Science.gov

Sample records for clustered yy1 binding

  1. Identification of clustered YY1 binding sites in Imprinting Control Regions

    SciTech Connect

    Kim, J D; Hinz, A; Bergmann, A; Huang, J; Ovcharenko, I; Stubbs, L; Kim, J

    2006-04-19

    Mammalian genomic imprinting is regulated by Imprinting Control Regions (ICRs) that are usually associated with tandem arrays of transcription factor binding sites. In the current study, the sequence features derived from a tandem array of YY1 binding sites of Peg3-DMR (differentially methylated region) led us to identify three additional clustered YY1 binding sites, which are also localized within the DMRs of Xist, Tsix, and Nespas. These regions have been shown to play a critical role as ICRs for the regulation of surrounding genes. These ICRs have maintained a tandem array of YY1 binding sites during mammalian evolution. The in vivo binding of YY1 to these regions is allele-specific and only to the unmethylated active alleles. Promoter/enhancer assays suggest that a tandem array of YY1 binding sites function as a potential orientation-dependent enhancer. Insulator assays revealed that the enhancer-blocking activity is detected only in the YY1 binding sites of Peg3-DMR but not in the YY1 binding sites of other DMRs. Overall, our identification of three additional clustered YY1 binding sites in imprinted domains suggests a significant role for YY1 in mammalian genomic imprinting.

  2. Evolutionary Conserved Motif Finder (ECMFinder) for genome-wide identification of clustered YY1- and CTCF-binding sites

    PubMed Central

    Kang, Keunsoo; Chung, Jae Hoon; Kim, Joomyeong

    2009-01-01

    We have developed a new bioinformatics approach called ECMFinder (Evolutionary Conserved Motif Finder). This program searches for a given DNA motif within the entire genome of one species and uses the gene association information of a potential transcription factor-binding site (TFBS) to screen the homologous regions of a second and third species. If multiple species have this potential TFBS in homologous positions, this program recognizes the identified TFBS as an evolutionary conserved motif (ECM). This program outputs a list of ECMs, which can be uploaded as a Custom Track in the UCSC genome browser and can be visualized along with other available data. The feasibility of this approach was tested by searching the genomes of three mammals (human, mouse and cow) with the DNA-binding motifs of YY1 and CTCF. This program successfully identified many clustered YY1- and CTCF-binding sites that are conserved among these species but were previously undetected. In particular, this program identified CTCF-binding sites that are located close to the Dlk1, Magel2 and Cdkn1c imprinted genes. Individual ChIP experiments confirmed the in vivo binding of the YY1 and CTCF proteins to most of these newly discovered binding sites, demonstrating the feasibility and usefulness of ECMFinder. PMID:19208640

  3. An Upstream YY1 Binding Site on the HIV-1 LTR Contributes to Latent Infection

    PubMed Central

    Bernhard, Wendy; Barreto, Kris; Raithatha, Sheetal; Sadowski, Ivan

    2013-01-01

    During HIV-1 infection a population of latently infected cells is established. This population is the major obstacle preventing total eradication of the virus from AIDS patients. HIV-1 latency is thought to arise by various mechanisms including repressive chromatin modifications. Transcription factors such as YY1 have been shown to facilitate repressive chromatin modifications by the recruitment of histone deacetylases. In this study, we identified a novel binding site for YY1 on the HIV-1 LTR, 120 nucleotides upstream of the transcription start site. We show that YY1 can bind to this site in vitro and in vivo and that binding to the LTR is dissociated upon T cell activation. Overexpression of YY1 causes an increase in the proportion of cells that produce latent infections. These observations, in combination with previous results, demonstrate that YY1 plays a prominent role in controlling the establishment and maintenance of latent HIV-1 provirus in unstimulated cells. PMID:24116200

  4. The zinc fingers of YY1 bind single-stranded RNA with low sequence specificity.

    PubMed

    Wai, Dorothy C C; Shihab, Manar; Low, Jason K K; Mackay, Joel P

    2016-11-02

    Classical zinc fingers (ZFs) are traditionally considered to act as sequence-specific DNA-binding domains. More recently, classical ZFs have been recognised as potential RNA-binding modules, raising the intriguing possibility that classical-ZF transcription factors are involved in post-transcriptional gene regulation via direct RNA binding. To date, however, only one classical ZF-RNA complex, that involving TFIIIA, has been structurally characterised. Yin Yang-1 (YY1) is a multi-functional transcription factor involved in many regulatory processes, and binds DNA via four classical ZFs. Recent evidence suggests that YY1 also interacts with RNA, but the molecular nature of the interaction remains unknown. In the present work, we directly assess the ability of YY1 to bind RNA using in vitro assays. Systematic Evolution of Ligands by EXponential enrichment (SELEX) was used to identify preferred RNA sequences bound by the YY1 ZFs from a randomised library over multiple rounds of selection. However, a strong motif was not consistently recovered, suggesting that the RNA sequence selectivity of these domains is modest. YY1 ZF residues involved in binding to single-stranded RNA were identified by NMR spectroscopy and found to be largely distinct from the set of residues involved in DNA binding, suggesting that interactions between YY1 and ssRNA constitute a separate mode of nucleic acid binding. Our data are consistent with recent reports that YY1 can bind to RNA in a low-specificity, yet physiologically relevant manner.

  5. The zinc fingers of YY1 bind single-stranded RNA with low sequence specificity

    PubMed Central

    Wai, Dorothy C.C.; Shihab, Manar; Low, Jason K.K.; Mackay, Joel P.

    2016-01-01

    Classical zinc fingers (ZFs) are traditionally considered to act as sequence-specific DNA-binding domains. More recently, classical ZFs have been recognised as potential RNA-binding modules, raising the intriguing possibility that classical-ZF transcription factors are involved in post-transcriptional gene regulation via direct RNA binding. To date, however, only one classical ZF-RNA complex, that involving TFIIIA, has been structurally characterised. Yin Yang-1 (YY1) is a multi-functional transcription factor involved in many regulatory processes, and binds DNA via four classical ZFs. Recent evidence suggests that YY1 also interacts with RNA, but the molecular nature of the interaction remains unknown. In the present work, we directly assess the ability of YY1 to bind RNA using in vitro assays. Systematic Evolution of Ligands by EXponential enrichment (SELEX) was used to identify preferred RNA sequences bound by the YY1 ZFs from a randomised library over multiple rounds of selection. However, a strong motif was not consistently recovered, suggesting that the RNA sequence selectivity of these domains is modest. YY1 ZF residues involved in binding to single-stranded RNA were identified by NMR spectroscopy and found to be largely distinct from the set of residues involved in DNA binding, suggesting that interactions between YY1 and ssRNA constitute a separate mode of nucleic acid binding. Our data are consistent with recent reports that YY1 can bind to RNA in a low-specificity, yet physiologically relevant manner. PMID:27369384

  6. Regulation of the transcription factor YY1 in mitosis through phosphorylation of its DNA-binding domain.

    PubMed

    Rizkallah, Raed; Hurt, Myra M

    2009-11-01

    Yin-Yang 1 (YY1) is a ubiquitously expressed zinc finger transcription factor. It regulates a vast array of genes playing critical roles in development, differentiation, and cell cycle. Very little is known about the mechanisms that regulate the functions of YY1. It has long been proposed that YY1 is a phosphoprotein; however, a direct link between phosphorylation and the function of YY1 has never been proven. Investigation of the localization of YY1 during mitosis shows that it is distributed to the cytoplasm during prophase and remains excluded from DNA until early telophase. Immunostaining studies show that YY1 is distributed equally between daughter cells and rapidly associates with decondensing chromosomes in telophase, suggesting a role for YY1 in early marking of active and repressed genes. The exclusion of YY1 from DNA in prometaphase HeLa cells correlated with an increase in the phosphorylation of YY1 and loss of DNA-binding activity that can be reversed by dephosphorylation. We have mapped three phosphorylation sites on YY1 during mitosis and show that phosphorylation of two of these sites can abolish the DNA-binding activity of YY1. These results demonstrate a novel mechanism for the inactivation of YY1 through phosphorylation of its DNA-binding domain.

  7. Regulation of the Transcription Factor YY1 in Mitosis through Phosphorylation of Its DNA-binding Domain

    PubMed Central

    Rizkallah, Raed

    2009-01-01

    Yin-Yang 1 (YY1) is a ubiquitously expressed zinc finger transcription factor. It regulates a vast array of genes playing critical roles in development, differentiation, and cell cycle. Very little is known about the mechanisms that regulate the functions of YY1. It has long been proposed that YY1 is a phosphoprotein; however, a direct link between phosphorylation and the function of YY1 has never been proven. Investigation of the localization of YY1 during mitosis shows that it is distributed to the cytoplasm during prophase and remains excluded from DNA until early telophase. Immunostaining studies show that YY1 is distributed equally between daughter cells and rapidly associates with decondensing chromosomes in telophase, suggesting a role for YY1 in early marking of active and repressed genes. The exclusion of YY1 from DNA in prometaphase HeLa cells correlated with an increase in the phosphorylation of YY1 and loss of DNA-binding activity that can be reversed by dephosphorylation. We have mapped three phosphorylation sites on YY1 during mitosis and show that phosphorylation of two of these sites can abolish the DNA-binding activity of YY1. These results demonstrate a novel mechanism for the inactivation of YY1 through phosphorylation of its DNA-binding domain. PMID:19793915

  8. Aurora A Phosphorylation of YY1 during Mitosis Inactivates its DNA Binding Activity.

    PubMed

    Alexander, Karen E; Rizkallah, Raed

    2017-08-30

    Successful execution of mitotic cell division requires the tight synchronisation of numerous biochemical pathways. The underlying mechanisms that govern chromosome segregation have been thoroughly investigated. However, the mechanisms that regulate transcription factors in coordination with mitotic progression remain poorly understood. In this report, we identify the transcription factor YY1 as a novel mitotic substrate for the Aurora A kinase, a key regulator of critical mitotic events, like centrosome maturation and spindle formation. Using in vitro kinase assays, we show that Aurora A directly phosphorylates YY1 at serine 365 in the DNA-binding domain. Using a new phospho-specific antibody, we show that YY1 phosphorylation at serine 365 occurs during mitosis, and that this phosphorylation is significantly reduced upon inhibition of Aurora A. Furthermore, we show, using electrophoretic mobility shift and chromatin immunoprecipitation assays, that phosphorylation of YY1 at this site abolishes its DNA binding activity in vitro and in vivo. In conformity with this loss of binding activity, phosphorylated YY1 also loses its transctivation ability as demonstrated by a luciferase reporter assay. These results uncover a novel mechanism that implicates Aurora A in the mitotic inactivation of transcription factors.

  9. YY1 binding association with sex-biased transcription revealed through X-linked transcript levels and allelic binding analyses

    PubMed Central

    Chen, Chih-yu; Shi, Wenqiang; Balaton, Bradley P.; Matthews, Allison M.; Li, Yifeng; Arenillas, David J.; Mathelier, Anthony; Itoh, Masayoshi; Kawaji, Hideya; Lassmann, Timo; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R. R.; Brown, Carolyn J.; Wasserman, Wyeth W.

    2016-01-01

    Sex differences in susceptibility and progression have been reported in numerous diseases. Female cells have two copies of the X chromosome with X-chromosome inactivation imparting mono-allelic gene silencing for dosage compensation. However, a subset of genes, named escapees, escape silencing and are transcribed bi-allelically resulting in sexual dimorphism. Here we conducted in silico analyses of the sexes using human datasets to gain perspectives into such regulation. We identified transcription start sites of escapees (escTSSs) based on higher transcription levels in female cells using FANTOM5 CAGE data. Significant over-representations of YY1 transcription factor binding motif and ChIP-seq peaks around escTSSs highlighted its positive association with escapees. Furthermore, YY1 occupancy is significantly biased towards the inactive X (Xi) at long non-coding RNA loci that are frequent contacts of Xi-specific superloops. Our study suggests a role for YY1 in transcriptional activity on Xi in general through sequence-specific binding, and its involvement at superloop anchors. PMID:27857184

  10. RING1 and YY1 binding protein suppresses breast cancer growth and metastasis.

    PubMed

    Zhou, Hongyan; Li, Jie; Zhang, Zhanqiang; Ye, Runyi; Shao, Nan; Cheang, Tuckyun; Wang, Shenming

    2016-12-01

    Evidence suggests that RING1 and YY1 binding protein (RYBP) functions as a tumor suppressor. However, its role in breast cancer remains unclear. In the present study, the expression of RYBP was assessed in breast cancer patients and cell lines. Disease-free survival durations of breast cancer patients with high RYBP expression were determined based on the ATCG dataset. The effects of RYBP overexpression on cell growth, migration and invasive potency were also assessed. Nude mouse xenograft and lung metastasis models were also used to confirm the role of RYBP. The involvement of SRRM3 in RYBP-mediated breast cancer suppression was explored using SRRM3 siRNA. The potential relationship between RYBP, SRRM3, and REST-003 was examined by qPCR. The results showed that RYBP was downregulated in breast cancer patients and in several breast cancer cell lines. Breast cancer patients with high expression levels of RYBP displayed better disease-free survival. Overexpression of RYBP in MDA-MB-231 and SK-BR-3 cells significantly decreased cell proliferation, migration, and invasion ability, and increased the proportion of cells arrested in S-phase compared with the negative control cells. Additionally, upregulation of proliferation-related cell cycle proteins (cyclin A and cyclin B1) and E-cadherin, and downregulation of snail were observed in RYBP-overexpressing cells. Overexpression of RYBP reduced tumor volume and weight as well as metastatic foci in the lungs of nude mice. SRRM3 knockdown by siRNA, which is downregulated after RYBP overexpression, suppressed cell growth and metastasis in MDA-MB-231 and SK-BR-3 cells. Furthermore, qPCR analysis revealed that REST-003 ncRNA was downregulated in cells overexpressing RYBP and in SRRM3-inhibited cells. Moreover, cell invasion ability and growth were increased after SRRM3 upregulation in RYBP-overexpressing cells, but they were decreased following si-REST-003 transfection. In conclusion, overexpression of RYBP suppresses breast

  11. YY1 modulates taxane response in epithelial ovarian cancer

    SciTech Connect

    Matsumura, Noriomi; Huang, Zhiqing; Baba, Tsukasa; Lee, Paula S.; Barnett, Jason C.; Mori, Seiichi; Chang, Jeffrey T.; Kuo, Wen-Lin; Gusberg, Alison H.; Whitaker, Regina S.; Gray, JoeW.; Fujii, Shingo; Berchuck, Andrew; Murphy, Susan K.

    2008-10-10

    The results of this study show that a high YY1 gene signature (characterized by coordinate elevated expression of transcription factor YY1 and putative YY1 target genes) within serous epithelial ovarian cancers is associated with enhanced response to taxane-based chemotherapy and improved survival. If confirmed in a prospective study, these results have important implications for the potential future use of individualized therapy in treating patients with ovarian cancer. Identification of the YY1 gene signature profile within a tumor prior to initiation of chemotherapy may provide valuable information about the anticipated response of these tumors to taxane-based drugs, leading to better informed decisions regarding chemotherapeutic choice. Survival of ovarian cancer patients is largely dictated by their response to chemotherapy, which depends on underlying molecular features of the malignancy. We previously identified YIN YANG 1 (YY1) as a gene whose expression is positively correlated with ovarian cancer survival. Herein we investigated the mechanistic basis of this association. Epigenetic and genetic characteristics of YY1 in serous epithelial ovarian cancer (SEOC) were analyzed along with YY1 mRNA and protein. Patterns of gene expression in primary SEOC and in the NCI60 database were investigated using computational methods. YY1 function and modulation of chemotherapeutic response in vitro was studied using siRNA knockdown. Microarray analysis showed strong positive correlation between expression of YY1 and genes with YY1 and transcription factor E2F binding motifs in SEOC and in the NCI60 cancer cell lines. Clustering of microarray data for these genes revealed that high YY1/E2F3 activity positively correlates with survival of patients treated with the microtubule stabilizing drug paclitaxel. Increased sensitivity to taxanes, but not to DNA crosslinking platinum agents, was also characteristic of NCI60 cancer cell lines with a high YY1/E2F signature. YY1

  12. Critical role of YY1 in cardiac morphogenesis.

    PubMed

    Beketaev, Ilimbek; Zhang, Yi; Kim, Eun Young; Yu, Wei; Qian, Ling; Wang, Jun

    2015-05-01

    Yin Yang 1 (YY1), the only DNA binding polycomb group protein, was reported to regulate cardiomyocyte differentiation during early cardiac mesoderm development. However, whether it contributes to cardiac morphogenesis at later developmental stage(s) during embryogenesis is unknown. We excised YY1 in murine hearts during embryogenesis using two temporal-spatially controlled cre activation approaches, and revealed critical roles of YY1 in cardiac structural formation. Alpha-myosin heavy chain-cre (α-MHC-cre)-mediated cardiomyocyte-specific ablation of YY1 (MHC-YY1) resulted in perinatal death of mutant mice, and Nkx2.5-cre-mediated YY1 null embryos (Nkx2.5-YY1) died embryonically. In the Nkx2.5-YY1 mutants, the endocardial cushions (ECs) of both atrioventricular canal (AVC) and outflow tract (OFT) were hypoplastic due to decreased proliferation and increased apoptosis. Endothelial-to-mesenchymal transition (EMT) progress was also compromised in ECs. Nkx2.5-YY1 mutant hearts had normal formation of extracellular matrix, suggesting that the impaired EMT resulted from the direct loss of YY1. We further uncovered that a number of factors that are involved in normal cardiogenesis were downstream targets of YY1. YY1 plays a critical role in cardiac development and occupies a high-level position within the hierarchy of the cardiac transcriptional network that governs normal cardiogenesis. © 2015 Wiley Periodicals, Inc.

  13. YY1 Is Required for Germinal Center B Cell Development.

    PubMed

    Banerjee, Anupam; Sindhava, Vishal; Vuyyuru, Raja; Jha, Vibha; Hodewadekar, Suchita; Manser, Tim; Atchison, Michael L

    2016-01-01

    YY1 has been implicated as a master regulator of germinal center B cell development as YY1 binding sites are frequently present in promoters of germinal center-expressed genes. YY1 is known to be important for other stages of B cell development including the pro-B and pre-B cells stages. To determine if YY1 plays a critical role in germinal center development, we evaluated YY1 expression during B cell development, and used a YY1 conditional knock-out approach for deletion of YY1 in germinal center B cells (CRE driven by the immunoglobulin heavy chain γ1 switch region promoter; γ1-CRE). We found that YY1 is most highly expressed in germinal center B cells and is increased 3 fold in splenic B cells activated by treatment with anti-IgM and anti-CD40. In addition, deletion of the yy1 gene by action of γ1-CRE recombinase resulted in significant loss of GC cells in both un-immunized and immunized contexts with corresponding loss of serum IgG1. Our results show a crucial role for YY1 in the germinal center reaction.

  14. YY1 Is Required for Germinal Center B Cell Development

    PubMed Central

    Vuyyuru, Raja; Jha, Vibha; Hodewadekar, Suchita; Manser, Tim; Atchison, Michael L.

    2016-01-01

    YY1 has been implicated as a master regulator of germinal center B cell development as YY1 binding sites are frequently present in promoters of germinal center-expressed genes. YY1 is known to be important for other stages of B cell development including the pro-B and pre-B cells stages. To determine if YY1 plays a critical role in germinal center development, we evaluated YY1 expression during B cell development, and used a YY1 conditional knock-out approach for deletion of YY1 in germinal center B cells (CRE driven by the immunoglobulin heavy chain γ1 switch region promoter; γ1-CRE). We found that YY1 is most highly expressed in germinal center B cells and is increased 3 fold in splenic B cells activated by treatment with anti-IgM and anti-CD40. In addition, deletion of the yy1 gene by action of γ1-CRE recombinase resulted in significant loss of GC cells in both un-immunized and immunized contexts with corresponding loss of serum IgG1. Our results show a crucial role for YY1 in the germinal center reaction. PMID:27167731

  15. CtBP Levels Control Intergenic Transcripts, PHO/YY1 DNA Binding, and PcG Recruitment to DNA

    PubMed Central

    Basu, Arindam; Atchison, Michael L.

    2013-01-01

    Carboxy-terminal binding protein (CtBP) is a well-known corepressor of several DNA binding transcription factors in Drosophila as well as in mammals. CtBP is implicated in Polycomb Group (PcG) complex-mediated transcriptional repression because it can bind to some PcG proteins, and mutation of the ctbp gene in flies results in lost PcG protein recruitment to Polycomb Response Elements (PREs) and lost PcG repression. However, the mechanism of reduced PcG DNA binding in CtBP mutant backgrounds is unknown. We show here that in a Drosophila CtBP mutant background, intergenic transcripts are induced across several PRE sequences and this corresponds to reduced DNA binding by PcG proteins Pleiohomeotic (PHO) and Polycomb (Pc), and reduced trimethylation of histone H3 on lysine 27, a hallmark of PcG repression. Restoration of CtBP levels by expression of a CtBP transgene results in repression of intergenic transcripts, restored PcG binding, and elevated trimethylation of H3 on lysine 27. Our results support a model in which CtBP regulates expression of intergenic transcripts that controls DNA binding by PcG proteins and subsequent histone modifications and transcriptional activity. PMID:20082324

  16. YY1 plays an essential role at all stages of B-cell differentiation

    PubMed Central

    Kleiman, Eden; Jia, Haiqun; Loguercio, Salvatore; Su, Andrew I.; Feeney, Ann J.

    2016-01-01

    Ying Yang 1 (YY1) is a ubiquitously expressed transcription factor shown to be essential for pro–B-cell development. However, the role of YY1 in other B-cell populations has never been investigated. Recent bioinformatics analysis data have implicated YY1 in the germinal center (GC) B-cell transcriptional program. In accord with this prediction, we demonstrated that deletion of YY1 by Cγ1-Cre completely prevented differentiation of GC B cells and plasma cells. To determine if YY1 was also required for the differentiation of other B-cell populations, we deleted YY1 with CD19-Cre and found that all peripheral B-cell subsets, including B1 B cells, require YY1 for their differentiation. Transitional 1 (T1) B cells were the most dependent upon YY1, being sensitive to even a half-dosage of YY1 and also to short-term YY1 deletion by tamoxifen-induced Cre. We show that YY1 exerts its effects, in part, by promoting B-cell survival and proliferation. ChIP-sequencing shows that YY1 predominantly binds to promoters, and pathway analysis of the genes that bind YY1 show enrichment in ribosomal functions, mitochondrial functions such as bioenergetics, and functions related to transcription such as mRNA splicing. By RNA-sequencing analysis of differentially expressed genes, we demonstrated that YY1 normally activates genes involved in mitochondrial bioenergetics, whereas it normally down-regulates genes involved in transcription, mRNA splicing, NF-κB signaling pathways, the AP-1 transcription factor network, chromatin remodeling, cytokine signaling pathways, cell adhesion, and cell proliferation. Our results show the crucial role that YY1 plays in regulating broad general processes throughout all stages of B-cell differentiation. PMID:27335461

  17. YY1 tethers Xist RNA to the inactive X nucleation center

    PubMed Central

    Jeon, Yesu; Lee, Jeannie T.

    2011-01-01

    SUMMARY The long noncoding Xist RNA inactivates one X-chromosome in the female mammal. Current models posit that Xist induces silencing as it spreads along X and recruits Polycomb complexes. However, the mechanisms for Xist loading and spreading are currently unknown. Here, we define the nucleation center for Xist RNA and show that YY1 docks Xist particles onto the X chromosome. YY1 is a ‘bivalent’ protein, capable of binding both RNA and DNA through different sequence motifs. Xist’s exclusive attachment to the inactive X is determined by an epigenetically regulated trio of YY1 sites as well as allelic origin. Specific YY1-to-RNA and YY1-to-DNA contacts are required to load Xist particles onto X. YY1 interacts with Xist RNA through Repeat C. We propose that YY1 acts as adaptor between regulatory RNA and chromatin targets. PMID:21729784

  18. YY1 positively regulates human UBIAD1 expression

    SciTech Connect

    Funahashi, Nobuaki; Hirota, Yoshihisa; Nakagawa, Kimie; Sawada, Natumi; Watanabe, Masato; Suhara, Yoshitomo; Okano, Toshio

    2015-05-01

    Vitamin K is involved in bone formation and blood coagulation. Natural vitamin K compounds are composed of the plant form phylloquinone (vitamin K{sub 1}) and a series of bacterial menaquionones (MK-n; vitamin K{sub 2}). Menadione (vitamin K{sub 3}) is an artificial vitamin K compound. MK-4 contains 4-isoprenyl as a side group in the 2-methyl-1,4-naphthoquinone common structure and has various bioactivities. UbiA prenyltransferase domain containing 1 (UBIAD1 or TERE1) is the menaquinone-4 biosynthetic enzyme. UBIAD1 transcript expression significantly decreases in patients with prostate carcinoma and overexpressing UBIAD1 inhibits proliferation of a tumour cell line. UBIAD1 mRNA expression is ubiquitous in mouse tissues, and higher UBIAD1 mRNA expression levels are detected in the brain, heart, kidneys and pancreas. Several functions of UBIAD1 have been reported; however, regulation of the human UBIAD1 gene has not been elucidated. Here we report cloning and characterisation of the human UBIAD1 promoter. A 5′ rapid amplification of cDNA ends analysis revealed that the main transcriptional start site was 306 nucleotides upstream of the translation initiation codon. Deletion and mutation analyses revealed the functional importance of the YY1 consensus motif. Electrophoretic gel mobility shift and chromatin immunoprecipitation assays demonstrated that YY1 binds the UBIAD1 promoter in vitro and in vivo. In addition, YY1 small interfering RNA decreased endogenous UBIAD1 mRNA expression and UBIAD1 conversion activity. These results suggest that YY1 up-regulates UBIAD1 expression and UBIAD1 conversion activity through the UBIAD1 promoter. - Highlights: • We cloned the human UBIAD1 promoter. • The functional importance of the YY1 motif was identified in the UBIAD1 promoter. • YY1 binds the UBIAD1 promoter in vitro and in vivo. • Knockdown of YY1 significantly decreased UBIAD1 expression. • YY1 up-regulates UBIAD1 conversion activity through the UBIAD1

  19. YY1 Control of AID Dependent Lymphomagenesis

    DTIC Science & Technology

    2016-09-01

    chromosome inactivation. Timed matings are ongoing to more fully establish the importance of YY1 loss in DLBCL at late time points. Finally, we have...therapeutic target for DLBCL. In addition our studies showed that YY1 is crucial for germinal center B cell development, for X- chromosome inactivation in B...development of autoimmune diseases. Females are more prone to autoimmune disorders, perhaps due to the X- chromosome , which contains many immunity

  20. Cellular transcription factor YY1 mediates the varicella-zoster virus (VZV) IE62 transcriptional activation.

    PubMed

    Khalil, Mohamed I; Sommer, Marvin; Arvin, Ann; Hay, John; Ruyechan, William T

    2014-01-20

    Several cellular transcription factors have been shown to be involved in IE62-mediated activation. The YY1 cellular transcription factor has activating and repressive effects on gene transcription. Analysis of the VZV genome revealed 19 postulated YY1 binding sites located within putative promoters of 16 VZV genes. Electrophoretic mobility shift assays (EMSA) confirmed the binding of YY1 to ORF10, ORF28/29 and gI promoters and the mutation of these binding sites inhibited YY1 binding and the promoter activation by IE62 alone or following VZV infection. Mutation of the ORF28/29 YY1 site in the VZV genome displayed insignificant influence on virus growth in melanoma cells; but it inhibited the virus replication significantly at day 5 and 6 post infection in HELF cells. This work suggests a novel role for the cellular factor YY1 in VZV replication through the mediation of IE62 activation of viral gene expression. © 2013 Elsevier Inc. All rights reserved.

  1. YY1 regulates the expression of snail through a distal enhancer

    PubMed Central

    Palmer, Matthew B.; Majumder, Parimal; Cooper, John C.; Yoon, Hyesuk; Wade, Paul A.; Boss, Jeremy M.

    2010-01-01

    Expression of the snail gene is required for the epithelial-mesenchymal transitions that accompany mammalian gastrulation, neural crest migration, and organ formation. Pathological expression of snail contributes to the migratory capacity of invasive tumors, including melanomas. To investigate the mechanism of snail up regulation in human melanoma cells, a conserved enhancer located 3’ of the snail gene was analyzed. An overlapping Ets and YY1 consensus sequence, in addition to a SOX consensus sequence, were required for full enhancer activity. Proteins specifically binding these sequences were detected by EMSA. The Ets/YY1 binding activity was purified by DNA affinity chromatography and identified as YY1. Although ubiquitously expressed, YY1 was bound at the snail 3’ enhancer in vivo in snail-expressing cells but not in cells that did not express snail. Knockdown of YY1 in A375 cells led to decreased snail expression. These results identify a role for YY1 in regulating transcription of snail in melanoma cells through binding to the snail 3’ enhancer. PMID:19208738

  2. Expression of YY1 in Differentiated Thyroid Cancer.

    PubMed

    Arribas, Jéssica; Castellví, Josep; Marcos, Ricard; Zafón, Carles; Velázquez, Antonia

    2015-05-01

    The transcription factor Yin Yang 1 (YY1) has an important regulatory role in tumorigenesis, but its implication in thyroid cancer has not been yet investigated. In the present study, we have analyzed the expression of YY1 in differentiated thyroid cancer and assessed the association of YY1 expression with clinical features. Expression of YY1 was evaluated in human thyroid cancer cell lines, a series of matched normal/tumor thyroid tissues and in a thyroid cancer tissue microarray, using real-time PCR, Western blot, and/or immunohistochemistry. YY1 was overexpressed in thyroid cancer cells, at transcription and protein levels. A significant increase of YY1 mRNA was also observed in tumor thyroid tissues. Moreover, immunohistochemical analysis of the thyroid cancer tissue microarray revealed that both papillary thyroid cancer (PTC) and follicular thyroid cancer (FTC) present increased YY1 protein levels (48 and 19%, respectively). After stratification by the level of YY1 protein, positive YY1 expression identifies 88% of patients with PTC. The association of YY1 expression with clinicopathological features in PTC and FTC showed that YY1 expression was related with age at diagnosis. Our data indicates for the first time overexpression of YY1 in differentiated thyroid cancer, with YY1 being more frequently overexpressed in the PTC subtype.

  3. A prominent and conserved role for YY1 in Xist transcriptional activation

    PubMed Central

    Navarro, Pablo; Neuillet, Damien; Rougeulle, Claire

    2014-01-01

    Accumulation of the non-coding RNA Xist on one X chromosome in female cells is a hallmark of X-chromosome inactivation in eutherians. Here, we uncovered an essential function for the ubiquitous autosomal transcription factor Yin-Yang 1 (YY1) in the transcriptional activation of Xist in both human and mouse. We show that loss of YY1 prevents Xist up-regulation during the initiation and maintenance of X-inactivation, and that YY1 binds directly the Xist 5′ region to trigger the activity of the Xist promoter. Binding of YY1 to the Xist 5′ region prior to X-chromosome inactivation competes with the Xist repressor REX1 while DNA methylation controls mono-allelic fixation of YY1 to Xist at the onset of X-chromosome inactivation. YY1 is thus the first autosomal activating factor involved in a fundamental and conserved pathway of Xist regulation that ensures the asymmetric transcriptional up-regulation of the master regulator of X-chromosome inactivation. PMID:25209548

  4. The Yin Yang-1 (YY1) protein undergoes a DNA-replication-associated switch in localization from the cytoplasm to the nucleus at the onset of S phase.

    PubMed

    Palko, Linda; Bass, Hank W; Beyrouthy, Maroun J; Hurt, Myra M

    2004-01-26

    The essential Yin Yang-1 gene (YY1) encodes a ubiquitous, conserved, multifunctional zinc-finger transcription factor in animals. The YY1 protein regulates initiation, activation, or repression of transcription from a variety of genes required for cell growth, development, differentiation, or tumor suppression, as well as from genes in some retroviruses and DNA viruses. Among the specific functions attributed to YY1 is a role in cell-cycle-specific upregulation of the replication-dependent histone genes. The YY1 protein binds to the histone alpha element, a regulatory sequence found in all replication-dependent histone genes. We therefore examined the abundance, DNA-binding activity and localization of the YY1 protein throughout the cell cycle in unperturbed, shake-off-synchronized Chinese hamster ovary and HeLa cells. We found that, whereas the DNA-binding activity of YY1 increased dramatically early in S phase, the YY1 mRNA and protein levels did not. YY1 changed subcellular distribution patterns during the cell cycle, from mainly cytoplasmic at G1 to mainly nuclear at early and middle S phase, then back to primarily cytoplasmic later in S phase. Nuclear accumulation of YY1 near the G1/S boundary coincided with both an increase in YY1 DNA-binding activity and the coordinate up-regulation of the replication-dependent histone genes. The DNA synthesis inhibitor aphidicolin caused a nearly complete loss of nuclear YY1, whereas addition of caffeine or 2-aminopurine to aphidicolin-treated cells restored both DNA synthesis and YY1 localization in the nucleus. These findings reveal a mechanism by which YY1 localization is coupled to DNA synthesis and responsive to cell-cycle signaling pathways. Taken together, our results provide insight into how YY1 might participate in the cell-cycle control over a variety of nuclear events required for cell division and proliferation.

  5. YY1 and CTCF orchestrate a 3D chromatin looping switch during early neural lineage commitment

    PubMed Central

    Beagan, Jonathan A.; Duong, Michael T.; Titus, Katelyn R.; Zhou, Linda; Cao, Zhendong; Ma, Jingjing; Lachanski, Caroline V.; Gillis, Daniel R.; Phillips-Cremins, Jennifer E.

    2017-01-01

    CTCF is an architectural protein with a critical role in connecting higher-order chromatin folding in pluripotent stem cells. Recent reports have suggested that CTCF binding is more dynamic during development than previously appreciated. Here, we set out to understand the extent to which shifts in genome-wide CTCF occupancy contribute to the 3D reconfiguration of fine-scale chromatin folding during early neural lineage commitment. Unexpectedly, we observe a sharp decrease in CTCF occupancy during the transition from naïve/primed pluripotency to multipotent primary neural progenitor cells (NPCs). Many pluripotency gene-enhancer interactions are anchored by CTCF, and its occupancy is lost in parallel with loop decommissioning during differentiation. Conversely, CTCF binding sites in NPCs are largely preexisting in pluripotent stem cells. Only a small number of CTCF sites arise de novo in NPCs. We identify another zinc finger protein, Yin Yang 1 (YY1), at the base of looping interactions between NPC-specific genes and enhancers. Putative NPC-specific enhancers exhibit strong YY1 signal when engaged in 3D contacts and negligible YY1 signal when not in loops. Moreover, siRNA knockdown of Yy1 specifically disrupts interactions between key NPC enhancers and their target genes. YY1-mediated interactions between NPC regulatory elements are often nested within constitutive loops anchored by CTCF. Together, our results support a model in which YY1 acts as an architectural protein to connect developmentally regulated looping interactions; the location of YY1-mediated interactions may be demarcated in development by a preexisting topological framework created by constitutive CTCF-mediated interactions. PMID:28536180

  6. Epithelial inactivation of Yy1 abrogates lung branching morphogenesis.

    PubMed

    Boucherat, Olivier; Landry-Truchon, Kim; Bérubé-Simard, Félix-Antoine; Houde, Nicolas; Beuret, Laurent; Lezmi, Guillaume; Foulkes, William D; Delacourt, Christophe; Charron, Jean; Jeannotte, Lucie

    2015-09-01

    Yin Yang 1 (YY1) is a multifunctional zinc-finger-containing transcription factor that plays crucial roles in numerous biological processes by selectively activating or repressing transcription, depending upon promoter contextual differences and specific protein interactions. In mice, Yy1 null mutants die early in gestation whereas Yy1 hypomorphs die at birth from lung defects. We studied how the epithelial-specific inactivation of Yy1 impacts on lung development. The Yy1 mutation in lung epithelium resulted in neonatal death due to respiratory failure. It impaired tracheal cartilage formation, altered cell differentiation, abrogated lung branching and caused airway dilation similar to that seen in human congenital cystic lung diseases. The cystic lung phenotype in Yy1 mutants can be partly explained by the reduced expression of Shh, a transcriptional target of YY1, in lung endoderm, and the subsequent derepression of mesenchymal Fgf10 expression. Accordingly, SHH supplementation partially rescued the lung phenotype in vitro. Analysis of human lung tissues revealed decreased YY1 expression in children with pleuropulmonary blastoma (PPB), a rare pediatric lung tumor arising during fetal development and associated with DICER1 mutations. No evidence for a potential genetic interplay between murine Dicer and Yy1 genes during lung morphogenesis was observed. However, the cystic lung phenotype resulting from the epithelial inactivation of Dicer function mimics the Yy1 lung malformations with similar changes in Shh and Fgf10 expression. Together, our data demonstrate the crucial requirement for YY1 in lung morphogenesis and identify Yy1 mutant mice as a potential model for studying the genetic basis of PPB.

  7. The transcription factor YY1 is a novel substrate for Aurora B kinase at G2/M transition of the cell cycle.

    PubMed

    Kassardjian, Ari; Rizkallah, Raed; Riman, Sarah; Renfro, Samuel H; Alexander, Karen E; Hurt, Myra M

    2012-01-01

    Yin Yang 1 (YY1) is a ubiquitously expressed and highly conserved multifunctional transcription factor that is involved in a variety of cellular processes. Many YY1-regulated genes have crucial roles in cell proliferation, differentiation, apoptosis, and cell cycle regulation. Numerous mechanisms have been shown to regulate the function of YY1, such as DNA binding affinity, subcellular localization, and posttranslational modification including phosphorylation. Polo-like kinase 1(Plk1) and Casein kinase 2α (CK2 α) were the first two kinases identified to phosphorylate YY1. In this study, we identify a third kinase. We report that YY1 is a novel substrate of the Aurora B kinase both in vitro and in vivo. Serine 184 phosphorylation of YY1 by Aurora B is cell cycle regulated and peaks at G2/M and is rapidly dephosphorylated, likely by protein phosphatase 1 (PP1) as the cells enter G1. Aurora A and Aurora C can also phosphorylate YY1 in vitro, but at serine/threonine residues other than serine 184. We present evidence that phosphorylation of YY1 in the central glycine/alanine (G/A)-rich region is important for DNA binding activity, with a potential phosphorylation/acetylation interplay regulating YY1 function. Given their importance in mitosis and overexpression in human cancers, Aurora kinases have been identified as promising therapeutic targets. Increasing our understanding of Aurora substrates will add to the understanding of their signaling pathways.

  8. Phosphorylated C/EBPβ Influences a Complex Network Involving YY1 and USF2 in Lung Epithelial Cells

    PubMed Central

    Viart, Victoria; Varilh, Jessica; Lopez, Estelle; René, Céline; Claustres, Mireille; Taulan-Cadars, Magali

    2013-01-01

    The promoter of the cystic fibrosis transmembrane conductance regulator gene CFTR is tightly controlled by regulators including CCAAT/enhancer binding proteins (C/EBPs). We previously reported that the transcription factors YY1 and USF2 affect CFTR expression. We can now demonstrate that C/EBPβ, a member of the CCAAT family, binds to the CFTR promoter and contributes to its transcriptional activity. Our data reveal that C/EBPβ cooperates with USF2 and acts antagonistically to YY1 in the control of CFTR expression. Interestingly, YY1, a strong repressor, fails to repress the CFTR activation induced by USF2 through DNA binding competition. Collectively, the data strongly suggest a model by which USF2 functionally interacts with YY1 blocking its inhibitory activity, in favour of C/EBPβ transactivation. Further investigation into the interactions between these three proteins revealed that phosphorylation of C/EBPβ influences the DNA occupancy of YY1 and favours the interaction between USF2 and YY1. This phosphorylation process has several implications in the CFTR transcriptional process, thus evoking an additional layer of complexity to the mechanisms influencing CFTR gene regulation. PMID:23560079

  9. YY1 and a unique DNA repeat element regulates the transcription of mouse CS1 (CD319, SLAMF7) gene.

    PubMed

    Dongre, Prachi; Mathew, Stephen; Akopova, Irina; Gryczynski, Ignacy; Mathew, Porunelloor

    2013-07-01

    CS1 (CD319, CRACC, SLAMF7, novel Ly9) activates NK cell-mediated cytotoxicity and proliferation of B lymphocytes during immune responses. The expression of CS1 is up regulated on B cells in multiple myeloma and systemic lupus erythematosus. In this study we describe the transcriptional regulation of mouse CS1 (mCS1) gene. We show that mCS1 gene transcription is regulated by YY1 (Ying Yang 1) and a unique (AG)n=36 DNA repeat element. YY1 is known to play a significant role in B cell development by regulating the pro B cell to pre B cell transition. The consensus DNA binding site for YY1 was detected using TRANSFAQ on the mCS1 promoter region. Mutations in the YY1 site led to a significant increase in mCS1 promoter activity indicating that YY1 represses mCS1 transcription. YY1 binds to the mCS1 promoter at the expected site in vivo and in vitro as tested by chromatin immunoprecipitation assays and super-shift EMSA assays respectively. Unique (CT)n=24 and (AG)n=36 DNA repeat elements are present on mCS1 promoter that are sensitive to S1 nuclease and engage in DNA triplex structure as confirmed by AFM (atomic force microscopy) imaging. Interestingly, the (AG)n=36 repeat element enhances mCS1 promoter activity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Upregulation of miR-146a by YY1 depletion correlates with delayed progression of prostate cancer

    PubMed Central

    Huang, Yeqing; Tao, Tao; Liu, Chunhui; Guan, Han; Zhang, Guangyuan; Ling, Zhixin; Zhang, Lei; Lu, Kai; Chen, Shuqiu; Xu, Bin; Chen, Ming

    2017-01-01

    Previously published studies explained that the excessive expression of miR-146a influences the prostate cancer (PCa) cells in terms of apoptosis, progression, and viability. Although miR-146a acts as a tumor suppressor, current knowledge on the molecular mechanisms that controls its expression in PCa is limited. In this study, gene set enrichment analysis (GSEA) showed negatively enriched expression of miR-146a target gene sets and positively enriched expression of gene sets suppressed by the enhancer of zeste homolog 2 (EZH2) after YY1 depletion in PCa cells. The current results demonstrated that the miR-146a levels in PCa tissues with high Gleason scores (>7) are significantly lower than those in PCa tissues with low Gleason scores (≤7), which were initially observed in the clinical specimens. An inverse relationship between YY1 and miR-146a expression was also observed. Experiments indicated the decrease in cell viability, proliferation, and promoting apoptosis after YY1 depletion, while through inhibiting miR-146a could alleviate the negative effect brought by YY1 depletion. We detected the reversed adjustment of YY1 to accommodate miR-146a transcriptions. On the basis of YY1 depletion, we determined that the expression of miR-146a increased after EZH2 knockdown. We validated the combination of YY1 and its interaction with EZH2 at the miR-146a promoter binding site, thereby prohibiting the transcriptional activity of miR-146a in PCa cells. Our results suggested that YY1 depletion repressed PCa cell viability and proliferation and induced apoptosis at least in a miR-146a-assisted manner. PMID:28101571

  11. PARP-1 and YY1 are important novel regulators of CXCL12 gene transcription in rat pancreatic beta cells.

    PubMed

    Marković, Jelena; Grdović, Nevena; Dinić, Svetlana; Karan-Djurašević, Teodora; Uskoković, Aleksandra; Arambašić, Jelena; Mihailović, Mirjana; Pavlović, Sonja; Poznanović, Goran; Vidaković, Melita

    2013-01-01

    Despite significant progress, the molecular mechanisms responsible for pancreatic beta cell depletion and development of diabetes remain poorly defined. At present, there is no preventive measure against diabetes. The positive impact of CXCL12 expression on the pancreatic beta cell prosurvival phenotype initiated this study. Our aim was to provide novel insight into the regulation of rat CXCL12 gene (Cxcl12) transcription. The roles of poly(ADP-ribose) polymerase-1 (PARP-1) and transcription factor Yin Yang 1 (YY1) in Cxcl12 transcription were studied by examining their in vitro and in vivo binding affinities for the Cxcl12 promoter in a pancreatic beta cell line by the electrophoretic mobility shift assay and chromatin immunoprecipitation. The regulatory activities of PARP-1 and YY1 were assessed in transfection experiments using a reporter vector with a Cxcl12 promoter sequence driving luciferase gene expression. Experimental evidence for PARP-1 and YY1 revealed their trans-acting potential, wherein PARP-1 displayed an inhibitory, and YY1 a strong activating effect on Cxcl12 transcription. Streptozotocin (STZ)-induced general toxicity in pancreatic beta cells was followed by changes in Cxcl12 promoter regulation. PARP-1 binding to the Cxcl12 promoter during basal and in STZ-compromised conditions led us to conclude that PARP-1 regulates constitutive Cxcl12 expression. During the early stage of oxidative stress, YY1 exhibited less affinity toward the Cxcl12 promoter while PARP-1 displayed strong binding. These interactions were accompanied by Cxcl12 downregulation. In the later stages of oxidative stress and intensive pancreatic beta cell injury, YY1 was highly expressed and firmly bound to Cxcl12 promoter in contrast to PARP-1. These interactions resulted in higher Cxcl12 expression. The observed ability of PARP-1 to downregulate, and of YY1 to upregulate Cxcl12 promoter activity anticipates corresponding effects in the natural context where the functional

  12. NF-kappaB regulation of YY1 inhibits skeletal myogenesis through transcriptional silencing of myofibrillar genes.

    PubMed

    Wang, Huating; Hertlein, Erin; Bakkar, Nadine; Sun, Hao; Acharyya, Swarnali; Wang, Jingxin; Carathers, Micheal; Davuluri, Ramana; Guttridge, Denis C

    2007-06-01

    NF-kappaB signaling is implicated as an important regulator of skeletal muscle homeostasis, but the mechanisms by which this transcription factor contributes to muscle maturation and turnover remain unclear. To gain insight into these mechanisms, gene expression profiling was examined in C2C12 myoblasts devoid of NF-kappaB activity. Interestingly, even in proliferating myoblasts, the absence of NF-kappaB caused the pronounced induction of several myofibrillar genes, suggesting that NF-kappaB functions as a negative regulator of late-stage muscle differentiation. Although several myofibrillar promoters contain predicted NF-kappaB binding sites, functional analysis using the troponin-I2 gene as a model revealed that NF-kappaB-mediated repression does not occur through direct DNA binding. In the search for an indirect mediator, the transcriptional repressor YinYang1 (YY1) was identified. While inducers of NF-kappaB stimulated YY1 expression in multiple cell types, genetic ablation of the RelA/p65 subunit of NF-kappaB in both cultured cells and adult skeletal muscle correlated with reduced YY1 transcripts and protein. NF-kappaB regulation of YY1 occurred at the transcriptional level, mediated by direct binding of the p50/p65 heterodimer complex to the YY1 promoter. Furthermore, YY1 was found associated with multiple myofibrillar promoters in C2C12 myoblasts containing NF-kappaB activity. Based on these results, we propose that NF-kappaB regulation of YY1 and transcriptional silencing of myofibrillar genes represent a new mechanism by which NF-kappaB functions in myoblasts to modulate skeletal muscle differentiation.

  13. NF-κB Regulation of YY1 Inhibits Skeletal Myogenesis through Transcriptional Silencing of Myofibrillar Genes▿ †

    PubMed Central

    Wang, Huating; Hertlein, Erin; Bakkar, Nadine; Sun, Hao; Acharyya, Swarnali; Wang, Jingxin; Carathers, Micheal; Davuluri, Ramana; Guttridge, Denis C.

    2007-01-01

    NF-κB signaling is implicated as an important regulator of skeletal muscle homeostasis, but the mechanisms by which this transcription factor contributes to muscle maturation and turnover remain unclear. To gain insight into these mechanisms, gene expression profiling was examined in C2C12 myoblasts devoid of NF-κB activity. Interestingly, even in proliferating myoblasts, the absence of NF-κB caused the pronounced induction of several myofibrillar genes, suggesting that NF-κB functions as a negative regulator of late-stage muscle differentiation. Although several myofibrillar promoters contain predicted NF-κB binding sites, functional analysis using the troponin-I2 gene as a model revealed that NF-κB-mediated repression does not occur through direct DNA binding. In the search for an indirect mediator, the transcriptional repressor YinYang1 (YY1) was identified. While inducers of NF-κB stimulated YY1 expression in multiple cell types, genetic ablation of the RelA/p65 subunit of NF-κB in both cultured cells and adult skeletal muscle correlated with reduced YY1 transcripts and protein. NF-κB regulation of YY1 occurred at the transcriptional level, mediated by direct binding of the p50/p65 heterodimer complex to the YY1 promoter. Furthermore, YY1 was found associated with multiple myofibrillar promoters in C2C12 myoblasts containing NF-κB activity. Based on these results, we propose that NF-κB regulation of YY1 and transcriptional silencing of myofibrillar genes represent a new mechanism by which NF-κB functions in myoblasts to modulate skeletal muscle differentiation. PMID:17438126

  14. Interaction of the Transcription Start Site Core Region and Transcription Factor YY1 Determine Ascorbate Transporter SVCT2 Exon 1a Promoter Activity

    PubMed Central

    Qiao, Huan; May, James M.

    2012-01-01

    Transcription of the ascorbate transporter, SVCT2, is driven by two distinct promoters in exon 1 of the transporter sequence. The exon 1a promoter lacks a classical transcription start site and little is known about regulation of promoter activity in the transcription start site core (TSSC) region. Here we present evidence that the TSSC binds the multifunctional initiator-binding protein YY1. Electrophoresis shift assays using YY1 antibody showed that YY1 is present as one of two major complexes that specifically bind to the TSSC. The other complex contains the transcription factor NF-Y. Mutations in the TSSC that decreased YY1 binding also impaired the exon 1a promoter activity despite the presence of an upstream activating NF-Y/USF complex, suggesting that YY1 is involved in the regulation of the exon 1a transcription. Furthermore, YY1 interaction with NF-Y and/or USF synergistically enhanced the exon 1a promoter activity in transient transfections and co-activator p300 enhanced their synergistic activation. We propose that the TSSC plays a vital role in the exon 1a transcription and that this function is partially carried out by the transcription factor YY1. Moreover, co-activator p300 might be able to synergistically enhance the TSSC function via a “bridge” mechanism with upstream sequences. PMID:22532872

  15. YY1 and GATA-1 interaction modulate the chicken 3'-side alpha-globin enhancer activity.

    PubMed

    Rincón-Arano, Héctor; Valadez-Graham, Viviana; Guerrero, Georgina; Escamilla-Del-Arenal, Martín; Recillas-Targa, Félix

    2005-06-24

    Studying the chicken alpha-globin domain as a model system of gene regulation, we have previously identified contiguous silencer-enhancer elements located on the 3'-side of the domain. To better characterize the enhancer we performed a systematic functional analysis to define its expression influence range and the ubiquitous and stage-specific transcriptional regulators interacting with this control element. In contrast to previous reports, we found that, in addition to a core element that includes three GATA-1 binding sites, the enhancer incorporates a 120 base-pair DNA fragment where EKLF, NF-E2 and a fourth GATA-1 factor could interact. Functional experiments demonstrate that the enhancer activity over the adult alpha(D) promoter is differentially regulated. We found that the transcriptional factor Ying Yang 1 (YY1) binds to the 120 base-pair DNA fragment and its effect over the enhancer activity is GATA-1-dependent. In addition, we characterize a novel physical interaction between GATA-1 and YY1 that influences the enhancer function. Experiments using a histone deacetylation inhibitor indicate that, in pre-erythroblasts, the enhancer down-regulation could be influenced by a closed chromatin conformation. Our observations show that the originally defined enhancer possesses a more complex composition than previously assumed. We propose that its activity is modulated through differential nuclear factor interactions and chromatin modifications at distinct erythroid stages.

  16. The Role of YY1 in Prostate Cancer

    DTIC Science & Technology

    2010-03-01

    activator protein 1. Cancer Res 2007;67:4816-26. 54. Delehouzee S, Yoshikawa T, Sawa C, et al. GABP, HCF-1 and YY1 are involved in Rb gene...expression during myogenesis. Genes Cells 2005;10:717-31. 55. Santiago FS, Ishii H, Shafi S, et al. Yin Yang-1 inhibits vascular smooth muscle cell growth... Ishii H, Shafi S, Khurana R, Kanellakis P, Bhindi R, et al. Yin Yang-1 inhibits vascular smooth muscle cell growth and intimal thickening by

  17. Transcriptional Regulation of the Astrocytic Excitatory Amino Acid Transporter 1 (EAAT1) via NF-κB and Yin Yang 1 (YY1)*

    PubMed Central

    Karki, Pratap; Kim, Clifford; Smith, Keisha; Son, Deok-Soo; Aschner, Michael; Lee, Eunsook

    2015-01-01

    Astrocytic glutamate transporter excitatory amino acid transporter (EAAT) 1, also known as glutamate aspartate transporter (GLAST) in rodents, is one of two glial glutamate transporters that are responsible for removing excess glutamate from synaptic clefts to prevent excitotoxic neuronal death. Despite its important role in neurophysiological functions, the molecular mechanisms of EAAT1 regulation at the transcriptional level remain to be established. Here, we report that NF-κB is a main positive transcription factor for EAAT1, supported by the following: 1) EAAT1 contains two consensus sites for NF-κB, 2) mutation of NF-κB binding sites decreased EAAT1 promoter activity, and 3) activation of NF-κB increased, whereas inhibition of NF-κB decreased EAAT1 promoter activity and mRNA/protein levels. EGF increased EAAT1 mRNA/protein levels and glutamate uptake via NF-κB. The transcription factor yin yang 1 (YY1) plays a role as a critical negative regulator of EAAT1, supported by the following: 1) the EAAT1 promoter contains multiple consensus sites for YY1, 2) overexpression of YY1 decreased EAAT1 promoter activity and mRNA/protein levels, and 3) knockdown of YY1 increased EAAT1 promoter activity and mRNA/protein levels. Manganese decreased EAAT1 expression via YY1. Epigenetic modifiers histone deacetylases (HDACs) served as co-repressors of YY1 to further decrease EAAT1 promoter activity, whereas inhibition of HDACs reversed manganese-induced decrease of EAAT1 expression. Taken together, our findings suggest that NF-κB is a critical positive regulator of EAAT1, mediating the stimulatory effects of EGF, whereas YY1 is a negative regulator of EAAT1 with HDACs as co-repressors, mediating the inhibitory effects of manganese on EAAT1 regulation. PMID:26269591

  18. The Yin and Yang of YY1 in the nervous system.

    PubMed

    He, Ye; Casaccia-Bonnefil, Patrizia

    2008-08-01

    The transcription factor Yin Yang 1 (YY1) is a multifunctional protein that can activate or repress gene expression depending on the cellular context. YY1 is ubiquitously expressed and highly conserved between species. However, its role varies in diverse cell types and includes proliferation, differentiation, and apoptosis. This review will focus on the function of YY1 in the nervous system including its role in neural development, neuronal function, developmental myelination, and neurological disease. The multiple functions of YY1 in distinct cell types are reviewed and the possible mechanisms underlying the cell specificity for these functions are discussed.

  19. YY1 Controls Immunoglobulin Class Switch Recombination and Nuclear Activation-Induced Deaminase Levels

    PubMed Central

    Zaprazna, Kristina

    2012-01-01

    Activation-induced deaminase (AID) is an enzyme required for class switch recombination (CSR) and somatic hypermutation (SHM), processes that ensure antibody maturation and expression of different immunoglobulin isotypes. AID function is tightly regulated by tissue- and stage-specific expression, nuclear localization, and protein stability. Transcription factor YY1 is crucial for early B cell development, but its function at late B cell stages is unknown. Here, we show that YY1 conditional knockout in activated splenic B cells interferes with CSR. Knockout of YY1 did not affect B cell proliferation, transcription of the AID and IgM genes, or levels of various switch region germ line transcripts. However, we show that YY1 physically interacts with AID and controls the accumulation of nuclear AID, at least in part, by increasing nuclear AID stability. We show for the first time that YY1 plays a novel role in CSR and controls nuclear AID protein levels. PMID:22290437

  20. IL-13 Induces YY1 through the AKT Pathway in Lung Fibroblasts

    PubMed Central

    Guo, Jia; Yao, Hongwei; Lin, Xin; Xu, Haodong; Dean, David; Zhu, Zhou; Liu, Gang; Sime, Patricia

    2015-01-01

    A key feature of lung fibrosis is the accumulation of myofibroblasts. Interleukin 13 (IL-13) is a pro-fibrotic mediator that directly and indirectly influences the activation of myofibroblasts. Transforming growth factor beta (TGF-β) promotes the differentiation of fibroblasts into myofibroblasts, and can be regulated by IL-13. However, IL-13’s downstream signaling pathways are not completely understood. We previously reported that the transcription factor Yin Yang 1 (YY1) is upregulated in fibroblasts treated with TGF-β and in the lungs of mice and patients with pulmonary fibrosis. Moreover, YY1 directly regulates collagen and alpha smooth muscle actin (α-SMA) expression in fibroblasts. However, it is not known if IL-13 regulates fibroblast activation through YY1 expression. We hypothesize that IL-13 up-regulates YY1 expression through regulation of AKT activation, leading to fibroblast activation. In this study we found that YY1 was upregulated by IL-13 in lung fibroblasts in a dose- and time-dependent manner, resulting in increased α-SMA. Conversely, knockdown of YY1 blocked IL-13-induced α-SMA expression in fibroblasts. Furthermore, AKT phosphorylation was increased in fibroblasts treated with IL-13, and AKT overexpression upregulated YY1, whereas blockade of AKT phosphorylation suppressed the induction of YY1 by IL-13 in vitro. In vivo YY1 was upregulated in fibrotic lungs from CC10-IL-13 transgenic mice compared to that from wild-type littermates, which was associated with increased AKT phosphorylation. Taken together, these findings demonstrate that IL-13 is a potent stimulator and activator of fibroblasts, at least in part, through AKT-mediated YY1 activation. PMID:25775215

  1. YY1 Regulates Melanocyte Development and Function by Cooperating with MITF

    PubMed Central

    Bell, Robert J. A.; Tran, Thanh-Nga T.; Haq, Rizwan; Liu, Huifei; Love, Kevin T.; Langer, Robert; Anderson, Daniel G.; Larue, Lionel; Fisher, David E.

    2012-01-01

    Studies of coat color mutants have greatly contributed to the discovery of genes that regulate melanocyte development and function. Here, we generated Yy1 conditional knockout mice in the melanocyte-lineage and observed profound melanocyte deficiency and premature gray hair, similar to the loss of melanocytes in human piebaldism and Waardenburg syndrome. Although YY1 is a ubiquitous transcription factor, YY1 interacts with M-MITF, the Waardenburg Syndrome IIA gene and a master transcriptional regulator of melanocytes. YY1 cooperates with M-MITF in regulating the expression of piebaldism gene KIT and multiple additional pigmentation genes. Moreover, ChIP–seq identified genome-wide YY1 targets in the melanocyte lineage. These studies mechanistically link genes implicated in human conditions of melanocyte deficiency and reveal how a ubiquitous factor (YY1) gains lineage-specific functions by co-regulating gene expression with a lineage-restricted factor (M-MITF)—a general mechanism which may confer tissue-specific gene expression in multiple lineages. PMID:22570637

  2. The developmental regulator protein Gon4l associates with protein YY1, co-repressor Sin3a, and histone deacetylase 1 and mediates transcriptional repression.

    PubMed

    Lu, Ping; Hankel, Isaiah L; Hostager, Bruce S; Swartzendruber, Julie A; Friedman, Ann D; Brenton, Janet L; Rothman, Paul B; Colgan, John D

    2011-05-20

    Genetic studies involving zebrafish and mice have demonstrated that the protein Gon4l (Gon4-like) is essential for hematopoiesis. These studies also suggested that Gon4l regulates gene expression during hematopoietic development, yet the biochemical function of Gon4l has not been defined. Here, we describe the identification of factors that interact with Gon4l and may cooperate with this protein to regulate gene expression. As predicted by polypeptide sequence conservation, Gon4l interacted and co-localized with the DNA-binding protein YY1 (Yin Yang 1). Density gradient sedimentation analysis of protein lysates from mouse M12 B cells showed that Gon4l and YY1 co-sediment with the transcriptional co-repressor Sin3a and its functional partner histone deacetylase (HDAC) 1. Consistent with these results, immunoprecipitation studies showed that Gon4l associates with Sin3a, HDAC1, and YY1 as a part of complexes that form in M12 cells. Sequential immunoprecipitation studies demonstrated that Gon4l, YY1, Sin3a, and HDAC1 could all associate as components of a single complex and that a conserved domain spanning the central portion of Gon4l was required for formation of this complex. When targeted to DNA, Gon4l repressed the activity of a nearby promoter, which correlated with the ability to interact with Sin3a and HDAC1. Our data suggest that Sin3a, HDAC1, and YY1 are co-factors for Gon4l and that Gon4l may function as a platform for the assembly of complexes that regulate gene expression.

  3. Association of the interferon-β gene with pericentromeric heterochromatin is dynamically regulated during virus infection through a YY1-dependent mechanism

    PubMed Central

    Josse, T.; Mokrani-Benhelli, H.; Benferhat, R.; Shestakova, E.; Mansuroglu, Z.; Kakanakou, H.; Billecocq, A.; Bouloy, M.; Bonnefoy, Eliette

    2012-01-01

    Nuclear architecture as well as gene nuclear positioning can modulate gene expression. In this work, we have analyzed the nuclear position of the interferon-β (IFN-β) locus, responsible for the establishment of the innate antiviral response, with respect to pericentromeric heterochromatin (PCH) in correlation with virus-induced IFN-β gene expression. Experiments were carried out in two different cell types either non-infected (NI) or during the time course of three different viral infections. In NI cells, we showed a monoallelic IFN-β promoter association with PCH that strongly decreased after viral infection. Dissociation of the IFN-β locus away from these repressive regions preceded strong promoter transcriptional activation and was reversible within 12 h after infection. No dissociation was observed after infection with a virus that abnormally maintained the IFN-β gene in a repressed state. Dissociation induced after virus infection specifically targeted the IFN-β locus without affecting the general structure and nuclear distribution of PCH clusters. Using cell lines stably transfected with wild-type or mutated IFN-β promoters, we identified the proximal region of the IFN-β promoter containing YY1 DNA-binding sites as the region regulating IFN-β promoter association with PCH before as well as during virus infection. PMID:22287632

  4. YY1 restrained cell senescence through repressing the transcription of p16.

    PubMed

    Wang, Xiuli; Feng, Yunpeng; Xu, Liang; Chen, Yuli; Zhang, Yu; Su, Dongmei; Ren, Guoling; Lu, Jun; Huang, Baiqu

    2008-10-01

    The transcription factor YY1 has been implicated to play a role in cell growth control. In this report, we demonstrate that YY1 was able to suppress NCI-H460 cell senescence through regulating the expression of p16(INK4a), a cyclin-dependent kinase inhibitor. We also show that YY1 participated in the repression of p16(INK4a) expression in 293T cells through an epigenetic mechanism involving histone acetylation modification. Specifically, HDAC3 and HDAC4 inhibited the p16(INK4a) promoter activity. The chromatin immunoprecipitation (ChIP) assays verified that HDAC3 and HDAC4 were recruited to p16(INK4a) promoter by YY1. Moreover, co-immunoprecipitation assays revealed that these three protein factors formed a complex. Furthermore, knockdown of these factors induced cell enlargement and flattened morphology and significantly increased the SA-beta-gal activity, a biochemical marker of cell senescence. Overall, data from this study suggest that YY1, HDAC3 and HDAC4 restrained cell senescence by repressing p16(INK4a) expression through an epigenetic modification of histones.

  5. Transgenic over-expression of YY1 induces pathologic cardiac hypertrophy in a sex-specific manner

    PubMed Central

    Stauffer, Brian L.; Dockstader, Karen; Russell, Gloria; Hijmans, Jamie; Walker, Lisa; Cecil, Mackenzie; Demos-Davies, Kimberly; Medway, Allen; McKinsey, Timothy A.; Sucharov, Carmen C.

    2015-01-01

    YY1 can activate or repress transcription of various genes. In cardiac myocytes in culture YY1 has been shown to regulate expression of several genes involved in myocyte pathology. YY1 can also acutely protect the heart against detrimental changes in gene expression. In this study we show that cardiac over-expression of YY1 induces pathologic cardiac hypertrophy in male mice, measured by changes in gene expression and lower ejection fraction/fractional shortening. In contrast, female animals are protected against pathologic gene expression changes and cardiac dysfunction. Furthermore, we show that YY1 regulates, in a sex-specific manner, the expression of mammalian enable (Mena), a factor that regulates cytoskeletal actin dynamics and whose expression is increased in several models of cardiac pathology, and that Mena expression in humans with heart failure is sex-dependent. Finally, we show that sex differences in YY1 expression are also observed in human heart failure. In summary, this is the first work to show that YY1 has a sex-specific effect in the regulation of cardiac pathology. PMID:25935483

  6. YY1 overexpression is associated with poor prognosis and metastasis-free survival in patients suffering osteosarcoma

    PubMed Central

    2011-01-01

    Background The polycomb transcription factor Yin Yang 1 (YY1) overexpression can be causally implicated in experimental tumor growth and metastasization. To date, there is no clinical evidence of YY1 involvement in outcome of patients with osteosarcoma. Prognosis of osteosarcoma is still severe and only few patients survive beyond five years. We performed a prospective immunohistochemistry analysis to correlate YY1 immunostaining with metastatic development and survival in a selected homogeneous group of patients with osteosarcoma. Methods We studied 41 patients suffering from osteosarcoma (stage II-IVa). Multivariate analysis was performed using Cox proportional hazard regression to evaluate the correlation between YY1 expression and both metastasis development and mortality. Results YY1 protein is not usually present in normal bone; in contrast, a high number of patients (61%) showed a high score of YY1 positive cells (51-100%) and 39% had a low score (10-50% positive cells). No statistical difference was found in histology, anatomic sites, or response to chemotherapy between the two degrees of YY1 expression. Cox regression analysis demonstrated that the highest score of YY1 expression was predictive of both low metastasis-free survival (HR = 4.690, 95%CI = 1.079-20.396; p = 0.039) and poor overall survival (HR = 8.353, 95%CI = 1.863-37.451 p = 0.006) regardless of the effects of covariates such as age, gender, histology and chemonecrosis. Conclusion Overexpression of YY1 in primary site of osteosarcoma is associated with the occurrence of metastasis and poor clinical outcome. PMID:22047406

  7. Nicotine Suppressed Fetal Adrenal StAR Expression via YY1 Mediated-Histone Deacetylation Modification Mechanism

    PubMed Central

    Liu, Lian; Wang, Jian-Fei; Fan, Jie; Rao, Yi-Song; Liu, Fang; Yan, You-E; Wang, Hui

    2016-01-01

    Steroidogenic acute regulatory (StAR) protein plays a pivotal role in steroidogenesis. Previously, we have demonstrated that prenatal nicotine exposure suppressed fetal adrenal steroidogenesis via steroidogenic factor 1 deacetylation. This study further explored the potential role of the transcriptional repressor Yin Yang 1 (YY1) in nicotine-mediated StAR inhibition. Nicotine was subcutaneously administered (1.0 mg/kg) to pregnant rats twice per day and NCI-H295A cells were treated with nicotine. StAR and YY1 expression were analyzed by real-time PCR, immunohistochemistry, and Western blotting. Histone modifications and the interactions between the YY1 and StAR promoter were assessed using chromatin immunoprecipitation (ChIP). Prenatal nicotine exposure increased YY1 expression and suppressed StAR expression. ChIP assay showed that there was a decreasing trend for histone acetylation at the StAR promoter in fetal adrenal glands, whereas H3 acetyl-K14 at the YY1 promoter presented an increasing trend following nicotine exposure. Furthermore, in nicotine-treated NCI-H295A cells, nicotine enhanced YY1 expression and inhibited StAR expression. ChIP assay showed that histone acetylation decreased at the StAR promoter in NCI-H295A cells and that the interaction between the YY1 and StAR promoter increased. These data indicated that YY1-medicated histone deacetylation modification in StAR promoters might play an important role in the inhibitory effect of nicotine on StAR expression. PMID:27598153

  8. Nicotine Suppressed Fetal Adrenal StAR Expression via YY1 Mediated-Histone Deacetylation Modification Mechanism.

    PubMed

    Liu, Lian; Wang, Jian-Fei; Fan, Jie; Rao, Yi-Song; Liu, Fang; Yan, You-E; Wang, Hui

    2016-09-03

    Steroidogenic acute regulatory (StAR) protein plays a pivotal role in steroidogenesis. Previously, we have demonstrated that prenatal nicotine exposure suppressed fetal adrenal steroidogenesis via steroidogenic factor 1 deacetylation. This study further explored the potential role of the transcriptional repressor Yin Yang 1 (YY1) in nicotine-mediated StAR inhibition. Nicotine was subcutaneously administered (1.0 mg/kg) to pregnant rats twice per day and NCI-H295A cells were treated with nicotine. StAR and YY1 expression were analyzed by real-time PCR, immunohistochemistry, and Western blotting. Histone modifications and the interactions between the YY1 and StAR promoter were assessed using chromatin immunoprecipitation (ChIP). Prenatal nicotine exposure increased YY1 expression and suppressed StAR expression. ChIP assay showed that there was a decreasing trend for histone acetylation at the StAR promoter in fetal adrenal glands, whereas H3 acetyl-K14 at the YY1 promoter presented an increasing trend following nicotine exposure. Furthermore, in nicotine-treated NCI-H295A cells, nicotine enhanced YY1 expression and inhibited StAR expression. ChIP assay showed that histone acetylation decreased at the StAR promoter in NCI-H295A cells and that the interaction between the YY1 and StAR promoter increased. These data indicated that YY1-medicated histone deacetylation modification in StAR promoters might play an important role in the inhibitory effect of nicotine on StAR expression.

  9. Integrative genomics identifies YY1AP1 as an oncogenic driver in EpCAM(+) AFP(+) hepatocellular carcinoma.

    PubMed

    Zhao, X; Parpart, S; Takai, A; Roessler, S; Budhu, A; Yu, Z; Blank, M; Zhang, Y E; Jia, H-L; Ye, Q-H; Qin, L-X; Tang, Z-Y; Thorgeirsson, S S; Wang, X W

    2015-09-24

    Identification of key drivers and new therapeutic targets is important given the poor prognosis for hepatocellular carcinoma (HCC) patients, particularly those ineligible for surgical resection or liver transplant. However, the approach to identify such driver genes is facing significant challenges due to the genomically heterogenous nature of HCC. Here we tested whether the integrative genomic profiling of a well-defined HCC subset that is classified by an extreme EpCAM(+) AFP(+) gene expression signature and associated with poor prognosis, all attributes of a stem cell-like phenotype, could uncover survival-related driver genes in HCC. Following transcriptomic analysis of the well-defined HCC cases, a Gene Set Enrichment Analysis coupled with genomic copy number alteration assessment revealed that YY1-associated protein 1 (YY1AP1) is a critical oncoprotein specifically activated in EpCAM(+) AFP(+) HCC. YY1AP1 silencing eliminates oncogene addiction by altering the chromatin landscape and triggering massive apoptosis in vitro and tumor suppression in vivo. YY1AP1 expression promotes HCC proliferation and is required for the maintenance of stem cell features. We revealed that YY1AP1 cooperates with YY1 to alter the chromatin landscape and activate transcription of stemness regulators. Thus YY1AP1 may serve as a key molecular target for EpCAM(+) AFP(+) HCC subtype. Our results demonstrate the feasibility and power of a new strategy by utilizing well-defined patient samples and integrative genomics to uncover critical pathways linked to HCC subtypes with prognostic impact.

  10. New Cross-Talk Layer between Ultraconserved Non-Coding RNAs, MicroRNAs and Polycomb Protein YY1 in Bladder Cancer

    PubMed Central

    Terreri, Sara; Durso, Montano; Colonna, Vincenza; Romanelli, Alessandra; Terracciano, Daniela; Ferro, Matteo; Perdonà, Sisto; Castaldo, Luigi; Febbraio, Ferdinando; de Nigris, Filomena; Cimmino, Amelia

    2016-01-01

    MicroRNAs (miRNAs) are highly conserved elements in mammals, and exert key regulatory functions. Growing evidence shows that miRNAs can interact with another class of non-coding RNAs, so-called transcribed ultraconserved regions (T-UCRs), which take part in transcriptional, post-transcriptional and epigenetic regulation processes. We report here the interaction of miRNAs and T-UCRs as a network modulating the availability of these non-coding RNAs in bladder cancer cells. In our cell system, antagomiR-596 increased the expression of T-UCR 201+. Moreover, T-UCR 8+ silencing increased miR-596 expression, which in turn reduced total T-UCR 283+, showing that the perturbation of one element in this network changes the expression of other interactors. In addition, we identify the polycomb protein Yin Yang 1 (YY1) as mediator of binding between miR-596 and T-UCR 8+. These new findings describe for the first time a network between T-UCRs, miRNAs and YY1 protein, highlighting the existence of an additional layer of gene expression regulation. PMID:27983635

  11. A Casein Kinase II Phosphorylation Site in AtYY1 Affects Its Activity, Stability, and Function in the ABA Response

    PubMed Central

    Wu, Xiu-Yun; Li, Tian

    2017-01-01

    The phosphorylation and dephosphorylation of proteins are crucial in the regulation of protein activity and stability in various signaling pathways. In this study, we identified an ABA repressor, Arabidopsis Ying Yang 1 (AtYY1) as a potential target of casein kinase II (CKII). AtYY1 physically interacts with two regulatory subunits of CKII, CKB3, and CKB4. Moreover, AtYY1 can be phosphorylated by CKII in vitro, and the S284 site is the major CKII phosphorylation site. Further analyses indicated that S284 phosphorylation can enhance the transcriptional activity and protein stability of AtYY1 and hence strengthen the effect of AtYY1 as a negative regulator in the ABA response. Our study provides novel insights into the regulatory mechanism of AtYY1 mediated by CKII phosphorylation. PMID:28348572

  12. Events at the transition between cell cycle exit and oligodendrocyte progenitor differentiation: the role of HDAC and YY1.

    PubMed

    He, Ye; Sandoval, Juan; Casaccia-Bonnefil, Patrizia

    2007-08-01

    The complexity of the adult brain is the result of an integrated series of developmental events that depends on appropriate timing of differentiation. The importance of transcriptional regulatory networks and epigenetic mechanisms of regulation of gene expression is becoming increasingly evident. Among these mechanisms, previous work has revealed the importance of histone deacetylation in oligodendrocyte differentiation. In this manuscript we define the region of interaction between transcription factor Yin-Yang 1 (YY1) and histone deacetylase 1, and characterize the functional consequences of YY1 overexpression on the differentiation of oligodendrocyte progenitors.

