the near-infrared. Combined with DNA nanostructures, AgN-DNA promise exciting applications in nanophotonics and sensing. Until recently, however, a lack of understanding of the mechanisms controlling AgN-DNA fluorescence has challenged such applications. This dissertation discusses progress toward understanding the role of DNA as a "genome" for silver clusters and toward using DNA to achieve atomic-scale precision of silver cluster size and nanometer-scale precision of silver cluster position on a DNA breadboard. We also investigate sensitivity of AgN-DNA to local solvent environment, with an eye toward applications in chemical and biochemical sensing. Using robotic techniques to generate large data sets, we show that fluorescent silver clusters are templated by certain DNA base motifs that select "magic-sized" cluster cores of enhanced stabilities. The linear arrangement of bases on the phosphate backbone imposes a unique rod-like geometry on the clusters. Harnessing machine learning and bioinformatics techniques, we also demonstrate that sequences of DNA templates can be selected to stabilize silver clusters with desired optical properties, including high fluorescence intensity and specific fluorescence wavelengths, with much higher rates of success as compared to current strategies. The discovered base motifs can be also used to design modular DNA host strands that enable individual silver clusters with atomically precise sizes to bind at specific programmed locations on a DNA nanostructure. We show that DNA-mediated nanoscale arrangement enables near-field coupling of distinct clusters, demonstrated by dual-color cluster assemblies exhibiting resonant energy transfer. These results demonstrate a new degree of control over the optical properties and relative positions of nanoparticles, selected almost solely by the sequence of DNA. AgN-DNA are promising chemical and biochemical sensors due to the sensitivity of their fluorescence to local environment. However, the mechanisms behind many sensing schemes are not understood, and the nature of the excited state of the silver cluster itself remains unknown. To probe the fluorescence mechanisms of AgN-DNA, we investigate the behavior of purified solutions of these clusters in various solvents. We find that standard models for fluorophore solvatochromism, including the Lippert-Mataga model, do not describe AgN-DNA fluorescence because such models neglect specific interactions between the cluster and surrounding solvent molecules. Fluorescence colors are well-modeled by Mie-Gans theory, suggesting that the local dielectric environment of the cluster does play a role in fluorescence, although additional specific solvent interactions and cluster shape changes may also determine fluorescence color and intensity. These results suggest that AgN-DNA may be sensitive to changes in local dielectric environment on nanometer length scales and may also act as sensors for small molecules with affinity for DNA.

  17. CLUMP-3D: Testing ΛCDM with Galaxy Cluster Shapes

    NASA Astrophysics Data System (ADS)

    Sereno, Mauro; Umetsu, Keiichi; Ettori, Stefano; Sayers, Jack; Chiu, I.-Non; Meneghetti, Massimo; Vega-Ferrero, Jesús; Zitrin, Adi

    2018-06-01

    The ΛCDM model of structure formation makes strong predictions on the concentration and shape of dark matter (DM) halos, which are determined by mass accretion processes. Comparison between predicted shapes and observations provides a geometric test of the ΛCDM model. Accurate and precise measurements needs a full three-dimensional (3D) analysis of the cluster mass distribution. We accomplish this with a multi-probe 3D analysis of the X-ray regular Cluster Lensing and Supernova survey with Hubble (CLASH) clusters combining strong and weak lensing, X-ray photometry and spectroscopy, and the Sunyaev–Zel’dovich effect (SZe). The cluster shapes and concentrations are consistent with ΛCDM predictions. The CLASH clusters are randomly oriented, as expected given the sample selection criteria. Shapes agree with numerical results for DM-only halos, which hints at baryonic physics being less effective in making halos rounder.

  18. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers

    NASA Astrophysics Data System (ADS)

    Rodriguez, Carl L.; Amaro-Seoane, Pau; Chatterjee, Sourav; Rasio, Frederic A.

    2018-04-01

    We present models of realistic globular clusters with post-Newtonian dynamics for black holes. By modeling the relativistic accelerations and gravitational-wave emission in isolated binaries and during three- and four-body encounters, we find that nearly half of all binary black hole mergers occur inside the cluster, with about 10% of those mergers entering the LIGO/Virgo band with eccentricities greater than 0.1. In-cluster mergers lead to the birth of a second generation of black holes with larger masses and high spins, which, depending on the black hole natal spins, can sometimes be retained in the cluster and merge again. As a result, globular clusters can produce merging binaries with detectable spins regardless of the birth spins of black holes formed from massive stars. These second-generation black holes would also populate any upper mass gap created by pair-instability supernovae.

  19. Transcription factor clusters regulate genes in eukaryotic cells

    PubMed Central

    Hedlund, Erik G; Friemann, Rosmarie; Hohmann, Stefan

    2017-01-01

    Transcription is regulated through binding factors to gene promoters to activate or repress expression, however, the mechanisms by which factors find targets remain unclear. Using single-molecule fluorescence microscopy, we determined in vivo stoichiometry and spatiotemporal dynamics of a GFP tagged repressor, Mig1, from a paradigm signaling pathway of Saccharomyces cerevisiae. We find the repressor operates in clusters, which upon extracellular signal detection, translocate from the cytoplasm, bind to nuclear targets and turnover. Simulations of Mig1 configuration within a 3D yeast genome model combined with a promoter-specific, fluorescent translation reporter confirmed clusters are the functional unit of gene regulation. In vitro and structural analysis on reconstituted Mig1 suggests that clusters are stabilized by depletion forces between intrinsically disordered sequences. We observed similar clusters of a co-regulatory activator from a different pathway, supporting a generalized cluster model for transcription factors that reduces promoter search times through intersegment transfer while stabilizing gene expression. PMID:28841133

  20. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers.

    PubMed

    Rodriguez, Carl L; Amaro-Seoane, Pau; Chatterjee, Sourav; Rasio, Frederic A

    2018-04-13

    We present models of realistic globular clusters with post-Newtonian dynamics for black holes. By modeling the relativistic accelerations and gravitational-wave emission in isolated binaries and during three- and four-body encounters, we find that nearly half of all binary black hole mergers occur inside the cluster, with about 10% of those mergers entering the LIGO/Virgo band with eccentricities greater than 0.1. In-cluster mergers lead to the birth of a second generation of black holes with larger masses and high spins, which, depending on the black hole natal spins, can sometimes be retained in the cluster and merge again. As a result, globular clusters can produce merging binaries with detectable spins regardless of the birth spins of black holes formed from massive stars. These second-generation black holes would also populate any upper mass gap created by pair-instability supernovae.

  1. Globular Clusters: Absolute Proper Motions and Galactic Orbits

    NASA Astrophysics Data System (ADS)

    Chemel, A. A.; Glushkova, E. V.; Dambis, A. K.; Rastorguev, A. S.; Yalyalieva, L. N.; Klinichev, A. D.

    2018-04-01

    We cross-match objects from several different astronomical catalogs to determine the absolute proper motions of stars within the 30-arcmin radius fields of 115 Milky-Way globular clusters with the accuracy of 1-2 mas yr-1. The proper motions are based on positional data recovered from the USNO-B1, 2MASS, URAT1, ALLWISE, UCAC5, and Gaia DR1 surveys with up to ten positions spanning an epoch difference of up to about 65 years, and reduced to Gaia DR1 TGAS frame using UCAC5 as the reference catalog. Cluster members are photometrically identified by selecting horizontal- and red-giant branch stars on color-magnitude diagrams, and the mean absolute proper motions of the clusters with a typical formal error of about 0.4 mas yr-1 are computed by averaging the proper motions of selected members. The inferred absolute proper motions of clusters are combined with available radial-velocity data and heliocentric distance estimates to compute the cluster orbits in terms of the Galactic potential models based on Miyamoto and Nagai disk, Hernquist spheroid, and modified isothermal dark-matter halo (axisymmetric model without a bar) and the same model + rotating Ferre's bar (non-axisymmetric). Five distant clusters have higher-than-escape velocities, most likely due to large errors of computed transversal velocities, whereas the computed orbits of all other clusters remain bound to the Galaxy. Unlike previously published results, we find the bar to affect substantially the orbits of most of the clusters, even those at large Galactocentric distances, bringing appreciable chaotization, especially in the portions of the orbits close to the Galactic center, and stretching out the orbits of some of the thick-disk clusters.

