Generalized fuzzy C-means clustering algorithm with improved fuzzy partitions.
Zhu, Lin; Chung, Fu-Lai; Wang, Shitong
2009-06-01
The fuzziness index m has important influence on the clustering result of fuzzy clustering algorithms, and it should not be forced to fix at the usual value m = 2. In view of its distinctive features in applications and its limitation in having m = 2 only, a recent advance of fuzzy clustering called fuzzy c-means clustering with improved fuzzy partitions (IFP-FCM) is extended in this paper, and a generalized algorithm called GIFP-FCM for more effective clustering is proposed. By introducing a novel membership constraint function, a new objective function is constructed, and furthermore, GIFP-FCM clustering is derived. Meanwhile, from the viewpoints of L(p) norm distance measure and competitive learning, the robustness and convergence of the proposed algorithm are analyzed. Furthermore, the classical fuzzy c-means algorithm (FCM) and IFP-FCM can be taken as two special cases of the proposed algorithm. Several experimental results including its application to noisy image texture segmentation are presented to demonstrate its average advantage over FCM and IFP-FCM in both clustering and robustness capabilities.
m-BIRCH: an online clustering approach for computer vision applications
NASA Astrophysics Data System (ADS)
Madan, Siddharth K.; Dana, Kristin J.
2015-03-01
We adapt a classic online clustering algorithm called Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH), to incrementally cluster large datasets of features commonly used in multimedia and computer vision. We call the adapted version modified-BIRCH (m-BIRCH). The algorithm uses only a fraction of the dataset memory to perform clustering, and updates the clustering decisions when new data comes in. Modifications made in m-BIRCH enable data driven parameter selection and effectively handle varying density regions in the feature space. Data driven parameter selection automatically controls the level of coarseness of the data summarization. Effective handling of varying density regions is necessary to well represent the different density regions in data summarization. We use m-BIRCH to cluster 840K color SIFT descriptors, and 60K outlier corrupted grayscale patches. We use the algorithm to cluster datasets consisting of challenging non-convex clustering patterns. Our implementation of the algorithm provides an useful clustering tool and is made publicly available.
Ckmeans.1d.dp: Optimal k-means Clustering in One Dimension by Dynamic Programming.
Wang, Haizhou; Song, Mingzhou
2011-12-01
The heuristic k -means algorithm, widely used for cluster analysis, does not guarantee optimality. We developed a dynamic programming algorithm for optimal one-dimensional clustering. The algorithm is implemented as an R package called Ckmeans.1d.dp . We demonstrate its advantage in optimality and runtime over the standard iterative k -means algorithm.
Learner Typologies Development Using OIndex and Data Mining Based Clustering Techniques
ERIC Educational Resources Information Center
Luan, Jing
2004-01-01
This explorative data mining project used distance based clustering algorithm to study 3 indicators, called OIndex, of student behavioral data and stabilized at a 6-cluster scenario following an exhaustive explorative study of 4, 5, and 6 cluster scenarios produced by K-Means and TwoStep algorithms. Using principles in data mining, the study…
Multi-Optimisation Consensus Clustering
NASA Astrophysics Data System (ADS)
Li, Jian; Swift, Stephen; Liu, Xiaohui
Ensemble Clustering has been developed to provide an alternative way of obtaining more stable and accurate clustering results. It aims to avoid the biases of individual clustering algorithms. However, it is still a challenge to develop an efficient and robust method for Ensemble Clustering. Based on an existing ensemble clustering method, Consensus Clustering (CC), this paper introduces an advanced Consensus Clustering algorithm called Multi-Optimisation Consensus Clustering (MOCC), which utilises an optimised Agreement Separation criterion and a Multi-Optimisation framework to improve the performance of CC. Fifteen different data sets are used for evaluating the performance of MOCC. The results reveal that MOCC can generate more accurate clustering results than the original CC algorithm.
A scalable and practical one-pass clustering algorithm for recommender system
NASA Astrophysics Data System (ADS)
Khalid, Asra; Ghazanfar, Mustansar Ali; Azam, Awais; Alahmari, Saad Ali
2015-12-01
KMeans clustering-based recommendation algorithms have been proposed claiming to increase the scalability of recommender systems. One potential drawback of these algorithms is that they perform training offline and hence cannot accommodate the incremental updates with the arrival of new data, making them unsuitable for the dynamic environments. From this line of research, a new clustering algorithm called One-Pass is proposed, which is a simple, fast, and accurate. We show empirically that the proposed algorithm outperforms K-Means in terms of recommendation and training time while maintaining a good level of accuracy.
Di Pietro, C; Di Pietro, V; Emmanuele, G; Ferro, A; Maugeri, T; Modica, E; Pigola, G; Pulvirenti, A; Purrello, M; Ragusa, M; Scalia, M; Shasha, D; Travali, S; Zimmitti, V
2003-01-01
In this paper we present a new Multiple Sequence Alignment (MSA) algorithm called AntiClusAl. The method makes use of the commonly use idea of aligning homologous sequences belonging to classes generated by some clustering algorithm, and then continue the alignment process ina bottom-up way along a suitable tree structure. The final result is then read at the root of the tree. Multiple sequence alignment in each cluster makes use of the progressive alignment with the 1-median (center) of the cluster. The 1-median of set S of sequences is the element of S which minimizes the average distance from any other sequence in S. Its exact computation requires quadratic time. The basic idea of our proposed algorithm is to make use of a simple and natural algorithmic technique based on randomized tournaments which has been successfully applied to large size search problems in general metric spaces. In particular a clustering algorithm called Antipole tree and an approximate linear 1-median computation are used. Our algorithm compared with Clustal W, a widely used tool to MSA, shows a better running time results with fully comparable alignment quality. A successful biological application showing high aminoacid conservation during evolution of Xenopus laevis SOD2 is also cited.
Swarm Intelligence in Text Document Clustering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Xiaohui; Potok, Thomas E
2008-01-01
Social animals or insects in nature often exhibit a form of emergent collective behavior. The research field that attempts to design algorithms or distributed problem-solving devices inspired by the collective behavior of social insect colonies is called Swarm Intelligence. Compared to the traditional algorithms, the swarm algorithms are usually flexible, robust, decentralized and self-organized. These characters make the swarm algorithms suitable for solving complex problems, such as document collection clustering. The major challenge of today's information society is being overwhelmed with information on any topic they are searching for. Fast and high-quality document clustering algorithms play an important role inmore » helping users to effectively navigate, summarize, and organize the overwhelmed information. In this chapter, we introduce three nature inspired swarm intelligence clustering approaches for document clustering analysis. These clustering algorithms use stochastic and heuristic principles discovered from observing bird flocks, fish schools and ant food forage.« less
Data depth based clustering analysis
Jeong, Myeong -Hun; Cai, Yaping; Sullivan, Clair J.; ...
2016-01-01
Here, this paper proposes a new algorithm for identifying patterns within data, based on data depth. Such a clustering analysis has an enormous potential to discover previously unknown insights from existing data sets. Many clustering algorithms already exist for this purpose. However, most algorithms are not affine invariant. Therefore, they must operate with different parameters after the data sets are rotated, scaled, or translated. Further, most clustering algorithms, based on Euclidean distance, can be sensitive to noises because they have no global perspective. Parameter selection also significantly affects the clustering results of each algorithm. Unlike many existing clustering algorithms, themore » proposed algorithm, called data depth based clustering analysis (DBCA), is able to detect coherent clusters after the data sets are affine transformed without changing a parameter. It is also robust to noises because using data depth can measure centrality and outlyingness of the underlying data. Further, it can generate relatively stable clusters by varying the parameter. The experimental comparison with the leading state-of-the-art alternatives demonstrates that the proposed algorithm outperforms DBSCAN and HDBSCAN in terms of affine invariance, and exceeds or matches the ro-bustness to noises of DBSCAN or HDBSCAN. The robust-ness to parameter selection is also demonstrated through the case study of clustering twitter data.« less
Bhattacharya, Anindya; De, Rajat K
2010-08-01
Distance based clustering algorithms can group genes that show similar expression values under multiple experimental conditions. They are unable to identify a group of genes that have similar pattern of variation in their expression values. Previously we developed an algorithm called divisive correlation clustering algorithm (DCCA) to tackle this situation, which is based on the concept of correlation clustering. But this algorithm may also fail for certain cases. In order to overcome these situations, we propose a new clustering algorithm, called average correlation clustering algorithm (ACCA), which is able to produce better clustering solution than that produced by some others. ACCA is able to find groups of genes having more common transcription factors and similar pattern of variation in their expression values. Moreover, ACCA is more efficient than DCCA with respect to the time of execution. Like DCCA, we use the concept of correlation clustering concept introduced by Bansal et al. ACCA uses the correlation matrix in such a way that all genes in a cluster have the highest average correlation values with the genes in that cluster. We have applied ACCA and some well-known conventional methods including DCCA to two artificial and nine gene expression datasets, and compared the performance of the algorithms. The clustering results of ACCA are found to be more significantly relevant to the biological annotations than those of the other methods. Analysis of the results show the superiority of ACCA over some others in determining a group of genes having more common transcription factors and with similar pattern of variation in their expression profiles. Availability of the software: The software has been developed using C and Visual Basic languages, and can be executed on the Microsoft Windows platforms. The software may be downloaded as a zip file from http://www.isical.ac.in/~rajat. Then it needs to be installed. Two word files (included in the zip file) need to be consulted before installation and execution of the software. Copyright 2010 Elsevier Inc. All rights reserved.
Mining Co-Location Patterns with Clustering Items from Spatial Data Sets
NASA Astrophysics Data System (ADS)
Zhou, G.; Li, Q.; Deng, G.; Yue, T.; Zhou, X.
2018-05-01
The explosive growth of spatial data and widespread use of spatial databases emphasize the need for the spatial data mining. Co-location patterns discovery is an important branch in spatial data mining. Spatial co-locations represent the subsets of features which are frequently located together in geographic space. However, the appearance of a spatial feature C is often not determined by a single spatial feature A or B but by the two spatial features A and B, that is to say where A and B appear together, C often appears. We note that this co-location pattern is different from the traditional co-location pattern. Thus, this paper presents a new concept called clustering terms, and this co-location pattern is called co-location patterns with clustering items. And the traditional algorithm cannot mine this co-location pattern, so we introduce the related concept in detail and propose a novel algorithm. This algorithm is extended by join-based approach proposed by Huang. Finally, we evaluate the performance of this algorithm.
Fong, Simon; Deb, Suash; Yang, Xin-She; Zhuang, Yan
2014-01-01
Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario.
Deb, Suash; Yang, Xin-She
2014-01-01
Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario. PMID:25202730
Reducing Earth Topography Resolution for SMAP Mission Ground Tracks Using K-Means Clustering
NASA Technical Reports Server (NTRS)
Rizvi, Farheen
2013-01-01
The K-means clustering algorithm is used to reduce Earth topography resolution for the SMAP mission ground tracks. As SMAP propagates in orbit, knowledge of the radar antenna footprints on Earth is required for the antenna misalignment calibration. Each antenna footprint contains a latitude and longitude location pair on the Earth surface. There are 400 pairs in one data set for the calibration model. It is computationally expensive to calculate corresponding Earth elevation for these data pairs. Thus, the antenna footprint resolution is reduced. Similar topographical data pairs are grouped together with the K-means clustering algorithm. The resolution is reduced to the mean of each topographical cluster called the cluster centroid. The corresponding Earth elevation for each cluster centroid is assigned to the entire group. Results show that 400 data points are reduced to 60 while still maintaining algorithm performance and computational efficiency. In this work, sensitivity analysis is also performed to show a trade-off between algorithm performance versus computational efficiency as the number of cluster centroids and algorithm iterations are increased.
Comparison and Evaluation of Clustering Algorithms for Tandem Mass Spectra.
Rieder, Vera; Schork, Karin U; Kerschke, Laura; Blank-Landeshammer, Bernhard; Sickmann, Albert; Rahnenführer, Jörg
2017-11-03
In proteomics, liquid chromatography-tandem mass spectrometry (LC-MS/MS) is established for identifying peptides and proteins. Duplicated spectra, that is, multiple spectra of the same peptide, occur both in single MS/MS runs and in large spectral libraries. Clustering tandem mass spectra is used to find consensus spectra, with manifold applications. First, it speeds up database searches, as performed for instance by Mascot. Second, it helps to identify novel peptides across species. Third, it is used for quality control to detect wrongly annotated spectra. We compare different clustering algorithms based on the cosine distance between spectra. CAST, MS-Cluster, and PRIDE Cluster are popular algorithms to cluster tandem mass spectra. We add well-known algorithms for large data sets, hierarchical clustering, DBSCAN, and connected components of a graph, as well as the new method N-Cluster. All algorithms are evaluated on real data with varied parameter settings. Cluster results are compared with each other and with peptide annotations based on validation measures such as purity. Quality control, regarding the detection of wrongly (un)annotated spectra, is discussed for exemplary resulting clusters. N-Cluster proves to be highly competitive. All clustering results benefit from the so-called DISMS2 filter that integrates additional information, for example, on precursor mass.
Localized Ambient Solidity Separation Algorithm Based Computer User Segmentation.
Sun, Xiao; Zhang, Tongda; Chai, Yueting; Liu, Yi
2015-01-01
Most of popular clustering methods typically have some strong assumptions of the dataset. For example, the k-means implicitly assumes that all clusters come from spherical Gaussian distributions which have different means but the same covariance. However, when dealing with datasets that have diverse distribution shapes or high dimensionality, these assumptions might not be valid anymore. In order to overcome this weakness, we proposed a new clustering algorithm named localized ambient solidity separation (LASS) algorithm, using a new isolation criterion called centroid distance. Compared with other density based isolation criteria, our proposed centroid distance isolation criterion addresses the problem caused by high dimensionality and varying density. The experiment on a designed two-dimensional benchmark dataset shows that our proposed LASS algorithm not only inherits the advantage of the original dissimilarity increments clustering method to separate naturally isolated clusters but also can identify the clusters which are adjacent, overlapping, and under background noise. Finally, we compared our LASS algorithm with the dissimilarity increments clustering method on a massive computer user dataset with over two million records that contains demographic and behaviors information. The results show that LASS algorithm works extremely well on this computer user dataset and can gain more knowledge from it.
Localized Ambient Solidity Separation Algorithm Based Computer User Segmentation
Sun, Xiao; Zhang, Tongda; Chai, Yueting; Liu, Yi
2015-01-01
Most of popular clustering methods typically have some strong assumptions of the dataset. For example, the k-means implicitly assumes that all clusters come from spherical Gaussian distributions which have different means but the same covariance. However, when dealing with datasets that have diverse distribution shapes or high dimensionality, these assumptions might not be valid anymore. In order to overcome this weakness, we proposed a new clustering algorithm named localized ambient solidity separation (LASS) algorithm, using a new isolation criterion called centroid distance. Compared with other density based isolation criteria, our proposed centroid distance isolation criterion addresses the problem caused by high dimensionality and varying density. The experiment on a designed two-dimensional benchmark dataset shows that our proposed LASS algorithm not only inherits the advantage of the original dissimilarity increments clustering method to separate naturally isolated clusters but also can identify the clusters which are adjacent, overlapping, and under background noise. Finally, we compared our LASS algorithm with the dissimilarity increments clustering method on a massive computer user dataset with over two million records that contains demographic and behaviors information. The results show that LASS algorithm works extremely well on this computer user dataset and can gain more knowledge from it. PMID:26221133
Application of hybrid clustering using parallel k-means algorithm and DIANA algorithm
NASA Astrophysics Data System (ADS)
Umam, Khoirul; Bustamam, Alhadi; Lestari, Dian
2017-03-01
DNA is one of the carrier of genetic information of living organisms. Encoding, sequencing, and clustering DNA sequences has become the key jobs and routine in the world of molecular biology, in particular on bioinformatics application. There are two type of clustering, hierarchical clustering and partitioning clustering. In this paper, we combined two type clustering i.e. K-Means (partitioning clustering) and DIANA (hierarchical clustering), therefore it called Hybrid clustering. Application of hybrid clustering using Parallel K-Means algorithm and DIANA algorithm used to clustering DNA sequences of Human Papillomavirus (HPV). The clustering process is started with Collecting DNA sequences of HPV are obtained from NCBI (National Centre for Biotechnology Information), then performing characteristics extraction of DNA sequences. The characteristics extraction result is store in a matrix form, then normalize this matrix using Min-Max normalization and calculate genetic distance using Euclidian Distance. Furthermore, the hybrid clustering is applied by using implementation of Parallel K-Means algorithm and DIANA algorithm. The aim of using Hybrid Clustering is to obtain better clusters result. For validating the resulted clusters, to get optimum number of clusters, we use Davies-Bouldin Index (DBI). In this study, the result of implementation of Parallel K-Means clustering is data clustered become 5 clusters with minimal IDB value is 0.8741, and Hybrid Clustering clustered data become 13 sub-clusters with minimal IDB values = 0.8216, 0.6845, 0.3331, 0.1994 and 0.3952. The IDB value of hybrid clustering less than IBD value of Parallel K-Means clustering only that perform at 1ts stage. Its means clustering using Hybrid Clustering have the better result to clustered DNA sequence of HPV than perform parallel K-Means Clustering only.
Sethi, Suresh; Linden, Daniel; Wenburg, John; Lewis, Cara; Lemons, Patrick R.; Fuller, Angela K.; Hare, Matthew P.
2016-01-01
Error-tolerant likelihood-based match calling presents a promising technique to accurately identify recapture events in genetic mark–recapture studies by combining probabilities of latent genotypes and probabilities of observed genotypes, which may contain genotyping errors. Combined with clustering algorithms to group samples into sets of recaptures based upon pairwise match calls, these tools can be used to reconstruct accurate capture histories for mark–recapture modelling. Here, we assess the performance of a recently introduced error-tolerant likelihood-based match-calling model and sample clustering algorithm for genetic mark–recapture studies. We assessed both biallelic (i.e. single nucleotide polymorphisms; SNP) and multiallelic (i.e. microsatellite; MSAT) markers using a combination of simulation analyses and case study data on Pacific walrus (Odobenus rosmarus divergens) and fishers (Pekania pennanti). A novel two-stage clustering approach is demonstrated for genetic mark–recapture applications. First, repeat captures within a sampling occasion are identified. Subsequently, recaptures across sampling occasions are identified. The likelihood-based matching protocol performed well in simulation trials, demonstrating utility for use in a wide range of genetic mark–recapture studies. Moderately sized SNP (64+) and MSAT (10–15) panels produced accurate match calls for recaptures and accurate non-match calls for samples from closely related individuals in the face of low to moderate genotyping error. Furthermore, matching performance remained stable or increased as the number of genetic markers increased, genotyping error notwithstanding.
NASA Astrophysics Data System (ADS)
Andryani, Diyah Septi; Bustamam, Alhadi; Lestari, Dian
2017-03-01
Clustering aims to classify the different patterns into groups called clusters. In this clustering method, we use n-mers frequency to calculate the distance matrix which is considered more accurate than using the DNA alignment. The clustering results could be used to discover biologically important sub-sections and groups of genes. Many clustering methods have been developed, while hard clustering methods considered less accurate than fuzzy clustering methods, especially if it is used for outliers data. Among fuzzy clustering methods, fuzzy c-means is one the best known for its accuracy and simplicity. Fuzzy c-means clustering uses membership function variable, which refers to how likely the data could be members into a cluster. Fuzzy c-means clustering works using the principle of minimizing the objective function. Parameters of membership function in fuzzy are used as a weighting factor which is also called the fuzzier. In this study we implement hybrid clustering using fuzzy c-means and divisive algorithm which could improve the accuracy of cluster membership compare to traditional partitional approach only. In this study fuzzy c-means is used in the first step to find partition results. Furthermore divisive algorithms will run on the second step to find sub-clusters and dendogram of phylogenetic tree. To find the best number of clusters is determined using the minimum value of Davies Bouldin Index (DBI) of the cluster results. In this research, the results show that the methods introduced in this paper is better than other partitioning methods. Finally, we found 3 clusters with DBI value of 1.126628 at first step of clustering. Moreover, DBI values after implementing the second step of clustering are always producing smaller IDB values compare to the results of using first step clustering only. This condition indicates that the hybrid approach in this study produce better performance of the cluster results, in term its DBI values.
A graph-Laplacian-based feature extraction algorithm for neural spike sorting.
Ghanbari, Yasser; Spence, Larry; Papamichalis, Panos
2009-01-01
Analysis of extracellular neural spike recordings is highly dependent upon the accuracy of neural waveform classification, commonly referred to as spike sorting. Feature extraction is an important stage of this process because it can limit the quality of clustering which is performed in the feature space. This paper proposes a new feature extraction method (which we call Graph Laplacian Features, GLF) based on minimizing the graph Laplacian and maximizing the weighted variance. The algorithm is compared with Principal Components Analysis (PCA, the most commonly-used feature extraction method) using simulated neural data. The results show that the proposed algorithm produces more compact and well-separated clusters compared to PCA. As an added benefit, tentative cluster centers are output which can be used to initialize a subsequent clustering stage.
Wang, Shichen; Wong, Debbie; Forrest, Kerrie; Allen, Alexandra; Chao, Shiaoman; Huang, Bevan E; Maccaferri, Marco; Salvi, Silvio; Milner, Sara G; Cattivelli, Luigi; Mastrangelo, Anna M; Whan, Alex; Stephen, Stuart; Barker, Gary; Wieseke, Ralf; Plieske, Joerg; International Wheat Genome Sequencing Consortium; Lillemo, Morten; Mather, Diane; Appels, Rudi; Dolferus, Rudy; Brown-Guedira, Gina; Korol, Abraham; Akhunova, Alina R; Feuillet, Catherine; Salse, Jerome; Morgante, Michele; Pozniak, Curtis; Luo, Ming-Cheng; Dvorak, Jan; Morell, Matthew; Dubcovsky, Jorge; Ganal, Martin; Tuberosa, Roberto; Lawley, Cindy; Mikoulitch, Ivan; Cavanagh, Colin; Edwards, Keith J; Hayden, Matthew; Akhunov, Eduard
2014-01-01
High-density single nucleotide polymorphism (SNP) genotyping arrays are a powerful tool for studying genomic patterns of diversity, inferring ancestral relationships between individuals in populations and studying marker–trait associations in mapping experiments. We developed a genotyping array including about 90 000 gene-associated SNPs and used it to characterize genetic variation in allohexaploid and allotetraploid wheat populations. The array includes a significant fraction of common genome-wide distributed SNPs that are represented in populations of diverse geographical origin. We used density-based spatial clustering algorithms to enable high-throughput genotype calling in complex data sets obtained for polyploid wheat. We show that these model-free clustering algorithms provide accurate genotype calling in the presence of multiple clusters including clusters with low signal intensity resulting from significant sequence divergence at the target SNP site or gene deletions. Assays that detect low-intensity clusters can provide insight into the distribution of presence–absence variation (PAV) in wheat populations. A total of 46 977 SNPs from the wheat 90K array were genetically mapped using a combination of eight mapping populations. The developed array and cluster identification algorithms provide an opportunity to infer detailed haplotype structure in polyploid wheat and will serve as an invaluable resource for diversity studies and investigating the genetic basis of trait variation in wheat. PMID:24646323
A local search for a graph clustering problem
NASA Astrophysics Data System (ADS)
Navrotskaya, Anna; Il'ev, Victor
2016-10-01
In the clustering problems one has to partition a given set of objects (a data set) into some subsets (called clusters) taking into consideration only similarity of the objects. One of most visual formalizations of clustering is graph clustering, that is grouping the vertices of a graph into clusters taking into consideration the edge structure of the graph whose vertices are objects and edges represent similarities between the objects. In the graph k-clustering problem the number of clusters does not exceed k and the goal is to minimize the number of edges between clusters and the number of missing edges within clusters. This problem is NP-hard for any k ≥ 2. We propose a polynomial time (2k-1)-approximation algorithm for graph k-clustering. Then we apply a local search procedure to the feasible solution found by this algorithm and hold experimental research of obtained heuristics.
GraphTeams: a method for discovering spatial gene clusters in Hi-C sequencing data.
Schulz, Tizian; Stoye, Jens; Doerr, Daniel
2018-05-08
Hi-C sequencing offers novel, cost-effective means to study the spatial conformation of chromosomes. We use data obtained from Hi-C experiments to provide new evidence for the existence of spatial gene clusters. These are sets of genes with associated functionality that exhibit close proximity to each other in the spatial conformation of chromosomes across several related species. We present the first gene cluster model capable of handling spatial data. Our model generalizes a popular computational model for gene cluster prediction, called δ-teams, from sequences to graphs. Following previous lines of research, we subsequently extend our model to allow for several vertices being associated with the same label. The model, called δ-teams with families, is particular suitable for our application as it enables handling of gene duplicates. We develop algorithmic solutions for both models. We implemented the algorithm for discovering δ-teams with families and integrated it into a fully automated workflow for discovering gene clusters in Hi-C data, called GraphTeams. We applied it to human and mouse data to find intra- and interchromosomal gene cluster candidates. The results include intrachromosomal clusters that seem to exhibit a closer proximity in space than on their chromosomal DNA sequence. We further discovered interchromosomal gene clusters that contain genes from different chromosomes within the human genome, but are located on a single chromosome in mouse. By identifying δ-teams with families, we provide a flexible model to discover gene cluster candidates in Hi-C data. Our analysis of Hi-C data from human and mouse reveals several known gene clusters (thus validating our approach), but also few sparsely studied or possibly unknown gene cluster candidates that could be the source of further experimental investigations.
NASA Astrophysics Data System (ADS)
Nguyen, Sy Dzung; Nguyen, Quoc Hung; Choi, Seung-Bok
2015-01-01
This paper presents a new algorithm for building an adaptive neuro-fuzzy inference system (ANFIS) from a training data set called B-ANFIS. In order to increase accuracy of the model, the following issues are executed. Firstly, a data merging rule is proposed to build and perform a data-clustering strategy. Subsequently, a combination of clustering processes in the input data space and in the joint input-output data space is presented. Crucial reason of this task is to overcome problems related to initialization and contradictory fuzzy rules, which usually happen when building ANFIS. The clustering process in the input data space is accomplished based on a proposed merging-possibilistic clustering (MPC) algorithm. The effectiveness of this process is evaluated to resume a clustering process in the joint input-output data space. The optimal parameters obtained after completion of the clustering process are used to build ANFIS. Simulations based on a numerical data, 'Daily Data of Stock A', and measured data sets of a smart damper are performed to analyze and estimate accuracy. In addition, convergence and robustness of the proposed algorithm are investigated based on both theoretical and testing approaches.
An agglomerative hierarchical clustering approach to visualisation in Bayesian clustering problems
Dawson, Kevin J.; Belkhir, Khalid
2009-01-01
Clustering problems (including the clustering of individuals into outcrossing populations, hybrid generations, full-sib families and selfing lines) have recently received much attention in population genetics. In these clustering problems, the parameter of interest is a partition of the set of sampled individuals, - the sample partition. In a fully Bayesian approach to clustering problems of this type, our knowledge about the sample partition is represented by a probability distribution on the space of possible sample partitions. Since the number of possible partitions grows very rapidly with the sample size, we can not visualise this probability distribution in its entirety, unless the sample is very small. As a solution to this visualisation problem, we recommend using an agglomerative hierarchical clustering algorithm, which we call the exact linkage algorithm. This algorithm is a special case of the maximin clustering algorithm that we introduced previously. The exact linkage algorithm is now implemented in our software package Partition View. The exact linkage algorithm takes the posterior co-assignment probabilities as input, and yields as output a rooted binary tree, - or more generally, a forest of such trees. Each node of this forest defines a set of individuals, and the node height is the posterior co-assignment probability of this set. This provides a useful visual representation of the uncertainty associated with the assignment of individuals to categories. It is also a useful starting point for a more detailed exploration of the posterior distribution in terms of the co-assignment probabilities. PMID:19337306
NASA Astrophysics Data System (ADS)
Chen, Xiao; Li, Yaan; Yu, Jing; Li, Yuxing
2018-01-01
For fast and more effective implementation of tracking multiple targets in a cluttered environment, we propose a multiple targets tracking (MTT) algorithm called maximum entropy fuzzy c-means clustering joint probabilistic data association that combines fuzzy c-means clustering and the joint probabilistic data association (PDA) algorithm. The algorithm uses the membership value to express the probability of the target originating from measurement. The membership value is obtained through fuzzy c-means clustering objective function optimized by the maximum entropy principle. When considering the effect of the public measurement, we use a correction factor to adjust the association probability matrix to estimate the state of the target. As this algorithm avoids confirmation matrix splitting, it can solve the high computational load problem of the joint PDA algorithm. The results of simulations and analysis conducted for tracking neighbor parallel targets and cross targets in a different density cluttered environment show that the proposed algorithm can realize MTT quickly and efficiently in a cluttered environment. Further, the performance of the proposed algorithm remains constant with increasing process noise variance. The proposed algorithm has the advantages of efficiency and low computational load, which can ensure optimum performance when tracking multiple targets in a dense cluttered environment.
Kamali, Tahereh; Stashuk, Daniel
2016-10-01
Robust and accurate segmentation of brain white matter (WM) fiber bundles assists in diagnosing and assessing progression or remission of neuropsychiatric diseases such as schizophrenia, autism and depression. Supervised segmentation methods are infeasible in most applications since generating gold standards is too costly. Hence, there is a growing interest in designing unsupervised methods. However, most conventional unsupervised methods require the number of clusters be known in advance which is not possible in most applications. The purpose of this study is to design an unsupervised segmentation algorithm for brain white matter fiber bundles which can automatically segment fiber bundles using intrinsic diffusion tensor imaging data information without considering any prior information or assumption about data distributions. Here, a new density based clustering algorithm called neighborhood distance entropy consistency (NDEC), is proposed which discovers natural clusters within data by simultaneously utilizing both local and global density information. The performance of NDEC is compared with other state of the art clustering algorithms including chameleon, spectral clustering, DBSCAN and k-means using Johns Hopkins University publicly available diffusion tensor imaging data. The performance of NDEC and other employed clustering algorithms were evaluated using dice ratio as an external evaluation criteria and density based clustering validation (DBCV) index as an internal evaluation metric. Across all employed clustering algorithms, NDEC obtained the highest average dice ratio (0.94) and DBCV value (0.71). NDEC can find clusters with arbitrary shapes and densities and consequently can be used for WM fiber bundle segmentation where there is no distinct boundary between various bundles. NDEC may also be used as an effective tool in other pattern recognition and medical diagnostic systems in which discovering natural clusters within data is a necessity. Copyright © 2016 Elsevier B.V. All rights reserved.
GOClonto: an ontological clustering approach for conceptualizing PubMed abstracts.
Zheng, Hai-Tao; Borchert, Charles; Kim, Hong-Gee
2010-02-01
Concurrent with progress in biomedical sciences, an overwhelming of textual knowledge is accumulating in the biomedical literature. PubMed is the most comprehensive database collecting and managing biomedical literature. To help researchers easily understand collections of PubMed abstracts, numerous clustering methods have been proposed to group similar abstracts based on their shared features. However, most of these methods do not explore the semantic relationships among groupings of documents, which could help better illuminate the groupings of PubMed abstracts. To address this issue, we proposed an ontological clustering method called GOClonto for conceptualizing PubMed abstracts. GOClonto uses latent semantic analysis (LSA) and gene ontology (GO) to identify key gene-related concepts and their relationships as well as allocate PubMed abstracts based on these key gene-related concepts. Based on two PubMed abstract collections, the experimental results show that GOClonto is able to identify key gene-related concepts and outperforms the STC (suffix tree clustering) algorithm, the Lingo algorithm, the Fuzzy Ants algorithm, and the clustering based TRS (tolerance rough set) algorithm. Moreover, the two ontologies generated by GOClonto show significant informative conceptual structures.
Environmental Gradient Analysis, Ordination, and Classification in Environmental Impact Assessments.
1987-09-01
agglomerative clustering algorithms for mainframe computers: (1) the unweighted pair-group method that V uses arithmetic averages ( UPGMA ), (2) the...hierarchical agglomerative unweighted pair-group method using arithmetic averages ( UPGMA ), which is also called average linkage clustering. This method was...dendrograms produced by weighted clustering (93). Sneath and Sokal (94), Romesburg (84), and Seber• (90) also strongly recommend the UPGMA . A dendrogram
Hierarchical clustering using mutual information
NASA Astrophysics Data System (ADS)
Kraskov, A.; Stögbauer, H.; Andrzejak, R. G.; Grassberger, P.
2005-04-01
We present a conceptually simple method for hierarchical clustering of data called mutual information clustering (MIC) algorithm. It uses mutual information (MI) as a similarity measure and exploits its grouping property: The MI between three objects X, Y, and Z is equal to the sum of the MI between X and Y, plus the MI between Z and the combined object (XY). We use this both in the Shannon (probabilistic) version of information theory and in the Kolmogorov (algorithmic) version. We apply our method to the construction of phylogenetic trees from mitochondrial DNA sequences and to the output of independent components analysis (ICA) as illustrated with the ECG of a pregnant woman.
Machine-learned cluster identification in high-dimensional data.
Ultsch, Alfred; Lötsch, Jörn
2017-02-01
High-dimensional biomedical data are frequently clustered to identify subgroup structures pointing at distinct disease subtypes. It is crucial that the used cluster algorithm works correctly. However, by imposing a predefined shape on the clusters, classical algorithms occasionally suggest a cluster structure in homogenously distributed data or assign data points to incorrect clusters. We analyzed whether this can be avoided by using emergent self-organizing feature maps (ESOM). Data sets with different degrees of complexity were submitted to ESOM analysis with large numbers of neurons, using an interactive R-based bioinformatics tool. On top of the trained ESOM the distance structure in the high dimensional feature space was visualized in the form of a so-called U-matrix. Clustering results were compared with those provided by classical common cluster algorithms including single linkage, Ward and k-means. Ward clustering imposed cluster structures on cluster-less "golf ball", "cuboid" and "S-shaped" data sets that contained no structure at all (random data). Ward clustering also imposed structures on permuted real world data sets. By contrast, the ESOM/U-matrix approach correctly found that these data contain no cluster structure. However, ESOM/U-matrix was correct in identifying clusters in biomedical data truly containing subgroups. It was always correct in cluster structure identification in further canonical artificial data. Using intentionally simple data sets, it is shown that popular clustering algorithms typically used for biomedical data sets may fail to cluster data correctly, suggesting that they are also likely to perform erroneously on high dimensional biomedical data. The present analyses emphasized that generally established classical hierarchical clustering algorithms carry a considerable tendency to produce erroneous results. By contrast, unsupervised machine-learned analysis of cluster structures, applied using the ESOM/U-matrix method, is a viable, unbiased method to identify true clusters in the high-dimensional space of complex data. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
A robust fuzzy local Information c-means clustering algorithm with noise detection
NASA Astrophysics Data System (ADS)
Shang, Jiayu; Li, Shiren; Huang, Junwei
2018-04-01
Fuzzy c-means clustering (FCM), especially with spatial constraints (FCM_S), is an effective algorithm suitable for image segmentation. Its reliability contributes not only to the presentation of fuzziness for belongingness of every pixel but also to exploitation of spatial contextual information. But these algorithms still remain some problems when processing the image with noise, they are sensitive to the parameters which have to be tuned according to prior knowledge of the noise. In this paper, we propose a new FCM algorithm, combining the gray constraints and spatial constraints, called spatial and gray-level denoised fuzzy c-means (SGDFCM) algorithm. This new algorithm conquers the parameter disadvantages mentioned above by considering the possibility of noise of each pixel, which aims to improve the robustness and obtain more detail information. Furthermore, the possibility of noise can be calculated in advance, which means the algorithm is effective and efficient.
Reducing the time requirement of k-means algorithm.
Osamor, Victor Chukwudi; Adebiyi, Ezekiel Femi; Oyelade, Jelilli Olarenwaju; Doumbia, Seydou
2012-01-01
Traditional k-means and most k-means variants are still computationally expensive for large datasets, such as microarray data, which have large datasets with large dimension size d. In k-means clustering, we are given a set of n data points in d-dimensional space R(d) and an integer k. The problem is to determine a set of k points in R(d), called centers, so as to minimize the mean squared distance from each data point to its nearest center. In this work, we develop a novel k-means algorithm, which is simple but more efficient than the traditional k-means and the recent enhanced k-means. Our new algorithm is based on the recently established relationship between principal component analysis and the k-means clustering. We provided the correctness proof for this algorithm. Results obtained from testing the algorithm on three biological data and six non-biological data (three of these data are real, while the other three are simulated) also indicate that our algorithm is empirically faster than other known k-means algorithms. We assessed the quality of our algorithm clusters against the clusters of a known structure using the Hubert-Arabie Adjusted Rand index (ARI(HA)). We found that when k is close to d, the quality is good (ARI(HA)>0.8) and when k is not close to d, the quality of our new k-means algorithm is excellent (ARI(HA)>0.9). In this paper, emphases are on the reduction of the time requirement of the k-means algorithm and its application to microarray data due to the desire to create a tool for clustering and malaria research. However, the new clustering algorithm can be used for other clustering needs as long as an appropriate measure of distance between the centroids and the members is used. This has been demonstrated in this work on six non-biological data.
Reducing the Time Requirement of k-Means Algorithm
Osamor, Victor Chukwudi; Adebiyi, Ezekiel Femi; Oyelade, Jelilli Olarenwaju; Doumbia, Seydou
2012-01-01
Traditional k-means and most k-means variants are still computationally expensive for large datasets, such as microarray data, which have large datasets with large dimension size d. In k-means clustering, we are given a set of n data points in d-dimensional space Rd and an integer k. The problem is to determine a set of k points in Rd, called centers, so as to minimize the mean squared distance from each data point to its nearest center. In this work, we develop a novel k-means algorithm, which is simple but more efficient than the traditional k-means and the recent enhanced k-means. Our new algorithm is based on the recently established relationship between principal component analysis and the k-means clustering. We provided the correctness proof for this algorithm. Results obtained from testing the algorithm on three biological data and six non-biological data (three of these data are real, while the other three are simulated) also indicate that our algorithm is empirically faster than other known k-means algorithms. We assessed the quality of our algorithm clusters against the clusters of a known structure using the Hubert-Arabie Adjusted Rand index (ARIHA). We found that when k is close to d, the quality is good (ARIHA>0.8) and when k is not close to d, the quality of our new k-means algorithm is excellent (ARIHA>0.9). In this paper, emphases are on the reduction of the time requirement of the k-means algorithm and its application to microarray data due to the desire to create a tool for clustering and malaria research. However, the new clustering algorithm can be used for other clustering needs as long as an appropriate measure of distance between the centroids and the members is used. This has been demonstrated in this work on six non-biological data. PMID:23239974
Zone-Based Routing Protocol for Wireless Sensor Networks
Venkateswarlu Kumaramangalam, Muni; Adiyapatham, Kandasamy; Kandasamy, Chandrasekaran
2014-01-01
Extensive research happening across the globe witnessed the importance of Wireless Sensor Network in the present day application world. In the recent past, various routing algorithms have been proposed to elevate WSN network lifetime. Clustering mechanism is highly successful in conserving energy resources for network activities and has become promising field for researches. However, the problem of unbalanced energy consumption is still open because the cluster head activities are tightly coupled with role and location of a particular node in the network. Several unequal clustering algorithms are proposed to solve this wireless sensor network multihop hot spot problem. Current unequal clustering mechanisms consider only intra- and intercluster communication cost. Proper organization of wireless sensor network into clusters enables efficient utilization of limited resources and enhances lifetime of deployed sensor nodes. This paper considers a novel network organization scheme, energy-efficient edge-based network partitioning scheme, to organize sensor nodes into clusters of equal size. Also, it proposes a cluster-based routing algorithm, called zone-based routing protocol (ZBRP), for elevating sensor network lifetime. Experimental results show that ZBRP out-performs interims of network lifetime and energy conservation with its uniform energy consumption among the cluster heads. PMID:27437455
Zone-Based Routing Protocol for Wireless Sensor Networks.
Venkateswarlu Kumaramangalam, Muni; Adiyapatham, Kandasamy; Kandasamy, Chandrasekaran
2014-01-01
Extensive research happening across the globe witnessed the importance of Wireless Sensor Network in the present day application world. In the recent past, various routing algorithms have been proposed to elevate WSN network lifetime. Clustering mechanism is highly successful in conserving energy resources for network activities and has become promising field for researches. However, the problem of unbalanced energy consumption is still open because the cluster head activities are tightly coupled with role and location of a particular node in the network. Several unequal clustering algorithms are proposed to solve this wireless sensor network multihop hot spot problem. Current unequal clustering mechanisms consider only intra- and intercluster communication cost. Proper organization of wireless sensor network into clusters enables efficient utilization of limited resources and enhances lifetime of deployed sensor nodes. This paper considers a novel network organization scheme, energy-efficient edge-based network partitioning scheme, to organize sensor nodes into clusters of equal size. Also, it proposes a cluster-based routing algorithm, called zone-based routing protocol (ZBRP), for elevating sensor network lifetime. Experimental results show that ZBRP out-performs interims of network lifetime and energy conservation with its uniform energy consumption among the cluster heads.
Cluster compression algorithm: A joint clustering/data compression concept
NASA Technical Reports Server (NTRS)
Hilbert, E. E.
1977-01-01
The Cluster Compression Algorithm (CCA), which was developed to reduce costs associated with transmitting, storing, distributing, and interpreting LANDSAT multispectral image data is described. The CCA is a preprocessing algorithm that uses feature extraction and data compression to more efficiently represent the information in the image data. The format of the preprocessed data enables simply a look-up table decoding and direct use of the extracted features to reduce user computation for either image reconstruction, or computer interpretation of the image data. Basically, the CCA uses spatially local clustering to extract features from the image data to describe spectral characteristics of the data set. In addition, the features may be used to form a sequence of scalar numbers that define each picture element in terms of the cluster features. This sequence, called the feature map, is then efficiently represented by using source encoding concepts. Various forms of the CCA are defined and experimental results are presented to show trade-offs and characteristics of the various implementations. Examples are provided that demonstrate the application of the cluster compression concept to multi-spectral images from LANDSAT and other sources.
NASA Astrophysics Data System (ADS)
Arimbi, Mentari Dian; Bustamam, Alhadi; Lestari, Dian
2017-03-01
Data clustering can be executed through partition or hierarchical method for many types of data including DNA sequences. Both clustering methods can be combined by processing partition algorithm in the first level and hierarchical in the second level, called hybrid clustering. In the partition phase some popular methods such as PAM, K-means, or Fuzzy c-means methods could be applied. In this study we selected partitioning around medoids (PAM) in our partition stage. Furthermore, following the partition algorithm, in hierarchical stage we applied divisive analysis algorithm (DIANA) in order to have more specific clusters and sub clusters structures. The number of main clusters is determined using Davies Bouldin Index (DBI) value. We choose the optimal number of clusters if the results minimize the DBI value. In this work, we conduct the clustering on 1252 HPV DNA sequences data from GenBank. The characteristic extraction is initially performed, followed by normalizing and genetic distance calculation using Euclidean distance. In our implementation, we used the hybrid PAM and DIANA using the R open source programming tool. In our results, we obtained 3 main clusters with average DBI value is 0.979, using PAM in the first stage. After executing DIANA in the second stage, we obtained 4 sub clusters for Cluster-1, 9 sub clusters for Cluster-2 and 2 sub clusters in Cluster-3, with the BDI value 0.972, 0.771, and 0.768 for each main cluster respectively. Since the second stage produce lower DBI value compare to the DBI value in the first stage, we conclude that this hybrid approach can improve the accuracy of our clustering results.
MULTI-K: accurate classification of microarray subtypes using ensemble k-means clustering
Kim, Eun-Youn; Kim, Seon-Young; Ashlock, Daniel; Nam, Dougu
2009-01-01
Background Uncovering subtypes of disease from microarray samples has important clinical implications such as survival time and sensitivity of individual patients to specific therapies. Unsupervised clustering methods have been used to classify this type of data. However, most existing methods focus on clusters with compact shapes and do not reflect the geometric complexity of the high dimensional microarray clusters, which limits their performance. Results We present a cluster-number-based ensemble clustering algorithm, called MULTI-K, for microarray sample classification, which demonstrates remarkable accuracy. The method amalgamates multiple k-means runs by varying the number of clusters and identifies clusters that manifest the most robust co-memberships of elements. In addition to the original algorithm, we newly devised the entropy-plot to control the separation of singletons or small clusters. MULTI-K, unlike the simple k-means or other widely used methods, was able to capture clusters with complex and high-dimensional structures accurately. MULTI-K outperformed other methods including a recently developed ensemble clustering algorithm in tests with five simulated and eight real gene-expression data sets. Conclusion The geometric complexity of clusters should be taken into account for accurate classification of microarray data, and ensemble clustering applied to the number of clusters tackles the problem very well. The C++ code and the data sets tested are available from the authors. PMID:19698124
User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm.
Bourobou, Serge Thomas Mickala; Yoo, Younghwan
2015-05-21
This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things) based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen's temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home.
NASA Astrophysics Data System (ADS)
Dayananda, Karanam Ravichandran; Straub, Jeremy
2017-05-01
This paper proposes a new hybrid algorithm for security, which incorporates both distributed and hierarchal approaches. It uses a mobile data collector (MDC) to collect information in order to save energy of sensor nodes in a wireless sensor network (WSN) as, in most networks, these sensor nodes have limited energy. Wireless sensor networks are prone to security problems because, among other things, it is possible to use a rogue sensor node to eavesdrop on or alter the information being transmitted. To prevent this, this paper introduces a security algorithm for MDC-based WSNs. A key use of this algorithm is to protect the confidentiality of the information sent by the sensor nodes. The sensor nodes are deployed in a random fashion and form group structures called clusters. Each cluster has a cluster head. The cluster head collects data from the other nodes using the time-division multiple access protocol. The sensor nodes send their data to the cluster head for transmission to the base station node for further processing. The MDC acts as an intermediate node between the cluster head and base station. The MDC, using its dynamic acyclic graph path, collects the data from the cluster head and sends it to base station. This approach is useful for applications including warfighting, intelligent building and medicine. To assess the proposed system, the paper presents a comparison of its performance with other approaches and algorithms that can be used for similar purposes.
Wu, Jiayi; Ma, Yong-Bei; Congdon, Charles; Brett, Bevin; Chen, Shuobing; Xu, Yaofang; Ouyang, Qi
2017-01-01
Structural heterogeneity in single-particle cryo-electron microscopy (cryo-EM) data represents a major challenge for high-resolution structure determination. Unsupervised classification may serve as the first step in the assessment of structural heterogeneity. However, traditional algorithms for unsupervised classification, such as K-means clustering and maximum likelihood optimization, may classify images into wrong classes with decreasing signal-to-noise-ratio (SNR) in the image data, yet demand increased computational costs. Overcoming these limitations requires further development of clustering algorithms for high-performance cryo-EM data processing. Here we introduce an unsupervised single-particle clustering algorithm derived from a statistical manifold learning framework called generative topographic mapping (GTM). We show that unsupervised GTM clustering improves classification accuracy by about 40% in the absence of input references for data with lower SNRs. Applications to several experimental datasets suggest that our algorithm can detect subtle structural differences among classes via a hierarchical clustering strategy. After code optimization over a high-performance computing (HPC) environment, our software implementation was able to generate thousands of reference-free class averages within hours in a massively parallel fashion, which allows a significant improvement on ab initio 3D reconstruction and assists in the computational purification of homogeneous datasets for high-resolution visualization. PMID:28786986
Wu, Jiayi; Ma, Yong-Bei; Congdon, Charles; Brett, Bevin; Chen, Shuobing; Xu, Yaofang; Ouyang, Qi; Mao, Youdong
2017-01-01
Structural heterogeneity in single-particle cryo-electron microscopy (cryo-EM) data represents a major challenge for high-resolution structure determination. Unsupervised classification may serve as the first step in the assessment of structural heterogeneity. However, traditional algorithms for unsupervised classification, such as K-means clustering and maximum likelihood optimization, may classify images into wrong classes with decreasing signal-to-noise-ratio (SNR) in the image data, yet demand increased computational costs. Overcoming these limitations requires further development of clustering algorithms for high-performance cryo-EM data processing. Here we introduce an unsupervised single-particle clustering algorithm derived from a statistical manifold learning framework called generative topographic mapping (GTM). We show that unsupervised GTM clustering improves classification accuracy by about 40% in the absence of input references for data with lower SNRs. Applications to several experimental datasets suggest that our algorithm can detect subtle structural differences among classes via a hierarchical clustering strategy. After code optimization over a high-performance computing (HPC) environment, our software implementation was able to generate thousands of reference-free class averages within hours in a massively parallel fashion, which allows a significant improvement on ab initio 3D reconstruction and assists in the computational purification of homogeneous datasets for high-resolution visualization.
UWB Tracking Software Development
NASA Technical Reports Server (NTRS)
Gross, Julia; Arndt, Dickey; Ngo, Phong; Phan, Chau; Dusl, John; Ni, Jianjun; Rafford, Melinda
2006-01-01
An Ultra-Wideband (UWB) two-cluster Angle of Arrival (AOA) tracking prototype system is currently being developed and tested at NASA Johnson Space Center for space exploration applications. This talk discusses the software development efforts for this UWB two-cluster AOA tracking system. The role the software plays in this system is to take waveform data from two UWB radio receivers as an input, feed this input into an AOA tracking algorithm, and generate the target position as an output. The architecture of the software (Input/Output Interface and Algorithm Core) will be introduced in this talk. The development of this software has three phases. In Phase I, the software is mostly Matlab driven and calls C++ socket functions to provide the communication links to the radios. This is beneficial in the early stage when it is necessary to frequently test changes in the algorithm. Phase II of the development is to have the software mostly C++ driven and call a Matlab function for the AOA tracking algorithm. This is beneficial in order to send the tracking results to other systems and also to improve the tracking update rate of the system. The third phase is part of future work and is to have the software completely C++ driven with a graphics user interface. This software design enables the fine resolution tracking of the UWB two-cluster AOA tracking system.
Fast graph-based relaxed clustering for large data sets using minimal enclosing ball.
Qian, Pengjiang; Chung, Fu-Lai; Wang, Shitong; Deng, Zhaohong
2012-06-01
Although graph-based relaxed clustering (GRC) is one of the spectral clustering algorithms with straightforwardness and self-adaptability, it is sensitive to the parameters of the adopted similarity measure and also has high time complexity O(N(3)) which severely weakens its usefulness for large data sets. In order to overcome these shortcomings, after introducing certain constraints for GRC, an enhanced version of GRC [constrained GRC (CGRC)] is proposed to increase the robustness of GRC to the parameters of the adopted similarity measure, and accordingly, a novel algorithm called fast GRC (FGRC) based on CGRC is developed in this paper by using the core-set-based minimal enclosing ball approximation. A distinctive advantage of FGRC is that its asymptotic time complexity is linear with the data set size N. At the same time, FGRC also inherits the straightforwardness and self-adaptability from GRC, making the proposed FGRC a fast and effective clustering algorithm for large data sets. The advantages of FGRC are validated by various benchmarking and real data sets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchal, Rémi; Carbonnière, Philippe; Pouchan, Claude
2015-01-22
The study of atomic clusters has become an increasingly active area of research in the recent years because of the fundamental interest in studying a completely new area that can bridge the gap between atomic and solid state physics. Due to their specific properties, such compounds are of great interest in the field of nanotechnology [1,2]. Here, we would present our GSAM algorithm based on a DFT exploration of the PES to find the low lying isomers of such compounds. This algorithm includes the generation of an intial set of structure from which the most relevant are selected. Moreover, anmore » optimization process, called raking optimization, able to discard step by step all the non physically reasonnable configurations have been implemented to reduce the computational cost of this algorithm. Structural properties of Ga{sub n}Asm clusters will be presented as an illustration of the method.« less
Active Learning Using Hint Information.
Li, Chun-Liang; Ferng, Chun-Sung; Lin, Hsuan-Tien
2015-08-01
The abundance of real-world data and limited labeling budget calls for active learning, an important learning paradigm for reducing human labeling efforts. Many recently developed active learning algorithms consider both uncertainty and representativeness when making querying decisions. However, exploiting representativeness with uncertainty concurrently usually requires tackling sophisticated and challenging learning tasks, such as clustering. In this letter, we propose a new active learning framework, called hinted sampling, which takes both uncertainty and representativeness into account in a simpler way. We design a novel active learning algorithm within the hinted sampling framework with an extended support vector machine. Experimental results validate that the novel active learning algorithm can result in a better and more stable performance than that achieved by state-of-the-art algorithms. We also show that the hinted sampling framework allows improving another active learning algorithm designed from the transductive support vector machine.
NASA Astrophysics Data System (ADS)
Intarasothonchun, Silada; Thipchaksurat, Sakchai; Varakulsiripunth, Ruttikorn; Onozato, Yoshikuni
In this paper, we propose a modified scheme of MSODB and PMS, called Predictive User Mobility Behavior (PUMB) to improve performance of resource reservation and call admission control for cellular networks. This algorithm is proposed in which bandwidth is allocated more efficiently to neighboring cells by key mobility parameters in order to provide QoS guarantees for transferring traffic. The probability is used to form a cluster of cells and the shadow cluster, where a mobile unit is likely to visit. When a mobile unit may change the direction and migrate to the cell that does not belong to its shadow cluster, we can support it by making efficient use of predicted nonconforming call. Concomitantly, to ensure continuity of on-going calls with better utilization of resources, bandwidth is borrowed from predicted nonconforming calls and existing adaptive calls without affecting the minimum QoS guarantees. The performance of the PUMB is demonstrated by simulation results in terms of new call blocking probability, handoff call dropping probability, bandwidth utilization, call successful probability, and overhead message transmission when arrival rate and speed of mobile units are varied. Our results show that PUMB provides the better performances comparing with those of MSODB and PMS under different traffic conditions.
A Fast Implementation of the ISOCLUS Algorithm
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess; Mount, David M.; Netanyahu, Nathan S.; LeMoigne, Jacqueline
2003-01-01
Unsupervised clustering is a fundamental tool in numerous image processing and remote sensing applications. For example, unsupervised clustering is often used to obtain vegetation maps of an area of interest. This approach is useful when reliable training data are either scarce or expensive, and when relatively little a priori information about the data is available. Unsupervised clustering methods play a significant role in the pursuit of unsupervised classification. One of the most popular and widely used clustering schemes for remote sensing applications is the ISOCLUS algorithm, which is based on the ISODATA method. The algorithm is given a set of n data points (or samples) in d-dimensional space, an integer k indicating the initial number of clusters, and a number of additional parameters. The general goal is to compute a set of cluster centers in d-space. Although there is no specific optimization criterion, the algorithm is similar in spirit to the well known k-means clustering method in which the objective is to minimize the average squared distance of each point to its nearest center, called the average distortion. One significant feature of ISOCLUS over k-means is that clusters may be merged or split, and so the final number of clusters may be different from the number k supplied as part of the input. This algorithm will be described in later in this paper. The ISOCLUS algorithm can run very slowly, particularly on large data sets. Given its wide use in remote sensing, its efficient computation is an important goal. We have developed a fast implementation of the ISOCLUS algorithm. Our improvement is based on a recent acceleration to the k-means algorithm, the filtering algorithm, by Kanungo et al.. They showed that, by storing the data in a kd-tree, it was possible to significantly reduce the running time of k-means. We have adapted this method for the ISOCLUS algorithm. For technical reasons, which are explained later, it is necessary to make a minor modification to the ISOCLUS specification. We provide empirical evidence, on both synthetic and Landsat image data sets, that our algorithm's performance is essentially the same as that of ISOCLUS, but with significantly lower running times. We show that our algorithm runs from 3 to 30 times faster than a straightforward implementation of ISOCLUS. Our adaptation of the filtering algorithm involves the efficient computation of a number of cluster statistics that are needed for ISOCLUS, but not for k-means.
Multivariate Spatial Condition Mapping Using Subtractive Fuzzy Cluster Means
Sabit, Hakilo; Al-Anbuky, Adnan
2014-01-01
Wireless sensor networks are usually deployed for monitoring given physical phenomena taking place in a specific space and over a specific duration of time. The spatio-temporal distribution of these phenomena often correlates to certain physical events. To appropriately characterise these events-phenomena relationships over a given space for a given time frame, we require continuous monitoring of the conditions. WSNs are perfectly suited for these tasks, due to their inherent robustness. This paper presents a subtractive fuzzy cluster means algorithm and its application in data stream mining for wireless sensor systems over a cloud-computing-like architecture, which we call sensor cloud data stream mining. Benchmarking on standard mining algorithms, the k-means and the FCM algorithms, we have demonstrated that the subtractive fuzzy cluster means model can perform high quality distributed data stream mining tasks comparable to centralised data stream mining. PMID:25313495
NASA Astrophysics Data System (ADS)
Franke, R.
2016-11-01
In many networks discovered in biology, medicine, neuroscience and other disciplines special properties like a certain degree distribution and hierarchical cluster structure (also called communities) can be observed as general organizing principles. Detecting the cluster structure of an unknown network promises to identify functional subdivisions, hierarchy and interactions on a mesoscale. It is not trivial choosing an appropriate detection algorithm because there are multiple network, cluster and algorithmic properties to be considered. Edges can be weighted and/or directed, clusters overlap or build a hierarchy in several ways. Algorithms differ not only in runtime, memory requirements but also in allowed network and cluster properties. They are based on a specific definition of what a cluster is, too. On the one hand, a comprehensive network creation model is needed to build a large variety of benchmark networks with different reasonable structures to compare algorithms. On the other hand, if a cluster structure is already known, it is desirable to separate effects of this structure from other network properties. This can be done with null model networks that mimic an observed cluster structure to improve statistics on other network features. A third important application is the general study of properties in networks with different cluster structures, possibly evolving over time. Currently there are good benchmark and creation models available. But what is left is a precise sandbox model to build hierarchical, overlapping and directed clusters for undirected or directed, binary or weighted complex random networks on basis of a sophisticated blueprint. This gap shall be closed by the model CHIMERA (Cluster Hierarchy Interconnection Model for Evaluation, Research and Analysis) which will be introduced and described here for the first time.
Enhanced K-means clustering with encryption on cloud
NASA Astrophysics Data System (ADS)
Singh, Iqjot; Dwivedi, Prerna; Gupta, Taru; Shynu, P. G.
2017-11-01
This paper tries to solve the problem of storing and managing big files over cloud by implementing hashing on Hadoop in big-data and ensure security while uploading and downloading files. Cloud computing is a term that emphasis on sharing data and facilitates to share infrastructure and resources.[10] Hadoop is an open source software that gives us access to store and manage big files according to our needs on cloud. K-means clustering algorithm is an algorithm used to calculate distance between the centroid of the cluster and the data points. Hashing is a algorithm in which we are storing and retrieving data with hash keys. The hashing algorithm is called as hash function which is used to portray the original data and later to fetch the data stored at the specific key. [17] Encryption is a process to transform electronic data into non readable form known as cipher text. Decryption is the opposite process of encryption, it transforms the cipher text into plain text that the end user can read and understand well. For encryption and decryption we are using Symmetric key cryptographic algorithm. In symmetric key cryptography are using DES algorithm for a secure storage of the files. [3
iNJclust: Iterative Neighbor-Joining Tree Clustering Framework for Inferring Population Structure.
Limpiti, Tulaya; Amornbunchornvej, Chainarong; Intarapanich, Apichart; Assawamakin, Anunchai; Tongsima, Sissades
2014-01-01
Understanding genetic differences among populations is one of the most important issues in population genetics. Genetic variations, e.g., single nucleotide polymorphisms, are used to characterize commonality and difference of individuals from various populations. This paper presents an efficient graph-based clustering framework which operates iteratively on the Neighbor-Joining (NJ) tree called the iNJclust algorithm. The framework uses well-known genetic measurements, namely the allele-sharing distance, the neighbor-joining tree, and the fixation index. The behavior of the fixation index is utilized in the algorithm's stopping criterion. The algorithm provides an estimated number of populations, individual assignments, and relationships between populations as outputs. The clustering result is reported in the form of a binary tree, whose terminal nodes represent the final inferred populations and the tree structure preserves the genetic relationships among them. The clustering performance and the robustness of the proposed algorithm are tested extensively using simulated and real data sets from bovine, sheep, and human populations. The result indicates that the number of populations within each data set is reasonably estimated, the individual assignment is robust, and the structure of the inferred population tree corresponds to the intrinsic relationships among populations within the data.
User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm
Bourobou, Serge Thomas Mickala; Yoo, Younghwan
2015-01-01
This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things) based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen’s temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home. PMID:26007738
Automatic classification of killer whale vocalizations using dynamic time warping.
Brown, Judith C; Miller, Patrick J O
2007-08-01
A set of killer whale sounds from Marineland were recently classified automatically [Brown et al., J. Acoust. Soc. Am. 119, EL34-EL40 (2006)] into call types using dynamic time warping (DTW), multidimensional scaling, and kmeans clustering to give near-perfect agreement with a perceptual classification. Here the effectiveness of four DTW algorithms on a larger and much more challenging set of calls by Northern Resident whales will be examined, with each call consisting of two independently modulated pitch contours and having considerable overlap in contours for several of the perceptual call types. Classification results are given for each of the four algorithms for the low frequency contour (LFC), the high frequency contour (HFC), their derivatives, and weighted sums of the distances corresponding to LFC with HFC, LFC with its derivative, and HFC with its derivative. The best agreement with the perceptual classification was 90% attained by the Sakoe-Chiba algorithm for the low frequency contours alone.
Tchagang, Alain B; Phan, Sieu; Famili, Fazel; Shearer, Heather; Fobert, Pierre; Huang, Yi; Zou, Jitao; Huang, Daiqing; Cutler, Adrian; Liu, Ziying; Pan, Youlian
2012-04-04
Nowadays, it is possible to collect expression levels of a set of genes from a set of biological samples during a series of time points. Such data have three dimensions: gene-sample-time (GST). Thus they are called 3D microarray gene expression data. To take advantage of the 3D data collected, and to fully understand the biological knowledge hidden in the GST data, novel subspace clustering algorithms have to be developed to effectively address the biological problem in the corresponding space. We developed a subspace clustering algorithm called Order Preserving Triclustering (OPTricluster), for 3D short time-series data mining. OPTricluster is able to identify 3D clusters with coherent evolution from a given 3D dataset using a combinatorial approach on the sample dimension, and the order preserving (OP) concept on the time dimension. The fusion of the two methodologies allows one to study similarities and differences between samples in terms of their temporal expression profile. OPTricluster has been successfully applied to four case studies: immune response in mice infected by malaria (Plasmodium chabaudi), systemic acquired resistance in Arabidopsis thaliana, similarities and differences between inner and outer cotyledon in Brassica napus during seed development, and to Brassica napus whole seed development. These studies showed that OPTricluster is robust to noise and is able to detect the similarities and differences between biological samples. Our analysis showed that OPTricluster generally outperforms other well known clustering algorithms such as the TRICLUSTER, gTRICLUSTER and K-means; it is robust to noise and can effectively mine the biological knowledge hidden in the 3D short time-series gene expression data.
NASA Astrophysics Data System (ADS)
Qi, Xingqin; Song, Huimin; Wu, Jianliang; Fuller, Edgar; Luo, Rong; Zhang, Cun-Quan
2017-09-01
Clustering algorithms for unsigned social networks which have only positive edges have been studied intensively. However, when a network has like/dislike, love/hate, respect/disrespect, or trust/distrust relationships, unsigned social networks with only positive edges are inadequate. Thus we model such kind of networks as signed networks which can have both negative and positive edges. Detecting the cluster structures of signed networks is much harder than for unsigned networks, because it not only requires that positive edges within clusters are as many as possible, but also requires that negative edges between clusters are as many as possible. Currently, we have few clustering algorithms for signed networks, and most of them requires the number of final clusters as an input while it is actually hard to predict beforehand. In this paper, we will propose a novel clustering algorithm called Eb &D for signed networks, where both the betweenness of edges and the density of subgraphs are used to detect cluster structures. A hierarchically nested system will be constructed to illustrate the inclusion relationships of clusters. To show the validity and efficiency of Eb &D, we test it on several classical social networks and also hundreds of synthetic data sets, and all obtain better results compared with other methods. The biggest advantage of Eb &D compared with other methods is that the number of clusters do not need to be known prior.
Emanuele, Vincent A; Panicker, Gitika; Gurbaxani, Brian M; Lin, Jin-Mann S; Unger, Elizabeth R
2012-01-01
SELDI-TOF mass spectrometer's compact size and automated, high throughput design have been attractive to clinical researchers, and the platform has seen steady-use in biomarker studies. Despite new algorithms and preprocessing pipelines that have been developed to address reproducibility issues, visual inspection of the results of SELDI spectra preprocessing by the best algorithms still shows miscalled peaks and systematic sources of error. This suggests that there continues to be problems with SELDI preprocessing. In this work, we study the preprocessing of SELDI in detail and introduce improvements. While many algorithms, including the vendor supplied software, can identify peak clusters of specific mass (or m/z) in groups of spectra with high specificity and low false discover rate (FDR), the algorithms tend to underperform estimating the exact prevalence and intensity of peaks in those clusters. Thus group differences that at first appear very strong are shown, after careful and laborious hand inspection of the spectra, to be less than significant. Here we introduce a wavelet/neural network based algorithm which mimics what a team of expert, human users would call for peaks in each of several hundred spectra in a typical SELDI clinical study. The wavelet denoising part of the algorithm optimally smoothes the signal in each spectrum according to an improved suite of signal processing algorithms previously reported (the LibSELDI toolbox under development). The neural network part of the algorithm combines those results with the raw signal and a training dataset of expertly called peaks, to call peaks in a test set of spectra with approximately 95% accuracy. The new method was applied to data collected from a study of cervical mucus for the early detection of cervical cancer in HPV infected women. The method shows promise in addressing the ongoing SELDI reproducibility issues.
A segmentation/clustering model for the analysis of array CGH data.
Picard, F; Robin, S; Lebarbier, E; Daudin, J-J
2007-09-01
Microarray-CGH (comparative genomic hybridization) experiments are used to detect and map chromosomal imbalances. A CGH profile can be viewed as a succession of segments that represent homogeneous regions in the genome whose representative sequences share the same relative copy number on average. Segmentation methods constitute a natural framework for the analysis, but they do not provide a biological status for the detected segments. We propose a new model for this segmentation/clustering problem, combining a segmentation model with a mixture model. We present a new hybrid algorithm called dynamic programming-expectation maximization (DP-EM) to estimate the parameters of the model by maximum likelihood. This algorithm combines DP and the EM algorithm. We also propose a model selection heuristic to select the number of clusters and the number of segments. An example of our procedure is presented, based on publicly available data sets. We compare our method to segmentation methods and to hidden Markov models, and we show that the new segmentation/clustering model is a promising alternative that can be applied in the more general context of signal processing.
Sparse subspace clustering for data with missing entries and high-rank matrix completion.
Fan, Jicong; Chow, Tommy W S
2017-09-01
Many methods have recently been proposed for subspace clustering, but they are often unable to handle incomplete data because of missing entries. Using matrix completion methods to recover missing entries is a common way to solve the problem. Conventional matrix completion methods require that the matrix should be of low-rank intrinsically, but most matrices are of high-rank or even full-rank in practice, especially when the number of subspaces is large. In this paper, a new method called Sparse Representation with Missing Entries and Matrix Completion is proposed to solve the problems of incomplete-data subspace clustering and high-rank matrix completion. The proposed algorithm alternately computes the matrix of sparse representation coefficients and recovers the missing entries of a data matrix. The proposed algorithm recovers missing entries through minimizing the representation coefficients, representation errors, and matrix rank. Thorough experimental study and comparative analysis based on synthetic data and natural images were conducted. The presented results demonstrate that the proposed algorithm is more effective in subspace clustering and matrix completion compared with other existing methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Using clustering and a modified classification algorithm for automatic text summarization
NASA Astrophysics Data System (ADS)
Aries, Abdelkrime; Oufaida, Houda; Nouali, Omar
2013-01-01
In this paper we describe a modified classification method destined for extractive summarization purpose. The classification in this method doesn't need a learning corpus; it uses the input text to do that. First, we cluster the document sentences to exploit the diversity of topics, then we use a learning algorithm (here we used Naive Bayes) on each cluster considering it as a class. After obtaining the classification model, we calculate the score of a sentence in each class, using a scoring model derived from classification algorithm. These scores are used, then, to reorder the sentences and extract the first ones as the output summary. We conducted some experiments using a corpus of scientific papers, and we have compared our results to another summarization system called UNIS.1 Also, we experiment the impact of clustering threshold tuning, on the resulted summary, as well as the impact of adding more features to the classifier. We found that this method is interesting, and gives good performance, and the addition of new features (which is simple using this method) can improve summary's accuracy.
Improving Electronic Sensor Reliability by Robust Outlier Screening
Moreno-Lizaranzu, Manuel J.; Cuesta, Federico
2013-01-01
Electronic sensors are widely used in different application areas, and in some of them, such as automotive or medical equipment, they must perform with an extremely low defect rate. Increasing reliability is paramount. Outlier detection algorithms are a key component in screening latent defects and decreasing the number of customer quality incidents (CQIs). This paper focuses on new spatial algorithms (Good Die in a Bad Cluster with Statistical Bins (GDBC SB) and Bad Bin in a Bad Cluster (BBBC)) and an advanced outlier screening method, called Robust Dynamic Part Averaging Testing (RDPAT), as well as two practical improvements, which significantly enhance existing algorithms. Those methods have been used in production in Freescale® Semiconductor probe factories around the world for several years. Moreover, a study was conducted with production data of 289,080 dice with 26 CQIs to determine and compare the efficiency and effectiveness of all these algorithms in identifying CQIs. PMID:24113682
Improving electronic sensor reliability by robust outlier screening.
