Efficient clustering aggregation based on data fragments.
Wu, Ou; Hu, Weiming; Maybank, Stephen J; Zhu, Mingliang; Li, Bing
2012-06-01
Clustering aggregation, known as clustering ensembles, has emerged as a powerful technique for combining different clustering results to obtain a single better clustering. Existing clustering aggregation algorithms are applied directly to data points, in what is referred to as the point-based approach. The algorithms are inefficient if the number of data points is large. We define an efficient approach for clustering aggregation based on data fragments. In this fragment-based approach, a data fragment is any subset of the data that is not split by any of the clustering results. To establish the theoretical bases of the proposed approach, we prove that clustering aggregation can be performed directly on data fragments under two widely used goodness measures for clustering aggregation taken from the literature. Three new clustering aggregation algorithms are described. The experimental results obtained using several public data sets show that the new algorithms have lower computational complexity than three well-known existing point-based clustering aggregation algorithms (Agglomerative, Furthest, and LocalSearch); nevertheless, the new algorithms do not sacrifice the accuracy.
Boyack, Kevin W.; Newman, David; Duhon, Russell J.; Klavans, Richard; Patek, Michael; Biberstine, Joseph R.; Schijvenaars, Bob; Skupin, André; Ma, Nianli; Börner, Katy
2011-01-01
Background We investigate the accuracy of different similarity approaches for clustering over two million biomedical documents. Clustering large sets of text documents is important for a variety of information needs and applications such as collection management and navigation, summary and analysis. The few comparisons of clustering results from different similarity approaches have focused on small literature sets and have given conflicting results. Our study was designed to seek a robust answer to the question of which similarity approach would generate the most coherent clusters of a biomedical literature set of over two million documents. Methodology We used a corpus of 2.15 million recent (2004-2008) records from MEDLINE, and generated nine different document-document similarity matrices from information extracted from their bibliographic records, including titles, abstracts and subject headings. The nine approaches were comprised of five different analytical techniques with two data sources. The five analytical techniques are cosine similarity using term frequency-inverse document frequency vectors (tf-idf cosine), latent semantic analysis (LSA), topic modeling, and two Poisson-based language models – BM25 and PMRA (PubMed Related Articles). The two data sources were a) MeSH subject headings, and b) words from titles and abstracts. Each similarity matrix was filtered to keep the top-n highest similarities per document and then clustered using a combination of graph layout and average-link clustering. Cluster results from the nine similarity approaches were compared using (1) within-cluster textual coherence based on the Jensen-Shannon divergence, and (2) two concentration measures based on grant-to-article linkages indexed in MEDLINE. Conclusions PubMed's own related article approach (PMRA) generated the most coherent and most concentrated cluster solution of the nine text-based similarity approaches tested, followed closely by the BM25 approach using titles and abstracts. Approaches using only MeSH subject headings were not competitive with those based on titles and abstracts. PMID:21437291
MODEL-BASED CLUSTERING FOR CLASSIFICATION OF AQUATIC SYSTEMS AND DIAGNOSIS OF ECOLOGICAL STRESS
Clustering approaches were developed using the classification likelihood, the mixture likelihood, and also using a randomization approach with a model index. Using a clustering approach based on the mixture and classification likelihoods, we have developed an algorithm that...
Yoo, Illhoi; Hu, Xiaohua; Song, Il-Yeol
2007-11-27
A huge amount of biomedical textual information has been produced and collected in MEDLINE for decades. In order to easily utilize biomedical information in the free text, document clustering and text summarization together are used as a solution for text information overload problem. In this paper, we introduce a coherent graph-based semantic clustering and summarization approach for biomedical literature. Our extensive experimental results show the approach shows 45% cluster quality improvement and 72% clustering reliability improvement, in terms of misclassification index, over Bisecting K-means as a leading document clustering approach. In addition, our approach provides concise but rich text summary in key concepts and sentences. Our coherent biomedical literature clustering and summarization approach that takes advantage of ontology-enriched graphical representations significantly improves the quality of document clusters and understandability of documents through summaries.
Yoo, Illhoi; Hu, Xiaohua; Song, Il-Yeol
2007-01-01
Background A huge amount of biomedical textual information has been produced and collected in MEDLINE for decades. In order to easily utilize biomedical information in the free text, document clustering and text summarization together are used as a solution for text information overload problem. In this paper, we introduce a coherent graph-based semantic clustering and summarization approach for biomedical literature. Results Our extensive experimental results show the approach shows 45% cluster quality improvement and 72% clustering reliability improvement, in terms of misclassification index, over Bisecting K-means as a leading document clustering approach. In addition, our approach provides concise but rich text summary in key concepts and sentences. Conclusion Our coherent biomedical literature clustering and summarization approach that takes advantage of ontology-enriched graphical representations significantly improves the quality of document clusters and understandability of documents through summaries. PMID:18047705
A genetic graph-based approach for partitional clustering.
Menéndez, Héctor D; Barrero, David F; Camacho, David
2014-05-01
Clustering is one of the most versatile tools for data analysis. In the recent years, clustering that seeks the continuity of data (in opposition to classical centroid-based approaches) has attracted an increasing research interest. It is a challenging problem with a remarkable practical interest. The most popular continuity clustering method is the spectral clustering (SC) algorithm, which is based on graph cut: It initially generates a similarity graph using a distance measure and then studies its graph spectrum to find the best cut. This approach is sensitive to the parameters of the metric, and a correct parameter choice is critical to the quality of the cluster. This work proposes a new algorithm, inspired by SC, that reduces the parameter dependency while maintaining the quality of the solution. The new algorithm, named genetic graph-based clustering (GGC), takes an evolutionary approach introducing a genetic algorithm (GA) to cluster the similarity graph. The experimental validation shows that GGC increases robustness of SC and has competitive performance in comparison with classical clustering methods, at least, in the synthetic and real dataset used in the experiments.
A roadmap of clustering algorithms: finding a match for a biomedical application.
Andreopoulos, Bill; An, Aijun; Wang, Xiaogang; Schroeder, Michael
2009-05-01
Clustering is ubiquitously applied in bioinformatics with hierarchical clustering and k-means partitioning being the most popular methods. Numerous improvements of these two clustering methods have been introduced, as well as completely different approaches such as grid-based, density-based and model-based clustering. For improved bioinformatics analysis of data, it is important to match clusterings to the requirements of a biomedical application. In this article, we present a set of desirable clustering features that are used as evaluation criteria for clustering algorithms. We review 40 different clustering algorithms of all approaches and datatypes. We compare algorithms on the basis of desirable clustering features, and outline algorithms' benefits and drawbacks as a basis for matching them to biomedical applications.
A Cluster-Based Dual-Adaptive Topology Control Approach in Wireless Sensor Networks.
Gui, Jinsong; Zhou, Kai; Xiong, Naixue
2016-09-25
Multi-Input Multi-Output (MIMO) can improve wireless network performance. Sensors are usually single-antenna devices due to the high hardware complexity and cost, so several sensors are used to form virtual MIMO array, which is a desirable approach to efficiently take advantage of MIMO gains. Also, in large Wireless Sensor Networks (WSNs), clustering can improve the network scalability, which is an effective topology control approach. The existing virtual MIMO-based clustering schemes do not either fully explore the benefits of MIMO or adaptively determine the clustering ranges. Also, clustering mechanism needs to be further improved to enhance the cluster structure life. In this paper, we propose an improved clustering scheme for virtual MIMO-based topology construction (ICV-MIMO), which can determine adaptively not only the inter-cluster transmission modes but also the clustering ranges. Through the rational division of cluster head function and the optimization of cluster head selection criteria and information exchange process, the ICV-MIMO scheme effectively reduces the network energy consumption and improves the lifetime of the cluster structure when compared with the existing typical virtual MIMO-based scheme. Moreover, the message overhead and time complexity are still in the same order of magnitude.
A Cluster-Based Dual-Adaptive Topology Control Approach in Wireless Sensor Networks
Gui, Jinsong; Zhou, Kai; Xiong, Naixue
2016-01-01
Multi-Input Multi-Output (MIMO) can improve wireless network performance. Sensors are usually single-antenna devices due to the high hardware complexity and cost, so several sensors are used to form virtual MIMO array, which is a desirable approach to efficiently take advantage of MIMO gains. Also, in large Wireless Sensor Networks (WSNs), clustering can improve the network scalability, which is an effective topology control approach. The existing virtual MIMO-based clustering schemes do not either fully explore the benefits of MIMO or adaptively determine the clustering ranges. Also, clustering mechanism needs to be further improved to enhance the cluster structure life. In this paper, we propose an improved clustering scheme for virtual MIMO-based topology construction (ICV-MIMO), which can determine adaptively not only the inter-cluster transmission modes but also the clustering ranges. Through the rational division of cluster head function and the optimization of cluster head selection criteria and information exchange process, the ICV-MIMO scheme effectively reduces the network energy consumption and improves the lifetime of the cluster structure when compared with the existing typical virtual MIMO-based scheme. Moreover, the message overhead and time complexity are still in the same order of magnitude. PMID:27681731
A Stationary Wavelet Entropy-Based Clustering Approach Accurately Predicts Gene Expression
Nguyen, Nha; Vo, An; Choi, Inchan
2015-01-01
Abstract Studying epigenetic landscapes is important to understand the condition for gene regulation. Clustering is a useful approach to study epigenetic landscapes by grouping genes based on their epigenetic conditions. However, classical clustering approaches that often use a representative value of the signals in a fixed-sized window do not fully use the information written in the epigenetic landscapes. Clustering approaches to maximize the information of the epigenetic signals are necessary for better understanding gene regulatory environments. For effective clustering of multidimensional epigenetic signals, we developed a method called Dewer, which uses the entropy of stationary wavelet of epigenetic signals inside enriched regions for gene clustering. Interestingly, the gene expression levels were highly correlated with the entropy levels of epigenetic signals. Dewer separates genes better than a window-based approach in the assessment using gene expression and achieved a correlation coefficient above 0.9 without using any training procedure. Our results show that the changes of the epigenetic signals are useful to study gene regulation. PMID:25383910
Cluster ensemble based on Random Forests for genetic data.
Alhusain, Luluah; Hafez, Alaaeldin M
2017-01-01
Clustering plays a crucial role in several application domains, such as bioinformatics. In bioinformatics, clustering has been extensively used as an approach for detecting interesting patterns in genetic data. One application is population structure analysis, which aims to group individuals into subpopulations based on shared genetic variations, such as single nucleotide polymorphisms. Advances in DNA sequencing technology have facilitated the obtainment of genetic datasets with exceptional sizes. Genetic data usually contain hundreds of thousands of genetic markers genotyped for thousands of individuals, making an efficient means for handling such data desirable. Random Forests (RFs) has emerged as an efficient algorithm capable of handling high-dimensional data. RFs provides a proximity measure that can capture different levels of co-occurring relationships between variables. RFs has been widely considered a supervised learning method, although it can be converted into an unsupervised learning method. Therefore, RF-derived proximity measure combined with a clustering technique may be well suited for determining the underlying structure of unlabeled data. This paper proposes, RFcluE, a cluster ensemble approach for determining the underlying structure of genetic data based on RFs. The approach comprises a cluster ensemble framework to combine multiple runs of RF clustering. Experiments were conducted on high-dimensional, real genetic dataset to evaluate the proposed approach. The experiments included an examination of the impact of parameter changes, comparing RFcluE performance against other clustering methods, and an assessment of the relationship between the diversity and quality of the ensemble and its effect on RFcluE performance. This paper proposes, RFcluE, a cluster ensemble approach based on RF clustering to address the problem of population structure analysis and demonstrate the effectiveness of the approach. The paper also illustrates that applying a cluster ensemble approach, combining multiple RF clusterings, produces more robust and higher-quality results as a consequence of feeding the ensemble with diverse views of high-dimensional genetic data obtained through bagging and random subspace, the two key features of the RF algorithm.
Liu, Yuanchao; Liu, Ming; Wang, Xin
2015-01-01
The objective of text clustering is to divide document collections into clusters based on the similarity between documents. In this paper, an extension-based feature modeling approach towards semantically sensitive text clustering is proposed along with the corresponding feature space construction and similarity computation method. By combining the similarity in traditional feature space and that in extension space, the adverse effects of the complexity and diversity of natural language can be addressed and clustering semantic sensitivity can be improved correspondingly. The generated clusters can be organized using different granularities. The experimental evaluations on well-known clustering algorithms and datasets have verified the effectiveness of our approach.
Liu, Yuanchao; Liu, Ming; Wang, Xin
2015-01-01
The objective of text clustering is to divide document collections into clusters based on the similarity between documents. In this paper, an extension-based feature modeling approach towards semantically sensitive text clustering is proposed along with the corresponding feature space construction and similarity computation method. By combining the similarity in traditional feature space and that in extension space, the adverse effects of the complexity and diversity of natural language can be addressed and clustering semantic sensitivity can be improved correspondingly. The generated clusters can be organized using different granularities. The experimental evaluations on well-known clustering algorithms and datasets have verified the effectiveness of our approach. PMID:25794172
Pfeiffenberger, Erik; Chaleil, Raphael A.G.; Moal, Iain H.
2017-01-01
ABSTRACT Reliable identification of near‐native poses of docked protein–protein complexes is still an unsolved problem. The intrinsic heterogeneity of protein–protein interactions is challenging for traditional biophysical or knowledge based potentials and the identification of many false positive binding sites is not unusual. Often, ranking protocols are based on initial clustering of docked poses followed by the application of an energy function to rank each cluster according to its lowest energy member. Here, we present an approach of cluster ranking based not only on one molecular descriptor (e.g., an energy function) but also employing a large number of descriptors that are integrated in a machine learning model, whereby, an extremely randomized tree classifier based on 109 molecular descriptors is trained. The protocol is based on first locally enriching clusters with additional poses, the clusters are then characterized using features describing the distribution of molecular descriptors within the cluster, which are combined into a pairwise cluster comparison model to discriminate near‐native from incorrect clusters. The results show that our approach is able to identify clusters containing near‐native protein–protein complexes. In addition, we present an analysis of the descriptors with respect to their power to discriminate near native from incorrect clusters and how data transformations and recursive feature elimination can improve the ranking performance. Proteins 2017; 85:528–543. © 2016 Wiley Periodicals, Inc. PMID:27935158
Novel layered clustering-based approach for generating ensemble of classifiers.
Rahman, Ashfaqur; Verma, Brijesh
2011-05-01
This paper introduces a novel concept for creating an ensemble of classifiers. The concept is based on generating an ensemble of classifiers through clustering of data at multiple layers. The ensemble classifier model generates a set of alternative clustering of a dataset at different layers by randomly initializing the clustering parameters and trains a set of base classifiers on the patterns at different clusters in different layers. A test pattern is classified by first finding the appropriate cluster at each layer and then using the corresponding base classifier. The decisions obtained at different layers are fused into a final verdict using majority voting. As the base classifiers are trained on overlapping patterns at different layers, the proposed approach achieves diversity among the individual classifiers. Identification of difficult-to-classify patterns through clustering as well as achievement of diversity through layering leads to better classification results as evidenced from the experimental results.
NASA Astrophysics Data System (ADS)
Bellón, Beatriz; Bégué, Agnès; Lo Seen, Danny; Lebourgeois, Valentine; Evangelista, Balbino Antônio; Simões, Margareth; Demonte Ferraz, Rodrigo Peçanha
2018-06-01
Cropping systems' maps at fine scale over large areas provide key information for further agricultural production and environmental impact assessments, and thus represent a valuable tool for effective land-use planning. There is, therefore, a growing interest in mapping cropping systems in an operational manner over large areas, and remote sensing approaches based on vegetation index time series analysis have proven to be an efficient tool. However, supervised pixel-based approaches are commonly adopted, requiring resource consuming field campaigns to gather training data. In this paper, we present a new object-based unsupervised classification approach tested on an annual MODIS 16-day composite Normalized Difference Vegetation Index time series and a Landsat 8 mosaic of the State of Tocantins, Brazil, for the 2014-2015 growing season. Two variants of the approach are compared: an hyperclustering approach, and a landscape-clustering approach involving a previous stratification of the study area into landscape units on which the clustering is then performed. The main cropping systems of Tocantins, characterized by the crop types and cropping patterns, were efficiently mapped with the landscape-clustering approach. Results show that stratification prior to clustering significantly improves the classification accuracies for underrepresented and sparsely distributed cropping systems. This study illustrates the potential of unsupervised classification for large area cropping systems' mapping and contributes to the development of generic tools for supporting large-scale agricultural monitoring across regions.
Locally Weighted Ensemble Clustering.
Huang, Dong; Wang, Chang-Dong; Lai, Jian-Huang
2018-05-01
Due to its ability to combine multiple base clusterings into a probably better and more robust clustering, the ensemble clustering technique has been attracting increasing attention in recent years. Despite the significant success, one limitation to most of the existing ensemble clustering methods is that they generally treat all base clusterings equally regardless of their reliability, which makes them vulnerable to low-quality base clusterings. Although some efforts have been made to (globally) evaluate and weight the base clusterings, yet these methods tend to view each base clustering as an individual and neglect the local diversity of clusters inside the same base clustering. It remains an open problem how to evaluate the reliability of clusters and exploit the local diversity in the ensemble to enhance the consensus performance, especially, in the case when there is no access to data features or specific assumptions on data distribution. To address this, in this paper, we propose a novel ensemble clustering approach based on ensemble-driven cluster uncertainty estimation and local weighting strategy. In particular, the uncertainty of each cluster is estimated by considering the cluster labels in the entire ensemble via an entropic criterion. A novel ensemble-driven cluster validity measure is introduced, and a locally weighted co-association matrix is presented to serve as a summary for the ensemble of diverse clusters. With the local diversity in ensembles exploited, two novel consensus functions are further proposed. Extensive experiments on a variety of real-world datasets demonstrate the superiority of the proposed approach over the state-of-the-art.
Ju, Chunhua; Xu, Chonghuan
2013-01-01
Although there are many good collaborative recommendation methods, it is still a challenge to increase the accuracy and diversity of these methods to fulfill users' preferences. In this paper, we propose a novel collaborative filtering recommendation approach based on K-means clustering algorithm. In the process of clustering, we use artificial bee colony (ABC) algorithm to overcome the local optimal problem caused by K-means. After that we adopt the modified cosine similarity to compute the similarity between users in the same clusters. Finally, we generate recommendation results for the corresponding target users. Detailed numerical analysis on a benchmark dataset MovieLens and a real-world dataset indicates that our new collaborative filtering approach based on users clustering algorithm outperforms many other recommendation methods.
Ju, Chunhua
2013-01-01
Although there are many good collaborative recommendation methods, it is still a challenge to increase the accuracy and diversity of these methods to fulfill users' preferences. In this paper, we propose a novel collaborative filtering recommendation approach based on K-means clustering algorithm. In the process of clustering, we use artificial bee colony (ABC) algorithm to overcome the local optimal problem caused by K-means. After that we adopt the modified cosine similarity to compute the similarity between users in the same clusters. Finally, we generate recommendation results for the corresponding target users. Detailed numerical analysis on a benchmark dataset MovieLens and a real-world dataset indicates that our new collaborative filtering approach based on users clustering algorithm outperforms many other recommendation methods. PMID:24381525
A Survey on the Taxonomy of Cluster-Based Routing Protocols for Homogeneous Wireless Sensor Networks
Naeimi, Soroush; Ghafghazi, Hamidreza; Chow, Chee-Onn; Ishii, Hiroshi
2012-01-01
The past few years have witnessed increased interest among researchers in cluster-based protocols for homogeneous networks because of their better scalability and higher energy efficiency than other routing protocols. Given the limited capabilities of sensor nodes in terms of energy resources, processing and communication range, the cluster-based protocols should be compatible with these constraints in either the setup state or steady data transmission state. With focus on these constraints, we classify routing protocols according to their objectives and methods towards addressing the shortcomings of clustering process on each stage of cluster head selection, cluster formation, data aggregation and data communication. We summarize the techniques and methods used in these categories, while the weakness and strength of each protocol is pointed out in details. Furthermore, taxonomy of the protocols in each phase is given to provide a deeper understanding of current clustering approaches. Ultimately based on the existing research, a summary of the issues and solutions of the attributes and characteristics of clustering approaches and some open research areas in cluster-based routing protocols that can be further pursued are provided. PMID:22969350
Naeimi, Soroush; Ghafghazi, Hamidreza; Chow, Chee-Onn; Ishii, Hiroshi
2012-01-01
The past few years have witnessed increased interest among researchers in cluster-based protocols for homogeneous networks because of their better scalability and higher energy efficiency than other routing protocols. Given the limited capabilities of sensor nodes in terms of energy resources, processing and communication range, the cluster-based protocols should be compatible with these constraints in either the setup state or steady data transmission state. With focus on these constraints, we classify routing protocols according to their objectives and methods towards addressing the shortcomings of clustering process on each stage of cluster head selection, cluster formation, data aggregation and data communication. We summarize the techniques and methods used in these categories, while the weakness and strength of each protocol is pointed out in details. Furthermore, taxonomy of the protocols in each phase is given to provide a deeper understanding of current clustering approaches. Ultimately based on the existing research, a summary of the issues and solutions of the attributes and characteristics of clustering approaches and some open research areas in cluster-based routing protocols that can be further pursued are provided.
Performance analysis of clustering techniques over microarray data: A case study
NASA Astrophysics Data System (ADS)
Dash, Rasmita; Misra, Bijan Bihari
2018-03-01
Handling big data is one of the major issues in the field of statistical data analysis. In such investigation cluster analysis plays a vital role to deal with the large scale data. There are many clustering techniques with different cluster analysis approach. But which approach suits a particular dataset is difficult to predict. To deal with this problem a grading approach is introduced over many clustering techniques to identify a stable technique. But the grading approach depends on the characteristic of dataset as well as on the validity indices. So a two stage grading approach is implemented. In this study the grading approach is implemented over five clustering techniques like hybrid swarm based clustering (HSC), k-means, partitioning around medoids (PAM), vector quantization (VQ) and agglomerative nesting (AGNES). The experimentation is conducted over five microarray datasets with seven validity indices. The finding of grading approach that a cluster technique is significant is also established by Nemenyi post-hoc hypothetical test.
Perualila-Tan, Nolen Joy; Shkedy, Ziv; Talloen, Willem; Göhlmann, Hinrich W H; Moerbeke, Marijke Van; Kasim, Adetayo
2016-08-01
The modern process of discovering candidate molecules in early drug discovery phase includes a wide range of approaches to extract vital information from the intersection of biology and chemistry. A typical strategy in compound selection involves compound clustering based on chemical similarity to obtain representative chemically diverse compounds (not incorporating potency information). In this paper, we propose an integrative clustering approach that makes use of both biological (compound efficacy) and chemical (structural features) data sources for the purpose of discovering a subset of compounds with aligned structural and biological properties. The datasets are integrated at the similarity level by assigning complementary weights to produce a weighted similarity matrix, serving as a generic input in any clustering algorithm. This new analysis work flow is semi-supervised method since, after the determination of clusters, a secondary analysis is performed wherein it finds differentially expressed genes associated to the derived integrated cluster(s) to further explain the compound-induced biological effects inside the cell. In this paper, datasets from two drug development oncology projects are used to illustrate the usefulness of the weighted similarity-based clustering approach to integrate multi-source high-dimensional information to aid drug discovery. Compounds that are structurally and biologically similar to the reference compounds are discovered using this proposed integrative approach.
Accelerating Information Retrieval from Profile Hidden Markov Model Databases.
Tamimi, Ahmad; Ashhab, Yaqoub; Tamimi, Hashem
2016-01-01
Profile Hidden Markov Model (Profile-HMM) is an efficient statistical approach to represent protein families. Currently, several databases maintain valuable protein sequence information as profile-HMMs. There is an increasing interest to improve the efficiency of searching Profile-HMM databases to detect sequence-profile or profile-profile homology. However, most efforts to enhance searching efficiency have been focusing on improving the alignment algorithms. Although the performance of these algorithms is fairly acceptable, the growing size of these databases, as well as the increasing demand for using batch query searching approach, are strong motivations that call for further enhancement of information retrieval from profile-HMM databases. This work presents a heuristic method to accelerate the current profile-HMM homology searching approaches. The method works by cluster-based remodeling of the database to reduce the search space, rather than focusing on the alignment algorithms. Using different clustering techniques, 4284 TIGRFAMs profiles were clustered based on their similarities. A representative for each cluster was assigned. To enhance sensitivity, we proposed an extended step that allows overlapping among clusters. A validation benchmark of 6000 randomly selected protein sequences was used to query the clustered profiles. To evaluate the efficiency of our approach, speed and recall values were measured and compared with the sequential search approach. Using hierarchical, k-means, and connected component clustering techniques followed by the extended overlapping step, we obtained an average reduction in time of 41%, and an average recall of 96%. Our results demonstrate that representation of profile-HMMs using a clustering-based approach can significantly accelerate data retrieval from profile-HMM databases.
A Novel Artificial Bee Colony Based Clustering Algorithm for Categorical Data
2015-01-01
Data with categorical attributes are ubiquitous in the real world. However, existing partitional clustering algorithms for categorical data are prone to fall into local optima. To address this issue, in this paper we propose a novel clustering algorithm, ABC-K-Modes (Artificial Bee Colony clustering based on K-Modes), based on the traditional k-modes clustering algorithm and the artificial bee colony approach. In our approach, we first introduce a one-step k-modes procedure, and then integrate this procedure with the artificial bee colony approach to deal with categorical data. In the search process performed by scout bees, we adopt the multi-source search inspired by the idea of batch processing to accelerate the convergence of ABC-K-Modes. The performance of ABC-K-Modes is evaluated by a series of experiments in comparison with that of the other popular algorithms for categorical data. PMID:25993469
A novel artificial bee colony based clustering algorithm for categorical data.
Ji, Jinchao; Pang, Wei; Zheng, Yanlin; Wang, Zhe; Ma, Zhiqiang
2015-01-01
Data with categorical attributes are ubiquitous in the real world. However, existing partitional clustering algorithms for categorical data are prone to fall into local optima. To address this issue, in this paper we propose a novel clustering algorithm, ABC-K-Modes (Artificial Bee Colony clustering based on K-Modes), based on the traditional k-modes clustering algorithm and the artificial bee colony approach. In our approach, we first introduce a one-step k-modes procedure, and then integrate this procedure with the artificial bee colony approach to deal with categorical data. In the search process performed by scout bees, we adopt the multi-source search inspired by the idea of batch processing to accelerate the convergence of ABC-K-Modes. The performance of ABC-K-Modes is evaluated by a series of experiments in comparison with that of the other popular algorithms for categorical data.
Utilizing the Structure and Content Information for XML Document Clustering
NASA Astrophysics Data System (ADS)
Tran, Tien; Kutty, Sangeetha; Nayak, Richi
This paper reports on the experiments and results of a clustering approach used in the INEX 2008 document mining challenge. The clustering approach utilizes both the structure and content information of the Wikipedia XML document collection. A latent semantic kernel (LSK) is used to measure the semantic similarity between XML documents based on their content features. The construction of a latent semantic kernel involves the computing of singular vector decomposition (SVD). On a large feature space matrix, the computation of SVD is very expensive in terms of time and memory requirements. Thus in this clustering approach, the dimension of the document space of a term-document matrix is reduced before performing SVD. The document space reduction is based on the common structural information of the Wikipedia XML document collection. The proposed clustering approach has shown to be effective on the Wikipedia collection in the INEX 2008 document mining challenge.
Moving Object Localization Based on UHF RFID Phase and Laser Clustering
Fu, Yulu; Wang, Changlong; Liang, Gaoli; Zhang, Hua; Ur Rehman, Shafiq
2018-01-01
RFID (Radio Frequency Identification) offers a way to identify objects without any contact. However, positioning accuracy is limited since RFID neither provides distance nor bearing information about the tag. This paper proposes a new and innovative approach for the localization of moving object using a particle filter by incorporating RFID phase and laser-based clustering from 2d laser range data. First of all, we calculate phase-based velocity of the moving object based on RFID phase difference. Meanwhile, we separate laser range data into different clusters, and compute the distance-based velocity and moving direction of these clusters. We then compute and analyze the similarity between two velocities, and select K clusters having the best similarity score. We predict the particles according to the velocity and moving direction of laser clusters. Finally, we update the weights of the particles based on K clusters and achieve the localization of moving objects. The feasibility of this approach is validated on a Scitos G5 service robot and the results prove that we have successfully achieved a localization accuracy up to 0.25 m. PMID:29522458
An Island Grouping Genetic Algorithm for Fuzzy Partitioning Problems
Salcedo-Sanz, S.; Del Ser, J.; Geem, Z. W.
2014-01-01
This paper presents a novel fuzzy clustering technique based on grouping genetic algorithms (GGAs), which are a class of evolutionary algorithms especially modified to tackle grouping problems. Our approach hinges on a GGA devised for fuzzy clustering by means of a novel encoding of individuals (containing elements and clusters sections), a new fitness function (a superior modification of the Davies Bouldin index), specially tailored crossover and mutation operators, and the use of a scheme based on a local search and a parallelization process, inspired from an island-based model of evolution. The overall performance of our approach has been assessed over a number of synthetic and real fuzzy clustering problems with different objective functions and distance measures, from which it is concluded that the proposed approach shows excellent performance in all cases. PMID:24977235
Statistical Significance for Hierarchical Clustering
Kimes, Patrick K.; Liu, Yufeng; Hayes, D. Neil; Marron, J. S.
2017-01-01
Summary Cluster analysis has proved to be an invaluable tool for the exploratory and unsupervised analysis of high dimensional datasets. Among methods for clustering, hierarchical approaches have enjoyed substantial popularity in genomics and other fields for their ability to simultaneously uncover multiple layers of clustering structure. A critical and challenging question in cluster analysis is whether the identified clusters represent important underlying structure or are artifacts of natural sampling variation. Few approaches have been proposed for addressing this problem in the context of hierarchical clustering, for which the problem is further complicated by the natural tree structure of the partition, and the multiplicity of tests required to parse the layers of nested clusters. In this paper, we propose a Monte Carlo based approach for testing statistical significance in hierarchical clustering which addresses these issues. The approach is implemented as a sequential testing procedure guaranteeing control of the family-wise error rate. Theoretical justification is provided for our approach, and its power to detect true clustering structure is illustrated through several simulation studies and applications to two cancer gene expression datasets. PMID:28099990
SOTXTSTREAM: Density-based self-organizing clustering of text streams.
Bryant, Avory C; Cios, Krzysztof J
2017-01-01
A streaming data clustering algorithm is presented building upon the density-based self-organizing stream clustering algorithm SOSTREAM. Many density-based clustering algorithms are limited by their inability to identify clusters with heterogeneous density. SOSTREAM addresses this limitation through the use of local (nearest neighbor-based) density determinations. Additionally, many stream clustering algorithms use a two-phase clustering approach. In the first phase, a micro-clustering solution is maintained online, while in the second phase, the micro-clustering solution is clustered offline to produce a macro solution. By performing self-organization techniques on micro-clusters in the online phase, SOSTREAM is able to maintain a macro clustering solution in a single phase. Leveraging concepts from SOSTREAM, a new density-based self-organizing text stream clustering algorithm, SOTXTSTREAM, is presented that addresses several shortcomings of SOSTREAM. Gains in clustering performance of this new algorithm are demonstrated on several real-world text stream datasets.
Semantic Clustering of Search Engine Results
Soliman, Sara Saad; El-Sayed, Maged F.; Hassan, Yasser F.
2015-01-01
This paper presents a novel approach for search engine results clustering that relies on the semantics of the retrieved documents rather than the terms in those documents. The proposed approach takes into consideration both lexical and semantics similarities among documents and applies activation spreading technique in order to generate semantically meaningful clusters. This approach allows documents that are semantically similar to be clustered together rather than clustering documents based on similar terms. A prototype is implemented and several experiments are conducted to test the prospered solution. The result of the experiment confirmed that the proposed solution achieves remarkable results in terms of precision. PMID:26933673
Roushangar, Kiyoumars; Alizadeh, Farhad; Adamowski, Jan
2018-08-01
Understanding precipitation on a regional basis is an important component of water resources planning and management. The present study outlines a methodology based on continuous wavelet transform (CWT) and multiscale entropy (CWME), combined with self-organizing map (SOM) and k-means clustering techniques, to measure and analyze the complexity of precipitation. Historical monthly precipitation data from 1960 to 2010 at 31 rain gauges across Iran were preprocessed by CWT. The multi-resolution CWT approach segregated the major features of the original precipitation series by unfolding the structure of the time series which was often ambiguous. The entropy concept was then applied to components obtained from CWT to measure dispersion, uncertainty, disorder, and diversification of subcomponents. Based on different validity indices, k-means clustering captured homogenous areas more accurately, and additional analysis was performed based on the outcome of this approach. The 31 rain gauges in this study were clustered into 6 groups, each one having a unique CWME pattern across different time scales. The results of clustering showed that hydrologic similarity (multiscale variation of precipitation) was not based on geographic contiguity. According to the pattern of entropy across the scales, each cluster was assigned an entropy signature that provided an estimation of the entropy pattern of precipitation data in each cluster. Based on the pattern of mean CWME for each cluster, a characteristic signature was assigned, which provided an estimation of the CWME of a cluster across scales of 1-2, 3-8, and 9-13 months relative to other stations. The validity of the homogeneous clusters demonstrated the usefulness of the proposed approach to regionalize precipitation. Further analysis based on wavelet coherence (WTC) was performed by selecting central rain gauges in each cluster and analyzing against temperature, wind, Multivariate ENSO index (MEI), and East Atlantic (EA) and North Atlantic Oscillation (NAO), indeces. The results revealed that all climatic features except NAO influenced precipitation in Iran during the 1960-2010 period. Copyright © 2018 Elsevier Inc. All rights reserved.
Quantum annealing for combinatorial clustering
NASA Astrophysics Data System (ADS)
Kumar, Vaibhaw; Bass, Gideon; Tomlin, Casey; Dulny, Joseph
2018-02-01
Clustering is a powerful machine learning technique that groups "similar" data points based on their characteristics. Many clustering algorithms work by approximating the minimization of an objective function, namely the sum of within-the-cluster distances between points. The straightforward approach involves examining all the possible assignments of points to each of the clusters. This approach guarantees the solution will be a global minimum; however, the number of possible assignments scales quickly with the number of data points and becomes computationally intractable even for very small datasets. In order to circumvent this issue, cost function minima are found using popular local search-based heuristic approaches such as k-means and hierarchical clustering. Due to their greedy nature, such techniques do not guarantee that a global minimum will be found and can lead to sub-optimal clustering assignments. Other classes of global search-based techniques, such as simulated annealing, tabu search, and genetic algorithms, may offer better quality results but can be too time-consuming to implement. In this work, we describe how quantum annealing can be used to carry out clustering. We map the clustering objective to a quadratic binary optimization problem and discuss two clustering algorithms which are then implemented on commercially available quantum annealing hardware, as well as on a purely classical solver "qbsolv." The first algorithm assigns N data points to K clusters, and the second one can be used to perform binary clustering in a hierarchical manner. We present our results in the form of benchmarks against well-known k-means clustering and discuss the advantages and disadvantages of the proposed techniques.
Inherent Structure versus Geometric Metric for State Space Discretization
Liu, Hanzhong; Li, Minghai; Fan, Jue; Huo, Shuanghong
2016-01-01
Inherent structure (IS) and geometry-based clustering methods are commonly used for analyzing molecular dynamics trajectories. ISs are obtained by minimizing the sampled conformations into local minima on potential/effective energy surface. The conformations that are minimized into the same energy basin belong to one cluster. We investigate the influence of the applications of these two methods of trajectory decomposition on our understanding of the thermodynamics and kinetics of alanine tetrapeptide. We find that at the micro cluster level, the IS approach and root-mean-square deviation (RMSD) based clustering method give totally different results. Depending on the local features of energy landscape, the conformations with close RMSDs can be minimized into different minima, while the conformations with large RMSDs could be minimized into the same basin. However, the relaxation timescales calculated based on the transition matrices built from the micro clusters are similar. The discrepancy at the micro cluster level leads to different macro clusters. Although the dynamic models established through both clustering methods are validated approximately Markovian, the IS approach seems to give a meaningful state space discretization at the macro cluster level. PMID:26915811
A knowledge-driven approach to cluster validity assessment.
Bolshakova, Nadia; Azuaje, Francisco; Cunningham, Pádraig
2005-05-15
This paper presents an approach to assessing cluster validity based on similarity knowledge extracted from the Gene Ontology. The program is freely available for non-profit use on request from the authors.
DIMM-SC: a Dirichlet mixture model for clustering droplet-based single cell transcriptomic data.
Sun, Zhe; Wang, Ting; Deng, Ke; Wang, Xiao-Feng; Lafyatis, Robert; Ding, Ying; Hu, Ming; Chen, Wei
2018-01-01
Single cell transcriptome sequencing (scRNA-Seq) has become a revolutionary tool to study cellular and molecular processes at single cell resolution. Among existing technologies, the recently developed droplet-based platform enables efficient parallel processing of thousands of single cells with direct counting of transcript copies using Unique Molecular Identifier (UMI). Despite the technology advances, statistical methods and computational tools are still lacking for analyzing droplet-based scRNA-Seq data. Particularly, model-based approaches for clustering large-scale single cell transcriptomic data are still under-explored. We developed DIMM-SC, a Dirichlet Mixture Model for clustering droplet-based Single Cell transcriptomic data. This approach explicitly models UMI count data from scRNA-Seq experiments and characterizes variations across different cell clusters via a Dirichlet mixture prior. We performed comprehensive simulations to evaluate DIMM-SC and compared it with existing clustering methods such as K-means, CellTree and Seurat. In addition, we analyzed public scRNA-Seq datasets with known cluster labels and in-house scRNA-Seq datasets from a study of systemic sclerosis with prior biological knowledge to benchmark and validate DIMM-SC. Both simulation studies and real data applications demonstrated that overall, DIMM-SC achieves substantially improved clustering accuracy and much lower clustering variability compared to other existing clustering methods. More importantly, as a model-based approach, DIMM-SC is able to quantify the clustering uncertainty for each single cell, facilitating rigorous statistical inference and biological interpretations, which are typically unavailable from existing clustering methods. DIMM-SC has been implemented in a user-friendly R package with a detailed tutorial available on www.pitt.edu/∼wec47/singlecell.html. wei.chen@chp.edu or hum@ccf.org. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
An ensemble framework for clustering protein-protein interaction networks.
Asur, Sitaram; Ucar, Duygu; Parthasarathy, Srinivasan
2007-07-01
Protein-Protein Interaction (PPI) networks are believed to be important sources of information related to biological processes and complex metabolic functions of the cell. The presence of biologically relevant functional modules in these networks has been theorized by many researchers. However, the application of traditional clustering algorithms for extracting these modules has not been successful, largely due to the presence of noisy false positive interactions as well as specific topological challenges in the network. In this article, we propose an ensemble clustering framework to address this problem. For base clustering, we introduce two topology-based distance metrics to counteract the effects of noise. We develop a PCA-based consensus clustering technique, designed to reduce the dimensionality of the consensus problem and yield informative clusters. We also develop a soft consensus clustering variant to assign multifaceted proteins to multiple functional groups. We conduct an empirical evaluation of different consensus techniques using topology-based, information theoretic and domain-specific validation metrics and show that our approaches can provide significant benefits over other state-of-the-art approaches. Our analysis of the consensus clusters obtained demonstrates that ensemble clustering can (a) produce improved biologically significant functional groupings; and (b) facilitate soft clustering by discovering multiple functional associations for proteins. Supplementary data are available at Bioinformatics online.
A time-series approach for clustering farms based on slaughterhouse health aberration data.
Hulsegge, B; de Greef, K H
2018-05-01
A large amount of data is collected routinely in meat inspection in pig slaughterhouses. A time series clustering approach is presented and applied that groups farms based on similar statistical characteristics of meat inspection data over time. A three step characteristic-based clustering approach was used from the idea that the data contain more info than the incidence figures. A stratified subset containing 511,645 pigs was derived as a study set from 3.5 years of meat inspection data. The monthly averages of incidence of pleuritis and of pneumonia of 44 Dutch farms (delivering 5149 batches to 2 pig slaughterhouses) were subjected to 1) derivation of farm level data characteristics 2) factor analysis and 3) clustering into groups of farms. The characteristic-based clustering was able to cluster farms for both lung aberrations. Three groups of data characteristics were informative, describing incidence, time pattern and degree of autocorrelation. The consistency of clustering similar farms was confirmed by repetition of the analysis in a larger dataset. The robustness of the clustering was tested on a substantially extended dataset. This confirmed the earlier results, three data distribution aspects make up the majority of distinction between groups of farms and in these groups (clusters) the majority of the farms was allocated comparable to the earlier allocation (75% and 62% for pleuritis and pneumonia, respectively). The difference between pleuritis and pneumonia in their seasonal dependency was confirmed, supporting the biological relevance of the clustering. Comparison of the identified clusters of statistically comparable farms can be used to detect farm level risk factors causing the health aberrations beyond comparison on disease incidence and trend alone. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhang, Zhonghui; Wu, Wen-Shu
2018-01-01
MicroRNAs are small 18-24 nt single-stranded noncoding RNA molecules involved in many biological processes, including stemness maintenance and cellular reprogramming. Current methods used in loss-of-function studies of microRNAs have several limitations. Here, we describe a new approach for dissecting miR-302/367 functions by transcription activator-like effectors (TALEs), which are natural effector proteins secreted by Xanthomonas and Ralstonia bacteria. Knockdown of the miR-302/367 cluster uses the Kruppel-associated box repressor domain fused with specific TALEs designed to bind the miR-302/367 cluster promoter. Knockout of the miR-302/367 cluster uses two pairs of TALE nucleases (TALENs) to delete the miR-302/367 cluster in human primary cells. Together, both TALE-based transcriptional repressor and TALENs are two promising approaches for loss-of-function studies of microRNA cluster in human primary cells.
A Constraint-Based Approach to Acquisition of Word-Final Consonant Clusters in Turkish Children
ERIC Educational Resources Information Center
Gokgoz-Kurt, Burcu
2017-01-01
The current study provides a constraint-based analysis of L1 word-final consonant cluster acquisition in Turkish child language, based on the data originally presented by Topbas and Kopkalli-Yavuz (2008). The present analysis was done using [?]+obstruent consonant cluster acquisition. A comparison of Gradual Learning Algorithm (GLA) under…
Tang, Jiqiang; Yang, Wu; Zhu, Lingyun; Wang, Dong; Feng, Xin
2017-04-26
In recent years, Wireless Sensor Networks with a Mobile Sink (WSN-MS) have been an active research topic due to the widespread use of mobile devices. However, how to get the balance between data delivery latency and energy consumption becomes a key issue of WSN-MS. In this paper, we study the clustering approach by jointly considering the Route planning for mobile sink and Clustering Problem (RCP) for static sensor nodes. We solve the RCP problem by using the minimum travel route clustering approach, which applies the minimum travel route of the mobile sink to guide the clustering process. We formulate the RCP problem as an Integer Non-Linear Programming (INLP) problem to shorten the travel route of the mobile sink under three constraints: the communication hops constraint, the travel route constraint and the loop avoidance constraint. We then propose an Imprecise Induction Algorithm (IIA) based on the property that the solution with a small hop count is more feasible than that with a large hop count. The IIA algorithm includes three processes: initializing travel route planning with a Traveling Salesman Problem (TSP) algorithm, transforming the cluster head to a cluster member and transforming the cluster member to a cluster head. Extensive experimental results show that the IIA algorithm could automatically adjust cluster heads according to the maximum hops parameter and plan a shorter travel route for the mobile sink. Compared with the Shortest Path Tree-based Data-Gathering Algorithm (SPT-DGA), the IIA algorithm has the characteristics of shorter route length, smaller cluster head count and faster convergence rate.
Thematic clustering of text documents using an EM-based approach
2012-01-01
Clustering textual contents is an important step in mining useful information on the web or other text-based resources. The common task in text clustering is to handle text in a multi-dimensional space, and to partition documents into groups, where each group contains documents that are similar to each other. However, this strategy lacks a comprehensive view for humans in general since it cannot explain the main subject of each cluster. Utilizing semantic information can solve this problem, but it needs a well-defined ontology or pre-labeled gold standard set. In this paper, we present a thematic clustering algorithm for text documents. Given text, subject terms are extracted and used for clustering documents in a probabilistic framework. An EM approach is used to ensure documents are assigned to correct subjects, hence it converges to a locally optimal solution. The proposed method is distinctive because its results are sufficiently explanatory for human understanding as well as efficient for clustering performance. The experimental results show that the proposed method provides a competitive performance compared to other state-of-the-art approaches. We also show that the extracted themes from the MEDLINE® dataset represent the subjects of clusters reasonably well. PMID:23046528
Batke, Monika; Gütlein, Martin; Partosch, Falko; Gundert-Remy, Ursula; Helma, Christoph; Kramer, Stefan; Maunz, Andreas; Seeland, Madeleine; Bitsch, Annette
2016-01-01
Interest is increasing in the development of non-animal methods for toxicological evaluations. These methods are however, particularly challenging for complex toxicological endpoints such as repeated dose toxicity. European Legislation, e.g., the European Union's Cosmetic Directive and REACH, demands the use of alternative methods. Frameworks, such as the Read-across Assessment Framework or the Adverse Outcome Pathway Knowledge Base, support the development of these methods. The aim of the project presented in this publication was to develop substance categories for a read-across with complex endpoints of toxicity based on existing databases. The basic conceptual approach was to combine structural similarity with shared mechanisms of action. Substances with similar chemical structure and toxicological profile form candidate categories suitable for read-across. We combined two databases on repeated dose toxicity, RepDose database, and ELINCS database to form a common database for the identification of categories. The resulting database contained physicochemical, structural, and toxicological data, which were refined and curated for cluster analyses. We applied the Predictive Clustering Tree (PCT) approach for clustering chemicals based on structural and on toxicological information to detect groups of chemicals with similar toxic profiles and pathways/mechanisms of toxicity. As many of the experimental toxicity values were not available, this data was imputed by predicting them with a multi-label classification method, prior to clustering. The clustering results were evaluated by assessing chemical and toxicological similarities with the aim of identifying clusters with a concordance between structural information and toxicity profiles/mechanisms. From these chosen clusters, seven were selected for a quantitative read-across, based on a small ratio of NOAEL of the members with the highest and the lowest NOAEL in the cluster (< 5). We discuss the limitations of the approach. Based on this analysis we propose improvements for a follow-up approach, such as incorporation of metabolic information and more detailed mechanistic information. The software enables the user to allocate a substance in a cluster and to use this information for a possible read- across. The clustering tool is provided as a free web service, accessible at http://mlc-reach.informatik.uni-mainz.de.