  2. Utility of K-Means clustering algorithm in differentiating apparent diffusion coefficient values between benign and malignant neck pathologies

    PubMed Central

    Srinivasan, A.; Galbán, C.J.; Johnson, T.D.; Chenevert, T.L.; Ross, B.D.; Mukherji, S.K.

    2014-01-01

    Purpose The objective of our study was to analyze the differences between apparent diffusion coefficient (ADC) partitions (created using the K-Means algorithm) between benign and malignant neck lesions and evaluate its benefit in distinguishing these entities. Material and methods MRI studies of 10 benign and 10 malignant proven neck pathologies were post-processed on a PC using in-house software developed in MATLAB (The MathWorks, Inc., Natick, MA). Lesions were manually contoured by two neuroradiologists with the ADC values within each lesion clustered into two (low ADC-ADCL, high ADC-ADCH) and three partitions (ADCL, intermediate ADC-ADCI, ADCH) using the K-Means clustering algorithm. An unpaired two-tailed Student’s t-test was performed for all metrics to determine statistical differences in the means between the benign and malignant pathologies. Results Statistically significant difference between the mean ADCL clusters in benign and malignant pathologies was seen in the 3 cluster models of both readers (p=0.03, 0.022 respectively) and the 2 cluster model of reader 2 (p=0.04) with the other metrics (ADCH, ADCI, whole lesion mean ADC) not revealing any significant differences. Receiver operating characteristics curves demonstrated the quantitative difference in mean ADCH and ADCL in both the 2 and 3 cluster models to be predictive of malignancy (2 clusters: p=0.008, area under curve=0.850, 3 clusters: p=0.01, area under curve=0.825). Conclusion The K-Means clustering algorithm that generates partitions of large datasets may provide a better characterization of neck pathologies and may be of additional benefit in distinguishing benign and malignant neck pathologies compared to whole lesion mean ADC alone. PMID:20007723

  3. Utility of the k-means clustering algorithm in differentiating apparent diffusion coefficient values of benign and malignant neck pathologies.

    PubMed

    Srinivasan, A; Galbán, C J; Johnson, T D; Chenevert, T L; Ross, B D; Mukherji, S K

    2010-04-01

    Does the K-means algorithm do a better job of differentiating benign and malignant neck pathologies compared to only mean ADC? The objective of our study was to analyze the differences between ADC partitions to evaluate whether the K-means technique can be of additional benefit to whole-lesion mean ADC alone in distinguishing benign and malignant neck pathologies. MR imaging studies of 10 benign and 10 malignant proved neck pathologies were postprocessed on a PC by using in-house software developed in Matlab. Two neuroradiologists manually contoured the lesions, with the ADC values within each lesion clustered into 2 (low, ADC-ADC(L); high, ADC-ADC(H)) and 3 partitions (ADC(L); intermediate, ADC-ADC(I); ADC(H)) by using the K-means clustering algorithm. An unpaired 2-tailed Student t test was performed for all metrics to determine statistical differences in the means of the benign and malignant pathologies. A statistically significant difference between the mean ADC(L) clusters in benign and malignant pathologies was seen in the 3-cluster models of both readers (P = .03 and .022, respectively) and the 2-cluster model of reader 2 (P = .04), with the other metrics (ADC(H), ADC(I); whole-lesion mean ADC) not revealing any significant differences. ROC curves demonstrated the quantitative differences in mean ADC(H) and ADC(L) in both the 2- and 3-cluster models to be predictive of malignancy (2 clusters: P = .008, area under curve = 0.850; 3 clusters: P = .01, area under curve = 0.825). The K-means clustering algorithm that generates partitions of large datasets may provide a better characterization of neck pathologies and may be of additional benefit in distinguishing benign and malignant neck pathologies compared with whole-lesion mean ADC alone.

  4. Intercenter Differences in Bronchopulmonary Dysplasia or Death Among Very Low Birth Weight Infants

    PubMed Central

    Walsh, Michele; Bobashev, Georgiy; Das, Abhik; Levine, Burton; Carlo, Waldemar A.; Higgins, Rosemary D.

    2011-01-01

    OBJECTIVES: To determine (1) the magnitude of clustering of bronchopulmonary dysplasia (36 weeks) or death (the outcome) across centers of the Eunice Kennedy Shriver National Institute of Child and Human Development National Research Network, (2) the infant-level variables associated with the outcome and estimate their clustering, and (3) the center-specific practices associated with the differences and build predictive models. METHODS: Data on neonates with a birth weight of <1250 g from the cluster-randomized benchmarking trial were used to determine the magnitude of clustering of the outcome according to alternating logistic regression by using pairwise odds ratio and predictive modeling. Clinical variables associated with the outcome were identified by using multivariate analysis. The magnitude of clustering was then evaluated after correction for infant-level variables. Predictive models were developed by using center-specific and infant-level variables for data from 2001 2004 and projected to 2006. RESULTS: In 2001–2004, clustering of bronchopulmonary dysplasia/death was significant (pairwise odds ratio: 1.3; P < .001) and increased in 2006 (pairwise odds ratio: 1.6; overall incidence: 52%; range across centers: 32%–74%); center rates were relatively stable over time. Variables that varied according to center and were associated with increased risk of outcome included lower body temperature at NICU admission, use of prophylactic indomethacin, specific drug therapy on day 1, and lack of endotracheal intubation. Center differences remained significant even after correction for clustered variables. CONCLUSION: Bronchopulmonary dysplasia/death rates demonstrated moderate clustering according to center. Clinical variables associated with the outcome were also clustered. Center differences after correction of clustered variables indicate presence of as-yet unmeasured center variables. PMID:21149431

  5. Spatio-temporal pattern clustering for skill assessment of the Korea Operational Oceanographic System

    NASA Astrophysics Data System (ADS)

    Kim, J.; Park, K.

    2016-12-01

    In order to evaluate the performance of operational forecast models in the Korea operational oceanographic system (KOOS) which has been developed by Korea Institute of Ocean Science and Technology (KIOST), a skill assessment (SA) tool has developed and provided multiple skill metrics including not only correlation and error skills by comparing predictions and observation but also pattern clustering with numerical models, satellite, and observation. The KOOS has produced 72 hours forecast information on atmospheric and hydrodynamic forecast variables of wind, pressure, current, tide, wave, temperature, and salinity at every 12 hours per day produced by operating numerical models such as WRF, ROMS, MOM5, WW-III, and SWAN and the SA has conducted to evaluate the forecasts. We have been operationally operated several kinds of numerical models such as WRF, ROMS, MOM5, MOHID, WW-III. Quantitative assessment of operational ocean forecast model is very important to provide accurate ocean forecast information not only to general public but also to support ocean-related problems. In this work, we propose a method of pattern clustering using machine learning method and GIS-based spatial analytics to evaluate spatial distribution of numerical models and spatial observation data such as satellite and HF radar. For the clustering, we use 10 or 15 years-long reanalysis data which was computed by the KOOS, ECMWF, and HYCOM to make best matching clusters which are classified physical meaning with time variation and then we compare it with forecast data. Moreover, for evaluating current, we develop extraction method of dominant flow and apply it to hydrodynamic models and HF radar's sea surface current data. By applying pattern clustering method, it allows more accurate and effective assessment of ocean forecast models' performance by comparing not only specific observation positions which are determined by observation stations but also spatio-temporal distribution of whole model areas. We believe that our proposed method will be very useful to examine and evaluate large amount of numerical modeling data as well as satellite data.

  6. Role of the HSPA9/HSC20 chaperone pair in promoting directional human iron-sulfur cluster exchange involving monothiol glutaredoxin 5.