Moreno-Lizaranzu, Manuel J; Cuesta, Federico
2013-10-09
Electronic sensors are widely used in different application areas, and in some of them, such as automotive or medical equipment, they must perform with an extremely low defect rate. Increasing reliability is paramount. Outlier detection algorithms are a key component in screening latent defects and decreasing the number of customer quality incidents (CQIs). This paper focuses on new spatial algorithms (Good Die in a Bad Cluster with Statistical Bins (GDBC SB) and Bad Bin in a Bad Cluster (BBBC)) and an advanced outlier screening method, called Robust Dynamic Part Averaging Testing (RDPAT), as well as two practical improvements, which significantly enhance existing algorithms. Those methods have been used in production in Freescale® Semiconductor probe factories around the world for several years. Moreover, a study was conducted with production data of 289,080 dice with 26 CQIs to determine and compare the efficiency and effectiveness of all these algorithms in identifying CQIs.
Open-Source Sequence Clustering Methods Improve the State Of the Art.
Kopylova, Evguenia; Navas-Molina, Jose A; Mercier, Céline; Xu, Zhenjiang Zech; Mahé, Frédéric; He, Yan; Zhou, Hong-Wei; Rognes, Torbjørn; Caporaso, J Gregory; Knight, Rob
2016-01-01
Sequence clustering is a common early step in amplicon-based microbial community analysis, when raw sequencing reads are clustered into operational taxonomic units (OTUs) to reduce the run time of subsequent analysis steps. Here, we evaluated the performance of recently released state-of-the-art open-source clustering software products, namely, OTUCLUST, Swarm, SUMACLUST, and SortMeRNA, against current principal options (UCLUST and USEARCH) in QIIME, hierarchical clustering methods in mothur, and USEARCH's most recent clustering algorithm, UPARSE. All the latest open-source tools showed promising results, reporting up to 60% fewer spurious OTUs than UCLUST, indicating that the underlying clustering algorithm can vastly reduce the number of these derived OTUs. Furthermore, we observed that stringent quality filtering, such as is done in UPARSE, can cause a significant underestimation of species abundance and diversity, leading to incorrect biological results. Swarm, SUMACLUST, and SortMeRNA have been included in the QIIME 1.9.0 release. IMPORTANCE Massive collections of next-generation sequencing data call for fast, accurate, and easily accessible bioinformatics algorithms to perform sequence clustering. A comprehensive benchmark is presented, including open-source tools and the popular USEARCH suite. Simulated, mock, and environmental communities were used to analyze sensitivity, selectivity, species diversity (alpha and beta), and taxonomic composition. The results demonstrate that recent clustering algorithms can significantly improve accuracy and preserve estimated diversity without the application of aggressive filtering. Moreover, these tools are all open source, apply multiple levels of multithreading, and scale to the demands of modern next-generation sequencing data, which is essential for the analysis of massive multidisciplinary studies such as the Earth Microbiome Project (EMP) (J. A. Gilbert, J. K. Jansson, and R. Knight, BMC Biol 12:69, 2014, http://dx.doi.org/10.1186/s12915-014-0069-1).
e-DMDAV: A new privacy preserving algorithm for wearable enterprise information systems
NASA Astrophysics Data System (ADS)
Zhang, Zhenjiang; Wang, Xiaoni; Uden, Lorna; Zhang, Peng; Zhao, Yingsi
2018-04-01
Wearable devices have been widely used in many fields to improve the quality of people's lives. More and more data on individuals and businesses are collected by statistical organizations though those devices. Almost all of this data holds confidential information. Statistical Disclosure Control (SDC) seeks to protect statistical data in such a way that it can be released without giving away confidential information that can be linked to specific individuals or entities. The MDAV (Maximum Distance to Average Vector) algorithm is an efficient micro-aggregation algorithm belonging to SDC. However, the MDAV algorithm cannot survive homogeneity and background knowledge attacks because it was designed for static numerical data. This paper proposes a systematic dynamic-updating anonymity algorithm based on MDAV called the e-DMDAV algorithm. This algorithm introduces a new parameter and a table to ensure that the k records in one cluster with the range of the distinct values in each cluster is no less than e for numerical and non-numerical datasets. This new algorithm has been evaluated and compared with the MDAV algorithm. The simulation results show that the new algorithm outperforms MDAV in terms of minimizing distortion and disclosure risk with a similar computational cost.
Improved Gravitation Field Algorithm and Its Application in Hierarchical Clustering
Zheng, Ming; Sun, Ying; Liu, Gui-xia; Zhou, You; Zhou, Chun-guang
2012-01-01
Background Gravitation field algorithm (GFA) is a new optimization algorithm which is based on an imitation of natural phenomena. GFA can do well both for searching global minimum and multi-minima in computational biology. But GFA needs to be improved for increasing efficiency, and modified for applying to some discrete data problems in system biology. Method An improved GFA called IGFA was proposed in this paper. Two parts were improved in IGFA. The first one is the rule of random division, which is a reasonable strategy and makes running time shorter. The other one is rotation factor, which can improve the accuracy of IGFA. And to apply IGFA to the hierarchical clustering, the initial part and the movement operator were modified. Results Two kinds of experiments were used to test IGFA. And IGFA was applied to hierarchical clustering. The global minimum experiment was used with IGFA, GFA, GA (genetic algorithm) and SA (simulated annealing). Multi-minima experiment was used with IGFA and GFA. The two experiments results were compared with each other and proved the efficiency of IGFA. IGFA is better than GFA both in accuracy and running time. For the hierarchical clustering, IGFA is used to optimize the smallest distance of genes pairs, and the results were compared with GA and SA, singular-linkage clustering, UPGMA. The efficiency of IGFA is proved. PMID:23173043
KANTS: a stigmergic ant algorithm for cluster analysis and swarm art.
Fernandes, Carlos M; Mora, Antonio M; Merelo, Juan J; Rosa, Agostinho C
2014-06-01
KANTS is a swarm intelligence clustering algorithm inspired by the behavior of social insects. It uses stigmergy as a strategy for clustering large datasets and, as a result, displays a typical behavior of complex systems: self-organization and global patterns emerging from the local interaction of simple units. This paper introduces a simplified version of KANTS and describes recent experiments with the algorithm in the context of a contemporary artistic and scientific trend called swarm art, a type of generative art in which swarm intelligence systems are used to create artwork or ornamental objects. KANTS is used here for generating color drawings from the input data that represent real-world phenomena, such as electroencephalogram sleep data. However, the main proposal of this paper is an art project based on well-known abstract paintings, from which the chromatic values are extracted and used as input. Colors and shapes are therefore reorganized by KANTS, which generates its own interpretation of the original artworks. The project won the 2012 Evolutionary Art, Design, and Creativity Competition.
Wang, Xueyi
2012-02-08
The k-nearest neighbors (k-NN) algorithm is a widely used machine learning method that finds nearest neighbors of a test object in a feature space. We present a new exact k-NN algorithm called kMkNN (k-Means for k-Nearest Neighbors) that uses the k-means clustering and the triangle inequality to accelerate the searching for nearest neighbors in a high dimensional space. The kMkNN algorithm has two stages. In the buildup stage, instead of using complex tree structures such as metric trees, kd-trees, or ball-tree, kMkNN uses a simple k-means clustering method to preprocess the training dataset. In the searching stage, given a query object, kMkNN finds nearest training objects starting from the nearest cluster to the query object and uses the triangle inequality to reduce the distance calculations. Experiments show that the performance of kMkNN is surprisingly good compared to the traditional k-NN algorithm and tree-based k-NN algorithms such as kd-trees and ball-trees. On a collection of 20 datasets with up to 10(6) records and 10(4) dimensions, kMkNN shows a 2-to 80-fold reduction of distance calculations and a 2- to 60-fold speedup over the traditional k-NN algorithm for 16 datasets. Furthermore, kMkNN performs significant better than a kd-tree based k-NN algorithm for all datasets and performs better than a ball-tree based k-NN algorithm for most datasets. The results show that kMkNN is effective for searching nearest neighbors in high dimensional spaces.
PuReD-MCL: a graph-based PubMed document clustering methodology.
Theodosiou, T; Darzentas, N; Angelis, L; Ouzounis, C A
2008-09-01
Biomedical literature is the principal repository of biomedical knowledge, with PubMed being the most complete database collecting, organizing and analyzing such textual knowledge. There are numerous efforts that attempt to exploit this information by using text mining and machine learning techniques. We developed a novel approach, called PuReD-MCL (Pubmed Related Documents-MCL), which is based on the graph clustering algorithm MCL and relevant resources from PubMed. PuReD-MCL avoids using natural language processing (NLP) techniques directly; instead, it takes advantage of existing resources, available from PubMed. PuReD-MCL then clusters documents efficiently using the MCL graph clustering algorithm, which is based on graph flow simulation. This process allows users to analyse the results by highlighting important clues, and finally to visualize the clusters and all relevant information using an interactive graph layout algorithm, for instance BioLayout Express 3D. The methodology was applied to two different datasets, previously used for the validation of the document clustering tool TextQuest. The first dataset involves the organisms Escherichia coli and yeast, whereas the second is related to Drosophila development. PuReD-MCL successfully reproduces the annotated results obtained from TextQuest, while at the same time provides additional insights into the clusters and the corresponding documents. Source code in perl and R are available from http://tartara.csd.auth.gr/~theodos/
NASA Astrophysics Data System (ADS)
Pasquato, Mario; Chung, Chul
2016-05-01
Context. Machine-learning (ML) solves problems by learning patterns from data with limited or no human guidance. In astronomy, ML is mainly applied to large observational datasets, e.g. for morphological galaxy classification. Aims: We apply ML to gravitational N-body simulations of star clusters that are either formed by merging two progenitors or evolved in isolation, planning to later identify globular clusters (GCs) that may have a history of merging from observational data. Methods: We create mock-observations from simulated GCs, from which we measure a set of parameters (also called features in the machine-learning field). After carrying out dimensionality reduction on the feature space, the resulting datapoints are fed in to various classification algorithms. Using repeated random subsampling validation, we check whether the groups identified by the algorithms correspond to the underlying physical distinction between mergers and monolithically evolved simulations. Results: The three algorithms we considered (C5.0 trees, k-nearest neighbour, and support-vector machines) all achieve a test misclassification rate of about 10% without parameter tuning, with support-vector machines slightly outperforming the others. The first principal component of feature space correlates with cluster concentration. If we exclude it from the regression, the performance of the algorithms is only slightly reduced.
Wright, Mark H.; Tung, Chih-Wei; Zhao, Keyan; Reynolds, Andy; McCouch, Susan R.; Bustamante, Carlos D.
2010-01-01
Motivation: The development of new high-throughput genotyping products requires a significant investment in testing and training samples to evaluate and optimize the product before it can be used reliably on new samples. One reason for this is current methods for automated calling of genotypes are based on clustering approaches which require a large number of samples to be analyzed simultaneously, or an extensive training dataset to seed clusters. In systems where inbred samples are of primary interest, current clustering approaches perform poorly due to the inability to clearly identify a heterozygote cluster. Results: As part of the development of two custom single nucleotide polymorphism genotyping products for Oryza sativa (domestic rice), we have developed a new genotype calling algorithm called ‘ALCHEMY’ based on statistical modeling of the raw intensity data rather than modelless clustering. A novel feature of the model is the ability to estimate and incorporate inbreeding information on a per sample basis allowing accurate genotyping of both inbred and heterozygous samples even when analyzed simultaneously. Since clustering is not used explicitly, ALCHEMY performs well on small sample sizes with accuracy exceeding 99% with as few as 18 samples. Availability: ALCHEMY is available for both commercial and academic use free of charge and distributed under the GNU General Public License at http://alchemy.sourceforge.net/ Contact: mhw6@cornell.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20926420
Crowded Cluster Cores. Algorithms for Deblending in Dark Energy Survey Images
Zhang, Yuanyuan; McKay, Timothy A.; Bertin, Emmanuel; ...
2015-10-26
Deep optical images are often crowded with overlapping objects. We found that this is especially true in the cores of galaxy clusters, where images of dozens of galaxies may lie atop one another. Accurate measurements of cluster properties require deblending algorithms designed to automatically extract a list of individual objects and decide what fraction of the light in each pixel comes from each object. In this article, we introduce a new software tool called the Gradient And Interpolation based (GAIN) deblender. GAIN is used as a secondary deblender to improve the separation of overlapping objects in galaxy cluster cores inmore » Dark Energy Survey images. It uses image intensity gradients and an interpolation technique originally developed to correct flawed digital images. Our paper is dedicated to describing the algorithm of the GAIN deblender and its applications, but we additionally include modest tests of the software based on real Dark Energy Survey co-add images. GAIN helps to extract an unbiased photometry measurement for blended sources and improve detection completeness, while introducing few spurious detections. When applied to processed Dark Energy Survey data, GAIN serves as a useful quick fix when a high level of deblending is desired.« less
Clustering by soft-constraint affinity propagation: applications to gene-expression data.
Leone, Michele; Sumedha; Weigt, Martin
2007-10-15
Similarity-measure-based clustering is a crucial problem appearing throughout scientific data analysis. Recently, a powerful new algorithm called Affinity Propagation (AP) based on message-passing techniques was proposed by Frey and Dueck (2007a). In AP, each cluster is identified by a common exemplar all other data points of the same cluster refer to, and exemplars have to refer to themselves. Albeit its proved power, AP in its present form suffers from a number of drawbacks. The hard constraint of having exactly one exemplar per cluster restricts AP to classes of regularly shaped clusters, and leads to suboptimal performance, e.g. in analyzing gene expression data. This limitation can be overcome by relaxing the AP hard constraints. A new parameter controls the importance of the constraints compared to the aim of maximizing the overall similarity, and allows to interpolate between the simple case where each data point selects its closest neighbor as an exemplar and the original AP. The resulting soft-constraint affinity propagation (SCAP) becomes more informative, accurate and leads to more stable clustering. Even though a new a priori free parameter is introduced, the overall dependence of the algorithm on external tuning is reduced, as robustness is increased and an optimal strategy for parameter selection emerges more naturally. SCAP is tested on biological benchmark data, including in particular microarray data related to various cancer types. We show that the algorithm efficiently unveils the hierarchical cluster structure present in the data sets. Further on, it allows to extract sparse gene expression signatures for each cluster.
Biclustering of gene expression data using reactive greedy randomized adaptive search procedure.
Dharan, Smitha; Nair, Achuthsankar S
2009-01-30
Biclustering algorithms belong to a distinct class of clustering algorithms that perform simultaneous clustering of both rows and columns of the gene expression matrix and can be a very useful analysis tool when some genes have multiple functions and experimental conditions are diverse. Cheng and Church have introduced a measure called mean squared residue score to evaluate the quality of a bicluster and has become one of the most popular measures to search for biclusters. In this paper, we review basic concepts of the metaheuristics Greedy Randomized Adaptive Search Procedure (GRASP)-construction and local search phases and propose a new method which is a variant of GRASP called Reactive Greedy Randomized Adaptive Search Procedure (Reactive GRASP) to detect significant biclusters from large microarray datasets. The method has two major steps. First, high quality bicluster seeds are generated by means of k-means clustering. In the second step, these seeds are grown using the Reactive GRASP, in which the basic parameter that defines the restrictiveness of the candidate list is self-adjusted, depending on the quality of the solutions found previously. We performed statistical and biological validations of the biclusters obtained and evaluated the method against the results of basic GRASP and as well as with the classic work of Cheng and Church. The experimental results indicate that the Reactive GRASP approach outperforms the basic GRASP algorithm and Cheng and Church approach. The Reactive GRASP approach for the detection of significant biclusters is robust and does not require calibration efforts.
A multiple-feature and multiple-kernel scene segmentation algorithm for humanoid robot.
Liu, Zhi; Xu, Shuqiong; Zhang, Yun; Chen, Chun Lung Philip
2014-11-01
This technical correspondence presents a multiple-feature and multiple-kernel support vector machine (MFMK-SVM) methodology to achieve a more reliable and robust segmentation performance for humanoid robot. The pixel wise intensity, gradient, and C1 SMF features are extracted via the local homogeneity model and Gabor filter, which would be used as inputs of MFMK-SVM model. It may provide multiple features of the samples for easier implementation and efficient computation of MFMK-SVM model. A new clustering method, which is called feature validity-interval type-2 fuzzy C-means (FV-IT2FCM) clustering algorithm, is proposed by integrating a type-2 fuzzy criterion in the clustering optimization process to improve the robustness and reliability of clustering results by the iterative optimization. Furthermore, the clustering validity is employed to select the training samples for the learning of the MFMK-SVM model. The MFMK-SVM scene segmentation method is able to fully take advantage of the multiple features of scene image and the ability of multiple kernels. Experiments on the BSDS dataset and real natural scene images demonstrate the superior performance of our proposed method.
Speckle reduction of OCT images using an adaptive cluster-based filtering
NASA Astrophysics Data System (ADS)
Adabi, Saba; Rashedi, Elaheh; Conforto, Silvia; Mehregan, Darius; Xu, Qiuyun; Nasiriavanaki, Mohammadreza
2017-02-01
Optical coherence tomography (OCT) has become a favorable device in the dermatology discipline due to its moderate resolution and penetration depth. OCT images however contain grainy pattern, called speckle, due to the broadband source that has been used in the configuration of OCT. So far, a variety of filtering techniques is introduced to reduce speckle in OCT images. Most of these methods are generic and can be applied to OCT images of different tissues. In this paper, we present a method for speckle reduction of OCT skin images. Considering the architectural structure of skin layers, it seems that a skin image can benefit from being segmented in to differentiable clusters, and being filtered separately in each cluster by using a clustering method and filtering methods such as Wiener. The proposed algorithm was tested on an optical solid phantom with predetermined optical properties. The algorithm was also tested on healthy skin images. The results show that the cluster-based filtering method can reduce the speckle and increase the signal-to-noise ratio and contrast while preserving the edges in the image.
A Parametric k-Means Algorithm
Tarpey, Thaddeus
2007-01-01
Summary The k points that optimally represent a distribution (usually in terms of a squared error loss) are called the k principal points. This paper presents a computationally intensive method that automatically determines the principal points of a parametric distribution. Cluster means from the k-means algorithm are nonparametric estimators of principal points. A parametric k-means approach is introduced for estimating principal points by running the k-means algorithm on a very large simulated data set from a distribution whose parameters are estimated using maximum likelihood. Theoretical and simulation results are presented comparing the parametric k-means algorithm to the usual k-means algorithm and an example on determining sizes of gas masks is used to illustrate the parametric k-means algorithm. PMID:17917692
What to Do When K-Means Clustering Fails: A Simple yet Principled Alternative Algorithm.
Raykov, Yordan P; Boukouvalas, Alexis; Baig, Fahd; Little, Max A
The K-means algorithm is one of the most popular clustering algorithms in current use as it is relatively fast yet simple to understand and deploy in practice. Nevertheless, its use entails certain restrictive assumptions about the data, the negative consequences of which are not always immediately apparent, as we demonstrate. While more flexible algorithms have been developed, their widespread use has been hindered by their computational and technical complexity. Motivated by these considerations, we present a flexible alternative to K-means that relaxes most of the assumptions, whilst remaining almost as fast and simple. This novel algorithm which we call MAP-DP (maximum a-posteriori Dirichlet process mixtures), is statistically rigorous as it is based on nonparametric Bayesian Dirichlet process mixture modeling. This approach allows us to overcome most of the limitations imposed by K-means. The number of clusters K is estimated from the data instead of being fixed a-priori as in K-means. In addition, while K-means is restricted to continuous data, the MAP-DP framework can be applied to many kinds of data, for example, binary, count or ordinal data. Also, it can efficiently separate outliers from the data. This additional flexibility does not incur a significant computational overhead compared to K-means with MAP-DP convergence typically achieved in the order of seconds for many practical problems. Finally, in contrast to K-means, since the algorithm is based on an underlying statistical model, the MAP-DP framework can deal with missing data and enables model testing such as cross validation in a principled way. We demonstrate the simplicity and effectiveness of this algorithm on the health informatics problem of clinical sub-typing in a cluster of diseases known as parkinsonism.
What to Do When K-Means Clustering Fails: A Simple yet Principled Alternative Algorithm
Baig, Fahd; Little, Max A.
2016-01-01
The K-means algorithm is one of the most popular clustering algorithms in current use as it is relatively fast yet simple to understand and deploy in practice. Nevertheless, its use entails certain restrictive assumptions about the data, the negative consequences of which are not always immediately apparent, as we demonstrate. While more flexible algorithms have been developed, their widespread use has been hindered by their computational and technical complexity. Motivated by these considerations, we present a flexible alternative to K-means that relaxes most of the assumptions, whilst remaining almost as fast and simple. This novel algorithm which we call MAP-DP (maximum a-posteriori Dirichlet process mixtures), is statistically rigorous as it is based on nonparametric Bayesian Dirichlet process mixture modeling. This approach allows us to overcome most of the limitations imposed by K-means. The number of clusters K is estimated from the data instead of being fixed a-priori as in K-means. In addition, while K-means is restricted to continuous data, the MAP-DP framework can be applied to many kinds of data, for example, binary, count or ordinal data. Also, it can efficiently separate outliers from the data. This additional flexibility does not incur a significant computational overhead compared to K-means with MAP-DP convergence typically achieved in the order of seconds for many practical problems. Finally, in contrast to K-means, since the algorithm is based on an underlying statistical model, the MAP-DP framework can deal with missing data and enables model testing such as cross validation in a principled way. We demonstrate the simplicity and effectiveness of this algorithm on the health informatics problem of clinical sub-typing in a cluster of diseases known as parkinsonism. PMID:27669525
Enhancing PC Cluster-Based Parallel Branch-and-Bound Algorithms for the Graph Coloring Problem
NASA Astrophysics Data System (ADS)
Taoka, Satoshi; Takafuji, Daisuke; Watanabe, Toshimasa
A branch-and-bound algorithm (BB for short) is the most general technique to deal with various combinatorial optimization problems. Even if it is used, computation time is likely to increase exponentially. So we consider its parallelization to reduce it. It has been reported that the computation time of a parallel BB heavily depends upon node-variable selection strategies. And, in case of a parallel BB, it is also necessary to prevent increase in communication time. So, it is important to pay attention to how many and what kind of nodes are to be transferred (called sending-node selection strategy). In this paper, for the graph coloring problem, we propose some sending-node selection strategies for a parallel BB algorithm by adopting MPI for parallelization and experimentally evaluate how these strategies affect computation time of a parallel BB on a PC cluster network.
Ma, Tao; Wang, Fen; Cheng, Jianjun; Yu, Yang; Chen, Xiaoyun
2016-01-01
The development of intrusion detection systems (IDS) that are adapted to allow routers and network defence systems to detect malicious network traffic disguised as network protocols or normal access is a critical challenge. This paper proposes a novel approach called SCDNN, which combines spectral clustering (SC) and deep neural network (DNN) algorithms. First, the dataset is divided into k subsets based on sample similarity using cluster centres, as in SC. Next, the distance between data points in a testing set and the training set is measured based on similarity features and is fed into the deep neural network algorithm for intrusion detection. Six KDD-Cup99 and NSL-KDD datasets and a sensor network dataset were employed to test the performance of the model. These experimental results indicate that the SCDNN classifier not only performs better than backpropagation neural network (BPNN), support vector machine (SVM), random forest (RF) and Bayes tree models in detection accuracy and the types of abnormal attacks found. It also provides an effective tool of study and analysis of intrusion detection in large networks. PMID:27754380
Ma, Tao; Wang, Fen; Cheng, Jianjun; Yu, Yang; Chen, Xiaoyun
2016-10-13
The development of intrusion detection systems (IDS) that are adapted to allow routers and network defence systems to detect malicious network traffic disguised as network protocols or normal access is a critical challenge. This paper proposes a novel approach called SCDNN, which combines spectral clustering (SC) and deep neural network (DNN) algorithms. First, the dataset is divided into k subsets based on sample similarity using cluster centres, as in SC. Next, the distance between data points in a testing set and the training set is measured based on similarity features and is fed into the deep neural network algorithm for intrusion detection. Six KDD-Cup99 and NSL-KDD datasets and a sensor network dataset were employed to test the performance of the model. These experimental results indicate that the SCDNN classifier not only performs better than backpropagation neural network (BPNN), support vector machine (SVM), random forest (RF) and Bayes tree models in detection accuracy and the types of abnormal attacks found. It also provides an effective tool of study and analysis of intrusion detection in large networks.
Accelerating Information Retrieval from Profile Hidden Markov Model Databases.
Tamimi, Ahmad; Ashhab, Yaqoub; Tamimi, Hashem
2016-01-01
Profile Hidden Markov Model (Profile-HMM) is an efficient statistical approach to represent protein families. Currently, several databases maintain valuable protein sequence information as profile-HMMs. There is an increasing interest to improve the efficiency of searching Profile-HMM databases to detect sequence-profile or profile-profile homology. However, most efforts to enhance searching efficiency have been focusing on improving the alignment algorithms. Although the performance of these algorithms is fairly acceptable, the growing size of these databases, as well as the increasing demand for using batch query searching approach, are strong motivations that call for further enhancement of information retrieval from profile-HMM databases. This work presents a heuristic method to accelerate the current profile-HMM homology searching approaches. The method works by cluster-based remodeling of the database to reduce the search space, rather than focusing on the alignment algorithms. Using different clustering techniques, 4284 TIGRFAMs profiles were clustered based on their similarities. A representative for each cluster was assigned. To enhance sensitivity, we proposed an extended step that allows overlapping among clusters. A validation benchmark of 6000 randomly selected protein sequences was used to query the clustered profiles. To evaluate the efficiency of our approach, speed and recall values were measured and compared with the sequential search approach. Using hierarchical, k-means, and connected component clustering techniques followed by the extended overlapping step, we obtained an average reduction in time of 41%, and an average recall of 96%. Our results demonstrate that representation of profile-HMMs using a clustering-based approach can significantly accelerate data retrieval from profile-HMM databases.
Overlapping Community Detection based on Network Decomposition
NASA Astrophysics Data System (ADS)
Ding, Zhuanlian; Zhang, Xingyi; Sun, Dengdi; Luo, Bin
2016-04-01
Community detection in complex network has become a vital step to understand the structure and dynamics of networks in various fields. However, traditional node clustering and relatively new proposed link clustering methods have inherent drawbacks to discover overlapping communities. Node clustering is inadequate to capture the pervasive overlaps, while link clustering is often criticized due to the high computational cost and ambiguous definition of communities. So, overlapping community detection is still a formidable challenge. In this work, we propose a new overlapping community detection algorithm based on network decomposition, called NDOCD. Specifically, NDOCD iteratively splits the network by removing all links in derived link communities, which are identified by utilizing node clustering technique. The network decomposition contributes to reducing the computation time and noise link elimination conduces to improving the quality of obtained communities. Besides, we employ node clustering technique rather than link similarity measure to discover link communities, thus NDOCD avoids an ambiguous definition of community and becomes less time-consuming. We test our approach on both synthetic and real-world networks. Results demonstrate the superior performance of our approach both in computation time and accuracy compared to state-of-the-art algorithms.
Cake: a bioinformatics pipeline for the integrated analysis of somatic variants in cancer genomes
Rashid, Mamunur; Robles-Espinoza, Carla Daniela; Rust, Alistair G.; Adams, David J.
2013-01-01
Summary: We have developed Cake, a bioinformatics software pipeline that integrates four publicly available somatic variant-calling algorithms to identify single nucleotide variants with higher sensitivity and accuracy than any one algorithm alone. Cake can be run on a high-performance computer cluster or used as a stand-alone application. Availabilty: Cake is open-source and is available from http://cakesomatic.sourceforge.net/ Contact: da1@sanger.ac.uk Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:23803469
CLUSTERnGO: a user-defined modelling platform for two-stage clustering of time-series data.
Fidaner, Işık Barış; Cankorur-Cetinkaya, Ayca; Dikicioglu, Duygu; Kirdar, Betul; Cemgil, Ali Taylan; Oliver, Stephen G
2016-02-01
Simple bioinformatic tools are frequently used to analyse time-series datasets regardless of their ability to deal with transient phenomena, limiting the meaningful information that may be extracted from them. This situation requires the development and exploitation of tailor-made, easy-to-use and flexible tools designed specifically for the analysis of time-series datasets. We present a novel statistical application called CLUSTERnGO, which uses a model-based clustering algorithm that fulfils this need. This algorithm involves two components of operation. Component 1 constructs a Bayesian non-parametric model (Infinite Mixture of Piecewise Linear Sequences) and Component 2, which applies a novel clustering methodology (Two-Stage Clustering). The software can also assign biological meaning to the identified clusters using an appropriate ontology. It applies multiple hypothesis testing to report the significance of these enrichments. The algorithm has a four-phase pipeline. The application can be executed using either command-line tools or a user-friendly Graphical User Interface. The latter has been developed to address the needs of both specialist and non-specialist users. We use three diverse test cases to demonstrate the flexibility of the proposed strategy. In all cases, CLUSTERnGO not only outperformed existing algorithms in assigning unique GO term enrichments to the identified clusters, but also revealed novel insights regarding the biological systems examined, which were not uncovered in the original publications. The C++ and QT source codes, the GUI applications for Windows, OS X and Linux operating systems and user manual are freely available for download under the GNU GPL v3 license at http://www.cmpe.boun.edu.tr/content/CnG. sgo24@cam.ac.uk Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.
A Fast Implementation of the ISOCLUS Algorithm
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess; Mount, David M.; Netanyahu, Nathan S.; LeMoigne, Jacqueline
2003-01-01
Unsupervised clustering is a fundamental building block in numerous image processing applications. One of the most popular and widely used clustering schemes for remote sensing applications is the ISOCLUS algorithm, which is based on the ISODATA method. The algorithm is given a set of n data points in d-dimensional space, an integer k indicating the initial number of clusters, and a number of additional parameters. The general goal is to compute the coordinates of a set of cluster centers in d-space, such that those centers minimize the mean squared distance from each data point to its nearest center. This clustering algorithm is similar to another well-known clustering method, called k-means. One significant feature of ISOCLUS over k-means is that the actual number of clusters reported might be fewer or more than the number supplied as part of the input. The algorithm uses different heuristics to determine whether to merge lor split clusters. As ISOCLUS can run very slowly, particularly on large data sets, there has been a growing .interest in the remote sensing community in computing it efficiently. We have developed a faster implementation of the ISOCLUS algorithm. Our improvement is based on a recent acceleration to the k-means algorithm of Kanungo, et al. They showed that, by using a kd-tree data structure for storing the data, it is possible to reduce the running time of k-means. We have adapted this method for the ISOCLUS algorithm, and we show that it is possible to achieve essentially the same results as ISOCLUS on large data sets, but with significantly lower running times. This adaptation involves computing a number of cluster statistics that are needed for ISOCLUS but not for k-means. Both the k-means and ISOCLUS algorithms are based on iterative schemes, in which nearest neighbors are calculated until some convergence criterion is satisfied. Each iteration requires that the nearest center for each data point be computed. Naively, this requires O(kn) time, where k denotes the current number of centers. Traditional techniques for accelerating nearest neighbor searching involve storing the k centers in a data structure. However, because of the iterative nature of the algorithm, this data structure would need to be rebuilt with each new iteration. Our approach is to store the data points in a kd-tree data structure. The assignment of points to nearest neighbors is carried out by a filtering process, which successively eliminates centers that can not possibly be the nearest neighbor for a given region of space. This algorithm is significantly faster, because large groups of data points can be assigned to their nearest center in a single operation. Preliminary results on a number of real Landsat datasets show that our revised ISOCLUS-like scheme runs about twice as fast.
Automated modal parameter estimation using correlation analysis and bootstrap sampling
NASA Astrophysics Data System (ADS)
Yaghoubi, Vahid; Vakilzadeh, Majid K.; Abrahamsson, Thomas J. S.
2018-02-01
The estimation of modal parameters from a set of noisy measured data is a highly judgmental task, with user expertise playing a significant role in distinguishing between estimated physical and noise modes of a test-piece. Various methods have been developed to automate this procedure. The common approach is to identify models with different orders and cluster similar modes together. However, most proposed methods based on this approach suffer from high-dimensional optimization problems in either the estimation or clustering step. To overcome this problem, this study presents an algorithm for autonomous modal parameter estimation in which the only required optimization is performed in a three-dimensional space. To this end, a subspace-based identification method is employed for the estimation and a non-iterative correlation-based method is used for the clustering. This clustering is at the heart of the paper. The keys to success are correlation metrics that are able to treat the problems of spatial eigenvector aliasing and nonunique eigenvectors of coalescent modes simultaneously. The algorithm commences by the identification of an excessively high-order model from frequency response function test data. The high number of modes of this model provides bases for two subspaces: one for likely physical modes of the tested system and one for its complement dubbed the subspace of noise modes. By employing the bootstrap resampling technique, several subsets are generated from the same basic dataset and for each of them a model is identified to form a set of models. Then, by correlation analysis with the two aforementioned subspaces, highly correlated modes of these models which appear repeatedly are clustered together and the noise modes are collected in a so-called Trashbox cluster. Stray noise modes attracted to the mode clusters are trimmed away in a second step by correlation analysis. The final step of the algorithm is a fuzzy c-means clustering procedure applied to a three-dimensional feature space to assign a degree of physicalness to each cluster. The proposed algorithm is applied to two case studies: one with synthetic data and one with real test data obtained from a hammer impact test. The results indicate that the algorithm successfully clusters similar modes and gives a reasonable quantification of the extent to which each cluster is physical.
Salehpour, Mehdi; Behrad, Alireza
2017-10-01
This study proposes a new algorithm for nonrigid coregistration of synthetic aperture radar (SAR) and optical images. The proposed algorithm employs point features extracted by the binary robust invariant scalable keypoints algorithm and a new method called weighted bidirectional matching for initial correspondence. To refine false matches, we assume that the transformation between SAR and optical images is locally rigid. This property is used to refine false matches by assigning scores to matched pairs and clustering local rigid transformations using a two-layer Kohonen network. Finally, the thin plate spline algorithm and mutual information are used for nonrigid coregistration of SAR and optical images.
Biclustering of gene expression data using reactive greedy randomized adaptive search procedure
Dharan, Smitha; Nair, Achuthsankar S
2009-01-01
Background Biclustering algorithms belong to a distinct class of clustering algorithms that perform simultaneous clustering of both rows and columns of the gene expression matrix and can be a very useful analysis tool when some genes have multiple functions and experimental conditions are diverse. Cheng and Church have introduced a measure called mean squared residue score to evaluate the quality of a bicluster and has become one of the most popular measures to search for biclusters. In this paper, we review basic concepts of the metaheuristics Greedy Randomized Adaptive Search Procedure (GRASP)-construction and local search phases and propose a new method which is a variant of GRASP called Reactive Greedy Randomized Adaptive Search Procedure (Reactive GRASP) to detect significant biclusters from large microarray datasets. The method has two major steps. First, high quality bicluster seeds are generated by means of k-means clustering. In the second step, these seeds are grown using the Reactive GRASP, in which the basic parameter that defines the restrictiveness of the candidate list is self-adjusted, depending on the quality of the solutions found previously. Results We performed statistical and biological validations of the biclusters obtained and evaluated the method against the results of basic GRASP and as well as with the classic work of Cheng and Church. The experimental results indicate that the Reactive GRASP approach outperforms the basic GRASP algorithm and Cheng and Church approach. Conclusion The Reactive GRASP approach for the detection of significant biclusters is robust and does not require calibration efforts. PMID:19208127
Evaluation of Potential LSST Spatial Indexing Strategies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikolaev, S; Abdulla, G; Matzke, R
2006-10-13
The LSST requirement for producing alerts in near real-time, and the fact that generating an alert depends on knowing the history of light variations for a given sky position, both imply that the clustering information for all detections is available at any time during the survey. Therefore, any data structure describing clustering of detections in LSST needs to be continuously updated, even as new detections are arriving from the pipeline. We call this use case ''incremental clustering'', to reflect this continuous updating of clustering information. This document describes the evaluation results for several potential LSST incremental clustering strategies, using: (1)more » Neighbors table and zone optimization to store spatial clusters (a.k.a. Jim Grey's, or SDSS algorithm); (2) MySQL built-in R-tree implementation; (3) an external spatial index library which supports a query interface.« less
Topology control algorithm for wireless sensor networks based on Link forwarding
NASA Astrophysics Data System (ADS)
Pucuo, Cairen; Qi, Ai-qin
2018-03-01
The research of topology control could effectively save energy and increase the service life of network based on wireless sensor. In this paper, a arithmetic called LTHC (link transmit hybrid clustering) based on link transmit is proposed. It decreases expenditure of energy by changing the way of cluster-node’s communication. The idea is to establish a link between cluster and SINK node when the cluster is formed, and link-node must be non-cluster. Through the link, cluster sends information to SINK nodes. For the sake of achieving the uniform distribution of energy on the network, prolongate the network survival time, and improve the purpose of communication, the communication will cut down much more expenditure of energy for cluster which away from SINK node. In the two aspects of improving the traffic and network survival time, we find that the LTCH is far superior to the traditional LEACH by experiments.
Scalable Static and Dynamic Community Detection Using Grappolo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halappanavar, Mahantesh; Lu, Hao; Kalyanaraman, Anantharaman
Graph clustering, popularly known as community detection, is a fundamental kernel for several applications of relevance to the Defense Advanced Research Projects Agency’s (DARPA) Hierarchical Identify Verify Exploit (HIVE) Pro- gram. Clusters or communities represent natural divisions within a network that are densely connected within a cluster and sparsely connected to the rest of the network. The need to compute clustering on large scale data necessitates the development of efficient algorithms that can exploit modern architectures that are fundamentally parallel in nature. How- ever, due to their irregular and inherently sequential nature, many of the current algorithms for community detectionmore » are challenging to parallelize. In response to the HIVE Graph Challenge, we present several parallelization heuristics for fast community detection using the Louvain method as the serial template. We implement all the heuristics in a software library called Grappolo. Using the inputs from the HIVE Challenge, we demonstrate superior performance and high quality solutions based on four parallelization heuristics. We use Grappolo on static graphs as the first step towards community detection on streaming graphs.« less
Local Higher-Order Graph Clustering
Yin, Hao; Benson, Austin R.; Leskovec, Jure; Gleich, David F.
2018-01-01
Local graph clustering methods aim to find a cluster of nodes by exploring a small region of the graph. These methods are attractive because they enable targeted clustering around a given seed node and are faster than traditional global graph clustering methods because their runtime does not depend on the size of the input graph. However, current local graph partitioning methods are not designed to account for the higher-order structures crucial to the network, nor can they effectively handle directed networks. Here we introduce a new class of local graph clustering methods that address these issues by incorporating higher-order network information captured by small subgraphs, also called network motifs. We develop the Motif-based Approximate Personalized PageRank (MAPPR) algorithm that finds clusters containing a seed node with minimal motif conductance, a generalization of the conductance metric for network motifs. We generalize existing theory to prove the fast running time (independent of the size of the graph) and obtain theoretical guarantees on the cluster quality (in terms of motif conductance). We also develop a theory of node neighborhoods for finding sets that have small motif conductance, and apply these results to the case of finding good seed nodes to use as input to the MAPPR algorithm. Experimental validation on community detection tasks in both synthetic and real-world networks, shows that our new framework MAPPR outperforms the current edge-based personalized PageRank methodology. PMID:29770258
SAIL: Summation-bAsed Incremental Learning for Information-Theoretic Text Clustering.
Cao, Jie; Wu, Zhiang; Wu, Junjie; Xiong, Hui
2013-04-01
Information-theoretic clustering aims to exploit information-theoretic measures as the clustering criteria. A common practice on this topic is the so-called Info-Kmeans, which performs K-means clustering with KL-divergence as the proximity function. While expert efforts on Info-Kmeans have shown promising results, a remaining challenge is to deal with high-dimensional sparse data such as text corpora. Indeed, it is possible that the centroids contain many zero-value features for high-dimensional text vectors, which leads to infinite KL-divergence values and creates a dilemma in assigning objects to centroids during the iteration process of Info-Kmeans. To meet this challenge, in this paper, we propose a Summation-bAsed Incremental Learning (SAIL) algorithm for Info-Kmeans clustering. Specifically, by using an equivalent objective function, SAIL replaces the computation of KL-divergence by the incremental computation of Shannon entropy. This can avoid the zero-feature dilemma caused by the use of KL-divergence. To improve the clustering quality, we further introduce the variable neighborhood search scheme and propose the V-SAIL algorithm, which is then accelerated by a multithreaded scheme in PV-SAIL. Our experimental results on various real-world text collections have shown that, with SAIL as a booster, the clustering performance of Info-Kmeans can be significantly improved. Also, V-SAIL and PV-SAIL indeed help improve the clustering quality at a lower cost of computation.
Image reconstruction of muon tomographic data using a density-based clustering method
NASA Astrophysics Data System (ADS)
Perry, Kimberly B.
Muons are subatomic particles capable of reaching the Earth's surface before decaying. When these particles collide with an object that has a high atomic number (Z), their path of travel changes substantially. Tracking muon movement through shielded containers can indicate what types of materials lie inside. This thesis proposes using a density-based clustering algorithm called OPTICS to perform image reconstructions using muon tomographic data. The results show that this method is capable of detecting high-Z materials quickly, and can also produce detailed reconstructions with large amounts of data.
A Feature Mining Based Approach for the Classification of Text Documents into Disjoint Classes.
ERIC Educational Resources Information Center
Nieto Sanchez, Salvador; Triantaphyllou, Evangelos; Kraft, Donald
2002-01-01
Proposes a new approach for classifying text documents into two disjoint classes. Highlights include a brief overview of document clustering; a data mining approach called the One Clause at a Time (OCAT) algorithm which is based on mathematical logic; vector space model (VSM); and comparing the OCAT to the VSM. (Author/LRW)
Method for exploratory cluster analysis and visualisation of single-trial ERP ensembles.
Williams, N J; Nasuto, S J; Saddy, J D
2015-07-30
The validity of ensemble averaging on event-related potential (ERP) data has been questioned, due to its assumption that the ERP is identical across trials. Thus, there is a need for preliminary testing for cluster structure in the data. We propose a complete pipeline for the cluster analysis of ERP data. To increase the signal-to-noise (SNR) ratio of the raw single-trials, we used a denoising method based on Empirical Mode Decomposition (EMD). Next, we used a bootstrap-based method to determine the number of clusters, through a measure called the Stability Index (SI). We then used a clustering algorithm based on a Genetic Algorithm (GA) to define initial cluster centroids for subsequent k-means clustering. Finally, we visualised the clustering results through a scheme based on Principal Component Analysis (PCA). After validating the pipeline on simulated data, we tested it on data from two experiments - a P300 speller paradigm on a single subject and a language processing study on 25 subjects. Results revealed evidence for the existence of 6 clusters in one experimental condition from the language processing study. Further, a two-way chi-square test revealed an influence of subject on cluster membership. Our analysis operates on denoised single-trials, the number of clusters are determined in a principled manner and the results are presented through an intuitive visualisation. Given the cluster structure in some experimental conditions, we suggest application of cluster analysis as a preliminary step before ensemble averaging. Copyright © 2015 Elsevier B.V. All rights reserved.
Mohanasundaram, Ranganathan; Periasamy, Pappampalayam Sanmugam
2015-01-01
The current high profile debate with regard to data storage and its growth have become strategic task in the world of networking. It mainly depends on the sensor nodes called producers, base stations, and also the consumers (users and sensor nodes) to retrieve and use the data. The main concern dealt here is to find an optimal data storage position in wireless sensor networks. The works that have been carried out earlier did not utilize swarm intelligence based optimization approaches to find the optimal data storage positions. To achieve this goal, an efficient swam intelligence approach is used to choose suitable positions for a storage node. Thus, hybrid particle swarm optimization algorithm has been used to find the suitable positions for storage nodes while the total energy cost of data transmission is minimized. Clustering-based distributed data storage is utilized to solve clustering problem using fuzzy-C-means algorithm. This research work also considers the data rates and locations of multiple producers and consumers to find optimal data storage positions. The algorithm is implemented in a network simulator and the experimental results show that the proposed clustering and swarm intelligence based ODS strategy is more effective than the earlier approaches.
Neural-network-assisted genetic algorithm applied to silicon clusters
NASA Astrophysics Data System (ADS)
Marim, L. R.; Lemes, M. R.; dal Pino, A.
2003-03-01
Recently, a new optimization procedure that combines the power of artificial neural-networks with the versatility of the genetic algorithm (GA) was introduced. This method, called neural-network-assisted genetic algorithm (NAGA), uses a neural network to restrict the search space and it is expected to speed up the solution of global optimization problems if some previous information is available. In this paper, we have tested NAGA to determine the ground-state geometry of Sin (10⩽n⩽15) according to a tight-binding total-energy method. Our results indicate that NAGA was able to find the desired global minimum of the potential energy for all the test cases and it was at least ten times faster than pure genetic algorithm.
Bacciu, Davide; Starita, Antonina
2008-11-01
Determining a compact neural coding for a set of input stimuli is an issue that encompasses several biological memory mechanisms as well as various artificial neural network models. In particular, establishing the optimal network structure is still an open problem when dealing with unsupervised learning models. In this paper, we introduce a novel learning algorithm, named competitive repetition-suppression (CoRe) learning, inspired by a cortical memory mechanism called repetition suppression (RS). We show how such a mechanism is used, at various levels of the cerebral cortex, to generate compact neural representations of the visual stimuli. From the general CoRe learning model, we derive a clustering algorithm, named CoRe clustering, that can automatically estimate the unknown cluster number from the data without using a priori information concerning the input distribution. We illustrate how CoRe clustering, besides its biological plausibility, posses strong theoretical properties in terms of robustness to noise and outliers, and we provide an error function describing CoRe learning dynamics. Such a description is used to analyze CoRe relationships with the state-of-the art clustering models and to highlight CoRe similitude with rival penalized competitive learning (RPCL), showing how CoRe extends such a model by strengthening the rival penalization estimation by means of loss functions from robust statistics.
Improved Ant Colony Clustering Algorithm and Its Performance Study
Gao, Wei
2016-01-01
Clustering analysis is used in many disciplines and applications; it is an important tool that descriptively identifies homogeneous groups of objects based on attribute values. The ant colony clustering algorithm is a swarm-intelligent method used for clustering problems that is inspired by the behavior of ant colonies that cluster their corpses and sort their larvae. A new abstraction ant colony clustering algorithm using a data combination mechanism is proposed to improve the computational efficiency and accuracy of the ant colony clustering algorithm. The abstraction ant colony clustering algorithm is used to cluster benchmark problems, and its performance is compared with the ant colony clustering algorithm and other methods used in existing literature. Based on similar computational difficulties and complexities, the results show that the abstraction ant colony clustering algorithm produces results that are not only more accurate but also more efficiently determined than the ant colony clustering algorithm and the other methods. Thus, the abstraction ant colony clustering algorithm can be used for efficient multivariate data clustering. PMID:26839533
Co-clustering directed graphs to discover asymmetries and directional communities
Rohe, Karl; Qin, Tai; Yu, Bin
2016-01-01
In directed graphs, relationships are asymmetric and these asymmetries contain essential structural information about the graph. Directed relationships lead to a new type of clustering that is not feasible in undirected graphs. We propose a spectral co-clustering algorithm called di-sim for asymmetry discovery and directional clustering. A Stochastic co-Blockmodel is introduced to show favorable properties of di-sim. To account for the sparse and highly heterogeneous nature of directed networks, di-sim uses the regularized graph Laplacian and projects the rows of the eigenvector matrix onto the sphere. A nodewise asymmetry score and di-sim are used to analyze the clustering asymmetries in the networks of Enron emails, political blogs, and the Caenorhabditis elegans chemical connectome. In each example, a subset of nodes have clustering asymmetries; these nodes send edges to one cluster, but receive edges from another cluster. Such nodes yield insightful information (e.g., communication bottlenecks) about directed networks, but are missed if the analysis ignores edge direction. PMID:27791058
Co-clustering directed graphs to discover asymmetries and directional communities.
Rohe, Karl; Qin, Tai; Yu, Bin
2016-10-21
In directed graphs, relationships are asymmetric and these asymmetries contain essential structural information about the graph. Directed relationships lead to a new type of clustering that is not feasible in undirected graphs. We propose a spectral co-clustering algorithm called di-sim for asymmetry discovery and directional clustering. A Stochastic co-Blockmodel is introduced to show favorable properties of di-sim To account for the sparse and highly heterogeneous nature of directed networks, di-sim uses the regularized graph Laplacian and projects the rows of the eigenvector matrix onto the sphere. A nodewise asymmetry score and di-sim are used to analyze the clustering asymmetries in the networks of Enron emails, political blogs, and the Caenorhabditis elegans chemical connectome. In each example, a subset of nodes have clustering asymmetries; these nodes send edges to one cluster, but receive edges from another cluster. Such nodes yield insightful information (e.g., communication bottlenecks) about directed networks, but are missed if the analysis ignores edge direction.
A novel complex networks clustering algorithm based on the core influence of nodes.
Tong, Chao; Niu, Jianwei; Dai, Bin; Xie, Zhongyu
2014-01-01
In complex networks, cluster structure, identified by the heterogeneity of nodes, has become a common and important topological property. Network clustering methods are thus significant for the study of complex networks. Currently, many typical clustering algorithms have some weakness like inaccuracy and slow convergence. In this paper, we propose a clustering algorithm by calculating the core influence of nodes. The clustering process is a simulation of the process of cluster formation in sociology. The algorithm detects the nodes with core influence through their betweenness centrality, and builds the cluster's core structure by discriminant functions. Next, the algorithm gets the final cluster structure after clustering the rest of the nodes in the network by optimizing method. Experiments on different datasets show that the clustering accuracy of this algorithm is superior to the classical clustering algorithm (Fast-Newman algorithm). It clusters faster and plays a positive role in revealing the real cluster structure of complex networks precisely.
NASA Astrophysics Data System (ADS)
Albirri, E. R.; Sugeng, K. A.; Aldila, D.
2018-04-01
Nowadays, in the modern world, since technology and human civilization start to progress, all city in the world is almost connected. The various places in this world are easier to visit. It is an impact of transportation technology and highway construction. The cities which have been connected can be represented by graph. Graph clustering is one of ways which is used to answer some problems represented by graph. There are some methods in graph clustering to solve the problem spesifically. One of them is Highly Connected Subgraphs (HCS) method. HCS is used to identify cluster based on the graph connectivity k for graph G. The connectivity in graph G is denoted by k(G)> \\frac{n}{2} that n is the total of vertices in G, then it is called as HCS or the cluster. This research used literature review and completed with simulation of program in a software. We modified HCS algorithm by using weighted graph. The modification is located in the Process Phase. Process Phase is used to cut the connected graph G into two subgraphs H and \\bar{H}. We also made a program by using software Octave-401. Then we applied the data of Flight Routes Mapping of One of Airlines in Indonesia to our program.
Engels, Michael F M; Gibbs, Alan C; Jaeger, Edward P; Verbinnen, Danny; Lobanov, Victor S; Agrafiotis, Dimitris K
2006-01-01
We report on the structural comparison of the corporate collections of Johnson & Johnson Pharmaceutical Research & Development (JNJPRD) and 3-Dimensional Pharmaceuticals (3DP), performed in the context of the recent acquisition of 3DP by JNJPRD. The main objective of the study was to assess the druglikeness of the 3DP library and the extent to which it enriched the chemical diversity of the JNJPRD corporate collection. The two databases, at the time of acquisition, collectively contained more than 1.1 million compounds with a clearly defined structural description. The analysis was based on a clustering approach and aimed at providing an intuitive quantitative estimate and visual representation of this enrichment. A novel hierarchical clustering algorithm called divisive k-means was employed in combination with Kelley's cluster-level selection method to partition the combined data set into clusters, and the diversity contribution of each library was evaluated as a function of the relative occupancy of these clusters. Typical 3DP chemotypes enriching the diversity of the JNJPRD collection were catalogued and visualized using a modified maximum common substructure algorithm. The joint collection of JNJPRD and 3DP compounds was also compared to other databases of known medicinally active or druglike compounds. The potential of the methodology for the analysis of very large chemical databases is discussed.
Identifying conserved gene clusters in the presence of homology families.
He, Xin; Goldwasser, Michael H
2005-01-01
The study of conserved gene clusters is important for understanding the forces behind genome organization and evolution, as well as the function of individual genes or gene groups. In this paper, we present a new model and algorithm for identifying conserved gene clusters from pairwise genome comparison. This generalizes a recent model called "gene teams." A gene team is a set of genes that appear homologously in two or more species, possibly in a different order yet with the distance of adjacent genes in the team for each chromosome always no more than a certain threshold. We remove the constraint in the original model that each gene must have a unique occurrence in each chromosome and thus allow the analysis on complex prokaryotic or eukaryotic genomes with extensive paralogs. Our algorithm analyzes a pair of chromosomes in O(mn) time and uses O(m+n) space, where m and n are the number of genes in the respective chromosomes. We demonstrate the utility of our methods by studying two bacterial genomes, E. coli K-12 and B. subtilis. Many of the teams identified by our algorithm correlate with documented E. coli operons, while several others match predicted operons, previously suggested by computational techniques. Our implementation and data are publicly available at euler.slu.edu/ approximately goldwasser/homologyteams/.
Mohanasundaram, Ranganathan; Periasamy, Pappampalayam Sanmugam
2015-01-01
The current high profile debate with regard to data storage and its growth have become strategic task in the world of networking. It mainly depends on the sensor nodes called producers, base stations, and also the consumers (users and sensor nodes) to retrieve and use the data. The main concern dealt here is to find an optimal data storage position in wireless sensor networks. The works that have been carried out earlier did not utilize swarm intelligence based optimization approaches to find the optimal data storage positions. To achieve this goal, an efficient swam intelligence approach is used to choose suitable positions for a storage node. Thus, hybrid particle swarm optimization algorithm has been used to find the suitable positions for storage nodes while the total energy cost of data transmission is minimized. Clustering-based distributed data storage is utilized to solve clustering problem using fuzzy-C-means algorithm. This research work also considers the data rates and locations of multiple producers and consumers to find optimal data storage positions. The algorithm is implemented in a network simulator and the experimental results show that the proposed clustering and swarm intelligence based ODS strategy is more effective than the earlier approaches. PMID:25734182
A Genetic Algorithm That Exchanges Neighboring Centers for Fuzzy c-Means Clustering
ERIC Educational Resources Information Center
Chahine, Firas Safwan
2012-01-01
Clustering algorithms are widely used in pattern recognition and data mining applications. Due to their computational efficiency, partitional clustering algorithms are better suited for applications with large datasets than hierarchical clustering algorithms. K-means is among the most popular partitional clustering algorithm, but has a major…
Comulang: towards a collaborative e-learning system that supports student group modeling.
Troussas, Christos; Virvou, Maria; Alepis, Efthimios
2013-01-01
This paper describes an e-learning system that is expected to further enhance the educational process in computer-based tutoring systems by incorporating collaboration between students and work in groups. The resulting system is called "Comulang" while as a test bed for its effectiveness a multiple language learning system is used. Collaboration is supported by a user modeling module that is responsible for the initial creation of student clusters, where, as a next step, working groups of students are created. A machine learning clustering algorithm works towards group formatting, so that co-operations between students from different clusters are attained. One of the resulting system's basic aims is to provide efficient student groups whose limitations and capabilities are well balanced.
NASA Astrophysics Data System (ADS)
Lu, Siqi; Wang, Xiaorong; Wu, Junyong
2018-01-01
The paper presents a method to generate the planning scenarios, which is based on K-means clustering analysis algorithm driven by data, for the location and size planning of distributed photovoltaic (PV) units in the network. Taken the power losses of the network, the installation and maintenance costs of distributed PV, the profit of distributed PV and the voltage offset as objectives and the locations and sizes of distributed PV as decision variables, Pareto optimal front is obtained through the self-adaptive genetic algorithm (GA) and solutions are ranked by a method called technique for order preference by similarity to an ideal solution (TOPSIS). Finally, select the planning schemes at the top of the ranking list based on different planning emphasis after the analysis in detail. The proposed method is applied to a 10-kV distribution network in Gansu Province, China and the results are discussed.
SHIPS: Spectral Hierarchical Clustering for the Inference of Population Structure in Genetic Studies
Bouaziz, Matthieu; Paccard, Caroline; Guedj, Mickael; Ambroise, Christophe
2012-01-01
Inferring the structure of populations has many applications for genetic research. In addition to providing information for evolutionary studies, it can be used to account for the bias induced by population stratification in association studies. To this end, many algorithms have been proposed to cluster individuals into genetically homogeneous sub-populations. The parametric algorithms, such as Structure, are very popular but their underlying complexity and their high computational cost led to the development of faster parametric alternatives such as Admixture. Alternatives to these methods are the non-parametric approaches. Among this category, AWclust has proven efficient but fails to properly identify population structure for complex datasets. We present in this article a new clustering algorithm called Spectral Hierarchical clustering for the Inference of Population Structure (SHIPS), based on a divisive hierarchical clustering strategy, allowing a progressive investigation of population structure. This method takes genetic data as input to cluster individuals into homogeneous sub-populations and with the use of the gap statistic estimates the optimal number of such sub-populations. SHIPS was applied to a set of simulated discrete and admixed datasets and to real SNP datasets, that are data from the HapMap and Pan-Asian SNP consortium. The programs Structure, Admixture, AWclust and PCAclust were also investigated in a comparison study. SHIPS and the parametric approach Structure were the most accurate when applied to simulated datasets both in terms of individual assignments and estimation of the correct number of clusters. The analysis of the results on the real datasets highlighted that the clusterings of SHIPS were the more consistent with the population labels or those produced by the Admixture program. The performances of SHIPS when applied to SNP data, along with its relatively low computational cost and its ease of use make this method a promising solution to infer fine-scale genetic patterns. PMID:23077494
Bhavnani, Suresh K.; Chen, Tianlong; Ayyaswamy, Archana; Visweswaran, Shyam; Bellala, Gowtham; Rohit, Divekar; Kevin E., Bassler
2017-01-01
A primary goal of precision medicine is to identify patient subgroups based on their characteristics (e.g., comorbidities or genes) with the goal of designing more targeted interventions. While network visualization methods such as Fruchterman-Reingold have been used to successfully identify such patient subgroups in small to medium sized data sets, they often fail to reveal comprehensible visual patterns in large and dense networks despite having significant clustering. We therefore developed an algorithm called ExplodeLayout, which exploits the existence of significant clusters in bipartite networks to automatically “explode” a traditional network layout with the goal of separating overlapping clusters, while at the same time preserving key network topological properties that are critical for the comprehension of patient subgroups. We demonstrate the utility of ExplodeLayout by visualizing a large dataset extracted from Medicare consisting of readmitted hip-fracture patients and their comorbidities, demonstrate its statistically significant improvement over a traditional layout algorithm, and discuss how the resulting network visualization enabled clinicians to infer mechanisms precipitating hospital readmission in specific patient subgroups. PMID:28815099
A cost-function approach to rival penalized competitive learning (RPCL).
Ma, Jinwen; Wang, Taijun
2006-08-01
Rival penalized competitive learning (RPCL) has been shown to be a useful tool for clustering on a set of sample data in which the number of clusters is unknown. However, the RPCL algorithm was proposed heuristically and is still in lack of a mathematical theory to describe its convergence behavior. In order to solve the convergence problem, we investigate it via a cost-function approach. By theoretical analysis, we prove that a general form of RPCL, called distance-sensitive RPCL (DSRPCL), is associated with the minimization of a cost function on the weight vectors of a competitive learning network. As a DSRPCL process decreases the cost to a local minimum, a number of weight vectors eventually fall into a hypersphere surrounding the sample data, while the other weight vectors diverge to infinity. Moreover, it is shown by the theoretical analysis and simulation experiments that if the cost reduces into the global minimum, a correct number of weight vectors is automatically selected and located around the centers of the actual clusters, respectively. Finally, we apply the DSRPCL algorithms to unsupervised color image segmentation and classification of the wine data.
SOTXTSTREAM: Density-based self-organizing clustering of text streams.
Bryant, Avory C; Cios, Krzysztof J
2017-01-01
A streaming data clustering algorithm is presented building upon the density-based self-organizing stream clustering algorithm SOSTREAM. Many density-based clustering algorithms are limited by their inability to identify clusters with heterogeneous density. SOSTREAM addresses this limitation through the use of local (nearest neighbor-based) density determinations. Additionally, many stream clustering algorithms use a two-phase clustering approach. In the first phase, a micro-clustering solution is maintained online, while in the second phase, the micro-clustering solution is clustered offline to produce a macro solution. By performing self-organization techniques on micro-clusters in the online phase, SOSTREAM is able to maintain a macro clustering solution in a single phase. Leveraging concepts from SOSTREAM, a new density-based self-organizing text stream clustering algorithm, SOTXTSTREAM, is presented that addresses several shortcomings of SOSTREAM. Gains in clustering performance of this new algorithm are demonstrated on several real-world text stream datasets.
Physical-depth architectural requirements for generating universal photonic cluster states
NASA Astrophysics Data System (ADS)
Morley-Short, Sam; Bartolucci, Sara; Gimeno-Segovia, Mercedes; Shadbolt, Pete; Cable, Hugo; Rudolph, Terry
2018-01-01
Most leading proposals for linear-optical quantum computing (LOQC) use cluster states, which act as a universal resource for measurement-based (one-way) quantum computation. In ballistic approaches to LOQC, cluster states are generated passively from small entangled resource states using so-called fusion operations. Results from percolation theory have previously been used to argue that universal cluster states can be generated in the ballistic approach using schemes which exceed the critical threshold for percolation, but these results consider cluster states with unbounded size. Here we consider how successful percolation can be maintained using a physical architecture with fixed physical depth, assuming that the cluster state is continuously generated and measured, and therefore that only a finite portion of it is visible at any one point in time. We show that universal LOQC can be implemented using a constant-size device with modest physical depth, and that percolation can be exploited using simple pathfinding strategies without the need for high-complexity algorithms.
Xu, Xin; Huang, Zhenhua; Graves, Daniel; Pedrycz, Witold
2014-12-01
In order to deal with the sequential decision problems with large or continuous state spaces, feature representation and function approximation have been a major research topic in reinforcement learning (RL). In this paper, a clustering-based graph Laplacian framework is presented for feature representation and value function approximation (VFA) in RL. By making use of clustering-based techniques, that is, K-means clustering or fuzzy C-means clustering, a graph Laplacian is constructed by subsampling in Markov decision processes (MDPs) with continuous state spaces. The basis functions for VFA can be automatically generated from spectral analysis of the graph Laplacian. The clustering-based graph Laplacian is integrated with a class of approximation policy iteration algorithms called representation policy iteration (RPI) for RL in MDPs with continuous state spaces. Simulation and experimental results show that, compared with previous RPI methods, the proposed approach needs fewer sample points to compute an efficient set of basis functions and the learning control performance can be improved for a variety of parameter settings.
When Gravity Fails: Local Search Topology
NASA Technical Reports Server (NTRS)
Frank, Jeremy; Cheeseman, Peter; Stutz, John; Lau, Sonie (Technical Monitor)
1997-01-01
Local search algorithms for combinatorial search problems frequently encounter a sequence of states in which it is impossible to improve the value of the objective function; moves through these regions, called {\\em plateau moves), dominate the time spent in local search. We analyze and characterize {\\em plateaus) for three different classes of randomly generated Boolean Satisfiability problems. We identify several interesting features of plateaus that impact the performance of local search algorithms. We show that local minima tend to be small but occasionally may be very large. We also show that local minima can be escaped without unsatisfying a large number of clauses, but that systematically searching for an escape route may be computationally expensive if the local minimum is large. We show that plateaus with exits, called benches, tend to be much larger than minima, and that some benches have very few exit states which local search can use to escape. We show that the solutions (i.e. global minima) of randomly generated problem instances form clusters, which behave similarly to local minima. We revisit several enhancements of local search algorithms and explain their performance in light of our results. Finally we discuss strategies for creating the next generation of local search algorithms.
Style-independent document labeling: design and performance evaluation
NASA Astrophysics Data System (ADS)
Mao, Song; Kim, Jong Woo; Thoma, George R.
2003-12-01
The Medical Article Records System or MARS has been developed at the U.S. National Library of Medicine (NLM) for automated data entry of bibliographical information from medical journals into MEDLINE, the premier bibliographic citation database at NLM. Currently, a rule-based algorithm (called ZoneCzar) is used for labeling important bibliographical fields (title, author, affiliation, and abstract) on medical journal article page images. While rules have been created for medical journals with regular layout types, new rules have to be manually created for any input journals with arbitrary or new layout types. Therefore, it is of interest to label any journal articles independent of their layout styles. In this paper, we first describe a system (called ZoneMatch) for automated generation of crucial geometric and non-geometric features of important bibliographical fields based on string-matching and clustering techniques. The rule based algorithm is then modified to use these features to perform style-independent labeling. We then describe a performance evaluation method for quantitatively evaluating our algorithm and characterizing its error distributions. Experimental results show that the labeling performance of the rule-based algorithm is significantly improved when the generated features are used.
Effects of weather conditions on emergency ambulance calls for acute coronary syndromes
NASA Astrophysics Data System (ADS)
Vencloviene, Jone; Babarskiene, Ruta; Dobozinskas, Paulius; Siurkaite, Viktorija
2015-08-01
The aim of this study was to evaluate the relationship between weather conditions and daily emergency ambulance calls for acute coronary syndromes (ACS). The study included data on 3631 patients who called the ambulance for chest pain and were admitted to the department of cardiology as patients with ACS. We investigated the effect of daily air temperature ( T), barometric pressure (BP), relative humidity, and wind speed (WS) to detect the risk areas for low and high daily volume (DV) of emergency calls. We used the classification and regression tree method as well as cluster analysis. The clusters were created by applying the k-means cluster algorithm using the standardized daily weather variables. The analysis was performed separately during cold (October-April) and warm (May-September) seasons. During the cold period, the greatest DV was observed on days of low T during the 3-day sequence, on cold and windy days, and on days of low BP and high WS during the 3-day sequence; low DV was associated with high BP and decreased WS on the previous day. During June-September, a lower DV was associated with low BP, windless days, and high BP and low WS during the 3-day sequence. During the warm period, the greatest DV was associated with increased BP and changing WS during the 3-day sequence. These results suggest that daily T, BP, and WS on the day of the ambulance call and on the two previous days may be prognostic variables for the risk of ACS.
The global Minmax k-means algorithm.
Wang, Xiaoyan; Bai, Yanping
2016-01-01
The global k -means algorithm is an incremental approach to clustering that dynamically adds one cluster center at a time through a deterministic global search procedure from suitable initial positions, and employs k -means to minimize the sum of the intra-cluster variances. However the global k -means algorithm sometimes results singleton clusters and the initial positions sometimes are bad, after a bad initialization, poor local optimal can be easily obtained by k -means algorithm. In this paper, we modified the global k -means algorithm to eliminate the singleton clusters at first, and then we apply MinMax k -means clustering error method to global k -means algorithm to overcome the effect of bad initialization, proposed the global Minmax k -means algorithm. The proposed clustering method is tested on some popular data sets and compared to the k -means algorithm, the global k -means algorithm and the MinMax k -means algorithm. The experiment results show our proposed algorithm outperforms other algorithms mentioned in the paper.
NASA Astrophysics Data System (ADS)
Shan, Jiajia; Wang, Xue; Zhou, Hao; Han, Shuqing; Riza, Dimas Firmanda Al; Kondo, Naoshi
2018-04-01
Synchronous fluorescence spectra, combined with multivariate analysis were used to predict flavonoids content in green tea rapidly and nondestructively. This paper presented a new and efficient spectral intervals selection method called clustering based partial least square (CL-PLS), which selected informative wavelengths by combining clustering concept and partial least square (PLS) methods to improve models’ performance by synchronous fluorescence spectra. The fluorescence spectra of tea samples were obtained and k-means and kohonen-self organizing map clustering algorithms were carried out to cluster full spectra into several clusters, and sub-PLS regression model was developed on each cluster. Finally, CL-PLS models consisting of gradually selected clusters were built. Correlation coefficient (R) was used to evaluate the effect on prediction performance of PLS models. In addition, variable influence on projection partial least square (VIP-PLS), selectivity ratio partial least square (SR-PLS), interval partial least square (iPLS) models and full spectra PLS model were investigated and the results were compared. The results showed that CL-PLS presented the best result for flavonoids prediction using synchronous fluorescence spectra.
Shan, Jiajia; Wang, Xue; Zhou, Hao; Han, Shuqing; Riza, Dimas Firmanda Al; Kondo, Naoshi
2018-03-13
Synchronous fluorescence spectra, combined with multivariate analysis were used to predict flavonoids content in green tea rapidly and nondestructively. This paper presented a new and efficient spectral intervals selection method called clustering based partial least square (CL-PLS), which selected informative wavelengths by combining clustering concept and partial least square (PLS) methods to improve models' performance by synchronous fluorescence spectra. The fluorescence spectra of tea samples were obtained and k-means and kohonen-self organizing map clustering algorithms were carried out to cluster full spectra into several clusters, and sub-PLS regression model was developed on each cluster. Finally, CL-PLS models consisting of gradually selected clusters were built. Correlation coefficient (R) was used to evaluate the effect on prediction performance of PLS models. In addition, variable influence on projection partial least square (VIP-PLS), selectivity ratio partial least square (SR-PLS), interval partial least square (iPLS) models and full spectra PLS model were investigated and the results were compared. The results showed that CL-PLS presented the best result for flavonoids prediction using synchronous fluorescence spectra.
Noise-enhanced clustering and competitive learning algorithms.
Osoba, Osonde; Kosko, Bart
2013-01-01
Noise can provably speed up convergence in many centroid-based clustering algorithms. This includes the popular k-means clustering algorithm. The clustering noise benefit follows from the general noise benefit for the expectation-maximization algorithm because many clustering algorithms are special cases of the expectation-maximization algorithm. Simulations show that noise also speeds up convergence in stochastic unsupervised competitive learning, supervised competitive learning, and differential competitive learning. Copyright © 2012 Elsevier Ltd. All rights reserved.