NASA Astrophysics Data System (ADS)
Guo, Yang; Becker, Ute; Neese, Frank
2018-03-01
Local correlation theories have been developed in two main flavors: (1) "direct" local correlation methods apply local approximation to the canonical equations and (2) fragment based methods reconstruct the correlation energy from a series of smaller calculations on subsystems. The present work serves two purposes. First, we investigate the relative efficiencies of the two approaches using the domain-based local pair natural orbital (DLPNO) approach as the "direct" method and the cluster in molecule (CIM) approach as the fragment based approach. Both approaches are applied in conjunction with second-order many-body perturbation theory (MP2) as well as coupled-cluster theory with single-, double- and perturbative triple excitations [CCSD(T)]. Second, we have investigated the possible merits of combining the two approaches by performing CIM calculations with DLPNO methods serving as the method of choice for performing the subsystem calculations. Our cluster-in-molecule approach is closely related to but slightly deviates from approaches in the literature since we have avoided real space cutoffs. Moreover, the neglected distant pair correlations in the previous CIM approach are considered approximately. Six very large molecules (503-2380 atoms) were studied. At both MP2 and CCSD(T) levels of theory, the CIM and DLPNO methods show similar efficiency. However, DLPNO methods are more accurate for 3-dimensional systems. While we have found only little incentive for the combination of CIM with DLPNO-MP2, the situation is different for CIM-DLPNO-CCSD(T). This combination is attractive because (1) the better parallelization opportunities offered by CIM; (2) the methodology is less memory intensive than the genuine DLPNO-CCSD(T) method and, hence, allows for large calculations on more modest hardware; and (3) the methodology is applicable and efficient in the frequently met cases, where the largest subsystem calculation is too large for the canonical CCSD(T) method.
A Multicriteria Decision Making Approach for Estimating the Number of Clusters in a Data Set
Peng, Yi; Zhang, Yong; Kou, Gang; Shi, Yong
2012-01-01
Determining the number of clusters in a data set is an essential yet difficult step in cluster analysis. Since this task involves more than one criterion, it can be modeled as a multiple criteria decision making (MCDM) problem. This paper proposes a multiple criteria decision making (MCDM)-based approach to estimate the number of clusters for a given data set. In this approach, MCDM methods consider different numbers of clusters as alternatives and the outputs of any clustering algorithm on validity measures as criteria. The proposed method is examined by an experimental study using three MCDM methods, the well-known clustering algorithm–k-means, ten relative measures, and fifteen public-domain UCI machine learning data sets. The results show that MCDM methods work fairly well in estimating the number of clusters in the data and outperform the ten relative measures considered in the study. PMID:22870181
Stochastic coupled cluster theory: Efficient sampling of the coupled cluster expansion
NASA Astrophysics Data System (ADS)
Scott, Charles J. C.; Thom, Alex J. W.
2017-09-01
We consider the sampling of the coupled cluster expansion within stochastic coupled cluster theory. Observing the limitations of previous approaches due to the inherently non-linear behavior of a coupled cluster wavefunction representation, we propose new approaches based on an intuitive, well-defined condition for sampling weights and on sampling the expansion in cluster operators of different excitation levels. We term these modifications even and truncated selections, respectively. Utilising both approaches demonstrates dramatically improved calculation stability as well as reduced computational and memory costs. These modifications are particularly effective at higher truncation levels owing to the large number of terms within the cluster expansion that can be neglected, as demonstrated by the reduction of the number of terms to be sampled when truncating at triple excitations by 77% and hextuple excitations by 98%.
Crawford, Megan R.; Chirinos, Diana A.; Iurcotta, Toni; Edinger, Jack D.; Wyatt, James K.; Manber, Rachel; Ong, Jason C.
2017-01-01
Study Objectives: This study examined empirically derived symptom cluster profiles among patients who present with insomnia using clinical data and polysomnography. Methods: Latent profile analysis was used to identify symptom cluster profiles of 175 individuals (63% female) with insomnia disorder based on total scores on validated self-report instruments of daytime and nighttime symptoms (Insomnia Severity Index, Glasgow Sleep Effort Scale, Fatigue Severity Scale, Beliefs and Attitudes about Sleep, Epworth Sleepiness Scale, Pre-Sleep Arousal Scale), mean values from a 7-day sleep diary (sleep onset latency, wake after sleep onset, and sleep efficiency), and total sleep time derived from an in-laboratory PSG. Results: The best-fitting model had three symptom cluster profiles: “High Subjective Wakefulness” (HSW), “Mild Insomnia” (MI) and “Insomnia-Related Distress” (IRD). The HSW symptom cluster profile (26.3% of the sample) reported high wake after sleep onset, high sleep onset latency, and low sleep efficiency. Despite relatively comparable PSG-derived total sleep time, they reported greater levels of daytime sleepiness. The MI symptom cluster profile (45.1%) reported the least disturbance in the sleep diary and questionnaires and had the highest sleep efficiency. The IRD symptom cluster profile (28.6%) reported the highest mean scores on the insomnia-related distress measures (eg, sleep effort and arousal) and waking correlates (fatigue). Covariates associated with symptom cluster membership were older age for the HSW profile, greater obstructive sleep apnea severity for the MI profile, and, when adjusting for obstructive sleep apnea severity, being overweight/obese for the IRD profile. Conclusions: The heterogeneous nature of insomnia disorder is captured by this data-driven approach to identify symptom cluster profiles. The adaptation of a symptom cluster-based approach could guide tailored patient-centered management of patients presenting with insomnia, and enhance patient care. Citation: Crawford MR, Chirinos DA, Iurcotta T, Edinger JD, Wyatt JK, Manber R, Ong JC. Characterization of patients who present with insomnia: is there room for a symptom cluster-based approach? J Clin Sleep Med. 2017;13(7):911–921. PMID:28633722
High- and low-level hierarchical classification algorithm based on source separation process
NASA Astrophysics Data System (ADS)
Loghmari, Mohamed Anis; Karray, Emna; Naceur, Mohamed Saber
2016-10-01
High-dimensional data applications have earned great attention in recent years. We focus on remote sensing data analysis on high-dimensional space like hyperspectral data. From a methodological viewpoint, remote sensing data analysis is not a trivial task. Its complexity is caused by many factors, such as large spectral or spatial variability as well as the curse of dimensionality. The latter describes the problem of data sparseness. In this particular ill-posed problem, a reliable classification approach requires appropriate modeling of the classification process. The proposed approach is based on a hierarchical clustering algorithm in order to deal with remote sensing data in high-dimensional space. Indeed, one obvious method to perform dimensionality reduction is to use the independent component analysis process as a preprocessing step. The first particularity of our method is the special structure of its cluster tree. Most of the hierarchical algorithms associate leaves to individual clusters, and start from a large number of individual classes equal to the number of pixels; however, in our approach, leaves are associated with the most relevant sources which are represented according to mutually independent axes to specifically represent some land covers associated with a limited number of clusters. These sources contribute to the refinement of the clustering by providing complementary rather than redundant information. The second particularity of our approach is that at each level of the cluster tree, we combine both a high-level divisive clustering and a low-level agglomerative clustering. This approach reduces the computational cost since the high-level divisive clustering is controlled by a simple Boolean operator, and optimizes the clustering results since the low-level agglomerative clustering is guided by the most relevant independent sources. Then at each new step we obtain a new finer partition that will participate in the clustering process to enhance semantic capabilities and give good identification rates.
ERIC Educational Resources Information Center
Konstantinidis-Pereira, Alicja
2018-01-01
This paper summarises a new method of grouping postgraduate taught (PGT) courses introduced at Oxford Brookes University as a part of a Portfolio Review. Instead of classifying courses by subject, the new cluster approach uses statistical methods to group the courses based on factors including flexibility of study options, level of specialisation,…
Water quality assessment with hierarchical cluster analysis based on Mahalanobis distance.
Du, Xiangjun; Shao, Fengjing; Wu, Shunyao; Zhang, Hanlin; Xu, Si
2017-07-01
Water quality assessment is crucial for assessment of marine eutrophication, prediction of harmful algal blooms, and environment protection. Previous studies have developed many numeric modeling methods and data driven approaches for water quality assessment. The cluster analysis, an approach widely used for grouping data, has also been employed. However, there are complex correlations between water quality variables, which play important roles in water quality assessment but have always been overlooked. In this paper, we analyze correlations between water quality variables and propose an alternative method for water quality assessment with hierarchical cluster analysis based on Mahalanobis distance. Further, we cluster water quality data collected form coastal water of Bohai Sea and North Yellow Sea of China, and apply clustering results to evaluate its water quality. To evaluate the validity, we also cluster the water quality data with cluster analysis based on Euclidean distance, which are widely adopted by previous studies. The results show that our method is more suitable for water quality assessment with many correlated water quality variables. To our knowledge, it is the first attempt to apply Mahalanobis distance for coastal water quality assessment.
Algorithms of maximum likelihood data clustering with applications
NASA Astrophysics Data System (ADS)
Giada, Lorenzo; Marsili, Matteo
2002-12-01
We address the problem of data clustering by introducing an unsupervised, parameter-free approach based on maximum likelihood principle. Starting from the observation that data sets belonging to the same cluster share a common information, we construct an expression for the likelihood of any possible cluster structure. The likelihood in turn depends only on the Pearson's coefficient of the data. We discuss clustering algorithms that provide a fast and reliable approximation to maximum likelihood configurations. Compared to standard clustering methods, our approach has the advantages that (i) it is parameter free, (ii) the number of clusters need not be fixed in advance and (iii) the interpretation of the results is transparent. In order to test our approach and compare it with standard clustering algorithms, we analyze two very different data sets: time series of financial market returns and gene expression data. We find that different maximization algorithms produce similar cluster structures whereas the outcome of standard algorithms has a much wider variability.
A quasiparticle-based multi-reference coupled-cluster method.
Rolik, Zoltán; Kállay, Mihály
2014-10-07
The purpose of this paper is to introduce a quasiparticle-based multi-reference coupled-cluster (MRCC) approach. The quasiparticles are introduced via a unitary transformation which allows us to represent a complete active space reference function and other elements of an orthonormal multi-reference (MR) basis in a determinant-like form. The quasiparticle creation and annihilation operators satisfy the fermion anti-commutation relations. On the basis of these quasiparticles, a generalization of the normal-ordered operator products for the MR case can be introduced as an alternative to the approach of Mukherjee and Kutzelnigg [Recent Prog. Many-Body Theor. 4, 127 (1995); Mukherjee and Kutzelnigg, J. Chem. Phys. 107, 432 (1997)]. Based on the new normal ordering any quasiparticle-based theory can be formulated using the well-known diagram techniques. Beyond the general quasiparticle framework we also present a possible realization of the unitary transformation. The suggested transformation has an exponential form where the parameters, holding exclusively active indices, are defined in a form similar to the wave operator of the unitary coupled-cluster approach. The definition of our quasiparticle-based MRCC approach strictly follows the form of the single-reference coupled-cluster method and retains several of its beneficial properties. Test results for small systems are presented using a pilot implementation of the new approach and compared to those obtained by other MR methods.
NASA Astrophysics Data System (ADS)
Dayananda, Karanam Ravichandran; Straub, Jeremy
2017-05-01
This paper proposes a new hybrid algorithm for security, which incorporates both distributed and hierarchal approaches. It uses a mobile data collector (MDC) to collect information in order to save energy of sensor nodes in a wireless sensor network (WSN) as, in most networks, these sensor nodes have limited energy. Wireless sensor networks are prone to security problems because, among other things, it is possible to use a rogue sensor node to eavesdrop on or alter the information being transmitted. To prevent this, this paper introduces a security algorithm for MDC-based WSNs. A key use of this algorithm is to protect the confidentiality of the information sent by the sensor nodes. The sensor nodes are deployed in a random fashion and form group structures called clusters. Each cluster has a cluster head. The cluster head collects data from the other nodes using the time-division multiple access protocol. The sensor nodes send their data to the cluster head for transmission to the base station node for further processing. The MDC acts as an intermediate node between the cluster head and base station. The MDC, using its dynamic acyclic graph path, collects the data from the cluster head and sends it to base station. This approach is useful for applications including warfighting, intelligent building and medicine. To assess the proposed system, the paper presents a comparison of its performance with other approaches and algorithms that can be used for similar purposes.
A new approach for the assessment of temporal clustering of extratropical wind storms
NASA Astrophysics Data System (ADS)
Schuster, Mareike; Eddounia, Fadoua; Kuhnel, Ivan; Ulbrich, Uwe
2017-04-01
A widely-used methodology to assess the clustering of storms in a region is based on dispersion statistics of a simple homogeneous Poisson process. This clustering measure is determined by the ratio of the variance and the mean of the local storm statistics per grid point. Resulting values larger than 1, i.e. when the variance is larger than the mean, indicate clustering; while values lower than 1 indicate a sequencing of storms that is more regular than a random process. However, a disadvantage of this methodology is that the characteristics are valid for a pre-defined climatological time period, and it is not possible to identify a temporal variability of clustering. Also, the absolute value of the dispersion statistics is not particularly intuitive. We have developed an approach to describe temporal clustering of storms which offers a more intuitive comprehension, and at the same time allows to assess temporal variations. The approach is based on the local distribution of waiting times between the occurrence of two individual storm events, the former being computed through the post-processing of individual windstorm tracks which in turn are obtained by an objective tracking algorithm. Based on this distribution a threshold can be set, either by the waiting time expected from a random process or by a quantile of the observed distribution. Thus, it can be determined if two consecutive wind storm events count as part of a (temporal) cluster. We analyze extratropical wind storms in a reanalysis dataset and compare the results of the traditional clustering measure with our new methodology. We assess what range of clustering events (in terms of duration and frequency) is covered and identify if the historically known clustered seasons are detectable by the new clustering measure in the reanalysis.
Tang, Jiqiang; Yang, Wu; Zhu, Lingyun; Wang, Dong; Feng, Xin
2017-01-01
In recent years, Wireless Sensor Networks with a Mobile Sink (WSN-MS) have been an active research topic due to the widespread use of mobile devices. However, how to get the balance between data delivery latency and energy consumption becomes a key issue of WSN-MS. In this paper, we study the clustering approach by jointly considering the Route planning for mobile sink and Clustering Problem (RCP) for static sensor nodes. We solve the RCP problem by using the minimum travel route clustering approach, which applies the minimum travel route of the mobile sink to guide the clustering process. We formulate the RCP problem as an Integer Non-Linear Programming (INLP) problem to shorten the travel route of the mobile sink under three constraints: the communication hops constraint, the travel route constraint and the loop avoidance constraint. We then propose an Imprecise Induction Algorithm (IIA) based on the property that the solution with a small hop count is more feasible than that with a large hop count. The IIA algorithm includes three processes: initializing travel route planning with a Traveling Salesman Problem (TSP) algorithm, transforming the cluster head to a cluster member and transforming the cluster member to a cluster head. Extensive experimental results show that the IIA algorithm could automatically adjust cluster heads according to the maximum hops parameter and plan a shorter travel route for the mobile sink. Compared with the Shortest Path Tree-based Data-Gathering Algorithm (SPT-DGA), the IIA algorithm has the characteristics of shorter route length, smaller cluster head count and faster convergence rate. PMID:28445434
Benefits of off-campus education for students in the health sciences: a text-mining analysis.
Nakagawa, Kazumasa; Asakawa, Yasuyoshi; Yamada, Keiko; Ushikubo, Mitsuko; Yoshida, Tohru; Yamaguchi, Haruyasu
2012-08-28
In Japan, few community-based approaches have been adopted in health-care professional education, and the appropriate content for such approaches has not been clarified. In establishing community-based education for health-care professionals, clarification of its learning effects is required. A community-based educational program was started in 2009 in the health sciences course at Gunma University, and one of the main elements in this program is conducting classes outside school. The purpose of this study was to investigate using text-analysis methods how the off-campus program affects students. In all, 116 self-assessment worksheets submitted by students after participating in the off-campus classes were decomposed into words. The extracted words were carefully selected from the perspective of contained meaning or content. With the selected terms, the relations to each word were analyzed by means of cluster analysis. Cluster analysis was used to select and divide 32 extracted words into four clusters: cluster 1-"actually/direct," "learn/watch/hear," "how," "experience/participation," "local residents," "atmosphere in community-based clinical care settings," "favorable," "communication/conversation," and "study"; cluster 2-"work of staff member" and "role"; cluster 3-"interaction/communication," "understanding," "feel," "significant/important/necessity," and "think"; and cluster 4-"community," "confusing," "enjoyable," "proactive," "knowledge," "academic knowledge," and "class." The students who participated in the program achieved different types of learning through the off-campus classes. They also had a positive impression of the community-based experience and interaction with the local residents, which is considered a favorable outcome. Off-campus programs could be a useful educational approach for students in health sciences.
Anders, Katherine L; Cutcher, Zoe; Kleinschmidt, Immo; Donnelly, Christl A; Ferguson, Neil M; Indriani, Citra; O'Neill, Scott L; Jewell, Nicholas P; Simmons, Cameron P
2018-05-07
Cluster randomized trials are the gold standard for assessing efficacy of community-level interventions, such as vector control strategies against dengue. We describe a novel cluster randomized trial methodology with a test-negative design, which offers advantages over traditional approaches. It utilizes outcome-based sampling of patients presenting with a syndrome consistent with the disease of interest, who are subsequently classified as test-positive cases or test-negative controls on the basis of diagnostic testing. We use simulations of a cluster trial to demonstrate validity of efficacy estimates under the test-negative approach. This demonstrates that, provided study arms are balanced for both test-negative and test-positive illness at baseline and that other test-negative design assumptions are met, the efficacy estimates closely match true efficacy. We also briefly discuss analytical considerations for an odds ratio-based effect estimate arising from clustered data, and outline potential approaches to analysis. We conclude that application of the test-negative design to certain cluster randomized trials could increase their efficiency and ease of implementation.
A Fast Density-Based Clustering Algorithm for Real-Time Internet of Things Stream
Ying Wah, Teh
2014-01-01
Data streams are continuously generated over time from Internet of Things (IoT) devices. The faster all of this data is analyzed, its hidden trends and patterns discovered, and new strategies created, the faster action can be taken, creating greater value for organizations. Density-based method is a prominent class in clustering data streams. It has the ability to detect arbitrary shape clusters, to handle outlier, and it does not need the number of clusters in advance. Therefore, density-based clustering algorithm is a proper choice for clustering IoT streams. Recently, several density-based algorithms have been proposed for clustering data streams. However, density-based clustering in limited time is still a challenging issue. In this paper, we propose a density-based clustering algorithm for IoT streams. The method has fast processing time to be applicable in real-time application of IoT devices. Experimental results show that the proposed approach obtains high quality results with low computation time on real and synthetic datasets. PMID:25110753
A fast density-based clustering algorithm for real-time Internet of Things stream.
Amini, Amineh; Saboohi, Hadi; Wah, Teh Ying; Herawan, Tutut
2014-01-01
Data streams are continuously generated over time from Internet of Things (IoT) devices. The faster all of this data is analyzed, its hidden trends and patterns discovered, and new strategies created, the faster action can be taken, creating greater value for organizations. Density-based method is a prominent class in clustering data streams. It has the ability to detect arbitrary shape clusters, to handle outlier, and it does not need the number of clusters in advance. Therefore, density-based clustering algorithm is a proper choice for clustering IoT streams. Recently, several density-based algorithms have been proposed for clustering data streams. However, density-based clustering in limited time is still a challenging issue. In this paper, we propose a density-based clustering algorithm for IoT streams. The method has fast processing time to be applicable in real-time application of IoT devices. Experimental results show that the proposed approach obtains high quality results with low computation time on real and synthetic datasets.
Functional clustering of time series gene expression data by Granger causality
2012-01-01
Background A common approach for time series gene expression data analysis includes the clustering of genes with similar expression patterns throughout time. Clustered gene expression profiles point to the joint contribution of groups of genes to a particular cellular process. However, since genes belong to intricate networks, other features, besides comparable expression patterns, should provide additional information for the identification of functionally similar genes. Results In this study we perform gene clustering through the identification of Granger causality between and within sets of time series gene expression data. Granger causality is based on the idea that the cause of an event cannot come after its consequence. Conclusions This kind of analysis can be used as a complementary approach for functional clustering, wherein genes would be clustered not solely based on their expression similarity but on their topological proximity built according to the intensity of Granger causality among them. PMID:23107425
NASA Astrophysics Data System (ADS)
Borgelt, Christian
In clustering we often face the situation that only a subset of the available attributes is relevant for forming clusters, even though this may not be known beforehand. In such cases it is desirable to have a clustering algorithm that automatically weights attributes or even selects a proper subset. In this paper I study such an approach for fuzzy clustering, which is based on the idea to transfer an alternative to the fuzzifier (Klawonn and Höppner, What is fuzzy about fuzzy clustering? Understanding and improving the concept of the fuzzifier, In: Proc. 5th Int. Symp. on Intelligent Data Analysis, 254-264, Springer, Berlin, 2003) to attribute weighting fuzzy clustering (Keller and Klawonn, Int J Uncertain Fuzziness Knowl Based Syst 8:735-746, 2000). In addition, by reformulating Gustafson-Kessel fuzzy clustering, a scheme for weighting and selecting principal axes can be obtained. While in Borgelt (Feature weighting and feature selection in fuzzy clustering, In: Proc. 17th IEEE Int. Conf. on Fuzzy Systems, IEEE Press, Piscataway, NJ, 2008) I already presented such an approach for a global selection of attributes and principal axes, this paper extends it to a cluster-specific selection, thus arriving at a fuzzy subspace clustering algorithm (Parsons, Haque, and Liu, 2004).
Structure-Based Phylogenetic Analysis of the Lipocalin Superfamily.
Lakshmi, Balasubramanian; Mishra, Madhulika; Srinivasan, Narayanaswamy; Archunan, Govindaraju
2015-01-01
Lipocalins constitute a superfamily of extracellular proteins that are found in all three kingdoms of life. Although very divergent in their sequences and functions, they show remarkable similarity in 3-D structures. Lipocalins bind and transport small hydrophobic molecules. Earlier sequence-based phylogenetic studies of lipocalins highlighted that they have a long evolutionary history. However the molecular and structural basis of their functional diversity is not completely understood. The main objective of the present study is to understand functional diversity of the lipocalins using a structure-based phylogenetic approach. The present study with 39 protein domains from the lipocalin superfamily suggests that the clusters of lipocalins obtained by structure-based phylogeny correspond well with the functional diversity. The detailed analysis on each of the clusters and sub-clusters reveals that the 39 lipocalin domains cluster based on their mode of ligand binding though the clustering was performed on the basis of gross domain structure. The outliers in the phylogenetic tree are often from single member families. Also structure-based phylogenetic approach has provided pointers to assign putative function for the domains of unknown function in lipocalin family. The approach employed in the present study can be used in the future for the functional identification of new lipocalin proteins and may be extended to other protein families where members show poor sequence similarity but high structural similarity.
3D morphology-based clustering and simulation of human pyramidal cell dendritic spines.
Luengo-Sanchez, Sergio; Fernaud-Espinosa, Isabel; Bielza, Concha; Benavides-Piccione, Ruth; Larrañaga, Pedro; DeFelipe, Javier
2018-06-13
The dendritic spines of pyramidal neurons are the targets of most excitatory synapses in the cerebral cortex. They have a wide variety of morphologies, and their morphology appears to be critical from the functional point of view. To further characterize dendritic spine geometry, we used in this paper over 7,000 individually 3D reconstructed dendritic spines from human cortical pyramidal neurons to group dendritic spines using model-based clustering. This approach uncovered six separate groups of human dendritic spines. To better understand the differences between these groups, the discriminative characteristics of each group were identified as a set of rules. Model-based clustering was also useful for simulating accurate 3D virtual representations of spines that matched the morphological definitions of each cluster. This mathematical approach could provide a useful tool for theoretical predictions on the functional features of human pyramidal neurons based on the morphology of dendritic spines.
a Clustering-Based Approach for Evaluation of EO Image Indexing
NASA Astrophysics Data System (ADS)
Bahmanyar, R.; Rigoll, G.; Datcu, M.
2013-09-01
The volume of Earth Observation data is increasing immensely in order of several Terabytes a day. Therefore, to explore and investigate the content of this huge amount of data, developing more sophisticated Content-Based Information Retrieval (CBIR) systems are highly demanded. These systems should be able to not only discover unknown structures behind the data, but also provide relevant results to the users' queries. Since in any retrieval system the images are processed based on a discrete set of their features (i.e., feature descriptors), study and assessment of the structure of feature space, build by different feature descriptors, is of high importance. In this paper, we introduce a clustering-based approach to study the content of image collections. In our approach, we claim that using both internal and external evaluation of clusters for different feature descriptors, helps to understand the structure of feature space. Moreover, the semantic understanding of users about the images also can be assessed. To validate the performance of our approach, we used an annotated Synthetic Aperture Radar (SAR) image collection. Quantitative results besides the visualization of feature space demonstrate the applicability of our approach.
NASA Astrophysics Data System (ADS)
Titantah, John T.; Karttunen, Mikko
2016-05-01
Electronic and optical properties of silver clusters were calculated using two different ab initio approaches: (1) based on all-electron full-potential linearized-augmented plane-wave method and (2) local basis function pseudopotential approach. Agreement is found between the two methods for small and intermediate sized clusters for which the former method is limited due to its all-electron formulation. The latter, due to non-periodic boundary conditions, is the more natural approach to simulate small clusters. The effect of cluster size is then explored using the local basis function approach. We find that as the cluster size increases, the electronic structure undergoes a transition from molecular behavior to nanoparticle behavior at a cluster size of 140 atoms (diameter ~1.7 nm). Above this cluster size the step-like electronic structure, evident as several features in the imaginary part of the polarizability of all clusters smaller than Ag147, gives way to a dominant plasmon peak localized at wavelengths 350 nm ≤ λ ≤ 600 nm. It is, thus, at this length-scale that the conduction electrons' collective oscillations that are responsible for plasmonic resonances begin to dominate the opto-electronic properties of silver nanoclusters.
NASA Astrophysics Data System (ADS)
Drwal, Malgorzata N.; Agama, Keli; Pommier, Yves; Griffith, Renate
2013-12-01
Purely structure-based pharmacophores (SBPs) are an alternative method to ligand-based approaches and have the advantage of describing the entire interaction capability of a binding pocket. Here, we present the development of SBPs for topoisomerase I, an anticancer target with an unusual ligand binding pocket consisting of protein and DNA atoms. Different approaches to cluster and select pharmacophore features are investigated, including hierarchical clustering and energy calculations. In addition, the performance of SBPs is evaluated retrospectively and compared to the performance of ligand- and complex-based pharmacophores. SBPs emerge as a valid method in virtual screening and a complementary approach to ligand-focussed methods. The study further reveals that the choice of pharmacophore feature clustering and selection methods has a large impact on the virtual screening hit lists. A prospective application of the SBPs in virtual screening reveals that they can be used successfully to identify novel topoisomerase inhibitors.
SC3 - consensus clustering of single-cell RNA-Seq data
Kiselev, Vladimir Yu.; Kirschner, Kristina; Schaub, Michael T.; Andrews, Tallulah; Yiu, Andrew; Chandra, Tamir; Natarajan, Kedar N; Reik, Wolf; Barahona, Mauricio; Green, Anthony R; Hemberg, Martin
2017-01-01
Single-cell RNA-seq (scRNA-seq) enables a quantitative cell-type characterisation based on global transcriptome profiles. We present Single-Cell Consensus Clustering (SC3), a user-friendly tool for unsupervised clustering which achieves high accuracy and robustness by combining multiple clustering solutions through a consensus approach. We demonstrate that SC3 is capable of identifying subclones based on the transcriptomes from neoplastic cells collected from patients. PMID:28346451
Managing distance and covariate information with point-based clustering.
Whigham, Peter A; de Graaf, Brandon; Srivastava, Rashmi; Glue, Paul
2016-09-01
Geographic perspectives of disease and the human condition often involve point-based observations and questions of clustering or dispersion within a spatial context. These problems involve a finite set of point observations and are constrained by a larger, but finite, set of locations where the observations could occur. Developing a rigorous method for pattern analysis in this context requires handling spatial covariates, a method for constrained finite spatial clustering, and addressing bias in geographic distance measures. An approach, based on Ripley's K and applied to the problem of clustering with deliberate self-harm (DSH), is presented. Point-based Monte-Carlo simulation of Ripley's K, accounting for socio-economic deprivation and sources of distance measurement bias, was developed to estimate clustering of DSH at a range of spatial scales. A rotated Minkowski L1 distance metric allowed variation in physical distance and clustering to be assessed. Self-harm data was derived from an audit of 2 years' emergency hospital presentations (n = 136) in a New Zealand town (population ~50,000). Study area was defined by residential (housing) land parcels representing a finite set of possible point addresses. Area-based deprivation was spatially correlated. Accounting for deprivation and distance bias showed evidence for clustering of DSH for spatial scales up to 500 m with a one-sided 95 % CI, suggesting that social contagion may be present for this urban cohort. Many problems involve finite locations in geographic space that require estimates of distance-based clustering at many scales. A Monte-Carlo approach to Ripley's K, incorporating covariates and models for distance bias, are crucial when assessing health-related clustering. The case study showed that social network structure defined at the neighbourhood level may account for aspects of neighbourhood clustering of DSH. Accounting for covariate measures that exhibit spatial clustering, such as deprivation, are crucial when assessing point-based clustering.
Fontes, Cristiano Hora; Budman, Hector
2017-11-01
A clustering problem involving multivariate time series (MTS) requires the selection of similarity metrics. This paper shows the limitations of the PCA similarity factor (SPCA) as a single metric in nonlinear problems where there are differences in magnitude of the same process variables due to expected changes in operation conditions. A novel method for clustering MTS based on a combination between SPCA and the average-based Euclidean distance (AED) within a fuzzy clustering approach is proposed. Case studies involving either simulated or real industrial data collected from a large scale gas turbine are used to illustrate that the hybrid approach enhances the ability to recognize normal and fault operating patterns. This paper also proposes an oversampling procedure to create synthetic multivariate time series that can be useful in commonly occurring situations involving unbalanced data sets. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Vote Stuffing Control in IPTV-based Recommender Systems
NASA Astrophysics Data System (ADS)
Bhatt, Rajen
Vote stuffing is a general problem in the functioning of the content rating-based recommender systems. Currently IPTV viewers browse various contents based on the program ratings. In this paper, we propose a fuzzy clustering-based approach to remove the effects of vote stuffing and consider only the genuine ratings for the programs over multiple genres. The approach requires only one authentic rating, which is generally available from recommendation system administrators or program broadcasters. The entire process is automated using fuzzy c-means clustering. Computational experiments performed over one real-world program rating database shows that the proposed approach is very efficient for controlling vote stuffing.
Intersection Detection Based on Qualitative Spatial Reasoning on Stopping Point Clusters
NASA Astrophysics Data System (ADS)
Zourlidou, S.; Sester, M.
2016-06-01
The purpose of this research is to propose and test a method for detecting intersections by analysing collectively acquired trajectories of moving vehicles. Instead of solely relying on the geometric features of the trajectories, such as heading changes, which may indicate turning points and consequently intersections, we extract semantic features of the trajectories in form of sequences of stops and moves. Under this spatiotemporal prism, the extracted semantic information which indicates where vehicles stop can reveal important locations, such as junctions. The advantage of the proposed approach in comparison with existing turning-points oriented approaches is that it can detect intersections even when not all the crossing road segments are sampled and therefore no turning points are observed in the trajectories. The challenge with this approach is that first of all, not all vehicles stop at the same location - thus, the stop-location is blurred along the direction of the road; this, secondly, leads to the effect that nearby junctions can induce similar stop-locations. As a first step, a density-based clustering is applied on the layer of stop observations and clusters of stop events are found. Representative points of the clusters are determined (one per cluster) and in a last step the existence of an intersection is clarified based on spatial relational cluster reasoning, with which less informative geospatial clusters, in terms of whether a junction exists and where its centre lies, are transformed in more informative ones. Relational reasoning criteria, based on the relative orientation of the clusters with their adjacent ones are discussed for making sense of the relation that connects them, and finally for forming groups of stop events that belong to the same junction.
NASA Astrophysics Data System (ADS)
Błaszczuk, Artur; Krzywański, Jarosław
2017-03-01
The interrelation between fuzzy logic and cluster renewal approaches for heat transfer modeling in a circulating fluidized bed (CFB) has been established based on a local furnace data. The furnace data have been measured in a 1296 t/h CFB boiler with low level of flue gas recirculation. In the present study, the bed temperature and suspension density were treated as experimental variables along the furnace height. The measured bed temperature and suspension density were varied in the range of 1131-1156 K and 1.93-6.32 kg/m3, respectively. Using the heat transfer coefficient for commercial CFB combustor, two empirical heat transfer correlation were developed in terms of important operating parameters including bed temperature and also suspension density. The fuzzy logic results were found to be in good agreement with the corresponding experimental heat transfer data obtained based on cluster renewal approach. The predicted bed-to-wall heat transfer coefficient covered a range of 109-241 W/(m2K) and 111-240 W/(m2K), for fuzzy logic and cluster renewal approach respectively. The divergence in calculated heat flux recovery along the furnace height between fuzzy logic and cluster renewal approach did not exceeded ±2%.
A Cluster-Analytical Approach towards Physical Activity and Eating Habits among 10-Year-Old Children
ERIC Educational Resources Information Center
Sabbe, Dieter; De Bourdeaudhuij, I.; Legiest, E.; Maes, L.
2008-01-01
The purpose was to investigate whether clusters--based on physical activity (PA) and eating habits--can be found among children, and to explore subgroups' characteristics. A total of 1725 10-year olds completed a self-administered questionnaire. K-means cluster analysis was based on the weekly quantity of vigorous and moderate PA, the excess index…
Model-based Clustering of Categorical Time Series with Multinomial Logit Classification
NASA Astrophysics Data System (ADS)
Frühwirth-Schnatter, Sylvia; Pamminger, Christoph; Winter-Ebmer, Rudolf; Weber, Andrea
2010-09-01
A common problem in many areas of applied statistics is to identify groups of similar time series in a panel of time series. However, distance-based clustering methods cannot easily be extended to time series data, where an appropriate distance-measure is rather difficult to define, particularly for discrete-valued time series. Markov chain clustering, proposed by Pamminger and Frühwirth-Schnatter [6], is an approach for clustering discrete-valued time series obtained by observing a categorical variable with several states. This model-based clustering method is based on finite mixtures of first-order time-homogeneous Markov chain models. In order to further explain group membership we present an extension to the approach of Pamminger and Frühwirth-Schnatter [6] by formulating a probabilistic model for the latent group indicators within the Bayesian classification rule by using a multinomial logit model. The parameters are estimated for a fixed number of clusters within a Bayesian framework using an Markov chain Monte Carlo (MCMC) sampling scheme representing a (full) Gibbs-type sampler which involves only draws from standard distributions. Finally, an application to a panel of Austrian wage mobility data is presented which leads to an interesting segmentation of the Austrian labour market.
Density-based cluster algorithms for the identification of core sets
NASA Astrophysics Data System (ADS)
Lemke, Oliver; Keller, Bettina G.
2016-10-01
The core-set approach is a discretization method for Markov state models of complex molecular dynamics. Core sets are disjoint metastable regions in the conformational space, which need to be known prior to the construction of the core-set model. We propose to use density-based cluster algorithms to identify the cores. We compare three different density-based cluster algorithms: the CNN, the DBSCAN, and the Jarvis-Patrick algorithm. While the core-set models based on the CNN and DBSCAN clustering are well-converged, constructing core-set models based on the Jarvis-Patrick clustering cannot be recommended. In a well-converged core-set model, the number of core sets is up to an order of magnitude smaller than the number of states in a conventional Markov state model with comparable approximation error. Moreover, using the density-based clustering one can extend the core-set method to systems which are not strongly metastable. This is important for the practical application of the core-set method because most biologically interesting systems are only marginally metastable. The key point is to perform a hierarchical density-based clustering while monitoring the structure of the metric matrix which appears in the core-set method. We test this approach on a molecular-dynamics simulation of a highly flexible 14-residue peptide. The resulting core-set models have a high spatial resolution and can distinguish between conformationally similar yet chemically different structures, such as register-shifted hairpin structures.
Low Temperature Kinetics of the First Steps of Water Cluster Formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourgalais, J.; Roussel, V.; Capron, M.
2016-03-01
We present a combined experimental and theoretical low temperature kinetic study of water cluster formation. Water cluster growth takes place in low temperature (23-69 K) supersonic flows. The observed kinetics of formation of water clusters are reproduced with a kinetic model based on theoretical predictions for the first steps of clusterization. The temperature-and pressure-dependent association and dissociation rate coefficients are predicted with an ab initio transition state theory based master equation approach over a wide range of temperatures (20-100 K) and pressures (10(-6) - 10 bar).
A transversal approach to predict gene product networks from ontology-based similarity
Chabalier, Julie; Mosser, Jean; Burgun, Anita
2007-01-01
Background Interpretation of transcriptomic data is usually made through a "standard" approach which consists in clustering the genes according to their expression patterns and exploiting Gene Ontology (GO) annotations within each expression cluster. This approach makes it difficult to underline functional relationships between gene products that belong to different expression clusters. To address this issue, we propose a transversal analysis that aims to predict functional networks based on a combination of GO processes and data expression. Results The transversal approach presented in this paper consists in computing the semantic similarity between gene products in a Vector Space Model. Through a weighting scheme over the annotations, we take into account the representativity of the terms that annotate a gene product. Comparing annotation vectors results in a matrix of gene product similarities. Combined with expression data, the matrix is displayed as a set of functional gene networks. The transversal approach was applied to 186 genes related to the enterocyte differentiation stages. This approach resulted in 18 functional networks proved to be biologically relevant. These results were compared with those obtained through a standard approach and with an approach based on information content similarity. Conclusion Complementary to the standard approach, the transversal approach offers new insight into the cellular mechanisms and reveals new research hypotheses by combining gene product networks based on semantic similarity, and data expression. PMID:17605807
IoT Service Clustering for Dynamic Service Matchmaking.
Zhao, Shuai; Yu, Le; Cheng, Bo; Chen, Junliang
2017-07-27
As the adoption of service-oriented paradigms in the IoT (Internet of Things) environment, real-world devices will open their capabilities through service interfaces, which enable other functional entities to interact with them. In an IoT application, it is indispensable to find suitable services for satisfying users' requirements or replacing the unavailable services. However, from the perspective of performance, it is inappropriate to find desired services from the service repository online directly. Instead, clustering services offline according to their similarity and matchmaking or discovering service online in limited clusters is necessary. This paper proposes a multidimensional model-based approach to measure the similarity between IoT services. Then, density-peaks-based clustering is employed to gather similar services together according to the result of similarity measurement. Based on the service clustering, the algorithms of dynamic service matchmaking, discovery, and replacement will be performed efficiently. Evaluating experiments are conducted to validate the performance of proposed approaches, and the results are promising.
IoT Service Clustering for Dynamic Service Matchmaking
Yu, Le; Cheng, Bo; Chen, Junliang
2017-01-01
As the adoption of service-oriented paradigms in the IoT (Internet of Things) environment, real-world devices will open their capabilities through service interfaces, which enable other functional entities to interact with them. In an IoT application, it is indispensable to find suitable services for satisfying users’ requirements or replacing the unavailable services. However, from the perspective of performance, it is inappropriate to find desired services from the service repository online directly. Instead, clustering services offline according to their similarity and matchmaking or discovering service online in limited clusters is necessary. This paper proposes a multidimensional model-based approach to measure the similarity between IoT services. Then, density-peaks-based clustering is employed to gather similar services together according to the result of similarity measurement. Based on the service clustering, the algorithms of dynamic service matchmaking, discovery, and replacement will be performed efficiently. Evaluating experiments are conducted to validate the performance of proposed approaches, and the results are promising. PMID:28749431
Clustering-Based Ensemble Learning for Activity Recognition in Smart Homes
Jurek, Anna; Nugent, Chris; Bi, Yaxin; Wu, Shengli
2014-01-01
Application of sensor-based technology within activity monitoring systems is becoming a popular technique within the smart environment paradigm. Nevertheless, the use of such an approach generates complex constructs of data, which subsequently requires the use of intricate activity recognition techniques to automatically infer the underlying activity. This paper explores a cluster-based ensemble method as a new solution for the purposes of activity recognition within smart environments. With this approach activities are modelled as collections of clusters built on different subsets of features. A classification process is performed by assigning a new instance to its closest cluster from each collection. Two different sensor data representations have been investigated, namely numeric and binary. Following the evaluation of the proposed methodology it has been demonstrated that the cluster-based ensemble method can be successfully applied as a viable option for activity recognition. Results following exposure to data collected from a range of activities indicated that the ensemble method had the ability to perform with accuracies of 94.2% and 97.5% for numeric and binary data, respectively. These results outperformed a range of single classifiers considered as benchmarks. PMID:25014095
Clustering-based ensemble learning for activity recognition in smart homes.
Jurek, Anna; Nugent, Chris; Bi, Yaxin; Wu, Shengli
2014-07-10
Application of sensor-based technology within activity monitoring systems is becoming a popular technique within the smart environment paradigm. Nevertheless, the use of such an approach generates complex constructs of data, which subsequently requires the use of intricate activity recognition techniques to automatically infer the underlying activity. This paper explores a cluster-based ensemble method as a new solution for the purposes of activity recognition within smart environments. With this approach activities are modelled as collections of clusters built on different subsets of features. A classification process is performed by assigning a new instance to its closest cluster from each collection. Two different sensor data representations have been investigated, namely numeric and binary. Following the evaluation of the proposed methodology it has been demonstrated that the cluster-based ensemble method can be successfully applied as a viable option for activity recognition. Results following exposure to data collected from a range of activities indicated that the ensemble method had the ability to perform with accuracies of 94.2% and 97.5% for numeric and binary data, respectively. These results outperformed a range of single classifiers considered as benchmarks.
Friederichs, Stijn Ah; Bolman, Catherine; Oenema, Anke; Lechner, Lilian
2015-01-01
In order to promote physical activity uptake and maintenance in individuals who do not comply with physical activity guidelines, it is important to increase our understanding of physical activity motivation among this group. The present study aimed to examine motivational profiles in a large sample of adults who do not comply with physical activity guidelines. The sample for this study consisted of 2473 individuals (31.4% male; age 44.6 ± 12.9). In order to generate motivational profiles based on motivational regulation, a cluster analysis was conducted. One-way analyses of variance were then used to compare the clusters in terms of demographics, physical activity level, motivation to be active and subjective experience while being active. Three motivational clusters were derived based on motivational regulation scores: a low motivation cluster, a controlled motivation cluster and an autonomous motivation cluster. These clusters differed significantly from each other with respect to physical activity behavior, motivation to be active and subjective experience while being active. Overall, the autonomous motivation cluster displayed more favorable characteristics compared to the other two clusters. The results of this study provide additional support for the importance of autonomous motivation in the context of physical activity behavior. The three derived clusters may be relevant in the context of physical activity interventions as individuals within the different clusters might benefit most from different intervention approaches. In addition, this study shows that cluster analysis is a useful method for differentiating between motivational profiles in large groups of individuals who do not comply with physical activity guidelines.
NASA Astrophysics Data System (ADS)
Leckebusch, G. C.; Kirchner-Bossi, N. O.; Befort, D. J.; Ulbrich, U.
2015-12-01
Time-clustered mid-latitude winter storms are responsible for a large portion of the overall windstorm-related damage in Europe. Thus, its study entails a high meteorological interest, while its outcome can result in a crucial utility for the (re)insurance industry. In addition to existing cyclone-based studies, here we use an event identification approach based on surface near wind speeds only, to investigate windstorm clustering and compare it to cyclone clustering. Specifically, cyclone and windstorm tracks are identified for winter 1979-2013 (Oct-Mar), to perform two sensitivity analyses on event-clustering in the North Atlantic using ERA-Interim Reanalysis. First, the link between clustering and cyclone intensity is analysed and compared to windstorms. Secondly, the sensitivity of clustering on intra-seasonal time scales is investigated, for both cyclones and windstorms. The wind-based approach reveals additional regions of clustering over Western Europe, which could be related to extreme damages, showing the added value of investigating wind field derived tracks in addition to that of cyclone tracks. Previous studies indicate a higher degree of clustering for stronger cyclones. However, our results show that this assumption is not always met. Although a positive relationship is confirmed for the clustering centre located over Iceland, clustering off the coast of the Iberian Peninsula behaves opposite. Even though this region shows the highest clustering, most of its signal is due to cyclones with intensities below the 70th percentile of the Laplacian of MSLP. Results on the sensitivity of clustering to the time of the winter season (Oct-Mar) show a temporal evolution of the clustering patterns, for both windstorms and cyclones. Compared to all cyclones, clustering of windstorms and strongest cyclones culminate around February, while all cyclone clustering peak in December to January.
2007-01-01
including tree- based methods such as the unweighted pair group method of analysis ( UPGMA ) and Neighbour-joining (NJ) (Saitou & Nei, 1987). By...based Bayesian approach and the tree-based UPGMA and NJ cluster- ing methods. The results obtained suggest that far more species occur in the An...unlikely that groups that differ by more than these levels are conspecific. Genetic distances were clustered using the UPGMA and NJ algorithms in MEGA
Banerjee, Amit; Misra, Milind; Pai, Deepa; Shih, Liang-Yu; Woodley, Rohan; Lu, Xiang-Jun; Srinivasan, A R; Olson, Wilma K; Davé, Rajesh N; Venanzi, Carol A
2007-01-01
Six rigid-body parameters (Shift, Slide, Rise, Tilt, Roll, Twist) are commonly used to describe the relative displacement and orientation of successive base pairs in a nucleic acid structure. The present work adapts this approach to describe the relative displacement and orientation of any two planes in an arbitrary molecule-specifically, planes which contain important pharmacophore elements. Relevant code from the 3DNA software package (Nucleic Acids Res. 2003, 31, 5108-5121) was generalized to treat molecular fragments other than DNA bases as input for the calculation of the corresponding rigid-body (or "planes") parameters. These parameters were used to construct feature vectors for a fuzzy relational clustering study of over 700 conformations of a flexible analogue of the dopamine reuptake inhibitor, GBR 12909. Several cluster validity measures were used to determine the optimal number of clusters. Translational (Shift, Slide, Rise) rather than rotational (Tilt, Roll, Twist) features dominate clustering based on planes that are relatively far apart, whereas both types of features are important to clustering when the pair of planes are close by. This approach was able to classify the data set of molecular conformations into groups and to identify representative conformers for use as template conformers in future Comparative Molecular Field Analysis studies of GBR 12909 analogues. The advantage of using the planes parameters, rather than the combination of atomic coordinates and angles between molecular planes used in our previous fuzzy relational clustering of the same data set (J. Chem. Inf. Model. 2005, 45, 610-623), is that the present clustering results are independent of molecular superposition and the technique is able to identify clusters in the molecule considered as a whole. This approach is easily generalizable to any two planes in any molecule.
A Constrained-Clustering Approach to the Analysis of Remote Sensing Data.
1983-01-01
One old and two new clustering methods were applied to the constrained-clustering problem of separating different agricultural fields based on multispectral remote sensing satellite data. (Constrained-clustering involves double clustering in multispectral measurement similarity and geographical location.) The results of applying the three methods are provided along with a discussion of their relative strengths and weaknesses and a detailed description of their algorithms.
Clustering of Variables for Mixed Data
NASA Astrophysics Data System (ADS)
Saracco, J.; Chavent, M.