    PubMed

    Olive, Joshua A; Cowan, J A

    2018-07-01

    Iron‑sulfur clusters are essential cofactors found across all domains of life. Their assembly and transfer are accomplished by highly conserved protein complexes and partners. In eukaryotes a [2Fe-2S] cluster is first assembled in the mitochondria on the iron‑sulfur cluster scaffold protein ISCU in tandem with iron, sulfide, and electron donors. Current models suggest that a chaperone pair interacts with a cluster-bound ISCU to facilitate cluster transfer to a monothiol glutaredoxin. In humans this protein is glutaredoxin 5 (GLRX5) and the cluster can then be exchanged with a variety of target apo proteins. By use of circular dichroism spectroscopy, the kinetics of cluster exchange reactivity has been evaluated for human GLRX5 with a variety of cluster donor and acceptor partners, and the role of chaperones determined for several of these. In contrast to the prokaryotic model, where heat-shock type chaperone proteins HscA and HscB are required for successful and efficient transfer of a [2Fe-2S] cluster from the ISCU scaffold to a monothiol glutaredoxin. However, in the human system the chaperone homologs, HSPA9 and HSC20, are not necessary for human ISCU to promote cluster transfer to GLRX5, and appear to promote the reverse transfer. Cluster exchange with the human iron‑sulfur cluster carrier protein NFU1 and ferredoxins (FDX's), and the role of chaperones, has also been evaluated, demonstrating in certain cases control over the directionality of cluster transfer. In contrast to other prokaryotic and eukaryotic organisms, NFU1 is identified as a more likely physiological donor of [2Fe-2S] cluster to human GLRX5 than ISCU. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. X-ray clusters in a cold dark matter + lambda universe: A direct, large-scale, high-resolution, hydrodynamic simulation

    NASA Technical Reports Server (NTRS)

    Cen, Renyue; Ostriker, Jeremiah P.

    1994-01-01

    A new, three-dimensional, shock-capturing, hydrodynamic code is utilized to determine the distribution of hot gas in a cold dark matter (CDM) + lambda model universe. Periodic boundary conditions are assumed: a box with size 85/h Mpc, having cell size 0.31/h Mpc, is followed in a simulation with 270(exp 3) = 10(exp 7.3) cells. We adopt omega = 0.45, lambda = 0.55, h identically equal to H/100 km/s/Mpc = 0.6, and then, from the cosmic background explorer (COBE) and light element nucleosynthesis, sigma(sub 8) = 0.77, omega(sub b) = 0.043. We identify the X-ray emitting clusters in the simulation box, compute the luminosity function at several wavelength bands, the temperature function and estimated sizes, as well as the evolution of these quantities with redshift. This open model succeeds in matching local observations of clusters in contrast to the standard omega = 1, CDM model, which fails. It predicts an order of magnitude decline in the number density of bright (h nu = 2-10 keV) clusters from z = 0 to z = 2 in contrast to a slight increase in the number density for standard omega = 1, CDM model. This COBE-normalized CDM + lambda model produces approximately the same number of X-ray clusters having L(sub x) greater than 10(exp 43) erg/s as observed. The background radiation field at 1 keV due to clusters is approximately the observed background which, after correction for numerical effects, again indicates that the model is consistent with observations.

  8. Constraints on the optical depth of galaxy groups and clusters

    DOE PAGES

    Flender, Samuel; Nagai, Daisuke; McDonald, Michael

    2017-03-10

    Here, future data from galaxy redshift surveys, combined with high-resolutions maps of the cosmic microwave background, will enable measurements of the pairwise kinematic Sunyaev–Zel'dovich (kSZ) signal with unprecedented statistical significance. This signal probes the matter-velocity correlation function, scaled by the average optical depth (τ) of the galaxy groups and clusters in the sample, and is thus of fundamental importance for cosmology. However, in order to translate pairwise kSZ measurements into cosmological constraints, external constraints on τ are necessary. In this work, we present a new model for the intracluster medium, which takes into account star formation, feedback, non-thermal pressure, and gas cooling. Our semi-analytic model is computationally efficient and can reproduce results of recent hydrodynamical simulations of galaxy cluster formation. We calibrate the free parameters in the model using recent X-ray measurements of gas density profiles of clusters, and gas masses of groups and clusters. Our observationally calibrated model predicts the averagemore » $${\\tau }_{500}$$ (i.e., the integrated τ within a disk of size R 500) to better than 6% modeling uncertainty (at 95% confidence level). If the remaining uncertainties associated with other astrophysical uncertainties and X-ray selection effects can be better understood, our model for the optical depth should break the degeneracy between optical depth and cluster velocity in the analysis of future pairwise kSZ measurements and improve cosmological constraints with the combination of upcoming galaxy and CMB surveys, including the nature of dark energy, modified gravity, and neutrino mass.« less

  9. Does objective cluster analysis serve as a useful precursor to seasonal precipitation prediction at local scale? Application to western Ethiopia

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Moges, Semu; Block, Paul

    2018-01-01

    Prediction of seasonal precipitation can provide actionable information to guide management of various sectoral activities. For instance, it is often translated into hydrological forecasts for better water resources management. However, many studies assume homogeneity in precipitation across an entire study region, which may prove ineffective for operational and local-level decisions, particularly for locations with high spatial variability. This study proposes advancing local-level seasonal precipitation predictions by first conditioning on regional-level predictions, as defined through objective cluster analysis, for western Ethiopia. To our knowledge, this is the first study predicting seasonal precipitation at high resolution in this region, where lives and livelihoods are vulnerable to precipitation variability given the high reliance on rain-fed agriculture and limited water resources infrastructure. The combination of objective cluster analysis, spatially high-resolution prediction of seasonal precipitation, and a modeling structure spanning statistical and dynamical approaches makes clear advances in prediction skill and resolution, as compared with previous studies. The statistical model improves versus the non-clustered case or dynamical models for a number of specific clusters in northwestern Ethiopia, with clusters having regional average correlation and ranked probability skill score (RPSS) values of up to 0.5 and 33 %, respectively. The general skill (after bias correction) of the two best-performing dynamical models over the entire study region is superior to that of the statistical models, although the dynamical models issue predictions at a lower resolution and the raw predictions require bias correction to guarantee comparable skills.

  10. Constraints on the optical depth of galaxy groups and clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flender, Samuel; Nagai, Daisuke; McDonald, Michael

    Here, future data from galaxy redshift surveys, combined with high-resolutions maps of the cosmic microwave background, will enable measurements of the pairwise kinematic Sunyaev–Zel'dovich (kSZ) signal with unprecedented statistical significance. This signal probes the matter-velocity correlation function, scaled by the average optical depth (τ) of the galaxy groups and clusters in the sample, and is thus of fundamental importance for cosmology. However, in order to translate pairwise kSZ measurements into cosmological constraints, external constraints on τ are necessary. In this work, we present a new model for the intracluster medium, which takes into account star formation, feedback, non-thermal pressure, and gas cooling. Our semi-analytic model is computationally efficient and can reproduce results of recent hydrodynamical simulations of galaxy cluster formation. We calibrate the free parameters in the model using recent X-ray measurements of gas density profiles of clusters, and gas masses of groups and clusters. Our observationally calibrated model predicts the averagemore » $${\\tau }_{500}$$ (i.e., the integrated τ within a disk of size R 500) to better than 6% modeling uncertainty (at 95% confidence level). If the remaining uncertainties associated with other astrophysical uncertainties and X-ray selection effects can be better understood, our model for the optical depth should break the degeneracy between optical depth and cluster velocity in the analysis of future pairwise kSZ measurements and improve cosmological constraints with the combination of upcoming galaxy and CMB surveys, including the nature of dark energy, modified gravity, and neutrino mass.« less

  11. Composition formulas of Fe-based transition metals-metalloid bulk metallic glasses derived from dual-cluster model of binary eutectics.

    PubMed

    Naz, Gul Jabeen; Dong, Dandan; Geng, Yaoxiang; Wang, Yingmin; Dong, Chuang

    2017-08-22

    It is known that bulk metallic glasses follow simple composition formulas [cluster](glue atom) 1 or 3 with 24 valence electrons within the framework of the cluster-plus-glue-atom model. Though the relevant nearest-neighbor cluster can be readily identified from a devitrification phase, the glue atoms remains poorly defined. The present work is devoted to understanding the composition rule of Fe-(B,P,C) based multi-component bulk metallic glasses, by introducing a cluster-based eutectic liquid model. This model regards a eutectic liquid to be composed of two stable liquids formulated respectively by cluster formulas for ideal metallic glasses from the two eutectic phases. The dual cluster formulas are first established for binary Fe-(B,C,P) eutectics: [Fe-Fe 14 ]B 2 Fe + [B-B 2 Fe 8 ]Fe ≈ Fe 83.3 B 16.7 for eutectic Fe 83 B 17 , [P-Fe 14 ]P + [P-Fe 9 ]P 2 Fe≈Fe 82.8 P 17.2 for Fe 83 P 17 , and [C-Fe 6 ]Fe 3  + [C-Fe 9 ]C 2 Fe ≈ Fe 82.6 C 17.4 for Fe 82.7 C 17.3 . The second formulas in these dual-cluster formulas, being respectively relevant to devitrification phases Fe 2 B, Fe 3 P, and Fe 3 C, well explain the compositions of existing Fe-based transition metals-metalloid bulk metallic glasses. These formulas also satisfy the 24-electron rule. The proposition of the composition formulas for good glass formers, directly from known eutectic points, constitutes a new route towards understanding and eventual designing metallic glasses of high glass forming abilities.