  13. Promoter-region hypermethylation and expression downregulation of Yy1 (Yin yang 1) in preneoplastic liver lesions in a thioacetamide rat hepatocarcinogenesis model

    SciTech Connect

    Abe, Hajime; Ogawa, Takashi; Wang, Liyun; Kimura, Masayuki; Tanaka, Takeshi; Morita, Reiko; Yoshida, Toshinori; Shibutani, Makoto

    2014-11-01

    Thioacetamide (TAA) has been used to develop a rodent model for hepatocarcinogenesis. To determine the genes with epigenetic modifications in early hepatocarcinogenesis, we did a genome-wide scan for hypermethylated promoter regions using CpG island microarrays in TAA-promoted rat liver tissue. Eight genes were selected based on the microarray profile; of these, Yy1 and Wdr45b were confirmed to be hypermethylated by methylation-specific polymerase chain reaction (PCR) and pyrosequencing and downregulated by real-time reverse transcription PCR. Non-neoplastic liver cells had nuclear Yy1 immunoreactivity, while preneoplastic foci with glutathione S-transferase placental form (GST-P) immunoreactivity had decreased Yy1 immunoreactivity. The incidence of these foci was proportional to the dose of TAA administered. Co-expression analysis of gene products downstream of Yy1 revealed increased nuclear phospho-c-Myc{sup +} foci as well as nuclear and cytoplasmic p21{sup Cip1+} foci in Yy1{sup −} or GST-P{sup +} foci in response to TAA-promotion dose. Although the absolute number of cells was low, the incidence of death receptor 5{sup −} foci was increased in Yy1{sup −} foci in proportion to the TAA dose. Yy1{sup −}/GST-P{sup +} foci revealed a higher number of proliferating cell nuclear antigen (PCNA)-immunoreactive cells than Yy1{sup +}/GST-P{sup +} foci, while cleaved caspase-3{sup +} cells were unchanged between Yy1{sup –}/GST-P{sup +} and Yy1{sup +}/GST-P{sup +} foci. In the case of Wdr45b, most GST-P{sup +} foci were Wdr45b{sup –} and were not increased by TAA promotion. These results suggest involvement of Yy1 in the epigenetic gene regulation at the early stages of TAA promoted cell proliferation and concomitant cell cycle arrest in preneoplastic lesions. - Highlights: • Epigenetically downregulated genes were searched in TAA-promnoted rat livers. • Yy1 and Wdr45b showed promoter-region hypermethylation and mRNA downregulation. • TAA promoted

  14. Investigating AP-2 and YY1 protein expression as a cause of high HER2 gene transcription in breast cancers with discordant HER2 gene amplification.

    PubMed

    Powe, Desmond G; Akhtar, Gulfareen; Habashy, Hany Onsy; Abdel-Fatah, Tarek; Rakha, Emad A; Green, Andrew R; Ellis, Ian O

    2009-01-01

    Candidacy for anti-HER2 adjuvant therapy in breast cancer is assessed using tumour HER2 status but recently it has been proposed that the transcription factors AP-2alpha and YY1 may cause Her2 protein overexpression independently of gene amplification. We characterised AP-2alpha/beta, AP-2alpha and YY1 with HER2 gene and protein expression, other relevant biomarkers, and clinical outcome using tissue microarrays (TMAs) and immunohistochemistry in a large (n = 1,176) clinically annotated series of early stage operable breast cancer. The associations and prognostic independence of AP-2 and YY1 was assessed in all patients and an oestrogen receptor negative subgroup. Nuclear expression of AP-2alpha/beta, AP-2alpha and YY1 was detected in 23%, 44% and 33% of cases respectively. AP-2alpha/beta significantly correlated with YY1 and both markers were increased in luminal oestrogen receptor (ER) positive tumours of small size and low grade but only AP-2alpha/beta correlated with good prognosis breast cancer specific survival and disease free interval (BCSS and DFI). These characteristics were lost in oestrogen receptor negative patients. AP-2alpha also correlated with luminal-type tumours but not with YY1 expression or good prognosis. AP-2alpha and YY1 showed a significant correlation with Her2 protein expression and in addition, YY1 correlated with HER2 gene expression. Discordant HER2 gene and protein expression was identified in six cases (0.71% of the study group) with four of these showing AP-2alpha but absence of AP-2alpha/beta and YY1 expression. AP-2alpha/beta and YY1 are markers of good prognosis principally due to their association with oestrogen receptor but are not independent predictors. Discordant HER2 protein/gene expression is a rare event that is not always explained by the actions of AP-2 and YY1.

  15. Regulation of the microRNA processor DGCR8 by hepatitis B virus proteins via the transcription factor YY1.

    PubMed

    Shan, Xuefeng; Ren, Min; Chen, Ke; Huang, Ailong; Tang, Hua

    2015-03-01

    MicroRNAs (miRNAs) are a new class of well-conserved small noncoding RNAs that mediate posttranscriptional gene regulation. Hepatitis B virus (HBV) causes various liver diseases, including chronic hepatitis, liver cirrhosis and hepatocellular cancer. Recent data have indicated HBV alters miRNAs expression patterns, but the underlying mechanisms have not been fully established so far. Here, we provide a hypothesis that HBV alters the expressions of miRNAs by playing a role in the microRNA production process. In this study, we demonstrate that HBV downregulates miRNAs processor DGCR8 mRNA and protein expression in stable and transient HBV-expressing cells. HBV downregulates DGCR8 expression by inhibiting its promoter activity, and HBs and HBx may be involved in this process. Ectopic expression and knockdown of YY1 revealed that YY1 suppresses the activity of the DGCR8 promoter, while YY1 expression is significantly upregulated by HBV. In conclusion, our data show that HBV proteins repress DGCR8 promoter activity by upregulating the expression of transcription factor YY1. This provides a new insight into the mechanism of HBV-induced miRNA dysregulation.

  16. Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity

    PubMed Central

    Verdeguer, Francisco; Soustek, Meghan S.; Hatting, Maximilian; Blättler, Sharon M.; McDonald, Devin; Barrow, Joeva J.

    2015-01-01

    Mitochondrial oxidative and thermogenic functions in brown and beige adipose tissues modulate rates of energy expenditure. It is unclear, however, how beige or white adipose tissue contributes to brown fat thermogenic function or compensates for partial deficiencies in this tissue and protects against obesity. Here, we show that the transcription factor Yin Yang 1 (YY1) in brown adipose tissue activates the canonical thermogenic and uncoupling gene expression program. In contrast, YY1 represses a series of secreted proteins, including fibroblast growth factor 21 (FGF21), bone morphogenetic protein 8b (BMP8b), growth differentiation factor 15 (GDF15), angiopoietin-like 6 (Angptl6), neuromedin B, and nesfatin, linked to energy expenditure. Despite substantial decreases in mitochondrial thermogenic proteins in brown fat, mice lacking YY1 in this tissue are strongly protected against diet-induced obesity and exhibit increased energy expenditure and oxygen consumption in beige and white fat depots. The increased expression of secreted proteins correlates with elevation of energy expenditure and promotion of beige and white fat activation. These results indicate that YY1 in brown adipose tissue controls antagonistic gene expression programs associated with energy balance and maintenance of body weight. PMID:26503783

  17. Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity.

    PubMed

    Verdeguer, Francisco; Soustek, Meghan S; Hatting, Maximilian; Blättler, Sharon M; McDonald, Devin; Barrow, Joeva J; Puigserver, Pere

    2015-10-26

    Mitochondrial oxidative and thermogenic functions in brown and beige adipose tissues modulate rates of energy expenditure. It is unclear, however, how beige or white adipose tissue contributes to brown fat thermogenic function or compensates for partial deficiencies in this tissue and protects against obesity. Here, we show that the transcription factor Yin Yang 1 (YY1) in brown adipose tissue activates the canonical thermogenic and uncoupling gene expression program. In contrast, YY1 represses a series of secreted proteins, including fibroblast growth factor 21 (FGF21), bone morphogenetic protein 8b (BMP8b), growth differentiation factor 15 (GDF15), angiopoietin-like 6 (Angptl6), neuromedin B, and nesfatin, linked to energy expenditure. Despite substantial decreases in mitochondrial thermogenic proteins in brown fat, mice lacking YY1 in this tissue are strongly protected against diet-induced obesity and exhibit increased energy expenditure and oxygen consumption in beige and white fat depots. The increased expression of secreted proteins correlates with elevation of energy expenditure and promotion of beige and white fat activation. These results indicate that YY1 in brown adipose tissue controls antagonistic gene expression programs associated with energy balance and maintenance of body weight. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Loss-of-Function Mutations in YY1AP1 Lead to Grange Syndrome and a Fibromuscular Dysplasia-Like Vascular Disease.

    PubMed

    Guo, Dong-Chuan; Duan, Xue-Yan; Regalado, Ellen S; Mellor-Crummey, Lauren; Kwartler, Callie S; Kim, Dong; Lieberman, Kenneth; de Vries, Bert B A; Pfundt, Rolph; Schinzel, Albert; Kotzot, Dieter; Shen, Xuetong; Yang, Min-Lee; Bamshad, Michael J; Nickerson, Deborah A; Gornik, Heather L; Ganesh, Santhi K; Braverman, Alan C; Grange, Dorothy K; Milewicz, Dianna M

    2017-01-05

    Fibromuscular dysplasia (FMD) is a heterogeneous group of non-atherosclerotic and non-inflammatory arterial diseases that primarily involves the renal and cerebrovascular arteries. Grange syndrome is an autosomal-recessive condition characterized by severe and early-onset vascular disease similar to FMD and variable penetrance of brachydactyly, syndactyly, bone fragility, and learning disabilities. Exome-sequencing analysis of DNA from three affected siblings with Grange syndrome identified compound heterozygous nonsense variants in YY1AP1, and homozygous nonsense or frameshift YY1AP1 variants were subsequently identified in additional unrelated probands with Grange syndrome. YY1AP1 encodes yin yang 1 (YY1)-associated protein 1 and is an activator of the YY1 transcription factor. We determined that YY1AP1 localizes to the nucleus and is a component of the INO80 chromatin remodeling complex, which is responsible for transcriptional regulation, DNA repair, and replication. Molecular studies revealed that loss of YY1AP1 in vascular smooth muscle cells leads to cell cycle arrest with decreased proliferation and increased levels of the cell cycle regulator p21/WAF/CDKN1A and disrupts TGF-β-driven differentiation of smooth muscle cells. Identification of YY1AP1 mutations as a cause of FMD indicates that this condition can result from underlying genetic variants that significantly alter the phenotype of vascular smooth muscle cells.

  19. Human INO80/YY1 chromatin remodeling complex transcriptionally regulates the BRCA2- and CDKN1A-interacting protein (BCCIP) in cells.

    PubMed

    Su, Jiaming; Sui, Yi; Ding, Jian; Li, Fuqiang; Shen, Shuang; Yang, Yang; Lu, Zeming; Wang, Fei; Cao, Lingling; Liu, Xiaoxia; Jin, Jingji; Cai, Yong

    2016-10-01

    The BCCIP (BRCA2- and CDKN1A-interacting protein) is an important cofactor for BRCA2 in tumor suppression. Although the low expression of BCCIP is observed in multiple clinically diagnosed primary tumor tissues such as ovarian cancer, renal cell carcinoma and colorectal carcinoma, the mechanism of how BCCIP is regulated in cells is still unclear. The human INO80/YY1 chromatin remodeling complex composed of 15 subunits catalyzes ATP-dependent sliding of nucleosomes along DNA. Here, we first report that BCCIP is a novel target gene of the INO80/YY1 complex by presenting a series of experimental evidence. Gene expression studies combined with siRNA knockdown data locked candidate genes including BCCIP of the INO80/YY1 complex. Silencing or over-expressing the subunits of the INO80/YY1 complex regulates the expression level of BCCIP both in mRNA and proteins in cells. Also, the functions of INO80/YY1 complex in regulating the transactivation of BCCIP were confirmed by luciferase reporter assays. Chromatin immunoprecipitation (ChIP) experiments clarify the enrichment of INO80 and YY1 at +0.17 kb downstream of the BCCIP transcriptional start site. However, this enrichment is significantly inhibited by either knocking down INO80 or YY1, suggesting the existence of both INO80 and YY1 is required for recruiting the INO80/YY1 complex to BCCIP promoter region. Our findings strongly indicate that BCCIP is a potential target gene of the INO80/YY1 complex.

  20. Investigating AP-2 and YY1 protein expression as a cause of high HER2 gene transcription in breast cancers with discordant HER2 gene amplification

    PubMed Central

    2009-01-01

    Introduction Candidacy for anti-HER2 adjuvant therapy in breast cancer is assessed using tumour HER2 status but recently it has been proposed that the transcription factors AP-2α and YY1 may cause Her2 protein overexpression independently of gene amplification. Methods We characterised AP-2α/β, AP-2α and YY1 with HER2 gene and protein expression, other relevant biomarkers, and clinical outcome using tissue microarrays (TMAs) and immunohistochemistry in a large (n = 1,176) clinically annotated series of early stage operable breast cancer. The associations and prognostic independence of AP-2 and YY1 was assessed in all patients and an oestrogen receptor negative subgroup. Results Nuclear expression of AP-2α/β, AP-2α and YY1 was detected in 23%, 44% and 33% of cases respectively. AP-2α/β significantly correlated with YY1 and both markers were increased in luminal oestrogen receptor (ER) positive tumours of small size and low grade but only AP-2α/β correlated with good prognosis breast cancer specific survival and disease free interval (BCSS and DFI). These characteristics were lost in oestrogen receptor negative patients. AP-2α also correlated with luminal-type tumours but not with YY1 expression or good prognosis. AP-2α and YY1 showed a significant correlation with Her2 protein expression and in addition, YY1 correlated with HER2 gene expression. Discordant HER2 gene and protein expression was identified in six cases (0.71% of the study group) with four of these showing AP-2α but absence of AP-2α/β and YY1 expression. Conclusions AP-2α/β and YY1 are markers of good prognosis principally due to their association with oestrogen receptor but are not independent predictors. Discordant HER2 protein/gene expression is a rare event that is not always explained by the actions of AP-2 and YY1. PMID:20025767

  1. Reciprocal localization of transcription factors YY1 and CP2c in spermatogonial stem cells and their putative roles during spermatogenesis.

    PubMed

    Kim, Ji Sook; Chae, Ji Hyung; Cheon, Yong-Pil; Kim, Chul Geun

    2016-09-01

    Maintaining stemness and permitting differentiation mediated by combinations of transcription factors (TFs) are key aspects of mammalian spermatogenesis. It has been established that yin yang 1 (YY1), a target factor of mammalian polycomb repressive complex 2 (PRC2) and a regulator of stemness, is involved in the stable maintenance of prophase stage spermatocytes. Recently, we have demonstrated that the TF CP2c partners with YY1 in some cells to antagonistically regulate the other protein's function. To date, the functional roles of YY1 and CP2c in spermatogonial stem cells and their derived germ cells remain unclear. Here, we investigated the expression of YY1 and CP2c in mouse gonocytes and germ cells using tissue immunohistochemical and immunofluorescence analyses. At E14.5, both YY1 and CP2c were stained in gonocytes and Sertoli cells in testicular cords, showing different proportion and density of immunoreactivity. However, in adult testes, YY1 was localized in the nuclei of spermatogonial stem cells and spermatocytes, but not in spermatozoa. It was also detected in spermatogonia and spermatids in a stage-specific manner during spermatogenic cycle. CP2c could be detected mostly in the cytoplasm of spermatocytes but not at all in spermatogonial stem cells, indicating mutually exclusive expression of CP2c and YY1. Interestingly, however, CP2c was stained in the cytoplasm and nucleus of spermatogonia at elongation and release stages, and co-localized with YY1 in the nucleus at grouping, maturation, and releasing stages. Neither YY1 nor CP2c was expressed in spermatozoa. Our data indicate that YY1 strongly localizes in the spermatogonial stem cells and co-localizes heterogeneously with CP2c to permit spermatogenesis, and also suggest that YY1 is essential for stemness of spermatogonial stem cells (SCs) whereas CP2c is critical for the commitment of spermatogonia and during the progression of spermatogonia to spermatids. This evaluation expands our understanding of

  2. Calculation of electron binding energies of {Na}_{55}^- clusters

    NASA Astrophysics Data System (ADS)

    Melikyan, Armen; Minassian, Hayk; Grigoryan, Valeri G.; Springborg, Michael

    2016-07-01

    Within the frame of the one-electron approximation, we calculate the electron binding energies of the {Na}_{55}^- cluster which allows for the identification of the icosahedral structure of the cluster through comparison with experimental photoelectron spectroscopy data. The surface of the icosahedral cluster is represented as a slightly deformed spherical surface, and the corresponding splitting of the energy levels caused by this symmetry reduction is calculated. Subsequently, we demonstrate that the calculated energies of photoelectrons agree very well with the experimental values. This gives an unambiguous demonstration of the role of the cluster structure in photoelectron spectra, whereas electronic shell filling effects are less important.

  3. Effect of clustered peptide binding on DNA condensation.

    PubMed

    Haley, Jennifer; Kabiru, Paul; Geng, Yan

    2010-01-01

    DNA condensation in-vitro has been studied as a model system to reveal common principles underlying gene packaging in biology, and as the critical first step towards the development of non-viral gene delivery vectors. In this study, we use a bio-inspired approach, where small DNA-binding peptides are controllably clustered by an amphiphilic block copolymer scaffold, to reveal the effect of clustered peptide binding on the energetics, size, shape and physical properties of DNA condensation in-vitro. This provides insights into the general architectural effect of gene-binding proteins on DNA condensation process. Moreover, the versatility afforded by regulating the clustering density and composition of peptides may provide a novel design platform for gene delivery applications in the future.

  4. Predicting Ca2+-binding Sites Using Refined Carbon Clusters

    PubMed Central

    Zhao, Kun; Wang, Xue; Wong, Hing C.; Wohlhueter, Robert; Kirberger, Michael P.; Chen, Guantao; Yang, Jenny J.

    2012-01-01

    Identifying Ca2+-binding sites in proteins is the first step towards understanding the molecular basis of diseases related to Ca2+-binding proteins. Currently, these sites are identified in structures either through X-ray crystallography or NMR analysis. However, Ca2+-binding sites are not always visible in X-ray structures due to flexibility in the binding region or low occupancy in a Ca2+-binding site. Similarly, both Ca2+ and its ligand oxygens are not directly observed in NMR structures. To improve our ability to predict Ca2+-binding sites in both X-ray and NMR structures, we report a new graph theory algorithm (MUGC) to predict Ca2+-binding sites. Using carbon atoms covalently bonded to the chelating oxygen atoms, and without explicit reference to side-chain oxygen ligand coordinates, MUGC is able to achieve 94% sensitivity with 76% selectivity on a dataset of X-ray structures comprised of 43 Ca2+-binding proteins. Additionally, prediction of Ca2+-binding sites in NMR structures were obtained by MUGC using a different set of parameters determined by analysis of both Ca2+-constrained and unconstrained Ca2+-loaded structures derived from NMR data. MUGC identified 20 out of 21 Ca2+-binding sites in NMR structures inferred without the use of Ca2+ constraints. MUGC predictions are also highly-selective for Ca2+-binding sites as analyses of binding sites for Mg2+, Zn2+, and Pb2+ were not identified as Ca2+-binding sites. These results indicate that the geometric arrangement of the second-shell carbon cluster is sufficient for both accurate identification of Ca2+-binding sites in NMR and X-ray structures, and for selective differentiation between Ca2+ and other relevant divalent cations. PMID:22821762

  5. Modulation of cluster incorporation specificity in a de novo iron-sulfur cluster binding peptide.

    PubMed

    Sommer, Dayn Joseph; Roy, Anindya; Astashkin, Andrei; Ghirlanda, Giovanna

    2015-07-01

    iron-sulfur cluster binding proteins perform an astounding variety of functions, and represent one of the most abundant classes of metalloproteins. Most often, they constitute pairs or chains and act as electron transfer modules either within complex redox enzymes or within small diffusible proteins. We have previously described the design of a three-helix bundle that can bind two clusters within its hydrophobic core. Here, we use single-point mutations to exchange one of the Cys ligands coordinating the cluster to either Leu or Ser. We show that the mutants modulate the redox potential of the clusters and stabilize the [3Fe-4S] form over the [4Fe-4S] form, supporting the use of model iron-sulfur cluster proteins as modules in the design of complex redox enzymes.

  6. Correlation of the expression of YY1 and Fas cell surface death receptor with apoptosis of peripheral blood mononuclear cells, and the development of multiple organ dysfunction in children with sepsis

    PubMed Central

    Reséndiz-Martínez, Judith; Asbun-Bojalil, Juan; Huerta-Yepez, Sara; Vega, Mario

    2017-01-01

    Multiple organ dysfunction (MOD) is a lethal complication in children with sepsis. Apoptosis of several cell types is involved in this process, and it is associated with increased Fas cell surface death receptor (Fas) expression. As YY1 transcription factor (YY1) negatively regulates the expression of Fas in cancer models, and is associated with the clinical outcome, it may be important in MOD. The present study aimed to determine the association between the expression of Fas, YY1 and apoptosis in children with sepsis, and its association with MOD, these factors were analyzed in 30 pediatric patients that had been diagnosed with sepsis. Peripheral blood mononuclear cells were purified from patients, and YY1 and Fas protein expression was assessed by immunocytochemistry. Apoptosis was determined by terminal deoxynucleotidyl transferase dUTP nick-end labeling. Sepsis was monitored using clinical parameters, pediatric logistic organ dysfunction (PELOD) score and the pediatric mortality index. The results demonstrated that Fas expression was directly correlated with apoptosis levels and the expression of YY1 was inversely correlated with apoptosis levels. Patients with high levels of apoptosis exhibited increased disease severity and poor clinical outcome. Notably, the findings of the present study demonstrated that there were higher survival rates in patients with high YY1 expression, compared with those with low YY1 expression. Additionally, patients with MOD exhibited lower proportions of apoptotic cells compared with sepsis patients without MOD. Furthermore, the PELOD score was positively correlated with Fas and inversely correlated with YY1 expression. Finally, high apoptosis and low YY1 expression were prognostic factors associated with poor survival rates. These data suggested that YY1 may be important for apoptosis induction via the regulation of Fas during sepsis. Therefore, Fas may be a potential therapeutic target to prevent MOD through regulation of YY1

  7. Yin Yang 1 Intronic Binding Sequences and Splicing Elicit Intron-Mediated Enhancement of Ubiquitin C Gene Expression

    PubMed Central

    Bianchi, Marzia; Crinelli, Rita; Giacomini, Elisa; Carloni, Elisa; Radici, Lucia; Magnani, Mauro

    2013-01-01

    In a number of organisms, introns affect expression of the gene in which they are contained. Our previous studies revealed that the 5′-UTR intron of human ubiquitin C (UbC) gene is responsible for the boost of reporter gene expression and is able to bind, in vitro, Yin Yang 1 (YY1) trans-acting factor. In this work, we demonstrate that intact YY1 binding sequences are required for maximal promoter activity and YY1 silencing causes downregulation of luciferase mRNA levels. However, YY1 motifs fail to enhance gene expression when the intron is moved upstream of the proximal promoter, excluding the typical enhancer hypothesis and supporting a context-dependent action, like intron-mediated enhancement (IME). Yet, almost no expression is seen in the construct containing an unspliceable version of UbC intron, indicating that splicing is essential for promoter activity. Moreover, mutagenesis of YY1 binding sites and YY1 knockdown negatively affect UbC intron removal from both endogenous and reporter transcripts. Modulation of splicing efficiency by YY1 cis-elements and protein factor may thus be part of the mechanism(s) by which YY1 controls UbC promoter activity. Our data highlight the first evidence of the involvement of a sequence-specific DNA binding factor in IME. PMID:23776572

  8. Repression of PDGF-R-α after cellular injury involves TNF-α, formation of a c-Fos-YY1 complex, and negative regulation by HDAC.

    PubMed

    Zhang, Ning; Chan, Cecilia W S; Sanchez-Guerrero, Estella; Khachigian, Levon M

    2012-06-01

    Wound healing is a complex dynamic process involving a variety of cell types, including fibroblasts that express and respond to cytokines and growth factors in the local microenvironment. The mechanisms controlling gene expression after injury at a transcriptional level are poorly understood. Here we show that decreased expression of a key receptor, PDGF-receptor (R)-α, after fibroblast injury is due to the release and paracrine activity of TNF-α. TNF-α inhibits PDGF-R-α expression and this involves formation of a c-Fos-Yin Yang 1 (YY1) complex and histone deacetylase (HDAC) activity. c-Fos, induced by TNF-α, negatively regulates PDGF-R-α transcription. Small interfering RNA (siRNA) targeting c-Fos or the zinc finger transcription factor YY1 inhibits TNF-α suppression of PDGF-R-α expression. Coimmunoprecipitation studies show that TNF-α stimulates the formation of a complex between c-Fos with YY1. Furthermore, chromatin immunoprecipitation (ChIP) analysis reveals the enrichment of c-Fos, YY1, and HDAC-1 at the PDGF-R-α promoter in cells exposed to TNF-α. With suberoylanilide hydroxamic acid (SAHA) and HDAC-1 siRNA, we demonstrate that HDAC mediates TNF-α repression of PDGF-R-α. These findings demonstrate that transcriptional repression of PDGF-R-α after fibroblast injury involves paracrine activity of endogenous TNF-α, the formation of a c-Fos-YY1 complex, and negative regulatory activity by HDAC.

  9. The MeCP2/YY1 interaction regulates ANT1 expression at 4q35: novel hints for Rett syndrome pathogenesis.

    PubMed

    Forlani, Greta; Giarda, Elisa; Ala, Ugo; Di Cunto, Ferdinando; Salani, Monica; Tupler, Rossella; Kilstrup-Nielsen, Charlotte; Landsberger, Nicoletta

    2010-08-15

    Rett syndrome is a severe neurodevelopmental disorder mainly caused by mutations in the transcriptional regulator MeCP2. Although there is no effective therapy for Rett syndrome, the recently discovered disease reversibility in mice suggests that there are therapeutic possibilities. Identification of MeCP2 targets or modifiers of the phenotype can facilitate the design of curative strategies. To identify possible novel MeCP2 interactors, we exploited a bioinformatic approach and selected Ying Yang 1 (YY1) as an interesting candidate. We demonstrate that MeCP2 interacts in vitro and in vivo with YY1, a ubiquitous zinc-finger epigenetic factor regulating the expression of several genes. We show that MeCP2 cooperates with YY1 in repressing the ANT1 gene encoding a mitochondrial adenine nucleotide translocase. Importantly, ANT1 mRNA levels are increased in human and mouse cell lines devoid of MeCP2, in Rett patient fibroblasts and in the brain of Mecp2-null mice. We further demonstrate that ANT1 protein levels are upregulated in Mecp2-null mice. Finally, the identified MeCP2-YY1 interaction, together with the well-known involvement of YY1 in the regulation of D4Z4-associated genes at 4q35, led us to discover the anomalous depression of FRG2, a subtelomeric gene of unknown function, in Rett fibroblasts. Collectively, our data indicate that mutations in MeCP2 might cause the aberrant overexpression of genes located at a specific locus, thus providing new candidates for the pathogenesis of Rett syndrome. As both ANT1 mutations and overexpression have been associated with human diseases, we consider it highly relevant to address the consequences of ANT1 deregulation in Rett syndrome.

  10. NLRP7 affects trophoblast lineage differentiation, binds to overexpressed YY1 and alters CpG methylation

    USDA-ARS?s Scientific Manuscript database

    Maternal-effect mutations in NLRP7 cause rare biparentally inherited hydatidiform moles (BiHMs), abnormal pregnancies containing hypertrophic vesicular trophoblast but no embryo. BiHM trophoblasts display abnormal DNA methylation patterns affecting maternally methylated germline differentially methy...

  11. Complete genome sequence and transcriptomics analyses reveal pigment biosynthesis and regulatory mechanisms in an industrial strain, Monascus purpureus YY-1.

    PubMed

    Yang, Yue; Liu, Bin; Du, Xinjun; Li, Ping; Liang, Bin; Cheng, Xiaozhen; Du, Liangcheng; Huang, Di; Wang, Lei; Wang, Shuo

    2015-02-09

    Monascus has been used to produce natural colorants and food supplements for more than one thousand years, and approximately more than one billion people eat Monascus-fermented products during their daily life. In this study, using next-generation sequencing and optical mapping approaches, a 24.1-Mb complete genome of an industrial strain, Monascus purpureus YY-1, was obtained. This genome consists of eight chromosomes and 7,491 genes. Phylogenetic analysis at the genome level provides convincing evidence for the evolutionary position of M. purpureus. We provide the first comprehensive prediction of the biosynthetic pathway for Monascus pigment. Comparative genomic analyses show that the genome of M. purpureus is 13.6-40% smaller than those of closely related filamentous fungi and has undergone significant gene losses, most of which likely occurred during its specialized adaptation to starch-based foods. Comparative transcriptome analysis reveals that carbon starvation stress, resulting from the use of relatively low-quality carbon sources, contributes to the high yield of pigments by repressing central carbon metabolism and augmenting the acetyl-CoA pool. Our work provides important insights into the evolution of this economically important fungus and lays a foundation for future genetic manipulation and engineering of this strain.

  12. How do small water clusters bind an excess electron?

    PubMed

    Hammer, Nathan I; Shin, Joong-Won; Headrick, Jeffrey M; Diken, Eric G; Roscioli, Joseph R; Weddle, Gary H; Johnson, Mark A

    2004-10-22

    The arrangement of water molecules around a hydrated electron has eluded explanation for more than 40 years. Here we report sharp vibrational bands for small gas-phase water cluster anions, (H2O)(4-6)- and (D2O)(4-6)-. Analysis of these bands reveals a detailed picture of the diffuse electron-binding site. The electron is closely associated with a single water molecule attached to the supporting network through a double H-bond acceptor motif. The local OH stretching bands of this molecule are dramatically distorted in the pentamer and smaller clusters because the excited vibrational levels are strongly coupled to the electron continuum. The vibration-to-electronic energy transfer rates, as revealed by line shape analysis, are mode-specific and remarkably fast, with the symmetric stretching mode surviving for less than 10 vibrational periods [50 fs in (H2O)4-].

  13. RKIP-Mediated Chemo-Immunosensitization of Resistant Cancer Cells via Disruption of the NF-κB/Snail/YY1/RKIP Resistance-Driver Loop

    PubMed Central

    Bonavida, Benjamin

    2014-01-01

    Cancer remains one of the most dreadful diseases. Whereas most treatment regimens for various cancers have resulted in improved clinical responses and sometimes cures, unfortunately, subsets of cancer patients are either pre-treatment resistant or develop resistance following therapy. These subsets of patients develop cross-resistance to unrelated therapeutics and usually succumb to death. Thus, delineating the underlying molecular mechanisms of resistance of various cancers and identifying molecular targets for intervention are the current main focus of research investigations. One approach to investigate cancer resistance has been to identify pathways that regulate resistance and develop means to disrupt these pathways in order to override resistance and sensitize the resistant cells to cell death. Hence, we have identified one pathway that is dysregulated in cancer, namely, the NF-κB/Snail/YY1/RKIP loop, that has been shown to regulate, in large part, tumor cell resistance to apoptosis by chemotherapeutic and immunotherapeutic cytotoxic drugs. The dysregulated resistant loop is manifested by the overexpression of NF-κB, Snail and YY1 activities and the underexpression of RKIP. The induction of RKIP expression results in the downregulation of NF-κB, Snail and YY1 and the sensitization of resistant cells to drug-induced apoptosis. These findings identified RKIP, in addition to its anti-proliferative and metastatic suppressor functions, as an anti-resistance factor. This brief review describes the role of RKIP in the regulation of drug sensitivity via disruption of the NF-κB/Snail/YY1/RKIP loop that regulates resistance in cancer cells. PMID:25597353

  14. The glycocalyx promotes cooperative binding and clustering of adhesion receptors.

    PubMed

    Xu, Guang-Kui; Qian, Jin; Hu, Jinglei

    2016-05-18

    Cell adhesion plays a pivotal role in various biological processes, e.g., immune responses, cancer metastasis, and stem cell differentiation. The adhesion behaviors depend subtly on the binding kinetics of receptors and ligands restricted at the cell-substrate interfaces. Although much effort has been directed toward investigating the kinetics of adhesion molecules, the role of the glycocalyx, anchored on cell surfaces as an exterior layer, is still unclear. In this paper, we propose a theoretical approach to study the collective binding kinetics of a few and a large number of binders in the presence of the glycocalyx, representing the cases of initial and mature adhesions of cells, respectively. The analytical results are validated by finding good agreement with our Monte Carlo simulations. In the force loading case, the on-rate and affinity increase as more bonds form, whereas this cooperative effect is not observed in the displacement loading case. The increased thickness and stiffness of the glycocalyx tend to decrease the affinity for a few bonds, while they have less influence on the affinity for a large number of bonds. Moreover, for a flexible membrane with thermally-excited shape fluctuations, the glycocalyx is exhibited to promote the formation of bond clusters, mainly due to the cooperative binding of binders. This study helps to understand the cooperative kinetics of adhesion receptors under physiologically relevant loading conditions and sheds light on the novel role of the glycocalyx in cell adhesion.

  15. Direct GR Binding Sites Potentiate Clusters of TF Binding across the Human Genome.

    PubMed

    Vockley, Christopher M; D'Ippolito, Anthony M; McDowell, Ian C; Majoros, William H; Safi, Alexias; Song, Lingyun; Crawford, Gregory E; Reddy, Timothy E

    2016-08-25

    The glucocorticoid receptor (GR) binds the human genome at >10,000 sites but only regulates the expression of hundreds of genes. To determine the functional effect of each site, we measured the glucocorticoid (GC) responsive activity of nearly all GR binding sites (GBSs) captured using chromatin immunoprecipitation (ChIP) in A549 cells. 13% of GBSs assayed had GC-induced activity. The responsive sites were defined by direct GR binding via a GC response element (GRE) and exclusively increased reporter-gene expression. Meanwhile, most GBSs lacked GC-induced reporter activity. The non-responsive sites had epigenetic features of steady-state enhancers and clustered around direct GBSs. Together, our data support a model in which clusters of GBSs observed with ChIP-seq reflect interactions between direct and tethered GBSs over tens of kilobases. We further show that those interactions can synergistically modulate the activity of direct GBSs and may therefore play a major role in driving gene activation in response to GCs.

  16. Binding to F-actin guides cadherin cluster assembly, stability, and movement

    PubMed Central

    Hong, Soonjin; Troyanovsky, Regina B.

    2013-01-01

    The cadherin extracellular region produces intercellular adhesion clusters through trans- and cis-intercadherin bonds, and the intracellular region connects these clusters to the cytoskeleton. To elucidate the interdependence of these binding events, cadherin adhesion was reconstructed from the minimal number of structural elements. F-actin–uncoupled adhesive clusters displayed high instability and random motion. Their assembly required a cadherin cis-binding interface. Coupling these clusters with F-actin through an α-catenin actin-binding domain (αABD) dramatically extended cluster lifetime and conferred direction to cluster motility. In addition, αABD partially lifted the requirement for the cis-interface for cluster assembly. Even more dramatic enhancement of cadherin clustering was observed if αABD was joined with cadherin through a flexible linker or if it was replaced with an actin-binding domain of utrophin. These data present direct evidence that binding to F-actin stabilizes cadherin clusters and cooperates with the cis-interface in cadherin clustering. Such cooperation apparently synchronizes extracellular and intracellular binding events in the process of adherens junction assembly. PMID:23547031

  17. Density functional study of hydrogen binding on gold and silver-gold clusters.

    PubMed

    Zhao, Shuang; Ren, YunLi; Ren, YunLai; Wang, JianJi; Yin, WeiPing

    2010-04-15

    A theoretical study was carried out on the binding of hydrogen on small bimetallic Ag(m)Au(n) (m + n < or = 5) and pure Au(n) (n < or = 5) clusters with neutral, negative, and positive charge state. It is found that the composition and charge state of clusters have strong influence on the most favorable binding site. The adiabatic ionization potentials, electron affinities, and hydrogen binding energies of cluster hydrides increase with the Au content increasing for the given cluster size. The cationic silver-gold cluster hydrides prefer ejection of Au-containing products whereas the anionic silver-gold cluster hydrides prefer ejection of Ag-containing products. The magnitude of metal-H frequency in combination with the metal-H bond length indicates that, with the same type of the binding site, the Au-H interaction is stronger than the Ag-H interaction.

  18. Copper binding in IscA inhibits iron-sulfur cluster assembly in Escherichia coli

    PubMed Central

    Tan, Guoqiang; Cheng, Zishuo; Pang, Yilin; Landry, Aaron P.; Li, Jianghui; Lu, Jianxin; Ding, Huangen

    2014-01-01

    Among the iron-sulfur cluster assembly proteins encoded by gene cluster iscSUA-hscBA-fdx in Escherichia coli, IscA has a unique and strong iron binding activity and can provide iron for iron-sulfur cluster assembly in proteins in vitro. Deletion of IscA and its paralogue SufA results in an E. coli mutant that fails to assemble [4Fe-4S] clusters in proteins under aerobic conditions, suggesting that IscA has a crucial role for iron-sulfur cluster biogenesis. Here we report that among the iron-sulfur cluster assembly proteins, IscA also has a strong and specific binding activity for Cu(I) in vivo and in vitro. The Cu(I) center in IscA is stable and resistant to oxidation under aerobic conditions. Mutation of the conserved cysteine residues that are essential for the iron binding in IscA abolishes the copper binding activity, indicating that copper and iron may share the same binding site in the protein. Additional studies reveal that copper can compete with iron for the metal binding site in IscA and effectively inhibits the IscA-mediated [4Fe-4S] cluster assembly in E. coli cells. The results suggest that copper may not only attack the [4Fe-4S] clusters in dehydratases, but also block the [4Fe-4S] cluster assembly in proteins by targeting IscA in cells. PMID:24946160

  19. CRHR2/Ucn2 signaling is a novel regulator of miR-7/YY1/Fas circuitry contributing to reversal of colorectal cancer cell resistance to Fas-mediated apoptosis.

    PubMed

    Pothoulakis, Charalabos; Torre-Rojas, Monica; Duran-Padilla, Marco A; Gevorkian, Jonathan; Zoras, Odysseas; Chrysos, Emmanuel; Chalkiadakis, George; Baritaki, Stavroula

    2017-09-20

    Colorectal cancer (CRC) responds poorly to immuno-mediated cytotoxicity. Underexpression of corticotropin-releasing-hormone-receptor-2 (CRHR2) in CRC, promotes tumor survival, growth and Epithelial to Mesenchymal Transition (EMT), in vitro and in vivo. We explored the role of CRHR2 downregulation in CRC cell resistance to Fas/FasL-mediated apoptosis and the underlying molecular mechanism. CRC cell sensitivity to CH11-induced apoptosis was compared between Urocortin-2 (Ucn2)-stimulated parental and CRHR2-overexpressing CRC cell lines and targets of CRHR2/Ucn2 signaling were identified through in vitro and ex vivo analyses. Induced CRHR2/Ucn2 signaling in SW620 and DLD1 cells increased specifically their sensitivity to CH11-mediated apoptosis, via Fas mRNA and protein upregulation. CRC compared to control tissues had reduced Fas expression that was associated with lost CRHR2 mRNA, poor tumor differentiation and high risk for distant metastasis. YY1 silencing increased Fas promoter activity in SW620 and re-sensitized them to CH11-apoptosis, thus suggesting YY1 as a putative transcriptional repressor of Fas in CRC. An inverse correlation between Fas and YY1 expression was confirmed in CRC tissue arrays, while elevated YY1 mRNA was clinically relevant with advanced CRC grade and higher risk for distant metastasis. CRHR2/Ucn2 signaling downregulated specifically YY1 expression through miR-7 elevation, while miR-7 modulation in miR-7(high) SW620-CRHR2+ and miR-7(low) HCT116 cells, had opposite effects on YY1 and Fas expressions and cell sensitivity to CH11-killing. CRHR2/Ucn2 signaling is a negative regulator of CRC cell resistance to Fas/FasL-apoptosis via targeting the miR-7/YY1/Fas circuitry. CRHR2 restoration might prove effective in managing CRC response to immune-mediated apoptotic stimuli. © 2017 UICC.

  20. A novel NF-κB/YY1/microRNA-10a regulatory circuit in fibroblast-like synoviocytes regulates inflammation in rheumatoid arthritis

    PubMed Central

    Mu, Nan; Gu, Jintao; Huang, Tonglie; Zhang, Cun; Shu, Zhen; Li, Meng; Hao, Qiang; Li, Weina; Zhang, Wangqian; Zhao, Jinkang; Zhang, Yong; Huang, Luyu; Wang, Shuning; Jin, Xiaohang; Xue, Xiaochang; Zhang, Wei; Zhang, Yingqi

    2016-01-01

    The main etiopathogenesis of rheumatoid arthritis (RA) is overexpressed inflammatory cytokines and tissue injury mediated by persistent NF-κB activation. MicroRNAs widely participate in the regulation of target gene expression and play important roles in various diseases. Here, we explored the mechanisms of microRNAs in RA. We found that microRNA (miR)-10a was downregulated in the fibroblast-like synoviocytes (FLSs) of RA patients compared with osteoarthritis (OA) controls, and this downregulation could be triggered by TNF-α and IL-1β in an NF-κB-dependent manner through promoting the expression of the YingYang 1 (YY1) transcription factor. Downregulated miR-10a could accelerate IκB degradation and NF-κB activation by targeting IRAK4, TAK1 and BTRC. This miR-10a-mediated NF-κB activation then significantly promoted the production of various inflammatory cytokines, including TNF-α, IL-1β, IL-6, IL-8, and MCP-1, and matrix metalloproteinase (MMP)-1 and MMP-13. In addition, transfection of a miR-10a inhibitor accelerated the proliferation and migration of FLSs. Collectively, our data demonstrates the existence of a novel NF-κB/YY1/miR-10a/NF-κB regulatory circuit that promotes the excessive secretion of NF-κB-mediated inflammatory cytokines and the proliferation and migration of RA FLSs. Thus, miR-10a acts as a switch to control this regulatory circuit and may serve as a diagnostic and therapeutic target for RA treatment. PMID:26821827

  1. Improved Density Functional Tight Binding Potentials for Metalloid Aluminum Clusters

    DTIC Science & Technology

    2016-06-01

    approach, using solution chemistry methods to grow small metal clusters with a single monolayer of organic ligand on their surface. These may offer the...studies. In this section we discuss efforts to use this newly developed potential to more efficiently simulate chemistry in Al/Cp clusters. We... Chemistry A, vol. 111, pp. 5678–5684, Jan. 2007. [7] J. Frenzel et al. “Semi-relativistic, self-consistent charge Slater-Koster tables for density

  2. Predicting peptide binding sites on protein surfaces by clustering chemical interactions.

    PubMed

    Yan, Chengfei; Zou, Xiaoqin

    2015-01-05

    Short peptides play important roles in cellular processes including signal transduction, immune response, and transcription regulation. Correct identification of the peptide binding site on a given protein surface is of great importance not only for mechanistic investigation of these biological processes but also for therapeutic development. In this study, we developed a novel computational approach, referred to as ACCLUSTER, for predicting the peptide binding sites on protein surfaces. Specifically, we use the 20 standard amino acids as probes to globally scan the protein surface. The poses forming good chemical interactions with the protein are identified, followed by clustering with the density-based spatial clustering of applications with noise technique. Finally, these clusters are ranked based on their sizes. The cluster with the largest size is predicted as the putative binding site. Assessment of ACCLUSTER was performed on a diverse test set of 251 nonredundant protein-peptide complexes. The results were compared with the performance of POCASA, a pocket detection method for ligand binding site prediction. Peptidb, another protein-peptide database that contains both bound structures and unbound or homologous structures was used to test the robustness of ACCLUSTER. The performance of ACCLUSTER was also compared with PepSite2 and PeptiMap, two recently developed methods developed for identifying peptide binding sites. The results showed that ACCLUSTER is a promising method for peptide binding site prediction. Additionally, ACCLUSTER was also shown to be applicable to nonpeptide ligand binding site prediction. © 2014 Wiley Periodicals, Inc.

  3. Integrated hepatitis B virus DNA preserves the binding sequence of transcription factor Yin and Yang 1 at the virus-cell junction.

    PubMed

    Nakanishi-Matsui, M; Hayashi, Y; Kitamura, Y; Koike, K

    2000-06-01

    Accumulated findings have indicated that hepatitis B virus (HBV) DNA integrates into the cellular DNA of HBV-infected chronic hepatitis tissues. The integrated sequence (IS) of HBV DNA at the virus-cell junction is conserved in a 25-bp region which is adjacent to direct repeat 1. A cellular protein which we purified from the nuclear extract of HepG2 cells binds to the IS and was designated IS binding protein 3 (ISBP3). The amino acid sequence of ISBP3 was determined and found to be identical to that of transcription initiation factor Yin and Yang 1 (YY1). An antibody against C-terminal amino acids of YY1 recognized ISBP3 in a Western blot analysis and an electrophoretic mobility shift assay. Furthermore, ISBP3 also interacted with Y3, which corresponds to the YY1 binding sequence, to enhance intramolecular recombination of polyomavirus DNA. Although YY1 is known as a transcription factor, the IS did not exhibit any effect on the transcription of precore and pregenome RNAs. The possible involvement of YY1 in the intramolecular recombination of linear replicative HBV DNA has been examined (Y. Hayashi et al., unpublished data). Data suggest that YY1 is involved in the joining reaction between HBV DNA and cellular DNA to form the virus-cell junction.

  4. Integrated Hepatitis B Virus DNA Preserves the Binding Sequence of Transcription Factor Yin and Yang 1 at the Virus-Cell Junction

    PubMed Central

    Nakanishi-Matsui, Mayumi; Hayashi, Yasuyuki; Kitamura, Yoshiyuki; Koike, Katsuro

    2000-01-01

    Accumulated findings have indicated that hepatitis B virus (HBV) DNA integrates into the cellular DNA of HBV-infected chronic hepatitis tissues. The integrated sequence (IS) of HBV DNA at the virus-cell junction is conserved in a 25-bp region which is adjacent to direct repeat 1. A cellular protein which we purified from the nuclear extract of HepG2 cells binds to the IS and was designated IS binding protein 3 (ISBP3). The amino acid sequence of ISBP3 was determined and found to be identical to that of transcription initiation factor Yin and Yang 1 (YY1). An antibody against C-terminal amino acids of YY1 recognized ISBP3 in a Western blot analysis and an electrophoretic mobility shift assay. Furthermore, ISBP3 also interacted with Y3, which corresponds to the YY1 binding sequence, to enhance intramolecular recombination of polyomavirus DNA. Although YY1 is known as a transcription factor, the IS did not exhibit any effect on the transcription of precore and pregenome RNAs. The possible involvement of YY1 in the intramolecular recombination of linear replicative HBV DNA has been examined (Y. Hayashi et al., unpublished data). Data suggest that YY1 is involved in the joining reaction between HBV DNA and cellular DNA to form the virus-cell junction. PMID:10823863

  5. Ferromagnetism and Borromean binding in three-fermion clusters.

    PubMed

    Kornilovitch, Pavel

    2014-02-21

    A three-particle spin-12 fermion problem with on-site repulsion and nearest-neighbor attraction is solved on the two-dimensional square lattice by discretizing a Schrödinger equation in momentum space. Energies of bound complexes (trions) and their binding conditions are obtained. For total spin S=1/2, a wide region of trion instability toward decaying into a stable singlet pair plus a free fermion is identified. The instability is attributed to the formation of a wave function node upon addition of the third fermion. In the S=3/2 sector, trions are found to form in the absence of bound pairs indicating Borromean binding. In the strong coupling limit the system transitions from an S=1/2 ground state to a ferromagnetic S=3/2 ground state in agreement with the Nagaoka theorem for a four-site plaquette.

  6. Oxidative stress-induced S100B accumulation converts myoblasts into brown adipocytes via an NF-κB/YY1/miR-133 axis and NF-κB/YY1/BMP-7 axis.

    PubMed

    Morozzi, Giulio; Beccafico, Sara; Bianchi, Roberta; Riuzzi, Francesca; Bellezza, Ilaria; Giambanco, Ileana; Arcuri, Cataldo; Minelli, Alba; Donato, Rosario

    2017-09-08

    Muscles of sarcopenic people show hypotrophic myofibers and infiltration with adipose and, at later stages, fibrotic tissue. The origin of infiltrating adipocytes resides in fibro-adipogenic precursors and nonmyogenic mesenchymal progenitor cells, and in satellite cells, the adult stem cells of skeletal muscles. Myoblasts and brown adipocytes share a common Myf5(+) progenitor cell: the cell fate depends on levels of bone morphogenetic protein 7 (BMP-7), a TGF-β family member. S100B, a Ca(2+)-binding protein of the EF-hand type, is expressed at relatively high levels in myoblasts from sarcopenic humans and exerts anti-myogenic effects via NF-κB-dependent inhibition of MyoD, a myogenic transcription factor acting upstream of the essential myogenic factor, myogenin. Adipogenesis requires high levels of ROS, and myoblasts of sarcopenic subjects show elevated ROS levels. Here we show that: (1) ROS overproduction in myoblasts results in upregulation of S100B levels via NF-κB activation; and (2) ROS/NF-κB-induced accumulation of S100B causes myoblast transition into brown adipocytes. S100B activates an NF-κB/Ying Yang 1 axis that negatively regulates the promyogenic and anti-adipogenic miR-133 with resultant accumulation of the brown adipogenic transcription regulator, PRDM-16. S100B also upregulates BMP-7 via NF-κB/Ying Yang 1 with resultant BMP-7 autocrine activity. Interestingly, myoblasts from sarcopenic humans show features of brown adipocytes. We also show that S100B levels and NF-κB activity are elevated in brown adipocytes obtained by culturing myoblasts in adipocyte differentiation medium and that S100B knockdown or NF-κB inhibition in myoblast-derived brown adipocytes reconverts them into fusion-competent myoblasts. At last, interstitial cells and, unexpectedly, a subpopulation of myofibers in muscles of geriatric but not young mice co-express S100B and the brown adipocyte marker, uncoupling protein-1. These results suggest that S100B is an important

  7. Discovery of Fur binding site clusters in Escherichia coli by information theory models

    PubMed Central

    Chen, Zehua; Lewis, Karen A.; Shultzaberger, Ryan K.; Lyakhov, Ilya G.; Zheng, Ming; Doan, Bernard; Storz, Gisela; Schneider, Thomas D.

    2007-01-01

    Fur is a DNA binding protein that represses bacterial iron uptake systems. Eleven footprinted Escherichia coli Fur binding sites were used to create an initial information theory model of Fur binding, which was then refined by adding 13 experimentally confirmed sites. When the refined model was scanned across all available footprinted sequences, sequence walkers, which are visual depictions of predicted binding sites, frequently appeared in clusters that fit the footprints (∼83% coverage). This indicated that the model can accurately predict Fur binding. Within the clusters, individual walkers were separated from their neighbors by exactly 3 or 6 bases, consistent with models in which Fur dimers bind on different faces of the DNA helix. When the E. coli genome was scanned, we found 363 unique clusters, which includes all known Fur-repressed genes that are involved in iron metabolism. In contrast, only a few of the known Fur-activated genes have predicted Fur binding sites at their promoters. These observations suggest that Fur is either a direct repressor or an indirect activator. The Pseudomonas aeruginosa and Bacillus subtilis Fur models are highly similar to the E. coli Fur model, suggesting that the Fur–DNA recognition mechanism may be conserved for even distantly related bacteria. PMID:17921503

  8. Perlecan is recruited by dystroglycan to nodes of Ranvier and binds the clustering molecule gliomedin

    PubMed Central

    Colombelli, Cristina; Palmisano, Marilena; Eshed-Eisenbach, Yael; Zambroni, Desirée; Pavoni, Ernesto; Ferri, Cinzia; Saccucci, Stefania; Nicole, Sophie; Soininen, Raija; McKee, Karen K.; Yurchenco, Peter D.; Peles, Elior; Wrabetz, Lawrence

    2015-01-01

    Fast neural conduction requires accumulation of Na+ channels at nodes of Ranvier. Dedicated adhesion molecules on myelinating cells and axons govern node organization. Among those, specific laminins and dystroglycan complexes contribute to Na+ channel clustering at peripheral nodes by unknown mechanisms. We show that in addition to facing the basal lamina, dystroglycan is found near the nodal matrix around axons, binds matrix components, and participates in initial events of nodogenesis. We identify the dystroglycan-ligand perlecan as a novel nodal component and show that dystroglycan is required for the selective accumulation of perlecan at nodes. Perlecan binds the clustering molecule gliomedin and enhances clustering of node of Ranvier components. These data show that proteoglycans have specific roles in peripheral nodes and indicate that peripheral and central axons use similar strategies but different molecules to form nodes of Ranvier. Further, our data indicate that dystroglycan binds free matrix that is not organized in a basal lamina. PMID:25646087

  9. Inhibition of sympathetic vasoconstriction in pigs in vivo by the neuropeptide Y-Y1 receptor antagonist BIBP 3226.

    PubMed Central

    Lundberg, J. M.; Modin, A.

    1995-01-01

    1. Recently, a potent non-peptide antagonist of neuropeptide Y (NPY)-Y1 receptors has been developed. In this study, the selectivity of this compound, BIBP 3226, as a functional Y1 receptor antagonist, and the possible role of endogenous NPY in sympathetic vasoconstriction in different vascular beds have been investigated in anaesthetized pigs. 2. BIBP 3226 specifically displaced [125I]-NPY binding with an IC50 value of 7 nM in membranes of pig renal arteries, which also were responsive to a Y1 receptor agonist, but had only minor effects in the pig spleen (IC50 55 microM), where instead [125I]-NPY binding was markedly inhibited by a Y2 receptor agonist. IC50 values in the same nM range for BIBP 3226 were also observed in rat and bovine cortex and dog spleen. 3. In anaesthetized control pigs in vivo BIBP 3226 (1 and 3 mg kg-1) markedly inhibited the vasoconstrictor effects of the Y1 receptor agonist [Leu31, Pro34] NPY(1-36), without influencing the responses to the Y2 receptor agonist N-acetyl [Leu28, Leu31] NPY(24-36), or to noradrenaline, phenylephrine, alpha,beta-methylene adenosine triphosphate or angiotensin II. 4. High frequency stimulation of the sympathetic trunk in control pigs caused a biphasic vasoconstrictor response in nasal mucosa, hind limb and skin: there was an immediate, peak response, followed by a long-lasting vasoconstriction. BIBP 3226 (1 and 3 mg kg-1) reduced the second phase by about 50% but had no effect on the peak response. In the spleen, kidney and mesenteric circulation (which lack the protracted response) BIBP 3226 was likewise without effect on the maximal vasoconstriction, and did not influence noradrenaline overflow from spleen and kidney. 5. The corresponding S-enantiomer BIBP 3435 had only marginal influence on [125I]-NPY binding (microM range) and did not inhibit the vasoconstrictor effects of any of the agonists used, including the Y1 receptor peptide agonist. Furthermore, BIBP 3435 did not affect the response to sympathetic

  10. Single crystal growth and structural evolution across the 1st order valence transition in (Pr1-yYy)1-xCaxCoO3-δ

    NASA Astrophysics Data System (ADS)

    Schreiber, N. J.; Zhang, Junjie; Zheng, Hong; Freeland, J. W.; Chen, Yu-Sheng; Mitchell, J. F.; Phelan, D.

    2017-10-01

    Praseodymium-containing cobalt perovskites, such as (Pr1-yYy)1-xCaxCoO3-δ, have been argued to undergo a first-order charge shift between Pr and hybridized Co-O orbitals that leads to a metal-insulator transition at a temperature, TVT. Magnetization and x-ray absorption spectroscopy measurements on single crystals of (Pr0.85Y0.15)0.7Ca0.3CoO3-δ grown in an IR image furnace under 40-60 bar of oxygen confirm the presence of this valence transition. Single crystal x-ray synchrotron diffraction measurements are consistent with an isomorphic phase transition at TVT. No evidence of charge ordering was revealed by the single crystal diffraction. Dissimilar to analytical transmission electron microscopy measurements performed on a grain from a polycrystalline sample that revealed an oxygen vacancy order-disorder transition at TVT, the present single-crystal measurements did not evidence such a transition, likely reflecting a lower density of oxygen vacancies in the high-pO2 grown single crystals.

  11. Monoclonal antibody binding-site diversity assessment with a cell-based clustering assay.

    PubMed

    Liao-Chan, Sindy; Zachwieja, Joseph; Gomez, Steven; Duey, Dana; Lippincott, John; Theunissen, Jan-Willem

    2014-03-01

    The diversity of a panel of antibodies that target a specific antigen can be established in various assay formats. In conventional epitope binning assays purified antibodies are tested in a pairwise manner: two antibodies that compete with each other for binding to an antigen are grouped into the same cluster or bin, while they are assigned to two different clusters when they do not compete. Here we present a high through put assay that enables grouping of crude hybridoma supernatants without a need for antibody purification. In addition, the assay does not require recombinant protein, because it is conducted on cells that express the antigen of interest. Hence, one can use the antibody-clustering assay for cell surface proteins that are not amenable to purification. Heavy chain variable region (VH) sequencing shows that VH composition within clusters is conserved. Finally, the assay is in good agreement with a conventional epitope binning assay with purified antigen.

  12. Cluster Analysis of p53 Binding Site Sequences Reveals Subsets with Different Functions

    PubMed Central

    Lim, Ji-Hyun; Latysheva, Natasha S.; Iggo, Richard D.; Barker, Daniel

    2016-01-01

    p53 is an important regulator of cell cycle arrest, senescence, apoptosis and metabolism, and is frequently mutated in tumors. It functions as a tetramer, where each component dimer binds to a decameric DNA region known as a response element. We identify p53 binding site subtypes and examine the functional and evolutionary properties of these subtypes. We start with over 1700 known binding sites and, with no prior labeling, identify two sets of response elements by unsupervised clustering. When combined, they give rise to three types of p53 binding sites. We find that probabilistic and alignment-based assessments of cross-species conservation show no strong evidence of differential conservation between types of binding sites. In contrast, functional analysis of the genes most proximal to the binding sites provides strong bioinformatic evidence of functional differentiation between the three types of binding sites. Our results are consistent with recent structural data identifying two conformations of the L1 loop in the DNA binding domain, suggesting that they reflect biologically meaningful groups imposed by the p53 protein structure. PMID:27812278

  13. Vibrations of small cobalt clusters on low-index surfaces of copper: Tight-binding simulations

    NASA Astrophysics Data System (ADS)

    Borisova, S. D.; Eremeev, S. V.; Rusina, G. G.; Stepanyuk, V. S.; Bruno, P.; Chulkov, E. V.

    2008-08-01

    Vibrational properties (frequencies, polarizations, and lifetimes) of a single adatom, dimer, and trimer of Co on low-index Cu surfaces, Cu(111), Cu(001), and Cu(110) are studied by using tight-binding second moment approximation interatomic interaction potentials. We show that structural and vibrational properties of the Co clusters strongly depend on the substrate orientation. The longest lifetimes of 1-2.5 ps have been found for high-frequency z -polarized vibrations in all the Co clusters considered. The shortest lifetimes of 0.1-0.8 ps have been obtained for low-frequency horizontal (frustrated translation) vibrational modes.

  14. Renormalized coupled cluster approaches in the cluster-in-molecule framework: predicting vertical electron binding energies of the anionic water clusters (H2O)(n)(-).

    PubMed

    Xu, Peng; Gordon, Mark S

    2014-09-04

    Anionic water clusters are generally considered to be extremely challenging to model using fragmentation approaches due to the diffuse nature of the excess electron distribution. The local correlation coupled cluster (CC) framework cluster-in-molecule (CIM) approach combined with the completely renormalized CR-CC(2,3) method [abbreviated CIM/CR-CC(2,3)] is shown to be a viable alternative for computing the vertical electron binding energies (VEBE). CIM/CR-CC(2,3) with the threshold parameter ζ set to 0.001, as a trade-off between accuracy and computational cost, demonstrates the reliability of predicting the VEBE, with an average percentage error of ∼15% compared to the full ab initio calculation at the same level of theory. The errors are predominantly from the electron correlation energy. The CIM/CR-CC(2,3) approach provides the ease of a black-box type calculation with few threshold parameters to manipulate. The cluster sizes that can be studied by high-level ab initio methods are significantly increased in comparison with full CC calculations. Therefore, the VEBE computed by the CIM/CR-CC(2,3) method can be used as benchmarks for testing model potential approaches in small-to-intermediate-sized water clusters.

  15. Compound hierarchical correlated beta mixture with an application to cluster mouse transcription factor DNA binding data.

    PubMed

    Dai, Hongying; Charnigo, Richard

    2015-10-01

    Modeling correlation structures is a challenge in bioinformatics, especially when dealing with high throughput genomic data. A compound hierarchical correlated beta mixture (CBM) with an exchangeable correlation structure is proposed to cluster genetic vectors into mixture components. The correlation coefficient, [Formula: see text], is homogenous within a mixture component and heterogeneous between mixture components. A random CBM with [Formula: see text] brings more flexibility in explaining correlation variations among genetic variables. Expectation-Maximization (EM) algorithm and Stochastic Expectation-Maximization (SEM) algorithm are used to estimate parameters of CBM. The number of mixture components can be determined using model selection criteria such as AIC, BIC and ICL-BIC. Extensive simulation studies were conducted to compare EM, SEM and model selection criteria. Simulation results suggest that CBM outperforms the traditional beta mixture model with lower estimation bias and higher classification accuracy. The proposed method is applied to cluster transcription factor-DNA binding probability in mouse genome data generated by Lahdesmaki and others (2008, Probabilistic inference of transcription factor binding from multiple data sources. PLoS One, 3: , e1820). The results reveal distinct clusters of transcription factors when binding to promoter regions of genes in JAK-STAT, MAPK and other two pathways. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Iron Binding Activity of Human Iron-Sulfur Cluster Assembly Protein hIscA-1

    PubMed Central

    Lu, Jianxin; Bitoun, Jacob P.; Tan, Guoqiang; Wang, Wu; Min, Wenguang; Ding, Huangen

    2010-01-01

    SYNOPSIS A human homologue of the iron-sulfur cluster assembly protein IscA (hIscA1) has been cloned and expressed in Escherichia coli cells. The UV-visible absorption and EPR (electron paramagnetic resonance) measurements reveal that hIscA1 purified from E. coli cells contains a mononuclear iron center and that the iron binding in hIscA1 expressed in E. coli cells can be further modulated by the iron content in the cell growth medium. Additional studies show that purified hIscA1 binds iron with an iron association constant of approx. 2.0 × 1019 M−1, and that the iron-bound hIscA1 is able to provide the iron for the iron-sulfur cluster assembly in a proposed scaffold protein IscU of E. coli in vitro. The complementation experiments indicate that hIscA1 can partially substitute for IscA in restoring the cell growth of E. coli in the M9 minimal medium under aerobic conditions. The results suggest that human IscA1, like E. coli IscA, is an iron binding protein that may act as an iron chaperone for biogenesis of iron-sulfur clusters. PMID:20302570

  17. Modulation of substrate binding to naphthalene 1,2-dioxygenase by rieske cluster reduction/oxidation.

    PubMed

    Yang, Tran-Chin; Wolfe, Matt D; Neibergall, Matthew B; Mekmouche, Yasmina; Lipscomb, John D; Hoffman, Brian M

    2003-02-26

    The active site of the oxygenase component of naphthalene 1,2-dioxygenase (NDO) contains a Rieske Fe-S cluster and a mononuclear non-heme iron, which are contributed by different alpha-subunits in the (alphabeta)(3) structure. The enzyme catalyzes cis-dihydroxylation of aromatic substrates in addition to numerous other adventitious oxidation reactions. High-resolution Mims (2)H-ENDOR spectra have been recorded for the NO-ferrous center of NDO bound with d(8)-naphthalene and d(2)-naphthalene; spectra were collected for the enzyme with the Rieske diiron center both in its oxidized and in its reduced states. A sharp quartet ENDOR pattern from a nearby deuteron of substrate was detected for each substrate. Examination of the sample prepared with 1,4-dideutero-naphthalene shows that the signal arises from D1. The ENDOR data place D1 at a distance of ca. 4.4 A from the mononuclear Fe and with the Fe-D vector being roughly along the Fe-N(O) direction. Because reduction of the Rieske cluster is required for O(2) binding and subsequent catalysis, the effect of its oxidation state on substrate binding was examined. The spectra from the NDO-naphthalene complex reveal two different binding conformations, which change in relative population when the oxidation state of the Rieske cluster is changed. This shift, and the conformational coupling it implies, may hold the key to both oxygen gating and oxygen reactivity for Rieske aromatic dioxygenases.

  18. Cargo binding promotes KDEL receptor clustering at the mammalian cell surface

    PubMed Central

    Becker, Björn; Shaebani, M. Reza; Rammo, Domenik; Bubel, Tobias; Santen, Ludger; Schmitt, Manfred J.

    2016-01-01

    Transmembrane receptor clustering is a ubiquitous phenomenon in pro- and eukaryotic cells to physically sense receptor/ligand interactions and subsequently translate an exogenous signal into a cellular response. Despite that receptor cluster formation has been described for a wide variety of receptors, ranging from chemotactic receptors in bacteria to growth factor and neurotransmitter receptors in mammalian cells, a mechanistic understanding of the underlying molecular processes is still puzzling. In an attempt to fill this gap we followed a combined experimental and theoretical approach by dissecting and modulating cargo binding, internalization and cellular response mediated by KDEL receptors (KDELRs) at the mammalian cell surface after interaction with a model cargo/ligand. Using a fluorescent variant of ricin toxin A chain as KDELR-ligand (eGFP-RTAH/KDEL), we demonstrate that cargo binding induces dose-dependent receptor cluster formation at and subsequent internalization from the membrane which is associated and counteracted by anterograde and microtubule-assisted receptor transport to preferred docking sites at the plasma membrane. By means of analytical arguments and extensive numerical simulations we show that cargo-synchronized receptor transport from and to the membrane is causative for KDELR/cargo cluster formation at the mammalian cell surface. PMID:27353000

  19. Cargo binding promotes KDEL receptor clustering at the mammalian cell surface

    NASA Astrophysics Data System (ADS)

    Becker, Björn; Shaebani, M. Reza; Rammo, Domenik; Bubel, Tobias; Santen, Ludger; Schmitt, Manfred J.

    2016-06-01

    Transmembrane receptor clustering is a ubiquitous phenomenon in pro- and eukaryotic cells to physically sense receptor/ligand interactions and subsequently translate an exogenous signal into a cellular response. Despite that receptor cluster formation has been described for a wide variety of receptors, ranging from chemotactic receptors in bacteria to growth factor and neurotransmitter receptors in mammalian cells, a mechanistic understanding of the underlying molecular processes is still puzzling. In an attempt to fill this gap we followed a combined experimental and theoretical approach by dissecting and modulating cargo binding, internalization and cellular response mediated by KDEL receptors (KDELRs) at the mammalian cell surface after interaction with a model cargo/ligand. Using a fluorescent variant of ricin toxin A chain as KDELR-ligand (eGFP-RTAH/KDEL), we demonstrate that cargo binding induces dose-dependent receptor cluster formation at and subsequent internalization from the membrane which is associated and counteracted by anterograde and microtubule-assisted receptor transport to preferred docking sites at the plasma membrane. By means of analytical arguments and extensive numerical simulations we show that cargo-synchronized receptor transport from and to the membrane is causative for KDELR/cargo cluster formation at the mammalian cell surface.

  20. DNA familial binding profiles made easy: comparison of various motif alignment and clustering strategies.

    PubMed

    Mahony, Shaun; Auron, Philip E; Benos, Panayiotis V

    2007-03-30

    Transcription factor (TF) proteins recognize a small number of DNA sequences with high specificity and control the expression of neighbouring genes. The evolution of TF binding preference has been the subject of a number of recent studies, in which generalized binding profiles have been introduced and used to improve the prediction of new target sites. Generalized profiles are generated by aligning and merging the individual profiles of related TFs. However, the distance metrics and alignment algorithms used to compare the binding profiles have not yet been fully explored or optimized. As a result, binding profiles depend on TF structural information and sometimes may ignore important distinctions between subfamilies. Prediction of the identity or the structural class of a protein that binds to a given DNA pattern will enhance the analysis of microarray and ChIP-chip data where frequently multiple putative targets of usually unknown TFs are predicted. Various comparison metrics and alignment algorithms are evaluated (a total of 105 combinations). We find that local alignments are generally better than global alignments at detecting eukaryotic DNA motif similarities, especially when combined with the sum of squared distances or Pearson's correlation coefficient comparison metrics. In addition, multiple-alignment strategies for binding profiles and tree-building methods are tested for their efficiency in constructing generalized binding models. A new method for automatic determination of the optimal number of clusters is developed and applied in the construction of a new set of familial binding profiles which improves upon TF classification accuracy. A software tool, STAMP, is developed to host all tested methods and make them publicly available. This work provides a high quality reference set of familial binding profiles and the first comprehensive platform for analysis of DNA profiles. Detecting similarities between DNA motifs is a key step in the comparative study

  1. Determination of binding energy in molecular clusters by ion imaging methods: A test on the phenol-water 1:1 cluster

    NASA Astrophysics Data System (ADS)

    Mazzoni, F.; Pasquini, M.; Pietraperzia, G.; Becucci, M.

    2015-06-01

    In this paper we present a test on the velocity mapping imaging approach for the experimental direct determination of the binding energy in clusters formed by strongly interacting polyatomic molecules. The method is applied to the phenol-water cluster, a system for which the binding energies were already determined in different experiments. The binding energy values that we obtained, 1975 cm-1 in the S0 state, 2327 cm-1 in the S1 state and 6586 cm-1 in the ionic D0 state, are in very good agreement with the previous determinations. We report our results and we discuss advantages and limitations resulting from our experience.

  2. Cationic Gold Clusters Ligated with Differently Substituted Phosphines: Effect of Substitution on Ligand Reactivity and Binding

    SciTech Connect

    Johnson, Grant E.; Olivares, Astrid M.; Hill, David E.; Laskin, Julia

    2015-01-01

    We present a systematic study of the effect of the number of methyl (Me) and cyclohexyl (Cy) functional groups in monodentate phosphine ligands on the solution-phase synthesis of ligated sub-nanometer gold clusters and their gas-phase fragmentation pathways. Small mixed ligand cationic gold clusters were synthesized using ligand exchange reactions between pre-formed triphenylphosphine ligated (PPh3) gold clusters and monodentate Me- and Cy-substituted ligands in solution and characterized using electrospray ionization mass spectrometry (ESI-MS) and collision-induced dissociation (CID) experiments. Under the same experimental conditions, larger gold-PPh3 clusters undergo efficient exchange of unsubstituted PPh3 ligands for singly Me- and Cy-substituted PPh2Me and PPh2Cy ligands. The efficiency of ligand exchange decreases with an increasing number of Me or Cy groups in the substituted phosphine ligands. CID experiments performed for a series of ligand-exchanged gold clusters indicate that loss of a neutral Me-substituted ligand is preferred over loss of a neutral PPh¬3 ligand while the opposite trend is observed for Cy-substituted ligands. The branching ratio of the competing ligand loss channels is strongly correlated with the electron donating ability of the phosphorous lone pair as determined by the relative proton affinity of the ligand. The results indicate that the relative ligand binding energies increase in the order PMe3 < PPhMe2 < PPh2Me < PPh3< PPh2Cy < PPhCy2< PCy3. Furthermore, the difference in relative ligand binding energies increases with the number of substituted PPh3-mMem or PPh3-mCym ligands (L) exchanged onto each cluster. This study provides the first experimental determination of the relative binding energies of ligated gold clusters containing differently substituted monophosphine ligands, which are important to controlling their synthesis and reactivity in solution. The results also indicate that ligand substitution is an important

  3. Iron binding activity is essential for the function of IscA in iron-sulphur cluster biogenesis

    PubMed Central

    Landry, Aaron P.; Cheng, Zishuo; Ding, Huangen

    2013-01-01

    Iron-sulphur cluster biogenesis requires coordinated delivery of iron and sulphur to scaffold proteins, followed by transfer of the assembled clusters from scaffold proteins to target proteins. This complex process is accomplished by a group of dedicated iron-sulphur cluster assembly proteins that are conserved from bacteria to humans. While sulphur in iron-sulphur clusters is provided by L-cysteine via cysteine desulfurase, the iron donor(s) for iron-sulphur cluster assembly remains largely elusive. Here we report that among the primary iron-sulphur cluster assembly proteins, IscA has a unique and strong binding activity for mononuclear iron in vitro and in vivo. Furthermore, the ferric iron centre tightly bound in IscA can be readily extruded by L-cysteine, followed by reduction to ferrous iron for iron-sulphur cluster biogenesis. Substitution of the highly conserved residue tyrosine 40 with phenylalanine (Y40F) in IscA results in a mutant protein that has a diminished iron binding affinity but retains the iron-sulphur cluster binding activity. Genetic complementation studies show that the IscA Y40F mutant is inactive in vivo, suggesting that the iron binding activity is essential for the function of IscA in iron-sulphur cluster biogenesis. PMID:23258274

  4. Iron binding activity is essential for the function of IscA in iron-sulphur cluster biogenesis.

    PubMed

    Landry, Aaron P; Cheng, Zishuo; Ding, Huangen

    2013-03-07

    Iron-sulphur cluster biogenesis requires coordinated delivery of iron and sulphur to scaffold proteins, followed by transfer of the assembled clusters from scaffold proteins to target proteins. This complex process is accomplished by a group of dedicated iron-sulphur cluster assembly proteins that are conserved from bacteria to humans. While sulphur in iron-sulphur clusters is provided by L-cysteine via cysteine desulfurase, the iron donor(s) for iron-sulphur cluster assembly remains largely elusive. Here we report that among the primary iron-sulphur cluster assembly proteins, IscA has a unique and strong binding activity for mononuclear iron in vitro and in vivo. Furthermore, the ferric iron centre tightly bound in IscA can be readily extruded by l-cysteine, followed by reduction to ferrous iron for iron-sulphur cluster biogenesis. Substitution of the highly conserved residue tyrosine 40 with phenylalanine (Y40F) in IscA results in a mutant protein that has a diminished iron binding affinity but retains the iron-sulphur cluster binding activity. Genetic complementation studies show that the IscA Y40F mutant is inactive in vivo, suggesting that the iron binding activity is essential for the function of IscA in iron-sulphur cluster biogenesis.

  5. Binding and diffusion of CheR molecules within a cluster of membrane receptors.

    PubMed

    Levin, Matthew D; Shimizu, Thomas S; Bray, Dennis

    2002-04-01

    Adaptation of the attractant response in Escherichia coli is attributable to the methylation of its transmembrane chemotactic receptors by the methyltransferase CheR. This protein contains two binding domains, one for the sites of methylation themselves and the other for a flexible tether at the C terminus of the receptor. We have explored the theoretical consequences of this binding geometry for a CheR molecule associated with a cluster of chemotactic receptors. Calculations show that the CheR molecule will bind with high net affinity to the receptor lattice, having a high probability of being attached by one or both of its domains at any instant of time. Because of the relatively low affinity of its individual domains and the close proximity of neighboring receptors, it is likely that when one domain unbinds it will reattach to the array before the other domain unbinds. Stochastic simulations show that the enzyme will move through the receptor cluster in a hand-over-hand fashion, like a gibbon swinging through the branches of a tree. We explore the possible consequences of this motion, which we term "molecular brachiation", for chemotactic adaptation and suggest that a similar mechanism may be operative in other large assemblies of protein molecules.