2016-05-01
This chapter presents clustering of variables which aim is to lump together strongly related variables. The proposed approach works on a mixed data set, i.e. on a data set which contains numerical variables and categorical variables. Two algorithms of clustering of variables are described: a hierarchical clustering and a k-means type clustering. A brief description of PCAmix method (that is a principal component analysis for mixed data) is provided, since the calculus of the synthetic variables summarizing the obtained clusters of variables is based on this multivariate method. Finally, the R packages ClustOfVar and PCAmixdata are illustrated on real mixed data. The PCAmix and ClustOfVar approaches are first used for dimension reduction (step 1) before applying in step 2 a standard clustering method to obtain groups of individuals.
Interactive visual exploration and analysis of origin-destination data
NASA Astrophysics Data System (ADS)
Ding, Linfang; Meng, Liqiu; Yang, Jian; Krisp, Jukka M.
2018-05-01
In this paper, we propose a visual analytics approach for the exploration of spatiotemporal interaction patterns of massive origin-destination data. Firstly, we visually query the movement database for data at certain time windows. Secondly, we conduct interactive clustering to allow the users to select input variables/features (e.g., origins, destinations, distance, and duration) and to adjust clustering parameters (e.g. distance threshold). The agglomerative hierarchical clustering method is applied for the multivariate clustering of the origin-destination data. Thirdly, we design a parallel coordinates plot for visualizing the precomputed clusters and for further exploration of interesting clusters. Finally, we propose a gradient line rendering technique to show the spatial and directional distribution of origin-destination clusters on a map view. We implement the visual analytics approach in a web-based interactive environment and apply it to real-world floating car data from Shanghai. The experiment results show the origin/destination hotspots and their spatial interaction patterns. They also demonstrate the effectiveness of our proposed approach.
Karayiannis, N B
2000-01-01
This paper presents the development and investigates the properties of ordered weighted learning vector quantization (LVQ) and clustering algorithms. These algorithms are developed by using gradient descent to minimize reformulation functions based on aggregation operators. An axiomatic approach provides conditions for selecting aggregation operators that lead to admissible reformulation functions. Minimization of admissible reformulation functions based on ordered weighted aggregation operators produces a family of soft LVQ and clustering algorithms, which includes fuzzy LVQ and clustering algorithms as special cases. The proposed LVQ and clustering algorithms are used to perform segmentation of magnetic resonance (MR) images of the brain. The diagnostic value of the segmented MR images provides the basis for evaluating a variety of ordered weighted LVQ and clustering algorithms.
Relative efficiency and sample size for cluster randomized trials with variable cluster sizes.
You, Zhiying; Williams, O Dale; Aban, Inmaculada; Kabagambe, Edmond Kato; Tiwari, Hemant K; Cutter, Gary
2011-02-01
The statistical power of cluster randomized trials depends on two sample size components, the number of clusters per group and the numbers of individuals within clusters (cluster size). Variable cluster sizes are common and this variation alone may have significant impact on study power. Previous approaches have taken this into account by either adjusting total sample size using a designated design effect or adjusting the number of clusters according to an assessment of the relative efficiency of unequal versus equal cluster sizes. This article defines a relative efficiency of unequal versus equal cluster sizes using noncentrality parameters, investigates properties of this measure, and proposes an approach for adjusting the required sample size accordingly. We focus on comparing two groups with normally distributed outcomes using t-test, and use the noncentrality parameter to define the relative efficiency of unequal versus equal cluster sizes and show that statistical power depends only on this parameter for a given number of clusters. We calculate the sample size required for an unequal cluster sizes trial to have the same power as one with equal cluster sizes. Relative efficiency based on the noncentrality parameter is straightforward to calculate and easy to interpret. It connects the required mean cluster size directly to the required sample size with equal cluster sizes. Consequently, our approach first determines the sample size requirements with equal cluster sizes for a pre-specified study power and then calculates the required mean cluster size while keeping the number of clusters unchanged. Our approach allows adjustment in mean cluster size alone or simultaneous adjustment in mean cluster size and number of clusters, and is a flexible alternative to and a useful complement to existing methods. Comparison indicated that we have defined a relative efficiency that is greater than the relative efficiency in the literature under some conditions. Our measure of relative efficiency might be less than the measure in the literature under some conditions, underestimating the relative efficiency. The relative efficiency of unequal versus equal cluster sizes defined using the noncentrality parameter suggests a sample size approach that is a flexible alternative and a useful complement to existing methods.
NASA Astrophysics Data System (ADS)
Sutanto, G. R.; Kim, S.; Kim, D.; Sutanto, H.
2018-03-01
One of the problems in dealing with capacitated facility location problem (CFLP) is occurred because of the difference between the capacity numbers of facilities and the number of customers that needs to be served. A facility with small capacity may result in uncovered customers. These customers need to be re-allocated to another facility that still has available capacity. Therefore, an approach is proposed to handle CFLP by using k-means clustering algorithm to handle customers’ allocation. And then, if customers’ re-allocation is needed, is decided by the overall average distance between customers and the facilities. This new approach is benchmarked to the existing approach by Liao and Guo which also use k-means clustering algorithm as a base idea to decide the facilities location and customers’ allocation. Both of these approaches are benchmarked by using three clustering evaluation methods with connectedness, compactness, and separations factors.
Malakooti, Behnam; Yang, Ziyong
2004-02-01
In many real-world problems, the range of consequences of different alternatives are considerably different. In addition, sometimes, selection of a group of alternatives (instead of only one best alternative) is necessary. Traditional decision making approaches treat the set of alternatives with the same method of analysis and selection. In this paper, we propose clustering alternatives into different groups so that different methods of analysis, selection, and implementation for each group can be applied. As an example, consider the selection of a group of functions (or tasks) to be processed by a group of processors. The set of tasks can be grouped according to their similar criteria, and hence, each cluster of tasks to be processed by a processor. The selection of the best alternative for each clustered group can be performed using existing methods; however, the process of selecting groups is different than the process of selecting alternatives within a group. We develop theories and procedures for clustering discrete multiple criteria alternatives. We also demonstrate how the set of alternatives is clustered into mutually exclusive groups based on 1) similar features among alternatives; 2) ideal (or most representative) alternatives given by the decision maker; and 3) other preferential information of the decision maker. The clustering of multiple criteria alternatives also has the following advantages. 1) It decreases the set of alternatives to be considered by the decision maker (for example, different decision makers are assigned to different groups of alternatives). 2) It decreases the number of criteria. 3) It may provide a different approach for analyzing multiple decision makers problems. Each decision maker may cluster alternatives differently, and hence, clustering of alternatives may provide a basis for negotiation. The developed approach is applicable for solving a class of telecommunication networks problems where a set of objects (such as routers, processors, or intelligent autonomous vehicles) are to be clustered into similar groups. Objects are clustered based on several criteria and the decision maker's preferences.
Wang, J; Hao, Z; Wang, H
2018-01-01
The human brain can be characterized as functional networks. Therefore, it is important to subdivide the brain appropriately in order to construct reliable networks. Resting-state functional connectivity-based parcellation is a commonly used technique to fulfill this goal. Here we propose a novel individual subject-level parcellation approach based on whole-brain resting-state functional magnetic resonance imaging (fMRI) data. We first used a supervoxel method known as simple linear iterative clustering directly on resting-state fMRI time series to generate supervoxels, and then combined similar supervoxels to generate clusters using a clustering method known as graph-without-cut (GWC). The GWC approach incorporates spatial information and multiple features of the supervoxels by energy minimization, simultaneously yielding an optimal graph and brain parcellation. Meanwhile, it theoretically guarantees that the actual cluster number is exactly equal to the initialized cluster number. By comparing the results of the GWC approach and those of the random GWC approach, we demonstrated that GWC does not rely heavily on spatial structures, thus avoiding the challenges encountered in some previous whole-brain parcellation approaches. In addition, by comparing the GWC approach to two competing approaches, we showed that GWC achieved better parcellation performances in terms of different evaluation metrics. The proposed approach can be used to generate individualized brain atlases for applications related to cognition, development, aging, disease, personalized medicine, etc. The major source codes of this study have been made publicly available at https://github.com/yuzhounh/GWC.
A systematic approach to the Kansei factors of tactile sense regarding the surface roughness.
Choi, Kyungmee; Jun, Changrim
2007-01-01
Designing products to satisfy customers' emotion requires the information gathered through the human senses, which are visual, auditory, olfactory, gustatory, or tactile senses. By controlling certain design factors, customers' emotion can be evaluated, designed, and satisfied. In this study, a systematic approach is proposed to study the tactile sense regarding the surface roughness. Numerous pairs of antonymous tactile adjectives are collected and clustered. The optimal number of adjective clusters is estimated based on the several criterion functions. The representative average preferences of the final clusters are obtained as the estimates of engineering parameters to control the surface roughness of the commercial polymer-based products.
Sample Size Estimation in Cluster Randomized Educational Trials: An Empirical Bayes Approach
ERIC Educational Resources Information Center
Rotondi, Michael A.; Donner, Allan
2009-01-01
The educational field has now accumulated an extensive literature reporting on values of the intraclass correlation coefficient, a parameter essential to determining the required size of a planned cluster randomized trial. We propose here a simple simulation-based approach including all relevant information that can facilitate this task. An…
ERIC Educational Resources Information Center
Liu, Woon Chia; Wang, Chee Keng John; Kee, Ying Hwa; Koh, Caroline; Lim, Boon San Coral; Chua, Lilian
2014-01-01
The development of effective self-regulated learning strategies is of interest to educationalists. In this paper, we examine inherent individual difference in self-regulated learning based on Motivated Learning for Learning Questionnaire (MLSQ) using the cluster analytic approach and examine cluster difference in terms of self-determination theory…
NASA Astrophysics Data System (ADS)
Orlov, Alexandr K.
2017-10-01
The article deals with the application of sustainable construction concept within implementation of megaprojects of tourist clusters development using energy saving technologies. The concept of sustainable construction includes the elements of green construction, energy management as well as aspects of the economic efficiency of construction projects implementation. The methodical approach to the implementation of megaprojects for the creation of tourist clusters in Russia based on the concept of energy efficiency and sustainable construction is proved. The conceptual approach to the evaluation of the ecological, social and economic components of the integral indicator of the effectiveness of the megaproject for the development of the tourist cluster is provided. The algorithm for estimation of the efficiency of innovative solutions in green construction is considered.
[An assessment approach to the adequacy of peritoneal dialysis based on modified MART2 network].
Zhang, Mei; Zhao, Jing; Hu, Yueming
2009-06-01
Against the large number of assessment indices to the adequacy peritoneal dialysis and incompatibility of some indices, an intelligent assessment approach to the peritoneal dialysis adequacy based on MART2 (modified from ART2) network is proposed. After non-dimension and weighting preconditioning, the assessment indices were put to MART2 and sorted into many clusters. The center-of-gravity of each cluster was identified as adequacy or inadequacy according to the assessment criteria of dialysis adequacy, and the adequacy of each cluster could be determined by the adequacy of corresponding center-of-gravity when the network threshold was high. Finally, the peritoneal dialysis adequacy of each patient could be judged according to the adequacy of cluster to which the patients' indices belong. Experimental results demounstrate its effectiveness.
Efficient Agent-Based Cluster Ensembles
NASA Technical Reports Server (NTRS)
Agogino, Adrian; Tumer, Kagan
2006-01-01
Numerous domains ranging from distributed data acquisition to knowledge reuse need to solve the cluster ensemble problem of combining multiple clusterings into a single unified clustering. Unfortunately current non-agent-based cluster combining methods do not work in a distributed environment, are not robust to corrupted clusterings and require centralized access to all original clusterings. Overcoming these issues will allow cluster ensembles to be used in fundamentally distributed and failure-prone domains such as data acquisition from satellite constellations, in addition to domains demanding confidentiality such as combining clusterings of user profiles. This paper proposes an efficient, distributed, agent-based clustering ensemble method that addresses these issues. In this approach each agent is assigned a small subset of the data and votes on which final cluster its data points should belong to. The final clustering is then evaluated by a global utility, computed in a distributed way. This clustering is also evaluated using an agent-specific utility that is shown to be easier for the agents to maximize. Results show that agents using the agent-specific utility can achieve better performance than traditional non-agent based methods and are effective even when up to 50% of the agents fail.
Density-based clustering analyses to identify heterogeneous cellular sub-populations
NASA Astrophysics Data System (ADS)
Heaster, Tiffany M.; Walsh, Alex J.; Landman, Bennett A.; Skala, Melissa C.
2017-02-01
Autofluorescence microscopy of NAD(P)H and FAD provides functional metabolic measurements at the single-cell level. Here, density-based clustering algorithms were applied to metabolic autofluorescence measurements to identify cell-level heterogeneity in tumor cell cultures. The performance of the density-based clustering algorithm, DENCLUE, was tested in samples with known heterogeneity (co-cultures of breast carcinoma lines). DENCLUE was found to better represent the distribution of cell clusters compared to Gaussian mixture modeling. Overall, DENCLUE is a promising approach to quantify cell-level heterogeneity, and could be used to understand single cell population dynamics in cancer progression and treatment.
Luo, Ze; Baoping, Yan; Takekawa, John Y.; Prosser, Diann J.
2012-01-01
We propose a new method to help ornithologists and ecologists discover shared segments on the migratory pathway of the bar-headed geese by time-based plane-sweeping trajectory clustering. We present a density-based time parameterized line segment clustering algorithm, which extends traditional comparable clustering algorithms from temporal and spatial dimensions. We present a time-based plane-sweeping trajectory clustering algorithm to reveal the dynamic evolution of spatial-temporal object clusters and discover common motion patterns of bar-headed geese in the process of migration. Experiments are performed on GPS-based satellite telemetry data from bar-headed geese and results demonstrate our algorithms can correctly discover shared segments of the bar-headed geese migratory pathway. We also present findings on the migratory behavior of bar-headed geese determined from this new analytical approach.
Swarm: robust and fast clustering method for amplicon-based studies.
Mahé, Frédéric; Rognes, Torbjørn; Quince, Christopher; de Vargas, Colomban; Dunthorn, Micah
2014-01-01
Popular de novo amplicon clustering methods suffer from two fundamental flaws: arbitrary global clustering thresholds, and input-order dependency induced by centroid selection. Swarm was developed to address these issues by first clustering nearly identical amplicons iteratively using a local threshold, and then by using clusters' internal structure and amplicon abundances to refine its results. This fast, scalable, and input-order independent approach reduces the influence of clustering parameters and produces robust operational taxonomic units.
GDPC: Gravitation-based Density Peaks Clustering algorithm
NASA Astrophysics Data System (ADS)
Jiang, Jianhua; Hao, Dehao; Chen, Yujun; Parmar, Milan; Li, Keqin
2018-07-01
The Density Peaks Clustering algorithm, which we refer to as DPC, is a novel and efficient density-based clustering approach, and it is published in Science in 2014. The DPC has advantages of discovering clusters with varying sizes and varying densities, but has some limitations of detecting the number of clusters and identifying anomalies. We develop an enhanced algorithm with an alternative decision graph based on gravitation theory and nearby distance to identify centroids and anomalies accurately. We apply our method to some UCI and synthetic data sets. We report comparative clustering performances using F-Measure and 2-dimensional vision. We also compare our method to other clustering algorithms, such as K-Means, Affinity Propagation (AP) and DPC. We present F-Measure scores and clustering accuracies of our GDPC algorithm compared to K-Means, AP and DPC on different data sets. We show that the GDPC has the superior performance in its capability of: (1) detecting the number of clusters obviously; (2) aggregating clusters with varying sizes, varying densities efficiently; (3) identifying anomalies accurately.
Clustering XML Documents Using Frequent Subtrees
NASA Astrophysics Data System (ADS)
Kutty, Sangeetha; Tran, Tien; Nayak, Richi; Li, Yuefeng
This paper presents an experimental study conducted over the INEX 2008 Document Mining Challenge corpus using both the structure and the content of XML documents for clustering them. The concise common substructures known as the closed frequent subtrees are generated using the structural information of the XML documents. The closed frequent subtrees are then used to extract the constrained content from the documents. A matrix containing the term distribution of the documents in the dataset is developed using the extracted constrained content. The k-way clustering algorithm is applied to the matrix to obtain the required clusters. In spite of the large number of documents in the INEX 2008 Wikipedia dataset, the proposed frequent subtree-based clustering approach was successful in clustering the documents. This approach significantly reduces the dimensionality of the terms used for clustering without much loss in accuracy.
Exact combinatorial approach to finite coagulating systems
NASA Astrophysics Data System (ADS)
Fronczak, Agata; Chmiel, Anna; Fronczak, Piotr
2018-02-01
This paper outlines an exact combinatorial approach to finite coagulating systems. In this approach, cluster sizes and time are discrete and the binary aggregation alone governs the time evolution of the systems. By considering the growth histories of all possible clusters, an exact expression is derived for the probability of a coagulating system with an arbitrary kernel being found in a given cluster configuration when monodisperse initial conditions are applied. Then this probability is used to calculate the time-dependent distribution for the number of clusters of a given size, the average number of such clusters, and that average's standard deviation. The correctness of our general expressions is proved based on the (analytical and numerical) results obtained for systems with the constant kernel. In addition, the results obtained are compared with the results arising from the solutions to the mean-field Smoluchowski coagulation equation, indicating its weak points. The paper closes with a brief discussion on the extensibility to other systems of the approach presented herein, emphasizing the issue of arbitrary initial conditions.
Mapping Informative Clusters in a Hierarchial Framework of fMRI Multivariate Analysis
Xu, Rui; Zhen, Zonglei; Liu, Jia
2010-01-01
Pattern recognition methods have become increasingly popular in fMRI data analysis, which are powerful in discriminating between multi-voxel patterns of brain activities associated with different mental states. However, when they are used in functional brain mapping, the location of discriminative voxels varies significantly, raising difficulties in interpreting the locus of the effect. Here we proposed a hierarchical framework of multivariate approach that maps informative clusters rather than voxels to achieve reliable functional brain mapping without compromising the discriminative power. In particular, we first searched for local homogeneous clusters that consisted of voxels with similar response profiles. Then, a multi-voxel classifier was built for each cluster to extract discriminative information from the multi-voxel patterns. Finally, through multivariate ranking, outputs from the classifiers were served as a multi-cluster pattern to identify informative clusters by examining interactions among clusters. Results from both simulated and real fMRI data demonstrated that this hierarchical approach showed better performance in the robustness of functional brain mapping than traditional voxel-based multivariate methods. In addition, the mapped clusters were highly overlapped for two perceptually equivalent object categories, further confirming the validity of our approach. In short, the hierarchical framework of multivariate approach is suitable for both pattern classification and brain mapping in fMRI studies. PMID:21152081
Clustering evolving proteins into homologous families.
Chan, Cheong Xin; Mahbob, Maisarah; Ragan, Mark A
2013-04-08
Clustering sequences into groups of putative homologs (families) is a critical first step in many areas of comparative biology and bioinformatics. The performance of clustering approaches in delineating biologically meaningful families depends strongly on characteristics of the data, including content bias and degree of divergence. New, highly scalable methods have recently been introduced to cluster the very large datasets being generated by next-generation sequencing technologies. However, there has been little systematic investigation of how characteristics of the data impact the performance of these approaches. Using clusters from a manually curated dataset as reference, we examined the performance of a widely used graph-based Markov clustering algorithm (MCL) and a greedy heuristic approach (UCLUST) in delineating protein families coded by three sets of bacterial genomes of different G+C content. Both MCL and UCLUST generated clusters that are comparable to the reference sets at specific parameter settings, although UCLUST tends to under-cluster compositionally biased sequences (G+C content 33% and 66%). Using simulated data, we sought to assess the individual effects of sequence divergence, rate heterogeneity, and underlying G+C content. Performance decreased with increasing sequence divergence, decreasing among-site rate variation, and increasing G+C bias. Two MCL-based methods recovered the simulated families more accurately than did UCLUST. MCL using local alignment distances is more robust across the investigated range of sequence features than are greedy heuristics using distances based on global alignment. Our results demonstrate that sequence divergence, rate heterogeneity and content bias can individually and in combination affect the accuracy with which MCL and UCLUST can recover homologous protein families. For application to data that are more divergent, and exhibit higher among-site rate variation and/or content bias, MCL may often be the better choice, especially if computational resources are not limiting.
ADHD and Reading Disabilities: A Cluster Analytic Approach for Distinguishing Subgroups.
ERIC Educational Resources Information Center
Bonafina, Marcela A.; Newcorn, Jeffrey H.; McKay, Kathleen E.; Koda, Vivian H.; Halperin, Jeffrey M.
2000-01-01
Using cluster analysis, a study empirically divided 54 children with attention-deficit/hyperactivity disorder (ADHD) based on their Full Scale IQ and reading ability. Clusters had different patterns of cognitive, behavioral, and neurochemical functions, as determined by discrepancies in Verbal-Performance IQ, academic achievement, parent…
A Comparison of Two Approaches to Beta-Flexible Clustering.
ERIC Educational Resources Information Center
Belbin, Lee; And Others
1992-01-01
A method for hierarchical agglomerative polythetic (multivariate) clustering, based on unweighted pair group using arithmetic averages (UPGMA) is compared with the original beta-flexible technique, a weighted average method. Reasons the flexible UPGMA strategy is recommended are discussed, focusing on the ability to recover cluster structure over…
Cluster Stability Estimation Based on a Minimal Spanning Trees Approach
NASA Astrophysics Data System (ADS)
Volkovich, Zeev (Vladimir); Barzily, Zeev; Weber, Gerhard-Wilhelm; Toledano-Kitai, Dvora
2009-08-01
Among the areas of data and text mining which are employed today in science, economy and technology, clustering theory serves as a preprocessing step in the data analyzing. However, there are many open questions still waiting for a theoretical and practical treatment, e.g., the problem of determining the true number of clusters has not been satisfactorily solved. In the current paper, this problem is addressed by the cluster stability approach. For several possible numbers of clusters we estimate the stability of partitions obtained from clustering of samples. Partitions are considered consistent if their clusters are stable. Clusters validity is measured as the total number of edges, in the clusters' minimal spanning trees, connecting points from different samples. Actually, we use the Friedman and Rafsky two sample test statistic. The homogeneity hypothesis, of well mingled samples within the clusters, leads to asymptotic normal distribution of the considered statistic. Resting upon this fact, the standard score of the mentioned edges quantity is set, and the partition quality is represented by the worst cluster corresponding to the minimal standard score value. It is natural to expect that the true number of clusters can be characterized by the empirical distribution having the shortest left tail. The proposed methodology sequentially creates the described value distribution and estimates its left-asymmetry. Numerical experiments, presented in the paper, demonstrate the ability of the approach to detect the true number of clusters.
Multi-viewpoint clustering analysis
NASA Technical Reports Server (NTRS)
Mehrotra, Mala; Wild, Chris
1993-01-01
In this paper, we address the feasibility of partitioning rule-based systems into a number of meaningful units to enhance the comprehensibility, maintainability and reliability of expert systems software. Preliminary results have shown that no single structuring principle or abstraction hierarchy is sufficient to understand complex knowledge bases. We therefore propose the Multi View Point - Clustering Analysis (MVP-CA) methodology to provide multiple views of the same expert system. We present the results of using this approach to partition a deployed knowledge-based system that navigates the Space Shuttle's entry. We also discuss the impact of this approach on verification and validation of knowledge-based systems.
Generating clustered scale-free networks using Poisson based localization of edges
NASA Astrophysics Data System (ADS)
Türker, İlker
2018-05-01
We introduce a variety of network models using a Poisson-based edge localization strategy, which result in clustered scale-free topologies. We first verify the success of our localization strategy by realizing a variant of the well-known Watts-Strogatz model with an inverse approach, implying a small-world regime of rewiring from a random network through a regular one. We then apply the rewiring strategy to a pure Barabasi-Albert model and successfully achieve a small-world regime, with a limited capacity of scale-free property. To imitate the high clustering property of scale-free networks with higher accuracy, we adapted the Poisson-based wiring strategy to a growing network with the ingredients of both preferential attachment and local connectivity. To achieve the collocation of these properties, we used a routine of flattening the edges array, sorting it, and applying a mixing procedure to assemble both global connections with preferential attachment and local clusters. As a result, we achieved clustered scale-free networks with a computational fashion, diverging from the recent studies by following a simple but efficient approach.
A comparison of latent class, K-means, and K-median methods for clustering dichotomous data.
Brusco, Michael J; Shireman, Emilie; Steinley, Douglas
2017-09-01
The problem of partitioning a collection of objects based on their measurements on a set of dichotomous variables is a well-established problem in psychological research, with applications including clinical diagnosis, educational testing, cognitive categorization, and choice analysis. Latent class analysis and K-means clustering are popular methods for partitioning objects based on dichotomous measures in the psychological literature. The K-median clustering method has recently been touted as a potentially useful tool for psychological data and might be preferable to its close neighbor, K-means, when the variable measures are dichotomous. We conducted simulation-based comparisons of the latent class, K-means, and K-median approaches for partitioning dichotomous data. Although all 3 methods proved capable of recovering cluster structure, K-median clustering yielded the best average performance, followed closely by latent class analysis. We also report results for the 3 methods within the context of an application to transitive reasoning data, in which it was found that the 3 approaches can exhibit profound differences when applied to real data. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Ayral, Thomas; Vučičević, Jaksa; Parcollet, Olivier
2017-10-20
We present an embedded-cluster method, based on the triply irreducible local expansion formalism. It turns the Fierz ambiguity, inherent to approaches based on a bosonic decoupling of local fermionic interactions, into a convergence criterion. It is based on the approximation of the three-leg vertex by a coarse-grained vertex computed from a self-consistently determined cluster impurity model. The computed self-energies are, by construction, continuous functions of momentum. We show that, in three interaction and doping regimes of the two-dimensional Hubbard model, self-energies obtained with clusters of size four only are very close to numerically exact benchmark results. We show that the Fierz parameter, which parametrizes the freedom in the Hubbard-Stratonovich decoupling, can be used as a quality control parameter. By contrast, the GW+extended dynamical mean field theory approximation with four cluster sites is shown to yield good results only in the weak-coupling regime and for a particular decoupling. Finally, we show that the vertex has spatially nonlocal components only at low Matsubara frequencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahu, Nityananda; Gadre, Shridhar R., E-mail: gadre@iitk.ac.in, E-mail: sotiris.xantheas@pnnl.gov; Rakshit, Avijit
2014-10-28
We report new global minimum candidate structures for the (H{sub 2}O){sub 25} cluster that are lower in energy than the ones reported previously and correspond to hydrogen bonded networks with 42 hydrogen bonds and an interior, fully coordinated water molecule. These were obtained as a result of a hierarchical approach based on initial Monte Carlo Temperature Basin Paving sampling of the cluster's Potential Energy Surface with the Effective Fragment Potential, subsequent geometry optimization using the Molecular Tailoring Approach with the fragments treated at the second order Møller-Plesset (MP2) perturbation (MTA-MP2) and final refinement of the entire cluster at the MP2more » level of theory. The MTA-MP2 optimized cluster geometries, constructed from the fragments, were found to be within <0.5 kcal/mol from the minimum geometries obtained from the MP2 optimization of the entire (H{sub 2}O){sub 25} cluster. In addition, the grafting of the MTA-MP2 energies yields electronic energies that are within <0.3 kcal/mol from the MP2 energies of the entire cluster while preserving their energy rank order. Finally, the MTA-MP2 approach was found to reproduce the MP2 harmonic vibrational frequencies, constructed from the fragments, quite accurately when compared to the MP2 ones of the entire cluster in both the HOH bending and the OH stretching regions of the spectra.« less
The cosmological analysis of X-ray cluster surveys. III. 4D X-ray observable diagrams
NASA Astrophysics Data System (ADS)
Pierre, M.; Valotti, A.; Faccioli, L.; Clerc, N.; Gastaud, R.; Koulouridis, E.; Pacaud, F.
2017-11-01
Context. Despite compelling theoretical arguments, the use of clusters as cosmological probes is, in practice, frequently questioned because of the many uncertainties surrounding cluster-mass estimates. Aims: Our aim is to develop a fully self-consistent cosmological approach of X-ray cluster surveys, exclusively based on observable quantities rather than masses. This procedure is justified given the possibility to directly derive the cluster properties via ab initio modelling, either analytically or by using hydrodynamical simulations. In this third paper, we evaluate the method on cluster toy-catalogues. Methods: We model the population of detected clusters in the count-rate - hardness-ratio - angular size - redshift space and compare the corresponding four-dimensional diagram with theoretical predictions. The best cosmology+physics parameter configuration is determined using a simple minimisation procedure; errors on the parameters are estimated by averaging the results from ten independent survey realisations. The method allows a simultaneous fit of the cosmological parameters of the cluster evolutionary physics and of the selection effects. Results: When using information from the X-ray survey alone plus redshifts, this approach is shown to be as accurate as the modelling of the mass function for the cosmological parameters and to perform better for the cluster physics, for a similar level of assumptions on the scaling relations. It enables the identification of degenerate combinations of parameter values. Conclusions: Given the considerably shorter computer times involved for running the minimisation procedure in the observed parameter space, this method appears to clearly outperform traditional mass-based approaches when X-ray survey data alone are available.
A clustering approach to segmenting users of internet-based risk calculators.
Harle, C A; Downs, J S; Padman, R
2011-01-01
Risk calculators are widely available Internet applications that deliver quantitative health risk estimates to consumers. Although these tools are known to have varying effects on risk perceptions, little is known about who will be more likely to accept objective risk estimates. To identify clusters of online health consumers that help explain variation in individual improvement in risk perceptions from web-based quantitative disease risk information. A secondary analysis was performed on data collected in a field experiment that measured people's pre-diabetes risk perceptions before and after visiting a realistic health promotion website that provided quantitative risk information. K-means clustering was performed on numerous candidate variable sets, and the different segmentations were evaluated based on between-cluster variation in risk perception improvement. Variation in responses to risk information was best explained by clustering on pre-intervention absolute pre-diabetes risk perceptions and an objective estimate of personal risk. Members of a high-risk overestimater cluster showed large improvements in their risk perceptions, but clusters of both moderate-risk and high-risk underestimaters were much more muted in improving their optimistically biased perceptions. Cluster analysis provided a unique approach for segmenting health consumers and predicting their acceptance of quantitative disease risk information. These clusters suggest that health consumers were very responsive to good news, but tended not to incorporate bad news into their self-perceptions much. These findings help to quantify variation among online health consumers and may inform the targeted marketing of and improvements to risk communication tools on the Internet.
Mixed Pattern Matching-Based Traffic Abnormal Behavior Recognition
Cui, Zhiming; Zhao, Pengpeng
2014-01-01
A motion trajectory is an intuitive representation form in time-space domain for a micromotion behavior of moving target. Trajectory analysis is an important approach to recognize abnormal behaviors of moving targets. Against the complexity of vehicle trajectories, this paper first proposed a trajectory pattern learning method based on dynamic time warping (DTW) and spectral clustering. It introduced the DTW distance to measure the distances between vehicle trajectories and determined the number of clusters automatically by a spectral clustering algorithm based on the distance matrix. Then, it clusters sample data points into different clusters. After the spatial patterns and direction patterns learned from the clusters, a recognition method for detecting vehicle abnormal behaviors based on mixed pattern matching was proposed. The experimental results show that the proposed technical scheme can recognize main types of traffic abnormal behaviors effectively and has good robustness. The real-world application verified its feasibility and the validity. PMID:24605045
Review of Instructional Approaches in Ethics Education.
Mulhearn, Tyler J; Steele, Logan M; Watts, Logan L; Medeiros, Kelsey E; Mumford, Michael D; Connelly, Shane
2017-06-01
Increased investment in ethics education has prompted a variety of instructional objectives and frameworks. Yet, no systematic procedure to classify these varying instructional approaches has been attempted. In the present study, a quantitative clustering procedure was conducted to derive a typology of instruction in ethics education. In total, 330 ethics training programs were included in the cluster analysis. The training programs were appraised with respect to four instructional categories including instructional content, processes, delivery methods, and activities. Eight instructional approaches were identified through this clustering procedure, and these instructional approaches showed different levels of effectiveness. Instructional effectiveness was assessed based on one of nine commonly used ethics criteria. With respect to specific training types, Professional Decision Processes Training (d = 0.50) and Field-Specific Compliance Training (d = 0.46) appear to be viable approaches to ethics training based on Cohen's d effect size estimates. By contrast, two commonly used approaches, General Discussion Training (d = 0.31) and Norm Adherence Training (d = 0.37), were found to be considerably less effective. The implications for instruction in ethics training are discussed.
Saha, Abhijoy; Banerjee, Sayantan; Kurtek, Sebastian; Narang, Shivali; Lee, Joonsang; Rao, Ganesh; Martinez, Juan; Bharath, Karthik; Rao, Arvind U K; Baladandayuthapani, Veerabhadran
2016-01-01
Tumor heterogeneity is a crucial area of cancer research wherein inter- and intra-tumor differences are investigated to assess and monitor disease development and progression, especially in cancer. The proliferation of imaging and linked genomic data has enabled us to evaluate tumor heterogeneity on multiple levels. In this work, we examine magnetic resonance imaging (MRI) in patients with brain cancer to assess image-based tumor heterogeneity. Standard approaches to this problem use scalar summary measures (e.g., intensity-based histogram statistics) that do not adequately capture the complete and finer scale information in the voxel-level data. In this paper, we introduce a novel technique, DEMARCATE (DEnsity-based MAgnetic Resonance image Clustering for Assessing Tumor hEterogeneity) to explore the entire tumor heterogeneity density profiles (THDPs) obtained from the full tumor voxel space. THDPs are smoothed representations of the probability density function of the tumor images. We develop tools for analyzing such objects under the Fisher-Rao Riemannian framework that allows us to construct metrics for THDP comparisons across patients, which can be used in conjunction with standard clustering approaches. Our analyses of The Cancer Genome Atlas (TCGA) based Glioblastoma dataset reveal two significant clusters of patients with marked differences in tumor morphology, genomic characteristics and prognostic clinical outcomes. In addition, we see enrichment of image-based clusters with known molecular subtypes of glioblastoma multiforme, which further validates our representation of tumor heterogeneity and subsequent clustering techniques.
Heterogeneous Tensor Decomposition for Clustering via Manifold Optimization.
Sun, Yanfeng; Gao, Junbin; Hong, Xia; Mishra, Bamdev; Yin, Baocai
2016-03-01
Tensor clustering is an important tool that exploits intrinsically rich structures in real-world multiarray or Tensor datasets. Often in dealing with those datasets, standard practice is to use subspace clustering that is based on vectorizing multiarray data. However, vectorization of tensorial data does not exploit complete structure information. In this paper, we propose a subspace clustering algorithm without adopting any vectorization process. Our approach is based on a novel heterogeneous Tucker decomposition model taking into account cluster membership information. We propose a new clustering algorithm that alternates between different modes of the proposed heterogeneous tensor model. All but the last mode have closed-form updates. Updating the last mode reduces to optimizing over the multinomial manifold for which we investigate second order Riemannian geometry and propose a trust-region algorithm. Numerical experiments show that our proposed algorithm compete effectively with state-of-the-art clustering algorithms that are based on tensor factorization.
An Energy Centric Cluster-Based Routing Protocol for Wireless Sensor Networks.
Hosen, A S M Sanwar; Cho, Gi Hwan
2018-05-11
Clustering is an effective way to prolong the lifetime of a wireless sensor network (WSN). The common approach is to elect cluster heads to take routing and controlling duty, and to periodically rotate each cluster head's role to distribute energy consumption among nodes. However, a significant amount of energy dissipates due to control messages overhead, which results in a shorter network lifetime. This paper proposes an energy-centric cluster-based routing mechanism in WSNs. To begin with, cluster heads are elected based on the higher ranks of the nodes. The rank is defined by residual energy and average distance from the member nodes. With the role of data aggregation and data forwarding, a cluster head acts as a caretaker for cluster-head election in the next round, where the ranks' information are piggybacked along with the local data sending during intra-cluster communication. This reduces the number of control messages for the cluster-head election as well as the cluster formation in detail. Simulation results show that our proposed protocol saves the energy consumption among nodes and achieves a significant improvement in the network lifetime.
An Energy Centric Cluster-Based Routing Protocol for Wireless Sensor Networks
Hosen, A. S. M. Sanwar; Cho, Gi Hwan
2018-01-01
Clustering is an effective way to prolong the lifetime of a wireless sensor network (WSN). The common approach is to elect cluster heads to take routing and controlling duty, and to periodically rotate each cluster head’s role to distribute energy consumption among nodes. However, a significant amount of energy dissipates due to control messages overhead, which results in a shorter network lifetime. This paper proposes an energy-centric cluster-based routing mechanism in WSNs. To begin with, cluster heads are elected based on the higher ranks of the nodes. The rank is defined by residual energy and average distance from the member nodes. With the role of data aggregation and data forwarding, a cluster head acts as a caretaker for cluster-head election in the next round, where the ranks’ information are piggybacked along with the local data sending during intra-cluster communication. This reduces the number of control messages for the cluster-head election as well as the cluster formation in detail. Simulation results show that our proposed protocol saves the energy consumption among nodes and achieves a significant improvement in the network lifetime. PMID:29751663
Peeking Network States with Clustered Patterns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jinoh; Sim, Alex
2015-10-20
Network traffic monitoring has long been a core element for effec- tive network management and security. However, it is still a chal- lenging task with a high degree of complexity for comprehensive analysis when considering multiple variables and ever-increasing traffic volumes to monitor. For example, one of the widely con- sidered approaches is to scrutinize probabilistic distributions, but it poses a scalability concern and multivariate analysis is not gen- erally supported due to the exponential increase of the complexity. In this work, we propose a novel method for network traffic moni- toring based on clustering, one of the powerful deep-learningmore » tech- niques. We show that the new approach enables us to recognize clustered results as patterns representing the network states, which can then be utilized to evaluate “similarity” of network states over time. In addition, we define a new quantitative measure for the similarity between two compared network states observed in dif- ferent time windows, as a supportive means for intuitive analysis. Finally, we demonstrate the clustering-based network monitoring with public traffic traces, and show that the proposed approach us- ing the clustering method has a great opportunity for feasible, cost- effective network monitoring.« less
Web Image Search Re-ranking with Click-based Similarity and Typicality.
Yang, Xiaopeng; Mei, Tao; Zhang, Yong Dong; Liu, Jie; Satoh, Shin'ichi
2016-07-20
In image search re-ranking, besides the well known semantic gap, intent gap, which is the gap between the representation of users' query/demand and the real intent of the users, is becoming a major problem restricting the development of image retrieval. To reduce human effects, in this paper, we use image click-through data, which can be viewed as the "implicit feedback" from users, to help overcome the intention gap, and further improve the image search performance. Generally, the hypothesis visually similar images should be close in a ranking list and the strategy images with higher relevance should be ranked higher than others are widely accepted. To obtain satisfying search results, thus, image similarity and the level of relevance typicality are determinate factors correspondingly. However, when measuring image similarity and typicality, conventional re-ranking approaches only consider visual information and initial ranks of images, while overlooking the influence of click-through data. This paper presents a novel re-ranking approach, named spectral clustering re-ranking with click-based similarity and typicality (SCCST). First, to learn an appropriate similarity measurement, we propose click-based multi-feature similarity learning algorithm (CMSL), which conducts metric learning based on clickbased triplets selection, and integrates multiple features into a unified similarity space via multiple kernel learning. Then based on the learnt click-based image similarity measure, we conduct spectral clustering to group visually and semantically similar images into same clusters, and get the final re-rank list by calculating click-based clusters typicality and withinclusters click-based image typicality in descending order. Our experiments conducted on two real-world query-image datasets with diverse representative queries show that our proposed reranking approach can significantly improve initial search results, and outperform several existing re-ranking approaches.
Canonical PSO Based K-Means Clustering Approach for Real Datasets.
Dey, Lopamudra; Chakraborty, Sanjay
2014-01-01
"Clustering" the significance and application of this technique is spread over various fields. Clustering is an unsupervised process in data mining, that is why the proper evaluation of the results and measuring the compactness and separability of the clusters are important issues. The procedure of evaluating the results of a clustering algorithm is known as cluster validity measure. Different types of indexes are used to solve different types of problems and indices selection depends on the kind of available data. This paper first proposes Canonical PSO based K-means clustering algorithm and also analyses some important clustering indices (intercluster, intracluster) and then evaluates the effects of those indices on real-time air pollution database, wholesale customer, wine, and vehicle datasets using typical K-means, Canonical PSO based K-means, simple PSO based K-means, DBSCAN, and Hierarchical clustering algorithms. This paper also describes the nature of the clusters and finally compares the performances of these clustering algorithms according to the validity assessment. It also defines which algorithm will be more desirable among all these algorithms to make proper compact clusters on this particular real life datasets. It actually deals with the behaviour of these clustering algorithms with respect to validation indexes and represents their results of evaluation in terms of mathematical and graphical forms.
Enrichment Clusters: A Practical Plan for Real-World, Student-Driven Learning.
ERIC Educational Resources Information Center
Renzulli, Joseph S.; Gentry, Marcia; Reis, Sally M.
This guidebook provides a rationale and guidelines for implementing a student-driven learning approach using enrichment clusters. Enrichment clusters allow students who share a common interest to meet each week to produce a product, performance, or targeted service based on that common interest. Chapter 1 discusses different models of learning.…
NASA Astrophysics Data System (ADS)
Du, Hongbo; Al-Jubouri, Hanan; Sellahewa, Harin
2014-05-01
Content-based image retrieval is an automatic process of retrieving images according to image visual contents instead of textual annotations. It has many areas of application from automatic image annotation and archive, image classification and categorization to homeland security and law enforcement. The key issues affecting the performance of such retrieval systems include sensible image features that can effectively capture the right amount of visual contents and suitable similarity measures to find similar and relevant images ranked in a meaningful order. Many different approaches, methods and techniques have been developed as a result of very intensive research in the past two decades. Among many existing approaches, is a cluster-based approach where clustering methods are used to group local feature descriptors into homogeneous regions, and search is conducted by comparing the regions of the query image against those of the stored images. This paper serves as a review of works in this area. The paper will first summarize the existing work reported in the literature and then present the authors' own investigations in this field. The paper intends to highlight not only achievements made by recent research but also challenges and difficulties still remaining in this area.
Mohanasundaram, Ranganathan; Periasamy, Pappampalayam Sanmugam
2015-01-01
The current high profile debate with regard to data storage and its growth have become strategic task in the world of networking. It mainly depends on the sensor nodes called producers, base stations, and also the consumers (users and sensor nodes) to retrieve and use the data. The main concern dealt here is to find an optimal data storage position in wireless sensor networks. The works that have been carried out earlier did not utilize swarm intelligence based optimization approaches to find the optimal data storage positions. To achieve this goal, an efficient swam intelligence approach is used to choose suitable positions for a storage node. Thus, hybrid particle swarm optimization algorithm has been used to find the suitable positions for storage nodes while the total energy cost of data transmission is minimized. Clustering-based distributed data storage is utilized to solve clustering problem using fuzzy-C-means algorithm. This research work also considers the data rates and locations of multiple producers and consumers to find optimal data storage positions. The algorithm is implemented in a network simulator and the experimental results show that the proposed clustering and swarm intelligence based ODS strategy is more effective than the earlier approaches.
Cluster Beam Deposition Technology for Optical Coatings. Phase 1
1987-05-01
Particles 55 5.4.3 Growth of Ultrafine Particles or 61 Clusters by Gas Quenching 6.0 REFERENCES 67 APPENDIX: SUPPLEMENTARY INFORMATION 69 COP TR-407/5-87...approach, based on growth and transport of ultrafine particles or clusters in a quenching gas, appears more promising in our view and has been proposed for... Ultrafine Particles or Clusters by Gas quenching The apparent difficulty of making metal clusters with a Takagi-type source led us to explore other
Swarm: robust and fast clustering method for amplicon-based studies
Rognes, Torbjørn; Quince, Christopher; de Vargas, Colomban; Dunthorn, Micah
2014-01-01
Popular de novo amplicon clustering methods suffer from two fundamental flaws: arbitrary global clustering thresholds, and input-order dependency induced by centroid selection. Swarm was developed to address these issues by first clustering nearly identical amplicons iteratively using a local threshold, and then by using clusters’ internal structure and amplicon abundances to refine its results. This fast, scalable, and input-order independent approach reduces the influence of clustering parameters and produces robust operational taxonomic units. PMID:25276506
Cluster-based control of a separating flow over a smoothly contoured ramp
NASA Astrophysics Data System (ADS)
Kaiser, Eurika; Noack, Bernd R.; Spohn, Andreas; Cattafesta, Louis N.; Morzyński, Marek
2017-12-01
The ability to manipulate and control fluid flows is of great importance in many scientific and engineering applications. The proposed closed-loop control framework addresses a key issue of model-based control: The actuation effect often results from slow dynamics of strongly nonlinear interactions which the flow reveals at timescales much longer than the prediction horizon of any model. Hence, we employ a probabilistic approach based on a cluster-based discretization of the Liouville equation for the evolution of the probability distribution. The proposed methodology frames high-dimensional, nonlinear dynamics into low-dimensional, probabilistic, linear dynamics which considerably simplifies the optimal control problem while preserving nonlinear actuation mechanisms. The data-driven approach builds upon a state space discretization using a clustering algorithm which groups kinematically similar flow states into a low number of clusters. The temporal evolution of the probability distribution on this set of clusters is then described by a control-dependent Markov model. This Markov model can be used as predictor for the ergodic probability distribution for a particular control law. This probability distribution approximates the long-term behavior of the original system on which basis the optimal control law is determined. We examine how the approach can be used to improve the open-loop actuation in a separating flow dominated by Kelvin-Helmholtz shedding. For this purpose, the feature space, in which the model is learned, and the admissible control inputs are tailored to strongly oscillatory flows.
Hebels, Dennie G A J; Rasche, Axel; Herwig, Ralf; van Westen, Gerard J P; Jennen, Danyel G J; Kleinjans, Jos C S
2016-01-01
When evaluating compound similarity, addressing multiple sources of information to reach conclusions about common pharmaceutical and/or toxicological mechanisms of action is a crucial strategy. In this chapter, we describe a systems biology approach that incorporates analyses of hepatotoxicant data for 33 compounds from three different sources: a chemical structure similarity analysis based on the 3D Tanimoto coefficient, a chemical structure-based protein target prediction analysis, and a cross-study/cross-platform meta-analysis of in vitro and in vivo human and rat transcriptomics data derived from public resources (i.e., the diXa data warehouse). Hierarchical clustering of the outcome scores of the separate analyses did not result in a satisfactory grouping of compounds considering their known toxic mechanism as described in literature. However, a combined analysis of multiple data types may hypothetically compensate for missing or unreliable information in any of the single data types. We therefore performed an integrated clustering analysis of all three data sets using the R-based tool iClusterPlus. This indeed improved the grouping results. The compound clusters that were formed by means of iClusterPlus represent groups that show similar gene expression while simultaneously integrating a similarity in structure and protein targets, which corresponds much better with the known mechanism of action of these toxicants. Using an integrative systems biology approach may thus overcome the limitations of the separate analyses when grouping liver toxicants sharing a similar mechanism of toxicity.