  12. Analysis of heterogeneous water vapor uptake by metal iodide cluster ions via differential mobility analysis-mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oberreit, Derek; Fluid Measurement Technologies, Inc., Saint Paul, Minnesota 55110; Rawat, Vivek K.

    The sorption of vapor molecules onto pre-existing nanometer sized clusters is of importance in understanding particle formation and growth in gas phase environments and devising gas phase separation schemes. Here, we apply a differential mobility analyzer-mass spectrometer based approach to observe directly the sorption of vapor molecules onto iodide cluster ions of the form (MI){sub x}M{sup +} (x = 1-13, M = Na, K, Rb, or Cs) in air at 300 K and with water saturation ratios in the 0.01-0.64 range. The extent of vapor sorption is quantified in measurements by the shift in collision cross section (CCS) for eachmore » ion. We find that CCS measurements are sensitive enough to detect the transient binding of several vapor molecules to clusters, which shift CCSs by only several percent. At the same time, for the highest saturation ratios examined, we observed CCS shifts of up to 45%. For x < 4, cesium, rubidium, and potassium iodide cluster ions are found to uptake water to a similar extent, while sodium iodide clusters uptake less water. For x ≥ 4, sodium iodide cluster ions uptake proportionally more water vapor than rubidium and potassium iodide cluster ions, while cesium iodide ions exhibit less uptake. Measured CCS shifts are compared to predictions based upon a Kelvin-Thomson-Raoult (KTR) model as well as a Langmuir adsorption model. We find that the Langmuir adsorption model can be fit well to measurements. Meanwhile, KTR predictions deviate from measurements, which suggests that the earliest stages of vapor uptake by nanometer scale species are not well described by the KTR model.« less

  13. Towards a realistic population of simulated galaxy groups and clusters

    NASA Astrophysics Data System (ADS)

    Le Brun, Amandine M. C.; McCarthy, Ian G.; Schaye, Joop; Ponman, Trevor J.

    2014-06-01

    We present a new suite of large-volume cosmological hydrodynamical simulations called cosmo-OWLS. They form an extension to the OverWhelmingly Large Simulations (OWLS) project, and have been designed to help improve our understanding of cluster astrophysics and non-linear structure formation, which are now the limiting systematic errors when using clusters as cosmological probes. Starting from identical initial conditions in either the Planck or WMAP7 cosmologies, we systematically vary the most important `sub-grid' physics, including feedback from supernovae and active galactic nuclei (AGN). We compare the properties of the simulated galaxy groups and clusters to a wide range of observational data, such as X-ray luminosity and temperature, gas mass fractions, entropy and density profiles, Sunyaev-Zel'dovich flux, I-band mass-to-light ratio, dominance of the brightest cluster galaxy and central massive black hole (BH) masses, by producing synthetic observations and mimicking observational analysis techniques. These comparisons demonstrate that some AGN feedback models can produce a realistic population of galaxy groups and clusters, broadly reproducing both the median trend and, for the first time, the scatter in physical properties over approximately two decades in mass (1013 M⊙ ≲ M500 ≲ 1015 M⊙) and 1.5 decades in radius (0.05 ≲ r/r500 ≲ 1.5). However, in other models, the AGN feedback is too violent (even though they reproduce the observed BH scaling relations), implying that calibration of the models is required. The production of realistic populations of simulated groups and clusters, as well as models that bracket the observations, opens the door to the creation of synthetic surveys for assisting the astrophysical and cosmological interpretation of cluster surveys, as well as quantifying the impact of selection effects.

  14. Helium segregation on surfaces of plasma-exposed tungsten

    NASA Astrophysics Data System (ADS)

    Maroudas, Dimitrios; Blondel, Sophie; Hu, Lin; Hammond, Karl D.; Wirth, Brian D.

    2016-02-01

    We report a hierarchical multi-scale modeling study of implanted helium segregation on surfaces of tungsten, considered as a plasma facing component in nuclear fusion reactors. We employ a hierarchy of atomic-scale simulations based on a reliable interatomic interaction potential, including molecular-statics simulations to understand the origin of helium surface segregation, targeted molecular-dynamics (MD) simulations of near-surface cluster reactions, and large-scale MD simulations of implanted helium evolution in plasma-exposed tungsten. We find that small, mobile He n (1  ⩽  n  ⩽  7) clusters in the near-surface region are attracted to the surface due to an elastic interaction force that provides the thermodynamic driving force for surface segregation. This elastic interaction force induces drift fluxes of these mobile He n clusters, which increase substantially as the migrating clusters approach the surface, facilitating helium segregation on the surface. Moreover, the clusters’ drift toward the surface enables cluster reactions, most importantly trap mutation, in the near-surface region at rates much higher than in the bulk material. These near-surface cluster dynamics have significant effects on the surface morphology, near-surface defect structures, and the amount of helium retained in the material upon plasma exposure. We integrate the findings of such atomic-scale simulations into a properly parameterized and validated spatially dependent, continuum-scale reaction-diffusion cluster dynamics model, capable of predicting implanted helium evolution, surface segregation, and its near-surface effects in tungsten. This cluster-dynamics model sets the stage for development of fully atomistically informed coarse-grained models for computationally efficient simulation predictions of helium surface segregation, as well as helium retention and surface morphological evolution, toward optimal design of plasma facing components.

  15. Dimensional structure of DSM-5 posttraumatic stress disorder symptoms: results from the National Health and Resilience in Veterans Study.

    PubMed

    Tsai, Jack; Harpaz-Rotem, Ilan; Armour, Cherie; Southwick, Steven M; Krystal, John H; Pietrzak, Robert H

    2015-05-01

    To evaluate the prevalence of DSM-5 posttraumatic stress disorder (PTSD) and factor structure of PTSD symptomatology in a nationally representative sample of US veterans and examine how PTSD symptom clusters are related to depression, anxiety, suicidal ideation, hostility, physical and mental health-related functioning, and quality of life. Data were analyzed from the National Health and Resilience in Veterans Study, a nationally representative survey of 1,484 US veterans conducted from September through October 2013. Confirmatory factor analyses were conducted to evaluate the factor structure of PTSD symptoms, and structural equation models were constructed to examine the association between PTSD symptom clusters and external correlates. 12.0% of veterans screened positive for lifetime PTSD and 5.2% for past-month PTSD. A 5-factor dysphoric arousal model and a newly proposed 6-factor model both fit the data significantly better than the 4-factor model of DSM-5. The 6-factor model fit the data best in the full sample, as well as in subsamples of female veterans and veterans with lifetime PTSD. The emotional numbing symptom cluster was more strongly related to depression (P < .001) and worse mental health-related functioning (P < .001) than other symptom clusters, while the externalizing behavior symptom cluster was more strongly related to hostility (P < .001). A total of 5.2% of US veterans screened positive for past-month DSM-5 PTSD. A 6-factor model of DSM-5 PTSD symptoms, which builds on extant models and includes a sixth externalizing behavior factor, provides the best dimensional representation of DSM-5 PTSD symptom clusters and demonstrates validity in assessing health outcomes of interest in this population. © Copyright 2015 Physicians Postgraduate Press, Inc.