  6. Binding and diffusion of CheR molecules within a cluster of membrane receptors.

    PubMed Central

    Levin, Matthew D; Shimizu, Thomas S; Bray, Dennis

    2002-01-01

    Adaptation of the attractant response in Escherichia coli is attributable to the methylation of its transmembrane chemotactic receptors by the methyltransferase CheR. This protein contains two binding domains, one for the sites of methylation themselves and the other for a flexible tether at the C terminus of the receptor. We have explored the theoretical consequences of this binding geometry for a CheR molecule associated with a cluster of chemotactic receptors. Calculations show that the CheR molecule will bind with high net affinity to the receptor lattice, having a high probability of being attached by one or both of its domains at any instant of time. Because of the relatively low affinity of its individual domains and the close proximity of neighboring receptors, it is likely that when one domain unbinds it will reattach to the array before the other domain unbinds. Stochastic simulations show that the enzyme will move through the receptor cluster in a hand-over-hand fashion, like a gibbon swinging through the branches of a tree. We explore the possible consequences of this motion, which we term "molecular brachiation", for chemotactic adaptation and suggest that a similar mechanism may be operative in other large assemblies of protein molecules. PMID:11916840

  7. Interactions of human galectins with Trypanosoma cruzi: binding profile correlate with genetic clustering of lineages.

    PubMed

    Pineda, M A; Corvo, L; Soto, M; Fresno, M; Bonay, P

    2015-02-01

    We report here the specific interaction between several members of the human galectin family with the three developmental stages of several genetic lineages of the protozoan parasite Trypanosoma cruzi. We provide data of specific and differential binding of human galectin (gal)-1, -3, -4, -7 and -8 to 14 strains of T. cruzi that belong to the six genetic lineages representing the genetic diversity of the parasite. It is shown that galectins preferentially bind forms present in the host, trypomastigotes and amastigotes, compared with the non-infective epimastigote present on the intestinal tract of the vector, reflecting the changes on glycosylation that occur during the metacyclogenesis and amastigogenesis process. Also, it is evidenced that galectin binding to the parasites promotes binding to the host cells and higher infection rates. In addition, evidence is provided indicating that the intracellular amastigotes may take over the cytosolic pool of some galectins when released to the extracellular medium. Finally, by applying unweighted pair group method analysis to the galectin-binding profile to either cell-derived trypomastigotes or amastigotes, we show that the differential-binding profile by the host galectins to the six lineages resembles the clustering based in genetic data. Therefore, the differential-binding profile for the six lineages could have implications in the immunopathology of Chagas' disease, affecting the complex network of immune responses on which galectins mediate, thus providing linkage clues to the notion that different lineages may be related to different clinical forms of the disease. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Mcl-1 and YY1 inhibition and induction of DR5 by the BH3-mimetic Obatoclax (GX15-070) contribute in the sensitization of B-NHL cells to TRAIL apoptosis

    PubMed Central

    Martínez-Paniagua, Melisa A; Baritaki, Stavroula; Huerta-Yepez, Sara; Ortiz-Navarrete, Vianney F; González-Bonilla, Cesar

    2011-01-01

    The pan Bcl-2 family antagonist Obatoclax (GX15-070), currently in clinical trials, was shown to sensitize TRAIL-resistant tumors to TRAIL-mediated apoptosis via the release of Bak and Bim from Mcl-1 or Bcl-2/Bcl-XL complexes or by the activation of Bax, though other mechanisms were not examined. Herein, we hypothesize that Obatoclax-mediated sensitization to TRAIL apoptosis may also result from alterations of the apoptotic pathways. The TRAIL-resistant B-cell line Ramos was used as a model for investigation. Treatment of Ramos cells with obatoclax significantly inhibited the expression of several members of the Bcl-2 family, dissociated Bak from Mcl-1 and inhibited the NFκB activity. Cells treated with Mcl-1 siRNA were sensitized to TRAIL apoptosis. We examined whether the sensitization of Ramos to TRAIL by Obatoclax resulted from signaling of the DR4 and/or DR5. Transfection with DR5 siRNA, but not with DR4 siRNA, sensitized the cells to apoptosis following treatment with Obatoclax and TRAIL. The signaling via DR5 correlated with Obatoclax-induced inhibition of the DR5 repressor Yin Yang 1 (YY1). Transfection with YY1 siRNA sensitized the cells to TRAIL apoptosis following treatment with Obatoclax and TRAIL. Overall, the present findings reveal a new mechanism of Obatoclax-induced sensitization to TRAIL apoptosis and the involvement of the inhibition of NFκB activity and downstream Mcl-1 and YY1 expressions and activities. PMID:21822052

  9. Analysis of NFU-1 Metallocofactor Binding Site Substitutions: Impacts on Iron-Sulfur Cluster Coordination and Protein Structure and Function.

    PubMed

    Wesley, Nathaniel A; Wachnowsky, Christine; Fidai, Insiya; Cowan, J A

    2017-09-14

    Iron-sulfur (Fe/S) clusters are ancient prosthetic groups found in numerous metalloproteins and are conserved across all kingdoms of life due to their diverse, yet essential functional roles. Genetic mutations to a specific subset of mitochondrial Fe/S cluster delivery proteins are broadly categorized as disease related under multiple mitochondrial dysfunction syndrome (MMDS), with symptoms indicative of a general failure of the metabolic system. Multiple mitochondrial dysfunction syndrome 1 (MMDS1) arises as a result of the missense mutation in NFU1, an Fe/S cluster scaffold protein, which substitutes a glycine near the Fe/S cluster binding pocket to a cysteine (p.Gly208Cys). This substitution has been shown to promote protein dimerization such that cluster delivery to NFU1 is blocked, preventing downstream cluster trafficking. However, the possibility of this additional cysteine, located adjacent to the cluster binding site, serving as an Fe/S cluster ligand has not yet been explored. To fully understand the consequences of this Gly208Cys replacement, complementary substitutions at the Fe/S cluster binding pocket for native and Gly208Cys NFU1 were made, along with six other variants. Herein we report the results of an investigation on the effect of these substitutions on both cluster coordination and NFU1 structure and function. The data suggest that the G208C substitution does not contribute to cluster binding. Rather, replacement of the glycine at position 208 changes the oligomerization state as a result of global structural alterations that result in the downstream effects manifest as MMDS1, but does not perturb the coordination chemistry of the Fe-S cluster. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Self-consistent field tight-binding model for neutral and (multi-) charged carbon clusters

    NASA Astrophysics Data System (ADS)

    Montagnon, Laurent; Spiegelman, Fernand

    2007-08-01

    A semiempirical model for carbon clusters modeling is presented, along with structural and dynamical applications. The model is a tight-binding scheme with additional one- and two-center distance-dependent electrostatic interactions treated self-consistently. This approach, which explicitly accounts for charge relaxation, allows us to treat neutral and (multi-) charged clusters not only at equilibrium but also in dissociative regions. The equilibrium properties, geometries, harmonic spectra, and relative stabilities of the stable isomers of neutral and singly charged clusters in the range n =1-14, for C20 and C60, are found to reproduce the results of ab initio calculations. The model is also shown to be successful in describing the stability and fragmentation energies of dictations in the range n =2-10 and allows the determination of their Coulomb barriers, as examplified for the smallest sizes (C22+,C32+,C42+). We also present time-dependent mean-field and linear response optical spectra for the C8 and C60 clusters and discuss their relevance with respect to existing calculations.

  11. Small Al clusters. II - Structure and binding in Al(n) (n = 2-6, 13)

    NASA Technical Reports Server (NTRS)

    Pettersson, Lars G. M.; Bauschlicher, Charles W., Jr.; Halicioglu, Timur

    1987-01-01

    The structure and stability of aluminum clusters containing up to six atoms have been studied using correlated wave functions and extended basis sets. The lowest energy structure is planar for Al4 and Al5, but three dimensional for Al6. The icosahedral, hcp, fcc, and two planar structures of Al13 were considered at the SCF level. The lowest energy structure is the icosahedron, but the planar structures are fairly low lying even in this case. A simplified description using two- and three-body interaction potentials is found to agree well with the ab initio structures and binding energies.

  12. Small Al clusters. II - Structure and binding in Al(n) (n = 2-6, 13)

    NASA Technical Reports Server (NTRS)

    Pettersson, Lars G. M.; Bauschlicher, Charles W., Jr.; Halicioglu, Timur

    1987-01-01

    The structure and stability of aluminum clusters containing up to six atoms have been studied using correlated wave functions and extended basis sets. The lowest energy structure is planar for Al4 and Al5, but three dimensional for Al6. The icosahedral, hcp, fcc, and two planar structures of Al13 were considered at the SCF level. The lowest energy structure is the icosahedron, but the planar structures are fairly low lying even in this case. A simplified description using two- and three-body interaction potentials is found to agree well with the ab initio structures and binding energies.

  13. Triple and quadruple excitation contributions to the binding in Be clusters: Calibration calculations on Be3

    NASA Technical Reports Server (NTRS)

    Watts, John D.; Cernusak, Ivan; Noga, Jozef; Bartlett, Rodney J.; Bauschlicher, Charles W., Jr.; Lee, Timothy J.; Rendell, Alistair P.; Taylor, Peter R.

    1991-01-01

    The contribution of connected triple and quadruple excitations to the binding in Be3 is investigated by comparing various coupled-cluster (CC) and truncated configuration interaction (CI) treatments with multireference CI (MRCI) and full CI(FCI) calculations. The CC method with single and double excitations (CCSD) produces results that differ substantially from more elaborate treatments, but most extensions to CCSD that account approximately for connected triple excitations perform very well. In constrast, good agreement with FCI for Be2 can be achieved only with the highest level CC and MRCI methods.

  14. Accurate structures and binding energies for small water clusters: The water trimer

    SciTech Connect

    Nielsen, I.M.; Seidl, E.T.; Janssen, C.L.

    1999-05-01

    The global minimum on the water trimer potential energy surface has been investigated by means of second-order Mo/ller-Plesset (MP2) perturbation theory employing the series of correlation-consistent basis sets aug-cc-pVXZ (X = D, T, Q, 5, 6), the largest of which contains 1329 basis functions. Definitive predictions are made for the binding energy and equilibrium structure, and improved values are presented for the harmonic vibrational frequencies. A value of 15.82{plus_minus}0.05 kcal mol{sup {minus}1} is advanced for the infinite basis set frozen core MP2 binding energy, obtained by extrapolation of MP2 correlation energies computed at the aug-cc-pVQZ MP2 geometry. Inclusion of core correlation, using the aug-cc-pCV5Z basis set, has been found to increase the binding energy by 0.08 kcal mol{sup {minus}1}, and after consideration of core correlation and higher-order correlation effects, the classical binding energy for the water trimer is estimated to be 15.9{plus_minus}0.2 kcal mol{sup {minus}1}. A zero-point vibrational correction of {minus}5.43 kcal mol{sup {minus}1} has been computed from aug-cc-pVTZ MP2 harmonic vibrational frequencies. The accuracy of different computational schemes for obtaining the binding energies of the water dimer and trimer has been investigated, and computationally feasible methods are suggested for obtaining accurate structures and binding energies for larger water clusters.{copyright} {ital 1999 American Institute of Physics.}

  15. Structure of the nucleotide-binding domain of a dipeptide ABC transporter reveals a novel iron-sulfur cluster-binding domain.

    PubMed

    Li, Xiaolu; Zhuo, Wei; Yu, Jie; Ge, Jingpeng; Gu, Jinke; Feng, Yue; Yang, Maojun; Wang, Linfang; Wang, Na

    2013-02-01

    Dipeptide permease (Dpp), which belongs to an ABC transport system, imports peptides consisting of two or three L-amino acids from the matrix to the cytoplasm in microbes. Previous studies have indicated that haem competes with dipeptides to bind DppA in vitro and in vivo and that the Dpp system can also translocate haem. Here, the crystal structure of DppD, the nucleotide-binding domain (NBD) of the ABC-type dipeptide/oligopeptide/nickel-transport system from Thermoanaerobacter tengcongensis, bound with ATP, Mg(2+) and a [4Fe-4S] iron-sulfur cluster is reported. The N-terminal domain of DppD shares a similar structural fold with the NBDs of other ABC transporters. Interestingly, the C-terminal domain of DppD contains a [4Fe-4S] cluster. The UV-visible absorbance spectrum of DppD was consistent with the presence of a [4Fe-4S] cluster. A search with DALI revealed that the [4Fe-4S] cluster-binding domain is a novel structural fold. Structural analysis and comparisons with other ABC transporters revealed that this iron-sulfur cluster may act as a mediator in substrate (dipeptide or haem) binding by electron transfer and may regulate the transport process in Dpp ABC transport systems. The crystal structure provides a basis for understanding the properties of ABC transporters and will be helpful in investigating the functions of NBDs in the regulation of ABC transporter activity.

  16. Binding.

    ERIC Educational Resources Information Center

    Rebsamen, Werner

    1981-01-01

    Categorizes contemporary methods of binding printed materials in terms of physical preservation--hand binding (archival restoration), edition binding (paperback, hardcover), publication binding (magazines), textbook binding (sidesewn), single-sheet binding (loose-leaf, mechanical), and library binding (oversewn, sidesewn). Seven references are…

  17. Human CLEC18 Gene Cluster Contains C-type Lectins with Differential Glycan-binding Specificity*

    PubMed Central

    Huang, Ya-Lang; Pai, Feng-Shuo; Tsou, Yun-Ting; Mon, Hsien-Chen; Hsu, Tsui-Ling; Wu, Chung-Yi; Chou, Teh-Ying; Yang, Wen-Bin; Chen, Chung-Hsuan; Wong, Chi-Huey; Hsieh, Shie-Liang

    2015-01-01

    The human C-type lectin 18 (clec18) gene cluster, which contains three clec18a, clec18b, and clec18c loci, is located in human chromosome 16q22. Although the amino acid sequences of CLEC18A, CLEC18B, and CLEC18C are almost identical, several amino acid residues located in the C-type lectin-like domain (CTLD) and the sperm-coating protein/Tpx-1/Ag5/PR-1/Sc7 (SCP/TAPS) domain, also known as the cysteine-rich secretory proteins/antigen 5/pathogenesis-related 1 proteins (CAP) domain, are distinct from each other. Genotyping by real-time PCR and sequencing further shows the presence of multiple alleles in clec18a/b/c loci. Flow cytometry analysis demonstrates that CLEC18 (CLEC18A, -B, and -C) are expressed abundantly in human peripheral blood cells. Moreover, CLEC18 expression is further up-regulated when monocytes differentiate into macrophages and dendritic cells. Immunofluorescence staining reveals that CLEC18 are localized in the endoplasmic reticulum, Golgi apparatus, and endosome. Interestingly, CLEC18 are also detectable in human sera and culture supernatants from primary cells and 293T cells overexpressing CLEC18. Moreover, CLEC18 bind polysaccharide in Ca2+-independent manner, and amino acid residues Ser/Arg339 and Asp/Asn421 in CTLD domain contribute to their differential binding abilities to polysaccharides isolated from Ganoderma lucidum (GLPS-F3). The Ser339 (CLEC18A) → Arg339 (CLEC18A-1) mutation completely abolishes CLEC18A-1 binding to GLPS-F3, and a sugar competition assay shows that CLEC18 preferentially binds to fucoidan, β-glucans, and galactans. Because proteins with the SCP/TAPS/CAP domain are able to bind sterol and acidic glycolipid, and are involved in sterol transport and β-amyloid aggregation, it would be interesting to investigate whether CLEC18 modulates host immunity via binding to glycolipids, and are also involved in glycolipid transportation and protein aggregation in the future. PMID:26170455

  18. Proton binding within a membrane protein by a protonated water cluster

    PubMed Central

    Garczarek, Florian; Brown, Leonid S.; Lanyi, Janos K.; Gerwert, Klaus

    2005-01-01

    Proton transfer is crucial for many enzyme reactions. Here, we show that in addition to protonatable amino acid side chains, water networks could constitute proton-binding sites in proteins. A broad IR continuum absorbance change during the proton pumping photocycle of bacteriorhodopsin (bR) indicates most likely deprotonation of a protonated water cluster at the proton release site close to the surface. We investigate the influence of several mutations on the proton release network and the continuum change, to gain information about the location and extent of the protonated water network and to reveal the participating residues necessary for its stabilization. We identify a protonated water cluster consisting in total of one proton and about five water molecules surrounded by six side chains and three backbone groups (Tyr-57, Arg-82, Tyr-83, Glu-204, Glu-194, Ser-193, Pro-77, Tyr-79, and Thr-205). The observed perturbation of proton release by many single-residue mutations is now explained by the influence of numerous side chains on the protonated H bonded network. In situ hydrogen/deuterium exchange Fourier transform IR measurements of the bR ground state, show that the proton of the release group becomes localized on Glu-204 and Asp-204 in the ground state of the mutants E194D and E204D, respectively, even though it is delocalized in the ground state of wild-type bR. Thus, the release mechanism switches between the wild-type and mutated proteins from a delocalized to a localized proton-binding site. PMID:15738416

  19. Homotypic clusters of transcription factor binding sites: A model system for understanding the physical mechanics of gene expression.

    PubMed

    Ezer, Daphne; Zabet, Nicolae Radu; Adryan, Boris

    2014-07-01

    The organization of binding sites in cis-regulatory elements (CREs) can influence gene expression through a combination of physical mechanisms, ranging from direct interactions between TF molecules to DNA looping and transient chromatin interactions. The study of simple and common building blocks in promoters and other CREs allows us to dissect how all of these mechanisms work together. Many adjacent TF binding sites for the same TF species form homotypic clusters, and these CRE architecture building blocks serve as a prime candidate for understanding interacting transcriptional mechanisms. Homotypic clusters are prevalent in both bacterial and eukaryotic genomes, and are present in both promoters as well as more distal enhancer/silencer elements. Here, we review previous theoretical and experimental studies that show how the complexity (number of binding sites) and spatial organization (distance between sites and overall distance from transcription start sites) of homotypic clusters influence gene expression. In particular, we describe how homotypic clusters modulate the temporal dynamics of TF binding, a mechanism that can affect gene expression, but which has not yet been sufficiently characterized. We propose further experiments on homotypic clusters that would be useful in developing mechanistic models of gene expression.

  20. Superposition-free comparison and clustering of antibody binding sites: implications for the prediction of the nature of their antigen

    PubMed Central

    Di Rienzo, Lorenzo; Milanetti, Edoardo; Lepore, Rosalba; Olimpieri, Pier Paolo; Tramontano, Anna

    2017-01-01

    We describe here a superposition free method for comparing the surfaces of antibody binding sites based on the Zernike moments and show that they can be used to quickly compare and cluster sets of antibodies. The clusters provide information about the nature of the bound antigen that, when combined with a method for predicting the number of direct antibody antigen contacts, allows the discrimination between protein and non-protein binding antibodies with an accuracy of 76%. This is of relevance in several aspects of antibody science, for example to select the framework to be used for a combinatorial antibody library. PMID:28338016

  1. Superposition-free comparison and clustering of antibody binding sites: implications for the prediction of the nature of their antigen.

    PubMed

    Di Rienzo, Lorenzo; Milanetti, Edoardo; Lepore, Rosalba; Olimpieri, Pier Paolo; Tramontano, Anna

    2017-03-24

    We describe here a superposition free method for comparing the surfaces of antibody binding sites based on the Zernike moments and show that they can be used to quickly compare and cluster sets of antibodies. The clusters provide information about the nature of the bound antigen that, when combined with a method for predicting the number of direct antibody antigen contacts, allows the discrimination between protein and non-protein binding antibodies with an accuracy of 76%. This is of relevance in several aspects of antibody science, for example to select the framework to be used for a combinatorial antibody library.

  2. Aromatic side-chain cluster of biotin binding site of avidin allows circular dichroism spectroscopic investigation of its ligand binding properties.

    PubMed

    Zsila, Ferenc

    2011-01-01

    Promiscuous ligand binding by hen egg-white avidin has been demonstrated and studied by using circular dichroism (CD) spectroscopy complemented by molecular docking calculations. It has been shown that the biotin-binding pocket of avidin is able to accommodate a wide variety of chemical compounds including therapeutic drugs (e.g., thalidomide, NSAIDs, antihistamines), natural compounds (bilirubin, myristic acid), and synthetic agents (xanthenone dyes). The cluster of aromatic residues located at the biotin-binding pocket renders the intrinsic CD spectrum of avidin sensitive to ligand binding that results in the increase of the vibronic components of the (1) L(b) transition of the Trp residues. Extrinsic (induced) CD bands measured with chemically diverse avidin ligands are generated by intramolecular coupled oscillator (e.g., bilirubin) or by intermolecular ligand-Trp exciton coupling mechanism [e.g., 2-(4'-hydroxyazobenzene)-benzoic acid (HABA)]. Among the compounds of which avidin-binding affinity constants have been calculated, two novel high-affinity ligands, flufenamic acid and an enzyme inhibitor thiazole derivative have been identified (K(d) ≈ 1 μM). Avidin binding mode of the ligand molecules has been discussed in the light of docking results. The induced CD profile of the thiazole derivative has been correlated with the stereochemistry of its docked conformation. The important role in the ligand binding of a polar side-chain cluster at the bottom of the biotin-binding cavity as well as the analogous avidin-binding mode of HABA and fenamic acid type NSAIDs have been proposed. Copyright © 2011 John Wiley & Sons, Ltd.

  3. Probing a Polar Cluster in the Retinal Binding Pocket of Bacteriorhodopsin by a Chemical Design Approach

    PubMed Central

    Simón-Vázquez, Rosana; Domínguez, Marta; Lórenz-Fonfría, Víctor A.; Álvarez, Susana; Bourdelande, José-Luís; de Lera, Ángel R.; Padrós, Esteve; Perálvarez-Marín, Alex

    2012-01-01

    Bacteriorhodopsin has a polar cluster of amino acids surrounding the retinal molecule, which is responsible for light harvesting to fuel proton pumping. From our previous studies, we have shown that threonine 90 is the pivotal amino acid in this polar cluster, both functionally and structurally. In an attempt to perform a phenotype rescue, we have chemically designed a retinal analogue molecule to compensate the drastic effects of the T90A mutation in bacteriorhodopsin. This analogue substitutes the methyl group at position C13 of the retinal hydrocarbon chain by and ethyl group (20-methyl retinal). We have analyzed the effect of reconstituting the wild-type and the T90A mutant apoproteins with all-trans-retinal and its 20-methyl derivative (hereafter, 13-ethyl retinal). Biophysical characterization indicates that recovering the steric interaction between the residue 90 and retinal, eases the accommodation of the chromophore, however it is not enough for a complete phenotype rescue. The characterization of these chemically engineered chromoproteins provides further insight into the role of the hydrogen bond network and the steric interactions involving the retinal binding pocket in bacteriorhodopsin and other microbial sensory rhodopsins. PMID:22879987

  4. Probing a polar cluster in the retinal binding pocket of bacteriorhodopsin by a chemical design approach.

    PubMed

    Simón-Vázquez, Rosana; Domínguez, Marta; Lórenz-Fonfría, Víctor A; Alvarez, Susana; Bourdelande, José-Luís; de Lera, Angel R; Padrós, Esteve; Perálvarez-Marín, Alex

    2012-01-01

    Bacteriorhodopsin has a polar cluster of amino acids surrounding the retinal molecule, which is responsible for light harvesting to fuel proton pumping. From our previous studies, we have shown that threonine 90 is the pivotal amino acid in this polar cluster, both functionally and structurally. In an attempt to perform a phenotype rescue, we have chemically designed a retinal analogue molecule to compensate the drastic effects of the T90A mutation in bacteriorhodopsin. This analogue substitutes the methyl group at position C(13) of the retinal hydrocarbon chain by and ethyl group (20-methyl retinal). We have analyzed the effect of reconstituting the wild-type and the T90A mutant apoproteins with all-trans-retinal and its 20-methyl derivative (hereafter, 13-ethyl retinal). Biophysical characterization indicates that recovering the steric interaction between the residue 90 and retinal, eases the accommodation of the chromophore, however it is not enough for a complete phenotype rescue. The characterization of these chemically engineered chromoproteins provides further insight into the role of the hydrogen bond network and the steric interactions involving the retinal binding pocket in bacteriorhodopsin and other microbial sensory rhodopsins.

  5. In silico genomic analysis of the human and murine guanylate-binding protein (GBP) gene clusters.

    PubMed

    Olszewski, Maureen A; Gray, John; Vestal, Deborah J

    2006-05-01

    The guanylate-binding proteins (GBPs) were among the first interferon (IFN)-stimulated genes (ISGs) discovered, but until recently, little was known about their functions and even less about the composition of the gene family. Analysis of the promoter of human GBP-1 contributed significantly toward the understanding of Jak-Stat signaling and the delineation of the IFN-gamma activation site (GAS) and IFN-stimulated response element (ISRE) promoter elements. In this study, we have examined the genomic arrangement and composition of the GBPs in both mouse and humans. There are seven GBP paralogs in humans and at least one pseudogene, all of which are located in a cluster of genes on chromosome 1. Five of the six MuGBPs and a GBP pseudogene are clustered in a syntenic region on chromosome 3. The sixth MuGBP, MuGBP-4, and three GBP pseudogenes are located on chromosome 5. As might be expected, the GBPs share similar genomic organizations of introns and exons. Five of the MuGBPs had previously been shown to be coordinately induced by IFNs, and as expected, all of the MuGBPs have GAS and ISRE elements in their promoters. Interestingly, not all of the HuGBPs have GAS and ISRE elements, suggesting that not all GBPs are IFN responsive in humans.

  6. Neuronal low-density lipoprotein receptor-related protein 1 binds and endocytoses prion fibrils via receptor cluster 4

    PubMed Central

    Jen, Angela; Parkyn, Celia J.; Mootoosamy, Roy C.; Ford, Melanie J.; Warley, Alice; Liu, Qiang; Bu, Guojun; Baskakov, Ilia V.; Moestrup, Søren; McGuinness, Lindsay; Emptage, Nigel; Morris, Roger J.

    2010-01-01

    For infectious prion protein (designated PrPSc) to act as a template to convert normal cellular protein (PrPC) to its distinctive pathogenic conformation, the two forms of prion protein (PrP) must interact closely. The neuronal receptor that rapidly endocytoses PrPC is the low-density lipoprotein receptor-related protein 1 (LRP1). We show here that on sensory neurons LRP1 is also the receptor that binds and rapidly endocytoses smaller oligomeric forms of infectious prion fibrils, and recombinant PrP fibrils. Although LRP1 binds two molecules of most ligands independently to its receptor clusters 2 and 4, PrPC and PrPSc fibrils bind only to receptor cluster 4. PrPSc fibrils out-compete PrPC for internalization. When endocytosed, PrPSc fibrils are routed to lysosomes, rather than recycled to the cell surface with PrPC. Thus, although LRP1 binds both forms of PrP, it traffics them to separate fates within sensory neurons. The binding of both to ligand cluster 4 should enable genetic modification of PrP binding without disrupting other roles of LRP1 essential to neuronal viability and function, thereby enabling in vivo analysis of the role of this interaction in controlling both prion and LRP1 biology. PMID:20048341

  7. The binding of CO molecule with small Wn(n = 2-9) clusters: a DFT investigation

    NASA Astrophysics Data System (ADS)

    Sun, Xiyuan; Du, Jiguang

    2014-08-01

    The hybrid DFT functional has been utilized to investigate CO adsorption on small W n ( n = 2-9) clusters. The reactivity-selectivity descriptor Δf( r) is proved to be an appropriate tool for predicting the local adsorption site. Our results indicate that the binding of CO to tungsten cluster prefers terminal adsorption mode except for W3 trimer. The Wiberg bond index can predict the interaction between W atoms and CO molecule to a good accuracy using a linear fit. The dependency on number of adsorbate and charge state of host clusters is also investigated. The high CO coverage seriously weakens the W-CO interaction. The anion cluster reveals the stronger interaction with CO molecule than cation and neutral ones. Moreover, the interesting coverage-dependence is revealed for anion cluster.

  8. The platelet fibrinogen receptor: an immunogold-surface replica study of agonist-induced ligand binding and receptor clustering

    PubMed Central

    1987-01-01

    Platelet aggregation requires the binding of fibrinogen to its receptor, a heterodimer consisting of the plasma-membrane glycoproteins (GP) IIb and IIIa. Although the GPIIb-IIIa complex is present on the surface of unstimulated platelets, it binds fibrinogen only after platelet activation. We have used an immunogold-surface replica technique to study the distribution of GPIIb-IIIa and bound fibrinogen over broad areas of surface membranes in unstimulated, as well as thrombin-activated and ADP-activated human platelets. We found that the immunogold-labeled GPIIb-IIIa was monodispersed over the surface of unstimulated platelets, although the cell surface lacked immunoreactive fibrinogen. On thrombin-stimulated platelets, approximately 65% of the GPIIb-IIIa molecules were in clusters within the plane of the membrane. Fibrinogen, which had been released from the alpha-granules of these cells, bound to GPIIb-IIIa on the cell surface and was similarly clustered. To determine whether the receptors clustered before ligand binding, or as a consequence thereof, we studied the surface distribution of GPIIb-IIIa after stimulation with ADP, which causes activation of the fibrinogen receptor function of GPIIb-IIIa without inducing the release of fibrinogen. In the absence of added fibrinogen, the unoccupied, yet binding-competent receptors on ADP-stimulated platelets were monodispersed. The addition of fibrinogen caused the GPIIb-IIIa molecules to cluster on the cell surface. Clustering was also induced by the addition of the GPIIb-IIIa-binding domains of fibrinogen, namely the tetrapeptide Arg-Gly-Asp-Ser on the alpha-chain or the gamma-chain decapeptide gamma 402-411. These results show that receptor occupancy causes clustering of GPIIb-IIIa in activated platelets. PMID:3584243

  9. A Zn(II)2Cys6 DNA binding protein regulates the sirodesmin PL biosynthetic gene cluster in Leptosphaeria maculans

    PubMed Central

    Fox, Ellen M.; Gardiner, Donald M.; Keller, Nancy P.; Howlett, Barbara J.

    2008-01-01

    A gene, sirZ, encoding a Zn(II)2Cys6 DNA binding protein is present in a cluster of genes responsible for the biosynthesis of the epipolythiodioxopiperazine (ETP) toxin, sirodesmin PL in the ascomycete plant pathogen, Leptosphaeria maculans. RNA-mediated silencing of sirZ gives rise to transformants that produce only residual amounts of sirodesmin PL and display a decrease in the transcription of several sirodesmin PL biosynthetic genes. This indicates that SirZ is a major regulator of this gene cluster. Proteins similar to SirZ are encoded in the gliotoxin biosynthetic gene cluster of Aspergillus fumigatus (gliZ) and in an ETP-like cluster in Penicillium lilacinoechinulatum (PlgliZ). Despite its high level of sequence similarity to gliZ, PlgliZ is unable to complement the gliotoxin-deficiency of a mutant of gliZ in A. fumigatus. Putative binding sites for these regulatory proteins in the promoters of genes in these clusters were predicted using bioinformatic analysis. These sites are similar to those commonly bound by other proteins with Zn(II)2Cys6 DNA binding domains. PMID:18023597

  10. Mutations in the ligand-binding domain of the androgen receptor gene cluster in two regions of the gene.

    PubMed

    McPhaul, M J; Marcelli, M; Zoppi, S; Wilson, C M; Griffin, J E; Wilson, J D

    1992-11-01

    We have analyzed the nucleotide sequence of the androgen receptor from 22 unrelated subjects with substitution mutations of the hormone-binding domain. Eleven had the phenotype of complete testicular feminization, four had incomplete testicular feminization, and seven had Reifenstein syndrome. The underlying functional defect in cultured skin fibroblasts included individuals with absent, qualitative, or quantitative defects in ligand binding. 19 of the 21 substitution mutations (90%) cluster in two regions that account for approximately 35% of the hormone-binding domain, namely, between amino acids 726 and 772 and between amino acids 826 and 864. The fact that one of these regions is homologous to a region of the human thyroid hormone receptor (hTR-beta) which is a known cluster site for mutations that cause thyroid hormone resistance implies that this localization of mutations is not a coincidence. These regions of the androgen receptor may be of particular importance for the formation and function of the hormone-receptor complex.

  11. Size-dependent stability toward dissociation and ligand binding energies of phosphine-ligated gold cluster ions

    SciTech Connect

    Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

    2014-01-01

    The stability of sub-nanometer size gold clusters ligated with organic molecules is of paramount importance to the scalable synthesis of monodisperse size-selected metal clusters with highly tunable chemical and physical properties. For the first time, a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS) equipped with surface induced dissociation (SID) has been employed to investigate the time and collision energy resolved fragmentation behavior of cationic doubly charged gold clusters containing 7-9 gold atoms and 6-7 triphenylphosphine (TPP) ligands prepared by reduction synthesis in solution. The TPP ligated gold clusters are demonstrated to fragment through three primary dissociation pathways: (1) Loss of a neutral TPP ligand from the precursor gold cluster, (2) asymmetric fission and (3) symmetric fission and charge separation of the gold core resulting in formation of complementary pairs of singly charged fragment ions. Threshold energies and activation entropies of these fragmentation pathways have been determined employing Rice-Ramsperger-Kassel-Marcus (RRKM) modeling of the experimental SID data. It is demonstrated that the doubly charged cluster ion containing eight gold atoms and six TPP ligands, (8,6)2+, exhibits exceptional stability compared to the other cationic gold clusters examined in this study due to its large ligand binding energy of 1.76 eV. Our findings demonstrate the dramatic effect of the size and extent of ligation on the gas-phase stability and preferred fragmentation pathways of small TPP-ligated gold clusters.

  12. Regulation of Type VI Secretion Gene Clusters by σ54 and Cognate Enhancer Binding Proteins▿†

    PubMed Central

    Bernard, Christophe S.; Brunet, Yannick R.; Gavioli, Marthe; Lloubès, Roland; Cascales, Eric

    2011-01-01

    Type VI secretion systems (T6SS) are bacteriophage-derived macromolecular machines responsible for the release of at least two proteins in the milieu, which are thought to form an extracellular appendage. Although several T6SS have been shown to be involved in the virulence of animal and plant pathogens, clusters encoding these machines are found in the genomes of most species of Gram-negative bacteria, including soil, marine, and environmental isolates. T6SS have been associated with several phenotypes, ranging from virulence to biofilm formation or stress sensing. Their various environmental niches and large diversity of functions are correlated with their broad variety of regulatory mechanisms. Using a bioinformatic approach, we identified several clusters, including those of Vibrio cholerae, Aeromonas hydrophila, Pectobacterium atrosepticum, Pseudomonas aeruginosa, Pseudomonas syringae pv. tomato, and a Marinomonas sp., which possess typical −24/−12 sequences, recognized by the alternate sigma factor sigma 54 (σ54 or σN). σ54, which directs the RNA polymerase to these promoters, requires the action of a bacterial enhancer binding protein (bEBP), which binds to cis-acting upstream activating sequences. Putative bEBPs are encoded within the T6SS gene clusters possessing σ54 boxes. Using in vitro binding experiments and in vivo reporter fusion assays, we showed that the expression of these clusters is dependent on both σ54 and bEBPs. PMID:21378190

  13. Clustered somatic mutations are frequent in transcription factor binding motifs within proximal promoter regions in melanoma and other cutaneous malignancies

    PubMed Central

    Colebatch, Andrew J.; Di Stefano, Leon; Wong, Stephen Q.; Hannan, Ross D.; Waring, Paul M.; Dobrovic, Alexander

    2016-01-01

    Most cancer DNA sequencing studies have prioritized recurrent non-synonymous coding mutations in order to identify novel cancer-related mutations. Although attention is increasingly being paid to mutations in non-coding regions, standard approaches to identifying significant mutations may not be appropriate and there has been limited analysis of mutational clusters in functionally annotated non-coding regions. We sought to identify clustered somatic mutations (hotspot regions across samples) in functionally annotated regions in melanoma and other cutaneous malignancies (cutaneous squamous cell carcinoma, basal cell carcinoma and Merkel cell carcinoma). Sliding window analyses revealed numerous recurrent clustered hotspot mutations in proximal promoters, with some specific clusters present in up to 25% of cases. Mutations in melanoma were clustered within ETS and Sp1 transcription factor binding motifs, had a UV signature and were identified in other cutaneous malignancies. Clinicopathologic correlation and mutation analysis support a causal role for chronic UV irradiation generating somatic mutations in transcription factor binding motifs of proximal promoters. PMID:27611953

  14. A point mutation in the [2Fe–2S] cluster binding region of the NAF-1 protein (H114C) dramatically hinders the cluster donor properties

    SciTech Connect

    Tamir, Sagi; Eisenberg-Domovich, Yael; Conlan, Andrea R.; Stofleth, Jason T.; Lipper, Colin H.; Paddock, Mark L.; Mittler, Ron; Jennings, Patricia A.; Livnah, Oded Nechushtai, Rachel

    2014-06-01

    NAF-1 has been shown to be related with human health and disease, is upregulated in epithelial breast cancer and suppression of its expression significantly suppresses tumor growth. It is shown that replacement of the single His ligand with Cys resulted in dramatic changes to the properties of its 2Fe-2S clusters without any global crystal structural changes. NAF-1 is an important [2Fe–2S] NEET protein associated with human health and disease. A mis-splicing mutation in NAF-1 results in Wolfram Syndrome type 2, a lethal childhood disease. Upregulation of NAF-1 is found in epithelial breast cancer cells, and suppression of NAF-1 expression by knockdown significantly suppresses tumor growth. Key to NAF-1 function is the NEET fold with its [2Fe–2S] cluster. In this work, the high-resolution structure of native NAF-1 was determined to 1.65 Å resolution (R factor = 13.5%) together with that of a mutant in which the single His ligand of its [2Fe–2S] cluster, His114, was replaced by Cys. The NAF-1 H114C mutant structure was determined to 1.58 Å resolution (R factor = 16.0%). All structural differences were localized to the cluster binding site. Compared with native NAF-1, the [2Fe–2S] clusters of the H114C mutant were found to (i) be 25-fold more stable, (ii) have a redox potential that is 300 mV more negative and (iii) have their cluster donation/transfer function abolished. Because no global structural differences were found between the mutant and the native (wild-type) NAF-1 proteins, yet significant functional differences exist between them, the NAF-1 H114C mutant is an excellent tool to decipher the underlying biological importance of the [2Fe–2S] cluster of NAF-1 in vivo.

  15. Clustering of mutations in the biotin-binding region of holocarboxylase synthetase in biotin-responsive multiple carboxylase deficiency.

    PubMed

    Dupuis, L; Leon-Del-Rio, A; Leclerc, D; Campeau, E; Sweetman, L; Saudubray, J M; Herman, G; Gibson, K M; Gravel, R A

    1996-07-01

    Holocarboxylase synthetase (HCS) catalyses the biotinylation of the four biotin-dependent carboxylases found in humans. A deficiency in HCS results in biotin-responsive multiple carboxylase deficiency (MCD). We have identified six different point mutations in the HCS gene in nine patients with MCD. Two of the mutations are frequent among the MCD patients analyzed. Four of the mutations cluster in the putative biotin-binding domain as deduced from the corresponding Escherichia coli enzyme and consistent with an explanation for biotin-responsiveness based on altered affinity for biotin. The two others may define an additional domain involved in biotin-binding or biotin-mediated stabilization of the protein.

  16. Possible mechanism of BN fullerene formation from a boron cluster: Density-functional tight-binding molecular dynamics simulations.

    PubMed

    Ohta, Y

    2016-04-15

    We simulate the formation of a BN fullerene from an amorphous B cluster at 2000 K by quantum mechanical molecular dynamics based on the density-functional tight-binding method. We run 30 trajectories 200 ps in length, where N atoms are supplied around the target cluster, which is initially an amorphous B36 cluster. Most of the incident N atoms are promptly incorporated into the target cluster to form B-N-B bridges or NB3 pyramidal local substructures. BN fullerene formation is initiated by alternating BN ring condensation. Spontaneous atomic rearrangement and N2 dissociation lead to the construction of an sp(2) single-shelled structure, during which the BN cluster undergoes a transition from a liquid-like to a solid-like state. Continual atomic rearrangement and sporadic N2 dissociation decrease the number of defective rings in the BN cluster and increase the number of six-membered rings, forming a more regular shell structure. The number of four-membered rings tends to remain constant, and contributes to more ordered isolated-tetragon-rule ring placement.

  17. Human glutaredoxin 3 can bind and effectively transfer [4Fe-4S] cluster to apo-iron regulatory protein 1.

    PubMed

    Xia, Haiyan; Li, Binghua; Zhang, Zhou; Wang, Qi; Qiao, Tong; Li, Kuanyu

    2015-09-25

    Glutaredoxin 3 (GLRX3) is a member of monothiol glutaredoxins with a CGFS active site that has been demonstrated to function in cellular iron sensing and trafficking via its bound iron-sulfur cluster. Human GLRX3 has been shown to form a dimer that binds two bridging [2Fe-2S] clusters with glutathione (GSH) as a ligand, assembling a compound 2GLRX3-2[2Fe-2S]-4GSH. Each iron of the iron-sulfur clusters is bound to the thiols of the cysteines, one of which is from the active site of GLRX3, the other from the noncovalently bound GSH. Here, we show that the recombinant human GLRX3 isolated anaerobically from Escherichia coli can incorporate [4Fe-4S] cluster in the absence of GSH, revealed by spectral and enzymatic analysis. [4Fe-4S] cluster-containing GLRX3 is competent for converting iron regulatory protein 1 (apo-IRP1) into aconitase within 30 min, via intact iron-sulfur cluster transfer. These in vitro studies suggest that human GLRX3 is important for cytosolic Fe-S protein maturation. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. The iron uptake repressor Fep1 in the fission yeast binds Fe-S cluster through conserved cysteines

    SciTech Connect

    Kim, Hyo-Jin; Lee, Kang-Lok; Kim, Kyoung-Dong; Roe, Jung-Hye

    2016-09-09

    Iron homeostasis is tightly regulated since iron is an essential but toxic element in the cell. The GATA-type transcription factor Fep1 and its orthologs contribute to iron homeostasis in many fungi by repressing genes for iron uptake when intracellular iron is high. Even though the function and interaction partners of Fep1 have been elucidated extensively In Schizosaccharomyces pombe, the mechanism behind iron-sensing by Fep1 remains elusive. It has been reported that Fep1 interacts with Fe-S-containing monothiol glutaredoxin Grx4 and Grx4-Fra2 complex. In this study, we demonstrate that Fep1 also binds iron, in the form of Fe-S cluster. Spectroscopic and biochemical analyses of as isolated and reconstituted Fep1 suggest that the dimeric Fep1 binds Fe-S clusters. The mutation study revealed that the cluster-binding depended on the conserved cysteines located between the two zinc fingers in the DNA binding domain. EPR analyses revealed [Fe-S]-specific peaks indicative of mixed presence of [2Fe-2S], [3Fe-4S], or [4Fe-4S]. The finding that Fep1 is an Fe-S protein fits nicely with the model that the Fe-S-trafficking Grx4 senses intracellular iron environment and modulates the activity of Fep1. - Highlights: • Fep1, a prototype fungal iron uptake regulator, was isolated stably from Schizosaccharomyces pombe. • Fep1 exhibits UV–visible absorption spectrum, characteristic of [Fe-S] proteins. • The iron and sulfide contents in purified or reconstituted Fep1 also support [Fe-S]. • The conserved cysteines are critical for [Fe-S]-binding. • EPR spectra at 5 K and 123 K suggest a mixed population of [Fe-S].

  19. Single crystal growth and structural evolution across the 1st order valence transition in (Pr1–yYy)1–xCaxCoO3-δ

    DOE PAGES

    Schreiber, N. J.; Zhang, Junjie; Zheng, Hong; ...

    2017-06-27

    Here, praseodymium-containing cobalt perovskites, such as (Pr1-yYy)1-xCaxCoO3-δ, have been argued to undergo a first-order charge shift between Pr and hybridized Co-O orbitals that leads to a metal-insulator transition at a temperature, TVT. Magnetization and x-ray absorption spectroscopy measurements on single crystals of (Pr0.85Y0.15)0.7Ca0.3CoO3-δ grown in an IR image furnace under 40-60 bar of oxygen confirm the presence of this valence transition. Single crystal x-ray synchrotron diffraction measurements are consistent with an isomorphic phase transition at TVT. No evidence of charge ordering was revealed by the single crystal diffraction. Dissimilar to analytical transmission electron microscopy measurements performed on a grain frommore » a polycrystalline sample that revealed an oxygen vacancy order-disorder transition at TVT, the present single-crystal measurements did not evidence such a transition, likely reflecting a lower density of oxygen vacancies in the high-pO2 grown single crystals.« less

  20. Bacterial ApbC can bind and effectively transfer iron-sulfur clusters.

    PubMed

    Boyd, Jeffrey M; Pierik, Antonio J; Netz, Daili J A; Lill, Roland; Downs, Diana M

    2008-08-05

    The metabolism of iron-sulfur ([Fe-S]) clusters requires a complex set of machinery that is still being defined. Mutants of Salmonella enterica lacking apbC have nutritional and biochemical properties indicative of defects in [Fe-S] cluster metabolism. ApbC is a 40.8 kDa homodimeric ATPase and as purified contains little iron and no acid-labile sulfide. An [Fe-S] cluster was reconstituted on ApbC, generating a protein that bound 2 mol of Fe and 2 mol of S (2-) per ApbC monomer and had a UV-visible absorption spectrum similar to known [4Fe-4S] cluster proteins. Holo-ApbC could rapidly and effectively activate Saccharomyces cerevisiae apo-isopropylmalate isolomerase (Leu1) in vitro, a process known to require the transfer of a [4Fe-4S] cluster. Maximum activation was achieved with 2 mol of ApbC per 1 mol of apo-Leu1. This article describes the first biochemical activity of ApbC in the context of [Fe-S] cluster metabolism. The data herein support a model in which ApbC coordinates an [4Fe-4S] cluster across its dimer interface and can transfer this cluster to an apoprotein acting as an [Fe-S] cluster scaffold protein, a function recently deduced for its eukaryotic homologues.

  1. A Novel Cell Surface-Anchored Cellulose-Binding Protein Encoded by the sca Gene Cluster of Ruminococcus flavefaciens▿

    PubMed Central

    Rincon, Marco T.; Cepeljnik, Tadej; Martin, Jennifer C.; Barak, Yoav; Lamed, Raphael; Bayer, Edward A.; Flint, Harry J.

    2007-01-01

    Ruminococcus flavefaciens produces a cellulosomal enzyme complex, based on the structural proteins ScaA, -B, and -C, that was recently shown to attach to the bacterial cell surface via the wall-anchored protein ScaE. ScaA, -B, -C, and -E are all cohesin-bearing proteins encoded by linked genes in the sca cluster. The product of an unknown open reading frame within the sca cluster, herein designated CttA, is similar in sequence at its C terminus to the corresponding region of ScaB, which contains an X module together with a dockerin sequence. The ScaB-XDoc dyad was shown previously to interact tenaciously with the cohesin of ScaE. Likewise, avid binding was confirmed between purified recombinant fragments of the CttA-XDoc dyad and the ScaE cohesin. In addition, the N-terminal regions of CttA were shown to bind to cellulose, thus suggesting that CttA is a cell wall-anchored, cellulose-binding protein. Proteomic analysis showed that the native CttA protein (∼130 kDa) corresponds to one of the three most abundant polypeptides binding tightly to insoluble cellulose in cellulose-grown R. flavefaciens 17 cultures. Interestingly, this protein was also detected among cellulose-bound proteins in the related strain R. flavefaciens 007C but not in a mutant derivative, 007S, that was previously shown to have lost the ability to grow on dewaxed cotton fibers. In R. flavefaciens, the presence of CttA on the cell surface is likely to provide an important mechanism for substrate binding, perhaps compensating for the absence of an identified cellulose-binding module in the major cellulosomal scaffolding proteins of this species. PMID:17468247

  2. Cofactor-binding sites in proteins of deviating sequence: comparative analysis and clustering in torsion angle, cavity, and fold space.

    PubMed

    Stegemann, Björn; Klebe, Gerhard

    2012-02-01

    Small molecules are recognized in protein-binding pockets through surface-exposed physicochemical properties. To optimize binding, they have to adopt a conformation corresponding to a local energy minimum within the formed protein-ligand complex. However, their conformational flexibility makes them competent to bind not only to homologous proteins of the same family but also to proteins of remote similarity with respect to the shape of the binding pockets and folding pattern. Considering drug action, such observations can give rise to unexpected and undesired cross reactivity. In this study, datasets of six different cofactors (ADP, ATP, NAD(P)(H), FAD, and acetyl CoA, sharing an adenosine diphosphate moiety as common substructure), observed in multiple crystal structures of protein-cofactor complexes exhibiting sequence identity below 25%, have been analyzed for the conformational properties of the bound ligands, the distribution of physicochemical properties in the accommodating protein-binding pockets, and the local folding patterns next to the cofactor-binding site. State-of-the-art clustering techniques have been applied to group the different protein-cofactor complexes in the different spaces. Interestingly, clustering in cavity (Cavbase) and fold space (DALI) reveals virtually the same data structuring. Remarkable relationships can be found among the different spaces. They provide information on how conformations are conserved across the host proteins and which distinct local cavity and fold motifs recognize the different portions of the cofactors. In those cases, where different cofactors are found to be accommodated in a similar fashion to the same fold motifs, only a commonly shared substructure of the cofactors is used for the recognition process. Copyright © 2011 Wiley Periodicals, Inc.

  3. Electronic Spectroscopy of AlArn Clusters: Evidence for Surface Binding of Al Atoms

    NASA Astrophysics Data System (ADS)

    Okumura, Mitchio; Spotts, James M.; Wong, Chi-Kin

    1997-04-01

    Solvent-induced-frequency shifts and splittings of the 3p arrow 3d transition of Al atoms in Al(Ar)n clusters were studied to investigate the site occupied by the Al atom in these clusters. The electronic spectra were recorded near 300 nm for several sizes in the range n = 1 to 60 by resonant two-photon photoionization spectroscopy. The observed bands differ significantly from UV absorption spectra of Al atoms in Ar matrices, and the variations in splittings and shifts as a function of cluster size do not converge on the matrix limit. These results are interpreted with a model in which the Al atom is bound to the surface of an Arn cluster rather than solvated within the cluster interior.

  4. Identification of a Unique Fe-S Cluster Binding Site in a Glycyl-Radical Type Microcompartment Shell Protein

    PubMed Central

    Thompson, Michael C.; Wheatley, Nicole M.; Jorda, Julien; Sawaya, Michael R.; Gidaniyan, Soheil D.; Ahmed, Hoda; Yang, Zhongyu; McCarty, Krystal N.; Whitelegge, Julian P.; Yeates, Todd O.

    2014-01-01

    Recently, progress has been made toward understanding the functional diversity of bacterial microcompartment (MCP) systems, which serve as protein-based metabolic organelles in diverse microbes. New types of MCPs have been identified, including the glycyl-radical propanediol (Grp) MCP. Within these elaborate protein complexes, BMC-domain shell proteins assemble to form a polyhedral barrier that encapsulates the enzymatic contents of the MCP. Interestingly, the Grp MCP contains a number of shell proteins with unusual sequence features. GrpU is one such shell protein, whose amino acid sequence is particularly divergent from other members of the BMC-domain superfamily of proteins that effectively defines all MCPs. Expression, purification, and subsequent characterization of the protein showed, unexpectedly, that it binds an iron-sulfur cluster. We determined X-ray crystal structures of two GrpU orthologs, providing the first structural insight into the homohexameric BMC-domain shell proteins of the Grp system. The X-ray structures of GrpU, both obtained in the apo form, combined with spectroscopic analyses and computational modeling, show that the metal cluster resides in the central pore of the BMC shell protein at a position of broken 6-fold symmetry. The result is a structurally polymorphic iron-sulfur cluster binding site that appears to be unique among metalloproteins studied to date. PMID:25102080

  5. Identification of a unique Fe-S cluster binding site in a glycyl-radical type microcompartment shell protein.

    PubMed

    Thompson, Michael C; Wheatley, Nicole M; Jorda, Julien; Sawaya, Michael R; Gidaniyan, Soheil D; Ahmed, Hoda; Yang, Zhongyu; McCarty, Krystal N; Whitelegge, Julian P; Yeates, Todd O

    2014-09-23

    Recently, progress has been made toward understanding the functional diversity of bacterial microcompartment (MCP) systems, which serve as protein-based metabolic organelles in diverse microbes. New types of MCPs have been identified, including the glycyl-radical propanediol (Grp) MCP. Within these elaborate protein complexes, BMC-domain shell proteins [bacterial microcompartment (in reference to the shell protein domain)] assemble to form a polyhedral barrier that encapsulates the enzymatic contents of the MCP. Interestingly, the Grp MCP contains a number of shell proteins with unusual sequence features. GrpU is one such shell protein whose amino acid sequence is particularly divergent from other members of the BMC-domain superfamily of proteins that effectively defines all MCPs. Expression, purification, and subsequent characterization of the protein showed, unexpectedly, that it binds an iron-sulfur cluster. We determined X-ray crystal structures of two GrpU orthologs, providing the first structural insight into the homohexameric BMC-domain shell proteins of the Grp system. The X-ray structures of GrpU, both obtained in the apo form, combined with spectroscopic analyses and computational modeling, show that the metal cluster resides in the central pore of the BMC shell protein at a position of broken 6-fold symmetry. The result is a structurally polymorphic iron-sulfur cluster binding site that appears to be unique among metalloproteins studied to date.

  6. Iron–Sulfur Cluster Binding by Mitochondrial Monothiol Glutaredoxin-1 of Trypanosoma brucei: Molecular Basis of Iron–Sulfur Cluster Coordination and Relevance for Parasite Infectivity

    PubMed Central

    Manta, Bruno; Pavan, Carlo; Sturlese, Mattia; Medeiros, Andrea; Crispo, Martina; Berndt, Carsten; Krauth-Siegel, R. Luise; Bellanda, Massimo

    2013-01-01

    Abstract Aims: Monothiol glutaredoxins (1-C-Grxs) are small proteins linked to the cellular iron and redox metabolism. Trypanosoma brucei brucei, model organism for human African trypanosomiasis, expresses three 1-C-Grxs. 1-C-Grx1 is a highly abundant mitochondrial protein capable to bind an iron–sulfur cluster (ISC) in vitro using glutathione (GSH) as cofactor. We here report on the functional and structural analysis of 1-C-Grx1 in relation to its ISC-binding properties. Results: An N-terminal extension unique to 1-C-Grx1 from trypanosomatids affects the oligomeric structure and the ISC-binding capacity of the protein. The active-site Cys104 is essential for ISC binding, and the parasite-specific glutathionylspermidine and trypanothione can replace GSH as the ligands of the ISC. Interestingly, trypanothione forms stable protein-free ISC species that in vitro are incorporated into the dithiol T. brucei 2-C-Grx1, but not 1-C-Grx1. Overexpression of the C104S mutant of 1-C-Grx1 impairs disease progression in a mouse model. The structure of the Grx-domain of 1-C-Grx1 was solved by nuclear magnetic resonance spectroscopy. Despite the fact that several residues—which in other 1-C-Grxs are involved in the noncovalent binding of GSH—are conserved, different physicochemical approaches did not reveal any specific interaction between 1-C-Grx1 and free thiol ligands. Innovation: Parasite Grxs are able to coordinate an ISC formed with trypanothione, suggesting a new mechanism of ISC binding and a novel function for the parasite-specific dithiol. The first 3D structure and in vivo relevance of a 1-C-Grx from a pathogenic protozoan are reported. Conclusion: T. brucei 1-C-Grx1 is indispensable for mammalian parasitism and utilizes a new mechanism for ISC binding. Antioxid. Redox Signal. 19, 665–682. PMID:23259530

  7. Attractant binding induces distinct structural changes to the polar and lateral signaling clusters in Bacillus subtilis chemotaxis.

    PubMed

    Wu, Kang; Walukiewicz, Hanna E; Glekas, George D; Ordal, George W; Rao, Christopher V

    2011-01-28

    Bacteria employ a modified two-component system for chemotaxis, where the receptors form ternary complexes with CheA histidine kinases and CheW adaptor proteins. These complexes are arranged in semi-ordered arrays clustered predominantly at the cell poles. The prevailing models assume that these arrays are static and reorganize only locally in response to attractant binding. Recent studies have shown, however, that these structures may in fact be much more fluid. We investigated the localization of the chemotaxis signaling arrays in Bacillus subtilis using immunofluorescence and live cell fluorescence microscopy. We found that the receptors were localized in clusters at the poles in most cells. However, when the cells were exposed to attractant, the number exhibiting polar clusters was reduced roughly 2-fold, whereas the number exhibiting lateral clusters distinct from the poles increased significantly. These changes in receptor clustering were reversible as polar localization was reestablished in adapted cells. We also investigated the dynamic localization of CheV, a hybrid protein consisting of an N-terminal CheW-like adaptor domain and a C-terminal response regulator domain that is known to be phosphorylated by CheA, using immunofluorescence. Interestingly, we found that CheV was localized predominantly at lateral clusters in unstimulated cells. However, upon exposure to attractant, CheV was found to be predominantly localized to the cell poles. Moreover, changes in CheV localization are phosphorylation-dependent. Collectively, these results suggest that the chemotaxis signaling arrays in B. subtilis are dynamic structures and that feedback loops involving phosphorylation may regulate the positioning of individual proteins.

  8. Mo-Cu metal cluster formation and binding in an orange protein isolated from Desulfovibrio gigas.

    PubMed

    Carepo, Marta S P; Pauleta, Sofia R; Wedd, Anthony G; Moura, José J G; Moura, Isabel

    2014-06-01

    The orange protein (ORP) isolated from the sulfate-reducing bacterium Desulfovibrio gigas (11.8 kDa) contains a mixed-metal sulfide cluster of the type [S2MoS2CuS2MoS2](3-) noncovalently bound to the polypeptide chain. The D. gigas ORP was heterologously produced in Escherichia coli in the apo form. Different strategies were used to reconstitute the metal cluster into apo-ORP and obtain insights into the metal cluster synthesis: (1) incorporation of a synthesized inorganic analogue of the native metal cluster and (2) the in situ synthesis of the metal cluster on the addition to apo-ORP of copper chloride and tetrathiomolybdate or tetrathiotungstate. This latter procedure was successful, and the visible spectrum of the Mo-Cu reconstituted ORP is identical to the one reported for the native protein with absorption maxima at 340 and 480 nm. The (1)H-(15)N heteronuclear single quantum coherence spectra of the reconstituted ORP obtained by strategy 2, in contrast to strategy 1, exhibited large changes, which required sequential assignment in order to identify, by chemical shift differences, the residues affected by the incorporation of the cluster, which is stabilized inside the protein by both electrostatic and hydrophobic interactions.

  9. Influence of Molecular Structure on O2-Binding Properties and Blood Circulation of Hemoglobin‒Albumin Clusters

    PubMed Central

    Yamada, Kana; Yokomaku, Kyoko; Haruki, Risa; Taguchi, Kazuaki; Nagao, Saori; Maruyama, Toru; Otagiri, Masaki; Komatsu, Teruyuki

    2016-01-01

    A hemoglobin wrapped covalently by three human serum albumins, a Hb-HSA3 cluster, is an artificial O2-carrier with the potential to function as a red blood cell substitute. This paper describes the synthesis and O2-binding properties of new hemoglobin‒albumin clusters (i) bearing four HSA units at the periphery (Hb-HSA4, large-size variant) and (ii) containing an intramolecularly crosslinked Hb in the center (XLHb-HSA3, high O2-affinity variant). Dynamic light scattering measurements revealed that the Hb-HSA4 diameter is greater than that of either Hb-HSA3 or XLHb-HSA3. The XLHb-HSA3 showed moderately high O2-affinity compared to the others because of the chemical linkage between the Cys-93(β) residues in Hb. Furthermore, the blood circulation behavior of 125I-labeled clusters was investigated by assay of blood retention and tissue distribution after intravenous administration into anesthetized rats. The XLHb-HSA3 was metabolized faster than Hb-HSA3 and Hb-HSA4. Results suggest that the molecular structure of the protein cluster is a factor that can influence in vivo circulation behavior. PMID:26895315

  10. Crystal structures of the NO sensor NsrR reveal how its iron-sulfur cluster modulates DNA binding

    PubMed Central

    Volbeda, Anne; Dodd, Erin L.; Darnault, Claudine; Crack, Jason C.; Renoux, Oriane; Hutchings, Matthew I.; Le Brun, Nick E.; Fontecilla-Camps, Juan C.

    2017-01-01

    NsrR from Streptomyces coelicolor (Sc) regulates the expression of three genes through the progressive degradation of its [4Fe–4S] cluster on nitric oxide (NO) exposure. We report the 1.95 Å resolution crystal structure of dimeric holo-ScNsrR and show that the cluster is coordinated by the three invariant Cys residues from one monomer and, unexpectedly, Asp8 from the other. A cavity map suggests that NO displaces Asp8 as a cluster ligand and, while D8A and D8C variants remain NO sensitive, DNA binding is affected. A structural comparison of holo-ScNsrR with an apo-IscR-DNA complex shows that the [4Fe–4S] cluster stabilizes a turn between ScNsrR Cys93 and Cys99 properly oriented to interact with the DNA backbone. In addition, an apo ScNsrR structure suggests that Asn97 from this turn, along with Arg12, which forms a salt-bridge with Asp8, are instrumental in modulating the position of the DNA recognition helix region relative to its major groove. PMID:28425466

  11. Influence of Molecular Structure on O2-Binding Properties and Blood Circulation of Hemoglobin‒Albumin Clusters.

    PubMed

    Yamada, Kana; Yokomaku, Kyoko; Haruki, Risa; Taguchi, Kazuaki; Nagao, Saori; Maruyama, Toru; Otagiri, Masaki; Komatsu, Teruyuki

    2016-01-01

    A hemoglobin wrapped covalently by three human serum albumins, a Hb-HSA3 cluster, is an artificial O2-carrier with the potential to function as a red blood cell substitute. This paper describes the synthesis and O2-binding properties of new hemoglobin‒albumin clusters (i) bearing four HSA units at the periphery (Hb-HSA4, large-size variant) and (ii) containing an intramolecularly crosslinked Hb in the center (XLHb-HSA3, high O2-affinity variant). Dynamic light scattering measurements revealed that the Hb-HSA4 diameter is greater than that of either Hb-HSA3 or XLHb-HSA3. The XLHb-HSA3 showed moderately high O2-affinity compared to the others because of the chemical linkage between the Cys-93(β) residues in Hb. Furthermore, the blood circulation behavior of 125I-labeled clusters was investigated by assay of blood retention and tissue distribution after intravenous administration into anesthetized rats. The XLHb-HSA3 was metabolized faster than Hb-HSA3 and Hb-HSA4. Results suggest that the molecular structure of the protein cluster is a factor that can influence in vivo circulation behavior.

  12. An Effective Approach for Clustering InhA Molecular Dynamics Trajectory Using Substrate-Binding Cavity Features

    PubMed Central

    Ruiz, Duncan D. A.; Norberto de Souza, Osmar

    2015-01-01

    Protein receptor conformations, obtained from molecular dynamics (MD) simulations, have become a promising treatment of its explicit flexibility in molecular docking experiments applied to drug discovery and development. However, incorporating the entire ensemble of MD conformations in docking experiments to screen large candidate compound libraries is currently an unfeasible task. Clustering algorithms have been widely used as a means to reduce such ensembles to a manageable size. Most studies investigate different algorithms using pairwise Root-Mean Square Deviation (RMSD) values for all, or part of the MD conformations. Nevertheless, the RMSD only may not be the most appropriate gauge to cluster conformations when the target receptor has a plastic active site, since they are influenced by changes that occur on other parts of the structure. Hence, we have applied two partitioning methods (k-means and k-medoids) and four agglomerative hierarchical methods (Complete linkage, Ward’s, Unweighted Pair Group Method and Weighted Pair Group Method) to analyze and compare the quality of partitions between a data set composed of properties from an enzyme receptor substrate-binding cavity and two data sets created using different RMSD approaches. Ensembles of representative MD conformations were generated by selecting a medoid of each group from all partitions analyzed. We investigated the performance of our new method for evaluating binding conformation of drug candidates to the InhA enzyme, which were performed by cross-docking experiments between a 20 ns MD trajectory and 20 different ligands. Statistical analyses showed that the novel ensemble, which is represented by only 0.48% of the MD conformations, was able to reproduce 75% of all dynamic behaviors within the binding cavity for the docking experiments performed. Moreover, this new approach not only outperforms the other two RMSD-clustering solutions, but it also shows to be a promising strategy to distill

  13. An Effective Approach for Clustering InhA Molecular Dynamics Trajectory Using Substrate-Binding Cavity Features.

    PubMed

    De Paris, Renata; Quevedo, Christian V; Ruiz, Duncan D A; Norberto de Souza, Osmar

    2015-01-01

    Protein receptor conformations, obtained from molecular dynamics (MD) simulations, have become a promising treatment of its explicit flexibility in molecular docking experiments applied to drug discovery and development. However, incorporating the entire ensemble of MD conformations in docking experiments to screen large candidate compound libraries is currently an unfeasible task. Clustering algorithms have been widely used as a means to reduce such ensembles to a manageable size. Most studies investigate different algorithms using pairwise Root-Mean Square Deviation (RMSD) values for all, or part of the MD conformations. Nevertheless, the RMSD only may not be the most appropriate gauge to cluster conformations when the target receptor has a plastic active site, since they are influenced by changes that occur on other parts of the structure. Hence, we have applied two partitioning methods (k-means and k-medoids) and four agglomerative hierarchical methods (Complete linkage, Ward's, Unweighted Pair Group Method and Weighted Pair Group Method) to analyze and compare the quality of partitions between a data set composed of properties from an enzyme receptor substrate-binding cavity and two data sets created using different RMSD approaches. Ensembles of representative MD conformations were generated by selecting a medoid of each group from all partitions analyzed. We investigated the performance of our new method for evaluating binding conformation of drug candidates to the InhA enzyme, which were performed by cross-docking experiments between a 20 ns MD trajectory and 20 different ligands. Statistical analyses showed that the novel ensemble, which is represented by only 0.48% of the MD conformations, was able to reproduce 75% of all dynamic behaviors within the binding cavity for the docking experiments performed. Moreover, this new approach not only outperforms the other two RMSD-clustering solutions, but it also shows to be a promising strategy to distill

  14. The nature and evolution of excess electron binding in cluster anions studied via negative ion photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Hendricks, Jay H.

    1997-07-01

    The technique of negative ion photoelectron spectroscopy (NIPES) has been used to study a variety of cluster anion systems with the aim of elucidating the nature and evolution of excess electron binding in clusters. The systems studied include molecular and cluster dipole- bound anions, conventional valence molecular anions, ion- molecule cluster anions, solvated electron cluster anions, metal cluster anions, metal oxide anions, and metal hydride anions. The generation and characterization of nanophase Lunsford catalyst, and the study of gas- phase anionic polymerization reactions were also conducted. The studies of dipole-bound anions, (Uracil)/sp-, (Uracil...Xe)/sp-, (Thymine)/sp-, (1- Methylcytosine)/sp-, (HF)2-, (H2O)2-, (EG)2-, where EG = Ethylene Glycol, (CH3CN[/cdots]H2O)/sp-,/ (HCl[/cdots] H2O)/sp-,/ (HCN[/cdots]H2O)/sp-, and (H2S)4- provide some of the best experimental evidence to date confirming the long standing predictions of theory that an excess electron can be bound to a dipole field if the dipole moment of the neutral molecule or cluster exceeds a critical minimum value. The photodetachment of the conventional valence anions /[(2,4,6-tricyanobenzene)/sp-, (CAN3-3HCl)/sp-, where CAN = 2- choloracrylonitrile, (CH3NO2)/sp-/], metal cluster anions /[Lin=1-7-/], metal oxide anions /[NaO/sp-,/ KO/sp-,/ RbO/sp-, and CsO/sp-/] and metal hydride anions /[LiH/sp-,/ LiD/sp-/] enabled the first time determinations of vertical detachment energies, and adiabatic election affinities. The studies of ion-molecule cluster anions /[O/sp- (Ar)n=1-26,34,/ NO/sp-(Ar)n=1-14,/ O/sp- (Kr)n=1-4,/ O/sp-(Xe)n=1-4,/ O/sp-(N2),/ NO/sp-(Kr),/ NO/sp-(Xe)n=1-3,/ NO/sp- (N2O)n=1-5, and NO/sp-(EG),/ (Uracil[/cdots]H2O)/sp-,/ (Uracil[/cdots]Xe)/sp-/] permitted the energetics and structure of microscopic ion solvation to be examined as a function of cluster size and cluster solvent. The photodetachment of solvated the electron clusters anions /[(H2O)n-,/ [(H2O)x[/cdots](NH3)y

  15. POS-1 and GLD-1 repress glp-1 translation through a conserved binding-site cluster.

    PubMed

    Farley, Brian M; Ryder, Sean P

    2012-12-01

    RNA-binding proteins (RBPs) coordinate cell fate specification and differentiation in a variety of systems. RNA regulation is critical during oocyte development and early embryogenesis, in which RBPs control expression from maternal mRNAs encoding key cell fate determinants. The Caenorhabditis elegans Notch homologue glp-1 coordinates germline progenitor cell proliferation and anterior fate specification in embryos. A network of sequence-specific RBPs is required to pattern GLP-1 translation. Here, we map the cis-regulatory elements that guide glp-1 regulation by the CCCH-type tandem zinc finger protein POS-1 and the STAR-domain protein GLD-1. Our results demonstrate that both proteins recognize the glp-1 3' untranslated region (UTR) through adjacent, overlapping binding sites and that POS-1 binding excludes GLD-1 binding. Both factors are required to repress glp-1 translation in the embryo, suggesting that they function in parallel regulatory pathways. It is intriguing that two equivalent POS-1-binding sites are present in the glp-1 3' UTR, but only one, which overlaps with a translational derepression element, is functional in vivo. We propose that POS-1 regulates glp-1 mRNA translation by blocking access of other RBPs to a key regulatory sequence.

  16. Photoelectron spectroscopy of s-triazine anion clusters: Polarization-induced electron binding in aza-aromatic molecule

    NASA Astrophysics Data System (ADS)

    Kim, Jeong Hyun; Song, Jae Kyu; Park, Hyokeun; Lee, Sang Hak; Han, Sang Yun; Kim, Seong Keun

    2003-08-01

    Photoelectron spectroscopy was carried out for the mass-selected cluster anions of s-triazine molecule, Tzn- (n=1-6). The mass spectrum and vibrationally resolved photoelectron spectrum of Tz- showed that unlike pyridine and pyrazine, Tz binds an electron and thus becomes the first molecule in the azabenzene series with a positive electron affinity (0.03 eV). This indicates that the local charge polarization in the aromatic ring by the three nitrogen atoms is large enough to facilitate electron binding to a homologue of benzene. A Jahn-Teller distortion was proposed to explain the vibrational progressions of the photoelectron spectrum of Tz-. A series of Ar-solvated clusters of Tz-, Tz-ṡArm (m=1-7), have been also studied. Their photoelectron spectra showed a drop in the incremental electron binding energy when going from m=4 to 5, indicating the closure of a solvation shell with four Ar atoms. In the mass abundance spectrum of Tzn-, a distinctly high intensity for Tz2- indicated its exceptional stability, which was also manifested by the large increase by more than 0.5 eV in the vertical detachment energy of the photoelectron spectrum. Theoretical calculations were carried out to obtain optimized geometries of the neutral and anion of Tz and Tz2. We confirmed the Jahn-Teller distortion in Tz- and also addressed the role of hydrogen bonding in determining the geometries of Tz2-. A common feature for the two most stable forms of Tz2- with comparable energies was that they achieve their unique stability through equal sharing of the negative charge between their two molecular constituents. A new photoelectron band was found to emerge from Tzn- for n⩾2 by the 355 nm light, in addition to the photoelectron band at lower electron binding energy observed for n⩾1 at 532 nm. The relative intensity of this new band decreased as n increased, and its position was 1.6-1.8 eV above the first band. Photodetachment to an electronically excited state was suggested to give

  17. Comparative Study on the Noble-Gas Binding Ability of BeX Clusters (X = SO4, CO3, O).

    PubMed

    Saha, Ranajit; Pan, Sudip; Merino, Gabriel; Chattaraj, Pratim K

    2015-06-25

    Ab initio computations are carried out to assess the noble gas (Ng) binding capability of BeSO4 cluster. We have further compared the stability of NgBeSO4 with that of the recently detected NgBeCO3 cluster. The Ng-Be bond in NgBeCO3 is somewhat weaker than that in NgBeO cluster. In NgBeSO4, the Ng-Be bond is found to be stronger compared with not only the Ng-Be bond in NgBeCO3 but also that in NgBeO, except the He case. The Ar-Rn-bound BeSO4 analogues are viable even at room temperature. The Wiberg bond indices of Be-Ng bonds and the degree of electron transfer from Ng to Be are somewhat larger in NgBeSO4 than those in NgBeCO3 and NgBeO. Electron density and energy decomposition analyses are performed in search of the nature of interaction in the Be-Ng bond in NgBeSO4. The orbital energy term (ΔE(orb)) contributes the maximum (ca. 80-90%) to the total attraction energy. The Ar/Kr/Xe/Rn-Be bonds in NgBeSO4 could be of partial covalent type with a gradual increase in covalency along Ar to Rn.

  18. Structure and functional analysis of the siderophore periplasmic binding protein from the fuscachelin gene cluster of Thermobifida fusca.

    PubMed

    Li, Kunhua; Bruner, Steven D

    2016-01-01

    Iron acquisition is a complex, multicomponent process critical for most organisms' survival and virulence. Small iron chelating molecules, siderophores, mediate transport as key components of common pathways for iron assimilation in many microorganisms. The chemistry and biology of the extraordinary tight and specific metal binding siderophores is of general interest in terms of host/guest chemistry and is a potential target toward the development of therapeutic treatments for microbial virulence. The siderophore pathway of the moderate thermophile, Thermobifida fusca, is an excellent model system to study the process in Gram-positive bacteria. Here we describe the structure and characterization of the siderophore periplasmic binding protein, FscJ from the fuscachelin gene cluster of T. fusca. The structure shows a di-domain arrangement connected with a long α-helix hinge. Several X-ray structures detail ligand-free conformational changes at different pH values, illustrating complex interdomain flexibility of the siderophore receptors. We demonstrated that FscJ has a unique recognition mechanism and details the binding interaction with ferric-fuscachelin A through ITC and docking analysis. The presented work provides a structural basis for the complex molecular mechanisms of siderophore recognition and transportation.

  19. Electrical resistivity anomaly, valence shift of Pr ion, and magnetic behavior in epitaxial (Pr1-yYy)1-xCaxCoO3 thin films under compressive strain

    NASA Astrophysics Data System (ADS)

    Fujishiro, H.; Noda, Y.; Akuzawa, K.; Naito, T.; Ito, A.; Goto, T.; Marysko, M.; Jirak, Z.; Hejtmanek, J.; Nitta, K.