Double Cluster Heads Model for Secure and Accurate Data Fusion in Wireless Sensor Networks
Fu, Jun-Song; Liu, Yun
2015-01-01
Secure and accurate data fusion is an important issue in wireless sensor networks (WSNs) and has been extensively researched in the literature. In this paper, by combining clustering techniques, reputation and trust systems, and data fusion algorithms, we propose a novel cluster-based data fusion model called Double Cluster Heads Model (DCHM) for secure and accurate data fusion in WSNs. Different from traditional clustering models in WSNs, two cluster heads are selected after clustering for each cluster based on the reputation and trust system and they perform data fusion independently of each other. Then, the results are sent to the base station where the dissimilarity coefficient is computed. If the dissimilarity coefficient of the two data fusion results exceeds the threshold preset by the users, the cluster heads will be added to blacklist, and the cluster heads must be reelected by the sensor nodes in a cluster. Meanwhile, feedback is sent from the base station to the reputation and trust system, which can help us to identify and delete the compromised sensor nodes in time. Through a series of extensive simulations, we found that the DCHM performed very well in data fusion security and accuracy. PMID:25608211
Clustering PPI data by combining FA and SHC method.
Lei, Xiujuan; Ying, Chao; Wu, Fang-Xiang; Xu, Jin
2015-01-01
Clustering is one of main methods to identify functional modules from protein-protein interaction (PPI) data. Nevertheless traditional clustering methods may not be effective for clustering PPI data. In this paper, we proposed a novel method for clustering PPI data by combining firefly algorithm (FA) and synchronization-based hierarchical clustering (SHC) algorithm. Firstly, the PPI data are preprocessed via spectral clustering (SC) which transforms the high-dimensional similarity matrix into a low dimension matrix. Then the SHC algorithm is used to perform clustering. In SHC algorithm, hierarchical clustering is achieved by enlarging the neighborhood radius of synchronized objects continuously, while the hierarchical search is very difficult to find the optimal neighborhood radius of synchronization and the efficiency is not high. So we adopt the firefly algorithm to determine the optimal threshold of the neighborhood radius of synchronization automatically. The proposed algorithm is tested on the MIPS PPI dataset. The results show that our proposed algorithm is better than the traditional algorithms in precision, recall and f-measure value.
Clustering PPI data by combining FA and SHC method
2015-01-01
Clustering is one of main methods to identify functional modules from protein-protein interaction (PPI) data. Nevertheless traditional clustering methods may not be effective for clustering PPI data. In this paper, we proposed a novel method for clustering PPI data by combining firefly algorithm (FA) and synchronization-based hierarchical clustering (SHC) algorithm. Firstly, the PPI data are preprocessed via spectral clustering (SC) which transforms the high-dimensional similarity matrix into a low dimension matrix. Then the SHC algorithm is used to perform clustering. In SHC algorithm, hierarchical clustering is achieved by enlarging the neighborhood radius of synchronized objects continuously, while the hierarchical search is very difficult to find the optimal neighborhood radius of synchronization and the efficiency is not high. So we adopt the firefly algorithm to determine the optimal threshold of the neighborhood radius of synchronization automatically. The proposed algorithm is tested on the MIPS PPI dataset. The results show that our proposed algorithm is better than the traditional algorithms in precision, recall and f-measure value. PMID:25707632
Clustering Tree-structured Data on Manifold
Lu, Na; Miao, Hongyu
2016-01-01
Tree-structured data usually contain both topological and geometrical information, and are necessarily considered on manifold instead of Euclidean space for appropriate data parameterization and analysis. In this study, we propose a novel tree-structured data parameterization, called Topology-Attribute matrix (T-A matrix), so the data clustering task can be conducted on matrix manifold. We incorporate the structure constraints embedded in data into the non-negative matrix factorization method to determine meta-trees from the T-A matrix, and the signature vector of each single tree can then be extracted by meta-tree decomposition. The meta-tree space turns out to be a cone space, in which we explore the distance metric and implement the clustering algorithm based on the concepts like Fréchet mean. Finally, the T-A matrix based clustering (TAMBAC) framework is evaluated and compared using both simulated data and real retinal images to illus trate its efficiency and accuracy. PMID:26660696
Information Clustering Based on Fuzzy Multisets.
ERIC Educational Resources Information Center
Miyamoto, Sadaaki
2003-01-01
Proposes a fuzzy multiset model for information clustering with application to information retrieval on the World Wide Web. Highlights include search engines; term clustering; document clustering; algorithms for calculating cluster centers; theoretical properties concerning clustering algorithms; and examples to show how the algorithms work.…
Reference set design for relational modeling of fuzzy systems
NASA Astrophysics Data System (ADS)
Lapohos, Tibor; Buchal, Ralph O.
1994-10-01
One of the keys to the successful relational modeling of fuzzy systems is the proper design of fuzzy reference sets. This has been discussed throughout the literature. In the frame of modeling a stochastic system, we analyze the problem numerically. First, we briefly describe the relational model and present the performance of the modeling in the most trivial case: the reference sets are triangle shaped. Next, we present a known fuzzy reference set generator algorithm (FRSGA) which is based on the fuzzy c-means (Fc-M) clustering algorithm. In the second section of this chapter we improve the previous FRSGA by adding a constraint to the Fc-M algorithm (modified Fc-M or MFc-M): two cluster centers are forced to coincide with the domain limits. This is needed to obtain properly shaped extreme linguistic reference values. We apply this algorithm to uniformly discretized domains of the variables involved. The fuzziness of the reference sets produced by both Fc-M and MFc-M is determined by a parameter, which in our experiments is modified iteratively. Each time, a new model is created and its performance analyzed. For certain algorithm parameter values both of these two algorithms have shortcomings. To eliminate the drawbacks of these two approaches, we develop a completely new generator algorithm for reference sets which we call Polyline. This algorithm and its performance are described in the last section. In all three cases, the modeling is performed for a variety of operators used in the inference engine and two defuzzification methods. Therefore our results depend neither on the system model order nor the experimental setup.
An Eccentricity Based Data Routing Protocol with Uniform Node Distribution in 3D WSN.
Hosen, A S M Sanwar; Cho, Gi Hwan; Ra, In-Ho
2017-09-16
Due to nonuniform node distribution, the energy consumption of nodes are imbalanced in clustering-based wireless sensor networks (WSNs). It might have more impact when nodes are deployed in a three-dimensional (3D) environment. In this regard, we propose the eccentricity based data routing (EDR) protocol in a 3D WSN with uniform node distribution. It includes network partitions called 3D subspaces/clusters of equal member nodes, an energy-efficient routing centroid (RC) nodes election and data routing algorithm. The RC nodes election conducts in a quasi-static nature until a certain period unlike the periodic cluster heads election of typical clustering-based routing. It not only reduces the energy consumption of nodes during the election phase, but also in intra-communication. At the same time, the routing algorithm selects a forwarding node in such a way that balances the energy consumption among RC nodes and reduces the number of hops towards the sink. The simulation results validate and ensure the performance supremacy of the EDR protocol compared to existing protocols in terms of various metrics such as steady state and network lifetime in particular. Meanwhile, the results show the EDR is more robust in uniform node distribution compared to nonuniform.
An Eccentricity Based Data Routing Protocol with Uniform Node Distribution in 3D WSN
Hosen, A. S. M. Sanwar; Cho, Gi Hwan; Ra, In-Ho
2017-01-01
Due to nonuniform node distribution, the energy consumption of nodes are imbalanced in clustering-based wireless sensor networks (WSNs). It might have more impact when nodes are deployed in a three-dimensional (3D) environment. In this regard, we propose the eccentricity based data routing (EDR) protocol in a 3D WSN with uniform node distribution. It includes network partitions called 3D subspaces/clusters of equal member nodes, an energy-efficient routing centroid (RC) nodes election and data routing algorithm. The RC nodes election conducts in a quasi-static nature until a certain period unlike the periodic cluster heads election of typical clustering-based routing. It not only reduces the energy consumption of nodes during the election phase, but also in intra-communication. At the same time, the routing algorithm selects a forwarding node in such a way that balances the energy consumption among RC nodes and reduces the number of hops towards the sink. The simulation results validate and ensure the performance supremacy of the EDR protocol compared to existing protocols in terms of various metrics such as steady state and network lifetime in particular. Meanwhile, the results show the EDR is more robust in uniform node distribution compared to nonuniform. PMID:28926958
An improved clustering algorithm based on reverse learning in intelligent transportation
NASA Astrophysics Data System (ADS)
Qiu, Guoqing; Kou, Qianqian; Niu, Ting
2017-05-01
With the development of artificial intelligence and data mining technology, big data has gradually entered people's field of vision. In the process of dealing with large data, clustering is an important processing method. By introducing the reverse learning method in the clustering process of PAM clustering algorithm, to further improve the limitations of one-time clustering in unsupervised clustering learning, and increase the diversity of clustering clusters, so as to improve the quality of clustering. The algorithm analysis and experimental results show that the algorithm is feasible.
A roadmap of clustering algorithms: finding a match for a biomedical application.
Andreopoulos, Bill; An, Aijun; Wang, Xiaogang; Schroeder, Michael
2009-05-01
Clustering is ubiquitously applied in bioinformatics with hierarchical clustering and k-means partitioning being the most popular methods. Numerous improvements of these two clustering methods have been introduced, as well as completely different approaches such as grid-based, density-based and model-based clustering. For improved bioinformatics analysis of data, it is important to match clusterings to the requirements of a biomedical application. In this article, we present a set of desirable clustering features that are used as evaluation criteria for clustering algorithms. We review 40 different clustering algorithms of all approaches and datatypes. We compare algorithms on the basis of desirable clustering features, and outline algorithms' benefits and drawbacks as a basis for matching them to biomedical applications.
Efficient clustering aggregation based on data fragments.
Wu, Ou; Hu, Weiming; Maybank, Stephen J; Zhu, Mingliang; Li, Bing
2012-06-01
Clustering aggregation, known as clustering ensembles, has emerged as a powerful technique for combining different clustering results to obtain a single better clustering. Existing clustering aggregation algorithms are applied directly to data points, in what is referred to as the point-based approach. The algorithms are inefficient if the number of data points is large. We define an efficient approach for clustering aggregation based on data fragments. In this fragment-based approach, a data fragment is any subset of the data that is not split by any of the clustering results. To establish the theoretical bases of the proposed approach, we prove that clustering aggregation can be performed directly on data fragments under two widely used goodness measures for clustering aggregation taken from the literature. Three new clustering aggregation algorithms are described. The experimental results obtained using several public data sets show that the new algorithms have lower computational complexity than three well-known existing point-based clustering aggregation algorithms (Agglomerative, Furthest, and LocalSearch); nevertheless, the new algorithms do not sacrifice the accuracy.
NETRA: A parallel architecture for integrated vision systems. 1: Architecture and organization
NASA Technical Reports Server (NTRS)
Choudhary, Alok N.; Patel, Janak H.; Ahuja, Narendra
1989-01-01
Computer vision is regarded as one of the most complex and computationally intensive problems. An integrated vision system (IVS) is considered to be a system that uses vision algorithms from all levels of processing for a high level application (such as object recognition). A model of computation is presented for parallel processing for an IVS. Using the model, desired features and capabilities of a parallel architecture suitable for IVSs are derived. Then a multiprocessor architecture (called NETRA) is presented. This architecture is highly flexible without the use of complex interconnection schemes. The topology of NETRA is recursively defined and hence is easily scalable from small to large systems. Homogeneity of NETRA permits fault tolerance and graceful degradation under faults. It is a recursively defined tree-type hierarchical architecture where each of the leaf nodes consists of a cluster of processors connected with a programmable crossbar with selective broadcast capability to provide for desired flexibility. A qualitative evaluation of NETRA is presented. Then general schemes are described to map parallel algorithms onto NETRA. Algorithms are classified according to their communication requirements for parallel processing. An extensive analysis of inter-cluster communication strategies in NETRA is presented, and parameters affecting performance of parallel algorithms when mapped on NETRA are discussed. Finally, a methodology to evaluate performance of algorithms on NETRA is described.
Nguyen, Thanh; Khosravi, Abbas; Creighton, Douglas; Nahavandi, Saeid
2014-12-30
Understanding neural functions requires knowledge from analysing electrophysiological data. The process of assigning spikes of a multichannel signal into clusters, called spike sorting, is one of the important problems in such analysis. There have been various automated spike sorting techniques with both advantages and disadvantages regarding accuracy and computational costs. Therefore, developing spike sorting methods that are highly accurate and computationally inexpensive is always a challenge in the biomedical engineering practice. An automatic unsupervised spike sorting method is proposed in this paper. The method uses features extracted by the locality preserving projection (LPP) algorithm. These features afterwards serve as inputs for the landmark-based spectral clustering (LSC) method. Gap statistics (GS) is employed to evaluate the number of clusters before the LSC can be performed. The proposed LPP-LSC is highly accurate and computationally inexpensive spike sorting approach. LPP spike features are very discriminative; thereby boost the performance of clustering methods. Furthermore, the LSC method exhibits its efficiency when integrated with the cluster evaluator GS. The proposed method's accuracy is approximately 13% superior to that of the benchmark combination between wavelet transformation and superparamagnetic clustering (WT-SPC). Additionally, LPP-LSC computing time is six times less than that of the WT-SPC. LPP-LSC obviously demonstrates a win-win spike sorting solution meeting both accuracy and computational cost criteria. LPP and LSC are linear algorithms that help reduce computational burden and thus their combination can be applied into real-time spike analysis. Copyright © 2014 Elsevier B.V. All rights reserved.
Das, Shyama; Idicula, Sumam Mary
2011-01-01
The goal of biclustering in gene expression data matrix is to find a submatrix such that the genes in the submatrix show highly correlated activities across all conditions in the submatrix. A measure called mean squared residue (MSR) is used to simultaneously evaluate the coherence of rows and columns within the submatrix. MSR difference is the incremental increase in MSR when a gene or condition is added to the bicluster. In this chapter, three biclustering algorithms using MSR threshold (MSRT) and MSR difference threshold (MSRDT) are experimented and compared. All these methods use seeds generated from K-Means clustering algorithm. Then these seeds are enlarged by adding more genes and conditions. The first algorithm makes use of MSRT alone. Both the second and third algorithms make use of MSRT and the newly introduced concept of MSRDT. Highly coherent biclusters are obtained using this concept. In the third algorithm, a different method is used to calculate the MSRDT. The results obtained on bench mark datasets prove that these algorithms are better than many of the metaheuristic algorithms.
A clustering method of Chinese medicine prescriptions based on modified firefly algorithm.
Yuan, Feng; Liu, Hong; Chen, Shou-Qiang; Xu, Liang
2016-12-01
This paper is aimed to study the clustering method for Chinese medicine (CM) medical cases. The traditional K-means clustering algorithm had shortcomings such as dependence of results on the selection of initial value, trapping in local optimum when processing prescriptions form CM medical cases. Therefore, a new clustering method based on the collaboration of firefly algorithm and simulated annealing algorithm was proposed. This algorithm dynamically determined the iteration of firefly algorithm and simulates sampling of annealing algorithm by fitness changes, and increased the diversity of swarm through expansion of the scope of the sudden jump, thereby effectively avoiding premature problem. The results from confirmatory experiments for CM medical cases suggested that, comparing with traditional K-means clustering algorithms, this method was greatly improved in the individual diversity and the obtained clustering results, the computing results from this method had a certain reference value for cluster analysis on CM prescriptions.
ClusterViz: A Cytoscape APP for Cluster Analysis of Biological Network.
Wang, Jianxin; Zhong, Jiancheng; Chen, Gang; Li, Min; Wu, Fang-xiang; Pan, Yi
2015-01-01
Cluster analysis of biological networks is one of the most important approaches for identifying functional modules and predicting protein functions. Furthermore, visualization of clustering results is crucial to uncover the structure of biological networks. In this paper, ClusterViz, an APP of Cytoscape 3 for cluster analysis and visualization, has been developed. In order to reduce complexity and enable extendibility for ClusterViz, we designed the architecture of ClusterViz based on the framework of Open Services Gateway Initiative. According to the architecture, the implementation of ClusterViz is partitioned into three modules including interface of ClusterViz, clustering algorithms and visualization and export. ClusterViz fascinates the comparison of the results of different algorithms to do further related analysis. Three commonly used clustering algorithms, FAG-EC, EAGLE and MCODE, are included in the current version. Due to adopting the abstract interface of algorithms in module of the clustering algorithms, more clustering algorithms can be included for the future use. To illustrate usability of ClusterViz, we provided three examples with detailed steps from the important scientific articles, which show that our tool has helped several research teams do their research work on the mechanism of the biological networks.
Jothi, R; Mohanty, Sraban Kumar; Ojha, Aparajita
2016-04-01
Gene expression data clustering is an important biological process in DNA microarray analysis. Although there have been many clustering algorithms for gene expression analysis, finding a suitable and effective clustering algorithm is always a challenging problem due to the heterogeneous nature of gene profiles. Minimum Spanning Tree (MST) based clustering algorithms have been successfully employed to detect clusters of varying shapes and sizes. This paper proposes a novel clustering algorithm using Eigenanalysis on Minimum Spanning Tree based neighborhood graph (E-MST). As MST of a set of points reflects the similarity of the points with their neighborhood, the proposed algorithm employs a similarity graph obtained from k(') rounds of MST (k(')-MST neighborhood graph). By studying the spectral properties of the similarity matrix obtained from k(')-MST graph, the proposed algorithm achieves improved clustering results. We demonstrate the efficacy of the proposed algorithm on 12 gene expression datasets. Experimental results show that the proposed algorithm performs better than the standard clustering algorithms. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sun, Liping; Luo, Yonglong; Ding, Xintao; Zhang, Ji
2014-01-01
An important component of a spatial clustering algorithm is the distance measure between sample points in object space. In this paper, the traditional Euclidean distance measure is replaced with innovative obstacle distance measure for spatial clustering under obstacle constraints. Firstly, we present a path searching algorithm to approximate the obstacle distance between two points for dealing with obstacles and facilitators. Taking obstacle distance as similarity metric, we subsequently propose the artificial immune clustering with obstacle entity (AICOE) algorithm for clustering spatial point data in the presence of obstacles and facilitators. Finally, the paper presents a comparative analysis of AICOE algorithm and the classical clustering algorithms. Our clustering model based on artificial immune system is also applied to the case of public facility location problem in order to establish the practical applicability of our approach. By using the clone selection principle and updating the cluster centers based on the elite antibodies, the AICOE algorithm is able to achieve the global optimum and better clustering effect.
Fast Constrained Spectral Clustering and Cluster Ensemble with Random Projection
Liu, Wenfen
2017-01-01
Constrained spectral clustering (CSC) method can greatly improve the clustering accuracy with the incorporation of constraint information into spectral clustering and thus has been paid academic attention widely. In this paper, we propose a fast CSC algorithm via encoding landmark-based graph construction into a new CSC model and applying random sampling to decrease the data size after spectral embedding. Compared with the original model, the new algorithm has the similar results with the increase of its model size asymptotically; compared with the most efficient CSC algorithm known, the new algorithm runs faster and has a wider range of suitable data sets. Meanwhile, a scalable semisupervised cluster ensemble algorithm is also proposed via the combination of our fast CSC algorithm and dimensionality reduction with random projection in the process of spectral ensemble clustering. We demonstrate by presenting theoretical analysis and empirical results that the new cluster ensemble algorithm has advantages in terms of efficiency and effectiveness. Furthermore, the approximate preservation of random projection in clustering accuracy proved in the stage of consensus clustering is also suitable for the weighted k-means clustering and thus gives the theoretical guarantee to this special kind of k-means clustering where each point has its corresponding weight. PMID:29312447
Karayiannis, N B
2000-01-01
This paper presents the development and investigates the properties of ordered weighted learning vector quantization (LVQ) and clustering algorithms. These algorithms are developed by using gradient descent to minimize reformulation functions based on aggregation operators. An axiomatic approach provides conditions for selecting aggregation operators that lead to admissible reformulation functions. Minimization of admissible reformulation functions based on ordered weighted aggregation operators produces a family of soft LVQ and clustering algorithms, which includes fuzzy LVQ and clustering algorithms as special cases. The proposed LVQ and clustering algorithms are used to perform segmentation of magnetic resonance (MR) images of the brain. The diagnostic value of the segmented MR images provides the basis for evaluating a variety of ordered weighted LVQ and clustering algorithms.
Hierarchical Dirichlet process model for gene expression clustering
2013-01-01
Clustering is an important data processing tool for interpreting microarray data and genomic network inference. In this article, we propose a clustering algorithm based on the hierarchical Dirichlet processes (HDP). The HDP clustering introduces a hierarchical structure in the statistical model which captures the hierarchical features prevalent in biological data such as the gene express data. We develop a Gibbs sampling algorithm based on the Chinese restaurant metaphor for the HDP clustering. We apply the proposed HDP algorithm to both regulatory network segmentation and gene expression clustering. The HDP algorithm is shown to outperform several popular clustering algorithms by revealing the underlying hierarchical structure of the data. For the yeast cell cycle data, we compare the HDP result to the standard result and show that the HDP algorithm provides more information and reduces the unnecessary clustering fragments. PMID:23587447
Canonical PSO Based K-Means Clustering Approach for Real Datasets.
Dey, Lopamudra; Chakraborty, Sanjay
2014-01-01
"Clustering" the significance and application of this technique is spread over various fields. Clustering is an unsupervised process in data mining, that is why the proper evaluation of the results and measuring the compactness and separability of the clusters are important issues. The procedure of evaluating the results of a clustering algorithm is known as cluster validity measure. Different types of indexes are used to solve different types of problems and indices selection depends on the kind of available data. This paper first proposes Canonical PSO based K-means clustering algorithm and also analyses some important clustering indices (intercluster, intracluster) and then evaluates the effects of those indices on real-time air pollution database, wholesale customer, wine, and vehicle datasets using typical K-means, Canonical PSO based K-means, simple PSO based K-means, DBSCAN, and Hierarchical clustering algorithms. This paper also describes the nature of the clusters and finally compares the performances of these clustering algorithms according to the validity assessment. It also defines which algorithm will be more desirable among all these algorithms to make proper compact clusters on this particular real life datasets. It actually deals with the behaviour of these clustering algorithms with respect to validation indexes and represents their results of evaluation in terms of mathematical and graphical forms.
A Multiple-Label Guided Clustering Algorithm for Historical Document Dating and Localization.
He, Sheng; Samara, Petros; Burgers, Jan; Schomaker, Lambert
2016-11-01
It is of essential importance for historians to know the date and place of origin of the documents they study. It would be a huge advancement for historical scholars if it would be possible to automatically estimate the geographical and temporal provenance of a handwritten document by inferring them from the handwriting style of such a document. We propose a multiple-label guided clustering algorithm to discover the correlations between the concrete low-level visual elements in historical documents and abstract labels, such as date and location. First, a novel descriptor, called histogram of orientations of handwritten strokes, is proposed to extract and describe the visual elements, which is built on a scale-invariant polar-feature space. In addition, the multi-label self-organizing map (MLSOM) is proposed to discover the correlations between the low-level visual elements and their labels in a single framework. Our proposed MLSOM can be used to predict the labels directly. Moreover, the MLSOM can also be considered as a pre-structured clustering method to build a codebook, which contains more discriminative information on date and geography. The experimental results on the medieval paleographic scale data set demonstrate that our method achieves state-of-the-art results.
A hybrid monkey search algorithm for clustering analysis.
Chen, Xin; Zhou, Yongquan; Luo, Qifang
2014-01-01
Clustering is a popular data analysis and data mining technique. The k-means clustering algorithm is one of the most commonly used methods. However, it highly depends on the initial solution and is easy to fall into local optimum solution. In view of the disadvantages of the k-means method, this paper proposed a hybrid monkey algorithm based on search operator of artificial bee colony algorithm for clustering analysis and experiment on synthetic and real life datasets to show that the algorithm has a good performance than that of the basic monkey algorithm for clustering analysis.
Clustering for Binary Data Sets by Using Genetic Algorithm-Incremental K-means
NASA Astrophysics Data System (ADS)
Saharan, S.; Baragona, R.; Nor, M. E.; Salleh, R. M.; Asrah, N. M.
2018-04-01
This research was initially driven by the lack of clustering algorithms that specifically focus in binary data. To overcome this gap in knowledge, a promising technique for analysing this type of data became the main subject in this research, namely Genetic Algorithms (GA). For the purpose of this research, GA was combined with the Incremental K-means (IKM) algorithm to cluster the binary data streams. In GAIKM, the objective function was based on a few sufficient statistics that may be easily and quickly calculated on binary numbers. The implementation of IKM will give an advantage in terms of fast convergence. The results show that GAIKM is an efficient and effective new clustering algorithm compared to the clustering algorithms and to the IKM itself. In conclusion, the GAIKM outperformed other clustering algorithms such as GCUK, IKM, Scalable K-means (SKM) and K-means clustering and paves the way for future research involving missing data and outliers.
Dynamics of fragment formation in neutron-rich matter
NASA Astrophysics Data System (ADS)
Alcain, P. N.; Dorso, C. O.
2018-01-01
Background: Neutron stars are astronomical systems with nucleons subjected to extreme conditions. Due to the longer range Coulomb repulsion between protons, the system has structural inhomogeneities. Several interactions tailored to reproduce nuclear matter plus a screened Coulomb term reproduce these inhomogeneities known as nuclear pasta. These structural inhomogeneities, located in the crusts of neutron stars, can also arise in expanding systems depending on the thermodynamic conditions (temperature, proton fraction, etc.) and the expansion velocity. Purpose: We aim to find the dynamics of the fragment formation for expanding systems simulated according to the little big bang model. This expansion resembles the evolution of merging neutron stars. Method: We study the dynamics of the nucleons with semiclassical molecular dynamics models. Starting with an equilibrium configuration, we expand the system homogeneously until we arrive at an asymptotic configuration (i.e., very low final densities). We study, with four different cluster recognition algorithms, the fragment distribution throughout this expansion and the dynamics of the cluster formation. Results: Studying the topology of the equilibrium states, before the expansion, we reproduced the known pasta phases plus a novel phase we called pregnocchi, consisting of proton aggregates embedded in a neutron sea. We have identified different fragmentation regimes, depending on the initial temperature and fragment velocity. In particular, for the already mentioned pregnocchi, a neutron cloud surrounds the clusters during the early stages of the expansion, resulting in systems that give rise to configurations compatible with the emergence of the r process. Conclusions: We showed that a proper identification of the cluster distribution is highly dependent on the cluster recognition algorithm chosen, and found that the early cluster recognition algorithm (ECRA) was the most stable one. This approach allowed us to identify the dynamics of the fragment formation. These calculations pave the way to a comparison between Earth experiments and neutron star studies.
Canonical PSO Based K-Means Clustering Approach for Real Datasets
Dey, Lopamudra; Chakraborty, Sanjay
2014-01-01
“Clustering” the significance and application of this technique is spread over various fields. Clustering is an unsupervised process in data mining, that is why the proper evaluation of the results and measuring the compactness and separability of the clusters are important issues. The procedure of evaluating the results of a clustering algorithm is known as cluster validity measure. Different types of indexes are used to solve different types of problems and indices selection depends on the kind of available data. This paper first proposes Canonical PSO based K-means clustering algorithm and also analyses some important clustering indices (intercluster, intracluster) and then evaluates the effects of those indices on real-time air pollution database, wholesale customer, wine, and vehicle datasets using typical K-means, Canonical PSO based K-means, simple PSO based K-means, DBSCAN, and Hierarchical clustering algorithms. This paper also describes the nature of the clusters and finally compares the performances of these clustering algorithms according to the validity assessment. It also defines which algorithm will be more desirable among all these algorithms to make proper compact clusters on this particular real life datasets. It actually deals with the behaviour of these clustering algorithms with respect to validation indexes and represents their results of evaluation in terms of mathematical and graphical forms. PMID:27355083
NASA Astrophysics Data System (ADS)
Tosida, E. T.; Maryana, S.; Thaheer, H.; Hardiani
2017-01-01
Information technology and communication (telematics) is one of the most rapidly developing business sectors in Indonesia. It has strategic position in its contribution towards planning and implementation of developmental, economics, social, politics and defence strategies in business, communication and education. Aid absorption for the national telecommunication SMEs is relatively low; therefore, improvement is needed using analysis on business support cluster of which basis is types of business. In the study, the business support cluster analysis is specifically implemented for Indonesian telecommunication service. The data for the business are obtained from the National Census of Economic (Susenas 2006). The method used to develop cluster model is an Artificial Neural Network (ANN) system called Self-Organizing Maps (SOM) algorithm. Based on Index of Davies Bouldin (IDB), the accuracy level of the cluster model is 0.37 or can be categorized as good. The cluster model is developed to find out telecommunication business clusters that has influence towards the national economy so that it is easier for the government to supervise telecommunication business.
Consensus properties and their large-scale applications for the gene duplication problem.
Moon, Jucheol; Lin, Harris T; Eulenstein, Oliver
2016-06-01
Solving the gene duplication problem is a classical approach for species tree inference from gene trees that are confounded by gene duplications. This problem takes a collection of gene trees and seeks a species tree that implies the minimum number of gene duplications. Wilkinson et al. posed the conjecture that the gene duplication problem satisfies the desirable Pareto property for clusters. That is, for every instance of the problem, all clusters that are commonly present in the input gene trees of this instance, called strict consensus, will also be found in every solution to this instance. We prove that this conjecture does not generally hold. Despite this negative result we show that the gene duplication problem satisfies a weaker version of the Pareto property where the strict consensus is found in at least one solution (rather than all solutions). This weaker property contributes to our design of an efficient scalable algorithm for the gene duplication problem. We demonstrate the performance of our algorithm in analyzing large-scale empirical datasets. Finally, we utilize the algorithm to evaluate the accuracy of standard heuristics for the gene duplication problem using simulated datasets.
A novel framework for feature extraction in multi-sensor action potential sorting.
Wu, Shun-Chi; Swindlehurst, A Lee; Nenadic, Zoran
2015-09-30
Extracellular recordings of multi-unit neural activity have become indispensable in neuroscience research. The analysis of the recordings begins with the detection of the action potentials (APs), followed by a classification step where each AP is associated with a given neural source. A feature extraction step is required prior to classification in order to reduce the dimensionality of the data and the impact of noise, allowing source clustering algorithms to work more efficiently. In this paper, we propose a novel framework for multi-sensor AP feature extraction based on the so-called Matched Subspace Detector (MSD), which is shown to be a natural generalization of standard single-sensor algorithms. Clustering using both simulated data and real AP recordings taken in the locust antennal lobe demonstrates that the proposed approach yields features that are discriminatory and lead to promising results. Unlike existing methods, the proposed algorithm finds joint spatio-temporal feature vectors that match the dominant subspace observed in the two-dimensional data without needs for a forward propagation model and AP templates. The proposed MSD approach provides more discriminatory features for unsupervised AP sorting applications. Copyright © 2015 Elsevier B.V. All rights reserved.
A method of operation scheduling based on video transcoding for cluster equipment
NASA Astrophysics Data System (ADS)
Zhou, Haojie; Yan, Chun
2018-04-01
Because of the cluster technology in real-time video transcoding device, the application of facing the massive growth in the number of video assignments and resolution and bit rate of diversity, task scheduling algorithm, and analyze the current mainstream of cluster for real-time video transcoding equipment characteristics of the cluster, combination with the characteristics of the cluster equipment task delay scheduling algorithm is proposed. This algorithm enables the cluster to get better performance in the generation of the job queue and the lower part of the job queue when receiving the operation instruction. In the end, a small real-time video transcode cluster is constructed to analyze the calculation ability, running time, resource occupation and other aspects of various algorithms in operation scheduling. The experimental results show that compared with traditional clustering task scheduling algorithm, task delay scheduling algorithm has more flexible and efficient characteristics.
[Cluster analysis in biomedical researches].
Akopov, A S; Moskovtsev, A A; Dolenko, S A; Savina, G D
2013-01-01
Cluster analysis is one of the most popular methods for the analysis of multi-parameter data. The cluster analysis reveals the internal structure of the data, group the separate observations on the degree of their similarity. The review provides a definition of the basic concepts of cluster analysis, and discusses the most popular clustering algorithms: k-means, hierarchical algorithms, Kohonen networks algorithms. Examples are the use of these algorithms in biomedical research.
Clustering analysis of moving target signatures
NASA Astrophysics Data System (ADS)
Martone, Anthony; Ranney, Kenneth; Innocenti, Roberto
2010-04-01
Previously, we developed a moving target indication (MTI) processing approach to detect and track slow-moving targets inside buildings, which successfully detected moving targets (MTs) from data collected by a low-frequency, ultra-wideband radar. Our MTI algorithms include change detection, automatic target detection (ATD), clustering, and tracking. The MTI algorithms can be implemented in a real-time or near-real-time system; however, a person-in-the-loop is needed to select input parameters for the clustering algorithm. Specifically, the number of clusters to input into the cluster algorithm is unknown and requires manual selection. A critical need exists to automate all aspects of the MTI processing formulation. In this paper, we investigate two techniques that automatically determine the number of clusters: the adaptive knee-point (KP) algorithm and the recursive pixel finding (RPF) algorithm. The KP algorithm is based on a well-known heuristic approach for determining the number of clusters. The RPF algorithm is analogous to the image processing, pixel labeling procedure. Both algorithms are used to analyze the false alarm and detection rates of three operational scenarios of personnel walking inside wood and cinderblock buildings.
Clustering algorithm for determining community structure in large networks
NASA Astrophysics Data System (ADS)
Pujol, Josep M.; Béjar, Javier; Delgado, Jordi
2006-07-01
We propose an algorithm to find the community structure in complex networks based on the combination of spectral analysis and modularity optimization. The clustering produced by our algorithm is as accurate as the best algorithms on the literature of modularity optimization; however, the main asset of the algorithm is its efficiency. The best match for our algorithm is Newman’s fast algorithm, which is the reference algorithm for clustering in large networks due to its efficiency. When both algorithms are compared, our algorithm outperforms the fast algorithm both in efficiency and accuracy of the clustering, in terms of modularity. Thus, the results suggest that the proposed algorithm is a good choice to analyze the community structure of medium and large networks in the range of tens and hundreds of thousand vertices.
NASA Technical Reports Server (NTRS)
Lennington, R. K.; Johnson, J. K.
1979-01-01
An efficient procedure which clusters data using a completely unsupervised clustering algorithm and then uses labeled pixels to label the resulting clusters or perform a stratified estimate using the clusters as strata is developed. Three clustering algorithms, CLASSY, AMOEBA, and ISOCLS, are compared for efficiency. Three stratified estimation schemes and three labeling schemes are also considered and compared.
Clusternomics: Integrative context-dependent clustering for heterogeneous datasets
Wernisch, Lorenz
2017-01-01
Integrative clustering is used to identify groups of samples by jointly analysing multiple datasets describing the same set of biological samples, such as gene expression, copy number, methylation etc. Most existing algorithms for integrative clustering assume that there is a shared consistent set of clusters across all datasets, and most of the data samples follow this structure. However in practice, the structure across heterogeneous datasets can be more varied, with clusters being joined in some datasets and separated in others. In this paper, we present a probabilistic clustering method to identify groups across datasets that do not share the same cluster structure. The proposed algorithm, Clusternomics, identifies groups of samples that share their global behaviour across heterogeneous datasets. The algorithm models clusters on the level of individual datasets, while also extracting global structure that arises from the local cluster assignments. Clusters on both the local and the global level are modelled using a hierarchical Dirichlet mixture model to identify structure on both levels. We evaluated the model both on simulated and on real-world datasets. The simulated data exemplifies datasets with varying degrees of common structure. In such a setting Clusternomics outperforms existing algorithms for integrative and consensus clustering. In a real-world application, we used the algorithm for cancer subtyping, identifying subtypes of cancer from heterogeneous datasets. We applied the algorithm to TCGA breast cancer dataset, integrating gene expression, miRNA expression, DNA methylation and proteomics. The algorithm extracted clinically meaningful clusters with significantly different survival probabilities. We also evaluated the algorithm on lung and kidney cancer TCGA datasets with high dimensionality, again showing clinically significant results and scalability of the algorithm. PMID:29036190
Clusternomics: Integrative context-dependent clustering for heterogeneous datasets.
Gabasova, Evelina; Reid, John; Wernisch, Lorenz
2017-10-01
Integrative clustering is used to identify groups of samples by jointly analysing multiple datasets describing the same set of biological samples, such as gene expression, copy number, methylation etc. Most existing algorithms for integrative clustering assume that there is a shared consistent set of clusters across all datasets, and most of the data samples follow this structure. However in practice, the structure across heterogeneous datasets can be more varied, with clusters being joined in some datasets and separated in others. In this paper, we present a probabilistic clustering method to identify groups across datasets that do not share the same cluster structure. The proposed algorithm, Clusternomics, identifies groups of samples that share their global behaviour across heterogeneous datasets. The algorithm models clusters on the level of individual datasets, while also extracting global structure that arises from the local cluster assignments. Clusters on both the local and the global level are modelled using a hierarchical Dirichlet mixture model to identify structure on both levels. We evaluated the model both on simulated and on real-world datasets. The simulated data exemplifies datasets with varying degrees of common structure. In such a setting Clusternomics outperforms existing algorithms for integrative and consensus clustering. In a real-world application, we used the algorithm for cancer subtyping, identifying subtypes of cancer from heterogeneous datasets. We applied the algorithm to TCGA breast cancer dataset, integrating gene expression, miRNA expression, DNA methylation and proteomics. The algorithm extracted clinically meaningful clusters with significantly different survival probabilities. We also evaluated the algorithm on lung and kidney cancer TCGA datasets with high dimensionality, again showing clinically significant results and scalability of the algorithm.
CytoCluster: A Cytoscape Plugin for Cluster Analysis and Visualization of Biological Networks.
Li, Min; Li, Dongyan; Tang, Yu; Wu, Fangxiang; Wang, Jianxin
2017-08-31
Nowadays, cluster analysis of biological networks has become one of the most important approaches to identifying functional modules as well as predicting protein complexes and network biomarkers. Furthermore, the visualization of clustering results is crucial to display the structure of biological networks. Here we present CytoCluster, a cytoscape plugin integrating six clustering algorithms, HC-PIN (Hierarchical Clustering algorithm in Protein Interaction Networks), OH-PIN (identifying Overlapping and Hierarchical modules in Protein Interaction Networks), IPCA (Identifying Protein Complex Algorithm), ClusterONE (Clustering with Overlapping Neighborhood Expansion), DCU (Detecting Complexes based on Uncertain graph model), IPC-MCE (Identifying Protein Complexes based on Maximal Complex Extension), and BinGO (the Biological networks Gene Ontology) function. Users can select different clustering algorithms according to their requirements. The main function of these six clustering algorithms is to detect protein complexes or functional modules. In addition, BinGO is used to determine which Gene Ontology (GO) categories are statistically overrepresented in a set of genes or a subgraph of a biological network. CytoCluster can be easily expanded, so that more clustering algorithms and functions can be added to this plugin. Since it was created in July 2013, CytoCluster has been downloaded more than 9700 times in the Cytoscape App store and has already been applied to the analysis of different biological networks. CytoCluster is available from http://apps.cytoscape.org/apps/cytocluster.
CytoCluster: A Cytoscape Plugin for Cluster Analysis and Visualization of Biological Networks
Li, Min; Li, Dongyan; Tang, Yu; Wang, Jianxin
2017-01-01
Nowadays, cluster analysis of biological networks has become one of the most important approaches to identifying functional modules as well as predicting protein complexes and network biomarkers. Furthermore, the visualization of clustering results is crucial to display the structure of biological networks. Here we present CytoCluster, a cytoscape plugin integrating six clustering algorithms, HC-PIN (Hierarchical Clustering algorithm in Protein Interaction Networks), OH-PIN (identifying Overlapping and Hierarchical modules in Protein Interaction Networks), IPCA (Identifying Protein Complex Algorithm), ClusterONE (Clustering with Overlapping Neighborhood Expansion), DCU (Detecting Complexes based on Uncertain graph model), IPC-MCE (Identifying Protein Complexes based on Maximal Complex Extension), and BinGO (the Biological networks Gene Ontology) function. Users can select different clustering algorithms according to their requirements. The main function of these six clustering algorithms is to detect protein complexes or functional modules. In addition, BinGO is used to determine which Gene Ontology (GO) categories are statistically overrepresented in a set of genes or a subgraph of a biological network. CytoCluster can be easily expanded, so that more clustering algorithms and functions can be added to this plugin. Since it was created in July 2013, CytoCluster has been downloaded more than 9700 times in the Cytoscape App store and has already been applied to the analysis of different biological networks. CytoCluster is available from http://apps.cytoscape.org/apps/cytocluster. PMID:28858211
Multi-Parent Clustering Algorithms from Stochastic Grammar Data Models
NASA Technical Reports Server (NTRS)
Mjoisness, Eric; Castano, Rebecca; Gray, Alexander
1999-01-01
We introduce a statistical data model and an associated optimization-based clustering algorithm which allows data vectors to belong to zero, one or several "parent" clusters. For each data vector the algorithm makes a discrete decision among these alternatives. Thus, a recursive version of this algorithm would place data clusters in a Directed Acyclic Graph rather than a tree. We test the algorithm with synthetic data generated according to the statistical data model. We also illustrate the algorithm using real data from large-scale gene expression assays.
Fast detection of the fuzzy communities based on leader-driven algorithm
NASA Astrophysics Data System (ADS)
Fang, Changjian; Mu, Dejun; Deng, Zhenghong; Hu, Jun; Yi, Chen-He
2018-03-01
In this paper, we present the leader-driven algorithm (LDA) for learning community structure in networks. The algorithm allows one to find overlapping clusters in a network, an important aspect of real networks, especially social networks. The algorithm requires no input parameters and learns the number of clusters naturally from the network. It accomplishes this using leadership centrality in a clever manner. It identifies local minima of leadership centrality as followers which belong only to one cluster, and the remaining nodes are leaders which connect clusters. In this way, the number of clusters can be learned using only the network structure. The LDA is also an extremely fast algorithm, having runtime linear in the network size. Thus, this algorithm can be used to efficiently cluster extremely large networks.
Research on retailer data clustering algorithm based on Spark
NASA Astrophysics Data System (ADS)
Huang, Qiuman; Zhou, Feng
2017-03-01
Big data analysis is a hot topic in the IT field now. Spark is a high-reliability and high-performance distributed parallel computing framework for big data sets. K-means algorithm is one of the classical partition methods in clustering algorithm. In this paper, we study the k-means clustering algorithm on Spark. Firstly, the principle of the algorithm is analyzed, and then the clustering analysis is carried out on the supermarket customers through the experiment to find out the different shopping patterns. At the same time, this paper proposes the parallelization of k-means algorithm and the distributed computing framework of Spark, and gives the concrete design scheme and implementation scheme. This paper uses the two-year sales data of a supermarket to validate the proposed clustering algorithm and achieve the goal of subdividing customers, and then analyze the clustering results to help enterprises to take different marketing strategies for different customer groups to improve sales performance.
Hierarchical Aligned Cluster Analysis for Temporal Clustering of Human Motion.
Zhou, Feng; De la Torre, Fernando; Hodgins, Jessica K
2013-03-01
Temporal segmentation of human motion into plausible motion primitives is central to understanding and building computational models of human motion. Several issues contribute to the challenge of discovering motion primitives: the exponential nature of all possible movement combinations, the variability in the temporal scale of human actions, and the complexity of representing articulated motion. We pose the problem of learning motion primitives as one of temporal clustering, and derive an unsupervised hierarchical bottom-up framework called hierarchical aligned cluster analysis (HACA). HACA finds a partition of a given multidimensional time series into m disjoint segments such that each segment belongs to one of k clusters. HACA combines kernel k-means with the generalized dynamic time alignment kernel to cluster time series data. Moreover, it provides a natural framework to find a low-dimensional embedding for time series. HACA is efficiently optimized with a coordinate descent strategy and dynamic programming. Experimental results on motion capture and video data demonstrate the effectiveness of HACA for segmenting complex motions and as a visualization tool. We also compare the performance of HACA to state-of-the-art algorithms for temporal clustering on data of a honey bee dance. The HACA code is available online.
Unsupervised Cryo-EM Data Clustering through Adaptively Constrained K-Means Algorithm
Xu, Yaofang; Wu, Jiayi; Yin, Chang-Cheng; Mao, Youdong
2016-01-01
In single-particle cryo-electron microscopy (cryo-EM), K-means clustering algorithm is widely used in unsupervised 2D classification of projection images of biological macromolecules. 3D ab initio reconstruction requires accurate unsupervised classification in order to separate molecular projections of distinct orientations. Due to background noise in single-particle images and uncertainty of molecular orientations, traditional K-means clustering algorithm may classify images into wrong classes and produce classes with a large variation in membership. Overcoming these limitations requires further development on clustering algorithms for cryo-EM data analysis. We propose a novel unsupervised data clustering method building upon the traditional K-means algorithm. By introducing an adaptive constraint term in the objective function, our algorithm not only avoids a large variation in class sizes but also produces more accurate data clustering. Applications of this approach to both simulated and experimental cryo-EM data demonstrate that our algorithm is a significantly improved alterative to the traditional K-means algorithm in single-particle cryo-EM analysis. PMID:27959895
Unsupervised Cryo-EM Data Clustering through Adaptively Constrained K-Means Algorithm.
Xu, Yaofang; Wu, Jiayi; Yin, Chang-Cheng; Mao, Youdong
2016-01-01
In single-particle cryo-electron microscopy (cryo-EM), K-means clustering algorithm is widely used in unsupervised 2D classification of projection images of biological macromolecules. 3D ab initio reconstruction requires accurate unsupervised classification in order to separate molecular projections of distinct orientations. Due to background noise in single-particle images and uncertainty of molecular orientations, traditional K-means clustering algorithm may classify images into wrong classes and produce classes with a large variation in membership. Overcoming these limitations requires further development on clustering algorithms for cryo-EM data analysis. We propose a novel unsupervised data clustering method building upon the traditional K-means algorithm. By introducing an adaptive constraint term in the objective function, our algorithm not only avoids a large variation in class sizes but also produces more accurate data clustering. Applications of this approach to both simulated and experimental cryo-EM data demonstrate that our algorithm is a significantly improved alterative to the traditional K-means algorithm in single-particle cryo-EM analysis.
GDPC: Gravitation-based Density Peaks Clustering algorithm
NASA Astrophysics Data System (ADS)
Jiang, Jianhua; Hao, Dehao; Chen, Yujun; Parmar, Milan; Li, Keqin
2018-07-01
The Density Peaks Clustering algorithm, which we refer to as DPC, is a novel and efficient density-based clustering approach, and it is published in Science in 2014. The DPC has advantages of discovering clusters with varying sizes and varying densities, but has some limitations of detecting the number of clusters and identifying anomalies. We develop an enhanced algorithm with an alternative decision graph based on gravitation theory and nearby distance to identify centroids and anomalies accurately. We apply our method to some UCI and synthetic data sets. We report comparative clustering performances using F-Measure and 2-dimensional vision. We also compare our method to other clustering algorithms, such as K-Means, Affinity Propagation (AP) and DPC. We present F-Measure scores and clustering accuracies of our GDPC algorithm compared to K-Means, AP and DPC on different data sets. We show that the GDPC has the superior performance in its capability of: (1) detecting the number of clusters obviously; (2) aggregating clusters with varying sizes, varying densities efficiently; (3) identifying anomalies accurately.
Deeper Insights into the Circumgalactic Medium using Multivariate Analysis Methods
NASA Astrophysics Data System (ADS)
Lewis, James; Churchill, Christopher W.; Nielsen, Nikole M.; Kacprzak, Glenn
2017-01-01
Drawing from a database of galaxies whose surrounding gas has absorption from MgII, called the MgII-Absorbing Galaxy Catalog (MAGIICAT, Neilsen et al 2013), we studied the circumgalactic medium (CGM) for a sample of 47 galaxies. Using multivariate analysis, in particular the k-means clustering algorithm, we determined that simultaneously examining column density (N), rest-frame B-K color, virial mass, and azimuthal angle (the projected angle between the galaxy major axis and the quasar line of sight) yields two distinct populations: (1) bluer, lower mass galaxies with higher column density along the minor axis, and (2) redder, higher mass galaxies with lower column density along the major axis. We support this grouping by running (i) two-sample, two-dimensional Kolmogorov-Smirnov (KS) tests on each of the six bivariate planes and (ii) two-sample KS tests on each of the four variables to show that the galaxies significantly cluster into two independent populations. To account for the fact that 16 of our 47 galaxies have upper limits on N, we performed Monte-Carlo tests whereby we replaced upper limits with random deviates drawn from a Schechter distribution fit, f(N). These tests strengthen the results of the KS tests. We examined the behavior of the MgII λ2796 absorption line equivalent width and velocity width for each galaxy population. We find that equivalent width and velocity width do not show similar characteristic distinctions between the two galaxy populations. We discuss the k-means clustering algorithm for optimizing the analysis of populations within datasets as opposed to using arbitrary bivariate subsample cuts. We also discuss the power of the k-means clustering algorithm in extracting deeper physical insight into the CGM in relationship to host galaxies.
Mining the National Career Assessment Examination Result Using Clustering Algorithm
NASA Astrophysics Data System (ADS)
Pagudpud, M. V.; Palaoag, T. T.; Padirayon, L. M.
2018-03-01
Education is an essential process today which elicits authorities to discover and establish innovative strategies for educational improvement. This study applied data mining using clustering technique for knowledge extraction from the National Career Assessment Examination (NCAE) result in the Division of Quirino. The NCAE is an examination given to all grade 9 students in the Philippines to assess their aptitudes in the different domains. Clustering the students is helpful in identifying students’ learning considerations. With the use of the RapidMiner tool, clustering algorithms such as Density-Based Spatial Clustering of Applications with Noise (DBSCAN), k-means, k-medoid, expectation maximization clustering, and support vector clustering algorithms were analyzed. The silhouette indexes of the said clustering algorithms were compared, and the result showed that the k-means algorithm with k = 3 and silhouette index equal to 0.196 is the most appropriate clustering algorithm to group the students. Three groups were formed having 477 students in the determined group (cluster 0), 310 proficient students (cluster 1) and 396 developing students (cluster 2). The data mining technique used in this study is essential in extracting useful information from the NCAE result to better understand the abilities of students which in turn is a good basis for adopting teaching strategies.
Automatic Clustering Using Multi-objective Particle Swarm and Simulated Annealing
Abubaker, Ahmad; Baharum, Adam; Alrefaei, Mahmoud
2015-01-01
This paper puts forward a new automatic clustering algorithm based on Multi-Objective Particle Swarm Optimization and Simulated Annealing, “MOPSOSA”. The proposed algorithm is capable of automatic clustering which is appropriate for partitioning datasets to a suitable number of clusters. MOPSOSA combines the features of the multi-objective based particle swarm optimization (PSO) and the Multi-Objective Simulated Annealing (MOSA). Three cluster validity indices were optimized simultaneously to establish the suitable number of clusters and the appropriate clustering for a dataset. The first cluster validity index is centred on Euclidean distance, the second on the point symmetry distance, and the last cluster validity index is based on short distance. A number of algorithms have been compared with the MOPSOSA algorithm in resolving clustering problems by determining the actual number of clusters and optimal clustering. Computational experiments were carried out to study fourteen artificial and five real life datasets. PMID:26132309
NASA Astrophysics Data System (ADS)
Gong, Lina; Xu, Tao; Zhang, Wei; Li, Xuhong; Wang, Xia; Pan, Wenwen
2017-03-01
The traditional microblog recommendation algorithm has the problems of low efficiency and modest effect in the era of big data. In the aim of solving these issues, this paper proposed a mixed recommendation algorithm with user clustering. This paper first introduced the situation of microblog marketing industry. Then, this paper elaborates the user interest modeling process and detailed advertisement recommendation methods. Finally, this paper compared the mixed recommendation algorithm with the traditional classification algorithm and mixed recommendation algorithm without user clustering. The results show that the mixed recommendation algorithm with user clustering has good accuracy and recall rate in the microblog advertisements promotion.
Procedure of Partitioning Data Into Number of Data Sets or Data Group - A Review
NASA Astrophysics Data System (ADS)
Kim, Tai-Hoon
The goal of clustering is to decompose a dataset into similar groups based on a objective function. Some already well established clustering algorithms are there for data clustering. Objective of these data clustering algorithms are to divide the data points of the feature space into a number of groups (or classes) so that a predefined set of criteria are satisfied. The article considers the comparative study about the effectiveness and efficiency of traditional data clustering algorithms. For evaluating the performance of the clustering algorithms, Minkowski score is used here for different data sets.
Android Malware Classification Using K-Means Clustering Algorithm
NASA Astrophysics Data System (ADS)
Hamid, Isredza Rahmi A.; Syafiqah Khalid, Nur; Azma Abdullah, Nurul; Rahman, Nurul Hidayah Ab; Chai Wen, Chuah
2017-08-01
Malware was designed to gain access or damage a computer system without user notice. Besides, attacker exploits malware to commit crime or fraud. This paper proposed Android malware classification approach based on K-Means clustering algorithm. We evaluate the proposed model in terms of accuracy using machine learning algorithms. Two datasets were selected to demonstrate the practicing of K-Means clustering algorithms that are Virus Total and Malgenome dataset. We classify the Android malware into three clusters which are ransomware, scareware and goodware. Nine features were considered for each types of dataset such as Lock Detected, Text Detected, Text Score, Encryption Detected, Threat, Porn, Law, Copyright and Moneypak. We used IBM SPSS Statistic software for data classification and WEKA tools to evaluate the built cluster. The proposed K-Means clustering algorithm shows promising result with high accuracy when tested using Random Forest algorithm.
An extended affinity propagation clustering method based on different data density types.
Zhao, XiuLi; Xu, WeiXiang
2015-01-01
Affinity propagation (AP) algorithm, as a novel clustering method, does not require the users to specify the initial cluster centers in advance, which regards all data points as potential exemplars (cluster centers) equally and groups the clusters totally by the similar degree among the data points. But in many cases there exist some different intensive areas within the same data set, which means that the data set does not distribute homogeneously. In such situation the AP algorithm cannot group the data points into ideal clusters. In this paper, we proposed an extended AP clustering algorithm to deal with such a problem. There are two steps in our method: firstly the data set is partitioned into several data density types according to the nearest distances of each data point; and then the AP clustering method is, respectively, used to group the data points into clusters in each data density type. Two experiments are carried out to evaluate the performance of our algorithm: one utilizes an artificial data set and the other uses a real seismic data set. The experiment results show that groups are obtained more accurately by our algorithm than OPTICS and AP clustering algorithm itself.
Scalable Parallel Density-based Clustering and Applications
NASA Astrophysics Data System (ADS)
Patwary, Mostofa Ali
2014-04-01
Recently, density-based clustering algorithms (DBSCAN and OPTICS) have gotten significant attention of the scientific community due to their unique capability of discovering arbitrary shaped clusters and eliminating noise data. These algorithms have several applications, which require high performance computing, including finding halos and subhalos (clusters) from massive cosmology data in astrophysics, analyzing satellite images, X-ray crystallography, and anomaly detection. However, parallelization of these algorithms are extremely challenging as they exhibit inherent sequential data access order, unbalanced workload resulting in low parallel efficiency. To break the data access sequentiality and to achieve high parallelism, we develop new parallel algorithms, both for DBSCAN and OPTICS, designed using graph algorithmic techniques. For example, our parallel DBSCAN algorithm exploits the similarities between DBSCAN and computing connected components. Using datasets containing up to a billion floating point numbers, we show that our parallel density-based clustering algorithms significantly outperform the existing algorithms, achieving speedups up to 27.5 on 40 cores on shared memory architecture and speedups up to 5,765 using 8,192 cores on distributed memory architecture. In our experiments, we found that while achieving the scalability, our algorithms produce clustering results with comparable quality to the classical algorithms.
Energy Aware Clustering Algorithms for Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Rakhshan, Noushin; Rafsanjani, Marjan Kuchaki; Liu, Chenglian
2011-09-01
The sensor nodes deployed in wireless sensor networks (WSNs) are extremely power constrained, so maximizing the lifetime of the entire networks is mainly considered in the design. In wireless sensor networks, hierarchical network structures have the advantage of providing scalable and energy efficient solutions. In this paper, we investigate different clustering algorithms for WSNs and also compare these clustering algorithms based on metrics such as clustering distribution, cluster's load balancing, Cluster Head's (CH) selection strategy, CH's role rotation, node mobility, clusters overlapping, intra-cluster communications, reliability, security and location awareness.
Removal of impulse noise clusters from color images with local order statistics
NASA Astrophysics Data System (ADS)
Ruchay, Alexey; Kober, Vitaly
2017-09-01
This paper proposes a novel algorithm for restoring images corrupted with clusters of impulse noise. The noise clusters often occur when the probability of impulse noise is very high. The proposed noise removal algorithm consists of detection of bulky impulse noise in three color channels with local order statistics followed by removal of the detected clusters by means of vector median filtering. With the help of computer simulation we show that the proposed algorithm is able to effectively remove clustered impulse noise. The performance of the proposed algorithm is compared in terms of image restoration metrics with that of common successful algorithms.
Jaiswara, Ranjana; Nandi, Diptarup; Balakrishnan, Rohini
2013-01-01
Traditional taxonomy based on morphology has often failed in accurate species identification owing to the occurrence of cryptic species, which are reproductively isolated but morphologically identical. Molecular data have thus been used to complement morphology in species identification. The sexual advertisement calls in several groups of acoustically communicating animals are species-specific and can thus complement molecular data as non-invasive tools for identification. Several statistical tools and automated identifier algorithms have been used to investigate the efficiency of acoustic signals in species identification. Despite a plethora of such methods, there is a general lack of knowledge regarding the appropriate usage of these methods in specific taxa. In this study, we investigated the performance of two commonly used statistical methods, discriminant function analysis (DFA) and cluster analysis, in identification and classification based on acoustic signals of field cricket species belonging to the subfamily Gryllinae. Using a comparative approach we evaluated the optimal number of species and calling song characteristics for both the methods that lead to most accurate classification and identification. The accuracy of classification using DFA was high and was not affected by the number of taxa used. However, a constraint in using discriminant function analysis is the need for a priori classification of songs. Accuracy of classification using cluster analysis, which does not require a priori knowledge, was maximum for 6-7 taxa and decreased significantly when more than ten taxa were analysed together. We also investigated the efficacy of two novel derived acoustic features in improving the accuracy of identification. Our results show that DFA is a reliable statistical tool for species identification using acoustic signals. Our results also show that cluster analysis of acoustic signals in crickets works effectively for species classification and identification.
Study of parameters of the nearest neighbour shared algorithm on clustering documents
NASA Astrophysics Data System (ADS)
Mustika Rukmi, Alvida; Budi Utomo, Daryono; Imro’atus Sholikhah, Neni
2018-03-01
Document clustering is one way of automatically managing documents, extracting of document topics and fastly filtering information. Preprocess of clustering documents processed by textmining consists of: keyword extraction using Rapid Automatic Keyphrase Extraction (RAKE) and making the document as concept vector using Latent Semantic Analysis (LSA). Furthermore, the clustering process is done so that the documents with the similarity of the topic are in the same cluster, based on the preprocesing by textmining performed. Shared Nearest Neighbour (SNN) algorithm is a clustering method based on the number of "nearest neighbors" shared. The parameters in the SNN Algorithm consist of: k nearest neighbor documents, ɛ shared nearest neighbor documents and MinT minimum number of similar documents, which can form a cluster. Characteristics The SNN algorithm is based on shared ‘neighbor’ properties. Each cluster is formed by keywords that are shared by the documents. SNN algorithm allows a cluster can be built more than one keyword, if the value of the frequency of appearing keywords in document is also high. Determination of parameter values on SNN algorithm affects document clustering results. The higher parameter value k, will increase the number of neighbor documents from each document, cause similarity of neighboring documents are lower. The accuracy of each cluster is also low. The higher parameter value ε, caused each document catch only neighbor documents that have a high similarity to build a cluster. It also causes more unclassified documents (noise). The higher the MinT parameter value cause the number of clusters will decrease, since the number of similar documents can not form clusters if less than MinT. Parameter in the SNN Algorithm determine performance of clustering result and the amount of noise (unclustered documents ). The Silhouette coeffisient shows almost the same result in many experiments, above 0.9, which means that SNN algorithm works well with different parameter values.
Algorithms of maximum likelihood data clustering with applications
NASA Astrophysics Data System (ADS)
Giada, Lorenzo; Marsili, Matteo
2002-12-01
We address the problem of data clustering by introducing an unsupervised, parameter-free approach based on maximum likelihood principle. Starting from the observation that data sets belonging to the same cluster share a common information, we construct an expression for the likelihood of any possible cluster structure. The likelihood in turn depends only on the Pearson's coefficient of the data. We discuss clustering algorithms that provide a fast and reliable approximation to maximum likelihood configurations. Compared to standard clustering methods, our approach has the advantages that (i) it is parameter free, (ii) the number of clusters need not be fixed in advance and (iii) the interpretation of the results is transparent. In order to test our approach and compare it with standard clustering algorithms, we analyze two very different data sets: time series of financial market returns and gene expression data. We find that different maximization algorithms produce similar cluster structures whereas the outcome of standard algorithms has a much wider variability.
A new clustering algorithm applicable to multispectral and polarimetric SAR images
NASA Technical Reports Server (NTRS)
Wong, Yiu-Fai; Posner, Edward C.
1993-01-01
We describe an application of a scale-space clustering algorithm to the classification of a multispectral and polarimetric SAR image of an agricultural site. After the initial polarimetric and radiometric calibration and noise cancellation, we extracted a 12-dimensional feature vector for each pixel from the scattering matrix. The clustering algorithm was able to partition a set of unlabeled feature vectors from 13 selected sites, each site corresponding to a distinct crop, into 13 clusters without any supervision. The cluster parameters were then used to classify the whole image. The classification map is much less noisy and more accurate than those obtained by hierarchical rules. Starting with every point as a cluster, the algorithm works by melting the system to produce a tree of clusters in the scale space. It can cluster data in any multidimensional space and is insensitive to variability in cluster densities, sizes and ellipsoidal shapes. This algorithm, more powerful than existing ones, may be useful for remote sensing for land use.
Best Practices and Joint Calling of the HumanExome BeadChip: The CHARGE Consortium
Grove, Megan L.; Yu, Bing; Cochran, Barbara J.; Haritunians, Talin; Bis, Joshua C.; Taylor, Kent D.; Hansen, Mark; Borecki, Ingrid B.; Cupples, L. Adrienne; Fornage, Myriam; Gudnason, Vilmundur; Harris, Tamara B.; Kathiresan, Sekar; Kraaij, Robert; Launer, Lenore J.; Levy, Daniel; Liu, Yongmei; Mosley, Thomas; Peloso, Gina M.; Psaty, Bruce M.; Rich, Stephen S.; Rivadeneira, Fernando; Siscovick, David S.; Smith, Albert V.; Uitterlinden, Andre; van Duijn, Cornelia M.; Wilson, James G.; O’Donnell, Christopher J.; Rotter, Jerome I.; Boerwinkle, Eric
2013-01-01
Genotyping arrays are a cost effective approach when typing previously-identified genetic polymorphisms in large numbers of samples. One limitation of genotyping arrays with rare variants (e.g., minor allele frequency [MAF] <0.01) is the difficulty that automated clustering algorithms have to accurately detect and assign genotype calls. Combining intensity data from large numbers of samples may increase the ability to accurately call the genotypes of rare variants. Approximately 62,000 ethnically diverse samples from eleven Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium cohorts were genotyped with the Illumina HumanExome BeadChip across seven genotyping centers. The raw data files for the samples were assembled into a single project for joint calling. To assess the quality of the joint calling, concordance of genotypes in a subset of individuals having both exome chip and exome sequence data was analyzed. After exclusion of low performing SNPs on the exome chip and non-overlap of SNPs derived from sequence data, genotypes of 185,119 variants (11,356 were monomorphic) were compared in 530 individuals that had whole exome sequence data. A total of 98,113,070 pairs of genotypes were tested and 99.77% were concordant, 0.14% had missing data, and 0.09% were discordant. We report that joint calling allows the ability to accurately genotype rare variation using array technology when large sample sizes are available and best practices are followed. The cluster file from this experiment is available at www.chargeconsortium.com/main/exomechip. PMID:23874508
Spatial cluster detection using dynamic programming.
Sverchkov, Yuriy; Jiang, Xia; Cooper, Gregory F
2012-03-25
The task of spatial cluster detection involves finding spatial regions where some property deviates from the norm or the expected value. In a probabilistic setting this task can be expressed as finding a region where some event is significantly more likely than usual. Spatial cluster detection is of interest in fields such as biosurveillance, mining of astronomical data, military surveillance, and analysis of fMRI images. In almost all such applications we are interested both in the question of whether a cluster exists in the data, and if it exists, we are interested in finding the most accurate characterization of the cluster. We present a general dynamic programming algorithm for grid-based spatial cluster detection. The algorithm can be used for both Bayesian maximum a-posteriori (MAP) estimation of the most likely spatial distribution of clusters and Bayesian model averaging over a large space of spatial cluster distributions to compute the posterior probability of an unusual spatial clustering. The algorithm is explained and evaluated in the context of a biosurveillance application, specifically the detection and identification of Influenza outbreaks based on emergency department visits. A relatively simple underlying model is constructed for the purpose of evaluating the algorithm, and the algorithm is evaluated using the model and semi-synthetic test data. When compared to baseline methods, tests indicate that the new algorithm can improve MAP estimates under certain conditions: the greedy algorithm we compared our method to was found to be more sensitive to smaller outbreaks, while as the size of the outbreaks increases, in terms of area affected and proportion of individuals affected, our method overtakes the greedy algorithm in spatial precision and recall. The new algorithm performs on-par with baseline methods in the task of Bayesian model averaging. We conclude that the dynamic programming algorithm performs on-par with other available methods for spatial cluster detection and point to its low computational cost and extendability as advantages in favor of further research and use of the algorithm.
Spatial cluster detection using dynamic programming
2012-01-01
Background The task of spatial cluster detection involves finding spatial regions where some property deviates from the norm or the expected value. In a probabilistic setting this task can be expressed as finding a region where some event is significantly more likely than usual. Spatial cluster detection is of interest in fields such as biosurveillance, mining of astronomical data, military surveillance, and analysis of fMRI images. In almost all such applications we are interested both in the question of whether a cluster exists in the data, and if it exists, we are interested in finding the most accurate characterization of the cluster. Methods We present a general dynamic programming algorithm for grid-based spatial cluster detection. The algorithm can be used for both Bayesian maximum a-posteriori (MAP) estimation of the most likely spatial distribution of clusters and Bayesian model averaging over a large space of spatial cluster distributions to compute the posterior probability of an unusual spatial clustering. The algorithm is explained and evaluated in the context of a biosurveillance application, specifically the detection and identification of Influenza outbreaks based on emergency department visits. A relatively simple underlying model is constructed for the purpose of evaluating the algorithm, and the algorithm is evaluated using the model and semi-synthetic test data. Results When compared to baseline methods, tests indicate that the new algorithm can improve MAP estimates under certain conditions: the greedy algorithm we compared our method to was found to be more sensitive to smaller outbreaks, while as the size of the outbreaks increases, in terms of area affected and proportion of individuals affected, our method overtakes the greedy algorithm in spatial precision and recall. The new algorithm performs on-par with baseline methods in the task of Bayesian model averaging. Conclusions We conclude that the dynamic programming algorithm performs on-par with other available methods for spatial cluster detection and point to its low computational cost and extendability as advantages in favor of further research and use of the algorithm. PMID:22443103
Incremental fuzzy C medoids clustering of time series data using dynamic time warping distance
Chen, Jingli; Wu, Shuai; Liu, Zhizhong; Chao, Hao
2018-01-01
Clustering time series data is of great significance since it could extract meaningful statistics and other characteristics. Especially in biomedical engineering, outstanding clustering algorithms for time series may help improve the health level of people. Considering data scale and time shifts of time series, in this paper, we introduce two incremental fuzzy clustering algorithms based on a Dynamic Time Warping (DTW) distance. For recruiting Single-Pass and Online patterns, our algorithms could handle large-scale time series data by splitting it into a set of chunks which are processed sequentially. Besides, our algorithms select DTW to measure distance of pair-wise time series and encourage higher clustering accuracy because DTW could determine an optimal match between any two time series by stretching or compressing segments of temporal data. Our new algorithms are compared to some existing prominent incremental fuzzy clustering algorithms on 12 benchmark time series datasets. The experimental results show that the proposed approaches could yield high quality clusters and were better than all the competitors in terms of clustering accuracy. PMID:29795600
Incremental fuzzy C medoids clustering of time series data using dynamic time warping distance.
Liu, Yongli; Chen, Jingli; Wu, Shuai; Liu, Zhizhong; Chao, Hao
2018-01-01
Clustering time series data is of great significance since it could extract meaningful statistics and other characteristics. Especially in biomedical engineering, outstanding clustering algorithms for time series may help improve the health level of people. Considering data scale and time shifts of time series, in this paper, we introduce two incremental fuzzy clustering algorithms based on a Dynamic Time Warping (DTW) distance. For recruiting Single-Pass and Online patterns, our algorithms could handle large-scale time series data by splitting it into a set of chunks which are processed sequentially. Besides, our algorithms select DTW to measure distance of pair-wise time series and encourage higher clustering accuracy because DTW could determine an optimal match between any two time series by stretching or compressing segments of temporal data. Our new algorithms are compared to some existing prominent incremental fuzzy clustering algorithms on 12 benchmark time series datasets. The experimental results show that the proposed approaches could yield high quality clusters and were better than all the competitors in terms of clustering accuracy.
Parallel-SymD: A Parallel Approach to Detect Internal Symmetry in Protein Domains.
Jha, Ashwani; Flurchick, K M; Bikdash, Marwan; Kc, Dukka B
2016-01-01
Internally symmetric proteins are proteins that have a symmetrical structure in their monomeric single-chain form. Around 10-15% of the protein domains can be regarded as having some sort of internal symmetry. In this regard, we previously published SymD (symmetry detection), an algorithm that determines whether a given protein structure has internal symmetry by attempting to align the protein to its own copy after the copy is circularly permuted by all possible numbers of residues. SymD has proven to be a useful algorithm to detect symmetry. In this paper, we present a new parallelized algorithm called Parallel-SymD for detecting symmetry of proteins on clusters of computers. The achieved speedup of the new Parallel-SymD algorithm scales well with the number of computing processors. Scaling is better for proteins with a larger number of residues. For a protein of 509 residues, a speedup of 63 was achieved on a parallel system with 100 processors.