  16. Formation of Very Young Massive Clusters and Implications for Globular Clusters

    NASA Astrophysics Data System (ADS)

    Banerjee, Sambaran; Kroupa, Pavel

    How Very Young Massive star Clusters (VYMCs; also known as "starburst" clusters), which typically are of ≳ 104 M ⊙ and are a few Myr old, form out of Giant Molecular Clouds is still largely an open question. Increasingly detailed observations of young star clusters and star-forming molecular clouds and computational studies provide clues about their formation scenarios and the underlying physical processes involved. This chapter is focused on reviewing the decade-long studies that attempt to computationally reproduce the well-observed nearby VYMCs, such as the Orion Nebula Cluster, R136 and NGC 3603 young cluster, thereby shedding light on birth conditions of massive star clusters, in general. On this regard, focus is given on direct N-body modelling of real-sized massive star clusters, with a monolithic structure and undergoing residual gas expulsion, which have consistently reproduced the observed characteristics of several VYMCs and also of young star clusters, in general. The connection of these relatively simplified model calculations with the structural richness of dense molecular clouds and the complexity of hydrodynamic calculations of star cluster formation is presented in detail. Furthermore, the connections of such VYMCs with globular clusters, which are nearly as old as our Universe, is discussed. The chapter is concluded by addressing long-term deeply gas-embedded (at least apparently) and substructured systems like W3 Main. While most of the results are quoted from existing and up-to-date literature, in an integrated fashion, several new insights and discussions are provided.

  17. Atomistic modeling of dropwise condensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sikarwar, B. S., E-mail: bssikarwar@amity.edu; Singh, P. L.; Muralidhar, K.

    The basic aim of the atomistic modeling of condensation of water is to determine the size of the stable cluster and connect phenomena occurring at atomic scale to the macroscale. In this paper, a population balance model is described in terms of the rate equations to obtain the number density distribution of the resulting clusters. The residence time is taken to be large enough so that sufficient time is available for all the adatoms existing in vapor-phase to loose their latent heat and get condensed. The simulation assumes clusters of a given size to be formed from clusters of smallermore » sizes, but not by the disintegration of the larger clusters. The largest stable cluster size in the number density distribution is taken to be representative of the minimum drop radius formed in a dropwise condensation process. A numerical confirmation of this result against predictions based on a thermodynamic model has been obtained. Results show that the number density distribution is sensitive to the surface diffusion coefficient and the rate of vapor flux impinging on the substrate. The minimum drop radius increases with the diffusion coefficient and the impinging vapor flux; however, the dependence is weak. The minimum drop radius predicted from thermodynamic considerations matches the prediction of the cluster model, though the former does not take into account the effect of the surface properties on the nucleation phenomena. For a chemically passive surface, the diffusion coefficient and the residence time are dependent on the surface texture via the coefficient of friction. Thus, physical texturing provides a means of changing, within limits, the minimum drop radius. The study reveals that surface texturing at the scale of the minimum drop radius does not provide controllability of the macro-scale dropwise condensation at large timescales when a dynamic steady-state is reached.« less

  18. THE FORMATION OF SECONDARY STELLAR GENERATIONS IN MASSIVE YOUNG STAR CLUSTERS FROM RAPIDLY COOLING SHOCKED STELLAR WINDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wünsch, R.; Palouš, J.; Ehlerová, S.

    We study a model of rapidly cooling shocked stellar winds in young massive clusters and estimate the circumstances under which secondary star formation, out of the reinserted winds from a first stellar generation (1G), is possible. We have used two implementations of the model: a highly idealized, computationally inexpensive, spherically symmetric semi-analytic model, and a complex, three-dimensional radiation-hydrodynamic, simulation; they are in a good mutual agreement. The results confirm our previous findings that, in a cluster with 1G mass 10{sup 7} M {sub ⊙} and half-mass–radius 2.38 pc, the shocked stellar winds become thermally unstable, collapse into dense gaseous structuresmore » that partially accumulate inside the cluster, self-shield against ionizing stellar radiation, and form the second generation (2G) of stars. We have used the semi-analytic model to explore a subset of the parameter space covering a wide range of the observationally poorly constrained parameters: the heating efficiency, η {sub he}, and the mass loading, η {sub ml}. The results show that the fraction of the 1G stellar winds accumulating inside the cluster can be larger than 50% if η {sub he} ≲ 10%, which is suggested by the observations. Furthermore, for low η {sub he}, the model provides a self-consistent mechanism predicting 2G stars forming only in the central zones of the cluster. Finally, we have calculated the accumulated warm gas emission in the H30 α recombination line, analyzed its velocity profile, and estimated its intensity for super star clusters in interacting galaxies NGC4038/9 (Antennae) showing that the warm gas should be detectable with ALMA.« less

  19. Master-equation approach to the study of phase-change processes in data storage media

    NASA Astrophysics Data System (ADS)

    Blyuss, K. B.; Ashwin, P.; Bassom, A. P.; Wright, C. D.

    2005-07-01

    We study the dynamics of crystallization in phase-change materials using a master-equation approach in which the state of the crystallizing material is described by a cluster size distribution function. A model is developed using the thermodynamics of the processes involved and representing the clusters of size two and greater as a continuum but clusters of size one (monomers) as a separate equation. We present some partial analytical results for the isothermal case and for large cluster sizes, but principally we use numerical simulations to investigate the model. We obtain results that are in good agreement with experimental data and the model appears to be useful for the fast simulation of reading and writing processes in phase-change optical and electrical memories.

  20. The cosmological analysis of X-ray cluster surveys. III. 4D X-ray observable diagrams

    NASA Astrophysics Data System (ADS)

    Pierre, M.; Valotti, A.; Faccioli, L.; Clerc, N.; Gastaud, R.; Koulouridis, E.; Pacaud, F.

    2017-11-01

    Context. Despite compelling theoretical arguments, the use of clusters as cosmological probes is, in practice, frequently questioned because of the many uncertainties surrounding cluster-mass estimates. Aims: Our aim is to develop a fully self-consistent cosmological approach of X-ray cluster surveys, exclusively based on observable quantities rather than masses. This procedure is justified given the possibility to directly derive the cluster properties via ab initio modelling, either analytically or by using hydrodynamical simulations. In this third paper, we evaluate the method on cluster toy-catalogues. Methods: We model the population of detected clusters in the count-rate - hardness-ratio - angular size - redshift space and compare the corresponding four-dimensional diagram with theoretical predictions. The best cosmology+physics parameter configuration is determined using a simple minimisation procedure; errors on the parameters are estimated by averaging the results from ten independent survey realisations. The method allows a simultaneous fit of the cosmological parameters of the cluster evolutionary physics and of the selection effects. Results: When using information from the X-ray survey alone plus redshifts, this approach is shown to be as accurate as the modelling of the mass function for the cosmological parameters and to perform better for the cluster physics, for a similar level of assumptions on the scaling relations. It enables the identification of degenerate combinations of parameter values. Conclusions: Given the considerably shorter computer times involved for running the minimisation procedure in the observed parameter space, this method appears to clearly outperform traditional mass-based approaches when X-ray survey data alone are available.

  1. The Effect of Small Sample Size on Two-Level Model Estimates: A Review and Illustration

    ERIC Educational Resources Information Center

    McNeish, Daniel M.; Stapleton, Laura M.

    2016-01-01

    Multilevel models are an increasingly popular method to analyze data that originate from a clustered or hierarchical structure. To effectively utilize multilevel models, one must have an adequately large number of clusters; otherwise, some model parameters will be estimated with bias. The goals for this paper are to (1) raise awareness of the…

  2. A Latent Class Multidimensional Scaling Model for Two-Way One-Mode Continuous Rating Dissimilarity Data

    ERIC Educational Resources Information Center

    Vera, J. Fernando; Macias, Rodrigo; Heiser, Willem J.

    2009-01-01

    In this paper, we propose a cluster-MDS model for two-way one-mode continuous rating dissimilarity data. The model aims at partitioning the objects into classes and simultaneously representing the cluster centers in a low-dimensional space. Under the normal distribution assumption, a latent class model is developed in terms of the set of…

  3. Measurement Error Correction Formula for Cluster-Level Group Differences in Cluster Randomized and Observational Studies

    ERIC Educational Resources Information Center

    Cho, Sun-Joo; Preacher, Kristopher J.