    2017-03-01

    We have fabricated (Pr1-yYy)1-xCaxCoO3 (PYCCO) epitaxial films with various thicknesses by pulsed laser deposition on the SrLaAlO4 (SLAO) substrate that applied an in-plane compressive stress to the film, and investigated the temperature dependence of the electrical resistivity, ρ(T), of the films. An anomalous ρ(T) upturn with a broad hysteresis could be clearly observed only for the thinnest film (d = 50 nm), and the ρ(T) anomaly decreased by increasing film thickness, d. The temperature dependence of the X-ray absorption near-edge structure (XANES) spectra at Pr L2-edge was measured for the films, and the valence states of praseodymium (Pr) ion were determined using the analysis of the XANES spectra. As a result, the average valence of the Pr ion in the d = 50 nm film slightly increases with decreasing temperature from the common value of 3.0+ around room temperature to 3.15+ at 8 K. The valence shift of Pr is thus similar to what was observed on the PYCCO polycrystalline bulks with an abrupt metal-insulator transition, accompanied by a spin-state (SS) transition of Co ions. Furthermore, the low-temperature SQUID measurements evidenced a paramagnetic behavior down to the lowest temperature, which suggests that the dominant part of Co3+ ions in the film grown on the SLAO substrate tends to be in the low spin state characteristic for the insulating ground state. These results strongly suggest that the anomalous ρ(T) upturn in the thin films on the SrLaAlO4 (SLAO) substrate is closely related to the SS transition of Co ions. On the other hand, PYCCO films grown on the LaAlO3 (LAO) substrate that applied an in-plane tensile stress showed no valence shift of Pr ions and developed a long range ferromagnetic order, which points to a complete suppression of the low-temperature transition. The behaviors of the epitaxial films are discussed in terms of the in-plane stress exerted by different substrates and accumulated elastic energy.

  20. Photoswitchable cluster glycosides as tools to probe carbohydrate-protein interactions: synthesis and lectin-binding studies of azobenzene containing multivalent sugar ligands.

    PubMed

    Srinivas, Oruganti; Mitra, Nivedita; Surolia, Avadhesha; Jayaraman, Narayanaswamy

    2005-09-01

    Synthetic cluster glycosides have often been used to unravel mechanisms of carbohydrate-protein interactions. Although synthetic cluster glycosides are constituted on scaffolds to achieve high avidities in lectin binding, there have been no known attempts to modulate the orientations of the sugar clusters with the aid of a functional scaffold onto which the sugar units are linked. Herein, we describe synthesis, physical, and lectin-binding studies of a series of alpha-D-mannopyranoside and beta-D-galactopyranosyl-(1-->4)-beta-D-glucopyranoside glycoclusters that are attached to a photoswitchable azobenzenoid core. These glycoclusters were synthesized by the amidation of amine-tethered glycopyranosides with azobenzene carbonyl chlorides. From kinetic studies, the cis forms of the azobenzene-glycopyranoside derivative were found to be more stable in aqueous solutions than in organic solvents. Molecular modeling studies were performed to estimate the relative geometries of the photoswitchable glycoclusters in the trans- and cis-isomeric forms. Isothermal titration calorimetry (ITC) was employed to assess the binding of these glycoclusters to lectins peanut agglutinin (PNA) and concanavalin A (Con A). Although binding affinities were enhanced several orders higher as the valency of the sugar was increased, a biphasic-binding profile in ITC plots was observed during few glycoclusters lectin-binding processes. The biphasic-binding profile indicates a "cooperativity" in the binding process. An important outcome of this study is that in addition to inherent clustering of the sugar units as a molecular feature, an induced clustering emanates because of the isomerization of the trans form of the azobenzene scaffold to the cis-isomeric form.

  1. N2O binding at a [4Cu:2S] copper-sulphur cluster in nitrous oxide reductase.

    PubMed

    Pomowski, Anja; Zumft, Walter G; Kroneck, Peter M H; Einsle, Oliver

    2011-08-14

    Nitrous oxide (N(2)O) is generated by natural and anthropogenic processes and has a critical role in environmental chemistry. It has an ozone-depleting potential similar to that of hydrochlorofluorocarbons as well as a global warming potential exceeding that of CO(2) 300-fold. In bacterial denitrification, N(2)O is reduced to N(2) by the copper-dependent nitrous oxide reductase (N(2)OR). This enzyme carries the mixed-valent Cu(A) centre and the unique, tetranuclear Cu(Z) site. Previous structural data were obtained with enzyme isolated in the presence of air that is catalytically inactive without prior reduction. Its Cu(Z) site was described as a [4Cu:S] centre, and the substrate-binding mode and reduction mechanism remained elusive. Here we report the structure of purple N(2)OR from Pseudomonas stutzeri, handled under the exclusion of dioxygen, and locate the substrate in N(2)O-pressurized crystals. The active Cu(Z) cluster contains two sulphur atoms, yielding a [4Cu:2S] stoichiometry; and N(2)O bound side-on at Cu(Z), in close proximity to Cu(A). With the substrate located between the two clusters, electrons are transferred directly from Cu(A) to N(2)O, which is activated by side-on binding in a specific binding pocket on the face of the [4Cu:2S] centre. These results reconcile a multitude of available biochemical data on N(2)OR that could not be explained by earlier structures, and outline a mechanistic pathway in which both metal centres and the intervening protein act in concert to achieve catalysis. This structure represents the first direct observation, to our knowledge, of N(2)O bound to its reductase, and sheds light on the functionality of metalloenzymes that activate inert small-molecule substrates. The principle of using distinct clusters for substrate activation and for reduction may be relevant for similar systems, in particular nitrogen-fixing nitrogenase.

  2. Binding of IgG-opsonized particles to Fc gamma R is an active stage of phagocytosis that involves receptor clustering and phosphorylation.

    PubMed

    Sobota, Andrzej; Strzelecka-Kiliszek, Agnieszka; Gładkowska, Ewelina; Yoshida, Kiyotsugu; Mrozińska, Kazimiera; Kwiatkowska, Katarzyna

    2005-10-01

    Fc gammaR mediate the phagocytosis of IgG-coated particles and the clearance of IgG immune complexes. By dissecting binding from internalization of the particles, we found that the binding stage, rather than particle internalization, triggered tyrosine phosphorylation of Fc gammaR and accompanying proteins. High amounts of Lyn kinase were found to associate with particles isolated at the binding stage from J774 cells. PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine), an Src kinase inhibitor, but not piceatannol, an inhibitor of Syk kinase, reduced the amount of Lyn associated with the bound particles and simultaneously diminished the binding of IgG-coated particles. Studies of baby hamster kidney cells transfected with wild-type and mutant Fc gammaRIIA revealed that the ability of the receptor to bind particles was significantly reduced when phosphorylation of the receptor was abrogated by Y298F substitution in the receptor signaling motif. Under these conditions, binding of immune complexes of aggregated IgG was depressed to a lesser extent. A similar effect was exerted on the binding ability of wild-type Fc gammaRIIA by PP2. Moreover, expression of mutant kinase-inactive Lyn K275R inhibited both Fc gammaRIIA phosphorylation and IgG-opsonized particle binding. To gain insight into the mechanism by which protein tyrosine phosphorylation can control Fc gammaR-mediated binding, we investigated the efficiency of clustering of wild-type and Y298F-substituted Fc gammaRIIA upon binding of immune complexes. We found that a lack of Fc gammaRIIA phosphorylation led to an impairment of receptor clustering. The results indicate that phosphorylation of Fc gammaR and accompanying proteins, dependent on Src kinase activity, facilitates the clustering of activated receptors that is required for efficient particle binding.

  3. Theoretical investigations of the structures and binding energies of Be(sub n) and Mg(sub n) (n = 3-5) clusters

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Rendell, Alistair P.; Taylor, Peter R.

    1989-01-01

    Researchers determined the equilibrium geometries and binding energies of Be and Mg trimers, tetramers and pentamers using single and double excitation coupled cluster (CCSD) and complete active space self-consistent-field (CASSCF) multireference configuration interaction (MRCI) wave functions in conjunction with extended atomic basis sets. Best estimates of the cluster binding energies are 24, 83 and 110 kcal/mole for Be3, Be4 and Be5; and 9, 31 and 41 kcal/mole for Mg3, Mg4 and Mg5, respectively. A comparison of the MRCI and CCSD results shows that even the best single-reference approach (limited to single and double excitations) is not capable of quantitative accuracy in determining the binding energies of Be and Mg clusters.

  4. Theoretical investigations of the structures and binding energies of Be(n) and Mg(n) (n = 3-5) clusters

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Rendell, Alistair P.; Taylor, Peter R.

    1990-01-01

    The equilibrium geometries and binding energies of Be and Mg trimers, tetramers and pentamers have been determined using single and double excitation coupled cluster (CCSD) and complete active space self-consistent-field (CASSCF) multireference configuration interaction (MRCI) wave functions in conjunction with extended atomic basis sets. The best estimates of the cluster binding energies are 24, 83, and 110 kcal/mol for Be3, Be4, and Be5; and 9, 31, and 41 kcal/mol for Mg3, Mg4, and Mg5, respectively. A comparison of the MRCI and CCSD results shows that even the best single-reference approach (limited to single and double excitations) is not capable of quantitative accuracy in determining the binding energies of Be and Mg clusters.

  5. Effect of medium dependent binding energies on inferring the temperatures and freeze-out density of disassembling hot nuclear matter from cluster yields

    NASA Astrophysics Data System (ADS)

    Shlomo, S.; Röpke, G.; Natowitz, J. B.; Qin, L.; Hagel, K.; Wada, R.; Bonasera, A.

    2009-03-01

    We explore the abundance of light clusters in asymmetric nuclear matter at subsaturation density. With increasing density, binding energies and wave functions are modified due to medium effects. The method of Albergo, Costa, Costanzo, and Rubbino (ACCR) for determining the temperature and free nucleon density of a disassembling hot nuclear source from fragment yields is modified to include, in addition to Coulomb effects and flow, also effects of medium modifications of cluster properties, which become of importance when the nuclear matter density is above 10-3fm-3. We show how the analysis of cluster yields, to infer temperature and nucleon densities, is modified if the shifts in binding energies of in medium clusters are included. Although, at low densities, the temperature calculated from given yields changes only modestly if medium effects are taken into account, larger discrepancies are observed when the nucleon densities are determined from measured yields.

  6. Binding of the Chaperone Jac1 Protein and Cysteine Desulfurase Nfs1 to the Iron-Sulfur Cluster Scaffold Isu Protein Is Mutually Exclusive*

    PubMed Central

    Majewska, Julia; Ciesielski, Szymon J.; Schilke, Brenda; Kominek, Jacek; Blenska, Anna; Delewski, Wojciech; Song, Ji-Yoon; Marszalek, Jaroslaw; Craig, Elizabeth A.; Dutkiewicz, Rafal

    2013-01-01

    Biogenesis of mitochondrial iron-sulfur (Fe/S) cluster proteins requires the interaction of multiple proteins with the highly conserved 14-kDa scaffold protein Isu, on which clusters are built prior to their transfer to recipient proteins. For example, the assembly process requires the cysteine desulfurase Nfs1, which serves as the sulfur donor for cluster assembly. The transfer process requires Jac1, a J-protein Hsp70 cochaperone. We recently identified three residues on the surface of Jac1 that form a hydrophobic patch critical for interaction with Isu. The results of molecular modeling of the Isu1-Jac1 interaction, which was guided by these experimental data and structural/biophysical information available for bacterial homologs, predicted the importance of three hydrophobic residues forming a patch on the surface of Isu1 for interaction with Jac1. Using Isu variants having alterations in residues that form the hydrophobic patch on the surface of Isu, this prediction was experimentally validated by in vitro binding assays. In addition, Nfs1 was found to require the same hydrophobic residues of Isu for binding, as does Jac1, suggesting that Jac1 and Nfs1 binding is mutually exclusive. In support of this conclusion, Jac1 and Nfs1 compete for binding to Isu. Evolutionary analysis revealed that residues involved in these interactions are conserved and that they are critical residues for the biogenesis of Fe/S cluster protein in vivo. We propose that competition between Jac1 and Nfs1 for Isu binding plays an important role in transitioning the Fe/S cluster biogenesis machinery from the cluster assembly step to the Hsp70-mediated transfer of the Fe/S cluster to recipient proteins. PMID:23946486

  7. Binding of the chaperone Jac1 protein and cysteine desulfurase Nfs1 to the iron-sulfur cluster scaffold Isu protein is mutually exclusive.

    PubMed

    Majewska, Julia; Ciesielski, Szymon J; Schilke, Brenda; Kominek, Jacek; Blenska, Anna; Delewski, Wojciech; Song, Ji-Yoon; Marszalek, Jaroslaw; Craig, Elizabeth A; Dutkiewicz, Rafal

    2013-10-04

    Biogenesis of mitochondrial iron-sulfur (Fe/S) cluster proteins requires the interaction of multiple proteins with the highly conserved 14-kDa scaffold protein Isu, on which clusters are built prior to their transfer to recipient proteins. For example, the assembly process requires the cysteine desulfurase Nfs1, which serves as the sulfur donor for cluster assembly. The transfer process requires Jac1, a J-protein Hsp70 cochaperone. We recently identified three residues on the surface of Jac1 that form a hydrophobic patch critical for interaction with Isu. The results of molecular modeling of the Isu1-Jac1 interaction, which was guided by these experimental data and structural/biophysical information available for bacterial homologs, predicted the importance of three hydrophobic residues forming a patch on the surface of Isu1 for interaction with Jac1. Using Isu variants having alterations in residues that form the hydrophobic patch on the surface of Isu, this prediction was experimentally validated by in vitro binding assays. In addition, Nfs1 was found to require the same hydrophobic residues of Isu for binding, as does Jac1, suggesting that Jac1 and Nfs1 binding is mutually exclusive. In support of this conclusion, Jac1 and Nfs1 compete for binding to Isu. Evolutionary analysis revealed that residues involved in these interactions are conserved and that they are critical residues for the biogenesis of Fe/S cluster protein in vivo. We propose that competition between Jac1 and Nfs1 for Isu binding plays an important role in transitioning the Fe/S cluster biogenesis machinery from the cluster assembly step to the Hsp70-mediated transfer of the Fe/S cluster to recipient proteins.

  8. Binding energy and preferred adsorption sites of CO on gold and silver-gold cluster cations: adsorption kinetics and quantum chemical calculations.

    PubMed

    Neumaier, Marco; Weigend, Florian; Hampe, Oliver; Kappes, Manfred M

    2008-01-01

    We revisit the reactivity of trapped pure gold (Au(n)+, n < 26) and silver gold alloy cluster cations (Ag(m)Au(n)+, m + n < 7) with carbon monoxide as studied in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The experimental results are discussed in terms of ab initio computations which provide a comprehensive picture of the chemical binding behaviour (like binding energy, adsorption sites, associated vibrational frequencies) of CO to the noble metal as a function of cluster size and composition. Starting from results for pure gold cluster cations for which an overall decrease of CO binding energy with increasing cluster size was experimentally observed--from about 1.09 +/- 0.1 eV (for n = 6) to below 0.65 +/- 0.1 eV (for n > 26) we demonstrate that metal--CO bond energies correlate with the total electron density and with the energy of the lowest unoccupied molecular orbital (LUMO) on the bare metal cluster cation as obtained by density functional theory (DFT) computations. This is a consequence of the predominantly sigma-donating character of the CO-M bond. Further support for this concept is found by contrasting the predictions of binding energies to the experimental results for small alloy cluster cations (Ag(m)Au(n)+, 4 < m + n < 7) as a function of composition. Here, binding energy drops with increasing silver content, while CO still binds always in a head-on fashion to a gold atom. Finally we show how the CO stretch frequency of Ag(m)Au(n)CO+ may be used to identify possible adsorption sites and pre-screen favorable isomers.

  9. Ion channel clustering by membrane-associated guanylate kinases. Differential regulation by N-terminal lipid and metal binding motifs.

    PubMed

    El-Husseini, A E; Topinka, J R; Lehrer-Graiwer, J E; Firestein, B L; Craven, S E; Aoki, C; Bredt, D S

    2000-08-04

    The postsynaptic density protein PSD-95 and related membrane-associated guanylate kinase (MAGUK) proteins assemble signal transduction complexes at sites of cell-cell contact including synapses. Whereas PSD-95 and PSD-93 occur only at postsynaptic sites in hippocampal neurons, SAP-102 also occurs in axons. In heterologous cells, PSD-95 and PSD-93 mediate cell surface ion channel clustering, but SAP-102 and SAP-97 do not. This selective ion channel clustering activity by MAGUKs is explained by differential palmitoylation, as PSD-93 and PSD-95 are palmitoylated though SAP-97, and SAP-102 are not. Rather than being palmitoylated, we find that N-terminal cysteines from SAP-102 tightly bind to zinc. And, appending the N terminus of SAP-102 to PSD-95 results in localization of the chimera to both axons and dendrites. These data suggest that lipid modifications and heavy metal associations with the N termini of MAGUKs mediate differential functions and subcellular localizations of these synaptic scaffolds.

  10. Halide binding and inhibition of laccase copper clusters: the role of reorganization energy.

    PubMed

    Kepp, Kasper P

    2015-01-20

    Laccase-like proteins are multicopper oxidases involved in several biological and industrial processes. Their application is commonly limited due to inhibition by fluoride and chloride, and as-isolated proteins are often substantially activated by heat, suggesting that multiple redox states can complicate characterization. Understanding these processes at the molecular level is thus desirable but theoretically unexplored. This paper reports systematic calculations of geometries, reorganization energies, and ionization energies for all partly oxidized states of the trinuclear copper clusters in realistic models with ∼200 atoms. Corrections for scalar-relativistic effects, dispersion, and thermal effects were estimated. Fluoride, chloride, hydroxide, or water was bound to the T2 copper site of the oxidized resting state, and the peroxo intermediate was also computed for reference. Antiferromagnetic coupling, assigned oxidation states, and general structures were consistent with known spectroscopic data. The computations show that (i) ligands bound to the T2 site substantially increase the reorganization energy of the second reduction of the resting state and reduce the redox potentials, providing a possible mechanism for inhibition; (ii) the reorganization energy is particularly large for F(-) but also high for Cl(-), consistent with the experimental tendency of inhibition; (iii) reduction leads to release of Cl(-) from the T2 site, suggesting a mechanism for heat/reduction activation of laccases by dissociation of inhibiting halides or hydroxide from T2.

  11. Effect of N- and P-Type Doping on the Oxygen-Binding Energy and Oxygen Spillover of Supported Palladium Clusters

    NASA Astrophysics Data System (ADS)

    Reber, Arthur C.; Khanna, Shiv N.

    2015-03-01

    The oxygen-binding energy is one of the primary factors determining catalytic activity in oxidation reactions. One strategy for controlling the binding of a reactant to a surface is to dope the surface to create complementary donor-acceptor pairs. As oxygen is an acceptor, we have investigated the effect of doping on the oxygen-binding energy on Pd atoms and clusters supported on a rutile TiO2(110) surface. We find that the P-type doping of the TiO2 surface dramatically reduces the O-binding energy to Pd. When extended to Pd4-supported clusters, we find that the P-type dopant decreases the energy for the oxygen to bind at spillover sites directly to the TiO2 surface. In Pd4O2, the oxygen-binding energy is reduced with P-type doping, suggesting that this strategy may be used to control the oxygen-binding energy to supported catalysts. This work was supported by the Air Force Office of Scientific Research (AFOSR) Basic Research Initiative Grant FA9550-12-1-0481.

  12. Ionization spectroscopies and theoretical calculations of cis and trans 3-fluoro-N-methylaniline-Arn(n = 1,2) van der Waals clusters: Structures and binding energies

    NASA Astrophysics Data System (ADS)

    Zhang, Lijuan; Li, Dazhi; Cheng, Min; Du, Yikui; Zhu, Qihe

    2017-08-01

    The ab initio and dispersion-corrected density functional theory (DFT) calculations of the van der Waals (vdW) clusters of cis and trans 3-fluoro-N-methylaniline-Arn (3FNMA-Arn) (n = 1,2) predict that, for cis and trans 3FNMA-Ar1 clusters, the π-bound geometry with the Ar atom sitting over the ring is the global minimum in both neutral and cationic states, while for cis and trans 3FNMA-Ar2 clusters, the [π | π]-bound sandwich structure with two Ar ligands occupying nearly equivalent π-bound positions above and below the ring plane is the global minimum. The vibronic spectra of cis and trans 3FNMA-Ar1 clusters in the S1 state were recorded by using one-color and two-color resonant two-photon ionization (R2PI) techniques, the comparison of which yields an estimate of the binding energy of cluster in the S1 state. It is found that the linear correlation between the redshift of the S1 ← S0 electronic transition energy (E1) of cluster and the E1 of the monomer also holds for the Ar clusters of hetero-di-substituted aromatics. By recording the photoionization efficiency (PIE) curves and mass-analyzed threshold ionization (MATI) dissociation spectra of cis and trans 3FNMA-Ar1 clusters, the ionization energies (IE) and binding energies of clusters in the D0 state are obtained. The MATI spectra of the cis and trans 3FNMA-Ar1 cations exhibit significant progressions of the vdW bending mode (bx), indicating the structural changes of the clusters in the bending coordinate upon ionization. The combination of the three kinds of spectroscopic methods provides the binding energies of cis and trans 3FNMA-Ar1 clusters in the S0, S1 and D0 states with good accuracy, and the values estimated by dispersion-corrected DFT calculations compare well with the experimental results. From our studies, the ωB97X-D and TD-ωB97X-D methods using high quality basis set are recommended for studying the intermolecular interaction of such vdW clusters in the ground and excited states.

  13. Ionization spectroscopies and theoretical calculations of cis and trans 3-fluoro-N-methylaniline-Arn(n=1,2) van der Waals clusters: Structures and binding energies.

    PubMed

    Zhang, Lijuan; Li, Dazhi; Cheng, Min; Du, Yikui; Zhu, Qihe

    2017-08-05

    The ab initio and dispersion-corrected density functional theory (DFT) calculations of the van der Waals (vdW) clusters of cis and trans 3-fluoro-N-methylaniline-Arn (3FNMA-Arn) (n=1,2) predict that, for cis and trans 3FNMA-Ar1 clusters, the π-bound geometry with the Ar atom sitting over the ring is the global minimum in both neutral and cationic states, while for cis and trans 3FNMA-Ar2 clusters, the [π|π]-bound sandwich structure with two Ar ligands occupying nearly equivalent π-bound positions above and below the ring plane is the global minimum. The vibronic spectra of cis and trans 3FNMA-Ar1 clusters in the S1 state were recorded by using one-color and two-color resonant two-photon ionization (R2PI) techniques, the comparison of which yields an estimate of the binding energy of cluster in the S1 state. It is found that the linear correlation between the redshift of the S1←S0 electronic transition energy (E1) of cluster and the E1 of the monomer also holds for the Ar clusters of hetero-di-substituted aromatics. By recording the photoionization efficiency (PIE) curves and mass-analyzed threshold ionization (MATI) dissociation spectra of cis and trans 3FNMA-Ar1 clusters, the ionization energies (IE) and binding energies of clusters in the D0 state are obtained. The MATI spectra of the cis and trans 3FNMA-Ar1 cations exhibit significant progressions of the vdW bending mode (bx), indicating the structural changes of the clusters in the bending coordinate upon ionization. The combination of the three kinds of spectroscopic methods provides the binding energies of cis and trans 3FNMA-Ar1 clusters in the S0, S1 and D0 states with good accuracy, and the values estimated by dispersion-corrected DFT calculations compare well with the experimental results. From our studies, the ωB97X-D and TD-ωB97X-D methods using high quality basis set are recommended for studying the intermolecular interaction of such vdW clusters in the ground and excited states. Copyright

  14. Redox Behavior of the S-Adenosylmethionine (SAM)-Binding Fe-S Cluster in Methylthiotransferase RimO, toward Understanding Dual SAM Activity.

    PubMed

    Molle, Thibaut; Moreau, Yohann; Clemancey, Martin; Forouhar, Farhad; Ravanat, Jean-Luc; Duraffourg, Nicolas; Fourmond, Vincent; Latour, Jean-Marc; Gambarelli, Serge; Mulliez, Etienne; Atta, Mohamed

    2016-10-18

    RimO, a radical-S-adenosylmethionine (SAM) enzyme, catalyzes the specific C3 methylthiolation of the D89 residue in the ribosomal S12 protein. Two intact iron-sulfur clusters and two SAM cofactors both are required for catalysis. By using electron paramagnetic resonance, Mössbauer spectroscopies, and site-directed mutagenesis, we show how two SAM molecules sequentially bind to the unique iron site of the radical-SAM cluster for two distinct chemical reactions in RimO. Our data establish that the two SAM molecules bind the radical-SAM cluster to the unique iron site, and spectroscopic evidence obtained under strongly reducing conditions supports a mechanism in which the first molecule of SAM causes the reoxidation of the reduced radical-SAM cluster, impeding reductive cleavage of SAM to occur and allowing SAM to methylate a HS(-) ligand bound to the additional cluster. Furthermore, by using density functional theory-based methods, we provide a description of the reaction mechanism that predicts the attack of the carbon radical substrate on the methylthio group attached to the additional [4Fe-4S] cluster.

  15. IDENTIFICATION OF A MEMBRANE-LOCALIZED CYSTEINE CLUSTER NEAR THE SUBSTRATE BINDING SITES OF THE STREPTOCOCCUS EQUISIMILIS HYALURONAN SYNTHASE

    PubMed Central

    Kumari, Kshama; Weigel, Paul H.

    2005-01-01

    The membrane-bound hyaluronan synthase (HAS) from Streptococcus equisimilis (seHAS), which is the smallest Class I HAS, has four cysteine residues (positions 226, 262, 281, and 367) that are generally conserved within this family. Although Cys-null seHAS is still active, chemical modification of cysteine residues causes inhibition of wildtype enzyme (Kumari et al., J. Biol. Chem. 277, 13943, 2002). Here we studied the effects of N-ethylmaleimide (NEM) treatment on a panel of seHAS Cys-mutants to examine the structural and functional roles of the four cysteine residues in the activity of the enzyme. We found that Cys226, Cys262, and Cys281 are reactive with NEM, but that Cys367 is not. Substrate protection studies of wildtype seHAS and a variety of Cys-mutants revealed that binding of UDP-GlcUA, UDP-GlcNAc or UDP can protect Cys226 and Cys262 from NEM inhibition. Inhibition of the six double Cys-mutants of seHAS by sodium arsenite, which can crosslink vicinyl sulfhydryl groups, also supported the conclusion that Cys262 and Cys281 are close enough to be crosslinked. Similar results indicated that Cys281 and Cys367 are also very close in the active enzyme. We conclude that three of the four Cys residues in seHAS (Cys262, Cys281, and Cys367 ) are clustered very close together, that these Cys residues and Cys226 are located at the inner surface of the cell membrane, and that Cys226 and Cys262 are located in or near a UDP binding site. PMID:15616126

  16. The role of a basic amino acid cluster in target site selection and non-specific binding of bZIP peptides to DNA.

    PubMed Central

    Metallo, S J; Paolella, D N; Schepartz, A

    1997-01-01

    The ability of a transcription factor to locate and bind its cognate DNA site in the presence of closely related sites and a vast array of non-specific DNA is crucial for cell survival. The CREB/ATF family of transcription factors is an important group of basic region leucine zipper (bZIP) proteins that display high affinity for the CRE site and low affinity for the closely related AP-1 site. Members of the CREB/ATF family share in common a cluster of basic amino acids at the N-terminus of their bZIP element. This basic cluster is necessary and sufficient to cause the CRE site to bend upon binding of a CREB/ATF protein. The possibility that DNA bending and CRE/AP-1 specificity were linked in CREB/ATF proteins was investigated using chimeric peptides derived from human CRE-BP1 (a member of the CREB/ATF family) and yeast GCN4, which lacks both a basic cluster and CRE/AP-1 specificity. Gain of function and loss of function experiments demonstrated that the basic cluster was not responsible for the CRE/AP-1 specificity displayed by all characterized CREB/ATF proteins. The basic cluster was, however, responsible for inducing very high affinity for non- specific DNA. It was further shown that basic cluster-containing peptides bind non-specific DNA in a random coil conformation. We postulate that the high non- specific DNA affinities of basic cluster-containing peptides result from cooperative electrostatic interactions with the phosphate backbone that do not require peptide organization. PMID:9224594

  17. SMAR1 binds to T(C/G) repeat and inhibits tumor progression by regulating miR-371-373 cluster

    PubMed Central

    Mathai, Jinumary; Mittal, Smriti P. K.; Alam, Aftab; Ranade, Payal; Mogare, Devraj; Patel, Sonal; Saxena, Smita; Ghorai, Suvankar; Kulkarni, Abhijeet P.; Chattopadhyay, Samit

    2016-01-01

    Chromatin architecture and dynamics are regulated by various histone and non-histone proteins. The matrix attachment region binding proteins (MARBPs) play a central role in chromatin organization and function through numerous regulatory proteins. In the present study, we demonstrate that nuclear matrix protein SMAR1 orchestrates global gene regulation as determined by massively parallel ChIP-sequencing. The study revealed that SMAR1 binds to T(C/G) repeat and targets genes involved in diverse biological pathways. We observe that SMAR1 binds and targets distinctly different genes based on the availability of p53. Our data suggest that SMAR1 binds and regulates one of the imperative microRNA clusters in cancer and metastasis, miR-371-373. It negatively regulates miR-371-373 transcription as confirmed by SMAR1 overexpression and knockdown studies. Further, deletion studies indicate that a ~200 bp region in the miR-371-373 promoter is necessary for SMAR1 binding and transcriptional repression. Recruitment of HDAC1/mSin3A complex by SMAR1, concomitant with alteration of histone marks results in downregulation of the miRNA cluster. The regulation of miR-371-373 by SMAR1 inhibits breast cancer tumorigenesis and metastasis as determined by in vivo experiments. Overall, our study highlights the binding of SMAR1 to T(C/G) repeat and its role in cancer through miR-371-373. PMID:27671416

  18. FORMATION AND PROPERTIES OF ASTROPHYSICAL CARBONACEOUS DUST. I. AB-INITIO CALCULATIONS OF THE CONFIGURATION AND BINDING ENERGIES OF SMALL CARBON CLUSTERS

    SciTech Connect

    Mauney, Christopher; Lazzati, Davide; Buongiorno Nardelli, Marco

    2015-02-10

    The binding energies of n < 100 carbon clusters are calculated using the ab initio density functional theory code Quantum Espresso. Carbon cluster geometries are determined using several levels of classical techniques and further refined using density functional theory. The resulting energies are used to compute the work of cluster formation and the nucleation rate in a saturated, hydrogen-poor carbon gas. Compared to classical calculations that adopt the capillary approximation, we find that nucleation of carbon clusters is enhanced at low temperatures and depressed at high temperatures. This difference is ascribed to the different behavior of the critical cluster size. We find that the critical cluster size is at n = 27 or n = 8 for a broad range of temperatures and saturations, instead of being a smooth function of such parameters. The results of our calculations can be used to follow carbonaceous cluster/grain formation, stability, and growth in hydrogen-poor environments, such as the inner layers of core-collapse supernovae and supernova remnants.

  19. Binding of phosphoinositide-specific phospholipase C-zeta (PLC-zeta) to phospholipid membranes: potential role of an unstructured cluster of basic residues.

    PubMed

    Nomikos, Michail; Mulgrew-Nesbitt, Anna; Pallavi, Payal; Mihalyne, Gyongyi; Zaitseva, Irina; Swann, Karl; Lai, F Anthony; Murray, Diana; McLaughlin, Stuart

    2007-06-01

    Phospholipase C-zeta (PLC-zeta) is a sperm-specific enzyme that initiates the Ca2+ oscillations in mammalian eggs that activate embryo development. It shares considerable sequence homology with PLC-delta1, but lacks the PH domain that anchors PLC-delta1 to phosphatidylinositol 4,5-bisphosphate, PIP2. Thus it is unclear how PLC-zeta interacts with membranes. The linker region between the X and Y catalytic domains of PLC-zeta, however, contains a cluster of basic residues not present in PLC-delta1. Application of electrostatic theory to a homology model of PLC-zeta suggests this basic cluster could interact with acidic lipids. We measured the binding of catalytically competent mouse PLC-zeta to phospholipid vesicles: for 2:1 phosphatidylcholine/phosphatidylserine (PC/PS) vesicles, the molar partition coefficient, K, is too weak to be of physiological significance. Incorporating 1% PIP2 into the 2:1 PC/PS vesicles increases K about 10-fold, to 5x10(3) M-1, a biologically relevant value. Expressed fragments corresponding to the PLC-zeta X-Y linker region also bind with higher affinity to polyvalent than monovalent phosphoinositides on nitrocellulose filters. A peptide corresponding to the basic cluster (charge=+7) within the linker region, PLC-zeta-(374-385), binds to PC/PS vesicles with higher affinity than PLC-zeta, but its binding is less sensitive to incorporating PIP2. The acidic residues flanking this basic cluster in PLC-zeta may account for both these phenomena. FRET experiments suggest the basic cluster could not only anchor the protein to the membrane, but also enhance the local concentration of PIP2 adjacent to the catalytic domain.

  20. Biotin Synthase Contains Two Distinct Iron-Sulfur Cluster Binding Sites: Chemical and Spectroelectrochemical Analysis of Iron-Sulfur Cluster Interconversions†

    PubMed Central

    Ugulava, Natalia B.; Gibney, Brian R.; Jarrett, Joseph T.

    2006-01-01

    Biotin synthase is an iron-sulfur protein that utilizes AdoMet to catalyze the presumed radical-mediated insertion of a sulfur atom between the saturated C6 and C9 carbons of dethiobiotin. Biotin synthase (BioB) is aerobically purified as a dimer that contains [2Fe-2S]2+ clusters and is inactive in the absence of additional iron and reductants, and anaerobic reduction of BioB with sodium dithionite results in conversion to enzyme containing [4Fe-4S]2+ and/or [4Fe-4S]+ clusters. To establish the predominant cluster forms present in biotin synthase in anaerobic assays, and by inference in Escherichia coli, we have accurately determined the extinction coefficient and cluster content of the enzyme under oxidized and reduced conditions and have examined the equilibrium reduction potentials at which cluster reductions and conversions occur as monitored by UV/visible and EPR spectroscopy. In contrast to previous reports, we find that aerobically purified BioB contains ca. 1.2-1.5 [2Fe-2S]2+ clusters per monomer with ε452 = 8400 M-1 cm-1 per monomer. Upon reduction, the [2Fe-2S]2+ clusters are converted to [4Fe-4S] clusters with two widely separate reduction potentials of -140 and -430 mV. BioB reconstituted with excess iron and sulfide in 60% ethylene glycol was found to contain two [4Fe-4S]2+ clusters per monomer with ε400 = 30 000 M-1 cm-1 per monomer and is reduced with lower midpoint potentials of -440 and -505 mV, respectively. Finally, as predicted by the measured redox potentials, enzyme incubated under typical anaerobic assay conditions is repurified containing one [2Fe-2S]2+ cluster and one [4Fe-4S]2+ cluster per monomer. These results indicate that the dominant stable cluster state for biotin synthase is a dimer containing two [2Fe-2S]2+ and two [4Fe-4S]2+ clusters. PMID:11444981

  1. Sperm surface hyaluronan binding protein (HABP1) interacts with zona pellucida of water buffalo (Bubalus bubalis) through its clustered mannose residues.

    PubMed

    Ghosh, Ilora; Datta, Kasturi

    2003-02-01

    Sperm-oocyte interaction during fertilization is multiphasic, with multicomponent events, taking place between zona pellucida (ZP) glycoproteins and sperm surface receptor. d-mannosylated glycoproteins, the major constituents of ZP are considered to serve as ligands for sperm binding. The presence of hyaluronan binding protein 1 (HABP1) on sperm surface of different mammals including cattle and its possible involvement in sperm function is already reported. Recently, we have demonstrated the specificity of clustered mannose as another ligand for HABP1 (Kumar et al., 2001: J Biosci 26:325-332). Here, we report that only N-linked mannosylated zona-glycoproteins bind to sperm surface HABP1. Labeled HABP1 interacts with ZP of intact oocyte of Bubalus bubalis, which can be competed with unlabeled HABP1 or excess d-mannosylated albumin (DMA). This data suggests the specific interaction of HABP1 with ZP, through clustered mannose residues. In order to examine the physiological significance of such an interaction, the capacity of sperm binding to oocytes under in vitro fertilization plates was examined either in presence of DMA alone or in combination with HABP1. The number of sperms, bound to oocytes was observed to reduce significantly in presence of DMA, which could be reversed by the addition of purified recombinant HABP1 (rHABP1) in the same plate. This suggests that sperm surface HABP1 may act as mannose binding sites for zona recognition. Copyright 2003 Wiley-Liss, Inc.

  2. Dissection of RAP-LRP interactions: binding of RAP and RAP fragments to complement-like repeats 7 and 8 from ligand binding cluster II of LRP.

    PubMed

    Lazic, Ana; Dolmer, Klavs; Strickland, Dudley K; Gettins, Peter G W

    2006-06-15

    The receptor associated protein (RAP) is a three domain 38kDa ER-resident chaperone that helps folding of LRP and other LDL receptor family members and prevents premature binding of protein ligands. It competes strongly with all known LRP ligands. To further understanding of the specificity of RAP-LRP interactions, the binding of RAP and RAP fragments to two domains (CR7-CR8) from one of the main ligand-binding regions of LRP has been examined by 2D HSQC NMR spectroscopy and isothermal titration calorimetry. We found that RAP contains two binding sites for CR7-CR8, with the higher affinity site (K(d) approximately 1microM) located in the C-terminal two-thirds and the weaker site (K(d) approximately 5microM) in the N-terminal third of RAP. Residues from both CR7 and CR8 are involved in binding at each RAP site. The presence of more than one binding site on RAP for CR domains from LRP, together with the previous demonstration by others that RAP can bind to CR5-CR6 with comparably low affinities suggest an explanation for the dual roles of RAP as a folding chaperone and a tight competitive inhibitor of ligand binding.

  3. Insights into the Molybdenum/Copper Heterometallic Cluster Assembly in the Orange Protein: Probing Intermolecular Interactions with an Artificial Metal-Binding ATCUN Tag.

    PubMed

    Maiti, Biplab K; Almeida, Rui M; Maia, Luisa B; Moura, Isabel; Moura, José J G

    2017-08-07

    Orange protein (ORP) is a small bacterial protein, of unknown function, that contains a unique molybdenum/copper heterometallic cluster, [S2Mo(VI)S2Cu(I)S2Mo(VI)S2](3-) (Mo/Cu), non-covalently bound. The native cluster can be reconstituted in a protein-assisted mode by the addition of Cu(II) plus tetrathiomolybdate to apo-ORP under controlled conditions. In the work described herein, we artificially inserted the ATCUN ("amino terminus Cu and Ni") motif in the Desulfovibrio gigas ORP (Ala1Ser2His3 followed by the native amino acid residues; modified protein abbreviated as ORP*) to increase our understanding of the Mo/Cu cluster assembly in ORP. The apo-ORP* binds Cu(II) in a 1:1 ratio to yield Cu(II)-ORP*, as clearly demonstrated by EPR (g||,⊥ = 2.183, 2.042 and A(Cu)||,⊥ = 207 × 10(-4) cm(-1), 19 × 10(-4) cm(-1)) and UV-visible spectroscopies (typical d-d transition bands at 520 nm, ε = 90 M(-1) cm(-1)). The (1)H NMR spectrum shows that His3 and His53 are significantly affected upon the addition of the Cu(II). The X-ray structure shows that these two residues are very far apart (Cα-Cα ≈ 27.9 Å), leading us to suggest that the metal-induced NMR perturbations are due to the interaction of two protein molecules with a single metal ion. Docking analysis supports the metal-mediated dimer formation. The subsequent tetrathiomolybdate binding, to yield the native Mo/Cu cluster, occurs only upon addition of dithiothreitol, as shown by UV-visible and NMR spectroscopies. Additionally, (1)H NMR of Ag(I)-ORP* (Ag(I) used as a surrogate of Cu(I)) showed that Ag(I) strongly binds to a native methionine sulfur atom rather than to the ATCUN site, suggesting that Cu(II) and Cu(I) have two different binding sites in ORP*. A detailed mechanism for the formation of the Mo/Cu cluster is discussed, suggesting that Cu(II) is reduced to Cu(I) and transferred from the ATCUN motif to the methionine site; finally, Cu(I) is transferred to the cluster-binding region, upon the

  4. Overlapping binding sites of the frataxin homologue assembly factor and the heat shock protein 70 transfer factor on the Isu iron-sulfur cluster scaffold protein.

    PubMed

    Manicki, Mateusz; Majewska, Julia; Ciesielski, Szymon; Schilke, Brenda; Blenska, Anna; Kominek, Jacek; Marszalek, Jaroslaw; Craig, Elizabeth A; Dutkiewicz, Rafal

    2014-10-31

    In mitochondria FeS clusters, prosthetic groups critical for the activity of many proteins, are first assembled on Isu, a 14-kDa scaffold protein, and then transferred to recipient apoproteins. The assembly process involves interaction of Isu with both Nfs1, the cysteine desulfurase serving as a sulfur donor, and the yeast frataxin homolog (Yfh1) serving as a regulator of desulfurase activity and/or iron donor. Here, based on the results of biochemical experiments with purified wild-type and variant proteins, we report that interaction of Yfh1 with both Nfs1 and Isu are required for formation of a stable tripartite assembly complex. Disruption of either Yfh1-Isu or Nfs1-Isu interactions destabilizes the complex. Cluster transfer to recipient apoprotein is known to require the interaction of Isu with the J-protein/Hsp70 molecular chaperone pair, Jac1 and Ssq1. Here we show that the Yfh1 interaction with Isu involves the PVK sequence motif, which is also the site key for the interaction of Isu with Hsp70 Ssq1. Coupled with our previous observation that Nfs1 and Jac1 binding to Isu is mutually exclusive due to partially overlapping binding sites, we propose that such mutual exclusivity of cluster assembly factor (Nfs1/Yfh1) and cluster transfer factor (Jac1/Ssq1) binding to Isu has functional consequences for the transition from the assembly process to the transfer process, and thus regulation of the biogenesis of FeS cluster proteins. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Overlapping Binding Sites of the Frataxin Homologue Assembly Factor and the Heat Shock Protein 70 Transfer Factor on the Isu Iron-Sulfur Cluster Scaffold Protein*

    PubMed Central

    Manicki, Mateusz; Majewska, Julia; Ciesielski, Szymon; Schilke, Brenda; Blenska, Anna; Kominek, Jacek; Marszalek, Jaroslaw; Craig, Elizabeth A.; Dutkiewicz, Rafal

    2014-01-01

    In mitochondria FeS clusters, prosthetic groups critical for the activity of many proteins, are first assembled on Isu, a 14-kDa scaffold protein, and then transferred to recipient apoproteins. The assembly process involves interaction of Isu with both Nfs1, the cysteine desulfurase serving as a sulfur donor, and the yeast frataxin homolog (Yfh1) serving as a regulator of desulfurase activity and/or iron donor. Here, based on the results of biochemical experiments with purified wild-type and variant proteins, we report that interaction of Yfh1 with both Nfs1 and Isu are required for formation of a stable tripartite assembly complex. Disruption of either Yfh1-Isu or Nfs1-Isu interactions destabilizes the complex. Cluster transfer to recipient apoprotein is known to require the interaction of Isu with the J-protein/Hsp70 molecular chaperone pair, Jac1 and Ssq1. Here we show that the Yfh1 interaction with Isu involves the PVK sequence motif, which is also the site key for the interaction of Isu with Hsp70 Ssq1. Coupled with our previous observation that Nfs1 and Jac1 binding to Isu is mutually exclusive due to partially overlapping binding sites, we propose that such mutual exclusivity of cluster assembly factor (Nfs1/Yfh1) and cluster transfer factor (Jac1/Ssq1) binding to Isu has functional consequences for the transition from the assembly process to the transfer process, and thus regulation of the biogenesis of FeS cluster proteins. PMID:25228696

  6. Pichia pastoris Fep1 is a [2Fe-2S] protein with a Zn finger that displays an unusual oxygen-dependent role in cluster binding

    PubMed Central

    Cutone, Antimo; Howes, Barry D.; Miele, Adriana E.; Miele, Rossella; Giorgi, Alessandra; Battistoni, Andrea; Smulevich, Giulietta; Musci, Giovanni; di Patti, Maria Carmela Bonaccorsi

    2016-01-01

    Fep1, the iron-responsive GATA factor from the methylotrophic yeast Pichia pastoris, has been characterised both in vivo and in vitro. This protein has two Cys2-Cys2 type zinc fingers and a set of four conserved cysteines arranged in a Cys-X5-Cys-X8-Cys-X2-Cys motif located between the two zinc fingers. Electronic absorption and resonance Raman spectroscopic analyses in anaerobic and aerobic conditions indicate that Fep1 binds iron in the form of a [2Fe-2S] cluster. Site-directed mutagenesis shows that replacement of the four cysteines with serine inactivates this transcriptional repressor. Unexpectedly, the inactive mutant is still able to bind a [2Fe-2S] cluster, employing two cysteine residues belonging to the first zinc finger. These two cysteine residues can act as alternative cluster ligands selectively in aerobically purified Fep1 wild type, suggesting that oxygen could play a role in Fep1 function by causing differential localization of the [Fe-S] cluster. PMID:27546548

  7. Human Mitochondrial Ferredoxin 1 (FDX1) and Ferredoxin 2 (FDX2) Both Bind Cysteine Desulfurase and Donate Electrons for Iron-Sulfur Cluster Biosynthesis.

    PubMed

    Cai, Kai; Tonelli, Marco; Frederick, Ronnie O; Markley, John L

    2017-01-24

    Ferredoxins play an important role as an electron donor in iron-sulfur (Fe-S) cluster biosynthesis. Two ferredoxins, human mitochondrial ferredoxin 1 (FDX1) and human mitochondrial ferredoxin 2 (FDX2), are present in the matrix of human mitochondria. Conflicting results have been reported regarding their respective function in mitochondrial iron-sulfur cluster biogenesis. We report here biophysical studies of the interaction of these two ferredoxins with other proteins involved in mitochondrial iron-sulfur cluster assembly. Results from nuclear magnetic resonance spectroscopy show that both FDX1 and FDX2 (in both their reduced and oxidized states) interact with the protein complex responsible for cluster assembly, which contains cysteine desulfurase (NFS1), ISD11 (also known as LYRM4), and acyl carrier protein (Acp). In all cases, ferredoxin residues close to the Fe-S cluster are involved in the interaction with this complex. Isothermal titration calorimetry results showed that FDX2 binds more tightly to the cysteine desulfurase complex than FDX1 does. The reduced form of each ferredoxin became oxidized in the presence of the cysteine desulfurase complex when l-cysteine was added, leading to its conversion to l-alanine and the generation of sulfide. In an in vitro reaction, the reduced form of each ferredoxin was found to support Fe-S cluster assembly on ISCU; the rate of cluster assembly was faster with FDX2 than with FDX1. Taken together, these results show that both FDX1 and FDX2 can function in Fe-S cluster assembly in vitro.

  8. Human Mitochondrial Ferredoxin 1 (FDX1) and Ferredoxin 2 (FDX2) Both Bind Cysteine Desulfurase and Donate Electrons for Iron–Sulfur Cluster Biosynthesis

    PubMed Central

    2016-01-01

    Ferredoxins play an important role as an electron donor in iron–sulfur (Fe–S) cluster biosynthesis. Two ferredoxins, human mitochondrial ferredoxin 1 (FDX1) and human mitochondrial ferredoxin 2 (FDX2), are present in the matrix of human mitochondria. Conflicting results have been reported regarding their respective function in mitochondrial iron–sulfur cluster biogenesis. We report here biophysical studies of the interaction of these two ferredoxins with other proteins involved in mitochondrial iron–sulfur cluster assembly. Results from nuclear magnetic resonance spectroscopy show that both FDX1 and FDX2 (in both their reduced and oxidized states) interact with the protein complex responsible for cluster assembly, which contains cysteine desulfurase (NFS1), ISD11 (also known as LYRM4), and acyl carrier protein (Acp). In all cases, ferredoxin residues close to the Fe–S cluster are involved in the interaction with this complex. Isothermal titration calorimetry results showed that FDX2 binds more tightly to the cysteine desulfurase complex than FDX1 does. The reduced form of each ferredoxin became oxidized in the presence of the cysteine desulfurase complex when l-cysteine was added, leading to its conversion to l-alanine and the generation of sulfide. In an in vitro reaction, the reduced form of each ferredoxin was found to support Fe–S cluster assembly on ISCU; the rate of cluster assembly was faster with FDX2 than with FDX1. Taken together, these results show that both FDX1 and FDX2 can function in Fe–S cluster assembly in vitro. PMID:28001042

  9. Perturbation of the Quinone-binding Site of Complex II Alters the Electronic Properties of the Proximal [3Fe-4S] Iron-Sulfur Cluster*

    PubMed Central

    Ruprecht, Jonathan; Iwata, So; Rothery, Richard A.; Weiner, Joel H.; Maklashina, Elena; Cecchini, Gary

    2011-01-01

    Succinate-ubiquinone oxidoreductase (SQR) and menaquinol-fumarate oxidoreductase (QFR) from Escherichia coli are members of the complex II family of enzymes. SQR and QFR catalyze similar reactions with quinones; however, SQR preferentially reacts with higher potential ubiquinones, and QFR preferentially reacts with lower potential naphthoquinones. Both enzymes have a single functional quinone-binding site proximal to a [3Fe-4S] iron-sulfur cluster. A difference between SQR and QFR is that the redox potential of the [3Fe-4S] cluster in SQR is 140 mV higher than that found in QFR. This may reflect the character of the different quinones with which the two enzymes preferentially react. To investigate how the environment around the [3Fe-4S] cluster affects its redox properties and catalysis with quinones, a conserved amino acid proximal to the cluster was mutated in both enzymes. It was found that substitution of SdhB His-207 by threonine (as found in QFR) resulted in a 70-mV lowering of the redox potential of the cluster as measured by EPR. The converse substitution in QFR raised the redox potential of the cluster. X-ray structural analysis suggests that placing a charged residue near the [3Fe-4S] cluster is a primary reason for the alteration in redox potential with the hydrogen bonding environment having a lesser effect. Steady state enzyme kinetic characterization of the mutant enzymes shows that the redox properties of the [3Fe-4S] cluster have only a minor effect on catalysis. PMID:21310949

  10. Perturbation of the quinone-binding site of complex II alters the electronic properties of the proximal [3Fe-4S] iron-sulfur cluster.

    PubMed

    Ruprecht, Jonathan; Iwata, So; Rothery, Richard A; Weiner, Joel H; Maklashina, Elena; Cecchini, Gary

    2011-04-08

    Succinate-ubiquinone oxidoreductase (SQR) and menaquinol-fumarate oxidoreductase (QFR) from Escherichia coli are members of the complex II family of enzymes. SQR and QFR catalyze similar reactions with quinones; however, SQR preferentially reacts with higher potential ubiquinones, and QFR preferentially reacts with lower potential naphthoquinones. Both enzymes have a single functional quinone-binding site proximal to a [3Fe-4S] iron-sulfur cluster. A difference between SQR and QFR is that the redox potential of the [3Fe-4S] cluster in SQR is 140 mV higher than that found in QFR. This may reflect the character of the different quinones with which the two enzymes preferentially react. To investigate how the environment around the [3Fe-4S] cluster affects its redox properties and catalysis with quinones, a conserved amino acid proximal to the cluster was mutated in both enzymes. It was found that substitution of SdhB His-207 by threonine (as found in QFR) resulted in a 70-mV lowering of the redox potential of the cluster as measured by EPR. The converse substitution in QFR raised the redox potential of the cluster. X-ray structural analysis suggests that placing a charged residue near the [3Fe-4S] cluster is a primary reason for the alteration in redox potential with the hydrogen bonding environment having a lesser effect. Steady state enzyme kinetic characterization of the mutant enzymes shows that the redox properties of the [3Fe-4S] cluster have only a minor effect on catalysis.

  11. Src homology 2 domain containing protein 5 (SH2D5) binds the breakpoint cluster region protein, BCR, and regulates levels of Rac1-GTP.

    PubMed

    Gray, Elizabeth J; Petsalaki, Evangelia; James, D Andrew; Bagshaw, Richard D; Stacey, Melissa M; Rocks, Oliver; Gingras, Anne-Claude; Pawson, Tony

    2014-12-19

    SH2D5 is a mammalian-specific, uncharacterized adaptor-like protein that contains an N-terminal phosphotyrosine-binding domain and a C-terminal Src homology 2 (SH2) domain. We show that SH2D5 is highly enriched in adult mouse brain, particularly in Purkinjie cells in the cerebellum and the cornu ammonis of the hippocampus. Despite harboring two potential phosphotyrosine (Tyr(P)) recognition domains, SH2D5 binds minimally to Tyr(P) ligands, consistent with the absence of a conserved Tyr(P)-binding arginine residue in the SH2 domain. Immunoprecipitation coupled to mass spectrometry (IP-MS) from cultured cells revealed a prominent association of SH2D5 with breakpoint cluster region protein, a RacGAP that is also highly expressed in brain. This interaction occurred between the phosphotyrosine-binding domain of SH2D5 and an NxxF motif located within the N-terminal region of the breakpoint cluster region. siRNA-mediated depletion of SH2D5 in a neuroblastoma cell line, B35, induced a cell rounding phenotype correlated with low levels of activated Rac1-GTP, suggesting that SH2D5 affects Rac1-GTP levels. Taken together, our data provide the first characterization of the SH2D5 signaling protein. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Cleavage and polyadenylation specificity factor 30: An RNA-binding zinc-finger protein with an unexpected 2Fe–2S cluster

    PubMed Central

    Shimberg, Geoffrey D.; Michalek, Jamie L.; Oluyadi, Abdulafeez A.; Rodrigues, Andria V.; Zucconi, Beth E.; Neu, Heather M.; Ghosh, Shanchari; Sureschandra, Kanisha; Wilson, Gerald M.; Stemmler, Timothy L.; Michel, Sarah L. J.

    2016-01-01

    Cleavage and polyadenylation specificity factor 30 (CPSF30) is a key protein involved in pre-mRNA processing. CPSF30 contains five Cys3His domains (annotated as “zinc-finger” domains). Using inductively coupled plasma mass spectrometry, X-ray absorption spectroscopy, and UV-visible spectroscopy, we report that CPSF30 is isolated with iron, in addition to zinc. Iron is present in CPSF30 as a 2Fe–2S cluster and uses one of the Cys3His domains; 2Fe–2S clusters with a Cys3His ligand set are rare and notably have also been identified in MitoNEET, a protein that was also annotated as a zinc finger. These findings support a role for iron in some zinc-finger proteins. Using electrophoretic mobility shift assays and fluorescence anisotropy, we report that CPSF30 selectively recognizes the AU-rich hexamer (AAUAAA) sequence present in pre-mRNA, providing the first molecular-based evidence to our knowledge for CPSF30/RNA binding. Removal of zinc, or both zinc and iron, abrogates binding, whereas removal of just iron significantly lessens binding. From these data we propose a model for RNA recognition that involves a metal-dependent cooperative binding mechanism. PMID:27071088

  13. Src Homology 2 Domain Containing Protein 5 (SH2D5) Binds the Breakpoint Cluster Region Protein, BCR, and Regulates Levels of Rac1-GTP*

    PubMed Central

    Gray, Elizabeth J.; Petsalaki, Evangelia; James, D. Andrew; Bagshaw, Richard D.; Stacey, Melissa M.; Rocks, Oliver; Gingras, Anne-Claude; Pawson, Tony

    2014-01-01

    SH2D5 is a mammalian-specific, uncharacterized adaptor-like protein that contains an N-terminal phosphotyrosine-binding domain and a C-terminal Src homology 2 (SH2) domain. We show that SH2D5 is highly enriched in adult mouse brain, particularly in Purkinjie cells in the cerebellum and the cornu ammonis of the hippocampus. Despite harboring two potential phosphotyrosine (Tyr(P)) recognition domains, SH2D5 binds minimally to Tyr(P) ligands, consistent with the absence of a conserved Tyr(P)-binding arginine residue in the SH2 domain. Immunoprecipitation coupled to mass spectrometry (IP-MS) from cultured cells revealed a prominent association of SH2D5 with breakpoint cluster region protein, a RacGAP that is also highly expressed in brain. This interaction occurred between the phosphotyrosine-binding domain of SH2D5 and an NxxF motif located within the N-terminal region of the breakpoint cluster region. siRNA-mediated depletion of SH2D5 in a neuroblastoma cell line, B35, induced a cell rounding phenotype correlated with low levels of activated Rac1-GTP, suggesting that SH2D5 affects Rac1-GTP levels. Taken together, our data provide the first characterization of the SH2D5 signaling protein. PMID:25331951

  14. Characterization of Streptokinases from Group A Streptococci Reveals a Strong Functional Relationship That Supports the Coinheritance of Plasminogen-binding M Protein and Cluster 2b Streptokinase*

    PubMed Central

    Zhang, Yueling; Liang, Zhong; Hsueh, Hsing-Tse; Ploplis, Victoria A.; Castellino, Francis J.

    2012-01-01

    Group A streptococcus (GAS) strains secrete the protein streptokinase (SK), which functions by activating host human plasminogen (hPg) to plasmin (hPm), thus providing a proteolytic framework for invasive GAS strains. The types of SK secreted by GAS have been grouped into two clusters (SK1 and SK2) and one subcluster (SK2a and SK2b). SKs from cluster 1 (SK1) and cluster 2b (SK2b) display significant evolutionary and functional differences, and attempts to relate these properties to GAS skin or pharynx tropism and invasiveness are of great interest. In this study, using four purified SKs from each cluster, new relationships between plasminogen-binding group A streptococcal M (PAM) protein and SK2b have been revealed. All SK1 proteins efficiently activated hPg, whereas all subclass SK2b proteins only weakly activated hPg in the absence of PAM. Surface plasmon resonance studies revealed that the lower affinity of SK2b to hPg served as the basis for the attenuated activation of hPg by SK2b. Binding of hPg to either human fibrinogen (hFg) or PAM greatly enhanced activation of hPg by SK2b but minimally influenced the already effective activation of hPg by SK1. Activation of hPg in the presence of GAS cells containing PAM demonstrated that PAM is the only factor on the surface of SK2b-expressing cells that enabled the direct activation of hPg by SK2b. As the binding of hPg to PAM is necessary for hPg activation by SK2b, this dependence explains the coinherant relationship between PAM and SK2b and the ability of these particular strains to generate the proteolytic activity that disrupts the innate barriers that limit invasiveness. PMID:23086939

  15. From Function to Phenotype: Impaired DNA Binding and Clustering Correlates with Clinical Severity in Males with Missense Mutations in MECP2

    PubMed Central

    Sheikh, Taimoor I.; Ausió, Juan; Faghfoury, Hannah; Silver, Josh; Lane, Jane B.; Eubanks, James H.; MacLeod, Patrick; Percy, Alan K.; Vincent, John B.

    2016-01-01

    Mutations in the MECP2 gene cause Rett syndrome (RTT). MeCP2 binds to chromocentric DNA through its methyl CpG-binding domain (MBD) to regulate gene expression. In heterozygous females the variable phenotypic severity is modulated by non-random X-inactivation, thus making genotype-phenotype comparisons unreliable. However, genotype-phenotype correlations in males with hemizygousMECP2 mutations can provide more accurate insights in to the true biological effect of specific mutations. Here, we compared chromatin organization and binding dynamics for twelve MeCP2 missense mutations (including two novel and the five most common MBD missense RTT mutations) and identifiedacorrelation with phenotype in hemizygous males. We observed impaired interaction of MeCP2-DNA for mutations around the MBD-DNA binding interface, and defective chromatin clustering for distal MBD mutations. Furthermore, binding and mobility dynamics show a gradient of impairment depending on the amino acid properties and tertiary structure within the MBD. Interestingly, a wide range of phenotypic/clinical severity, ranging from neonatal encephalopathy to mild psychiatric abnormalities were observed and all are consistent with our functional/molecular results. Overall, clinical severity showed a direct correlation with the functional impairment of MeCP2. These mechanistic and phenotypic correlations of MeCP2 mutations will enable improved and individualized diagnostics, and may lead to personalized therapeutic interventions. PMID:27929079

  16. Detection and quantitative analysis of two independent binding modes of a small ligand responsible for DC-SIGN clustering.

    PubMed

    Guzzi, C; Alfarano, P; Sutkeviciute, I; Sattin, S; Ribeiro-Viana, R; Fieschi, F; Bernardi, A; Weiser, J; Rojo, J; Angulo, J; Nieto, P M

    2016-01-07

    DC-SIGN (dendritic cell-specific ICAM-3 grabbing non-integrin) is a C-type lectin receptor (CLR) present, mainly in dendritic cells (DCs), as one of the major pattern recognition receptors (PRRs). This receptor has a relevant role in viral infection processes. Recent approaches aiming to block DC-SIGN have been presented as attractive anti-HIV strategies. DC-SIGN binds mannose or fucose-containing carbohydrates from viral proteins such as the HIV envelope glycoprotein gp120. We have previously demonstrated that multivalent dendrons bearing multiple copies of glycomimetic ligands were able to inhibit DC-SIGN-dependent HIV infection in cervical explant models. Optimization of glycomimetic ligands requires detailed characterization and analysis of their binding modes because they notably influence binding affinities. In a previous study we characterized the binding mode of DC-SIGN with ligand 1, which shows a single binding mode as demonstrated by NMR and X-ray crystallography. In this work we report the binding studies of DC-SIGN with pseudotrisaccharide 2, which has a larger affinity. Their binding was analysed by TR-NOESY and STD NMR experiments, combined with the CORCEMA-ST protocol and molecular modelling. These studies demonstrate that in solution the complex cannot be explained by a single binding mode. We describe the ensemble of ligand bound modes that best fit the experimental data and explain the higher inhibition values found for ligand 2.

  17. A Histidine Cluster in the Cytoplasmic Domain of the Na-H Exchanger NHE1 Confers pH-sensitive Phospholipid Binding and Regulates Transporter Activity.

    PubMed

    Webb, Bradley A; White, Katharine A; Grillo-Hill, Bree K; Schönichen, André; Choi, Changhoon; Barber, Diane L

    2016-11-11

    The Na-H exchanger NHE1 contributes to intracellular pH (pHi) homeostasis in normal cells and the constitutively increased pHi in cancer. NHE1 activity is allosterically regulated by intracellular protons, with greater activity at lower pHi However, the molecular mechanism for pH-dependent NHE1 activity remains incompletely resolved. We report that an evolutionarily conserved cluster of histidine residues located in the C-terminal cytoplasmic domain between two phosphatidylinositol 4,5-bisphosphate binding sites (PI(4,5)P2) of NHE1 confers pH-dependent PI(4,5)P2 binding and regulates NHE1 activity. A GST fusion of the wild type C-terminal cytoplasmic domain of NHE1 showed increased maximum PI(4,5)P2 binding at pH 7.0 compared with pH 7.5. However, pH-sensitive binding is abolished by substitutions of the His-rich cluster to arginine (RXXR3) or alanine (AXXA3), mimicking protonated and neutral histidine residues, respectively, and the RXXR3 mutant had significantly greater PI(4,5)P2 binding than AXXA3. When expressed in cells, NHE1 activity and pHi were significantly increased with NHE1-RXXR3 and decreased with NHE1-AXXA3 compared with wild type NHE1. Additionally, fibroblasts expressing NHE1-RXXR3 had significantly more contractile actin filaments and focal adhesions compared with fibroblasts expressing wild type NHE1, consistent with increased pHi enabling cytoskeletal remodeling. These data identify a molecular mechanism for pH-sensitive PI(4,5)P2 binding regulating NHE1 activity and suggest that the evolutionarily conserved cluster of four histidines in the proximal cytoplasmic domain of NHE1 may constitute a proton modifier site. Moreover, a constitutively activated NHE1-RXXR3 mutant is a new tool that will be useful for studying how increased pHi contributes to cell behaviors, most notably the biology of cancer cells.

  18. Binding water to a PEG-linked flexible bichromophore: IR spectra of diphenoxyethane-(H{sub 2}O){sub n} clusters, n = 2-4

    SciTech Connect

    Walsh, Patrick S.; Buchanan, Evan G.; Gord, Joseph R.; Zwier, Timothy S.

    2015-04-21

    The single-conformation infrared (IR) and ultraviolet (UV) spectroscopies of neutral 1,2-diphenoxyethane-(H{sub 2}O){sub n} clusters with n = 2-4 (labeled henceforth as 1:n) have been studied in a molecular beam using a combination of resonant two-photon ionization, IR-UV holeburning, and resonant ion-dip infrared (RIDIR) spectroscopies. Ground state RIDIR spectra in the OH and CH stretch regions were used to provide firm assignments for the structures of the clusters by comparing the experimental spectra with the predictions of calculations carried out at the density functional M05-2X/6-31+G(d) level of theory. At all sizes in this range, the water molecules form water clusters in which all water molecules engage in a single H-bonded network. Selective binding to the tgt monomer conformer of 1,2-diphenoxyethane (C{sub 6}H{sub 5}-O-CH{sub 2}-CH{sub 2}-O-C{sub 6}H{sub 5}, DPOE) occurs, since this conformer provides a binding pocket in which the two ether oxygens and two phenyl ring π clouds can be involved in stabilizing the water cluster. The 1:2 cluster incorporates a water dimer “chain” bound to DPOE much as it is in the 1:1 complex [E. G. Buchanan et al., J. Phys. Chem. Lett. 4, 1644 (2013)], with primary attachment via a double-donor water that bridges the ether oxygen of one phenoxy group and the π cloud of the other. Two conformers of the 1:3 cluster are observed and characterized, one that extends the water chain to a third molecule (1:3 chain) and the other incorporating a water trimer cycle (1:3 cycle). A cyclic water structure is also observed for the 1:4 cluster. These structural characterizations provide a necessary foundation for studies of the perturbations imposed on the two close-lying S{sub 1}/S{sub 2} excited states of DPOE considered in the adjoining paper [P. S. Walsh et al., J. Chem. Phys. 142, 154304 (2015)].

  19. Binding water to a PEG-linked flexible bichromophore: IR spectra of diphenoxyethane-(H2O)n clusters, n = 2-4

    NASA Astrophysics Data System (ADS)

    Walsh, Patrick S.; Buchanan, Evan G.; Gord, Joseph R.; Zwier, Timothy S.

    2015-04-01

    The single-conformation infrared (IR) and ultraviolet (UV) spectroscopies of neutral 1,2-diphenoxyethane-(H2O)n clusters with n = 2-4 (labeled henceforth as 1:n) have been studied in a molecular beam using a combination of resonant two-photon ionization, IR-UV holeburning, and resonant ion-dip infrared (RIDIR) spectroscopies. Ground state RIDIR spectra in the OH and CH stretch regions were used to provide firm assignments for the structures of the clusters by comparing the experimental spectra with the predictions of calculations carried out at the density functional M05-2X/6-31+G(d) level of theory. At all sizes in this range, the water molecules form water clusters in which all water molecules engage in a single H-bonded network. Selective binding to the tgt monomer conformer of 1,2-diphenoxyethane (C6H5-O-CH2-CH2-O-C6H5, DPOE) occurs, since this conformer provides a binding pocket in which the two ether oxygens and two phenyl ring π clouds can be involved in stabilizing the water cluster. The 1:2 cluster incorporates a water dimer "chain" bound to DPOE much as it is in the 1:1 complex [E. G. Buchanan et al., J. Phys. Chem. Lett. 4, 1644 (2013)], with primary attachment via a double-donor water that bridges the ether oxygen of one phenoxy group and the π cloud of the other. Two conformers of the 1:3 cluster are observed and characterized, one that extends the water chain to a third molecule (1:3 chain) and the other incorporating a water trimer cycle (1:3 cycle). A cyclic water structure is also observed for the 1:4 cluster. These structural characterizations provide a necessary foundation for studies of the perturbations imposed on the two close-lying S1/S2 excited states of DPOE considered in the adjoining paper [P. S. Walsh et al., J. Chem. Phys. 142, 154304 (2015)].

  20. Binding water clusters to an aromatic-rich hydrophobic pocket: [2.2.2]paracyclophane-(H2O)n, n = 1-5.

    PubMed

    Buchanan, Evan G; Zwier, Timothy S

    2014-09-18

    [2.2.2]Paracylcophane (tricyclophane, TCP) is a macrocycle with three phenyl substituents linked by ethyl bridges (-CH2CH2-) in the para-position, forming an aromatic-rich pocket capable of binding various substituents, including nature's solvent, water. Building on previous work [Buchanan, E. G.; et al. J. Chem. Phys. 2013, 138, 064308] that reported on the ground state conformational preferences of TCP, the focus of the present study is on the infrared and ultraviolet spectroscopy of TCP-(H2O)n clusters with n = 1-5. Resonant two-photon ionization (R2PI) was used to interrogate the mass selected electronic spectrum of the clusters, reporting on the perturbations imposed on the electronic states of TCP as the size of the water clusters bound to it vary in size from n = 1-5. The TCP-(H2O)n S0-S1 origins are shifted to lower frequency from the monomer, indicating an increased binding energy of the water or water network in the excited state. Ground state resonant ion-dip infrared (RIDIR) spectra of TCP-(H2O)n (n = 1-5) clusters were recorded in the OH stretch region, which probes the H-bonded water networks present and the perturbations imposed on them by TCP. The experimental frequencies are compared with harmonic vibrational frequencies calculated using density functional theory (DFT) with the dispersion-corrected functional ωB97X-D and a 6-311+g(d,p) basis set, providing firm assignments for their H-bonding structures. The H2O molecule in TCP-(H2O)1 sits on top of the binding pocket, donating both of its hydrogen atoms to the aromatic-rich interior of the monomer. The antisymmetric stretch fundamental of H2O in the complex is composed of a closely spaced set of transitions that likely reflect contributions from both para- and ortho-forms of H2O due to internal rotation of the H2O in the binding pocket. TCP-(H2O)2 also exists in a single conformational isomer that retains the same double-donor binding motif for the first water molecule, with the second H2O acting

  1. Breaking the bottleneck: Use of molecular tailoring approach for the estimation of binding energies at MP2/CBS limit for large water clusters

    NASA Astrophysics Data System (ADS)

    Singh, Gurmeet; Nandi, Apurba; Gadre, Shridhar R.

    2016-03-01

    A pragmatic method based on the molecular tailoring approach (MTA) for estimating the complete basis set (CBS) limit at Møller-Plesset second order perturbation (MP2) theory accurately for large molecular clusters with limited computational resources is developed. It is applied to water clusters, (H2O)n (n = 7, 8, 10, 16, 17, and 25) optimized employing aug-cc-pVDZ (aVDZ) basis-set. Binding energies (BEs) of these clusters are estimated at the MP2/aug-cc-pVNZ (aVNZ) [N = T, Q, and 5 (whenever possible)] levels of theory employing grafted MTA (GMTA) methodology and are found to lie within 0.2 kcal/mol of the corresponding full calculation MP2 BE, wherever available. The results are extrapolated to CBS limit using a three point formula. The GMTA-MP2 calculations are feasible on off-the-shelf hardware and show around 50%-65% saving of computational time. The methodology has a potential for application to molecular clusters containing ˜100 atoms.

  2. Effects of Alkyl Groups on Excess-Electron Binding to Small-Sized Secondary Amide Clusters: A Combined Experimental and Computational Study.

    PubMed

    Maeyama, Toshihiko; Shimamori, Takuto; Fujii, Asuka

    2017-06-15

    Excess-electron binding to dimers and trimers of secondary amide molecules was studied by a combination of photoelectron spectroscopy and theoretical calculations. Vertical detachment energies (VDEs) of the cluster anions were measured in the range of a few hundred millielectronvolts. We found a tendency for VDE to decline with extension of alkyl side chains. It was fairly reproduced by results of quantum chemical calculations based on density functional theory. For the optimized structures of the cluster anions, the excess electron is located diffusively around the dangling NH group of the hydrogen-bond acceptor molecule. Dipole moment values calculated for the vertically detached neutrals are consistent with the motif of dipole-bound anions. Alkyl groups are likely to inhibit a close interaction between the excess electron and amide groups. It appears to be incompatible with a previously reported trend that the yield of the trimer anions is enhanced with extension of the side chains.

  3. Bacillus cereus Fnr binds a [4Fe-4S] cluster and forms a ternary complex with ResD and PlcR

    PubMed Central

    2012-01-01

    Background Bacillus cereus is a facultative anaerobe that causes diarrheal disease in humans. Diarrheal syndrome may result from the secretion of various virulence factors including hemolysin BL and nonhemolytic enterotoxin Nhe. Expression of genes encoding Hbl and Nhe is regulated by the two redox systems, ResDE and Fnr, and the virulence regulator PlcR. B. cereus Fnr is a member of the Crp/Fnr family of iron-sulfur (Fe-S) proteins. Only its apo-form has so far been studied. A major goal in deciphering the Fnr-dependent regulation of enterotoxin genes is thus to obtain and characterize holoFnr. Results Fnr has been subjected to in vitro Fe-S cluster reconstitution under anoxic conditions. UV-visible and EPR spectroscopic analyses together with the chemical estimation of the iron content indicated that Fnr binds one [4Fe-4S]2+ cluster per monomer. Atmospheric O2 causes disassembly of the Fe-S cluster, which exhibited a half-life of 15 min in air. Holo- and apoFnr have similar affinities for the nhe and hbl promoter regions, while holoFnr has a higher affinity for fnr promoter region than apoFnr. Both the apo- and holo-form of Fnr interact with ResD and PlcR to form a ternary complex. Conclusions Overall, this work shows that incorporation of the [4Fe-4S]2+ cluster is not required for DNA binding of Fnr to promoter regions of hbl and nhe enterotoxin genes or for the formation of a ternary complex with ResD and PlcR. This points to some new unusual properties of Fnr that may have physiological relevance in the redox regulation of enterotoxin gene regulation. PMID:22731107

  4. Embryonic neural inducing factor churchill is not a DNA-binding zinc finger protein: solution structure reveals a solvent-exposed beta-sheet and zinc binuclear cluster.

    PubMed

    Lee, Brian M; Buck-Koehntop, Bethany A; Martinez-Yamout, Maria A; Dyson, H Jane; Wright, Peter E

    2007-08-31

    Churchill is a zinc-containing protein that is involved in neural induction during embryogenesis. At the time of its discovery, it was thought on the basis of sequence alignment to contain two zinc fingers of the C4 type. Further, binding of an N-terminal GST-Churchill fusion protein to a particular DNA sequence was demonstrated by immunoprecipitation selection assay, suggesting that Churchill may function as a transcriptional regulator by sequence-specific DNA binding. We show by NMR solution structure determination that, far from containing canonical C4 zinc fingers, the protein contains three bound zinc ions in novel coordination sites, including an unusual binuclear zinc cluster. The secondary structure of Churchill is also unusual, consisting of a highly solvent-exposed single-layer beta-sheet. Hydrogen-deuterium exchange and backbone relaxation measurements reveal that Churchill is unusually dynamic on a number of time scales, with the exception of regions surrounding the zinc coordinating sites, which serve to stabilize the otherwise unstructured N terminus and the single-layer beta-sheet. No binding of Churchill to the previously identified DNA sequence could be detected, and extensive searches using DNA sequence selection techniques could find no other DNA sequence that was bound by Churchill. Since the N-terminal amino acids of Churchill form part of the zinc-binding motif, the addition of a fusion protein at the N terminus causes loss of zinc and unfolding of Churchill. This observation most likely explains the published DNA-binding results, which would arise due to non-specific interaction of the unfolded protein in the immunoprecipitation selection assay. Since Churchill does not appear to bind DNA, we suggest that it may function in embryogenesis as a protein-interaction factor.