Mitchell-Foster, Kendra; Ayala, Efraín Beltrán; Breilh, Jaime; Spiegel, Jerry; Wilches, Ana Arichabala; Leon, Tania Ordóñez; Delgado, Jefferson Adrian
2015-02-01
This project investigates the effectiveness and feasibility of scaling-up an eco-bio-social approach for implementing an integrated community-based approach for dengue prevention in comparison with existing insecticide-based and emerging biolarvicide-based programs in an endemic setting in Machala, Ecuador. An integrated intervention strategy (IIS) for dengue prevention (an elementary school-based dengue education program, and clean patio and safe container program) was implemented in 10 intervention clusters from November 2012 to November 2013 using a randomized controlled cluster trial design (20 clusters: 10 intervention, 10 control; 100 households per cluster with 1986 total households). Current existing dengue prevention programs served as the control treatment in comparison clusters. Pupa per person index (PPI) is used as the main outcome measure. Particular attention was paid to social mobilization and empowerment with IIS. Overall, IIS was successful in reducing PPI levels in intervention communities versus control clusters, with intervention clusters in the six paired clusters that followed the study design experiencing a greater reduction of PPI compared to controls (2.2 OR, 95% CI: 1.2 to 4.7). Analysis of individual cases demonstrates that consideration for contexualizing programs and strategies to local neighborhoods can be very effective in reducing PPI for dengue transmission risk reduction. In the rapidly evolving political climate for dengue control in Ecuador, integration of successful social mobilization and empowerment strategies with existing and emerging biolarvicide-based government dengue prevention and control programs is promising in reducing PPI and dengue transmission risk in southern coastal communities like Machala. However, more profound analysis of social determination of health is called for to assess sustainability prospects. © The author 2015. The World Health Organization has granted Oxford University Press permission for the reproduction of this article.
Mitchell-Foster, Kendra; Ayala, Efraín Beltrán; Breilh, Jaime; Spiegel, Jerry; Wilches, Ana Arichabala; Leon, Tania Ordóñez; Delgado, Jefferson Adrian
2015-01-01
Background This project investigates the effectiveness and feasibility of scaling-up an eco-bio-social approach for implementing an integrated community-based approach for dengue prevention in comparison with existing insecticide-based and emerging biolarvicide-based programs in an endemic setting in Machala, Ecuador. Methods An integrated intervention strategy (IIS) for dengue prevention (an elementary school-based dengue education program, and clean patio and safe container program) was implemented in 10 intervention clusters from November 2012 to November 2013 using a randomized controlled cluster trial design (20 clusters: 10 intervention, 10 control; 100 households per cluster with 1986 total households). Current existing dengue prevention programs served as the control treatment in comparison clusters. Pupa per person index (PPI) is used as the main outcome measure. Particular attention was paid to social mobilization and empowerment with IIS. Results Overall, IIS was successful in reducing PPI levels in intervention communities versus control clusters, with intervention clusters in the six paired clusters that followed the study design experiencing a greater reduction of PPI compared to controls (2.2 OR, 95% CI: 1.2 to 4.7). Analysis of individual cases demonstrates that consideration for contexualizing programs and strategies to local neighborhoods can be very effective in reducing PPI for dengue transmission risk reduction. Conclusions In the rapidly evolving political climate for dengue control in Ecuador, integration of successful social mobilization and empowerment strategies with existing and emerging biolarvicide-based government dengue prevention and control programs is promising in reducing PPI and dengue transmission risk in southern coastal communities like Machala. However, more profound analysis of social determination of health is called for to assess sustainability prospects. PMID:25604763
NASA Astrophysics Data System (ADS)
Walz, Michael; Leckebusch, Gregor C.
2016-04-01
Extratropical wind storms pose one of the most dangerous and loss intensive natural hazards for Europe. However, due to only 50 years of high quality observational data, it is difficult to assess the statistical uncertainty of these sparse events just based on observations. Over the last decade seasonal ensemble forecasts have become indispensable in quantifying the uncertainty of weather prediction on seasonal timescales. In this study seasonal forecasts are used in a climatological context: By making use of the up to 51 ensemble members, a broad and physically consistent statistical base can be created. This base can then be used to assess the statistical uncertainty of extreme wind storm occurrence more accurately. In order to determine the statistical uncertainty of storms with different paths of progression, a probabilistic clustering approach using regression mixture models is used to objectively assign storm tracks (either based on core pressure or on extreme wind speeds) to different clusters. The advantage of this technique is that the entire lifetime of a storm is considered for the clustering algorithm. Quadratic curves are found to describe the storm tracks most accurately. Three main clusters (diagonal, horizontal or vertical progression of the storm track) can be identified, each of which have their own particulate features. Basic storm features like average velocity and duration are calculated and compared for each cluster. The main benefit of this clustering technique, however, is to evaluate if the clusters show different degrees of uncertainty, e.g. more (less) spread for tracks approaching Europe horizontally (diagonally). This statistical uncertainty is compared for different seasonal forecast products.
NASA Astrophysics Data System (ADS)
Alexandroni, Guy; Zimmerman Moreno, Gali; Sochen, Nir; Greenspan, Hayit
2016-03-01
Recent advances in Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) of white matter in conjunction with improved tractography produce impressive reconstructions of White Matter (WM) pathways. These pathways (fiber sets) often contain hundreds of thousands of fibers, or more. In order to make fiber based analysis more practical, the fiber set needs to be preprocessed to eliminate redundancies and to keep only essential representative fibers. In this paper we demonstrate and compare two distinctive frameworks for selecting this reduced set of fibers. The first framework entails pre-clustering the fibers using k-means, followed by Hierarchical Clustering and replacing each cluster with one representative. For the second clustering stage seven distance metrics were evaluated. The second framework is based on an efficient geometric approximation paradigm named coresets. Coresets present a new approach to optimization and have huge success especially in tasks requiring large computation time and/or memory. We propose a modified version of the coresets algorithm, Density Coreset. It is used for extracting the main fibers from dense datasets, leaving a small set that represents the main structures and connectivity of the brain. A novel approach, based on a 3D indicator structure, is used for comparing the frameworks. This comparison was applied to High Angular Resolution Diffusion Imaging (HARDI) scans of 4 healthy individuals. We show that among the clustering based methods, that cosine distance gives the best performance. In comparing the clustering schemes with coresets, Density Coreset method achieves the best performance.
Gifford, Elizabeth V; Tavakoli, Sara; Weingardt, Kenneth R; Finney, John W; Pierson, Heather M; Rosen, Craig S; Hagedorn, Hildi J; Cook, Joan M; Curran, Geoff M
2012-01-01
Evidence-based psychological treatments (EBPTs) are clusters of interventions, but it is unclear how providers actually implement these clusters in practice. A disaggregated measure of EBPTs was developed to characterize clinicians' component-level evidence-based practices and to examine relationships among these practices. Survey items captured components of evidence-based treatments based on treatment integrity measures. The Web-based survey was conducted with 75 U.S. Department of Veterans Affairs (VA) substance use disorder (SUD) practitioners and 149 non-VA community-based SUD practitioners. Clinician's self-designated treatment orientations were positively related to their endorsement of those EBPT components; however, clinicians used components from a variety of EBPTs. Hierarchical cluster analysis indicated that clinicians combined and organized interventions from cognitive-behavioral therapy, the community reinforcement approach, motivational interviewing, structured family and couples therapy, 12-step facilitation, and contingency management into clusters including empathy and support, treatment engagement and activation, abstinence initiation, and recovery maintenance. Understanding how clinicians use EBPT components may lead to improved evidence-based practice dissemination and implementation. Published by Elsevier Inc.
Analysis of cytokine release assay data using machine learning approaches.
Xiong, Feiyu; Janko, Marco; Walker, Mindi; Makropoulos, Dorie; Weinstock, Daniel; Kam, Moshe; Hrebien, Leonid
2014-10-01
The possible onset of Cytokine Release Syndrome (CRS) is an important consideration in the development of monoclonal antibody (mAb) therapeutics. In this study, several machine learning approaches are used to analyze CRS data. The analyzed data come from a human blood in vitro assay which was used to assess the potential of mAb-based therapeutics to produce cytokine release similar to that induced by Anti-CD28 superagonistic (Anti-CD28 SA) mAbs. The data contain 7 mAbs and two negative controls, a total of 423 samples coming from 44 donors. Three (3) machine learning approaches were applied in combination to observations obtained from that assay, namely (i) Hierarchical Cluster Analysis (HCA); (ii) Principal Component Analysis (PCA) followed by K-means clustering; and (iii) Decision Tree Classification (DTC). All three approaches were able to identify the treatment that caused the most severe cytokine response. HCA was able to provide information about the expected number of clusters in the data. PCA coupled with K-means clustering allowed classification of treatments sample by sample, and visualizing clusters of treatments. DTC models showed the relative importance of various cytokines such as IFN-γ, TNF-α and IL-10 to CRS. The use of these approaches in tandem provides better selection of parameters for one method based on outcomes from another, and an overall improved analysis of the data through complementary approaches. Moreover, the DTC analysis showed in addition that IL-17 may be correlated with CRS reactions, although this correlation has not yet been corroborated in the literature. Copyright © 2014 Elsevier B.V. All rights reserved.
Kim, Minkyoung; Choi, Seung-Hoon; Kim, Junhyoung; Choi, Kihang; Shin, Jae-Min; Kang, Sang-Kee; Choi, Yun-Jaie; Jung, Dong Hyun
2009-11-01
This study describes the application of a density-based algorithm to clustering small peptide conformations after a molecular dynamics simulation. We propose a clustering method for small peptide conformations that enables adjacent clusters to be separated more clearly on the basis of neighbor density. Neighbor density means the number of neighboring conformations, so if a conformation has too few neighboring conformations, then it is considered as noise or an outlier and is excluded from the list of cluster members. With this approach, we can easily identify clusters in which the members are densely crowded in the conformational space, and we can safely avoid misclustering individual clusters linked by noise or outliers. Consideration of neighbor density significantly improves the efficiency of clustering of small peptide conformations sampled from molecular dynamics simulations and can be used for predicting peptide structures.
Frickenhaus, Stephan; Kannan, Srinivasaraghavan; Zacharias, Martin
2009-02-01
A direct conformational clustering and mapping approach for peptide conformations based on backbone dihedral angles has been developed and applied to compare conformational sampling of Met-enkephalin using two molecular dynamics (MD) methods. Efficient clustering in dihedrals has been achieved by evaluating all combinations resulting from independent clustering of each dihedral angle distribution, thus resolving all conformational substates. In contrast, Cartesian clustering was unable to accurately distinguish between all substates. Projection of clusters on dihedral principal component (PCA) subspaces did not result in efficient separation of highly populated clusters. However, representation in a nonlinear metric by Sammon mapping was able to separate well the 48 highest populated clusters in just two dimensions. In addition, this approach also allowed us to visualize the transition frequencies between clusters efficiently. Significantly, higher transition frequencies between more distinct conformational substates were found for a recently developed biasing-potential replica exchange MD simulation method allowing faster sampling of possible substates compared to conventional MD simulations. Although the number of theoretically possible clusters grows exponentially with peptide length, in practice, the number of clusters is only limited by the sampling size (typically much smaller), and therefore the method is well suited also for large systems. The approach could be useful to rapidly and accurately evaluate conformational sampling during MD simulations, to compare different sampling strategies and eventually to detect kinetic bottlenecks in folding pathways.
Cleaning by clustering: methodology for addressing data quality issues in biomedical metadata.
Hu, Wei; Zaveri, Amrapali; Qiu, Honglei; Dumontier, Michel
2017-09-18
The ability to efficiently search and filter datasets depends on access to high quality metadata. While most biomedical repositories require data submitters to provide a minimal set of metadata, some such as the Gene Expression Omnibus (GEO) allows users to specify additional metadata in the form of textual key-value pairs (e.g. sex: female). However, since there is no structured vocabulary to guide the submitter regarding the metadata terms to use, consequently, the 44,000,000+ key-value pairs in GEO suffer from numerous quality issues including redundancy, heterogeneity, inconsistency, and incompleteness. Such issues hinder the ability of scientists to hone in on datasets that meet their requirements and point to a need for accurate, structured and complete description of the data. In this study, we propose a clustering-based approach to address data quality issues in biomedical, specifically gene expression, metadata. First, we present three different kinds of similarity measures to compare metadata keys. Second, we design a scalable agglomerative clustering algorithm to cluster similar keys together. Our agglomerative cluster algorithm identified metadata keys that were similar, based on (i) name, (ii) core concept and (iii) value similarities, to each other and grouped them together. We evaluated our method using a manually created gold standard in which 359 keys were grouped into 27 clusters based on six types of characteristics: (i) age, (ii) cell line, (iii) disease, (iv) strain, (v) tissue and (vi) treatment. As a result, the algorithm generated 18 clusters containing 355 keys (four clusters with only one key were excluded). In the 18 clusters, there were keys that were identified correctly to be related to that cluster, but there were 13 keys which were not related to that cluster. We compared our approach with four other published methods. Our approach significantly outperformed them for most metadata keys and achieved the best average F-Score (0.63). Our algorithm identified keys that were similar to each other and grouped them together. Our intuition that underpins cleaning by clustering is that, dividing keys into different clusters resolves the scalability issues for data observation and cleaning, and keys in the same cluster with duplicates and errors can easily be found. Our algorithm can also be applied to other biomedical data types.
Canonical PSO Based K-Means Clustering Approach for Real Datasets
Dey, Lopamudra; Chakraborty, Sanjay
2014-01-01
“Clustering” the significance and application of this technique is spread over various fields. Clustering is an unsupervised process in data mining, that is why the proper evaluation of the results and measuring the compactness and separability of the clusters are important issues. The procedure of evaluating the results of a clustering algorithm is known as cluster validity measure. Different types of indexes are used to solve different types of problems and indices selection depends on the kind of available data. This paper first proposes Canonical PSO based K-means clustering algorithm and also analyses some important clustering indices (intercluster, intracluster) and then evaluates the effects of those indices on real-time air pollution database, wholesale customer, wine, and vehicle datasets using typical K-means, Canonical PSO based K-means, simple PSO based K-means, DBSCAN, and Hierarchical clustering algorithms. This paper also describes the nature of the clusters and finally compares the performances of these clustering algorithms according to the validity assessment. It also defines which algorithm will be more desirable among all these algorithms to make proper compact clusters on this particular real life datasets. It actually deals with the behaviour of these clustering algorithms with respect to validation indexes and represents their results of evaluation in terms of mathematical and graphical forms. PMID:27355083
A hybrid protection approaches for denial of service (DoS) attacks in wireless sensor networks
NASA Astrophysics Data System (ADS)
Gunasekaran, Mahalakshmi; Periakaruppan, Subathra
2017-06-01
Wireless sensor network (WSN) contains the distributed autonomous devices with the sensing capability of physical and environmental conditions. During the clustering operation, the consumption of more energy causes the draining in battery power that leads to minimum network lifetime. Hence, the WSN devices are initially operated on low-power sleep mode to maximise the lifetime. But, the attacks arrival cause the disruption in low-power operating called denial of service (DoS) attacks. The conventional intrusion detection (ID) approaches such as rule-based and anomaly-based methods effectively detect the DoS attacks. But, the energy consumption and false detection rate are more. The absence of attack information and broadcast of its impact to the other cluster head (CH) leads to easy DoS attacks arrival. This article combines the isolation and routing tables to detect the attack in the specific cluster and broadcasts the information to other CH. The intercommunication between the CHs prevents the DoS attacks effectively. In addition, the swarm-based defence approach is proposed to migrate the fault channel to normal operating channel through frequency hop approaches. The comparative analysis between the proposed table-based intrusion detection systems (IDSs) and swarm-based defence approaches with the traditional IDS regarding the parameters of transmission overhead/efficiency, energy consumption, and false positive/negative rates proves the capability of DoS prediction/prevention in WSN.
NASA Astrophysics Data System (ADS)
Ward, W. O. C.; Wilkinson, P. B.; Chambers, J. E.; Oxby, L. S.; Bai, L.
2014-04-01
A novel method for the effective identification of bedrock subsurface elevation from electrical resistivity tomography images is described. Identifying subsurface boundaries in the topographic data can be difficult due to smoothness constraints used in inversion, so a statistical population-based approach is used that extends previous work in calculating isoresistivity surfaces. The analysis framework involves a procedure for guiding a clustering approach based on the fuzzy c-means algorithm. An approximation of resistivity distributions, found using kernel density estimation, was utilized as a means of guiding the cluster centroids used to classify data. A fuzzy method was chosen over hard clustering due to uncertainty in hard edges in the topography data, and a measure of clustering uncertainty was identified based on the reciprocal of cluster membership. The algorithm was validated using a direct comparison of known observed bedrock depths at two 3-D survey sites, using real-time GPS information of exposed bedrock by quarrying on one site, and borehole logs at the other. Results show similarly accurate detection as a leading isosurface estimation method, and the proposed algorithm requires significantly less user input and prior site knowledge. Furthermore, the method is effectively dimension-independent and will scale to data of increased spatial dimensions without a significant effect on the runtime. A discussion on the results by automated versus supervised analysis is also presented.
Mustapha, Ibrahim; Ali, Borhanuddin Mohd; Rasid, Mohd Fadlee A.; Sali, Aduwati; Mohamad, Hafizal
2015-01-01
It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach. PMID:26287191
Mustapha, Ibrahim; Mohd Ali, Borhanuddin; Rasid, Mohd Fadlee A; Sali, Aduwati; Mohamad, Hafizal
2015-08-13
It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach.
Ameringer, Suzanne; Erickson, Jeanne M; Macpherson, Catherine Fiona; Stegenga, Kristin; Linder, Lauri A
2015-12-01
Adolescents and young adults (AYAs) with cancer experience multiple distressing symptoms during treatment. Because the typical approach to symptom assessment does not easily reflect the symptom experience of individuals, alternative approaches to enhancing communication between the patient and provider are needed. We developed an iPad-based application that uses a heuristic approach to explore AYAs' cancer symptom experiences. In this mixed-methods descriptive study, 72 AYAs (13-29 years old) with cancer receiving myelosuppressive chemotherapy used the Computerized Symptom Capture Tool (C-SCAT) to create images of the symptoms and symptom clusters they experienced from a list of 30 symptoms. They answered open-ended questions within the C-SCAT about the causes of their symptoms and symptom clusters. The images generated through the C-SCAT and accompanying free-text data were analyzed using descriptive, content, and visual analyses. Most participants (n = 70) reported multiple symptoms (M = 8.14). The most frequently reported symptoms were nausea (65.3%), feeling drowsy (55.6%), lack of appetite (55.6%), and lack of energy (55.6%). Forty-six grouped their symptoms into one or more clusters. The most common symptom cluster was nausea/eating problems/appetite problems. Nausea was most frequently named as the priority symptom in a cluster and as a cause of other symptoms. Although common threads were present in the symptoms experienced by AYAs, the graphic images revealed unique perspectives and a range of complexity of symptom relationships, clusters, and causes. Results highlight the need for a tailored approach to symptom management based on how the AYA with cancer perceives his or her symptom experience. © 2015 Wiley Periodicals, Inc.
A mixture model-based approach to the clustering of microarray expression data.
McLachlan, G J; Bean, R W; Peel, D
2002-03-01
This paper introduces the software EMMIX-GENE that has been developed for the specific purpose of a model-based approach to the clustering of microarray expression data, in particular, of tissue samples on a very large number of genes. The latter is a nonstandard problem in parametric cluster analysis because the dimension of the feature space (the number of genes) is typically much greater than the number of tissues. A feasible approach is provided by first selecting a subset of the genes relevant for the clustering of the tissue samples by fitting mixtures of t distributions to rank the genes in order of increasing size of the likelihood ratio statistic for the test of one versus two components in the mixture model. The imposition of a threshold on the likelihood ratio statistic used in conjunction with a threshold on the size of a cluster allows the selection of a relevant set of genes. However, even this reduced set of genes will usually be too large for a normal mixture model to be fitted directly to the tissues, and so the use of mixtures of factor analyzers is exploited to reduce effectively the dimension of the feature space of genes. The usefulness of the EMMIX-GENE approach for the clustering of tissue samples is demonstrated on two well-known data sets on colon and leukaemia tissues. For both data sets, relevant subsets of the genes are able to be selected that reveal interesting clusterings of the tissues that are either consistent with the external classification of the tissues or with background and biological knowledge of these sets. EMMIX-GENE is available at http://www.maths.uq.edu.au/~gjm/emmix-gene/
ClueNet: Clustering a temporal network based on topological similarity rather than denseness.
Crawford, Joseph; Milenković, Tijana
2018-01-01
Network clustering is a very popular topic in the network science field. Its goal is to divide (partition) the network into groups (clusters or communities) of "topologically related" nodes, where the resulting topology-based clusters are expected to "correlate" well with node label information, i.e., metadata, such as cellular functions of genes/proteins in biological networks, or age or gender of people in social networks. Even for static data, the problem of network clustering is complex. For dynamic data, the problem is even more complex, due to an additional dimension of the data-their temporal (evolving) nature. Since the problem is computationally intractable, heuristic approaches need to be sought. Existing approaches for dynamic network clustering (DNC) have drawbacks. First, they assume that nodes should be in the same cluster if they are densely interconnected within the network. We hypothesize that in some applications, it might be of interest to cluster nodes that are topologically similar to each other instead of or in addition to requiring the nodes to be densely interconnected. Second, they ignore temporal information in their early steps, and when they do consider this information later on, they do so implicitly. We hypothesize that capturing temporal information earlier in the clustering process and doing so explicitly will improve results. We test these two hypotheses via our new approach called ClueNet. We evaluate ClueNet against six existing DNC methods on both social networks capturing evolving interactions between individuals (such as interactions between students in a high school) and biological networks capturing interactions between biomolecules in the cell at different ages. We find that ClueNet is superior in over 83% of all evaluation tests. As more real-world dynamic data are becoming available, DNC and thus ClueNet will only continue to gain importance.
Novel Approach to Classify Plants Based on Metabolite-Content Similarity.
Liu, Kang; Abdullah, Azian Azamimi; Huang, Ming; Nishioka, Takaaki; Altaf-Ul-Amin, Md; Kanaya, Shigehiko
2017-01-01
Secondary metabolites are bioactive substances with diverse chemical structures. Depending on the ecological environment within which they are living, higher plants use different combinations of secondary metabolites for adaptation (e.g., defense against attacks by herbivores or pathogenic microbes). This suggests that the similarity in metabolite content is applicable to assess phylogenic similarity of higher plants. However, such a chemical taxonomic approach has limitations of incomplete metabolomics data. We propose an approach for successfully classifying 216 plants based on their known incomplete metabolite content. Structurally similar metabolites have been clustered using the network clustering algorithm DPClus. Plants have been represented as binary vectors, implying relations with structurally similar metabolite groups, and classified using Ward's method of hierarchical clustering. Despite incomplete data, the resulting plant clusters are consistent with the known evolutional relations of plants. This finding reveals the significance of metabolite content as a taxonomic marker. We also discuss the predictive power of metabolite content in exploring nutritional and medicinal properties in plants. As a byproduct of our analysis, we could predict some currently unknown species-metabolite relations.
Novel Approach to Classify Plants Based on Metabolite-Content Similarity
Abdullah, Azian Azamimi; Huang, Ming; Nishioka, Takaaki
2017-01-01
Secondary metabolites are bioactive substances with diverse chemical structures. Depending on the ecological environment within which they are living, higher plants use different combinations of secondary metabolites for adaptation (e.g., defense against attacks by herbivores or pathogenic microbes). This suggests that the similarity in metabolite content is applicable to assess phylogenic similarity of higher plants. However, such a chemical taxonomic approach has limitations of incomplete metabolomics data. We propose an approach for successfully classifying 216 plants based on their known incomplete metabolite content. Structurally similar metabolites have been clustered using the network clustering algorithm DPClus. Plants have been represented as binary vectors, implying relations with structurally similar metabolite groups, and classified using Ward's method of hierarchical clustering. Despite incomplete data, the resulting plant clusters are consistent with the known evolutional relations of plants. This finding reveals the significance of metabolite content as a taxonomic marker. We also discuss the predictive power of metabolite content in exploring nutritional and medicinal properties in plants. As a byproduct of our analysis, we could predict some currently unknown species-metabolite relations. PMID:28164123
Pourhassan, Mojgan; Neumann, Frank
2018-06-22
The generalized travelling salesperson problem is an important NP-hard combinatorial optimization problem for which meta-heuristics, such as local search and evolutionary algorithms, have been used very successfully. Two hierarchical approaches with different neighbourhood structures, namely a Cluster-Based approach and a Node-Based approach, have been proposed by Hu and Raidl (2008) for solving this problem. In this paper, local search algorithms and simple evolutionary algorithms based on these approaches are investigated from a theoretical perspective. For local search algorithms, we point out the complementary abilities of the two approaches by presenting instances where they mutually outperform each other. Afterwards, we introduce an instance which is hard for both approaches when initialized on a particular point of the search space, but where a variable neighbourhood search combining them finds the optimal solution in polynomial time. Then we turn our attention to analysing the behaviour of simple evolutionary algorithms that use these approaches. We show that the Node-Based approach solves the hard instance of the Cluster-Based approach presented in Corus et al. (2016) in polynomial time. Furthermore, we prove an exponential lower bound on the optimization time of the Node-Based approach for a class of Euclidean instances.
Kinematic fingerprint of core-collapsed globular clusters
NASA Astrophysics Data System (ADS)
Bianchini, P.; Webb, J. J.; Sills, A.; Vesperini, E.
2018-03-01
Dynamical evolution drives globular clusters towards core collapse, which strongly shapes their internal properties. Diagnostics of core collapse have so far been based on photometry only, namely on the study of the concentration of the density profiles. Here, we present a new method to robustly identify core-collapsed clusters based on the study of their stellar kinematics. We introduce the kinematic concentration parameter, ck, the ratio between the global and local degree of energy equipartition reached by a cluster, and show through extensive direct N-body simulations that clusters approaching core collapse and in the post-core collapse phase are strictly characterized by ck > 1. The kinematic concentration provides a suitable diagnostic to identify core-collapsed clusters, independent from any other previous methods based on photometry. We also explore the effects of incomplete radial and stellar mass coverage on the calculation of ck and find that our method can be applied to state-of-art kinematic data sets.
Description of alternating-parity bands within the dinuclear-system model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shneidman, T. M.; Adamian, G. G., E-mail: adamian@theor.jinr.ru; Antonenko, N. V.
2016-11-15
A cluster approach is used to describe ground-state-based alternating-parity bands in even–even nuclei and to study the band-termination mechanism. A method is proposed for testing the cluster nature of alternating-parity bands.
Braschel, Melissa C; Svec, Ivana; Darlington, Gerarda A; Donner, Allan
2016-04-01
Many investigators rely on previously published point estimates of the intraclass correlation coefficient rather than on their associated confidence intervals to determine the required size of a newly planned cluster randomized trial. Although confidence interval methods for the intraclass correlation coefficient that can be applied to community-based trials have been developed for a continuous outcome variable, fewer methods exist for a binary outcome variable. The aim of this study is to evaluate confidence interval methods for the intraclass correlation coefficient applied to binary outcomes in community intervention trials enrolling a small number of large clusters. Existing methods for confidence interval construction are examined and compared to a new ad hoc approach based on dividing clusters into a large number of smaller sub-clusters and subsequently applying existing methods to the resulting data. Monte Carlo simulation is used to assess the width and coverage of confidence intervals for the intraclass correlation coefficient based on Smith's large sample approximation of the standard error of the one-way analysis of variance estimator, an inverted modified Wald test for the Fleiss-Cuzick estimator, and intervals constructed using a bootstrap-t applied to a variance-stabilizing transformation of the intraclass correlation coefficient estimate. In addition, a new approach is applied in which clusters are randomly divided into a large number of smaller sub-clusters with the same methods applied to these data (with the exception of the bootstrap-t interval, which assumes large cluster sizes). These methods are also applied to a cluster randomized trial on adolescent tobacco use for illustration. When applied to a binary outcome variable in a small number of large clusters, existing confidence interval methods for the intraclass correlation coefficient provide poor coverage. However, confidence intervals constructed using the new approach combined with Smith's method provide nominal or close to nominal coverage when the intraclass correlation coefficient is small (<0.05), as is the case in most community intervention trials. This study concludes that when a binary outcome variable is measured in a small number of large clusters, confidence intervals for the intraclass correlation coefficient may be constructed by dividing existing clusters into sub-clusters (e.g. groups of 5) and using Smith's method. The resulting confidence intervals provide nominal or close to nominal coverage across a wide range of parameters when the intraclass correlation coefficient is small (<0.05). Application of this method should provide investigators with a better understanding of the uncertainty associated with a point estimator of the intraclass correlation coefficient used for determining the sample size needed for a newly designed community-based trial. © The Author(s) 2015.
Wehmeyer, Christoph; Falk von Rudorff, Guido; Wolf, Sebastian; Kabbe, Gabriel; Schärf, Daniel; Kühne, Thomas D; Sebastiani, Daniel
2012-11-21
We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials.
NASA Astrophysics Data System (ADS)
Wehmeyer, Christoph; Falk von Rudorff, Guido; Wolf, Sebastian; Kabbe, Gabriel; Schärf, Daniel; Kühne, Thomas D.; Sebastiani, Daniel
2012-11-01
We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials.
Analyzing Sub-Classifications of Glaucoma via SOM Based Clustering of Optic Nerve Images.
Yan, Sanjun; Abidi, Syed Sibte Raza; Artes, Paul Habib
2005-01-01
We present a data mining framework to cluster optic nerve images obtained by Confocal Scanning Laser Tomography (CSLT) in normal subjects and patients with glaucoma. We use self-organizing maps and expectation maximization methods to partition the data into clusters that provide insights into potential sub-classification of glaucoma based on morphological features. We conclude that our approach provides a first step towards a better understanding of morphological features in optic nerve images obtained from glaucoma patients and healthy controls.
Mid-course multi-target tracking using continuous representation
NASA Technical Reports Server (NTRS)
Zak, Michail; Toomarian, Nikzad
1991-01-01
The thrust of this paper is to present a new approach to multi-target tracking for the mid-course stage of the Strategic Defense Initiative (SDI). This approach is based upon a continuum representation of a cluster of flying objects. We assume that the velocities of the flying objects can be embedded into a smooth velocity field. This assumption is based upon the impossibility of encounters in a high density cluster between the flying objects. Therefore, the problem is reduced to an identification of a moving continuum based upon consecutive time frame observations. In contradistinction to the previous approaches, here each target is considered as a center of a small continuous neighborhood subjected to a local-affine transformation, and therefore, the target trajectories do not mix. Obviously, their mixture in plane of sensor view is apparent. The approach is illustrated by an example.
Substructures in DAFT/FADA survey clusters based on XMM and optical data
NASA Astrophysics Data System (ADS)
Durret, F.; DAFT/FADA Team
2014-07-01
The DAFT/FADA survey was initiated to perform weak lensing tomography on a sample of 90 massive clusters in the redshift range [0.4,0.9] with HST imaging available. The complementary deep multiband imaging constitutes a high quality imaging data base for these clusters. In X-rays, we have analysed the XMM-Newton and/or Chandra data available for 32 clusters, and for 23 clusters we fit the X-ray emissivity with a beta-model and subtract it to search for substructures in the X-ray gas. This study was coupled with a dynamical analysis for the 18 clusters with at least 15 spectroscopic galaxy redshifts in the cluster range, based on a Serna & Gerbal (SG) analysis. We detected ten substructures in eight clusters by both methods (X-rays and SG). The percentage of mass included in substructures is found to be roughly constant with redshift, with values of 5-15%. Most of the substructures detected both in X-rays and with the SG method are found to be relatively recent infalls, probably at their first cluster pericenter approach.
Chen, Ling; Feng, Yanqin; Sun, Jianguo
2017-10-01
This paper discusses regression analysis of clustered failure time data, which occur when the failure times of interest are collected from clusters. In particular, we consider the situation where the correlated failure times of interest may be related to cluster sizes. For inference, we present two estimation procedures, the weighted estimating equation-based method and the within-cluster resampling-based method, when the correlated failure times of interest arise from a class of additive transformation models. The former makes use of the inverse of cluster sizes as weights in the estimating equations, while the latter can be easily implemented by using the existing software packages for right-censored failure time data. An extensive simulation study is conducted and indicates that the proposed approaches work well in both the situations with and without informative cluster size. They are applied to a dental study that motivated this study.
A Survey on Clustering Routing Protocols in Wireless Sensor Networks
Liu, Xuxun
2012-01-01
The past few years have witnessed increased interest in the potential use of wireless sensor networks (WSNs) in a wide range of applications and it has become a hot research area. Based on network structure, routing protocols in WSNs can be divided into two categories: flat routing and hierarchical or clustering routing. Owing to a variety of advantages, clustering is becoming an active branch of routing technology in WSNs. In this paper, we present a comprehensive and fine grained survey on clustering routing protocols proposed in the literature for WSNs. We outline the advantages and objectives of clustering for WSNs, and develop a novel taxonomy of WSN clustering routing methods based on complete and detailed clustering attributes. In particular, we systematically analyze a few prominent WSN clustering routing protocols and compare these different approaches according to our taxonomy and several significant metrics. Finally, we summarize and conclude the paper with some future directions. PMID:23112649
A survey on clustering routing protocols in wireless sensor networks.
Liu, Xuxun
2012-01-01
The past few years have witnessed increased interest in the potential use of wireless sensor networks (WSNs) in a wide range of applications and it has become a hot research area. Based on network structure, routing protocols in WSNs can be divided into two categories: flat routing and hierarchical or clustering routing. Owing to a variety of advantages, clustering is becoming an active branch of routing technology in WSNs. In this paper, we present a comprehensive and fine grained survey on clustering routing protocols proposed in the literature for WSNs. We outline the advantages and objectives of clustering for WSNs, and develop a novel taxonomy of WSN clustering routing methods based on complete and detailed clustering attributes. In particular, we systematically analyze a few prominent WSN clustering routing protocols and compare these different approaches according to our taxonomy and several significant metrics. Finally, we summarize and conclude the paper with some future directions.
Resource Provisioning in SLA-Based Cluster Computing
NASA Astrophysics Data System (ADS)
Xiong, Kaiqi; Suh, Sang
Cluster computing is excellent for parallel computation. It has become increasingly popular. In cluster computing, a service level agreement (SLA) is a set of quality of services (QoS) and a fee agreed between a customer and an application service provider. It plays an important role in an e-business application. An application service provider uses a set of cluster computing resources to support e-business applications subject to an SLA. In this paper, the QoS includes percentile response time and cluster utilization. We present an approach for resource provisioning in such an environment that minimizes the total cost of cluster computing resources used by an application service provider for an e-business application that often requires parallel computation for high service performance, availability, and reliability while satisfying a QoS and a fee negotiated between a customer and the application service provider. Simulation experiments demonstrate the applicability of the approach.
Spatial clustering of average risks and risk trends in Bayesian disease mapping.
Anderson, Craig; Lee, Duncan; Dean, Nema
2017-01-01
Spatiotemporal disease mapping focuses on estimating the spatial pattern in disease risk across a set of nonoverlapping areal units over a fixed period of time. The key aim of such research is to identify areas that have a high average level of disease risk or where disease risk is increasing over time, thus allowing public health interventions to be focused on these areas. Such aims are well suited to the statistical approach of clustering, and while much research has been done in this area in a purely spatial setting, only a handful of approaches have focused on spatiotemporal clustering of disease risk. Therefore, this paper outlines a new modeling approach for clustering spatiotemporal disease risk data, by clustering areas based on both their mean risk levels and the behavior of their temporal trends. The efficacy of the methodology is established by a simulation study, and is illustrated by a study of respiratory disease risk in Glasgow, Scotland. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ERIC Educational Resources Information Center
Rizvi, Meher; Nagy, Philip
2016-01-01
This paper presents and evaluates a teacher training approach called the cluster-based mentoring programme (CBMP) for the professional development of government primary school teachers in Pakistan. The study sought to find differences in the teaching practices between districts where the CBMP was used (intervention) and control districts where it…
Cluster Analysis to Identify Possible Subgroups in Tinnitus Patients.
van den Berge, Minke J C; Free, Rolien H; Arnold, Rosemarie; de Kleine, Emile; Hofman, Rutger; van Dijk, J Marc C; van Dijk, Pim
2017-01-01
In tinnitus treatment, there is a tendency to shift from a "one size fits all" to a more individual, patient-tailored approach. Insight in the heterogeneity of the tinnitus spectrum might improve the management of tinnitus patients in terms of choice of treatment and identification of patients with severe mental distress. The goal of this study was to identify subgroups in a large group of tinnitus patients. Data were collected from patients with severe tinnitus complaints visiting our tertiary referral tinnitus care group at the University Medical Center Groningen. Patient-reported and physician-reported variables were collected during their visit to our clinic. Cluster analyses were used to characterize subgroups. For the selection of the right variables to enter in the cluster analysis, two approaches were used: (1) variable reduction with principle component analysis and (2) variable selection based on expert opinion. Various variables of 1,783 tinnitus patients were included in the analyses. Cluster analysis (1) included 976 patients and resulted in a four-cluster solution. The effect of external influences was the most discriminative between the groups, or clusters, of patients. The "silhouette measure" of the cluster outcome was low (0.2), indicating a "no substantial" cluster structure. Cluster analysis (2) included 761 patients and resulted in a three-cluster solution, comparable to the first analysis. Again, a "no substantial" cluster structure was found (0.2). Two cluster analyses on a large database of tinnitus patients revealed that clusters of patients are mostly formed by a different response of external influences on their disease. However, both cluster outcomes based on this dataset showed a poor stability, suggesting that our tinnitus population comprises a continuum rather than a number of clearly defined subgroups.
Hybrid fuzzy cluster ensemble framework for tumor clustering from biomolecular data.
Yu, Zhiwen; Chen, Hantao; You, Jane; Han, Guoqiang; Li, Le
2013-01-01
Cancer class discovery using biomolecular data is one of the most important tasks for cancer diagnosis and treatment. Tumor clustering from gene expression data provides a new way to perform cancer class discovery. Most of the existing research works adopt single-clustering algorithms to perform tumor clustering is from biomolecular data that lack robustness, stability, and accuracy. To further improve the performance of tumor clustering from biomolecular data, we introduce the fuzzy theory into the cluster ensemble framework for tumor clustering from biomolecular data, and propose four kinds of hybrid fuzzy cluster ensemble frameworks (HFCEF), named as HFCEF-I, HFCEF-II, HFCEF-III, and HFCEF-IV, respectively, to identify samples that belong to different types of cancers. The difference between HFCEF-I and HFCEF-II is that they adopt different ensemble generator approaches to generate a set of fuzzy matrices in the ensemble. Specifically, HFCEF-I applies the affinity propagation algorithm (AP) to perform clustering on the sample dimension and generates a set of fuzzy matrices in the ensemble based on the fuzzy membership function and base samples selected by AP. HFCEF-II adopts AP to perform clustering on the attribute dimension, generates a set of subspaces, and obtains a set of fuzzy matrices in the ensemble by performing fuzzy c-means on subspaces. Compared with HFCEF-I and HFCEF-II, HFCEF-III and HFCEF-IV consider the characteristics of HFCEF-I and HFCEF-II. HFCEF-III combines HFCEF-I and HFCEF-II in a serial way, while HFCEF-IV integrates HFCEF-I and HFCEF-II in a concurrent way. HFCEFs adopt suitable consensus functions, such as the fuzzy c-means algorithm or the normalized cut algorithm (Ncut), to summarize generated fuzzy matrices, and obtain the final results. The experiments on real data sets from UCI machine learning repository and cancer gene expression profiles illustrate that 1) the proposed hybrid fuzzy cluster ensemble frameworks work well on real data sets, especially biomolecular data, and 2) the proposed approaches are able to provide more robust, stable, and accurate results when compared with the state-of-the-art single clustering algorithms and traditional cluster ensemble approaches.
A hybrid algorithm for clustering of time series data based on affinity search technique.
Aghabozorgi, Saeed; Ying Wah, Teh; Herawan, Tutut; Jalab, Hamid A; Shaygan, Mohammad Amin; Jalali, Alireza
2014-01-01
Time series clustering is an important solution to various problems in numerous fields of research, including business, medical science, and finance. However, conventional clustering algorithms are not practical for time series data because they are essentially designed for static data. This impracticality results in poor clustering accuracy in several systems. In this paper, a new hybrid clustering algorithm is proposed based on the similarity in shape of time series data. Time series data are first grouped as subclusters based on similarity in time. The subclusters are then merged using the k-Medoids algorithm based on similarity in shape. This model has two contributions: (1) it is more accurate than other conventional and hybrid approaches and (2) it determines the similarity in shape among time series data with a low complexity. To evaluate the accuracy of the proposed model, the model is tested extensively using syntactic and real-world time series datasets.
A Hybrid Algorithm for Clustering of Time Series Data Based on Affinity Search Technique
Aghabozorgi, Saeed; Ying Wah, Teh; Herawan, Tutut; Jalab, Hamid A.; Shaygan, Mohammad Amin; Jalali, Alireza
2014-01-01
Time series clustering is an important solution to various problems in numerous fields of research, including business, medical science, and finance. However, conventional clustering algorithms are not practical for time series data because they are essentially designed for static data. This impracticality results in poor clustering accuracy in several systems. In this paper, a new hybrid clustering algorithm is proposed based on the similarity in shape of time series data. Time series data are first grouped as subclusters based on similarity in time. The subclusters are then merged using the k-Medoids algorithm based on similarity in shape. This model has two contributions: (1) it is more accurate than other conventional and hybrid approaches and (2) it determines the similarity in shape among time series data with a low complexity. To evaluate the accuracy of the proposed model, the model is tested extensively using syntactic and real-world time series datasets. PMID:24982966
Xu, Xin; Huang, Zhenhua; Graves, Daniel; Pedrycz, Witold
2014-12-01
In order to deal with the sequential decision problems with large or continuous state spaces, feature representation and function approximation have been a major research topic in reinforcement learning (RL). In this paper, a clustering-based graph Laplacian framework is presented for feature representation and value function approximation (VFA) in RL. By making use of clustering-based techniques, that is, K-means clustering or fuzzy C-means clustering, a graph Laplacian is constructed by subsampling in Markov decision processes (MDPs) with continuous state spaces. The basis functions for VFA can be automatically generated from spectral analysis of the graph Laplacian. The clustering-based graph Laplacian is integrated with a class of approximation policy iteration algorithms called representation policy iteration (RPI) for RL in MDPs with continuous state spaces. Simulation and experimental results show that, compared with previous RPI methods, the proposed approach needs fewer sample points to compute an efficient set of basis functions and the learning control performance can be improved for a variety of parameter settings.
NASA Astrophysics Data System (ADS)
Husein, A. M.; Harahap, M.; Aisyah, S.; Purba, W.; Muhazir, A.
2018-03-01
Medication planning aim to get types, amount of medicine according to needs, and avoid the emptiness medicine based on patterns of disease. In making the medicine planning is still rely on ability and leadership experience, this is due to take a long time, skill, difficult to obtain a definite disease data, need a good record keeping and reporting, and the dependence of the budget resulted in planning is not going well, and lead to frequent lack and excess of medicines. In this research, we propose Adaptive Neuro Fuzzy Inference System (ANFIS) method to predict medication needs in 2016 and 2017 based on medical data in 2015 and 2016 from two source of hospital. The framework of analysis using two approaches. The first phase is implementing ANFIS to a data source, while the second approach we keep using ANFIS, but after the process of clustering from K-Means algorithm, both approaches are calculated values of Root Mean Square Error (RMSE) for training and testing. From the testing result, the proposed method with better prediction rates based on the evaluation analysis of quantitative and qualitative compared with existing systems, however the implementation of K-Means Algorithm against ANFIS have an effect on the timing of the training process and provide a classification accuracy significantly better without clustering.
NASA Astrophysics Data System (ADS)
Sehgal, V.; Lakhanpal, A.; Maheswaran, R.; Khosa, R.; Sridhar, Venkataramana
2018-01-01
This study proposes a wavelet-based multi-resolution modeling approach for statistical downscaling of GCM variables to mean monthly precipitation for five locations at Krishna Basin, India. Climatic dataset from NCEP is used for training the proposed models (Jan.'69 to Dec.'94) and are applied to corresponding CanCM4 GCM variables to simulate precipitation for the validation (Jan.'95-Dec.'05) and forecast (Jan.'06-Dec.'35) periods. The observed precipitation data is obtained from the India Meteorological Department (IMD) gridded precipitation product at 0.25 degree spatial resolution. This paper proposes a novel Multi-Scale Wavelet Entropy (MWE) based approach for clustering climatic variables into suitable clusters using k-means methodology. Principal Component Analysis (PCA) is used to obtain the representative Principal Components (PC) explaining 90-95% variance for each cluster. A multi-resolution non-linear approach combining Discrete Wavelet Transform (DWT) and Second Order Volterra (SoV) is used to model the representative PCs to obtain the downscaled precipitation for each downscaling location (W-P-SoV model). The results establish that wavelet-based multi-resolution SoV models perform significantly better compared to the traditional Multiple Linear Regression (MLR) and Artificial Neural Networks (ANN) based frameworks. It is observed that the proposed MWE-based clustering and subsequent PCA, helps reduce the dimensionality of the input climatic variables, while capturing more variability compared to stand-alone k-means (no MWE). The proposed models perform better in estimating the number of precipitation events during the non-monsoon periods whereas the models with clustering without MWE over-estimate the rainfall during the dry season.
Pakhomov, Serguei V.S.; Hemmy, Laura S.
2014-01-01
Generative semantic verbal fluency (SVF) tests show early and disproportionate decline relative to other abilities in individuals developing Alzheimer’s disease. Optimal performance on SVF tests depends on the efficiency of using clustered organization of semantically related items and the ability to switch between clusters. Traditional approaches to clustering and switching have relied on manual determination of clusters. We evaluated a novel automated computational linguistic approach for quantifying clustering behavior. Our approach is based on Latent Semantic Analysis (LSA) for computing strength of semantic relatedness between pairs of words produced in response to SVF test. The mean size of semantic clusters (MCS) and semantic chains (MChS) are calculated based on pairwise relatedness values between words. We evaluated the predictive validity of these measures on a set of 239 participants in the Nun Study, a longitudinal study of aging. All were cognitively intact at baseline assessment, measured with the CERAD battery, and were followed in 18 month waves for up to 20 years. The onset of either dementia or memory impairment were used as outcomes in Cox proportional hazards models adjusted for age and education and censored at follow up waves 5 (6.3 years) and 13 (16.96 years). Higher MCS was associated with 38% reduction in dementia risk at wave 5 and 26% reduction at wave 13, but not with the onset of memory impairment. Higher (+1 SD) MChS was associated with 39% dementia risk reduction at wave 5 but not wave 13, and association with memory impairment was not significant. Higher traditional SVF scores were associated with 22–29% memory impairment and 35–40% dementia risk reduction. SVF scores were not correlated with either MCS or MChS. Our study suggests that an automated approach to measuring clustering behavior can be used to estimate dementia risk in cognitively normal individuals. PMID:23845236
Pakhomov, Serguei V S; Hemmy, Laura S
2014-06-01
Generative semantic verbal fluency (SVF) tests show early and disproportionate decline relative to other abilities in individuals developing Alzheimer's disease. Optimal performance on SVF tests depends on the efficiency of using clustered organization of semantically related items and the ability to switch between clusters. Traditional approaches to clustering and switching have relied on manual determination of clusters. We evaluated a novel automated computational linguistic approach for quantifying clustering behavior. Our approach is based on Latent Semantic Analysis (LSA) for computing strength of semantic relatedness between pairs of words produced in response to SVF test. The mean size of semantic clusters (MCS) and semantic chains (MChS) are calculated based on pairwise relatedness values between words. We evaluated the predictive validity of these measures on a set of 239 participants in the Nun Study, a longitudinal study of aging. All were cognitively intact at baseline assessment, measured with the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) battery, and were followed in 18-month waves for up to 20 years. The onset of either dementia or memory impairment were used as outcomes in Cox proportional hazards models adjusted for age and education and censored at follow-up waves 5 (6.3 years) and 13 (16.96 years). Higher MCS was associated with 38% reduction in dementia risk at wave 5 and 26% reduction at wave 13, but not with the onset of memory impairment. Higher [+1 standard deviation (SD)] MChS was associated with 39% dementia risk reduction at wave 5 but not wave 13, and association with memory impairment was not significant. Higher traditional SVF scores were associated with 22-29% memory impairment and 35-40% dementia risk reduction. SVF scores were not correlated with either MCS or MChS. Our study suggests that an automated approach to measuring clustering behavior can be used to estimate dementia risk in cognitively normal individuals. Copyright © 2013 Elsevier Ltd. All rights reserved.