    2016-01-01

    Multilevel modeling (MLM) is frequently used to detect cluster-level group differences in cluster randomized trial and observational studies. Group differences on the outcomes (posttest scores) are detected by controlling for the covariate (pretest scores) as a proxy variable for unobserved factors that predict future attributes. The pretest and…

  4. X-ray and Sunyaev-Zel'dovich Effect Measurements of the Gas Mass Fraction in Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    LaRoque, Samuel J.; Bonamente, Massimiliano; Carlstrom, John E.; Joy, Marshall K.; Nagai, Daisuke; Reese, Erik D.; Dawson, Kyle S.

    2006-01-01

    We present gas mass fractions of 38 massive galaxy clusters spanning redshifts from 0.14 to 0.89, derived from Chandra X-ray data and OVRO/BIMA interferometric Sunyaev-Zel' dovich Effect (SZE) measurements. We use three models for the gas distribution: (1) an isothermal Beta-model fit jointly to the X-ray data at radii beyond 100 kpc and to all of the SZE data, (2) a nonisothermal double Beta-model fit jointly to all of the X-ray and SZE data, and (3) an isothermal Beta-model fit only to the SZE spatial data. We show that the simple isothermal model well characterizes the intracluster medium (ICM) outside of the cluster core, and provides consistently good fits to clusters spanning a wide range of morphological properties. The agreement in the results shows that the core can be satisfactorily accounted for by either excluding the core in fits to the X-ray data (the 100 kpc-cut model) or modeling the intracluster gas with a non-isothermal double Beta-model. We find that the SZE is largely insensitive to structure in the core.

  5. A unifying model for adsorption and nucleation of vapors on solid surfaces.

    PubMed

    Laaksonen, Ari

    2015-04-23

    Vapor interaction with solid surfaces is traditionally described with adsorption isotherms in the undersaturated regime and with heterogeneous nucleation theory in the supersaturated regime. A class of adsorption isotherms is based on the idea of vapor molecule clustering around so-called active sites. However, as the isotherms do not account for the surface curvature effects of the clusters, they predict an infinitely thick adsorption layer at saturation and do not recognize the existence of the supersaturated regime. The classical heterogeneous nucleation theory also builds on the idea of cluster formation, but describes the interactions between the surface and the cluster with a single parameter, the contact angle, which provides limited information compared with adsorption isotherms. Here, a new model of vapor adsorption on nonporous solid surfaces is derived. The basic assumption is that adsorption proceeds via formation of molecular clusters, modeled as liquid caps. The equilibrium of the individual clusters with the vapor phase is described with the Frenkel-Halsey-Hill (FHH) adsorption theory modified with the Kelvin equation that corrects for the curvature effect on vapor pressure. The new model extends the FHH adsorption isotherm to be applicable both at submonolayer surface coverages and at supersaturated conditions. It shows good agreement with experimental adsorption data from 12 different adsorbent-adsorbate systems. The model predictions are also compared against heterogeneous nucleation data, and they show much better agreement than predictions of the classical heterogeneous nucleation theory.

  6. Mathematical modelling of complex contagion on clustered networks

    NASA Astrophysics Data System (ADS)

    O'sullivan, David J.; O'Keeffe, Gary; Fennell, Peter; Gleeson, James

    2015-09-01

    The spreading of behavior, such as the adoption of a new innovation, is influenced bythe structure of social networks that interconnect the population. In the experiments of Centola (Science, 2010), adoption of new behavior was shown to spread further and faster across clustered-lattice networks than across corresponding random networks. This implies that the “complex contagion” effects of social reinforcement are important in such diffusion, in contrast to “simple” contagion models of disease-spread which predict that epidemics would grow more efficiently on random networks than on clustered networks. To accurately model complex contagion on clustered networks remains a challenge because the usual assumptions (e.g. of mean-field theory) regarding tree-like networks are invalidated by the presence of triangles in the network; the triangles are, however, crucial to the social reinforcement mechanism, which posits an increased probability of a person adopting behavior that has been adopted by two or more neighbors. In this paper we modify the analytical approach that was introduced by Hebert-Dufresne et al. (Phys. Rev. E, 2010), to study disease-spread on clustered networks. We show how the approximation method can be adapted to a complex contagion model, and confirm the accuracy of the method with numerical simulations. The analytical results of the model enable us to quantify the level of social reinforcement that is required to observe—as in Centola’s experiments—faster diffusion on clustered topologies than on random networks.

  7. Rumor Diffusion in an Interests-Based Dynamic Social Network

    PubMed Central

    Mao, Xinjun; Guessoum, Zahia; Zhou, Huiping

    2013-01-01

    To research rumor diffusion in social friend network, based on interests, a dynamic friend network is proposed, which has the characteristics of clustering and community, and a diffusion model is also proposed. With this friend network and rumor diffusion model, based on the zombie-city model, some simulation experiments to analyze the characteristics of rumor diffusion in social friend networks have been conducted. The results show some interesting observations: (1) positive information may evolve to become a rumor through the diffusion process that people may modify the information by word of mouth; (2) with the same average degree, a random social network has a smaller clustering coefficient and is more beneficial for rumor diffusion than the dynamic friend network; (3) a rumor is spread more widely in a social network with a smaller global clustering coefficient than in a social network with a larger global clustering coefficient; and (4) a network with a smaller clustering coefficient has a larger efficiency. PMID:24453911

  8. Rumor diffusion in an interests-based dynamic social network.

    PubMed

    Tang, Mingsheng; Mao, Xinjun; Guessoum, Zahia; Zhou, Huiping

    2013-01-01

    To research rumor diffusion in social friend network, based on interests, a dynamic friend network is proposed, which has the characteristics of clustering and community, and a diffusion model is also proposed. With this friend network and rumor diffusion model, based on the zombie-city model, some simulation experiments to analyze the characteristics of rumor diffusion in social friend networks have been conducted. The results show some interesting observations: (1) positive information may evolve to become a rumor through the diffusion process that people may modify the information by word of mouth; (2) with the same average degree, a random social network has a smaller clustering coefficient and is more beneficial for rumor diffusion than the dynamic friend network; (3) a rumor is spread more widely in a social network with a smaller global clustering coefficient than in a social network with a larger global clustering coefficient; and (4) a network with a smaller clustering coefficient has a larger efficiency.

  9. Volume shift and charge instability of simple-metal clusters

    NASA Astrophysics Data System (ADS)

    Brajczewska, M.; Vieira, A.; Fiolhais, C.; Perdew, J. P.

    1996-12-01

    Experiment indicates that small clusters show changes (mostly contractions) of the bond lengths with respect to bulk values. We use the stabilized jellium model to study the self-expansion and self-compression of spherical clusters (neutral or ionized) of simple metals. Results from Kohn - Sham density functional theory are presented for small clusters of Al and Na, including negatively-charged ones. We also examine the stability of clusters with respect to charging.

  10. Quantification by qPCR of Pathobionts in Chronic Periodontitis: Development of Predictive Models of Disease Severity at Site-Specific Level.

    PubMed

    Tomás, Inmaculada; Regueira-Iglesias, Alba; López, Maria; Arias-Bujanda, Nora; Novoa, Lourdes; Balsa-Castro, Carlos; Tomás, Maria

    2017-01-01

    Currently, there is little evidence available on the development of predictive models for the diagnosis or prognosis of chronic periodontitis based on the qPCR quantification of subgingival pathobionts. Our objectives were to: (1) analyze and internally validate pathobiont-based models that could be used to distinguish different periodontal conditions at site-specific level within the same patient with chronic periodontitis; (2) develop nomograms derived from predictive models. Subgingival plaque samples were obtained from control and periodontal sites (probing pocket depth and clinical attachment loss <4 mm and >4 mm, respectively) from 40 patients with moderate-severe generalized chronic periodontitis. The samples were analyzed by qPCR using TaqMan probes and specific primers to determine the concentrations of Actinobacillus actinomycetemcomitans (Aa) , Fusobacterium nucleatum (Fn) , Parvimonas micra (Pm) , Porphyromonas gingivalis (Pg) , Prevotella intermedia (Pi) , Tannerella forsythia (Tf) , and Treponema denticola (Td) . The pathobiont-based models were obtained using multivariate binary logistic regression. The best models were selected according to specified criteria. The discrimination was assessed using receiver operating characteristic curves and numerous classification measures were thus obtained. The nomograms were built based on the best predictive models. Eight bacterial cluster-based models showed an area under the curve (AUC) ≥0.760 and a sensitivity and specificity ≥75.0%. The PiTfFn cluster showed an AUC of 0.773 (sensitivity and specificity = 75.0%). When Pm and AaPm were incorporated in the TdPiTfFn cluster, we detected the two best predictive models with an AUC of 0.788 and 0.789, respectively (sensitivity and specificity = 77.5%). The TdPiTfAa cluster had an AUC of 0.785 (sensitivity and specificity = 75.0%). When Pm was incorporated in this cluster, a new predictive model appeared with better AUC and specificity values (0.787 and 80.0%, respectively). Distinct clusters formed by species with different etiopathogenic role (belonging to different Socransky's complexes) had a good predictive accuracy for distinguishing a site with periodontal destruction in a periodontal patient. The predictive clusters with the lowest number of bacteria were PiTfFn and TdPiTfAa , while TdPiTfAaFnPm had the highest number. In all the developed nomograms, high concentrations of these clusters were associated with an increased probability of having a periodontal site in a patient with chronic periodontitis.