Parallel-SymD: A Parallel Approach to Detect Internal Symmetry in Protein Domains
Jha, Ashwani; Flurchick, K. M.; Bikdash, Marwan
2016-01-01
Internally symmetric proteins are proteins that have a symmetrical structure in their monomeric single-chain form. Around 10–15% of the protein domains can be regarded as having some sort of internal symmetry. In this regard, we previously published SymD (symmetry detection), an algorithm that determines whether a given protein structure has internal symmetry by attempting to align the protein to its own copy after the copy is circularly permuted by all possible numbers of residues. SymD has proven to be a useful algorithm to detect symmetry. In this paper, we present a new parallelized algorithm called Parallel-SymD for detecting symmetry of proteins on clusters of computers. The achieved speedup of the new Parallel-SymD algorithm scales well with the number of computing processors. Scaling is better for proteins with a larger number of residues. For a protein of 509 residues, a speedup of 63 was achieved on a parallel system with 100 processors. PMID:27747230
NASA Astrophysics Data System (ADS)
Niknam, Taher; Kavousifard, Abdollah; Tabatabaei, Sajad; Aghaei, Jamshid
2011-10-01
In this paper a new multiobjective modified honey bee mating optimization (MHBMO) algorithm is presented to investigate the distribution feeder reconfiguration (DFR) problem considering renewable energy sources (RESs) (photovoltaics, fuel cell and wind energy) connected to the distribution network. The objective functions of the problem to be minimized are the electrical active power losses, the voltage deviations, the total electrical energy costs and the total emissions of RESs and substations. During the optimization process, the proposed algorithm finds a set of non-dominated (Pareto) optimal solutions which are stored in an external memory called repository. Since the objective functions investigated are not the same, a fuzzy clustering algorithm is utilized to handle the size of the repository in the specified limits. Moreover, a fuzzy-based decision maker is adopted to select the 'best' compromised solution among the non-dominated optimal solutions of multiobjective optimization problem. In order to see the feasibility and effectiveness of the proposed algorithm, two standard distribution test systems are used as case studies.
Wang, Huiya; Feng, Jun; Wang, Hongyu
2017-07-20
Detection of clustered microcalcification (MC) from mammograms plays essential roles in computer-aided diagnosis for early stage breast cancer. To tackle problems associated with the diversity of data structures of MC lesions and the variability of normal breast tissues, multi-pattern sample space learning is required. In this paper, a novel grouped fuzzy Support Vector Machine (SVM) algorithm with sample space partition based on Expectation-Maximization (EM) (called G-FSVM) is proposed for clustered MC detection. The diversified pattern of training data is partitioned into several groups based on EM algorithm. Then a series of fuzzy SVM are integrated for classification with each group of samples from the MC lesions and normal breast tissues. From DDSM database, a total of 1,064 suspicious regions are selected from 239 mammography, and the measurement of Accuracy, True Positive Rate (TPR), False Positive Rate (FPR) and EVL = TPR* 1-FPR are 0.82, 0.78, 0.14 and 0.72, respectively. The proposed method incorporates the merits of fuzzy SVM and multi-pattern sample space learning, decomposing the MC detection problem into serial simple two-class classification. Experimental results from synthetic data and DDSM database demonstrate that our integrated classification framework reduces the false positive rate significantly while maintaining the true positive rate.
Novel density-based and hierarchical density-based clustering algorithms for uncertain data.
Zhang, Xianchao; Liu, Han; Zhang, Xiaotong
2017-09-01
Uncertain data has posed a great challenge to traditional clustering algorithms. Recently, several algorithms have been proposed for clustering uncertain data, and among them density-based techniques seem promising for handling data uncertainty. However, some issues like losing uncertain information, high time complexity and nonadaptive threshold have not been addressed well in the previous density-based algorithm FDBSCAN and hierarchical density-based algorithm FOPTICS. In this paper, we firstly propose a novel density-based algorithm PDBSCAN, which improves the previous FDBSCAN from the following aspects: (1) it employs a more accurate method to compute the probability that the distance between two uncertain objects is less than or equal to a boundary value, instead of the sampling-based method in FDBSCAN; (2) it introduces new definitions of probability neighborhood, support degree, core object probability, direct reachability probability, thus reducing the complexity and solving the issue of nonadaptive threshold (for core object judgement) in FDBSCAN. Then, we modify the algorithm PDBSCAN to an improved version (PDBSCANi), by using a better cluster assignment strategy to ensure that every object will be assigned to the most appropriate cluster, thus solving the issue of nonadaptive threshold (for direct density reachability judgement) in FDBSCAN. Furthermore, as PDBSCAN and PDBSCANi have difficulties for clustering uncertain data with non-uniform cluster density, we propose a novel hierarchical density-based algorithm POPTICS by extending the definitions of PDBSCAN, adding new definitions of fuzzy core distance and fuzzy reachability distance, and employing a new clustering framework. POPTICS can reveal the cluster structures of the datasets with different local densities in different regions better than PDBSCAN and PDBSCANi, and it addresses the issues in FOPTICS. Experimental results demonstrate the superiority of our proposed algorithms over the existing algorithms in accuracy and efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.
Heterogeneous Tensor Decomposition for Clustering via Manifold Optimization.
Sun, Yanfeng; Gao, Junbin; Hong, Xia; Mishra, Bamdev; Yin, Baocai
2016-03-01
Tensor clustering is an important tool that exploits intrinsically rich structures in real-world multiarray or Tensor datasets. Often in dealing with those datasets, standard practice is to use subspace clustering that is based on vectorizing multiarray data. However, vectorization of tensorial data does not exploit complete structure information. In this paper, we propose a subspace clustering algorithm without adopting any vectorization process. Our approach is based on a novel heterogeneous Tucker decomposition model taking into account cluster membership information. We propose a new clustering algorithm that alternates between different modes of the proposed heterogeneous tensor model. All but the last mode have closed-form updates. Updating the last mode reduces to optimizing over the multinomial manifold for which we investigate second order Riemannian geometry and propose a trust-region algorithm. Numerical experiments show that our proposed algorithm compete effectively with state-of-the-art clustering algorithms that are based on tensor factorization.
Anandakrishnan, Ramu; Onufriev, Alexey
2008-03-01
In statistical mechanics, the equilibrium properties of a physical system of particles can be calculated as the statistical average over accessible microstates of the system. In general, these calculations are computationally intractable since they involve summations over an exponentially large number of microstates. Clustering algorithms are one of the methods used to numerically approximate these sums. The most basic clustering algorithms first sub-divide the system into a set of smaller subsets (clusters). Then, interactions between particles within each cluster are treated exactly, while all interactions between different clusters are ignored. These smaller clusters have far fewer microstates, making the summation over these microstates, tractable. These algorithms have been previously used for biomolecular computations, but remain relatively unexplored in this context. Presented here, is a theoretical analysis of the error and computational complexity for the two most basic clustering algorithms that were previously applied in the context of biomolecular electrostatics. We derive a tight, computationally inexpensive, error bound for the equilibrium state of a particle computed via these clustering algorithms. For some practical applications, it is the root mean square error, which can be significantly lower than the error bound, that may be more important. We how that there is a strong empirical relationship between error bound and root mean square error, suggesting that the error bound could be used as a computationally inexpensive metric for predicting the accuracy of clustering algorithms for practical applications. An example of error analysis for such an application-computation of average charge of ionizable amino-acids in proteins-is given, demonstrating that the clustering algorithm can be accurate enough for practical purposes.
Zhang, Jian; Zhao, Xiaowei; Sun, Pingping; Gao, Bo; Ma, Zhiqiang
2014-01-01
B-cell epitopes are regions of the antigen surface which can be recognized by certain antibodies and elicit the immune response. Identification of epitopes for a given antigen chain finds vital applications in vaccine and drug research. Experimental prediction of B-cell epitopes is time-consuming and resource intensive, which may benefit from the computational approaches to identify B-cell epitopes. In this paper, a novel cost-sensitive ensemble algorithm is proposed for predicting the antigenic determinant residues and then a spatial clustering algorithm is adopted to identify the potential epitopes. Firstly, we explore various discriminative features from primary sequences. Secondly, cost-sensitive ensemble scheme is introduced to deal with imbalanced learning problem. Thirdly, we adopt spatial algorithm to tell which residues may potentially form the epitopes. Based on the strategies mentioned above, a new predictor, called CBEP (conformational B-cell epitopes prediction), is proposed in this study. CBEP achieves good prediction performance with the mean AUC scores (AUCs) of 0.721 and 0.703 on two benchmark datasets (bound and unbound) using the leave-one-out cross-validation (LOOCV). When compared with previous prediction tools, CBEP produces higher sensitivity and comparable specificity values. A web server named CBEP which implements the proposed method is available for academic use.
NASA Astrophysics Data System (ADS)
Abdul-Nasir, Aimi Salihah; Mashor, Mohd Yusoff; Halim, Nurul Hazwani Abd; Mohamed, Zeehaida
2015-05-01
Malaria is a life-threatening parasitic infectious disease that corresponds for nearly one million deaths each year. Due to the requirement of prompt and accurate diagnosis of malaria, the current study has proposed an unsupervised pixel segmentation based on clustering algorithm in order to obtain the fully segmented red blood cells (RBCs) infected with malaria parasites based on the thin blood smear images of P. vivax species. In order to obtain the segmented infected cell, the malaria images are first enhanced by using modified global contrast stretching technique. Then, an unsupervised segmentation technique based on clustering algorithm has been applied on the intensity component of malaria image in order to segment the infected cell from its blood cells background. In this study, cascaded moving k-means (MKM) and fuzzy c-means (FCM) clustering algorithms has been proposed for malaria slide image segmentation. After that, median filter algorithm has been applied to smooth the image as well as to remove any unwanted regions such as small background pixels from the image. Finally, seeded region growing area extraction algorithm has been applied in order to remove large unwanted regions that are still appeared on the image due to their size in which cannot be cleaned by using median filter. The effectiveness of the proposed cascaded MKM and FCM clustering algorithms has been analyzed qualitatively and quantitatively by comparing the proposed cascaded clustering algorithm with MKM and FCM clustering algorithms. Overall, the results indicate that segmentation using the proposed cascaded clustering algorithm has produced the best segmentation performances by achieving acceptable sensitivity as well as high specificity and accuracy values compared to the segmentation results provided by MKM and FCM algorithms.
Lei, Yang; Yu, Dai; Bin, Zhang; Yang, Yang
2017-01-01
Clustering algorithm as a basis of data analysis is widely used in analysis systems. However, as for the high dimensions of the data, the clustering algorithm may overlook the business relation between these dimensions especially in the medical fields. As a result, usually the clustering result may not meet the business goals of the users. Then, in the clustering process, if it can combine the knowledge of the users, that is, the doctor's knowledge or the analysis intent, the clustering result can be more satisfied. In this paper, we propose an interactive K -means clustering method to improve the user's satisfactions towards the result. The core of this method is to get the user's feedback of the clustering result, to optimize the clustering result. Then, a particle swarm optimization algorithm is used in the method to optimize the parameters, especially the weight settings in the clustering algorithm to make it reflect the user's business preference as possible. After that, based on the parameter optimization and adjustment, the clustering result can be closer to the user's requirement. Finally, we take an example in the breast cancer, to testify our method. The experiments show the better performance of our algorithm.
Inference from clustering with application to gene-expression microarrays.
Dougherty, Edward R; Barrera, Junior; Brun, Marcel; Kim, Seungchan; Cesar, Roberto M; Chen, Yidong; Bittner, Michael; Trent, Jeffrey M
2002-01-01
There are many algorithms to cluster sample data points based on nearness or a similarity measure. Often the implication is that points in different clusters come from different underlying classes, whereas those in the same cluster come from the same class. Stochastically, the underlying classes represent different random processes. The inference is that clusters represent a partition of the sample points according to which process they belong. This paper discusses a model-based clustering toolbox that evaluates cluster accuracy. Each random process is modeled as its mean plus independent noise, sample points are generated, the points are clustered, and the clustering error is the number of points clustered incorrectly according to the generating random processes. Various clustering algorithms are evaluated based on process variance and the key issue of the rate at which algorithmic performance improves with increasing numbers of experimental replications. The model means can be selected by hand to test the separability of expected types of biological expression patterns. Alternatively, the model can be seeded by real data to test the expected precision of that output or the extent of improvement in precision that replication could provide. In the latter case, a clustering algorithm is used to form clusters, and the model is seeded with the means and variances of these clusters. Other algorithms are then tested relative to the seeding algorithm. Results are averaged over various seeds. Output includes error tables and graphs, confusion matrices, principal-component plots, and validation measures. Five algorithms are studied in detail: K-means, fuzzy C-means, self-organizing maps, hierarchical Euclidean-distance-based and correlation-based clustering. The toolbox is applied to gene-expression clustering based on cDNA microarrays using real data. Expression profile graphics are generated and error analysis is displayed within the context of these profile graphics. A large amount of generated output is available over the web.
Implementation of spectral clustering on microarray data of carcinoma using k-means algorithm
NASA Astrophysics Data System (ADS)
Frisca, Bustamam, Alhadi; Siswantining, Titin
2017-03-01
Clustering is one of data analysis methods that aims to classify data which have similar characteristics in the same group. Spectral clustering is one of the most popular modern clustering algorithms. As an effective clustering technique, spectral clustering method emerged from the concepts of spectral graph theory. Spectral clustering method needs partitioning algorithm. There are some partitioning methods including PAM, SOM, Fuzzy c-means, and k-means. Based on the research that has been done by Capital and Choudhury in 2013, when using Euclidian distance k-means algorithm provide better accuracy than PAM algorithm. So in this paper we use k-means as our partition algorithm. The major advantage of spectral clustering is in reducing data dimension, especially in this case to reduce the dimension of large microarray dataset. Microarray data is a small-sized chip made of a glass plate containing thousands and even tens of thousands kinds of genes in the DNA fragments derived from doubling cDNA. Application of microarray data is widely used to detect cancer, for the example is carcinoma, in which cancer cells express the abnormalities in his genes. The purpose of this research is to classify the data that have high similarity in the same group and the data that have low similarity in the others. In this research, Carcinoma microarray data using 7457 genes. The result of partitioning using k-means algorithm is two clusters.
Using Grey Wolf Algorithm to Solve the Capacitated Vehicle Routing Problem
NASA Astrophysics Data System (ADS)
Korayem, L.; Khorsid, M.; Kassem, S. S.
2015-05-01
The capacitated vehicle routing problem (CVRP) is a class of the vehicle routing problems (VRPs). In CVRP a set of identical vehicles having fixed capacities are required to fulfill customers' demands for a single commodity. The main objective is to minimize the total cost or distance traveled by the vehicles while satisfying a number of constraints, such as: the capacity constraint of each vehicle, logical flow constraints, etc. One of the methods employed in solving the CVRP is the cluster-first route-second method. It is a technique based on grouping of customers into a number of clusters, where each cluster is served by one vehicle. Once clusters are formed, a route determining the best sequence to visit customers is established within each cluster. The recently bio-inspired grey wolf optimizer (GWO), introduced in 2014, has proven to be efficient in solving unconstrained, as well as, constrained optimization problems. In the current research, our main contributions are: combining GWO with the traditional K-means clustering algorithm to generate the ‘K-GWO’ algorithm, deriving a capacitated version of the K-GWO algorithm by incorporating a capacity constraint into the aforementioned algorithm, and finally, developing 2 new clustering heuristics. The resulting algorithm is used in the clustering phase of the cluster-first route-second method to solve the CVR problem. The algorithm is tested on a number of benchmark problems with encouraging results.
Chemodynamical Clustering Applied to APOGEE Data: Rediscovering Globular Clusters
NASA Astrophysics Data System (ADS)
Chen, Boquan; D’Onghia, Elena; Pardy, Stephen A.; Pasquali, Anna; Bertelli Motta, Clio; Hanlon, Bret; Grebel, Eva K.
2018-06-01
We have developed a novel technique based on a clustering algorithm that searches for kinematically and chemically clustered stars in the APOGEE DR12 Cannon data. As compared to classical chemical tagging, the kinematic information included in our methodology allows us to identify stars that are members of known globular clusters with greater confidence. We apply our algorithm to the entire APOGEE catalog of 150,615 stars whose chemical abundances are derived by the Cannon. Our methodology found anticorrelations between the elements Al and Mg, Na and O, and C and N previously identified in the optical spectra in globular clusters, even though we omit these elements in our algorithm. Our algorithm identifies globular clusters without a priori knowledge of their locations in the sky. Thus, not only does this technique promise to discover new globular clusters, but it also allows us to identify candidate streams of kinematically and chemically clustered stars in the Milky Way.
Clustering performance comparison using K-means and expectation maximization algorithms.
Jung, Yong Gyu; Kang, Min Soo; Heo, Jun
2014-11-14
Clustering is an important means of data mining based on separating data categories by similar features. Unlike the classification algorithm, clustering belongs to the unsupervised type of algorithms. Two representatives of the clustering algorithms are the K -means and the expectation maximization (EM) algorithm. Linear regression analysis was extended to the category-type dependent variable, while logistic regression was achieved using a linear combination of independent variables. To predict the possibility of occurrence of an event, a statistical approach is used. However, the classification of all data by means of logistic regression analysis cannot guarantee the accuracy of the results. In this paper, the logistic regression analysis is applied to EM clusters and the K -means clustering method for quality assessment of red wine, and a method is proposed for ensuring the accuracy of the classification results.
Lukashin, A V; Fuchs, R
2001-05-01
Cluster analysis of genome-wide expression data from DNA microarray hybridization studies has proved to be a useful tool for identifying biologically relevant groupings of genes and samples. In the present paper, we focus on several important issues related to clustering algorithms that have not yet been fully studied. We describe a simple and robust algorithm for the clustering of temporal gene expression profiles that is based on the simulated annealing procedure. In general, this algorithm guarantees to eventually find the globally optimal distribution of genes over clusters. We introduce an iterative scheme that serves to evaluate quantitatively the optimal number of clusters for each specific data set. The scheme is based on standard approaches used in regular statistical tests. The basic idea is to organize the search of the optimal number of clusters simultaneously with the optimization of the distribution of genes over clusters. The efficiency of the proposed algorithm has been evaluated by means of a reverse engineering experiment, that is, a situation in which the correct distribution of genes over clusters is known a priori. The employment of this statistically rigorous test has shown that our algorithm places greater than 90% genes into correct clusters. Finally, the algorithm has been tested on real gene expression data (expression changes during yeast cell cycle) for which the fundamental patterns of gene expression and the assignment of genes to clusters are well understood from numerous previous studies.
Giancarlo, Raffaele; Scaturro, Davide; Utro, Filippo
2008-10-29
Inferring cluster structure in microarray datasets is a fundamental task for the so-called -omic sciences. It is also a fundamental question in Statistics, Data Analysis and Classification, in particular with regard to the prediction of the number of clusters in a dataset, usually established via internal validation measures. Despite the wealth of internal measures available in the literature, new ones have been recently proposed, some of them specifically for microarray data. We consider five such measures: Clest, Consensus (Consensus Clustering), FOM (Figure of Merit), Gap (Gap Statistics) and ME (Model Explorer), in addition to the classic WCSS (Within Cluster Sum-of-Squares) and KL (Krzanowski and Lai index). We perform extensive experiments on six benchmark microarray datasets, using both Hierarchical and K-means clustering algorithms, and we provide an analysis assessing both the intrinsic ability of a measure to predict the correct number of clusters in a dataset and its merit relative to the other measures. We pay particular attention both to precision and speed. Moreover, we also provide various fast approximation algorithms for the computation of Gap, FOM and WCSS. The main result is a hierarchy of those measures in terms of precision and speed, highlighting some of their merits and limitations not reported before in the literature. Based on our analysis, we draw several conclusions for the use of those internal measures on microarray data. We report the main ones. Consensus is by far the best performer in terms of predictive power and remarkably algorithm-independent. Unfortunately, on large datasets, it may be of no use because of its non-trivial computer time demand (weeks on a state of the art PC). FOM is the second best performer although, quite surprisingly, it may not be competitive in this scenario: it has essentially the same predictive power of WCSS but it is from 6 to 100 times slower in time, depending on the dataset. The approximation algorithms for the computation of FOM, Gap and WCSS perform very well, i.e., they are faster while still granting a very close approximation of FOM and WCSS. The approximation algorithm for the computation of Gap deserves to be singled-out since it has a predictive power far better than Gap, it is competitive with the other measures, but it is at least two order of magnitude faster in time with respect to Gap. Another important novel conclusion that can be drawn from our analysis is that all the measures we have considered show severe limitations on large datasets, either due to computational demand (Consensus, as already mentioned, Clest and Gap) or to lack of precision (all of the other measures, including their approximations). The software and datasets are available under the GNU GPL on the supplementary material web page.
NASA Astrophysics Data System (ADS)
Zhuang, Wei; Mountrakis, Giorgos
2014-09-01
Large footprint waveform LiDAR sensors have been widely used for numerous airborne studies. Ground peak identification in a large footprint waveform is a significant bottleneck in exploring full usage of the waveform datasets. In the current study, an accurate and computationally efficient algorithm was developed for ground peak identification, called Filtering and Clustering Algorithm (FICA). The method was evaluated on Land, Vegetation, and Ice Sensor (LVIS) waveform datasets acquired over Central NY. FICA incorporates a set of multi-scale second derivative filters and a k-means clustering algorithm in order to avoid detecting false ground peaks. FICA was tested in five different land cover types (deciduous trees, coniferous trees, shrub, grass and developed area) and showed more accurate results when compared to existing algorithms. More specifically, compared with Gaussian decomposition, the RMSE ground peak identification by FICA was 2.82 m (5.29 m for GD) in deciduous plots, 3.25 m (4.57 m for GD) in coniferous plots, 2.63 m (2.83 m for GD) in shrub plots, 0.82 m (0.93 m for GD) in grass plots, and 0.70 m (0.51 m for GD) in plots of developed areas. FICA performance was also relatively consistent under various slope and canopy coverage (CC) conditions. In addition, FICA showed better computational efficiency compared to existing methods. FICA's major computational and accuracy advantage is a result of the adopted multi-scale signal processing procedures that concentrate on local portions of the signal as opposed to the Gaussian decomposition that uses a curve-fitting strategy applied in the entire signal. The FICA algorithm is a good candidate for large-scale implementation on future space-borne waveform LiDAR sensors.
Basic firefly algorithm for document clustering
NASA Astrophysics Data System (ADS)
Mohammed, Athraa Jasim; Yusof, Yuhanis; Husni, Husniza
2015-12-01
The Document clustering plays significant role in Information Retrieval (IR) where it organizes documents prior to the retrieval process. To date, various clustering algorithms have been proposed and this includes the K-means and Particle Swarm Optimization. Even though these algorithms have been widely applied in many disciplines due to its simplicity, such an approach tends to be trapped in a local minimum during its search for an optimal solution. To address the shortcoming, this paper proposes a Basic Firefly (Basic FA) algorithm to cluster text documents. The algorithm employs the Average Distance to Document Centroid (ADDC) as the objective function of the search. Experiments utilizing the proposed algorithm were conducted on the 20Newsgroups benchmark dataset. Results demonstrate that the Basic FA generates a more robust and compact clusters than the ones produced by K-means and Particle Swarm Optimization (PSO).
Weighted graph cuts without eigenvectors a multilevel approach.
Dhillon, Inderjit S; Guan, Yuqiang; Kulis, Brian
2007-11-01
A variety of clustering algorithms have recently been proposed to handle data that is not linearly separable; spectral clustering and kernel k-means are two of the main methods. In this paper, we discuss an equivalence between the objective functions used in these seemingly different methods--in particular, a general weighted kernel k-means objective is mathematically equivalent to a weighted graph clustering objective. We exploit this equivalence to develop a fast, high-quality multilevel algorithm that directly optimizes various weighted graph clustering objectives, such as the popular ratio cut, normalized cut, and ratio association criteria. This eliminates the need for any eigenvector computation for graph clustering problems, which can be prohibitive for very large graphs. Previous multilevel graph partitioning methods, such as Metis, have suffered from the restriction of equal-sized clusters; our multilevel algorithm removes this restriction by using kernel k-means to optimize weighted graph cuts. Experimental results show that our multilevel algorithm outperforms a state-of-the-art spectral clustering algorithm in terms of speed, memory usage, and quality. We demonstrate that our algorithm is applicable to large-scale clustering tasks such as image segmentation, social network analysis and gene network analysis.
NASA Technical Reports Server (NTRS)
Reznick, Steve
1988-01-01
Transonic Euler/Navier-Stokes computations are accomplished for wing-body flow fields using a computer program called Transonic Navier-Stokes (TNS). The wing-body grids are generated using a program called ZONER, which subdivides a coarse grid about a fighter-like aircraft configuration into smaller zones, which are tailored to local grid requirements. These zones can be either finely clustered for capture of viscous effects, or coarsely clustered for inviscid portions of the flow field. Different equation sets may be solved in the different zone types. This modular approach also affords the opportunity to modify a local region of the grid without recomputing the global grid. This capability speeds up the design optimization process when quick modifications to the geometry definition are desired. The solution algorithm embodied in TNS is implicit, and is capable of capturing pressure gradients associated with shocks. The algebraic turbulence model employed has proven adequate for viscous interactions with moderate separation. Results confirm that the TNS program can successfully be used to simulate transonic viscous flows about complicated 3-D geometries.
Model-based clustering for RNA-seq data.
Si, Yaqing; Liu, Peng; Li, Pinghua; Brutnell, Thomas P
2014-01-15
RNA-seq technology has been widely adopted as an attractive alternative to microarray-based methods to study global gene expression. However, robust statistical tools to analyze these complex datasets are still lacking. By grouping genes with similar expression profiles across treatments, cluster analysis provides insight into gene functions and networks, and hence is an important technique for RNA-seq data analysis. In this manuscript, we derive clustering algorithms based on appropriate probability models for RNA-seq data. An expectation-maximization algorithm and another two stochastic versions of expectation-maximization algorithms are described. In addition, a strategy for initialization based on likelihood is proposed to improve the clustering algorithms. Moreover, we present a model-based hybrid-hierarchical clustering method to generate a tree structure that allows visualization of relationships among clusters as well as flexibility of choosing the number of clusters. Results from both simulation studies and analysis of a maize RNA-seq dataset show that our proposed methods provide better clustering results than alternative methods such as the K-means algorithm and hierarchical clustering methods that are not based on probability models. An R package, MBCluster.Seq, has been developed to implement our proposed algorithms. This R package provides fast computation and is publicly available at http://www.r-project.org
Two generalizations of Kohonen clustering
NASA Technical Reports Server (NTRS)
Bezdek, James C.; Pal, Nikhil R.; Tsao, Eric C. K.
1993-01-01
The relationship between the sequential hard c-means (SHCM), learning vector quantization (LVQ), and fuzzy c-means (FCM) clustering algorithms is discussed. LVQ and SHCM suffer from several major problems. For example, they depend heavily on initialization. If the initial values of the cluster centers are outside the convex hull of the input data, such algorithms, even if they terminate, may not produce meaningful results in terms of prototypes for cluster representation. This is due in part to the fact that they update only the winning prototype for every input vector. The impact and interaction of these two families with Kohonen's self-organizing feature mapping (SOFM), which is not a clustering method, but which often leads ideas to clustering algorithms is discussed. Then two generalizations of LVQ that are explicitly designed as clustering algorithms are presented; these algorithms are referred to as generalized LVQ = GLVQ; and fuzzy LVQ = FLVQ. Learning rules are derived to optimize an objective function whose goal is to produce 'good clusters'. GLVQ/FLVQ (may) update every node in the clustering net for each input vector. Neither GLVQ nor FLVQ depends upon a choice for the update neighborhood or learning rate distribution - these are taken care of automatically. Segmentation of a gray tone image is used as a typical application of these algorithms to illustrate the performance of GLVQ/FLVQ.
An improved initialization center k-means clustering algorithm based on distance and density
NASA Astrophysics Data System (ADS)
Duan, Yanling; Liu, Qun; Xia, Shuyin
2018-04-01
Aiming at the problem of the random initial clustering center of k means algorithm that the clustering results are influenced by outlier data sample and are unstable in multiple clustering, a method of central point initialization method based on larger distance and higher density is proposed. The reciprocal of the weighted average of distance is used to represent the sample density, and the data sample with the larger distance and the higher density are selected as the initial clustering centers to optimize the clustering results. Then, a clustering evaluation method based on distance and density is designed to verify the feasibility of the algorithm and the practicality, the experimental results on UCI data sets show that the algorithm has a certain stability and practicality.
Diametrical clustering for identifying anti-correlated gene clusters.
Dhillon, Inderjit S; Marcotte, Edward M; Roshan, Usman
2003-09-01
Clustering genes based upon their expression patterns allows us to predict gene function. Most existing clustering algorithms cluster genes together when their expression patterns show high positive correlation. However, it has been observed that genes whose expression patterns are strongly anti-correlated can also be functionally similar. Biologically, this is not unintuitive-genes responding to the same stimuli, regardless of the nature of the response, are more likely to operate in the same pathways. We present a new diametrical clustering algorithm that explicitly identifies anti-correlated clusters of genes. Our algorithm proceeds by iteratively (i). re-partitioning the genes and (ii). computing the dominant singular vector of each gene cluster; each singular vector serving as the prototype of a 'diametric' cluster. We empirically show the effectiveness of the algorithm in identifying diametrical or anti-correlated clusters. Testing the algorithm on yeast cell cycle data, fibroblast gene expression data, and DNA microarray data from yeast mutants reveals that opposed cellular pathways can be discovered with this method. We present systems whose mRNA expression patterns, and likely their functions, oppose the yeast ribosome and proteosome, along with evidence for the inverse transcriptional regulation of a number of cellular systems.
A novel harmony search-K means hybrid algorithm for clustering gene expression data
Nazeer, KA Abdul; Sebastian, MP; Kumar, SD Madhu
2013-01-01
Recent progress in bioinformatics research has led to the accumulation of huge quantities of biological data at various data sources. The DNA microarray technology makes it possible to simultaneously analyze large number of genes across different samples. Clustering of microarray data can reveal the hidden gene expression patterns from large quantities of expression data that in turn offers tremendous possibilities in functional genomics, comparative genomics, disease diagnosis and drug development. The k- ¬means clustering algorithm is widely used for many practical applications. But the original k-¬means algorithm has several drawbacks. It is computationally expensive and generates locally optimal solutions based on the random choice of the initial centroids. Several methods have been proposed in the literature for improving the performance of the k-¬means algorithm. A meta-heuristic optimization algorithm named harmony search helps find out near-global optimal solutions by searching the entire solution space. Low clustering accuracy of the existing algorithms limits their use in many crucial applications of life sciences. In this paper we propose a novel Harmony Search-K means Hybrid (HSKH) algorithm for clustering the gene expression data. Experimental results show that the proposed algorithm produces clusters with better accuracy in comparison with the existing algorithms. PMID:23390351
A novel harmony search-K means hybrid algorithm for clustering gene expression data.
Nazeer, Ka Abdul; Sebastian, Mp; Kumar, Sd Madhu
2013-01-01
Recent progress in bioinformatics research has led to the accumulation of huge quantities of biological data at various data sources. The DNA microarray technology makes it possible to simultaneously analyze large number of genes across different samples. Clustering of microarray data can reveal the hidden gene expression patterns from large quantities of expression data that in turn offers tremendous possibilities in functional genomics, comparative genomics, disease diagnosis and drug development. The k- ¬means clustering algorithm is widely used for many practical applications. But the original k-¬means algorithm has several drawbacks. It is computationally expensive and generates locally optimal solutions based on the random choice of the initial centroids. Several methods have been proposed in the literature for improving the performance of the k-¬means algorithm. A meta-heuristic optimization algorithm named harmony search helps find out near-global optimal solutions by searching the entire solution space. Low clustering accuracy of the existing algorithms limits their use in many crucial applications of life sciences. In this paper we propose a novel Harmony Search-K means Hybrid (HSKH) algorithm for clustering the gene expression data. Experimental results show that the proposed algorithm produces clusters with better accuracy in comparison with the existing algorithms.
A Self-Adaptive Fuzzy c-Means Algorithm for Determining the Optimal Number of Clusters
Wang, Zhihao; Yi, Jing
2016-01-01
For the shortcoming of fuzzy c-means algorithm (FCM) needing to know the number of clusters in advance, this paper proposed a new self-adaptive method to determine the optimal number of clusters. Firstly, a density-based algorithm was put forward. The algorithm, according to the characteristics of the dataset, automatically determined the possible maximum number of clusters instead of using the empirical rule n and obtained the optimal initial cluster centroids, improving the limitation of FCM that randomly selected cluster centroids lead the convergence result to the local minimum. Secondly, this paper, by introducing a penalty function, proposed a new fuzzy clustering validity index based on fuzzy compactness and separation, which ensured that when the number of clusters verged on that of objects in the dataset, the value of clustering validity index did not monotonically decrease and was close to zero, so that the optimal number of clusters lost robustness and decision function. Then, based on these studies, a self-adaptive FCM algorithm was put forward to estimate the optimal number of clusters by the iterative trial-and-error process. At last, experiments were done on the UCI, KDD Cup 1999, and synthetic datasets, which showed that the method not only effectively determined the optimal number of clusters, but also reduced the iteration of FCM with the stable clustering result. PMID:28042291
Poole, William; Leinonen, Kalle; Shmulevich, Ilya
2017-01-01
Cancer researchers have long recognized that somatic mutations are not uniformly distributed within genes. However, most approaches for identifying cancer mutations focus on either the entire-gene or single amino-acid level. We have bridged these two methodologies with a multiscale mutation clustering algorithm that identifies variable length mutation clusters in cancer genes. We ran our algorithm on 539 genes using the combined mutation data in 23 cancer types from The Cancer Genome Atlas (TCGA) and identified 1295 mutation clusters. The resulting mutation clusters cover a wide range of scales and often overlap with many kinds of protein features including structured domains, phosphorylation sites, and known single nucleotide variants. We statistically associated these multiscale clusters with gene expression and drug response data to illuminate the functional and clinical consequences of mutations in our clusters. Interestingly, we find multiple clusters within individual genes that have differential functional associations: these include PTEN, FUBP1, and CDH1. This methodology has potential implications in identifying protein regions for drug targets, understanding the biological underpinnings of cancer, and personalizing cancer treatments. Toward this end, we have made the mutation clusters and the clustering algorithm available to the public. Clusters and pathway associations can be interactively browsed at m2c.systemsbiology.net. The multiscale mutation clustering algorithm is available at https://github.com/IlyaLab/M2C. PMID:28170390
Poole, William; Leinonen, Kalle; Shmulevich, Ilya; Knijnenburg, Theo A; Bernard, Brady
2017-02-01
Cancer researchers have long recognized that somatic mutations are not uniformly distributed within genes. However, most approaches for identifying cancer mutations focus on either the entire-gene or single amino-acid level. We have bridged these two methodologies with a multiscale mutation clustering algorithm that identifies variable length mutation clusters in cancer genes. We ran our algorithm on 539 genes using the combined mutation data in 23 cancer types from The Cancer Genome Atlas (TCGA) and identified 1295 mutation clusters. The resulting mutation clusters cover a wide range of scales and often overlap with many kinds of protein features including structured domains, phosphorylation sites, and known single nucleotide variants. We statistically associated these multiscale clusters with gene expression and drug response data to illuminate the functional and clinical consequences of mutations in our clusters. Interestingly, we find multiple clusters within individual genes that have differential functional associations: these include PTEN, FUBP1, and CDH1. This methodology has potential implications in identifying protein regions for drug targets, understanding the biological underpinnings of cancer, and personalizing cancer treatments. Toward this end, we have made the mutation clusters and the clustering algorithm available to the public. Clusters and pathway associations can be interactively browsed at m2c.systemsbiology.net. The multiscale mutation clustering algorithm is available at https://github.com/IlyaLab/M2C.
The Mucciardi-Gose Clustering Algorithm and Its Applications in Automatic Pattern Recognition.
A procedure known as the Mucciardi- Gose clustering algorithm, CLUSTR, for determining the geometrical or statistical relationships among groups of N...discussion of clustering algorithms is given; the particular advantages of the Mucciardi- Gose procedure are described. The mathematical basis for, and the
NASA Astrophysics Data System (ADS)
Joseph, R.; Courbin, F.; Starck, J.-L.
2016-05-01
We introduce a new algorithm for colour separation and deblending of multi-band astronomical images called MuSCADeT which is based on Morpho-spectral Component Analysis of multi-band images. The MuSCADeT algorithm takes advantage of the sparsity of astronomical objects in morphological dictionaries such as wavelets and their differences in spectral energy distribution (SED) across multi-band observations. This allows us to devise a model independent and automated approach to separate objects with different colours. We show with simulations that we are able to separate highly blended objects and that our algorithm is robust against SED variations of objects across the field of view. To confront our algorithm with real data, we use HST images of the strong lensing galaxy cluster MACS J1149+2223 and we show that MuSCADeT performs better than traditional profile-fitting techniques in deblending the foreground lensing galaxies from background lensed galaxies. Although the main driver for our work is the deblending of strong gravitational lenses, our method is fit to be used for any purpose related to deblending of objects in astronomical images. An example of such an application is the separation of the red and blue stellar populations of a spiral galaxy in the galaxy cluster Abell 2744. We provide a python package along with all simulations and routines used in this paper to contribute to reproducible research efforts. Codes can be found at http://lastro.epfl.ch/page-126973.html
A model-based spike sorting algorithm for removing correlation artifacts in multi-neuron recordings.
Pillow, Jonathan W; Shlens, Jonathon; Chichilnisky, E J; Simoncelli, Eero P
2013-01-01
We examine the problem of estimating the spike trains of multiple neurons from voltage traces recorded on one or more extracellular electrodes. Traditional spike-sorting methods rely on thresholding or clustering of recorded signals to identify spikes. While these methods can detect a large fraction of the spikes from a recording, they generally fail to identify synchronous or near-synchronous spikes: cases in which multiple spikes overlap. Here we investigate the geometry of failures in traditional sorting algorithms, and document the prevalence of such errors in multi-electrode recordings from primate retina. We then develop a method for multi-neuron spike sorting using a model that explicitly accounts for the superposition of spike waveforms. We model the recorded voltage traces as a linear combination of spike waveforms plus a stochastic background component of correlated Gaussian noise. Combining this measurement model with a Bernoulli prior over binary spike trains yields a posterior distribution for spikes given the recorded data. We introduce a greedy algorithm to maximize this posterior that we call "binary pursuit". The algorithm allows modest variability in spike waveforms and recovers spike times with higher precision than the voltage sampling rate. This method substantially corrects cross-correlation artifacts that arise with conventional methods, and substantially outperforms clustering methods on both real and simulated data. Finally, we develop diagnostic tools that can be used to assess errors in spike sorting in the absence of ground truth.
A Model-Based Spike Sorting Algorithm for Removing Correlation Artifacts in Multi-Neuron Recordings
Chichilnisky, E. J.; Simoncelli, Eero P.
2013-01-01
We examine the problem of estimating the spike trains of multiple neurons from voltage traces recorded on one or more extracellular electrodes. Traditional spike-sorting methods rely on thresholding or clustering of recorded signals to identify spikes. While these methods can detect a large fraction of the spikes from a recording, they generally fail to identify synchronous or near-synchronous spikes: cases in which multiple spikes overlap. Here we investigate the geometry of failures in traditional sorting algorithms, and document the prevalence of such errors in multi-electrode recordings from primate retina. We then develop a method for multi-neuron spike sorting using a model that explicitly accounts for the superposition of spike waveforms. We model the recorded voltage traces as a linear combination of spike waveforms plus a stochastic background component of correlated Gaussian noise. Combining this measurement model with a Bernoulli prior over binary spike trains yields a posterior distribution for spikes given the recorded data. We introduce a greedy algorithm to maximize this posterior that we call “binary pursuit”. The algorithm allows modest variability in spike waveforms and recovers spike times with higher precision than the voltage sampling rate. This method substantially corrects cross-correlation artifacts that arise with conventional methods, and substantially outperforms clustering methods on both real and simulated data. Finally, we develop diagnostic tools that can be used to assess errors in spike sorting in the absence of ground truth. PMID:23671583
Security clustering algorithm based on reputation in hierarchical peer-to-peer network
NASA Astrophysics Data System (ADS)
Chen, Mei; Luo, Xin; Wu, Guowen; Tan, Yang; Kita, Kenji
2013-03-01
For the security problems of the hierarchical P2P network (HPN), the paper presents a security clustering algorithm based on reputation (CABR). In the algorithm, we take the reputation mechanism for ensuring the security of transaction and use cluster for managing the reputation mechanism. In order to improve security, reduce cost of network brought by management of reputation and enhance stability of cluster, we select reputation, the historical average online time, and the network bandwidth as the basic factors of the comprehensive performance of node. Simulation results showed that the proposed algorithm improved the security, reduced the network overhead, and enhanced stability of cluster.
Shah, Sohil Atul
2017-01-01
Clustering is a fundamental procedure in the analysis of scientific data. It is used ubiquitously across the sciences. Despite decades of research, existing clustering algorithms have limited effectiveness in high dimensions and often require tuning parameters for different domains and datasets. We present a clustering algorithm that achieves high accuracy across multiple domains and scales efficiently to high dimensions and large datasets. The presented algorithm optimizes a smooth continuous objective, which is based on robust statistics and allows heavily mixed clusters to be untangled. The continuous nature of the objective also allows clustering to be integrated as a module in end-to-end feature learning pipelines. We demonstrate this by extending the algorithm to perform joint clustering and dimensionality reduction by efficiently optimizing a continuous global objective. The presented approach is evaluated on large datasets of faces, hand-written digits, objects, newswire articles, sensor readings from the Space Shuttle, and protein expression levels. Our method achieves high accuracy across all datasets, outperforming the best prior algorithm by a factor of 3 in average rank. PMID:28851838
Determining open cluster membership. A Bayesian framework for quantitative member classification
NASA Astrophysics Data System (ADS)
Stott, Jonathan J.
2018-01-01
Aims: My goal is to develop a quantitative algorithm for assessing open cluster membership probabilities. The algorithm is designed to work with single-epoch observations. In its simplest form, only one set of program images and one set of reference images are required. Methods: The algorithm is based on a two-stage joint astrometric and photometric assessment of cluster membership probabilities. The probabilities were computed within a Bayesian framework using any available prior information. Where possible, the algorithm emphasizes simplicity over mathematical sophistication. Results: The algorithm was implemented and tested against three observational fields using published survey data. M 67 and NGC 654 were selected as cluster examples while a third, cluster-free, field was used for the final test data set. The algorithm shows good quantitative agreement with the existing surveys and has a false-positive rate significantly lower than the astrometric or photometric methods used individually.
Random Walk Quantum Clustering Algorithm Based on Space
NASA Astrophysics Data System (ADS)
Xiao, Shufen; Dong, Yumin; Ma, Hongyang
2018-01-01
In the random quantum walk, which is a quantum simulation of the classical walk, data points interacted when selecting the appropriate walk strategy by taking advantage of quantum-entanglement features; thus, the results obtained when the quantum walk is used are different from those when the classical walk is adopted. A new quantum walk clustering algorithm based on space is proposed by applying the quantum walk to clustering analysis. In this algorithm, data points are viewed as walking participants, and similar data points are clustered using the walk function in the pay-off matrix according to a certain rule. The walk process is simplified by implementing a space-combining rule. The proposed algorithm is validated by a simulation test and is proved superior to existing clustering algorithms, namely, Kmeans, PCA + Kmeans, and LDA-Km. The effects of some of the parameters in the proposed algorithm on its performance are also analyzed and discussed. Specific suggestions are provided.
A highly efficient multi-core algorithm for clustering extremely large datasets
2010-01-01
Background In recent years, the demand for computational power in computational biology has increased due to rapidly growing data sets from microarray and other high-throughput technologies. This demand is likely to increase. Standard algorithms for analyzing data, such as cluster algorithms, need to be parallelized for fast processing. Unfortunately, most approaches for parallelizing algorithms largely rely on network communication protocols connecting and requiring multiple computers. One answer to this problem is to utilize the intrinsic capabilities in current multi-core hardware to distribute the tasks among the different cores of one computer. Results We introduce a multi-core parallelization of the k-means and k-modes cluster algorithms based on the design principles of transactional memory for clustering gene expression microarray type data and categorial SNP data. Our new shared memory parallel algorithms show to be highly efficient. We demonstrate their computational power and show their utility in cluster stability and sensitivity analysis employing repeated runs with slightly changed parameters. Computation speed of our Java based algorithm was increased by a factor of 10 for large data sets while preserving computational accuracy compared to single-core implementations and a recently published network based parallelization. Conclusions Most desktop computers and even notebooks provide at least dual-core processors. Our multi-core algorithms show that using modern algorithmic concepts, parallelization makes it possible to perform even such laborious tasks as cluster sensitivity and cluster number estimation on the laboratory computer. PMID:20370922
NASA Astrophysics Data System (ADS)
Wagstaff, Kiri L.
2012-03-01
On obtaining a new data set, the researcher is immediately faced with the challenge of obtaining a high-level understanding from the observations. What does a typical item look like? What are the dominant trends? How many distinct groups are included in the data set, and how is each one characterized? Which observable values are common, and which rarely occur? Which items stand out as anomalies or outliers from the rest of the data? This challenge is exacerbated by the steady growth in data set size [11] as new instruments push into new frontiers of parameter space, via improvements in temporal, spatial, and spectral resolution, or by the desire to "fuse" observations from different modalities and instruments into a larger-picture understanding of the same underlying phenomenon. Data clustering algorithms provide a variety of solutions for this task. They can generate summaries, locate outliers, compress data, identify dense or sparse regions of feature space, and build data models. It is useful to note up front that "clusters" in this context refer to groups of items within some descriptive feature space, not (necessarily) to "galaxy clusters" which are dense regions in physical space. The goal of this chapter is to survey a variety of data clustering methods, with an eye toward their applicability to astronomical data analysis. In addition to improving the individual researcher’s understanding of a given data set, clustering has led directly to scientific advances, such as the discovery of new subclasses of stars [14] and gamma-ray bursts (GRBs) [38]. All clustering algorithms seek to identify groups within a data set that reflect some observed, quantifiable structure. Clustering is traditionally an unsupervised approach to data analysis, in the sense that it operates without any direct guidance about which items should be assigned to which clusters. There has been a recent trend in the clustering literature toward supporting semisupervised or constrained clustering, in which some partial information about item assignments or other components of the resulting output are already known and must be accommodated by the solution. Some algorithms seek a partition of the data set into distinct clusters, while others build a hierarchy of nested clusters that can capture taxonomic relationships. Some produce a single optimal solution, while others construct a probabilistic model of cluster membership. More formally, clustering algorithms operate on a data set X composed of items represented by one or more features (dimensions). These could include physical location, such as right ascension and declination, as well as other properties such as brightness, color, temporal change, size, texture, and so on. Let D be the number of dimensions used to represent each item, xi ∈ RD. The clustering goal is to produce an organization P of the items in X that optimizes an objective function f : P -> R, which quantifies the quality of solution P. Often f is defined so as to maximize similarity within a cluster and minimize similarity between clusters. To that end, many algorithms make use of a measure d : X x X -> R of the distance between two items. A partitioning algorithm produces a set of clusters P = {c1, . . . , ck} such that the clusters are nonoverlapping (c_i intersected with c_j = empty set, i != j) subsets of the data set (Union_i c_i=X). Hierarchical algorithms produce a series of partitions P = {p1, . . . , pn }. For a complete hierarchy, the number of partitions n’= n, the number of items in the data set; the top partition is a single cluster containing all items, and the bottom partition contains n clusters, each containing a single item. For model-based clustering, each cluster c_j is represented by a model m_j , such as the cluster center or a Gaussian distribution. The wide array of available clustering algorithms may seem bewildering, and covering all of them is beyond the scope of this chapter. Choosing among them for a particular application involves considerations of the kind of data being analyzed, algorithm runtime efficiency, and how much prior knowledge is available about the problem domain, which can dictate the nature of clusters sought. Fundamentally, the clustering method and its representations of clusters carries with it a definition of what a cluster is, and it is important that this be aligned with the analysis goals for the problem at hand. In this chapter, I emphasize this point by identifying for each algorithm the cluster representation as a model, m_j , even for algorithms that are not typically thought of as creating a “model.” This chapter surveys a basic collection of clustering methods useful to any practitioner who is interested in applying clustering to a new data set. The algorithms include k-means (Section 25.2), EM (Section 25.3), agglomerative (Section 25.4), and spectral (Section 25.5) clustering, with side mentions of variants such as kernel k-means and divisive clustering. The chapter also discusses each algorithm’s strengths and limitations and provides pointers to additional in-depth reading for each subject. Section 25.6 discusses methods for incorporating domain knowledge into the clustering process. This chapter concludes with a brief survey of interesting applications of clustering methods to astronomy data (Section 25.7). The chapter begins with k-means because it is both generally accessible and so widely used that understanding it can be considered a necessary prerequisite for further work in the field. EM can be viewed as a more sophisticated version of k-means that uses a generative model for each cluster and probabilistic item assignments. Agglomerative clustering is the most basic form of hierarchical clustering and provides a basis for further exploration of algorithms in that vein. Spectral clustering permits a departure from feature-vector-based clustering and can operate on data sets instead represented as affinity, or similarity matrices—cases in which only pairwise information is known. The list of algorithms covered in this chapter is representative of those most commonly in use, but it is by no means comprehensive. There is an extensive collection of existing books on clustering that provide additional background and depth. Three early books that remain useful today are Anderberg’s Cluster Analysis for Applications [3], Hartigan’s Clustering Algorithms [25], and Gordon’s Classification [22]. The latter covers basics on similarity measures, partitioning and hierarchical algorithms, fuzzy clustering, overlapping clustering, conceptual clustering, validations methods, and visualization or data reduction techniques such as principal components analysis (PCA),multidimensional scaling, and self-organizing maps. More recently, Jain et al. provided a useful and informative survey [27] of a variety of different clustering algorithms, including those mentioned here as well as fuzzy, graph-theoretic, and evolutionary clustering. Everitt’s Cluster Analysis [19] provides a modern overview of algorithms, similarity measures, and evaluation methods.
Contributions to "k"-Means Clustering and Regression via Classification Algorithms
ERIC Educational Resources Information Center
Salman, Raied
2012-01-01
The dissertation deals with clustering algorithms and transforming regression problems into classification problems. The main contributions of the dissertation are twofold; first, to improve (speed up) the clustering algorithms and second, to develop a strict learning environment for solving regression problems as classification tasks by using…
Multi scales based sparse matrix spectral clustering image segmentation
NASA Astrophysics Data System (ADS)
Liu, Zhongmin; Chen, Zhicai; Li, Zhanming; Hu, Wenjin
2018-04-01
In image segmentation, spectral clustering algorithms have to adopt the appropriate scaling parameter to calculate the similarity matrix between the pixels, which may have a great impact on the clustering result. Moreover, when the number of data instance is large, computational complexity and memory use of the algorithm will greatly increase. To solve these two problems, we proposed a new spectral clustering image segmentation algorithm based on multi scales and sparse matrix. We devised a new feature extraction method at first, then extracted the features of image on different scales, at last, using the feature information to construct sparse similarity matrix which can improve the operation efficiency. Compared with traditional spectral clustering algorithm, image segmentation experimental results show our algorithm have better degree of accuracy and robustness.
An AK-LDMeans algorithm based on image clustering
NASA Astrophysics Data System (ADS)
Chen, Huimin; Li, Xingwei; Zhang, Yongbin; Chen, Nan
2018-03-01
Clustering is an effective analytical technique for handling unmarked data for value mining. Its ultimate goal is to mark unclassified data quickly and correctly. We use the roadmap for the current image processing as the experimental background. In this paper, we propose an AK-LDMeans algorithm to automatically lock the K value by designing the Kcost fold line, and then use the long-distance high-density method to select the clustering centers to further replace the traditional initial clustering center selection method, which further improves the efficiency and accuracy of the traditional K-Means Algorithm. And the experimental results are compared with the current clustering algorithm and the results are obtained. The algorithm can provide effective reference value in the fields of image processing, machine vision and data mining.
Hierarchical trie packet classification algorithm based on expectation-maximization clustering.
Bi, Xia-An; Zhao, Junxia
2017-01-01
With the development of computer network bandwidth, packet classification algorithms which are able to deal with large-scale rule sets are in urgent need. Among the existing algorithms, researches on packet classification algorithms based on hierarchical trie have become an important packet classification research branch because of their widely practical use. Although hierarchical trie is beneficial to save large storage space, it has several shortcomings such as the existence of backtracking and empty nodes. This paper proposes a new packet classification algorithm, Hierarchical Trie Algorithm Based on Expectation-Maximization Clustering (HTEMC). Firstly, this paper uses the formalization method to deal with the packet classification problem by means of mapping the rules and data packets into a two-dimensional space. Secondly, this paper uses expectation-maximization algorithm to cluster the rules based on their aggregate characteristics, and thereby diversified clusters are formed. Thirdly, this paper proposes a hierarchical trie based on the results of expectation-maximization clustering. Finally, this paper respectively conducts simulation experiments and real-environment experiments to compare the performances of our algorithm with other typical algorithms, and analyzes the results of the experiments. The hierarchical trie structure in our algorithm not only adopts trie path compression to eliminate backtracking, but also solves the problem of low efficiency of trie updates, which greatly improves the performance of the algorithm.
Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data
Hallac, David; Vare, Sagar; Boyd, Stephen; Leskovec, Jure
2018-01-01
Subsequence clustering of multivariate time series is a useful tool for discovering repeated patterns in temporal data. Once these patterns have been discovered, seemingly complicated datasets can be interpreted as a temporal sequence of only a small number of states, or clusters. For example, raw sensor data from a fitness-tracking application can be expressed as a timeline of a select few actions (i.e., walking, sitting, running). However, discovering these patterns is challenging because it requires simultaneous segmentation and clustering of the time series. Furthermore, interpreting the resulting clusters is difficult, especially when the data is high-dimensional. Here we propose a new method of model-based clustering, which we call Toeplitz Inverse Covariance-based Clustering (TICC). Each cluster in the TICC method is defined by a correlation network, or Markov random field (MRF), characterizing the interdependencies between different observations in a typical subsequence of that cluster. Based on this graphical representation, TICC simultaneously segments and clusters the time series data. We solve the TICC problem through alternating minimization, using a variation of the expectation maximization (EM) algorithm. We derive closed-form solutions to efficiently solve the two resulting subproblems in a scalable way, through dynamic programming and the alternating direction method of multipliers (ADMM), respectively. We validate our approach by comparing TICC to several state-of-the-art baselines in a series of synthetic experiments, and we then demonstrate on an automobile sensor dataset how TICC can be used to learn interpretable clusters in real-world scenarios. PMID:29770257
Energy Aware Cluster-Based Routing in Flying Ad-Hoc Networks.
Aadil, Farhan; Raza, Ali; Khan, Muhammad Fahad; Maqsood, Muazzam; Mehmood, Irfan; Rho, Seungmin
2018-05-03
Flying ad-hoc networks (FANETs) are a very vibrant research area nowadays. They have many military and civil applications. Limited battery energy and the high mobility of micro unmanned aerial vehicles (UAVs) represent their two main problems, i.e., short flight time and inefficient routing. In this paper, we try to address both of these problems by means of efficient clustering. First, we adjust the transmission power of the UAVs by anticipating their operational requirements. Optimal transmission range will have minimum packet loss ratio (PLR) and better link quality, which ultimately save the energy consumed during communication. Second, we use a variant of the K-Means Density clustering algorithm for selection of cluster heads. Optimal cluster heads enhance the cluster lifetime and reduce the routing overhead. The proposed model outperforms the state of the art artificial intelligence techniques such as Ant Colony Optimization-based clustering algorithm and Grey Wolf Optimization-based clustering algorithm. The performance of the proposed algorithm is evaluated in term of number of clusters, cluster building time, cluster lifetime and energy consumption.
A fuzzy clustering algorithm to detect planar and quadric shapes
NASA Technical Reports Server (NTRS)
Krishnapuram, Raghu; Frigui, Hichem; Nasraoui, Olfa
1992-01-01
In this paper, we introduce a new fuzzy clustering algorithm to detect an unknown number of planar and quadric shapes in noisy data. The proposed algorithm is computationally and implementationally simple, and it overcomes many of the drawbacks of the existing algorithms that have been proposed for similar tasks. Since the clustering is performed in the original image space, and since no features need to be computed, this approach is particularly suited for sparse data. The algorithm may also be used in pattern recognition applications.
A Fast Density-Based Clustering Algorithm for Real-Time Internet of Things Stream
Ying Wah, Teh
2014-01-01
Data streams are continuously generated over time from Internet of Things (IoT) devices. The faster all of this data is analyzed, its hidden trends and patterns discovered, and new strategies created, the faster action can be taken, creating greater value for organizations. Density-based method is a prominent class in clustering data streams. It has the ability to detect arbitrary shape clusters, to handle outlier, and it does not need the number of clusters in advance. Therefore, density-based clustering algorithm is a proper choice for clustering IoT streams. Recently, several density-based algorithms have been proposed for clustering data streams. However, density-based clustering in limited time is still a challenging issue. In this paper, we propose a density-based clustering algorithm for IoT streams. The method has fast processing time to be applicable in real-time application of IoT devices. Experimental results show that the proposed approach obtains high quality results with low computation time on real and synthetic datasets. PMID:25110753
A fast density-based clustering algorithm for real-time Internet of Things stream.
Amini, Amineh; Saboohi, Hadi; Wah, Teh Ying; Herawan, Tutut
2014-01-01
Data streams are continuously generated over time from Internet of Things (IoT) devices. The faster all of this data is analyzed, its hidden trends and patterns discovered, and new strategies created, the faster action can be taken, creating greater value for organizations. Density-based method is a prominent class in clustering data streams. It has the ability to detect arbitrary shape clusters, to handle outlier, and it does not need the number of clusters in advance. Therefore, density-based clustering algorithm is a proper choice for clustering IoT streams. Recently, several density-based algorithms have been proposed for clustering data streams. However, density-based clustering in limited time is still a challenging issue. In this paper, we propose a density-based clustering algorithm for IoT streams. The method has fast processing time to be applicable in real-time application of IoT devices. Experimental results show that the proposed approach obtains high quality results with low computation time on real and synthetic datasets.
Scalable Nearest Neighbor Algorithms for High Dimensional Data.
Muja, Marius; Lowe, David G
2014-11-01
For many computer vision and machine learning problems, large training sets are key for good performance. However, the most computationally expensive part of many computer vision and machine learning algorithms consists of finding nearest neighbor matches to high dimensional vectors that represent the training data. We propose new algorithms for approximate nearest neighbor matching and evaluate and compare them with previous algorithms. For matching high dimensional features, we find two algorithms to be the most efficient: the randomized k-d forest and a new algorithm proposed in this paper, the priority search k-means tree. We also propose a new algorithm for matching binary features by searching multiple hierarchical clustering trees and show it outperforms methods typically used in the literature. We show that the optimal nearest neighbor algorithm and its parameters depend on the data set characteristics and describe an automated configuration procedure for finding the best algorithm to search a particular data set. In order to scale to very large data sets that would otherwise not fit in the memory of a single machine, we propose a distributed nearest neighbor matching framework that can be used with any of the algorithms described in the paper. All this research has been released as an open source library called fast library for approximate nearest neighbors (FLANN), which has been incorporated into OpenCV and is now one of the most popular libraries for nearest neighbor matching.
SemiBoost: boosting for semi-supervised learning.
Mallapragada, Pavan Kumar; Jin, Rong; Jain, Anil K; Liu, Yi
2009-11-01
Semi-supervised learning has attracted a significant amount of attention in pattern recognition and machine learning. Most previous studies have focused on designing special algorithms to effectively exploit the unlabeled data in conjunction with labeled data. Our goal is to improve the classification accuracy of any given supervised learning algorithm by using the available unlabeled examples. We call this as the Semi-supervised improvement problem, to distinguish the proposed approach from the existing approaches. We design a metasemi-supervised learning algorithm that wraps around the underlying supervised algorithm and improves its performance using unlabeled data. This problem is particularly important when we need to train a supervised learning algorithm with a limited number of labeled examples and a multitude of unlabeled examples. We present a boosting framework for semi-supervised learning, termed as SemiBoost. The key advantages of the proposed semi-supervised learning approach are: 1) performance improvement of any supervised learning algorithm with a multitude of unlabeled data, 2) efficient computation by the iterative boosting algorithm, and 3) exploiting both manifold and cluster assumption in training classification models. An empirical study on 16 different data sets and text categorization demonstrates that the proposed framework improves the performance of several commonly used supervised learning algorithms, given a large number of unlabeled examples. We also show that the performance of the proposed algorithm, SemiBoost, is comparable to the state-of-the-art semi-supervised learning algorithms.
Clustered Numerical Data Analysis Using Markov Lie Monoid Based Networks
NASA Astrophysics Data System (ADS)
Johnson, Joseph
2016-03-01
We have designed and build an optimal numerical standardization algorithm that links numerical values with their associated units, error level, and defining metadata thus supporting automated data exchange and new levels of artificial intelligence (AI). The software manages all dimensional and error analysis and computational tracing. Tables of entities verses properties of these generalized numbers (called ``metanumbers'') support a transformation of each table into a network among the entities and another network among their properties where the network connection matrix is based upon a proximity metric between the two items. We previously proved that every network is isomorphic to the Lie algebra that generates continuous Markov transformations. We have also shown that the eigenvectors of these Markov matrices provide an agnostic clustering of the underlying patterns. We will present this methodology and show how our new work on conversion of scientific numerical data through this process can reveal underlying information clusters ordered by the eigenvalues. We will also show how the linking of clusters from different tables can be used to form a ``supernet'' of all numerical information supporting new initiatives in AI.
Network community structure and loop coefficient method
NASA Astrophysics Data System (ADS)
Vragović, I.; Louis, E.
2006-07-01
A modular structure, in which groups of tightly connected nodes could be resolved as separate entities, is a property that can be found in many complex networks. In this paper, we propose a algorithm for identifying communities in networks. It is based on a local measure, so-called loop coefficient that is a generalization of the clustering coefficient. Nodes with a large loop coefficient tend to be core inner community nodes, while other vertices are usually peripheral sites at the borders of communities. Our method gives satisfactory results for both artificial and real-world graphs, if they have a relatively pronounced modular structure. This type of algorithm could open a way of interpreting the role of nodes in communities in terms of the local loop coefficient, and could be used as a complement to other methods.
A clustering algorithm for determining community structure in complex networks
NASA Astrophysics Data System (ADS)
Jin, Hong; Yu, Wei; Li, ShiJun
2018-02-01
Clustering algorithms are attractive for the task of community detection in complex networks. DENCLUE is a representative density based clustering algorithm which has a firm mathematical basis and good clustering properties allowing for arbitrarily shaped clusters in high dimensional datasets. However, this method cannot be directly applied to community discovering due to its inability to deal with network data. Moreover, it requires a careful selection of the density parameter and the noise threshold. To solve these issues, a new community detection method is proposed in this paper. First, we use a spectral analysis technique to map the network data into a low dimensional Euclidean Space which can preserve node structural characteristics. Then, DENCLUE is applied to detect the communities in the network. A mathematical method named Sheather-Jones plug-in is chosen to select the density parameter which can describe the intrinsic clustering structure accurately. Moreover, every node on the network is meaningful so there were no noise nodes as a result the noise threshold can be ignored. We test our algorithm on both benchmark and real-life networks, and the results demonstrate the effectiveness of our algorithm over other popularity density based clustering algorithms adopted to community detection.
Collaborative filtering recommendation model based on fuzzy clustering algorithm
NASA Astrophysics Data System (ADS)
Yang, Ye; Zhang, Yunhua
2018-05-01
As one of the most widely used algorithms in recommender systems, collaborative filtering algorithm faces two serious problems, which are the sparsity of data and poor recommendation effect in big data environment. In traditional clustering analysis, the object is strictly divided into several classes and the boundary of this division is very clear. However, for most objects in real life, there is no strict definition of their forms and attributes of their class. Concerning the problems above, this paper proposes to improve the traditional collaborative filtering model through the hybrid optimization of implicit semantic algorithm and fuzzy clustering algorithm, meanwhile, cooperating with collaborative filtering algorithm. In this paper, the fuzzy clustering algorithm is introduced to fuzzy clustering the information of project attribute, which makes the project belong to different project categories with different membership degrees, and increases the density of data, effectively reduces the sparsity of data, and solves the problem of low accuracy which is resulted from the inaccuracy of similarity calculation. Finally, this paper carries out empirical analysis on the MovieLens dataset, and compares it with the traditional user-based collaborative filtering algorithm. The proposed algorithm has greatly improved the recommendation accuracy.
NASA Astrophysics Data System (ADS)
Feng, Jian-xin; Tang, Jia-fu; Wang, Guang-xing
2007-04-01
On the basis of the analysis of clustering algorithm that had been proposed for MANET, a novel clustering strategy was proposed in this paper. With the trust defined by statistical hypothesis in probability theory and the cluster head selected by node trust and node mobility, this strategy can realize the function of the malicious nodes detection which was neglected by other clustering algorithms and overcome the deficiency of being incapable of implementing the relative mobility metric of corresponding nodes in the MOBIC algorithm caused by the fact that the receiving power of two consecutive HELLO packet cannot be measured. It's an effective solution to cluster MANET securely.
Cerebellar Functional Parcellation Using Sparse Dictionary Learning Clustering.
Wang, Changqing; Kipping, Judy; Bao, Chenglong; Ji, Hui; Qiu, Anqi
2016-01-01
The human cerebellum has recently been discovered to contribute to cognition and emotion beyond the planning and execution of movement, suggesting its functional heterogeneity. We aimed to identify the functional parcellation of the cerebellum using information from resting-state functional magnetic resonance imaging (rs-fMRI). For this, we introduced a new data-driven decomposition-based functional parcellation algorithm, called Sparse Dictionary Learning Clustering (SDLC). SDLC integrates dictionary learning, sparse representation of rs-fMRI, and k-means clustering into one optimization problem. The dictionary is comprised of an over-complete set of time course signals, with which a sparse representation of rs-fMRI signals can be constructed. Cerebellar functional regions were then identified using k-means clustering based on the sparse representation of rs-fMRI signals. We solved SDLC using a multi-block hybrid proximal alternating method that guarantees strong convergence. We evaluated the reliability of SDLC and benchmarked its classification accuracy against other clustering techniques using simulated data. We then demonstrated that SDLC can identify biologically reasonable functional regions of the cerebellum as estimated by their cerebello-cortical functional connectivity. We further provided new insights into the cerebello-cortical functional organization in children.
KmL3D: a non-parametric algorithm for clustering joint trajectories.
Genolini, C; Pingault, J B; Driss, T; Côté, S; Tremblay, R E; Vitaro, F; Arnaud, C; Falissard, B
2013-01-01
In cohort studies, variables are measured repeatedly and can be considered as trajectories. A classic way to work with trajectories is to cluster them in order to detect the existence of homogeneous patterns of evolution. Since cohort studies usually measure a large number of variables, it might be interesting to study the joint evolution of several variables (also called joint-variable trajectories). To date, the only way to cluster joint-trajectories is to cluster each trajectory independently, then to cross the partitions obtained. This approach is unsatisfactory because it does not take into account a possible co-evolution of variable-trajectories. KmL3D is an R package that implements a version of k-means dedicated to clustering joint-trajectories. It provides facilities for the management of missing values, offers several quality criteria and its graphic interface helps the user to select the best partition. KmL3D can work with any number of joint-variable trajectories. In the restricted case of two joint trajectories, it proposes 3D tools to visualize the partitioning and then export 3D dynamic rotating-graphs to PDF format. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Parallel Clustering Algorithm for Large-Scale Biological Data Sets
Wang, Minchao; Zhang, Wu; Ding, Wang; Dai, Dongbo; Zhang, Huiran; Xie, Hao; Chen, Luonan; Guo, Yike; Xie, Jiang
2014-01-01
Backgrounds Recent explosion of biological data brings a great challenge for the traditional clustering algorithms. With increasing scale of data sets, much larger memory and longer runtime are required for the cluster identification problems. The affinity propagation algorithm outperforms many other classical clustering algorithms and is widely applied into the biological researches. However, the time and space complexity become a great bottleneck when handling the large-scale data sets. Moreover, the similarity matrix, whose constructing procedure takes long runtime, is required before running the affinity propagation algorithm, since the algorithm clusters data sets based on the similarities between data pairs. Methods Two types of parallel architectures are proposed in this paper to accelerate the similarity matrix constructing procedure and the affinity propagation algorithm. The memory-shared architecture is used to construct the similarity matrix, and the distributed system is taken for the affinity propagation algorithm, because of its large memory size and great computing capacity. An appropriate way of data partition and reduction is designed in our method, in order to minimize the global communication cost among processes. Result A speedup of 100 is gained with 128 cores. The runtime is reduced from serval hours to a few seconds, which indicates that parallel algorithm is capable of handling large-scale data sets effectively. The parallel affinity propagation also achieves a good performance when clustering large-scale gene data (microarray) and detecting families in large protein superfamilies. PMID:24705246
Measuring Constraint-Set Utility for Partitional Clustering Algorithms
NASA Technical Reports Server (NTRS)
Davidson, Ian; Wagstaff, Kiri L.; Basu, Sugato
2006-01-01
Clustering with constraints is an active area of machine learning and data mining research. Previous empirical work has convincingly shown that adding constraints to clustering improves the performance of a variety of algorithms. However, in most of these experiments, results are averaged over different randomly chosen constraint sets from a given set of labels, thereby masking interesting properties of individual sets. We demonstrate that constraint sets vary significantly in how useful they are for constrained clustering; some constraint sets can actually decrease algorithm performance. We create two quantitative measures, informativeness and coherence, that can be used to identify useful constraint sets. We show that these measures can also help explain differences in performance for four particular constrained clustering algorithms.