Clustering of samples and variables with mixed-type data
Edelmann, Dominic; Kopp-Schneider, Annette
2017-01-01
Analysis of data measured on different scales is a relevant challenge. Biomedical studies often focus on high-throughput datasets of, e.g., quantitative measurements. However, the need for integration of other features possibly measured on different scales, e.g. clinical or cytogenetic factors, becomes increasingly important. The analysis results (e.g. a selection of relevant genes) are then visualized, while adding further information, like clinical factors, on top. However, a more integrative approach is desirable, where all available data are analyzed jointly, and where also in the visualization different data sources are combined in a more natural way. Here we specifically target integrative visualization and present a heatmap-style graphic display. To this end, we develop and explore methods for clustering mixed-type data, with special focus on clustering variables. Clustering of variables does not receive as much attention in the literature as does clustering of samples. We extend the variables clustering methodology by two new approaches, one based on the combination of different association measures and the other on distance correlation. With simulation studies we evaluate and compare different clustering strategies. Applying specific methods for mixed-type data proves to be comparable and in many cases beneficial as compared to standard approaches applied to corresponding quantitative or binarized data. Our two novel approaches for mixed-type variables show similar or better performance than the existing methods ClustOfVar and bias-corrected mutual information. Further, in contrast to ClustOfVar, our methods provide dissimilarity matrices, which is an advantage, especially for the purpose of visualization. Real data examples aim to give an impression of various kinds of potential applications for the integrative heatmap and other graphical displays based on dissimilarity matrices. We demonstrate that the presented integrative heatmap provides more information than common data displays about the relationship among variables and samples. The described clustering and visualization methods are implemented in our R package CluMix available from https://cran.r-project.org/web/packages/CluMix. PMID:29182671
ERIC Educational Resources Information Center
Xu, Beijie; Recker, Mimi; Qi, Xiaojun; Flann, Nicholas; Ye, Lei
2013-01-01
This article examines clustering as an educational data mining method. In particular, two clustering algorithms, the widely used K-means and the model-based Latent Class Analysis, are compared, using usage data from an educational digital library service, the Instructional Architect (IA.usu.edu). Using a multi-faceted approach and multiple data…
A Framework for Designing Cluster Randomized Trials with Binary Outcomes
ERIC Educational Resources Information Center
Spybrook, Jessaca; Martinez, Andres
2011-01-01
The purpose of this paper is to provide a frame work for approaching a power analysis for a CRT (cluster randomized trial) with a binary outcome. The authors suggest a framework in the context of a simple CRT and then extend it to a blocked design, or a multi-site cluster randomized trial (MSCRT). The framework is based on proportions, an…
Overlapping Community Detection based on Network Decomposition
NASA Astrophysics Data System (ADS)
Ding, Zhuanlian; Zhang, Xingyi; Sun, Dengdi; Luo, Bin
2016-04-01
Community detection in complex network has become a vital step to understand the structure and dynamics of networks in various fields. However, traditional node clustering and relatively new proposed link clustering methods have inherent drawbacks to discover overlapping communities. Node clustering is inadequate to capture the pervasive overlaps, while link clustering is often criticized due to the high computational cost and ambiguous definition of communities. So, overlapping community detection is still a formidable challenge. In this work, we propose a new overlapping community detection algorithm based on network decomposition, called NDOCD. Specifically, NDOCD iteratively splits the network by removing all links in derived link communities, which are identified by utilizing node clustering technique. The network decomposition contributes to reducing the computation time and noise link elimination conduces to improving the quality of obtained communities. Besides, we employ node clustering technique rather than link similarity measure to discover link communities, thus NDOCD avoids an ambiguous definition of community and becomes less time-consuming. We test our approach on both synthetic and real-world networks. Results demonstrate the superior performance of our approach both in computation time and accuracy compared to state-of-the-art algorithms.
Spatial event cluster detection using an approximate normal distribution.
Torabi, Mahmoud; Rosychuk, Rhonda J
2008-12-12
In geographic surveillance of disease, areas with large numbers of disease cases are to be identified so that investigations of the causes of high disease rates can be pursued. Areas with high rates are called disease clusters and statistical cluster detection tests are used to identify geographic areas with higher disease rates than expected by chance alone. Typically cluster detection tests are applied to incident or prevalent cases of disease, but surveillance of disease-related events, where an individual may have multiple events, may also be of interest. Previously, a compound Poisson approach that detects clusters of events by testing individual areas that may be combined with their neighbours has been proposed. However, the relevant probabilities from the compound Poisson distribution are obtained from a recursion relation that can be cumbersome if the number of events are large or analyses by strata are performed. We propose a simpler approach that uses an approximate normal distribution. This method is very easy to implement and is applicable to situations where the population sizes are large and the population distribution by important strata may differ by area. We demonstrate the approach on pediatric self-inflicted injury presentations to emergency departments and compare the results for probabilities based on the recursion and the normal approach. We also implement a Monte Carlo simulation to study the performance of the proposed approach. In a self-inflicted injury data example, the normal approach identifies twelve out of thirteen of the same clusters as the compound Poisson approach, noting that the compound Poisson method detects twelve significant clusters in total. Through simulation studies, the normal approach well approximates the compound Poisson approach for a variety of different population sizes and case and event thresholds. A drawback of the compound Poisson approach is that the relevant probabilities must be determined through a recursion relation and such calculations can be computationally intensive if the cluster size is relatively large or if analyses are conducted with strata variables. On the other hand, the normal approach is very flexible, easily implemented, and hence, more appealing for users. Moreover, the concepts may be more easily conveyed to non-statisticians interested in understanding the methodology associated with cluster detection test results.
Mohanasundaram, Ranganathan; Periasamy, Pappampalayam Sanmugam
2015-01-01
The current high profile debate with regard to data storage and its growth have become strategic task in the world of networking. It mainly depends on the sensor nodes called producers, base stations, and also the consumers (users and sensor nodes) to retrieve and use the data. The main concern dealt here is to find an optimal data storage position in wireless sensor networks. The works that have been carried out earlier did not utilize swarm intelligence based optimization approaches to find the optimal data storage positions. To achieve this goal, an efficient swam intelligence approach is used to choose suitable positions for a storage node. Thus, hybrid particle swarm optimization algorithm has been used to find the suitable positions for storage nodes while the total energy cost of data transmission is minimized. Clustering-based distributed data storage is utilized to solve clustering problem using fuzzy-C-means algorithm. This research work also considers the data rates and locations of multiple producers and consumers to find optimal data storage positions. The algorithm is implemented in a network simulator and the experimental results show that the proposed clustering and swarm intelligence based ODS strategy is more effective than the earlier approaches. PMID:25734182
Tremblay, Marlène; Hess, Justin P; Christenson, Brock M; McIntyre, Kolby K; Smink, Ben; van der Kamp, Arjen J; de Jong, Lisanne G; Döpfer, Dörte
2016-07-01
Automatic milking systems (AMS) are implemented in a variety of situations and environments. Consequently, there is a need to characterize individual farming practices and regional challenges to streamline management advice and objectives for producers. Benchmarking is often used in the dairy industry to compare farms by computing percentile ranks of the production values of groups of farms. Grouping for conventional benchmarking is commonly limited to the use of a few factors such as farms' geographic region or breed of cattle. We hypothesized that herds' production data and management information could be clustered in a meaningful way using cluster analysis and that this clustering approach would yield better peer groups of farms than benchmarking methods based on criteria such as country, region, breed, or breed and region. By applying mixed latent-class model-based cluster analysis to 529 North American AMS dairy farms with respect to 18 significant risk factors, 6 clusters were identified. Each cluster (i.e., peer group) represented unique management styles, challenges, and production patterns. When compared with peer groups based on criteria similar to the conventional benchmarking standards, the 6 clusters better predicted milk produced (kilograms) per robot per day. Each cluster represented a unique management and production pattern that requires specialized advice. For example, cluster 1 farms were those that recently installed AMS robots, whereas cluster 3 farms (the most northern farms) fed high amounts of concentrates through the robot to compensate for low-energy feed in the bunk. In addition to general recommendations for farms within a cluster, individual farms can generate their own specific goals by comparing themselves to farms within their cluster. This is very comparable to benchmarking but adds the specific characteristics of the peer group, resulting in better farm management advice. The improvement that cluster analysis allows for is characterized by the multivariable approach and the fact that comparisons between production units can be accomplished within a cluster and between clusters as a choice. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Fourier Magnitude-Based Privacy-Preserving Clustering on Time-Series Data
NASA Astrophysics Data System (ADS)
Kim, Hea-Suk; Moon, Yang-Sae
Privacy-preserving clustering (PPC in short) is important in publishing sensitive time-series data. Previous PPC solutions, however, have a problem of not preserving distance orders or incurring privacy breach. To solve this problem, we propose a new PPC approach that exploits Fourier magnitudes of time-series. Our magnitude-based method does not cause privacy breach even though its techniques or related parameters are publicly revealed. Using magnitudes only, however, incurs the distance order problem, and we thus present magnitude selection strategies to preserve as many Euclidean distance orders as possible. Through extensive experiments, we showcase the superiority of our magnitude-based approach.
Innovation in collaborative health research training: the role of active learning.
Poole, Gary; Egan, John P; Iqbal, Isabeau
2009-03-01
This paper describes and discusses the essential pedagogical elements of the Partnering in Community Health Research (PCHR) program, which was designed to address the training needs of researchers who participate in collaborative, interdisciplinary health research. These elements were intended to foster specific skills that helped learners develop research partnerships featuring knowledge, capabilities, values and attitudes needed for successful research projects. By establishing research teams called "clusters", PCHR provided research training and experience for graduate students and post-doctoral fellows, as well as for community health workers and professionals. Pedagogical elements relied on active learning approaches such as inquiry-based and experience-based learning. Links between these elements and learning approaches are explained. Through their work in cluster-based applied research projects, the development of learning plans, and cross-cluster learning events, trainees acquired collaborative research competencies that were valuable, relevant and theoretically informed.
Johnson, Jacqueline L; Kreidler, Sarah M; Catellier, Diane J; Murray, David M; Muller, Keith E; Glueck, Deborah H
2015-11-30
We used theoretical and simulation-based approaches to study Type I error rates for one-stage and two-stage analytic methods for cluster-randomized designs. The one-stage approach uses the observed data as outcomes and accounts for within-cluster correlation using a general linear mixed model. The two-stage model uses the cluster specific means as the outcomes in a general linear univariate model. We demonstrate analytically that both one-stage and two-stage models achieve exact Type I error rates when cluster sizes are equal. With unbalanced data, an exact size α test does not exist, and Type I error inflation may occur. Via simulation, we compare the Type I error rates for four one-stage and six two-stage hypothesis testing approaches for unbalanced data. With unbalanced data, the two-stage model, weighted by the inverse of the estimated theoretical variance of the cluster means, and with variance constrained to be positive, provided the best Type I error control for studies having at least six clusters per arm. The one-stage model with Kenward-Roger degrees of freedom and unconstrained variance performed well for studies having at least 14 clusters per arm. The popular analytic method of using a one-stage model with denominator degrees of freedom appropriate for balanced data performed poorly for small sample sizes and low intracluster correlation. Because small sample sizes and low intracluster correlation are common features of cluster-randomized trials, the Kenward-Roger method is the preferred one-stage approach. Copyright © 2015 John Wiley & Sons, Ltd.
2010-01-01
Background Irregularly shaped spatial clusters are difficult to delineate. A cluster found by an algorithm often spreads through large portions of the map, impacting its geographical meaning. Penalized likelihood methods for Kulldorff's spatial scan statistics have been used to control the excessive freedom of the shape of clusters. Penalty functions based on cluster geometry and non-connectivity have been proposed recently. Another approach involves the use of a multi-objective algorithm to maximize two objectives: the spatial scan statistics and the geometric penalty function. Results & Discussion We present a novel scan statistic algorithm employing a function based on the graph topology to penalize the presence of under-populated disconnection nodes in candidate clusters, the disconnection nodes cohesion function. A disconnection node is defined as a region within a cluster, such that its removal disconnects the cluster. By applying this function, the most geographically meaningful clusters are sifted through the immense set of possible irregularly shaped candidate cluster solutions. To evaluate the statistical significance of solutions for multi-objective scans, a statistical approach based on the concept of attainment function is used. In this paper we compared different penalized likelihoods employing the geometric and non-connectivity regularity functions and the novel disconnection nodes cohesion function. We also build multi-objective scans using those three functions and compare them with the previous penalized likelihood scans. An application is presented using comprehensive state-wide data for Chagas' disease in puerperal women in Minas Gerais state, Brazil. Conclusions We show that, compared to the other single-objective algorithms, multi-objective scans present better performance, regarding power, sensitivity and positive predicted value. The multi-objective non-connectivity scan is faster and better suited for the detection of moderately irregularly shaped clusters. The multi-objective cohesion scan is most effective for the detection of highly irregularly shaped clusters. PMID:21034451
The global transmission network of HIV-1.
Wertheim, Joel O; Leigh Brown, Andrew J; Hepler, N Lance; Mehta, Sanjay R; Richman, Douglas D; Smith, Davey M; Kosakovsky Pond, Sergei L
2014-01-15
Human immunodeficiency virus type 1 (HIV-1) is pandemic, but its contemporary global transmission network has not been characterized. A better understanding of the properties and dynamics of this network is essential for surveillance, prevention, and eventual eradication of HIV. Here, we apply a simple and computationally efficient network-based approach to all publicly available HIV polymerase sequences in the global database, revealing a contemporary picture of the spread of HIV-1 within and between countries. This approach automatically recovered well-characterized transmission clusters and extended other clusters thought to be contained within a single country across international borders. In addition, previously undescribed transmission clusters were discovered. Together, these clusters represent all known modes of HIV transmission. The extent of international linkage revealed by our comprehensive approach demonstrates the need to consider the global diversity of HIV, even when describing local epidemics. Finally, the speed of this method allows for near-real-time surveillance of the pandemic's progression.
FTUC: A Flooding Tree Uneven Clustering Protocol for a Wireless Sensor Network.
He, Wei; Pillement, Sebastien; Xu, Du
2017-11-23
Clustering is an efficient approach in a wireless sensor network (WSN) to reduce the energy consumption of nodes and to extend the lifetime of the network. Unfortunately, this approach requires that all cluster heads (CHs) transmit their data to the base station (BS), which gives rise to the long distance communications problem, and in multi-hop routing, the CHs near the BS have to forward data from other nodes that lead those CHs to die prematurely, creating the hot zones problem. Unequal clustering has been proposed to solve these problems. Most of the current algorithms elect CH only by considering their competition radius, leading to unevenly distributed cluster heads. Furthermore, global distances values are needed when calculating the competition radius, which is a tedious task in large networks. To face these problems, we propose a flooding tree uneven clustering protocol (FTUC) suited for large networks. Based on the construction of a tree type sub-network to calculate the minimum and maximum distances values of the network, we then apply the unequal cluster theory. We also introduce referenced position circles to evenly elect cluster heads. Therefore, cluster heads are elected depending on the node's residual energy and their distance to a referenced circle. FTUC builds the best inter-cluster communications route by evaluating a cluster head cost function to find the best next hop to the BS. The simulation results show that the FTUC algorithm decreases the energy consumption of the nodes and balances the global energy consumption effectively, thus extending the lifetime of the network.
A Dimensionally Reduced Clustering Methodology for Heterogeneous Occupational Medicine Data Mining.
Saâdaoui, Foued; Bertrand, Pierre R; Boudet, Gil; Rouffiac, Karine; Dutheil, Frédéric; Chamoux, Alain
2015-10-01
Clustering is a set of techniques of the statistical learning aimed at finding structures of heterogeneous partitions grouping homogenous data called clusters. There are several fields in which clustering was successfully applied, such as medicine, biology, finance, economics, etc. In this paper, we introduce the notion of clustering in multifactorial data analysis problems. A case study is conducted for an occupational medicine problem with the purpose of analyzing patterns in a population of 813 individuals. To reduce the data set dimensionality, we base our approach on the Principal Component Analysis (PCA), which is the statistical tool most commonly used in factorial analysis. However, the problems in nature, especially in medicine, are often based on heterogeneous-type qualitative-quantitative measurements, whereas PCA only processes quantitative ones. Besides, qualitative data are originally unobservable quantitative responses that are usually binary-coded. Hence, we propose a new set of strategies allowing to simultaneously handle quantitative and qualitative data. The principle of this approach is to perform a projection of the qualitative variables on the subspaces spanned by quantitative ones. Subsequently, an optimal model is allocated to the resulting PCA-regressed subspaces.
NASA Astrophysics Data System (ADS)
Moazami Goodarzi, Hamed; Kazemi, Mohammad Hosein
2018-05-01
Microgrid (MG) clustering is regarded as an important driver in improving the robustness of MGs. However, little research has been conducted on providing appropriate MG clustering. This article addresses this shortfall. It proposes a novel multi-objective optimization approach for finding optimal clustering of autonomous MGs by focusing on variables such as distributed generation (DG) droop parameters, the location and capacity of DG units, renewable energy sources, capacitors and powerline transmission. Power losses are minimized and voltage stability is improved while virtual cut-set lines with minimum power transmission for clustering MGs are obtained. A novel chaotic grey wolf optimizer (CGWO) algorithm is applied to solve the proposed multi-objective problem. The performance of the approach is evaluated by utilizing a 69-bus MG in several scenarios.
A formal concept analysis approach to consensus clustering of multi-experiment expression data
2014-01-01
Background Presently, with the increasing number and complexity of available gene expression datasets, the combination of data from multiple microarray studies addressing a similar biological question is gaining importance. The analysis and integration of multiple datasets are expected to yield more reliable and robust results since they are based on a larger number of samples and the effects of the individual study-specific biases are diminished. This is supported by recent studies suggesting that important biological signals are often preserved or enhanced by multiple experiments. An approach to combining data from different experiments is the aggregation of their clusterings into a consensus or representative clustering solution which increases the confidence in the common features of all the datasets and reveals the important differences among them. Results We propose a novel generic consensus clustering technique that applies Formal Concept Analysis (FCA) approach for the consolidation and analysis of clustering solutions derived from several microarray datasets. These datasets are initially divided into groups of related experiments with respect to a predefined criterion. Subsequently, a consensus clustering algorithm is applied to each group resulting in a clustering solution per group. These solutions are pooled together and further analysed by employing FCA which allows extracting valuable insights from the data and generating a gene partition over all the experiments. In order to validate the FCA-enhanced approach two consensus clustering algorithms are adapted to incorporate the FCA analysis. Their performance is evaluated on gene expression data from multi-experiment study examining the global cell-cycle control of fission yeast. The FCA results derived from both methods demonstrate that, although both algorithms optimize different clustering characteristics, FCA is able to overcome and diminish these differences and preserve some relevant biological signals. Conclusions The proposed FCA-enhanced consensus clustering technique is a general approach to the combination of clustering algorithms with FCA for deriving clustering solutions from multiple gene expression matrices. The experimental results presented herein demonstrate that it is a robust data integration technique able to produce good quality clustering solution that is representative for the whole set of expression matrices. PMID:24885407
Oxidation of Sn doped Cu cluster: A first principle study
NASA Astrophysics Data System (ADS)
Parida, Ganesh; Majumder, Chiranjib
2017-05-01
Bimetallic clusters have immense potential to exhibit tunable properties in the emerging field of nano catalysis. Using plane wave based pseudopotential approach we have investigated the oxidation behavior of pure and Sn doped Cu13 clusters. The results showed significant modification of the cluster geometry upon interaction with oxygen molecule. The interaction of oxygen with Cu13, Cu12Sn1 and Cu11Sn2 clusters show dissociative chemisorption is more favorable than molecular adsorption. In addition, the adsorption energy is found to decrease with the increase in Sn concentration.
NASA Technical Reports Server (NTRS)
Li, Zhenlong; Hu, Fei; Schnase, John L.; Duffy, Daniel Q.; Lee, Tsengdar; Bowen, Michael K.; Yang, Chaowei
2016-01-01
Climate observations and model simulations are producing vast amounts of array-based spatiotemporal data. Efficient processing of these data is essential for assessing global challenges such as climate change, natural disasters, and diseases. This is challenging not only because of the large data volume, but also because of the intrinsic high-dimensional nature of geoscience data. To tackle this challenge, we propose a spatiotemporal indexing approach to efficiently manage and process big climate data with MapReduce in a highly scalable environment. Using this approach, big climate data are directly stored in a Hadoop Distributed File System in its original, native file format. A spatiotemporal index is built to bridge the logical array-based data model and the physical data layout, which enables fast data retrieval when performing spatiotemporal queries. Based on the index, a data-partitioning algorithm is applied to enable MapReduce to achieve high data locality, as well as balancing the workload. The proposed indexing approach is evaluated using the National Aeronautics and Space Administration (NASA) Modern-Era Retrospective Analysis for Research and Applications (MERRA) climate reanalysis dataset. The experimental results show that the index can significantly accelerate querying and processing (10 speedup compared to the baseline test using the same computing cluster), while keeping the index-to-data ratio small (0.0328). The applicability of the indexing approach is demonstrated by a climate anomaly detection deployed on a NASA Hadoop cluster. This approach is also able to support efficient processing of general array-based spatiotemporal data in various geoscience domains without special configuration on a Hadoop cluster.
NASA Astrophysics Data System (ADS)
Kumar, Rohit; Puri, Rajeev K.
2018-03-01
Employing the quantum molecular dynamics (QMD) approach for nucleus-nucleus collisions, we test the predictive power of the energy-based clusterization algorithm, i.e., the simulating annealing clusterization algorithm (SACA), to describe the experimental data of charge distribution and various event-by-event correlations among fragments. The calculations are constrained into the Fermi-energy domain and/or mildly excited nuclear matter. Our detailed study spans over different system masses, and system-mass asymmetries of colliding partners show the importance of the energy-based clusterization algorithm for understanding multifragmentation. The present calculations are also compared with the other available calculations, which use one-body models, statistical models, and/or hybrid models.
Sun, Liping; Luo, Yonglong; Ding, Xintao; Zhang, Ji
2014-01-01
An important component of a spatial clustering algorithm is the distance measure between sample points in object space. In this paper, the traditional Euclidean distance measure is replaced with innovative obstacle distance measure for spatial clustering under obstacle constraints. Firstly, we present a path searching algorithm to approximate the obstacle distance between two points for dealing with obstacles and facilitators. Taking obstacle distance as similarity metric, we subsequently propose the artificial immune clustering with obstacle entity (AICOE) algorithm for clustering spatial point data in the presence of obstacles and facilitators. Finally, the paper presents a comparative analysis of AICOE algorithm and the classical clustering algorithms. Our clustering model based on artificial immune system is also applied to the case of public facility location problem in order to establish the practical applicability of our approach. By using the clone selection principle and updating the cluster centers based on the elite antibodies, the AICOE algorithm is able to achieve the global optimum and better clustering effect.
A Hybrid Approach for CpG Island Detection in the Human Genome.
Yang, Cheng-Hong; Lin, Yu-Da; Chiang, Yi-Cheng; Chuang, Li-Yeh
2016-01-01
CpG islands have been demonstrated to influence local chromatin structures and simplify the regulation of gene activity. However, the accurate and rapid determination of CpG islands for whole DNA sequences remains experimentally and computationally challenging. A novel procedure is proposed to detect CpG islands by combining clustering technology with the sliding-window method (PSO-based). Clustering technology is used to detect the locations of all possible CpG islands and process the data, thus effectively obviating the need for the extensive and unnecessary processing of DNA fragments, and thus improving the efficiency of sliding-window based particle swarm optimization (PSO) search. This proposed approach, named ClusterPSO, provides versatile and highly-sensitive detection of CpG islands in the human genome. In addition, the detection efficiency of ClusterPSO is compared with eight CpG island detection methods in the human genome. Comparison of the detection efficiency for the CpG islands in human genome, including sensitivity, specificity, accuracy, performance coefficient (PC), and correlation coefficient (CC), ClusterPSO revealed superior detection ability among all of the test methods. Moreover, the combination of clustering technology and PSO method can successfully overcome their respective drawbacks while maintaining their advantages. Thus, clustering technology could be hybridized with the optimization algorithm method to optimize CpG island detection. The prediction accuracy of ClusterPSO was quite high, indicating the combination of CpGcluster and PSO has several advantages over CpGcluster and PSO alone. In addition, ClusterPSO significantly reduced implementation time.
Visualizing and Clustering Protein Similarity Networks: Sequences, Structures, and Functions.
Mai, Te-Lun; Hu, Geng-Ming; Chen, Chi-Ming
2016-07-01
Research in the recent decade has demonstrated the usefulness of protein network knowledge in furthering the study of molecular evolution of proteins, understanding the robustness of cells to perturbation, and annotating new protein functions. In this study, we aimed to provide a general clustering approach to visualize the sequence-structure-function relationship of protein networks, and investigate possible causes for inconsistency in the protein classifications based on sequences, structures, and functions. Such visualization of protein networks could facilitate our understanding of the overall relationship among proteins and help researchers comprehend various protein databases. As a demonstration, we clustered 1437 enzymes by their sequences and structures using the minimum span clustering (MSC) method. The general structure of this protein network was delineated at two clustering resolutions, and the second level MSC clustering was found to be highly similar to existing enzyme classifications. The clustering of these enzymes based on sequence, structure, and function information is consistent with each other. For proteases, the Jaccard's similarity coefficient is 0.86 between sequence and function classifications, 0.82 between sequence and structure classifications, and 0.78 between structure and function classifications. From our clustering results, we discussed possible examples of divergent evolution and convergent evolution of enzymes. Our clustering approach provides a panoramic view of the sequence-structure-function network of proteins, helps visualize the relation between related proteins intuitively, and is useful in predicting the structure and function of newly determined protein sequences.
Lee, Alexandra J; Chang, Ivan; Burel, Julie G; Lindestam Arlehamn, Cecilia S; Mandava, Aishwarya; Weiskopf, Daniela; Peters, Bjoern; Sette, Alessandro; Scheuermann, Richard H; Qian, Yu
2018-04-17
Computational methods for identification of cell populations from polychromatic flow cytometry data are changing the paradigm of cytometry bioinformatics. Data clustering is the most common computational approach to unsupervised identification of cell populations from multidimensional cytometry data. However, interpretation of the identified data clusters is labor-intensive. Certain types of user-defined cell populations are also difficult to identify by fully automated data clustering analysis. Both are roadblocks before a cytometry lab can adopt the data clustering approach for cell population identification in routine use. We found that combining recursive data filtering and clustering with constraints converted from the user manual gating strategy can effectively address these two issues. We named this new approach DAFi: Directed Automated Filtering and Identification of cell populations. Design of DAFi preserves the data-driven characteristics of unsupervised clustering for identifying novel cell subsets, but also makes the results interpretable to experimental scientists through mapping and merging the multidimensional data clusters into the user-defined two-dimensional gating hierarchy. The recursive data filtering process in DAFi helped identify small data clusters which are otherwise difficult to resolve by a single run of the data clustering method due to the statistical interference of the irrelevant major clusters. Our experiment results showed that the proportions of the cell populations identified by DAFi, while being consistent with those by expert centralized manual gating, have smaller technical variances across samples than those from individual manual gating analysis and the nonrecursive data clustering analysis. Compared with manual gating segregation, DAFi-identified cell populations avoided the abrupt cut-offs on the boundaries. DAFi has been implemented to be used with multiple data clustering methods including K-means, FLOCK, FlowSOM, and the ClusterR package. For cell population identification, DAFi supports multiple options including clustering, bisecting, slope-based gating, and reversed filtering to meet various autogating needs from different scientific use cases. © 2018 International Society for Advancement of Cytometry. © 2018 International Society for Advancement of Cytometry.
A density-based clustering model for community detection in complex networks
NASA Astrophysics Data System (ADS)
Zhao, Xiang; Li, Yantao; Qu, Zehui
2018-04-01
Network clustering (or graph partitioning) is an important technique for uncovering the underlying community structures in complex networks, which has been widely applied in various fields including astronomy, bioinformatics, sociology, and bibliometric. In this paper, we propose a density-based clustering model for community detection in complex networks (DCCN). The key idea is to find group centers with a higher density than their neighbors and a relatively large integrated-distance from nodes with higher density. The experimental results indicate that our approach is efficient and effective for community detection of complex networks.
USDA-ARS?s Scientific Manuscript database
This study examined the sterol compositions of 102 dinoflagellates (including several previously unexamined species) using clustering techniques as a means of determining the relatedness of the organisms. In addition, dinoflagellate sterol-based relationships were compared statistically to dinoflag...
Ligand-protected gold clusters: the structure, synthesis and applications
NASA Astrophysics Data System (ADS)
Pichugina, D. A.; Kuz'menko, N. E.; Shestakov, A. F.
2015-11-01
Modern concepts of the structure and properties of atomic gold clusters protected by thiolate, selenolate, phosphine and phenylacetylene ligands are analyzed. Within the framework of the superatom theory, the 'divide and protect' approach and the structure rule, the stability and composition of a cluster are determined by the structure of the cluster core, the type of ligands and the total number of valence electrons. Methods of selective synthesis of gold clusters in solution and on the surface of inorganic composites based, in particular, on the reaction of Aun with RS, RSe, PhC≡C, Hal ligands or functional groups of proteins, on stabilization of clusters in cavities of the α-, β and γ-cyclodextrin molecules (Au15 and Au25) and on anchorage to a support surface (Au25/SiO2, Au20/C, Au10/FeOx) are reviewed. Problems in this field are also discussed. Among the methods for cluster structure prediction, particular attention is given to the theoretical approaches based on the density functional theory (DFT). The structures of a number of synthesized clusters are described using the results obtained by X-ray diffraction analysis and DFT calculations. A possible mechanism of formation of the SR(AuSR)n 'staple' units in the cluster shell is proposed. The structure and properties of bimetallic clusters MxAunLm (M=Pd, Pt, Ag, Cu) are discussed. The Pd or Pt atom is located at the centre of the cluster, whereas Ag and Cu atoms form bimetallic compounds in which the heteroatom is located on the surface of the cluster core or in the 'staple' units. The optical properties, fluorescence and luminescence of ligand-protected gold clusters originate from the quantum effects of the Au atoms in the cluster core and in the oligomeric SR(AuSR)x units in the cluster shell. Homogeneous and heterogeneous reactions catalyzed by atomic gold clusters are discussed in the context of the reaction mechanism and the nature of the active sites. The bibliography includes 345 references.
Complex networks as a unified framework for descriptive analysis and predictive modeling in climate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinhaeuser, Karsten J K; Chawla, Nitesh; Ganguly, Auroop R
The analysis of climate data has relied heavily on hypothesis-driven statistical methods, while projections of future climate are based primarily on physics-based computational models. However, in recent years a wealth of new datasets has become available. Therefore, we take a more data-centric approach and propose a unified framework for studying climate, with an aim towards characterizing observed phenomena as well as discovering new knowledge in the climate domain. Specifically, we posit that complex networks are well-suited for both descriptive analysis and predictive modeling tasks. We show that the structural properties of climate networks have useful interpretation within the domain. Further,more » we extract clusters from these networks and demonstrate their predictive power as climate indices. Our experimental results establish that the network clusters are statistically significantly better predictors than clusters derived using a more traditional clustering approach. Using complex networks as data representation thus enables the unique opportunity for descriptive and predictive modeling to inform each other.« less
Clustering gene expression data based on predicted differential effects of GV interaction.
Pan, Hai-Yan; Zhu, Jun; Han, Dan-Fu
2005-02-01
Microarray has become a popular biotechnology in biological and medical research. However, systematic and stochastic variabilities in microarray data are expected and unavoidable, resulting in the problem that the raw measurements have inherent "noise" within microarray experiments. Currently, logarithmic ratios are usually analyzed by various clustering methods directly, which may introduce bias interpretation in identifying groups of genes or samples. In this paper, a statistical method based on mixed model approaches was proposed for microarray data cluster analysis. The underlying rationale of this method is to partition the observed total gene expression level into various variations caused by different factors using an ANOVA model, and to predict the differential effects of GV (gene by variety) interaction using the adjusted unbiased prediction (AUP) method. The predicted GV interaction effects can then be used as the inputs of cluster analysis. We illustrated the application of our method with a gene expression dataset and elucidated the utility of our approach using an external validation.
The electronic structure of Au25 clusters: between discrete and continuous
NASA Astrophysics Data System (ADS)
Katsiev, Khabiboulakh; Lozova, Nataliya; Wang, Lu; Sai Krishna, Katla; Li, Ruipeng; Mei, Wai-Ning; Skrabalak, Sara E.; Kumar, Challa S. S. R.; Losovyj, Yaroslav
2016-08-01
Here, an approach based on synchrotron resonant photoemission is employed to explore the transition between quantization and hybridization of the electronic structure in atomically precise ligand-stabilized nanoparticles. While the presence of ligands maintains quantization in Au25 clusters, their removal renders increased hybridization of the electronic states in the vicinity of the Fermi level. These observations are supported by DFT studies.Here, an approach based on synchrotron resonant photoemission is employed to explore the transition between quantization and hybridization of the electronic structure in atomically precise ligand-stabilized nanoparticles. While the presence of ligands maintains quantization in Au25 clusters, their removal renders increased hybridization of the electronic states in the vicinity of the Fermi level. These observations are supported by DFT studies. Electronic supplementary information (ESI) available: Experimental details including chemicals, sample preparation, and characterization methods. Computation techniques, SV-AUC, GIWAXS, XPS, UPS, MALDI-TOF, ESI data of Au25 clusters. See DOI: 10.1039/c6nr02374f
Tile-based Level of Detail for the Parallel Age
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niski, K; Cohen, J D
Today's PCs incorporate multiple CPUs and GPUs and are easily arranged in clusters for high-performance, interactive graphics. We present an approach based on hierarchical, screen-space tiles to parallelizing rendering with level of detail. Adapt tiles, render tiles, and machine tiles are associated with CPUs, GPUs, and PCs, respectively, to efficiently parallelize the workload with good resource utilization. Adaptive tile sizes provide load balancing while our level of detail system allows total and independent management of the load on CPUs and GPUs. We demonstrate our approach on parallel configurations consisting of both single PCs and a cluster of PCs.
Hummel, Michelle; Wood, Nathan J.; Schweikert, Amy; Stacey, Mark T.; Jones, Jeanne; Barnard, Patrick L.; Erikson, Li H.
2018-01-01
Sea level is projected to rise over the coming decades, further increasing the extent of flooding hazards in coastal communities. Efforts to address potential impacts from climate-driven coastal hazards have called for collaboration among communities to strengthen the application of best practices. However, communities currently lack practical tools for identifying potential partner communities based on similar hazard exposure characteristics. This study uses statistical cluster analysis to identify similarities in community exposure to flooding hazards for a suite of sea level rise and storm scenarios. We demonstrate this approach using 63 jurisdictions in the San Francisco Bay region of California (USA) and compare 21 distinct exposure variables related to residents, employees, and structures for six hazard scenario combinations of sea level rise and storms. Results indicate that cluster analysis can provide an effective mechanism for identifying community groupings. Cluster compositions changed based on the selected societal variables and sea level rise scenarios, suggesting that a community could participate in multiple networks to target specific issues or policy interventions. The proposed clustering approach can serve as a data-driven foundation to help communities identify other communities with similar adaptation challenges and to enhance regional efforts that aim to facilitate adaptation planning and investment prioritization.
A clustering package for nucleotide sequences using Laplacian Eigenmaps and Gaussian Mixture Model.
Bruneau, Marine; Mottet, Thierry; Moulin, Serge; Kerbiriou, Maël; Chouly, Franz; Chretien, Stéphane; Guyeux, Christophe
2018-02-01
In this article, a new Python package for nucleotide sequences clustering is proposed. This package, freely available on-line, implements a Laplacian eigenmap embedding and a Gaussian Mixture Model for DNA clustering. It takes nucleotide sequences as input, and produces the optimal number of clusters along with a relevant visualization. Despite the fact that we did not optimise the computational speed, our method still performs reasonably well in practice. Our focus was mainly on data analytics and accuracy and as a result, our approach outperforms the state of the art, even in the case of divergent sequences. Furthermore, an a priori knowledge on the number of clusters is not required here. For the sake of illustration, this method is applied on a set of 100 DNA sequences taken from the mitochondrially encoded NADH dehydrogenase 3 (ND3) gene, extracted from a collection of Platyhelminthes and Nematoda species. The resulting clusters are tightly consistent with the phylogenetic tree computed using a maximum likelihood approach on gene alignment. They are coherent too with the NCBI taxonomy. Further test results based on synthesized data are then provided, showing that the proposed approach is better able to recover the clusters than the most widely used software, namely Cd-hit-est and BLASTClust. Copyright © 2017 Elsevier Ltd. All rights reserved.
Aubry, Marc; Monnier, Annabelle; Chicault, Celine; de Tayrac, Marie; Galibert, Marie-Dominique; Burgun, Anita; Mosser, Jean
2006-01-01
Background Large-scale genomic studies based on transcriptome technologies provide clusters of genes that need to be functionally annotated. The Gene Ontology (GO) implements a controlled vocabulary organised into three hierarchies: cellular components, molecular functions and biological processes. This terminology allows a coherent and consistent description of the knowledge about gene functions. The GO terms related to genes come primarily from semi-automatic annotations made by trained biologists (annotation based on evidence) or text-mining of the published scientific literature (literature profiling). Results We report an original functional annotation method based on a combination of evidence and literature that overcomes the weaknesses and the limitations of each approach. It relies on the Gene Ontology Annotation database (GOA Human) and the PubGene biomedical literature index. We support these annotations with statistically associated GO terms and retrieve associative relations across the three GO hierarchies to emphasise the major pathways involved by a gene cluster. Both annotation methods and associative relations were quantitatively evaluated with a reference set of 7397 genes and a multi-cluster study of 14 clusters. We also validated the biological appropriateness of our hybrid method with the annotation of a single gene (cdc2) and that of a down-regulated cluster of 37 genes identified by a transcriptome study of an in vitro enterocyte differentiation model (CaCo-2 cells). Conclusion The combination of both approaches is more informative than either separate approach: literature mining can enrich an annotation based only on evidence. Text-mining of the literature can also find valuable associated MEDLINE references that confirm the relevance of the annotation. Eventually, GO terms networks can be built with associative relations in order to highlight cooperative and competitive pathways and their connected molecular functions. PMID:16674810
Solving the scalability issue in quantum-based refinement: Q|R#1.
Zheng, Min; Moriarty, Nigel W; Xu, Yanting; Reimers, Jeffrey R; Afonine, Pavel V; Waller, Mark P
2017-12-01
Accurately refining biomacromolecules using a quantum-chemical method is challenging because the cost of a quantum-chemical calculation scales approximately as n m , where n is the number of atoms and m (≥3) is based on the quantum method of choice. This fundamental problem means that quantum-chemical calculations become intractable when the size of the system requires more computational resources than are available. In the development of the software package called Q|R, this issue is referred to as Q|R#1. A divide-and-conquer approach has been developed that fragments the atomic model into small manageable pieces in order to solve Q|R#1. Firstly, the atomic model of a crystal structure is analyzed to detect noncovalent interactions between residues, and the results of the analysis are represented as an interaction graph. Secondly, a graph-clustering algorithm is used to partition the interaction graph into a set of clusters in such a way as to minimize disruption to the noncovalent interaction network. Thirdly, the environment surrounding each individual cluster is analyzed and any residue that is interacting with a particular cluster is assigned to the buffer region of that particular cluster. A fragment is defined as a cluster plus its buffer region. The gradients for all atoms from each of the fragments are computed, and only the gradients from each cluster are combined to create the total gradients. A quantum-based refinement is carried out using the total gradients as chemical restraints. In order to validate this interaction graph-based fragmentation approach in Q|R, the entire atomic model of an amyloid cross-β spine crystal structure (PDB entry 2oNA) was refined.
Clustering of financial time series
NASA Astrophysics Data System (ADS)
D'Urso, Pierpaolo; Cappelli, Carmela; Di Lallo, Dario; Massari, Riccardo
2013-05-01
This paper addresses the topic of classifying financial time series in a fuzzy framework proposing two fuzzy clustering models both based on GARCH models. In general clustering of financial time series, due to their peculiar features, needs the definition of suitable distance measures. At this aim, the first fuzzy clustering model exploits the autoregressive representation of GARCH models and employs, in the framework of a partitioning around medoids algorithm, the classical autoregressive metric. The second fuzzy clustering model, also based on partitioning around medoids algorithm, uses the Caiado distance, a Mahalanobis-like distance, based on estimated GARCH parameters and covariances that takes into account the information about the volatility structure of time series. In order to illustrate the merits of the proposed fuzzy approaches an application to the problem of classifying 29 time series of Euro exchange rates against international currencies is presented and discussed, also comparing the fuzzy models with their crisp version.
A Feature Mining Based Approach for the Classification of Text Documents into Disjoint Classes.
ERIC Educational Resources Information Center
Nieto Sanchez, Salvador; Triantaphyllou, Evangelos; Kraft, Donald
2002-01-01
Proposes a new approach for classifying text documents into two disjoint classes. Highlights include a brief overview of document clustering; a data mining approach called the One Clause at a Time (OCAT) algorithm which is based on mathematical logic; vector space model (VSM); and comparing the OCAT to the VSM. (Author/LRW)
Computing and Applying Atomic Regulons to Understand Gene Expression and Regulation
Faria, José P.; Davis, James J.; Edirisinghe, Janaka N.; ...
2016-11-24
Understanding gene function and regulation is essential for the interpretation, prediction, and ultimate design of cell responses to changes in the environment. A multitude of technologies, abstractions, and interpretive frameworks have emerged to answer the challenges presented by genome function and regulatory network inference. Here, we propose a new approach for producing biologically meaningful clusters of coexpressed genes, called Atomic Regulons (ARs), based on expression data, gene context, and functional relationships. We demonstrate this new approach by computing ARs for Escherichia coli, which we compare with the coexpressed gene clusters predicted by two prevalent existing methods: hierarchical clustering and k-meansmore » clustering. We test the consistency of ARs predicted by all methods against expected interactions predicted by the Context Likelihood of Relatedness (CLR) mutual information based method, finding that the ARs produced by our approach show better agreement with CLR interactions. We then apply our method to compute ARs for four other genomes: Shewanella oneidensis, Pseudomonas aeruginosa, Thermus thermophilus, and Staphylococcus aureus. We compare the AR clusters from all genomes to study the similarity of coexpression among a phylogenetically diverse set of species, identifying subsystems that show remarkable similarity over wide phylogenetic distances. We also study the sensitivity of our method for computing ARs to the expression data used in the computation, showing that our new approach requires less data than competing approaches to converge to a near final configuration of ARs. We go on to use our sensitivity analysis to identify the specific experiments that lead most rapidly to the final set of ARs for E. coli. As a result, this analysis produces insights into improving the design of gene expression experiments.« less
Computing and Applying Atomic Regulons to Understand Gene Expression and Regulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faria, José P.; Davis, James J.; Edirisinghe, Janaka N.
Understanding gene function and regulation is essential for the interpretation, prediction, and ultimate design of cell responses to changes in the environment. A multitude of technologies, abstractions, and interpretive frameworks have emerged to answer the challenges presented by genome function and regulatory network inference. Here, we propose a new approach for producing biologically meaningful clusters of coexpressed genes, called Atomic Regulons (ARs), based on expression data, gene context, and functional relationships. We demonstrate this new approach by computing ARs for Escherichia coli, which we compare with the coexpressed gene clusters predicted by two prevalent existing methods: hierarchical clustering and k-meansmore » clustering. We test the consistency of ARs predicted by all methods against expected interactions predicted by the Context Likelihood of Relatedness (CLR) mutual information based method, finding that the ARs produced by our approach show better agreement with CLR interactions. We then apply our method to compute ARs for four other genomes: Shewanella oneidensis, Pseudomonas aeruginosa, Thermus thermophilus, and Staphylococcus aureus. We compare the AR clusters from all genomes to study the similarity of coexpression among a phylogenetically diverse set of species, identifying subsystems that show remarkable similarity over wide phylogenetic distances. We also study the sensitivity of our method for computing ARs to the expression data used in the computation, showing that our new approach requires less data than competing approaches to converge to a near final configuration of ARs. We go on to use our sensitivity analysis to identify the specific experiments that lead most rapidly to the final set of ARs for E. coli. As a result, this analysis produces insights into improving the design of gene expression experiments.« less
NASA Astrophysics Data System (ADS)
Besic, Nikola; Ventura, Jordi Figueras i.; Grazioli, Jacopo; Gabella, Marco; Germann, Urs; Berne, Alexis
2016-09-01
Polarimetric radar-based hydrometeor classification is the procedure of identifying different types of hydrometeors by exploiting polarimetric radar observations. The main drawback of the existing supervised classification methods, mostly based on fuzzy logic, is a significant dependency on a presumed electromagnetic behaviour of different hydrometeor types. Namely, the results of the classification largely rely upon the quality of scattering simulations. When it comes to the unsupervised approach, it lacks the constraints related to the hydrometeor microphysics. The idea of the proposed method is to compensate for these drawbacks by combining the two approaches in a way that microphysical hypotheses can, to a degree, adjust the content of the classes obtained statistically from the observations. This is done by means of an iterative approach, performed offline, which, in a statistical framework, examines clustered representative polarimetric observations by comparing them to the presumed polarimetric properties of each hydrometeor class. Aside from comparing, a routine alters the content of clusters by encouraging further statistical clustering in case of non-identification. By merging all identified clusters, the multi-dimensional polarimetric signatures of various hydrometeor types are obtained for each of the studied representative datasets, i.e. for each radar system of interest. These are depicted by sets of centroids which are then employed in operational labelling of different hydrometeors. The method has been applied on three C-band datasets, each acquired by different operational radar from the MeteoSwiss Rad4Alp network, as well as on two X-band datasets acquired by two research mobile radars. The results are discussed through a comparative analysis which includes a corresponding supervised and unsupervised approach, emphasising the operational potential of the proposed method.