  11. Quantification by qPCR of Pathobionts in Chronic Periodontitis: Development of Predictive Models of Disease Severity at Site-Specific Level

    PubMed Central

    Tomás, Inmaculada; Regueira-Iglesias, Alba; López, Maria; Arias-Bujanda, Nora; Novoa, Lourdes; Balsa-Castro, Carlos; Tomás, Maria

    2017-01-01

    Currently, there is little evidence available on the development of predictive models for the diagnosis or prognosis of chronic periodontitis based on the qPCR quantification of subgingival pathobionts. Our objectives were to: (1) analyze and internally validate pathobiont-based models that could be used to distinguish different periodontal conditions at site-specific level within the same patient with chronic periodontitis; (2) develop nomograms derived from predictive models. Subgingival plaque samples were obtained from control and periodontal sites (probing pocket depth and clinical attachment loss <4 mm and >4 mm, respectively) from 40 patients with moderate-severe generalized chronic periodontitis. The samples were analyzed by qPCR using TaqMan probes and specific primers to determine the concentrations of Actinobacillus actinomycetemcomitans (Aa), Fusobacterium nucleatum (Fn), Parvimonas micra (Pm), Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi), Tannerella forsythia (Tf), and Treponema denticola (Td). The pathobiont-based models were obtained using multivariate binary logistic regression. The best models were selected according to specified criteria. The discrimination was assessed using receiver operating characteristic curves and numerous classification measures were thus obtained. The nomograms were built based on the best predictive models. Eight bacterial cluster-based models showed an area under the curve (AUC) ≥0.760 and a sensitivity and specificity ≥75.0%. The PiTfFn cluster showed an AUC of 0.773 (sensitivity and specificity = 75.0%). When Pm and AaPm were incorporated in the TdPiTfFn cluster, we detected the two best predictive models with an AUC of 0.788 and 0.789, respectively (sensitivity and specificity = 77.5%). The TdPiTfAa cluster had an AUC of 0.785 (sensitivity and specificity = 75.0%). When Pm was incorporated in this cluster, a new predictive model appeared with better AUC and specificity values (0.787 and 80.0%, respectively). Distinct clusters formed by species with different etiopathogenic role (belonging to different Socransky’s complexes) had a good predictive accuracy for distinguishing a site with periodontal destruction in a periodontal patient. The predictive clusters with the lowest number of bacteria were PiTfFn and TdPiTfAa, while TdPiTfAaFnPm had the highest number. In all the developed nomograms, high concentrations of these clusters were associated with an increased probability of having a periodontal site in a patient with chronic periodontitis. PMID:28848499

  12. Predicting lower mantle heterogeneity from 4-D Earth models

    NASA Astrophysics Data System (ADS)

    Flament, Nicolas; Williams, Simon; Müller, Dietmar; Gurnis, Michael; Bower, Dan J.

    2016-04-01

    The Earth's lower mantle is characterized by two large-low-shear velocity provinces (LLSVPs), approximately ˜15000 km in diameter and 500-1000 km high, located under Africa and the Pacific Ocean. The spatial stability and chemical nature of these LLSVPs are debated. Here, we compare the lower mantle structure predicted by forward global mantle flow models constrained by tectonic reconstructions (Bower et al., 2015) to an analysis of five global tomography models. In the dynamic models, spanning 230 million years, slabs subducting deep into the mantle deform an initially uniform basal layer containing 2% of the volume of the mantle. Basal density, convective vigour (Rayleigh number Ra), mantle viscosity, absolute plate motions, and relative plate motions are varied in a series of model cases. We use cluster analysis to classify a set of equally-spaced points (average separation ˜0.45°) on the Earth's surface into two groups of points with similar variations in present-day temperature between 1000-2800 km depth, for each model case. Below ˜2400 km depth, this procedure reveals a high-temperature cluster in which mantle temperature is significantly larger than ambient and a low-temperature cluster in which mantle temperature is lower than ambient. The spatial extent of the high-temperature cluster is in first-order agreement with the outlines of the African and Pacific LLSVPs revealed by a similar cluster analysis of five tomography models (Lekic et al., 2012). Model success is quantified by computing the accuracy and sensitivity of the predicted temperature clusters in predicting the low-velocity cluster obtained from tomography (Lekic et al., 2012). In these cases, the accuracy varies between 0.61-0.80, where a value of 0.5 represents the random case, and the sensitivity ranges between 0.18-0.83. The largest accuracies and sensitivities are obtained for models with Ra ≈ 5 x 107, no asthenosphere (or an asthenosphere restricted to the oceanic domain), and a basal layer ˜ 4% denser than ambient mantle. Increasing convective vigour (Ra ≈ 5 x 108) or decreasing the density of the basal layer decreases both the accuracy and sensitivity of the predicted lower mantle structure. References: D. J. Bower, M. Gurnis, N. Flament, Assimilating lithosphere and slab history in 4-D Earth models. Phys. Earth Planet. Inter. 238, 8-22 (2015). V. Lekic, S. Cottaar, A. Dziewonski, B. Romanowicz, Cluster analysis of global lower mantle tomography: A new class of structure and implications for chemical heterogeneity. Earth Planet. Sci. Lett. 357, 68-77 (2012).

  13. Periodic and Aperiodic Close Packing: A Spontaneous Hard-Sphere Model.

    ERIC Educational Resources Information Center

    van de Waal, B. W.

    1985-01-01

    Shows how to make close-packed models from balloons and table tennis balls to illustrate structural features of clusters and organometallic cluster-compounds (which are of great interest in the study of chemical reactions). These models provide a very inexpensive and tactile illustration of the organization of matter for concrete operational…

  14. NUCLEAR AND HEAVY ION PHYSICS: α-decay half-lives of superheavy nuclei and general predictions

    NASA Astrophysics Data System (ADS)

    Dong, Jian-Min; Zhang, Hong-Fei; Wang, Yan-Zhao; Zuo, Wei; Su, Xin-Ning; Li, Jun-Qing

    2009-08-01

    The generalized liquid drop model (GLDM) and the cluster model have been employed to calculate the α-decay half-lives of superheavy nuclei (SHN) using the experimental α-decay Q values. The results of the cluster model are slightly poorer than those from the GLDM if experimental Q values are used. The prediction powers of these two models with theoretical Q values from Audi et al. (QAudi) and Muntian et al. (QM) have been tested to find that the cluster model with QAudi and QM could provide reliable results for Z > 112 but the GLDM with QAudi for Z <= 112. The half-lives of some still unknown nuclei are predicted by these two models and these results may be useful for future experimental assignment and identification.

  15. Searching for Constraints on Starobinsky's Model with a Disappearing Cosmological Constant on Galaxy Cluster Scales

    NASA Astrophysics Data System (ADS)

    Alexeyev, S. O.; Latosh, B. N.; Echeistov, V. A.