An Improved Clustering Algorithm of Tunnel Monitoring Data for Cloud Computing
Zhong, Luo; Tang, KunHao; Li, Lin; Yang, Guang; Ye, JingJing
2014-01-01
With the rapid development of urban construction, the number of urban tunnels is increasing and the data they produce become more and more complex. It results in the fact that the traditional clustering algorithm cannot handle the mass data of the tunnel. To solve this problem, an improved parallel clustering algorithm based on k-means has been proposed. It is a clustering algorithm using the MapReduce within cloud computing that deals with data. It not only has the advantage of being used to deal with mass data but also is more efficient. Moreover, it is able to compute the average dissimilarity degree of each cluster in order to clean the abnormal data. PMID:24982971
Efficient Record Linkage Algorithms Using Complete Linkage Clustering.
Mamun, Abdullah-Al; Aseltine, Robert; Rajasekaran, Sanguthevar
2016-01-01
Data from different agencies share data of the same individuals. Linking these datasets to identify all the records belonging to the same individuals is a crucial and challenging problem, especially given the large volumes of data. A large number of available algorithms for record linkage are prone to either time inefficiency or low-accuracy in finding matches and non-matches among the records. In this paper we propose efficient as well as reliable sequential and parallel algorithms for the record linkage problem employing hierarchical clustering methods. We employ complete linkage hierarchical clustering algorithms to address this problem. In addition to hierarchical clustering, we also use two other techniques: elimination of duplicate records and blocking. Our algorithms use sorting as a sub-routine to identify identical copies of records. We have tested our algorithms on datasets with millions of synthetic records. Experimental results show that our algorithms achieve nearly 100% accuracy. Parallel implementations achieve almost linear speedups. Time complexities of these algorithms do not exceed those of previous best-known algorithms. Our proposed algorithms outperform previous best-known algorithms in terms of accuracy consuming reasonable run times.
Efficient Record Linkage Algorithms Using Complete Linkage Clustering
Mamun, Abdullah-Al; Aseltine, Robert; Rajasekaran, Sanguthevar
2016-01-01
Data from different agencies share data of the same individuals. Linking these datasets to identify all the records belonging to the same individuals is a crucial and challenging problem, especially given the large volumes of data. A large number of available algorithms for record linkage are prone to either time inefficiency or low-accuracy in finding matches and non-matches among the records. In this paper we propose efficient as well as reliable sequential and parallel algorithms for the record linkage problem employing hierarchical clustering methods. We employ complete linkage hierarchical clustering algorithms to address this problem. In addition to hierarchical clustering, we also use two other techniques: elimination of duplicate records and blocking. Our algorithms use sorting as a sub-routine to identify identical copies of records. We have tested our algorithms on datasets with millions of synthetic records. Experimental results show that our algorithms achieve nearly 100% accuracy. Parallel implementations achieve almost linear speedups. Time complexities of these algorithms do not exceed those of previous best-known algorithms. Our proposed algorithms outperform previous best-known algorithms in terms of accuracy consuming reasonable run times. PMID:27124604
NASA Astrophysics Data System (ADS)
Thanos, Konstantinos-Georgios; Thomopoulos, Stelios C. A.
2014-06-01
The study in this paper belongs to a more general research of discovering facial sub-clusters in different ethnicity face databases. These new sub-clusters along with other metadata (such as race, sex, etc.) lead to a vector for each face in the database where each vector component represents the likelihood of participation of a given face to each cluster. This vector is then used as a feature vector in a human identification and tracking system based on face and other biometrics. The first stage in this system involves a clustering method which evaluates and compares the clustering results of five different clustering algorithms (average, complete, single hierarchical algorithm, k-means and DIGNET), and selects the best strategy for each data collection. In this paper we present the comparative performance of clustering results of DIGNET and four clustering algorithms (average, complete, single hierarchical and k-means) on fabricated 2D and 3D samples, and on actual face images from various databases, using four different standard metrics. These metrics are the silhouette figure, the mean silhouette coefficient, the Hubert test Γ coefficient, and the classification accuracy for each clustering result. The results showed that, in general, DIGNET gives more trustworthy results than the other algorithms when the metrics values are above a specific acceptance threshold. However when the evaluation results metrics have values lower than the acceptance threshold but not too low (too low corresponds to ambiguous results or false results), then it is necessary for the clustering results to be verified by the other algorithms.
Tang, Jiqiang; Yang, Wu; Zhu, Lingyun; Wang, Dong; Feng, Xin
2017-04-26
In recent years, Wireless Sensor Networks with a Mobile Sink (WSN-MS) have been an active research topic due to the widespread use of mobile devices. However, how to get the balance between data delivery latency and energy consumption becomes a key issue of WSN-MS. In this paper, we study the clustering approach by jointly considering the Route planning for mobile sink and Clustering Problem (RCP) for static sensor nodes. We solve the RCP problem by using the minimum travel route clustering approach, which applies the minimum travel route of the mobile sink to guide the clustering process. We formulate the RCP problem as an Integer Non-Linear Programming (INLP) problem to shorten the travel route of the mobile sink under three constraints: the communication hops constraint, the travel route constraint and the loop avoidance constraint. We then propose an Imprecise Induction Algorithm (IIA) based on the property that the solution with a small hop count is more feasible than that with a large hop count. The IIA algorithm includes three processes: initializing travel route planning with a Traveling Salesman Problem (TSP) algorithm, transforming the cluster head to a cluster member and transforming the cluster member to a cluster head. Extensive experimental results show that the IIA algorithm could automatically adjust cluster heads according to the maximum hops parameter and plan a shorter travel route for the mobile sink. Compared with the Shortest Path Tree-based Data-Gathering Algorithm (SPT-DGA), the IIA algorithm has the characteristics of shorter route length, smaller cluster head count and faster convergence rate.
Efficient implementation of parallel three-dimensional FFT on clusters of PCs
NASA Astrophysics Data System (ADS)
Takahashi, Daisuke
2003-05-01
In this paper, we propose a high-performance parallel three-dimensional fast Fourier transform (FFT) algorithm on clusters of PCs. The three-dimensional FFT algorithm can be altered into a block three-dimensional FFT algorithm to reduce the number of cache misses. We show that the block three-dimensional FFT algorithm improves performance by utilizing the cache memory effectively. We use the block three-dimensional FFT algorithm to implement the parallel three-dimensional FFT algorithm. We succeeded in obtaining performance of over 1.3 GFLOPS on an 8-node dual Pentium III 1 GHz PC SMP cluster.
Blessy, S A Praylin Selva; Sulochana, C Helen
2015-01-01
Segmentation of brain tumor from Magnetic Resonance Imaging (MRI) becomes very complicated due to the structural complexities of human brain and the presence of intensity inhomogeneities. To propose a method that effectively segments brain tumor from MR images and to evaluate the performance of unsupervised optimal fuzzy clustering (UOFC) algorithm for segmentation of brain tumor from MR images. Segmentation is done by preprocessing the MR image to standardize intensity inhomogeneities followed by feature extraction, feature fusion and clustering. Different validation measures are used to evaluate the performance of the proposed method using different clustering algorithms. The proposed method using UOFC algorithm produces high sensitivity (96%) and low specificity (4%) compared to other clustering methods. Validation results clearly show that the proposed method with UOFC algorithm effectively segments brain tumor from MR images.
Adaptive density trajectory cluster based on time and space distance
NASA Astrophysics Data System (ADS)
Liu, Fagui; Zhang, Zhijie
2017-10-01
There are some hotspot problems remaining in trajectory cluster for discovering mobile behavior regularity, such as the computation of distance between sub trajectories, the setting of parameter values in cluster algorithm and the uncertainty/boundary problem of data set. As a result, based on the time and space, this paper tries to define the calculation method of distance between sub trajectories. The significance of distance calculation for sub trajectories is to clearly reveal the differences in moving trajectories and to promote the accuracy of cluster algorithm. Besides, a novel adaptive density trajectory cluster algorithm is proposed, in which cluster radius is computed through using the density of data distribution. In addition, cluster centers and number are selected by a certain strategy automatically, and uncertainty/boundary problem of data set is solved by designed weighted rough c-means. Experimental results demonstrate that the proposed algorithm can perform the fuzzy trajectory cluster effectively on the basis of the time and space distance, and obtain the optimal cluster centers and rich cluster results information adaptably for excavating the features of mobile behavior in mobile and sociology network.
An incremental DPMM-based method for trajectory clustering, modeling, and retrieval.
Hu, Weiming; Li, Xi; Tian, Guodong; Maybank, Stephen; Zhang, Zhongfei
2013-05-01
Trajectory analysis is the basis for many applications, such as indexing of motion events in videos, activity recognition, and surveillance. In this paper, the Dirichlet process mixture model (DPMM) is applied to trajectory clustering, modeling, and retrieval. We propose an incremental version of a DPMM-based clustering algorithm and apply it to cluster trajectories. An appropriate number of trajectory clusters is determined automatically. When trajectories belonging to new clusters arrive, the new clusters can be identified online and added to the model without any retraining using the previous data. A time-sensitive Dirichlet process mixture model (tDPMM) is applied to each trajectory cluster for learning the trajectory pattern which represents the time-series characteristics of the trajectories in the cluster. Then, a parameterized index is constructed for each cluster. A novel likelihood estimation algorithm for the tDPMM is proposed, and a trajectory-based video retrieval model is developed. The tDPMM-based probabilistic matching method and the DPMM-based model growing method are combined to make the retrieval model scalable and adaptable. Experimental comparisons with state-of-the-art algorithms demonstrate the effectiveness of our algorithm.
NASA Astrophysics Data System (ADS)
Di, Nur Faraidah Muhammad; Satari, Siti Zanariah
2017-05-01
Outlier detection in linear data sets has been done vigorously but only a small amount of work has been done for outlier detection in circular data. In this study, we proposed multiple outliers detection in circular regression models based on the clustering algorithm. Clustering technique basically utilizes distance measure to define distance between various data points. Here, we introduce the similarity distance based on Euclidean distance for circular model and obtain a cluster tree using the single linkage clustering algorithm. Then, a stopping rule for the cluster tree based on the mean direction and circular standard deviation of the tree height is proposed. We classify the cluster group that exceeds the stopping rule as potential outlier. Our aim is to demonstrate the effectiveness of proposed algorithms with the similarity distances in detecting the outliers. It is found that the proposed methods are performed well and applicable for circular regression model.
Fast and fully automatic phalanx segmentation using a grayscale-histogram morphology algorithm
NASA Astrophysics Data System (ADS)
Hsieh, Chi-Wen; Liu, Tzu-Chiang; Jong, Tai-Lang; Chen, Chih-Yen; Tiu, Chui-Mei; Chan, Din-Yuen
2011-08-01
Bone age assessment is a common radiological examination used in pediatrics to diagnose the discrepancy between the skeletal and chronological age of a child; therefore, it is beneficial to develop a computer-based bone age assessment to help junior pediatricians estimate bone age easily. Unfortunately, the phalanx on radiograms is not easily separated from the background and soft tissue. Therefore, we proposed a new method, called the grayscale-histogram morphology algorithm, to segment the phalanges fast and precisely. The algorithm includes three parts: a tri-stage sieve algorithm used to eliminate the background of hand radiograms, a centroid-edge dual scanning algorithm to frame the phalanx region, and finally a segmentation algorithm based on disk traverse-subtraction filter to segment the phalanx. Moreover, two more segmentation methods: adaptive two-mean and adaptive two-mean clustering were performed, and their results were compared with the segmentation algorithm based on disk traverse-subtraction filter using five indices comprising misclassification error, relative foreground area error, modified Hausdorff distances, edge mismatch, and region nonuniformity. In addition, the CPU time of the three segmentation methods was discussed. The result showed that our method had a better performance than the other two methods. Furthermore, satisfactory segmentation results were obtained with a low standard error.
Graph-based analysis of kinetics on multidimensional potential-energy surfaces.
Okushima, T; Niiyama, T; Ikeda, K S; Shimizu, Y
2009-09-01
The aim of this paper is twofold: one is to give a detailed description of an alternative graph-based analysis method, which we call saddle connectivity graph, for analyzing the global topography and the dynamical properties of many-dimensional potential-energy landscapes and the other is to give examples of applications of this method in the analysis of the kinetics of realistic systems. A Dijkstra-type shortest path algorithm is proposed to extract dynamically dominant transition pathways by kinetically defining transition costs. The applicability of this approach is first confirmed by an illustrative example of a low-dimensional random potential. We then show that a coarse-graining procedure tailored for saddle connectivity graphs can be used to obtain the kinetic properties of 13- and 38-atom Lennard-Jones clusters. The coarse-graining method not only reduces the complexity of the graphs, but also, with iterative use, reveals a self-similar hierarchical structure in these clusters. We also propose that the self-similarity is common to many-atom Lennard-Jones clusters.
Accurate Grid-based Clustering Algorithm with Diagonal Grid Searching and Merging
NASA Astrophysics Data System (ADS)
Liu, Feng; Ye, Chengcheng; Zhu, Erzhou
2017-09-01
Due to the advent of big data, data mining technology has attracted more and more attentions. As an important data analysis method, grid clustering algorithm is fast but with relatively lower accuracy. This paper presents an improved clustering algorithm combined with grid and density parameters. The algorithm first divides the data space into the valid meshes and invalid meshes through grid parameters. Secondly, from the starting point located at the first point of the diagonal of the grids, the algorithm takes the direction of “horizontal right, vertical down” to merge the valid meshes. Furthermore, by the boundary grid processing, the invalid grids are searched and merged when the adjacent left, above, and diagonal-direction grids are all the valid ones. By doing this, the accuracy of clustering is improved. The experimental results have shown that the proposed algorithm is accuracy and relatively faster when compared with some popularly used algorithms.
NASA Astrophysics Data System (ADS)
Chuan, Zun Liang; Ismail, Noriszura; Shinyie, Wendy Ling; Lit Ken, Tan; Fam, Soo-Fen; Senawi, Azlyna; Yusoff, Wan Nur Syahidah Wan
2018-04-01
Due to the limited of historical precipitation records, agglomerative hierarchical clustering algorithms widely used to extrapolate information from gauged to ungauged precipitation catchments in yielding a more reliable projection of extreme hydro-meteorological events such as extreme precipitation events. However, identifying the optimum number of homogeneous precipitation catchments accurately based on the dendrogram resulted using agglomerative hierarchical algorithms are very subjective. The main objective of this study is to propose an efficient regionalized algorithm to identify the homogeneous precipitation catchments for non-stationary precipitation time series. The homogeneous precipitation catchments are identified using average linkage hierarchical clustering algorithm associated multi-scale bootstrap resampling, while uncentered correlation coefficient as the similarity measure. The regionalized homogeneous precipitation is consolidated using K-sample Anderson Darling non-parametric test. The analysis result shows the proposed regionalized algorithm performed more better compared to the proposed agglomerative hierarchical clustering algorithm in previous studies.
Testing light-traces-mass in Hubble Frontier Fields Cluster MACS-J0416.1-2403
Sebesta, Kevin; Williams, Liliya L. R.; Mohammed, Irshad; ...
2016-06-17
Here, we reconstruct the projected mass distribution of a massive merging Hubble Frontier Fields cluster MACSJ0416 using the genetic algorithm based free-form technique called Grale. The reconstructions are constrained by 149 lensed images identified by Jauzac et al. using HFF data. No information about cluster galaxies or light is used, which makes our reconstruction unique in this regard. Using visual inspection of the maps, as well as galaxy-mass correlation functions we conclude that overall light does follow mass. Furthermore, the fact that brighter galaxies are more strongly clustered with mass is an important confirmation of the standard biasing scenario inmore » galaxy clusters. On the smallest scales, approximately less than a few arcseconds, the resolution afforded by 149 images is still not sufficient to confirm or rule out galaxy-mass offsets of the kind observed in ACO 3827. We also compare the mass maps of MACSJ0416 obtained by three different groups: Grale, and two parametric Lenstool reconstructions from the CATS and Sharon/Johnson teams. Overall, the three agree well; one interesting discrepancy between Grale and Lenstool galaxy-mass correlation functions occurs on scales of tens of kpc and may suggest that cluster galaxies are more biased tracers of mass than parametric methods generally assume.« less
Testing light-traces-mass in Hubble Frontier Fields Cluster MACS-J0416.1-2403
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sebesta, Kevin; Williams, Liliya L. R.; Mohammed, Irshad
Here, we reconstruct the projected mass distribution of a massive merging Hubble Frontier Fields cluster MACSJ0416 using the genetic algorithm based free-form technique called Grale. The reconstructions are constrained by 149 lensed images identified by Jauzac et al. using HFF data. No information about cluster galaxies or light is used, which makes our reconstruction unique in this regard. Using visual inspection of the maps, as well as galaxy-mass correlation functions we conclude that overall light does follow mass. Furthermore, the fact that brighter galaxies are more strongly clustered with mass is an important confirmation of the standard biasing scenario inmore » galaxy clusters. On the smallest scales, approximately less than a few arcseconds, the resolution afforded by 149 images is still not sufficient to confirm or rule out galaxy-mass offsets of the kind observed in ACO 3827. We also compare the mass maps of MACSJ0416 obtained by three different groups: Grale, and two parametric Lenstool reconstructions from the CATS and Sharon/Johnson teams. Overall, the three agree well; one interesting discrepancy between Grale and Lenstool galaxy-mass correlation functions occurs on scales of tens of kpc and may suggest that cluster galaxies are more biased tracers of mass than parametric methods generally assume.« less
Robust MST-Based Clustering Algorithm.
Liu, Qidong; Zhang, Ruisheng; Zhao, Zhili; Wang, Zhenghai; Jiao, Mengyao; Wang, Guangjing
2018-06-01
Minimax similarity stresses the connectedness of points via mediating elements rather than favoring high mutual similarity. The grouping principle yields superior clustering results when mining arbitrarily-shaped clusters in data. However, it is not robust against noises and outliers in the data. There are two main problems with the grouping principle: first, a single object that is far away from all other objects defines a separate cluster, and second, two connected clusters would be regarded as two parts of one cluster. In order to solve such problems, we propose robust minimum spanning tree (MST)-based clustering algorithm in this letter. First, we separate the connected objects by applying a density-based coarsening phase, resulting in a low-rank matrix in which the element denotes the supernode by combining a set of nodes. Then a greedy method is presented to partition those supernodes through working on the low-rank matrix. Instead of removing the longest edges from MST, our algorithm groups the data set based on the minimax similarity. Finally, the assignment of all data points can be achieved through their corresponding supernodes. Experimental results on many synthetic and real-world data sets show that our algorithm consistently outperforms compared clustering algorithms.
NASA Astrophysics Data System (ADS)
Brenden, T. O.; Clark, R. D.; Wiley, M. J.; Seelbach, P. W.; Wang, L.
2005-05-01
Remote sensing and geographic information systems have made it possible to attribute variables for streams at increasingly detailed resolutions (e.g., individual river reaches). Nevertheless, management decisions still must be made at large scales because land and stream managers typically lack sufficient resources to manage on an individual reach basis. Managers thus require a method for identifying stream management units that are ecologically similar and that can be expected to respond similarly to management decisions. We have developed a spatially-constrained clustering algorithm that can merge neighboring river reaches with similar ecological characteristics into larger management units. The clustering algorithm is based on the Cluster Affinity Search Technique (CAST), which was developed for clustering gene expression data. Inputs to the clustering algorithm are the neighbor relationships of the reaches that comprise the digital river network, the ecological attributes of the reaches, and an affinity value, which identifies the minimum similarity for merging river reaches. In this presentation, we describe the clustering algorithm in greater detail and contrast its use with other methods (expert opinion, classification approach, regular clustering) for identifying management units using several Michigan watersheds as a backdrop.
On the Accuracy and Parallelism of GPGPU-Powered Incremental Clustering Algorithms.
Chen, Chunlei; He, Li; Zhang, Huixiang; Zheng, Hao; Wang, Lei
2017-01-01
Incremental clustering algorithms play a vital role in various applications such as massive data analysis and real-time data processing. Typical application scenarios of incremental clustering raise high demand on computing power of the hardware platform. Parallel computing is a common solution to meet this demand. Moreover, General Purpose Graphic Processing Unit (GPGPU) is a promising parallel computing device. Nevertheless, the incremental clustering algorithm is facing a dilemma between clustering accuracy and parallelism when they are powered by GPGPU. We formally analyzed the cause of this dilemma. First, we formalized concepts relevant to incremental clustering like evolving granularity. Second, we formally proved two theorems. The first theorem proves the relation between clustering accuracy and evolving granularity. Additionally, this theorem analyzes the upper and lower bounds of different-to-same mis-affiliation. Fewer occurrences of such mis-affiliation mean higher accuracy. The second theorem reveals the relation between parallelism and evolving granularity. Smaller work-depth means superior parallelism. Through the proofs, we conclude that accuracy of an incremental clustering algorithm is negatively related to evolving granularity while parallelism is positively related to the granularity. Thus the contradictory relations cause the dilemma. Finally, we validated the relations through a demo algorithm. Experiment results verified theoretical conclusions.
Hierarchical trie packet classification algorithm based on expectation-maximization clustering
Bi, Xia-an; Zhao, Junxia
2017-01-01
With the development of computer network bandwidth, packet classification algorithms which are able to deal with large-scale rule sets are in urgent need. Among the existing algorithms, researches on packet classification algorithms based on hierarchical trie have become an important packet classification research branch because of their widely practical use. Although hierarchical trie is beneficial to save large storage space, it has several shortcomings such as the existence of backtracking and empty nodes. This paper proposes a new packet classification algorithm, Hierarchical Trie Algorithm Based on Expectation-Maximization Clustering (HTEMC). Firstly, this paper uses the formalization method to deal with the packet classification problem by means of mapping the rules and data packets into a two-dimensional space. Secondly, this paper uses expectation-maximization algorithm to cluster the rules based on their aggregate characteristics, and thereby diversified clusters are formed. Thirdly, this paper proposes a hierarchical trie based on the results of expectation-maximization clustering. Finally, this paper respectively conducts simulation experiments and real-environment experiments to compare the performances of our algorithm with other typical algorithms, and analyzes the results of the experiments. The hierarchical trie structure in our algorithm not only adopts trie path compression to eliminate backtracking, but also solves the problem of low efficiency of trie updates, which greatly improves the performance of the algorithm. PMID:28704476
A fast parallel clustering algorithm for molecular simulation trajectories.
Zhao, Yutong; Sheong, Fu Kit; Sun, Jian; Sander, Pedro; Huang, Xuhui
2013-01-15
We implemented a GPU-powered parallel k-centers algorithm to perform clustering on the conformations of molecular dynamics (MD) simulations. The algorithm is up to two orders of magnitude faster than the CPU implementation. We tested our algorithm on four protein MD simulation datasets ranging from the small Alanine Dipeptide to a 370-residue Maltose Binding Protein (MBP). It is capable of grouping 250,000 conformations of the MBP into 4000 clusters within 40 seconds. To achieve this, we effectively parallelized the code on the GPU and utilize the triangle inequality of metric spaces. Furthermore, the algorithm's running time is linear with respect to the number of cluster centers. In addition, we found the triangle inequality to be less effective in higher dimensions and provide a mathematical rationale. Finally, using Alanine Dipeptide as an example, we show a strong correlation between cluster populations resulting from the k-centers algorithm and the underlying density. © 2012 Wiley Periodicals, Inc. Copyright © 2012 Wiley Periodicals, Inc.
Soley, Micheline B; Markmann, Andreas; Batista, Victor S
2018-06-12
We introduce the so-called "Classical Optimal Control Optimization" (COCO) method for global energy minimization based on the implementation of the diffeomorphic modulation under observable-response-preserving homotopy (DMORPH) gradient algorithm. A probe particle with time-dependent mass m( t;β) and dipole μ( r, t;β) is evolved classically on the potential energy surface V( r) coupled to an electric field E( t;β), as described by the time-dependent density of states represented on a grid, or otherwise as a linear combination of Gaussians generated by the k-means clustering algorithm. Control parameters β defining m( t;β), μ( r, t;β), and E( t;β) are optimized by following the gradients of the energy with respect to β, adapting them to steer the particle toward the global minimum energy configuration. We find that the resulting COCO algorithm is capable of resolving near-degenerate states separated by large energy barriers and successfully locates the global minima of golf potentials on flat and rugged surfaces, previously explored for testing quantum annealing methodologies and the quantum optimal control optimization (QuOCO) method. Preliminary results show successful energy minimization of multidimensional Lennard-Jones clusters. Beyond the analysis of energy minimization in the specific model systems investigated, we anticipate COCO should be valuable for solving minimization problems in general, including optimization of parameters in applications to machine learning and molecular structure determination.
A Class of Manifold Regularized Multiplicative Update Algorithms for Image Clustering.
Yang, Shangming; Yi, Zhang; He, Xiaofei; Li, Xuelong
2015-12-01
Multiplicative update algorithms are important tools for information retrieval, image processing, and pattern recognition. However, when the graph regularization is added to the cost function, different classes of sample data may be mapped to the same subspace, which leads to the increase of data clustering error rate. In this paper, an improved nonnegative matrix factorization (NMF) cost function is introduced. Based on the cost function, a class of novel graph regularized NMF algorithms is developed, which results in a class of extended multiplicative update algorithms with manifold structure regularization. Analysis shows that in the learning, the proposed algorithms can efficiently minimize the rank of the data representation matrix. Theoretical results presented in this paper are confirmed by simulations. For different initializations and data sets, variation curves of cost functions and decomposition data are presented to show the convergence features of the proposed update rules. Basis images, reconstructed images, and clustering results are utilized to present the efficiency of the new algorithms. Last, the clustering accuracies of different algorithms are also investigated, which shows that the proposed algorithms can achieve state-of-the-art performance in applications of image clustering.
ASPeak: an abundance sensitive peak detection algorithm for RIP-Seq.
Kucukural, Alper; Özadam, Hakan; Singh, Guramrit; Moore, Melissa J; Cenik, Can
2013-10-01
Unlike DNA, RNA abundances can vary over several orders of magnitude. Thus, identification of RNA-protein binding sites from high-throughput sequencing data presents unique challenges. Although peak identification in ChIP-Seq data has been extensively explored, there are few bioinformatics tools tailored for peak calling on analogous datasets for RNA-binding proteins. Here we describe ASPeak (abundance sensitive peak detection algorithm), an implementation of an algorithm that we previously applied to detect peaks in exon junction complex RNA immunoprecipitation in tandem experiments. Our peak detection algorithm yields stringent and robust target sets enabling sensitive motif finding and downstream functional analyses. ASPeak is implemented in Perl as a complete pipeline that takes bedGraph files as input. ASPeak implementation is freely available at https://sourceforge.net/projects/as-peak under the GNU General Public License. ASPeak can be run on a personal computer, yet is designed to be easily parallelizable. ASPeak can also run on high performance computing clusters providing efficient speedup. The documentation and user manual can be obtained from http://master.dl.sourceforge.net/project/as-peak/manual.pdf.
Long-term surface EMG monitoring using K-means clustering and compressive sensing
NASA Astrophysics Data System (ADS)
Balouchestani, Mohammadreza; Krishnan, Sridhar
2015-05-01
In this work, we present an advanced K-means clustering algorithm based on Compressed Sensing theory (CS) in combination with the K-Singular Value Decomposition (K-SVD) method for Clustering of long-term recording of surface Electromyography (sEMG) signals. The long-term monitoring of sEMG signals aims at recording of the electrical activity produced by muscles which are very useful procedure for treatment and diagnostic purposes as well as for detection of various pathologies. The proposed algorithm is examined for three scenarios of sEMG signals including healthy person (sEMG-Healthy), a patient with myopathy (sEMG-Myopathy), and a patient with neuropathy (sEMG-Neuropathr), respectively. The proposed algorithm can easily scan large sEMG datasets of long-term sEMG recording. We test the proposed algorithm with Principal Component Analysis (PCA) and Linear Correlation Coefficient (LCC) dimensionality reduction methods. Then, the output of the proposed algorithm is fed to K-Nearest Neighbours (K-NN) and Probabilistic Neural Network (PNN) classifiers in order to calclute the clustering performance. The proposed algorithm achieves a classification accuracy of 99.22%. This ability allows reducing 17% of Average Classification Error (ACE), 9% of Training Error (TE), and 18% of Root Mean Square Error (RMSE). The proposed algorithm also reduces 14% clustering energy consumption compared to the existing K-Means clustering algorithm.
NASA Astrophysics Data System (ADS)
Fan, Tian-E.; Shao, Gui-Fang; Ji, Qing-Shuang; Zheng, Ji-Wen; Liu, Tun-dong; Wen, Yu-Hua
2016-11-01
Theoretically, the determination of the structure of a cluster is to search the global minimum on its potential energy surface. The global minimization problem is often nondeterministic-polynomial-time (NP) hard and the number of local minima grows exponentially with the cluster size. In this article, a multi-populations multi-strategies differential evolution algorithm has been proposed to search the globally stable structure of Fe and Cr nanoclusters. The algorithm combines a multi-populations differential evolution with an elite pool scheme to keep the diversity of the solutions and avoid prematurely trapping into local optima. Moreover, multi-strategies such as growing method in initialization and three differential strategies in mutation are introduced to improve the convergence speed and lower the computational cost. The accuracy and effectiveness of our algorithm have been verified by comparing the results of Fe clusters with Cambridge Cluster Database. Meanwhile, the performance of our algorithm has been analyzed by comparing the convergence rate and energy evaluations with the classical DE algorithm. The multi-populations, multi-strategies mutation and growing method in initialization in our algorithm have been considered respectively. Furthermore, the structural growth pattern of Cr clusters has been predicted by this algorithm. The results show that the lowest-energy structure of Cr clusters contains many icosahedra, and the number of the icosahedral rings rises with increasing size.
Response to "Comparison and Evaluation of Clustering Algorithms for Tandem Mass Spectra".
Griss, Johannes; Perez-Riverol, Yasset; The, Matthew; Käll, Lukas; Vizcaíno, Juan Antonio
2018-05-04
In the recent benchmarking article entitled "Comparison and Evaluation of Clustering Algorithms for Tandem Mass Spectra", Rieder et al. compared several different approaches to cluster MS/MS spectra. While we certainly recognize the value of the manuscript, here, we report some shortcomings detected in the original analyses. For most analyses, the authors clustered only single MS/MS runs. In one of the reported analyses, three MS/MS runs were processed together, which already led to computational performance issues in many of the tested approaches. This fact highlights the difficulties of using many of the tested algorithms on the nowadays produced average proteomics data sets. Second, the authors only processed identified spectra when merging MS runs. Thereby, all unidentified spectra that are of lower quality were already removed from the data set and could not influence the clustering results. Next, we found that the authors did not analyze the effect of chimeric spectra on the clustering results. In our analysis, we found that 3% of the spectra in the used data sets were chimeric, and this had marked effects on the behavior of the different clustering algorithms tested. Finally, the authors' choice to evaluate the MS-Cluster and spectra-cluster algorithms using a precursor tolerance of 5 Da for high-resolution Orbitrap data only was, in our opinion, not adequate to assess the performance of MS/MS clustering approaches.
A Novel Artificial Bee Colony Based Clustering Algorithm for Categorical Data
2015-01-01
Data with categorical attributes are ubiquitous in the real world. However, existing partitional clustering algorithms for categorical data are prone to fall into local optima. To address this issue, in this paper we propose a novel clustering algorithm, ABC-K-Modes (Artificial Bee Colony clustering based on K-Modes), based on the traditional k-modes clustering algorithm and the artificial bee colony approach. In our approach, we first introduce a one-step k-modes procedure, and then integrate this procedure with the artificial bee colony approach to deal with categorical data. In the search process performed by scout bees, we adopt the multi-source search inspired by the idea of batch processing to accelerate the convergence of ABC-K-Modes. The performance of ABC-K-Modes is evaluated by a series of experiments in comparison with that of the other popular algorithms for categorical data. PMID:25993469
A dynamic scheduling algorithm for singe-arm two-cluster tools with flexible processing times
NASA Astrophysics Data System (ADS)
Li, Xin; Fung, Richard Y. K.
2018-02-01
This article presents a dynamic algorithm for job scheduling in two-cluster tools producing multi-type wafers with flexible processing times. Flexible processing times mean that the actual times for processing wafers should be within given time intervals. The objective of the work is to minimize the completion time of the newly inserted wafer. To deal with this issue, a two-cluster tool is decomposed into three reduced single-cluster tools (RCTs) in a series based on a decomposition approach proposed in this article. For each single-cluster tool, a dynamic scheduling algorithm based on temporal constraints is developed to schedule the newly inserted wafer. Three experiments have been carried out to test the dynamic scheduling algorithm proposed, comparing with the results the 'earliest starting time' heuristic (EST) adopted in previous literature. The results show that the dynamic algorithm proposed in this article is effective and practical.
A novel artificial bee colony based clustering algorithm for categorical data.
Ji, Jinchao; Pang, Wei; Zheng, Yanlin; Wang, Zhe; Ma, Zhiqiang
2015-01-01
Data with categorical attributes are ubiquitous in the real world. However, existing partitional clustering algorithms for categorical data are prone to fall into local optima. To address this issue, in this paper we propose a novel clustering algorithm, ABC-K-Modes (Artificial Bee Colony clustering based on K-Modes), based on the traditional k-modes clustering algorithm and the artificial bee colony approach. In our approach, we first introduce a one-step k-modes procedure, and then integrate this procedure with the artificial bee colony approach to deal with categorical data. In the search process performed by scout bees, we adopt the multi-source search inspired by the idea of batch processing to accelerate the convergence of ABC-K-Modes. The performance of ABC-K-Modes is evaluated by a series of experiments in comparison with that of the other popular algorithms for categorical data.
Zhu, Bohui; Ding, Yongsheng; Hao, Kuangrong
2013-01-01
This paper presents a novel maximum margin clustering method with immune evolution (IEMMC) for automatic diagnosis of electrocardiogram (ECG) arrhythmias. This diagnostic system consists of signal processing, feature extraction, and the IEMMC algorithm for clustering of ECG arrhythmias. First, raw ECG signal is processed by an adaptive ECG filter based on wavelet transforms, and waveform of the ECG signal is detected; then, features are extracted from ECG signal to cluster different types of arrhythmias by the IEMMC algorithm. Three types of performance evaluation indicators are used to assess the effect of the IEMMC method for ECG arrhythmias, such as sensitivity, specificity, and accuracy. Compared with K-means and iterSVR algorithms, the IEMMC algorithm reflects better performance not only in clustering result but also in terms of global search ability and convergence ability, which proves its effectiveness for the detection of ECG arrhythmias. PMID:23690875
The Ordered Clustered Travelling Salesman Problem: A Hybrid Genetic Algorithm
Ahmed, Zakir Hussain
2014-01-01
The ordered clustered travelling salesman problem is a variation of the usual travelling salesman problem in which a set of vertices (except the starting vertex) of the network is divided into some prespecified clusters. The objective is to find the least cost Hamiltonian tour in which vertices of any cluster are visited contiguously and the clusters are visited in the prespecified order. The problem is NP-hard, and it arises in practical transportation and sequencing problems. This paper develops a hybrid genetic algorithm using sequential constructive crossover, 2-opt search, and a local search for obtaining heuristic solution to the problem. The efficiency of the algorithm has been examined against two existing algorithms for some asymmetric and symmetric TSPLIB instances of various sizes. The computational results show that the proposed algorithm is very effective in terms of solution quality and computational time. Finally, we present solution to some more symmetric TSPLIB instances. PMID:24701148
A genetic graph-based approach for partitional clustering.
Menéndez, Héctor D; Barrero, David F; Camacho, David
2014-05-01
Clustering is one of the most versatile tools for data analysis. In the recent years, clustering that seeks the continuity of data (in opposition to classical centroid-based approaches) has attracted an increasing research interest. It is a challenging problem with a remarkable practical interest. The most popular continuity clustering method is the spectral clustering (SC) algorithm, which is based on graph cut: It initially generates a similarity graph using a distance measure and then studies its graph spectrum to find the best cut. This approach is sensitive to the parameters of the metric, and a correct parameter choice is critical to the quality of the cluster. This work proposes a new algorithm, inspired by SC, that reduces the parameter dependency while maintaining the quality of the solution. The new algorithm, named genetic graph-based clustering (GGC), takes an evolutionary approach introducing a genetic algorithm (GA) to cluster the similarity graph. The experimental validation shows that GGC increases robustness of SC and has competitive performance in comparison with classical clustering methods, at least, in the synthetic and real dataset used in the experiments.
Exploratory Item Classification Via Spectral Graph Clustering
Chen, Yunxiao; Li, Xiaoou; Liu, Jingchen; Xu, Gongjun; Ying, Zhiliang
2017-01-01
Large-scale assessments are supported by a large item pool. An important task in test development is to assign items into scales that measure different characteristics of individuals, and a popular approach is cluster analysis of items. Classical methods in cluster analysis, such as the hierarchical clustering, K-means method, and latent-class analysis, often induce a high computational overhead and have difficulty handling missing data, especially in the presence of high-dimensional responses. In this article, the authors propose a spectral clustering algorithm for exploratory item cluster analysis. The method is computationally efficient, effective for data with missing or incomplete responses, easy to implement, and often outperforms traditional clustering algorithms in the context of high dimensionality. The spectral clustering algorithm is based on graph theory, a branch of mathematics that studies the properties of graphs. The algorithm first constructs a graph of items, characterizing the similarity structure among items. It then extracts item clusters based on the graphical structure, grouping similar items together. The proposed method is evaluated through simulations and an application to the revised Eysenck Personality Questionnaire. PMID:29033476
Symmetric nonnegative matrix factorization: algorithms and applications to probabilistic clustering.
He, Zhaoshui; Xie, Shengli; Zdunek, Rafal; Zhou, Guoxu; Cichocki, Andrzej
2011-12-01
Nonnegative matrix factorization (NMF) is an unsupervised learning method useful in various applications including image processing and semantic analysis of documents. This paper focuses on symmetric NMF (SNMF), which is a special case of NMF decomposition. Three parallel multiplicative update algorithms using level 3 basic linear algebra subprograms directly are developed for this problem. First, by minimizing the Euclidean distance, a multiplicative update algorithm is proposed, and its convergence under mild conditions is proved. Based on it, we further propose another two fast parallel methods: α-SNMF and β -SNMF algorithms. All of them are easy to implement. These algorithms are applied to probabilistic clustering. We demonstrate their effectiveness for facial image clustering, document categorization, and pattern clustering in gene expression.
Tang, Jiqiang; Yang, Wu; Zhu, Lingyun; Wang, Dong; Feng, Xin
2017-01-01
In recent years, Wireless Sensor Networks with a Mobile Sink (WSN-MS) have been an active research topic due to the widespread use of mobile devices. However, how to get the balance between data delivery latency and energy consumption becomes a key issue of WSN-MS. In this paper, we study the clustering approach by jointly considering the Route planning for mobile sink and Clustering Problem (RCP) for static sensor nodes. We solve the RCP problem by using the minimum travel route clustering approach, which applies the minimum travel route of the mobile sink to guide the clustering process. We formulate the RCP problem as an Integer Non-Linear Programming (INLP) problem to shorten the travel route of the mobile sink under three constraints: the communication hops constraint, the travel route constraint and the loop avoidance constraint. We then propose an Imprecise Induction Algorithm (IIA) based on the property that the solution with a small hop count is more feasible than that with a large hop count. The IIA algorithm includes three processes: initializing travel route planning with a Traveling Salesman Problem (TSP) algorithm, transforming the cluster head to a cluster member and transforming the cluster member to a cluster head. Extensive experimental results show that the IIA algorithm could automatically adjust cluster heads according to the maximum hops parameter and plan a shorter travel route for the mobile sink. Compared with the Shortest Path Tree-based Data-Gathering Algorithm (SPT-DGA), the IIA algorithm has the characteristics of shorter route length, smaller cluster head count and faster convergence rate. PMID:28445434
Nidheesh, N; Abdul Nazeer, K A; Ameer, P M
2017-12-01
Clustering algorithms with steps involving randomness usually give different results on different executions for the same dataset. This non-deterministic nature of algorithms such as the K-Means clustering algorithm limits their applicability in areas such as cancer subtype prediction using gene expression data. It is hard to sensibly compare the results of such algorithms with those of other algorithms. The non-deterministic nature of K-Means is due to its random selection of data points as initial centroids. We propose an improved, density based version of K-Means, which involves a novel and systematic method for selecting initial centroids. The key idea of the algorithm is to select data points which belong to dense regions and which are adequately separated in feature space as the initial centroids. We compared the proposed algorithm to a set of eleven widely used single clustering algorithms and a prominent ensemble clustering algorithm which is being used for cancer data classification, based on the performances on a set of datasets comprising ten cancer gene expression datasets. The proposed algorithm has shown better overall performance than the others. There is a pressing need in the Biomedical domain for simple, easy-to-use and more accurate Machine Learning tools for cancer subtype prediction. The proposed algorithm is simple, easy-to-use and gives stable results. Moreover, it provides comparatively better predictions of cancer subtypes from gene expression data. Copyright © 2017 Elsevier Ltd. All rights reserved.
Unified method of knowledge representation in the evolutionary artificial intelligence systems
NASA Astrophysics Data System (ADS)
Bykov, Nickolay M.; Bykova, Katherina N.
2003-03-01
The evolution of artificial intelligence systems called by complicating of their operation topics and science perfecting has resulted in a diversification of the methods both the algorithms of knowledge representation and usage in these systems. Often by this reason it is very difficult to design the effective methods of knowledge discovering and operation for such systems. In the given activity the authors offer a method of unitized representation of the systems knowledge about objects of an external world by rank transformation of their descriptions, made in the different features spaces: deterministic, probabilistic, fuzzy and other. The proof of a sufficiency of the information about the rank configuration of the object states in the features space for decision making is presented. It is shown that the geometrical and combinatorial model of the rank configurations set introduce their by group of some system of incidence, that allows to store the information on them in a convolute kind. The method of the rank configuration description by the DRP - code (distance rank preserving code) is offered. The problems of its completeness, information capacity, noise immunity and privacy are reviewed. It is shown, that the capacity of a transmission channel for such submission of the information is more than unit, as the code words contain the information both about the object states, and about the distance ranks between them. The effective algorithm of the data clustering for the object states identification, founded on the given code usage, is described. The knowledge representation with the help of the rank configurations allows to unitize and to simplify algorithms of the decision making by fulfillment of logic operations above the DRP - code words. Examples of the proposed clustering techniques operation on the given samples set, the rank configuration of resulted clusters and its DRP-codes are presented.
NASA Astrophysics Data System (ADS)
Leonardi, E.; Piperno, G.; Raggi, M.
2017-10-01
A possible solution to the Dark Matter problem postulates that it interacts with Standard Model particles through a new force mediated by a “portal”. If the new force has a U(1) gauge structure, the “portal” is a massive photon-like vector particle, called dark photon or A’. The PADME experiment at the DAΦNE Beam-Test Facility (BTF) in Frascati is designed to detect dark photons produced in positron on fixed target annihilations decaying to dark matter (e+e-→γA‧) by measuring the final state missing mass. One of the key roles of the experiment will be played by the electromagnetic calorimeter, which will be used to measure the properties of the final state recoil γ. The calorimeter will be composed by 616 21×21×230 mm3 BGO crystals oriented with the long axis parallel to the beam direction and disposed in a roughly circular shape with a central hole to avoid the pile up due to the large number of low angle Bremsstrahlung photons. The total energy and position of the electromagnetic shower generated by a photon impacting on the calorimeter can be reconstructed by collecting the energy deposits in the cluster of crystals interested by the shower. In PADME we are testing two different clustering algorithms, PADME-Radius and PADME-Island, based on two complementary strategies. In this paper we will describe the two algorithms, with the respective implementations, and report on the results obtained with them at the PADME energy scale (< 1 GeV), both with a GEANT4 based simulation and with an existing 5×5 matrix of BGO crystals tested at the DAΦNE BTF.
Karnik, Rahul; Beer, Michael A.
2015-01-01
The generation of genomic binding or accessibility data from massively parallel sequencing technologies such as ChIP-seq and DNase-seq continues to accelerate. Yet state-of-the-art computational approaches for the identification of DNA binding motifs often yield motifs of weak predictive power. Here we present a novel computational algorithm called MotifSpec, designed to find predictive motifs, in contrast to over-represented sequence elements. The key distinguishing feature of this algorithm is that it uses a dynamic search space and a learned threshold to find discriminative motifs in combination with the modeling of motifs using a full PWM (position weight matrix) rather than k-mer words or regular expressions. We demonstrate that our approach finds motifs corresponding to known binding specificities in several mammalian ChIP-seq datasets, and that our PWMs classify the ChIP-seq signals with accuracy comparable to, or marginally better than motifs from the best existing algorithms. In other datasets, our algorithm identifies novel motifs where other methods fail. Finally, we apply this algorithm to detect motifs from expression datasets in C. elegans using a dynamic expression similarity metric rather than fixed expression clusters, and find novel predictive motifs. PMID:26465884
Karnik, Rahul; Beer, Michael A
2015-01-01
The generation of genomic binding or accessibility data from massively parallel sequencing technologies such as ChIP-seq and DNase-seq continues to accelerate. Yet state-of-the-art computational approaches for the identification of DNA binding motifs often yield motifs of weak predictive power. Here we present a novel computational algorithm called MotifSpec, designed to find predictive motifs, in contrast to over-represented sequence elements. The key distinguishing feature of this algorithm is that it uses a dynamic search space and a learned threshold to find discriminative motifs in combination with the modeling of motifs using a full PWM (position weight matrix) rather than k-mer words or regular expressions. We demonstrate that our approach finds motifs corresponding to known binding specificities in several mammalian ChIP-seq datasets, and that our PWMs classify the ChIP-seq signals with accuracy comparable to, or marginally better than motifs from the best existing algorithms. In other datasets, our algorithm identifies novel motifs where other methods fail. Finally, we apply this algorithm to detect motifs from expression datasets in C. elegans using a dynamic expression similarity metric rather than fixed expression clusters, and find novel predictive motifs.
Determining the Number of Clusters in a Data Set Without Graphical Interpretation
NASA Technical Reports Server (NTRS)
Aguirre, Nathan S.; Davies, Misty D.
2011-01-01
Cluster analysis is a data mining technique that is meant ot simplify the process of classifying data points. The basic clustering process requires an input of data points and the number of clusters wanted. The clustering algorithm will then pick starting C points for the clusters, which can be either random spatial points or random data points. It then assigns each data point to the nearest C point where "nearest usually means Euclidean distance, but some algorithms use another criterion. The next step is determining whether the clustering arrangement this found is within a certain tolerance. If it falls within this tolerance, the process ends. Otherwise the C points are adjusted based on how many data points are in each cluster, and the steps repeat until the algorithm converges,
Clustering methods for the optimization of atomic cluster structure
NASA Astrophysics Data System (ADS)
Bagattini, Francesco; Schoen, Fabio; Tigli, Luca
2018-04-01
In this paper, we propose a revised global optimization method and apply it to large scale cluster conformation problems. In the 1990s, the so-called clustering methods were considered among the most efficient general purpose global optimization techniques; however, their usage has quickly declined in recent years, mainly due to the inherent difficulties of clustering approaches in large dimensional spaces. Inspired from the machine learning literature, we redesigned clustering methods in order to deal with molecular structures in a reduced feature space. Our aim is to show that by suitably choosing a good set of geometrical features coupled with a very efficient descent method, an effective optimization tool is obtained which is capable of finding, with a very high success rate, all known putative optima for medium size clusters without any prior information, both for Lennard-Jones and Morse potentials. The main result is that, beyond being a reliable approach, the proposed method, based on the idea of starting a computationally expensive deep local search only when it seems worth doing so, is capable of saving a huge amount of searches with respect to an analogous algorithm which does not employ a clustering phase. In this paper, we are not claiming the superiority of the proposed method compared to specific, refined, state-of-the-art procedures, but rather indicating a quite straightforward way to save local searches by means of a clustering scheme working in a reduced variable space, which might prove useful when included in many modern methods.
NASA Astrophysics Data System (ADS)
Kotsakis, A.; Choi, Y.; Souri, A.; Jeon, W.; Flynn, J. H., III
2017-12-01
From the years 2000 to 2014, Dallas-Fort Worth (DFW) has seen a decrease in ozone exceedances due to decreased emissions of ozone precursors. In this study, a wind pattern analysis was done to gain a better understanding of the meteorological patterns that have historically contributed to ozone exceedances over the DFW area. Long-term trends in ozone and the seasonal distribution of ozone exceedances were analyzed using surface monitoring data. Using a clustering algorithm called self-organizing maps, characteristic regional wind patterns from 2000-2014 were determined. For each of the wind pattern clusters, the frequency over the last 15 years and average ozone from monitors across DFW was analyzed. Finally, model simulations were performed to determine if pollution transported out of Houston affected incoming background ozone into DFW.
Fung, David C Y; Wilkins, Marc R; Hart, David; Hong, Seok-Hee
2010-07-01
The force-directed layout is commonly used in computer-generated visualizations of protein-protein interaction networks. While it is good for providing a visual outline of the protein complexes and their interactions, it has two limitations when used as a visual analysis method. The first is poor reproducibility. Repeated running of the algorithm does not necessarily generate the same layout, therefore, demanding cognitive readaptation on the investigator's part. The second limitation is that it does not explicitly display complementary biological information, e.g. Gene Ontology, other than the protein names or gene symbols. Here, we present an alternative layout called the clustered circular layout. Using the human DNA replication protein-protein interaction network as a case study, we compared the two network layouts for their merits and limitations in supporting visual analysis.
A hybrid approach to select features and classify diseases based on medical data
NASA Astrophysics Data System (ADS)
AbdelLatif, Hisham; Luo, Jiawei
2018-03-01
Feature selection is popular problem in the classification of diseases in clinical medicine. Here, we developing a hybrid methodology to classify diseases, based on three medical datasets, Arrhythmia, Breast cancer, and Hepatitis datasets. This methodology called k-means ANOVA Support Vector Machine (K-ANOVA-SVM) uses K-means cluster with ANOVA statistical to preprocessing data and selection the significant features, and Support Vector Machines in the classification process. To compare and evaluate the performance, we choice three classification algorithms, decision tree Naïve Bayes, Support Vector Machines and applied the medical datasets direct to these algorithms. Our methodology was a much better classification accuracy is given of 98% in Arrhythmia datasets, 92% in Breast cancer datasets and 88% in Hepatitis datasets, Compare to use the medical data directly with decision tree Naïve Bayes, and Support Vector Machines. Also, the ROC curve and precision with (K-ANOVA-SVM) Achieved best results than other algorithms
Electrons and photons at High Level Trigger in CMS for Run II
NASA Astrophysics Data System (ADS)
Anuar, Afiq A.
2015-12-01
The CMS experiment has been designed with a 2-level trigger system. The first level is implemented using custom-designed electronics. The second level is the so-called High Level Trigger (HLT), a streamlined version of the CMS offline reconstruction software running on a computer farm. For Run II of the Large Hadron Collider, the increase in center-of-mass energy and luminosity will raise the event rate to a level challenging for the HLT algorithms. New approaches have been studied to keep the HLT output rate manageable while maintaining thresholds low enough to cover physics analyses. The strategy mainly relies on porting online the ingredients that have been successfully applied in the offline reconstruction, thus allowing to move HLT selection closer to offline cuts. Improvements in HLT electron and photon definitions will be presented, focusing in particular on: updated clustering algorithm and the energy calibration procedure, new Particle-Flow-based isolation approach and pileup mitigation techniques, and the electron-dedicated track fitting algorithm based on Gaussian Sum Filter.
NASA Technical Reports Server (NTRS)
Eigen, D. J.; Fromm, F. R.; Northouse, R. A.
1974-01-01
A new clustering algorithm is presented that is based on dimensional information. The algorithm includes an inherent feature selection criterion, which is discussed. Further, a heuristic method for choosing the proper number of intervals for a frequency distribution histogram, a feature necessary for the algorithm, is presented. The algorithm, although usable as a stand-alone clustering technique, is then utilized as a global approximator. Local clustering techniques and configuration of a global-local scheme are discussed, and finally the complete global-local and feature selector configuration is shown in application to a real-time adaptive classification scheme for the analysis of remote sensed multispectral scanner data.
Block clustering based on difference of convex functions (DC) programming and DC algorithms.
Le, Hoai Minh; Le Thi, Hoai An; Dinh, Tao Pham; Huynh, Van Ngai
2013-10-01
We investigate difference of convex functions (DC) programming and the DC algorithm (DCA) to solve the block clustering problem in the continuous framework, which traditionally requires solving a hard combinatorial optimization problem. DC reformulation techniques and exact penalty in DC programming are developed to build an appropriate equivalent DC program of the block clustering problem. They lead to an elegant and explicit DCA scheme for the resulting DC program. Computational experiments show the robustness and efficiency of the proposed algorithm and its superiority over standard algorithms such as two-mode K-means, two-mode fuzzy clustering, and block classification EM.
Online clustering algorithms for radar emitter classification.
Liu, Jun; Lee, Jim P Y; Senior; Li, Lingjie; Luo, Zhi-Quan; Wong, K Max
2005-08-01
Radar emitter classification is a special application of data clustering for classifying unknown radar emitters from received radar pulse samples. The main challenges of this task are the high dimensionality of radar pulse samples, small sample group size, and closely located radar pulse clusters. In this paper, two new online clustering algorithms are developed for radar emitter classification: One is model-based using the Minimum Description Length (MDL) criterion and the other is based on competitive learning. Computational complexity is analyzed for each algorithm and then compared. Simulation results show the superior performance of the model-based algorithm over competitive learning in terms of better classification accuracy, flexibility, and stability.
CAMPAIGN: an open-source library of GPU-accelerated data clustering algorithms.
Kohlhoff, Kai J; Sosnick, Marc H; Hsu, William T; Pande, Vijay S; Altman, Russ B
2011-08-15
Data clustering techniques are an essential component of a good data analysis toolbox. Many current bioinformatics applications are inherently compute-intense and work with very large datasets. Sequential algorithms are inadequate for providing the necessary performance. For this reason, we have created Clustering Algorithms for Massively Parallel Architectures, Including GPU Nodes (CAMPAIGN), a central resource for data clustering algorithms and tools that are implemented specifically for execution on massively parallel processing architectures. CAMPAIGN is a library of data clustering algorithms and tools, written in 'C for CUDA' for Nvidia GPUs. The library provides up to two orders of magnitude speed-up over respective CPU-based clustering algorithms and is intended as an open-source resource. New modules from the community will be accepted into the library and the layout of it is such that it can easily be extended to promising future platforms such as OpenCL. Releases of the CAMPAIGN library are freely available for download under the LGPL from https://simtk.org/home/campaign. Source code can also be obtained through anonymous subversion access as described on https://simtk.org/scm/?group_id=453. kjk33@cantab.net.
Research on the precise positioning of customers in large data environment
NASA Astrophysics Data System (ADS)
Zhou, Xu; He, Lili
2018-04-01
Customer positioning has always been a problem that enterprises focus on. In this paper, FCM clustering algorithm is used to cluster customer groups. However, due to the traditional FCM clustering algorithm, which is susceptible to the influence of the initial clustering center and easy to fall into the local optimal problem, the short board of FCM is solved by the gray optimization algorithm (GWO) to achieve efficient and accurate handling of a large number of retailer data.
An Enhanced K-Means Algorithm for Water Quality Analysis of The Haihe River in China.
Zou, Hui; Zou, Zhihong; Wang, Xiaojing
2015-11-12
The increase and the complexity of data caused by the uncertain environment is today's reality. In order to identify water quality effectively and reliably, this paper presents a modified fast clustering algorithm for water quality analysis. The algorithm has adopted a varying weights K-means cluster algorithm to analyze water monitoring data. The varying weights scheme was the best weighting indicator selected by a modified indicator weight self-adjustment algorithm based on K-means, which is named MIWAS-K-means. The new clustering algorithm avoids the margin of the iteration not being calculated in some cases. With the fast clustering analysis, we can identify the quality of water samples. The algorithm is applied in water quality analysis of the Haihe River (China) data obtained by the monitoring network over a period of eight years (2006-2013) with four indicators at seven different sites (2078 samples). Both the theoretical and simulated results demonstrate that the algorithm is efficient and reliable for water quality analysis of the Haihe River. In addition, the algorithm can be applied to more complex data matrices with high dimensionality.
Jaiswara, Ranjana; Nandi, Diptarup; Balakrishnan, Rohini
2013-01-01
Traditional taxonomy based on morphology has often failed in accurate species identification owing to the occurrence of cryptic species, which are reproductively isolated but morphologically identical. Molecular data have thus been used to complement morphology in species identification. The sexual advertisement calls in several groups of acoustically communicating animals are species-specific and can thus complement molecular data as non-invasive tools for identification. Several statistical tools and automated identifier algorithms have been used to investigate the efficiency of acoustic signals in species identification. Despite a plethora of such methods, there is a general lack of knowledge regarding the appropriate usage of these methods in specific taxa. In this study, we investigated the performance of two commonly used statistical methods, discriminant function analysis (DFA) and cluster analysis, in identification and classification based on acoustic signals of field cricket species belonging to the subfamily Gryllinae. Using a comparative approach we evaluated the optimal number of species and calling song characteristics for both the methods that lead to most accurate classification and identification. The accuracy of classification using DFA was high and was not affected by the number of taxa used. However, a constraint in using discriminant function analysis is the need for a priori classification of songs. Accuracy of classification using cluster analysis, which does not require a priori knowledge, was maximum for 6–7 taxa and decreased significantly when more than ten taxa were analysed together. We also investigated the efficacy of two novel derived acoustic features in improving the accuracy of identification. Our results show that DFA is a reliable statistical tool for species identification using acoustic signals. Our results also show that cluster analysis of acoustic signals in crickets works effectively for species classification and identification. PMID:24086666
Cooperative network clustering and task allocation for heterogeneous small satellite network
NASA Astrophysics Data System (ADS)
Qin, Jing
The research of small satellite has emerged as a hot topic in recent years because of its economical prospects and convenience in launching and design. Due to the size and energy constraints of small satellites, forming a small satellite network(SSN) in which all the satellites cooperate with each other to finish tasks is an efficient and effective way to utilize them. In this dissertation, I designed and evaluated a weight based dominating set clustering algorithm, which efficiently organizes the satellites into stable clusters. The traditional clustering algorithms of large monolithic satellite networks, such as formation flying and satellite swarm, are often limited on automatic formation of clusters. Therefore, a novel Distributed Weight based Dominating Set(DWDS) clustering algorithm is designed to address the clustering problems in the stochastically deployed SSNs. Considering the unique features of small satellites, this algorithm is able to form the clusters efficiently and stably. In this algorithm, satellites are separated into different groups according to their spatial characteristics. A minimum dominating set is chosen as the candidate cluster head set based on their weights, which is a weighted combination of residual energy and connection degree. Then the cluster heads admit new neighbors that accept their invitations into the cluster, until the maximum cluster size is reached. Evaluated by the simulation results, in a SSN with 200 to 800 nodes, the algorithm is able to efficiently cluster more than 90% of nodes in 3 seconds. The Deadline Based Resource Balancing (DBRB) task allocation algorithm is designed for efficient task allocations in heterogeneous LEO small satellite networks. In the task allocation process, the dispatcher needs to consider the deadlines of the tasks as well as the residue energy of different resources for best energy utilization. We assume the tasks adopt a Map-Reduce framework, in which a task can consist of multiple subtasks. The DBRB algorithm is deployed on the head node of a cluster. It gathers the status from each cluster member and calculates their Node Importance Factors (NIFs) from the carried resources, residue power and compute capacity. The algorithm calculates the number of concurrent subtasks based on the deadlines, and allocates the subtasks to the nodes according to their NIF values. The simulation results show that when cluster members carry multiple resources, resource are more balanced and rare resources serve longer in DBRB than in the Earliest Deadline First algorithm. We also show that the algorithm performs well in service isolation by serving multiple tasks with different deadlines. Moreover, the average task response time with various cluster size settings is well controlled within deadlines as well. Except non-realtime tasks, small satellites may execute realtime tasks as well. The location-dependent tasks, such as image capturing, data transmission and remote sensing tasks are realtime tasks that are required to be started / finished on specific time. The resource energy balancing algorithm for realtime and non-realtime mixed workload is developed to efficiently schedule the tasks for best system performance. It calculates the residue energy for each resource type and tries to preserve resources and node availability when distributing tasks. Non-realtime tasks can be preempted by realtime tasks to provide better QoS to realtime tasks. I compared the performance of proposed algorithm with a random-priority scheduling algorithm, with only realtime tasks, non-realtime tasks and mixed tasks. It shows the resource energy reservation algorithm outperforms the latter one with both balanced and imbalanced workloads. Although the resource energy balancing task allocation algorithm for mixed workload provides preemption mechanism for realtime tasks, realtime tasks can still fail due to resource exhaustion. For LEO small satellite flies around the earth on stable orbits, the location-dependent realtime tasks can be considered as periodical tasks. Therefore, it is possible to reserve energy for these realtime tasks. The resource energy reservation algorithm preserves energy for the realtime tasks when the execution routine of periodical realtime tasks is known. In order to reserve energy for tasks starting very early in each period that the node does not have enough energy charged, an energy wrapping mechanism is also designed to calculate the residue energy from the previous period. The simulation results show that without energy reservation, realtime task failure rate can reach more than 60% when the workload is highly imbalanced. In contrast, the resource energy reservation produces zero RT task failures and leads to equal or better aggregate system throughput than the non-reservation algorithm. The proposed algorithm also preserves more energy because it avoids task preemption. (Abstract shortened by ProQuest.).
Analysis of Network Clustering Algorithms and Cluster Quality Metrics at Scale
Kobourov, Stephen; Gallant, Mike; Börner, Katy
2016-01-01
Overview Notions of community quality underlie the clustering of networks. While studies surrounding network clustering are increasingly common, a precise understanding of the realtionship between different cluster quality metrics is unknown. In this paper, we examine the relationship between stand-alone cluster quality metrics and information recovery metrics through a rigorous analysis of four widely-used network clustering algorithms—Louvain, Infomap, label propagation, and smart local moving. We consider the stand-alone quality metrics of modularity, conductance, and coverage, and we consider the information recovery metrics of adjusted Rand score, normalized mutual information, and a variant of normalized mutual information used in previous work. Our study includes both synthetic graphs and empirical data sets of sizes varying from 1,000 to 1,000,000 nodes. Cluster Quality Metrics We find significant differences among the results of the different cluster quality metrics. For example, clustering algorithms can return a value of 0.4 out of 1 on modularity but score 0 out of 1 on information recovery. We find conductance, though imperfect, to be the stand-alone quality metric that best indicates performance on the information recovery metrics. Additionally, our study shows that the variant of normalized mutual information used in previous work cannot be assumed to differ only slightly from traditional normalized mutual information. Network Clustering Algorithms Smart local moving is the overall best performing algorithm in our study, but discrepancies between cluster evaluation metrics prevent us from declaring it an absolutely superior algorithm. Interestingly, Louvain performed better than Infomap in nearly all the tests in our study, contradicting the results of previous work in which Infomap was superior to Louvain. We find that although label propagation performs poorly when clusters are less clearly defined, it scales efficiently and accurately to large graphs with well-defined clusters. PMID:27391786
Deptuch, Grzegorz W.; Fahim, Farah; Grybos, Pawel; ...
2017-06-28
An on-chip implementable algorithm for allocation of an X-ray photon imprint, called a hit, to a single pixel in the presence of charge sharing in a highly segmented pixel detector is described. Its proof-of-principle implementation is also given supported by the results of tests using a highly collimated X-ray photon beam from a synchrotron source. The algorithm handles asynchronous arrivals of X-ray photons. Activation of groups of pixels, comparisons of peak amplitudes of pulses within an active neighborhood and finally latching of the results of these comparisons constitute the three procedural steps of the algorithm. A grouping of pixels tomore » one virtual pixel, that recovers composite signals and event driven strobes, to control comparisons of fractional signals between neighboring pixels are the actuators of the algorithm. The circuitry necessary to implement the algorithm requires an extensive inter-pixel connection grid of analog and digital signals, that are exchanged between pixels. A test-circuit implementation of the algorithm was achieved with a small array of 32 × 32 pixels and the device was exposed to an 8 keV highly collimated to a diameter of 3-μm X-ray beam. Furthermore, the results of these tests are given in this paper assessing physical implementation of the algorithm.« less
Luo, Ze; Baoping, Yan; Takekawa, John Y.; Prosser, Diann J.
2012-01-01
We propose a new method to help ornithologists and ecologists discover shared segments on the migratory pathway of the bar-headed geese by time-based plane-sweeping trajectory clustering. We present a density-based time parameterized line segment clustering algorithm, which extends traditional comparable clustering algorithms from temporal and spatial dimensions. We present a time-based plane-sweeping trajectory clustering algorithm to reveal the dynamic evolution of spatial-temporal object clusters and discover common motion patterns of bar-headed geese in the process of migration. Experiments are performed on GPS-based satellite telemetry data from bar-headed geese and results demonstrate our algorithms can correctly discover shared segments of the bar-headed geese migratory pathway. We also present findings on the migratory behavior of bar-headed geese determined from this new analytical approach.
Computational gene expression profiling under salt stress reveals patterns of co-expression
Sanchita; Sharma, Ashok
2016-01-01
Plants respond differently to environmental conditions. Among various abiotic stresses, salt stress is a condition where excess salt in soil causes inhibition of plant growth. To understand the response of plants to the stress conditions, identification of the responsible genes is required. Clustering is a data mining technique used to group the genes with similar expression. The genes of a cluster show similar expression and function. We applied clustering algorithms on gene expression data of Solanum tuberosum showing differential expression in Capsicum annuum under salt stress. The clusters, which were common in multiple algorithms were taken further for analysis. Principal component analysis (PCA) further validated the findings of other cluster algorithms by visualizing their clusters in three-dimensional space. Functional annotation results revealed that most of the genes were involved in stress related responses. Our findings suggest that these algorithms may be helpful in the prediction of the function of co-expressed genes. PMID:26981411
Li, Xiaofang; Xu, Lizhong; Wang, Huibin; Song, Jie; Yang, Simon X.
2010-01-01
The traditional Low Energy Adaptive Cluster Hierarchy (LEACH) routing protocol is a clustering-based protocol. The uneven selection of cluster heads results in premature death of cluster heads and premature blind nodes inside the clusters, thus reducing the overall lifetime of the network. With a full consideration of information on energy and distance distribution of neighboring nodes inside the clusters, this paper proposes a new routing algorithm based on differential evolution (DE) to improve the LEACH routing protocol. To meet the requirements of monitoring applications in outdoor environments such as the meteorological, hydrological and wetland ecological environments, the proposed algorithm uses the simple and fast search features of DE to optimize the multi-objective selection of cluster heads and prevent blind nodes for improved energy efficiency and system stability. Simulation results show that the proposed new LEACH routing algorithm has better performance, effectively extends the working lifetime of the system, and improves the quality of the wireless sensor networks. PMID:22219670
Gao, Ying; Wkram, Chris Hadri; Duan, Jiajie; Chou, Jarong
2015-01-01
In order to prolong the network lifetime, energy-efficient protocols adapted to the features of wireless sensor networks should be used. This paper explores in depth the nature of heterogeneous wireless sensor networks, and finally proposes an algorithm to address the problem of finding an effective pathway for heterogeneous clustering energy. The proposed algorithm implements cluster head selection according to the degree of energy attenuation during the network’s running and the degree of candidate nodes’ effective coverage on the whole network, so as to obtain an even energy consumption over the whole network for the situation with high degree of coverage. Simulation results show that the proposed clustering protocol has better adaptability to heterogeneous environments than existing clustering algorithms in prolonging the network lifetime. PMID:26690440
Ju, Chunhua; Xu, Chonghuan
2013-01-01
Although there are many good collaborative recommendation methods, it is still a challenge to increase the accuracy and diversity of these methods to fulfill users' preferences. In this paper, we propose a novel collaborative filtering recommendation approach based on K-means clustering algorithm. In the process of clustering, we use artificial bee colony (ABC) algorithm to overcome the local optimal problem caused by K-means. After that we adopt the modified cosine similarity to compute the similarity between users in the same clusters. Finally, we generate recommendation results for the corresponding target users. Detailed numerical analysis on a benchmark dataset MovieLens and a real-world dataset indicates that our new collaborative filtering approach based on users clustering algorithm outperforms many other recommendation methods.
Ju, Chunhua
2013-01-01
Although there are many good collaborative recommendation methods, it is still a challenge to increase the accuracy and diversity of these methods to fulfill users' preferences. In this paper, we propose a novel collaborative filtering recommendation approach based on K-means clustering algorithm. In the process of clustering, we use artificial bee colony (ABC) algorithm to overcome the local optimal problem caused by K-means. After that we adopt the modified cosine similarity to compute the similarity between users in the same clusters. Finally, we generate recommendation results for the corresponding target users. Detailed numerical analysis on a benchmark dataset MovieLens and a real-world dataset indicates that our new collaborative filtering approach based on users clustering algorithm outperforms many other recommendation methods. PMID:24381525
Convalescing Cluster Configuration Using a Superlative Framework
Sabitha, R.; Karthik, S.