CLUSTERING OF INTERICTAL SPIKES BY DYNAMIC TIME WARPING AND AFFINITY PROPAGATION
Thomas, John; Jin, Jing; Dauwels, Justin; Cash, Sydney S.; Westover, M. Brandon
2018-01-01
Epilepsy is often associated with the presence of spikes in electroencephalograms (EEGs). The spike waveforms vary vastly among epilepsy patients, and also for the same patient across time. In order to develop semi-automated and automated methods for detecting spikes, it is crucial to obtain a better understanding of the various spike shapes. In this paper, we develop several approaches to extract exemplars of spikes. We generate spike exemplars by applying clustering algorithms to a database of spikes from 12 patients. As similarity measures for clustering, we consider the Euclidean distance and Dynamic Time Warping (DTW). We assess two clustering algorithms, namely, K-means clustering and affinity propagation. The clustering methods are compared based on the mean squared error, and the similarity measures are assessed based on the number of generated spike clusters. Affinity propagation with DTW is shown to be the best combination for clustering epileptic spikes, since it generates fewer spike templates and does not require to pre-specify the number of spike templates. PMID:29527130
A quasichemical approach for protein-cluster free energies in dilute solution
NASA Astrophysics Data System (ADS)
Young, Teresa M.; Roberts, Christopher J.
2007-10-01
Reversible formation of protein oligomers or small clusters is a key step in processes such as protein polymerization, fibril formation, and protein phase separation from dilute solution. A straightforward, statistical mechanical approach to accurately calculate cluster free energies in solution is presented using a cell-based, quasichemical (QC) approximation for the partition function of proteins in an implicit solvent. The inputs to the model are the protein potential of mean force (PMF) and the corresponding subcell degeneracies up to relatively low particle densities. The approach is tested using simple two and three dimensional lattice models in which proteins interact with either isotropic or anisotropic nearest-neighbor attractions. Comparison with direct Monte Carlo simulation shows that cluster probabilities and free energies of oligomer formation (ΔGi0) are quantitatively predicted by the QC approach for protein volume fractions ˜10-2 (weight/volume concentration ˜10gl-1) and below. For small clusters, ΔGi0 depends weakly on the strength of short-ranged attractive interactions for most experimentally relevant values of the normalized osmotic second virial coefficient (b2*). For larger clusters (i ≫2), there is a small but non-negligible b2* dependence. The results suggest that nonspecific, hydrophobic attractions may not significantly stabilize prenuclei in processes such as non-native aggregation. Biased Monte Carlo methods are shown to accurately provide subcell degeneracies that are intractable to obtain analytically or by direct enumeration, and so offer a means to generalize the approach to mixtures and proteins with more complex PMFs.
Wills, Lindsay A.; Qu, Xiaohui; Chang, I-Ya; Mustard, Thomas J. L.; Keszler, Douglas A.; Persson, Kristin A.; Cheong, Paul Ha-Yeon
2017-01-01
The characterization of water-based corrosion, geochemical, environmental and catalytic processes rely on the accurate depiction of stable phases in a water environment. The process is aided by Pourbaix diagrams, which map the equilibrium solid and solution phases under varying conditions of pH and electrochemical potential. Recently, metastable or possibly stable nanometric aqueous clusters have been proposed as intermediate species in non-classical nucleation processes. Herein, we describe a Group Additivity approach to obtain Pourbaix diagrams with full consideration of multimeric cluster speciation from computations. Comparisons with existing titration results from experiments yield excellent agreement. Applying this Group Additivity-Pourbaix approach to Group 13 elements, we arrive at a quantitative evaluation of cluster stability, as a function of pH and concentration, and present compelling support for not only metastable but also thermodynamically stable multimeric clusters in aqueous solutions. PMID:28643782
Load Balancing in Distributed Web Caching: A Novel Clustering Approach
NASA Astrophysics Data System (ADS)
Tiwari, R.; Kumar, K.; Khan, G.
2010-11-01
The World Wide Web suffers from scaling and reliability problems due to overloaded and congested proxy servers. Caching at local proxy servers helps, but cannot satisfy more than a third to half of requests; more requests are still sent to original remote origin servers. In this paper we have developed an algorithm for Distributed Web Cache, which incorporates cooperation among proxy servers of one cluster. This algorithm uses Distributed Web Cache concepts along with static hierarchies with geographical based clusters of level one proxy server with dynamic mechanism of proxy server during the congestion of one cluster. Congestion and scalability problems are being dealt by clustering concept used in our approach. This results in higher hit ratio of caches, with lesser latency delay for requested pages. This algorithm also guarantees data consistency between the original server objects and the proxy cache objects.
NASA Astrophysics Data System (ADS)
Wills, Lindsay A.; Qu, Xiaohui; Chang, I.-Ya; Mustard, Thomas J. L.; Keszler, Douglas A.; Persson, Kristin A.; Cheong, Paul Ha-Yeon
2017-06-01
The characterization of water-based corrosion, geochemical, environmental and catalytic processes rely on the accurate depiction of stable phases in a water environment. The process is aided by Pourbaix diagrams, which map the equilibrium solid and solution phases under varying conditions of pH and electrochemical potential. Recently, metastable or possibly stable nanometric aqueous clusters have been proposed as intermediate species in non-classical nucleation processes. Herein, we describe a Group Additivity approach to obtain Pourbaix diagrams with full consideration of multimeric cluster speciation from computations. Comparisons with existing titration results from experiments yield excellent agreement. Applying this Group Additivity-Pourbaix approach to Group 13 elements, we arrive at a quantitative evaluation of cluster stability, as a function of pH and concentration, and present compelling support for not only metastable but also thermodynamically stable multimeric clusters in aqueous solutions.
D Geomarketing Segmentation: a Higher Spatial Dimension Planning Perspective
NASA Astrophysics Data System (ADS)
Suhaibah, A.; Uznir, U.; Rahman, A. A.; Anton, F.; Mioc, D.
2016-09-01
Geomarketing is a discipline which uses geographic information in the process of planning and implementation of marketing activities. It can be used in any aspect of the marketing such as price, promotion or geo targeting. The analysis of geomarketing data use a huge data pool such as location residential areas, topography, it also analyzes demographic information such as age, genre, annual income and lifestyle. This information can help users to develop successful promotional campaigns in order to achieve marketing goals. One of the common activities in geomarketing is market segmentation. The segmentation clusters the data into several groups based on its geographic criteria. To refine the search operation during analysis, we proposed an approach to cluster the data using a clustering algorithm. However, with the huge data pool, overlap among clusters may happen and leads to inefficient analysis. Moreover, geomarketing is usually active in urban areas and requires clusters to be organized in a three-dimensional (3D) way (i.e. multi-level shop lots, residential apartments). This is a constraint with the current Geographic Information System (GIS) framework. To avoid this issue, we proposed a combination of market segmentation based on geographic criteria and clustering algorithm for 3D geomarketing data management. The proposed approach is capable in minimizing the overlap region during market segmentation. In this paper, geomarketing in urban area is used as a case study. Based on the case study, several locations of customers and stores in 3D are used in the test. The experiments demonstrated in this paper substantiated that the proposed approach is capable of minimizing overlapping segmentation and reducing repetitive data entries. The structure is also tested for retrieving the spatial records from the database. For marketing purposes, certain radius of point is used to analyzing marketing targets. Based on the presented tests in this paper, we strongly believe that the structure is capable in handling and managing huge pool of geomarketing data. For future outlook, this paper also discusses the possibilities of expanding the structure.
Gorzalczany, Marian B; Rudzinski, Filip
2017-06-07
This paper presents a generalization of self-organizing maps with 1-D neighborhoods (neuron chains) that can be effectively applied to complex cluster analysis problems. The essence of the generalization consists in introducing mechanisms that allow the neuron chain--during learning--to disconnect into subchains, to reconnect some of the subchains again, and to dynamically regulate the overall number of neurons in the system. These features enable the network--working in a fully unsupervised way (i.e., using unlabeled data without a predefined number of clusters)--to automatically generate collections of multiprototypes that are able to represent a broad range of clusters in data sets. First, the operation of the proposed approach is illustrated on some synthetic data sets. Then, this technique is tested using several real-life, complex, and multidimensional benchmark data sets available from the University of California at Irvine (UCI) Machine Learning repository and the Knowledge Extraction based on Evolutionary Learning data set repository. A sensitivity analysis of our approach to changes in control parameters and a comparative analysis with an alternative approach are also performed.
ClueNet: Clustering a temporal network based on topological similarity rather than denseness
Milenković, Tijana
2018-01-01
Network clustering is a very popular topic in the network science field. Its goal is to divide (partition) the network into groups (clusters or communities) of “topologically related” nodes, where the resulting topology-based clusters are expected to “correlate” well with node label information, i.e., metadata, such as cellular functions of genes/proteins in biological networks, or age or gender of people in social networks. Even for static data, the problem of network clustering is complex. For dynamic data, the problem is even more complex, due to an additional dimension of the data—their temporal (evolving) nature. Since the problem is computationally intractable, heuristic approaches need to be sought. Existing approaches for dynamic network clustering (DNC) have drawbacks. First, they assume that nodes should be in the same cluster if they are densely interconnected within the network. We hypothesize that in some applications, it might be of interest to cluster nodes that are topologically similar to each other instead of or in addition to requiring the nodes to be densely interconnected. Second, they ignore temporal information in their early steps, and when they do consider this information later on, they do so implicitly. We hypothesize that capturing temporal information earlier in the clustering process and doing so explicitly will improve results. We test these two hypotheses via our new approach called ClueNet. We evaluate ClueNet against six existing DNC methods on both social networks capturing evolving interactions between individuals (such as interactions between students in a high school) and biological networks capturing interactions between biomolecules in the cell at different ages. We find that ClueNet is superior in over 83% of all evaluation tests. As more real-world dynamic data are becoming available, DNC and thus ClueNet will only continue to gain importance. PMID:29738568
Physical-depth architectural requirements for generating universal photonic cluster states
NASA Astrophysics Data System (ADS)
Morley-Short, Sam; Bartolucci, Sara; Gimeno-Segovia, Mercedes; Shadbolt, Pete; Cable, Hugo; Rudolph, Terry
2018-01-01
Most leading proposals for linear-optical quantum computing (LOQC) use cluster states, which act as a universal resource for measurement-based (one-way) quantum computation. In ballistic approaches to LOQC, cluster states are generated passively from small entangled resource states using so-called fusion operations. Results from percolation theory have previously been used to argue that universal cluster states can be generated in the ballistic approach using schemes which exceed the critical threshold for percolation, but these results consider cluster states with unbounded size. Here we consider how successful percolation can be maintained using a physical architecture with fixed physical depth, assuming that the cluster state is continuously generated and measured, and therefore that only a finite portion of it is visible at any one point in time. We show that universal LOQC can be implemented using a constant-size device with modest physical depth, and that percolation can be exploited using simple pathfinding strategies without the need for high-complexity algorithms.
Support Vector Data Descriptions and k-Means Clustering: One Class?
Gornitz, Nico; Lima, Luiz Alberto; Muller, Klaus-Robert; Kloft, Marius; Nakajima, Shinichi
2017-09-27
We present ClusterSVDD, a methodology that unifies support vector data descriptions (SVDDs) and k-means clustering into a single formulation. This allows both methods to benefit from one another, i.e., by adding flexibility using multiple spheres for SVDDs and increasing anomaly resistance and flexibility through kernels to k-means. In particular, our approach leads to a new interpretation of k-means as a regularized mode seeking algorithm. The unifying formulation further allows for deriving new algorithms by transferring knowledge from one-class learning settings to clustering settings and vice versa. As a showcase, we derive a clustering method for structured data based on a one-class learning scenario. Additionally, our formulation can be solved via a particularly simple optimization scheme. We evaluate our approach empirically to highlight some of the proposed benefits on artificially generated data, as well as on real-world problems, and provide a Python software package comprising various implementations of primal and dual SVDD as well as our proposed ClusterSVDD.
A person-centered approach to the multifaceted nature of young adult sexual behavior.
McGuire, Jenifer K; Barber, Bonnie L
2010-07-01
Young adult sexual relationships were examined using a multifaceted, person-centered approach with data from Wave 7 (aged 20-21; N = 1,126) of the Michigan Study of Adolescent Life Transitions. The study utilized hierarchical cluster analyses based on the following measured variables: frequency of sex, importance of regularly having sex, satisfaction with sex life, experience of coercion for sex, and sexual risk reduction. Five distinct clusters emerged for females (Satisfied, Moderate, Active Unprotected, Pressured, and Inactive) and represented patterns such as more partners paired with less risk reduction (Active Unprotected), high satisfaction paired with frequent sex and high-risk reduction (Satisfied), or higher levels of coercion paired with low satisfaction and low-risk reduction (Pressured). Similar clusters emerged for males, with one additional cluster: the Dissatisfied cluster. Clusters differed with respect to relationship status, marital status, and psychological well-being (both males and females) and parental divorce, living situation, and sexual orientation (females only).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thanjavur, Karun; Willis, Jon; Crampton, David, E-mail: karun@uvic.c
2009-11-20
We have developed a new method, K2, optimized for the detection of galaxy clusters in multicolor images. Based on the Red Sequence approach, K2 detects clusters using simultaneous enhancements in both colors and position. The detection significance is robustly determined through extensive Monte Carlo simulations and through comparison with available cluster catalogs based on two different optical methods, and also on X-ray data. K2 also provides quantitative estimates of the candidate clusters' richness and photometric redshifts. Initially, K2 was applied to the two color (gri) 161 deg{sup 2} images of the Canada-France-Hawaii Telescope Legacy Survey Wide (CFHTLS-W) data. Our simulationsmore » show that the false detection rate for these data, at our selected threshold, is only approx1%, and that the cluster catalogs are approx80% complete up to a redshift of z = 0.6 for Fornax-like and richer clusters and to z approx 0.3 for poorer clusters. Based on the g-, r-, and i-band photometric catalogs of the Terapix T05 release, 35 clusters/deg{sup 2} are detected, with 1-2 Fornax-like or richer clusters every 2 deg{sup 2}. Catalogs containing data for 6144 galaxy clusters have been prepared, of which 239 are rich clusters. These clusters, especially the latter, are being searched for gravitational lenses-one of our chief motivations for cluster detection in CFHTLS. The K2 method can be easily extended to use additional color information and thus improve overall cluster detection to higher redshifts. The complete set of K2 cluster catalogs, along with the supplementary catalogs for the member galaxies, are available on request from the authors.« less
Tsatsoulis, C; Amthauer, H
2003-01-01
A novel methodological approach for identifying clusters of similar medical incidents by analyzing large databases of incident reports is described. The discovery of similar events allows the identification of patterns and trends, and makes possible the prediction of future events and the establishment of barriers and best practices. Two techniques from the fields of information science and artificial intelligence have been integrated—namely, case based reasoning and information retrieval—and very good clustering accuracies have been achieved on a test data set of incident reports from transfusion medicine. This work suggests that clustering should integrate the features of an incident captured in traditional form based records together with the detailed information found in the narrative included in event reports. PMID:14645892
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rishi, Varun; Perera, Ajith; Bartlett, Rodney J., E-mail: bartlett@qtp.ufl.edu
2016-03-28
Obtaining the correct potential energy curves for the dissociation of multiple bonds is a challenging problem for ab initio methods which are affected by the choice of a spin-restricted reference function. Coupled cluster (CC) methods such as CCSD (coupled cluster singles and doubles model) and CCSD(T) (CCSD + perturbative triples) correctly predict the geometry and properties at equilibrium but the process of bond dissociation, particularly when more than one bond is simultaneously broken, is much more complicated. New modifications of CC theory suggest that the deleterious role of the reference function can be diminished, provided a particular subset of termsmore » is retained in the CC equations. The Distinguishable Cluster (DC) approach of Kats and Manby [J. Chem. Phys. 139, 021102 (2013)], seemingly overcomes the deficiencies for some bond-dissociation problems and might be of use in quasi-degenerate situations in general. DC along with other approximate coupled cluster methods such as ACCD (approximate coupled cluster doubles), ACP-D45, ACP-D14, 2CC, and pCCSD(α, β) (all defined in text) falls under a category of methods that are basically obtained by the deletion of some quadratic terms in the double excitation amplitude equation for CCD/CCSD (coupled cluster doubles model/coupled cluster singles and doubles model). Here these approximate methods, particularly those based on the DC approach, are studied in detail for the nitrogen molecule bond-breaking. The N{sub 2} problem is further addressed with conventional single reference methods but based on spatial symmetry-broken restricted Hartree–Fock (HF) solutions to assess the use of these references for correlated calculations in the situation where CC methods using fully symmetry adapted SCF solutions fail. The distinguishable cluster method is generalized: 1) to different orbitals for different spins (unrestricted HF based DCD and DCSD), 2) by adding triples correction perturbatively (DCSD(T)) and iteratively (DCSDT-n), and 3) via an excited state approximation through the equation of motion (EOM) approach (EOM-DCD, EOM-DCSD). The EOM-CC method is used to identify lower-energy CC solutions to overcome singularities in the CC potential energy curves. It is also shown that UHF based CC and DC methods behave very similarly in bond-breaking of N{sub 2}, and that using spatially broken but spin preserving SCF references makes the CCSD solutions better than those for DCSD.« less
Ecological Consistency of SSU rRNA-Based Operational Taxonomic Units at a Global Scale
Schmidt, Thomas S. B.; Matias Rodrigues, João F.; von Mering, Christian
2014-01-01
Operational Taxonomic Units (OTUs), usually defined as clusters of similar 16S/18S rRNA sequences, are the most widely used basic diversity units in large-scale characterizations of microbial communities. However, it remains unclear how well the various proposed OTU clustering algorithms approximate ‘true’ microbial taxa. Here, we explore the ecological consistency of OTUs – based on the assumption that, like true microbial taxa, they should show measurable habitat preferences (niche conservatism). In a global and comprehensive survey of available microbial sequence data, we systematically parse sequence annotations to obtain broad ecological descriptions of sampling sites. Based on these, we observe that sequence-based microbial OTUs generally show high levels of ecological consistency. However, different OTU clustering methods result in marked differences in the strength of this signal. Assuming that ecological consistency can serve as an objective external benchmark for cluster quality, we conclude that hierarchical complete linkage clustering, which provided the most ecologically consistent partitions, should be the default choice for OTU clustering. To our knowledge, this is the first approach to assess cluster quality using an external, biologically meaningful parameter as a benchmark, on a global scale. PMID:24763141
NASA Astrophysics Data System (ADS)
Nguyen, Sy Dzung; Nguyen, Quoc Hung; Choi, Seung-Bok
2015-01-01
This paper presents a new algorithm for building an adaptive neuro-fuzzy inference system (ANFIS) from a training data set called B-ANFIS. In order to increase accuracy of the model, the following issues are executed. Firstly, a data merging rule is proposed to build and perform a data-clustering strategy. Subsequently, a combination of clustering processes in the input data space and in the joint input-output data space is presented. Crucial reason of this task is to overcome problems related to initialization and contradictory fuzzy rules, which usually happen when building ANFIS. The clustering process in the input data space is accomplished based on a proposed merging-possibilistic clustering (MPC) algorithm. The effectiveness of this process is evaluated to resume a clustering process in the joint input-output data space. The optimal parameters obtained after completion of the clustering process are used to build ANFIS. Simulations based on a numerical data, 'Daily Data of Stock A', and measured data sets of a smart damper are performed to analyze and estimate accuracy. In addition, convergence and robustness of the proposed algorithm are investigated based on both theoretical and testing approaches.
Constantinescu, Alexandra C; Wolters, Maria; Moore, Adam; MacPherson, Sarah E
2017-06-01
The International Affective Picture System (IAPS; Lang, Bradley, & Cuthbert, 2008) is a stimulus database that is frequently used to investigate various aspects of emotional processing. Despite its extensive use, selecting IAPS stimuli for a research project is not usually done according to an established strategy, but rather is tailored to individual studies. Here we propose a standard, replicable method for stimulus selection based on cluster analysis, which re-creates the group structure that is most likely to have produced the valence arousal, and dominance norms associated with the IAPS images. Our method includes screening the database for outliers, identifying a suitable clustering solution, and then extracting the desired number of stimuli on the basis of their level of certainty of belonging to the cluster they were assigned to. Our method preserves statistical power in studies by maximizing the likelihood that the stimuli belong to the cluster structure fitted to them, and by filtering stimuli according to their certainty of cluster membership. In addition, although our cluster-based method is illustrated using the IAPS, it can be extended to other stimulus databases.
Cluster-Based Maximum Consensus Time Synchronization for Industrial Wireless Sensor Networks.
Wang, Zhaowei; Zeng, Peng; Zhou, Mingtuo; Li, Dong; Wang, Jintao
2017-01-13
Time synchronization is one of the key technologies in Industrial Wireless Sensor Networks (IWSNs), and clustering is widely used in WSNs for data fusion and information collection to reduce redundant data and communication overhead. Considering IWSNs' demand for low energy consumption, fast convergence, and robustness, this paper presents a novel Cluster-based Maximum consensus Time Synchronization (CMTS) method. It consists of two parts: intra-cluster time synchronization and inter-cluster time synchronization. Based on the theory of distributed consensus, the proposed method utilizes the maximum consensus approach to realize the intra-cluster time synchronization, and adjacent clusters exchange the time messages via overlapping nodes to synchronize with each other. A Revised-CMTS is further proposed to counteract the impact of bounded communication delays between two connected nodes, because the traditional stochastic models of the communication delays would distort in a dynamic environment. The simulation results show that our method reduces the communication overhead and improves the convergence rate in comparison to existing works, as well as adapting to the uncertain bounded communication delays.
Cluster-Based Maximum Consensus Time Synchronization for Industrial Wireless Sensor Networks †
Wang, Zhaowei; Zeng, Peng; Zhou, Mingtuo; Li, Dong; Wang, Jintao
2017-01-01
Time synchronization is one of the key technologies in Industrial Wireless Sensor Networks (IWSNs), and clustering is widely used in WSNs for data fusion and information collection to reduce redundant data and communication overhead. Considering IWSNs’ demand for low energy consumption, fast convergence, and robustness, this paper presents a novel Cluster-based Maximum consensus Time Synchronization (CMTS) method. It consists of two parts: intra-cluster time synchronization and inter-cluster time synchronization. Based on the theory of distributed consensus, the proposed method utilizes the maximum consensus approach to realize the intra-cluster time synchronization, and adjacent clusters exchange the time messages via overlapping nodes to synchronize with each other. A Revised-CMTS is further proposed to counteract the impact of bounded communication delays between two connected nodes, because the traditional stochastic models of the communication delays would distort in a dynamic environment. The simulation results show that our method reduces the communication overhead and improves the convergence rate in comparison to existing works, as well as adapting to the uncertain bounded communication delays. PMID:28098750
Population Structure With Localized Haplotype Clusters
Browning, Sharon R.; Weir, Bruce S.
2010-01-01
We propose a multilocus version of FST and a measure of haplotype diversity using localized haplotype clusters. Specifically, we use haplotype clusters identified with BEAGLE, which is a program implementing a hidden Markov model for localized haplotype clustering and performing several functions including inference of haplotype phase. We apply this methodology to HapMap phase 3 data. With this haplotype-cluster approach, African populations have highest diversity and lowest divergence from the ancestral population, East Asian populations have lowest diversity and highest divergence, and other populations (European, Indian, and Mexican) have intermediate levels of diversity and divergence. These relationships accord with expectation based on other studies and accepted models of human history. In contrast, the population-specific FST estimates obtained directly from single-nucleotide polymorphisms (SNPs) do not reflect such expected relationships. We show that ascertainment bias of SNPs has less impact on the proposed haplotype-cluster-based FST than on the SNP-based version, which provides a potential explanation for these results. Thus, these new measures of FST and haplotype-cluster diversity provide an important new tool for population genetic analysis of high-density SNP data. PMID:20457877
Snell, Deborah L; Surgenor, Lois J; Hay-Smith, E Jean C; Williman, Jonathan; Siegert, Richard J
2015-01-01
Outcomes after mild traumatic brain injury (MTBI) vary, with slow or incomplete recovery for a significant minority. This study examines whether groups of cases with shared psychological factors but with different injury outcomes could be identified using cluster analysis. This is a prospective observational study following 147 adults presenting to a hospital-based emergency department or concussion services in Christchurch, New Zealand. This study examined associations between baseline demographic, clinical, psychological variables (distress, injury beliefs and symptom burden) and outcome 6 months later. A two-step approach to cluster analysis was applied (Ward's method to identify clusters, K-means to refine results). Three meaningful clusters emerged (high-adapters, medium-adapters, low-adapters). Baseline cluster-group membership was significantly associated with outcomes over time. High-adapters appeared recovered by 6-weeks and medium-adapters revealed improvements by 6-months. The low-adapters continued to endorse many symptoms, negative recovery expectations and distress, being significantly at risk for poor outcome more than 6-months after injury (OR (good outcome) = 0.12; CI = 0.03-0.53; p < 0.01). Cluster analysis supported the notion that groups could be identified early post-injury based on psychological factors, with group membership associated with differing outcomes over time. Implications for clinical care providers regarding therapy targets and cases that may benefit from different intensities of intervention are discussed.
Fogel, Paul; Gaston-Mathé, Yann; Hawkins, Douglas; Fogel, Fajwel; Luta, George; Young, S. Stanley
2016-01-01
Often data can be represented as a matrix, e.g., observations as rows and variables as columns, or as a doubly classified contingency table. Researchers may be interested in clustering the observations, the variables, or both. If the data is non-negative, then Non-negative Matrix Factorization (NMF) can be used to perform the clustering. By its nature, NMF-based clustering is focused on the large values. If the data is normalized by subtracting the row/column means, it becomes of mixed signs and the original NMF cannot be used. Our idea is to split and then concatenate the positive and negative parts of the matrix, after taking the absolute value of the negative elements. NMF applied to the concatenated data, which we call PosNegNMF, offers the advantages of the original NMF approach, while giving equal weight to large and small values. We use two public health datasets to illustrate the new method and compare it with alternative clustering methods, such as K-means and clustering methods based on the Singular Value Decomposition (SVD) or Principal Component Analysis (PCA). With the exception of situations where a reasonably accurate factorization can be achieved using the first SVD component, we recommend that the epidemiologists and environmental scientists use the new method to obtain clusters with improved quality and interpretability. PMID:27213413
Fogel, Paul; Gaston-Mathé, Yann; Hawkins, Douglas; Fogel, Fajwel; Luta, George; Young, S Stanley
2016-05-18
Often data can be represented as a matrix, e.g., observations as rows and variables as columns, or as a doubly classified contingency table. Researchers may be interested in clustering the observations, the variables, or both. If the data is non-negative, then Non-negative Matrix Factorization (NMF) can be used to perform the clustering. By its nature, NMF-based clustering is focused on the large values. If the data is normalized by subtracting the row/column means, it becomes of mixed signs and the original NMF cannot be used. Our idea is to split and then concatenate the positive and negative parts of the matrix, after taking the absolute value of the negative elements. NMF applied to the concatenated data, which we call PosNegNMF, offers the advantages of the original NMF approach, while giving equal weight to large and small values. We use two public health datasets to illustrate the new method and compare it with alternative clustering methods, such as K-means and clustering methods based on the Singular Value Decomposition (SVD) or Principal Component Analysis (PCA). With the exception of situations where a reasonably accurate factorization can be achieved using the first SVD component, we recommend that the epidemiologists and environmental scientists use the new method to obtain clusters with improved quality and interpretability.
Modeling and clustering water demand patterns from real-world smart meter data
NASA Astrophysics Data System (ADS)
Cheifetz, Nicolas; Noumir, Zineb; Samé, Allou; Sandraz, Anne-Claire; Féliers, Cédric; Heim, Véronique
2017-08-01
Nowadays, drinking water utilities need an acute comprehension of the water demand on their distribution network, in order to efficiently operate the optimization of resources, manage billing and propose new customer services. With the emergence of smart grids, based on automated meter reading (AMR), a better understanding of the consumption modes is now accessible for smart cities with more granularities. In this context, this paper evaluates a novel methodology for identifying relevant usage profiles from the water consumption data produced by smart meters. The methodology is fully data-driven using the consumption time series which are seen as functions or curves observed with an hourly time step. First, a Fourier-based additive time series decomposition model is introduced to extract seasonal patterns from time series. These patterns are intended to represent the customer habits in terms of water consumption. Two functional clustering approaches are then used to classify the extracted seasonal patterns: the functional version of K-means, and the Fourier REgression Mixture (FReMix) model. The K-means approach produces a hard segmentation and K representative prototypes. On the other hand, the FReMix is a generative model and also produces K profiles as well as a soft segmentation based on the posterior probabilities. The proposed approach is applied to a smart grid deployed on the largest water distribution network (WDN) in France. The two clustering strategies are evaluated and compared. Finally, a realistic interpretation of the consumption habits is given for each cluster. The extensive experiments and the qualitative interpretation of the resulting clusters allow one to highlight the effectiveness of the proposed methodology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, Katherine R.; Crüsemann, Max; Lechner, Anna
Genome sequencing has revealed that bacteria contain many more biosynthetic gene clusters than predicted based on the number of secondary metabolites discovered to date. While this biosynthetic reservoir has fostered interest in new tools for natural product discovery, there remains a gap between gene cluster detection and compound discovery. In this paper, we apply molecular networking and the new concept of pattern-based genome mining to 35 Salinispora strains, including 30 for which draft genome sequences were either available or obtained for this study. The results provide a method to simultaneously compare large numbers of complex microbial extracts, which facilitated themore » identification of media components, known compounds and their derivatives, and new compounds that could be prioritized for structure elucidation. Finally, these efforts revealed considerable metabolite diversity and led to several molecular family-gene cluster pairings, of which the quinomycin-type depsipeptide retimycin A was characterized and linked to gene cluster NRPS40 using pattern-based bioinformatic approaches.« less
Duncan, Katherine R.; Crüsemann, Max; Lechner, Anna; ...
2015-04-09
Genome sequencing has revealed that bacteria contain many more biosynthetic gene clusters than predicted based on the number of secondary metabolites discovered to date. While this biosynthetic reservoir has fostered interest in new tools for natural product discovery, there remains a gap between gene cluster detection and compound discovery. In this paper, we apply molecular networking and the new concept of pattern-based genome mining to 35 Salinispora strains, including 30 for which draft genome sequences were either available or obtained for this study. The results provide a method to simultaneously compare large numbers of complex microbial extracts, which facilitated themore » identification of media components, known compounds and their derivatives, and new compounds that could be prioritized for structure elucidation. Finally, these efforts revealed considerable metabolite diversity and led to several molecular family-gene cluster pairings, of which the quinomycin-type depsipeptide retimycin A was characterized and linked to gene cluster NRPS40 using pattern-based bioinformatic approaches.« less
Duncan, Katherine R.; Crüsemann, Max; Lechner, Anna; Sarkar, Anindita; Li, Jie; Ziemert, Nadine; Wang, Mingxun; Bandeira, Nuno; Moore, Bradley S.; Dorrestein, Pieter C.; Jensen, Paul R.
2015-01-01
Summary Genome sequencing has revealed that bacteria contain many more biosynthetic gene clusters than predicted based on the number of secondary metabolites discovered to date. While this biosynthetic reservoir has fostered interest in new tools for natural product discovery, there remains a gap between gene cluster detection and compound discovery. Here we apply molecular networking and the new concept of pattern-based genome mining to 35 Salinispora strains including 30 for which draft genome sequences were either available or obtained for this study. The results provide a method to simultaneously compare large numbers of complex microbial extracts, which facilitated the identification of media components, known compounds and their derivatives, and new compounds that could be prioritized for structure elucidation. These efforts revealed considerable metabolite diversity and led to several molecular family-gene cluster pairings, of which the quinomycin-type depsipeptide retimycin A was characterized and linked to gene cluster NRPS40 using pattern-based bioinformatic approaches. PMID:25865308
Analysis of Tropical Cyclone Tracks in the North Indian Ocean
NASA Astrophysics Data System (ADS)
Patwardhan, A.; Paliwal, M.; Mohapatra, M.
2011-12-01
Cyclones are regarded as one of the most dangerous meteorological phenomena of the tropical region. The probability of landfall of a tropical cyclone depends on its movement (trajectory). Analysis of trajectories of tropical cyclones could be useful for identifying potentially predictable characteristics. There is long history of analysis of tropical cyclones tracks. A common approach is using different clustering techniques to group the cyclone tracks on the basis of certain characteristics. Various clustering method have been used to study the tropical cyclones in different ocean basins like western North Pacific ocean (Elsner and Liu, 2003; Camargo et al., 2007), North Atlantic Ocean (Elsner, 2003; Gaffney et al. 2007; Nakamura et al., 2009). In this study, tropical cyclone tracks in the North Indian Ocean basin, for the period 1961-2010 have been analyzed and grouped into clusters based on their spatial characteristics. A tropical cyclone trajectory is approximated as an open curve and described by its first two moments. The resulting clusters have different centroid locations and also differently shaped variance ellipses. These track characteristics are then used in the standard clustering algorithms which allow the whole track shape, length, and location to be incorporated into the clustering methodology. The resulting clusters have different genesis locations and trajectory shapes. We have also examined characteristics such as life span, maximum sustained wind speed, landfall, seasonality, many of which are significantly different across the identified clusters. The clustering approach groups cyclones with higher maximum wind speed and longest life span in to one cluster. Another cluster includes short duration cyclonic events that are mostly deep depressions and significant for rainfall over Eastern and Central India. The clustering approach is likely to prove useful for analysis of events of significance with regard to impacts.
R, GeethaRamani; Balasubramanian, Lakshmi
2018-07-01
Macula segmentation and fovea localization is one of the primary tasks in retinal analysis as they are responsible for detailed vision. Existing approaches required segmentation of retinal structures viz. optic disc and blood vessels for this purpose. This work avoids knowledge of other retinal structures and attempts data mining techniques to segment macula. Unsupervised clustering algorithm is exploited for this purpose. Selection of initial cluster centres has a great impact on performance of clustering algorithms. A heuristic based clustering in which initial centres are selected based on measures defining statistical distribution of data is incorporated in the proposed methodology. The initial phase of proposed framework includes image cropping, green channel extraction, contrast enhancement and application of mathematical closing. Then, the pre-processed image is subjected to heuristic based clustering yielding a binary map. The binary image is post-processed to eliminate unwanted components. Finally, the component which possessed the minimum intensity is finalized as macula and its centre constitutes the fovea. The proposed approach outperforms existing works by reporting that 100%,of HRF, 100% of DRIVE, 96.92% of DIARETDB0, 97.75% of DIARETDB1, 98.81% of HEI-MED, 90% of STARE and 99.33% of MESSIDOR images satisfy the 1R criterion, a standard adopted for evaluating performance of macula and fovea identification. The proposed system thus helps the ophthalmologists in identifying the macula thereby facilitating to identify if any abnormality is present within the macula region. Copyright © 2018 Elsevier B.V. All rights reserved.
A Direct Comparison of Two Densely Sampled HIV Epidemics: The UK and Switzerland
NASA Astrophysics Data System (ADS)
Ragonnet-Cronin, Manon L.; Shilaih, Mohaned; Günthard, Huldrych F.; Hodcroft, Emma B.; Böni, Jürg; Fearnhill, Esther; Dunn, David; Yerly, Sabine; Klimkait, Thomas; Aubert, Vincent; Yang, Wan-Lin; Brown, Alison E.; Lycett, Samantha J.; Kouyos, Roger; Brown, Andrew J. Leigh
2016-09-01
Phylogenetic clustering approaches can elucidate HIV transmission dynamics. Comparisons across countries are essential for evaluating public health policies. Here, we used a standardised approach to compare the UK HIV Drug Resistance Database and the Swiss HIV Cohort Study while maintaining data-protection requirements. Clusters were identified in subtype A1, B and C pol phylogenies. We generated degree distributions for each risk group and compared distributions between countries using Kolmogorov-Smirnov (KS) tests, Degree Distribution Quantification and Comparison (DDQC) and bootstrapping. We used logistic regression to predict cluster membership based on country, sampling date, risk group, ethnicity and sex. We analysed >8,000 Swiss and >30,000 UK subtype B sequences. At 4.5% genetic distance, the UK was more clustered and MSM and heterosexual degree distributions differed significantly by the KS test. The KS test is sensitive to variation in network scale, and jackknifing the UK MSM dataset to the size of the Swiss dataset removed the difference. Only heterosexuals varied based on the DDQC, due to UK male heterosexuals who clustered exclusively with MSM. Their removal eliminated this difference. In conclusion, the UK and Swiss HIV epidemics have similar underlying dynamics and observed differences in clustering are mainly due to different population sizes.
Bertamini, Marco; Guest, Martin; Vallortigara, Giorgio; Rugani, Rosa; Regolin, Lucia
2018-04-30
Animals can perceive the numerosity of sets of visual elements. Qualitative and quantitative similarities in different species suggest the existence of a shared system (approximate number system). Biases associated with sensory properties are informative about the underlying mechanisms. In humans, regular spacing increases perceived numerosity (regular-random numerosity illusion). This has led to a model that predicts numerosity based on occupancy (a measure that decreases when elements are close together). We used a procedure in which observers selected one of two stimuli and were given feedback with respect to whether the choice was correct. One configuration had 20 elements and the other 40, randomly placed inside a circular region. Participants had to discover the rule based on feedback. Because density and clustering covaried with numerosity, different dimensions could be used. After reaching a criterion, test trials presented two types of configurations with 30 elements. One type had a larger interelement distance than the other (high or low clustering). If observers had adopted a numerosity strategy, they would choose low clustering (if reinforced with 40) and high clustering (if reinforced with 20). A clustering or density strategy predicts the opposite. Human adults used a numerosity strategy. Chicks were tested using a similar procedure. There were two behavioral measures: first approach response and final circumnavigation (walking behind the screen). The prediction based on numerosity was confirmed by the first approach data. For chicks, one clear pattern from both responses was a preference for the configurations with higher clustering. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
An alternative validation strategy for the Planck cluster catalogue and y-distortion maps
NASA Astrophysics Data System (ADS)
Khatri, Rishi
2016-07-01
We present an all-sky map of the y-type distortion calculated from the full mission Planck High Frequency Instrument (HFI) data using the recently proposed approach to component separation, which is based on parametric model fitting and model selection. This simple model-selection approach enables us to distinguish between carbon monoxide (CO) line emission and y-type distortion, something that is not possible using the internal linear combination based methods. We create a mask to cover the regions of significant CO emission relying on the information in the χ2 map that was obtained when fitting for the y-distortion and CO emission to the lowest four HFI channels. We revisit the second Planck cluster catalogue and try to quantify the quality of the cluster candidates in an approach that is similar in spirit to Aghanim et al. (2015, A&A, 580, A138). We find that at least 93% of the clusters in the cosmology sample are free of CO contamination. We also find that 59% of unconfirmed candidates may have significant contamination from molecular clouds. We agree with Planck Collaboration XXVII (2016, A&A, in press) on the worst offenders. We suggest an alternative validation strategy of measuring and subtracting the CO emission from the Planck cluster candidates using radio telescopes, thus improving the reliability of the catalogue. Our CO mask and annotations to the Planck cluster catalogue, identifying cluster candidates with possible CO contamination, are made publicly available. The full Tables 1-3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A48
Bias correction of satellite-based rainfall data
NASA Astrophysics Data System (ADS)
Bhattacharya, Biswa; Solomatine, Dimitri
2015-04-01
Limitation in hydro-meteorological data availability in many catchments limits the possibility of reliable hydrological analyses especially for near-real-time predictions. However, the variety of satellite based and meteorological model products for rainfall provides new opportunities. Often times the accuracy of these rainfall products, when compared to rain gauge measurements, is not impressive. The systematic differences of these rainfall products from gauge observations can be partially compensated by adopting a bias (error) correction. Many of such methods correct the satellite based rainfall data by comparing their mean value to the mean value of rain gauge data. Refined approaches may also first find out a suitable time scale at which different data products are better comparable and then employ a bias correction at that time scale. More elegant methods use quantile-to-quantile bias correction, which however, assumes that the available (often limited) sample size can be useful in comparing probabilities of different rainfall products. Analysis of rainfall data and understanding of the process of its generation reveals that the bias in different rainfall data varies in space and time. The time aspect is sometimes taken into account by considering the seasonality. In this research we have adopted a bias correction approach that takes into account the variation of rainfall in space and time. A clustering based approach is employed in which every new data point (e.g. of Tropical Rainfall Measuring Mission (TRMM)) is first assigned to a specific cluster of that data product and then, by identifying the corresponding cluster of gauge data, the bias correction specific to that cluster is adopted. The presented approach considers the space-time variation of rainfall and as a result the corrected data is more realistic. Keywords: bias correction, rainfall, TRMM, satellite rainfall
Kang, Hahk-Soo
2017-02-01
Genomics-based methods are now commonplace in natural products research. A phylogeny-guided mining approach provides a means to quickly screen a large number of microbial genomes or metagenomes in search of new biosynthetic gene clusters of interest. In this approach, biosynthetic genes serve as molecular markers, and phylogenetic trees built with known and unknown marker gene sequences are used to quickly prioritize biosynthetic gene clusters for their metabolites characterization. An increase in the use of this approach has been observed for the last couple of years along with the emergence of low cost sequencing technologies. The aim of this review is to discuss the basic concept of a phylogeny-guided mining approach, and also to provide examples in which this approach was successfully applied to discover new natural products from microbial genomes and metagenomes. I believe that the phylogeny-guided mining approach will continue to play an important role in genomics-based natural products research.
Pandini, Alessandro; Fraccalvieri, Domenico; Bonati, Laura
2013-01-01
The biological function of proteins is strictly related to their molecular flexibility and dynamics: enzymatic activity, protein-protein interactions, ligand binding and allosteric regulation are important mechanisms involving protein motions. Computational approaches, such as Molecular Dynamics (MD) simulations, are now routinely used to study the intrinsic dynamics of target proteins as well as to complement molecular docking approaches. These methods have also successfully supported the process of rational design and discovery of new drugs. Identification of functionally relevant conformations is a key step in these studies. This is generally done by cluster analysis of the ensemble of structures in the MD trajectory. Recently Artificial Neural Network (ANN) approaches, in particular methods based on Self-Organising Maps (SOMs), have been reported performing more accurately and providing more consistent results than traditional clustering algorithms in various data-mining problems. In the specific case of conformational analysis, SOMs have been successfully used to compare multiple ensembles of protein conformations demonstrating a potential in efficiently detecting the dynamic signatures central to biological function. Moreover, examples of the use of SOMs to address problems relevant to other stages of the drug-design process, including clustering of docking poses, have been reported. In this contribution we review recent applications of ANN algorithms in analysing conformational and structural ensembles and we discuss their potential in computer-based approaches for medicinal chemistry.
Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data
Hallac, David; Vare, Sagar; Boyd, Stephen; Leskovec, Jure
2018-01-01
Subsequence clustering of multivariate time series is a useful tool for discovering repeated patterns in temporal data. Once these patterns have been discovered, seemingly complicated datasets can be interpreted as a temporal sequence of only a small number of states, or clusters. For example, raw sensor data from a fitness-tracking application can be expressed as a timeline of a select few actions (i.e., walking, sitting, running). However, discovering these patterns is challenging because it requires simultaneous segmentation and clustering of the time series. Furthermore, interpreting the resulting clusters is difficult, especially when the data is high-dimensional. Here we propose a new method of model-based clustering, which we call Toeplitz Inverse Covariance-based Clustering (TICC). Each cluster in the TICC method is defined by a correlation network, or Markov random field (MRF), characterizing the interdependencies between different observations in a typical subsequence of that cluster. Based on this graphical representation, TICC simultaneously segments and clusters the time series data. We solve the TICC problem through alternating minimization, using a variation of the expectation maximization (EM) algorithm. We derive closed-form solutions to efficiently solve the two resulting subproblems in a scalable way, through dynamic programming and the alternating direction method of multipliers (ADMM), respectively. We validate our approach by comparing TICC to several state-of-the-art baselines in a series of synthetic experiments, and we then demonstrate on an automobile sensor dataset how TICC can be used to learn interpretable clusters in real-world scenarios. PMID:29770257
Daniels, Lia M.; Radil, Amanda I.; Goegan, Lauren D.
2017-01-01
Pre-service and practicing teachers feel responsible for a range of educational activities. Four domains of personal responsibility emerging in the literature are: student achievement, student motivation, relationships with students, and responsibility for ones own teaching. To date, most research has used variable-centered approaches to examining responsibilities even though the domains appear related. In two separate samples we used cluster analysis to explore how pre-service (n = 130) and practicing (n = 105) teachers combined personal responsibilities and their impact on three professional cognitions and their wellbeing. Both groups had low and high responsibility clusters but the third cluster differed: Pre-service teachers combined responsibilities for relationships and their own teaching in a cluster we refer to as teacher-based responsibility; whereas, practicing teachers combined achievement and motivation in a cluster we refer to as student-outcome focused responsibility. These combinations affected outcomes for pre-service but not practicing teachers. Pre-service teachers in the low responsibility cluster reported less engagement, less mastery approaches to instruction, and more performance goal structures than the other two clusters. PMID:28620332
Daniels, Lia M; Radil, Amanda I; Goegan, Lauren D
2017-01-01
Pre-service and practicing teachers feel responsible for a range of educational activities. Four domains of personal responsibility emerging in the literature are: student achievement, student motivation, relationships with students, and responsibility for ones own teaching. To date, most research has used variable-centered approaches to examining responsibilities even though the domains appear related. In two separate samples we used cluster analysis to explore how pre-service ( n = 130) and practicing ( n = 105) teachers combined personal responsibilities and their impact on three professional cognitions and their wellbeing. Both groups had low and high responsibility clusters but the third cluster differed: Pre-service teachers combined responsibilities for relationships and their own teaching in a cluster we refer to as teacher-based responsibility; whereas, practicing teachers combined achievement and motivation in a cluster we refer to as student-outcome focused responsibility. These combinations affected outcomes for pre-service but not practicing teachers. Pre-service teachers in the low responsibility cluster reported less engagement, less mastery approaches to instruction, and more performance goal structures than the other two clusters.
Clustering analysis of moving target signatures
NASA Astrophysics Data System (ADS)
Martone, Anthony; Ranney, Kenneth; Innocenti, Roberto
2010-04-01
Previously, we developed a moving target indication (MTI) processing approach to detect and track slow-moving targets inside buildings, which successfully detected moving targets (MTs) from data collected by a low-frequency, ultra-wideband radar. Our MTI algorithms include change detection, automatic target detection (ATD), clustering, and tracking. The MTI algorithms can be implemented in a real-time or near-real-time system; however, a person-in-the-loop is needed to select input parameters for the clustering algorithm. Specifically, the number of clusters to input into the cluster algorithm is unknown and requires manual selection. A critical need exists to automate all aspects of the MTI processing formulation. In this paper, we investigate two techniques that automatically determine the number of clusters: the adaptive knee-point (KP) algorithm and the recursive pixel finding (RPF) algorithm. The KP algorithm is based on a well-known heuristic approach for determining the number of clusters. The RPF algorithm is analogous to the image processing, pixel labeling procedure. Both algorithms are used to analyze the false alarm and detection rates of three operational scenarios of personnel walking inside wood and cinderblock buildings.