  5. Strategies for maximizing ATP supply in the microsporidian Encephalitozoon cuniculi: direct binding of mitochondria to the parasitophorous vacuole and clustering of the mitochondrial porin VDAC

    PubMed Central

    Hacker, Christian; Howell, Matthew; Bhella, David; Lucocq, John

    2013-01-01

    Summary Microsporidia are obligate intracellular parasites with extremely reduced genomes and a dependence on host-derived ATP. The microsporidium Encephalitozoon cuniculi proliferates within a membranous vacuole and we investigated how the ATP supply is optimized at the vacuole–host interface. Using spatial EM quantification (stereology), we found a single layer of mitochondria coating substantial proportions of the parasitophorous vacuole. Mitochondrial binding occurred preferentially over the vegetative ‘meront’ stages of the parasite, which bulged into the cytoplasm, thereby increasing the membrane surface available for mitochondrial interaction. In a broken cell system mitochondrial binding was maintained and was typified by electron dense structures (< 10 nm long) bridging between outer mitochondrial and vacuole membranes. In broken cells mitochondrial binding was sensitive to a range of protease treatments. The function of directly bound mitochondria, as measured by the membrane potential sensitive dye JC-1, was indistinguishable from other mitochondria in the cell although there was a generalized depression of the membrane potential in infected cells. Finally, quantitative immuno-EM revealed that the ATP-delivering mitochondrial porin, VDAC, was concentrated atthe mitochondria-vacuole interaction site. Thus E. cuniculi appears to maximize ATP supply by direct binding of mitochondria to the parasitophorous vacuole bringing this organelle within 0.020 microns of the growing vegetative form of the parasite. ATP-delivery is further enhanced by clustering of ATP transporting porins in those regions of the outer mitochondrial membrane lying closest to the parasite. PMID:24245785

  6. Strategies for maximizing ATP supply in the microsporidian Encephalitozoon cuniculi: direct binding of mitochondria to the parasitophorous vacuole and clustering of the mitochondrial porin VDAC.

    PubMed

    Hacker, Christian; Howell, Matthew; Bhella, David; Lucocq, John

    2014-04-01

    Microsporidia are obligate intracellular parasites with extremely reduced genomes and a dependence on host-derived ATP. The microsporidium Encephalitozoon cuniculi proliferates within a membranous vacuole and we investigated how the ATP supply is optimized at the vacuole-host interface. Using spatial EM quantification (stereology), we found a single layer of mitochondria coating substantial proportions of the parasitophorous vacuole. Mitochondrial binding occurred preferentially over the vegetative 'meront' stages of the parasite, which bulged into the cytoplasm, thereby increasing the membrane surface available for mitochondrial interaction. In a broken cell system mitochondrial binding was maintained and was typified by electron dense structures (< 10 nm long) bridging between outer mitochondrial and vacuole membranes. In broken cells mitochondrial binding was sensitive to a range of protease treatments. The function of directly bound mitochondria, as measured by the membrane potential sensitive dye JC-1, was indistinguishable from other mitochondria in the cell although there was a generalized depression of the membrane potential in infected cells. Finally, quantitative immuno-EM revealed that the ATP-delivering mitochondrial porin, VDAC, was concentrated atthe mitochondria-vacuole interaction site. Thus E. cuniculi appears to maximize ATP supply by direct binding of mitochondria to the parasitophorous vacuole bringing this organelle within 0.020 microns of the growing vegetative form of the parasite. ATP-delivery is further enhanced by clustering of ATP transporting porins in those regions of the outer mitochondrial membrane lying closest to the parasite.

  7. Interaction of frataxin, an iron binding protein, with IscU of Fe-S clusters biogenesis pathway and its upregulation in AmpB resistant Leishmania donovani.

    PubMed

    Zaidi, Amir; Singh, Krishn Pratap; Anwar, Shadab; Suman, Shashi S; Equbal, Asif; Singh, Kuljit; Dikhit, Manas R; Bimal, Sanjeeva; Pandey, Krishna; Das, Pradeep; Ali, Vahab

    2015-08-01

    Leishmania donovani is a unicellular protozoon parasite that causes visceral leishmaniasis (VL), which is a fatal disease if left untreated. Certain Fe-S proteins of the TCA cycle and respiratory chain have been found in the Leishmania parasite but the precise mechanisms for their biogenesis and the maturation of Fe-S clusters remains unknown. Fe-S clusters are ubiquitous cofactors of proteins that perform critical cellular functions. The clusters are biosynthesized by the mitochondrial Iron-Sulphur Cluster (ISC) machinery with core protein components that include the catalytic cysteine desulphurase IscS, the scaffold proteins IscU and IscA, and frataxin as an iron carrier/donor. However, no information regarding frataxin, its regulation, or its role in drug resistance is available for the Leishmania parasite. In this study, we characterized Ld-frataxin to investigate its role in the ISC machinery of L. donovani. We expressed and purified the recombinant Ld-frataxin protein and observed its interaction with Ld-IscU by co-purification and pull-down assay. Furthermore, we observed that the cysteine desulphurase activity of the purified Ld-IscS protein was stimulated in the presence of Ld-frataxin and Ld-IscU, particularly in the presence of iron; neither Ld-frataxin nor Ld-IscU alone had significant effects on Ld-IscS activity. Interestingly, RT-PCR and western blotting showed that Ld-frataxin is upregulated in AmpB-resistant isolates compared to sensitive strains, which may support higher Fe-S protein activity in AmpB-resistant L. donovani. Additionally, Ld-frataxin was localized in the mitochondria, as revealed by digitonin fractionation and indirect immunofluorescence. Thus, our results suggest the role of Ld-frataxin as an iron binding/carrier protein for Fe-S cluster biogenesis that physically interacts with other core components of the ISC machinery within the mitochondria.

  8. Asp1 from Schizosaccharomyces pombe binds a [2Fe-2S](2+) cluster which inhibits inositol pyrophosphate 1-phosphatase activity.

    PubMed

    Wang, Huanchen; Nair, Vasudha S; Holland, Ashley A; Capolicchio, Samanta; Jessen, Henning J; Johnson, Michael K; Shears, Stephen B

    2015-10-27

    Iron-sulfur (Fe-S) clusters are widely distributed protein cofactors that are vital to cellular biochemistry and the maintenance of bioenergetic homeostasis, but to our knowledge, they have never been identified in any phosphatase. Here, we describe an iron-sulfur cluster in Asp1, a dual-function kinase/phosphatase that regulates cell morphogenesis in Schizosaccharomyces pombe. Full-length Asp1, and its phosphatase domain (Asp1(371-920)), were each heterologously expressed in Escherichia coli. The phosphatase activity is exquisitely specific: it hydrolyzes the 1-diphosphate from just two members of the inositol pyrophosphate (PP-InsP) signaling family, namely, 1-InsP7 and 1,5-InsP8. We demonstrate that Asp1 does not hydrolyze either InsP6, 2-InsP7, 3-InsP7, 4-InsP7, 5-InsP7, 6-InsP7, or 3,5-InsP8. We also recorded 1-phosphatase activity in a human homologue of Asp1, hPPIP5K1, which was heterologously expressed in Drosophila S3 cells with a biotinylated N-terminal tag, and then isolated from cell lysates with avidin beads. Purified, recombinant Asp1(371-920) contained iron and acid-labile sulfide, but the stoichiometry (0.8 atoms of each per protein molecule) indicates incomplete iron-sulfur cluster assembly. We reconstituted the Fe-S cluster in vitro under anaerobic conditions, which increased the stoichiometry to approximately 2 atoms of iron and acid-labile sulfide per Asp1 molecule. The presence of a [2Fe-2S](2+) cluster in Asp1(371-920) was demonstrated by UV-visible absorption, resonance Raman spectroscopy, and electron paramagnetic resonance spectroscopy. We determined that this [2Fe-2S](2+) cluster is unlikely to participate in redox chemistry, since it rapidly degraded upon reduction by dithionite. Biochemical and mutagenic studies demonstrated that the [2Fe-2S](2+) cluster substantially inhibits the phosphatase activity of Asp1, thereby increasing its net kinase activity.

  9. Water clusters in an argon matrix: infrared spectra from molecular dynamics simulations with a self-consistent charge density functional-based tight binding/force-field potential.

    PubMed

    Simon, Aude; Iftner, Christophe; Mascetti, Joëlle; Spiegelman, Fernand

    2015-03-19

    The present theoretical study aims at investigating the effects of an argon matrix on the structures, energetics, dynamics, and infrared (IR) spectra of small water clusters (H2O)n (n = 1-6). The potential energy surface is obtained from a hybrid self-consistent charge density functional-based tight binding/force-field approach (SCC-DFTB/FF) in which the water clusters are treated at the SCC-DFTB level and the matrix is modeled at the FF level by a cluster consisting of ∼340 Ar atoms with a face centered cubic (fcc) structure, namely (H2O)n/Ar. With respect to a pure FF scheme, this allows a quantum description of the molecular system embedded in the matrix, along with all-atom geometry optimization and molecular dynamics (MD) simulations of the (H2O)n/Ar system. Finite-temperature IR spectra are derived from the MD simulations. The SCC-DFTB/FF scheme is first benchmarked on (H2O)Arn clusters against correlated wave function results and DFT calculations performed in the present work, and against FF data available in the literature. Regarding (H2O)n/Ar systems, the geometries of the water clusters are found to adapt to the fcc environment, possibly leading to intermolecular distortion and matrix perturbation. Several energetical quantities are estimated to characterize the water clusters in the matrix. In the particular case of the water hexamer, substitution and insertion energies for the prism, bag, and cage are found to be lower than that for the 6-member ring isomer. Finite-temperature MD simulations show that the water monomer has a quasifree rotation motion at 13 K, in agreement with experimental data. In the case of the water dimer, the only large-amplitude motion is a distortion-rotation intermolecular motion, whereas only vibration motions around the nuclei equilibrium positions are observed for clusters with larger sizes. Regarding the IR spectra, we find that the matrix environment leads to redshifts of the stretching modes and almost no shift of the

  10. Binding of Hyaluronan to the Native Lymphatic Vessel Endothelial Receptor LYVE-1 Is Critically Dependent on Receptor Clustering and Hyaluronan Organization*

    PubMed Central

    Lawrance, William; Banerji, Suneale; Day, Anthony J.; Bhattacharjee, Shaumick; Jackson, David G.

    2016-01-01

    The lymphatic endothelial receptor LYVE-1 has been implicated in both uptake of hyaluronan (HA) from tissue matrix and in facilitating transit of leukocytes and tumor cells through lymphatic vessels based largely on in vitro studies with recombinant receptor in transfected fibroblasts. Curiously, however, LYVE-1 in lymphatic endothelium displays little if any binding to HA in vitro, and this has led to the conclusion that the native receptor is functionally silenced, a feature that is difficult to reconcile with its proposed in vivo functions. Nonetheless, as we reported recently, LYVE-1 can function as a receptor for HA-encapsulated Group A streptococci and mediate lymphatic dissemination in mice. Here we resolve these paradoxical findings and show that the capacity of LYVE-1 to bind HA is strictly dependent on avidity, demanding appropriate receptor self-association and/or HA multimerization. In particular, we demonstrate the prerequisite of a critical LYVE-1 threshold density and show that HA binding may be elicited in lymphatic endothelium by surface clustering with divalent LYVE-1 mAbs. In addition, we show that cross-linking of biotinylated HA in streptavidin multimers or supramolecular complexes with the inflammation-induced protein TSG-6 enables binding even in the absence of LYVE-1 cross-linking. Finally, we show that endogenous HA on the surface of macrophages can engage LYVE-1, facilitating their adhesion and transit across lymphatic endothelium. These results reveal LYVE-1 as a low affinity receptor tuned to discriminate between different HA configurations through avidity and establish a new mechanistic basis for the functions ascribed to LYVE-1 in matrix HA binding and leukocyte trafficking in vivo. PMID:26823460

  11. Binding of Hyaluronan to the Native Lymphatic Vessel Endothelial Receptor LYVE-1 Is Critically Dependent on Receptor Clustering and Hyaluronan Organization.

    PubMed

    Lawrance, William; Banerji, Suneale; Day, Anthony J; Bhattacharjee, Shaumick; Jackson, David G

    2016-04-08

    The lymphatic endothelial receptor LYVE-1 has been implicated in both uptake of hyaluronan (HA) from tissue matrix and in facilitating transit of leukocytes and tumor cells through lymphatic vessels based largely onin vitrostudies with recombinant receptor in transfected fibroblasts. Curiously, however, LYVE-1 in lymphatic endothelium displays little if any binding to HAin vitro, and this has led to the conclusion that the native receptor is functionally silenced, a feature that is difficult to reconcile with its proposedin vivofunctions. Nonetheless, as we reported recently, LYVE-1 can function as a receptor for HA-encapsulated Group A streptococci and mediate lymphatic dissemination in mice. Here we resolve these paradoxical findings and show that the capacity of LYVE-1 to bind HA is strictly dependent on avidity, demanding appropriate receptor self-association and/or HA multimerization. In particular, we demonstrate the prerequisite of a critical LYVE-1 threshold density and show that HA binding may be elicited in lymphatic endothelium by surface clustering with divalent LYVE-1 mAbs. In addition, we show that cross-linking of biotinylated HA in streptavidin multimers or supramolecular complexes with the inflammation-induced protein TSG-6 enables binding even in the absence of LYVE-1 cross-linking. Finally, we show that endogenous HA on the surface of macrophages can engage LYVE-1, facilitating their adhesion and transit across lymphatic endothelium. These results reveal LYVE-1 as a low affinity receptor tuned to discriminate between different HA configurations through avidity and establish a new mechanistic basis for the functions ascribed to LYVE-1 in matrix HA binding and leukocyte traffickingin vivo.

  12. Mycobacterium tuberculosis WhiB1 is an essential DNA-binding protein with a nitric oxide-sensitive iron-sulfur cluster.

    PubMed

    Smith, Laura J; Stapleton, Melanie R; Fullstone, Gavin J M; Crack, Jason C; Thomson, Andrew J; Le Brun, Nick E; Hunt, Debbie M; Harvey, Evelyn; Adinolfi, Salvatore; Buxton, Roger S; Green, Jeffrey

    2010-12-15

    Mycobacterium tuberculosis is a major pathogen that has the ability to establish, and emerge from, a persistent state. Wbl family proteins are associated with developmental processes in actinomycetes, and M. tuberculosis has seven such proteins. In the present study it is shown that the M. tuberculosis H37Rv whiB1 gene is essential. The WhiB1 protein possesses a [4Fe-4S]2+ cluster that is stable in air but reacts rapidly with eight equivalents of nitric oxide to yield two dinuclear dinitrosyl-iron thiol complexes. The [4Fe-4S] form of WhiB1 did not bind whiB1 promoter DNA, but the reduced and oxidized apo-WhiB1, and nitric oxide-treated holo-WhiB1 did bind to DNA. Mycobacterium smegmatis RNA polymerase induced transcription of whiB1 in vitro; however, in the presence of apo-WhiB1, transcription was severely inhibited, irrespective of the presence or absence of the CRP (cAMP receptor protein) Rv3676, which is known to activate whiB1 expression. Footprinting suggested that autorepression of whiB1 is achieved by apo-WhiB1 binding at a region that overlaps the core promoter elements. A model incorporating regulation of whiB1 expression in response to nitric oxide and cAMP is discussed with implications for sensing two important signals in establishing M. tuberculosis infections.

  13. A coupled-cluster study on the noble gas binding ability of metal cyanides versus metal halides (metal = Cu, Ag, Au).

    PubMed

    Pan, Sudip; Gupta, Ashutosh; Saha, Ranajit; Merino, Gabriel; Chattaraj, Pratim K

    2015-11-05

    A coupled-cluster study is carried out to investigate the efficacy of metal(I) cyanide (MCN; M = Cu, Ag, Au) compounds to bind with noble gas (Ng) atoms. The M-Ng bond dissociation energy, enthalpy change, and Gibbs free energy change for the dissociation processes producing Ng and MCN are computed to assess the stability of NgMCN compounds. The Ng binding ability of MCN is then compared with the experimentally detected NgMX (X = F, Cl, Br) compounds. While CuCN and AgCN have larger Ng binding ability than those of MCl and MBr (M = Cu, Ag), AuCN shows larger efficacy toward bond formation with Ng than that of AuBr. Natural bond orbital analysis, energy decomposition analysis in conjunction with the natural orbital for chemical valence theory, and the topological analysis of the electron density are performed to understand the nature of interaction occurring in between Ng and MCN. The Ng-M bonds in NgMCN are found comprise an almost equal contribution from covalent and electrostatic types of interactions. The different electron density descriptors also reveal the partial covalent character in the concerned bonds.

  14. Mycobacterium tuberculosis WhiB1 is an essential DNA-binding protein with a nitric oxide sensitive iron-sulphur cluster

    PubMed Central

    Smith, Laura J.; Stapleton, Melanie R.; Fullstone, Gavin J. M.; Crack, Jason C.; Thomson, Andrew J.; Le Brun, Nick E.; Hunt, Debbie M.; Harvey, Evelyn; Adinolfi, Salvatore; Buxton, Roger S.; Green, Jeffrey

    2010-01-01

    Mycobacterium tuberculosis is a major pathogen that has the ability to establish, and emerge from, a persistent state. Wbl family proteins are associated with developmental processes in actinomycetes, and M. tuberculosis has seven such proteins. Here it is shown that the M. tuberculosis H37Rv whiB1 gene is essential. The WhiB1 protein possesses a [4Fe-4S]2+ cluster that is stable in air but reacts rapidly with eight equivalents of nitric oxide to yield two dinuclear dinitrosyl-iron thiol complexes. The [4Fe-4S] form of WhiB1 did not bind whiB1 promoter DNA, but the reduced and oxidized apo-WhiB1, and nitric oxide-treated holo-WhiB1 did bind to DNA. Mycobacterium smegmatis RNA polymerase induced transcription of whiB1 in vitro; however in the presence of apo-WhiB1 transcription was severely inhibited, irrespective of the presence or absence of the CRP protein Rv3676, which is known to activate whiB1 expression. Footprinting suggested that autorepression of whiB1 is achieved by apo-WhiB1 binding at a region that overlaps the core promoter elements. A model incorporating regulation of whiB1 expression in response to nitric oxide and cAMP is discussed with implications for sensing two important signals in establishing M. tuberculosis infections. PMID:20929442

  15. A New F131V Mutation in Chlamydomonas Phytoene Desaturase Locates a Cluster of Norflurazon Resistance Mutations near the FAD-Binding Site in 3D Protein Models

    PubMed Central

    Suarez, Julio V.; Banks, Stephen; Thomas, Paul G.; Day, Anil

    2014-01-01

    The green alga Chlamydomonas reinhardtii provides a tractable genetic model to study herbicide mode of action using forward genetics. The herbicide norflurazon inhibits phytoene desaturase, which is required for carotenoid synthesis. Locating amino acid substitutions in mutant phytoene desaturases conferring norflurazon resistance provides a genetic approach to map the herbicide binding site. We isolated a UV-induced mutant able to grow in very high concentrations of norflurazon (150 µM). The phytoene desaturase gene in the mutant strain contained the first resistance mutation to be localised to the dinucleotide-binding Rossmann-likedomain. A highly conserved phenylalanine amino acid at position 131 of the 564 amino acid precursor protein was changed to a valine in the mutant protein. F131, and two other amino acids whose substitution confers norflurazon resistance in homologous phytoene desaturase proteins, map to distant regions in the primary sequence of the C. reinhardtii protein (V472, L505) but in tertiary models these residues cluster together to a region close to the predicted FAD binding site. The mutant gene allowed direct 5 µM norflurazon based selection of transformants, which were tolerant to other bleaching herbicides including fluridone, flurtamone, and diflufenican but were more sensitive to beflubutamid than wild type cells. Norflurazon resistance and beflubutamid sensitivity allow either positive or negative selection against transformants expressing the mutant phytoene desaturase gene. PMID:24936791

  16. Probing the C-H⋅⋅⋅π weak hydrogen bond in anesthetic binding: the sevoflurane-benzene cluster.

    PubMed

    Seifert, Nathan A; Zaleski, Daniel P; Pérez, Cristóbal; Neill, Justin L; Pate, Brooks H; Vallejo-López, Montserrat; Lesarri, Alberto; Cocinero, Emilio J; Castaño, Fernando; Kleiner, Isabelle

    2014-03-17

    Cooperativity between weak hydrogen bonds can be revealed in molecular clusters isolated in the gas phase. Here we examine the structure, internal dynamics, and origin of the weak intermolecular forces between sevoflurane and a benzene molecule, using multi-isotopic broadband rotational spectra. This heterodimer is held together by a primary C-H⋅⋅⋅π hydrogen bond, assisted by multiple weak C-H⋅⋅⋅F interactions. The multiple nonbonding forces hinder the internal rotation of benzene around the isopropyl C-H bond in sevoflurane, producing detectable quantum tunneling effects in the rotational spectrum.

  17. Conformational landscape of the human immunodeficiency virus type 1 reverse transcriptase non-nucleoside inhibitor binding pocket: lessons for inhibitor design from a cluster analysis of many crystal structures.

    PubMed

    Paris, Kristina A; Haq, Omar; Felts, Anthony K; Das, Kalyan; Arnold, Eddy; Levy, Ronald M

    2009-10-22

    Clustering of 99 available X-ray crystal structures of HIV-1 reverse transcriptase (RT) at the flexible non-nucleoside inhibitor binding pocket (NNIBP) provides information about features of the conformational landscape for binding non-nucleoside inhibitors (NNRTIs), including effects of mutation and crystal forms. The ensemble of NNIBP conformations is separated into eight discrete clusters based primarily on the position of the functionally important primer grip, the displacement of which is believed to be one of the mechanisms of inhibition of RT. Two of these clusters are populated by structures in which the primer grip exhibits novel conformations that differ from the predominant cluster by over 4 A and are induced by the unique inhibitors capravirine and rilpivirine/TMC278. This work identifies a new conformation of the NNIBP that may be used to design NNRTIs. It can also be used to guide more complete exploration of the NNIBP free energy landscape using advanced sampling techniques.

  18. Binding of Trivalent Arsenic onto the Tetrahedral Au20 and Au19Pt Clusters: Implications in Adsorption and Sensing.

    PubMed

    Cortés-Arriagada, Diego; Oyarzún, María Paz; Sanhueza, Luis; Toro-Labbé, Alejandro

    2015-07-02

    The interaction of arsenic(III) onto the tetrahedral Au20 cluster was studied computationally to get insights into the interaction of arsenic traces (presented in polluted waters) onto embedded electrodes with gold nanostructures. Pollutant interactions onto the vertex, edge, or inner gold atoms of Au20 were observed to have a covalent character by forming metal-arsenic or metal-oxygen bonding, with adsorption energies ranging from 0.5 to 0.8 eV, even with a stable physisorption; however, in aqueous media, the Au-vertex-pollutant interaction was found to be disadvantageous. The substituent effect of a platinum atom onto the Au20 cluster was evaluated to get insights into the changes in the adsorption and electronic properties of the adsorbent-adsorbate systems due to chemical doping. It was found that the dopant atom increases both the metal-pollutant adsorption energy and stability onto the support in a water media for all interaction modes; adsorption energies were found to be in a range of 0.6 to 1.8 eV. All interactions were determined to be accompanied by electron transfer as well as changes in the local reactivity that determine the amount of transferred charge and a decrease in the HOMO-LUMO energy gap with respect to the isolated substrate.

  19. A Cluster of Nucleotide-Binding Site-Leucine-Rich Repeat Genes Resides in a Barley Powdery Mildew Resistance Quantitative Trait Loci on 7HL.

    PubMed

    Cantalapiedra, Carlos P; Contreras-Moreira, Bruno; Silvar, Cristina; Perovic, Dragan; Ordon, Frank; Gracia, María Pilar; Igartua, Ernesto; Casas, Ana M

    2016-07-01

    Powdery mildew causes severe yield losses in barley production worldwide. Although many resistance genes have been described, only a few have already been cloned. A strong QTL (quantitative trait locus) conferring resistance to a wide array of powdery mildew isolates was identified in a Spanish barley landrace on the long arm of chromosome 7H. Previous studies narrowed down the QTL position, but were unable to identify candidate genes or physically locate the resistance. In this study, the exome of three recombinant lines from a high-resolution mapping population was sequenced and analyzed, narrowing the position of the resistance down to a single physical contig. Closer inspection of the region revealed a cluster of closely related NBS-LRR (nucleotide-binding site-leucine-rich repeat containing protein) genes. Large differences were found between the resistant lines and the reference genome of cultivar Morex, in the form of PAV (presence-absence variation) in the composition of the NBS-LRR cluster. Finally, a template-guided assembly was performed and subsequent expression analysis revealed that one of the new assembled candidate genes is transcribed. In summary, the results suggest that NBS-LRR genes, absent from the reference and the susceptible genotypes, could be functional and responsible for the powdery mildew resistance. The procedure followed is an example of the use of NGS (next-generation sequencing) tools to tackle the challenges of gene cloning when the target gene is absent from the reference genome.

  20. Profiling the binding motif between Be and Mg in the ground state via a single-reference coupled cluster method

    NASA Astrophysics Data System (ADS)

    Sinha Mahapatra, Uttam; Banerjee, Debi; Chaudhuri, Rajat K.; Chattopadhyay, Sudip

    2015-06-01

    We present a study on the performance of our iterative triples correction for the coupled cluster singles and doubles excitations (CCSDT-1a+d) method for computation of potential energy surface (PES), spectroscopic constants, and vibrational spectrum for the ground state (X1Σ+) BeMg, where the ostensible inadequacy of the CCSD and CCSD(T) methods is quite expected. We compare our results with those obtained using state-of-the-art multireference configuration interaction (MRCI) investigations reported earlier by Kerkines and Nicolaides. Our estimated dissociation energy (417.37 cm-1), equilibrium distance (3.285 Å), and vibrational frequency (82.32 cm-1) are in good agreement with recent results of advanced MRCI calculations for X1Σ+ BeMg PES, which exhibits a shallow well of 469.4 cm-1 with a minimum at 3.241 Å and a harmonic vibrational frequency of 85.7 cm-1. Very weakly bound nature of X1Σ+ BeMg is clearly reflected from these values. In accord with MRCI studies, a comparison of BeMg with iso-valence weakly bound ground-state species, Be2 and Mg2, suggests that its characteristics do not exhibit any resemblance to Be2 rather, it shows a close kinship to Mg2. The agreement of our derived vibrational levels with those obtained via the high-level MRCI calculations is very encouraging reflecting the potential of the suitably modified single-reference coupled cluster (SRCC) method, CCSDT-1a+d as a tool for the study of multireference van der Waals systems.

  1. Strength of Neisseria meningitidis binding to endothelial cells requires highly-ordered CD147/β2-adrenoceptor clusters assembled by alpha-actinin-4

    PubMed Central

    Maïssa, Nawal; Covarelli, Valentina; Janel, Sébastien; Durel, Beatrice; Simpson, Nandi; Bernard, Sandra C.; Pardo-Lopez, Liliana; Bouzinba-Ségard, Haniaa; Faure, Camille; Scott, Mark G.H.; Coureuil, Mathieu; Morand, Philippe C.; Lafont, Frank; Nassif, Xavier; Marullo, Stefano; Bourdoulous, Sandrine

    2017-01-01

    Neisseria meningitidis (meningococcus) is an invasive bacterial pathogen that colonizes human vessels, causing thrombotic lesions and meningitis. Establishment of tight interactions with endothelial cells is crucial for meningococci to resist haemodynamic forces. Two endothelial receptors, CD147 and the β2-adrenergic receptor (β2AR), are sequentially engaged by meningococci to adhere and promote signalling events leading to vascular colonization, but their spatiotemporal coordination is unknown. Here we report that CD147 and β2AR form constitutive hetero-oligomeric complexes. The scaffolding protein α-actinin-4 directly binds to the cytosolic tail of CD147 and governs the assembly of CD147–β2AR complexes in highly ordered clusters at bacterial adhesion sites. This multimolecular assembly process increases the binding strength of meningococci to endothelial cells under shear stress, and creates molecular platforms for the elongation of membrane protrusions surrounding adherent bacteria. Thus, the specific organization of cellular receptors has major impacts on host–pathogen interaction. PMID:28569760

  2. In Silico Analysis of Gene Expression Network Components Underlying Pigmentation Phenotypes in the Python Identified Evolutionarily Conserved Clusters of Transcription Factor Binding Sites

    PubMed Central

    2016-01-01

    Color variation provides the opportunity to investigate the genetic basis of evolution and selection. Reptiles are less studied than mammals. Comparative genomics approaches allow for knowledge gained in one species to be leveraged for use in another species. We describe a comparative vertebrate analysis of conserved regulatory modules in pythons aimed at assessing bioinformatics evidence that transcription factors important in mammalian pigmentation phenotypes may also be important in python pigmentation phenotypes. We identified 23 python orthologs of mammalian genes associated with variation in coat color phenotypes for which we assessed the extent of pairwise protein sequence identity between pythons and mouse, dog, horse, cow, chicken, anole lizard, and garter snake. We next identified a set of melanocyte/pigment associated transcription factors (CREB, FOXD3, LEF-1, MITF, POU3F2, and USF-1) that exhibit relatively conserved sequence similarity within their DNA binding regions across species based on orthologous alignments across multiple species. Finally, we identified 27 evolutionarily conserved clusters of transcription factor binding sites within ~200-nucleotide intervals of the 1500-nucleotide upstream regions of AIM1, DCT, MC1R, MITF, MLANA, OA1, PMEL, RAB27A, and TYR from Python bivittatus. Our results provide insight into pigment phenotypes in pythons. PMID:27698666

  3. Crystal Structure of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated Csn2 Protein Revealed Ca[superscript 2+]-dependent Double-stranded DNA Binding Activity

    SciTech Connect

    Nam, Ki Hyun; Kurinov, Igor; Ke, Ailong

    2012-05-22

    Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated protein genes (cas genes) are widespread in bacteria and archaea. They form a line of RNA-based immunity to eradicate invading bacteriophages and malicious plasmids. A key molecular event during this process is the acquisition of new spacers into the CRISPR loci to guide the selective degradation of the matching foreign genetic elements. Csn2 is a Nmeni subtype-specific cas gene required for new spacer acquisition. Here we characterize the Enterococcus faecalis Csn2 protein as a double-stranded (ds-) DNA-binding protein and report its 2.7 {angstrom} tetrameric ring structure. The inner circle of the Csn2 tetrameric ring is {approx}26 {angstrom} wide and populated with conserved lysine residues poised for nonspecific interactions with ds-DNA. Each Csn2 protomer contains an {alpha}/{beta} domain and an {alpha}-helical domain; significant hinge motion was observed between these two domains. Ca{sup 2+} was located at strategic positions in the oligomerization interface. We further showed that removal of Ca{sup 2+} ions altered the oligomerization state of Csn2, which in turn severely decreased its affinity for ds-DNA. In summary, our results provided the first insight into the function of the Csn2 protein in CRISPR adaptation by revealing that it is a ds-DNA-binding protein functioning at the quaternary structure level and regulated by Ca{sup 2+} ions.

  4. Crystal structure of clustered regularly interspaced short palindromic repeats (CRISPR)-associated Csn2 protein revealed Ca2+-dependent double-stranded DNA binding activity.

    PubMed

    Nam, Ki Hyun; Kurinov, Igor; Ke, Ailong

    2011-09-02

    Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated protein genes (cas genes) are widespread in bacteria and archaea. They form a line of RNA-based immunity to eradicate invading bacteriophages and malicious plasmids. A key molecular event during this process is the acquisition of new spacers into the CRISPR loci to guide the selective degradation of the matching foreign genetic elements. Csn2 is a Nmeni subtype-specific cas gene required for new spacer acquisition. Here we characterize the Enterococcus faecalis Csn2 protein as a double-stranded (ds-) DNA-binding protein and report its 2.7 Å tetrameric ring structure. The inner circle of the Csn2 tetrameric ring is ∼26 Å wide and populated with conserved lysine residues poised for nonspecific interactions with ds-DNA. Each Csn2 protomer contains an α/β domain and an α-helical domain; significant hinge motion was observed between these two domains. Ca(2+) was located at strategic positions in the oligomerization interface. We further showed that removal of Ca(2+) ions altered the oligomerization state of Csn2, which in turn severely decreased its affinity for ds-DNA. In summary, our results provided the first insight into the function of the Csn2 protein in CRISPR adaptation by revealing that it is a ds-DNA-binding protein functioning at the quaternary structure level and regulated by Ca(2+) ions.

  5. A Bridging [4Fe-4S] Cluster and Nucleotide Binding Are Essential for Function of the Cfd1-Nbp35 Complex as a Scaffold in Iron-Sulfur Protein Maturation*

    PubMed Central

    Netz, Daili J. A.; Pierik, Antonio J.; Stümpfig, Martin; Bill, Eckhard; Sharma, Anil K.; Pallesen, Leif J.; Walden, William E.; Lill, Roland

    2012-01-01

    The essential P-loop NTPases Cfd1 and Nbp35 of the cytosolic iron-sulfur (Fe-S) protein assembly machinery perform a scaffold function for Fe-S cluster synthesis. Both proteins contain a nucleotide binding motif of unknown function and a C-terminal motif with four conserved cysteine residues. The latter motif defines the Mrp/Nbp35 subclass of P-loop NTPases and is suspected to be involved in transient Fe-S cluster binding. To elucidate the function of these two motifs, we first created cysteine mutant proteins of Cfd1 and Nbp35 and investigated the consequences of these mutations by genetic, cell biological, biochemical, and spectroscopic approaches. The two central cysteine residues (CPXC) of the C-terminal motif were found to be crucial for cell viability, protein function, coordination of a labile [4Fe-4S] cluster, and Cfd1-Nbp35 hetero-tetramer formation. Surprisingly, the two proximal cysteine residues were dispensable for all these functions, despite their strict evolutionary conservation. Several lines of evidence suggest that the C-terminal CPXC motifs of Cfd1-Nbp35 coordinate a bridging [4Fe-4S] cluster. Upon mutation of the nucleotide binding motifs Fe-S clusters could no longer be assembled on these proteins unless wild-type copies of Cfd1 and Nbp35 were present in trans. This result indicated that Fe-S cluster loading on these scaffold proteins is a nucleotide-dependent step. We propose that the bridging coordination of the C-terminal Fe-S cluster may be ideal for its facile assembly, labile binding, and efficient transfer to target Fe-S apoproteins, a step facilitated by the cytosolic iron-sulfur (Fe-S) protein assembly proteins Nar1 and Cia1 in vivo. PMID:22362766

  6. A bridging [4Fe-4S] cluster and nucleotide binding are essential for function of the Cfd1-Nbp35 complex as a scaffold in iron-sulfur protein maturation.

    PubMed

    Netz, Daili J A; Pierik, Antonio J; Stümpfig, Martin; Bill, Eckhard; Sharma, Anil K; Pallesen, Leif J; Walden, William E; Lill, Roland

    2012-04-06

    The essential P-loop NTPases Cfd1 and Nbp35 of the cytosolic iron-sulfur (Fe-S) protein assembly machinery perform a scaffold function for Fe-S cluster synthesis. Both proteins contain a nucleotide binding motif of unknown function and a C-terminal motif with four conserved cysteine residues. The latter motif defines the Mrp/Nbp35 subclass of P-loop NTPases and is suspected to be involved in transient Fe-S cluster binding. To elucidate the function of these two motifs, we first created cysteine mutant proteins of Cfd1 and Nbp35 and investigated the consequences of these mutations by genetic, cell biological, biochemical, and spectroscopic approaches. The two central cysteine residues (CPXC) of the C-terminal motif were found to be crucial for cell viability, protein function, coordination of a labile [4Fe-4S] cluster, and Cfd1-Nbp35 hetero-tetramer formation. Surprisingly, the two proximal cysteine residues were dispensable for all these functions, despite their strict evolutionary conservation. Several lines of evidence suggest that the C-terminal CPXC motifs of Cfd1-Nbp35 coordinate a bridging [4Fe-4S] cluster. Upon mutation of the nucleotide binding motifs Fe-S clusters could no longer be assembled on these proteins unless wild-type copies of Cfd1 and Nbp35 were present in trans. This result indicated that Fe-S cluster loading on these scaffold proteins is a nucleotide-dependent step. We propose that the bridging coordination of the C-terminal Fe-S cluster may be ideal for its facile assembly, labile binding, and efficient transfer to target Fe-S apoproteins, a step facilitated by the cytosolic iron-sulfur (Fe-S) protein assembly proteins Nar1 and Cia1 in vivo.

  7. The role of synaptotagmin I C2A calcium-binding domain in synaptic vesicle clustering during synapse formation

    PubMed Central

    Gardzinski, Peter; Lee, David W K; Fei, Guang-He; Hui, Kwokyin; Huang, Guan J; Sun, Hong-Shuo; Feng, Zhong-Ping

    2007-01-01

    Synaptic vesicles aggregate at the presynaptic terminal during synapse formation via mechanisms that are poorly understood. Here we have investigated the role of the putative calcium sensor synaptotagmin I in vesicle aggregation during the formation of soma–soma synapses between identified partner cells using a simple in vitro synapse model in the mollusc Lymnaea stagnalis. Immunocytochemistry, optical imaging and electrophysiological recording techniques were used to monitor synapse formation and vesicle localization. Within 6 h, contact between appropriate synaptic partner cells up-regulated global synaptotagmin I expression, and induced a localized aggregation of synaptotagmin I at the contact site. Cell contacts between non-synaptic partner cells did not affect synaptotagmin I expression. Application of an human immunodeficiency virus type-1 transactivator (HIV-1 TAT)-tagged peptide corresponding to loop 3 of the synaptotagmin I C2A domain prevented synaptic vesicle aggregation and synapse formation. By contrast, a TAT-tagged peptide containing the calcium-binding motif of the C2B domain did not affect synaptic vesicle aggregation or synapse formation. Calcium imaging with Fura-2 demonstrated that TAT–C2 peptides did not alter either basal or evoked intracellular calcium levels. These results demonstrate that contact with an appropriate target cell is necessary to initiate synaptic vesicle aggregation during nascent synapse formation and that the initial aggregation of synaptic vesicles is dependent on loop 3 of the C2A domain of synaptotagmin I. PMID:17317745

  8. A novel polynuclear Cu(I)-sulfur cluster with 1,2-dithiolate-o-carborane ligands as a potential in vitro antitumour agent and its DNA binding properties.

    PubMed

    Han, Zhong; Jiang, Jin; Lu, Jing; Li, Dacheng; Cheng, Shuang; Dou, Jianmin

    2013-04-14

    A novel polynuclear Cu(I)-sulfur cluster, (C54H62B30Cu6N8S6), bearing 1,2-dithiolate-o-carborane and 1,10-phenanthroline ligands was synthesized. The complex displayed rapid, low micromolar in vitro cytotoxicity against a range of epithelial tumour cells and efficient CT-DNA binding.

  9. YY1 Control of AID-Dependent Lymphomagenesis

    DTIC Science & Technology

    2015-07-01

    both AID-dependent and AID-independent B cell lymphomas. We will test our hypothesis in a powerful and innovative bone marrow transplantation model...target site mutations that drive B cell lymphomagenesis in a powerful and innovative bone marrow transplantation model in which bone marrow from λmyc

  10. Exploring the correlation between network structure and electron binding energy in the (H2O)7- cluster through isomer-photoselected vibrational predissociation spectroscopy and ab initio calculations: Addressing complexity beyond types I-III

    NASA Astrophysics Data System (ADS)

    Roscioli, Joseph R.; Hammer, Nathan I.; Johnson, Mark A.; Diri, Kadir; Jordan, Kenneth D.

    2008-03-01

    We report a combined photoelectron and vibrational spectroscopy study of the (H2O)7- cluster anions in order to correlate structural changes with the observed differences in electron binding energies of the various isomers. Photoelectron spectra of the (H2O)7-ṡArm clusters are obtained over the range of m =0-10. These spectra reveal the formation of a new isomer (I') for m >5, the electron binding energy of which is about 0.15eV higher than that of the type I form previously reported to be the highest binding energy species [Coe et al., J. Chem. Phys. 92, 3980 (1990)]. Isomer-selective vibrational predissociation spectra are obtained using both the Ar dependence of the isomer distribution and photochemical depopulation of the more weakly (electron) binding isomers. The likely structures of the isomers at play are identified with the aid of electronic structure calculations, and the electron binding energies, as well as harmonic vibrational spectra, are calculated for 28 low-lying forms for comparison with the experimental results. The HOH bending spectrum of the low binding type II form is dominated by a band that is moderately redshifted relative to the bending origin of the bare water molecule. Calculations trace this feature primarily to the bending vibration localized on a water molecule in which a dangling H atom points toward the electron cloud. Both higher binding forms (I and I') display the characteristic patterns in the bending and OH stretching regions signaling electron attachment primarily to a water molecule in an AA binding site, a persistent motif found in non-isomer-selective spectra of the clusters up to (H2O)50-.

  11. Surface plasmon resonance and NMR analyses of anti Tn-antigen MLS128 monoclonal antibody binding to two or three consecutive Tn-antigen clusters.

    PubMed

    Matsumoto-Takasaki, Ayano; Hanashima, Shinya; Aoki, Ami; Yuasa, Noriyuki; Ogawa, Haruhiko; Sato, Reiko; Kawakami, Hiroko; Mizuno, Mamoru; Nakada, Hiroshi; Yamaguchi, Yoshiki; Fujita-Yamaguchi, Yoko

    2012-03-01

    Tn-antigens are tumour-associated carbohydrate antigens that are involved in metastatic processes and are associated with a poor prognosis. MLS128 monoclonal antibody recognizes the structures of two or three consecutive Tn-antigens (Tn2 or Tn3). Since MLS128 treatment inhibits colon and breast cancer cell growth [Morita, N., Yajima, Y., Asanuma, H., Nakada, H., and Fujita-Yamaguchi, Y. (2009) Inhibition of cancer cell growth by anti-Tn monoclonal antibody MLS128. Biosci. Trends 3, 32-37.], understanding the interaction between MLS128 and Tn-clusters may allow us to the development of novel cancer therapeutics. Although MLS128 was previously reported to have specificity for Tn3 rather than Tn2, similar levels of Tn2/Tn3 binding were unexpectedly observed at 37°C. Thus, thermodynamic analyses were performed via surface plasmon resonance (SPR) using synthetic Tn2- and Tn3-peptides at 10, 15, 20, 25 and 30°C. SPR results revealed that MLS128's association constants for both antigens were highly temperature dependent. Below 25°C MLS128's association constant for Tn3-peptide was clearly higher than that for Tn2-peptide. At 30°C, however, the association constant for Tn2-peptide was higher than that for Tn3-peptide. This reversal of affinity is due to the sharp increase in K(d) for Tn3. These results were confirmed by NMR, which directly measured MLS128-Tn binding in solution. This study suggested that thermodynamic control plays a critical role in the interaction between MLS128/Tn2 and MLS128/Tn3.

  12. Monothiol Glutaredoxins Can Bind Linear [Fe3S4]+ and [Fe4S4]2+ Clusters in Addition to [Fe2S2]2+ Clusters: Spectroscopic Characterization and Functional Implications

    PubMed Central

    Zhang, Bo; Bandyopadhyay, Sibali; Shakamuri, Priyanka; Naik, Sunil G.; Huynh, Boi Hanh; Couturier, Jérémy; Rouhier, Nicolas; Johnson, Michael K.

    2013-01-01

    Saccharomyces cerevisiae mitochondrial glutaredoxin 5 (Grx5) is the archetypical member of a ubiquitous class of monothiol glutaredoxins with a strictly conserved CGFS active-site sequence that has been shown to function in biological [Fe2S2]2+ cluster trafficking. In this work, we show that recombinant S. cerevisiae Grx5 purified aerobically after prolonged exposure of the cell-free extract to air or after anaerobic reconstitution in the presence of glutathione, predominantly contains a linear [Fe3S4]+ cluster. The excited state electronic properties and ground state electronic and vibrational properties of the linear [Fe3S4]+ cluster have been characterized using UV-visible absorption/CD/MCD, EPR, Mössbauer and resonance Raman spectroscopies. The results reveal a rhombic S = 5/2 linear [Fe3S4]+ cluster with properties similar to those reported for synthetic linear [Fe3S4]+ clusters and the linear [Fe3S4]+ clusters in purple aconitase. Moreover, the results indicate that the Fe-S cluster content previously reported for many monothiol Grxs has been misinterpreted exclusively in terms of [Fe2S2]2+ clusters, rather than linear [Fe3S4]+ clusters or mixtures of linear [Fe3S4]+ and [Fe2S2]2+ clusters. In the absence of GSH, anaerobic reconstitution of Grx5 yields a dimeric form containing one [Fe4S4]2+ cluster that competent for in vitro activation of apo-aconitase, via intact cluster transfer. The ligation of the linear [Fe3S4]+ and [Fe4S4]2+ clusters in Grx5 has been assessed by spectroscopic, mutational and analytical studies. Potential roles for monothiol Grx5 in scavenging and recycling linear [Fe3S4]+ clusters released during protein unfolding under oxidative stress conditions and in maturation of [Fe4S4]2+ cluster-containing proteins are discussed in light of these results. PMID:24032439

  13. Structure-function relationship in the globular type III antifreeze protein: identification of a cluster of surface residues required for binding to ice.

    PubMed Central

    Chao, H.; Sönnichsen, F. D.; DeLuca, C. I.; Sykes, B. D.; Davies, P. L.

    1994-01-01

    Antifreeze proteins (AFPs) depress the freezing point of aqueous solutions by binding to and inhibiting the growth of ice. Whereas the ice-binding surface of some fish AFPs is suggested by their linear, repetitive, hydrogen bonding motifs, the 66-amino-acid-long Type III AFP has a compact, globular fold without any obvious periodicity. In the structure, 9 beta-strands are paired to form 2 triple-stranded antiparallel sheets and 1 double-stranded antiparallel sheet, with the 2 triple sheets arranged as an orthogonal beta-sandwich (Sönnichsen FD, Sykes BD, Chao H, Davies PL, 1993, Science 259:1154-1157). Based on its structure and an alignment of Type III AFP isoform sequences, a cluster of conserved, polar, surface-accessible amino acids (N14, T18, Q44, and N46) was noted on and around the triple-stranded sheet near the C-terminus. At 3 of these sites, mutations that switched amide and hydroxyl groups caused a large decrease in antifreeze activity, but amide to carboxylic acid changes produced AFPs that were fully active at pH 3 and pH 6. This is consistent with the observation that Type III AFP is optimally active from pH 2 to pH 11. At a concentration of 1 mg/mL, Q44T, N14S, and T18N had 50%, 25%, and 10% of the activity of wild-type antifreeze, respectively. The effects of the mutations were cumulative, such that the double mutant N14S/Q44T had 10% of the wild-type activity and the triple mutant N14S/T18N/Q44T had no activity. All mutants with reduced activity were shown to be correctly folded by NMR spectroscopy. Moreover, a complete characterization of the triple mutant by 2-dimensional NMR spectroscopy indicated that the individual and combined mutations did not significantly alter the structure of these proteins. These results suggest that the C-terminal beta-sheet of Type III AFP is primarily responsible for antifreeze activity, and they identify N14, T18, and Q44 as key residues for the AFP-ice interaction. PMID:7849594

  14. The Amyloid Precursor Protein of Alzheimer’s Disease Clusters at the Organelle/Microtubule Interface on Organelles that Bind Microtubules in an ATP Dependent Manner

    PubMed Central

    Stevenson, James W.; Conaty, Eliza A.; Walsh, Rylie B.; Poidomani, Paul J.; Samoriski, Colin M.; Scollins, Brianne J.; DeGiorgis, Joseph A.

    2016-01-01

    The amyloid precursor protein (APP) is a causal agent in the pathogenesis of Alzheimer’s disease and is a transmembrane protein that associates with membrane-limited organelles. APP has been shown to co-purify through immunoprecipitation with a kinesin light chain suggesting that APP may act as a trailer hitch linking kinesin to its intercellular cargo, however this hypothesis has been challenged. Previously, we identified an mRNA transcript that encodes a squid homolog of human APP770. The human and squid isoforms share 60% sequence identity and 76% sequence similarity within the cytoplasmic domain and share 15 of the final 19 amino acids at the C-terminus establishing this highly conserved domain as a functionally import segment of the APP molecule. Here, we study the distribution of squid APP in extruded axoplasm as well as in a well-characterized reconstituted organelle/microtubule preparation from the squid giant axon in which organelles bind microtubules and move towards the microtubule plus-ends. We find that APP associates with microtubules by confocal microscopy and co-purifies with KI-washed axoplasmic organelles by sucrose density gradient fractionation. By electron microscopy, APP clusters at a single focal point on the surfaces of organelles and localizes to the organelle/microtubule interface. In addition, the association of APP-organelles with microtubules is an ATP dependent process suggesting that the APP-organelles contain a microtubule-based motor protein. Although a direct kinesin/APP association remains controversial, the distribution of APP at the organelle/microtubule interface strongly suggests that APP-organelles have an orientation and that APP like the Alzheimer’s protein tau has a microtubule-based function. PMID:26814888

  15. The Amyloid Precursor Protein of Alzheimer's Disease Clusters at the Organelle/Microtubule Interface on Organelles that Bind Microtubules in an ATP Dependent Manner.

    PubMed

    Stevenson, James W; Conaty, Eliza A; Walsh, Rylie B; Poidomani, Paul J; Samoriski, Colin M; Scollins, Brianne J; DeGiorgis, Joseph A

    2016-01-01

    The amyloid precursor protein (APP) is a causal agent in the pathogenesis of Alzheimer's disease and is a transmembrane protein that associates with membrane-limited organelles. APP has been shown to co-purify through immunoprecipitation with a kinesin light chain suggesting that APP may act as a trailer hitch linking kinesin to its intercellular cargo, however this hypothesis has been challenged. Previously, we identified an mRNA transcript that encodes a squid homolog of human APP770. The human and squid isoforms share 60% sequence identity and 76% sequence similarity within the cytoplasmic domain and share 15 of the final 19 amino acids at the C-terminus establishing this highly conserved domain as a functionally import segment of the APP molecule. Here, we study the distribution of squid APP in extruded axoplasm as well as in a well-characterized reconstituted organelle/microtubule preparation from the squid giant axon in which organelles bind microtubules and move towards the microtubule plus-ends. We find that APP associates with microtubules by confocal microscopy and co-purifies with KI-washed axoplasmic organelles by sucrose density gradient fractionation. By electron microscopy, APP clusters at a single focal point on the surfaces of organelles and localizes to the organelle/microtubule interface. In addition, the association of APP-organelles with microtubules is an ATP dependent process suggesting that the APP-organelles contain a microtubule-based motor protein. Although a direct kinesin/APP association remains controversial, the distribution of APP at the organelle/microtubule interface strongly suggests that APP-organelles have an orientation and that APP like the Alzheimer's protein tau has a microtubule-based function.

  16. Identification of okadaic acid binding protein 2 in reconstituted sponge cell clusters from Halichondria okadai and its contribution to the detoxification of okadaic acid.

    PubMed

    Konoki, Keiichi; Okada, Kayo; Kohama, Mami; Matsuura, Hiroki; Saito, Kaori; Cho, Yuko; Nishitani, Goh; Miyamoto, Tomofumi; Fukuzawa, Seketsu; Tachibana, Kazuo; Yotsu-Yamashita, Mari

    2015-12-15

    Okadaic acid (OA) and OA binding protein 2 (OABP2) were previously isolated from the marine sponge Halichondria okadai. Because the amino acid sequence of OABP2 is completely different from that of protein phosphatase 2A, a well-known target of OA, we have been investigating the production and function of OABP2. In the present study, we hypothesized that OABP2 plays a role in the detoxification of OA in H. okadai and that the OA concentrations are in proportional to the OABP2 concentrations in the sponge specimens. Based on the OA concentrations and the OABP2 concentrations in the sponge specimens collected in various places and in different seasons, however, we could not determine a positive correlation between OA and OABP2. We then attempted to determine distribution of OA and OABP2 in the sponge specimen. When the mixture of dissociated sponge cells and symbiotic species were separated with various pore-sized nylon meshes, most of the OA and OABP2 was detected from the same 0-10 μm fraction. Next, when sponge cell clusters were prepared from a mixture of dissociated sponge cells and symbiotic species in the presence of penicillin and streptomycin, we identified the 18S rDNA of H. okadai and the gene of OABP2 in the analysis of genomic DNA but could not detect OA by LC-MS/MS. We thus concluded that the sponge cells express OABP2, and that OA was not apparently present in the sponge cells but could be colocalized with OABP2 in the sponge cells at a concentration less than the limit of detection.

  17. A Cysteine-Rich CCG Domain Contains a Novel [4Fe-4S] Cluster Binding Motif As Deduced from Studies with Subunit B of Heterodisulfide Reductase from Methanothermobacter marburgensis†

    PubMed Central

    Hamann, Nils; Mander, Gerd J.; Shokes, Jacob E.; Scott, Robert A.; Bennati, Marina; Hedderich, Reiner

    2013-01-01

    Heterodisulfide reductase (HDR) of methanogenic archaea with its active-site [4Fe-4S] cluster catalyzes the reversible reduction of the heterodisulfide (CoM-S-S-CoB) of the methanogenic coenzyme M (CoM-SH) and coenzyme B (CoB-SH). CoM-HDR, a mechanistic-based paramagnetic intermediate generated upon half-reaction of the oxidized enzyme with CoM-SH, is a novel type of [4Fe-4S]3+ cluster with CoM-SH as a ligand. Subunit HdrB of the Methanothermobacter marburgensis HdrABC holoenzyme contains two cysteine-rich sequence motifs (CX31–39CCX35–36CXXC), designated as CCG domain in the Pfam database and conserved in many proteins. Here we present experimental evidence that the C-terminal CCG domain of HdrB binds this unusual [4Fe-4S] cluster. HdrB was produced in Escherichia coli, and an iron–sulfur cluster was subsequently inserted by in vitro reconstitution. In the oxidized state the cluster without the substrate exhibited a rhombic EPR signal (gzyx= 2.015, 1.995, and 1.950) reminiscent of the CoM-HDR signal. 57Fe ENDOR spectroscopy revealed that this paramagnetic species is a [4Fe-4S] cluster with 57Fe hyperfine couplings very similar to that of CoM-HDR. CoM-33SH resulted in a broadening of the EPR signal, and upon addition of CoM-SH the midpoint potential of the cluster was shifted to values observed for CoM-HDR, both indicating binding of CoM-SH to the cluster. Site-directed mutagenesis of all 12 cysteine residues in HdrB identified four cysteines of the C-terminal CCG domain as cluster ligands. Combined with the previous detection of CoM-HDR-like EPR signals in other CCG domain-containing proteins our data indicate a general role of the C-terminal CCG domain in coordination of this novel [4Fe-4S] cluster. In addition, Zn K-edge X-ray absorption spectroscopy identified an isolated Zn site with an S3(O/N)1 geometry in HdrB and the HDR holoenzyme. The N-terminal CCG domain is suggested to provide ligands to the Zn site. PMID:17929940

  18. A Cysteine-Rich CCG Domain Contains a Novel [4Fe-4S] Cluster Binding Motif As Deduced From Studies With Subunit B of Heterodisulfide Reductase From Methanothermobacter Marburgensis

    SciTech Connect

    Hamann, N.; Mander, G.J.; Shokes, J.E.; Scott, R.A.; Bennati, M.; Hedderich, R.

    2009-06-01

    Heterodisulfide reductase (HDR) of methanogenic archaea with its active-site [4Fe-4S] cluster catalyzes the reversible reduction of the heterodisulfide (CoM-S-S-CoB) of the methanogenic coenzyme M (CoM-SH) and coenzyme B (CoB-SH). CoM-HDR, a mechanistic-based paramagnetic intermediate generated upon half-reaction of the oxidized enzyme with CoM-SH, is a novel type of [4Fe-4S]{sup 3+} cluster with CoM-SH as a ligand. Subunit HdrB of the Methanothermobacter marburgensis HdrABC holoenzyme contains two cysteine-rich sequence motifs (CX{sub 31-39}CCX{sub 35-36}CXXC), designated as CCG domain in the Pfam database and conserved in many proteins. Here we present experimental evidence that the C-terminal CCG domain of HdrB binds this unusual [4Fe-4S] cluster. HdrB was produced in Escherichia coli, and an iron-sulfur cluster was subsequently inserted by in vitro reconstitution. In the oxidized state the cluster without the substrate exhibited a rhombic EPR signal (g{sub zyx} = 2.015, 1.995, and 1.950) reminiscent of the CoM-HDR signal. {sup 57}Fe ENDOR spectroscopy revealed that this paramagnetic species is a [4Fe-4S] cluster with {sup 57}Fe hyperfine couplings very similar to that of CoM-HDR. CoM-{sup 33}SH resulted in a broadening of the EPR signal, and upon addition of CoM-SH the midpoint potential of the cluster was shifted to values observed for CoM-HDR, both indicating binding of CoM-SH to the cluster. Site-directed mutagenesis of all 12 cysteine residues in HdrB identified four cysteines of the C-terminal CCG domain as cluster ligands. Combined with the previous detection of CoM-HDR-like EPR signals in other CCG domain-containing proteins our data indicate a general role of the C-terminal CCG domain in coordination of this novel [4Fe-4S] cluster. In addition, Zn K-edge X-ray absorption spectroscopy identified an isolated Zn site with an S{sub 3}(O/N){sub 1} geometry in HdrB and the HDR holoenzyme. The N-terminal CCG domain is suggested to provide ligands to the Zn

  19. Kinetic evaluation of highly active supported gold catalysts prepared from monolayer-protected clusters: an experimental Michaelis-Menten approach for determining the oxygen binding constant during CO oxidation catalysis.

    PubMed

    Long, Cormac G; Gilbertson, John D; Vijayaraghavan, Ganesh; Stevenson, Keith J; Pursell, Christopher J; Chandler, Bert D

    2008-08-06

    Thiol monolayer-protected Au clusters (MPCs) were prepared using dendrimer templates, deposited onto a high-surface-area titania, and then the thiol stabilizers were removed under H2/N2. The resulting Au catalysts were characterized with transmission electron microscopy, X-ray photoelectron spectroscopy, and infrared spectroscopy of adsorbed CO. The Au catalysts prepared via this route displayed minimal particle agglomeration during the deposition and activation steps. Structural data obtained from the physical characterization of the Au catalysts were comparable to features exhibited from a traditionally prepared standard Au catalyst obtained from the World Gold Council (WGC). A differential kinetic study of CO oxidation catalysis by the MPC-prepared Au and the standard WGC catalyst showed that these two catalyst systems have essentially the same reaction order and Arrhenius apparent activation energies (28 kJ/mol). However, the MPC-prepared Au catalyst shows 50% greater activity for CO oxidation. Using a Michaelis-Menten approach, the oxygen binding constants for the two catalyst systems were determined and found to be essentially the same within experimental error. To our knowledge, this kinetic evaluation is the first experimental determination of oxygen binding by supported Au nanoparticle catalysts under working conditions. The values for the oxygen binding equilibrium constant obtained from the Michaelis-Menten treatment (ca. 29-39) are consistent with ultra-high-vacuum measurements on model catalyst systems and support density functional theory calculations for oxygen binding at corner or edge atoms on Au nanoparticles and clusters.

  20. Impaired synaptic clustering of postsynaptic density proteins and altered signal transmission in hippocampal neurons, and disrupted learning behavior in PDZ1 and PDZ2 ligand binding-deficient PSD-95 knockin mice

    PubMed Central

    2012-01-01

    Background Postsynaptic density (PSD)-95-like membrane-associated guanylate kinases (PSD-MAGUKs) are scaffold proteins in PSDs that cluster signaling molecules near NMDA receptors. PSD-MAGUKs share a common domain structure, including three PDZ (PDZ1/2/3) domains in their N-terminus. While multiple domains enable the PSD-MAGUKs to bind various ligands, the contribution of each PDZ domain to synaptic organization and function is not fully understood. Here, we focused on the PDZ1/2 domains of PSD-95 that bind NMDA-type receptors, and studied the specific roles of the ligand binding of these domains in the assembly of PSD proteins, synaptic properties of hippocampal neurons, and behavior, using ligand binding-deficient PSD-95 cDNA knockin (KI) mice. Results The KI mice showed decreased accumulation of mutant PSD-95, PSD-93 and AMPA receptor subunits in the PSD fraction of the hippocampus. In the hippocampal CA1 region of young KI mice, basal synaptic efficacy was reduced and long-term potentiation (LTP) was enhanced with intact long-term depression. In adult KI mice, there was no significant change in the magnitude of LTP in CA1, but robustly enhanced LTP was induced at the medial perforant path-dentate gyrus synapses, suggesting that PSD-95 has an age- and subregion-dependent role. In a battery of behavioral tests, KI mice showed markedly abnormal anxiety-like behavior, impaired spatial reference and working memory, and impaired remote memory and pattern separation in fear conditioning test. Conclusions These findings reveal that PSD-95 including its ligand binding of the PDZ1/2 domains controls the synaptic clustering of PSD-MAGUKs and AMPA receptors, which may have an essential role in regulating hippocampal synaptic transmission, plasticity, and hippocampus-dependent behavior. PMID:23268962

  1. Impaired synaptic clustering of postsynaptic density proteins and altered signal transmission in hippocampal neurons, and disrupted learning behavior in PDZ1 and PDZ2 ligand binding-deficient PSD-95 knockin mice.

    PubMed

    Nagura, Hitoshi; Ishikawa, Yasuyuki; Kobayashi, Katsunori; Takao, Keizo; Tanaka, Tomo; Nishikawa, Kouki; Tamura, Hideki; Shiosaka, Sadao; Suzuki, Hidenori; Miyakawa, Tsuyoshi; Fujiyoshi, Yoshinori; Doi, Tomoko

    2012-12-26

    Postsynaptic density (PSD)-95-like membrane-associated guanylate kinases (PSD-MAGUKs) are scaffold proteins in PSDs that cluster signaling molecules near NMDA receptors. PSD-MAGUKs share a common domain structure, including three PDZ (PDZ1/2/3) domains in their N-terminus. While multiple domains enable the PSD-MAGUKs to bind various ligands, the contribution of each PDZ domain to synaptic organization and function is not fully understood. Here, we focused on the PDZ1/2 domains of PSD-95 that bind NMDA-type receptors, and studied the specific roles of the ligand binding of these domains in the assembly of PSD proteins, synaptic properties of hippocampal neurons, and behavior, using ligand binding-deficient PSD-95 cDNA knockin (KI) mice. The KI mice showed decreased accumulation of mutant PSD-95, PSD-93 and AMPA receptor subunits in the PSD fraction of the hippocampus. In the hippocampal CA1 region of young KI mice, basal synaptic efficacy was reduced and long-term potentiation (LTP) was enhanced with intact long-term depression. In adult KI mice, there was no significant change in the magnitude of LTP in CA1, but robustly enhanced LTP was induced at the medial perforant path-dentate gyrus synapses, suggesting that PSD-95 has an age- and subregion-dependent role. In a battery of behavioral tests, KI mice showed markedly abnormal anxiety-like behavior, impaired spatial reference and working memory, and impaired remote memory and pattern separation in fear conditioning test. These findings reveal that PSD-95 including its ligand binding of the PDZ1/2 domains controls the synaptic clustering of PSD-MAGUKs and AMPA receptors, which may have an essential role in regulating hippocampal synaptic transmission, plasticity, and hippocampus-dependent behavior.

  2. High-resolution neutron and X-ray diffraction room-temperature studies of an H-FABP-oleic acid complex: study of the internal water cluster and ligand binding by a transferred multipolar electron-density distribution.

    PubMed

    Howard, E I; Guillot, B; Blakeley, M P; Haertlein, M; Moulin, M; Mitschler, A; Cousido-Siah, A; Fadel, F; Valsecchi, W M; Tomizaki, Takashi; Petrova, T; Claudot, J; Podjarny, A

    2016-03-01

    Crystal diffraction data of heart fatty acid binding protein (H-FABP) in complex with oleic acid were measured at room temperature with high-resolution X-ray and neutron protein crystallography (0.98 and 1.90 Å resolution, respectively). These data provided very detailed information about the cluster of water molecules and the bound oleic acid in the H-FABP large internal cavity. The jointly refined X-ray/neutron structure of H-FABP was complemented by a transferred multipolar electron-density distribution using the parameters of the ELMAMII library. The resulting electron density allowed a precise determination of the electrostatic potential in the fatty acid (FA) binding pocket. Bader's quantum theory of atoms in molecules was then used to study interactions involving the internal water molecules, the FA and the protein. This approach showed H⋯H contacts of the FA with highly conserved hydrophobic residues known to play a role in the stabilization of long-chain FAs in the binding cavity. The determination of water hydrogen (deuterium) positions allowed the analysis of the orientation and electrostatic properties of the water molecules in the very ordered cluster. As a result, a significant alignment of the permanent dipoles of the water molecules with the protein electrostatic field was observed. This can be related to the dielectric properties of hydration layers around proteins, where the shielding of electrostatic interactions depends directly on the rotational degrees of freedom of the water molecules in the interface.

  3. Functional Dynamics Revealed by the Structure of the SufBCD Complex, a Novel ATP-binding Cassette (ABC) Protein That Serves as a Scaffold for Iron-Sulfur Cluster Biogenesis*

    PubMed Central

    Hirabayashi, Kei; Yuda, Eiki; Tanaka, Naoyuki; Katayama, Sumie; Iwasaki, Kenji; Matsumoto, Takashi; Kurisu, Genji; Outten, F. Wayne; Fukuyama, Keiichi; Takahashi, Yasuhiro; Wada, Kei

    2015-01-01

    ATP-binding cassette (ABC)-type ATPases are chemomechanical engines involved in diverse biological pathways. Recent genomic information reveals that ABC ATPase domains/subunits act not only in ABC transporters and structural maintenance of chromosome proteins, but also in iron-sulfur (Fe-S) cluster biogenesis. A novel type of ABC protein, the SufBCD complex, functions in the biosynthesis of nascent Fe-S clusters in almost all Eubacteria and Archaea, as well as eukaryotic chloroplasts. In this study, we determined the first crystal structure of the Escherichia coli SufBCD complex, which exhibits the common architecture of ABC proteins: two ABC ATPase components (SufC) with function-specific components (SufB-SufD protomers). Biochemical and physiological analyses based on this structure provided critical insights into Fe-S cluster assembly and revealed a dynamic conformational change driven by ABC ATPase activity. We propose a molecular mechanism for the biogenesis of the Fe-S cluster in the SufBCD complex. PMID:26472926

  4. A comparison of the coupled cluster and internally contracted averaged coupled-pair functional levels of theory for the calculation of the MCH2(+) binding energies for M = Sc to Cu

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Scuseria, Gustavo E.

    1992-01-01

    The correlation contribution to the M-C binding energy for the MCH2(+) systems can exceed 100 kcal/mol. At the self-consistent field (SCF) level, these systems can be more than 50 kcal/mol above the fragment energies. In spite of the poor zeroth-order reference, the coupled cluster single and double excitation method with a perturbational estimate of triple excitations, CCSD(T), method is shown to provide an accurate description of these systems. The maximum difference between the CCSD(T) and internally contracted averaged coupled-pair functional binding energies is 1.5 kcal/mol for CrCH2(+), with the remaining systems agreeing to within 1.0 kcal/mol.

  5. High mannose-binding lectin with preference for the cluster of alpha1-2-mannose from the green alga Boodlea coacta is a potent entry inhibitor of HIV-1 and influenza viruses.

    PubMed

    Sato, Yuichiro; Hirayama, Makoto; Morimoto, Kinjiro; Yamamoto, Naoki; Okuyama, Satomi; Hori, Kanji

    2011-06-03

    The complete amino acid sequence of a lectin from the green alga Boodlea coacta (BCA), which was determined by a combination of Edman degradation of its peptide fragments and cDNA cloning, revealed the following: 1) B. coacta used a noncanonical genetic code (where TAA and TAG codons encode glutamine rather than a translation termination), and 2) BCA consisted of three internal tandem-repeated domains, each of which contains the sequence motif similar to the carbohydrate-binding site of Galanthus nivalis agglutinin-related lectins. Carbohydrate binding specificity of BCA was examined by a centrifugal ultrafiltration-HPLC assay using 42 pyridylaminated oligosaccharides. BCA bound to high mannose-type N-glycans but not to the complex-type, hybrid-type core structure of N-glycans or oligosaccharides from glycolipids. This lectin had exclusive specificity for α1-2-linked mannose at the nonreducing terminus. The binding activity was enhanced as the number of terminal α1-2-linked mannose substitutions increased. Mannobiose, mannotriose, and mannopentaose were incapable of binding to BCA. Thus, BCA preferentially recognized the nonreducing terminal α1-2-mannose cluster as a primary target. As predicted from carbohydrate-binding propensity, this lectin inhibited the HIV-1 entry into the host cells at a half-maximal effective concentration of 8.2 nm. A high association constant (3.71 × 10(8) M(-1)) of BCA with the HIV envelope glycoprotein gp120 was demonstrated by surface plasmon resonance analysis. Moreover, BCA showed the potent anti-influenza activity by directly binding to viral envelope hemagglutinin against various strains, including a clinical isolate of pandemic H1N1-2009 virus, revealing its potential as an antiviral reagent.

  6. Position of the ATP-binding site of the Fe-protein relative to the iron-sulfur clusters 4Fe-4S and the iron-molybdenum-containing cofactor

    SciTech Connect

    Kondrat'eva, T.A.; Gvozdev, R.I.; Mitsova, I.Z.

    1986-06-10

    Nitrogenase was affinity labeled with epsilon-ATP at the ATP-binding sites and separated into protein components by ion exchange chromatography. In spectrofluorometric titration of the labeled Fe-protein with the native MoFe-protein from the wild strain of Azotobacter and the MoFe-protein not containing iron-sulfur clusters 4Fe-4S, a 4-6-fold quenching of the fluorescence of immobilized epsilon-ATP was observed. When the labeled Fe-protein was titrated with MoFe-protein from the Azotobacter mutant UW-45, on the contrary, there was a four-fold increase in the fluorescence of immobilized epsilon-ATP. Since the MoFe-protein of the Azotobacter mutant UW-45 differs from the MoFe-protein from the wild strain of Azotobacter only by the absence of an iron-molybdenum-containing cofactor (Fe-Mo-cofactor), it is suggested that the ATP-binding site of the Fe-protein is situated next to the FeMo-cofactor and at a distance from the iron-sulfur clusters 4Fe-4S when a complex is formed with the MoFe-protein. The formation of a complex is accompanied by a change in the conformation of the Fe-protein.

  7. Specific binding of the regulatory protein ExpG to promoter regions of the galactoglucan biosynthesis gene cluster of Sinorhizobium meliloti--a combined molecular biology and force spectroscopy investigation.

    PubMed

    Bartels, Frank Wilco; Baumgarth, Birgit; Anselmetti, Dario; Ros, Robert; Becker, Anke

    2003-08-01

    Specific protein-DNA interaction is fundamental for all aspects of gene transcription. We focus on a regulatory DNA-binding protein in the Gram-negative soil bacterium Sinorhizobium meliloti 2011, which is capable of fixing molecular nitrogen in a symbiotic interaction with alfalfa plants. The ExpG protein plays a central role in regulation of the biosynthesis of the exopolysaccharide galactoglucan, which promotes the establishment of symbiosis. ExpG is a transcriptional activator of exp gene expression. We investigated the molecular mechanism of binding of ExpG to three associated target sequences in the exp gene cluster with standard biochemical methods and single molecule force spectroscopy based on the atomic force microscope (AFM). Binding of ExpG to expA1, expG-expD1, and expE1 promoter fragments in a sequence specific manner was demonstrated, and a 28 bp conserved region was found. AFM force spectroscopy experiments confirmed the specific binding of ExpG to the promoter regions, with unbinding forces ranging from 50 to 165 pN in a logarithmic dependence from the loading rates of 70-79000 pN/s. Two different regimes of loading rate-dependent behaviour were identified. Thermal off-rates in the range of k(off)=(1.2+/-1.0) x 10(-3)s(-1) were derived from the lower loading rate regime for all promoter regions. In the upper loading rate regime, however, these fragments exhibited distinct differences which are attributed to the molecular binding mechanism.

  8. High-resolution neutron and X-ray diffraction room-temperature studies of an H-FABP–oleic acid complex: study of the internal water cluster and ligand binding by a transferred multipolar electron-density distribution

    PubMed Central

    Howard, E. I.; Guillot, B.; Blakeley, M. P.; Haertlein, M.; Moulin, M.; Mitschler, A.; Cousido-Siah, A.; Fadel, F.; Valsecchi, W. M.; Tomizaki, Takashi; Petrova, T.; Claudot, J.; Podjarny, A.

    2016-01-01

    Crystal diffraction data of heart fatty acid binding protein (H-FABP) in complex with oleic acid were measured at room temperature with high-resolution X-ray and neutron protein crystallography (0.98 and 1.90 Å resolution, respectively). These data provided very detailed information about the cluster of water molecules and the bound oleic acid in the H-FABP large internal cavity. The jointly refined X-ray/neutron structure of H-FABP was complemented by a transferred multipolar electron-density distribution using the parameters of the ELMAMII library. The resulting electron density allowed a precise determination of the electrostatic potential in the fatty acid (FA) binding pocket. Bader’s quantum theory of atoms in molecules was then used to study interactions involving the internal water molecules, the FA and the protein. This approach showed H⋯H contacts of the FA with highly conserved hydrophobic residues known to play a role in the stabilization of long-chain FAs in the binding cavity. The determination of water hydrogen (deuterium) positions allowed the analysis of the orientation and electrostatic properties of the water molecules in the very ordered cluster. As a result, a significant alignment of the permanent dipoles of the water molecules with the protein electrostatic field was observed. This can be related to the dielectric properties of hydration layers around proteins, where the shielding of electrostatic interactions depends directly on the rotational degrees of freedom of the water molecules in the interface. PMID:27006775

  9. (S)-2-Amino-6-nitrohexanoic Acid Binds to Human Arginase I through Multiple Nitro−Metal Coordination Interactions in the Binuclear Manganese Cluster

    SciTech Connect

    Zakharian, T.; Di Costanzo, L; Christianson, D

    2008-01-01

    The binding affinity of (S)-2-amino-6-nitrohexanoic acid to human arginase I was studied using surface plasmon resonance (K{sub d} = 60 {mu}M), and the X-ray crystal structure of the enzyme-inhibitor complex was determined at 1.6 {angstrom} resolution to reveal multiple nitro-metal coordination interactions.

  10. In Silico Analysis for Transcription Factors With Zn(II)2C6 Binuclear Cluster DNA-Binding Domains in Candida albicans

    PubMed Central

    Maicas, Sergi; Moreno, Inmaculada; Nieto, Almudena; Gómez, Micaela; Sentandreu, Rafael

    2005-01-01

    A total of 6047 open reading frames in the Candida albicans genome were screened for Zn(II)2C6-type zinc cluster proteins (or binuclear cluster proteins) involved in DNA recognition. These fungal proteins are transcription regulators of genes involved in a wide range of cellular processes, including metabolism of different compounds such as sugars or amino acids, as well as multi-drug resistance, control of meiosis, cell wall architecture, etc. The selection criteria used in the sequence analysis were the presence of the CysX2CysX6CysX5-16CysX2CysX6-8Cys motif and a putative nuclear localization signal. Using this approach, 70 putative Zn(II)2C6 transcription factors have been found in the genome of C. albicans. PMID:18629206

  11. Density functional study of the stable oxidation states and the binding of oxygen in MO4 clusters of the 3d elements.