2015-01-01
Competent data mining methods are vital to discover knowledge from databases which are built as a result of enormous growth of data. Various techniques of data mining are applied to obtain knowledge from these databases. Data clustering is one such descriptive data mining technique which guides in partitioning data objects into disjoint segments. K-means algorithm is a versatile algorithm among the various approaches used in data clustering. The algorithm and its diverse adaptation methods suffer certain problems in their performance. To overcome these issues a superlative algorithm has been proposed in this paper to perform data clustering. The specific feature of the proposed algorithm is discretizing the dataset, thereby improving the accuracy of clustering, and also adopting the binary search initialization method to generate cluster centroids. The generated centroids are fed as input to K-means approach which iteratively segments the data objects into respective clusters. The clustered results are measured for accuracy and validity. Experiments conducted by testing the approach on datasets from the UC Irvine Machine Learning Repository evidently show that the accuracy and validity measure is higher than the other two approaches, namely, simple K-means and Binary Search method. Thus, the proposed approach proves that discretization process will improve the efficacy of descriptive data mining tasks. PMID:26543895
On the Accuracy and Parallelism of GPGPU-Powered Incremental Clustering Algorithms
He, Li; Zheng, Hao; Wang, Lei
2017-01-01
Incremental clustering algorithms play a vital role in various applications such as massive data analysis and real-time data processing. Typical application scenarios of incremental clustering raise high demand on computing power of the hardware platform. Parallel computing is a common solution to meet this demand. Moreover, General Purpose Graphic Processing Unit (GPGPU) is a promising parallel computing device. Nevertheless, the incremental clustering algorithm is facing a dilemma between clustering accuracy and parallelism when they are powered by GPGPU. We formally analyzed the cause of this dilemma. First, we formalized concepts relevant to incremental clustering like evolving granularity. Second, we formally proved two theorems. The first theorem proves the relation between clustering accuracy and evolving granularity. Additionally, this theorem analyzes the upper and lower bounds of different-to-same mis-affiliation. Fewer occurrences of such mis-affiliation mean higher accuracy. The second theorem reveals the relation between parallelism and evolving granularity. Smaller work-depth means superior parallelism. Through the proofs, we conclude that accuracy of an incremental clustering algorithm is negatively related to evolving granularity while parallelism is positively related to the granularity. Thus the contradictory relations cause the dilemma. Finally, we validated the relations through a demo algorithm. Experiment results verified theoretical conclusions. PMID:29123546
A curvature-based weighted fuzzy c-means algorithm for point clouds de-noising
NASA Astrophysics Data System (ADS)
Cui, Xin; Li, Shipeng; Yan, Xiutian; He, Xinhua
2018-04-01
In order to remove the noise of three-dimensional scattered point cloud and smooth the data without damnify the sharp geometric feature simultaneity, a novel algorithm is proposed in this paper. The feature-preserving weight is added to fuzzy c-means algorithm which invented a curvature weighted fuzzy c-means clustering algorithm. Firstly, the large-scale outliers are removed by the statistics of r radius neighboring points. Then, the algorithm estimates the curvature of the point cloud data by using conicoid parabolic fitting method and calculates the curvature feature value. Finally, the proposed clustering algorithm is adapted to calculate the weighted cluster centers. The cluster centers are regarded as the new points. The experimental results show that this approach is efficient to different scale and intensities of noise in point cloud with a high precision, and perform a feature-preserving nature at the same time. Also it is robust enough to different noise model.
A new parallelization scheme for adaptive mesh refinement
Loffler, Frank; Cao, Zhoujian; Brandt, Steven R.; ...
2016-05-06
Here, we present a new method for parallelization of adaptive mesh refinement called Concurrent Structured Adaptive Mesh Refinement (CSAMR). This new method offers the lower computational cost (i.e. wall time x processor count) of subcycling in time, but with the runtime performance (i.e. smaller wall time) of evolving all levels at once using the time step of the finest level (which does more work than subcycling but has less parallelism). We demonstrate our algorithm's effectiveness using an adaptive mesh refinement code, AMSS-NCKU, and show performance on Blue Waters and other high performance clusters. For the class of problem considered inmore » this paper, our algorithm achieves a speedup of 1.7-1.9 when the processor count for a given AMR run is doubled, consistent with our theoretical predictions.« less
Predicting Flood in Perlis Using Ant Colony Optimization
NASA Astrophysics Data System (ADS)
Nadia Sabri, Syaidatul; Saian, Rizauddin
2017-06-01
Flood forecasting is widely being studied in order to reduce the effect of flood such as loss of property, loss of life and contamination of water supply. Usually flood occurs due to continuous heavy rainfall. This study used a variant of Ant Colony Optimization (ACO) algorithm named the Ant-Miner to develop the classification prediction model to predict flood. However, since Ant-Miner only accept discrete data, while rainfall data is a time series data, a pre-processing steps is needed to discretize the rainfall data initially. This study used a technique called the Symbolic Aggregate Approximation (SAX) to convert the rainfall time series data into discrete data. As an addition, Simple K-Means algorithm was used to cluster the data produced by SAX. The findings show that the predictive accuracy of the classification prediction model is more than 80%.
A new parallelization scheme for adaptive mesh refinement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loffler, Frank; Cao, Zhoujian; Brandt, Steven R.
Here, we present a new method for parallelization of adaptive mesh refinement called Concurrent Structured Adaptive Mesh Refinement (CSAMR). This new method offers the lower computational cost (i.e. wall time x processor count) of subcycling in time, but with the runtime performance (i.e. smaller wall time) of evolving all levels at once using the time step of the finest level (which does more work than subcycling but has less parallelism). We demonstrate our algorithm's effectiveness using an adaptive mesh refinement code, AMSS-NCKU, and show performance on Blue Waters and other high performance clusters. For the class of problem considered inmore » this paper, our algorithm achieves a speedup of 1.7-1.9 when the processor count for a given AMR run is doubled, consistent with our theoretical predictions.« less
Potas, Jason Robert; de Castro, Newton Gonçalves; Maddess, Ted; de Souza, Marcio Nogueira
2015-01-01
Experimental electrophysiological assessment of evoked responses from regenerating nerves is challenging due to the typical complex response of events dispersed over various latencies and poor signal-to-noise ratio. Our objective was to automate the detection of compound action potential events and derive their latencies and magnitudes using a simple cross-correlation template comparison approach. For this, we developed an algorithm called Waveform Similarity Analysis. To test the algorithm, challenging signals were generated in vivo by stimulating sural and sciatic nerves, whilst recording evoked potentials at the sciatic nerve and tibialis anterior muscle, respectively, in animals recovering from sciatic nerve transection. Our template for the algorithm was generated based on responses evoked from the intact side. We also simulated noisy signals and examined the output of the Waveform Similarity Analysis algorithm with imperfect templates. Signals were detected and quantified using Waveform Similarity Analysis, which was compared to event detection, latency and magnitude measurements of the same signals performed by a trained observer, a process we called Trained Eye Analysis. The Waveform Similarity Analysis algorithm could successfully detect and quantify simple or complex responses from nerve and muscle compound action potentials of intact or regenerated nerves. Incorrectly specifying the template outperformed Trained Eye Analysis for predicting signal amplitude, but produced consistent latency errors for the simulated signals examined. Compared to the trained eye, Waveform Similarity Analysis is automatic, objective, does not rely on the observer to identify and/or measure peaks, and can detect small clustered events even when signal-to-noise ratio is poor. Waveform Similarity Analysis provides a simple, reliable and convenient approach to quantify latencies and magnitudes of complex waveforms and therefore serves as a useful tool for studying evoked compound action potentials in neural regeneration studies.
Potas, Jason Robert; de Castro, Newton Gonçalves; Maddess, Ted; de Souza, Marcio Nogueira
2015-01-01
Experimental electrophysiological assessment of evoked responses from regenerating nerves is challenging due to the typical complex response of events dispersed over various latencies and poor signal-to-noise ratio. Our objective was to automate the detection of compound action potential events and derive their latencies and magnitudes using a simple cross-correlation template comparison approach. For this, we developed an algorithm called Waveform Similarity Analysis. To test the algorithm, challenging signals were generated in vivo by stimulating sural and sciatic nerves, whilst recording evoked potentials at the sciatic nerve and tibialis anterior muscle, respectively, in animals recovering from sciatic nerve transection. Our template for the algorithm was generated based on responses evoked from the intact side. We also simulated noisy signals and examined the output of the Waveform Similarity Analysis algorithm with imperfect templates. Signals were detected and quantified using Waveform Similarity Analysis, which was compared to event detection, latency and magnitude measurements of the same signals performed by a trained observer, a process we called Trained Eye Analysis. The Waveform Similarity Analysis algorithm could successfully detect and quantify simple or complex responses from nerve and muscle compound action potentials of intact or regenerated nerves. Incorrectly specifying the template outperformed Trained Eye Analysis for predicting signal amplitude, but produced consistent latency errors for the simulated signals examined. Compared to the trained eye, Waveform Similarity Analysis is automatic, objective, does not rely on the observer to identify and/or measure peaks, and can detect small clustered events even when signal-to-noise ratio is poor. Waveform Similarity Analysis provides a simple, reliable and convenient approach to quantify latencies and magnitudes of complex waveforms and therefore serves as a useful tool for studying evoked compound action potentials in neural regeneration studies. PMID:26325291
Liu, L L; Liu, M J; Ma, M
2015-09-28
The central task of this study was to mine the gene-to-medium relationship. Adequate knowledge of this relationship could potentially improve the accuracy of differentially expressed gene mining. One of the approaches to differentially expressed gene mining uses conventional clustering algorithms to identify the gene-to-medium relationship. Compared to conventional clustering algorithms, self-organization maps (SOMs) identify the nonlinear aspects of the gene-to-medium relationships by mapping the input space into another higher dimensional feature space. However, SOMs are not suitable for huge datasets consisting of millions of samples. Therefore, a new computational model, the Function Clustering Self-Organization Maps (FCSOMs), was developed. FCSOMs take advantage of the theory of granular computing as well as advanced statistical learning methodologies, and are built specifically for each information granule (a function cluster of genes), which are intelligently partitioned by the clustering algorithm provided by the DAVID_6.7 software platform. However, only the gene functions, and not their expression values, are considered in the fuzzy clustering algorithm of DAVID. Compared to the clustering algorithm of DAVID, these experimental results show a marked improvement in the accuracy of classification with the application of FCSOMs. FCSOMs can handle huge datasets and their complex classification problems, as each FCSOM (modeled for each function cluster) can be easily parallelized.
Spatial location influences vocal interactions in bullfrog choruses
Bates, Mary E.; Cropp, Brett F.; Gonchar, Marina; Knowles, Jeffrey; Simmons, James A.; Simmons, Andrea Megela
2010-01-01
A multiple sensor array was employed to identify the spatial locations of all vocalizing male bullfrogs (Rana catesbeiana) in five natural choruses. Patterns of vocal activity collected with this array were compared with computer simulations of chorus activity. Bullfrogs were not randomly spaced within choruses, but tended to cluster into closely spaced groups of two to five vocalizing males. There were nonrandom, differing patterns of vocal interactions within clusters of closely spaced males and between different clusters. Bullfrogs located within the same cluster tended to overlap or alternate call notes with two or more other males in that cluster. These near-simultaneous calling bouts produced advertisement calls with more pronounced amplitude modulation than occurred in nonoverlapping notes or calls. Bullfrogs located in different clusters more often alternated entire calls or overlapped only small segments of their calls. They also tended to respond sequentially to calls of their farther neighbors compared to their nearer neighbors. Results of computational analyses showed that the observed patterns of vocal interactions were significantly different than expected based on random activity. The use of a multiple sensor array provides a richer view of the dynamics of choruses than available based on single microphone techniques. PMID:20370047
A Self-Organizing Spatial Clustering Approach to Support Large-Scale Network RTK Systems.
Shen, Lili; Guo, Jiming; Wang, Lei
2018-06-06
The network real-time kinematic (RTK) technique can provide centimeter-level real time positioning solutions and play a key role in geo-spatial infrastructure. With ever-increasing popularity, network RTK systems will face issues in the support of large numbers of concurrent users. In the past, high-precision positioning services were oriented towards professionals and only supported a few concurrent users. Currently, precise positioning provides a spatial foundation for artificial intelligence (AI), and countless smart devices (autonomous cars, unmanned aerial-vehicles (UAVs), robotic equipment, etc.) require precise positioning services. Therefore, the development of approaches to support large-scale network RTK systems is urgent. In this study, we proposed a self-organizing spatial clustering (SOSC) approach which automatically clusters online users to reduce the computational load on the network RTK system server side. The experimental results indicate that both the SOSC algorithm and the grid algorithm can reduce the computational load efficiently, while the SOSC algorithm gives a more elastic and adaptive clustering solution with different datasets. The SOSC algorithm determines the cluster number and the mean distance to cluster center (MDTCC) according to the data set, while the grid approaches are all predefined. The side-effects of clustering algorithms on the user side are analyzed with real global navigation satellite system (GNSS) data sets. The experimental results indicate that 10 km can be safely used as the cluster radius threshold for the SOSC algorithm without significantly reducing the positioning precision and reliability on the user side.
NASA Astrophysics Data System (ADS)
Zhang, Tianzhen; Wang, Xiumei; Gao, Xinbo
2018-04-01
Nowadays, several datasets are demonstrated by multi-view, which usually include shared and complementary information. Multi-view clustering methods integrate the information of multi-view to obtain better clustering results. Nonnegative matrix factorization has become an essential and popular tool in clustering methods because of its interpretation. However, existing nonnegative matrix factorization based multi-view clustering algorithms do not consider the disagreement between views and neglects the fact that different views will have different contributions to the data distribution. In this paper, we propose a new multi-view clustering method, named adaptive multi-view clustering based on nonnegative matrix factorization and pairwise co-regularization. The proposed algorithm can obtain the parts-based representation of multi-view data by nonnegative matrix factorization. Then, pairwise co-regularization is used to measure the disagreement between views. There is only one parameter to auto learning the weight values according to the contribution of each view to data distribution. Experimental results show that the proposed algorithm outperforms several state-of-the-arts algorithms for multi-view clustering.
The applicability and effectiveness of cluster analysis
NASA Technical Reports Server (NTRS)
Ingram, D. S.; Actkinson, A. L.
1973-01-01
An insight into the characteristics which determine the performance of a clustering algorithm is presented. In order for the techniques which are examined to accurately cluster data, two conditions must be simultaneously satisfied. First the data must have a particular structure, and second the parameters chosen for the clustering algorithm must be correct. By examining the structure of the data from the Cl flight line, it is clear that no single set of parameters can be used to accurately cluster all the different crops. The effectiveness of either a noniterative or iterative clustering algorithm to accurately cluster data representative of the Cl flight line is questionable. Thus extensive a prior knowledge is required in order to use cluster analysis in its present form for applications like assisting in the definition of field boundaries and evaluating the homogeneity of a field. New or modified techniques are necessary for clustering to be a reliable tool.
Hsu, Arthur L; Tang, Sen-Lin; Halgamuge, Saman K
2003-11-01
Current Self-Organizing Maps (SOMs) approaches to gene expression pattern clustering require the user to predefine the number of clusters likely to be expected. Hierarchical clustering methods used in this area do not provide unique partitioning of data. We describe an unsupervised dynamic hierarchical self-organizing approach, which suggests an appropriate number of clusters, to perform class discovery and marker gene identification in microarray data. In the process of class discovery, the proposed algorithm identifies corresponding sets of predictor genes that best distinguish one class from other classes. The approach integrates merits of hierarchical clustering with robustness against noise known from self-organizing approaches. The proposed algorithm applied to DNA microarray data sets of two types of cancers has demonstrated its ability to produce the most suitable number of clusters. Further, the corresponding marker genes identified through the unsupervised algorithm also have a strong biological relationship to the specific cancer class. The algorithm tested on leukemia microarray data, which contains three leukemia types, was able to determine three major and one minor cluster. Prediction models built for the four clusters indicate that the prediction strength for the smaller cluster is generally low, therefore labelled as uncertain cluster. Further analysis shows that the uncertain cluster can be subdivided further, and the subdivisions are related to two of the original clusters. Another test performed using colon cancer microarray data has automatically derived two clusters, which is consistent with the number of classes in data (cancerous and normal). JAVA software of dynamic SOM tree algorithm is available upon request for academic use. A comparison of rectangular and hexagonal topologies for GSOM is available from http://www.mame.mu.oz.au/mechatronics/journalinfo/Hsu2003supp.pdf
Internal Cluster Validation on Earthquake Data in the Province of Bengkulu
NASA Astrophysics Data System (ADS)
Rini, D. S.; Novianti, P.; Fransiska, H.
2018-04-01
K-means method is an algorithm for cluster n object based on attribute to k partition, where k < n. There is a deficiency of algorithms that is before the algorithm is executed, k points are initialized randomly so that the resulting data clustering can be different. If the random value for initialization is not good, the clustering becomes less optimum. Cluster validation is a technique to determine the optimum cluster without knowing prior information from data. There are two types of cluster validation, which are internal cluster validation and external cluster validation. This study aims to examine and apply some internal cluster validation, including the Calinski-Harabasz (CH) Index, Sillhouette (S) Index, Davies-Bouldin (DB) Index, Dunn Index (D), and S-Dbw Index on earthquake data in the Bengkulu Province. The calculation result of optimum cluster based on internal cluster validation is CH index, S index, and S-Dbw index yield k = 2, DB Index with k = 6 and Index D with k = 15. Optimum cluster (k = 6) based on DB Index gives good results for clustering earthquake in the Bengkulu Province.
NASA Technical Reports Server (NTRS)
Mach, Douglas M.; Christian, Hugh J.; Blakeslee, Richard; Boccippio, Dennis J.; Goodman, Steve J.; Boeck, William
2006-01-01
We describe the clustering algorithm used by the Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD) for combining the lightning pulse data into events, groups, flashes, and areas. Events are single pixels that exceed the LIS/OTD background level during a single frame (2 ms). Groups are clusters of events that occur within the same frame and in adjacent pixels. Flashes are clusters of groups that occur within 330 ms and either 5.5 km (for LIS) or 16.5 km (for OTD) of each other. Areas are clusters of flashes that occur within 16.5 km of each other. Many investigators are utilizing the LIS/OTD flash data; therefore, we test how variations in the algorithms for the event group and group-flash clustering affect the flash count for a subset of the LIS data. We divided the subset into areas with low (1-3), medium (4-15), high (16-63), and very high (64+) flashes to see how changes in the clustering parameters affect the flash rates in these different sizes of areas. We found that as long as the cluster parameters are within about a factor of two of the current values, the flash counts do not change by more than about 20%. Therefore, the flash clustering algorithm used by the LIS and OTD sensors create flash rates that are relatively insensitive to reasonable variations in the clustering algorithms.
NASA Astrophysics Data System (ADS)
Rahman, Md. Habibur; Matin, M. A.; Salma, Umma
2017-12-01
The precipitation patterns of seventeen locations in Bangladesh from 1961 to 2014 were studied using a cluster analysis and metric multidimensional scaling. In doing so, the current research applies four major hierarchical clustering methods to precipitation in conjunction with different dissimilarity measures and metric multidimensional scaling. A variety of clustering algorithms were used to provide multiple clustering dendrograms for a mixture of distance measures. The dendrogram of pre-monsoon rainfall for the seventeen locations formed five clusters. The pre-monsoon precipitation data for the areas of Srimangal and Sylhet were located in two clusters across the combination of five dissimilarity measures and four hierarchical clustering algorithms. The single linkage algorithm with Euclidian and Manhattan distances, the average linkage algorithm with the Minkowski distance, and Ward's linkage algorithm provided similar results with regard to monsoon precipitation. The results of the post-monsoon and winter precipitation data are shown in different types of dendrograms with disparate combinations of sub-clusters. The schematic geometrical representations of the precipitation data using metric multidimensional scaling showed that the post-monsoon rainfall of Cox's Bazar was located far from those of the other locations. The results of a box-and-whisker plot, different clustering techniques, and metric multidimensional scaling indicated that the precipitation behaviour of Srimangal and Sylhet during the pre-monsoon season, Cox's Bazar and Sylhet during the monsoon season, Maijdi Court and Cox's Bazar during the post-monsoon season, and Cox's Bazar and Khulna during the winter differed from those at other locations in Bangladesh.
An adaptive clustering algorithm for image matching based on corner feature
NASA Astrophysics Data System (ADS)
Wang, Zhe; Dong, Min; Mu, Xiaomin; Wang, Song
2018-04-01
The traditional image matching algorithm always can not balance the real-time and accuracy better, to solve the problem, an adaptive clustering algorithm for image matching based on corner feature is proposed in this paper. The method is based on the similarity of the matching pairs of vector pairs, and the adaptive clustering is performed on the matching point pairs. Harris corner detection is carried out first, the feature points of the reference image and the perceived image are extracted, and the feature points of the two images are first matched by Normalized Cross Correlation (NCC) function. Then, using the improved algorithm proposed in this paper, the matching results are clustered to reduce the ineffective operation and improve the matching speed and robustness. Finally, the Random Sample Consensus (RANSAC) algorithm is used to match the matching points after clustering. The experimental results show that the proposed algorithm can effectively eliminate the most wrong matching points while the correct matching points are retained, and improve the accuracy of RANSAC matching, reduce the computation load of whole matching process at the same time.
Service-Aware Clustering: An Energy-Efficient Model for the Internet-of-Things
Bagula, Antoine; Abidoye, Ademola Philip; Zodi, Guy-Alain Lusilao
2015-01-01
Current generation wireless sensor routing algorithms and protocols have been designed based on a myopic routing approach, where the motes are assumed to have the same sensing and communication capabilities. Myopic routing is not a natural fit for the IoT, as it may lead to energy imbalance and subsequent short-lived sensor networks, routing the sensor readings over the most service-intensive sensor nodes, while leaving the least active nodes idle. This paper revisits the issue of energy efficiency in sensor networks to propose a clustering model where sensor devices’ service delivery is mapped into an energy awareness model, used to design a clustering algorithm that finds service-aware clustering (SAC) configurations in IoT settings. The performance evaluation reveals the relative energy efficiency of the proposed SAC algorithm compared to related routing algorithms in terms of energy consumption, the sensor nodes’ life span and its traffic engineering efficiency in terms of throughput and delay. These include the well-known low energy adaptive clustering hierarchy (LEACH) and LEACH-centralized (LEACH-C) algorithms, as well as the most recent algorithms, such as DECSA and MOCRN. PMID:26703619
Service-Aware Clustering: An Energy-Efficient Model for the Internet-of-Things.
Bagula, Antoine; Abidoye, Ademola Philip; Zodi, Guy-Alain Lusilao
2015-12-23
Current generation wireless sensor routing algorithms and protocols have been designed based on a myopic routing approach, where the motes are assumed to have the same sensing and communication capabilities. Myopic routing is not a natural fit for the IoT, as it may lead to energy imbalance and subsequent short-lived sensor networks, routing the sensor readings over the most service-intensive sensor nodes, while leaving the least active nodes idle. This paper revisits the issue of energy efficiency in sensor networks to propose a clustering model where sensor devices' service delivery is mapped into an energy awareness model, used to design a clustering algorithm that finds service-aware clustering (SAC) configurations in IoT settings. The performance evaluation reveals the relative energy efficiency of the proposed SAC algorithm compared to related routing algorithms in terms of energy consumption, the sensor nodes' life span and its traffic engineering efficiency in terms of throughput and delay. These include the well-known low energy adaptive clustering hierarchy (LEACH) and LEACH-centralized (LEACH-C) algorithms, as well as the most recent algorithms, such as DECSA and MOCRN.
Convex Clustering: An Attractive Alternative to Hierarchical Clustering
Chen, Gary K.; Chi, Eric C.; Ranola, John Michael O.; Lange, Kenneth
2015-01-01
The primary goal in cluster analysis is to discover natural groupings of objects. The field of cluster analysis is crowded with diverse methods that make special assumptions about data and address different scientific aims. Despite its shortcomings in accuracy, hierarchical clustering is the dominant clustering method in bioinformatics. Biologists find the trees constructed by hierarchical clustering visually appealing and in tune with their evolutionary perspective. Hierarchical clustering operates on multiple scales simultaneously. This is essential, for instance, in transcriptome data, where one may be interested in making qualitative inferences about how lower-order relationships like gene modules lead to higher-order relationships like pathways or biological processes. The recently developed method of convex clustering preserves the visual appeal of hierarchical clustering while ameliorating its propensity to make false inferences in the presence of outliers and noise. The solution paths generated by convex clustering reveal relationships between clusters that are hidden by static methods such as k-means clustering. The current paper derives and tests a novel proximal distance algorithm for minimizing the objective function of convex clustering. The algorithm separates parameters, accommodates missing data, and supports prior information on relationships. Our program CONVEXCLUSTER incorporating the algorithm is implemented on ATI and nVidia graphics processing units (GPUs) for maximal speed. Several biological examples illustrate the strengths of convex clustering and the ability of the proximal distance algorithm to handle high-dimensional problems. CONVEXCLUSTER can be freely downloaded from the UCLA Human Genetics web site at http://www.genetics.ucla.edu/software/ PMID:25965340
Convex clustering: an attractive alternative to hierarchical clustering.
Chen, Gary K; Chi, Eric C; Ranola, John Michael O; Lange, Kenneth
2015-05-01
The primary goal in cluster analysis is to discover natural groupings of objects. The field of cluster analysis is crowded with diverse methods that make special assumptions about data and address different scientific aims. Despite its shortcomings in accuracy, hierarchical clustering is the dominant clustering method in bioinformatics. Biologists find the trees constructed by hierarchical clustering visually appealing and in tune with their evolutionary perspective. Hierarchical clustering operates on multiple scales simultaneously. This is essential, for instance, in transcriptome data, where one may be interested in making qualitative inferences about how lower-order relationships like gene modules lead to higher-order relationships like pathways or biological processes. The recently developed method of convex clustering preserves the visual appeal of hierarchical clustering while ameliorating its propensity to make false inferences in the presence of outliers and noise. The solution paths generated by convex clustering reveal relationships between clusters that are hidden by static methods such as k-means clustering. The current paper derives and tests a novel proximal distance algorithm for minimizing the objective function of convex clustering. The algorithm separates parameters, accommodates missing data, and supports prior information on relationships. Our program CONVEXCLUSTER incorporating the algorithm is implemented on ATI and nVidia graphics processing units (GPUs) for maximal speed. Several biological examples illustrate the strengths of convex clustering and the ability of the proximal distance algorithm to handle high-dimensional problems. CONVEXCLUSTER can be freely downloaded from the UCLA Human Genetics web site at http://www.genetics.ucla.edu/software/.
Mustapha, Ibrahim; Ali, Borhanuddin Mohd; Rasid, Mohd Fadlee A.; Sali, Aduwati; Mohamad, Hafizal
2015-01-01
It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach. PMID:26287191
Mustapha, Ibrahim; Mohd Ali, Borhanuddin; Rasid, Mohd Fadlee A; Sali, Aduwati; Mohamad, Hafizal
2015-08-13
It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach.
Balouchestani, Mohammadreza; Krishnan, Sridhar
2014-01-01
Long-term recording of Electrocardiogram (ECG) signals plays an important role in health care systems for diagnostic and treatment purposes of heart diseases. Clustering and classification of collecting data are essential parts for detecting concealed information of P-QRS-T waves in the long-term ECG recording. Currently used algorithms do have their share of drawbacks: 1) clustering and classification cannot be done in real time; 2) they suffer from huge energy consumption and load of sampling. These drawbacks motivated us in developing novel optimized clustering algorithm which could easily scan large ECG datasets for establishing low power long-term ECG recording. In this paper, we present an advanced K-means clustering algorithm based on Compressed Sensing (CS) theory as a random sampling procedure. Then, two dimensionality reduction methods: Principal Component Analysis (PCA) and Linear Correlation Coefficient (LCC) followed by sorting the data using the K-Nearest Neighbours (K-NN) and Probabilistic Neural Network (PNN) classifiers are applied to the proposed algorithm. We show our algorithm based on PCA features in combination with K-NN classifier shows better performance than other methods. The proposed algorithm outperforms existing algorithms by increasing 11% classification accuracy. In addition, the proposed algorithm illustrates classification accuracy for K-NN and PNN classifiers, and a Receiver Operating Characteristics (ROC) area of 99.98%, 99.83%, and 99.75% respectively.
Support vector machine multiuser receiver for DS-CDMA signals in multipath channels.
Chen, S; Samingan, A K; Hanzo, L
2001-01-01
The problem of constructing an adaptive multiuser detector (MUD) is considered for direct sequence code division multiple access (DS-CDMA) signals transmitted through multipath channels. The emerging learning technique, called support vector machines (SVM), is proposed as a method of obtaining a nonlinear MUD from a relatively small training data block. Computer simulation is used to study this SVM MUD, and the results show that it can closely match the performance of the optimal Bayesian one-shot detector. Comparisons with an adaptive radial basis function (RBF) MUD trained by an unsupervised clustering algorithm are discussed.
Kim, Hyoungrae; Jang, Cheongyun; Yadav, Dharmendra K; Kim, Mi-Hyun
2017-03-23
The accuracy of any 3D-QSAR, Pharmacophore and 3D-similarity based chemometric target fishing models are highly dependent on a reasonable sample of active conformations. Since a number of diverse conformational sampling algorithm exist, which exhaustively generate enough conformers, however model building methods relies on explicit number of common conformers. In this work, we have attempted to make clustering algorithms, which could find reasonable number of representative conformer ensembles automatically with asymmetric dissimilarity matrix generated from openeye tool kit. RMSD was the important descriptor (variable) of each column of the N × N matrix considered as N variables describing the relationship (network) between the conformer (in a row) and the other N conformers. This approach used to evaluate the performance of the well-known clustering algorithms by comparison in terms of generating representative conformer ensembles and test them over different matrix transformation functions considering the stability. In the network, the representative conformer group could be resampled for four kinds of algorithms with implicit parameters. The directed dissimilarity matrix becomes the only input to the clustering algorithms. Dunn index, Davies-Bouldin index, Eta-squared values and omega-squared values were used to evaluate the clustering algorithms with respect to the compactness and the explanatory power. The evaluation includes the reduction (abstraction) rate of the data, correlation between the sizes of the population and the samples, the computational complexity and the memory usage as well. Every algorithm could find representative conformers automatically without any user intervention, and they reduced the data to 14-19% of the original values within 1.13 s per sample at the most. The clustering methods are simple and practical as they are fast and do not ask for any explicit parameters. RCDTC presented the maximum Dunn and omega-squared values of the four algorithms in addition to consistent reduction rate between the population size and the sample size. The performance of the clustering algorithms was consistent over different transformation functions. Moreover, the clustering method can also be applied to molecular dynamics sampling simulation results.
A Modified MinMax k-Means Algorithm Based on PSO.
Wang, Xiaoyan; Bai, Yanping
The MinMax k -means algorithm is widely used to tackle the effect of bad initialization by minimizing the maximum intraclustering errors. Two parameters, including the exponent parameter and memory parameter, are involved in the executive process. Since different parameters have different clustering errors, it is crucial to choose appropriate parameters. In the original algorithm, a practical framework is given. Such framework extends the MinMax k -means to automatically adapt the exponent parameter to the data set. It has been believed that if the maximum exponent parameter has been set, then the programme can reach the lowest intraclustering errors. However, our experiments show that this is not always correct. In this paper, we modified the MinMax k -means algorithm by PSO to determine the proper values of parameters which can subject the algorithm to attain the lowest clustering errors. The proposed clustering method is tested on some favorite data sets in several different initial situations and is compared to the k -means algorithm and the original MinMax k -means algorithm. The experimental results indicate that our proposed algorithm can reach the lowest clustering errors automatically.
Self-organization and clustering algorithms
NASA Technical Reports Server (NTRS)
Bezdek, James C.
1991-01-01
Kohonen's feature maps approach to clustering is often likened to the k or c-means clustering algorithms. Here, the author identifies some similarities and differences between the hard and fuzzy c-Means (HCM/FCM) or ISODATA algorithms and Kohonen's self-organizing approach. The author concludes that some differences are significant, but at the same time there may be some important unknown relationships between the two methodologies. Several avenues of research are proposed.
Analysis of Network Clustering Algorithms and Cluster Quality Metrics at Scale.
Emmons, Scott; Kobourov, Stephen; Gallant, Mike; Börner, Katy
2016-01-01
Notions of community quality underlie the clustering of networks. While studies surrounding network clustering are increasingly common, a precise understanding of the realtionship between different cluster quality metrics is unknown. In this paper, we examine the relationship between stand-alone cluster quality metrics and information recovery metrics through a rigorous analysis of four widely-used network clustering algorithms-Louvain, Infomap, label propagation, and smart local moving. We consider the stand-alone quality metrics of modularity, conductance, and coverage, and we consider the information recovery metrics of adjusted Rand score, normalized mutual information, and a variant of normalized mutual information used in previous work. Our study includes both synthetic graphs and empirical data sets of sizes varying from 1,000 to 1,000,000 nodes. We find significant differences among the results of the different cluster quality metrics. For example, clustering algorithms can return a value of 0.4 out of 1 on modularity but score 0 out of 1 on information recovery. We find conductance, though imperfect, to be the stand-alone quality metric that best indicates performance on the information recovery metrics. Additionally, our study shows that the variant of normalized mutual information used in previous work cannot be assumed to differ only slightly from traditional normalized mutual information. Smart local moving is the overall best performing algorithm in our study, but discrepancies between cluster evaluation metrics prevent us from declaring it an absolutely superior algorithm. Interestingly, Louvain performed better than Infomap in nearly all the tests in our study, contradicting the results of previous work in which Infomap was superior to Louvain. We find that although label propagation performs poorly when clusters are less clearly defined, it scales efficiently and accurately to large graphs with well-defined clusters.
Reconstruction of a digital core containing clay minerals based on a clustering algorithm.
He, Yanlong; Pu, Chunsheng; Jing, Cheng; Gu, Xiaoyu; Chen, Qingdong; Liu, Hongzhi; Khan, Nasir; Dong, Qiaoling
2017-10-01
It is difficult to obtain a core sample and information for digital core reconstruction of mature sandstone reservoirs around the world, especially for an unconsolidated sandstone reservoir. Meanwhile, reconstruction and division of clay minerals play a vital role in the reconstruction of the digital cores, although the two-dimensional data-based reconstruction methods are specifically applicable as the microstructure reservoir simulation methods for the sandstone reservoir. However, reconstruction of clay minerals is still challenging from a research viewpoint for the better reconstruction of various clay minerals in the digital cores. In the present work, the content of clay minerals was considered on the basis of two-dimensional information about the reservoir. After application of the hybrid method, and compared with the model reconstructed by the process-based method, the digital core containing clay clusters without the labels of the clusters' number, size, and texture were the output. The statistics and geometry of the reconstruction model were similar to the reference model. In addition, the Hoshen-Kopelman algorithm was used to label various connected unclassified clay clusters in the initial model and then the number and size of clay clusters were recorded. At the same time, the K-means clustering algorithm was applied to divide the labeled, large connecting clusters into smaller clusters on the basis of difference in the clusters' characteristics. According to the clay minerals' characteristics, such as types, textures, and distributions, the digital core containing clay minerals was reconstructed by means of the clustering algorithm and the clay clusters' structure judgment. The distributions and textures of the clay minerals of the digital core were reasonable. The clustering algorithm improved the digital core reconstruction and provided an alternative method for the simulation of different clay minerals in the digital cores.
Validating clustering of molecular dynamics simulations using polymer models.
Phillips, Joshua L; Colvin, Michael E; Newsam, Shawn
2011-11-14
Molecular dynamics (MD) simulation is a powerful technique for sampling the meta-stable and transitional conformations of proteins and other biomolecules. Computational data clustering has emerged as a useful, automated technique for extracting conformational states from MD simulation data. Despite extensive application, relatively little work has been done to determine if the clustering algorithms are actually extracting useful information. A primary goal of this paper therefore is to provide such an understanding through a detailed analysis of data clustering applied to a series of increasingly complex biopolymer models. We develop a novel series of models using basic polymer theory that have intuitive, clearly-defined dynamics and exhibit the essential properties that we are seeking to identify in MD simulations of real biomolecules. We then apply spectral clustering, an algorithm particularly well-suited for clustering polymer structures, to our models and MD simulations of several intrinsically disordered proteins. Clustering results for the polymer models provide clear evidence that the meta-stable and transitional conformations are detected by the algorithm. The results for the polymer models also help guide the analysis of the disordered protein simulations by comparing and contrasting the statistical properties of the extracted clusters. We have developed a framework for validating the performance and utility of clustering algorithms for studying molecular biopolymer simulations that utilizes several analytic and dynamic polymer models which exhibit well-behaved dynamics including: meta-stable states, transition states, helical structures, and stochastic dynamics. We show that spectral clustering is robust to anomalies introduced by structural alignment and that different structural classes of intrinsically disordered proteins can be reliably discriminated from the clustering results. To our knowledge, our framework is the first to utilize model polymers to rigorously test the utility of clustering algorithms for studying biopolymers.
Validating clustering of molecular dynamics simulations using polymer models
2011-01-01
Background Molecular dynamics (MD) simulation is a powerful technique for sampling the meta-stable and transitional conformations of proteins and other biomolecules. Computational data clustering has emerged as a useful, automated technique for extracting conformational states from MD simulation data. Despite extensive application, relatively little work has been done to determine if the clustering algorithms are actually extracting useful information. A primary goal of this paper therefore is to provide such an understanding through a detailed analysis of data clustering applied to a series of increasingly complex biopolymer models. Results We develop a novel series of models using basic polymer theory that have intuitive, clearly-defined dynamics and exhibit the essential properties that we are seeking to identify in MD simulations of real biomolecules. We then apply spectral clustering, an algorithm particularly well-suited for clustering polymer structures, to our models and MD simulations of several intrinsically disordered proteins. Clustering results for the polymer models provide clear evidence that the meta-stable and transitional conformations are detected by the algorithm. The results for the polymer models also help guide the analysis of the disordered protein simulations by comparing and contrasting the statistical properties of the extracted clusters. Conclusions We have developed a framework for validating the performance and utility of clustering algorithms for studying molecular biopolymer simulations that utilizes several analytic and dynamic polymer models which exhibit well-behaved dynamics including: meta-stable states, transition states, helical structures, and stochastic dynamics. We show that spectral clustering is robust to anomalies introduced by structural alignment and that different structural classes of intrinsically disordered proteins can be reliably discriminated from the clustering results. To our knowledge, our framework is the first to utilize model polymers to rigorously test the utility of clustering algorithms for studying biopolymers. PMID:22082218
Guasom Analysis Of The Alhambra Survey
NASA Astrophysics Data System (ADS)
Garabato, Daniel; Manteiga, Minia; Dafonte, Carlos; Álvarez, Marco A.
2017-10-01
GUASOM is a data mining tool designed for knowledge discovery in large astronomical spectrophotometric archives developed in the framework of Gaia DPAC (Data Processing and Analysis Consortium). Our tool is based on a type of unsupervised learning Artificial Neural Networks named Self-organizing maps (SOMs). SOMs permit the grouping and visualization of big amount of data for which there is no a priori knowledge and hence they are very useful for analyzing the huge amount of information present in modern spectrophotometric surveys. SOMs are used to organize the information in clusters of objects, as homogeneously as possible according to their spectral energy distributions, and to project them onto a 2D grid where the data structure can be visualized. Each cluster has a representative, called prototype which is a virtual pattern that better represents or resembles the set of input patterns belonging to such a cluster. Prototypes make easier the task of determining the physical nature and properties of the objects populating each cluster. Our algorithm has been tested on the ALHAMBRA survey spectrophotometric observations, here we present our results concerning the survey segmentation, visualization of the data structure, separation between types of objects (stars and galaxies), data homogeneity of neurons, cluster prototypes, redshift distribution and crossmatch with other databases (Simbad).
An Enhanced K-Means Algorithm for Water Quality Analysis of The Haihe River in China
Zou, Hui; Zou, Zhihong; Wang, Xiaojing
2015-01-01
The increase and the complexity of data caused by the uncertain environment is today’s reality. In order to identify water quality effectively and reliably, this paper presents a modified fast clustering algorithm for water quality analysis. The algorithm has adopted a varying weights K-means cluster algorithm to analyze water monitoring data. The varying weights scheme was the best weighting indicator selected by a modified indicator weight self-adjustment algorithm based on K-means, which is named MIWAS-K-means. The new clustering algorithm avoids the margin of the iteration not being calculated in some cases. With the fast clustering analysis, we can identify the quality of water samples. The algorithm is applied in water quality analysis of the Haihe River (China) data obtained by the monitoring network over a period of eight years (2006–2013) with four indicators at seven different sites (2078 samples). Both the theoretical and simulated results demonstrate that the algorithm is efficient and reliable for water quality analysis of the Haihe River. In addition, the algorithm can be applied to more complex data matrices with high dimensionality. PMID:26569283
A sequential-move game for enhancing safety and security cooperation within chemical clusters.
Pavlova, Yulia; Reniers, Genserik
2011-02-15
The present paper provides a game theoretic analysis of strategic cooperation on safety and security among chemical companies within a chemical industrial cluster. We suggest a two-stage sequential move game between adjacent chemical plants and the so-called Multi-Plant Council (MPC). The MPC is considered in the game as a leader player who makes the first move, and the individual chemical companies are the followers. The MPC's objective is to achieve full cooperation among players through establishing a subsidy system at minimum expense. The rest of the players rationally react to the subsidies proposed by the MPC and play Nash equilibrium. We show that such a case of conflict between safety and security, and social cooperation, belongs to the 'coordination with assurance' class of games, and we explore the role of cluster governance (fulfilled by the MPC) in achieving a full cooperative outcome in domino effects prevention negotiations. The paper proposes an algorithm that can be used by the MPC to develop the subsidy system. Furthermore, a stepwise plan to improve cross-company safety and security management in a chemical industrial cluster is suggested and an illustrative example is provided. Copyright © 2010 Elsevier B.V. All rights reserved.
Eyler, Lauren; Hubbard, Alan; Juillard, Catherine
2016-10-01
Low and middle-income countries (LMICs) and the world's poor bear a disproportionate share of the global burden of injury. Data regarding disparities in injury are vital to inform injury prevention and trauma systems strengthening interventions targeted towards vulnerable populations, but are limited in LMICs. We aim to facilitate injury disparities research by generating a standardized methodology for assessing economic status in resource-limited country trauma registries where complex metrics such as income, expenditures, and wealth index are infeasible to assess. To address this need, we developed a cluster analysis-based algorithm for generating simple population-specific metrics of economic status using nationally representative Demographic and Health Surveys (DHS) household assets data. For a limited number of variables, g, our algorithm performs weighted k-medoids clustering of the population using all combinations of g asset variables and selects the combination of variables and number of clusters that maximize average silhouette width (ASW). In simulated datasets containing both randomly distributed variables and "true" population clusters defined by correlated categorical variables, the algorithm selected the correct variable combination and appropriate cluster numbers unless variable correlation was very weak. When used with 2011 Cameroonian DHS data, our algorithm identified twenty economic clusters with ASW 0.80, indicating well-defined population clusters. This economic model for assessing health disparities will be used in the new Cameroonian six-hospital centralized trauma registry. By describing our standardized methodology and algorithm for generating economic clustering models, we aim to facilitate measurement of health disparities in other trauma registries in resource-limited countries. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
An effective fuzzy kernel clustering analysis approach for gene expression data.
Sun, Lin; Xu, Jiucheng; Yin, Jiaojiao
2015-01-01
Fuzzy clustering is an important tool for analyzing microarray data. A major problem in applying fuzzy clustering method to microarray gene expression data is the choice of parameters with cluster number and centers. This paper proposes a new approach to fuzzy kernel clustering analysis (FKCA) that identifies desired cluster number and obtains more steady results for gene expression data. First of all, to optimize characteristic differences and estimate optimal cluster number, Gaussian kernel function is introduced to improve spectrum analysis method (SAM). By combining subtractive clustering with max-min distance mean, maximum distance method (MDM) is proposed to determine cluster centers. Then, the corresponding steps of improved SAM (ISAM) and MDM are given respectively, whose superiority and stability are illustrated through performing experimental comparisons on gene expression data. Finally, by introducing ISAM and MDM into FKCA, an effective improved FKCA algorithm is proposed. Experimental results from public gene expression data and UCI database show that the proposed algorithms are feasible for cluster analysis, and the clustering accuracy is higher than the other related clustering algorithms.
NASA Astrophysics Data System (ADS)
Ebrahimi, A.; Pahlavani, P.; Masoumi, Z.
2017-09-01
Traffic monitoring and managing in urban intelligent transportation systems (ITS) can be carried out based on vehicular sensor networks. In a vehicular sensor network, vehicles equipped with sensors such as GPS, can act as mobile sensors for sensing the urban traffic and sending the reports to a traffic monitoring center (TMC) for traffic estimation. The energy consumption by the sensor nodes is a main problem in the wireless sensor networks (WSNs); moreover, it is the most important feature in designing these networks. Clustering the sensor nodes is considered as an effective solution to reduce the energy consumption of WSNs. Each cluster should have a Cluster Head (CH), and a number of nodes located within its supervision area. The cluster heads are responsible for gathering and aggregating the information of clusters. Then, it transmits the information to the data collection center. Hence, the use of clustering decreases the volume of transmitting information, and, consequently, reduces the energy consumption of network. In this paper, Fuzzy C-Means (FCM) and Fuzzy Subtractive algorithms are employed to cluster sensors and investigate their performance on the energy consumption of sensors. It can be seen that the FCM algorithm and Fuzzy Subtractive have been reduced energy consumption of vehicle sensors up to 90.68% and 92.18%, respectively. Comparing the performance of the algorithms implies the 1.5 percent improvement in Fuzzy Subtractive algorithm in comparison.
Detection of protein complex from protein-protein interaction network using Markov clustering
NASA Astrophysics Data System (ADS)
Ochieng, P. J.; Kusuma, W. A.; Haryanto, T.
2017-05-01
Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks.
Comparison of memory thresholds for planar qudit geometries
NASA Astrophysics Data System (ADS)
Marks, Jacob; Jochym-O'Connor, Tomas; Gheorghiu, Vlad
2017-11-01
We introduce and analyze a new type of decoding algorithm called general color clustering, based on renormalization group methods, to be used in qudit color codes. The performance of this decoder is analyzed under a generalized bit-flip error model, and is used to obtain the first memory threshold estimates for qudit 6-6-6 color codes. The proposed decoder is compared with similar decoding schemes for qudit surface codes as well as the current leading qubit decoders for both sets of codes. We find that, as with surface codes, clustering performs sub-optimally for qubit color codes, giving a threshold of 5.6 % compared to the 8.0 % obtained through surface projection decoding methods. However, the threshold rate increases by up to 112% for large qudit dimensions, plateauing around 11.9 % . All the analysis is performed using QTop, a new open-source software for simulating and visualizing topological quantum error correcting codes.
Functional feature embedded space mapping of fMRI data.
Hu, Jin; Tian, Jie; Yang, Lei
2006-01-01
We have proposed a new method for fMRI data analysis which is called Functional Feature Embedded Space Mapping (FFESM). Our work mainly focuses on the experimental design with periodic stimuli which can be described by a number of Fourier coefficients in the frequency domain. A nonlinear dimension reduction technique Isomap is applied to the high dimensional features obtained from frequency domain of the fMRI data for the first time. Finally, the presence of activated time series is identified by the clustering method in which the information theoretic criterion of minimum description length (MDL) is used to estimate the number of clusters. The feasibility of our algorithm is demonstrated by real human experiments. Although we focus on analyzing periodic fMRI data, the approach can be extended to analyze non-periodic fMRI data (event-related fMRI) by replacing the Fourier analysis with a wavelet analysis.
NASA Astrophysics Data System (ADS)
Kumar, Rohit; Puri, Rajeev K.
2018-03-01
Employing the quantum molecular dynamics (QMD) approach for nucleus-nucleus collisions, we test the predictive power of the energy-based clusterization algorithm, i.e., the simulating annealing clusterization algorithm (SACA), to describe the experimental data of charge distribution and various event-by-event correlations among fragments. The calculations are constrained into the Fermi-energy domain and/or mildly excited nuclear matter. Our detailed study spans over different system masses, and system-mass asymmetries of colliding partners show the importance of the energy-based clusterization algorithm for understanding multifragmentation. The present calculations are also compared with the other available calculations, which use one-body models, statistical models, and/or hybrid models.
Optimized data fusion for K-means Laplacian clustering
Yu, Shi; Liu, Xinhai; Tranchevent, Léon-Charles; Glänzel, Wolfgang; Suykens, Johan A. K.; De Moor, Bart; Moreau, Yves
2011-01-01
Motivation: We propose a novel algorithm to combine multiple kernels and Laplacians for clustering analysis. The new algorithm is formulated on a Rayleigh quotient objective function and is solved as a bi-level alternating minimization procedure. Using the proposed algorithm, the coefficients of kernels and Laplacians can be optimized automatically. Results: Three variants of the algorithm are proposed. The performance is systematically validated on two real-life data fusion applications. The proposed Optimized Kernel Laplacian Clustering (OKLC) algorithms perform significantly better than other methods. Moreover, the coefficients of kernels and Laplacians optimized by OKLC show some correlation with the rank of performance of individual data source. Though in our evaluation the K values are predefined, in practical studies, the optimal cluster number can be consistently estimated from the eigenspectrum of the combined kernel Laplacian matrix. Availability: The MATLAB code of algorithms implemented in this paper is downloadable from http://homes.esat.kuleuven.be/~sistawww/bioi/syu/oklc.html. Contact: shiyu@uchicago.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20980271
Improved fuzzy clustering algorithms in segmentation of DC-enhanced breast MRI.
Kannan, S R; Ramathilagam, S; Devi, Pandiyarajan; Sathya, A
2012-02-01
Segmentation of medical images is a difficult and challenging problem due to poor image contrast and artifacts that result in missing or diffuse organ/tissue boundaries. Many researchers have applied various techniques however fuzzy c-means (FCM) based algorithms is more effective compared to other methods. The objective of this work is to develop some robust fuzzy clustering segmentation systems for effective segmentation of DCE - breast MRI. This paper obtains the robust fuzzy clustering algorithms by incorporating kernel methods, penalty terms, tolerance of the neighborhood attraction, additional entropy term and fuzzy parameters. The initial centers are obtained using initialization algorithm to reduce the computation complexity and running time of proposed algorithms. Experimental works on breast images show that the proposed algorithms are effective to improve the similarity measurement, to handle large amount of noise, to have better results in dealing the data corrupted by noise, and other artifacts. The clustering results of proposed methods are validated using Silhouette Method.
Banerjee, Arindam; Ghosh, Joydeep
2004-05-01
Competitive learning mechanisms for clustering, in general, suffer from poor performance for very high-dimensional (>1000) data because of "curse of dimensionality" effects. In applications such as document clustering, it is customary to normalize the high-dimensional input vectors to unit length, and it is sometimes also desirable to obtain balanced clusters, i.e., clusters of comparable sizes. The spherical kmeans (spkmeans) algorithm, which normalizes the cluster centers as well as the inputs, has been successfully used to cluster normalized text documents in 2000+ dimensional space. Unfortunately, like regular kmeans and its soft expectation-maximization-based version, spkmeans tends to generate extremely imbalanced clusters in high-dimensional spaces when the desired number of clusters is large (tens or more). This paper first shows that the spkmeans algorithm can be derived from a certain maximum likelihood formulation using a mixture of von Mises-Fisher distributions as the generative model, and in fact, it can be considered as a batch-mode version of (normalized) competitive learning. The proposed generative model is then adapted in a principled way to yield three frequency-sensitive competitive learning variants that are applicable to static data and produced high-quality and well-balanced clusters for high-dimensional data. Like kmeans, each iteration is linear in the number of data points and in the number of clusters for all the three algorithms. A frequency-sensitive algorithm to cluster streaming data is also proposed. Experimental results on clustering of high-dimensional text data sets are provided to show the effectiveness and applicability of the proposed techniques. Index Terms-Balanced clustering, expectation maximization (EM), frequency-sensitive competitive learning (FSCL), high-dimensional clustering, kmeans, normalized data, scalable clustering, streaming data, text clustering.
A hybrid algorithm for clustering of time series data based on affinity search technique.
Aghabozorgi, Saeed; Ying Wah, Teh; Herawan, Tutut; Jalab, Hamid A; Shaygan, Mohammad Amin; Jalali, Alireza
2014-01-01
Time series clustering is an important solution to various problems in numerous fields of research, including business, medical science, and finance. However, conventional clustering algorithms are not practical for time series data because they are essentially designed for static data. This impracticality results in poor clustering accuracy in several systems. In this paper, a new hybrid clustering algorithm is proposed based on the similarity in shape of time series data. Time series data are first grouped as subclusters based on similarity in time. The subclusters are then merged using the k-Medoids algorithm based on similarity in shape. This model has two contributions: (1) it is more accurate than other conventional and hybrid approaches and (2) it determines the similarity in shape among time series data with a low complexity. To evaluate the accuracy of the proposed model, the model is tested extensively using syntactic and real-world time series datasets.
Zhang, Junfeng; Chen, Wei; Gao, Mingyi; Shen, Gangxiang
2017-10-30
In this work, we proposed two k-means-clustering-based algorithms to mitigate the fiber nonlinearity for 64-quadrature amplitude modulation (64-QAM) signal, the training-sequence assisted k-means algorithm and the blind k-means algorithm. We experimentally demonstrated the proposed k-means-clustering-based fiber nonlinearity mitigation techniques in 75-Gb/s 64-QAM coherent optical communication system. The proposed algorithms have reduced clustering complexity and low data redundancy and they are able to quickly find appropriate initial centroids and select correctly the centroids of the clusters to obtain the global optimal solutions for large k value. We measured the bit-error-ratio (BER) performance of 64-QAM signal with different launched powers into the 50-km single mode fiber and the proposed techniques can greatly mitigate the signal impairments caused by the amplified spontaneous emission noise and the fiber Kerr nonlinearity and improve the BER performance.
A Hybrid Algorithm for Clustering of Time Series Data Based on Affinity Search Technique
Aghabozorgi, Saeed; Ying Wah, Teh; Herawan, Tutut; Jalab, Hamid A.; Shaygan, Mohammad Amin; Jalali, Alireza
2014-01-01
Time series clustering is an important solution to various problems in numerous fields of research, including business, medical science, and finance. However, conventional clustering algorithms are not practical for time series data because they are essentially designed for static data. This impracticality results in poor clustering accuracy in several systems. In this paper, a new hybrid clustering algorithm is proposed based on the similarity in shape of time series data. Time series data are first grouped as subclusters based on similarity in time. The subclusters are then merged using the k-Medoids algorithm based on similarity in shape. This model has two contributions: (1) it is more accurate than other conventional and hybrid approaches and (2) it determines the similarity in shape among time series data with a low complexity. To evaluate the accuracy of the proposed model, the model is tested extensively using syntactic and real-world time series datasets. PMID:24982966
An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network.
Vimalarani, C; Subramanian, R; Sivanandam, S N
2016-01-01
Wireless Sensor Network (WSN) is a network which formed with a maximum number of sensor nodes which are positioned in an application environment to monitor the physical entities in a target area, for example, temperature monitoring environment, water level, monitoring pressure, and health care, and various military applications. Mostly sensor nodes are equipped with self-supported battery power through which they can perform adequate operations and communication among neighboring nodes. Maximizing the lifetime of the Wireless Sensor networks, energy conservation measures are essential for improving the performance of WSNs. This paper proposes an Enhanced PSO-Based Clustering Energy Optimization (EPSO-CEO) algorithm for Wireless Sensor Network in which clustering and clustering head selection are done by using Particle Swarm Optimization (PSO) algorithm with respect to minimizing the power consumption in WSN. The performance metrics are evaluated and results are compared with competitive clustering algorithm to validate the reduction in energy consumption.
Clustering-based Feature Learning on Variable Stars
NASA Astrophysics Data System (ADS)
Mackenzie, Cristóbal; Pichara, Karim; Protopapas, Pavlos
2016-04-01
The success of automatic classification of variable stars depends strongly on the lightcurve representation. Usually, lightcurves are represented as a vector of many descriptors designed by astronomers called features. These descriptors are expensive in terms of computing, require substantial research effort to develop, and do not guarantee a good classification. Today, lightcurve representation is not entirely automatic; algorithms must be designed and manually tuned up for every survey. The amounts of data that will be generated in the future mean astronomers must develop scalable and automated analysis pipelines. In this work we present a feature learning algorithm designed for variable objects. Our method works by extracting a large number of lightcurve subsequences from a given set, which are then clustered to find common local patterns in the time series. Representatives of these common patterns are then used to transform lightcurves of a labeled set into a new representation that can be used to train a classifier. The proposed algorithm learns the features from both labeled and unlabeled lightcurves, overcoming the bias using only labeled data. We test our method on data sets from the Massive Compact Halo Object survey and the Optical Gravitational Lensing Experiment; the results show that our classification performance is as good as and in some cases better than the performance achieved using traditional statistical features, while the computational cost is significantly lower. With these promising results, we believe that our method constitutes a significant step toward the automation of the lightcurve classification pipeline.
NASA Astrophysics Data System (ADS)
Adya Zizwan, Putra; Zarlis, Muhammad; Budhiarti Nababan, Erna
2017-12-01
The determination of Centroid on K-Means Algorithm directly affects the quality of the clustering results. Determination of centroid by using random numbers has many weaknesses. The GenClust algorithm that combines the use of Genetic Algorithms and K-Means uses a genetic algorithm to determine the centroid of each cluster. The use of the GenClust algorithm uses 50% chromosomes obtained through deterministic calculations and 50% is obtained from the generation of random numbers. This study will modify the use of the GenClust algorithm in which the chromosomes used are 100% obtained through deterministic calculations. The results of this study resulted in performance comparisons expressed in Mean Square Error influenced by centroid determination on K-Means method by using GenClust method, modified GenClust method and also classic K-Means.
Hebbian self-organizing integrate-and-fire networks for data clustering.
Landis, Florian; Ott, Thomas; Stoop, Ruedi
2010-01-01
We propose a Hebbian learning-based data clustering algorithm using spiking neurons. The algorithm is capable of distinguishing between clusters and noisy background data and finds an arbitrary number of clusters of arbitrary shape. These properties render the approach particularly useful for visual scene segmentation into arbitrarily shaped homogeneous regions. We present several application examples, and in order to highlight the advantages and the weaknesses of our method, we systematically compare the results with those from standard methods such as the k-means and Ward's linkage clustering. The analysis demonstrates that not only the clustering ability of the proposed algorithm is more powerful than those of the two concurrent methods, the time complexity of the method is also more modest than that of its generally used strongest competitor.
Impact of heuristics in clustering large biological networks.
Shafin, Md Kishwar; Kabir, Kazi Lutful; Ridwan, Iffatur; Anannya, Tasmiah Tamzid; Karim, Rashid Saadman; Hoque, Mohammad Mozammel; Rahman, M Sohel
2015-12-01
Traditional clustering algorithms often exhibit poor performance for large networks. On the contrary, greedy algorithms are found to be relatively efficient while uncovering functional modules from large biological networks. The quality of the clusters produced by these greedy techniques largely depends on the underlying heuristics employed. Different heuristics based on different attributes and properties perform differently in terms of the quality of the clusters produced. This motivates us to design new heuristics for clustering large networks. In this paper, we have proposed two new heuristics and analyzed the performance thereof after incorporating those with three different combinations in a recently celebrated greedy clustering algorithm named SPICi. We have extensively analyzed the effectiveness of these new variants. The results are found to be promising. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mai, Xiaofeng; Liu, Jie; Wu, Xiong; Zhang, Qun; Guo, Changjian; Yang, Yanfu; Li, Zhaohui
2017-02-06
A Stokes-space modulation format classification (MFC) technique is proposed for coherent optical receivers by using a non-iterative clustering algorithm. In the clustering algorithm, two simple parameters are calculated to help find the density peaks of the data points in Stokes space and no iteration is required. Correct MFC can be realized in numerical simulations among PM-QPSK, PM-8QAM, PM-16QAM, PM-32QAM and PM-64QAM signals within practical optical signal-to-noise ratio (OSNR) ranges. The performance of the proposed MFC algorithm is also compared with those of other schemes based on clustering algorithms. The simulation results show that good classification performance can be achieved using the proposed MFC scheme with moderate time complexity. Proof-of-concept experiments are finally implemented to demonstrate MFC among PM-QPSK/16QAM/64QAM signals, which confirm the feasibility of our proposed MFC scheme.
Optimization of wireless sensor networks based on chicken swarm optimization algorithm
NASA Astrophysics Data System (ADS)
Wang, Qingxi; Zhu, Lihua
2017-05-01
In order to reduce the energy consumption of wireless sensor network and improve the survival time of network, the clustering routing protocol of wireless sensor networks based on chicken swarm optimization algorithm was proposed. On the basis of LEACH agreement, it was improved and perfected that the points on the cluster and the selection of cluster head using the chicken group optimization algorithm, and update the location of chicken which fall into the local optimum by Levy flight, enhance population diversity, ensure the global search capability of the algorithm. The new protocol avoided the die of partial node of intensive using by making balanced use of the network nodes, improved the survival time of wireless sensor network. The simulation experiments proved that the protocol is better than LEACH protocol on energy consumption, also is better than that of clustering routing protocol based on particle swarm optimization algorithm.
Predicting the random drift of MEMS gyroscope based on K-means clustering and OLS RBF Neural Network
NASA Astrophysics Data System (ADS)
Wang, Zhen-yu; Zhang, Li-jie
2017-10-01
Measure error of the sensor can be effectively compensated with prediction. Aiming at large random drift error of MEMS(Micro Electro Mechanical System))gyroscope, an improved learning algorithm of Radial Basis Function(RBF) Neural Network(NN) based on K-means clustering and Orthogonal Least-Squares (OLS) is proposed in this paper. The algorithm selects the typical samples as the initial cluster centers of RBF NN firstly, candidates centers with K-means algorithm secondly, and optimizes the candidate centers with OLS algorithm thirdly, which makes the network structure simpler and makes the prediction performance better. Experimental results show that the proposed K-means clustering OLS learning algorithm can predict the random drift of MEMS gyroscope effectively, the prediction error of which is 9.8019e-007°/s and the prediction time of which is 2.4169e-006s
GOES-R AWG GLM Val Tool Development
NASA Technical Reports Server (NTRS)
Bateman, Monte; Mach, Douglas; Goodman, Steve; Blakeslee, Richard; Koshak, William
2012-01-01
We are developing tools needed to enable the validation of the Geostationary Lightning Mapper (GLM). In order to develop and test these tools, we have need of a robust, high-fidelity set of GLM proxy data. Many steps have been taken to ensure that the proxy data are high quality. LIS is the closest analog that exists for GLM, so it has been used extensively in developing the GLM proxy. We have verified the proxy data both statistically and algorithmically. The proxy data are pixel (event) data, called Level 1B. These data were then clustered into flashes by the Lightning Cluster-Filter Algorithm (LCFA), generating proxy Level 2 data. These were then compared with the data used to generate the proxy, and both the proxy data and the LCFA were validated. We have developed tools to allow us to visualize and compare the GLM proxy data with several other sources of lightning and other meteorological data (the so-called shallow-dive tool). The shallow-dive tool shows storm-level data and can ingest many different ground-based lightning detection networks, including: NLDN, LMA, WWLLN, and ENTLN. These are presented in a way such that it can be seen if the GLM is properly detecting the lightning in location and time comparable to the ground-based networks. Currently in development is the deep-dive tool, which will allow us to dive into the GLM data, down to flash, group and event level. This will allow us to assess performance in comparison with other data sources, and tell us if there are detection, timing, or geolocation problems. These tools will be compatible with the GLM Level-2 data format, so they can be used beginning on Day 0.
A Modified MinMax k-Means Algorithm Based on PSO
2016-01-01
The MinMax k-means algorithm is widely used to tackle the effect of bad initialization by minimizing the maximum intraclustering errors. Two parameters, including the exponent parameter and memory parameter, are involved in the executive process. Since different parameters have different clustering errors, it is crucial to choose appropriate parameters. In the original algorithm, a practical framework is given. Such framework extends the MinMax k-means to automatically adapt the exponent parameter to the data set. It has been believed that if the maximum exponent parameter has been set, then the programme can reach the lowest intraclustering errors. However, our experiments show that this is not always correct. In this paper, we modified the MinMax k-means algorithm by PSO to determine the proper values of parameters which can subject the algorithm to attain the lowest clustering errors. The proposed clustering method is tested on some favorite data sets in several different initial situations and is compared to the k-means algorithm and the original MinMax k-means algorithm. The experimental results indicate that our proposed algorithm can reach the lowest clustering errors automatically. PMID:27656201
NASA Astrophysics Data System (ADS)
Ma, Xiaoke; Wang, Bingbo; Yu, Liang
2018-01-01
Community detection is fundamental for revealing the structure-functionality relationship in complex networks, which involves two issues-the quantitative function for community as well as algorithms to discover communities. Despite significant research on either of them, few attempt has been made to establish the connection between the two issues. To attack this problem, a generalized quantification function is proposed for community in weighted networks, which provides a framework that unifies several well-known measures. Then, we prove that the trace optimization of the proposed measure is equivalent with the objective functions of algorithms such as nonnegative matrix factorization, kernel K-means as well as spectral clustering. It serves as the theoretical foundation for designing algorithms for community detection. On the second issue, a semi-supervised spectral clustering algorithm is developed by exploring the equivalence relation via combining the nonnegative matrix factorization and spectral clustering. Different from the traditional semi-supervised algorithms, the partial supervision is integrated into the objective of the spectral algorithm. Finally, through extensive experiments on both artificial and real world networks, we demonstrate that the proposed method improves the accuracy of the traditional spectral algorithms in community detection.
Computational lymphatic node models in pediatric and adult hybrid phantoms for radiation dosimetry
NASA Astrophysics Data System (ADS)
Lee, Choonsik; Lamart, Stephanie; Moroz, Brian E.
2013-03-01
We developed models of lymphatic nodes for six pediatric and two adult hybrid computational phantoms to calculate the lymphatic node dose estimates from external and internal radiation exposures. We derived the number of lymphatic nodes from the recommendations in International Commission on Radiological Protection (ICRP) Publications 23 and 89 at 16 cluster locations for the lymphatic nodes: extrathoracic, cervical, thoracic (upper and lower), breast (left and right), mesentery (left and right), axillary (left and right), cubital (left and right), inguinal (left and right) and popliteal (left and right), for different ages (newborn, 1-, 5-, 10-, 15-year-old and adult). We modeled each lymphatic node within the voxel format of the hybrid phantoms by assuming that all nodes have identical size derived from published data except narrow cluster sites. The lymph nodes were generated by the following algorithm: (1) selection of the lymph node site among the 16 cluster sites; (2) random sampling of the location of the lymph node within a spherical space centered at the chosen cluster site; (3) creation of the sphere or ovoid of tissue representing the node based on lymphatic node characteristics defined in ICRP Publications 23 and 89. We created lymph nodes until the pre-defined number of lymphatic nodes at the selected cluster site was reached. This algorithm was applied to pediatric (newborn, 1-, 5-and 10-year-old male, and 15-year-old males) and adult male and female ICRP-compliant hybrid phantoms after voxelization. To assess the performance of our models for internal dosimetry, we calculated dose conversion coefficients, called S values, for selected organs and tissues with Iodine-131 distributed in six lymphatic node cluster sites using MCNPX2.6, a well validated Monte Carlo radiation transport code. Our analysis of the calculations indicates that the S values were significantly affected by the location of the lymph node clusters and that the values increased for smaller phantoms due to the shorter inter-organ distances compared to the bigger phantoms. By testing sensitivity of S values to random sampling and voxel resolution, we confirmed that the lymph node model is reasonably stable and consistent for different random samplings and voxel resolutions.
Multi-scale clustering by building a robust and self correcting ultrametric topology on data points.
Fushing, Hsieh; Wang, Hui; Vanderwaal, Kimberly; McCowan, Brenda; Koehl, Patrice
2013-01-01
The advent of high-throughput technologies and the concurrent advances in information sciences have led to an explosion in size and complexity of the data sets collected in biological sciences. The biggest challenge today is to assimilate this wealth of information into a conceptual framework that will help us decipher biological functions. A large and complex collection of data, usually called a data cloud, naturally embeds multi-scale characteristics and features, generically termed geometry. Understanding this geometry is the foundation for extracting knowledge from data. We have developed a new methodology, called data cloud geometry-tree (DCG-tree), to resolve this challenge. This new procedure has two main features that are keys to its success. Firstly, it derives from the empirical similarity measurements a hierarchy of clustering configurations that captures the geometric structure of the data. This hierarchy is then transformed into an ultrametric space, which is then represented via an ultrametric tree or a Parisi matrix. Secondly, it has a built-in mechanism for self-correcting clustering membership across different tree levels. We have compared the trees generated with this new algorithm to equivalent trees derived with the standard Hierarchical Clustering method on simulated as well as real data clouds from fMRI brain connectivity studies, cancer genomics, giraffe social networks, and Lewis Carroll's Doublets network. In each of these cases, we have shown that the DCG trees are more robust and less sensitive to measurement errors, and that they provide a better quantification of the multi-scale geometric structures of the data. As such, DCG-tree is an effective tool for analyzing complex biological data sets.
Meyer, N; McMenamin, J; Robertson, C; Donaghy, M; Allardice, G; Cooper, D
2008-07-01
In 18 weeks, Health Protection Scotland (HPS) deployed a syndromic surveillance system to early-detect natural or intentional disease outbreaks during the G8 Summit 2005 at Gleneagles, Scotland. The system integrated clinical and non-clinical datasets. Clinical datasets included Accident & Emergency (A&E) syndromes, and General Practice (GPs) codes grouped into syndromes. Non-clinical data included telephone calls to a nurse helpline, laboratory test orders, and hotel staff absenteeism. A cumulative sum-based detection algorithm and a log-linear regression model identified signals in the data. The system had a fax-based track for real-time identification of unusual presentations. Ninety-five signals were triggered by the detection algorithms and four forms were faxed to HPS. Thirteen signals were investigated. The system successfully complemented a traditional surveillance system in identifying a small cluster of gastroenteritis among the police force and triggered interventions to prevent further cases.
New imaging algorithm in diffusion tomography
NASA Astrophysics Data System (ADS)
Klibanov, Michael V.; Lucas, Thomas R.; Frank, Robert M.
1997-08-01
A novel imaging algorithm for diffusion/optical tomography is presented for the case of the time dependent diffusion equation. Numerical tests are conducted for ranges of parameters realistic for applications to an early breast cancer diagnosis using ultrafast laser pulses. This is a perturbation-like method which works for both homogeneous a heterogeneous background media. Its main innovation lies in a new approach for a novel linearized problem (LP). Such an LP is derived and reduced to a boundary value problem for a coupled system of elliptic partial differential equations. As is well known, the solution of such a system amounts to the factorization of well conditioned, sparse matrices with few non-zero entries clustered along the diagonal, which can be done very rapidly. Thus, the main advantages of this technique are that it is fast and accurate. The authors call this approach the elliptic systems method (ESM). The ESM can be extended for other data collection schemes.