Principal Component Clustering Approach to Teaching Quality Discriminant Analysis
ERIC Educational Resources Information Center
Xian, Sidong; Xia, Haibo; Yin, Yubo; Zhai, Zhansheng; Shang, Yan
2016-01-01
Teaching quality is the lifeline of the higher education. Many universities have made some effective achievement about evaluating the teaching quality. In this paper, we establish the Students' evaluation of teaching (SET) discriminant analysis model and algorithm based on principal component clustering analysis. Additionally, we classify the SET…
Innovations in the Teaching of Behavioral Sciences in the Preclinical Curriculum
ERIC Educational Resources Information Center
Mack, Kevin
2005-01-01
Objective: In problem-based learning curricula, cases are usually clustered into identified themes or organ systems. While this method of aggregating cases presents clear advantages in terms of resource alignment and student focus, an alternative "hidden cluster" approach provides rich opportunities for content integration. Method: The author…
Clustering Multivariate Time Series Using Hidden Markov Models
Ghassempour, Shima; Girosi, Federico; Maeder, Anthony
2014-01-01
In this paper we describe an algorithm for clustering multivariate time series with variables taking both categorical and continuous values. Time series of this type are frequent in health care, where they represent the health trajectories of individuals. The problem is challenging because categorical variables make it difficult to define a meaningful distance between trajectories. We propose an approach based on Hidden Markov Models (HMMs), where we first map each trajectory into an HMM, then define a suitable distance between HMMs and finally proceed to cluster the HMMs with a method based on a distance matrix. We test our approach on a simulated, but realistic, data set of 1,255 trajectories of individuals of age 45 and over, on a synthetic validation set with known clustering structure, and on a smaller set of 268 trajectories extracted from the longitudinal Health and Retirement Survey. The proposed method can be implemented quite simply using standard packages in R and Matlab and may be a good candidate for solving the difficult problem of clustering multivariate time series with categorical variables using tools that do not require advanced statistic knowledge, and therefore are accessible to a wide range of researchers. PMID:24662996
Deep Learning Nuclei Detection in Digitized Histology Images by Superpixels.
Sornapudi, Sudhir; Stanley, Ronald Joe; Stoecker, William V; Almubarak, Haidar; Long, Rodney; Antani, Sameer; Thoma, George; Zuna, Rosemary; Frazier, Shelliane R
2018-01-01
Advances in image analysis and computational techniques have facilitated automatic detection of critical features in histopathology images. Detection of nuclei is critical for squamous epithelium cervical intraepithelial neoplasia (CIN) classification into normal, CIN1, CIN2, and CIN3 grades. In this study, a deep learning (DL)-based nuclei segmentation approach is investigated based on gathering localized information through the generation of superpixels using a simple linear iterative clustering algorithm and training with a convolutional neural network. The proposed approach was evaluated on a dataset of 133 digitized histology images and achieved an overall nuclei detection (object-based) accuracy of 95.97%, with demonstrated improvement over imaging-based and clustering-based benchmark techniques. The proposed DL-based nuclei segmentation Method with superpixel analysis has shown improved segmentation results in comparison to state-of-the-art methods.
Exploratory Item Classification Via Spectral Graph Clustering
Chen, Yunxiao; Li, Xiaoou; Liu, Jingchen; Xu, Gongjun; Ying, Zhiliang
2017-01-01
Large-scale assessments are supported by a large item pool. An important task in test development is to assign items into scales that measure different characteristics of individuals, and a popular approach is cluster analysis of items. Classical methods in cluster analysis, such as the hierarchical clustering, K-means method, and latent-class analysis, often induce a high computational overhead and have difficulty handling missing data, especially in the presence of high-dimensional responses. In this article, the authors propose a spectral clustering algorithm for exploratory item cluster analysis. The method is computationally efficient, effective for data with missing or incomplete responses, easy to implement, and often outperforms traditional clustering algorithms in the context of high dimensionality. The spectral clustering algorithm is based on graph theory, a branch of mathematics that studies the properties of graphs. The algorithm first constructs a graph of items, characterizing the similarity structure among items. It then extracts item clusters based on the graphical structure, grouping similar items together. The proposed method is evaluated through simulations and an application to the revised Eysenck Personality Questionnaire. PMID:29033476
Some Psychometric and Design Implications of Game-Based Learning Analytics
ERIC Educational Resources Information Center
Gibson, David; Clarke-Midura, Jody
2013-01-01
The rise of digital game and simulation-based learning applications has led to new approaches in educational measurement that take account of patterns in time, high resolution paths of action, and clusters of virtual performance artifacts. The new approaches, which depart from traditional statistical analyses, include data mining, machine…
The sampling design for the National Children¿s Study (NCS) calls for a population-based, multi-stage, clustered household sampling approach (visit our website for more information on the NCS : www.nationalchildrensstudy.gov). The full sample is designed to be representative of ...
Searching Remote Homology with Spectral Clustering with Symmetry in Neighborhood Cluster Kernels
Maulik, Ujjwal; Sarkar, Anasua
2013-01-01
Remote homology detection among proteins utilizing only the unlabelled sequences is a central problem in comparative genomics. The existing cluster kernel methods based on neighborhoods and profiles and the Markov clustering algorithms are currently the most popular methods for protein family recognition. The deviation from random walks with inflation or dependency on hard threshold in similarity measure in those methods requires an enhancement for homology detection among multi-domain proteins. We propose to combine spectral clustering with neighborhood kernels in Markov similarity for enhancing sensitivity in detecting homology independent of “recent” paralogs. The spectral clustering approach with new combined local alignment kernels more effectively exploits the unsupervised protein sequences globally reducing inter-cluster walks. When combined with the corrections based on modified symmetry based proximity norm deemphasizing outliers, the technique proposed in this article outperforms other state-of-the-art cluster kernels among all twelve implemented kernels. The comparison with the state-of-the-art string and mismatch kernels also show the superior performance scores provided by the proposed kernels. Similar performance improvement also is found over an existing large dataset. Therefore the proposed spectral clustering framework over combined local alignment kernels with modified symmetry based correction achieves superior performance for unsupervised remote homolog detection even in multi-domain and promiscuous domain proteins from Genolevures database families with better biological relevance. Source code available upon request. Contact: sarkar@labri.fr. PMID:23457439
Searching remote homology with spectral clustering with symmetry in neighborhood cluster kernels.
Maulik, Ujjwal; Sarkar, Anasua
2013-01-01
Remote homology detection among proteins utilizing only the unlabelled sequences is a central problem in comparative genomics. The existing cluster kernel methods based on neighborhoods and profiles and the Markov clustering algorithms are currently the most popular methods for protein family recognition. The deviation from random walks with inflation or dependency on hard threshold in similarity measure in those methods requires an enhancement for homology detection among multi-domain proteins. We propose to combine spectral clustering with neighborhood kernels in Markov similarity for enhancing sensitivity in detecting homology independent of "recent" paralogs. The spectral clustering approach with new combined local alignment kernels more effectively exploits the unsupervised protein sequences globally reducing inter-cluster walks. When combined with the corrections based on modified symmetry based proximity norm deemphasizing outliers, the technique proposed in this article outperforms other state-of-the-art cluster kernels among all twelve implemented kernels. The comparison with the state-of-the-art string and mismatch kernels also show the superior performance scores provided by the proposed kernels. Similar performance improvement also is found over an existing large dataset. Therefore the proposed spectral clustering framework over combined local alignment kernels with modified symmetry based correction achieves superior performance for unsupervised remote homolog detection even in multi-domain and promiscuous domain proteins from Genolevures database families with better biological relevance. Source code available upon request. sarkar@labri.fr.
Inherent structure versus geometric metric for state space discretization.
Liu, Hanzhong; Li, Minghai; Fan, Jue; Huo, Shuanghong
2016-05-30
Inherent structure (IS) and geometry-based clustering methods are commonly used for analyzing molecular dynamics trajectories. ISs are obtained by minimizing the sampled conformations into local minima on potential/effective energy surface. The conformations that are minimized into the same energy basin belong to one cluster. We investigate the influence of the applications of these two methods of trajectory decomposition on our understanding of the thermodynamics and kinetics of alanine tetrapeptide. We find that at the microcluster level, the IS approach and root-mean-square deviation (RMSD)-based clustering method give totally different results. Depending on the local features of energy landscape, the conformations with close RMSDs can be minimized into different minima, while the conformations with large RMSDs could be minimized into the same basin. However, the relaxation timescales calculated based on the transition matrices built from the microclusters are similar. The discrepancy at the microcluster level leads to different macroclusters. Although the dynamic models established through both clustering methods are validated approximately Markovian, the IS approach seems to give a meaningful state space discretization at the macrocluster level in terms of conformational features and kinetics. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Li, Hui; Yu, Jun-Ling; Yu, Le-An; Sun, Jie
2014-05-01
Case-based reasoning (CBR) is one of the main forecasting methods in business forecasting, which performs well in prediction and holds the ability of giving explanations for the results. In business failure prediction (BFP), the number of failed enterprises is relatively small, compared with the number of non-failed ones. However, the loss is huge when an enterprise fails. Therefore, it is necessary to develop methods (trained on imbalanced samples) which forecast well for this small proportion of failed enterprises and performs accurately on total accuracy meanwhile. Commonly used methods constructed on the assumption of balanced samples do not perform well in predicting minority samples on imbalanced samples consisting of the minority/failed enterprises and the majority/non-failed ones. This article develops a new method called clustering-based CBR (CBCBR), which integrates clustering analysis, an unsupervised process, with CBR, a supervised process, to enhance the efficiency of retrieving information from both minority and majority in CBR. In CBCBR, various case classes are firstly generated through hierarchical clustering inside stored experienced cases, and class centres are calculated out by integrating cases information in the same clustered class. When predicting the label of a target case, its nearest clustered case class is firstly retrieved by ranking similarities between the target case and each clustered case class centre. Then, nearest neighbours of the target case in the determined clustered case class are retrieved. Finally, labels of the nearest experienced cases are used in prediction. In the empirical experiment with two imbalanced samples from China, the performance of CBCBR was compared with the classical CBR, a support vector machine, a logistic regression and a multi-variant discriminate analysis. The results show that compared with the other four methods, CBCBR performed significantly better in terms of sensitivity for identifying the minority samples and generated high total accuracy meanwhile. The proposed approach makes CBR useful in imbalanced forecasting.
Saeed, Isaam; Tang, Sen-Lin; Halgamuge, Saman K.
2012-01-01
An approach to infer the unknown microbial population structure within a metagenome is to cluster nucleotide sequences based on common patterns in base composition, otherwise referred to as binning. When functional roles are assigned to the identified populations, a deeper understanding of microbial communities can be attained, more so than gene-centric approaches that explore overall functionality. In this study, we propose an unsupervised, model-based binning method with two clustering tiers, which uses a novel transformation of the oligonucleotide frequency-derived error gradient and GC content to generate coarse groups at the first tier of clustering; and tetranucleotide frequency to refine these groups at the secondary clustering tier. The proposed method has a demonstrated improvement over PhyloPythia, S-GSOM, TACOA and TaxSOM on all three benchmarks that were used for evaluation in this study. The proposed method is then applied to a pyrosequenced metagenomic library of mud volcano sediment sampled in southwestern Taiwan, with the inferred population structure validated against complementary sequencing of 16S ribosomal RNA marker genes. Finally, the proposed method was further validated against four publicly available metagenomes, including a highly complex Antarctic whale-fall bone sample, which was previously assumed to be too complex for binning prior to functional analysis. PMID:22180538
Grošelj, Petra; Zadnik Stirn, Lidija
2015-09-15
Environmental management problems can be dealt with by combining participatory methods, which make it possible to include various stakeholders in a decision-making process, and multi-criteria methods, which offer a formal model for structuring and solving a problem. This paper proposes a three-phase decision making approach based on the analytic network process and SWOT (strengths, weaknesses, opportunities and threats) analysis. The approach enables inclusion of various stakeholders or groups of stakeholders in particular stages of decision making. The structure of the proposed approach is composed of a network consisting of an objective cluster, a cluster of strategic goals, a cluster of SWOT factors and a cluster of alternatives. The application of the suggested approach is applied to a management problem of Pohorje, a mountainous area in Slovenia. Stakeholders from sectors that are important for Pohorje (forestry, agriculture, tourism and nature protection agencies) who can offer a wide range of expert knowledge were included in the decision-making process. The results identify the alternative of "sustainable development" as the most appropriate for development of Pohorje. The application in the paper offers an example of employing the new approach to an environmental management problem. This can also be applied to decision-making problems in various other fields. Copyright © 2015 Elsevier Ltd. All rights reserved.
Modularization of biochemical networks based on classification of Petri net t-invariants.
Grafahrend-Belau, Eva; Schreiber, Falk; Heiner, Monika; Sackmann, Andrea; Junker, Björn H; Grunwald, Stefanie; Speer, Astrid; Winder, Katja; Koch, Ina
2008-02-08
Structural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing amount of biological data from molecular biological networks promises a deeper understanding but confronts researchers with the problem of combinatorial explosion. The amount of qualitative network data is growing much faster than the amount of quantitative data, such as enzyme kinetics. In many cases it is even impossible to measure quantitative data because of limitations of experimental methods, or for ethical reasons. Thus, a huge amount of qualitative data, such as interaction data, is available, but it was not sufficiently used for modeling purposes, until now. New approaches have been developed, but the complexity of data often limits the application of many of the methods. Biochemical Petri nets make it possible to explore static and dynamic qualitative system properties. One Petri net approach is model validation based on the computation of the system's invariant properties, focusing on t-invariants. T-invariants correspond to subnetworks, which describe the basic system behavior.With increasing system complexity, the basic behavior can only be expressed by a huge number of t-invariants. According to our validation criteria for biochemical Petri nets, the necessary verification of the biological meaning, by interpreting each subnetwork (t-invariant) manually, is not possible anymore. Thus, an automated, biologically meaningful classification would be helpful in analyzing t-invariants, and supporting the understanding of the basic behavior of the considered biological system. Here, we introduce a new approach to automatically classify t-invariants to cope with network complexity. We apply clustering techniques such as UPGMA, Complete Linkage, Single Linkage, and Neighbor Joining in combination with different distance measures to get biologically meaningful clusters (t-clusters), which can be interpreted as modules. To find the optimal number of t-clusters to consider for interpretation, the cluster validity measure, Silhouette Width, is applied. We considered two different case studies as examples: a small signal transduction pathway (pheromone response pathway in Saccharomyces cerevisiae) and a medium-sized gene regulatory network (gene regulation of Duchenne muscular dystrophy). We automatically classified the t-invariants into functionally distinct t-clusters, which could be interpreted biologically as functional modules in the network. We found differences in the suitability of the various distance measures as well as the clustering methods. In terms of a biologically meaningful classification of t-invariants, the best results are obtained using the Tanimoto distance measure. Considering clustering methods, the obtained results suggest that UPGMA and Complete Linkage are suitable for clustering t-invariants with respect to the biological interpretability. We propose a new approach for the biological classification of Petri net t-invariants based on cluster analysis. Due to the biologically meaningful data reduction and structuring of network processes, large sets of t-invariants can be evaluated, allowing for model validation of qualitative biochemical Petri nets. This approach can also be applied to elementary mode analysis.
Modularization of biochemical networks based on classification of Petri net t-invariants
Grafahrend-Belau, Eva; Schreiber, Falk; Heiner, Monika; Sackmann, Andrea; Junker, Björn H; Grunwald, Stefanie; Speer, Astrid; Winder, Katja; Koch, Ina
2008-01-01
Background Structural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing amount of biological data from molecular biological networks promises a deeper understanding but confronts researchers with the problem of combinatorial explosion. The amount of qualitative network data is growing much faster than the amount of quantitative data, such as enzyme kinetics. In many cases it is even impossible to measure quantitative data because of limitations of experimental methods, or for ethical reasons. Thus, a huge amount of qualitative data, such as interaction data, is available, but it was not sufficiently used for modeling purposes, until now. New approaches have been developed, but the complexity of data often limits the application of many of the methods. Biochemical Petri nets make it possible to explore static and dynamic qualitative system properties. One Petri net approach is model validation based on the computation of the system's invariant properties, focusing on t-invariants. T-invariants correspond to subnetworks, which describe the basic system behavior. With increasing system complexity, the basic behavior can only be expressed by a huge number of t-invariants. According to our validation criteria for biochemical Petri nets, the necessary verification of the biological meaning, by interpreting each subnetwork (t-invariant) manually, is not possible anymore. Thus, an automated, biologically meaningful classification would be helpful in analyzing t-invariants, and supporting the understanding of the basic behavior of the considered biological system. Methods Here, we introduce a new approach to automatically classify t-invariants to cope with network complexity. We apply clustering techniques such as UPGMA, Complete Linkage, Single Linkage, and Neighbor Joining in combination with different distance measures to get biologically meaningful clusters (t-clusters), which can be interpreted as modules. To find the optimal number of t-clusters to consider for interpretation, the cluster validity measure, Silhouette Width, is applied. Results We considered two different case studies as examples: a small signal transduction pathway (pheromone response pathway in Saccharomyces cerevisiae) and a medium-sized gene regulatory network (gene regulation of Duchenne muscular dystrophy). We automatically classified the t-invariants into functionally distinct t-clusters, which could be interpreted biologically as functional modules in the network. We found differences in the suitability of the various distance measures as well as the clustering methods. In terms of a biologically meaningful classification of t-invariants, the best results are obtained using the Tanimoto distance measure. Considering clustering methods, the obtained results suggest that UPGMA and Complete Linkage are suitable for clustering t-invariants with respect to the biological interpretability. Conclusion We propose a new approach for the biological classification of Petri net t-invariants based on cluster analysis. Due to the biologically meaningful data reduction and structuring of network processes, large sets of t-invariants can be evaluated, allowing for model validation of qualitative biochemical Petri nets. This approach can also be applied to elementary mode analysis. PMID:18257938
Spot detection and image segmentation in DNA microarray data.
Qin, Li; Rueda, Luis; Ali, Adnan; Ngom, Alioune
2005-01-01
Following the invention of microarrays in 1994, the development and applications of this technology have grown exponentially. The numerous applications of microarray technology include clinical diagnosis and treatment, drug design and discovery, tumour detection, and environmental health research. One of the key issues in the experimental approaches utilising microarrays is to extract quantitative information from the spots, which represent genes in a given experiment. For this process, the initial stages are important and they influence future steps in the analysis. Identifying the spots and separating the background from the foreground is a fundamental problem in DNA microarray data analysis. In this review, we present an overview of state-of-the-art methods for microarray image segmentation. We discuss the foundations of the circle-shaped approach, adaptive shape segmentation, histogram-based methods and the recently introduced clustering-based techniques. We analytically show that clustering-based techniques are equivalent to the one-dimensional, standard k-means clustering algorithm that utilises the Euclidean distance.
Holmes, Sean T; Alkan, Fahri; Iuliucci, Robbie J; Mueller, Karl T; Dybowski, Cecil
2016-07-05
(29) Si and (31) P magnetic-shielding tensors in covalent network solids have been evaluated using periodic and cluster-based calculations. The cluster-based computational methodology employs pseudoatoms to reduce the net charge (resulting from missing co-ordination on the terminal atoms) through valence modification of terminal atoms using bond-valence theory (VMTA/BV). The magnetic-shielding tensors computed with the VMTA/BV method are compared to magnetic-shielding tensors determined with the periodic GIPAW approach. The cluster-based all-electron calculations agree with experiment better than the GIPAW calculations, particularly for predicting absolute magnetic shielding and for predicting chemical shifts. The performance of the DFT functionals CA-PZ, PW91, PBE, rPBE, PBEsol, WC, and PBE0 are assessed for the prediction of (29) Si and (31) P magnetic-shielding constants. Calculations using the hybrid functional PBE0, in combination with the VMTA/BV approach, result in excellent agreement with experiment. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Segmentation by fusion of histogram-based k-means clusters in different color spaces.
Mignotte, Max
2008-05-01
This paper presents a new, simple, and efficient segmentation approach, based on a fusion procedure which aims at combining several segmentation maps associated to simpler partition models in order to finally get a more reliable and accurate segmentation result. The different label fields to be fused in our application are given by the same and simple (K-means based) clustering technique on an input image expressed in different color spaces. Our fusion strategy aims at combining these segmentation maps with a final clustering procedure using as input features, the local histogram of the class labels, previously estimated and associated to each site and for all these initial partitions. This fusion framework remains simple to implement, fast, general enough to be applied to various computer vision applications (e.g., motion detection and segmentation), and has been successfully applied on the Berkeley image database. The experiments herein reported in this paper illustrate the potential of this approach compared to the state-of-the-art segmentation methods recently proposed in the literature.
Image Recommendation Algorithm Using Feature-Based Collaborative Filtering
NASA Astrophysics Data System (ADS)
Kim, Deok-Hwan
As the multimedia contents market continues its rapid expansion, the amount of image contents used in mobile phone services, digital libraries, and catalog service is increasing remarkably. In spite of this rapid growth, users experience high levels of frustration when searching for the desired image. Even though new images are profitable to the service providers, traditional collaborative filtering methods cannot recommend them. To solve this problem, in this paper, we propose feature-based collaborative filtering (FBCF) method to reflect the user's most recent preference by representing his purchase sequence in the visual feature space. The proposed approach represents the images that have been purchased in the past as the feature clusters in the multi-dimensional feature space and then selects neighbors by using an inter-cluster distance function between their feature clusters. Various experiments using real image data demonstrate that the proposed approach provides a higher quality recommendation and better performance than do typical collaborative filtering and content-based filtering techniques.
Butun, Ismail; Ra, In-Ho; Sankar, Ravi
2015-01-01
In this work, an intrusion detection system (IDS) framework based on multi-level clustering for hierarchical wireless sensor networks is proposed. The framework employs two types of intrusion detection approaches: (1) “downward-IDS (D-IDS)” to detect the abnormal behavior (intrusion) of the subordinate (member) nodes; and (2) “upward-IDS (U-IDS)” to detect the abnormal behavior of the cluster heads. By using analytical calculations, the optimum parameters for the D-IDS (number of maximum hops) and U-IDS (monitoring group size) of the framework are evaluated and presented. PMID:26593915
Logo image clustering based on advanced statistics
NASA Astrophysics Data System (ADS)
Wei, Yi; Kamel, Mohamed; He, Yiwei
2007-11-01
In recent years, there has been a growing interest in the research of image content description techniques. Among those, image clustering is one of the most frequently discussed topics. Similar to image recognition, image clustering is also a high-level representation technique. However it focuses on the coarse categorization rather than the accurate recognition. Based on wavelet transform (WT) and advanced statistics, the authors propose a novel approach that divides various shaped logo images into groups according to the external boundary of each logo image. Experimental results show that the presented method is accurate, fast and insensitive to defects.
WordCluster: detecting clusters of DNA words and genomic elements
2011-01-01
Background Many k-mers (or DNA words) and genomic elements are known to be spatially clustered in the genome. Well established examples are the genes, TFBSs, CpG dinucleotides, microRNA genes and ultra-conserved non-coding regions. Currently, no algorithm exists to find these clusters in a statistically comprehensible way. The detection of clustering often relies on densities and sliding-window approaches or arbitrarily chosen distance thresholds. Results We introduce here an algorithm to detect clusters of DNA words (k-mers), or any other genomic element, based on the distance between consecutive copies and an assigned statistical significance. We implemented the method into a web server connected to a MySQL backend, which also determines the co-localization with gene annotations. We demonstrate the usefulness of this approach by detecting the clusters of CAG/CTG (cytosine contexts that can be methylated in undifferentiated cells), showing that the degree of methylation vary drastically between inside and outside of the clusters. As another example, we used WordCluster to search for statistically significant clusters of olfactory receptor (OR) genes in the human genome. Conclusions WordCluster seems to predict biological meaningful clusters of DNA words (k-mers) and genomic entities. The implementation of the method into a web server is available at http://bioinfo2.ugr.es/wordCluster/wordCluster.php including additional features like the detection of co-localization with gene regions or the annotation enrichment tool for functional analysis of overlapped genes. PMID:21261981
A novel load balanced energy conservation approach in WSN using biogeography based optimization
NASA Astrophysics Data System (ADS)
Kaushik, Ajay; Indu, S.; Gupta, Daya
2017-09-01
Clustering sensor nodes is an effective technique to reduce energy consumption of the sensor nodes and maximize the lifetime of Wireless sensor networks. Balancing load of the cluster head is an important factor in long run operation of WSNs. In this paper we propose a novel load balancing approach using biogeography based optimization (LB-BBO). LB-BBO uses two separate fitness functions to perform load balancing of equal and unequal load respectively. The proposed method is simulated using matlab and compared with existing methods. The proposed method shows better performance than all the previous works implemented for energy conservation in WSN
Spadafore, Maxwell; Najarian, Kayvan; Boyle, Alan P
2017-11-29
Transcription factors (TFs) form a complex regulatory network within the cell that is crucial to cell functioning and human health. While methods to establish where a TF binds to DNA are well established, these methods provide no information describing how TFs interact with one another when they do bind. TFs tend to bind the genome in clusters, and current methods to identify these clusters are either limited in scope, unable to detect relationships beyond motif similarity, or not applied to TF-TF interactions. Here, we present a proximity-based graph clustering approach to identify TF clusters using either ChIP-seq or motif search data. We use TF co-occurrence to construct a filtered, normalized adjacency matrix and use the Markov Clustering Algorithm to partition the graph while maintaining TF-cluster and cluster-cluster interactions. We then apply our graph structure beyond clustering, using it to increase the accuracy of motif-based TFBS searching for an example TF. We show that our method produces small, manageable clusters that encapsulate many known, experimentally validated transcription factor interactions and that our method is capable of capturing interactions that motif similarity methods might miss. Our graph structure is able to significantly increase the accuracy of motif TFBS searching, demonstrating that the TF-TF connections within the graph correlate with biological TF-TF interactions. The interactions identified by our method correspond to biological reality and allow for fast exploration of TF clustering and regulatory dynamics.
Aqueous sulfate separation by crystallization of sulfate–water clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Custelcean, Radu; Williams, Neil J.; Seipp, Charles A.
An effective approach to separating sulfates from aqueous solutions is based on the crystallization of extended [SO 4(H 2O) 5 2-] n sulfate–water clusters with a bis(guanidinium) ligand. The ligand was generated in situ by hydrazone condensation in water, thus avoiding elaborate syntheses, tedious purifications, and organic solvents. Crystallization of sulfate–water clusters represents an alternative to the now established sulfate separation strategies that involve encapsulating the “naked” anion.
Aqueous sulfate separation by crystallization of sulfate–water clusters
Custelcean, Radu; Williams, Neil J.; Seipp, Charles A.
2015-08-07
An effective approach to separating sulfates from aqueous solutions is based on the crystallization of extended [SO 4(H 2O) 5 2-] n sulfate–water clusters with a bis(guanidinium) ligand. The ligand was generated in situ by hydrazone condensation in water, thus avoiding elaborate syntheses, tedious purifications, and organic solvents. Crystallization of sulfate–water clusters represents an alternative to the now established sulfate separation strategies that involve encapsulating the “naked” anion.
Assessment of cluster yield components by image analysis.
Diago, Maria P; Tardaguila, Javier; Aleixos, Nuria; Millan, Borja; Prats-Montalban, Jose M; Cubero, Sergio; Blasco, Jose
2015-04-01
Berry weight, berry number and cluster weight are key parameters for yield estimation for wine and tablegrape industry. Current yield prediction methods are destructive, labour-demanding and time-consuming. In this work, a new methodology, based on image analysis was developed to determine cluster yield components in a fast and inexpensive way. Clusters of seven different red varieties of grapevine (Vitis vinifera L.) were photographed under laboratory conditions and their cluster yield components manually determined after image acquisition. Two algorithms based on the Canny and the logarithmic image processing approaches were tested to find the contours of the berries in the images prior to berry detection performed by means of the Hough Transform. Results were obtained in two ways: by analysing either a single image of the cluster or using four images per cluster from different orientations. The best results (R(2) between 69% and 95% in berry detection and between 65% and 97% in cluster weight estimation) were achieved using four images and the Canny algorithm. The model's capability based on image analysis to predict berry weight was 84%. The new and low-cost methodology presented here enabled the assessment of cluster yield components, saving time and providing inexpensive information in comparison with current manual methods. © 2014 Society of Chemical Industry.
Terminal-Area Aircraft Intent Inference Approach Based on Online Trajectory Clustering.
Yang, Yang; Zhang, Jun; Cai, Kai-quan
2015-01-01
Terminal-area aircraft intent inference (T-AII) is a prerequisite to detect and avoid potential aircraft conflict in the terminal airspace. T-AII challenges the state-of-the-art AII approaches due to the uncertainties of air traffic situation, in particular due to the undefined flight routes and frequent maneuvers. In this paper, a novel T-AII approach is introduced to address the limitations by solving the problem with two steps that are intent modeling and intent inference. In the modeling step, an online trajectory clustering procedure is designed for recognizing the real-time available routes in replacing of the missed plan routes. In the inference step, we then present a probabilistic T-AII approach based on the multiple flight attributes to improve the inference performance in maneuvering scenarios. The proposed approach is validated with real radar trajectory and flight attributes data of 34 days collected from Chengdu terminal area in China. Preliminary results show the efficacy of the presented approach.
On selecting a prior for the precision parameter of Dirichlet process mixture models
Dorazio, R.M.
2009-01-01
In hierarchical mixture models the Dirichlet process is used to specify latent patterns of heterogeneity, particularly when the distribution of latent parameters is thought to be clustered (multimodal). The parameters of a Dirichlet process include a precision parameter ?? and a base probability measure G0. In problems where ?? is unknown and must be estimated, inferences about the level of clustering can be sensitive to the choice of prior assumed for ??. In this paper an approach is developed for computing a prior for the precision parameter ?? that can be used in the presence or absence of prior information about the level of clustering. This approach is illustrated in an analysis of counts of stream fishes. The results of this fully Bayesian analysis are compared with an empirical Bayes analysis of the same data and with a Bayesian analysis based on an alternative commonly used prior.
Dexter, Alex; Race, Alan M; Steven, Rory T; Barnes, Jennifer R; Hulme, Heather; Goodwin, Richard J A; Styles, Iain B; Bunch, Josephine
2017-11-07
Clustering is widely used in MSI to segment anatomical features and differentiate tissue types, but existing approaches are both CPU and memory-intensive, limiting their application to small, single data sets. We propose a new approach that uses a graph-based algorithm with a two-phase sampling method that overcomes this limitation. We demonstrate the algorithm on a range of sample types and show that it can segment anatomical features that are not identified using commonly employed algorithms in MSI, and we validate our results on synthetic MSI data. We show that the algorithm is robust to fluctuations in data quality by successfully clustering data with a designed-in variance using data acquired with varying laser fluence. Finally, we show that this method is capable of generating accurate segmentations of large MSI data sets acquired on the newest generation of MSI instruments and evaluate these results by comparison with histopathology.
Clustering gene expression regulators: new approach to disease subtyping.
Pyatnitskiy, Mikhail; Mazo, Ilya; Shkrob, Maria; Schwartz, Elena; Kotelnikova, Ekaterina
2014-01-01
One of the main challenges in modern medicine is to stratify different patient groups in terms of underlying disease molecular mechanisms as to develop more personalized approach to therapy. Here we propose novel method for disease subtyping based on analysis of activated expression regulators on a sample-by-sample basis. Our approach relies on Sub-Network Enrichment Analysis algorithm (SNEA) which identifies gene subnetworks with significant concordant changes in expression between two conditions. Subnetwork consists of central regulator and downstream genes connected by relations extracted from global literature-extracted regulation database. Regulators found in each patient separately are clustered together and assigned activity scores which are used for final patients grouping. We show that our approach performs well compared to other related methods and at the same time provides researchers with complementary level of understanding of pathway-level biology behind a disease by identification of significant expression regulators. We have observed the reasonable grouping of neuromuscular disorders (triggered by structural damage vs triggered by unknown mechanisms), that was not revealed using standard expression profile clustering. For another experiment we were able to suggest the clusters of regulators, responsible for colorectal carcinoma vs adenoma discrimination and identify frequently genetically changed regulators that could be of specific importance for the individual characteristics of cancer development. Proposed approach can be regarded as biologically meaningful feature selection, reducing tens of thousands of genes down to dozens of clusters of regulators. Obtained clusters of regulators make possible to generate valuable biological hypotheses about molecular mechanisms related to a clinical outcome for individual patient.
Clustering Gene Expression Regulators: New Approach to Disease Subtyping
Pyatnitskiy, Mikhail; Mazo, Ilya; Shkrob, Maria; Schwartz, Elena; Kotelnikova, Ekaterina
2014-01-01
One of the main challenges in modern medicine is to stratify different patient groups in terms of underlying disease molecular mechanisms as to develop more personalized approach to therapy. Here we propose novel method for disease subtyping based on analysis of activated expression regulators on a sample-by-sample basis. Our approach relies on Sub-Network Enrichment Analysis algorithm (SNEA) which identifies gene subnetworks with significant concordant changes in expression between two conditions. Subnetwork consists of central regulator and downstream genes connected by relations extracted from global literature-extracted regulation database. Regulators found in each patient separately are clustered together and assigned activity scores which are used for final patients grouping. We show that our approach performs well compared to other related methods and at the same time provides researchers with complementary level of understanding of pathway-level biology behind a disease by identification of significant expression regulators. We have observed the reasonable grouping of neuromuscular disorders (triggered by structural damage vs triggered by unknown mechanisms), that was not revealed using standard expression profile clustering. For another experiment we were able to suggest the clusters of regulators, responsible for colorectal carcinoma vs adenoma discrimination and identify frequently genetically changed regulators that could be of specific importance for the individual characteristics of cancer development. Proposed approach can be regarded as biologically meaningful feature selection, reducing tens of thousands of genes down to dozens of clusters of regulators. Obtained clusters of regulators make possible to generate valuable biological hypotheses about molecular mechanisms related to a clinical outcome for individual patient. PMID:24416320
Advanced Approach of Multiagent Based Buoy Communication
Gricius, Gediminas; Drungilas, Darius; Dzemydiene, Dale
2015-01-01
Usually, a hydrometeorological information system is faced with great data flows, but the data levels are often excessive, depending on the observed region of the water. The paper presents advanced buoy communication technologies based on multiagent interaction and data exchange between several monitoring system nodes. The proposed management of buoy communication is based on a clustering algorithm, which enables the performance of the hydrometeorological information system to be enhanced. The experiment is based on the design and analysis of the inexpensive but reliable Baltic Sea autonomous monitoring network (buoys), which would be able to continuously monitor and collect temperature, waviness, and other required data. The proposed approach of multiagent based buoy communication enables all the data from the costal-based station to be monitored with limited transition speed by setting different tasks for the agent-based buoy system according to the clustering information. PMID:26345197
NASA Astrophysics Data System (ADS)
Rai, Akhand; Upadhyay, S. H.
2017-09-01
Bearing is the most critical component in rotating machinery since it is more susceptible to failure. The monitoring of degradation in bearings becomes of great concern for averting the sudden machinery breakdown. In this study, a novel method for bearing performance degradation assessment (PDA) based on an amalgamation of empirical mode decomposition (EMD) and k-medoids clustering is encouraged. The fault features are extracted from the bearing signals using the EMD process. The extracted features are then subjected to k-medoids based clustering for obtaining the normal state and failure state cluster centres. A confidence value (CV) curve based on dissimilarity of the test data object to the normal state is obtained and employed as the degradation indicator for assessing the health of bearings. The proposed outlook is applied on the vibration signals collected in run-to-failure tests of bearings to assess its effectiveness in bearing PDA. To validate the superiority of the suggested approach, it is compared with commonly used time-domain features RMS and kurtosis, well-known fault diagnosis method envelope analysis (EA) and existing PDA classifiers i.e. self-organizing maps (SOM) and Fuzzy c-means (FCM). The results demonstrate that the recommended method outperforms the time-domain features, SOM and FCM based PDA in detecting the early stage degradation more precisely. Moreover, EA can be used as an accompanying method to confirm the early stage defect detected by the proposed bearing PDA approach. The study shows the potential application of k-medoids clustering as an effective tool for PDA of bearings.
Improving real-time efficiency of case-based reasoning for medical diagnosis.
Park, Yoon-Joo
2014-01-01
Conventional case-based reasoning (CBR) does not perform efficiently for high volume dataset because of case-retrieval time. Some previous researches overcome this problem by clustering a case-base into several small groups, and retrieve neighbors within a corresponding group to a target case. However, this approach generally produces less accurate predictive performances than the conventional CBR. This paper suggests a new case-based reasoning method called the Clustering-Merging CBR (CM-CBR) which produces similar level of predictive performances than the conventional CBR with spending significantly less computational cost.
Career Exploration Program: A Cluster Approach. Publication No. 0057.
ERIC Educational Resources Information Center
Ansbro, William; And Others
Based on the occupational clusters designated by the Department of Health, Education and Welfare, this curriculum guide presents a career exploration program for junior high and middle school students. The program, presented in eighty-minute weekly sessions, is designed as an alternative activity in which students can elect to explore a wide…
Clusters and Correlates of Experiences with Parents and Peers in Early Adolescence
ERIC Educational Resources Information Center
Kan, Marni L.; McHale, Susan M.
2007-01-01
This study used a person-oriented approach to examine links between adolescents' experiences with parents and peers. Cluster analysis classified 361, White, working- and middle-class youth (mean age = 12.16 years) based on mothers' and fathers' reports of parental acceptance and adolescents' reports of perceived peer competence. Three patterns…
Behavioral Profiles in 4-5 Year-Old Children: Normal and Pathological Variants
ERIC Educational Resources Information Center
Larsson, Jan-Olov; Bergman, Lars R.; Earls, Felton; Rydelius, Per-Anders
2004-01-01
Normal and psychopathological patterns of behavior symptoms in preschool children were described by a classification approach using cluster analysis. The behavior of 406 children, average age 4 years 9 months, from the general population was evaluated at home visits. Seven clusters were identified based on empirically defined dimensions:…
Unsupervised classification of major depression using functional connectivity MRI.
Zeng, Ling-Li; Shen, Hui; Liu, Li; Hu, Dewen
2014-04-01
The current diagnosis of psychiatric disorders including major depressive disorder based largely on self-reported symptoms and clinical signs may be prone to patients' behaviors and psychiatrists' bias. This study aims at developing an unsupervised machine learning approach for the accurate identification of major depression based on single resting-state functional magnetic resonance imaging scans in the absence of clinical information. Twenty-four medication-naive patients with major depression and 29 demographically similar healthy individuals underwent resting-state functional magnetic resonance imaging. We first clustered the voxels within the perigenual cingulate cortex into two subregions, a subgenual region and a pregenual region, according to their distinct resting-state functional connectivity patterns and showed that a maximum margin clustering-based unsupervised machine learning approach extracted sufficient information from the subgenual cingulate functional connectivity map to differentiate depressed patients from healthy controls with a group-level clustering consistency of 92.5% and an individual-level classification consistency of 92.5%. It was also revealed that the subgenual cingulate functional connectivity network with the highest discriminative power primarily included the ventrolateral and ventromedial prefrontal cortex, superior temporal gyri and limbic areas, indicating that these connections may play critical roles in the pathophysiology of major depression. The current study suggests that subgenual cingulate functional connectivity network signatures may provide promising objective biomarkers for the diagnosis of major depression and that maximum margin clustering-based unsupervised machine learning approaches may have the potential to inform clinical practice and aid in research on psychiatric disorders. Copyright © 2013 Wiley Periodicals, Inc.
Samuels, Aaron M; Awino, Nobert; Odongo, Wycliffe; Abong'o, Benard; Gimnig, John; Otieno, Kephas; Shi, Ya Ping; Were, Vincent; Allen, Denise Roth; Were, Florence; Sang, Tony; Obor, David; Williamson, John; Hamel, Mary J; Patrick Kachur, S; Slutsker, Laurence; Lindblade, Kim A; Kariuki, Simon; Desai, Meghna
2017-06-07
Most human Plasmodium infections in western Kenya are asymptomatic and are believed to contribute importantly to malaria transmission. Elimination of asymptomatic infections requires active treatment approaches, such as mass testing and treatment (MTaT) or mass drug administration (MDA), as infected persons do not seek care for their infection. Evaluations of community-based approaches that are designed to reduce malaria transmission require careful attention to study design to ensure that important effects can be measured accurately. This manuscript describes the study design and methodology of a cluster-randomized controlled trial to evaluate a MTaT approach for malaria transmission reduction in an area of high malaria transmission. Ten health facilities in western Kenya were purposively selected for inclusion. The communities within 3 km of each health facility were divided into three clusters of approximately equal population size. Two clusters around each health facility were randomly assigned to the control arm, and one to the intervention arm. Three times per year for 2 years, after the long and short rains, and again before the long rains, teams of community health volunteers visited every household within the intervention arm, tested all consenting individuals with malaria rapid diagnostic tests, and treated all positive individuals with an effective anti-malarial. The effect of mass testing and treatment on malaria transmission was measured through population-based longitudinal cohorts, outpatient visits for clinical malaria, periodic population-based cross-sectional surveys, and entomological indices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datta, Dipayan, E-mail: datta.dipayan@gmail.com; Gauss, Jürgen, E-mail: gauss@uni-mainz.de
We report analytical calculations of isotropic hyperfine-coupling constants in radicals using a spin-adapted open-shell coupled-cluster theory, namely, the unitary group based combinatoric open-shell coupled-cluster (COSCC) approach within the singles and doubles approximation. A scheme for the evaluation of the one-particle spin-density matrix required in these calculations is outlined within the spin-free formulation of the COSCC approach. In this scheme, the one-particle spin-density matrix for an open-shell state with spin S and M{sub S} = + S is expressed in terms of the one- and two-particle spin-free (charge) density matrices obtained from the Lagrangian formulation that is used for calculating themore » analytic first derivatives of the energy. Benchmark calculations are presented for NO, NCO, CH{sub 2}CN, and two conjugated π-radicals, viz., allyl and 1-pyrrolyl in order to demonstrate the performance of the proposed scheme.« less
CytoCluster: A Cytoscape Plugin for Cluster Analysis and Visualization of Biological Networks.
Li, Min; Li, Dongyan; Tang, Yu; Wu, Fangxiang; Wang, Jianxin
2017-08-31
Nowadays, cluster analysis of biological networks has become one of the most important approaches to identifying functional modules as well as predicting protein complexes and network biomarkers. Furthermore, the visualization of clustering results is crucial to display the structure of biological networks. Here we present CytoCluster, a cytoscape plugin integrating six clustering algorithms, HC-PIN (Hierarchical Clustering algorithm in Protein Interaction Networks), OH-PIN (identifying Overlapping and Hierarchical modules in Protein Interaction Networks), IPCA (Identifying Protein Complex Algorithm), ClusterONE (Clustering with Overlapping Neighborhood Expansion), DCU (Detecting Complexes based on Uncertain graph model), IPC-MCE (Identifying Protein Complexes based on Maximal Complex Extension), and BinGO (the Biological networks Gene Ontology) function. Users can select different clustering algorithms according to their requirements. The main function of these six clustering algorithms is to detect protein complexes or functional modules. In addition, BinGO is used to determine which Gene Ontology (GO) categories are statistically overrepresented in a set of genes or a subgraph of a biological network. CytoCluster can be easily expanded, so that more clustering algorithms and functions can be added to this plugin. Since it was created in July 2013, CytoCluster has been downloaded more than 9700 times in the Cytoscape App store and has already been applied to the analysis of different biological networks. CytoCluster is available from http://apps.cytoscape.org/apps/cytocluster.
CytoCluster: A Cytoscape Plugin for Cluster Analysis and Visualization of Biological Networks
Li, Min; Li, Dongyan; Tang, Yu; Wang, Jianxin
2017-01-01
Nowadays, cluster analysis of biological networks has become one of the most important approaches to identifying functional modules as well as predicting protein complexes and network biomarkers. Furthermore, the visualization of clustering results is crucial to display the structure of biological networks. Here we present CytoCluster, a cytoscape plugin integrating six clustering algorithms, HC-PIN (Hierarchical Clustering algorithm in Protein Interaction Networks), OH-PIN (identifying Overlapping and Hierarchical modules in Protein Interaction Networks), IPCA (Identifying Protein Complex Algorithm), ClusterONE (Clustering with Overlapping Neighborhood Expansion), DCU (Detecting Complexes based on Uncertain graph model), IPC-MCE (Identifying Protein Complexes based on Maximal Complex Extension), and BinGO (the Biological networks Gene Ontology) function. Users can select different clustering algorithms according to their requirements. The main function of these six clustering algorithms is to detect protein complexes or functional modules. In addition, BinGO is used to determine which Gene Ontology (GO) categories are statistically overrepresented in a set of genes or a subgraph of a biological network. CytoCluster can be easily expanded, so that more clustering algorithms and functions can be added to this plugin. Since it was created in July 2013, CytoCluster has been downloaded more than 9700 times in the Cytoscape App store and has already been applied to the analysis of different biological networks. CytoCluster is available from http://apps.cytoscape.org/apps/cytocluster. PMID:28858211
Identification of sea ice types in spaceborne synthetic aperture radar data
NASA Technical Reports Server (NTRS)
Kwok, Ronald; Rignot, Eric; Holt, Benjamin; Onstott, R.
1992-01-01
This study presents an approach for identification of sea ice types in spaceborne SAR image data. The unsupervised classification approach involves cluster analysis for segmentation of the image data followed by cluster labeling based on previously defined look-up tables containing the expected backscatter signatures of different ice types measured by a land-based scatterometer. Extensive scatterometer observations and experience accumulated in field campaigns during the last 10 yr were used to construct these look-up tables. The classification approach, its expected performance, the dependence of this performance on radar system performance, and expected ice scattering characteristics are discussed. Results using both aircraft and simulated ERS-1 SAR data are presented and compared to limited field ice property measurements and coincident passive microwave imagery. The importance of an integrated postlaunch program for the validation and improvement of this approach is discussed.
NASA Technical Reports Server (NTRS)
Dasarathy, B. V.
1976-01-01
An algorithm is proposed for dimensionality reduction in the context of clustering techniques based on histogram analysis. The approach is based on an evaluation of the hills and valleys in the unidimensional histograms along the different features and provides an economical means of assessing the significance of the features in a nonparametric unsupervised data environment. The method has relevance to remote sensing applications.