    PubMed

    Uzunova, Ellie L

    2011-10-06

    The tetraoxide clusters with stoichiometry MO(4), and the structural isomers with side-on and end-on bonded dioxygen, are studied by DFT with the B1LYP functional. Diperoxides M(O(2))(2) are the most stable clusters at the beginning (Sc, Ti) and at the end of the row (Co-Cu), the latter being planar. For V, Cr, and Mn, the dioxoperoxides O(2)M(O(2)) are the most stable isomers. Low-spin states are dominant for the nonplanar diperoxides M(O(2))(2) and dioxoperoxides O(2)M(O(2)), and the local magnetic moment at the metal cations is small. The local charge on the metal cation center is higher in the diperoxides of Sc and Ti; it drops significantly in the dioxoperoxides of V and Cr. The iron dioxosuperoxide in the (3)A'' state, which contains end-on bonded dioxygen, OOFeO(2), is an exception with higher charge on Fe. In the planar diperoxides of Co, Ni, and Cu, oxygen-to-metal charge transfer is significant, and the local charge on the metal cation is close to 1. In all tetraoxygen clusters of the 3d elements, the cation center remains strongly electrophilic and interacts with Ar atoms from the inert-gas matrix, where the clusters are trapped for IR spectral studies. Significant frequency shifts in the matrix are found for the dioxoperoxide of vanadium, O(2)V(O(2)), the dioxosuperoxide of iron, OOFeO(2), and the nickel diperoxide, Ni(O(2))(2).

  12. Ligand binding at the A-cluster in full-length or truncated acetyl-CoA synthase studied by X-ray absorption spectroscopy.

    PubMed

    Schrapers, Peer; Ilina, Julia; Gregg, Christina M; Mebs, Stefan; Jeoung, Jae-Hun; Dau, Holger; Dobbek, Holger; Haumann, Michael

    2017-01-01

    Bacteria integrate CO2 reduction and acetyl coenzyme-A (CoA) synthesis in the Wood-Ljungdal pathway. The acetyl-CoA synthase (ACS) active site is a [4Fe4S]-[NiNi] complex (A-cluster). The dinickel site structure (with proximal, p, and distal, d, ions) was studied by X-ray absorption spectroscopy in ACS variants comprising all three protein domains or only the C-terminal domain with the A-cluster. Both variants showed two square-planar Ni(II) sites and an OH- bound at Ni(II)p in oxidized enzyme and a H2O at Ni(I)p in reduced enzyme; a Ni(I)p-CO species was induced by CO incubation and a Ni(II)-CH3- species with an additional water ligand by a methyl group donor. These findings render a direct effect of the N-terminal and middle domains on the A-cluster structure unlikely.

  13. Ligand binding at the A-cluster in full-length or truncated acetyl-CoA synthase studied by X-ray absorption spectroscopy

    PubMed Central

    Schrapers, Peer; Ilina, Julia; Gregg, Christina M.; Mebs, Stefan; Jeoung, Jae-Hun; Dau, Holger; Dobbek, Holger; Haumann, Michael

    2017-01-01

    Bacteria integrate CO2 reduction and acetyl coenzyme-A (CoA) synthesis in the Wood-Ljungdal pathway. The acetyl-CoA synthase (ACS) active site is a [4Fe4S]-[NiNi] complex (A-cluster). The dinickel site structure (with proximal, p, and distal, d, ions) was studied by X-ray absorption spectroscopy in ACS variants comprising all three protein domains or only the C-terminal domain with the A-cluster. Both variants showed two square-planar Ni(II) sites and an OH- bound at Ni(II)p in oxidized enzyme and a H2O at Ni(I)p in reduced enzyme; a Ni(I)p-CO species was induced by CO incubation and a Ni(II)-CH3- species with an additional water ligand by a methyl group donor. These findings render a direct effect of the N-terminal and middle domains on the A-cluster structure unlikely. PMID:28178309

  14. A functional variant in APOA5/A4/C3/A1 gene cluster contributes to elevated triglycerides and severity of CAD by interfering with microRNA 3201 binding efficiency.

    PubMed

    Cui, Guanglin; Li, Zongzhe; Li, Rui; Huang, Jin; Wang, Haoran; Zhang, Lina; Ding, Hu; Wang, Dao Wen

    2014-07-22

    Recent genome-wide association studies identified the APOA5/A4/C3/A1 gene cluster polymorphisms influencing triglyceride level and risk of coronary artery disease (CAD). The purposes of this study were to fine-map triglyceride association signals in the APOA5/A4/C3/A1 gene cluster and then explore the clinical relevance in CAD and potential underlying mechanisms. We resequenced the APOA5/A4/C3/A1 gene cluster in 200 patients with extremely high triglyceride levels (≥10 mm/l) and 200 healthy control subjects who were ethnically matched and genotyped 20 genetic markers among 4,991 participants with Chinese Han ethnicity. Subsequently, 8 risk markers were investigated in 917 early-onset and 1,149 late-onset CAD patients, respectively. The molecular mechanism was explored. By resequencing, a number of newly and potentially functional variants were identified, and both the common and rare variants have remarkable cumulative effects on hypertriglyceridemia risk. Of note, gene dosage of rs2266788 demonstrated a robust association with triglyceride level (p = 1.39 × 10(-19)), modified Gensini scores (p = 1.67 × 10(-3)), and numbers of vascular lesions in CAD patients (odds ratio: 1.96, 95% confidence interval: 1.31 to 2.14, p = 8.96 × 10(-4)). Functional study demonstrated that the rs2266788 C allele destroyed microRNA 3201 binding to the 3' UTR of APOA5, resulting in prolonging the half-life of APOA5 messenger RNA and increasing its expression levels. Genetic variants in APOA5/A4/C3/A1 gene cluster play an important role in the regulation of plasma triglyceride levels by an increased APOA5 concentration and contribute to the severity of CAD. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  15. Two-Step Membrane Binding of NDPK-B Induces Membrane Fluidity Decrease and Changes in Lipid Lateral Organization and Protein Cluster Formation.

    PubMed

    Francois-Moutal, Liberty; Ouberai, Myriam M; Maniti, Ofelia; Welland, Mark E; Strzelecka-Kiliszek, Agnieszka; Wos, Marcin; Pikula, Slawomir; Bandorowicz-Pikula, Joanna; Marcillat, Olivier; Granjon, Thierry

    2016-12-06

    Nucleoside diphosphate kinases (NDPKs) are crucial elements in a wide array of cellular physiological or pathophysiological processes such as apoptosis, proliferation, or metastasis formation. Among the NDPK isoenzymes, NDPK-B, a cytoplasmic protein, was reported to be associated with several biological membranes such as plasma or endoplasmic reticulum membranes. Using several membrane models (liposomes, lipid monolayers, and supported lipid bilayers) associated with biophysical approaches, we show that lipid membrane binding occurs in a two-step process: first, initiation by a strong electrostatic adsorption process and followed by shallow penetration of the protein within the membrane. The NDPK-B binding leads to a decrease in membrane fluidity and formation of protein patches. The ability of NDPK-B to form microdomains at the membrane level may be related to protein-protein interactions triggered by its association with anionic phospholipids. Such accumulation of NDPK-B would amplify its effects in functional platform formation and protein recruitment at the membrane.

  16. Cancer Clusters

    MedlinePlus

    ... Genetics Services Directory Cancer Prevention Overview Research Cancer Clusters On This Page What is a cancer cluster? ... the number of cancer cases in the suspected cluster Many reported clusters include too few cancer cases ...

  17. Two genes encoding an endoglucanase and a cellulose-binding protein are clustered and co-regulated by a TTA codon in Streptomyces halstedii JM8.

    PubMed Central

    Garda, A L; Fernández-Abalos, J M; Sánchez, P; Ruiz-Arribas, A; Santamaría, R I

    1997-01-01

    Streptomyces halstedii JM8 Cel2 is an endoglucanase of 28 kDa that is first produced as a protein of 42 kDa (p42) and is later processed at its C-terminus. Cel2 displays optimal activity towards CM-cellulose at pH6 and 50 degrees C and shows no activity against crystalline cellulose or xylan. The N-terminus of p42 shares similarity with cellulases included in family 12 of the beta-glycanases and the C-terminus shares similarity with bacterial cellulose-binding domains included in family II. This latter domain enables the precursor to bind so tightly to Avicel that it can only be eluted by boiling in 10% (w/v) SDS. Another open reading frame (ORF) situated 216 bp downstream from the p42 ORF encodes a protein of 40 kDa (p40) that does not have any clear hydrolytic activity against cellulosic or xylanosic compounds, but shows high affinity for Avicel (crystalline cellulose). The p40 protein is processed in old cultures to give a protein of 35 kDa that does not bind to Avicel. Translation of both ORFs is impaired in Streptomyces coelicolor bldA mutants, suggesting that a TTA codon situated at the fourth position of the first ORF is responsible for this regulation. S1 nuclease protection experiments demonstrate that both ORFs are co-transcribed. PMID:9182697

  18. Human Leukocyte Antigen (HLA) B27 Allotype-Specific Binding and Candidate Arthritogenic Peptides Revealed through Heuristic Clustering of Data-independent Acquisition Mass Spectrometry (DIA-MS) Data.

    PubMed

    Schittenhelm, Ralf B; Sivaneswaran, Saranjah; Lim Kam Sian, Terry C C; Croft, Nathan P; Purcell, Anthony W

    2016-06-01

    Expression of HLA-B27 is strongly associated with ankylosing spondylitis (AS) and other spondyloarthropathies. While this is true for the majority of HLA-B27 allotypes, HLA-B*27:06 and HLA-B*27:09 are not associated with AS. These two subtypes contain polymorphisms that are ideally positioned to influence the bound peptide repertoire. The existence of disease-inducing peptides (so-called arthritogenic peptides) has therefore been proposed that are exclusively presented by disease-associated HLA-B27 allotypes. However, we have recently demonstrated that this segregation of allotype-bound peptides is not the case and that many peptides that display sequence features predicted to favor binding to disease-associated subtypes are also capable of being presented naturally by protective alleles. To further probe more subtle quantitative changes in peptide presentation, we have used a combination of data-independent acquisition (DIA) and multiple reaction monitoring (MRM) mass spectrometry to quantify the abundance of 1646 HLA-B27 restricted peptides across the eight most frequent HLA-B27 allotypes (HLA-B*27:02-HLA-B*27:09). We utilized K means cluster analysis to group peptides with similar allelic binding preferences across the eight HLA-B27 allotypes, which enabled us to identify the most-stringent binding characteristics for each HLA-B27 allotype and further refined their existing consensus-binding motifs. Moreover, a thorough analysis of this quantitative dataset led to the identification of 26 peptides, which are presented in lower abundance by HLA-B*27:06 and HLA-B*27:09 compared with disease-associated HLA-B27 subtypes. Although these differences were observed to be very subtle, these 26 peptides might encompass the sought-after arthritogenic peptide(s).

  19. Human Leukocyte Antigen (HLA) B27 Allotype-Specific Binding and Candidate Arthritogenic Peptides Revealed through Heuristic Clustering of Data-independent Acquisition Mass Spectrometry (DIA-MS) Data*

    PubMed Central

    Schittenhelm, Ralf B.; Sivaneswaran, Saranjah; Lim Kam Sian, Terry C. C.; Croft, Nathan P.; Purcell, Anthony W.

    2016-01-01

    Expression of HLA-B27 is strongly associated with ankylosing spondylitis (AS) and other spondyloarthropathies. While this is true for the majority of HLA-B27 allotypes, HLA-B*27:06 and HLA-B*27:09 are not associated with AS. These two subtypes contain polymorphisms that are ideally positioned to influence the bound peptide repertoire. The existence of disease-inducing peptides (so-called arthritogenic peptides) has therefore been proposed that are exclusively presented by disease-associated HLA-B27 allotypes. However, we have recently demonstrated that this segregation of allotype-bound peptides is not the case and that many peptides that display sequence features predicted to favor binding to disease-associated subtypes are also capable of being presented naturally by protective alleles. To further probe more subtle quantitative changes in peptide presentation, we have used a combination of data-independent acquisition (DIA) and multiple reaction monitoring (MRM) mass spectrometry to quantify the abundance of 1646 HLA-B27 restricted peptides across the eight most frequent HLA-B27 allotypes (HLA-B*27:02-HLA-B*27:09). We utilized K means cluster analysis to group peptides with similar allelic binding preferences across the eight HLA-B27 allotypes, which enabled us to identify the most-stringent binding characteristics for each HLA-B27 allotype and further refined their existing consensus-binding motifs. Moreover, a thorough analysis of this quantitative dataset led to the identification of 26 peptides, which are presented in lower abundance by HLA-B*27:06 and HLA-B*27:09 compared with disease-associated HLA-B27 subtypes. Although these differences were observed to be very subtle, these 26 peptides might encompass the sought-after arthritogenic peptide(s). PMID:26929215

  20. Diffusion Monte Carlo studies of MB-pol (H2O)2-6 and (D2O)2-6 clusters: Structures and binding energies

    NASA Astrophysics Data System (ADS)

    Mallory, Joel D.; Mandelshtam, Vladimir A.

    2016-08-01

    We employ the diffusion Monte Carlo (DMC) method in conjunction with the recently developed, ab initio-based MB-pol potential energy surface to characterize the ground states of small (H2O)2-6 clusters and their deuterated isotopomers. Observables, other than the ground state energies, are computed using the descendant weighting approach. Among those are various spatial correlation functions and relative isomer fractions. Interestingly, the ground states of all clusters considered in this study, except for the dimer, are delocalized over at least two conformations that differ by the orientation of one or more water monomers with the relative isomer populations being sensitive to the isotope substitution. Most remarkably, the ground state of the (H2O)6 hexamer is represented by four distinct cage structures, while that of (D2O)6 is dominated by the prism, i.e., the global minimum geometry, with a very small contribution from a prism-book geometry. In addition, for (H2O)6 and (D2O)6, we performed DMC calculations to compute the ground states constrained to the cage and prism geometries. These calculations compared results for three different potentials, MB-pol, TTM3/F, and q-TIP4P/F.

  1. Transcription of lncRNA prt, clustered prt RNA sites for Mmi1 binding, and RNA polymerase II CTD phospho-sites govern the repression of pho1 gene expression under phosphate-replete conditions in fission yeast.

    PubMed

    Chatterjee, Debashree; Sanchez, Ana M; Goldgur, Yehuda; Shuman, Stewart; Schwer, Beate

    2016-07-01

    Expression of fission yeast Pho1 acid phosphatase is repressed during growth in phosphate-rich medium. Repression is mediated by transcription of the prt locus upstream of pho1 to produce a long noncoding (lnc) prt RNA. Repression is also governed by RNA polymerase II CTD phosphorylation status, whereby inability to place a Ser7-PO4 mark (as in S7A) derepresses Pho1 expression, and inability to place a Thr4-PO4 mark (as in T4A) hyper-represses Pho1 in phosphate replete cells. Here we find that basal pho1 expression from the prt-pho1 locus is inversely correlated with the activity of the prt promoter, which resides in a 110-nucleotide DNA segment preceding the prt transcription start site. CTD mutations S7A and T4A had no effect on the activity of the prt promoter or the pho1 promoter, suggesting that S7A and T4A affect post-initiation events in prt lncRNA synthesis that make it less and more repressive of pho1, respectively. prt lncRNA contains clusters of DSR (determinant of selective removal) sequences recognized by the YTH-domain-containing protein Mmi1. Altering the nucleobase sequence of two DSR clusters in the prt lncRNA caused hyper-repression of pho1 in phosphate replete cells, concomitant with increased levels of the prt transcript. The isolated Mmi1 YTH domain binds to RNAs with single or tandem DSR elements, to the latter in a noncooperative fashion. We report the 1.75 Å crystal structure of the Mmi1 YTH domain and provide evidence that Mmi1 recognizes DSR RNA via a binding mode distinct from that of structurally homologous YTH proteins that recognize m(6)A-modified RNA.

  2. Binding of ligands containing carbonyl and phenol groups to iron(iii): new Fe6, Fe10 and Fe12 coordination clusters.

    PubMed

    Kitos, Alexandros A; Papatriantafyllopoulou, Constantina; Tasiopoulos, Anastasios J; Perlepes, Spyros P; Escuer, Albert; Nastopoulos, Vassilios

    2017-03-07

    The initial use of ligands 2'-hydroxyacetophenone (HL(1)), 2-hydroxybenzophenone (HL(2)) and 2,2'-dihydroxybenzophenone (H2L(3)) in iron(iii) chemistry is described. The syntheses and crystal structures are reported for five iron(iii) clusters: [Fe10O4(OMe)14(L(1))6(MeOH)2](NO3)2·3MeOH (1·3MeOH), [Fe12O4(OH)(OMe)17(L(1))8](ClO4)2·2H2O (2·2H2O), [Fe10O4(OMe)14Cl4(L(2))4(MeOH)2] (3), [Fe10O4(OMe)14(L(2))6(py)2](ClO4)2·MeOH (4·MeOH), where py = pyridine, and [Fe6O2(OEt)6(O2CMe)2(L(3))2(HL(3))2] (5). The molecular structures of the decanuclear clusters 1, 3 and 4 are organized around a {Fe10(μ4-O)4(μ3-OMe)2(μ-OMe)12}(8+) core consisting of ten {Fe3O4} face-sharing defective cubane units. The core of 2 consists of a {Fe12(μ4-O)4(μ3-OMe)4(μ-OH)(μ-OMe)13}(10+) unit composed of twelve {Fe3O4} face-sharing defective cubanes. The ligands (L(1))(-) and (L(2))(-) in 1-4 adopt the O,O'-bidentate chelating coordination mode and their roles are to terminate the further aggregation of the Fe(III)/O(2-)/RO(-) cores. Complex 5 contains the {Fe6(μ4-O)2(μ-OEt)6(μ-Ocarbonyl)2}(4+) core, where the μ-Ocarbonyl atoms are the bridging carbonyl oxygens of the two η(1):η(2):η(1):μ (L(3))(2-) ligands; the (HL(3))(-) groups behave as Ophenolate, Ocarbonyl-bidentate chelating ligands with the neutral hydroxyl group being unbound to the Fe(III) atoms. The core is composed of four {Fe3O4} face-sharing defective cubanes. The Fe(III) atoms in 1-5 are all six-coordinate with distorted octahedral geometries. The IR spectra of the complexes are discussed in terms of the known coordination modes of the ligands and the ionic character of nitrates and perchlorates. Variable-temperature magnetic susceptibility and variable-field magnetization measurements establish that 2, 3 and 5 have S = 3, 0 and 5 ground states, respectively. The susceptibility data for 5 were fitted using a 3-J model indicating the simultaneous presence of both antiferromagnetic and ferromagnetic Fe

  3. Critical interpretation of CH– and OH– stretching regions for infrared spectra of methanol clusters (CH{sub 3}OH){sub n} (n = 2–5) using self-consistent-charge density functional tight-binding molecular dynamics simulations

    SciTech Connect

    Nishimura, Yoshifumi; Lee, Yuan-Pern; Irle, Stephan; Witek, Henryk A.

    2014-09-07

    Vibrational infrared (IR) spectra of gas-phase O–H⋅⋅⋅O methanol clusters up to pentamer are simulated using self-consistent-charge density functional tight-binding method using two distinct methodologies: standard normal mode analysis and Fourier transform of the dipole time-correlation function. The twofold simulations aim at the direct critical assignment of the C–H stretching region of the recently recorded experimental spectra [H.-L. Han, C. Camacho, H. A. Witek, and Y.-P. Lee, J. Chem. Phys. 134, 144309 (2011)]. Both approaches confirm the previous assignment (ibid.) of the C–H stretching bands based on the B3LYP/ANO1 harmonic frequencies, showing that ν{sub 3}, ν{sub 9}, and ν{sub 2} C–H stretching modes of the proton-accepting (PA) and proton-donating (PD) methanol monomers experience only small splittings upon the cluster formation. This finding is in sharp discord with the assignment based on anharmonic B3LYP/VPT2/ANO1 vibrational frequencies (ibid.), suggesting that some procedural faults, likely related to the breakdown of the perturbational vibrational treatment, led the anharmonic calculations astray. The IR spectra based on the Fourier transform of the dipole time-correlation function include new, previously unaccounted for physical factors such as non-zero temperature of the system and large amplitude motions of the clusters. The elevation of temperature results in a considerable non-homogeneous broadening of the observed IR signals, while the presence of large-amplitude motions (methyl group rotations and PA-PD flipping), somewhat surprisingly, does not introduce any new features in the spectrum.

  4. Isolation of a YAC clone covering a cluster of nine S100 genes on human chromosome 1q21: Rationale for a new nomenclature of the S100 calcium-binding protein family

    SciTech Connect

    Schaefer, B.W.; Wicki, R.; Engelkamp, D.

    1995-02-10

    S100 proteins are low-molecular-weight calcium-binding proteins of the EF- hand superfamily and appear to be involved in the regulation of a number of cellular processes such as cell cycle progression and differentiation. More than 10 members of the S100 protein family have been described from human sources so far. We have now isolated a YAC clone from human chromosome 1q21, on which 9 different genes coding for S100 calcium-binding proteins could be localized. Moreover, we have mapped the gene coding for S100P to human chromosome 4p16 and thereby completed the chromosomal assignments of all known human S100 genes. The clustered organization of S100 genes in the 1q21 region allows us to introduce a new logical nomenclature for these genes, which is based on the physical arrangement on the chromosomes. The new nomenclature should facilitate the further the understanding of this protein family and be easily expandable to other species. 31 refs., 4 figs., 1 tab.

  5. Metalloid Aluminum Clusters with Fluorine

    DTIC Science & Technology

    2016-12-01

    high energy density compared to explosives, but typically release this energy slowly via diffusion-limited combustion. There is recent interest in using...examine the cluster binding energy and electronic structure. Partial fluorine substitution in a prototypical aluminum-cyclopentadienyl cluster results...molecular dynamics, binding energy , siesta code, density of states, projected density of states 15. NUMBER OF PAGES 69 16. PRICE CODE 17. SECURITY

  6. Cluster headache

    MedlinePlus

    Histamine headache; Headache - histamine; Migrainous neuralgia; Headache - cluster; Horton's headache; Vascular headache - cluster ... Doctors do not know exactly what causes cluster headaches. They ... (chemical in the body released during an allergic response) or ...

  7. The Lon protease from the haloalkaliphilic archaeon Natrialba magadii is transcriptionally linked to a cluster of putative membrane proteases and displays DNA-binding activity.

    PubMed

    Sastre, Diego E; Paggi, Roberto A; De Castro, Rosana E

    2011-05-20

    The ATP-dependent Lon protease is universally distributed in bacteria, eukaryotic organelles and archaea. In comparison with bacterial and eukaryal Lon proteases, the biology of the archaeal Lon has been studied to a limited extent. In this study, the gene encoding the Lon protease of the alkaliphilic haloarchaeon Natrialba magadii (Nmlon) was cloned and sequenced, and the genetic organization of Nmlon was examined at the transcriptional level. Nmlon encodes a 84 kDa polypeptide with a pI of 4.42 which contains the ATPase, protease and membrane targeting domains of the archaeal-type LonB proteases. Nmlon is part of an operon that encodes membrane proteases and it is transcribed as a polycistronic mRNA in N. magadii cells at different growth stages. Accordingly, NmLon was detected in cell membranes of N. magadii throughout growth by Western blot analysis using specific anti-NmLon antibodies. Interestingly, in electrophoretic mobility shift assays, purified NmLon bound double stranded as well as single stranded DNA in the presence of elevated salt concentrations. This finding shows that DNA-binding is conserved in the LonA and LonB subfamilies and suggests that Lon-DNA interaction may be relevant for its function in haloarchaea.

  8. CLUSTER CHEMISTRY

    SciTech Connect

    Muetterties, Earl L.

    1980-05-01

    Metal cluster chemistry is one of the most rapidly developing areas of inorganic and organometallic chemistry. Prior to 1960 only a few metal clusters were well characterized. However, shortly after the early development of boron cluster chemistry, the field of metal cluster chemistry began to grow at a very rapid rate and a structural and a qualitative theoretical understanding of clusters came quickly. Analyzed here is the chemistry and the general significance of clusters with particular emphasis on the cluster research within my group. The importance of coordinately unsaturated, very reactive metal clusters is the major subject of discussion.

  9. Deformation dependence of nuclear clusterization

    SciTech Connect

    Cseh, J.; Algora, A.; Darai, J.; Hess, P.O.

    2004-09-01

    The allowed and forbidden binary cluster configurations of the ground, superdeformed, and hyperdeformed states of some nuclei are determined, based on the (real or effective) U(3) selection rule. The stability of the cluster configurations from the viewpoint of the binding energy is also investigated.

  10. Alkali Metal Cluster Theory.

    NASA Astrophysics Data System (ADS)

    Chen, Jian

    Available from UMI in association with The British Library. Requires signed TDF. In this thesis, we apply the tight-binding Hubbard model to alkali metal clusters with Hartree-Fock self-consistent methods and perturbation methods for the numerical calculations. We have studied the relation between the equilibrium structures and the range of the hopping matrix elements in the Hubbard Hamiltonian. The results show that the structures are not sensitive to the interaction range but are determined by the number of valence electrons each atom has. Inertia tensors are used to analyse the symmetries of the clusters. The principal axes of the clusters are determined and they are the axes of rotational symmetries of clusters if the clusters have any. The eigenvalues of inertia tensors which are the indication of the deformation of clusters are compared between our model and the ellipsoidal jellium model. The agreement is good for large clusters. At a finite temperature, the thermal motion fluctuates the structures. We defined a fluctuation function with the distance matrix of a cluster. The fluctuation has been studied with the Monte-Carlo simulation method. Our studies show that the clusters remain in the solid state when temperature is low. The small values of fluctuation functions indicates the thermal vibration of atoms around their equilibrium positions. If the temperature is high, the atoms are delocalized. The cluster melts and enters the liquid region. The cluster melting is simulated by the Monte-Carlo simulation with the fluctuation function we defined. Energy levels of clusters are calculated from the Hubbard model. Ionization potentials and magic numbers are also obtained from these energy levels. The results confirm that the Hubbard model is a good approximation for a small cluster. The excitation energy is presented by the difference between the original level and excited level, and the electron-hole interactions. We also have studied cooling of clusters

  11. Clustering and genetic differentiation of the normocyte binding protein (nbpxa) of Plasmodium knowlesi clinical isolates from Peninsular Malaysia and Malaysia Borneo.

    PubMed

    Ahmed, Md Atique; Fong, Mun Yik; Lau, Yee Ling; Yusof, Ruhani

    2016-04-26

    The zoonotic malaria parasite Plasmodium knowlesi has become an emerging threat to South East Asian countries particular in Malaysia. A recent study from Sarawak (Malaysian Borneo) discovered two distinct normocyte binding protein xa (Pknbpxa) types of P. knowlesi. In the present study, the Pknbpxa of clinical isolates from Peninsular Malaysia and Sabah (Malaysian Borneo) were investigated for the presence of Pknbpxa types and natural selection force acting on the gene. Blood samples were collected from 47 clinical samples from Peninsular Malaysia (n = 35) and Sabah (Malaysian Borneo, n = 12) were used in the study. The Pknbpxa gene was successfully amplified and directly sequenced from 38 of the samples (n = 31, Peninsular Malaysia and n = 7, Sabah, Malaysian Borneo). The Pknbpxa sequences of P. knowlesi isolates from Sarawak (Malaysian Borneo) were retrieved from GenBank and included in the analysis. Polymorphism, genetic diversity and natural selection of Pknbpxa sequences were analysed using DNAsp v 5.10, MEGA5. Phylogentics of Pknbpxa sequences was analysed using MrBayes v3.2 and Splits Tree v4.13.1. The pairwise F ST indices were used to determine the genetic differentiation between the Pknbpxa types and was calculated using Arlequin 3.5.1.3. Analyses of the sequences revealed Pknbpxa dimorphism throughout Malaysia indicating co-existence of the two types (Type-1 and Type-2) of Pknbpxa. More importantly, a third type (Type 3) closely related to Type 2 Pknbpxa was also detected. This third type was found only in the isolates originating from Peninsular Malaysia. Negative natural selection was observed, suggesting functional constrains within the Pknbpxa types. This study revealed the existence of three Pknbpxa types in Malaysia. Types 1 and 2 were found not only in Malaysian Borneo (Sarawak and Sabah) but also in Peninsular Malaysia. A third type which was specific only to samples originating from Peninsular Malaysia was discovered. Further genetic

  12. Carbamate-linked lactose: design of clusters and evidence for selectivity to block binding of human lectins to (neo)glycoproteins with increasing degree of branching and to tumor cells.

    PubMed

    André, Sabine; Specker, Daniel; Bovin, Nicolai V; Lensch, Martin; Kaltner, Herbert; Gabius, Hans-Joachim; Wittmann, Valentin

    2009-09-01

    Various pathogenic processes are driven by protein(lectin)-glycan interactions, especially involving beta-galactosides at branch ends of cellular glycans. These emerging insights fuel the interest to design potent inhibitors to block lectins. As a step toward this aim, we prepared a series of ten mono- to tetravalent glycocompounds with lactose as a common headgroup. To obtain activated carbonate for ensuing carbamate formation, conditions for the facile synthesis of pure isomers from anomerically unprotected lactose were identified. To probe for the often encountered intrafamily diversity of human lectins, we selected representative members from the three subgroups of adhesion/growth-regulatory galectins as receptors. Diversity of the glycan display was accounted for by using four (neo)glycoproteins with different degrees of glycan branching as matrices in solid-phase assays. Cases of increased inhibitory potency of lactose clusters compared to free lactose were revealed. Extent of relative inhibition was not directly associated with valency in the glycocompound and depended on the lectin type. Of note for screening protocols, efficacy of blocking appeared to decrease with increased degree of glycan branching in matrix glycoproteins. Binding to tumor cells was impaired with selectivity for galectins-3 and -4. Representative compounds did not impair growth of carcinoma cells up to a concentration of 5 mM of lactose moieties (valence-corrected value) per assay. The reported bioactivity and the delineation of its modulation by structural parameters of lectins and glycans set instructive examples for the further design of selective inhibitors and assay procedures.

  13. Role of Litopenaeus vannamei Yin Yang 1 in the Regulation of the White Spot Syndrome Virus Immediate Early Gene ie1.

    PubMed

    Huang, Ping-Han; Huang, Ting-Yi; Cai, Pei-Si; Chang, Li-Kwan

    2017-03-15

    Yin Yang 1 (YY1) is a multifunctional zinc finger transcription factor that regulates many key cellular processes. In this study, we report the cloning of YY1 from Litopenaeus vannamei shrimp (LvYY1). This study shows that LvYY1 is ubiquitously expressed in shrimp tissues, and knockdown of LvYY1 expression by double-stranded RNA (dsRNA) injection in white spot syndrome virus (WSSV)-infected shrimp reduced both mRNA levels of the WSSV immediate early gene ie1 as well as overall copy numbers of the WSSV genome. The cumulative mortality rate of infected shrimp also declined with LvYY1 dsRNA injection. Using an insect cell model, we observed that LvYY1 activates ie1 expression, and a mutation introduced into the ie1 promoter subsequently repressed this capability. Moreover, reporter assay results suggested that LvYY1 is involved in basal transcriptional regulation via an interaction with L. vannamei TATA-binding protein (LvTBP). Electrophoretic mobility shift assay (EMSA) results further indicated that LvYY1 binds to a YY1-binding site in the region between positions -119 and -126 in the ie1 promoter. Chromatin immunoprecipitation analysis also confirmed that LvYY1 binds to the ie1 promoter in WSSV-infected shrimp. Taken together, these results indicate that WSSV uses host LvYY1 to enhance ie1 expression via a YY1-binding site and the TATA box in the ie1 promoter, thereby facilitating lytic activation and viral replication.IMPORTANCE WSSV has long been a scourge of the shrimp industry and remains a serious global threat. Thus, there is a pressing need to understand how the interactions between WSSV and its host drive infection, lytic development, pathogenesis, and mortality. Our successful cloning of L. vannamei YY1 (LvYY1) led to the elucidation of a critical virus-host interaction between LvYY1 and the WSSV immediate early gene ie1 We observed that LvYY1 regulates ie1 expression via a consensus YY1-binding site and TATA box. LvYY1 was also found to interact with L

  14. Modular Insulators: Genome Wide Search for Composite CTCF/Thyroid Hormone Receptor Binding Sites

    PubMed Central

    Weth, Oliver; Weth, Christine; Bartkuhn, Marek; Leers, Joerg; Uhle, Florian; Renkawitz, Rainer

    2010-01-01

    The conserved 11 zinc-finger protein CTCF is involved in several transcriptional mechanisms, including insulation and enhancer blocking. We had previously identified two composite elements consisting of a CTCF and a TR binding site at the chicken lysozyme and the human c-myc genes. Using these it has been demonstrated that thyroid hormone mediates the relief of enhancer blocking even though CTCF remains bound to its binding site. Here we wished to determine whether CTCF and TR combined sites are representative of a general feature of the genome, and whether such sites are functional in regulating enhancer blocking. Genome wide analysis revealed that about 18% of the CTCF regions harbored at least one of the four different palindromic or repeated sequence arrangements typical for the binding of TR homodimers or TR/RXR heterodimers. Functional analysis of 10 different composite elements of thyroid hormone responsive genes was performed using episomal constructs. The episomal system allowed recapitulating CTCF mediated enhancer blocking function to be dependent on poly (ADP)-ribose modification and to mediate histone deacetylation. Furthermore, thyroid hormone sensitive enhancer blocking could be shown for one of these new composite elements. Remarkably, not only did the regulation of enhancer blocking require functional TR binding, but also the basal enhancer blocking activity of CTCF was dependent on the binding of the unliganded TR. Thus, a number of composite CTCF/TR binding sites may represent a subset of other modular CTCF composite sites, such as groups of multiple CTCF sites or of CTCF/Oct4, CTCF/Kaiso or CTCF/Yy1 combinations. PMID:20404925

  15. Meaningful Clusters

    SciTech Connect

    Sanfilippo, Antonio P.; Calapristi, Augustin J.; Crow, Vernon L.; Hetzler, Elizabeth G.; Turner, Alan E.

    2004-05-26

    We present an approach to the disambiguation of cluster labels that capitalizes on the notion of semantic similarity to assign WordNet senses to cluster labels. The approach provides interesting insights on how document clustering can provide the basis for developing a novel approach to word sense disambiguation.

  16. About the Clusters Program

    EPA Pesticide Factsheets

    The Environmental Technology Innovation Clusters Program advises cluster organizations, encourages collaboration between clusters, tracks U.S. environmental technology clusters, and connects EPA programs to cluster needs.

  17. Data Clustering

    NASA Astrophysics Data System (ADS)

    Wagstaff, Kiri L.

    2012-03-01

    On obtaining a new data set, the researcher is immediately faced with the challenge of obtaining a high-level understanding from the observations. What does a typical item look like? What are the dominant trends? How many distinct groups are included in the data set, and how is each one characterized? Which observable values are common, and which rarely occur? Which items stand out as anomalies or outliers from the rest of the data? This challenge is exacerbated by the steady growth in data set size [11] as new instruments push into new frontiers of parameter space, via improvements in temporal, spatial, and spectral resolution, or by the desire to "fuse" observations from different modalities and instruments into a larger-picture understanding of the same underlying phenomenon. Data clustering algorithms provide a variety of solutions for this task. They can generate summaries, locate outliers, compress data, identify dense or sparse regions of feature space, and build data models. It is useful to note up front that "clusters" in this context refer to groups of items within some descriptive feature space, not (necessarily) to "galaxy clusters" which are dense regions in physical space. The goal of this chapter is to survey a variety of data clustering methods, with an eye toward their applicability to astronomical data analysis. In addition to improving the individual researcher’s understanding of a given data set, clustering has led directly to scientific advances, such as the discovery of new subclasses of stars [14] and gamma-ray bursts (GRBs) [38]. All clustering algorithms seek to identify groups within a data set that reflect some observed, quantifiable structure. Clustering is traditionally an unsupervised approach to data analysis, in the sense that it operates without any direct guidance about which items should be assigned to which clusters. There has been a recent trend in the clustering literature toward supporting semisupervised or constrained

  18. Thermodynamic prediction of glass formation tendency, cluster-in-jellium model for metallic glasses, ab initio tight-binding calculations, and new density functional theory development for systems with strong electron correlation

    SciTech Connect

    Yao, Yongxin

    2009-01-01

    Solidification of liquid is a very rich and complicated field, although there is always a famous homogeneous nucleation theory in a standard physics or materials science text book. Depending on the material and processing condition, liquid may solidify to single crystalline, polycrystalline with different texture, quasi-crystalline, amorphous solid or glass (Glass is a kind of amorphous solid in general, which has short-range and medium-range order). Traditional oxide glass may easily be formed since the covalent directional bonded network is apt to be disturbed. In other words, the energy landcape of the oxide glass is so complicated that system need extremely long time to explore the whole configuration space. On the other hand, metallic liquid usually crystalize upon cooling because of the metallic bonding nature. However, Klement et.al., (1960) reported that Au-Si liquid underwent an amorphous or “glassy” phase transformation with rapid quenching. In recent two decades, bulk metallic glasses have also been found in several multicomponent alloys[Inoue et al., (2002)]. Both thermodynamic factors (e.g., free energy of various competitive phase, interfacial free energy, free energy of local clusters, etc.) and kinetic factors (e.g., long range mass transport, local atomic position rearrangement, etc.) play important roles in the metallic glass formation process. Metallic glass is fundamentally different from nanocrystalline alloys. Metallic glasses have to undergo a nucleation process upon heating in order to crystallize. Thus the short-range and medium-range order of metallic glasses have to be completely different from crystal. Hence a method to calculate the energetics of different local clusters in the undercooled liquid or glasses become important to set up a statistic model to describe metalllic glass formation. Scattering techniques like x-ray and neutron have widely been used to study the structues of metallic glasses. Meanwhile, computer simulation

  19. Kaempferol suppresses lipid accumulation in macrophages through the downregulation of cluster of differentiation 36 and the upregulation of scavenger receptor class B type I and ATP-binding cassette transporters A1 and G1.

    PubMed

    Li, Xiu-Ying; Kong, Ling-Xi; Li, Juan; He, Hai-Xia; Zhou, Yuan-Da

    2013-02-01

    The accumulation of foam cells in atherosclerotic lesions is a hallmark of early-stage atherosclerosis. Kaempferol has been shown to inhibit oxidized low-density lipoprotein (oxLDL) uptake by macrophages; however, the underlying molecular mechanisms are not yet fully investigated. In this study, we shown that treatment with kaempferol markedly suppresses oxLDL-induced macrophage foam cell formation, which occurs due to a decrease in lipid accumulation and an increase in cholesterol efflux from THP-1-derived macrophages. Additionally, the kaempferol treatment of macrophages led to the downregulation of cluster of differentiation 36 (CD36) protein levels, the upregulation of ATP-binding cassette (ABC) transporter A1 (ABCA1), scavenger receptor class B type I (SR-BI) and ABCG1 protein levels, while no effects on scavenger receptor A (SR-A) expression were observed. Kaempferol had similar effects on the mRNA and protein expression of ABCA1, SR-BI, SR-A, CD36 and ABCG1. The reduced CD36 expression following kaempferol treatment involved the inhibition of c-Jun-activator protein-1 (AP-1) nuclear translocation. The inhibition of AP-1 using the inhibitor, SP600125, confirmed this involvement, as the AP-1 inhibition significantly augmented the kaempferol-induced reduction in CD36 expression. Accordingly, the kaempferol-mediated suppression of lipid accumulation in macrophages was also augmented by SP600125. The increased expression of ABCA1, SR-BI and ABCG1 following kaempferol treatment was accompanied by the enhanced protein expression of heme oxygenase-1 (HO-1). This increase was reversed following the knockdown of the HO-1 gene using small hairpin RNA (shRNA). Moreover, the kaempferol-mediated attenuation of lipid accumulation and the promotion of cholesterol efflux was also inhibited by HO-1 shRNA. In conclusion, the c-Jun-AP‑1-dependent downregulation of CD36 and the HO-1-dependent upregulation of ABCG1, SR-BI and ABCA1 may mediate the beneficial effects of

  20. Acid clusters

    SciTech Connect

    Keesee, R.G.; Castleman, A.W. Jr.

    1986-04-01

    Molecular clusters can be considered to be the smallest size range of an aerosol particle size distribution. Nucleation from the gas phase to particles or droplets involves the formation of clusters in the initial stages. Consequently, knowledge of the properties and formation of clusters containing acids contribute to an understanding of acid rain. This paper presents an overview of results obtained in the laboratory on the formation and stability of both neutral and ionized acid clusters. With free jet expansion techniques, the authors have produced clusters of aqueous nitric acid, aqueous hydrochloric acid, aqueous sulfuric acid, acetic acid and aqueous sulfur dioxide. For analogy to buffering, the formation of clusters containing ammonia have also been examined. These have included ammonia with aqueous nitric acid, hydrogen sulfide and sulfur dioxide. The basic experiment involves expansion of vapor through a nozzle, collimation of the jet with a skimmer to form a well-directed molecular beam, and detection of clusters via electron impact ionization and mass spectrometry. Some variations include the introduction of a reactive gas into vacuum near the expansion as described elsewhere and the implementation of an electrostatic quadrupolar field to examine the polarity of the neutral clusters.

  1. ssHMM: extracting intuitive sequence-structure motifs from high-throughput RNA-binding protein data.

    PubMed

    Heller, David; Krestel, Ralf; Ohler, Uwe; Vingron, Martin; Marsico, Annalisa

    2017-08-30

    RNA-binding proteins (RBPs) play an important role in RNA post-transcriptional regulation and recognize target RNAs via sequence-structure motifs. The extent to which RNA structure influences protein binding in the presence or absence of a sequence motif is still poorly understood. Existing RNA motif finders either take the structure of the RNA only partially into account, or employ models which are not directly interpretable as sequence-structure motifs. We developed ssHMM, an RNA motif finder based on a hidden Markov model (HMM) and Gibbs sampling which fully captures the relationship between RNA sequence and secondary structure preference of a given RBP. Compared to previous methods which output separate logos for sequence and structure, it directly produces a combined sequence-structure motif when trained on a large set of sequences. ssHMM's model is visualized intuitively as a graph and facilitates biological interpretation. ssHMM can be used to find novel bona fide sequence-structure motifs of uncharacterized RBPs, such as the one presented here for the YY1 protein. ssHMM reaches a high motif recovery rate on synthetic data, it recovers known RBP motifs from CLIP-Seq data, and scales linearly on the input size, being considerably faster than MEMERIS and RNAcontext on large datasets while being on par with GraphProt. It is freely available on Github and as a Docker image. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Stability of Phosphine-Ligated Gold Cluster Ions toward Dissociation: Effect of Ligand and Cluster Size

    NASA Astrophysics Data System (ADS)

    Laskin, Julia

    2015-03-01

    Precise control of the composition of phosphine-ligated gold clusters is of interest to their applications in catalysis, sensing, and drug delivery. Reduction synthesis in solution typically generates a distribution of ligated clusters containing different number of gold atoms and capping ligands. Ligand binding energy is an important factor determining the kinetics of cluster nucleation and growth in solution and hence the resulting cluster distribution. Phosphines are popular capping ligands with tunable electronic and steric properties that affect their binding to the gold core. We examined the effect of the number of gold atoms in the cluster and the properties of the phosphine ligand on the ligand binding energy to the gold core using surface-induced dissociation (SID) of mass selected cluster cations produced through electrospray ionization. SID of vibrationally excited ions is ideally suited for studying gas-phase fragmentation of complex ions such as ligated gold clusters. The energetics, dynamics, and mechanisms of cluster ion fragmentation in the absence of solvent are determined through RRKM modeling of time and kinetic energy dependent SID spectra. This approach provides quantitative information on the ligand binding energies in phosphine-ligated gold clusters important for understanding their formation in solution. Furthermore, ligand binding energies derived from SID data provide the first benchmark values for comparison with electronic structure calculations. This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences.

  3. Quintuplet Cluster

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Penetrating 25,000 light-years of obscuring dust and myriad stars, NASA's Hubble Space Telescope has provided the clearest view yet of one of the largest young clusters of stars inside our Milky Way galaxy, located less than 100 light-years from the very center of the Galaxy. Having the equivalent mass greater than 10,000 stars like our sun, the monster cluster is ten times larger than typical young star clusters scattered throughout our Milky Way. It is destined to be ripped apart in just a few million years by gravitational tidal forces in the galaxy's core. But in its brief lifetime it shines more brightly than any other star cluster in the Galaxy. Quintuplet Cluster is 4 million years old. It has stars on the verge of blowing up as supernovae. It is the home of the brightest star seen in the galaxy, called the Pistol star. This image was taken in infrared light by Hubble's NICMOS camera in September 1997. The false colors correspond to infrared wavelengths. The galactic center stars are white, the red stars are enshrouded in dust or behind dust, and the blue stars are foreground stars between us and the Milky Way's center. The cluster is hidden from direct view behind black dust clouds in the constellation Sagittarius. If the cluster could be seen from earth it would appear to the naked eye as a 3rd magnitude star, 1/6th of a full moon's diameter apart.

  4. Binding Procurement

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Vaidyanathan, Hari

    2007-01-01

    This viewgraph presentation reviews the use of the binding procurement process in purchasing Aerospace Flight Battery Systems. NASA Engineering and Safety Center (NESC) requested NASA Aerospace Flight Battery Systems Working Group to develop a set of guideline requirements document for Binding Procurement Contracts.

  5. Spitzer Clusters

    NASA Astrophysics Data System (ADS)

    Krick, Kessica

    This proposal is a specific response to the strategic goal of NASA's research program to "discover how the universe works and explore how the universe evolved into its present form." Towards this goal, we propose to mine the Spitzer archive for all observations of galaxy groups and clusters for the purpose of studying galaxy evolution in clusters, contamination rates for Sunyaev Zeldovich cluster surveys, and to provide a database of Spitzer observed clusters to the broader community. Funding from this proposal will go towards two years of support for a Postdoc to do this work. After searching the Spitzer Heritage Archive, we have found 194 unique galaxy groups and clusters that have data from both the Infrared array camera (IRAC; Fazio et al. 2004) at 3.6 - 8 microns and the multiband imaging photometer for Spitzer (MIPS; Rieke et al. 2004) at 24microns. This large sample will add value beyond the individual datasets because it will be a larger sample of IR clusters than ever before and will have sufficient diversity in mass, redshift, and dynamical state to allow us to differentiate amongst the effects of these cluster properties. An infrared sample is important because it is unaffected by dust extinction while at the same time is an excellent measure of both stellar mass (IRAC wavelengths) and star formation rate (MIPS wavelengths). Additionally, IRAC can be used to differentiate star forming galaxies (SFG) from active galactic nuclei (AGN), due to their different spectral shapes in this wavelength regime. Specifically, we intend to identify SFG and AGN in galaxy groups and clusters. Groups and clusters differ from the field because the galaxy densities are higher, there is a large potential well due mainly to the mass of the dark matter, and there is hot X-ray gas (the intracluster medium; ICM). We will examine the impact of these differences in environment on galaxy formation by comparing cluster properties of AGN and SFG to those in the field. Also, we will

  6. Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Miller, Christopher J. Miller

    2012-03-01

    There are many examples of clustering in astronomy. Stars in our own galaxy are often seen as being gravitationally bound into tight globular or open clusters. The Solar System's Trojan asteroids cluster at the gravitational Langrangian in front of Jupiter’s orbit. On the largest of scales, we find gravitationally bound clusters of galaxies, the Virgo cluster (in the constellation of Virgo at a distance of ˜50 million light years) being a prime nearby example. The Virgo cluster subtends an angle of nearly 8◦ on the sky and is known to contain over a thousand member galaxies. Galaxy clusters play an important role in our understanding of theUniverse. Clusters exist at peaks in the three-dimensional large-scale matter density field. Their sky (2D) locations are easy to detect in astronomical imaging data and their mean galaxy redshifts (redshift is related to the third spatial dimension: distance) are often better (spectroscopically) and cheaper (photometrically) when compared with the entire galaxy population in large sky surveys. Photometric redshift (z) [Photometric techniques use the broad band filter magnitudes of a galaxy to estimate the redshift. Spectroscopic techniques use the galaxy spectra and emission/absorption line features to measure the redshift] determinations of galaxies within clusters are accurate to better than delta_z = 0.05 [7] and when studied as a cluster population, the central galaxies form a line in color-magnitude space (called the the E/S0 ridgeline and visible in Figure 16.3) that contains galaxies with similar stellar populations [15]. The shape of this E/S0 ridgeline enables astronomers to measure the cluster redshift to within delta_z = 0.01 [23]. The most accurate cluster redshift determinations come from spectroscopy of the member galaxies, where only a fraction of the members need to be spectroscopically observed [25,42] to get an accurate redshift to the whole system. If light traces mass in the Universe, then the locations

  7. Regulation of Transcription Factor Yin Yang 1 by SET7/9-mediated Lysine Methylation.

    PubMed

    Zhang, Wen-juan; Wu, Xiao-nan; Shi, Tao-tao; Xu, Huan-teng; Yi, Jia; Shen, Hai-feng; Huang, Ming-feng; Shu, Xing-yi; Wang, Fei-fei; Peng, Bing-ling; Xiao, Rong-quan; Gao, Wei-wei; Ding, Jian-cheng; Liu, Wen

    2016-02-23

    Yin Yang 1 (YY1) is a multifunctional transcription factor shown to be critical in a variety of biological processes. Although it is regulated by multiple types of post-translational modifications (PTMs), whether YY1 is methylated, which enzyme methylates YY1, and hence the functional significance of YY1 methylation remains completely unknown. Here we reported the first methyltransferase, SET7/9 (KMT7), capable of methylating YY1 at two highly conserved lysine (K) residues, K173 and K411, located in two distinct domains, one in the central glycine-rich region and the other in the very carboxyl-terminus. Functional studies revealed that SET7/9-mediated YY1 methylation regulated YY1 DNA-binding activity both in vitro and at specific genomic loci in cultured cells. Consistently, SET7/9-mediated YY1 methylation was shown to involve in YY1-regulated gene transcription and cell proliferation. Our findings revealed a novel regulatory strategy, methylation by lysine methyltransferase, imposed on YY1 protein, and linked YY1 methylation with its biological functions.

  8. Star clusters

    NASA Astrophysics Data System (ADS)

    Labhardt, Lukas; Binggeli, Bruno

    Star clusters are at the heart of astronomy, being key objects for our understanding of stellar evolution and galactic structure. Observations with the Hubble Space Telescope and other modern equipment have revealed fascinating new facts about these galactic building blocks. This book provides two comprehensive and up-to-date, pedagogically designed reviews on star clusters by two well-known experts in the field. Bruce Carney presents our current knowledge of the relative and absolute ages of globular clusters and the chemical history of our Galaxy. Bill Harris addresses globular clusters in external galaxies and their use as tracers of galaxy formation and cosmic distance indicators. The book is written for graduate students as well as professionals in astronomy and astrophysics.

  9. Occupational Clusters.

    ERIC Educational Resources Information Center

    Pottawattamie County School System, Council Bluffs, IA.

    The 15 occupational clusters (transportation, fine arts and humanities, communications and media, personal service occupations, construction, hospitality and recreation, health occupations, marine science occupations, consumer and homemaking-related occupations, agribusiness and natural resources, environment, public service, business and office…

  10. Cluster generator

    DOEpatents

    Donchev, Todor I.; Petrov, Ivan G.

    2011-05-31

    Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.

  11. Hausdorff clustering

    NASA Astrophysics Data System (ADS)

    Basalto, Nicolas; Bellotti, Roberto; de Carlo, Francesco; Facchi, Paolo; Pantaleo, Ester; Pascazio, Saverio

    2008-10-01

    A clustering algorithm based on the Hausdorff distance is analyzed and compared to the single, complete, and average linkage algorithms. The four clustering procedures are applied to a toy example and to the time series of financial data. The dendrograms are scrutinized and their features compared. The Hausdorff linkage relies on firm mathematical grounds and turns out to be very effective when one has to discriminate among complex structures.

  12. Response of observables for cold anionic water clusters to cluster thermal history.

    PubMed

    Madarász, Adám; Rossky, Peter J; Turi, László

    2010-02-18

    We have used mixed quantum classical molecular dynamics simulations to explore the role of structural relaxation when binding an excess electron to neutral water clusters. The structural and spectral properties of the water cluster anions were investigated as a function of the size (n = 45 and 104), nominal temperature (T(nom) = 50, 100, and 150 K), and preparation method of the parent neutral clusters. In particular, we consider two different protocols for preparing the initial neutral clusters, which differ markedly in their thermal history. In the first, warm equilibrium neutral clusters are gradually quenched to increasingly lower temperature. In the second, neutral clusters are formed spontaneously at approximately 0 K and then warmed to the same target temperatures, yielding inherently metastable, nonequilibrium structures. Electron attachment to these alternative sets of clusters shows that below a critical temperature (approximately 200 K), the metastable water clusters bind a surface state excess electron significantly more strongly than the quenched, equilibrium clusters. The structural analysis indicates that these cluster anions with larger vertical detachment energies (VDEs) more frequently stabilize the electron by double-acceptor-type water molecules and exhibit a weak temperature dependence of the VDE compared with the quenched clusters. These results suggest that the alternative classes of cluster anions seen experimentally may reflect differences in the thermal history of such clusters.

  13. Hydrated hydride anion clusters

    NASA Astrophysics Data System (ADS)

    Lee, Han Myoung; Kim, Dongwook; Singh, N. Jiten; Kołaski, Maciej; Kim, Kwang S.

    2007-10-01

    On the basis of density functional theory (DFT) and high level ab initio theory, we report the structures, binding energies, thermodynamic quantities, IR spectra, and electronic properties of the hydride anion hydrated by up to six water molecules. Ground state DFT molecular dynamics simulations (based on the Born-Oppenheimer potential surface) show that as the temperature increases, the surface-bound hydride anion changes to the internally bound structure. Car-Parrinello molecular dynamics simulations are also carried out for the spectral analysis of the monohydrated hydride. Excited-state ab initio molecular dynamics simulations show that the photoinduced charge-transfer-to-solvent phenomena are accompanied by the formation of the excess electron-water clusters and the detachment of the H radical from the clusters. The dynamics of the detachment process of a hydrogen radical upon the excitation is discussed.

  14. Treatment of mouse oocytes with PI-PLC releases 70-kDa (pI 5) and 35- to 45-kDa (pI 5.5) protein clusters from the egg surface and inhibits sperm-oolemma binding and fusion.

    PubMed

    Coonrod, S A; Naaby-Hansen, S; Shetty, J; Shibahara, H; Chen, M; White, J M; Herr, J C

    1999-03-15

    The effect of phosphatidyinositol-specific phospholipase C (PI-PLC) on mouse sperm-egg interaction was investigated in this study to determine if glycosyl-phosphatidylinositol (GPI)-anchored proteins are involved in mammalian fertilization. When both sperm and zona-intact oocytes were pretreated with a highly purified preparation of PI-PLC and coincubated, there was no significant effect on sperm-zona pellucida binding; however, fertilization was reduced from 59.6% (control group) to 2.8% (treatment group). A similar reduction in fertilization rates was found when zona-intact oocytes were treated with PI-PLC and washed prior to incubation with untreated sperm. The effect of PI-PLC on sperm binding and fusion with zona-free oocytes was then investigated. Treatment of sperm with PI-PLC had no significant effect on sperm-egg binding or fusion. However, treatment of eggs with PI-PLC significantly reduced sperm-egg binding and fusion from 6.2 bound and 2.1 fused sperm per egg in the control group to 2.1 bound and 0.02 fused sperm per egg in the treatment group. This decrease in sperm-egg binding and fusion depended on the dose of PI-PLC employed, with a maximal inhibitory effect on binding and fusion at 5 and 1 U/ml, respectively. PI-PLC-treated oocytes could be artificially activated by calcium ionophore, demonstrating that the oocytes were functionally viable following treatment. Furthermore, treatment of oocytes with PI-PLC did not reduce the immunoreactivity of the non-GPI-anchored egg surface integrin, alpha6beta1. Taken together, these observations support the hypothesis that PI-PLC affects fertilization by specifically releasing GPI-anchored proteins from the oolemma. In order to identify the oolemmal GPI-anchored proteins involved in fertilization, egg surface proteins were labeled with sulfo-NHS biotin, treated with PI-PLC, and analyzed by two-dimensional gel electrophoresis followed by avidin blotting. A prominent high-molecular-weight protein cluster

  15. An accurate and efficient computational protocol for obtaining the complete basis set limits of the binding energies of water clusters at the MP2 and CCSD(T) levels of theory: Application to (H2O)m, m = 2-6, 8, 11, 16, and 17

    NASA Astrophysics Data System (ADS)

    Miliordos, Evangelos; Xantheas, Sotiris S.

    2015-06-01

    We report MP2 and Coupled Cluster Singles, Doubles, and perturbative Triples [CCSD(T)] binding energies with basis sets up to pentuple zeta quality for the (H2O)m=2-6,8 water clusters. Our best CCSD(T)/Complete Basis Set (CBS) estimates are -4.99 ± 0.04 kcal/mol (dimer), -15.8 ± 0.1 kcal/mol (trimer), -27.4 ± 0.1 kcal/mol (tetramer), -35.9 ± 0.3 kcal/mol (pentamer), -46.2 ± 0.3 kcal/mol (prism hexamer), -45.9 ± 0.3 kcal/mol (cage hexamer), -45.4 ± 0.3 kcal/mol (book hexamer), -44.3 ± 0.3 kcal/mol (ring hexamer), -73.0 ± 0.5 kcal/mol (D2d octamer), and -72.9 ± 0.5 kcal/mol (S4 octamer). We have found that the percentage of both the uncorrected (De) and basis set superposition error-corrected ( De CP ) binding energies recovered with respect to the CBS limit falls into a narrow range on either sides of the CBS limit for each basis set for all clusters. In addition, this range decreases upon increasing the basis set. Relatively accurate estimates (within <0.5%) of the CBS limits can be obtained when using the " 2 3 , 1 3 " (for the AVDZ set) or the " 1 2 , 1 2 " (for the AVTZ, AVQZ, and AV5Z sets) mixing ratio between De and De CP . These mixing rations are determined via a least-mean-squares approach from a dataset that encompasses clusters of various sizes. Based on those findings, we propose an accurate and efficient computational protocol that can be presently used to estimate accurate binding energies of water clusters containing up to 30 molecules (for CCSD(T)) and up to 100 molecules (for MP2).

  16. Binding manners

    NASA Astrophysics Data System (ADS)

    2012-08-01

    Claudia Turro from The Ohio State University talks Nature Chemistry through the different binding modes small metal complexes can adopt when interacting with DNA -- and why elucidating them in detail matters.

  17. Stable prenucleation calcium carbonate clusters.

    PubMed

    Gebauer, Denis; Völkel, Antje; Cölfen, Helmut

    2008-12-19

    Calcium carbonate forms scales, geological deposits, biominerals, and ocean sediments. Huge amounts of carbon dioxide are retained as carbonate ions, and calcium ions represent a major contribution to water hardness. Despite its relevance, little is known about the precipitation mechanism of calcium carbonate, and specified complex crystal structures challenge the classical view on nucleation considering the formation of metastable ion clusters. We demonstrate that dissolved calcium carbonate in fact contains stable prenucleation ion clusters forming even in undersaturated solution. The cluster formation can be characterized by means of equilibrium thermodynamics, applying a multiple-binding model, which allows for structural preformation. Stable clusters are the relevant species in calcium carbonate nucleation. Such mechanisms may also be important for the crystallization of other minerals.

  18. Architecture of Eph receptor clusters

    SciTech Connect

    Himanen, Juha P.; Yermekbayeva, Laila; Janes, Peter W.; Walker, John R.; Xu, Kai; Atapattu, Lakmali; Rajashankar, Kanagalaghatta R.; Mensinga, Anneloes; Lackmann, Martin; Nikolov, Dimitar B.; Dhe-Paganon, Sirano

    2010-10-04

    Eph receptor tyrosine kinases and their ephrin ligands regulate cell navigation during normal and oncogenic development. Signaling of Ephs is initiated in a multistep process leading to the assembly of higher-order signaling clusters that set off bidirectional signaling in interacting cells. However, the structural and mechanistic details of this assembly remained undefined. Here we present high-resolution structures of the complete EphA2 ectodomain and complexes with ephrin-A1 and A5 as the base unit of an Eph cluster. The structures reveal an elongated architecture with novel Eph/Eph interactions, both within and outside of the Eph ligand-binding domain, that suggest the molecular mechanism underlying Eph/ephrin clustering. Structure-function analysis, by using site-directed mutagenesis and cell-based signaling assays, confirms the importance of the identified oligomerization interfaces for Eph clustering.

  19. Microbial starch-binding domain.

    PubMed

    Rodríguez-Sanoja, Romina; Oviedo, Norma; Sánchez, Sergio

    2005-06-01

    Glucosidic bonds from different non-soluble polysaccharides such as starch, cellulose and xylan are hydrolyzed by amylases, cellulases and xylanases, respectively. These enzymes are produced by microorganisms. They have a modular structure that is composed of a catalytic domain and at least one non-catalytic domain that is involved in polysaccharide binding. Starch-binding modules are present in microbial enzymes that are involved in starch metabolism; these are classified into several different families on the basis of their amino acid sequence similarities. Such binding domains promote attachment to the substrate and increase its concentration at the active site of the enzyme, which allows microorganisms to degrade non-soluble starch. Fold similarities are better conserved than sequences; nevertheless, it is possible to notice two evolutionary clusters of microbial starch-binding domains. These domains have enormous potential as tags for protein immobilization, as well as for the tailoring of enzymes that play a part in polysaccharide metabolism.

  20. INTERACTION OF INTERSTITIAL CLUSTERS WITH RHENIUM, OSMIUM, AND TANTALUM IN TUNGSTEN

    SciTech Connect

    Setyawan, Wahyu; Nandipati, Giridhar; Kurtz, Richard J.

    2016-09-01

    In the previous semi annual report, we explored the stability of interstitial clusters in W up to size seven. In this report, we study the binding of those clusters to Re, Os, and Ta atoms. For each cluster size, the three most stable configurations are considered to average the binding property. The average binding energy to a Re decreases from 0.79 eV for a size-1 cluster (a [111] dumbbell) to 0.65 eV for a size-7 cluster. For Os, the binding decreases from 1.61 eV for a [111] dumbbell to 1.34 eV for a size-7 cluster. Tantalum is repulsive to interstitial clusters with binding energy ranges from -0.61 eV for a [111] dumbbell to -0.5 eV for a size-7 cluster.

  1. Expression of the helix-loop-helix protein inhibitor of DNA binding-1 (ID-1) is activated by all-trans retinoic acid in normal human keratinocytes

    SciTech Connect

    Villano, C.M.; White, L.A. . E-mail: lawhite@aesop.rutgers.edu

    2006-08-01

    The ID (inhibitor of differentiation or DNA binding) helix-loop-helix proteins are important mediators of cellular differentiation and proliferation in a variety of cell types through regulation of gene expression. Overexpression of the ID proteins in normal human keratinocytes results in extension of culture lifespan, indicating that these proteins are important for epidermal differentiation. Our hypothesis is that the ID proteins are targets of the retinoic acid signaling pathway in keratinocytes. Retinoids, vitamin A analogues, are powerful regulators of cell growth and differentiation and are widely used in the prevention and treatment of a variety of cancers in humans. Furthermore, retinoic acid is necessary for the maintenance of epithelial differentiation and demonstrates an inhibitory action on skin carcinogenesis. We examined the effect of all-trans retinoic acid on expression of ID-1, -2, -3, and -4 in normal human keratinocytes and found that exposure of these cells to all-trans retinoic acid causes an increase in both ID-1 and ID-3 gene expression. Furthermore, our data show that this increase is mediated by increased transcription involving several cis-acting elements in the distal portion of the promoter, including a CREB-binding site, an Egr1 element, and an YY1 site. These data demonstrate that the ID proteins are direct targets of the retinoic acid signaling pathway. Given the importance of the ID proteins to epidermal differentiation, these results suggest that IDs may be mediating some of the effects of all-trans retinoic acid in normal human keratinocytes.

  2. Stepwise association of hydrogen cyanide and acetonitrile with the benzene radical cation: structures and binding energies of (C6H6•+)(HCN)n, n = 1-6, and (C6H6•+)(CH3CN)n, n = 1-4, clusters.

    PubMed

    Hamid, Ahmed M; Soliman, Abdel-Rahman; El-Shall, M Samy

    2013-02-14

    Equilibrium thermochemical measurements using the ion mobility drift cell technique have been utilized to investigate the binding energies and entropy changes associated with the stepwise association of HCN and CH(3)CN molecules with the benzene radical cation in the C(6)H(6)(•+)(HCN)(n) and C(6)H(6)(•+)(CH(3)CN)(n) clusters with n = 1-6 and 1-4, respectively. The binding energy of CH(3)CN to the benzene cation (14 kcal/mol) is stronger than that of HCN (9 kcal/mol) mostly due to a stronger ion-dipole interaction because of the large dipole moment of acetonitrile (3.9 D). However, HCN can form hydrogen bonds with the hydrogen atoms of the benzene cation (CH(δ+)···NCH) and linear hydrogen bonding chains involving HCN···HCN interaction. HCN molecules tend to form externally solvated structures with the benzene cation where the ion is hydrogen bonded to the exterior of HCN chains. For the C(6)H(6)(•+)(CH(3)CN)(n) clusters, internally solvated structures are formed where the acetonitrile molecules are directly interacting with the benzene cation through ion-dipole and hydrogen bonding interactions. The lack of formation of higher clusters with n > 4, in contrast to HCN, suggests the formation of a solvent shell at n = 4, which is attributed to steric interactions among the acetonitrile molecules attached to the benzene cation and to the presence of the blocking CH(3) groups, both effects make the addition of more than four acetonitrile molecules less favorable.

  3. Quantum Dynamics of Helium Clusters

    DTIC Science & Technology

    1993-03-01

    helium clusters [10-12]. (10) DMC starts with the time - dependent Schr ~ dinger equation in imaginary time and has been employed most- The approximate...bound. (For example, the binding values may be computed by the Metropolis approach . energy of He 3 is five times greater than that of 1l1lie I We first...or four times for computational effort. If this is also the case with the the larger clusters) its original size. If the maximum en- DMC approach

  4. Cluster bulleticity

    NASA Astrophysics Data System (ADS)

    Massey, Richard; Kitching, Thomas; Nagai, Daisuke

    2011-05-01

    The unique properties of dark matter are revealed during collisions between clusters of galaxies, such as the bullet cluster (1E 0657-56) and baby bullet (MACS J0025-12). These systems provide evidence for an additional, invisible mass in the separation between the distributions of their total mass, measured via gravitational lensing, and their ordinary 'baryonic' matter, measured via its X-ray emission. Unfortunately, the information available from these systems is limited by their rarity. Constraints on the properties of dark matter, such as its interaction cross-section, are therefore restricted by uncertainties in the individual systems' impact velocity, impact parameter and orientation with respect to the line of sight. Here we develop a complementary, statistical measurement in which every piece of substructure falling into every massive cluster is treated as a bullet. We define 'bulleticity' as the mean separation between dark matter and ordinary matter, and we measure the signal in hydrodynamical simulations. The phase space of substructure orbits also exhibits symmetries that provide an equivalent control test. Any detection of bulleticity in real data would indicate a difference in the interaction cross-sections of baryonic and dark matter that may rule out hypotheses of non-particulate dark matter that are otherwise able to model individual systems. A subsequent measurement of bulleticity could constrain the dark matter cross-section. Even with conservative estimates, the existing Hubble Space Telescope archive should yield an independent constraint tighter than that from the bullet cluster. This technique is then trivially extendable to and benefits enormously from larger, future surveys.

  5. Nature of multiple-nucleus cluster galaxies

    SciTech Connect

    Merritt, D.

    1984-05-01

    In models for the evolution of galaxy clusters which include dynamical friction with the dark binding matter, the distribution of galaxies becomes more concentrated to the cluster center with time. In a cluster like Coma, this evolution could increase by a factor of approximately 3 the probability of finding a galaxy very close to the cluster center, without decreasing the typical velocity of such a galaxy significantly below the cluster mean. Such an enhancement is roughly what is needed to explain the large number of first-ranked cluster galaxies which are observed to have extra ''nuclei''; it is also consistent with the high velocities typically measured for these ''nuclei.'' Unlike the cannibalism model, this model predicts that the majority of multiple-nucleus systems are transient phenomena, and not galaxies in the process of merging.

  6. Sequence diversity between class I MHC loci of African native and introduced Bos taurus cattle in Theileria parva endemic regions: in silico peptide binding prediction identifies distinct functional clusters.

    PubMed

    Obara, Isaiah; Nielsen, Morten; Jeschek, Marie; Nijhof, Ard; Mazzoni, Camila J; Svitek, Nicholas; Steinaa, Lucilla; Awino, Elias; Olds, Cassandra; Jabbar, Ahmed; Clausen, Peter-Henning; Bishop, Richard P

    2016-05-01

    There is strong evidence that the immunity induced by live vaccination for control of the protozoan parasite Theileria parva is mediated by class I MHC-restricted CD8(+) T cells directed against the schizont stage of the parasite that infects bovine lymphocytes. The functional competency of class I MHC genes is dependent on the presence of codons specifying certain critical amino acid residues that line the peptide binding groove. Compared with European Bos taurus in which class I MHC allelic polymorphisms have been examined extensively, published data on class I MHC transcripts in African taurines in T. parva endemic areas is very limited. We utilized the multiplexing capabilities of 454 pyrosequencing to make an initial assessment of class I MHC allelic diversity in a population of Ankole cattle. We also typed a population of exotic Holstein cattle from an African ranch for class I MHC and investigated the extent, if any, that their peptide-binding motifs overlapped with those of Ankole cattle. We report the identification of 18 novel allelic sequences in Ankole cattle and provide evidence of positive selection for sequence diversity, including in residues that predominantly interact with peptides. In silico functional analysis resulted in peptide binding specificities that were largely distinct between the two breeds. We also demonstrate that CD8(+) T cells derived from Ankole cattle that are seropositive for T. parva do not recognize vaccine candidate antigens originally identified in Holstein and Boran (Bos indicus) cattle breeds.

  7. Evidence for chemoreceptors with bimodular ligand-binding regions harboring two signal-binding sites

    PubMed Central

    Pineda-Molina, Estela; Reyes-Darias, José-Antonio; Lacal, Jesús; Ramos, Juan L.; García-Ruiz, Juan Manuel; Gavira, Jose A.; Krell, Tino

    2012-01-01

    Chemoreceptor-based signaling is a central mechanism in bacterial signal transduction. Receptors are classified according to the size of their ligand-binding region. The well-studied cluster I proteins have a 100- to 150-residue ligand-binding region that contains a single site for chemoattractant recognition. Cluster II receptors, which contain a 220- to 300-residue ligand-binding region and which are almost as abundant as cluster I receptors, remain largely uncharacterized. Here, we report high-resolution structures of the ligand-binding region of the cluster II McpS chemotaxis receptor (McpS-LBR) of Pseudomonas putida KT2440 in complex with different chemoattractants. The structure of McpS-LBR represents a small-molecule binding domain composed of two modules, each able to bind different signal molecules. Malate and succinate were found to bind to the membrane-proximal module, whereas acetate binds to the membrane-distal module. A structural alignment of the two modules revealed that the ligand-binding sites could be superimposed and that amino acids involved in ligand recognition are conserved in both binding sites. Ligand binding to both modules was shown to trigger chemotactic responses. Further analysis showed that McpS-like receptors were found in different classes of proteobacteria, indicating that this mode of response to different carbon sources may be universally distributed. The physiological relevance of the McpS architecture may lie in its capacity to respond with high sensitivity to the preferred carbon sources malate and succinate and, at the same time, mediate lower sensitivity responses to the less preferred but very abundant carbon source acetate. PMID:23112148

  8. Formation of [4Fe-4S] clusters in the mitochondrial iron-sulfur cluster assembly machinery.

    PubMed

    Brancaccio, Diego; Gallo, Angelo; Mikolajczyk, Maciej; Zovo, Kairit; Palumaa, Peep; Novellino, Ettore; Piccioli, Mario; Ciofi-Baffoni, Simone; Banci, Lucia

    2014-11-19

    The generation of [4Fe-4S] clusters in mitochondria critically depends, in both yeast and human cells, on two A-type ISC proteins (in mammals named ISCA1 and ISCA2), which perform a nonredundant functional role forming in vivo a heterocomplex. The molecular function of ISCA1 and ISCA2 proteins, i.e., how these proteins help in generating [4Fe-4S] clusters, is still unknown. In this work we have structurally characterized the Fe/S cluster binding properties of human ISCA2 and investigated in vitro whether and how a [4Fe-4S] cluster is assembled when human ISCA1 and ISCA2 interact with the physiological [2Fe-2S](2+) cluster-donor human GRX5. We found that (i) ISCA2 binds either [2Fe-2S] or [4Fe-4S] cluster in a dimeric state, and (ii) two molecules of [2Fe-2S](2+) GRX5 donate their cluster to a heterodimeric ISCA1/ISCA2 complex. This complex acts as an "assembler" of [4Fe-4S] clusters; i.e., the two GRX5-donated [2Fe-2S](2+) clusters generate a [4Fe-4S](2+) cluster. The formation of the same [4Fe-4S](2+) cluster-bound heterodimeric species is also observed by having first one [2Fe-2S](2+) cluster transferred from GRX5 to each individual ISCA1 and ISCA2 proteins to form [2Fe-2S](2+) ISCA2 and [2Fe-2S](2+) ISCA1, and then mixing them together. These findings imply that such heterodimeric complex is the functional unit in mitochondria receiving [2Fe-2S] clusters from hGRX5 and assembling [4Fe-4S] clusters before their transfer to the final target apo proteins.

  9. Novel fungal transcriptional activators, Cmr1p of Colletotrichum lagenarium and pig1p of Magnaporthe grisea, contain Cys2His2 zinc finger and Zn(II)2Cys6 binuclear cluster DNA-binding motifs and regulate transcription of melanin biosynthesis genes in a developmentally specific manner.

    PubMed

    Tsuji, G; Kenmochi, Y; Takano, Y; Sweigard, J; Farrall, L; Furusawa, I; Horino, O; Kubo, Y

    2000-12-01

    Colletotrichum lagenarium and Magnaporthe grisea are plant pathogenic fungi that produce melanin during the appressorial differentiation stage of conidial germination and during the late stationary phase of mycelial growth. Here, we report the identification of genes for two unique transcription factors, CMR1 (Colletotrichum melanin regulation) and PIG1 (pigment of Magnaporthe), that are involved in melanin biosynthesis. Both Cmr1p and Pig1p contain two distinct DNA-binding motifs, a Cys2His2 zinc finger motif and a Zn(II)2Cys6 binuclear cluster motif. The presence of both these motifs in a single transcriptional regulatory protein is unique among known eukaryotic transcription factors. Deletion of CMR1 in C. lagenarium caused a defect in mycelial melanization, but not in appressorial melanization. Also, cmr1Delta mutants do not express the melanin biosynthetic structural genes SCD1 and THR1 during mycelial melanization, although the expression of these two genes was not affected during appressorial melanization.