    2017-12-01

    Predictions of the f( R)-gravity model with a disappearing cosmological constant (Starobinsky's model) on scales characteristic of galaxies and their clusters are considered. The absence of a difference in the mass dependence of the turnaround radius between Starobinsky's model and General Relativity accessible to observation at the current accuracy of measurements has been established. This is true both for small masses (from 109 M Sun) corresponding to an individual galaxy and for masses corresponding to large galaxy clusters (up to 1015 M Sun). The turnaround radius increases with parameter n for all masses. Despite the fact that some models give a considerably smaller turnaround radius than does General Relativity, none of the models goes beyond the bounds specified by the observational data.

  16. Structure of the starch granule--a curved crystal.

    PubMed

    Larsson, K

    1991-09-01

    A structure model of the molecular arrangement in native starch proposed earlier is further considered, with special regard to the lateral packing of cluster units. The amylopectin molecules are radially distributed, with branches concentrated in clusters. Within each cluster the polyglucan chains form double helices which are hexagonally packed. The clusters form spherically concentric crystalline layers with amylose in an amorphous form acting as a space-filler. A translational mechanism for the change of helical direction at boundaries between clusters is proposed which can account for variations in the curvature of the concentric layers. The model is related to X-ray diffraction data and optical birefringence, considering dissembly at gelatinization. The structure is also discussed in relation to biosynthesis. Some aspects of gelatinization, such as the recent glass-transition approach, are then considered.

  17. Cosmic variance of the galaxy cluster weak lensing signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruen, D.; Seitz, S.; Becker, M. R.

    Intrinsic variations of the projected density profiles of clusters of galaxies at fixed mass are a source of uncertainty for cluster weak lensing. We present a semi-analytical model to account for this effect, based on a combination of variations in halo concentration, ellipticity and orientation, and the presence of correlated haloes. We calibrate the parameters of our model at the 10 per cent level to match the empirical cosmic variance of cluster profiles at M 200m ≈ 10 14…10 15h –1M ⊙, z = 0.25…0.5 in a cosmological simulation. We show that weak lensing measurements of clusters significantly underestimate massmore » uncertainties if intrinsic profile variations are ignored, and that our model can be used to provide correct mass likelihoods. Effects on the achievable accuracy of weak lensing cluster mass measurements are particularly strong for the most massive clusters and deep observations (with ≈20 per cent uncertainty from cosmic variance alone at M 200m ≈ 10 15h –1M ⊙ and z = 0.25), but significant also under typical ground-based conditions. We show that neglecting intrinsic profile variations leads to biases in the mass-observable relation constrained with weak lensing, both for intrinsic scatter and overall scale (the latter at the 15 per cent level). Furthermore, these biases are in excess of the statistical errors of upcoming surveys and can be avoided if the cosmic variance of cluster profiles is accounted for.« less

  18. Cosmic variance of the galaxy cluster weak lensing signal

    DOE PAGES

    Gruen, D.; Seitz, S.; Becker, M. R.; ...

    2015-04-13

    Intrinsic variations of the projected density profiles of clusters of galaxies at fixed mass are a source of uncertainty for cluster weak lensing. We present a semi-analytical model to account for this effect, based on a combination of variations in halo concentration, ellipticity and orientation, and the presence of correlated haloes. We calibrate the parameters of our model at the 10 per cent level to match the empirical cosmic variance of cluster profiles at M 200m ≈ 10 14…10 15h –1M ⊙, z = 0.25…0.5 in a cosmological simulation. We show that weak lensing measurements of clusters significantly underestimate massmore » uncertainties if intrinsic profile variations are ignored, and that our model can be used to provide correct mass likelihoods. Effects on the achievable accuracy of weak lensing cluster mass measurements are particularly strong for the most massive clusters and deep observations (with ≈20 per cent uncertainty from cosmic variance alone at M 200m ≈ 10 15h –1M ⊙ and z = 0.25), but significant also under typical ground-based conditions. We show that neglecting intrinsic profile variations leads to biases in the mass-observable relation constrained with weak lensing, both for intrinsic scatter and overall scale (the latter at the 15 per cent level). Furthermore, these biases are in excess of the statistical errors of upcoming surveys and can be avoided if the cosmic variance of cluster profiles is accounted for.« less

  19. Identifying optimal threshold statistics for elimination of hookworm using a stochastic simulation model.

    PubMed

    Truscott, James E; Werkman, Marleen; Wright, James E; Farrell, Sam H; Sarkar, Rajiv; Ásbjörnsdóttir, Kristjana; Anderson, Roy M

    2017-06-30

    There is an increased focus on whether mass drug administration (MDA) programmes alone can interrupt the transmission of soil-transmitted helminths (STH). Mathematical models can be used to model these interventions and are increasingly being implemented to inform investigators about expected trial outcome and the choice of optimum study design. One key factor is the choice of threshold for detecting elimination. However, there are currently no thresholds defined for STH regarding breaking transmission. We develop a simulation of an elimination study, based on the DeWorm3 project, using an individual-based stochastic disease transmission model in conjunction with models of MDA, sampling, diagnostics and the construction of study clusters. The simulation is then used to analyse the relationship between the study end-point elimination threshold and whether elimination is achieved in the long term within the model. We analyse the quality of a range of statistics in terms of the positive predictive values (PPV) and how they depend on a range of covariates, including threshold values, baseline prevalence, measurement time point and how clusters are constructed. End-point infection prevalence performs well in discriminating between villages that achieve interruption of transmission and those that do not, although the quality of the threshold is sensitive to baseline prevalence and threshold value. Optimal post-treatment prevalence threshold value for determining elimination is in the range 2% or less when the baseline prevalence range is broad. For multiple clusters of communities, both the probability of elimination and the ability of thresholds to detect it are strongly dependent on the size of the cluster and the size distribution of the constituent communities. Number of communities in a cluster is a key indicator of probability of elimination and PPV. Extending the time, post-study endpoint, at which the threshold statistic is measured improves PPV value in discriminating between eliminating clusters and those that bounce back. The probability of elimination and PPV are very sensitive to baseline prevalence for individual communities. However, most studies and programmes are constructed on the basis of clusters. Since elimination occurs within smaller population sub-units, the construction of clusters introduces new sensitivities for elimination threshold values to cluster size and the underlying population structure. Study simulation offers an opportunity to investigate key sources of sensitivity for elimination studies and programme designs in advance and to tailor interventions to prevailing local or national conditions.

  20. Identification of spatiotemporal nutrient patterns in a coastal bay via an integrated k-means clustering and gravity model.

    PubMed

    Chang, Ni-Bin; Wimberly, Brent; Xuan, Zhemin

    2012-03-01

    This study presents an integrated k-means clustering and gravity model (IKCGM) for investigating the spatiotemporal patterns of nutrient and associated dissolved oxygen levels in Tampa Bay, Florida. By using a k-means clustering analysis to first partition the nutrient data into a user-specified number of subsets, it is possible to discover the spatiotemporal patterns of nutrient distribution in the bay and capture the inherent linkages of hydrodynamic and biogeochemical features. Such patterns may then be combined with a gravity model to link the nutrient source contribution from each coastal watershed to the generated clusters in the bay to aid in the source proportion analysis for environmental management. The clustering analysis was carried out based on 1 year (2008) water quality data composed of 55 sample stations throughout Tampa Bay collected by the Environmental Protection Commission of Hillsborough County. In addition, hydrological and river water quality data of the same year were acquired from the United States Geological Survey's National Water Information System to support the gravity modeling analysis. The results show that the k-means model with 8 clusters is the optimal choice, in which cluster 2 at Lower Tampa Bay had the minimum values of total nitrogen (TN) concentrations, chlorophyll a (Chl-a) concentrations, and ocean color values in every season as well as the minimum concentration of total phosphorus (TP) in three consecutive seasons in 2008. The datasets indicate that Lower Tampa Bay is an area with limited nutrient input throughout the year. Cluster 5, located in Middle Tampa Bay, displayed elevated TN concentrations, ocean color values, and Chl-a concentrations, suggesting that high values of colored dissolved organic matter are linked with some nutrient sources. The data presented by the gravity modeling analysis indicate that the Alafia River Basin is the major contributor of nutrients in terms of both TP and TN values in all seasons. With this new integration, improvements for environmental monitoring and assessment were achieved to advance our understanding of sea-land interactions and nutrient cycling in a critical coastal bay, the Gulf of Mexico. This journal is © The Royal Society of Chemistry 2012

Top