A Comparative Evaluation of Anomaly Detection Algorithms for Maritime Video Surveillance
2011-01-01
of k-means clustering and the k- NN Localized p-value Estimator ( KNN -LPE). K-means is a popular distance-based clustering algorithm while KNN -LPE...implemented the sparse cluster identification rule we described in Section 3.1. 2. k-NN Localized p-value Estimator ( KNN -LPE): We implemented this using...Average Density ( KNN -NAD): This was implemented as described in Section 3.4. Algorithm Parameter Settings The global and local density-based anomaly
NASA Astrophysics Data System (ADS)
Chang, Bingguo; Chen, Xiaofei
2018-05-01
Ultrasonography is an important examination for the diagnosis of chronic liver disease. The doctor gives the liver indicators and suggests the patient's condition according to the description of ultrasound report. With the rapid increase in the amount of data of ultrasound report, the workload of professional physician to manually distinguish ultrasound results significantly increases. In this paper, we use the spectral clustering method to cluster analysis of the description of the ultrasound report, and automatically generate the ultrasonic diagnostic diagnosis by machine learning. 110 groups ultrasound examination report of chronic liver disease were selected as test samples in this experiment, and the results were validated by spectral clustering and compared with k-means clustering algorithm. The results show that the accuracy of spectral clustering is 92.73%, which is higher than that of k-means clustering algorithm, which provides a powerful ultrasound-assisted diagnosis for patients with chronic liver disease.
Jiang, Peng; Xu, Yiming; Wu, Feng
2016-01-01
Existing move-restricted node self-deployment algorithms are based on a fixed node communication radius, evaluate the performance based on network coverage or the connectivity rate and do not consider the number of nodes near the sink node and the energy consumption distribution of the network topology, thereby degrading network reliability and the energy consumption balance. Therefore, we propose a distributed underwater node self-deployment algorithm. First, each node begins the uneven clustering based on the distance on the water surface. Each cluster head node selects its next-hop node to synchronously construct a connected path to the sink node. Second, the cluster head node adjusts its depth while maintaining the layout formed by the uneven clustering and then adjusts the positions of in-cluster nodes. The algorithm originally considers the network reliability and energy consumption balance during node deployment and considers the coverage redundancy rate of all positions that a node may reach during the node position adjustment. Simulation results show, compared to the connected dominating set (CDS) based depth computation algorithm, that the proposed algorithm can increase the number of the nodes near the sink node and improve network reliability while guaranteeing the network connectivity rate. Moreover, it can balance energy consumption during network operation, further improve network coverage rate and reduce energy consumption. PMID:26784193
Dynamic Load-Balancing for Distributed Heterogeneous Computing of Parallel CFD Problems
NASA Technical Reports Server (NTRS)
Ecer, A.; Chien, Y. P.; Boenisch, T.; Akay, H. U.
2000-01-01
The developed methodology is aimed at improving the efficiency of executing block-structured algorithms on parallel, distributed, heterogeneous computers. The basic approach of these algorithms is to divide the flow domain into many sub- domains called blocks, and solve the governing equations over these blocks. Dynamic load balancing problem is defined as the efficient distribution of the blocks among the available processors over a period of several hours of computations. In environments with computers of different architecture, operating systems, CPU speed, memory size, load, and network speed, balancing the loads and managing the communication between processors becomes crucial. Load balancing software tools for mutually dependent parallel processes have been created to efficiently utilize an advanced computation environment and algorithms. These tools are dynamic in nature because of the chances in the computer environment during execution time. More recently, these tools were extended to a second operating system: NT. In this paper, the problems associated with this application will be discussed. Also, the developed algorithms were combined with the load sharing capability of LSF to efficiently utilize workstation clusters for parallel computing. Finally, results will be presented on running a NASA based code ADPAC to demonstrate the developed tools for dynamic load balancing.
MISAGA: An Algorithm for Mining Interesting Subgraphs in Attributed Graphs.
He, Tiantian; Chan, Keith C C
2018-05-01
An attributed graph contains vertices that are associated with a set of attribute values. Mining clusters or communities, which are interesting subgraphs in the attributed graph is one of the most important tasks of graph analytics. Many problems can be defined as the mining of interesting subgraphs in attributed graphs. Algorithms that discover subgraphs based on predefined topologies cannot be used to tackle these problems. To discover interesting subgraphs in the attributed graph, we propose an algorithm called mining interesting subgraphs in attributed graph algorithm (MISAGA). MISAGA performs its tasks by first using a probabilistic measure to determine whether the strength of association between a pair of attribute values is strong enough to be interesting. Given the interesting pairs of attribute values, then the degree of association is computed for each pair of vertices using an information theoretic measure. Based on the edge structure and degree of association between each pair of vertices, MISAGA identifies interesting subgraphs by formulating it as a constrained optimization problem and solves it by identifying the optimal affiliation of subgraphs for the vertices in the attributed graph. MISAGA has been tested with several large-sized real graphs and is found to be potentially very useful for various applications.
Orbit Clustering Based on Transfer Cost
NASA Technical Reports Server (NTRS)
Gustafson, Eric D.; Arrieta-Camacho, Juan J.; Petropoulos, Anastassios E.
2013-01-01
We propose using cluster analysis to perform quick screening for combinatorial global optimization problems. The key missing component currently preventing cluster analysis from use in this context is the lack of a useable metric function that defines the cost to transfer between two orbits. We study several proposed metrics and clustering algorithms, including k-means and the expectation maximization algorithm. We also show that proven heuristic methods such as the Q-law can be modified to work with cluster analysis.
Clustering by reordering of similarity and Laplacian matrices: Application to galaxy clusters
NASA Astrophysics Data System (ADS)
Mahmoud, E.; Shoukry, A.; Takey, A.
2018-04-01
Similarity metrics, kernels and similarity-based algorithms have gained much attention due to their increasing applications in information retrieval, data mining, pattern recognition and machine learning. Similarity Graphs are often adopted as the underlying representation of similarity matrices and are at the origin of known clustering algorithms such as spectral clustering. Similarity matrices offer the advantage of working in object-object (two-dimensional) space where visualization of clusters similarities is available instead of object-features (multi-dimensional) space. In this paper, sparse ɛ-similarity graphs are constructed and decomposed into strong components using appropriate methods such as Dulmage-Mendelsohn permutation (DMperm) and/or Reverse Cuthill-McKee (RCM) algorithms. The obtained strong components correspond to groups (clusters) in the input (feature) space. Parameter ɛi is estimated locally, at each data point i from a corresponding narrow range of the number of nearest neighbors. Although more advanced clustering techniques are available, our method has the advantages of simplicity, better complexity and direct visualization of the clusters similarities in a two-dimensional space. Also, no prior information about the number of clusters is needed. We conducted our experiments on two and three dimensional, low and high-sized synthetic datasets as well as on an astronomical real-dataset. The results are verified graphically and analyzed using gap statistics over a range of neighbors to verify the robustness of the algorithm and the stability of the results. Combining the proposed algorithm with gap statistics provides a promising tool for solving clustering problems. An astronomical application is conducted for confirming the existence of 45 galaxy clusters around the X-ray positions of galaxy clusters in the redshift range [0.1..0.8]. We re-estimate the photometric redshifts of the identified galaxy clusters and obtain acceptable values compared to published spectroscopic redshifts with a 0.029 standard deviation of their differences.
Improving clustering with metabolic pathway data.
Milone, Diego H; Stegmayer, Georgina; López, Mariana; Kamenetzky, Laura; Carrari, Fernando
2014-04-10
It is a common practice in bioinformatics to validate each group returned by a clustering algorithm through manual analysis, according to a-priori biological knowledge. This procedure helps finding functionally related patterns to propose hypotheses for their behavior and the biological processes involved. Therefore, this knowledge is used only as a second step, after data are just clustered according to their expression patterns. Thus, it could be very useful to be able to improve the clustering of biological data by incorporating prior knowledge into the cluster formation itself, in order to enhance the biological value of the clusters. A novel training algorithm for clustering is presented, which evaluates the biological internal connections of the data points while the clusters are being formed. Within this training algorithm, the calculation of distances among data points and neurons centroids includes a new term based on information from well-known metabolic pathways. The standard self-organizing map (SOM) training versus the biologically-inspired SOM (bSOM) training were tested with two real data sets of transcripts and metabolites from Solanum lycopersicum and Arabidopsis thaliana species. Classical data mining validation measures were used to evaluate the clustering solutions obtained by both algorithms. Moreover, a new measure that takes into account the biological connectivity of the clusters was applied. The results of bSOM show important improvements in the convergence and performance for the proposed clustering method in comparison to standard SOM training, in particular, from the application point of view. Analyses of the clusters obtained with bSOM indicate that including biological information during training can certainly increase the biological value of the clusters found with the proposed method. It is worth to highlight that this fact has effectively improved the results, which can simplify their further analysis.The algorithm is available as a web-demo at http://fich.unl.edu.ar/sinc/web-demo/bsom-lite/. The source code and the data sets supporting the results of this article are available at http://sourceforge.net/projects/sourcesinc/files/bsom.
A similarity based agglomerative clustering algorithm in networks
NASA Astrophysics Data System (ADS)
Liu, Zhiyuan; Wang, Xiujuan; Ma, Yinghong
2018-04-01
The detection of clusters is benefit for understanding the organizations and functions of networks. Clusters, or communities, are usually groups of nodes densely interconnected but sparsely linked with any other clusters. To identify communities, an efficient and effective community agglomerative algorithm based on node similarity is proposed. The proposed method initially calculates similarities between each pair of nodes, and form pre-partitions according to the principle that each node is in the same community as its most similar neighbor. After that, check each partition whether it satisfies community criterion. For the pre-partitions who do not satisfy, incorporate them with others that having the biggest attraction until there are no changes. To measure the attraction ability of a partition, we propose an attraction index that based on the linked node's importance in networks. Therefore, our proposed method can better exploit the nodes' properties and network's structure. To test the performance of our algorithm, both synthetic and empirical networks ranging in different scales are tested. Simulation results show that the proposed algorithm can obtain superior clustering results compared with six other widely used community detection algorithms.
Lin, Nan; Jiang, Junhai; Guo, Shicheng; Xiong, Momiao
2015-01-01
Due to the advancement in sensor technology, the growing large medical image data have the ability to visualize the anatomical changes in biological tissues. As a consequence, the medical images have the potential to enhance the diagnosis of disease, the prediction of clinical outcomes and the characterization of disease progression. But in the meantime, the growing data dimensions pose great methodological and computational challenges for the representation and selection of features in image cluster analysis. To address these challenges, we first extend the functional principal component analysis (FPCA) from one dimension to two dimensions to fully capture the space variation of image the signals. The image signals contain a large number of redundant features which provide no additional information for clustering analysis. The widely used methods for removing the irrelevant features are sparse clustering algorithms using a lasso-type penalty to select the features. However, the accuracy of clustering using a lasso-type penalty depends on the selection of the penalty parameters and the threshold value. In practice, they are difficult to determine. Recently, randomized algorithms have received a great deal of attentions in big data analysis. This paper presents a randomized algorithm for accurate feature selection in image clustering analysis. The proposed method is applied to both the liver and kidney cancer histology image data from the TCGA database. The results demonstrate that the randomized feature selection method coupled with functional principal component analysis substantially outperforms the current sparse clustering algorithms in image cluster analysis. PMID:26196383
Clustering approaches to identifying gene expression patterns from DNA microarray data.
Do, Jin Hwan; Choi, Dong-Kug
2008-04-30
The analysis of microarray data is essential for large amounts of gene expression data. In this review we focus on clustering techniques. The biological rationale for this approach is the fact that many co-expressed genes are co-regulated, and identifying co-expressed genes could aid in functional annotation of novel genes, de novo identification of transcription factor binding sites and elucidation of complex biological pathways. Co-expressed genes are usually identified in microarray experiments by clustering techniques. There are many such methods, and the results obtained even for the same datasets may vary considerably depending on the algorithms and metrics for dissimilarity measures used, as well as on user-selectable parameters such as desired number of clusters and initial values. Therefore, biologists who want to interpret microarray data should be aware of the weakness and strengths of the clustering methods used. In this review, we survey the basic principles of clustering of DNA microarray data from crisp clustering algorithms such as hierarchical clustering, K-means and self-organizing maps, to complex clustering algorithms like fuzzy clustering.
Identification of chronic rhinosinusitis phenotypes using cluster analysis.
Soler, Zachary M; Hyer, J Madison; Ramakrishnan, Viswanathan; Smith, Timothy L; Mace, Jess; Rudmik, Luke; Schlosser, Rodney J
2015-05-01
Current clinical classifications of chronic rhinosinusitis (CRS) have been largely defined based upon preconceived notions of factors thought to be important, such as polyp or eosinophil status. Unfortunately, these classification systems have little correlation with symptom severity or treatment outcomes. Unsupervised clustering can be used to identify phenotypic subgroups of CRS patients, describe clinical differences in these clusters and define simple algorithms for classification. A multi-institutional, prospective study of 382 patients with CRS who had failed initial medical therapy completed the Sino-Nasal Outcome Test (SNOT-22), Rhinosinusitis Disability Index (RSDI), Medical Outcomes Study Short Form-12 (SF-12), Pittsburgh Sleep Quality Index (PSQI), and Patient Health Questionnaire (PHQ-2). Objective measures of CRS severity included Brief Smell Identification Test (B-SIT), CT, and endoscopy scoring. All variables were reduced and unsupervised hierarchical clustering was performed. After clusters were defined, variations in medication usage were analyzed. Discriminant analysis was performed to develop a simplified, clinically useful algorithm for clustering. Clustering was largely determined by age, severity of patient reported outcome measures, depression, and fibromyalgia. CT and endoscopy varied somewhat among clusters. Traditional clinical measures, including polyp/atopic status, prior surgery, B-SIT and asthma, did not vary among clusters. A simplified algorithm based upon productivity loss, SNOT-22 score, and age predicted clustering with 89% accuracy. Medication usage among clusters did vary significantly. A simplified algorithm based upon hierarchical clustering is able to classify CRS patients and predict medication usage. Further studies are warranted to determine if such clustering predicts treatment outcomes. © 2015 ARS-AAOA, LLC.
Quantum annealing for combinatorial clustering
NASA Astrophysics Data System (ADS)
Kumar, Vaibhaw; Bass, Gideon; Tomlin, Casey; Dulny, Joseph
2018-02-01
Clustering is a powerful machine learning technique that groups "similar" data points based on their characteristics. Many clustering algorithms work by approximating the minimization of an objective function, namely the sum of within-the-cluster distances between points. The straightforward approach involves examining all the possible assignments of points to each of the clusters. This approach guarantees the solution will be a global minimum; however, the number of possible assignments scales quickly with the number of data points and becomes computationally intractable even for very small datasets. In order to circumvent this issue, cost function minima are found using popular local search-based heuristic approaches such as k-means and hierarchical clustering. Due to their greedy nature, such techniques do not guarantee that a global minimum will be found and can lead to sub-optimal clustering assignments. Other classes of global search-based techniques, such as simulated annealing, tabu search, and genetic algorithms, may offer better quality results but can be too time-consuming to implement. In this work, we describe how quantum annealing can be used to carry out clustering. We map the clustering objective to a quadratic binary optimization problem and discuss two clustering algorithms which are then implemented on commercially available quantum annealing hardware, as well as on a purely classical solver "qbsolv." The first algorithm assigns N data points to K clusters, and the second one can be used to perform binary clustering in a hierarchical manner. We present our results in the form of benchmarks against well-known k-means clustering and discuss the advantages and disadvantages of the proposed techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel
Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets . To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets , are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variablesmore » in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.« less
Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel; ...
2016-06-01
Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets . To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets , are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variablesmore » in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.« less
Blooming Trees: Substructures and Surrounding Groups of Galaxy Clusters
NASA Astrophysics Data System (ADS)
Yu, Heng; Diaferio, Antonaldo; Serra, Ana Laura; Baldi, Marco
2018-06-01
We develop the Blooming Tree Algorithm, a new technique that uses spectroscopic redshift data alone to identify the substructures and the surrounding groups of galaxy clusters, along with their member galaxies. Based on the estimated binding energy of galaxy pairs, the algorithm builds a binary tree that hierarchically arranges all of the galaxies in the field of view. The algorithm searches for buds, corresponding to gravitational potential minima on the binary tree branches; for each bud, the algorithm combines the number of galaxies, their velocity dispersion, and their average pairwise distance into a parameter that discriminates between the buds that do not correspond to any substructure or group, and thus eventually die, and the buds that correspond to substructures and groups, and thus bloom into the identified structures. We test our new algorithm with a sample of 300 mock redshift surveys of clusters in different dynamical states; the clusters are extracted from a large cosmological N-body simulation of a ΛCDM model. We limit our analysis to substructures and surrounding groups identified in the simulation with mass larger than 1013 h ‑1 M ⊙. With mock redshift surveys with 200 galaxies within 6 h ‑1 Mpc from the cluster center, the technique recovers 80% of the real substructures and 60% of the surrounding groups; in 57% of the identified structures, at least 60% of the member galaxies of the substructures and groups belong to the same real structure. These results improve by roughly a factor of two the performance of the best substructure identification algorithm currently available, the σ plateau algorithm, and suggest that our Blooming Tree Algorithm can be an invaluable tool for detecting substructures of galaxy clusters and investigating their complex dynamics.
PCA based clustering for brain tumor segmentation of T1w MRI images.
Kaya, Irem Ersöz; Pehlivanlı, Ayça Çakmak; Sekizkardeş, Emine Gezmez; Ibrikci, Turgay
2017-03-01
Medical images are huge collections of information that are difficult to store and process consuming extensive computing time. Therefore, the reduction techniques are commonly used as a data pre-processing step to make the image data less complex so that a high-dimensional data can be identified by an appropriate low-dimensional representation. PCA is one of the most popular multivariate methods for data reduction. This paper is focused on T1-weighted MRI images clustering for brain tumor segmentation with dimension reduction by different common Principle Component Analysis (PCA) algorithms. Our primary aim is to present a comparison between different variations of PCA algorithms on MRIs for two cluster methods. Five most common PCA algorithms; namely the conventional PCA, Probabilistic Principal Component Analysis (PPCA), Expectation Maximization Based Principal Component Analysis (EM-PCA), Generalize Hebbian Algorithm (GHA), and Adaptive Principal Component Extraction (APEX) were applied to reduce dimensionality in advance of two clustering algorithms, K-Means and Fuzzy C-Means. In the study, the T1-weighted MRI images of the human brain with brain tumor were used for clustering. In addition to the original size of 512 lines and 512 pixels per line, three more different sizes, 256 × 256, 128 × 128 and 64 × 64, were included in the study to examine their effect on the methods. The obtained results were compared in terms of both the reconstruction errors and the Euclidean distance errors among the clustered images containing the same number of principle components. According to the findings, the PPCA obtained the best results among all others. Furthermore, the EM-PCA and the PPCA assisted K-Means algorithm to accomplish the best clustering performance in the majority as well as achieving significant results with both clustering algorithms for all size of T1w MRI images. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Weighted community detection and data clustering using message passing
NASA Astrophysics Data System (ADS)
Shi, Cheng; Liu, Yanchen; Zhang, Pan
2018-03-01
Grouping objects into clusters based on the similarities or weights between them is one of the most important problems in science and engineering. In this work, by extending message-passing algorithms and spectral algorithms proposed for an unweighted community detection problem, we develop a non-parametric method based on statistical physics, by mapping the problem to the Potts model at the critical temperature of spin-glass transition and applying belief propagation to solve the marginals corresponding to the Boltzmann distribution. Our algorithm is robust to over-fitting and gives a principled way to determine whether there are significant clusters in the data and how many clusters there are. We apply our method to different clustering tasks. In the community detection problem in weighted and directed networks, we show that our algorithm significantly outperforms existing algorithms. In the clustering problem, where the data were generated by mixture models in the sparse regime, we show that our method works all the way down to the theoretical limit of detectability and gives accuracy very close to that of the optimal Bayesian inference. In the semi-supervised clustering problem, our method only needs several labels to work perfectly in classic datasets. Finally, we further develop Thouless-Anderson-Palmer equations which heavily reduce the computation complexity in dense networks but give almost the same performance as belief propagation.
Automatic detection of erythemato-squamous diseases using k-means clustering.
Ubeyli, Elif Derya; Doğdu, Erdoğan
2010-04-01
A new approach based on the implementation of k-means clustering is presented for automated detection of erythemato-squamous diseases. The purpose of clustering techniques is to find a structure for the given data by finding similarities between data according to data characteristics. The studied domain contained records of patients with known diagnosis. The k-means clustering algorithm's task was to classify the data points, in this case the patients with attribute data, to one of the five clusters. The algorithm was used to detect the five erythemato-squamous diseases when 33 features defining five disease indications were used. The purpose is to determine an optimum classification scheme for this problem. The present research demonstrated that the features well represent the erythemato-squamous diseases and the k-means clustering algorithm's task achieved high classification accuracies for only five erythemato-squamous diseases.
Theofilatos, Konstantinos; Pavlopoulou, Niki; Papasavvas, Christoforos; Likothanassis, Spiros; Dimitrakopoulos, Christos; Georgopoulos, Efstratios; Moschopoulos, Charalampos; Mavroudi, Seferina
2015-03-01
Proteins are considered to be the most important individual components of biological systems and they combine to form physical protein complexes which are responsible for certain molecular functions. Despite the large availability of protein-protein interaction (PPI) information, not much information is available about protein complexes. Experimental methods are limited in terms of time, efficiency, cost and performance constraints. Existing computational methods have provided encouraging preliminary results, but they phase certain disadvantages as they require parameter tuning, some of them cannot handle weighted PPI data and others do not allow a protein to participate in more than one protein complex. In the present paper, we propose a new fully unsupervised methodology for predicting protein complexes from weighted PPI graphs. The proposed methodology is called evolutionary enhanced Markov clustering (EE-MC) and it is a hybrid combination of an adaptive evolutionary algorithm and a state-of-the-art clustering algorithm named enhanced Markov clustering. EE-MC was compared with state-of-the-art methodologies when applied to datasets from the human and the yeast Saccharomyces cerevisiae organisms. Using public available datasets, EE-MC outperformed existing methodologies (in some datasets the separation metric was increased by 10-20%). Moreover, when applied to new human datasets its performance was encouraging in the prediction of protein complexes which consist of proteins with high functional similarity. In specific, 5737 protein complexes were predicted and 72.58% of them are enriched for at least one gene ontology (GO) function term. EE-MC is by design able to overcome intrinsic limitations of existing methodologies such as their inability to handle weighted PPI networks, their constraint to assign every protein in exactly one cluster and the difficulties they face concerning the parameter tuning. This fact was experimentally validated and moreover, new potentially true human protein complexes were suggested as candidates for further validation using experimental techniques. Copyright © 2015 Elsevier B.V. All rights reserved.
Loewenstein, Yaniv; Portugaly, Elon; Fromer, Menachem; Linial, Michal
2008-07-01
UPGMA (average linking) is probably the most popular algorithm for hierarchical data clustering, especially in computational biology. However, UPGMA requires the entire dissimilarity matrix in memory. Due to this prohibitive requirement, UPGMA is not scalable to very large datasets. We present a novel class of memory-constrained UPGMA (MC-UPGMA) algorithms. Given any practical memory size constraint, this framework guarantees the correct clustering solution without explicitly requiring all dissimilarities in memory. The algorithms are general and are applicable to any dataset. We present a data-dependent characterization of hardness and clustering efficiency. The presented concepts are applicable to any agglomerative clustering formulation. We apply our algorithm to the entire collection of protein sequences, to automatically build a comprehensive evolutionary-driven hierarchy of proteins from sequence alone. The newly created tree captures protein families better than state-of-the-art large-scale methods such as CluSTr, ProtoNet4 or single-linkage clustering. We demonstrate that leveraging the entire mass embodied in all sequence similarities allows to significantly improve on current protein family clusterings which are unable to directly tackle the sheer mass of this data. Furthermore, we argue that non-metric constraints are an inherent complexity of the sequence space and should not be overlooked. The robustness of UPGMA allows significant improvement, especially for multidomain proteins, and for large or divergent families. A comprehensive tree built from all UniProt sequence similarities, together with navigation and classification tools will be made available as part of the ProtoNet service. A C++ implementation of the algorithm is available on request.
Gaur, Pallavi; Chaturvedi, Anoop
2017-07-22
The clustering pattern and motifs give immense information about any biological data. An application of machine learning algorithms for clustering and candidate motif detection in miRNAs derived from exosomes is depicted in this paper. Recent progress in the field of exosome research and more particularly regarding exosomal miRNAs has led much bioinformatic-based research to come into existence. The information on clustering pattern and candidate motifs in miRNAs of exosomal origin would help in analyzing existing, as well as newly discovered miRNAs within exosomes. Along with obtaining clustering pattern and candidate motifs in exosomal miRNAs, this work also elaborates the usefulness of the machine learning algorithms that can be efficiently used and executed on various programming languages/platforms. Data were clustered and sequence candidate motifs were detected successfully. The results were compared and validated with some available web tools such as 'BLASTN' and 'MEME suite'. The machine learning algorithms for aforementioned objectives were applied successfully. This work elaborated utility of machine learning algorithms and language platforms to achieve the tasks of clustering and candidate motif detection in exosomal miRNAs. With the information on mentioned objectives, deeper insight would be gained for analyses of newly discovered miRNAs in exosomes which are considered to be circulating biomarkers. In addition, the execution of machine learning algorithms on various language platforms gives more flexibility to users to try multiple iterations according to their requirements. This approach can be applied to other biological data-mining tasks as well.
Wehmeyer, Christoph; Falk von Rudorff, Guido; Wolf, Sebastian; Kabbe, Gabriel; Schärf, Daniel; Kühne, Thomas D; Sebastiani, Daniel
2012-11-21
We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials.
NASA Astrophysics Data System (ADS)
Wehmeyer, Christoph; Falk von Rudorff, Guido; Wolf, Sebastian; Kabbe, Gabriel; Schärf, Daniel; Kühne, Thomas D.; Sebastiani, Daniel
2012-11-01
We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials.
The ground truth about metadata and community detection in networks.
Peel, Leto; Larremore, Daniel B; Clauset, Aaron
2017-05-01
Across many scientific domains, there is a common need to automatically extract a simplified view or coarse-graining of how a complex system's components interact. This general task is called community detection in networks and is analogous to searching for clusters in independent vector data. It is common to evaluate the performance of community detection algorithms by their ability to find so-called ground truth communities. This works well in synthetic networks with planted communities because these networks' links are formed explicitly based on those known communities. However, there are no planted communities in real-world networks. Instead, it is standard practice to treat some observed discrete-valued node attributes, or metadata, as ground truth. We show that metadata are not the same as ground truth and that treating them as such induces severe theoretical and practical problems. We prove that no algorithm can uniquely solve community detection, and we prove a general No Free Lunch theorem for community detection, which implies that there can be no algorithm that is optimal for all possible community detection tasks. However, community detection remains a powerful tool and node metadata still have value, so a careful exploration of their relationship with network structure can yield insights of genuine worth. We illustrate this point by introducing two statistical techniques that can quantify the relationship between metadata and community structure for a broad class of models. We demonstrate these techniques using both synthetic and real-world networks, and for multiple types of metadata and community structures.
Oluwadare, Oluwatosin; Cheng, Jianlin
2017-11-14
With the development of chromosomal conformation capturing techniques, particularly, the Hi-C technique, the study of the spatial conformation of a genome is becoming an important topic in bioinformatics and computational biology. The Hi-C technique can generate genome-wide chromosomal interaction (contact) data, which can be used to investigate the higher-level organization of chromosomes, such as Topologically Associated Domains (TAD), i.e., locally packed chromosome regions bounded together by intra chromosomal contacts. The identification of the TADs for a genome is useful for studying gene regulation, genomic interaction, and genome function. Here, we formulate the TAD identification problem as an unsupervised machine learning (clustering) problem, and develop a new TAD identification method called ClusterTAD. We introduce a novel method to represent chromosomal contacts as features to be used by the clustering algorithm. Our results show that ClusterTAD can accurately predict the TADs on a simulated Hi-C data. Our method is also largely complementary and consistent with existing methods on the real Hi-C datasets of two mouse cells. The validation with the chromatin immunoprecipitation (ChIP) sequencing (ChIP-Seq) data shows that the domain boundaries identified by ClusterTAD have a high enrichment of CTCF binding sites, promoter-related marks, and enhancer-related histone modifications. As ClusterTAD is based on a proven clustering approach, it opens a new avenue to apply a large array of clustering methods developed in the machine learning field to the TAD identification problem. The source code, the results, and the TADs generated for the simulated and real Hi-C datasets are available here: https://github.com/BDM-Lab/ClusterTAD .
An adaptive tracker for ShipIR/NTCS
NASA Astrophysics Data System (ADS)
Ramaswamy, Srinivasan; Vaitekunas, David A.
2015-05-01
A key component in any image-based tracking system is the adaptive tracking algorithm used to segment the image into potential targets, rank-and-select the best candidate target, and the gating of the selected target to further improve tracker performance. This paper will describe a new adaptive tracker algorithm added to the naval threat countermeasure simulator (NTCS) of the NATO-standard ship signature model (ShipIR). The new adaptive tracking algorithm is an optional feature used with any of the existing internal NTCS or user-defined seeker algorithms (e.g., binary centroid, intensity centroid, and threshold intensity centroid). The algorithm segments the detected pixels into clusters, and the smallest set of clusters that meet the detection criterion is obtained by using a knapsack algorithm to identify the set of clusters that should not be used. The rectangular area containing the chosen clusters defines an inner boundary, from which a weighted centroid is calculated as the aim-point. A track-gate is then positioned around the clusters, taking into account the rate of change of the bounding area and compensating for any gimbal displacement. A sequence of scenarios is used to test the new tracking algorithm on a generic unclassified DDG ShipIR model, with and without flares, and demonstrate how some of the key seeker signals are impacted by both the ship and flare intrinsic signatures.
Xue, Zhong; Shen, Dinggang; Li, Hai; Wong, Stephen
2010-01-01
The traditional fuzzy clustering algorithm and its extensions have been successfully applied in medical image segmentation. However, because of the variability of tissues and anatomical structures, the clustering results might be biased by the tissue population and intensity differences. For example, clustering-based algorithms tend to over-segment white matter tissues of MR brain images. To solve this problem, we introduce a tissue probability map constrained clustering algorithm and apply it to serial MR brain image segmentation, i.e., a series of 3-D MR brain images of the same subject at different time points. Using the new serial image segmentation algorithm in the framework of the CLASSIC framework, which iteratively segments the images and estimates the longitudinal deformations, we improved both accuracy and robustness for serial image computing, and at the mean time produced longitudinally consistent segmentation and stable measures. In the algorithm, the tissue probability maps consist of both the population-based and subject-specific segmentation priors. Experimental study using both simulated longitudinal MR brain data and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data confirmed that using both priors more accurate and robust segmentation results can be obtained. The proposed algorithm can be applied in longitudinal follow up studies of MR brain imaging with subtle morphological changes for neurological disorders. PMID:26566399
Mining subspace clusters from DNA microarray data using large itemset techniques.
Chang, Ye-In; Chen, Jiun-Rung; Tsai, Yueh-Chi
2009-05-01
Mining subspace clusters from the DNA microarrays could help researchers identify those genes which commonly contribute to a disease, where a subspace cluster indicates a subset of genes whose expression levels are similar under a subset of conditions. Since in a DNA microarray, the number of genes is far larger than the number of conditions, those previous proposed algorithms which compute the maximum dimension sets (MDSs) for any two genes will take a long time to mine subspace clusters. In this article, we propose the Large Itemset-Based Clustering (LISC) algorithm for mining subspace clusters. Instead of constructing MDSs for any two genes, we construct only MDSs for any two conditions. Then, we transform the task of finding the maximal possible gene sets into the problem of mining large itemsets from the condition-pair MDSs. Since we are only interested in those subspace clusters with gene sets as large as possible, it is desirable to pay attention to those gene sets which have reasonable large support values in the condition-pair MDSs. From our simulation results, we show that the proposed algorithm needs shorter processing time than those previous proposed algorithms which need to construct gene-pair MDSs.
Blocked inverted indices for exact clustering of large chemical spaces.
Thiel, Philipp; Sach-Peltason, Lisa; Ottmann, Christian; Kohlbacher, Oliver
2014-09-22
The calculation of pairwise compound similarities based on fingerprints is one of the fundamental tasks in chemoinformatics. Methods for efficient calculation of compound similarities are of the utmost importance for various applications like similarity searching or library clustering. With the increasing size of public compound databases, exact clustering of these databases is desirable, but often computationally prohibitively expensive. We present an optimized inverted index algorithm for the calculation of all pairwise similarities on 2D fingerprints of a given data set. In contrast to other algorithms, it neither requires GPU computing nor yields a stochastic approximation of the clustering. The algorithm has been designed to work well with multicore architectures and shows excellent parallel speedup. As an application example of this algorithm, we implemented a deterministic clustering application, which has been designed to decompose virtual libraries comprising tens of millions of compounds in a short time on current hardware. Our results show that our implementation achieves more than 400 million Tanimoto similarity calculations per second on a common desktop CPU. Deterministic clustering of the available chemical space thus can be done on modern multicore machines within a few days.
A Game Theory Algorithm for Intra-Cluster Data Aggregation in a Vehicular Ad Hoc Network
Chen, Yuzhong; Weng, Shining; Guo, Wenzhong; Xiong, Naixue
2016-01-01
Vehicular ad hoc networks (VANETs) have an important role in urban management and planning. The effective integration of vehicle information in VANETs is critical to traffic analysis, large-scale vehicle route planning and intelligent transportation scheduling. However, given the limitations in the precision of the output information of a single sensor and the difficulty of information sharing among various sensors in a highly dynamic VANET, effectively performing data aggregation in VANETs remains a challenge. Moreover, current studies have mainly focused on data aggregation in large-scale environments but have rarely discussed the issue of intra-cluster data aggregation in VANETs. In this study, we propose a multi-player game theory algorithm for intra-cluster data aggregation in VANETs by analyzing the competitive and cooperative relationships among sensor nodes. Several sensor-centric metrics are proposed to measure the data redundancy and stability of a cluster. We then study the utility function to achieve efficient intra-cluster data aggregation by considering both data redundancy and cluster stability. In particular, we prove the existence of a unique Nash equilibrium in the game model, and conduct extensive experiments to validate the proposed algorithm. Results demonstrate that the proposed algorithm has advantages over typical data aggregation algorithms in both accuracy and efficiency. PMID:26907272
A Game Theory Algorithm for Intra-Cluster Data Aggregation in a Vehicular Ad Hoc Network.
Chen, Yuzhong; Weng, Shining; Guo, Wenzhong; Xiong, Naixue
2016-02-19
Vehicular ad hoc networks (VANETs) have an important role in urban management and planning. The effective integration of vehicle information in VANETs is critical to traffic analysis, large-scale vehicle route planning and intelligent transportation scheduling. However, given the limitations in the precision of the output information of a single sensor and the difficulty of information sharing among various sensors in a highly dynamic VANET, effectively performing data aggregation in VANETs remains a challenge. Moreover, current studies have mainly focused on data aggregation in large-scale environments but have rarely discussed the issue of intra-cluster data aggregation in VANETs. In this study, we propose a multi-player game theory algorithm for intra-cluster data aggregation in VANETs by analyzing the competitive and cooperative relationships among sensor nodes. Several sensor-centric metrics are proposed to measure the data redundancy and stability of a cluster. We then study the utility function to achieve efficient intra-cluster data aggregation by considering both data redundancy and cluster stability. In particular, we prove the existence of a unique Nash equilibrium in the game model, and conduct extensive experiments to validate the proposed algorithm. Results demonstrate that the proposed algorithm has advantages over typical data aggregation algorithms in both accuracy and efficiency.
Real Time Intelligent Target Detection and Analysis with Machine Vision
NASA Technical Reports Server (NTRS)
Howard, Ayanna; Padgett, Curtis; Brown, Kenneth
2000-01-01
We present an algorithm for detecting a specified set of targets for an Automatic Target Recognition (ATR) application. ATR involves processing images for detecting, classifying, and tracking targets embedded in a background scene. We address the problem of discriminating between targets and nontarget objects in a scene by evaluating 40x40 image blocks belonging to an image. Each image block is first projected onto a set of templates specifically designed to separate images of targets embedded in a typical background scene from those background images without targets. These filters are found using directed principal component analysis which maximally separates the two groups. The projected images are then clustered into one of n classes based on a minimum distance to a set of n cluster prototypes. These cluster prototypes have previously been identified using a modified clustering algorithm based on prior sensed data. Each projected image pattern is then fed into the associated cluster's trained neural network for classification. A detailed description of our algorithm will be given in this paper. We outline our methodology for designing the templates, describe our modified clustering algorithm, and provide details on the neural network classifiers. Evaluation of the overall algorithm demonstrates that our detection rates approach 96% with a false positive rate of less than 0.03%.
NASA Astrophysics Data System (ADS)
Yang, Gongping; Zhou, Guang-Tong; Yin, Yilong; Yang, Xiukun
2010-12-01
A critical step in an automatic fingerprint recognition system is the segmentation of fingerprint images. Existing methods are usually designed to segment fingerprint images originated from a certain sensor. Thus their performances are significantly affected when dealing with fingerprints collected by different sensors. This work studies the sensor interoperability of fingerprint segmentation algorithms, which refers to the algorithm's ability to adapt to the raw fingerprints obtained from different sensors. We empirically analyze the sensor interoperability problem, and effectively address the issue by proposing a [InlineEquation not available: see fulltext.]-means based segmentation method called SKI. SKI clusters foreground and background blocks of a fingerprint image based on the [InlineEquation not available: see fulltext.]-means algorithm, where a fingerprint block is represented by a 3-dimensional feature vector consisting of block-wise coherence, mean, and variance (abbreviated as CMV). SKI also employs morphological postprocessing to achieve favorable segmentation results. We perform SKI on each fingerprint to ensure sensor interoperability. The interoperability and robustness of our method are validated by experiments performed on a number of fingerprint databases which are obtained from various sensors.
Fast multiclonal clusterization of V(D)J recombinations from high-throughput sequencing.
Giraud, Mathieu; Salson, Mikaël; Duez, Marc; Villenet, Céline; Quief, Sabine; Caillault, Aurélie; Grardel, Nathalie; Roumier, Christophe; Preudhomme, Claude; Figeac, Martin
2014-05-28
V(D)J recombinations in lymphocytes are essential for immunological diversity. They are also useful markers of pathologies. In leukemia, they are used to quantify the minimal residual disease during patient follow-up. However, the full breadth of lymphocyte diversity is not fully understood. We propose new algorithms that process high-throughput sequencing (HTS) data to extract unnamed V(D)J junctions and gather them into clones for quantification. This analysis is based on a seed heuristic and is fast and scalable because in the first phase, no alignment is performed with germline database sequences. The algorithms were applied to TR γ HTS data from a patient with acute lymphoblastic leukemia, and also on data simulating hypermutations. Our methods identified the main clone, as well as additional clones that were not identified with standard protocols. The proposed algorithms provide new insight into the analysis of high-throughput sequencing data for leukemia, and also to the quantitative assessment of any immunological profile. The methods described here are implemented in a C++ open-source program called Vidjil.
Adaptive block online learning target tracking based on super pixel segmentation
NASA Astrophysics Data System (ADS)
Cheng, Yue; Li, Jianzeng
2018-04-01
Video target tracking technology under the unremitting exploration of predecessors has made big progress, but there are still lots of problems not solved. This paper proposed a new algorithm of target tracking based on image segmentation technology. Firstly we divide the selected region using simple linear iterative clustering (SLIC) algorithm, after that, we block the area with the improved density-based spatial clustering of applications with noise (DBSCAN) clustering algorithm. Each sub-block independently trained classifier and tracked, then the algorithm ignore the failed tracking sub-block while reintegrate the rest of the sub-blocks into tracking box to complete the target tracking. The experimental results show that our algorithm can work effectively under occlusion interference, rotation change, scale change and many other problems in target tracking compared with the current mainstream algorithms.
The complex network of the Brazilian Popular Music
NASA Astrophysics Data System (ADS)
de Lima e Silva, D.; Medeiros Soares, M.; Henriques, M. V. C.; Schivani Alves, M. T.; de Aguiar, S. G.; de Carvalho, T. P.; Corso, G.; Lucena, L. S.
2004-02-01
We study the Brazilian Popular Music in a network perspective. We call the Brazilian Popular Music Network, BPMN, the graph where the vertices are the song writers and the links are determined by the existence of at least a common singer. The linking degree distribution of such graph shows power law and exponential regions. The exponent of the power law is compatible with the values obtained by the evolving network algorithms seen in the literature. The average path length of the BPMN is similar to the correspondent random graph, its clustering coefficient, however, is significantly larger. These results indicate that the BPMN forms a small-world network.
NASA Technical Reports Server (NTRS)
Wharton, S. W.
1980-01-01
An Interactive Cluster Analysis Procedure (ICAP) was developed to derive classifier training statistics from remotely sensed data. The algorithm interfaces the rapid numerical processing capacity of a computer with the human ability to integrate qualitative information. Control of the clustering process alternates between the algorithm, which creates new centroids and forms clusters and the analyst, who evaluate and elect to modify the cluster structure. Clusters can be deleted or lumped pairwise, or new centroids can be added. A summary of the cluster statistics can be requested to facilitate cluster manipulation. The ICAP was implemented in APL (A Programming Language), an interactive computer language. The flexibility of the algorithm was evaluated using data from different LANDSAT scenes to simulate two situations: one in which the analyst is assumed to have no prior knowledge about the data and wishes to have the clusters formed more or less automatically; and the other in which the analyst is assumed to have some knowledge about the data structure and wishes to use that information to closely supervise the clustering process. For comparison, an existing clustering method was also applied to the two data sets.
Multimodal Estimation of Distribution Algorithms.
Yang, Qiang; Chen, Wei-Neng; Li, Yun; Chen, C L Philip; Xu, Xiang-Min; Zhang, Jun
2016-02-15
Taking the advantage of estimation of distribution algorithms (EDAs) in preserving high diversity, this paper proposes a multimodal EDA. Integrated with clustering strategies for crowding and speciation, two versions of this algorithm are developed, which operate at the niche level. Then these two algorithms are equipped with three distinctive techniques: 1) a dynamic cluster sizing strategy; 2) an alternative utilization of Gaussian and Cauchy distributions to generate offspring; and 3) an adaptive local search. The dynamic cluster sizing affords a potential balance between exploration and exploitation and reduces the sensitivity to the cluster size in the niching methods. Taking advantages of Gaussian and Cauchy distributions, we generate the offspring at the niche level through alternatively using these two distributions. Such utilization can also potentially offer a balance between exploration and exploitation. Further, solution accuracy is enhanced through a new local search scheme probabilistically conducted around seeds of niches with probabilities determined self-adaptively according to fitness values of these seeds. Extensive experiments conducted on 20 benchmark multimodal problems confirm that both algorithms can achieve competitive performance compared with several state-of-the-art multimodal algorithms, which is supported by nonparametric tests. Especially, the proposed algorithms are very promising for complex problems with many local optima.
Pandora Cluster Seen by Spitzer
2016-09-28
This image of galaxy cluster Abell 2744, also called Pandora's Cluster, was taken by the Spitzer Space Telescope. The gravity of this galaxy cluster is strong enough that it acts as a lens to magnify images of more distant background galaxies. This technique is called gravitational lensing. The fuzzy blobs in this Spitzer image are the massive galaxies at the core of this cluster, but astronomers will be poring over the images in search of the faint streaks of light created where the cluster magnifies a distant background galaxy. The cluster is also being studied by NASA's Hubble Space Telescope and Chandra X-Ray Observatory in a collaboration called the Frontier Fields project. In this image, light from Spitzer's infrared channels is colored blue at 3.6 microns and green at 4.5 microns. http://photojournal.jpl.nasa.gov/catalog/PIA20920
NASA Astrophysics Data System (ADS)
Zhou, Shuguang; Zhou, Kefa; Wang, Jinlin; Yang, Genfang; Wang, Shanshan
2017-12-01
Cluster analysis is a well-known technique that is used to analyze various types of data. In this study, cluster analysis is applied to geochemical data that describe 1444 stream sediment samples collected in northwestern Xinjiang with a sample spacing of approximately 2 km. Three algorithms (the hierarchical, k-means, and fuzzy c-means algorithms) and six data transformation methods (the z-score standardization, ZST; the logarithmic transformation, LT; the additive log-ratio transformation, ALT; the centered log-ratio transformation, CLT; the isometric log-ratio transformation, ILT; and no transformation, NT) are compared in terms of their effects on the cluster analysis of the geochemical compositional data. The study shows that, on the one hand, the ZST does not affect the results of column- or variable-based (R-type) cluster analysis, whereas the other methods, including the LT, the ALT, and the CLT, have substantial effects on the results. On the other hand, the results of the row- or observation-based (Q-type) cluster analysis obtained from the geochemical data after applying NT and the ZST are relatively poor. However, we derive some improved results from the geochemical data after applying the CLT, the ILT, the LT, and the ALT. Moreover, the k-means and fuzzy c-means clustering algorithms are more reliable than the hierarchical algorithm when they are used to cluster the geochemical data. We apply cluster analysis to the geochemical data to explore for Au deposits within the study area, and we obtain a good correlation between the results retrieved by combining the CLT or the ILT with the k-means or fuzzy c-means algorithms and the potential zones of Au mineralization. Therefore, we suggest that the combination of the CLT or the ILT with the k-means or fuzzy c-means algorithms is an effective tool to identify potential zones of mineralization from geochemical data.
A ground truth based comparative study on clustering of gene expression data.
Zhu, Yitan; Wang, Zuyi; Miller, David J; Clarke, Robert; Xuan, Jianhua; Hoffman, Eric P; Wang, Yue
2008-05-01
Given the variety of available clustering methods for gene expression data analysis, it is important to develop an appropriate and rigorous validation scheme to assess the performance and limitations of the most widely used clustering algorithms. In this paper, we present a ground truth based comparative study on the functionality, accuracy, and stability of five data clustering methods, namely hierarchical clustering, K-means clustering, self-organizing maps, standard finite normal mixture fitting, and a caBIG toolkit (VIsual Statistical Data Analyzer--VISDA), tested on sample clustering of seven published microarray gene expression datasets and one synthetic dataset. We examined the performance of these algorithms in both data-sufficient and data-insufficient cases using quantitative performance measures, including cluster number detection accuracy and mean and standard deviation of partition accuracy. The experimental results showed that VISDA, an interactive coarse-to-fine maximum likelihood fitting algorithm, is a solid performer on most of the datasets, while K-means clustering and self-organizing maps optimized by the mean squared compactness criterion generally produce more stable solutions than the other methods.
Abelian non-global logarithms from soft gluon clustering
NASA Astrophysics Data System (ADS)
Kelley, Randall; Walsh, Jonathan R.; Zuberi, Saba
2012-09-01
Most recombination-style jet algorithms cluster soft gluons in a complex way. This leads to previously identified correlations in the soft gluon phase space and introduces logarithmic corrections to jet cross sections, which are known as clustering logarithms. The leading Abelian clustering logarithms occur at least at next-to leading logarithm (NLL) in the exponent of the distribution. Using the framework of Soft Collinear Effective Theory (SCET), we show that new clustering effects contributing at NLL arise at each order. While numerical resummation of clustering logs is possible, it is unlikely that they can be analytically resummed to NLL. Clustering logarithms make the anti-kT algorithm theoretically preferred, for which they are power suppressed. They can arise in Abelian and non-Abelian terms, and we calculate the Abelian clustering logarithms at O ( {α_s^2} ) for the jet mass distribution using the Cambridge/Aachen and kT algorithms, including jet radius dependence, which extends previous results. We find that clustering logarithms can be naturally thought of as a class of non-global logarithms, which have traditionally been tied to non-Abelian correlations in soft gluon emission.
Clustering Millions of Faces by Identity.
Otto, Charles; Wang, Dayong; Jain, Anil K
2018-02-01
Given a large collection of unlabeled face images, we address the problem of clustering faces into an unknown number of identities. This problem is of interest in social media, law enforcement, and other applications, where the number of faces can be of the order of hundreds of million, while the number of identities (clusters) can range from a few thousand to millions. To address the challenges of run-time complexity and cluster quality, we present an approximate Rank-Order clustering algorithm that performs better than popular clustering algorithms (k-Means and Spectral). Our experiments include clustering up to 123 million face images into over 10 million clusters. Clustering results are analyzed in terms of external (known face labels) and internal (unknown face labels) quality measures, and run-time. Our algorithm achieves an F-measure of 0.87 on the LFW benchmark (13 K faces of 5,749 individuals), which drops to 0.27 on the largest dataset considered (13 K faces in LFW + 123M distractor images). Additionally, we show that frames in the YouTube benchmark can be clustered with an F-measure of 0.71. An internal per-cluster quality measure is developed to rank individual clusters for manual exploration of high quality clusters that are compact and isolated.
Automatic online spike sorting with singular value decomposition and fuzzy C-mean clustering
2012-01-01
Background Understanding how neurons contribute to perception, motor functions and cognition requires the reliable detection of spiking activity of individual neurons during a number of different experimental conditions. An important problem in computational neuroscience is thus to develop algorithms to automatically detect and sort the spiking activity of individual neurons from extracellular recordings. While many algorithms for spike sorting exist, the problem of accurate and fast online sorting still remains a challenging issue. Results Here we present a novel software tool, called FSPS (Fuzzy SPike Sorting), which is designed to optimize: (i) fast and accurate detection, (ii) offline sorting and (iii) online classification of neuronal spikes with very limited or null human intervention. The method is based on a combination of Singular Value Decomposition for fast and highly accurate pre-processing of spike shapes, unsupervised Fuzzy C-mean, high-resolution alignment of extracted spike waveforms, optimal selection of the number of features to retain, automatic identification the number of clusters, and quantitative quality assessment of resulting clusters independent on their size. After being trained on a short testing data stream, the method can reliably perform supervised online classification and monitoring of single neuron activity. The generalized procedure has been implemented in our FSPS spike sorting software (available free for non-commercial academic applications at the address: http://www.spikesorting.com) using LabVIEW (National Instruments, USA). We evaluated the performance of our algorithm both on benchmark simulated datasets with different levels of background noise and on real extracellular recordings from premotor cortex of Macaque monkeys. The results of these tests showed an excellent accuracy in discriminating low-amplitude and overlapping spikes under strong background noise. The performance of our method is competitive with respect to other robust spike sorting algorithms. Conclusions This new software provides neuroscience laboratories with a new tool for fast and robust online classification of single neuron activity. This feature could become crucial in situations when online spike detection from multiple electrodes is paramount, such as in human clinical recordings or in brain-computer interfaces. PMID:22871125
Automatic online spike sorting with singular value decomposition and fuzzy C-mean clustering.
Oliynyk, Andriy; Bonifazzi, Claudio; Montani, Fernando; Fadiga, Luciano
2012-08-08
Understanding how neurons contribute to perception, motor functions and cognition requires the reliable detection of spiking activity of individual neurons during a number of different experimental conditions. An important problem in computational neuroscience is thus to develop algorithms to automatically detect and sort the spiking activity of individual neurons from extracellular recordings. While many algorithms for spike sorting exist, the problem of accurate and fast online sorting still remains a challenging issue. Here we present a novel software tool, called FSPS (Fuzzy SPike Sorting), which is designed to optimize: (i) fast and accurate detection, (ii) offline sorting and (iii) online classification of neuronal spikes with very limited or null human intervention. The method is based on a combination of Singular Value Decomposition for fast and highly accurate pre-processing of spike shapes, unsupervised Fuzzy C-mean, high-resolution alignment of extracted spike waveforms, optimal selection of the number of features to retain, automatic identification the number of clusters, and quantitative quality assessment of resulting clusters independent on their size. After being trained on a short testing data stream, the method can reliably perform supervised online classification and monitoring of single neuron activity. The generalized procedure has been implemented in our FSPS spike sorting software (available free for non-commercial academic applications at the address: http://www.spikesorting.com) using LabVIEW (National Instruments, USA). We evaluated the performance of our algorithm both on benchmark simulated datasets with different levels of background noise and on real extracellular recordings from premotor cortex of Macaque monkeys. The results of these tests showed an excellent accuracy in discriminating low-amplitude and overlapping spikes under strong background noise. The performance of our method is competitive with respect to other robust spike sorting algorithms. This new software provides neuroscience laboratories with a new tool for fast and robust online classification of single neuron activity. This feature could become crucial in situations when online spike detection from multiple electrodes is paramount, such as in human clinical recordings or in brain-computer interfaces.
SciSpark: Highly Interactive and Scalable Model Evaluation and Climate Metrics
NASA Astrophysics Data System (ADS)
Wilson, B. D.; Mattmann, C. A.; Waliser, D. E.; Kim, J.; Loikith, P.; Lee, H.; McGibbney, L. J.; Whitehall, K. D.
2014-12-01
Remote sensing data and climate model output are multi-dimensional arrays of massive sizes locked away in heterogeneous file formats (HDF5/4, NetCDF 3/4) and metadata models (HDF-EOS, CF) making it difficult to perform multi-stage, iterative science processing since each stage requires writing and reading data to and from disk. We are developing a lightning fast Big Data technology called SciSpark based on ApacheTM Spark. Spark implements the map-reduce paradigm for parallel computing on a cluster, but emphasizes in-memory computation, "spilling" to disk only as needed, and so outperforms the disk-based ApacheTM Hadoop by 100x in memory and by 10x on disk, and makes iterative algorithms feasible. SciSpark will enable scalable model evaluation by executing large-scale comparisons of A-Train satellite observations to model grids on a cluster of 100 to 1000 compute nodes. This 2nd generation capability for NASA's Regional Climate Model Evaluation System (RCMES) will compute simple climate metrics at interactive speeds, and extend to quite sophisticated iterative algorithms such as machine-learning (ML) based clustering of temperature PDFs, and even graph-based algorithms for searching for Mesocale Convective Complexes. The goals of SciSpark are to: (1) Decrease the time to compute comparison statistics and plots from minutes to seconds; (2) Allow for interactive exploration of time-series properties over seasons and years; (3) Decrease the time for satellite data ingestion into RCMES to hours; (4) Allow for Level-2 comparisons with higher-order statistics or PDF's in minutes to hours; and (5) Move RCMES into a near real time decision-making platform. We will report on: the architecture and design of SciSpark, our efforts to integrate climate science algorithms in Python and Scala, parallel ingest and partitioning (sharding) of A-Train satellite observations from HDF files and model grids from netCDF files, first parallel runs to compute comparison statistics and PDF's, and first metrics quantifying parallel speedups and memory & disk usage.
Application of artificial intelligence to search ground-state geometry of clusters
NASA Astrophysics Data System (ADS)
Lemes, Maurício Ruv; Marim, L. R.; dal Pino, A.
2002-08-01
We introduce a global optimization procedure, the neural-assisted genetic algorithm (NAGA). It combines the power of an artificial neural network (ANN) with the versatility of the genetic algorithm. This method is suitable to solve optimization problems that depend on some kind of heuristics to limit the search space. If a reasonable amount of data is available, the ANN can ``understand'' the problem and provide the genetic algorithm with a selected population of elements that will speed up the search for the optimum solution. We tested the method in a search for the ground-state geometry of silicon clusters. We trained the ANN with information about the geometry and energetics of small silicon clusters. Next, the ANN learned how to restrict the configurational space for larger silicon clusters. For Si10 and Si20, we noticed that the NAGA is at least three times faster than the ``pure'' genetic algorithm. As the size of the cluster increases, it is expected that the gain in terms of time will increase as well.
Automatic Clustering Using FSDE-Forced Strategy Differential Evolution
NASA Astrophysics Data System (ADS)
Yasid, A.
2018-01-01
Clustering analysis is important in datamining for unsupervised data, cause no adequate prior knowledge. One of the important tasks is defining the number of clusters without user involvement that is known as automatic clustering. This study intends on acquiring cluster number automatically utilizing forced strategy differential evolution (AC-FSDE). Two mutation parameters, namely: constant parameter and variable parameter are employed to boost differential evolution performance. Four well-known benchmark datasets were used to evaluate the algorithm. Moreover, the result is compared with other state of the art automatic clustering methods. The experiment results evidence that AC-FSDE is better or competitive with other existing automatic clustering algorithm.
Hybrid fuzzy cluster ensemble framework for tumor clustering from biomolecular data.
Yu, Zhiwen; Chen, Hantao; You, Jane; Han, Guoqiang; Li, Le
2013-01-01
Cancer class discovery using biomolecular data is one of the most important tasks for cancer diagnosis and treatment. Tumor clustering from gene expression data provides a new way to perform cancer class discovery. Most of the existing research works adopt single-clustering algorithms to perform tumor clustering is from biomolecular data that lack robustness, stability, and accuracy. To further improve the performance of tumor clustering from biomolecular data, we introduce the fuzzy theory into the cluster ensemble framework for tumor clustering from biomolecular data, and propose four kinds of hybrid fuzzy cluster ensemble frameworks (HFCEF), named as HFCEF-I, HFCEF-II, HFCEF-III, and HFCEF-IV, respectively, to identify samples that belong to different types of cancers. The difference between HFCEF-I and HFCEF-II is that they adopt different ensemble generator approaches to generate a set of fuzzy matrices in the ensemble. Specifically, HFCEF-I applies the affinity propagation algorithm (AP) to perform clustering on the sample dimension and generates a set of fuzzy matrices in the ensemble based on the fuzzy membership function and base samples selected by AP. HFCEF-II adopts AP to perform clustering on the attribute dimension, generates a set of subspaces, and obtains a set of fuzzy matrices in the ensemble by performing fuzzy c-means on subspaces. Compared with HFCEF-I and HFCEF-II, HFCEF-III and HFCEF-IV consider the characteristics of HFCEF-I and HFCEF-II. HFCEF-III combines HFCEF-I and HFCEF-II in a serial way, while HFCEF-IV integrates HFCEF-I and HFCEF-II in a concurrent way. HFCEFs adopt suitable consensus functions, such as the fuzzy c-means algorithm or the normalized cut algorithm (Ncut), to summarize generated fuzzy matrices, and obtain the final results. The experiments on real data sets from UCI machine learning repository and cancer gene expression profiles illustrate that 1) the proposed hybrid fuzzy cluster ensemble frameworks work well on real data sets, especially biomolecular data, and 2) the proposed approaches are able to provide more robust, stable, and accurate results when compared with the state-of-the-art single clustering algorithms and traditional cluster ensemble approaches.
ABCluster: the artificial bee colony algorithm for cluster global optimization.
Zhang, Jun; Dolg, Michael
2015-10-07
Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. In this work, we introduce a relatively new swarm intelligence algorithm, i.e. the artificial bee colony (ABC) algorithm proposed in 2005, to this field. It is inspired by the foraging behavior of a bee colony, and only three parameters are needed to control it. We applied it to several potential functions of quite different nature, i.e., the Coulomb-Born-Mayer, Lennard-Jones, Morse, Z and Gupta potentials. The benchmarks reveal that for long-ranged potentials the ABC algorithm is very efficient in locating the global minimum, while for short-ranged ones it is sometimes trapped into a local minimum funnel on a potential energy surface of large clusters. We have released an efficient, user-friendly, and free program "ABCluster" to realize the ABC algorithm. It is a black-box program for non-experts as well as experts and might become a useful tool for chemists to study clusters.
Hybrid approach of selecting hyperparameters of support vector machine for regression.
Jeng, Jin-Tsong
2006-06-01
To select the hyperparameters of the support vector machine for regression (SVR), a hybrid approach is proposed to determine the kernel parameter of the Gaussian kernel function and the epsilon value of Vapnik's epsilon-insensitive loss function. The proposed hybrid approach includes a competitive agglomeration (CA) clustering algorithm and a repeated SVR (RSVR) approach. Since the CA clustering algorithm is used to find the nearly "optimal" number of clusters and the centers of clusters in the clustering process, the CA clustering algorithm is applied to select the Gaussian kernel parameter. Additionally, an RSVR approach that relies on the standard deviation of a training error is proposed to obtain an epsilon in the loss function. Finally, two functions, one real data set (i.e., a time series of quarterly unemployment rate for West Germany) and an identification of nonlinear plant are used to verify the usefulness of the hybrid approach.
Fuzzy Document Clustering Approach using WordNet Lexical Categories
NASA Astrophysics Data System (ADS)
Gharib, Tarek F.; Fouad, Mohammed M.; Aref, Mostafa M.
Text mining refers generally to the process of extracting interesting information and knowledge from unstructured text. This area is growing rapidly mainly because of the strong need for analysing the huge and large amount of textual data that reside on internal file systems and the Web. Text document clustering provides an effective navigation mechanism to organize this large amount of data by grouping their documents into a small number of meaningful classes. In this paper we proposed a fuzzy text document clustering approach using WordNet lexical categories and Fuzzy c-Means algorithm. Some experiments are performed to compare efficiency of the proposed approach with the recently reported approaches. Experimental results show that Fuzzy clustering leads to great performance results. Fuzzy c-means algorithm overcomes other classical clustering algorithms like k-means and bisecting k-means in both clustering quality and running time efficiency.
Vu, Trung N; Valkenborg, Dirk; Smets, Koen; Verwaest, Kim A; Dommisse, Roger; Lemière, Filip; Verschoren, Alain; Goethals, Bart; Laukens, Kris
2011-10-20
Nuclear magnetic resonance spectroscopy (NMR) is a powerful technique to reveal and compare quantitative metabolic profiles of biological tissues. However, chemical and physical sample variations make the analysis of the data challenging, and typically require the application of a number of preprocessing steps prior to data interpretation. For example, noise reduction, normalization, baseline correction, peak picking, spectrum alignment and statistical analysis are indispensable components in any NMR analysis pipeline. We introduce a novel suite of informatics tools for the quantitative analysis of NMR metabolomic profile data. The core of the processing cascade is a novel peak alignment algorithm, called hierarchical Cluster-based Peak Alignment (CluPA). The algorithm aligns a target spectrum to the reference spectrum in a top-down fashion by building a hierarchical cluster tree from peak lists of reference and target spectra and then dividing the spectra into smaller segments based on the most distant clusters of the tree. To reduce the computational time to estimate the spectral misalignment, the method makes use of Fast Fourier Transformation (FFT) cross-correlation. Since the method returns a high-quality alignment, we can propose a simple methodology to study the variability of the NMR spectra. For each aligned NMR data point the ratio of the between-group and within-group sum of squares (BW-ratio) is calculated to quantify the difference in variability between and within predefined groups of NMR spectra. This differential analysis is related to the calculation of the F-statistic or a one-way ANOVA, but without distributional assumptions. Statistical inference based on the BW-ratio is achieved by bootstrapping the null distribution from the experimental data. The workflow performance was evaluated using a previously published dataset. Correlation maps, spectral and grey scale plots show clear improvements in comparison to other methods, and the down-to-earth quantitative analysis works well for the CluPA-aligned spectra. The whole workflow is embedded into a modular and statistically sound framework that is implemented as an R package called "speaq" ("spectrum alignment and quantitation"), which is freely available from http://code.google.com/p/speaq/.
2015-01-01
Background Though cluster analysis has become a routine analytic task for bioinformatics research, it is still arduous for researchers to assess the quality of a clustering result. To select the best clustering method and its parameters for a dataset, researchers have to run multiple clustering algorithms and compare them. However, such a comparison task with multiple clustering results is cognitively demanding and laborious. Results In this paper, we present XCluSim, a visual analytics tool that enables users to interactively compare multiple clustering results based on the Visual Information Seeking Mantra. We build a taxonomy for categorizing existing techniques of clustering results visualization in terms of the Gestalt principles of grouping. Using the taxonomy, we choose the most appropriate interactive visualizations for presenting individual clustering results from different types of clustering algorithms. The efficacy of XCluSim is shown through case studies with a bioinformatician. Conclusions Compared to other relevant tools, XCluSim enables users to compare multiple clustering results in a more scalable manner. Moreover, XCluSim supports diverse clustering algorithms and dedicated visualizations and interactions for different types of clustering results, allowing more effective exploration of details on demand. Through case studies with a bioinformatics researcher, we received positive feedback on the functionalities of XCluSim, including its ability to help identify stably clustered items across multiple clustering results. PMID:26328893
Clustering Binary Data in the Presence of Masking Variables
ERIC Educational Resources Information Center
Brusco, Michael J.
2004-01-01
A number of important applications require the clustering of binary data sets. Traditional nonhierarchical cluster analysis techniques, such as the popular K-means algorithm, can often be successfully applied to these data sets. However, the presence of masking variables in a data set can impede the ability of the K-means algorithm to recover the…
Wolf, Antje; Kirschner, Karl N
2013-02-01
With improvements in computer speed and algorithm efficiency, MD simulations are sampling larger amounts of molecular and biomolecular conformations. Being able to qualitatively and quantitatively sift these conformations into meaningful groups is a difficult and important task, especially when considering the structure-activity paradigm. Here we present a study that combines two popular techniques, principal component (PC) analysis and clustering, for revealing major conformational changes that occur in molecular dynamics (MD) simulations. Specifically, we explored how clustering different PC subspaces effects the resulting clusters versus clustering the complete trajectory data. As a case example, we used the trajectory data from an explicitly solvated simulation of a bacteria's L11·23S ribosomal subdomain, which is a target of thiopeptide antibiotics. Clustering was performed, using K-means and average-linkage algorithms, on data involving the first two to the first five PC subspace dimensions. For the average-linkage algorithm we found that data-point membership, cluster shape, and cluster size depended on the selected PC subspace data. In contrast, K-means provided very consistent results regardless of the selected subspace. Since we present results on a single model system, generalization concerning the clustering of different PC subspaces of other molecular systems is currently premature. However, our hope is that this study illustrates a) the complexities in selecting the appropriate clustering algorithm, b) the complexities in interpreting and validating their results, and c) by combining PC analysis with subsequent clustering valuable dynamic and conformational information can be obtained.
SeqMule: automated pipeline for analysis of human exome/genome sequencing data.
Guo, Yunfei; Ding, Xiaolei; Shen, Yufeng; Lyon, Gholson J; Wang, Kai
2015-09-18
Next-generation sequencing (NGS) technology has greatly helped us identify disease-contributory variants for Mendelian diseases. However, users are often faced with issues such as software compatibility, complicated configuration, and no access to high-performance computing facility. Discrepancies exist among aligners and variant callers. We developed a computational pipeline, SeqMule, to perform automated variant calling from NGS data on human genomes and exomes. SeqMule integrates computational-cluster-free parallelization capability built on top of the variant callers, and facilitates normalization/intersection of variant calls to generate consensus set with high confidence. SeqMule integrates 5 alignment tools, 5 variant calling algorithms and accepts various combinations all by one-line command, therefore allowing highly flexible yet fully automated variant calling. In a modern machine (2 Intel Xeon X5650 CPUs, 48 GB memory), when fast turn-around is needed, SeqMule generates annotated VCF files in a day from a 30X whole-genome sequencing data set; when more accurate calling is needed, SeqMule generates consensus call set that improves over single callers, as measured by both Mendelian error rate and consistency. SeqMule supports Sun Grid Engine for parallel processing, offers turn-key solution for deployment on Amazon Web Services, allows quality check, Mendelian error check, consistency evaluation, HTML-based reports. SeqMule is available at http://seqmule.openbioinformatics.org.
A Multilevel Gamma-Clustering Layout Algorithm for Visualization of Biological Networks
Hruz, Tomas; Lucas, Christoph; Laule, Oliver; Zimmermann, Philip
2013-01-01
Visualization of large complex networks has become an indispensable part of systems biology, where organisms need to be considered as one complex system. The visualization of the corresponding network is challenging due to the size and density of edges. In many cases, the use of standard visualization algorithms can lead to high running times and poorly readable visualizations due to many edge crossings. We suggest an approach that analyzes the structure of the graph first and then generates a new graph which contains specific semantic symbols for regular substructures like dense clusters. We propose a multilevel gamma-clustering layout visualization algorithm (MLGA) which proceeds in three subsequent steps: (i) a multilevel γ-clustering is used to identify the structure of the underlying network, (ii) the network is transformed to a tree, and (iii) finally, the resulting tree which shows the network structure is drawn using a variation of a force-directed algorithm. The algorithm has a potential to visualize very large networks because it uses modern clustering heuristics which are optimized for large graphs. Moreover, most of the edges are removed from the visual representation which allows keeping the overview over complex graphs with dense subgraphs. PMID:23864855
Iterative Track Fitting Using Cluster Classification in Multi Wire Proportional Chamber
NASA Astrophysics Data System (ADS)
Primor, David; Mikenberg, Giora; Etzion, Erez; Messer, Hagit
2007-10-01
This paper addresses the problem of track fitting of a charged particle in a multi wire proportional chamber (MWPC) using cathode readout strips. When a charged particle crosses a MWPC, a positive charge is induced on a cluster of adjacent strips. In the presence of high radiation background, the cluster charge measurements may be contaminated due to background particles, leading to less accurate hit position estimation. The least squares method for track fitting assumes the same position error distribution for all hits and thus loses its optimal properties on contaminated data. For this reason, a new robust algorithm is proposed. The algorithm first uses the known spatial charge distribution caused by a single charged particle over the strips, and classifies the clusters into ldquocleanrdquo and ldquodirtyrdquo clusters. Then, using the classification results, it performs an iterative weighted least squares fitting procedure, updating its optimal weights each iteration. The performance of the suggested algorithm is compared to other track fitting techniques using a simulation of tracks with radiation background. It is shown that the algorithm improves the track fitting performance significantly. A practical implementation of the algorithm is presented for muon track fitting in the cathode strip chamber (CSC) of the ATLAS experiment.