  10. Electron attachment to formamide clusters in helium nanodroplets.

    PubMed

    Ferreira da Silva, F; Denifl, S; Märk, T D; Doltsinis, N L; Ellis, A M; Scheier, P

    2010-02-04

    Electron attachment to formamide clusters in helium nanodroplets is reported for the first time. In contrast to the gas phase, parent anions are seen following low energy electron attachment to both the monomer and the small clusters. This is attributed to formation of dipole (or quadrupole) bound anions. In addition to the bare anions, the mass spectra also show the monomer and clusters with attached helium atoms. The affinity for attaching helium atoms strongly varies with cluster size; for example, the dimer anion is more than 10 times more likely to bind one or more helium atoms than the monomer. Possible binding sites for the helium atoms are discussed.

  11. Photoionization of sodium clusters

    SciTech Connect

    Peterson, K.I.; Dao, P.D.; Farley, R.W.; Castleman, A.W. Jr.

    1984-03-01

    Sodium clusters, Na/sub x/ (2< or =x< or =8), were produced in a supersonic jet by coexpansion with argon and subjected to analysis via photoionization coupled with mass spectrometry. The present measurements, made at somewhat higher resolution than earlier literature studies, yield ionization potentials in excellent agreement for x = 1 to 4 and x = 7, and reveal heretofore unreported structure in the post-threshold spectra. The present measurements enable a more definitive assignment of the ionization potentials, giving a lower value for x = 6 and pointing to lower ones for x = 5 and 8. The frequently discussed odd--even alternation in ionization potentials is no longer evident beyond the pentamer. Values for the binding energies of Na to Na/sup +//sub x/ (3< or =x< or =8) are deduced.

  12. Universality in Molecular Halo Clusters

    NASA Astrophysics Data System (ADS)

    Stipanović, P.; Markić, L. Vranješ; Bešlić, I.; Boronat, J.

    2014-12-01

    The ground state of weakly bound dimers and trimers with a radius extending well into the classically forbidden region is explored, with the goal to test the predicted universality of quantum halo states. The focus of the study is molecules consisting of T ↓ , D ↓ , 3He, 4He, and alkali atoms, where the interaction between particles is much better known than in the case of nuclei, which are traditional examples of quantum halos. The study of realistic systems is supplemented by model calculations in order to analyze how low-energy properties depend on the interaction potential. The use of variational and diffusion Monte Carlo methods enabled a very precise calculation of both the size and binding energy of the trimers. In the quantum halo regime, and for large values of scaled binding energies, all clusters follow almost the same universal line. As the scaled binding energy decreases, Borromean states separate from tango trimers.

  13. Mapping the interactions of the single-stranded DNA binding protein of bacteriophage T4 (gp32) with DNA lattices at single nucleotide resolution: polynucleotide binding and cooperativity

    PubMed Central

    Jose, Davis; Weitzel, Steven E.; Baase, Walter A.; Michael, Miya M.; von Hippel, Peter H.

    2015-01-01

    We here use our site-specific base analog mapping approach to study the interactions and binding equilibria of cooperatively-bound clusters of the single-stranded DNA binding protein (gp32) of the T4 DNA replication complex with longer ssDNA (and dsDNA) lattices. We show that in cooperatively bound clusters the binding free energy appears to be equi-partitioned between the gp32 monomers of the cluster, so that all bind to the ssDNA lattice with comparable affinity, but also that the outer domains of the gp32 monomers at the ends of the cluster can fluctuate on and off the lattice and that the clusters of gp32 monomers can slide along the ssDNA. We also show that at very low binding densities gp32 monomers bind to the ssDNA lattice at random, but that cooperatively bound gp32 clusters bind preferentially at the 5′-end of the ssDNA lattice. We use these results and the gp32 monomer-binding results of the companion paper to propose a detailed model for how gp32 might bind to and interact with ssDNA lattices in its various binding modes, and also consider how these clusters might interact with other components of the T4 DNA replication complex. PMID:26275774

  14. Yin Yang-1 increases apoptosis through Bax activation in pancreatic cancer cells.

    PubMed

    Zhang, Jing-Jing; Zhu, Yi; Yang, Chuang; Liu, Xian; Peng, Yun-Peng; Jiang, Kui-Rong; Miao, Yi; Xu, Ze-Kuan

    2016-05-10

    The transcriptional regulator Yin Yang-1 (YY1) is a tumor suppressor known to be overexpressed in pancreatic cancer. We found that overexpression of YY1 promoted apoptosis and increased the expression and mitochondrial localization of the pro-apoptotic Bax protein in pancreatic cancer cell lines. Luciferase reporter, electrophoretic mobility shift (EMSA), and chromatin immunoprecipitation (ChIP) assays revealed binding of YY1 to the BAX promoter. Moreover, YY1 promoted pancreatic cancer cell apoptosis through Bax transcriptional activation and subsequent translocation of Bax to the mitochondrial membrane, leading to cytochrome c release, and caspase activation.YY1 and BAX are co-expressed in pancreatic cancer tissues and higher BAX expression predicts better outcomes for patients. The ability of YY1 to promote apoptosis in pancreatic cancer cells suggests it may represent a valuable diagnostic and therapeutic target.

  15. Coupled Cluster Evaluation of the Stability of Atmospheric Acid-Base Clusters with up to 10 Molecules.

    PubMed

    Myllys, Nanna; Elm, Jonas; Halonen, Roope; Kurtén, Theo; Vehkamäki, Hanna

    2016-02-04

    We investigate the utilization of the domain local pair natural orbital coupled cluster (DLPNO-CCSD(T)) method for calculating binding energies of atmospherical molecular clusters. Applied to small complexes of atmospherical relevance we find that the DLPNO method significantly reduces the scatter in the binding energy, which is commonly present in DFT calculations. For medium sized clusters consisting of sulfuric acid and bases the DLPNO method yields a systematic underestimation of the binding energy compared to canonical coupled cluster results. The errors in the DFT binding energies appear to be more random, while the systematic nature of the DLPNO results allows the establishment of a scaling factor, to better mimic the canonical coupled cluster calculations. Based on the trends identified for the small and medium sized systems, we further extend the application of the DLPNO method to large acid - base clusters consisting of up to 10 molecules, which have previously been out of reach with accurate coupled cluster methods. Using the Atmospheric Cluster Dynamics Code (ACDC) we compare the sulfuric acid dimer formation based on the new DLPNO binding energies with previously published RI-CC2/aug-cc-pV(T+d)Z results. We also compare the simulated sulfuric acid dimer concentration as a function of the base concentration with measurement data from the CLOUD chamber and flow tube experiments. The DLPNO method, even after scaling, underpredicts the dimer concentration significantly. Reasons for this are discussed.

  16. Vacancy clusters in graphane as quantum dots.

    PubMed

    Singh, Abhishek K; Penev, Evgeni S; Yakobson, Boris I

    2010-06-22

    Complementary electronic properties and a tendency to form sharp graphene-graphane interfaces open tantalizing possibilities for two-dimensional nanoelectronics. First-principles density functional and tight-binding calculations show that graphane can serve as natural host for graphene quantum dots, clusters of vacancies in the hydrogen sublattice. Their size n, shape, and stability are governed by the aromaticity and interfaces, resulting in formation energies approximately 1/ radicaln eV/atom and preference to hexagonal clusters congruent with lattice hexagons (i.e., with armchair edge). Clusters exhibit large gaps approximately 15/ radicaln eV with size dependence typical for confined Dirac fermions.

  17. Singular electrostatic energy of nanoparticle clusters

    NASA Astrophysics Data System (ADS)

    Qin, Jian; Krapf, Nathan W.; Witten, Thomas A.

    2016-02-01

    The binding of clusters of metal nanoparticles is partly electrostatic. We address difficulties in calculating the electrostatic energy when high charging energies limit the total charge to a single quantum, entailing unequal potentials on the particles. We show that the energy at small separation h has a singular logarithmic dependence on h . We derive a general form for this energy in terms of the singular capacitance of two spheres in near contact c (h ) , together with nonsingular geometric features of the cluster. Using this form, we determine the energies of various clusters, finding that more compact clusters are more stable. These energies are proposed to be significant for metal-semiconductor binary nanoparticle lattices found experimentally. We sketch how these effects should dictate the relative abundances of metal nanoparticle clusters in nonpolar solvents.

  18. Molecular-dynamics simulations of lead clusters

    NASA Astrophysics Data System (ADS)

    Hendy, S. C.; Hall, B. D.

    2001-08-01

    Molecular-dynamics simulations of nanometer-sized lead clusters have been performed using the Lim-Ong-Ercolessi glue potential [Surf. Sci. 269/270, 1109 (1992)]. The binding energies of clusters forming crystalline (fcc), decahedron and icosahedron structures are compared, showing that fcc cuboctahedra are the most energetically favored of these polyhedral model structures. However, simulations of the freezing of liquid droplets produced a characteristic form of surface-reconstructed ``shaved'' icosahedron, in which atoms are absent at the edges and apexes of the polyhedron. This arrangement is energetically favored for 600-4000 atom clusters. Larger clusters favor crystalline structures. Indeed, simulated freezing of a 6525-atom liquid droplet produced an imperfect fcc Wulff particle, containing a number of parallel stacking faults. The effects of temperature on the preferred structure of crystalline clusters below the melting point have been considered. The implications of these results for the interpretation of experimental data is discussed.

  19. Cluster headache

    PubMed Central

    Leroux, Elizabeth; Ducros, Anne

    2008-01-01

    Cluster headache (CH) is a primary headache disease characterized by recurrent short-lasting attacks (15 to 180 minutes) of excruciating unilateral periorbital pain accompanied by ipsilateral autonomic signs (lacrimation, nasal congestion, ptosis, miosis, lid edema, redness of the eye). It affects young adults, predominantly males. Prevalence is estimated at 0.5–1.0/1,000. CH has a circannual and circadian periodicity, attacks being clustered (hence the name) in bouts that can occur during specific months of the year. Alcohol is the only dietary trigger of CH, strong odors (mainly solvents and cigarette smoke) and napping may also trigger CH attacks. During bouts, attacks may happen at precise hours, especially during the night. During the attacks, patients tend to be restless. CH may be episodic or chronic, depending on the presence of remission periods. CH is associated with trigeminovascular activation and neuroendocrine and vegetative disturbances, however, the precise cautive mechanisms remain unknown. Involvement of the hypothalamus (a structure regulating endocrine function and sleep-wake rhythms) has been confirmed, explaining, at least in part, the cyclic aspects of CH. The disease is familial in about 10% of cases. Genetic factors play a role in CH susceptibility, and a causative role has been suggested for the hypocretin receptor gene. Diagnosis is clinical. Differential diagnoses include other primary headache diseases such as migraine, paroxysmal hemicrania and SUNCT syndrome. At present, there is no curative treatment. There are efficient treatments to shorten the painful attacks (acute treatments) and to reduce the number of daily attacks (prophylactic treatments). Acute treatment is based on subcutaneous administration of sumatriptan and high-flow oxygen. Verapamil, lithium, methysergide, prednisone, greater occipital nerve blocks and topiramate may be used for prophylaxis. In refractory cases, deep-brain stimulation of the hypothalamus and

  20. Computer simulation of the interaction of ringlike carbon clusters with nanographene

    NASA Astrophysics Data System (ADS)

    Dzhurakhalov, A. A.; Stelmakh, V. G.; Yadgarov, I. D.

    2015-09-01

    Various cases of interaction of ringlike carbon clusters C7, C12 and C13 with a rectangular nanographene consisting of 272 atoms were studied and presented. It was found that this interaction results in the structural change in these clusters and in the local part of nanographene. The cohesive energies of these clusters in the isolated (free) state and their binding energies with nanographene have been calculated. The results show that despite this interaction the atoms of cluster are hold together as a single cluster thanks to the significantly higher cohesive energy of cluster the its binding energy with nanographene.

  1. Formation of Cluster Complexes by Cluster-Cluster-Collisions

    NASA Astrophysics Data System (ADS)

    Ichihashi, Masahiko; Odaka, Hideho

    2015-03-01

    Multi-element clusters are interested in their chemical and physical properties, and it is expected that they are utilized as catalysts, for example. Their properties critically depend on the size, composition and atomic ordering, and it should be important to adjust the above parameters for their functionality. One of the ways to form a multi-element cluster is to employ a low-energy collision between clusters. Here, we show characteristic results obtained in the collision between a neutral Ar cluster and a size-selected Co cluster ion. Low-energy collision experiment was accomplished by using a newly developed merging-beam apparatus. Cobalt cluster ions were produced by laser ablation, and mass-selected. On the other hand, argon clusters were prepared by the supersonic expansion of Ar gas. Both cluster beams were merged together in an ion guide, and ionic cluster complexes were mass-analyzed. In the collision of Co2+ and ArN, Co2Arn+ (n = 1 - 30) were observed, and the total intensity of Co2Arn+ (n >= 1) is inversely proportional to the relative velocity between Co2+ and ArN. This suggests that the charge-induced dipole interaction between Co2+ and a neutral Ar cluster is dominant in the formation of the cluster complex, Co2+Arn.

  2. Preferential site occupancy observed in coexpanded argon-krypton clusters

    SciTech Connect

    Lundwall, M.; Bergersen, H.; Lindblad, A.; Oehrwall, G.; Svensson, S.; Bjoerneholm, O.; Tchaplyguine, M.

    2006-10-15

    Free heterogeneous argon-krypton clusters have been produced by coexpansion and investigated by means of x-ray photoelectron spectroscopy. By examining cluster surface and bulk binding energy shifts, relative intensities, and peak widths, we show that in the mixed argon-krypton clusters the krypton atoms favor the bulk and argon atoms are pushed to the surface. Furthermore, we show that krypton atoms in the surface layer occupy high-coordination sites and that heterogeneous argon-krypton clusters produced by coexpansion show the same surface structure as argon host clusters doped with krypton. These observations are supported by site-dependent calculations of chemical shifts.

  3. Quantum Monte Carlo methods and lithium cluster properties. [Atomic clusters

    SciTech Connect

    Owen, R.K.

    1990-12-01

    Properties of small lithium clusters with sizes ranging from n = 1 to 5 atoms were investigated using quantum Monte Carlo (QMC) methods. Cluster geometries were found from complete active space self consistent field (CASSCF) calculations. A detailed development of the QMC method leading to the variational QMC (V-QMC) and diffusion QMC (D-QMC) methods is shown. The many-body aspect of electron correlation is introduced into the QMC importance sampling electron-electron correlation functions by using density dependent parameters, and are shown to increase the amount of correlation energy obtained in V-QMC calculations. A detailed analysis of D-QMC time-step bias is made and is found to be at least linear with respect to the time-step. The D-QMC calculations determined the lithium cluster ionization potentials to be 0.1982(14) (0.1981), 0.1895(9) (0.1874(4)), 0.1530(34) (0.1599(73)), 0.1664(37) (0.1724(110)), 0.1613(43) (0.1675(110)) Hartrees for lithium clusters n = 1 through 5, respectively; in good agreement with experimental results shown in the brackets. Also, the binding energies per atom was computed to be 0.0177(8) (0.0203(12)), 0.0188(10) (0.0220(21)), 0.0247(8) (0.0310(12)), 0.0253(8) (0.0351(8)) Hartrees for lithium clusters n = 2 through 5, respectively. The lithium cluster one-electron density is shown to have charge concentrations corresponding to nonnuclear attractors. The overall shape of the electronic charge density also bears a remarkable similarity with the anisotropic harmonic oscillator model shape for the given number of valence electrons.

  4. A Nomadic Subtelomeric Disease Resistance Gene Cluster in Common Bean

    USDA-ARS?s Scientific Manuscript database

    The B4 resistance (R)-gene cluster, located in subtelomeric region of chromosome 4, is one of the largest clusters known in common bean (Phaseolus vulgaris, Pv). We sequenced 650 kb spanning this locus and annotated 97 genes, 26 of which correspond to Coiled-coil-Nucleotide-Binding-Site-Leucine-Rich...

  5. Ion-pair binding: is binding both binding better?

    PubMed

    Roelens, Stefano; Vacca, Alberto; Francesconi, Oscar; Venturi, Chiara

    2009-08-17

    It is often tempting to explain chemical phenomena on the basis of intuitive principles, but this practice can frequently lead to biased analysis of data and incorrect conclusions. One such intuitive principle is brought into play in the binding of salts by synthetic receptors. Following the heuristic concept that "binding both is binding better", it is widely believed that ditopic receptors capable of binding both ionic partners of a salt are more effective than monotopic receptors because of a cooperative effect. Using a newly designed ditopic receptor and a generalized binding descriptor, we show here that, when the problem is correctly formulated and the appropriate algorithm is derived, the cooperativity principle is neither general nor predictable, and that competition between ion binding and ion pairing may even lead to inhibition rather than enhancement of the binding of an ion to a ditopic receptor.

  6. Electron spectra and structure of atomic and molecular clusters

    SciTech Connect

    Dehmer, Patricia M.

    1980-01-01

    Changes in electronic structure that occur during the stepwise transition from gas phase monomers to large clusters which resemble the condensed phase were studied. This basic information on weakly bound clusters is critical to the understanding of such phenomena as nucleation, aerosol formation, catalysis, and gas-to-particle conversion, yet there exist almost no experimental data on neutral particle energy levels or binding energies as a function of cluster size. (GHT)

  7. Isospin dependence of cluster recognition and multifragment production

    SciTech Connect

    Rajni, Vermani, Yogesh K.

    2016-05-06

    The isospin dependent quantum molecular dynamics (IQMD) model is used to study the role of isospin dependent clustering mechanism in Au+Au collisions at 100 and 600 MeV/A. A significant influence of clustering mechanism via isospin dependent spatial constraints was clearly seen on the fragment observables such as persistence, binding energy and the mean multiplicity of intermediate mass fragments. The model calculations using isospin dependent clusterization approach are able to describe the ALADiN multifragmentation data.

  8. Theoretical studies of binding of mannose-binding protein to monosaccharides

    NASA Astrophysics Data System (ADS)

    Aida-Hyugaji, Sachiko; Takano, Keiko; Takada, Toshikazu; Hosoya, Haruo; Kojima, Naoya; Mizuochi, Tsuguo; Inoue, Yasushi

    2004-11-01

    Binding properties of mannose-binding protein (MBP) to monosaccharides are discussed based on ab initio molecular orbital calculations for cluster models constructed. The calculated binding energies indicate that MBP has an affinity for N-acetyl- D-glucosamine, D-mannose, L-fucose, and D-glucose rather than D-galactose and N-acetyl- D-galactosamine, which is consistent with the biochemical experimental results. Electrostatic potential surfaces at the binding site of four monosaccharides having binding properties matched well with that of MBP. A vacant frontier orbital was found to be localized around the binding site of MBP, suggesting that MBP-monosaccharide interaction may occur through electrostatic and orbital interactions.

  9. Yin Yang 1: a multifaceted protein beyond a transcription factor.

    PubMed

    Deng, Zhiyong; Cao, Paul; Wan, Mei Mei; Sui, Guangchao

    2010-01-01

    As a transcription factor, Yin Yang 1 (YY1) regulates the transcription of a dazzling list of genes and the number of its targets still mounts. Recent studies revealed that YY1 possesses functions independent of its DNA binding activity and its regulatory role in tumorigenesis has started to emerge.

  10. Cluster-impact fusion

    SciTech Connect

    Echenique, P.M.; Manson, J.R.; Ritchie, R.H. )

    1990-03-19

    We present a model for the cluster-impact-fusion experiments of Buehler, Friedlander, and Friedman, Calculated fusion rates as a function of bombarding energy for constant cluster size agree well with experiment. The dependence of the fusion rate on cluster size at fixed bombarding energy is explained qualitatively. The role of correlated, coherent collisions in enhanced energy loss by clusters is emphasized.

  11. Water may inhibit oxygen binding in hemoprotein models.

    PubMed

    Collman, James P; Decréau, Richard A; Dey, Abhishek; Yang, Ying

    2009-03-17

    Three distal imidazole pickets in a cytochrome c oxidase (CcO) model form a pocket hosting a cluster of water molecules. The cluster makes the ferrous heme low spin, and consequently the O(2) binding slow. The nature of the rigid proximal imidazole tail favors a high spin/low spin cross-over. The O(2) binding rate is enhanced either by removing the water, increasing the hydrophobicity of the gas binding pocket, or inserting a metal ion that coordinates to the 3 distal imidazole pickets.

  12. Diverse fragment clustering and water exclusion identify protein hot spots.

    PubMed

    Kulp, John L; Kulp, John L; Pompliano, David L; Guarnieri, Frank

    2011-07-20

    Simulated annealing of chemical potential located the highest affinity positions of eight organic probes and water on eight static structures of hen egg white lysozyme (HEWL) in various conformational states. In all HELW conformations, a diverse set of organic probes clustered in the known binding site (hot spot). Fragment clusters at other locations were excluded by tightly-bound waters so that only the hot-spot cluster remained in each case. The location of the hot spot was correctly predicted irrespective of the protein conformation and without accounting for protein flexibility during the simulations. Any one of the static structures could have been used to locate the hot spot. A site on a protein where a diversity of organic probes is calculated to cluster, but where water specifically does not bind, identifies a potential small-molecule binding site or protein-protein interaction hot spot.

  13. PREFACE: Nuclear Cluster Conference; Cluster'07

    NASA Astrophysics Data System (ADS)

    Freer, Martin

    2008-05-01

    The Cluster Conference is a long-running conference series dating back to the 1960's, the first being initiated by Wildermuth in Bochum, Germany, in 1969. The most recent meeting was held in Nara, Japan, in 2003, and in 2007 the 9th Cluster Conference was held in Stratford-upon-Avon, UK. As the name suggests the town of Stratford lies upon the River Avon, and shortly before the conference, due to unprecedented rainfall in the area (approximately 10 cm within half a day), lay in the River Avon! Stratford is the birthplace of the `Bard of Avon' William Shakespeare, and this formed an intriguing conference backdrop. The meeting was attended by some 90 delegates and the programme contained 65 70 oral presentations, and was opened by a historical perspective presented by Professor Brink (Oxford) and closed by Professor Horiuchi (RCNP) with an overview of the conference and future perspectives. In between, the conference covered aspects of clustering in exotic nuclei (both neutron and proton-rich), molecular structures in which valence neutrons are exchanged between cluster cores, condensates in nuclei, neutron-clusters, superheavy nuclei, clusters in nuclear astrophysical processes and exotic cluster decays such as 2p and ternary cluster decay. The field of nuclear clustering has become strongly influenced by the physics of radioactive beam facilities (reflected in the programme), and by the excitement that clustering may have an important impact on the structure of nuclei at the neutron drip-line. It was clear that since Nara the field had progressed substantially and that new themes had emerged and others had crystallized. Two particular topics resonated strongly condensates and nuclear molecules. These topics are thus likely to be central in the next cluster conference which will be held in 2011 in the Hungarian city of Debrechen. Martin Freer Participants and Cluster'07

  14. Cluster-cluster aggregation in binary mixtures

    NASA Astrophysics Data System (ADS)

    Alsunaidi, A.; Lach-Hab, M.; González, Agustín E.; Blaisten-Barojas, Estela

    2000-01-01

    The structure and aggregation kinetics of three-dimensional clusters composed of two different monomeric species at three concentrations are thoroughly investigated by means of extensive, large-scale computer simulations. The aggregating monomers have all the same size and occupy the cells of a cubic lattice. Two bonding schemes are considered: (a) the binary diffusion-limited cluster-cluster aggregation (BDLCA) in which only the monomers of different species stick together, and (b) the invading binary diffusion-limited cluster-cluster aggregation (IBDLCA) in which additionally monomers of one of the two species are allowed to bond. In the two schemes, the mixed aggregates display self-similarity with a fractal dimension df that depends on the relative molar fraction of the two species and on concentration. At a given concentration, when this molar fraction is small, df approaches a value close to the reaction-limited cluster-cluster aggregation of one-component systems, and when the molar fraction is 0.5, df becomes close to the value of the diffusion-limited cluster-cluster aggregation model. The crossover between these two regimes is due to a time-decreasing reaction probability between colliding particles, particularly at small molar fractions. Several dynamical quantities are studied as a function of time. The number of clusters and the weight-average cluster size display a power-law behavior only at small concentrations. The dynamical exponents are obtained for molar fractions above 0.3 but not at or below 0.2, indicating the presence of a critical transition between a gelling to a nongelling system. The cluster-size distribution function presents scaling for molar fractions larger than 0.2.

  15. Transcription factor clusters regulate genes in eukaryotic cells

    PubMed Central

    Hedlund, Erik G; Friemann, Rosmarie; Hohmann, Stefan

    2017-01-01

    Transcription is regulated through binding factors to gene promoters to activate or repress expression, however, the mechanisms by which factors find targets remain unclear. Using single-molecule fluorescence microscopy, we determined in vivo stoichiometry and spatiotemporal dynamics of a GFP tagged repressor, Mig1, from a paradigm signaling pathway of Saccharomyces cerevisiae. We find the repressor operates in clusters, which upon extracellular signal detection, translocate from the cytoplasm, bind to nuclear targets and turnover. Simulations of Mig1 configuration within a 3D yeast genome model combined with a promoter-specific, fluorescent translation reporter confirmed clusters are the functional unit of gene regulation. In vitro and structural analysis on reconstituted Mig1 suggests that clusters are stabilized by depletion forces between intrinsically disordered sequences. We observed similar clusters of a co-regulatory activator from a different pathway, supporting a generalized cluster model for transcription factors that reduces promoter search times through intersegment transfer while stabilizing gene expression. PMID:28841133

  16. Cluster Morphology Analysis

    PubMed Central

    Jacquez, Geoffrey M.

    2009-01-01

    Most disease clustering methods assume specific shapes and do not evaluate statistical power using the applicable geography, at-risk population, and covariates. Cluster Morphology Analysis (CMA) conducts power analyses of alternative techniques assuming clusters of different relative risks and shapes. Results are ranked by statistical power and false positives, under the rationale that surveillance should (1) find true clusters while (2) avoiding false clusters. CMA then synthesizes results of the most powerful methods. CMA was evaluated in simulation studies and applied to pancreatic cancer mortality in Michigan, and finds clusters of flexible shape while routinely evaluating statistical power. PMID:20234799

  17. Silver cluster chromophores for absorption enhancement of peptides.

    PubMed

    Kulesza, Alexander; Mitrić, Roland; Bonacić-Koutecký, Vlasta

    2009-04-23

    We present a theoretical study of the structural and optical properties of tripeptide-silver cluster hybrid systems which shows that silver clusters induce significant absorption enhancement in the spectral region between 225 and 350 nm with respect to the pure peptide. This allows the use of clusters as chromophores for absorption enhancement of peptides and proteins and offers a potential for different applications in biosensing. Furthermore, we demonstrate that cluster binding can change the conformational preference for the secondary structure type leading possibly to new functional properties.

  18. Cluster Physics with Merging Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Molnar, Sandor

    Collisions between galaxy clusters provide a unique opportunity to study matter in a parameter space which cannot be explored in our laboratories on Earth. In the standard ΛCDM model, where the total density is dominated by the cosmological constant (Λ) and the matter density by cold dark matter (CDM), structure formation is hierarchical, and clusters grow mostly by merging. Mergers of two massive clusters are the most energetic events in the universe after the Big Bang, hence they provide a unique laboratory to study cluster physics. The two main mass components in clusters behave differently during collisions: the dark matter is nearly collisionless, responding only to gravity, while the gas is subject to pressure forces and dissipation, and shocks and turbulence are developed during collisions. In the present contribution we review the different methods used to derive the physical properties of merging clusters. Different physical processes leave their signatures on different wavelengths, thus our review is based on a multifrequency analysis. In principle, the best way to analyze multifrequency observations of merging clusters is to model them using N-body/HYDRO numerical simulations. We discuss the results of such detailed analyses. New high spatial and spectral resolution ground and space based telescopes will come online in the near future. Motivated by these new opportunities, we briefly discuss methods which will be feasible in the near future in studying merging clusters.

  19. Comprehensive cluster analysis with Transitivity Clustering.

    PubMed

    Wittkop, Tobias; Emig, Dorothea; Truss, Anke; Albrecht, Mario; Böcker, Sebastian; Baumbach, Jan

    2011-03-01

    Transitivity Clustering is a method for the partitioning of biological data into groups of similar objects, such as genes, for instance. It provides integrated access to various functions addressing each step of a typical cluster analysis. To facilitate this, Transitivity Clustering is accessible online and offers three user-friendly interfaces: a powerful stand-alone version, a web interface, and a collection of Cytoscape plug-ins. In this paper, we describe three major workflows: (i) protein (super)family detection with Cytoscape, (ii) protein homology detection with incomplete gold standards and (iii) clustering of gene expression data. This protocol guides the user through the most important features of Transitivity Clustering and takes ∼1 h to complete.

  20. Gold-bismuth clusters.

    PubMed

    Martínez, Ana

    2014-08-07

    Metal clusters have interesting characteristics, such as the relationship between properties and size of the cluster. This is not always apparent, so theoretical studies can provide relevant information. In this report, optimized structures and electron donor-acceptor properties of AunBim clusters are reported (n + m = 2-7, 20). Density functional theory calculations were performed to obtain optimized structures. The ground states of gold clusters formed with up to seven atoms are planar. The presence of Bi modifies the structure, and the clusters become 3-D. Several optimized geometries have at least one Bi atom bonded to gold or bismuth atoms and form structures similar to NH3. This fragment is also present in clusters with 20 atoms, where the formation of Au3Bi stabilizes the structures. Bismuth clusters are better electron donors and worse electron acceptors than gold clusters. Mixed clusters fall in between these two extremes. The presence of Bi atoms in gold clusters modifies the electron donor-acceptor properties of the clusters, but there is no correlation between the number of Bi atoms present in the cluster and the capacity for donating electrons. The effect of planarity in Au19Bi clusters is the same as that in Au20 clusters. The properties of pure gold clusters are certainly interesting, but clusters formed by Bi and Au are more important because the introduction of different atoms modifies the geometry, the stability, and consequently the physical and chemical properties. Apparently, the presence of Bi may increase the reactivity of gold clusters, but further studies are necessary to corroborate this hypothesis.

  1. Structures and stabilities of copper encapsulated within silicon nano-clusters: Cu@Si n ( n = 9-15)

    NASA Astrophysics Data System (ADS)

    Hossain, Delwar; Pittman, Charles U., Jr.; Gwaltney, Steven R.

    2008-01-01

    Density functional electronic-structure calculations were performed for Cu@Si n ( n = 9-15) clusters. The lowest-energy endohedral structure and its stability for each Cu@Si n cluster were determined. The encapsulation of Cu within silicon clusters generates stable neutral Cu@Si n clusters. The binding energies and embedding energies of these clusters indicate that they are likely to be chemically stable. The relative cluster stabilities and other thermodynamic properties alternate with cluster size, with an apparent preference existing for clusters with an even number of Si atoms.

  2. Chemiluminescence in the Agglomeration of Metal Clusters

    PubMed

    König; Rabin; Schulze; Ertl

    1996-11-22

    The agglomeration of copper or silver atoms in a matrix of noble gas atoms to form small clusters may be accompanied by the emission of visible light. Spectral analysis reveals the intermediate formation of electronically excited atoms and dimers as the source of the chemiluminescence. A mechanism is proposed, according to which the gain in binding energy upon cluster formation may even lead to the ejection of excited fragments as a result of unstable intermediate configurations. A similar concept was introduced in the field of nuclear reactions by Niels Bohr 60 years ago.

  3. Photoelectron spectroscopy of nitromethane anion clusters

    NASA Astrophysics Data System (ADS)

    Pruitt, Carrie Jo M.; Albury, Rachael M.; Goebbert, Daniel J.

    2016-08-01

    Nitromethane anion and nitromethane dimer, trimer, and hydrated cluster anions were studied by photoelectron spectroscopy. Vertical detachment energies, estimated electron affinities, and solvation energies were obtained from the photoelectron spectra. Cluster structures were investigated using theoretical calculations. Predicted detachment energies agreed with experiment. Calculations show water binds to nitromethane anion through two hydrogen bonds. The dimer has a non-linear structure with a single ionic Csbnd H⋯O hydrogen bond. The trimer has two different solvent interactions, but both involve the weak Csbnd H⋯O hydrogen bond.

  4. Nuclear Clusters in Astrophysics

    NASA Astrophysics Data System (ADS)

    Kubono, S.; Binh, Dam N.; Hayakawa, S.; Hashimoto, H.; Kahl, D.; Wakabayashi, Y.; Yamaguchi, H.; Teranishi, T.; Iwasa, N.; Komatsubara, T.; Kato, S.; Khiem, Le H.

    2010-03-01

    The role of nuclear clustering is discussed for nucleosynthesis in stellar evolution with Cluster Nucleosynthesis Diagram (CND) proposed before. Special emphasis is placed on α-induced stellar reactions together with molecular states for O and C burning.

  5. Matlab Cluster Ensemble Toolbox

    SciTech Connect

    Sapio, Vincent De; Kegelmeyer, Philip

    2009-04-27

    This is a Matlab toolbox for investigating the application of cluster ensembles to data classification, with the objective of improving the accuracy and/or speed of clustering. The toolbox divides the cluster ensemble problem into four areas, providing functionality for each. These include, (1) synthetic data generation, (2) clustering to generate individual data partitions and similarity matrices, (3) consensus function generation and final clustering to generate ensemble data partitioning, and (4) implementation of accuracy metrics. With regard to data generation, Gaussian data of arbitrary dimension can be generated. The kcenters algorithm can then be used to generate individual data partitions by either, (a) subsampling the data and clustering each subsample, or by (b) randomly initializing the algorithm and generating a clustering for each initialization. In either case an overall similarity matrix can be computed using a consensus function operating on the individual similarity matrices. A final clustering can be performed and performance metrics are provided for evaluation purposes.

  6. STABILITY OF SMALL SELF-INTERSTITIAL CLUSTERS IN TUNGSTEN

    SciTech Connect

    Setyawan, Wahyu; Nandipati, Giridhar; Kurtz, Richard J.

    2015-12-31

    Density functional theory was employed to explore the stability of interstitial clusters in W up to size seven. For each cluster size, the most stable configuration consists of parallel dumbbells. For clusters larger than size three, parallel dumbbells prefer to form in a multilayer fashion, instead of a planar structure. For size-7 clusters, the most stable configuration is a complete octahedron. The binding energy of a [111] dumbbell to the most stable cluster increases with cluster size, namely 2.49, 3.68, 4.76, 4.82, 5.47, and 6.85 eV for clusters of size 1, 2, 3, 4, 5, and 6, respectively. For a size-2 cluster, collinear dumbbells are still repulsive at the maximum allowable distance of 13.8 Å (the fifth neighbor along [111]). On the other hand, parallel dumbbells are strongly bound together. Two parallel dumbbells in which the axis-to-axis distance is within a cylindrical radius of 5.2 Å still exhibit a considerable binding of 0.28 eV. The most stable cluster in each size will be used to explore interactions with transmutation products.

  7. [Pathophysiology of cluster headache].

    PubMed

    Donnet, Anne

    2015-11-01

    The aetiology of cluster headache is partially unknown. Three areas are involved in the pathogenesis of cluster headache: the trigeminal nociceptive pathways, the autonomic system and the hypothalamus. The cluster headache attack involves activation of the trigeminal autonomic reflex. A dysfunction located in posterior hypothalamic gray matter is probably pivotal in the process. There is a probable association between smoke exposure, a possible genetic predisposition and the development of cluster headache.

  8. Multiple binding sites for transcriptional repressors can produce regular bursting and enhance noise suppression

    NASA Astrophysics Data System (ADS)

    Lengyel, Iván M.; Morelli, Luis G.

    2017-04-01

    Cells may control fluctuations in protein levels by means of negative autoregulation, where transcription factors bind DNA sites to repress their own production. Theoretical studies have assumed a single binding site for the repressor, while in most species it is found that multiple binding sites are arranged in clusters. We study a stochastic description of negative autoregulation with multiple binding sites for the repressor. We find that increasing the number of binding sites induces regular bursting of gene products. By tuning the threshold for repression, we show that multiple binding sites can also suppress fluctuations. Our results highlight possible roles for the presence of multiple binding sites of negative autoregulators.

  9. Multiple binding sites for transcriptional repressors can produce regular bursting and enhance noise suppression.

    PubMed

    Lengyel, Iván M; Morelli, Luis G

    2017-04-01

    Cells may control fluctuations in protein levels by means of negative autoregulation, where transcription factors bind DNA sites to repress their own production. Theoretical studies have assumed a single binding site for the repressor, while in most species it is found that multiple binding sites are arranged in clusters. We study a stochastic description of negative autoregulation with multiple binding sites for the repressor. We find that increasing the number of binding sites induces regular bursting of gene products. By tuning the threshold for repression, we show that multiple binding sites can also suppress fluctuations. Our results highlight possible roles for the presence of multiple binding sites of negative autoregulators.

  10. Clustering algorithm studies

    NASA Astrophysics Data System (ADS)

    Graf, Norman A.

    2001-07-01

    An object-oriented framework for undertaking clustering algorithm studies has been developed. We present here the definitions for the abstract Cells and Clusters as well as the interface for the algorithm. We intend to use this framework to investigate the interplay between various clustering algorithms and the resulting jet reconstruction efficiency and energy resolutions to assist in the design of the calorimeter detector.

  11. Nonpolytropic model for the Coma Cluster

    NASA Technical Reports Server (NTRS)

    Fusco-Femiano, R.; Hughes, John P.

    1994-01-01

    In this article we demonstrate, for the first time, how a physically motivated static model for both the gas and galaxies in the Coma Cluster of galaxies can jointly fit all available X-ray and optical imaging and spectroscopic data. The principal assumption of this nonpolytropic model (Cavaliere & Fusco-Femiano 1981, hereafter CFF), is that the intracluster gas temperature is proportional to the square of the galaxy velocity dispersion everywhere throughout the cluster; no other assumption about the gas temperature distribution is required. After demonstrating that the CFF nonpolytropic model is an adequate representation of the gas and galaxy distributions, the radial velocity dispersion profile, and the gas temperature distribution, we derive the following information about the Coma Cluster: 1. The central temperature is about 9 keV and the central density is 2.8 x 10(exp -3)/cm(exp 3) for the X-ray emitting plasma; 2. The binding mass of the cluster is approximately 2 x 10(exp 15) solar mass within 5 Mpc for (H(sub 0) = 50 km/sec/Mpc), with a mass-to-light ratio of approximately 160 solar mass/solar luminosity; 3. The contribution of the gas to the total virial mass increases with distance from the cluster center, and we estimate that this ratio is no greater than approximately 50% within 5 Mpc. The ability of the CFF nonpolytropic model to describe the current X-ray and optical data for the Coma Cluster suggests that a significant fraction of the thermal energy contained in the hot gas in this as well as other rich galaxy clusters may have come from the interaction between the galaxies and the ambient cluster medium. interaction between the galaxies and the ambient cluster medium.

  12. Nonpolytropic model for the Coma Cluster

    NASA Technical Reports Server (NTRS)

    Fusco-Femiano, R.; Hughes, John P.

    1994-01-01

    In this article we demonstrate, for the first time, how a physically motivated static model for both the gas and galaxies in the Coma Cluster of galaxies can jointly fit all available X-ray and optical imaging and spectroscopic data. The principal assumption of this nonpolytropic model (Cavaliere & Fusco-Femiano 1981, hereafter CFF), is that the intracluster gas temperature is proportional to the square of the galaxy velocity dispersion everywhere throughout the cluster; no other assumption about the gas temperature distribution is required. After demonstrating that the CFF nonpolytropic model is an adequate representation of the gas and galaxy distributions, the radial velocity dispersion profile, and the gas temperature distribution, we derive the following information about the Coma Cluster: 1. The central temperature is about 9 keV and the central density is 2.8 x 10(exp -3)/cm(exp 3) for the X-ray emitting plasma; 2. The binding mass of the cluster is approximately 2 x 10(exp 15) solar mass within 5 Mpc for (H(sub 0) = 50 km/sec/Mpc), with a mass-to-light ratio of approximately 160 solar mass/solar luminosity; 3. The contribution of the gas to the total virial mass increases with distance from the cluster center, and we estimate that this ratio is no greater than approximately 50% within 5 Mpc. The ability of the CFF nonpolytropic model to describe the current X-ray and optical data for the Coma Cluster suggests that a significant fraction of the thermal energy contained in the hot gas in this as well as other rich galaxy clusters may have come from the interaction between the galaxies and the ambient cluster medium. interaction between the galaxies and the ambient cluster medium.

  13. Computer simulation structure and vibrations of small metal cluster on the Cu (111) surface

    NASA Astrophysics Data System (ADS)

    Borisova, Svetlana D.; Rusina, Galina G.

    2015-10-01

    Vibrational properties of the small tetrahedral cluster of Co on the Cu (111) surface are studied by using tight-binding second moment approximation interatomic interaction potentials. It was shown that interaction of the clusters with substrate leads to arising of frustrated translation and frustrated rotation in-plane polarized vibrational modes localized on the cluster atoms. The Co4 cluster on the surface the high frequency modes remain strongly localized and mixed with the nearest neighbor atoms vibrations.

  14. Preparation of Bimetallic PtnPdm Supported Clusters with Well-Defined Stoichiometry

    NASA Astrophysics Data System (ADS)

    Rousset, J. L.; Cadrot, A. M.; Aires, F. Santos; Renouprez, A.; Mélinon, P.; Perez, A.; Pellarin, M.; Vialle, J. L.; Broyer, M.

    Supported bimetallic Pd-Pt clusters with a well-defined stoichiometry are produced using a laser-vaporization source. Free clusters are also studied by time-of-flight mass spectrometry and photofragmentation. The supported clusters are characterized by energy dispersive x-ray analysis. The low binding energy of palladium atoms compared to that of platinum is clearly demonstrated in both free and supported clusters. The reactivity is briefly discussed.

  15. Computer simulation structure and vibrations of small metal cluster on the Cu (111) surface

    SciTech Connect

    Borisova, Svetlana D. Rusina, Galina G.

    2015-10-27

    Vibrational properties of the small tetrahedral cluster of Co on the Cu (111) surface are studied by using tight-binding second moment approximation interatomic interaction potentials. It was shown that interaction of the clusters with substrate leads to arising of frustrated translation and frustrated rotation in-plane polarized vibrational modes localized on the cluster atoms. The Co{sub 4} cluster on the surface the high frequency modes remain strongly localized and mixed with the nearest neighbor atoms vibrations.

  16. Tight-Binding and Hueckel Models of Molecular Clusters

    DTIC Science & Technology

    1990-05-01

    Chem. Phys. Lett. 163, 323 (1989); Phys. Rev. Lett. 64, 551 (1990). 16. H. Kupka and K. Jug, Chem. Phys. 130, 23 (1989). 17. Y. Wang , T. F. George...D. M. Lindsay and A. C. Beri, J. Chem. Phys. 86, 3493 (1987). 18. D. M. Lindsay, Y. Wang and T. F. George, J. Chem. Phys. 86, 3500 (1987). 23 Table 1...Department of Chemistry Northwestern University University of California Evanston, IL 60208 Irvine, CA 92717 Professor Frank DiSalvo Professor Roald Hoffmann

  17. A new clustering strategy

    NASA Astrophysics Data System (ADS)

    Feng, Jian-xin; Tang, Jia-fu; Wang, Guang-xing

    2007-04-01

    On the basis of the analysis of clustering algorithm that had been proposed for MANET, a novel clustering strategy was proposed in this paper. With the trust defined by statistical hypothesis in probability theory and the cluster head selected by node trust and node mobility, this strategy can realize the function of the malicious nodes detection which was neglected by other clustering algorithms and overcome the deficiency of being incapable of implementing the relative mobility metric of corresponding nodes in the MOBIC algorithm caused by the fact that the receiving power of two consecutive HELLO packet cannot be measured. It's an effective solution to cluster MANET securely.

  18. Star cluster dynamics.

    PubMed

    Vesperini, Enrico

    2010-02-28

    Dynamical evolution plays a key role in shaping the current properties of star clusters and star cluster systems. A detailed understanding of the effects of evolutionary processes is essential to be able to disentangle the properties that result from dynamical evolution from those imprinted at the time of cluster formation. In this review, I focus my attention on globular clusters, and review the main physical ingredients driving their early and long-term evolution, describe the possible evolutionary routes and show how cluster structure and stellar content are affected by dynamical evolution.

  19. Ghostly Open Clusters (Invited)

    NASA Astrophysics Data System (ADS)

    de La Fuente Marcos, R.

    We review theory and observations of the final stages of the evolution of open clusters. The distinguishing features of these ghostly objects depend upon the original membership of the cluster, the fraction of primordial binaries, and the initial mass function. Remnants of rich open clusters are difficult to detect and might exist in large numbers. We then examine the limited observational data available in this field, and discuss how to use the results of numerical integrations to plan future surveys and evaluate the quality of the available observational information. Current observational results render it very hard to distinguish between a poor open cluster, an open cluster remnant, or part of an association.

  20. Mechanisms of Atmospherically Relevant Cluster Growth.

    PubMed

    Bzdek, Bryan R; DePalma, Joseph W; Johnston, Murray V

    2017-08-15

    cluster growth involving sulfuric acid, ammonia, amines, and water. Charged or uncharged, cluster growth occurs primarily through an ammonium (or aminium) bisulfate coordinate. In these clusters, proton transfer is maximized between acids and bases to produce cations (ammonium, aminium) and anions (bisulfate), whereas additional molecules (water and unneutralized sulfuric acid) remain un-ionized. Experimental measurements suggest the growth of positively charged clusters occurs by successive acidification and neutralization steps. The acidification step is nearly barrierless, whereas the neutralization step exhibits a significant activation barrier in the case of ammonia. Bases are also incorporated into these clusters by displacement of one base for another. Base displacement is barrierless on the cluster surface but not within the cluster core. The favorability of amines relative to ammonia in charged clusters is governed by the trade-off between gas phase basicity and binding energetics. Computational studies indicate that water has a relatively small effect on cluster energetics. In short, amines are effective at assisting the formation and initial growth of clusters but become less important as cluster size increases, especially when hydration is considered. More generally, this work shows how experiment and computation can provide important, complementary information to address problems of environmental interest.

  1. Globular cluster X-ray sources

    NASA Astrophysics Data System (ADS)

    Pooley, D.

    We know from observations that globular clusters are very efficient catalysts in forming unusual binary systems, such as low-mass X-ray binaries (LMXBs), cataclysmic variables (CVs), and millisecond pulsars (MSPs), with formation rates per unit mass exceeding those in the Galactic disk by orders of magnitude. The high stellar densities in globular clusters trigger various dynamical interactions: exchange encounters, direct collisions, destruction of binaries, and tidal capture. This binary population is, in turn, critical to the stabilization of globular clusters against gravitational collapse; the long-term stability of a cluster is thought to depend on tapping into the gravitational binding energy of such close binaries. I will present an overview of the current state of globular cluster X-ray observations, as well as our work on deep Chandra observations of M4, where we reach some of the lowest X-ray luminosities in any globular cluster (comparable to the deep observations of 47 Tuc and NGC 6397). One of M4 X-ray sources previously classified as a white dwarf binary is likely a neutron star binary, and another X-ray source is a sub-subgiant, the nature of which is still unclear. skip=3pt

  2. Preferential site occupancy of krypton atoms on free argon-cluster surfaces.

    PubMed

    Lundwall, M; Lindblad, A; Bergersen, H; Rander, T; Ohrwall, G; Tchaplyguine, M; Svensson, S; Björneholm, O

    2006-07-07

    Argon clusters have been doped with krypton atoms in a pick-up setup and investigated by means of ultraviolet and x-ray photoelectron spectroscopy (UPS and XPS). The width of the krypton surface feature in the XPS spectra from mixed krypton/argon clusters has been studied and found to be narrower than in the case of homogeneous krypton clusters. By considering known spectral broadening mechanisms of the cluster features and the electron binding energy shift of the cluster surface feature relative to the atomic signal, we conclude that krypton ad-atoms preferentially occupy high-coordination surface sites on the argon host-cluster.

  3. Unconventional methods for clustering

    NASA Astrophysics Data System (ADS)

    Kotyrba, Martin

    2016-06-01

    Cluster analysis or clustering is a task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense or another) to each other than to those in other groups (clusters). It is the main task of exploratory data mining and a common technique for statistical data analysis used in many fields, including machine learning, pattern recognition, image analysis, information retrieval, and bioinformatics. The topic of this paper is one of the modern methods of clustering namely SOM (Self Organising Map). The paper describes the theory needed to understand the principle of clustering and descriptions of algorithm used with clustering in our experiments.

  4. Cluster assembly in nitrogenase.

    PubMed

    Sickerman, Nathaniel S; Rettberg, Lee A; Lee, Chi Chung; Hu, Yilin; Ribbe, Markus W

    2017-05-09

    The versatile enzyme system nitrogenase accomplishes the challenging reduction of N2and other substrates through the use of two main metalloclusters. For molybdenum nitrogenase, the catalytic component NifDK contains the [Fe8S7]-core P-cluster and a [MoFe7S9C-homocitrate] cofactor called the M-cluster. These chemically unprecedented metalloclusters play a critical role in the reduction of N2, and both originate from [Fe4S4] clusters produced by the actions of NifS and NifU. Maturation of P-cluster begins with a pair of these [Fe4S4] clusters on NifDK called the P*-cluster. An accessory protein NifZ aids in P-cluster fusion, and reductive coupling is facilitated by NifH in a stepwise manner to form P-cluster on each half of NifDK. For M-cluster biosynthesis, two [Fe4S4] clusters on NifB are coupled with a carbon atom in a radical-SAM dependent process, and concomitant addition of a 'ninth' sulfur atom generates the [Fe8S9C]-core L-cluster. On the scaffold protein NifEN, L-cluster is matured to M-cluster by the addition of Mo and homocitrate provided by NifH. Finally, matured M-cluster in NifEN is directly transferred to NifDK, where a conformational change locks the cofactor in place. Mechanistic insights into these fascinating biosynthetic processes are detailed in this chapter. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  5. Modeling Clustered Data with Very Few Clusters.

    PubMed

    McNeish, Daniel; Stapleton, Laura M

    2016-01-01

    Small-sample inference with clustered data has received increased attention recently in the methodological literature, with several simulation studies being presented on the small-sample behavior of many methods. However, nearly all previous studies focus on a single class of methods (e.g., only multilevel models, only corrections to sandwich estimators), and the differential performance of various methods that can be implemented to accommodate clustered data with very few clusters is largely unknown, potentially due to the rigid disciplinary preferences. Furthermore, a majority of these studies focus on scenarios with 15 or more clusters and feature unrealistically simple data-generation models with very few predictors. This article, motivated by an applied educational psychology cluster randomized trial, presents a simulation study that simultaneously addresses the extreme small sample and differential performance (estimation bias, Type I error rates, and relative power) of 12 methods to account for clustered data with a model that features a more realistic number of predictors. The motivating data are then modeled with each method, and results are compared. Results show that generalized estimating equations perform poorly; the choice of Bayesian prior distributions affects performance; and fixed effect models perform quite well. Limitations and implications for applications are also discussed.

  6. The involvement of the transcription factor Yin Yang 1 in cancer development and progression.

    PubMed

    Castellano, Giancarlo; Torrisi, Elena; Ligresti, Giovanni; Malaponte, Grazia; Militello, Loredana; Russo, Alessia E; McCubrey, James A; Canevari, Silvana; Libra, Massimo

    2009-05-01

    The Yin Yang 1 (YY1) transcription factor has a pivotal role in normal biological processes such as development, differentiation, replication and cell proliferation exerting its effects on a huge number of genes involved in these processes. Mechanisms of YY1 action are related to its ability to initiate, activate, or repress transcription depending upon the context in which it binds. The role of YY1 played in cancer has been recently explored. This article summarizes the most relevant studies focused on YY1 regulation and dwells on the way how its overexpression may affect the clinical behavior of several cancer types. Furthermore, the contribution of the upregulation of YY1 exerted in response to therapeutic-induced apoptosis is discussed.

  7. H2 Saturation on Palladium Clusters

    SciTech Connect

    Pelzer, Adam; Jellinek, Julius; Jackson, Koblar

    2015-04-16

    The interaction of PdN clusters (N = 2, 3, 4, 7, and 13) with multiple H-2 adsorbate molecules is investigated using density functional theory with the hybrid PBE0 functional. The optimal structure for each PdNH2(L) complex is determined systematically via a sequential addition of H-2 units. The adsorption energy for each successive H-2 addition is computed to determine the maximum number of molecules that can be stably added to a PdN at T = 0 K. The Gibbs free energy is then used to determine the saturation coverage at finite temperature. For N = 2, 3, and 4, a single H-2 is found to dissociate, and up to two additional molecular H-2 units per Pd atom can bind stably to the clusters at 0 K. At 300 K, one H-2 unit dissociates, and only one additional H-2 molecular unit per Pd atom is stably bound. For N = 7 and T = 0 K, two H-2 units dissociate, and 11 additional H-2 units bind molecularly. At 300 K, two units dissociate, and eight are bound molecularly. For N = 3, 4, and 7, we find that an additional H-2 unit may dissociate if the underlying cluster structure rearranges. Eight H-2 units dissociate on Pd-13 at 0 K. At least one additional H-2 binds molecularly at 0 K, but none bind at 300 K. This suggests that only dissociated H-2 units will stably bind to larger Pd particles at room temperature. The influence of molecularly adsorbed H-2 units on the migration of dissociated H atoms is investigated in a preliminary way. Both barrier heights and the relative stability of local minima of Pd4H2(L) are found to be affected by the degree of molecular H-2 coverage.

  8. Diffusion of Al dimers on the surface of Mg clusters

    NASA Astrophysics Data System (ADS)

    Dai, Xiongying; Yang, Jianyu; Hu, Wangyu; Liu, Yanhui

    2017-06-01

    The surface diffusion of Al dimmers on Mg clusters with hexahedral structure was studied using the combination of quenched molecular dynamics and the embedded atom method. The system energy barriers of typical minimum energy diffusion paths for Al dimers on the Mg clusters were calculated using the Nudged Elastic Band method. In our study range (153-4061 atoms), the binding energies on the (0001) facets and the (1{\\overline 1 }01) facets differed, the binding energy on the former was lower than that on the latter. Moreover, cluster size only slightly influenced the binding energy values. Two possible diffusion paths were studied. Results showed that the diffusion of the dimer on the (0001) facet easily occurred at low temperatures. Furthermore, the interaction between the two atoms of the dimer facilitated the dimer crossing of the step edge between the (1{\\overline 1 }01) facets by hopping mechanism.

  9. Fuzzy Subspace Clustering

    NASA Astrophysics Data System (ADS)

    Borgelt, Christian

    In clustering we often face the situation that only a subset of the available attributes is relevant for forming clusters, even though this may not be known beforehand. In such cases it is desirable to have a clustering algorithm that automatically weights attributes or even selects a proper subset. In this paper I study such an approach for fuzzy clustering, which is based on the idea to transfer an alternative to the fuzzifier (Klawonn and Höppner, What is fuzzy about fuzzy clustering? Understanding and improving the concept of the fuzzifier, In: Proc. 5th Int. Symp. on Intelligent Data Analysis, 254-264, Springer, Berlin, 2003) to attribute weighting fuzzy clustering (Keller and Klawonn, Int J Uncertain Fuzziness Knowl Based Syst 8:735-746, 2000). In addition, by reformulating Gustafson-Kessel fuzzy clustering, a scheme for weighting and selecting principal axes can be obtained. While in Borgelt (Feature weighting and feature selection in fuzzy clustering, In: Proc. 17th IEEE Int. Conf. on Fuzzy Systems, IEEE Press, Piscataway, NJ, 2008) I already presented such an approach for a global selection of attributes and principal axes, this paper extends it to a cluster-specific selection, thus arriving at a fuzzy subspace clustering algorithm (Parsons, Haque, and Liu, 2004).

  10. Cluster Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Carilli, C. L.; Taylor, G. B.

    Magnetic fields in the intercluster medium have been measured using a variety of techniques, including studies of synchrotron relic and halo radio sources within clusters, studies of inverse Compton X-ray emission from clusters, surveys of Faraday rotation measures of polarized radio sources both within and behind clusters, and studies of cluster cold fronts in X-ray images. These measurements imply that most cluster atmospheres are substantially magnetized, with typical field strengths of order 1 μGauss with high areal filling factors out to Mpc radii. There is likely to be considerable variation in field strengths and topologies both within and between clusters, especially when comparing dynamically relaxed clusters to those that have recently undergone a merger. In some locations, such as the cores of cooling flow clusters, the magnetic fields reach levels of 10-40 μG and may be dynamically important. In all clusters the magnetic fields have a significant effect on energy transport in the intracluster medium. We also review current theories on the origin of cluster magnetic fields.

  11. Structure and analysis of atomic vibrations in clusters of Cu n ( n ≤ 20)

    NASA Astrophysics Data System (ADS)

    Rusina, G. G.; Borisova, S. D.; Chulkov, E. V.

    2013-02-01

    The binding energy, equilibrium geometry, and vibration frequencies of free clusters Cu n (2 ≤ n ≤ 20) are calculated using the potentials of interatomic interactions found using the tight-binding approximation. The nonmonotonic dependence of the clusters' minimum vibration frequency on their sizes and the extreme values for the number of atoms in a cluster n = 4, 6, 13, and 19 is demonstrated. It is noted that this result agrees with the theoretical and experimental data on stable structures of small and medium metallic clusters.

  12. Nanophase materials assembled from clusters

    SciTech Connect

    Siegel, R.W.

    1992-02-01

    The preparation of metal and ceramic atom clusters by means of the gas-condensation method, followed by their in situ collection and consolidation under high-vacuum conditions, has recently led to the synthesis of a new class of ultrafine-grained materials. These nanophase materials, with typical average grain sizes of 5 to 50 nm and, hence, a large fraction of their atoms in interfaces, exhibit properties that are often considerably improved relative to those of conventional materials. Furthermore, their synthesis and processing characteristics should enable the design of new materials with unique properties. Some examples are ductile ceramics that can be formed and sintered to full density at low temperatures without the need for binding or sintering aids, and metals with dramatically increased strength. The synthesis of these materials is briefly described along with what is presently known of their structure and properties. Their future impact on materials science and technology is also considered.

  13. Structural Parameters for 10 Halo Globular Clusters in M33

    NASA Astrophysics Data System (ADS)

    Ma, Jun

    2015-05-01

    In this paper, we present the properties of 10 halo globular clusters (GCs) with luminosities L ≃ 5-7 × 105 L⊙ in the Local Group galaxy M33 using images from the Hubble Space Telescope WFPC2 in the F555W and F814W bands. We obtained the ellipticities, position angles, and surface brightness profiles for each GC. In general, the ellipticities of the M33 sample clusters are similar to those of the M31 clusters. The structural and dynamical parameters are derived by fitting the profiles to three different models combined with mass-to-light ratios (M/L values) from population-synthesis models. The structural parameters include core radii, concentration, half-light radii, and central surface brightness. The dynamical parameters include the integrated cluster mass, integrated binding energy, central surface mass density, and predicted line of sight velocity dispersion at the cluster center. The velocity dispersions of the four clusters predicted here agree well with the observed dispersions by Larsen et al. The results here showed that the majority of the sample halo GCs are better fitted by both the King model and the Wilson model than the Sérsic model. In general, the properties of the clusters in M33, M31, and the Milky Way fall in the same regions of parameter spaces. The tight correlations of cluster properties indicate a “fundamental plane” for clusters, which reflects some universal physical conditions and processes operating at the epoch of cluster formation.

  14. Infrared spectroscopic probing of dimethylamine clusters in an Ar matrix.

    PubMed

    Li, Siyang; Kjaergaard, Henrik G; Du, Lin

    2016-02-01

    Amines have many atmospheric sources and their clusters play an important role in aerosol nucleation processes. Clusters of a typical amine, dimethylamine (DMA), of different sizes were measured with matrix isolation IR (infrared) and NIR (near infrared) spectroscopy. The NIR vibrations are more separated and therefore it is easier to distinguish different sizes of clusters in this region. The DMA clusters, up to DMA tetramer, have been optimized using density functional methods, and the geometries, binding energies and thermodynamic properties of DMA clusters were obtained. The computed frequencies and intensities of NH-stretching vibrations in the DMA clusters were used to interpret the experimental spectra. We have identified the fundamental transitions of the bonded NH-stretching vibration and the first overtone transitions of the bonded and free NH-stretching vibration in the DMA clusters. Based on the changes in vibrational intensities during the annealing processes, the growth of clusters was clearly observed. The results of annealing processes indicate that DMA molecules tend to form larger clusters with lower energies under matrix temperatures, which is also supported by the calculated reaction energies of cluster formation. Copyright © 2015. Published by Elsevier B.V.

  15. Cluster Correspondence Analysis.

    PubMed

    van de Velden, M; D'Enza, A Iodice; Palumbo, F

    2017-03-01

    A method is proposed that combines dimension reduction and cluster analysis for categorical data by simultaneously assigning individuals to clusters and optimal scaling values to categories in such a way that a single between variance maximization objective is achieved. In a unified framework, a brief review of alternative methods is provided and we show that the proposed method is equivalent to GROUPALS applied to categorical data. Performance of the methods is appraised by means of a simulation study. The results of the joint dimension reduction and clustering methods are compared with the so-called tandem approach, a sequential analysis of dimension reduction followed by cluster analysis. The tandem approach is conjectured to perform worse when variables are added that are unrelated to the cluster structure. Our simulation study confirms this conjecture. Moreover, the results of the simulation study indicate that the proposed method also consistently outperforms alternative joint dimension reduction and clustering methods.

  16. Information-based clustering

    PubMed Central

    Slonim, Noam; Atwal, Gurinder Singh; Tkačik, Gašper; Bialek, William

    2005-01-01

    In an age of increasingly large data sets, investigators in many different disciplines have turned to clustering as a tool for data analysis and exploration. Existing clustering methods, however, typically depend on several nontrivial assumptions about the structure of data. Here, we reformulate the clustering problem from an information theoretic perspective that avoids many of these assumptions. In particular, our formulation obviates the need for defining a cluster “prototype,” does not require an a priori similarity metric, is invariant to changes in the representation of the data, and naturally captures nonlinear relations. We apply this approach to different domains and find that it consistently produces clusters that are more coherent than those extracted by existing algorithms. Finally, our approach provides a way of clustering based on collective notions of similarity rather than the traditional pairwise measures. PMID:16352721

  17. Reactivity of Metal Clusters.

    PubMed

    Luo, Zhixun; Castleman, A W; Khanna, Shiv N

    2016-12-14

    We summarize here the research advances on the reactivity of metal clusters. After a simple introduction of apparatuses used for gas-phase cluster reactions, we focus on the reactivity of metal clusters with various polar and nonpolar molecules in the gas phase and illustrate how elementary reactions of metal clusters proceed one-step at a time under a combination of geometric and electronic reorganization. The topics discussed in this study include chemical adsorption, addition reaction, cleavage of chemical bonds, etching effect, spin effect, the harpoon mechanism, and the complementary active sites (CAS) mechanism, among others. Insights into the reactivity of metal clusters not only facilitate a better understanding of the fundamentals in condensed-phase chemistry but also provide a way to dissect the stability and reactivity of monolayer-protected clusters synthesized via wet chemistry.

  18. Clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Vikhlinin, A. A.; Kravtsov, A. V.; Markevich, M. L.; Sunyaev, R. A.; Churazov, E. M.

    2014-04-01

    Galaxy clusters are formed via nonlinear growth of primordial density fluctuations and are the most massive gravitationally bound objects in the present Universe. Their number density at different epochs and their properties depend strongly on the properties of dark matter and dark energy, making clusters a powerful tool for observational cosmology. Observations of the hot gas filling the gravitational potential well of a cluster allows studying gasdynamic and plasma effects and the effect of supermassive black holes on the heating and cooling of gas on cluster scales. The work of Yakov Borisovich Zeldovich has had a profound impact on virtually all cosmological and astrophysical studies of galaxy clusters, introducing concepts such as the Harrison-Zeldovich spectrum, the Zeldovich approximation, baryon acoustic peaks, and the Sunyaev-Zeldovich effect. Here, we review the most basic properties of clusters and their role in modern astrophysics and cosmology.

  19. Clustering by Local Gravitation.

    PubMed

    Wang, Zhiqiang; Yu, Zhiwen; Chen, C L Philip; You, Jane; Gu, Tianlong; Wong, Hau-San; Zhang, Jun

    2017-05-02

    The objective of cluster analysis is to partition a set of data points into several groups based on a suitable distance measure. We first propose a model called local gravitation among data points. In this model, each data point is viewed as an object with mass, and associated with a local resultant force (LRF) generated by its neighbors. The motivation of this paper is that there exist distinct differences between the LRFs (including magnitudes and directions) of the data points close to the cluster centers and at the boundary of the clusters. To capture these differences efficiently, two new local measures named centrality and coordination are further investigated. Based on empirical observations, two new clustering methods called local gravitation clustering and communication with local agents are designed, and several test cases are conducted to verify their effectiveness. The experiments on synthetic data sets and real-world data sets indicate that both clustering approaches achieve good performance on most of the data sets.

  20. Orientation-dependent binding energy of graphene on palladium

    SciTech Connect

    Kappes, Branden B.; Ebnonnasir, Abbas; Ciobanu, Cristian V.; Kodambaka, Suneel

    2013-02-04

    Using density functional theory calculations, we show that the binding strength of a graphene monolayer on Pd(111) can vary between physisorption and chemisorption depending on its orientation. By studying the interfacial charge transfer, we have identified a specific four-atom carbon cluster that is responsible for the local bonding of graphene to Pd(111). The areal density of such clusters varies with the in-plane orientation of graphene, causing the binding energy to change accordingly. Similar investigations can also apply to other metal substrates and suggests that physical, chemical, and mechanical properties of graphene may be controlled by changing its orientation.

  1. Multiclass Total Variation Clustering

    DTIC Science & Technology

    2014-12-01

    Multiclass Total Variation Clustering Xavier Bresson University of Lausanne Lausanne, Switzerland xavier.bresson@unil.ch Thomas Laurent Loyola...recently motivated a new set of clustering algorithms that rely on the concept of total variation. While these al- gorithms perform well for bi-partitioning...tasks, their recursive extensions yield unimpressive results for multiclass clustering tasks. This paper presents a general framework for multiclass

  2. Chemistry Within Molecular Clusters

    DTIC Science & Technology

    1990-01-01

    DME )nCH3OCH 2 +). We speculate that this is due to the fragments being consumed by an ion-molecule reaction within the cluster. One likely candidate is...the ion-molecule reaction of the fragment cations with a neutral DME , within the bulk cluster to form a trimethyloxonlum cation intermediate. This...the observed products. We therefore speculate that the DME cluster reactions leading to the same products, should involve the same mechanism found to

  3. Active cluster crystals

    NASA Astrophysics Data System (ADS)

    Delfau, Jean-Baptiste; López, Cristóbal; Hernández-García, Emilio

    2017-09-01

    We study the appearance and properties of cluster crystals (solids in which the unit cell is occupied by a cluster of particles) in a two-dimensional system of self-propelled active Brownian particles with repulsive interactions. Self-propulsion deforms the clusters by depleting particle density inside, and for large speeds it melts the crystal. Continuous field descriptions at several levels of approximation allow us to identify the relevant physical mechanisms.

  4. Chemical Reactions in Clusters

    DTIC Science & Technology

    1992-11-04

    NH 3)n, n _> 4, clusters has been attributed to the (solvated) naphtholate anion.3a A single picosecond decay measurement has been reported which...vibrational energy in the cluster Sl state. The data are summarized in Table I. A model to explain these decay results can be constructed based on a proton...11 TITLE (Include Security Classification) Chemical Reactions in Clusters 12 PERSONAL AUTHOR(S) Elliot R. Bernstein 13a TYPE OF REPORT 13b TIME COVERED

  5. Binding energy effects in cascade evolution and sputtering

    SciTech Connect

    Robinson, M.T.

    1995-06-01

    The MARLOWE model was extended to include a binding energy dependent on the local crystalline order, so that atoms are bound less strongly to their lattice sites near surfaces or associated damage. Sputtering and cascade evolution were studied on the examples of self-ion irradiations of Cu and Au monocrystals. In cascades, the mean binding energy is reduced {approximately}8% in Cu with little dependence on the initial recoil energy; in Au, it is reduced {approximately}9% at 1 keV and {approximately}15% at 100 keV. In sputtering, the mean binding energy is reduced {approximately}8% in Cu and {approximately}15% in Au with little energy dependence; the yields are increased about half as much. Most sites from which sputtered atoms originate are isolated in both metals. Small clusters of such sites occur in Cu, but there are some large clusters in Au, especially in [111] targets. There are always more large clusters with damage-dependent binding than with a constant binding energy, but only a few clusters are compact enough to be regarded as pits.

  6. Clustering Molecular Dynamics Trajectories: 1. Characterizing the Performance of Different Clustering Algorithms.

    PubMed

    Shao, Jianyin; Tanner, Stephen W; Thompson, Nephi; Cheatham, Thomas E

    2007-11-01

    Molecular dynamics simulation methods produce trajectories of atomic positions (and optionally velocities and energies) as a function of time and provide a representation of the sampling of a given molecule's energetically accessible conformational ensemble. As simulations on the 10-100 ns time scale become routine, with sampled configurations stored on the picosecond time scale, such trajectories contain large amounts of data. Data-mining techniques, like clustering, provide one means to group and make sense of the information in the trajectory. In this work, several clustering algorithms were implemented, compared, and utilized to understand MD trajectory data. The development of the algorithms into a freely available C code library, and their application to a simple test example of random (or systematically placed) points in a 2D plane (where the pairwise metric is the distance between points) provide a means to understand the relative performance. Eleven different clustering algorithms were developed, ranging from top-down splitting (hierarchical) and bottom-up aggregating (including single-linkage edge joining, centroid-linkage, average-linkage, complete-linkage, centripetal, and centripetal-complete) to various refinement (means, Bayesian, and self-organizing maps) and tree (COBWEB) algorithms. Systematic testing in the context of MD simulation of various DNA systems (including DNA single strands and the interaction of a minor groove binding drug DB226 with a DNA hairpin) allows a more direct assessment of the relative merits of the distinct clustering algorithms. Additionally, means to assess the relative performance and differences between the algorithms, to dynamically select the initial cluster count, and to achieve faster data mining by "sieved clustering" were evaluated. Overall, it was found that there is no one perfect "one size fits all" algorithm for clustering MD trajectories and that the results strongly depend on the choice of atoms for the

  7. Cluster Physics & Evolution

    NASA Astrophysics Data System (ADS)

    Nagai, Daisuke; Arnaud, Monique; Dasadia, Sarthak; McDonald, Michael; Mitsuishi, Ikuyuki; Morandi, Andrea

    Recent advances in X-ray and microwave observations have provided unprecedented insights into the structure and evolution of the hot X-ray emitting plasma from their cores to the virialization region in outskirts of galaxy clusters. Recent Sunyaev-Zel'dovich (SZ) surveys (ACT, Planck, SPT) have provided new cluster catalogs, significantly expanding coverage of the mass-redshift plane, while Chandra and XMM-Newton X-ray follow-up programs have improved our understanding of cluster physics and evolution as well as the surveys themselves. However, the current cluster-based cosmological constraints are still limited by uncertainties in cluster astrophysics. In order to exploit the statistical power of the current and upcoming X-ray and microwave cluster surveys, it is critical to improve our understanding of the structure and evolution of the hot X-ray emitting intracluster medium (ICM). In this session, we discussed recent advances in observations and simulations of galaxy clusters, with highlights on (i) the evolution of ICM profiles and scaling relations, (ii) physical processes operating in the outskirts of galaxy clusters, and (iii) impact of mergers on the ICM structure in groups and clusters.

  8. Mini-clusters

    NASA Technical Reports Server (NTRS)

    Chinellato, J. A.; Dobrigkeit, C.; Bellandifilho, J.; Lattes, C. M. G.; Menon, M. J.; Navia, C. E.; Pamilaju, A.; Sawayanagi, K.; Shibuya, E. H.; Turtelli, A., Jr.

    1985-01-01

    Experimental results of mini-clusters observed in Chacaltaya emulsion chamber no.19 are summarized. The study was made on 54 single core shower upper and 91 shower clusters of E(gamma) 10 TeV from 30 families which are visible energy greater than 80 TeV and penetrate through both upper and lower detectors of the two-story chamber. The association of hadrons in mini-cluster is made clear from their penetrative nature and microscopic observation of shower continuation in lower chamber. Small P sub t (gamma) of hadrons in mini-clusters remained in puzzle.

  9. Reactions of intermetallic clusters

    SciTech Connect

    Farley, R.W.; Castleman, A.W. Jr. )

    1990-02-01

    Reaction of bismuth--alkali clusters with closed-shell HX acids provides insight into the structures, formation, and stabilities of these intermetallic species. HC1 and HI are observed to quantitatively strip Bi{sub {ital x}}Na{sub {ital y}} and Bi{sub {ital x}}K{sub {ital y}}, respectively, of their alkali component, leaving bare bismuth clusters as the only bismuth-containing species detected. Product bismuth clusters exhibit the same distribution observed when pure bismuth is evaporated in the source. Though evaporated simultaneously from the same crucible, this suggests alkali atoms condense onto existing bismuth clusters and have negligible effect on their formation and consequent distribution. The indistinguishibility of reacted and pure bismuth cluster distributions further argues against the simple replacement of alkali atoms with hydrogen in these reactions. This is considered further evidence that the alkali atoms are external to the stable bismuth Zintl anionic structures. Reactivities of Bi{sub {ital x}}Na{sub {ital y}} clusters with HC1 are estimated to lie between 3{times}10{sup {minus}13} for Bi{sub 4}Na, to greater than 4{times}10{sup {minus}11} for clusters possessing large numbers of alkali atoms. Bare bismuth clusters are observed in separate experiments to react significantly more slowly with rates of 1--9{times}10{sup {minus}14} and exhibit little variation of reactivity with size. The bismuth clusters may thus be considered a relatively inert substrate upon which the alkali overlayer reacts.

  10. Melting of nickel clusters

    SciTech Connect

    Garzon, I.L.; Jellinek, J.

    1991-12-31

    The meltinglike phenomenon in Ni{sub n}, n = 19,20,55, clusters is studied using microcanonical molecular dynamics simulations. The interaction between the atoms in the clusters is modelled by a size-dependent Gupta-like potential that incorporates many-body effects. The clusters display the ``usual`` stages in their meltinglike transition, which characterize also Lennard-Jones (e.g., noble gas) and ionic clusters. In addition, Ni{sub 20} passes through a so-called premelting stage found earlier also for Ni{sub 14}. 11 ref., 3 figs.

  11. Melting of nickel clusters

    SciTech Connect

    Garzon, I.L. . Inst. de Fisica); Jellinek, J. )

    1991-01-01

    The meltinglike phenomenon in Ni{sub n}, n = 19,20,55, clusters is studied using microcanonical molecular dynamics simulations. The interaction between the atoms in the clusters is modelled by a size-dependent Gupta-like potential that incorporates many-body effects. The clusters display the usual'' stages in their meltinglike transition, which characterize also Lennard-Jones (e.g., noble gas) and ionic clusters. In addition, Ni{sub 20} passes through a so-called premelting stage found earlier also for Ni{sub 14}. 11 ref., 3 figs.

  12. The youngest globular clusters

    NASA Astrophysics Data System (ADS)

    Beck, Sara

    2015-11-01

    It is likely that all stars are born in clusters, but most clusters are not bound and disperse. None of the many protoclusters in our Galaxy are likely to develop into long-lived bound clusters. The super star clusters (SSCs) seen in starburst galaxies are more massive and compact and have better chances of survival. The birth and early development of SSCs takes place deep in molecular clouds, and during this crucial stage the embedded clusters are invisible to optical or UV observations but are studied via the radio-infrared supernebulae (RISN) they excite. We review observations of embedded clusters and identify RISN within 10 Mpc whose exciting clusters have ≈ 106 M⊙ or more in volumes of a few pc3 and which are likely to not only survive as bound clusters, but to evolve into objects as massive and compact as Galactic globulars. These clusters are distinguished by very high star formation efficiency η, at least a factor of 10 higher than the few percent seen in the Galaxy, probably due to the violent disturbances their host galaxies have undergone. We review recent observations of the kinematics of the ionized gas in RISN showing outflows through low-density channels in the ambient molecular cloud; this may protect the cloud from feedback by the embedded H II region.

  13. Magnetism in cobalt clusters

    NASA Astrophysics Data System (ADS)

    Emmert, Jeffrey Wayne

    The results of Stern-Gerlach type magnetic deflection experiments on clusters of cobalt consisting of 15 to 200 atoms are reported. These cobalt clusters exhibit superparamagnetic behavior over a wide range of temperatures and applied magnetic fields. The average magnetic moment per atom was determined for each cluster size. These range from 2.28 muB to 3.40 mu B, significantly exceeding the 1.72 muB per atom moment of bulk cobalt. This enhanced magnetism predictably decreases with increasing cluster size, but the evolution to the bulk is not smooth and exhibits detailed structure.

  14. Star Clusters within FIRE

    NASA Astrophysics Data System (ADS)

    Perez, Adrianna; Moreno, Jorge; Naiman, Jill; Ramirez-Ruiz, Enrico; Hopkins, Philip F.

    2017-01-01

    In this work, we analyze the environments surrounding star clusters of simulated merging galaxies. Our framework employs Feedback In Realistic Environments (FIRE) model (Hopkins et al., 2014). The FIRE project is a high resolution cosmological simulation that resolves star forming regions and incorporates stellar feedback in a physically realistic way. The project focuses on analyzing the properties of the star clusters formed in merging galaxies. The locations of these star clusters are identified with astrodendro.py, a publicly available dendrogram algorithm. Once star cluster properties are extracted, they will be used to create a sub-grid (smaller than the resolution scale of FIRE) of gas confinement in these clusters. Then, we can examine how the star clusters interact with these available gas reservoirs (either by accreting this mass or blowing it out via feedback), which will determine many properties of the cluster (star formation history, compact object accretion, etc). These simulations will further our understanding of star formation within stellar clusters during galaxy evolution. In the future, we aim to enhance sub-grid prescriptions for feedback specific to processes within star clusters; such as, interaction with stellar winds and gas accretion onto black holes and neutron stars.

  15. Clustering versus non-clustering phase synchronizations

    SciTech Connect

    Liu, Shuai; Zhan, Meng

    2014-03-15

    Clustering phase synchronization (CPS) is a common scenario to the global phase synchronization of coupled dynamical systems. In this work, a novel scenario, the non-clustering phase synchronization (NPS), is reported. It is found that coupled systems do not transit to the global synchronization until a certain sufficiently large coupling is attained, and there is no clustering prior to the global synchronization. To reveal the relationship between CPS and NPS, we further analyze the noise effect on coupled phase oscillators and find that the coupled oscillator system can change from CPS to NPS with the increase of noise intensity or system disorder. These findings are expected to shed light on the mechanism of various intriguing self-organized behaviors in coupled systems.

  16. A machine learning approach for ranking clusters of docked protein-protein complexes by pairwise cluster comparison.

    PubMed

    Pfeiffenberger, Erik; Chaleil, Raphael A G; Moal, Iain H; Bates, Paul A

    2017-03-01

    Reliable identification of near-native poses of docked protein-protein complexes is still an unsolved problem. The intrinsic heterogeneity of protein-protein interactions is challenging for traditional biophysical or knowledge based potentials and the identification of many false positive binding sites is not unusual. Often, ranking protocols are based on initial clustering of docked poses followed by the application of an energy function to rank each cluster according to its lowest energy member. Here, we present an approach of cluster ranking based not only on one molecular descriptor (e.g., an energy function) but also employing a large number of descriptors that are integrated in a machine learning model, whereby, an extremely randomized tree classifier based on 109 molecular descriptors is trained. The protocol is based on first locally enriching clusters with additional poses, the clusters are then characterized using features describing the distribution of molecular descriptors within the cluster, which are combined into a pairwise cluster comparison model to discriminate near-native from incorrect clusters. The results show that our approach is able to identify clusters containing near-native protein-protein complexes. In addition, we present an analysis of the descriptors with respect to their power to discriminate near native from incorrect clusters and how data transformations and recursive feature elimination can improve the ranking performance. Proteins 2017; 85:528-543. © 2016 Wiley Periodicals, Inc.

  17. Ureaplasma urealyticum binds mannose-binding lectin.

    PubMed

    Benstein, Barbara D; Ourth, Donald D; Crouse, Dennis T; Shanklin, D Radford

    2004-10-01

    Mannose-binding C-type lectin (MBL) is an important component of innate immunity in mammals. Mannose-binding lectin (MBL), an acute phase protein, acts as an opsonin for phagocytosis and also activates the mannan-binding lectin complement pathway. It may play a particularly significant role during infancy before adequate specific protection can be provided by the adaptive immune system. Ureaplasma urealyticum has been linked to several diseases including pneumonia and chronic lung disease (CLD) in premature infants. We therefore investigated the ability of U. urealyticum to bind MBL. A guinea pig IgG anti-rabbit-MBL antiserum was produced. An immunoblot (dot-blot) assay done on nitrocellulose membrane determined that the anti-MBL antibody had specificity against both rabbit and human MBL. Pure cultures of U. urealyticum, serotype 3, were used to make slide preparations. The slides containing the organisms were then incubated with nonimmune rabbit serum containing MBL. Ureaplasma was shown to bind rabbit MBL with an immunocytochemical assay using the guinea pig IgG anti-rabbit MBL antiserum. Horseradish peroxidase (HRP)-labeled anti-guinea pig IgG was used to localize the reaction. The anti-MBL antiserum was also used in an immunocytochemical assay to localize U. urealyticum in histological sections of lungs from mice specifically infected with this organism. The same method also indicated binding of MBL by ureaplasma in human lung tissue obtained at autopsy from culture positive infants. Our results demonstrate that ureaplasma has the capacity to bind MBL. The absence of MBL may play a role in the predisposition of diseases related to this organism.

  18. A nonparametric clustering technique which estimates the number of clusters

    NASA Technical Reports Server (NTRS)

    Ramey, D. B.

    1983-01-01

    In applications of cluster analysis, one usually needs to determine the number of clusters, K, and the assignment of observations to each cluster. A clustering technique based on recursive application of a multivariate test of bimodality which automatically estimates both K and the cluster assignments is presented.

  19. Field Evaporation of Grounded Arsenic Doped Silicon Clusters

    NASA Astrophysics Data System (ADS)

    Deng, Zexiang; She, Juncong; Li, Zhibing; Wang, Weiliang; Chen, Qiang

    2015-08-01

    We have investigated the field evaporation of grounded arsenic (As) doped silicon (Si) clusters composed of 52 atoms with density functional theory (DFT) to mimic Si nano structures of hundreds of nanometers long standing on a substrate. Six cluster structures with different As doping concentrations and dopant locations are studied. The critical evaporation electric fields are found to be lower for clusters with higher doping concentrations and doping sites closer to the surface. We attribute the difference to the difference in binding energies corresponding to the different As-doping concentrations and to the doping locations. Our theoretical study could shed light on the stability of nano apexes under high electric field.

  20. Aluminum Cluster-Based Materials for Propulsion and Other Applications

    DTIC Science & Technology

    2009-01-31

    discovered by us, our studies showed that an ionic assembly composed of AI13 and super- alkali K3O is stable and ideal to generate an ionic solid...reactions of propene to Agn and Aun clusters had suggested that propene binds by donating charge from its HOMO to the metal cluster and that the...that correspond to the Al12+3n- (n = 0 – 3); asterisks mark the Al12+3nC3H6- adducts. A B 5 when the LUMO of the metal cluster is lower in

  1. Theoretical studies of the electronic structure of small metal clusters

    NASA Technical Reports Server (NTRS)

    Jordan, K. D.

    1982-01-01

    Theoretical studies of the electronic structure of metal clusters, in particular clusters of Group IIA and IIB atoms were conducted. Early in the project it became clear that electron correlation involving d orbitals plays a more important role in the binding of these clusters than had been previously anticipated. This necessitated that computer codes for calculating two electron integrals and for constructing the resulting CI Hamiltonions be replaced with newer, more efficient procedures. Program modification, interfacing and testing were performed. Results of both plans are reported.

  2. Gas phase antimony/magnesium/oxygen clusters

    SciTech Connect

    Deng, H.T.; Okada, Y.; Foltin, M.; Castleman, A.W. Jr. )

    1994-09-15

    Antimony/magnesium/oxygen clusters are produced by a gas aggregation source, in which a mixture of antimony and magnesium is vaporized and reacted with N[sub 2]O introduced in helium carrier gas. The resulting product distribution is detected by a time-of-flight mass spectrometer following ionization with a KrF excimer laser. Four types of cluster products are observed: Sb[sub x][sup +], Sb[sub x]Mg[sub y]O[sub z][sup +], Sb[sub x]Mg[sub y][sup +], and Mg[sub y]O[sub z][sup +]. The mass spectral intensity distributions display enhanced abundances for Mg[sub 2]O[sup +], Sb[sub 2[minus]4]Mg[sub 3]O[sup +], Sb[sub 1[minus]4]Mg[sub 2]O[sup +], Sb[sub 4]Mg[sup +], Sb[sub 5]Mg[sub 2][sup +], and Sb[sub 6]Mg[sub 2][sup +]. The experimental observation of Mg[sub 2]O[sup +] and Mg[sub 3]O[sup +] shows that the suboxides of group 2 are stable species, consistent with theoretical predictions. The binding abilities of antimony clusters to magnesium and magnesium oxides are found to be dependent on cluster size. When the number of antimony atoms in the clusters is smaller than 6, Sb[sub x]Mg[sub y]O[sub z][sup +] are the main products dominating the mass distribution the mass distribution. On the other hand, when the cluster size of Sb[sub x] is larger than 6, only Sb/Mg alloy clusters are observed. 52 refs., 3 figs., 1 tab.

  3. Photoionization of molecular clusters

    NASA Astrophysics Data System (ADS)

    Andres, R. P.; Calo, J. M.

    1981-12-01

    An experimental apparatus consisting of a novel multiple expansion cluster source coupled with a molecular beam system and photoionization mass spectrometer has been designed and constructed. This apparatus has been thoroughly tested and preliminary measurements of the growth kinetics of water clusters and the photoionization cross section of the water dimer have been carried out.

  4. Targeting Clusters, Achieving Excellence.

    ERIC Educational Resources Information Center

    Rosenfeld, Stuart; Jacobs, Jim; Liston, Cynthia

    2003-01-01

    Suggests that groups, or clusters, of industries form partnerships with community colleges in order to positively impact economic development. Asserts that a cluster-oriented community college system requires innovation, specialized resources and expertise, knowledge of trends, and links to industry. Offers suggestions for developing such a…

  5. Cluster Guide. Accounting Occupations.

    ERIC Educational Resources Information Center

    Beaverton School District 48, OR.

    Based on a recent task inventory of key occupations in the accounting cluster taken in the Portland, Oregon, area, this curriculum guide is intended to assist administrators and teachers in the design and implementation of high school accounting cluster programs. The guide is divided into four major sections: program organization and…

  6. Evaluating cancer clusters

    SciTech Connect

    Enterline, P.E.

    1985-03-01

    Considerable success has been achieved in identifying cancer causing agents in the workplace using epidemiologic methods. This success had made the authors very sensitive to the occurrence of cancer clusters among workers in the belief that identification of some common exposure could reveal the presence of a carcinogen and lead to preventive measures. This intense surveillance is both a blessing and a curse. On the one hand, it is a proven way of discovering environmental causes of cancer. On the other, it leads to false alarms or does not always lead to identification of a causal agent. It is easy to demonstrate, using tables of random number 5, how clusters can occur by chance and to demonstrate that when the number of comparisons made in identifying clusters is known there is a basis for their evaluation. Unfortunately, in most instances, when cancer clusters are detected in the workplace the number of comparisons made is unknown and the statistical significance of the cluster cannot be evaluated. Moreover, it is not usually recognized that in this situation when a study is made as a result of discovering a cluster in a particular population, the cases that make up the cluster cannot be included in a data set which tests the hypothesis that a cluster exists. This paper illustrates the above points by actual experiences.

  7. Ultrametric Hierarchical Clustering Algorithms.

    ERIC Educational Resources Information Center

    Milligan, Glenn W.

    1979-01-01

    Johnson has shown that the single linkage and complete linkage hierarchical clustering algorithms induce a metric on the data known as the ultrametric. Johnson's proof is extended to four other common clustering algorithms. Two additional methods also produce hierarchical structures which can violate the ultrametric inequality. (Author/CTM)

  8. Coma cluster of galaxies

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Atlas Image mosaic, covering 34' x 34' on the sky, of the Coma cluster, aka Abell 1656. This is a particularly rich cluster of individual galaxies (over 1000 members), most prominently the two giant ellipticals, NGC 4874 (right) and NGC 4889 (left). The remaining members are mostly smaller ellipticals, but spiral galaxies are also evident in the 2MASS image. The cluster is seen toward the constellation Coma Berenices, but is actually at a distance of about 100 Mpc (330 million light years, or a redshift of 0.023) from us. At this distance, the cluster is in what is known as the 'Hubble flow,' or the overall expansion of the Universe. As such, astronomers can measure the Hubble Constant, or the universal expansion rate, based on the distance to this cluster. Large, rich clusters, such as Coma, allow astronomers to measure the 'missing mass,' i.e., the matter in the cluster that we cannot see, since it gravitationally influences the motions of the member galaxies within the cluster. The near-infrared maps the overall luminous mass content of the member galaxies, since the light at these wavelengths is dominated by the more numerous older stellar populations. Galaxies, as seen by 2MASS, look fairly smooth and homogeneous, as can be seen from the Hubble 'tuning fork' diagram of near-infrared galaxy morphology. Image mosaic by S. Van Dyk (IPAC).

  9. Structural transitions in clusters

    NASA Astrophysics Data System (ADS)

    Ghazali, A.; Lévy, J.-C. S.

    1997-02-01

    Monatomic clusters are studied by Monte Carlo relaxation using generalized Lennard-Jones potentials. A transition from an icosahedral symmetry to a crystalline symmetry with stacking faults is always observed. Bcc-based soft atom clusters are found to have a lower energy than the corresponding hcp and fcc ones below the melting point.

  10. Coma cluster of galaxies

    NASA Image and Video Library

    1999-12-02

    Atlas Image mosaic, covering 34 x 34 on the sky, of the Coma cluster, aka Abell 1656. This is a particularly rich cluster of individual galaxies over 1000 members, most prominently the two giant ellipticals, NGC 4874 right and NGC 4889 left.

  11. Coma cluster of galaxies

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Atlas Image mosaic, covering 34' x 34' on the sky, of the Coma cluster, aka Abell 1656. This is a particularly rich cluster of individual galaxies (over 1000 members), most prominently the two giant ellipticals, NGC 4874 (right) and NGC 4889 (left). The remaining members are mostly smaller ellipticals, but spiral galaxies are also evident in the 2MASS image. The cluster is seen toward the constellation Coma Berenices, but is actually at a distance of about 100 Mpc (330 million light years, or a redshift of 0.023) from us. At this distance, the cluster is in what is known as the 'Hubble flow,' or the overall expansion of the Universe. As such, astronomers can measure the Hubble Constant, or the universal expansion rate, based on the distance to this cluster. Large, rich clusters, such as Coma, allow astronomers to measure the 'missing mass,' i.e., the matter in the cluster that we cannot see, since it gravitationally influences the motions of the member galaxies within the cluster. The near-infrared maps the overall luminous mass content of the member galaxies, since the light at these wavelengths is dominated by the more numerous older stellar populations. Galaxies, as seen by 2MASS, look fairly smooth and homogeneous, as can be seen from the Hubble 'tuning fork' diagram of near-infrared galaxy morphology. Image mosaic by S. Van Dyk (IPAC).

  12. [Cluster headache differential diagnosis].

    PubMed

    Guégan-Massardier, Evelyne; Laubier, Cécile

    2015-11-01

    Cluster headache is characterized by disabling stereotyped headache. Early diagnosis allows appropriate treatment, unfortunately diagnostic errors are frequent. The main differential diagnoses are other primary or essential headaches. Migraine, more frequent and whose diagnosis is carried by excess, trigeminal neuralgia or other trigemino-autonomic cephalgia. Vascular or tumoral underlying condition can mimic cluster headache, neck and brain imaging is recommended, ideally MRI.

  13. Marketing Occupations. Cluster Guide.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem.

    This cluster guide, which is designed to show teachers what specific knowledge and skills qualify high school students for entry-level employment (or postsecondary training) in marketing occupations, is organized into three sections: (1) cluster organization and implementation, (2) instructional emphasis areas, and (3) assessment. The first…

  14. Cluster Interest Inventory.

    ERIC Educational Resources Information Center

    Herzog, Douglas

    The Cluster Interest Inventory is designed to familiarize students with representative occupations in 13 career clusters: (1) agribusiness and natural resources, (2) business marketing, and office occupations, (3) communications and media, (4) consumer and homemaker, (5) fine arts and humanities, (6) health, (7) manufacturing and processing, (8)…

  15. Mixed-Initiative Clustering

    ERIC Educational Resources Information Center

    Huang, Yifen

    2010-01-01

    Mixed-initiative clustering is a task where a user and a machine work collaboratively to analyze a large set of documents. We hypothesize that a user and a machine can both learn better clustering models through enriched communication and interactive learning from each other. The first contribution or this thesis is providing a framework of…

  16. Mixed-Initiative Clustering

    ERIC Educational Resources Information Center

    Huang, Yifen

    2010-01-01

    Mixed-initiative clustering is a task where a user and a machine work collaboratively to analyze a large set of documents. We hypothesize that a user and a machine can both learn better clustering models through enriched communication and interactive learning from each other. The first contribution or this thesis is providing a framework of…

  17. Probability and Cancer Clusters

    ERIC Educational Resources Information Center

    Hamilton-Keene, Rachael; Lenard, Christoper T.; Mills, Terry M.

    2009-01-01

    Recently there have been several news items about possible cancer clusters in the Australian media. The term "cancer cluster" is used when an unusually large number of people in one geographic area, often a workplace, are diagnosed with cancer in a short space of time. In this paper the authors explore this important health issue using…

  18. Multiple frame cluster tracking

    NASA Astrophysics Data System (ADS)

    Gadaleta, Sabino; Klusman, Mike; Poore, Aubrey; Slocumb, Benjamin J.

    2002-08-01

    Tracking large number of closely spaced objects is a challenging problem for any tracking system. In missile defense systems, countermeasures in the form of debris, chaff, spent fuel, and balloons can overwhelm tracking systems that track only individual objects. Thus, tracking these groups or clusters of objects followed by transitions to individual object tracking (if and when individual objects separate from the groups) is a necessary capability for a robust and real-time tracking system. The objectives of this paper are to describe the group tracking problem in the context of multiple frame target tracking and to formulate a general assignment problem for the multiple frame cluster/group tracking problem. The proposed approach forms multiple clustering hypotheses on each frame of data and base individual frame clustering decisions on the information from multiple frames of data in much the same way that MFA or MHT work for individual object tracking. The formulation of the assignment problem for resolved object tracking and candidate clustering methods for use in multiple frame cluster tracking are briefly reviewed. Then, three different formulations are presented for the combination of multiple clustering hypotheses on each frame of data and the multiple frame assignments of clusters between frames.

  19. Brightest Cluster Galaxy Identification

    NASA Astrophysics Data System (ADS)

    Leisman, Luke; Haarsma, D. B.; Sebald, D. A.; ACCEPT Team

    2011-01-01

    Brightest cluster galaxies (BCGs) play an important role in several fields of astronomical research. The literature includes many different methods and criteria for identifying the BCG in the cluster, such as choosing the brightest galaxy, the galaxy nearest the X-ray peak, or the galaxy with the most extended profile. Here we examine a sample of 75 clusters from the Archive of Chandra Cluster Entropy Profile Tables (ACCEPT) and the Sloan Digital Sky Survey (SDSS), measuring masked magnitudes and profiles for BCG candidates in each cluster. We first identified galaxies by hand; in 15% of clusters at least one team member selected a different galaxy than the others.We also applied 6 other identification methods to the ACCEPT sample; in 30% of clusters at least one of these methods selected a different galaxy than the other methods. We then developed an algorithm that weighs brightness, profile, and proximity to the X-ray peak and centroid. This algorithm incorporates the advantages of by-hand identification (weighing multiple properties) and automated selection (repeatable and consistent). The BCG population chosen by the algorithm is more uniform in its properties than populations selected by other methods, particularly in the relation between absolute magnitude (a proxy for galaxy mass) and average gas temperature (a proxy for cluster mass). This work supported by a Barry M. Goldwater Scholarship and a Sid Jansma Summer Research Fellowship.

  20. Evolving nucleotide binding surfaces

    NASA Technical Reports Server (NTRS)

    Kieber-Emmons, T.; Rein, R.

    1981-01-01

    An analysis is presented of the stability and nature of binding of a nucleotide to several known dehydrogenases. The employed approach includes calculation of hydrophobic stabilization of the binding motif and its intermolecular interaction with the ligand. The evolutionary changes of the binding motif are studied by calculating the Euclidean deviation of the respective dehydrogenases. Attention is given to the possible structural elements involved in the origin of nucleotide recognition by non-coded primordial polypeptides.

  1. Cool Cluster Correctly Correlated

    SciTech Connect

    Varganov, Sergey Aleksandrovich

    2005-01-01

    Atomic clusters are unique objects, which occupy an intermediate position between atoms and condensed matter systems. For a long time it was thought that physical and chemical properties of atomic dusters monotonically change with increasing size of the cluster from a single atom to a condensed matter system. However, recently it has become clear that many properties of atomic clusters can change drastically with the size of the clusters. Because physical and chemical properties of clusters can be adjusted simply by changing the cluster's size, different applications of atomic clusters were proposed. One example is the catalytic activity of clusters of specific sizes in different chemical reactions. Another example is a potential application of atomic clusters in microelectronics, where their band gaps can be adjusted by simply changing cluster sizes. In recent years significant advances in experimental techniques allow one to synthesize and study atomic clusters of specified sizes. However, the interpretation of the results is often difficult. The theoretical methods are frequently used to help in interpretation of complex experimental data. Most of the theoretical approaches have been based on empirical or semiempirical methods. These methods allow one to study large and small dusters using the same approximations. However, since empirical and semiempirical methods rely on simple models with many parameters, it is often difficult to estimate the quantitative and even qualitative accuracy of the results. On the other hand, because of significant advances in quantum chemical methods and computer capabilities, it is now possible to do high quality ab-initio calculations not only on systems of few atoms but on clusters of practical interest as well. In addition to accurate results for specific clusters, such methods can be used for benchmarking of different empirical and semiempirical approaches. The atomic clusters studied in this work contain from a few atoms to

  2. Dynamics of cluster dissociation

    SciTech Connect

    Keesee, R.G.; Castleman, A.W. Jr.

    1986-01-01

    The dynamics of dissociation of clusters induced by multiphoton ionization (MPI) is examined by time-of-flight mass spectrometry with the aid of a reflecting electric field. The systems discussed include ammonia, methanol, xenon, and p-xylene(Ar)/sub n/ clusters. Ammonia and methanol clusters undergo rapid intracluster reactions to yield protonated clusters. Much of the excess energy which leads to dissociation in ammonia, methanol, and xenon clusters results from the energy differences in the ground states of the neutral and ionic systems. On the other hand, in the case of p-xylene(Ar)/sub n/ the energetic differences are much smaller, so that the excess absorbed photon energy may be an important contribution. 10 refs., 3 figs.

  3. Dynamics of cluster dissociation

    SciTech Connect

    Keesee, R.G.; Castleman A.W. Jr.

    1987-09-25

    The dynamics of dissociation of clusters induced by multiphoton ionization (MPI) is examined by time-of-flight mass spectrometry with the aid of a reflecting electric field. The systems discussed include ammonia, methanol, xenon, and p-xylene(Ar)/sub n/ clusters. Ammonia and methanol clusters undergo rapid intracluster reactions to yield protonated clusters. Much of the excess energy which leads to dissociation in ammonia, methanol, and xenon clusters results from the energy differences in the ground states of the neutral and ionic systems. On the other hand, in the case of p-xylene(Ar)/sub n/ the energetic differences are much smaller, so that the excess absorbed photon energy may be an important contribution.

  4. Hybridization schemes for clusters

    NASA Astrophysics Data System (ADS)

    Wales, David J.

    The concept of an optimum hybridization scheme for cluster compounds is developed with particular reference to electron counting. The prediction of electron counts for clusters and the interpretation of the bonding is shown to depend critically upon the presumed hybridization pattern of the cluster vertex atoms. This fact has not been properly appreciated in previous work, particularly in applications of Stone's tensor surface harmonic (TSH) theory, but is found to be a useful tool when dealt with directly. A quantitative definition is suggested for the optimum cluster hybridization pattern based directly upon the ease of interpretation of the molecular orbitals, and results are given for a range of species. The relationship of this scheme to the detailed cluster geometry is described using Löwdin's partitioned perturbation theory, and the success and range of application of TSH theory are discussed.

  5. Dynamical Analyses of Galaxy Clusters With Large Redshift Samples

    NASA Astrophysics Data System (ADS)

    Mohr, J. J.; Richstone, D. O.; Wegner, G.

    1998-12-01

    We construct equilibrium models of galaxy orbits in five nearby galaxy clusters to study the distribution of binding mass, the nature of galaxy orbits and the kinematic differences between cluster populations of emission-line and non emission-line galaxies. We avail ourselves of 1718 galaxy redshifts (and 1203 cluster member redshifts) in this Jeans analysis; most of these redshifts are new, coming from multifiber spectroscopic runs on the MDM 2.4m with the Decaspec and queue observing on WIYN with Hydra. In addition to the spectroscopic data we have V and R band CCD mosaics (obtained with the MDM 1.3m) of the Abell region in each of these clusters. Our scientific goals include: (i) a quantitative estimate of the range of binding masses M500 consistent with the optical and X-ray data, (ii) an estimate of the typical galaxy oribital anisotropies required to make the galaxy data consistent with the NFW expectation for the cluster potential, (iii) a better understanding of the systematics inherent in the process of rescaling and ``stacking'' galaxy cluster observations, (iv) a reexamination of the recent CNOC results implying that emission-line (blue) galaxies are an equilibrium population with a more extended radial distribution than their non emission-line (red) galaxy counterparts and (v) a measure of the galaxy contribution to the cluster mass of baryons.

  6. Core level photoelectron spectroscopy probed heterogeneous xenon/neon clusters

    NASA Astrophysics Data System (ADS)

    Pokapanich, Wandared; Björneholm, Olle; Öhrwall, Gunnar; Tchaplyguine, Maxim

    2017-06-01

    Binary rare gas clusters; xenon and neon which have a significant contrariety between sizes, produced by a co-expansion set up and have been studied using synchrotron radiation based x-ray photoelectron spectroscopy. Concentration ratios of the heterogeneous clusters; 1%, 3%, 5% and 10% were controlled. The core level spectra were used to determine structure of the mixed cluster and analyzed by considering screening mechanisms. Furthermore, electron binding energy shift calculations demonstrated cluster aggregation models which may occur in such process. The results showed that in the case of low mixing ratios of 3% and 5% of xenon in neon, the geometric structures exhibit xenon in the center and xenon/neon interfaced in the outer shells. However, neon cluster vanished when the concentration of xenon was increased to 10%.

  7. Aerobic oxidation of alcohols in visible light on Pd-grafted Ti cluster

    EPA Science Inventory

    The titanium cluster with the reduced band gap has been synthesized having the palladium nanoparticles over the surface, which not only binds to the atmospheric oxygen but also catalyzes the oxidation of alcohols under visible light.

  8. Galaxy cluster's rotation

    NASA Astrophysics Data System (ADS)

    Manolopoulou, M.; Plionis, M.

    2017-03-01

    We study the possible rotation of cluster galaxies, developing, testing, and applying a novel algorithm which identifies rotation, if such does exist, as well as its rotational centre, its axis orientation, rotational velocity amplitude, and, finally, the clockwise or counterclockwise direction of rotation on the plane of the sky. To validate our algorithms we construct realistic Monte Carlo mock rotating clusters and confirm that our method provides robust indications of rotation. We then apply our methodology on a sample of Abell clusters with z ≲ 0.1 with member galaxies selected from the Sloan Digital Sky Survey DR10 spectroscopic data base. After excluding a number of substructured clusters, which could provide erroneous indications of rotation, and taking into account the expected fraction of misidentified coherent substructure velocities for rotation, provided by our Monte Carlo simulation analysis, we find that ∼23 per cent of our clusters are rotating under a set of strict criteria. Loosening the strictness of the criteria, on the expense of introducing spurious rotation indications, we find this fraction increasing to ∼28 per cent. We correlate our rotation indicators with the cluster dynamical state, provided either by their Bautz-Morgan type or by their X-ray isophotal shape and find for those clusters showing rotation within 1.5 h^{-1}_{70} Mpc that the significance of their rotation is related to the dynamically younger phases of cluster formation but after the initial anisotropic accretion and merging has been completed. Finally, finding rotational modes in galaxy clusters could lead to the necessity of correcting the dynamical cluster mass calculations.

  9. Metallic clusters on a model surface: Quantum versus geometric effects

    NASA Astrophysics Data System (ADS)

    Blundell, S. A.; Haldar, Soumyajyoti; Kanhere, D. G.

    2011-08-01

    We determine the structure and melting behavior of supported metallic clusters using an ab initio density-functional-based treatment of intracluster interactions and an approximate treatment of the surface as an idealized smooth plane yielding an effective Lennard-Jones interaction with the ions of the cluster. We apply this model to determine the structure of sodium clusters containing from 4 to 22 atoms, treating the cluster-surface interaction strength as a variable parameter. For a strong cluster-surface interaction, the clusters form two-dimensional (2D) monolayer structures; comparisons with calculations of structure and dissociation energy performed with a classical Gupta interatomic potential show clearly the role of quantum shell effects in the metallic binding in this case, and evidence is presented that these shell effects correspond to those for a confined 2D electron gas. The thermodynamics and melting behavior of a supported Na20 cluster is considered in detail using the model for several cluster-surface interaction strengths. We find quantitative differences in the melting temperatures and caloric curve from density-functional and Gupta treatments of the valence electrons. A clear dimensional effect on the melting behavior is also demonstrated, with 2D structures showing melting temperatures above those of the bulk or (at very strong cluster-surface interactions) no clear meltinglike transition.

  10. Clustering of transmutation elements tantalum, rhenium and osmium in tungsten in a fusion environment

    NASA Astrophysics Data System (ADS)

    You, Yu-Wei; Kong, Xiang-Shan; Wu, Xuebang; Liu, C. S.; Fang, Q. F.; Chen, J. L.; Luo, G.-N.

    2017-08-01

    The formation of transmutation solute-rich precipitates has been reported to seriously degrade the mechanical properties of tungsten in a fusion environment. However, the underlying mechanisms controlling the formation of the precipitates are still unknown. In this study, first-principles calculations are therefore performed to systemically determine the stable structures and binding energies of solute clusters in tungsten consisting of tantalum, rhenium and osmium atoms as well as irradiation-induced vacancies. These clusters are known to act as precursors for the formation of precipitates. We find that osmium can easily segregate to form clusters even in defect-free tungsten alloys, whereas extremely high tantalum and rhenium concentrations are required for the formation of clusters. Vacancies greatly facilitate the clustering of rhenium and osmium, while tantalum is an exception. The binding energies of vacancy-osmium clusters are found to be much higher than those of vacancy-tantalum and vacancy-rhenium clusters. Osmium is observed to strongly promote the formation of vacancy-rhenium clusters, while tantalum can suppress the formation of vacancy-rhenium and vacancy-osmium clusters. The local strain and electronic structure are analyzed to reveal the underlying mechanisms governing the cluster formation. Employing the law of mass action, we predict the evolution of the relative concentration of vacancy-rhenium clusters. This work presents a microscopic picture describing the nucleation and growth of solute clusters in tungsten alloys in a fusion reactor environment, and thereby explains recent experimental phenomena.

  11. Horizontal transfer of a large and highly toxic secondary metabolic gene cluster between fungi.

    PubMed

    Slot, Jason C; Rokas, Antonis

    2011-01-25

    Genes involved in intermediary and secondary metabolism in fungi are frequently physically linked or clustered. For example, in Aspergillus nidulans the entire pathway for the production of sterigmatocystin (ST), a highly toxic secondary metabolite and a precursor to the aflatoxins (AF), is located in a ∼54 kb, 23 gene cluster. We discovered that a complete ST gene cluster in Podospora anserina was horizontally transferred from Aspergillus. Phylogenetic analysis shows that most Podospora cluster genes are adjacent to or nested within Aspergillus cluster genes, although the two genera belong to different taxonomic classes. Furthermore, the Podospora cluster is highly conserved in content, sequence, and microsynteny with the Aspergillus ST/AF clusters and its intergenic regions contain 14 putative binding sites for AflR, the transcription factor required for activation of the ST/AF biosynthetic genes. Examination of ∼52,000 Podospora expressed sequence tags identified transcripts for 14 genes in the cluster, with several expressed at multiple life cycle stages. The presence of putative AflR-binding sites and the expression evidence for several cluster genes, coupled with the recent independent discovery of ST production in Podospora [1], suggest that this HGT event probably resulted in a functional cluster. Given the abundance of metabolic gene clusters in fungi, our finding that one of the largest known metabolic gene clusters moved intact between species suggests that such transfers might have significantly contributed to fungal metabolic diversity. PAPERFLICK:

  12. Optical binding between dielectric nanowires (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hanna, Simon; Simpson, Stephen H.

    2016-09-01

    Optical binding occurs when micron-sized particles interact through the exchange of scattered photons. It has been observed both in systems of colloidal dielectric particles and between metallic nanoparticles, and can result in the formation of clusters and coupled dynamical behaviour. Optical binding between spherical particles has been studied in some detail, but little work has appeared in the literature to describe binding effects in lower symmetry systems. In the present paper we discuss recent theoretical work and computer simulations of optical binding effects operating between dielectric nanowires in counter propagating beams. The reduction in symmetry from simple spheres introduces new opportunities for binding, including different types of orientational ordering and anisotropies in the spatial arrangements that are possible for the bound particles. Various ordered configurations are possible, including ladder-like structures and oriented lattices. The stability of these structures to thermal perturbations will be discussed. Asymmetric arrangements of the nanowires are also possible, as a consequence of interactions between the nanowires and the underlying counter-propagating laser field. These configurations lead to a diversity of non-conservative effects, including uniform translation in linearly polarised beams and synchronous rotations in circularly polarised beams, suggesting potential applications of such bound structures in micro-machines.

  13. Document clustering methods, document cluster label disambiguation methods, document clustering apparatuses, and articles of manufacture

    DOEpatents

    Sanfilippo, Antonio; Calapristi, Augustin J.; Crow, Vernon L.; Hetzler, Elizabeth G.; Turner, Alan E.

    2009-12-22

    Document clustering methods, document cluster label disambiguation methods, document clustering apparatuses, and articles of manufacture are described. In one aspect, a document clustering method includes providing a document set comprising a plurality of documents, providing a cluster comprising a subset of the documents of the document set, using a plurality of terms of the documents, providing a cluster label indicative of subject matter content of the documents of the cluster, wherein the cluster label comprises a plurality of word senses, and selecting one of the word senses of the cluster label.

  14. Isospin breaking from diquark clustering

    NASA Astrophysics Data System (ADS)

    Gibbs, W. R.; Dedonder, Jean-Pierre

    2017-09-01

    Background: Although SU(2) isospin symmetry is generally assumed in the basic theory of the strong interaction, a number of significant violations have been observed in scattering and bound states of nucleons. Many of these violations can be attributed to the electromagnetic interaction but the question of how much of the violation is due to it remains open. Purpose: To establish the connection between diquark clustering in the two-nucleon system and isospin breaking from the Coulomb interaction between the members of diquark pairs. Method: A schematic model based on clustering of quarks in the interior of the confinement region of the two-nucleon system is introduced and evaluated. In this model the Coulomb interaction is the source of all isospin breaking. It draws on a picture of the quark density based on the diquark-quark model of hadron structure which has been investigated by a number of groups. Results: The model produces three isospin breaking potentials connecting the unbroken value of the low-energy scattering amplitude to those of the p p , n n , and n p singlet channels. A simple test of the potentials in the three-nucleon energy difference problem yields results in agreement with the known binding energy difference. Conclusion: The illustrative model suggests that the breaking seen in the low-energy nucleon-nucleon (NN) interaction may be understood in terms of the Coulomb force between members of diquark clusters. It allows the prediction of the charge symmetry breaking interaction and the n n scattering length from the well measured n p singlet scattering length. Values of the n n scattering length around -18 fm are favored. Since the model is based on the quark picture, it can be easily extended, in the SU(3) limit, to calculate isospin breaking in the strange sector in the corresponding channels. A natural consequence of isospin breaking from diquark clustering is that the breaking in the strange sector, as measured by the separation energy

  15. Small Al clusters on the Cu(111) surface: Atomic relaxation and vibrational properties

    NASA Astrophysics Data System (ADS)

    Rusina, G. G.; Borisova, S. D.; Chulkov, E. V.

    2010-11-01

    The relaxation and vibrational properties of both Al clusters and the (111) surface of a copper sub-strate were studied using the interatomic interaction potentials obtained in a tight-binding approximation. The presence of small aluminum clusters led to modification of the vibrational states of the substrate, a shift of the Rayleigh mode, and excitation of new Z-polarized modes. Hybridized modes localized on the cluster adatoms and the neighboring atoms of the substrate were found in the phonon spectrum. The localized dipole-active modes of the cluster and their strong hybridization with vibrations of the substrate points to desorption stability of the tri- and heptaatomic clusters.

  16. Cluster-cluster correlations and constraints on the correlation hierarchy

    NASA Technical Reports Server (NTRS)

    Hamilton, A. J. S.; Gott, J. R., III

    1988-01-01

    The hypothesis that galaxies cluster around clusters at least as strongly as they cluster around galaxies imposes constraints on the hierarchy of correlation amplitudes in hierachical clustering models. The distributions which saturate these constraints are the Rayleigh-Levy random walk fractals proposed by Mandelbrot; for these fractal distributions cluster-cluster correlations are all identically equal to galaxy-galaxy correlations. If correlation amplitudes exceed the constraints, as is observed, then cluster-cluster correlations must exceed galaxy-galaxy correlations, as is observed.

  17. Evolution Properties of Clusters and AXAF Contributions to understanding Clusters

    NASA Technical Reports Server (NTRS)

    Jones, Christine

    1998-01-01

    Our ROSAT survey for distant clusters of galaxies contains the largest solid angle of all ROSAT pointed surveying and thus has sufficient area to test the previously reported cluster evolution. We find significant negative cluster evolution, i.e,, at high redshifts there are fewer luminous clusters than at present. We compare optical cluster properties for the most distant clusters in the ROSAT survey with those measured for nearby clusters. We also present AXAF capabilities and show how AXAF will significantly extend our understanding of cluster properties and their cosmological evolution.

  18. Cluster-shell competition in light nuclei

    SciTech Connect

    Itagaki, N.; Aoyama, S.; Okabe, S.; Ikeda, K.

    2004-11-01

    We demonstrate whether the cluster structure dissolves or remains when the shell-model-like model space is introduced in addition to the cluster model space in light nuclei. Although the binding energies of {sup 8}Be, {sup 10}Be, and {sup 10}B become larger by about 1-2 MeV by adding shell-model-like basis states to the {alpha}+{alpha}+N+N+{center_dot}{center_dot}{center_dot} basis states, the {alpha}-{alpha} structure is a dominant configuration of the ground states. However, {alpha}-breaking wave functions strongly mix in {sup 12}C, and the decrease of the energy from the 3{alpha} configuration by about 6 MeV is a clue to resolving a long-standing problem of the binding energies of {sup 12}C and {sup 16}O. The improved version of antisymmetrized molecular dynamics (AMD), AMD superposition of selected snapshots (AMD triple-S), is used to show the cluster-shell competition of these nuclei.

  19. Nuclear Star Clusters

    NASA Astrophysics Data System (ADS)

    Neumayer, Nadine

    2017-03-01

    The centers of galaxies host two distinct, compact components: massive black holes and nuclear star clusters. Nuclear star clusters are the densest stellar systems in the universe, with masses of ~ 107M⊙ and sizes of ~ 5pc. They are almost ubiquitous at the centres of nearby galaxies with masses similar to, or lower than the Milky Way. Their occurrence both in spirals and dwarf elliptical galaxies appears to be a strong function of total galaxy light or mass. Nucleation fractions are up to 100% for total galaxy magnitudes of M B = -19mag or total galaxy luminosities of about L B = 1010 L ⊙ and falling nucleation fractions for both smaller and higher galaxy masses. Although nuclear star clusters are so common, their formation mechanisms are still under debate. The two main formation scenarios proposed are the infall and subsequent merging of star clusters and the in-situ formation of stars at the center of a galaxy. Here, I review the state-of-the-art of nuclear star cluster observations concerning their structure, stellar populations and kinematics. These observations are used to constrain the proposed formation scenarios for nuclear star clusters. Constraints from observations show, that likely both cluster infall and in-situ star formation are at work. The relative importance of these two mechanisms is still subject of investigation.

  20. Studies in clustering theory

    NASA Astrophysics Data System (ADS)

    Stell, George

    In recent years the properties of percolation models have been studied intensively. The purpose of our project was to develop a general theory of percolation and clustering between particles of arbitrary size and shape, with arbitrary correlations between them. The goal of such a theory includes the treatment of continuum percolation as well as a novel treatment of lattice percolation. We made substantial progress toward this goal. The quantities basic to a description of clustering, the mean cluster size, mean number of clusters, etc., were developed. Concise formulas were given for the terms in such series, and proved, at least for sufficiently low densities, that the series are absolutely convergent. These series can now be used to construct Pade approximants that will allow one to probe the percolation transition. A scaled-particle theory of percolation was developed which gives analytic approximants for the mean number of clusters in a large class of two and three dimensional percolation models. Although this quantity is essential in many applications, e.g., explaining colligative properties, and interpreting low-angle light-scattering data, no systematic studies of it have been done before this work. Recently carried out detailed computer simulations show that the mean number of clusters is given to high accuracy by several of there approximations. Extensions of this work will allow calculation of the complete cluster size distribution.

  1. Allodynia in Cluster Headache.

    PubMed

    Wilbrink, Leopoldine A; Louter, Mark A; Teernstra, Onno Pm; van Zwet, Erik W; Huygen, Frank Jpm; Haan, Joost; Ferrari, Michel D; Terwindt, Gisela M

    2017-03-04

    Cutaneous allodynia is an established marker for central sensitization in migraine. There is debate whether cutaneous allodynia may also occur in cluster headache, another episodic headache disorder. Here we examined the presence and severity of allodynia in a large well-defined nation-wide population of people with cluster headache.Using validated questionnaires we assessed, cross-sectionally, ictal allodynia and comorbid depression and migraine in the nation-wide "Leiden University Cluster headache neuro-Analysis" (LUCA) study. Participants with cluster headache were diagnosed according to the International Classification of Headache Disorders criteria. Multivariate regression models were used, with correction for demographic factors and cluster headache subtype (chronic vs. episodic; recent attacks < 1 month vs. no recent attacks).In total 606/798 (75.9%) participants with cluster headache responded of whom 218/606 (36%) had allodynia during attacks. Female gender (OR 2.05, 95% CI 1.28-3.29), low age at onset (OR 0.98, 95% CI 0.96- 0.99), lifetime depression (OR 1.63; 95% CI 1.06-2.50), comorbid migraine (OR 1.96; 95% CI 1.02-3.79), and having recent attacks (OR 1.80; 95% CI 1.13-2.86), but not duration of attacks and chronic cluster headache, were independent risk factors for allodynia.The high prevalence of cutaneous allodynia with similar risk factors for allodynia as found for migraine suggests that central sensitization, like in migraine, also occurs in cluster headache. In clinical practice, awareness that people with cluster headache may suffer from allodynia can in the future be an important feature in treatment options.

  2. Binary Galaxies in Clusters

    NASA Astrophysics Data System (ADS)

    Ip, Peter Shun Sang

    1994-01-01

    CCD images of the binary-rich clusters of galaxies A373, A408, A667, A890, and A1250 taken at the Canada-France-Hawaii telescope show that about half the binary galaxies' are actually star-galaxy or star-star pairs. These clusters are not binary-rich. N-body simulations are used to study the effect of static cluster potentials on binary and single galaxies. The softening procedure is discussed in detail. Since Plummer softening is not self-consistent, and since the force laws for various other density models are similar to each other, uniform-density softening is used. The choice of the theoretical galaxy model in terms of the potential at various locations. A fixed cluster potential cannot stabilize binary galaxies against merger, but can disrupt even quite tightly bound binaries. A moderately good predictor of whether a binary merges or disrupts is the mean torque over a quarter of the initial binary period. But the dynamics of the situation is quite complicated, and depends on an interplay between the motion of the binary through the cluster and the absorption of orbital energy by the galaxies. There is also a substantial amount of mass loss. Simulations of single galaxies in cluster show that this mass loss is due mainly to the cluster potential, and not to an interplay between the merging binary and the cluster. This mass loss is driven partially by virial equilibrium responding to the initial tidal truncation by the cluster. Besides verifying some general results of mass loss from satellite systems in the tidal field of larger bodies, it was found that the galaxy loses mass at an exponential rate.

  3. Melanin-binding radiopharmaceuticals

    SciTech Connect

    Packer, S; Fairchild, R G; Watts, K P; Greenberg, D; Hannon, S J

    1980-01-01

    The scope of this paper is limited to an analysis of the factors that are important to the relationship of radiopharmaceuticals to melanin. While the authors do not attempt to deal with differences between melanin-binding vs. melanoma-binding, a notable variance is assumed. (PSB)

  4. Predicting Ca(2+)-binding sites in proteins.

    PubMed

    Nayal, M; Di Cera, E

    1994-01-18

    The coordination shell of Ca2+ ions in proteins contains almost exclusively oxygen atoms supported by an outer shell of carbon atoms. The bond-strength contribution of each ligating oxygen in the inner shell can be evaluated by using an empirical expression successfully applied in the analysis of crystals of metal oxides. The sum of such contributions closely approximates the valence of the bound cation. When a protein is embedded in a very fine grid of points and an algorithm is used to calculate the valence of each point representing a potential Ca(2+)-binding site, a typical distribution of valence values peaked around 0.4 is obtained. In 32 documented Ca(2+)-binding proteins, containing a total of 62 Ca(2+)-binding sites, a very small fraction of points in the distribution has a valence close to that of Ca2+. Only 0.06% of the points have a valence > or = 1.4. These points share the remarkable tendency to cluster around documented Ca2+ ions. A high enough value of the valence is both necessary (58 out of 62 Ca(2+)-binding sites have a valence > or = 1.4) and sufficient (87% of the grid points with a valence > or = 1.4 are within 1.0 A from a documented Ca2+ ion) to predict the location of bound Ca2+ ions. The algorithm can also be used for the analysis of other cations and predicts the location of Mg(2+)- and Na(+)-binding sites in a number of proteins. The valence is, therefore, a tool of pinpoint accuracy for locating cation-binding sites, which can also be exploited in engineering high-affinity binding sites and characterizing the linkage between structural components and functional energetics for molecular recognition of metal ions by proteins.

  5. Atomic cluster collisions

    NASA Astrophysics Data System (ADS)

    Korol, Andrey V.; Solov'yov, Andrey

    2013-01-01

    Atomic cluster collisions are a field of rapidly emerging research interest by both experimentalists and theorists. The international symposium on atomic cluster collisions (ISSAC) is the premier forum to present cutting-edge research in this field. It was established in 2003 and the most recent conference was held in Berlin, Germany in July of 2011. This Topical Issue presents original research results from some of the participants, who attended this conference. This issues specifically focuses on two research areas, namely Clusters and Fullerenes in External Fields and Nanoscale Insights in Radiation Biodamage.

  6. H-cluster stars

    NASA Astrophysics Data System (ADS)

    Lai, X. Y.; Gao, C. Y.; Xu, R. X.

    2013-06-01

    The study of dense matter at ultrahigh density has a very long history, which is meaningful for us to understand not only cosmic events in extreme circumstances but also fundamental laws of physics. It is well known that the state of cold matter at supranuclear density depends on the non-perturbative nature of quantum chromodynamics (QCD) and is essential for modelling pulsars. A so-called H-cluster matter is proposed in this paper as the nature of dense matter in reality. In compact stars at only a few nuclear densities but low temperature, quarks could be interacting strongly with each other there. That might render quarks grouped in clusters, although the hypothetical quark clusters in cold dense matter have not been confirmed due to the lack of both theoretical and experimental evidence. Motivated by recent lattice QCD simulations of the H-dibaryons (with structure uuddss), we therefore consider here a possible kind of quark clusters, H-clusters, that could emerge inside compact stars during their initial cooling as the dominant components inside (the degree of freedom could then be H-clusters there). Taking into account the in-medium stiffening effect, we find that at baryon densities of compact stars H-cluster matter could be more stable than nuclear matter. We also find that for the H-cluster matter with lattice structure, the equation of state could be so stiff that it would seem to be `superluminal' in the most dense region. However, the real sound speed for H-cluster matter is in fact difficult to calculate, so at this stage we do not put constraints on our model from the usual requirement of causality. We study the stars composed of H-clusters, i.e. H-cluster stars, and derive the dependence of their maximum mass on the in-medium stiffening effect, showing that the maximum mass could be well above 2 M⊙ as observed and that the resultant mass-radius relation fits the measurement of the rapid burster under reasonable parameters. Besides a general

  7. Dwarfs in Coma Cluster

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on image for larger poster version

    This false-color mosaic of the central region of the Coma cluster combines infrared and visible-light images to reveal thousands of faint objects (green). Follow-up observations showed that many of these objects, which appear here as faint green smudges, are dwarf galaxies belonging to the cluster. Two large elliptical galaxies, NGC 4889 and NGC 4874, dominate the cluster's center. The mosaic combines visible-light data from the Sloan Digital Sky Survey (color coded blue) with long- and short-wavelength infrared views (red and green, respectively) from NASA's Spitzer Space Telescope.

  8. Small clusters: aerosol precursors

    SciTech Connect

    Castleman, A.W. Jr.; Keesee, R.G.

    1983-01-01

    Studies of the structure, stability, electronic properties, and formation kinetics of small clusters provide information useful in furthering an understanding of nucleation processes, the formation and stability of collodial media, and the nature of surfaces. Using mass spectrometry, coupled with various high pressure ion clustering and molecular beam techniques, the details of the primary clustering steps leading to nucleation from the vapor are obtained by direct observation. This paper is devoted to a review of some recent results on these subjects obtained in the authors' laboratory.

  9. Dwarfs in Coma Cluster

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on image for larger poster version

    This false-color mosaic of the central region of the Coma cluster combines infrared and visible-light images to reveal thousands of faint objects (green). Follow-up observations showed that many of these objects, which appear here as faint green smudges, are dwarf galaxies belonging to the cluster. Two large elliptical galaxies, NGC 4889 and NGC 4874, dominate the cluster's center. The mosaic combines visible-light data from the Sloan Digital Sky Survey (color coded blue) with long- and short-wavelength infrared views (red and green, respectively) from NASA's Spitzer Space Telescope.

  10. Magnetization of ferromagnetic clusters

    SciTech Connect

    Onishi, Naoki; Bertsch, G.; Yabana, Kazuhiro

    1995-02-01

    The magnetization and deflection profiles of magnetic clusters in a Stern-Gerlach magnet are calculated for conditions under which the magnetic moment is fixed in the intrinsic frame of the cluster, and the clusters enter the magnetic field adiabatically. The predicted magnetization is monotonic in the Langevin parameter, the ratio of magnetic energy {mu}{sub 0}B to thermal energy k{sub B}T. In low field the average magnetization is 2/3 of the Langevin function. The high-field moment approaches saturation asymptotically as B{sup {minus}1/2} instead of the B{sup {minus}1} dependence in the Langevin function.

  11. Partially supervised speaker clustering.

    PubMed

    Tang, Hao; Chu, Stephen Mingyu; Hasegawa-Johnson, Mark; Huang, Thomas S

    2012-05-01

    Content-based multimedia indexing, retrieval, and processing as well as multimedia databases demand the structuring of the media content (image, audio, video, text, etc.), one significant goal being to associate the identity of the content to the individual segments of the signals. In this paper, we specifically address the problem of speaker clustering, the task of assigning every speech utterance in an audio stream to its speaker. We offer a complete treatment to the idea of partially supervised speaker clustering, which refers to the use of our prior knowledge of speakers in general to assist the unsupervised speaker clustering process. By means of an independent training data set, we encode the prior knowledge at the various stages of the speaker clustering pipeline via 1) learning a speaker-discriminative acoustic feature transformation, 2) learning a universal speaker prior model, and 3) learning a discriminative speaker subspace, or equivalently, a speaker-discriminative distance metric. We study the directional scattering property of the Gaussian mixture model (GMM) mean supervector representation of utterances in the high-dimensional space, and advocate exploiting this property by using the cosine distance metric instead of the euclidean distance metric for speaker clustering in the GMM mean supervector space. We propose to perform discriminant analysis based on the cosine distance metric, which leads to a novel distance metric learning algorithm—linear spherical discriminant analysis (LSDA). We show that the proposed LSDA formulation can be systematically solved within the elegant graph embedding general dimensionality reduction framework. Our speaker clustering experiments on the GALE database clearly indicate that 1) our speaker clustering methods based on the GMM mean supervector representation and vector-based distance metrics outperform traditional speaker clustering methods based on the “bag of acoustic features” representation and statistical

  12. Extending Beowulf Clusters

    USGS Publications Warehouse

    Steinwand, Daniel R.; Maddox, Brian; Beckmann, Tim; Hamer, George

    2003-01-01

    Beowulf clusters can provide a cost-effective way to compute numerical models and process large amounts of remote sensing image data. Usually a Beowulf cluster is designed to accomplish a specific set of processing goals, and processing is very efficient when the problem remains inside the constraints of the original design. There are cases, however, when one might wish to compute a problem that is beyond the capacity of the local Beowulf system. In these cases, spreading the problem to multiple clusters or to other machines on the network may provide a cost-effective solution.

  13. Stability and Spectra of Small 3He-4He Clusters

    NASA Astrophysics Data System (ADS)

    Navarro, J.; Fantoni, S.; Guardiola, R.; Zuker, A.

    Diffusion Monte Carlo calculations have been systematically performed to analyze the stability of small mixed 3He-4He clusters, as well as their excitation spectra. The picture that emerges is that of systems with strong shell effects whose binding and excitation energies are essentially determined by the monopole properties of an effective Hamiltonian.

  14. A Discriminative Approach for Unsupervised Clustering of DNA Sequence Motifs

    PubMed Central

    Stegmaier, Philip; Kel, Alexander; Wingender, Edgar; Borlak, Jürgen

    2013-01-01

    Algorithmic comparison of DNA sequence motifs is a problem in bioinformatics that has received increased attention during the last years. Its main applications concern characterization of potentially novel motifs and clustering of a motif collection in order to remove redundancy. Despite growing interest in motif clustering, the question which motif clusters to aim at has so far not been systematically addressed. Here we analyzed motif similarities in a comprehensive set of vertebrate transcription factor classes. For this we developed enhanced similarity scores by inclusion of the information coverage (IC) criterion, which evaluates the fraction of information an alignment covers in aligned motifs. A network-based method enabled us to identify motif clusters with high correspondence to DNA-binding domain phylogenies and prior experimental findings. Based on this analysis we derived a set of motif families representing distinct binding specificities. These motif families were used to train a classifier which was further integrated into a novel algorithm for unsupervised motif clustering. Application of the new algorithm demonstrated its superiority to previously published methods and its ability to reproduce entrained motif families. As a result, our work proposes a probabilistic approach to decide whether two motifs represent common or distinct binding specificities. PMID:23555204

  15. Directed Assembly of Hierarchically Ordered Clusters from Anisotropic Microparticles

    NASA Astrophysics Data System (ADS)

    Han, Koohee; Bharti, Bhuvnesh; Shields, C. Wyatt, IV; Lopez, Gabriel P.; Velev, Orlin D.

    The directed assembly of colloidal particles with specific connectivity, symmetry, and directional response requires controlled interactions and means of programmable binding force. We will show how patchy microparticles can be hierarchically assembled into ordered clusters, resulting from directional interactions between metal-coated facets. First, we introduce lipid mediated capillary bridging as a new class of binding force for directed assembly of metallo-dielectric patchy microspheres. Iron oxide surface patches on latex microspheres were selectively wetted with liquid lipids, guiding the particle assembly into well-defined 2D and 3D clusters. The temperature driven fluid-to-gel phase transition of the fatty acids acts as a thermal switch for cluster assembly and disassembly. Secondly, we used external fields to bind patchy microcubes based on their polarization configuration and interparticle interaction. We present assembled clusters of cobalt-coated patchy microcubes that can be dynamically reconfigured using external magnetic field. The residual polarization of ferromagnetic cobalt patches allows for preserving the assembled sequence even in the absence of the field and drives dynamic reconfiguration of assembled clusters. NSF Grant #DMR-1121107.

  16. Different gene regulation strategies revealed by analysis of binding motifs.

    PubMed

    Wunderlich, Zeba; Mirny, Leonid A

    2009-10-01

    Coordinated regulation of gene expression relies on transcription factors (TFs) binding to specific DNA sites. Our large-scale information-theoretical analysis of > 950 TF-binding motifs demonstrates that prokaryotes and eukaryotes use strikingly different strategies to target TFs to specific genome locations. Although bacterial TFs can recognize a specific DNA site in the genomic background, eukaryotic TFs exhibit widespread, nonfunctional binding and require clustering of sites to achieve specificity. We find support for this mechanism in a range of experimental studies and in our evolutionary analysis of DNA-binding domains. Our systematic characterization of binding motifs provides a quantitative assessment of the differences in transcription regulation in prokaryotes and eukaryotes.

  17. Temporal Clustering and Sequencing in Short-Term Memory and Episodic Memory

    ERIC Educational Resources Information Center

    Farrell, Simon

    2012-01-01

    A model of short-term memory and episodic memory is presented, with the core assumptions that (a) people parse their continuous experience into episodic clusters and (b) items are clustered together in memory as episodes by binding information within an episode to a common temporal context. Along with the additional assumption that information…

  18. Temporal Clustering and Sequencing in Short-Term Memory and Episodic Memory

    ERIC Educational Resources Information Center

    Farrell, Simon

    2012-01-01

    A model of short-term memory and episodic memory is presented, with the core assumptions that (a) people parse their continuous experience into episodic clusters and (b) items are clustered together in memory as episodes by binding information within an episode to a common temporal context. Along with the additional assumption that information…

  19. Organising Atoms, Clusters and Proteins on Surfaces

    NASA Astrophysics Data System (ADS)

    Palmer, Richard E.

    2008-10-01

    This talk will discuss new developments in the creation of nanoscale surface features and their applications in biomedicine. Electron-surface interactions and plasma methods play a crucial role in both the production and analysis of these ``atomic architectures.'' At the extreme limit, electron injection from the tip of a scanning tunnelling microscope (STM) enables bond-selective manipulation of individual polyatomic molecules [1]. On a more practical level, the controlled deposition of size-selected clusters [2], generated by magnetron sputtering and gas condensation followed by mass selection, represents a surprisingly efficient route to the fabrication of surface features of size 1-10 nm, the size scale of biological molecules such as proteins. STM and AFM measurements show the clusters can act as binding sites for individual protein molecules. For example, the pinning of size-selected AuN clusters (N = 1--2000) to the (hydrophobic) graphite surface presents bindings site for sulphur atoms and thus for the cysteine residues in protein molecules. Systematic studies of different proteins [3] provide ``ground rules'' for residue-specific protein immobilisation by clusters and have led to the development of a novel biochip for protein screening by a spin-off company. The 3D atomic structure of the clusters is highly relevant to such applications. We show that measurement of the scattered electron beam intensity - specifically, the high angle annular dark field (HAADF) signal - in the scanning transmission electron microscope (STEM) allows us (a) to count the number of atoms in a cluster on the surface and (b) to determine a 3D atom-density map of the cluster when an aberration-corrected STEM is used [4]. 1. P.A. Sloan and R.E. Palmer, Nature 434 367 (2005). 2. S. Pratontep, P. Preece, C. Xirouchaki, R.E. Palmer, C.F. Sanz-Navarro, S.D. Kenny and R. Smith, Phys. Rev. Lett. 90 055503 (2003). 3. R.E. Palmer, S. Pratontep and H.-G. Boyen, Nature Materials 2 443 (2003

  20. How Clusters Work

    EPA Pesticide Factsheets

    Technology innovation clusters are geographic concentrations of interconnected companies, universities, and other organizations with a focus on environmental technology. They play a key role in addressing the nation’s pressing environmental problems.

  1. Stellar Snowflake Cluster

    NASA Image and Video Library

    2005-12-22

    Newborn stars, hidden behind thick dust, are revealed in this image of a section of the Christmas Tree cluster from NASA Spitzer Space Telescope, created in joint effort between Spitzer infrared array camera and multiband imaging photometer instrument

  2. Clustering of Emerging Flux

    NASA Technical Reports Server (NTRS)

    Ruzmaikin, A.

    1997-01-01

    Observations show that newly emerging flux tends to appear on the Solar surface at sites where there is flux already. This results in clustering of solar activity. Standard dynamo theories do not predict this effect.

  3. Infrared Coronet Cluster

    NASA Image and Video Library

    2007-09-13

    This image from NASA Spitzer Space Telescope shows young stars plus diffuse emission from dust. The Corona Australis region containing, at its heart, the Coronet cluster is one of the nearest and most active regions of ongoing star formation.

  4. Equilibrium Star Cluster Formation

    NASA Astrophysics Data System (ADS)

    Tan, Jonathan C.; Krumholz, Mark R.; McKee, Christopher F.

    2006-04-01

    We argue that rich star clusters take at least several local dynamical times to form and so are quasi-equilibrium structures during their assembly. Observations supporting this conclusion include morphologies of star-forming clumps, momentum flux of protostellar outflows from forming clusters, age spreads of stars in the Orion Nebula cluster (ONC) and other clusters, and the age of a dynamical ejection event from the ONC. We show that these long formation timescales are consistent with the expected star formation rate in turbulent gas, as recently evaluated by Krumholz & McKee. Finally, we discuss the implications of these timescales for star formation efficiencies, the disruption of gas by stellar feedback, mass segregation of stars, and the longevity of turbulence in molecular clumps.

  5. [Treatment of cluster headache].

    PubMed

    Fabre, N

    2005-07-01

    Remarkable therapeutic improvements have come forward recently for trigemino-autonomic cephalalgias. Attack treatment in cluster headache is based on sumatriptan and oxygen. Non-vasoconstrictive treatments are opening a new post-triptan era but are not yet applicable. Prophylactic treatment of cluster headache is based on verapamil and lithium. The efficacy of anti-epileptic drugs in cluster headache remains to be demonstrated. Surgical treatment aimed at the parasympathetic pathways and at the trigeminal nerve demonstrates a high rate of recurrence and adverse events and questions about the relevance of a "peripheral" target in cluster headache. The efficacy of continuous hypothalamic stimulation in patients with intractable headache constitutes a breakthrough, but must be demonstrated at a larger scale and the benefice/risk ratio must be carefully evaluated. Indomethacin still remains the gold standard in paroxysmal hemicrania treatment. Until recently SUNCT was considered an intractable condition. However there are some reports of complete relief with lamotrigine, topiramate and gabapentin.

  6. Mantis BT Cluster Support

    SciTech Connect

    Riot, V.

    2009-06-05

    The software is a modidication to the Mantis BT V1.5 open source application provided by the mantis BT group to support cluster web servers. It also provides various cosmetic modifications used a LLNL.

  7. Computer simulations of cesium-water clusters: Do ion-water clusters form gas-phase clathrates?

    NASA Astrophysics Data System (ADS)

    Smith, David E.; Dang, Liem X.

    1994-11-01

    The structure and energetics of cesium ion-water clusters have been investigated using classical molecular dynamics computer simulations and a polarizable interaction model. Recent experiments by Selinger and Castleman [J. Phys. Chem. 95, 8442 (1991)] indicate that the mass-spectral distributions for these clusters exhibit ``magic number'' oscillations at temperatures below approximately 160 K. The observed behavior of this and related charged clusters is commonly attributed to the formation of clathratelike cage structures around a central ionic species. The relationship between the structural and energetic properties of cesium ion-water clusters is reported here as a function of temperature for clusters with between 18 and 22 water molecules. The clusters exhibit solidlike dynamical behavior at kinetic temperatures below about 170 K, and liquidlike behavior at higher temperatures. A thorough analysis of energy minimized (0 K) structures indicates that the most stable clusters consist of water cages surrounding the cesium ion. These cages are related to the proposed clathratelike structures but contain additional 4- and 6-membered water rings and fewer 5-membered rings. The calculated global energy minima exhibit an energetic alternation with cluster size that is consistent with the experimentally observed mass-spectral distributions. In contrast, in the liquidlike regime there are only minor variations in calculated structural and dynamical properties as a function of cluster size. In addition, there is no statistically significant size dependence for the cluster binding energies in the liquidlike regime that might be correlated with experimental data. These results suggest that magic number stability in ion-water clusters may occur only at ``low'' energies in the solidlike cluster regime.

  8. Trinuclear Metal Clusters in Catalysis by Terpenoid Synthases

    PubMed Central

    Aaron, Julie A.; Christianson, David. W.

    2011-01-01

    Terpenoid synthases are ubiquitous enzymes that catalyze the formation of structurally and stereochemically diverse isoprenoid natural products. Many isoprenoid coupling enzymes and terpenoid cyclases from bacteria, fungi, protists, plants, and animals share the class I terpenoid synthase fold. Despite generally low amino acid sequence identity among these examples, class I terpenoid synthases contain conserved metal binding motifs that coordinate to a trinuclear metal cluster. This cluster not only serves to bind and orient the flexible isoprenoid substrate in the precatalytic Michaelis complex, but it also triggers the departure of the diphosphate leaving group to generate a carbocation that initiates catalysis. Additional conserved hydrogen bond donors assist the metal cluster in this function. Crystal structure analysis reveals that the constellation of three metal ions required for terpenoid synthase catalysis is generally identical among all class I terpenoid synthases of known structure. PMID:21562622

  9. Wild Duck Cluster

    NASA Technical Reports Server (NTRS)

    2005-01-01

    On April 7, 2005, the Deep Impact spacecraft's Impactor Target Sensor camera recorded this image of M11, the Wild Duck cluster, a galactic open cluster located 6 thousand light years away. The camera is located on the impactor spacecraft, which will image comet Tempel 1 beginning 22 hours before impact until about 2 seconds before impact. Impact with comet Tempel 1 is planned for July 4, 2005.

  10. Globular clusters with Gaia

    NASA Astrophysics Data System (ADS)

    Pancino, E.; Bellazzini, M.; Giuffrida, G.; Marinoni, S.

    2017-01-01

    The treatment of crowded fields in Gaia data will only be a reality in a few years from now. In particular, for globular clusters, only the end-of-mission data (public in 2022-2023) will have the necessary full crowding treatment and will reach sufficient quality for the faintest stars. As a consequence, the work on the deblending and decontamination pipelines is still ongoing. We describe the present status of the pipelines for different Gaia instruments, and we model the end-of-mission crowding errors on the basis of available information. We then apply the nominal post-launch Gaia performances, appropriately worsened by the estimated crowding errors, to a set of 18 simulated globular clusters with different concentration, distance, and field contamination. We conclude that there will be 103-104 stars with astrometric performances virtually untouched by crowding (contaminated by <1 mmag) in the majoritiy of clusters. The most limiting factor will be field crowding, not cluster crowding: the most contaminated clusters will only contain 10-100 clean stars. We also conclude that: (i) the systemic proper motions and parallaxes will be determined to 1% or better up to ≃15 kpc, and the nearby clusters will have radial velocities to a few km s-1 ; (ii) internal kinematics will be of unprecendented quality, cluster masses will be determined to ≃10% up to 15 kpc and beyond, and it will be possible to identify differences of a few km s-1 or less in the kinematics (if any) of cluster sub-populations up to 10 kpc and beyond; (iii) the brightest stars (V≃17 mag) will have space-quality, wide-field photometry (mmag errors), and all Gaia photometry will have 1-3% errors on the absolute photometric calibration.

  11. Wild Duck Cluster

    NASA Technical Reports Server (NTRS)

    2005-01-01

    On April 7, 2005, the Deep Impact spacecraft's Impactor Target Sensor camera recorded this image of M11, the Wild Duck cluster, a galactic open cluster located 6 thousand light years away. The camera is located on the impactor spacecraft, which will image comet Tempel 1 beginning 22 hours before impact until about 2 seconds before impact. Impact with comet Tempel 1 is planned for July 4, 2005.

  12. Chemistry within Molecular Clusters

    DTIC Science & Technology

    1992-05-29

    molecule reaction of the fragment cations with a neutral DME within the bulk cluster, to form a trimethyloxonium cation intermediate. Similar ion...trimethyloxonium intermediate as the common intermediate for the observed products. We therefore speculate that the DME cluster reactions leading to the same...1982, 20, 51, Ibid. Kinetics of Ion-Molecule Reactions ; Ausloos, P., Ed.; Plenum, New York, 1979; p. 69. (18) Ono, Y.; Ng, C. Y. J. Am. Chem. Soc. 1982

  13. Clustered frequency comb.

    PubMed

    Matsko, Andrey B; Savchenkov, Anatoliy A; Huang, Shu-Wei; Maleki, Lute

    2016-11-01

    We show theoretically that it is feasible to generate a spectrally broad Kerr frequency comb consisting of several spectral clusters phase matched due to interplay among second- and higher-order group velocity dispersion contributions. We validate the theoretical analysis experimentally by driving a magnesium fluoride resonator, characterized with 110 GHz free spectral range, with a continuous wave light at 1.55 μm and observing two comb clusters separated by nearly two-thirds of an octave.

  14. Parallel Wolff Cluster Algorithms

    NASA Astrophysics Data System (ADS)

    Bae, S.; Ko, S. H.; Coddington, P. D.

    The Wolff single-cluster algorithm is the most efficient method known for Monte Carlo simulation of many spin models. Due to the irregular size, shape and position of the Wolff clusters, this method does not easily lend itself to efficient parallel implementation, so that simulations using this method have thus far been confined to workstations and vector machines. Here we present two parallel implementations of this algorithm, and show that one gives fairly good performance on a MIMD parallel computer.

  15. Globular clusters with Gaia

    NASA Astrophysics Data System (ADS)

    Pancino, E.; Bellazzini, M.; Giuffrida, G.; Marinoni, S.

    2017-05-01

    The treatment of crowded fields in Gaia data will only be a reality in a few years from now. In particular, for globular clusters, only the end-of-mission data (public in 2022-2023) will have the necessary full crowding treatment and will reach sufficient quality for the faintest stars. As a consequence, the work on the deblending and decontamination pipelines is still ongoing. We describe the present status of the pipelines for different Gaia instruments, and we model the end-of-mission crowding errors on the basis of available information. We then apply the nominal post-launch Gaia performances, appropriately worsened by the estimated crowding errors, to a set of 18 simulated globular clusters with different concentration, distance and field contamination. We conclude that there will be 103-104 stars with astrometric performances virtually untouched by crowding (contaminated by <1 mmag) in the majority of clusters. The most limiting factor will be field crowding, not cluster crowding: the most contaminated clusters will only contain 10-100 clean stars. We also conclude that (i) the systemic proper motions and parallaxes will be determined to 1 per cent or better up to ≃15 kpc, and the nearby clusters will have radial velocities to a few km s-1; (ii) internal kinematics will be of unprecedented quality, cluster masses will be determined to ≃10 per cent up to 15 kpc and beyond, and it will be possible to identify differences of a few km s-1 or less in the kinematics (if any) of cluster sub-populations up to 10 kpc and beyond; (iii) the brightest stars (V ≃ 17 mag) will have space-quality, wide-field photometry (mmag errors), and all Gaia photometry will have 1-3 per cent errors on the absolute photometric calibration.

  16. Understanding ligand effects in gold clusters using mass spectrometry

    SciTech Connect

    Johnson, Grant E.; Laskin, Julia

    2016-01-01

    This review summarizes recent research on the influence of phosphine ligands on the size, stability, and reactivity of gold clusters synthesized in solution. Sub-nanometer clusters exhibit size- and composition-dependent properties that are unique from those of larger nanoparticles. The highly tunable properties of clusters and their high surface-to-volume ratio make them promising candidates for a variety of technological applications. However, because “each-atom-counts” toward defining cluster properties it is critically important to develop robust synthesis methods to efficiently prepare clusters of predetermined size. For decades phosphines have been known to direct the size-selected synthesis of gold clusters. Despite the preparation of numerous species it is still not understood how different functional groups at phosphine centers affect the size and properties of gold clusters. Using electrospray ionization mass spectrometry (ESI-MS) it is possible to characterize the effect of ligand substitution on the distribution of clusters formed in solution at defined reaction conditions. In addition, ligand exchange reactions on preformed clusters may be monitored using ESI-MS. Collision induced dissociation (CID) may also be employed to obtain qualitative insight into the fragmentation of mixed ligand clusters and the relative binding energies of differently substituted phosphines. Quantitative ligand binding energies and cluster stability may be determined employing surface induced dissociation (SID) in a custom-built Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS). Rice-Ramsperger-Kassel-Marcus (RRKM) based modeling of the SID data allows dissociation energies and entropy values to be extracted that may be compared with the results of high-level theoretical calculations. The charge reduction and reactivity of atomically precise gold clusters, including partially ligated species generated in the gas-phase by in source CID, on well

  17. Understanding ligand effects in gold clusters using mass spectrometry.

    PubMed

    Johnson, Grant E; Laskin, Julia

    2016-06-21

    This review summarizes recent research on the influence of phosphine ligands on the size, stability, and reactivity of gold clusters synthesized in solution. Sub-nanometer clusters exhibit size- and composition-dependent properties that are unique from those of larger nanoparticles. The highly tunable properties of clusters and their high surface-to-volume ratio make them promising candidates for a variety of technological applications. However, because "each-atom-counts" toward defining cluster properties it is critically important to develop robust synthesis methods to efficiently prepare clusters of predetermined size. For decades phosphines have been known to direct the size-selected synthesis of gold clusters. Despite the preparation of numerous species it is still not understood how different functional groups at phosphine centers affect