2015-01-01
Background Cellular processes are known to be modular and are realized by groups of proteins implicated in common biological functions. Such groups of proteins are called functional modules, and many community detection methods have been devised for their discovery from protein interaction networks (PINs) data. In current agglomerative clustering approaches, vertices with just a very few neighbors are often classified as separate clusters, which does not make sense biologically. Also, a major limitation of agglomerative techniques is that their computational efficiency do not scale well to large PINs. Finally, PIN data obtained from large scale experiments generally contain many false positives, and this makes it hard for agglomerative clustering methods to find the correct clusters, since they are known to be sensitive to noisy data. Results We propose a local similarity premetric, the relative vertex clustering value, as a new criterion allowing to decide when a node can be added to a given node's cluster and which addresses the above three issues. Based on this criterion, we introduce a novel and very fast agglomerative clustering technique, FAC-PIN, for discovering functional modules and protein complexes from a PIN data. Conclusions Our proposed FAC-PIN algorithm is applied to nine PIN data from eight different species including the yeast PIN, and the identified functional modules are validated using Gene Ontology (GO) annotations from DAVID Bioinformatics Resources. Identified protein complexes are also validated using experimentally verified complexes. Computational results show that FAC-PIN can discover functional modules or protein complexes from PINs more accurately and more efficiently than HC-PIN and CNM, the current state-of-the-art approaches for clustering PINs in an agglomerative manner. PMID:25734691
A Fast Implementation of the ISODATA Clustering Algorithm
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess; Mount, David M.; Netanyahu, Nathan S.; LeMoigne, Jacqueline
2005-01-01
Clustering is central to many image processing and remote sensing applications. ISODATA is one of the most popular and widely used clustering methods in geoscience applications, but it can run slowly, particularly with large data sets. We present a more efficient approach to ISODATA clustering, which achieves better running times by storing the points in a kd-tree and through a modification of the way in which the algorithm estimates the dispersion of each cluster. We also present an approximate version of the algorithm which allows the user to further improve the running time, at the expense of lower fidelity in computing the nearest cluster center to each point. We provide both theoretical and empirical justification that our modified approach produces clusterings that are very similar to those produced by the standard ISODATA approach. We also provide empirical studies on both synthetic data and remotely sensed Landsat and MODIS images that show that our approach has significantly lower running times.
A Fast Implementation of the Isodata Clustering Algorithm
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess; Le Moigne, Jacqueline; Mount, David M.; Netanyahu, Nathan S.
2007-01-01
Clustering is central to many image processing and remote sensing applications. ISODATA is one of the most popular and widely used clustering methods in geoscience applications, but it can run slowly, particularly with large data sets. We present a more efficient approach to IsoDATA clustering, which achieves better running times by storing the points in a kd-tree and through a modification of the way in which the algorithm estimates the dispersion of each cluster. We also present an approximate version of the algorithm which allows the user to further improve the running time, at the expense of lower fidelity in computing the nearest cluster center to each point. We provide both theoretical and empirical justification that our modified approach produces clusterings that are very similar to those produced by the standard ISODATA approach. We also provide empirical studies on both synthetic data and remotely sensed Landsat and MODIS images that show that our approach has significantly lower running times.
Constructing the L2-Graph for Robust Subspace Learning and Subspace Clustering.
Peng, Xi; Yu, Zhiding; Yi, Zhang; Tang, Huajin
2017-04-01
Under the framework of graph-based learning, the key to robust subspace clustering and subspace learning is to obtain a good similarity graph that eliminates the effects of errors and retains only connections between the data points from the same subspace (i.e., intrasubspace data points). Recent works achieve good performance by modeling errors into their objective functions to remove the errors from the inputs. However, these approaches face the limitations that the structure of errors should be known prior and a complex convex problem must be solved. In this paper, we present a novel method to eliminate the effects of the errors from the projection space (representation) rather than from the input space. We first prove that l 1 -, l 2 -, l ∞ -, and nuclear-norm-based linear projection spaces share the property of intrasubspace projection dominance, i.e., the coefficients over intrasubspace data points are larger than those over intersubspace data points. Based on this property, we introduce a method to construct a sparse similarity graph, called L2-graph. The subspace clustering and subspace learning algorithms are developed upon L2-graph. We conduct comprehensive experiment on subspace learning, image clustering, and motion segmentation and consider several quantitative benchmarks classification/clustering accuracy, normalized mutual information, and running time. Results show that L2-graph outperforms many state-of-the-art methods in our experiments, including L1-graph, low rank representation (LRR), and latent LRR, least square regression, sparse subspace clustering, and locally linear representation.
Unsupervised classification of multivariate geostatistical data: Two algorithms
NASA Astrophysics Data System (ADS)
Romary, Thomas; Ors, Fabien; Rivoirard, Jacques; Deraisme, Jacques
2015-12-01
With the increasing development of remote sensing platforms and the evolution of sampling facilities in mining and oil industry, spatial datasets are becoming increasingly large, inform a growing number of variables and cover wider and wider areas. Therefore, it is often necessary to split the domain of study to account for radically different behaviors of the natural phenomenon over the domain and to simplify the subsequent modeling step. The definition of these areas can be seen as a problem of unsupervised classification, or clustering, where we try to divide the domain into homogeneous domains with respect to the values taken by the variables in hand. The application of classical clustering methods, designed for independent observations, does not ensure the spatial coherence of the resulting classes. Image segmentation methods, based on e.g. Markov random fields, are not adapted to irregularly sampled data. Other existing approaches, based on mixtures of Gaussian random functions estimated via the expectation-maximization algorithm, are limited to reasonable sample sizes and a small number of variables. In this work, we propose two algorithms based on adaptations of classical algorithms to multivariate geostatistical data. Both algorithms are model free and can handle large volumes of multivariate, irregularly spaced data. The first one proceeds by agglomerative hierarchical clustering. The spatial coherence is ensured by a proximity condition imposed for two clusters to merge. This proximity condition relies on a graph organizing the data in the coordinates space. The hierarchical algorithm can then be seen as a graph-partitioning algorithm. Following this interpretation, a spatial version of the spectral clustering algorithm is also proposed. The performances of both algorithms are assessed on toy examples and a mining dataset.
Loewenstein, Yaniv; Portugaly, Elon; Fromer, Menachem; Linial, Michal
2008-01-01
Motivation: UPGMA (average linking) is probably the most popular algorithm for hierarchical data clustering, especially in computational biology. However, UPGMA requires the entire dissimilarity matrix in memory. Due to this prohibitive requirement, UPGMA is not scalable to very large datasets. Application: We present a novel class of memory-constrained UPGMA (MC-UPGMA) algorithms. Given any practical memory size constraint, this framework guarantees the correct clustering solution without explicitly requiring all dissimilarities in memory. The algorithms are general and are applicable to any dataset. We present a data-dependent characterization of hardness and clustering efficiency. The presented concepts are applicable to any agglomerative clustering formulation. Results: We apply our algorithm to the entire collection of protein sequences, to automatically build a comprehensive evolutionary-driven hierarchy of proteins from sequence alone. The newly created tree captures protein families better than state-of-the-art large-scale methods such as CluSTr, ProtoNet4 or single-linkage clustering. We demonstrate that leveraging the entire mass embodied in all sequence similarities allows to significantly improve on current protein family clusterings which are unable to directly tackle the sheer mass of this data. Furthermore, we argue that non-metric constraints are an inherent complexity of the sequence space and should not be overlooked. The robustness of UPGMA allows significant improvement, especially for multidomain proteins, and for large or divergent families. Availability: A comprehensive tree built from all UniProt sequence similarities, together with navigation and classification tools will be made available as part of the ProtoNet service. A C++ implementation of the algorithm is available on request. Contact: lonshy@cs.huji.ac.il PMID:18586742
Competitive learning with pairwise constraints.
Covões, Thiago F; Hruschka, Eduardo R; Ghosh, Joydeep
2013-01-01
Constrained clustering has been an active research topic since the last decade. Most studies focus on batch-mode algorithms. This brief introduces two algorithms for on-line constrained learning, named on-line linear constrained vector quantization error (O-LCVQE) and constrained rival penalized competitive learning (C-RPCL). The former is a variant of the LCVQE algorithm for on-line settings, whereas the latter is an adaptation of the (on-line) RPCL algorithm to deal with constrained clustering. The accuracy results--in terms of the normalized mutual information (NMI)--from experiments with nine datasets show that the partitions induced by O-LCVQE are competitive with those found by the (batch-mode) LCVQE. Compared with this formidable baseline algorithm, it is surprising that C-RPCL can provide better partitions (in terms of the NMI) for most of the datasets. Also, experiments on a large dataset show that on-line algorithms for constrained clustering can significantly reduce the computational time.
An Integrated Intrusion Detection Model of Cluster-Based Wireless Sensor Network
Sun, Xuemei; Yan, Bo; Zhang, Xinzhong; Rong, Chuitian
2015-01-01
Considering wireless sensor network characteristics, this paper combines anomaly and mis-use detection and proposes an integrated detection model of cluster-based wireless sensor network, aiming at enhancing detection rate and reducing false rate. Adaboost algorithm with hierarchical structures is used for anomaly detection of sensor nodes, cluster-head nodes and Sink nodes. Cultural-Algorithm and Artificial-Fish–Swarm-Algorithm optimized Back Propagation is applied to mis-use detection of Sink node. Plenty of simulation demonstrates that this integrated model has a strong performance of intrusion detection. PMID:26447696
An Integrated Intrusion Detection Model of Cluster-Based Wireless Sensor Network.
Sun, Xuemei; Yan, Bo; Zhang, Xinzhong; Rong, Chuitian
2015-01-01
Considering wireless sensor network characteristics, this paper combines anomaly and mis-use detection and proposes an integrated detection model of cluster-based wireless sensor network, aiming at enhancing detection rate and reducing false rate. Adaboost algorithm with hierarchical structures is used for anomaly detection of sensor nodes, cluster-head nodes and Sink nodes. Cultural-Algorithm and Artificial-Fish-Swarm-Algorithm optimized Back Propagation is applied to mis-use detection of Sink node. Plenty of simulation demonstrates that this integrated model has a strong performance of intrusion detection.
Interactive visual exploration and refinement of cluster assignments.
Kern, Michael; Lex, Alexander; Gehlenborg, Nils; Johnson, Chris R
2017-09-12
With ever-increasing amounts of data produced in biology research, scientists are in need of efficient data analysis methods. Cluster analysis, combined with visualization of the results, is one such method that can be used to make sense of large data volumes. At the same time, cluster analysis is known to be imperfect and depends on the choice of algorithms, parameters, and distance measures. Most clustering algorithms don't properly account for ambiguity in the source data, as records are often assigned to discrete clusters, even if an assignment is unclear. While there are metrics and visualization techniques that allow analysts to compare clusterings or to judge cluster quality, there is no comprehensive method that allows analysts to evaluate, compare, and refine cluster assignments based on the source data, derived scores, and contextual data. In this paper, we introduce a method that explicitly visualizes the quality of cluster assignments, allows comparisons of clustering results and enables analysts to manually curate and refine cluster assignments. Our methods are applicable to matrix data clustered with partitional, hierarchical, and fuzzy clustering algorithms. Furthermore, we enable analysts to explore clustering results in context of other data, for example, to observe whether a clustering of genomic data results in a meaningful differentiation in phenotypes. Our methods are integrated into Caleydo StratomeX, a popular, web-based, disease subtype analysis tool. We show in a usage scenario that our approach can reveal ambiguities in cluster assignments and produce improved clusterings that better differentiate genotypes and phenotypes.
Dimitrakopoulos, Christos; Theofilatos, Konstantinos; Pegkas, Andreas; Likothanassis, Spiros; Mavroudi, Seferina
2016-07-01
Proteins are vital biological molecules driving many fundamental cellular processes. They rarely act alone, but form interacting groups called protein complexes. The study of protein complexes is a key goal in systems biology. Recently, large protein-protein interaction (PPI) datasets have been published and a plethora of computational methods that provide new ideas for the prediction of protein complexes have been implemented. However, most of the methods suffer from two major limitations: First, they do not account for proteins participating in multiple functions and second, they are unable to handle weighted PPI graphs. Moreover, the problem remains open as existing algorithms and tools are insufficient in terms of predictive metrics. In the present paper, we propose gradually expanding neighborhoods with adjustment (GENA), a new algorithm that gradually expands neighborhoods in a graph starting from highly informative "seed" nodes. GENA considers proteins as multifunctional molecules allowing them to participate in more than one protein complex. In addition, GENA accepts weighted PPI graphs by using a weighted evaluation function for each cluster. In experiments with datasets from Saccharomyces cerevisiae and human, GENA outperformed Markov clustering, restricted neighborhood search and clustering with overlapping neighborhood expansion, three state-of-the-art methods for computationally predicting protein complexes. Seven PPI networks and seven evaluation datasets were used in total. GENA outperformed existing methods in 16 out of 18 experiments achieving an average improvement of 5.5% when the maximum matching ratio metric was used. Our method was able to discover functionally homogeneous protein clusters and uncover important network modules in a Parkinson expression dataset. When used on the human networks, around 47% of the detected clusters were enriched in gene ontology (GO) terms with depth higher than five in the GO hierarchy. In the present manuscript, we introduce a new method for the computational prediction of protein complexes by making the realistic assumption that proteins participate in multiple protein complexes and cellular functions. Our method can detect accurate and functionally homogeneous clusters. Copyright © 2016 Elsevier B.V. All rights reserved.
Consensus-Based Sorting of Neuronal Spike Waveforms
Fournier, Julien; Mueller, Christian M.; Shein-Idelson, Mark; Hemberger, Mike
2016-01-01
Optimizing spike-sorting algorithms is difficult because sorted clusters can rarely be checked against independently obtained “ground truth” data. In most spike-sorting algorithms in use today, the optimality of a clustering solution is assessed relative to some assumption on the distribution of the spike shapes associated with a particular single unit (e.g., Gaussianity) and by visual inspection of the clustering solution followed by manual validation. When the spatiotemporal waveforms of spikes from different cells overlap, the decision as to whether two spikes should be assigned to the same source can be quite subjective, if it is not based on reliable quantitative measures. We propose a new approach, whereby spike clusters are identified from the most consensual partition across an ensemble of clustering solutions. Using the variability of the clustering solutions across successive iterations of the same clustering algorithm (template matching based on K-means clusters), we estimate the probability of spikes being clustered together and identify groups of spikes that are not statistically distinguishable from one another. Thus, we identify spikes that are most likely to be clustered together and therefore correspond to consistent spike clusters. This method has the potential advantage that it does not rely on any model of the spike shapes. It also provides estimates of the proportion of misclassified spikes for each of the identified clusters. We tested our algorithm on several datasets for which there exists a ground truth (simultaneous intracellular data), and show that it performs close to the optimum reached by a support vector machine trained on the ground truth. We also show that the estimated rate of misclassification matches the proportion of misclassified spikes measured from the ground truth data. PMID:27536990
Consensus-Based Sorting of Neuronal Spike Waveforms.
Fournier, Julien; Mueller, Christian M; Shein-Idelson, Mark; Hemberger, Mike; Laurent, Gilles
2016-01-01
Optimizing spike-sorting algorithms is difficult because sorted clusters can rarely be checked against independently obtained "ground truth" data. In most spike-sorting algorithms in use today, the optimality of a clustering solution is assessed relative to some assumption on the distribution of the spike shapes associated with a particular single unit (e.g., Gaussianity) and by visual inspection of the clustering solution followed by manual validation. When the spatiotemporal waveforms of spikes from different cells overlap, the decision as to whether two spikes should be assigned to the same source can be quite subjective, if it is not based on reliable quantitative measures. We propose a new approach, whereby spike clusters are identified from the most consensual partition across an ensemble of clustering solutions. Using the variability of the clustering solutions across successive iterations of the same clustering algorithm (template matching based on K-means clusters), we estimate the probability of spikes being clustered together and identify groups of spikes that are not statistically distinguishable from one another. Thus, we identify spikes that are most likely to be clustered together and therefore correspond to consistent spike clusters. This method has the potential advantage that it does not rely on any model of the spike shapes. It also provides estimates of the proportion of misclassified spikes for each of the identified clusters. We tested our algorithm on several datasets for which there exists a ground truth (simultaneous intracellular data), and show that it performs close to the optimum reached by a support vector machine trained on the ground truth. We also show that the estimated rate of misclassification matches the proportion of misclassified spikes measured from the ground truth data.
Cloud classification from satellite data using a fuzzy sets algorithm: A polar example
NASA Technical Reports Server (NTRS)
Key, J. R.; Maslanik, J. A.; Barry, R. G.
1988-01-01
Where spatial boundaries between phenomena are diffuse, classification methods which construct mutually exclusive clusters seem inappropriate. The Fuzzy c-means (FCM) algorithm assigns each observation to all clusters, with membership values as a function of distance to the cluster center. The FCM algorithm is applied to AVHRR data for the purpose of classifying polar clouds and surfaces. Careful analysis of the fuzzy sets can provide information on which spectral channels are best suited to the classification of particular features, and can help determine likely areas of misclassification. General agreement in the resulting classes and cloud fraction was found between the FCM algorithm, a manual classification, and an unsupervised maximum likelihood classifier.
Hybrid employment recommendation algorithm based on Spark
NASA Astrophysics Data System (ADS)
Li, Zuoquan; Lin, Yubei; Zhang, Xingming
2017-08-01
Aiming at the real-time application of collaborative filtering employment recommendation algorithm (CF), a clustering collaborative filtering recommendation algorithm (CCF) is developed, which applies hierarchical clustering to CF and narrows the query range of neighbour items. In addition, to solve the cold-start problem of content-based recommendation algorithm (CB), a content-based algorithm with users’ information (CBUI) is introduced for job recommendation. Furthermore, a hybrid recommendation algorithm (HRA) which combines CCF and CBUI algorithms is proposed, and implemented on Spark platform. The experimental results show that HRA can overcome the problems of cold start and data sparsity, and achieve good recommendation accuracy and scalability for employment recommendation.
Buried landmine detection using multivariate normal clustering
NASA Astrophysics Data System (ADS)
Duston, Brian M.
2001-10-01
A Bayesian classification algorithm is presented for discriminating buried land mines from buried and surface clutter in Ground Penetrating Radar (GPR) signals. This algorithm is based on multivariate normal (MVN) clustering, where feature vectors are used to identify populations (clusters) of mines and clutter objects. The features are extracted from two-dimensional images created from ground penetrating radar scans. MVN clustering is used to determine the number of clusters in the data and to create probability density models for target and clutter populations, producing the MVN clustering classifier (MVNCC). The Bayesian Information Criteria (BIC) is used to evaluate each model to determine the number of clusters in the data. An extension of the MVNCC allows the model to adapt to local clutter distributions by treating each of the MVN cluster components as a Poisson process and adaptively estimating the intensity parameters. The algorithm is developed using data collected by the Mine Hunter/Killer Close-In Detector (MH/K CID) at prepared mine lanes. The Mine Hunter/Killer is a prototype mine detecting and neutralizing vehicle developed for the U.S. Army to clear roads of anti-tank mines.
Seman, Ali; Sapawi, Azizian Mohd; Salleh, Mohd Zaki
2015-06-01
Y-chromosome short tandem repeats (Y-STRs) are genetic markers with practical applications in human identification. However, where mass identification is required (e.g., in the aftermath of disasters with significant fatalities), the efficiency of the process could be improved with new statistical approaches. Clustering applications are relatively new tools for large-scale comparative genotyping, and the k-Approximate Modal Haplotype (k-AMH), an efficient algorithm for clustering large-scale Y-STR data, represents a promising method for developing these tools. In this study we improved the k-AMH and produced three new algorithms: the Nk-AMH I (including a new initial cluster center selection), the Nk-AMH II (including a new dominant weighting value), and the Nk-AMH III (combining I and II). The Nk-AMH III was the superior algorithm, with mean clustering accuracy that increased in four out of six datasets and remained at 100% in the other two. Additionally, the Nk-AMH III achieved a 2% higher overall mean clustering accuracy score than the k-AMH, as well as optimal accuracy for all datasets (0.84-1.00). With inclusion of the two new methods, the Nk-AMH III produced an optimal solution for clustering Y-STR data; thus, the algorithm has potential for further development towards fully automatic clustering of any large-scale genotypic data.
Image Registration Algorithm Based on Parallax Constraint and Clustering Analysis
NASA Astrophysics Data System (ADS)
Wang, Zhe; Dong, Min; Mu, Xiaomin; Wang, Song
2018-01-01
To resolve the problem of slow computation speed and low matching accuracy in image registration, a new image registration algorithm based on parallax constraint and clustering analysis is proposed. Firstly, Harris corner detection algorithm is used to extract the feature points of two images. Secondly, use Normalized Cross Correlation (NCC) function to perform the approximate matching of feature points, and the initial feature pair is obtained. Then, according to the parallax constraint condition, the initial feature pair is preprocessed by K-means clustering algorithm, which is used to remove the feature point pairs with obvious errors in the approximate matching process. Finally, adopt Random Sample Consensus (RANSAC) algorithm to optimize the feature points to obtain the final feature point matching result, and the fast and accurate image registration is realized. The experimental results show that the image registration algorithm proposed in this paper can improve the accuracy of the image matching while ensuring the real-time performance of the algorithm.
NASA Astrophysics Data System (ADS)
Gu, Hui; Zhu, Hongxia; Cui, Yanfeng; Si, Fengqi; Xue, Rui; Xi, Han; Zhang, Jiayu
2018-06-01
An integrated combustion optimization scheme is proposed for the combined considering the restriction in coal-fired boiler combustion efficiency and outlet NOx emissions. Continuous attribute discretization and reduction techniques are handled as optimization preparation by E-Cluster and C_RED methods, in which the segmentation numbers don't need to be provided in advance and can be continuously adapted with data characters. In order to obtain results of multi-objections with clustering method for mixed data, a modified K-prototypes algorithm is then proposed. This algorithm can be divided into two stages as K-prototypes algorithm for clustering number self-adaptation and clustering for multi-objective optimization, respectively. Field tests were carried out at a 660 MW coal-fired boiler to provide real data as a case study for controllable attribute discretization and reduction in boiler system and obtaining optimization parameters considering [ maxηb, minyNOx ] multi-objective rule.
Image Segmentation Method Using Fuzzy C Mean Clustering Based on Multi-Objective Optimization
NASA Astrophysics Data System (ADS)
Chen, Jinlin; Yang, Chunzhi; Xu, Guangkui; Ning, Li
2018-04-01
Image segmentation is not only one of the hottest topics in digital image processing, but also an important part of computer vision applications. As one kind of image segmentation algorithms, fuzzy C-means clustering is an effective and concise segmentation algorithm. However, the drawback of FCM is that it is sensitive to image noise. To solve the problem, this paper designs a novel fuzzy C-mean clustering algorithm based on multi-objective optimization. We add a parameter λ to the fuzzy distance measurement formula to improve the multi-objective optimization. The parameter λ can adjust the weights of the pixel local information. In the algorithm, the local correlation of neighboring pixels is added to the improved multi-objective mathematical model to optimize the clustering cent. Two different experimental results show that the novel fuzzy C-means approach has an efficient performance and computational time while segmenting images by different type of noises.
Gauge-free cluster variational method by maximal messages and moment matching.
Domínguez, Eduardo; Lage-Castellanos, Alejandro; Mulet, Roberto; Ricci-Tersenghi, Federico
2017-04-01
We present an implementation of the cluster variational method (CVM) as a message passing algorithm. The kind of message passing algorithm used for CVM, usually named generalized belief propagation (GBP), is a generalization of the belief propagation algorithm in the same way that CVM is a generalization of the Bethe approximation for estimating the partition function. However, the connection between fixed points of GBP and the extremal points of the CVM free energy is usually not a one-to-one correspondence because of the existence of a gauge transformation involving the GBP messages. Our contribution is twofold. First, we propose a way of defining messages (fields) in a generic CVM approximation, such that messages arrive on a given region from all its ancestors, and not only from its direct parents, as in the standard parent-to-child GBP. We call this approach maximal messages. Second, we focus on the case of binary variables, reinterpreting the messages as fields enforcing the consistency between the moments of the local (marginal) probability distributions. We provide a precise rule to enforce all consistencies, avoiding any redundancy, that would otherwise lead to a gauge transformation on the messages. This moment matching method is gauge free, i.e., it guarantees that the resulting GBP is not gauge invariant. We apply our maximal messages and moment matching GBP to obtain an analytical expression for the critical temperature of the Ising model in general dimensions at the level of plaquette CVM. The values obtained outperform Bethe estimates, and are comparable with loop corrected belief propagation equations. The method allows for a straightforward generalization to disordered systems.
NCC-RANSAC: a fast plane extraction method for 3-D range data segmentation.
Qian, Xiangfei; Ye, Cang
2014-12-01
This paper presents a new plane extraction (PE) method based on the random sample consensus (RANSAC) approach. The generic RANSAC-based PE algorithm may over-extract a plane, and it may fail in case of a multistep scene where the RANSAC procedure results in multiple inlier patches that form a slant plane straddling the steps. The CC-RANSAC PE algorithm successfully overcomes the latter limitation if the inlier patches are separate. However, it fails if the inlier patches are connected. A typical scenario is a stairway with a stair wall where the RANSAC plane-fitting procedure results in inliers patches in the tread, riser, and stair wall planes. They connect together and form a plane. The proposed method, called normal-coherence CC-RANSAC (NCC-RANSAC), performs a normal coherence check to all data points of the inlier patches and removes the data points whose normal directions are contradictory to that of the fitted plane. This process results in separate inlier patches, each of which is treated as a candidate plane. A recursive plane clustering process is then executed to grow each of the candidate planes until all planes are extracted in their entireties. The RANSAC plane-fitting and the recursive plane clustering processes are repeated until no more planes are found. A probabilistic model is introduced to predict the success probability of the NCC-RANSAC algorithm and validated with real data of a 3-D time-of-flight camera-SwissRanger SR4000. Experimental results demonstrate that the proposed method extracts more accurate planes with less computational time than the existing RANSAC-based methods.
An image-guided tool to prevent hospital acquired infections
NASA Astrophysics Data System (ADS)
Nagy, Melinda; Szilágyi, László; Lehotsky, Ákos; Haidegger, Tamás; Benyó, Balázs
2011-03-01
Hospital Acquired Infections (HAI) represent the fourth leading cause of death in the United States, and claims hundreds of thousands of lives annually in the rest of the world. This paper presents a novel low-cost mobile device|called Stery-Hand|that helps to avoid HAI by improving hand hygiene control through providing an objective evaluation of the quality of hand washing. The use of the system is intuitive: having performed hand washing with a soap mixed with UV re ective powder, the skin appears brighter in UV illumination on the disinfected surfaces. Washed hands are inserted into the Stery-Hand box, where a digital image is taken under UV lighting. Automated image processing algorithms are employed in three steps to evaluate the quality of hand washing. First, the contour of the hand is extracted in order to distinguish the hand from the background. Next, a semi-supervised clustering algorithm classies the pixels of the hand into three groups, corresponding to clean, partially clean and dirty areas. The clustering algorithm is derived from the histogram-based quick fuzzy c-means approach, using a priori information extracted from reference images, evaluated by experts. Finally, the identied areas are adjusted to suppress shading eects, and quantied in order to give a verdict on hand disinfection quality. The proposed methodology was validated through tests using hundreds of images recorded in our laboratory. The proposed system was found robust and accurate, producing correct estimation for over 98% of the test cases. Stery-Hand may be employed in general practice, and it may also serve educational purposes.
Gauge-free cluster variational method by maximal messages and moment matching
NASA Astrophysics Data System (ADS)
Domínguez, Eduardo; Lage-Castellanos, Alejandro; Mulet, Roberto; Ricci-Tersenghi, Federico
2017-04-01
We present an implementation of the cluster variational method (CVM) as a message passing algorithm. The kind of message passing algorithm used for CVM, usually named generalized belief propagation (GBP), is a generalization of the belief propagation algorithm in the same way that CVM is a generalization of the Bethe approximation for estimating the partition function. However, the connection between fixed points of GBP and the extremal points of the CVM free energy is usually not a one-to-one correspondence because of the existence of a gauge transformation involving the GBP messages. Our contribution is twofold. First, we propose a way of defining messages (fields) in a generic CVM approximation, such that messages arrive on a given region from all its ancestors, and not only from its direct parents, as in the standard parent-to-child GBP. We call this approach maximal messages. Second, we focus on the case of binary variables, reinterpreting the messages as fields enforcing the consistency between the moments of the local (marginal) probability distributions. We provide a precise rule to enforce all consistencies, avoiding any redundancy, that would otherwise lead to a gauge transformation on the messages. This moment matching method is gauge free, i.e., it guarantees that the resulting GBP is not gauge invariant. We apply our maximal messages and moment matching GBP to obtain an analytical expression for the critical temperature of the Ising model in general dimensions at the level of plaquette CVM. The values obtained outperform Bethe estimates, and are comparable with loop corrected belief propagation equations. The method allows for a straightforward generalization to disordered systems.
NCC-RANSAC: A Fast Plane Extraction Method for 3-D Range Data Segmentation
Qian, Xiangfei; Ye, Cang
2015-01-01
This paper presents a new plane extraction (PE) method based on the random sample consensus (RANSAC) approach. The generic RANSAC-based PE algorithm may over-extract a plane, and it may fail in case of a multistep scene where the RANSAC procedure results in multiple inlier patches that form a slant plane straddling the steps. The CC-RANSAC PE algorithm successfully overcomes the latter limitation if the inlier patches are separate. However, it fails if the inlier patches are connected. A typical scenario is a stairway with a stair wall where the RANSAC plane-fitting procedure results in inliers patches in the tread, riser, and stair wall planes. They connect together and form a plane. The proposed method, called normal-coherence CC-RANSAC (NCC-RANSAC), performs a normal coherence check to all data points of the inlier patches and removes the data points whose normal directions are contradictory to that of the fitted plane. This process results in separate inlier patches, each of which is treated as a candidate plane. A recursive plane clustering process is then executed to grow each of the candidate planes until all planes are extracted in their entireties. The RANSAC plane-fitting and the recursive plane clustering processes are repeated until no more planes are found. A probabilistic model is introduced to predict the success probability of the NCC-RANSAC algorithm and validated with real data of a 3-D time-of-flight camera–SwissRanger SR4000. Experimental results demonstrate that the proposed method extracts more accurate planes with less computational time than the existing RANSAC-based methods. PMID:24771605
ERIC Educational Resources Information Center
Xu, Beijie; Recker, Mimi; Qi, Xiaojun; Flann, Nicholas; Ye, Lei
2013-01-01
This article examines clustering as an educational data mining method. In particular, two clustering algorithms, the widely used K-means and the model-based Latent Class Analysis, are compared, using usage data from an educational digital library service, the Instructional Architect (IA.usu.edu). Using a multi-faceted approach and multiple data…
NASA Astrophysics Data System (ADS)
Basalto, Nicolas; Bellotti, Roberto; de Carlo, Francesco; Facchi, Paolo; Pantaleo, Ester; Pascazio, Saverio
2008-10-01
A clustering algorithm based on the Hausdorff distance is analyzed and compared to the single, complete, and average linkage algorithms. The four clustering procedures are applied to a toy example and to the time series of financial data. The dendrograms are scrutinized and their features compared. The Hausdorff linkage relies on firm mathematical grounds and turns out to be very effective when one has to discriminate among complex structures.
Fast clustering using adaptive density peak detection.
Wang, Xiao-Feng; Xu, Yifan
2017-12-01
Common limitations of clustering methods include the slow algorithm convergence, the instability of the pre-specification on a number of intrinsic parameters, and the lack of robustness to outliers. A recent clustering approach proposed a fast search algorithm of cluster centers based on their local densities. However, the selection of the key intrinsic parameters in the algorithm was not systematically investigated. It is relatively difficult to estimate the "optimal" parameters since the original definition of the local density in the algorithm is based on a truncated counting measure. In this paper, we propose a clustering procedure with adaptive density peak detection, where the local density is estimated through the nonparametric multivariate kernel estimation. The model parameter is then able to be calculated from the equations with statistical theoretical justification. We also develop an automatic cluster centroid selection method through maximizing an average silhouette index. The advantage and flexibility of the proposed method are demonstrated through simulation studies and the analysis of a few benchmark gene expression data sets. The method only needs to perform in one single step without any iteration and thus is fast and has a great potential to apply on big data analysis. A user-friendly R package ADPclust is developed for public use.
Prediction of Tibial Rotation Pathologies Using Particle Swarm Optimization and K-Means Algorithms.
Sari, Murat; Tuna, Can; Akogul, Serkan
2018-03-28
The aim of this article is to investigate pathological subjects from a population through different physical factors. To achieve this, particle swarm optimization (PSO) and K-means (KM) clustering algorithms have been combined (PSO-KM). Datasets provided by the literature were divided into three clusters based on age and weight parameters and each one of right tibial external rotation (RTER), right tibial internal rotation (RTIR), left tibial external rotation (LTER), and left tibial internal rotation (LTIR) values were divided into three types as Type 1, Type 2 and Type 3 (Type 2 is non-pathological (normal) and the other two types are pathological (abnormal)), respectively. The rotation values of every subject in any cluster were noted. Then the algorithm was run and the produced values were also considered. The values of the produced algorithm, the PSO-KM, have been compared with the real values. The hybrid PSO-KM algorithm has been very successful on the optimal clustering of the tibial rotation types through the physical criteria. In this investigation, Type 2 (pathological subjects) is of especially high predictability and the PSO-KM algorithm has been very successful as an operation system for clustering and optimizing the tibial motion data assessments. These research findings are expected to be very useful for health providers, such as physiotherapists, orthopedists, and so on, in which this consequence may help clinicians to appropriately designing proper treatment schedules for patients.
Clustervision: Visual Supervision of Unsupervised Clustering.
Kwon, Bum Chul; Eysenbach, Ben; Verma, Janu; Ng, Kenney; De Filippi, Christopher; Stewart, Walter F; Perer, Adam
2018-01-01
Clustering, the process of grouping together similar items into distinct partitions, is a common type of unsupervised machine learning that can be useful for summarizing and aggregating complex multi-dimensional data. However, data can be clustered in many ways, and there exist a large body of algorithms designed to reveal different patterns. While having access to a wide variety of algorithms is helpful, in practice, it is quite difficult for data scientists to choose and parameterize algorithms to get the clustering results relevant for their dataset and analytical tasks. To alleviate this problem, we built Clustervision, a visual analytics tool that helps ensure data scientists find the right clustering among the large amount of techniques and parameters available. Our system clusters data using a variety of clustering techniques and parameters and then ranks clustering results utilizing five quality metrics. In addition, users can guide the system to produce more relevant results by providing task-relevant constraints on the data. Our visual user interface allows users to find high quality clustering results, explore the clusters using several coordinated visualization techniques, and select the cluster result that best suits their task. We demonstrate this novel approach using a case study with a team of researchers in the medical domain and showcase that our system empowers users to choose an effective representation of their complex data.
Chen, Zhaoxue; Yu, Haizhong; Chen, Hao
2013-12-01
To solve the problem of traditional K-means clustering in which initial clustering centers are selected randomly, we proposed a new K-means segmentation algorithm based on robustly selecting 'peaks' standing for White Matter, Gray Matter and Cerebrospinal Fluid in multi-peaks gray histogram of MRI brain image. The new algorithm takes gray value of selected histogram 'peaks' as the initial K-means clustering center and can segment the MRI brain image into three parts of tissue more effectively, accurately, steadily and successfully. Massive experiments have proved that the proposed algorithm can overcome many shortcomings caused by traditional K-means clustering method such as low efficiency, veracity, robustness and time consuming. The histogram 'peak' selecting idea of the proposed segmentootion method is of more universal availability.
Yock, Adam D; Kim, Gwe-Ya
2017-09-01
To present the k-means clustering algorithm as a tool to address treatment planning considerations characteristic of stereotactic radiosurgery using a single isocenter for multiple targets. For 30 patients treated with stereotactic radiosurgery for multiple brain metastases, the geometric centroids and radii of each met were determined from the treatment planning system. In-house software used this as well as weighted and unweighted versions of the k-means clustering algorithm to group the targets to be treated with a single isocenter, and to position each isocenter. The algorithm results were evaluated using within-cluster sum of squares as well as a minimum target coverage metric that considered the effect of target size. Both versions of the algorithm were applied to an example patient to demonstrate the prospective determination of the appropriate number and location of isocenters. Both weighted and unweighted versions of the k-means algorithm were applied successfully to determine the number and position of isocenters. Comparing the two, both the within-cluster sum of squares metric and the minimum target coverage metric resulting from the unweighted version were less than those from the weighted version. The average magnitudes of the differences were small (-0.2 cm 2 and 0.1% for the within cluster sum of squares and minimum target coverage, respectively) but statistically significant (Wilcoxon signed-rank test, P < 0.01). The differences between the versions of the k-means clustering algorithm represented an advantage of the unweighted version for the within-cluster sum of squares metric, and an advantage of the weighted version for the minimum target coverage metric. While additional treatment planning considerations have a large influence on the final treatment plan quality, both versions of the k-means algorithm provide automatic, consistent, quantitative, and objective solutions to the tasks associated with SRS treatment planning using a single isocenter for multiple targets. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
A system for learning statistical motion patterns.
Hu, Weiming; Xiao, Xuejuan; Fu, Zhouyu; Xie, Dan; Tan, Tieniu; Maybank, Steve
2006-09-01
Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy K-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction.
Standish, Kristopher A; Carland, Tristan M; Lockwood, Glenn K; Pfeiffer, Wayne; Tatineni, Mahidhar; Huang, C Chris; Lamberth, Sarah; Cherkas, Yauheniya; Brodmerkel, Carrie; Jaeger, Ed; Smith, Lance; Rajagopal, Gunaretnam; Curran, Mark E; Schork, Nicholas J
2015-09-22
Next-generation sequencing (NGS) technologies have become much more efficient, allowing whole human genomes to be sequenced faster and cheaper than ever before. However, processing the raw sequence reads associated with NGS technologies requires care and sophistication in order to draw compelling inferences about phenotypic consequences of variation in human genomes. It has been shown that different approaches to variant calling from NGS data can lead to different conclusions. Ensuring appropriate accuracy and quality in variant calling can come at a computational cost. We describe our experience implementing and evaluating a group-based approach to calling variants on large numbers of whole human genomes. We explore the influence of many factors that may impact the accuracy and efficiency of group-based variant calling, including group size, the biogeographical backgrounds of the individuals who have been sequenced, and the computing environment used. We make efficient use of the Gordon supercomputer cluster at the San Diego Supercomputer Center by incorporating job-packing and parallelization considerations into our workflow while calling variants on 437 whole human genomes generated as part of large association study. We ultimately find that our workflow resulted in high-quality variant calls in a computationally efficient manner. We argue that studies like ours should motivate further investigations combining hardware-oriented advances in computing systems with algorithmic developments to tackle emerging 'big data' problems in biomedical research brought on by the expansion of NGS technologies.
Identify High-Quality Protein Structural Models by Enhanced K-Means.
Wu, Hongjie; Li, Haiou; Jiang, Min; Chen, Cheng; Lv, Qiang; Wu, Chuang
2017-01-01
Background. One critical issue in protein three-dimensional structure prediction using either ab initio or comparative modeling involves identification of high-quality protein structural models from generated decoys. Currently, clustering algorithms are widely used to identify near-native models; however, their performance is dependent upon different conformational decoys, and, for some algorithms, the accuracy declines when the decoy population increases. Results. Here, we proposed two enhanced K -means clustering algorithms capable of robustly identifying high-quality protein structural models. The first one employs the clustering algorithm SPICKER to determine the initial centroids for basic K -means clustering ( SK -means), whereas the other employs squared distance to optimize the initial centroids ( K -means++). Our results showed that SK -means and K -means++ were more robust as compared with SPICKER alone, detecting 33 (59%) and 42 (75%) of 56 targets, respectively, with template modeling scores better than or equal to those of SPICKER. Conclusions. We observed that the classic K -means algorithm showed a similar performance to that of SPICKER, which is a widely used algorithm for protein-structure identification. Both SK -means and K -means++ demonstrated substantial improvements relative to results from SPICKER and classical K -means.
Identify High-Quality Protein Structural Models by Enhanced K-Means
Li, Haiou; Chen, Cheng; Lv, Qiang; Wu, Chuang
2017-01-01
Background. One critical issue in protein three-dimensional structure prediction using either ab initio or comparative modeling involves identification of high-quality protein structural models from generated decoys. Currently, clustering algorithms are widely used to identify near-native models; however, their performance is dependent upon different conformational decoys, and, for some algorithms, the accuracy declines when the decoy population increases. Results. Here, we proposed two enhanced K-means clustering algorithms capable of robustly identifying high-quality protein structural models. The first one employs the clustering algorithm SPICKER to determine the initial centroids for basic K-means clustering (SK-means), whereas the other employs squared distance to optimize the initial centroids (K-means++). Our results showed that SK-means and K-means++ were more robust as compared with SPICKER alone, detecting 33 (59%) and 42 (75%) of 56 targets, respectively, with template modeling scores better than or equal to those of SPICKER. Conclusions. We observed that the classic K-means algorithm showed a similar performance to that of SPICKER, which is a widely used algorithm for protein-structure identification. Both SK-means and K-means++ demonstrated substantial improvements relative to results from SPICKER and classical K-means. PMID:28421198
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-02-02
This report consists of three separate but related reports. They are (1) Human Resource Development, (2) Carbon-based Structural Materials Research Cluster, and (3) Data Parallel Algorithms for Scientific Computing. To meet the objectives of the Human Resource Development plan, the plan includes K--12 enrichment activities, undergraduate research opportunities for students at the state`s two Historically Black Colleges and Universities, graduate research through cluster assistantships and through a traineeship program targeted specifically to minorities, women and the disabled, and faculty development through participation in research clusters. One research cluster is the chemistry and physics of carbon-based materials. The objective of thismore » cluster is to develop a self-sustaining group of researchers in carbon-based materials research within the institutions of higher education in the state of West Virginia. The projects will involve analysis of cokes, graphites and other carbons in order to understand the properties that provide desirable structural characteristics including resistance to oxidation, levels of anisotropy and structural characteristics of the carbons themselves. In the proposed cluster on parallel algorithms, research by four WVU faculty and three state liberal arts college faculty are: (1) modeling of self-organized critical systems by cellular automata; (2) multiprefix algorithms and fat-free embeddings; (3) offline and online partitioning of data computation; and (4) manipulating and rendering three dimensional objects. This cluster furthers the state Experimental Program to Stimulate Competitive Research plan by building on existing strengths at WVU in parallel algorithms.« less
Keshtkaran, Mohammad Reza; Yang, Zhi
2017-06-01
Spike sorting is a fundamental preprocessing step for many neuroscience studies which rely on the analysis of spike trains. Most of the feature extraction and dimensionality reduction techniques that have been used for spike sorting give a projection subspace which is not necessarily the most discriminative one. Therefore, the clusters which appear inherently separable in some discriminative subspace may overlap if projected using conventional feature extraction approaches leading to a poor sorting accuracy especially when the noise level is high. In this paper, we propose a noise-robust and unsupervised spike sorting algorithm based on learning discriminative spike features for clustering. The proposed algorithm uses discriminative subspace learning to extract low dimensional and most discriminative features from the spike waveforms and perform clustering with automatic detection of the number of the clusters. The core part of the algorithm involves iterative subspace selection using linear discriminant analysis and clustering using Gaussian mixture model with outlier detection. A statistical test in the discriminative subspace is proposed to automatically detect the number of the clusters. Comparative results on publicly available simulated and real in vivo datasets demonstrate that our algorithm achieves substantially improved cluster distinction leading to higher sorting accuracy and more reliable detection of clusters which are highly overlapping and not detectable using conventional feature extraction techniques such as principal component analysis or wavelets. By providing more accurate information about the activity of more number of individual neurons with high robustness to neural noise and outliers, the proposed unsupervised spike sorting algorithm facilitates more detailed and accurate analysis of single- and multi-unit activities in neuroscience and brain machine interface studies.
NASA Astrophysics Data System (ADS)
Keshtkaran, Mohammad Reza; Yang, Zhi
2017-06-01
Objective. Spike sorting is a fundamental preprocessing step for many neuroscience studies which rely on the analysis of spike trains. Most of the feature extraction and dimensionality reduction techniques that have been used for spike sorting give a projection subspace which is not necessarily the most discriminative one. Therefore, the clusters which appear inherently separable in some discriminative subspace may overlap if projected using conventional feature extraction approaches leading to a poor sorting accuracy especially when the noise level is high. In this paper, we propose a noise-robust and unsupervised spike sorting algorithm based on learning discriminative spike features for clustering. Approach. The proposed algorithm uses discriminative subspace learning to extract low dimensional and most discriminative features from the spike waveforms and perform clustering with automatic detection of the number of the clusters. The core part of the algorithm involves iterative subspace selection using linear discriminant analysis and clustering using Gaussian mixture model with outlier detection. A statistical test in the discriminative subspace is proposed to automatically detect the number of the clusters. Main results. Comparative results on publicly available simulated and real in vivo datasets demonstrate that our algorithm achieves substantially improved cluster distinction leading to higher sorting accuracy and more reliable detection of clusters which are highly overlapping and not detectable using conventional feature extraction techniques such as principal component analysis or wavelets. Significance. By providing more accurate information about the activity of more number of individual neurons with high robustness to neural noise and outliers, the proposed unsupervised spike sorting algorithm facilitates more detailed and accurate analysis of single- and multi-unit activities in neuroscience and brain machine interface studies.
Using Fuzzy Clustering for Real-time Space Flight Safety
NASA Technical Reports Server (NTRS)
Lee, Charles; Haskell, Richard E.; Hanna, Darrin; Alena, Richard L.
2004-01-01
To ensure space flight safety, it is necessary to monitor myriad sensor readings on the ground and in flight. Since a space shuttle has many sensors, monitoring data and drawing conclusions from information contained within the data in real time is challenging. The nature of the information can be critical to the success of the mission and safety of the crew and therefore, must be processed with minimal data-processing time. Data analysis algorithms could be used to synthesize sensor readings and compare data associated with normal operation with the data obtained that contain fault patterns to draw conclusions. Detecting abnormal operation during early stages in the transition from safe to unsafe operation requires a large amount of historical data that can be categorized into different classes (non-risk, risk). Even though the 40 years of shuttle flight program has accumulated volumes of historical data, these data don t comprehensively represent all possible fault patterns since fault patterns are usually unknown before the fault occurs. This paper presents a method that uses a similarity measure between fuzzy clusters to detect possible faults in real time. A clustering technique based on a fuzzy equivalence relation is used to characterize temporal data. Data collected during an initial time period are separated into clusters. These clusters are characterized by their centroids. Clusters formed during subsequent time periods are either merged with an existing cluster or added to the cluster list. The resulting list of cluster centroids, called a cluster group, characterizes the behavior of a particular set of temporal data. The degree to which new clusters formed in a subsequent time period are similar to the cluster group is characterized by a similarity measure, q. This method is applied to downlink data from Columbia flights. The results show that this technique can detect an unexpected fault that has not been present in the training data set.
Reducing the Volume of NASA Earth-Science Data
NASA Technical Reports Server (NTRS)
Lee, Seungwon; Braverman, Amy J.; Guillaume, Alexandre
2010-01-01
A computer program reduces data generated by NASA Earth-science missions into representative clusters characterized by centroids and membership information, thereby reducing the large volume of data to a level more amenable to analysis. The program effects an autonomous data-reduction/clustering process to produce a representative distribution and joint relationships of the data, without assuming a specific type of distribution and relationship and without resorting to domain-specific knowledge about the data. The program implements a combination of a data-reduction algorithm known as the entropy-constrained vector quantization (ECVQ) and an optimization algorithm known as the differential evolution (DE). The combination of algorithms generates the Pareto front of clustering solutions that presents the compromise between the quality of the reduced data and the degree of reduction. Similar prior data-reduction computer programs utilize only a clustering algorithm, the parameters of which are tuned manually by users. In the present program, autonomous optimization of the parameters by means of the DE supplants the manual tuning of the parameters. Thus, the program determines the best set of clustering solutions without human intervention.
A clustering algorithm for sample data based on environmental pollution characteristics
NASA Astrophysics Data System (ADS)
Chen, Mei; Wang, Pengfei; Chen, Qiang; Wu, Jiadong; Chen, Xiaoyun
2015-04-01
Environmental pollution has become an issue of serious international concern in recent years. Among the receptor-oriented pollution models, CMB, PMF, UNMIX, and PCA are widely used as source apportionment models. To improve the accuracy of source apportionment and classify the sample data for these models, this study proposes an easy-to-use, high-dimensional EPC algorithm that not only organizes all of the sample data into different groups according to the similarities in pollution characteristics such as pollution sources and concentrations but also simultaneously detects outliers. The main clustering process consists of selecting the first unlabelled point as the cluster centre, then assigning each data point in the sample dataset to its most similar cluster centre according to both the user-defined threshold and the value of similarity function in each iteration, and finally modifying the clusters using a method similar to k-Means. The validity and accuracy of the algorithm are tested using both real and synthetic datasets, which makes the EPC algorithm practical and effective for appropriately classifying sample data for source apportionment models and helpful for better understanding and interpreting the sources of pollution.
Romero, Leoncio A; Zamudio, Victor; Baltazar, Rosario; Mezura, Efren; Sotelo, Marco; Callaghan, Vic
2012-01-01
In this paper we present a comparison between six novel approaches to the fundamental problem of cyclic instability in Ambient Intelligence. These approaches are based on different optimization algorithms, Particle Swarm Optimization (PSO), Bee Swarm Optimization (BSO), micro Particle Swarm Optimization (μ-PSO), Artificial Immune System (AIS), Genetic Algorithm (GA) and Mutual Information Maximization for Input Clustering (MIMIC). In order to be able to use these algorithms, we introduced the concept of Average Cumulative Oscillation (ACO), which enabled us to measure the average behavior of the system. This approach has the advantage that it does not need to analyze the topological properties of the system, in particular the loops, which can be computationally expensive. In order to test these algorithms we used the well-known discrete system called the Game of Life for 9, 25, 49 and 289 agents. It was found that PSO and μ-PSO have the best performance in terms of the number of agents locked. These results were confirmed using the Wilcoxon Signed Rank Test. This novel and successful approach is very promising and can be used to remove instabilities in real scenarios with a large number of agents (including nomadic agents) and complex interactions and dependencies among them.
Romero, Leoncio A.; Zamudio, Victor; Baltazar, Rosario; Mezura, Efren; Sotelo, Marco; Callaghan, Vic
2012-01-01
In this paper we present a comparison between six novel approaches to the fundamental problem of cyclic instability in Ambient Intelligence. These approaches are based on different optimization algorithms, Particle Swarm Optimization (PSO), Bee Swarm Optimization (BSO), micro Particle Swarm Optimization (μ-PSO), Artificial Immune System (AIS), Genetic Algorithm (GA) and Mutual Information Maximization for Input Clustering (MIMIC). In order to be able to use these algorithms, we introduced the concept of Average Cumulative Oscillation (ACO), which enabled us to measure the average behavior of the system. This approach has the advantage that it does not need to analyze the topological properties of the system, in particular the loops, which can be computationally expensive. In order to test these algorithms we used the well-known discrete system called the Game of Life for 9, 25, 49 and 289 agents. It was found that PSO and μ-PSO have the best performance in terms of the number of agents locked. These results were confirmed using the Wilcoxon Signed Rank Test. This novel and successful approach is very promising and can be used to remove instabilities in real scenarios with a large number of agents (including nomadic agents) and complex interactions and dependencies among them. PMID:23112643
Handling Data Skew in MapReduce Cluster by Using Partition Tuning
Gao, Yufei; Zhou, Yanjie; Zhou, Bing; Shi, Lei; Zhang, Jiacai
2017-01-01
The healthcare industry has generated large amounts of data, and analyzing these has emerged as an important problem in recent years. The MapReduce programming model has been successfully used for big data analytics. However, data skew invariably occurs in big data analytics and seriously affects efficiency. To overcome the data skew problem in MapReduce, we have in the past proposed a data processing algorithm called Partition Tuning-based Skew Handling (PTSH). In comparison with the one-stage partitioning strategy used in the traditional MapReduce model, PTSH uses a two-stage strategy and the partition tuning method to disperse key-value pairs in virtual partitions and recombines each partition in case of data skew. The robustness and efficiency of the proposed algorithm were tested on a wide variety of simulated datasets and real healthcare datasets. The results showed that PTSH algorithm can handle data skew in MapReduce efficiently and improve the performance of MapReduce jobs in comparison with the native Hadoop, Closer, and locality-aware and fairness-aware key partitioning (LEEN). We also found that the time needed for rule extraction can be reduced significantly by adopting the PTSH algorithm, since it is more suitable for association rule mining (ARM) on healthcare data. © 2017 Yufei Gao et al.
Handling Data Skew in MapReduce Cluster by Using Partition Tuning.
Gao, Yufei; Zhou, Yanjie; Zhou, Bing; Shi, Lei; Zhang, Jiacai
2017-01-01
The healthcare industry has generated large amounts of data, and analyzing these has emerged as an important problem in recent years. The MapReduce programming model has been successfully used for big data analytics. However, data skew invariably occurs in big data analytics and seriously affects efficiency. To overcome the data skew problem in MapReduce, we have in the past proposed a data processing algorithm called Partition Tuning-based Skew Handling (PTSH). In comparison with the one-stage partitioning strategy used in the traditional MapReduce model, PTSH uses a two-stage strategy and the partition tuning method to disperse key-value pairs in virtual partitions and recombines each partition in case of data skew. The robustness and efficiency of the proposed algorithm were tested on a wide variety of simulated datasets and real healthcare datasets. The results showed that PTSH algorithm can handle data skew in MapReduce efficiently and improve the performance of MapReduce jobs in comparison with the native Hadoop, Closer, and locality-aware and fairness-aware key partitioning (LEEN). We also found that the time needed for rule extraction can be reduced significantly by adopting the PTSH algorithm, since it is more suitable for association rule mining (ARM) on healthcare data.
Handling Data Skew in MapReduce Cluster by Using Partition Tuning
Zhou, Yanjie; Zhou, Bing; Shi, Lei
2017-01-01
The healthcare industry has generated large amounts of data, and analyzing these has emerged as an important problem in recent years. The MapReduce programming model has been successfully used for big data analytics. However, data skew invariably occurs in big data analytics and seriously affects efficiency. To overcome the data skew problem in MapReduce, we have in the past proposed a data processing algorithm called Partition Tuning-based Skew Handling (PTSH). In comparison with the one-stage partitioning strategy used in the traditional MapReduce model, PTSH uses a two-stage strategy and the partition tuning method to disperse key-value pairs in virtual partitions and recombines each partition in case of data skew. The robustness and efficiency of the proposed algorithm were tested on a wide variety of simulated datasets and real healthcare datasets. The results showed that PTSH algorithm can handle data skew in MapReduce efficiently and improve the performance of MapReduce jobs in comparison with the native Hadoop, Closer, and locality-aware and fairness-aware key partitioning (LEEN). We also found that the time needed for rule extraction can be reduced significantly by adopting the PTSH algorithm, since it is more suitable for association rule mining (ARM) on healthcare data. PMID:29065568
Adaptive fuzzy system for 3-D vision
NASA Technical Reports Server (NTRS)
Mitra, Sunanda
1993-01-01
An adaptive fuzzy system using the concept of the Adaptive Resonance Theory (ART) type neural network architecture and incorporating fuzzy c-means (FCM) system equations for reclassification of cluster centers was developed. The Adaptive Fuzzy Leader Clustering (AFLC) architecture is a hybrid neural-fuzzy system which learns on-line in a stable and efficient manner. The system uses a control structure similar to that found in the Adaptive Resonance Theory (ART-1) network to identify the cluster centers initially. The initial classification of an input takes place in a two stage process; a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from Fuzzy c-Means (FCM) system equations for the centroids and the membership values. The operational characteristics of AFLC and the critical parameters involved in its operation are discussed. The performance of the AFLC algorithm is presented through application of the algorithm to the Anderson Iris data, and laser-luminescent fingerprint image data. The AFLC algorithm successfully classifies features extracted from real data, discrete or continuous, indicating the potential strength of this new clustering algorithm in analyzing complex data sets. The hybrid neuro-fuzzy AFLC algorithm will enhance analysis of a number of difficult recognition and control problems involved with Tethered Satellite Systems and on-orbit space shuttle attitude controller.
NASA Technical Reports Server (NTRS)
Charlesworth, Arthur
1990-01-01
The nondeterministic divide partitions a vector into two non-empty slices by allowing the point of division to be chosen nondeterministically. Support for high-level divide-and-conquer programming provided by the nondeterministic divide is investigated. A diva algorithm is a recursive divide-and-conquer sequential algorithm on one or more vectors of the same range, whose division point for a new pair of recursive calls is chosen nondeterministically before any computation is performed and whose recursive calls are made immediately after the choice of division point; also, access to vector components is only permitted during activations in which the vector parameters have unit length. The notion of diva algorithm is formulated precisely as a diva call, a restricted call on a sequential procedure. Diva calls are proven to be intimately related to associativity. Numerous applications of diva calls are given and strategies are described for translating a diva call into code for a variety of parallel computers. Thus diva algorithms separate logical correctness concerns from implementation concerns.
Cleaning by clustering: methodology for addressing data quality issues in biomedical metadata.
Hu, Wei; Zaveri, Amrapali; Qiu, Honglei; Dumontier, Michel
2017-09-18
The ability to efficiently search and filter datasets depends on access to high quality metadata. While most biomedical repositories require data submitters to provide a minimal set of metadata, some such as the Gene Expression Omnibus (GEO) allows users to specify additional metadata in the form of textual key-value pairs (e.g. sex: female). However, since there is no structured vocabulary to guide the submitter regarding the metadata terms to use, consequently, the 44,000,000+ key-value pairs in GEO suffer from numerous quality issues including redundancy, heterogeneity, inconsistency, and incompleteness. Such issues hinder the ability of scientists to hone in on datasets that meet their requirements and point to a need for accurate, structured and complete description of the data. In this study, we propose a clustering-based approach to address data quality issues in biomedical, specifically gene expression, metadata. First, we present three different kinds of similarity measures to compare metadata keys. Second, we design a scalable agglomerative clustering algorithm to cluster similar keys together. Our agglomerative cluster algorithm identified metadata keys that were similar, based on (i) name, (ii) core concept and (iii) value similarities, to each other and grouped them together. We evaluated our method using a manually created gold standard in which 359 keys were grouped into 27 clusters based on six types of characteristics: (i) age, (ii) cell line, (iii) disease, (iv) strain, (v) tissue and (vi) treatment. As a result, the algorithm generated 18 clusters containing 355 keys (four clusters with only one key were excluded). In the 18 clusters, there were keys that were identified correctly to be related to that cluster, but there were 13 keys which were not related to that cluster. We compared our approach with four other published methods. Our approach significantly outperformed them for most metadata keys and achieved the best average F-Score (0.63). Our algorithm identified keys that were similar to each other and grouped them together. Our intuition that underpins cleaning by clustering is that, dividing keys into different clusters resolves the scalability issues for data observation and cleaning, and keys in the same cluster with duplicates and errors can easily be found. Our algorithm can also be applied to other biomedical data types.
DOE Office of Scientific and Technical Information (OSTI.GOV)
A parallelization of the k-means++ seed selection algorithm on three distinct hardware platforms: GPU, multicore CPU, and multithreaded architecture. K-means++ was developed by David Arthur and Sergei Vassilvitskii in 2007 as an extension of the k-means data clustering technique. These algorithms allow people to cluster multidimensional data, by attempting to minimize the mean distance of data points within a cluster. K-means++ improved upon traditional k-means by using a more intelligent approach to selecting the initial seeds for the clustering process. While k-means++ has become a popular alternative to traditional k-means clustering, little work has been done to parallelize this technique.more » We have developed original C++ code for parallelizing the algorithm on three unique hardware architectures: GPU using NVidia's CUDA/Thrust framework, multicore CPU using OpenMP, and the Cray XMT multithreaded architecture. By parallelizing the process for these platforms, we are able to perform k-means++ clustering much more quickly than it could be done before.« less
Yang, Yan-Pu; Chen, Deng-Kai; Gu, Rong; Gu, Yu-Feng; Yu, Sui-Huai
2016-01-01
Consumers' Kansei needs reflect their perception about a product and always consist of a large number of adjectives. Reducing the dimension complexity of these needs to extract primary words not only enables the target product to be explicitly positioned, but also provides a convenient design basis for designers engaging in design work. Accordingly, this study employs a numerical design structure matrix (NDSM) by parameterizing a conventional DSM and integrating genetic algorithms to find optimum Kansei clusters. A four-point scale method is applied to assign link weights of every two Kansei adjectives as values of cells when constructing an NDSM. Genetic algorithms are used to cluster the Kansei NDSM and find optimum clusters. Furthermore, the process of the proposed method is presented. The details of the proposed approach are illustrated using an example of electronic scooter for Kansei needs clustering. The case study reveals that the proposed method is promising for clustering Kansei needs adjectives in product emotional design.
Chen, Deng-kai; Gu, Rong; Gu, Yu-feng; Yu, Sui-huai
2016-01-01
Consumers' Kansei needs reflect their perception about a product and always consist of a large number of adjectives. Reducing the dimension complexity of these needs to extract primary words not only enables the target product to be explicitly positioned, but also provides a convenient design basis for designers engaging in design work. Accordingly, this study employs a numerical design structure matrix (NDSM) by parameterizing a conventional DSM and integrating genetic algorithms to find optimum Kansei clusters. A four-point scale method is applied to assign link weights of every two Kansei adjectives as values of cells when constructing an NDSM. Genetic algorithms are used to cluster the Kansei NDSM and find optimum clusters. Furthermore, the process of the proposed method is presented. The details of the proposed approach are illustrated using an example of electronic scooter for Kansei needs clustering. The case study reveals that the proposed method is promising for clustering Kansei needs adjectives in product emotional design. PMID:27630709
Ke, Tracy; Fan, Jianqing; Wu, Yichao
2014-01-01
This paper explores the homogeneity of coefficients in high-dimensional regression, which extends the sparsity concept and is more general and suitable for many applications. Homogeneity arises when regression coefficients corresponding to neighboring geographical regions or a similar cluster of covariates are expected to be approximately the same. Sparsity corresponds to a special case of homogeneity with a large cluster of known atom zero. In this article, we propose a new method called clustering algorithm in regression via data-driven segmentation (CARDS) to explore homogeneity. New mathematics are provided on the gain that can be achieved by exploring homogeneity. Statistical properties of two versions of CARDS are analyzed. In particular, the asymptotic normality of our proposed CARDS estimator is established, which reveals better estimation accuracy for homogeneous parameters than that without homogeneity exploration. When our methods are combined with sparsity exploration, further efficiency can be achieved beyond the exploration of sparsity alone. This provides additional insights into the power of exploring low-dimensional structures in high-dimensional regression: homogeneity and sparsity. Our results also shed lights on the properties of the fussed Lasso. The newly developed method is further illustrated by simulation studies and applications to real data. Supplementary materials for this article are available online. PMID:26085701
Characterization of essential proteins based on network topology in proteins interaction networks
NASA Astrophysics Data System (ADS)
Bakar, Sakhinah Abu; Taheri, Javid; Zomaya, Albert Y.
2014-06-01
The identification of essential proteins is theoretically and practically important as (1) it is essential to understand the minimal surviving requirements for cellular lives, and (2) it provides fundamental for development of drug. As conducting experimental studies to identify essential proteins are both time and resource consuming, here we present a computational approach in predicting them based on network topology properties from protein-protein interaction networks of Saccharomyces cerevisiae. The proposed method, namely EP3NN (Essential Proteins Prediction using Probabilistic Neural Network) employed a machine learning algorithm called Probabilistic Neural Network as a classifier to identify essential proteins of the organism of interest; it uses degree centrality, closeness centrality, local assortativity and local clustering coefficient of each protein in the network for such predictions. Results show that EP3NN managed to successfully predict essential proteins with an accuracy of 95% for our studied organism. Results also show that most of the essential proteins are close to other proteins, have assortativity behavior and form clusters/sub-graph in the network.
The ground truth about metadata and community detection in networks
Peel, Leto; Larremore, Daniel B.; Clauset, Aaron
2017-01-01
Across many scientific domains, there is a common need to automatically extract a simplified view or coarse-graining of how a complex system’s components interact. This general task is called community detection in networks and is analogous to searching for clusters in independent vector data. It is common to evaluate the performance of community detection algorithms by their ability to find so-called ground truth communities. This works well in synthetic networks with planted communities because these networks’ links are formed explicitly based on those known communities. However, there are no planted communities in real-world networks. Instead, it is standard practice to treat some observed discrete-valued node attributes, or metadata, as ground truth. We show that metadata are not the same as ground truth and that treating them as such induces severe theoretical and practical problems. We prove that no algorithm can uniquely solve community detection, and we prove a general No Free Lunch theorem for community detection, which implies that there can be no algorithm that is optimal for all possible community detection tasks. However, community detection remains a powerful tool and node metadata still have value, so a careful exploration of their relationship with network structure can yield insights of genuine worth. We illustrate this point by introducing two statistical techniques that can quantify the relationship between metadata and community structure for a broad class of models. We demonstrate these techniques using both synthetic and real-world networks, and for multiple types of metadata and community structures. PMID:28508065
Danaci, Hasan Fehmi; Cetin-Atalay, Rengul; Atalay, Volkan
2018-03-26
Visualizing large-scale data produced by the high throughput experiments as a biological graph leads to better understanding and analysis. This study describes a customized force-directed layout algorithm, EClerize, for biological graphs that represent pathways in which the nodes are associated with Enzyme Commission (EC) attributes. The nodes with the same EC class numbers are treated as members of the same cluster. Positions of nodes are then determined based on both the biological similarity and the connection structure. EClerize minimizes the intra-cluster distance, that is the distance between the nodes of the same EC cluster and maximizes the inter-cluster distance, that is the distance between two distinct EC clusters. EClerize is tested on a number of biological pathways and the improvement brought in is presented with respect to the original algorithm. EClerize is available as a plug-in to cytoscape ( http://apps.cytoscape.org/apps/eclerize ).
Load Balancing in Distributed Web Caching: A Novel Clustering Approach
NASA Astrophysics Data System (ADS)
Tiwari, R.; Kumar, K.; Khan, G.
2010-11-01
The World Wide Web suffers from scaling and reliability problems due to overloaded and congested proxy servers. Caching at local proxy servers helps, but cannot satisfy more than a third to half of requests; more requests are still sent to original remote origin servers. In this paper we have developed an algorithm for Distributed Web Cache, which incorporates cooperation among proxy servers of one cluster. This algorithm uses Distributed Web Cache concepts along with static hierarchies with geographical based clusters of level one proxy server with dynamic mechanism of proxy server during the congestion of one cluster. Congestion and scalability problems are being dealt by clustering concept used in our approach. This results in higher hit ratio of caches, with lesser latency delay for requested pages. This algorithm also guarantees data consistency between the original server objects and the proxy cache objects.
Study on Data Clustering and Intelligent Decision Algorithm of Indoor Localization
NASA Astrophysics Data System (ADS)
Liu, Zexi
2018-01-01
Indoor positioning technology enables the human beings to have the ability of positional perception in architectural space, and there is a shortage of single network coverage and the problem of location data redundancy. So this article puts forward the indoor positioning data clustering algorithm and intelligent decision-making research, design the basic ideas of multi-source indoor positioning technology, analyzes the fingerprint localization algorithm based on distance measurement, position and orientation of inertial device integration. By optimizing the clustering processing of massive indoor location data, the data normalization pretreatment, multi-dimensional controllable clustering center and multi-factor clustering are realized, and the redundancy of locating data is reduced. In addition, the path is proposed based on neural network inference and decision, design the sparse data input layer, the dynamic feedback hidden layer and output layer, low dimensional results improve the intelligent navigation path planning.
Computer program documentation: ISOCLS iterative self-organizing clustering program, program C094
NASA Technical Reports Server (NTRS)
Minter, R. T. (Principal Investigator)
1972-01-01
The author has identified the following significant results. This program implements an algorithm which, ideally, sorts a given set of multivariate data points into similar groups or clusters. The program is intended for use in the evaluation of multispectral scanner data; however, the algorithm could be used for other data types as well. The user may specify a set of initial estimated cluster means to begin the procedure, or he may begin with the assumption that all the data belongs to one cluster. The procedure is initiatized by assigning each data point to the nearest (in absolute distance) cluster mean. If no initial cluster means were input, all of the data is assigned to cluster 1. The means and standard deviations are calculated for each cluster.
NASA Astrophysics Data System (ADS)
Kel'manov, A. V.; Motkova, A. V.
2018-01-01
A strongly NP-hard problem of partitioning a finite set of points of Euclidean space into two clusters is considered. The solution criterion is the minimum of the sum (over both clusters) of weighted sums of squared distances from the elements of each cluster to its geometric center. The weights of the sums are equal to the cardinalities of the desired clusters. The center of one cluster is given as input, while the center of the other is unknown and is determined as the point of space equal to the mean of the cluster elements. A version of the problem is analyzed in which the cardinalities of the clusters are given as input. A polynomial-time 2-approximation algorithm for solving the problem is constructed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoiber, Marcus H.; Brown, James B.
This software implements the first base caller for nanopore data that calls bases directly from raw data. The basecRAWller algorithm has two major advantages over current nanopore base calling software: (1) streaming base calling and (2) base calling from information rich raw signal. The ability to perform truly streaming base calling as signal is received from the sequencer can be very powerful as this is one of the major advantages of this technology as compared to other sequencing technologies. As such enabling as much streaming potential as possible will be incredibly important as this technology continues to become more widelymore » applied in biosciences. All other base callers currently employ the Viterbi algorithm which requires the whole sequence to employ the complete base calling procedure and thus precludes a natural streaming base calling procedure. The other major advantage of the basecRAWller algorithm is the prediction of bases from raw signal which contains much richer information than the segmented chunks that current algorithms employ. This leads to the potential for much more accurate base calls which would make this technology much more valuable to all of the growing user base for this technology.« less