Wang, Chenglin; Tang, Yunchao; Zou, Xiangjun; Luo, Lufeng; Chen, Xiong
2017-01-01
Recognition and matching of litchi fruits are critical steps for litchi harvesting robots to successfully grasp litchi. However, due to the randomness of litchi growth, such as clustered growth with uncertain number of fruits and random occlusion by leaves, branches and other fruits, the recognition and matching of the fruit become a challenge. Therefore, this study firstly defined mature litchi fruit as three clustered categories. Then an approach for recognition and matching of clustered mature litchi fruit was developed based on litchi color images acquired by binocular charge-coupled device (CCD) color cameras. The approach mainly included three steps: (1) calibration of binocular color cameras and litchi image acquisition; (2) segmentation of litchi fruits using four kinds of supervised classifiers, and recognition of the pre-defined categories of clustered litchi fruit using a pixel threshold method; and (3) matching the recognized clustered fruit using a geometric center-based matching method. The experimental results showed that the proposed recognition method could be robust against the influences of varying illumination and occlusion conditions, and precisely recognize clustered litchi fruit. In the tested 432 clustered litchi fruits, the highest and lowest average recognition rates were 94.17% and 92.00% under sunny back-lighting and partial occlusion, and sunny front-lighting and non-occlusion conditions, respectively. From 50 pairs of tested images, the highest and lowest matching success rates were 97.37% and 91.96% under sunny back-lighting and non-occlusion, and sunny front-lighting and partial occlusion conditions, respectively. PMID:29112177
Tseng, Jui-Pin
2017-02-01
This investigation establishes the global cluster synchronization of complex networks with a community structure based on an iterative approach. The units comprising the network are described by differential equations, and can be non-autonomous and involve time delays. In addition, units in the different communities can be governed by different equations. The coupling configuration of the network is rather general. The coupling terms can be non-diffusive, nonlinear, asymmetric, and with heterogeneous coupling delays. Based on this approach, both delay-dependent and delay-independent criteria for global cluster synchronization are derived. We implement the present approach for a nonlinearly coupled neural network with heterogeneous coupling delays. Two numerical examples are given to show that neural networks can behave in a variety of new collective ways under the synchronization criteria. These examples also demonstrate that neural networks remain synchronized in spite of coupling delays between neurons across different communities; however, they may lose synchrony if the coupling delays between the neurons within the same community are too large, such that the synchronization criteria are violated. Copyright © 2016 Elsevier Ltd. All rights reserved.
Leuthaeuser, Janelle B; Knutson, Stacy T; Kumar, Kiran; Babbitt, Patricia C; Fetrow, Jacquelyn S
2015-09-01
The development of accurate protein function annotation methods has emerged as a major unsolved biological problem. Protein similarity networks, one approach to function annotation via annotation transfer, group proteins into similarity-based clusters. An underlying assumption is that the edge metric used to identify such clusters correlates with functional information. In this contribution, this assumption is evaluated by observing topologies in similarity networks using three different edge metrics: sequence (BLAST), structure (TM-Align), and active site similarity (active site profiling, implemented in DASP). Network topologies for four well-studied protein superfamilies (enolase, peroxiredoxin (Prx), glutathione transferase (GST), and crotonase) were compared with curated functional hierarchies and structure. As expected, network topology differs, depending on edge metric; comparison of topologies provides valuable information on structure/function relationships. Subnetworks based on active site similarity correlate with known functional hierarchies at a single edge threshold more often than sequence- or structure-based networks. Sequence- and structure-based networks are useful for identifying sequence and domain similarities and differences; therefore, it is important to consider the clustering goal before deciding appropriate edge metric. Further, conserved active site residues identified in enolase and GST active site subnetworks correspond with published functionally important residues. Extension of this analysis yields predictions of functionally determinant residues for GST subgroups. These results support the hypothesis that active site similarity-based networks reveal clusters that share functional details and lay the foundation for capturing functionally relevant hierarchies using an approach that is both automatable and can deliver greater precision in function annotation than current similarity-based methods. © 2015 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.
Leuthaeuser, Janelle B; Knutson, Stacy T; Kumar, Kiran; Babbitt, Patricia C; Fetrow, Jacquelyn S
2015-01-01
The development of accurate protein function annotation methods has emerged as a major unsolved biological problem. Protein similarity networks, one approach to function annotation via annotation transfer, group proteins into similarity-based clusters. An underlying assumption is that the edge metric used to identify such clusters correlates with functional information. In this contribution, this assumption is evaluated by observing topologies in similarity networks using three different edge metrics: sequence (BLAST), structure (TM-Align), and active site similarity (active site profiling, implemented in DASP). Network topologies for four well-studied protein superfamilies (enolase, peroxiredoxin (Prx), glutathione transferase (GST), and crotonase) were compared with curated functional hierarchies and structure. As expected, network topology differs, depending on edge metric; comparison of topologies provides valuable information on structure/function relationships. Subnetworks based on active site similarity correlate with known functional hierarchies at a single edge threshold more often than sequence- or structure-based networks. Sequence- and structure-based networks are useful for identifying sequence and domain similarities and differences; therefore, it is important to consider the clustering goal before deciding appropriate edge metric. Further, conserved active site residues identified in enolase and GST active site subnetworks correspond with published functionally important residues. Extension of this analysis yields predictions of functionally determinant residues for GST subgroups. These results support the hypothesis that active site similarity-based networks reveal clusters that share functional details and lay the foundation for capturing functionally relevant hierarchies using an approach that is both automatable and can deliver greater precision in function annotation than current similarity-based methods. PMID:26073648
Deep Learning Nuclei Detection in Digitized Histology Images by Superpixels
Sornapudi, Sudhir; Stanley, Ronald Joe; Stoecker, William V.; Almubarak, Haidar; Long, Rodney; Antani, Sameer; Thoma, George; Zuna, Rosemary; Frazier, Shelliane R.
2018-01-01
Background: Advances in image analysis and computational techniques have facilitated automatic detection of critical features in histopathology images. Detection of nuclei is critical for squamous epithelium cervical intraepithelial neoplasia (CIN) classification into normal, CIN1, CIN2, and CIN3 grades. Methods: In this study, a deep learning (DL)-based nuclei segmentation approach is investigated based on gathering localized information through the generation of superpixels using a simple linear iterative clustering algorithm and training with a convolutional neural network. Results: The proposed approach was evaluated on a dataset of 133 digitized histology images and achieved an overall nuclei detection (object-based) accuracy of 95.97%, with demonstrated improvement over imaging-based and clustering-based benchmark techniques. Conclusions: The proposed DL-based nuclei segmentation Method with superpixel analysis has shown improved segmentation results in comparison to state-of-the-art methods. PMID:29619277
Automated modal parameter estimation using correlation analysis and bootstrap sampling
NASA Astrophysics Data System (ADS)
Yaghoubi, Vahid; Vakilzadeh, Majid K.; Abrahamsson, Thomas J. S.
2018-02-01
The estimation of modal parameters from a set of noisy measured data is a highly judgmental task, with user expertise playing a significant role in distinguishing between estimated physical and noise modes of a test-piece. Various methods have been developed to automate this procedure. The common approach is to identify models with different orders and cluster similar modes together. However, most proposed methods based on this approach suffer from high-dimensional optimization problems in either the estimation or clustering step. To overcome this problem, this study presents an algorithm for autonomous modal parameter estimation in which the only required optimization is performed in a three-dimensional space. To this end, a subspace-based identification method is employed for the estimation and a non-iterative correlation-based method is used for the clustering. This clustering is at the heart of the paper. The keys to success are correlation metrics that are able to treat the problems of spatial eigenvector aliasing and nonunique eigenvectors of coalescent modes simultaneously. The algorithm commences by the identification of an excessively high-order model from frequency response function test data. The high number of modes of this model provides bases for two subspaces: one for likely physical modes of the tested system and one for its complement dubbed the subspace of noise modes. By employing the bootstrap resampling technique, several subsets are generated from the same basic dataset and for each of them a model is identified to form a set of models. Then, by correlation analysis with the two aforementioned subspaces, highly correlated modes of these models which appear repeatedly are clustered together and the noise modes are collected in a so-called Trashbox cluster. Stray noise modes attracted to the mode clusters are trimmed away in a second step by correlation analysis. The final step of the algorithm is a fuzzy c-means clustering procedure applied to a three-dimensional feature space to assign a degree of physicalness to each cluster. The proposed algorithm is applied to two case studies: one with synthetic data and one with real test data obtained from a hammer impact test. The results indicate that the algorithm successfully clusters similar modes and gives a reasonable quantification of the extent to which each cluster is physical.
The cosmological analysis of X-ray cluster surveys - I. A new method for interpreting number counts
NASA Astrophysics Data System (ADS)
Clerc, N.; Pierre, M.; Pacaud, F.; Sadibekova, T.
2012-07-01
We present a new method aimed at simplifying the cosmological analysis of X-ray cluster surveys. It is based on purely instrumental observable quantities considered in a two-dimensional X-ray colour-magnitude diagram (hardness ratio versus count rate). The basic principle is that even in rather shallow surveys, substantial information on cluster redshift and temperature is present in the raw X-ray data and can be statistically extracted; in parallel, such diagrams can be readily predicted from an ab initio cosmological modelling. We illustrate the methodology for the case of a 100-deg2XMM survey having a sensitivity of ˜10-14 erg s-1 cm-2 and fit at the same time, the survey selection function, the cluster evolutionary scaling relations and the cosmology; our sole assumption - driven by the limited size of the sample considered in the case study - is that the local cluster scaling relations are known. We devote special attention to the realistic modelling of the count-rate measurement uncertainties and evaluate the potential of the method via a Fisher analysis. In the absence of individual cluster redshifts, the count rate and hardness ratio (CR-HR) method appears to be much more efficient than the traditional approach based on cluster counts (i.e. dn/dz, requiring redshifts). In the case where redshifts are available, our method performs similar to the traditional mass function (dn/dM/dz) for the purely cosmological parameters, but constrains better parameters defining the cluster scaling relations and their evolution. A further practical advantage of the CR-HR method is its simplicity: this fully top-down approach totally bypasses the tedious steps consisting in deriving cluster masses from X-ray temperature measurements.
Kéchichian, Razmig; Valette, Sébastien; Desvignes, Michel; Prost, Rémy
2013-11-01
We derive shortest-path constraints from graph models of structure adjacency relations and introduce them in a joint centroidal Voronoi image clustering and Graph Cut multiobject semiautomatic segmentation framework. The vicinity prior model thus defined is a piecewise-constant model incurring multiple levels of penalization capturing the spatial configuration of structures in multiobject segmentation. Qualitative and quantitative analyses and comparison with a Potts prior-based approach and our previous contribution on synthetic, simulated, and real medical images show that the vicinity prior allows for the correct segmentation of distinct structures having identical intensity profiles and improves the precision of segmentation boundary placement while being fairly robust to clustering resolution. The clustering approach we take to simplify images prior to segmentation strikes a good balance between boundary adaptivity and cluster compactness criteria furthermore allowing to control the trade-off. Compared with a direct application of segmentation on voxels, the clustering step improves the overall runtime and memory footprint of the segmentation process up to an order of magnitude without compromising the quality of the result.
Time-Hierarchical Clustering and Visualization of Weather Forecast Ensembles.
Ferstl, Florian; Kanzler, Mathias; Rautenhaus, Marc; Westermann, Rudiger
2017-01-01
We propose a new approach for analyzing the temporal growth of the uncertainty in ensembles of weather forecasts which are started from perturbed but similar initial conditions. As an alternative to traditional approaches in meteorology, which use juxtaposition and animation of spaghetti plots of iso-contours, we make use of contour clustering and provide means to encode forecast dynamics and spread in one single visualization. Based on a given ensemble clustering in a specified time window, we merge clusters in time-reversed order to indicate when and where forecast trajectories start to diverge. We present and compare different visualizations of the resulting time-hierarchical grouping, including space-time surfaces built by connecting cluster representatives over time, and stacked contour variability plots. We demonstrate the effectiveness of our visual encodings with forecast examples of the European Centre for Medium-Range Weather Forecasts, which convey the evolution of specific features in the data as well as the temporally increasing spatial variability.
Modulated Modularity Clustering as an Exploratory Tool for Functional Genomic Inference
Stone, Eric A.; Ayroles, Julien F.
2009-01-01
In recent years, the advent of high-throughput assays, coupled with their diminishing cost, has facilitated a systems approach to biology. As a consequence, massive amounts of data are currently being generated, requiring efficient methodology aimed at the reduction of scale. Whole-genome transcriptional profiling is a standard component of systems-level analyses, and to reduce scale and improve inference clustering genes is common. Since clustering is often the first step toward generating hypotheses, cluster quality is critical. Conversely, because the validation of cluster-driven hypotheses is indirect, it is critical that quality clusters not be obtained by subjective means. In this paper, we present a new objective-based clustering method and demonstrate that it yields high-quality results. Our method, modulated modularity clustering (MMC), seeks community structure in graphical data. MMC modulates the connection strengths of edges in a weighted graph to maximize an objective function (called modularity) that quantifies community structure. The result of this maximization is a clustering through which tightly-connected groups of vertices emerge. Our application is to systems genetics, and we quantitatively compare MMC both to the hierarchical clustering method most commonly employed and to three popular spectral clustering approaches. We further validate MMC through analyses of human and Drosophila melanogaster expression data, demonstrating that the clusters we obtain are biologically meaningful. We show MMC to be effective and suitable to applications of large scale. In light of these features, we advocate MMC as a standard tool for exploration and hypothesis generation. PMID:19424432
GOClonto: an ontological clustering approach for conceptualizing PubMed abstracts.
Zheng, Hai-Tao; Borchert, Charles; Kim, Hong-Gee
2010-02-01
Concurrent with progress in biomedical sciences, an overwhelming of textual knowledge is accumulating in the biomedical literature. PubMed is the most comprehensive database collecting and managing biomedical literature. To help researchers easily understand collections of PubMed abstracts, numerous clustering methods have been proposed to group similar abstracts based on their shared features. However, most of these methods do not explore the semantic relationships among groupings of documents, which could help better illuminate the groupings of PubMed abstracts. To address this issue, we proposed an ontological clustering method called GOClonto for conceptualizing PubMed abstracts. GOClonto uses latent semantic analysis (LSA) and gene ontology (GO) to identify key gene-related concepts and their relationships as well as allocate PubMed abstracts based on these key gene-related concepts. Based on two PubMed abstract collections, the experimental results show that GOClonto is able to identify key gene-related concepts and outperforms the STC (suffix tree clustering) algorithm, the Lingo algorithm, the Fuzzy Ants algorithm, and the clustering based TRS (tolerance rough set) algorithm. Moreover, the two ontologies generated by GOClonto show significant informative conceptual structures.
Ocké, Marga C
2013-05-01
This paper aims to describe different approaches for studying the overall diet with advantages and limitations. Studies of the overall diet have emerged because the relationship between dietary intake and health is very complex with all kinds of interactions. These cannot be captured well by studying single dietary components. Three main approaches to study the overall diet can be distinguished. The first method is researcher-defined scores or indices of diet quality. These are usually based on guidelines for a healthy diet or on diets known to be healthy. The second approach, using principal component or cluster analysis, is driven by the underlying dietary data. In principal component analysis, scales are derived based on the underlying relationships between food groups, whereas in cluster analysis, subgroups of the population are created with people that cluster together based on their dietary intake. A third approach includes methods that are driven by a combination of biological pathways and the underlying dietary data. Reduced rank regression defines linear combinations of food intakes that maximally explain nutrient intakes or intermediate markers of disease. Decision tree analysis identifies subgroups of a population whose members share dietary characteristics that influence (intermediate markers of) disease. It is concluded that all approaches have advantages and limitations and essentially answer different questions. The third approach is still more in an exploration phase, but seems to have great potential with complementary value. More insight into the utility of conducting studies on the overall diet can be gained if more attention is given to methodological issues.
Delineation of gravel-bed clusters via factorial kriging
NASA Astrophysics Data System (ADS)
Wu, Fu-Chun; Wang, Chi-Kuei; Huang, Guo-Hao
2018-05-01
Gravel-bed clusters are the most prevalent microforms that affect local flows and sediment transport. A growing consensus is that the practice of cluster delineation should be based primarily on bed topography rather than grain sizes. Here we present a novel approach for cluster delineation using patch-scale high-resolution digital elevation models (DEMs). We use a geostatistical interpolation method, i.e., factorial kriging, to decompose the short- and long-range (grain- and microform-scale) DEMs. The required parameters are determined directly from the scales of the nested variograms. The short-range DEM exhibits a flat bed topography, yet individual grains are sharply outlined, making the short-range DEM a useful aid for grain segmentation. The long-range DEM exhibits a smoother topography than the original full DEM, yet groupings of particles emerge as small-scale bedforms, making the contour percentile levels of the long-range DEM a useful tool for cluster identification. Individual clusters are delineated using the segmented grains and identified clusters via a range of contour percentile levels. Our results reveal that the density and total area of delineated clusters decrease with increasing contour percentile level, while the mean grain size of clusters and average size of anchor clast (i.e., the largest particle in a cluster) increase with the contour percentile level. These results support the interpretation that larger particles group as clusters and protrude higher above the bed than other smaller grains. A striking feature of the delineated clusters is that anchor clasts are invariably greater than the D90 of the grain sizes even though a threshold anchor size was not adopted herein. The average areal fractal dimensions (Hausdorff-Besicovich dimensions of the projected areas) of individual clusters, however, demonstrate that clusters delineated with different contour percentile levels exhibit similar planform morphologies. Comparisons with a compilation of existing field data show consistency with the cluster properties documented in a wide variety of settings. This study thus points toward a promising, alternative DEM-based approach to characterizing sediment structures in gravel-bed rivers.
Applications of Some Artificial Intelligence Methods to Satellite Soundings
NASA Technical Reports Server (NTRS)
Munteanu, M. J.; Jakubowicz, O.
1985-01-01
Hard clustering of temperature profiles and regression temperature retrievals were used to refine the method using the probabilities of membership of each pattern vector in each of the clusters derived with discriminant analysis. In hard clustering the maximum probability is taken and the corresponding cluster as the correct cluster are considered discarding the rest of the probabilities. In fuzzy partitioned clustering these probabilities are kept and the final regression retrieval is a weighted regression retrieval of several clusters. This method was used in the clustering of brightness temperatures where the purpose was to predict tropopause height. A further refinement is the division of temperature profiles into three major regions for classification purposes. The results are summarized in the tables total r.m.s. errors are displayed. An approach based on fuzzy logic which is intimately related to artificial intelligence methods is recommended.
Torheim, Turid; Groendahl, Aurora R; Andersen, Erlend K F; Lyng, Heidi; Malinen, Eirik; Kvaal, Knut; Futsaether, Cecilia M
2016-11-01
Solid tumors are known to be spatially heterogeneous. Detection of treatment-resistant tumor regions can improve clinical outcome, by enabling implementation of strategies targeting such regions. In this study, K-means clustering was used to group voxels in dynamic contrast enhanced magnetic resonance images (DCE-MRI) of cervical cancers. The aim was to identify clusters reflecting treatment resistance that could be used for targeted radiotherapy with a dose-painting approach. Eighty-one patients with locally advanced cervical cancer underwent DCE-MRI prior to chemoradiotherapy. The resulting image time series were fitted to two pharmacokinetic models, the Tofts model (yielding parameters K trans and ν e ) and the Brix model (A Brix , k ep and k el ). K-means clustering was used to group similar voxels based on either the pharmacokinetic parameter maps or the relative signal increase (RSI) time series. The associations between voxel clusters and treatment outcome (measured as locoregional control) were evaluated using the volume fraction or the spatial distribution of each cluster. One voxel cluster based on the RSI time series was significantly related to locoregional control (adjusted p-value 0.048). This cluster consisted of low-enhancing voxels. We found that tumors with poor prognosis had this RSI-based cluster gathered into few patches, making this cluster a potential candidate for targeted radiotherapy. None of the voxels clusters based on Tofts or Brix parameter maps were significantly related to treatment outcome. We identified one group of tumor voxels significantly associated with locoregional relapse that could potentially be used for dose painting. This tumor voxel cluster was identified using the raw MRI time series rather than the pharmacokinetic maps.
Longo, Dario Livio; Dastrù, Walter; Consolino, Lorena; Espak, Miklos; Arigoni, Maddalena; Cavallo, Federica; Aime, Silvio
2015-07-01
The objective of this study was to compare a clustering approach to conventional analysis methods for assessing changes in pharmacokinetic parameters obtained from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) during antiangiogenic treatment in a breast cancer model. BALB/c mice bearing established transplantable her2+ tumors were treated with a DNA-based antiangiogenic vaccine or with an empty plasmid (untreated group). DCE-MRI was carried out by administering a dose of 0.05 mmol/kg of Gadocoletic acid trisodium salt, a Gd-based blood pool contrast agent (CA) at 1T. Changes in pharmacokinetic estimates (K(trans) and vp) in a nine-day interval were compared between treated and untreated groups on a voxel-by-voxel analysis. The tumor response to therapy was assessed by a clustering approach and compared with conventional summary statistics, with sub-regions analysis and with histogram analysis. Both the K(trans) and vp estimates, following blood-pool CA injection, showed marked and spatial heterogeneous changes with antiangiogenic treatment. Averaged values for the whole tumor region, as well as from the rim/core sub-regions analysis were unable to assess the antiangiogenic response. Histogram analysis resulted in significant changes only in the vp estimates (p<0.05). The proposed clustering approach depicted marked changes in both the K(trans) and vp estimates, with significant spatial heterogeneity in vp maps in response to treatment (p<0.05), provided that DCE-MRI data are properly clustered in three or four sub-regions. This study demonstrated the value of cluster analysis applied to pharmacokinetic DCE-MRI parametric maps for assessing tumor response to antiangiogenic therapy. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Iswandhani, N.; Muhajir, M.
2018-03-01
This research was conducted in Department of Statistics Islamic University of Indonesia. The data used are primary data obtained by post @explorejogja instagram account from January until December 2016. In the @explorejogja instagram account found many tourist destinations that can be visited by tourists both in the country and abroad, Therefore it is necessary to form a cluster of existing tourist destinations based on the number of likes from user instagram assumed as the most popular. The purpose of this research is to know the most popular distribution of tourist spot, the cluster formation of tourist destinations, and central popularity of tourist destinations based on @explorejogja instagram account in 2016. Statistical analysis used is descriptive statistics, k-means clustering, and social network analysis. The results of this research were obtained the top 10 most popular destinations in Yogyakarta, map of html-based tourist destination distribution consisting of 121 tourist destination points, formed 3 clusters each consisting of cluster 1 with 52 destinations, cluster 2 with 9 destinations and cluster 3 with 60 destinations, and Central popularity of tourist destinations in the special region of Yogyakarta by district.
NeCamp, Timothy; Kilbourne, Amy; Almirall, Daniel
2017-08-01
Cluster-level dynamic treatment regimens can be used to guide sequential treatment decision-making at the cluster level in order to improve outcomes at the individual or patient-level. In a cluster-level dynamic treatment regimen, the treatment is potentially adapted and re-adapted over time based on changes in the cluster that could be impacted by prior intervention, including aggregate measures of the individuals or patients that compose it. Cluster-randomized sequential multiple assignment randomized trials can be used to answer multiple open questions preventing scientists from developing high-quality cluster-level dynamic treatment regimens. In a cluster-randomized sequential multiple assignment randomized trial, sequential randomizations occur at the cluster level and outcomes are observed at the individual level. This manuscript makes two contributions to the design and analysis of cluster-randomized sequential multiple assignment randomized trials. First, a weighted least squares regression approach is proposed for comparing the mean of a patient-level outcome between the cluster-level dynamic treatment regimens embedded in a sequential multiple assignment randomized trial. The regression approach facilitates the use of baseline covariates which is often critical in the analysis of cluster-level trials. Second, sample size calculators are derived for two common cluster-randomized sequential multiple assignment randomized trial designs for use when the primary aim is a between-dynamic treatment regimen comparison of the mean of a continuous patient-level outcome. The methods are motivated by the Adaptive Implementation of Effective Programs Trial which is, to our knowledge, the first-ever cluster-randomized sequential multiple assignment randomized trial in psychiatry.
Clustering single cells: a review of approaches on high-and low-depth single-cell RNA-seq data.
Menon, Vilas
2017-12-11
Advances in single-cell RNA-sequencing technology have resulted in a wealth of studies aiming to identify transcriptomic cell types in various biological systems. There are multiple experimental approaches to isolate and profile single cells, which provide different levels of cellular and tissue coverage. In addition, multiple computational strategies have been proposed to identify putative cell types from single-cell data. From a data generation perspective, recent single-cell studies can be classified into two groups: those that distribute reads shallowly over large numbers of cells and those that distribute reads more deeply over a smaller cell population. Although there are advantages to both approaches in terms of cellular and tissue coverage, it is unclear whether different computational cell type identification methods are better suited to one or the other experimental paradigm. This study reviews three cell type clustering algorithms, each representing one of three broad approaches, and finds that PCA-based algorithms appear most suited to low read depth data sets, whereas gene clustering-based and biclustering algorithms perform better on high read depth data sets. In addition, highly related cell classes are better distinguished by higher-depth data, given the same total number of reads; however, simultaneous discovery of distinct and similar types is better served by lower-depth, higher cell number data. Overall, this study suggests that the depth of profiling should be determined by initial assumptions about the diversity of cells in the population, and that the selection of clustering algorithm(s) is subsequently based on the depth of profiling will allow for better identification of putative transcriptomic cell types. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Techniques to derive geometries for image-based Eulerian computations
Dillard, Seth; Buchholz, James; Vigmostad, Sarah; Kim, Hyunggun; Udaykumar, H.S.
2014-01-01
Purpose The performance of three frequently used level set-based segmentation methods is examined for the purpose of defining features and boundary conditions for image-based Eulerian fluid and solid mechanics models. The focus of the evaluation is to identify an approach that produces the best geometric representation from a computational fluid/solid modeling point of view. In particular, extraction of geometries from a wide variety of imaging modalities and noise intensities, to supply to an immersed boundary approach, is targeted. Design/methodology/approach Two- and three-dimensional images, acquired from optical, X-ray CT, and ultrasound imaging modalities, are segmented with active contours, k-means, and adaptive clustering methods. Segmentation contours are converted to level sets and smoothed as necessary for use in fluid/solid simulations. Results produced by the three approaches are compared visually and with contrast ratio, signal-to-noise ratio, and contrast-to-noise ratio measures. Findings While the active contours method possesses built-in smoothing and regularization and produces continuous contours, the clustering methods (k-means and adaptive clustering) produce discrete (pixelated) contours that require smoothing using speckle-reducing anisotropic diffusion (SRAD). Thus, for images with high contrast and low to moderate noise, active contours are generally preferable. However, adaptive clustering is found to be far superior to the other two methods for images possessing high levels of noise and global intensity variations, due to its more sophisticated use of local pixel/voxel intensity statistics. Originality/value It is often difficult to know a priori which segmentation will perform best for a given image type, particularly when geometric modeling is the ultimate goal. This work offers insight to the algorithm selection process, as well as outlining a practical framework for generating useful geometric surfaces in an Eulerian setting. PMID:25750470
Liao, Fuyuan; Jan, Yih-Kuen
2012-06-01
This paper presents a recurrence network approach for the analysis of skin blood flow dynamics in response to loading pressure. Recurrence is a fundamental property of many dynamical systems, which can be explored in phase spaces constructed from observational time series. A visualization tool of recurrence analysis called recurrence plot (RP) has been proved to be highly effective to detect transitions in the dynamics of the system. However, it was found that delay embedding can produce spurious structures in RPs. Network-based concepts have been applied for the analysis of nonlinear time series recently. We demonstrate that time series with different types of dynamics exhibit distinct global clustering coefficients and distributions of local clustering coefficients and that the global clustering coefficient is robust to the embedding parameters. We applied the approach to study skin blood flow oscillations (BFO) response to loading pressure. The results showed that global clustering coefficients of BFO significantly decreased in response to loading pressure (p<0.01). Moreover, surrogate tests indicated that such a decrease was associated with a loss of nonlinearity of BFO. Our results suggest that the recurrence network approach can practically quantify the nonlinear dynamics of BFO.
Interactive visual exploration and refinement of cluster assignments.
Kern, Michael; Lex, Alexander; Gehlenborg, Nils; Johnson, Chris R
2017-09-12
With ever-increasing amounts of data produced in biology research, scientists are in need of efficient data analysis methods. Cluster analysis, combined with visualization of the results, is one such method that can be used to make sense of large data volumes. At the same time, cluster analysis is known to be imperfect and depends on the choice of algorithms, parameters, and distance measures. Most clustering algorithms don't properly account for ambiguity in the source data, as records are often assigned to discrete clusters, even if an assignment is unclear. While there are metrics and visualization techniques that allow analysts to compare clusterings or to judge cluster quality, there is no comprehensive method that allows analysts to evaluate, compare, and refine cluster assignments based on the source data, derived scores, and contextual data. In this paper, we introduce a method that explicitly visualizes the quality of cluster assignments, allows comparisons of clustering results and enables analysts to manually curate and refine cluster assignments. Our methods are applicable to matrix data clustered with partitional, hierarchical, and fuzzy clustering algorithms. Furthermore, we enable analysts to explore clustering results in context of other data, for example, to observe whether a clustering of genomic data results in a meaningful differentiation in phenotypes. Our methods are integrated into Caleydo StratomeX, a popular, web-based, disease subtype analysis tool. We show in a usage scenario that our approach can reveal ambiguities in cluster assignments and produce improved clusterings that better differentiate genotypes and phenotypes.
Fast large-scale clustering of protein structures using Gauss integrals.
Harder, Tim; Borg, Mikael; Boomsma, Wouter; Røgen, Peter; Hamelryck, Thomas
2012-02-15
Clustering protein structures is an important task in structural bioinformatics. De novo structure prediction, for example, often involves a clustering step for finding the best prediction. Other applications include assigning proteins to fold families and analyzing molecular dynamics trajectories. We present Pleiades, a novel approach to clustering protein structures with a rigorous mathematical underpinning. The method approximates clustering based on the root mean square deviation by first mapping structures to Gauss integral vectors--which were introduced by Røgen and co-workers--and subsequently performing K-means clustering. Compared to current methods, Pleiades dramatically improves on the time needed to perform clustering, and can cluster a significantly larger number of structures, while providing state-of-the-art results. The number of low energy structures generated in a typical folding study, which is in the order of 50,000 structures, can be clustered within seconds to minutes.
Event-based cluster synchronization of coupled genetic regulatory networks
NASA Astrophysics Data System (ADS)
Yue, Dandan; Guan, Zhi-Hong; Li, Tao; Liao, Rui-Quan; Liu, Feng; Lai, Qiang
2017-09-01
In this paper, the cluster synchronization of coupled genetic regulatory networks with a directed topology is studied by using the event-based strategy and pinning control. An event-triggered condition with a threshold consisting of the neighbors' discrete states at their own event time instants and a state-independent exponential decay function is proposed. The intra-cluster states information and extra-cluster states information are involved in the threshold in different ways. By using the Lyapunov function approach and the theories of matrices and inequalities, we establish the cluster synchronization criterion. It is shown that both the avoidance of continuous transmission of information and the exclusion of the Zeno behavior are ensured under the presented triggering condition. Explicit conditions on the parameters in the threshold are obtained for synchronization. The stability criterion of a single GRN is also given under the reduced triggering condition. Numerical examples are provided to validate the theoretical results.
A dynamic scheduling algorithm for singe-arm two-cluster tools with flexible processing times
NASA Astrophysics Data System (ADS)
Li, Xin; Fung, Richard Y. K.
2018-02-01
This article presents a dynamic algorithm for job scheduling in two-cluster tools producing multi-type wafers with flexible processing times. Flexible processing times mean that the actual times for processing wafers should be within given time intervals. The objective of the work is to minimize the completion time of the newly inserted wafer. To deal with this issue, a two-cluster tool is decomposed into three reduced single-cluster tools (RCTs) in a series based on a decomposition approach proposed in this article. For each single-cluster tool, a dynamic scheduling algorithm based on temporal constraints is developed to schedule the newly inserted wafer. Three experiments have been carried out to test the dynamic scheduling algorithm proposed, comparing with the results the 'earliest starting time' heuristic (EST) adopted in previous literature. The results show that the dynamic algorithm proposed in this article is effective and practical.
Ant colony algorithm for clustering in portfolio optimization
NASA Astrophysics Data System (ADS)
Subekti, R.; Sari, E. R.; Kusumawati, R.
2018-03-01
This research aims to describe portfolio optimization using clustering methods with ant colony approach. Two stock portfolios of LQ45 Indonesia is proposed based on the cluster results obtained from ant colony optimization (ACO). The first portfolio consists of assets with ant colony displacement opportunities beyond the defined probability limits of the researcher, where the weight of each asset is determined by mean-variance method. The second portfolio consists of two assets with the assumption that each asset is a cluster formed from ACO. The first portfolio has a better performance compared to the second portfolio seen from the Sharpe index.
Tobacco, Marijuana, and Alcohol Use in University Students: A Cluster Analysis
Primack, Brian A.; Kim, Kevin H.; Shensa, Ariel; Sidani, Jaime E.; Barnett, Tracey E.; Switzer, Galen E.
2012-01-01
Objective Segmentation of populations may facilitate development of targeted substance abuse prevention programs. We aimed to partition a national sample of university students according to profiles based on substance use. Participants We used 2008–2009 data from the National College Health Assessment from the American College Health Association. Our sample consisted of 111,245 individuals from 158 institutions. Method We partitioned the sample using cluster analysis according to current substance use behaviors. We examined the association of cluster membership with individual and institutional characteristics. Results Cluster analysis yielded six distinct clusters. Three individual factors—gender, year in school, and fraternity/sorority membership—were the most strongly associated with cluster membership. Conclusions In a large sample of university students, we were able to identify six distinct patterns of substance abuse. It may be valuable to target specific populations of college-aged substance users based on individual factors. However, comprehensive intervention will require a multifaceted approach. PMID:22686360
Exploring spatial evolution of economic clusters: A case study of Beijing
NASA Astrophysics Data System (ADS)
Yang, Zhenshan; Sliuzas, Richard; Cai, Jianming; Ottens, Henk F. L.
2012-10-01
An identification of economic clusters and analysing their changing spatial patterns is important for understanding urban economic space dynamics. Previous studies, however, suffer from limitations as a consequence of using fixed geographically areas and not combining functional and spatial dynamics. The paper presents an approach, based on local spatial statistics and the case of Beijing to understand the spatial clustering of industries that are functionally interconnected by common or complementary patterns of demand or supply relations. Using register data of business establishments, it identifies economic clusters and analyses their pattern based on postcodes at different time slices during the period 1983-2002. The study shows how the advanced services occupy the urban centre and key sub centres. The Information and Communication Technology (ICT) cluster is mainly concentrated in the north part of the city and circles the urban centre, and the main manufacturing clusters are evolved in the key sub centers. This type of outcomes improves understanding of urban-economic dynamics, which can support spatial and economic planning.
Efficient similarity-based data clustering by optimal object to cluster reallocation.
Rossignol, Mathias; Lagrange, Mathieu; Cont, Arshia
2018-01-01
We present an iterative flat hard clustering algorithm designed to operate on arbitrary similarity matrices, with the only constraint that these matrices be symmetrical. Although functionally very close to kernel k-means, our proposal performs a maximization of average intra-class similarity, instead of a squared distance minimization, in order to remain closer to the semantics of similarities. We show that this approach permits the relaxing of some conditions on usable affinity matrices like semi-positiveness, as well as opening possibilities for computational optimization required for large datasets. Systematic evaluation on a variety of data sets shows that compared with kernel k-means and the spectral clustering methods, the proposed approach gives equivalent or better performance, while running much faster. Most notably, it significantly reduces memory access, which makes it a good choice for large data collections. Material enabling the reproducibility of the results is made available online.
ERIC Educational Resources Information Center
Esongo, Njie Martin
2017-01-01
The study takes an in-depth examination of the extent to which the availability of resources relates to the efficiency of the school system within the framework of the implementation of competency-based teaching approaches in Cameroon. The study employed a mix of probability sampling approaches, namely simple, cluster and stratified random…
Career Decision Statuses among Portuguese Secondary School Students: A Cluster Analytical Approach
ERIC Educational Resources Information Center
Santos, Paulo Jorge; Ferreira, Joaquim Armando
2012-01-01
Career indecision is a complex phenomenon and an increasing number of authors have proposed that undecided individuals do not form a group with homogeneous characteristics. This study examines career decision statuses among a sample of 362 12th-grade Portuguese students. A cluster-analytical procedure, based on a battery of instruments designed to…
`Inter-Arrival Time' Inspired Algorithm and its Application in Clustering and Molecular Phylogeny
NASA Astrophysics Data System (ADS)
Kolekar, Pandurang S.; Kale, Mohan M.; Kulkarni-Kale, Urmila
2010-10-01
Bioinformatics, being multidisciplinary field, involves applications of various methods from allied areas of Science for data mining using computational approaches. Clustering and molecular phylogeny is one of the key areas in Bioinformatics, which help in study of classification and evolution of organisms. Molecular phylogeny algorithms can be divided into distance based and character based methods. But most of these methods are dependent on pre-alignment of sequences and become computationally intensive with increase in size of data and hence demand alternative efficient approaches. `Inter arrival time distribution' (IATD) is a popular concept in the theory of stochastic system modeling but its potential in molecular data analysis has not been fully explored. The present study reports application of IATD in Bioinformatics for clustering and molecular phylogeny. The proposed method provides IATDs of nucleotides in genomic sequences. The distance function based on statistical parameters of IATDs is proposed and distance matrix thus obtained is used for the purpose of clustering and molecular phylogeny. The method is applied on a dataset of 3' non-coding region sequences (NCR) of Dengue virus type 3 (DENV-3), subtype III, reported in 2008. The phylogram thus obtained revealed the geographical distribution of DENV-3 isolates. Sri Lankan DENV-3 isolates were further observed to be clustered in two sub-clades corresponding to pre and post Dengue hemorrhagic fever emergence groups. These results are consistent with those reported earlier, which are obtained using pre-aligned sequence data as an input. These findings encourage applications of the IATD based method in molecular phylogenetic analysis in particular and data mining in general.
The Gap Procedure: for the identification of phylogenetic clusters in HIV-1 sequence data.
Vrbik, Irene; Stephens, David A; Roger, Michel; Brenner, Bluma G
2015-11-04
In the context of infectious disease, sequence clustering can be used to provide important insights into the dynamics of transmission. Cluster analysis is usually performed using a phylogenetic approach whereby clusters are assigned on the basis of sufficiently small genetic distances and high bootstrap support (or posterior probabilities). The computational burden involved in this phylogenetic threshold approach is a major drawback, especially when a large number of sequences are being considered. In addition, this method requires a skilled user to specify the appropriate threshold values which may vary widely depending on the application. This paper presents the Gap Procedure, a distance-based clustering algorithm for the classification of DNA sequences sampled from individuals infected with the human immunodeficiency virus type 1 (HIV-1). Our heuristic algorithm bypasses the need for phylogenetic reconstruction, thereby supporting the quick analysis of large genetic data sets. Moreover, this fully automated procedure relies on data-driven gaps in sorted pairwise distances to infer clusters, thus no user-specified threshold values are required. The clustering results obtained by the Gap Procedure on both real and simulated data, closely agree with those found using the threshold approach, while only requiring a fraction of the time to complete the analysis. Apart from the dramatic gains in computational time, the Gap Procedure is highly effective in finding distinct groups of genetically similar sequences and obviates the need for subjective user-specified values. The clusters of genetically similar sequences returned by this procedure can be used to detect patterns in HIV-1 transmission and thereby aid in the prevention, treatment and containment of the disease.
Comments on "The multisynapse neural network and its application to fuzzy clustering".
Yu, Jian; Hao, Pengwei
2005-05-01
In the above-mentioned paper, Wei and Fahn proposed a neural architecture, the multisynapse neural network, to solve constrained optimization problems including high-order, logarithmic, and sinusoidal forms, etc. As one of its main applications, a fuzzy bidirectional associative clustering network (FBACN) was proposed for fuzzy-partition clustering according to the objective-functional method. The connection between the objective-functional-based fuzzy c-partition algorithms and FBACN is the Lagrange multiplier approach. Unfortunately, the Lagrange multiplier approach was incorrectly applied so that FBACN does not equivalently minimize its corresponding constrained objective-function. Additionally, Wei and Fahn adopted traditional definition of fuzzy c-partition, which is not satisfied by FBACN. Therefore, FBACN can not solve constrained optimization problems, either.
Tweets clustering using latent semantic analysis
NASA Astrophysics Data System (ADS)
Rasidi, Norsuhaili Mahamed; Bakar, Sakhinah Abu; Razak, Fatimah Abdul
2017-04-01
Social media are becoming overloaded with information due to the increasing number of information feeds. Unlike other social media, Twitter users are allowed to broadcast a short message called as `tweet". In this study, we extract tweets related to MH370 for certain of time. In this paper, we present overview of our approach for tweets clustering to analyze the users' responses toward tragedy of MH370. The tweets were clustered based on the frequency of terms obtained from the classification process. The method we used for the text classification is Latent Semantic Analysis. As a result, there are two types of tweets that response to MH370 tragedy which is emotional and non-emotional. We show some of our initial results to demonstrate the effectiveness of our approach.
Arpino, Bruno; Cannas, Massimo
2016-05-30
This article focuses on the implementation of propensity score matching for clustered data. Different approaches to reduce bias due to cluster-level confounders are considered and compared using Monte Carlo simulations. We investigated methods that exploit the clustered structure of the data in two ways: in the estimation of the propensity score model (through the inclusion of fixed or random effects) or in the implementation of the matching algorithm. In addition to a pure within-cluster matching, we also assessed the performance of a new approach, 'preferential' within-cluster matching. This approach first searches for control units to be matched to treated units within the same cluster. If matching is not possible within-cluster, then the algorithm searches in other clusters. All considered approaches successfully reduced the bias due to the omission of a cluster-level confounder. The preferential within-cluster matching approach, combining the advantages of within-cluster and between-cluster matching, showed a relatively good performance both in the presence of big and small clusters, and it was often the best method. An important advantage of this approach is that it reduces the number of unmatched units as compared with a pure within-cluster matching. We applied these methods to the estimation of the effect of caesarean section on the Apgar score using birth register data. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Kamer, Yavor; Ouillon, Guy; Sornette, Didier; Wössner, Jochen
2014-05-01
We present applications of a new clustering method for fault network reconstruction based on the spatial distribution of seismicity. Unlike common approaches that start from the simplest large scale and gradually increase the complexity trying to explain the small scales, our method uses a bottom-up approach, by an initial sampling of the small scales and then reducing the complexity. The new approach also exploits the location uncertainty associated with each event in order to obtain a more accurate representation of the spatial probability distribution of the seismicity. For a given dataset, we first construct an agglomerative hierarchical cluster (AHC) tree based on Ward's minimum variance linkage. Such a tree starts out with one cluster and progressively branches out into an increasing number of clusters. To atomize the structure into its constitutive protoclusters, we initialize a Gaussian Mixture Modeling (GMM) at a given level of the hierarchical clustering tree. We then let the GMM converge using an Expectation Maximization (EM) algorithm. The kernels that become ill defined (less than 4 points) at the end of the EM are discarded. By incrementing the number of initialization clusters (by atomizing at increasingly populated levels of the AHC tree) and repeating the procedure above, we are able to determine the maximum number of Gaussian kernels the structure can hold. The kernels in this configuration constitute our protoclusters. In this setting, merging of any pair will lessen the likelihood (calculated over the pdf of the kernels) but in turn will reduce the model's complexity. The information loss/gain of any possible merging can thus be quantified based on the Minimum Description Length (MDL) principle. Similar to an inter-distance matrix, where the matrix element di,j gives the distance between points i and j, we can construct a MDL gain/loss matrix where mi,j gives the information gain/loss resulting from the merging of kernels i and j. Based on this matrix, merging events resulting in MDL gain are performed in descending order until no gainful merging is possible anymore. We envision that the results of this study could lead to a better understanding of the complex interactions within the Californian fault system and hopefully use the acquired insights for earthquake forecasting.
Xu, Min; Wang, Yemin; Zhao, Zhilong; Gao, Guixi; Huang, Sheng-Xiong; Kang, Qianjin; He, Xinyi; Lin, Shuangjun; Pang, Xiuhua; Deng, Zixin
2016-01-01
ABSTRACT Genome sequencing projects in the last decade revealed numerous cryptic biosynthetic pathways for unknown secondary metabolites in microbes, revitalizing drug discovery from microbial metabolites by approaches called genome mining. In this work, we developed a heterologous expression and functional screening approach for genome mining from genomic bacterial artificial chromosome (BAC) libraries in Streptomyces spp. We demonstrate mining from a strain of Streptomyces rochei, which is known to produce streptothricins and borrelidin, by expressing its BAC library in the surrogate host Streptomyces lividans SBT5, and screening for antimicrobial activity. In addition to the successful capture of the streptothricin and borrelidin biosynthetic gene clusters, we discovered two novel linear lipopeptides and their corresponding biosynthetic gene cluster, as well as a novel cryptic gene cluster for an unknown antibiotic from S. rochei. This high-throughput functional genome mining approach can be easily applied to other streptomycetes, and it is very suitable for the large-scale screening of genomic BAC libraries for bioactive natural products and the corresponding biosynthetic pathways. IMPORTANCE Microbial genomes encode numerous cryptic biosynthetic gene clusters for unknown small metabolites with potential biological activities. Several genome mining approaches have been developed to activate and bring these cryptic metabolites to biological tests for future drug discovery. Previous sequence-guided procedures relied on bioinformatic analysis to predict potentially interesting biosynthetic gene clusters. In this study, we describe an efficient approach based on heterologous expression and functional screening of a whole-genome library for the mining of bioactive metabolites from Streptomyces. The usefulness of this function-driven approach was demonstrated by the capture of four large biosynthetic gene clusters for metabolites of various chemical types, including streptothricins, borrelidin, two novel lipopeptides, and one unknown antibiotic from Streptomyces rochei Sal35. The transfer, expression, and screening of the library were all performed in a high-throughput way, so that this approach is scalable and adaptable to industrial automation for next-generation antibiotic discovery. PMID:27451447
de Jong, Jan A Stavenga; Wierstra, Ronny F A; Hermanussen, José
2006-03-01
Research on individual learning approaches (or learning styles) is split in two traditions, one of which is biased towards academic learning, and the other towards learning from direct experience. In the reported study, the two traditions are linked by investigating the relationships between school-based (academic) and work-based (experiential) learning approaches of students in vocational education programs. Participants were 899 students of a Dutch school for secondary vocational education; 758 provided data on school-based learning, and 407 provided data on work-based learning, resulting in an overlap of 266 students from whom data were obtained on learning in both settings. Learning approaches in school and work settings were measured with questionnaires. Using factor analysis and cluster analysis, items and students were grouped, both with respect to school- and work-based learning. The study identified two academic learning dimensions (constructive learning and reproductive learning), and three experiential learning dimensions (analysis, initiative, and immersion). Construction and analysis were correlated positively, and reproduction and initiative negatively. Cluster analysis resulted in the identification of three school-based learning orientations and three work-based learning orientations. The relation between the two types of learning orientations, expressed in Cramér's V, appeared to be weak. It is concluded that learning approaches are relatively context specific, which implies that neither theoretical tradition can claim general applicability.
Tian, Ting; McLachlan, Geoffrey J.; Dieters, Mark J.; Basford, Kaye E.
2015-01-01
It is a common occurrence in plant breeding programs to observe missing values in three-way three-mode multi-environment trial (MET) data. We proposed modifications of models for estimating missing observations for these data arrays, and developed a novel approach in terms of hierarchical clustering. Multiple imputation (MI) was used in four ways, multiple agglomerative hierarchical clustering, normal distribution model, normal regression model, and predictive mean match. The later three models used both Bayesian analysis and non-Bayesian analysis, while the first approach used a clustering procedure with randomly selected attributes and assigned real values from the nearest neighbour to the one with missing observations. Different proportions of data entries in six complete datasets were randomly selected to be missing and the MI methods were compared based on the efficiency and accuracy of estimating those values. The results indicated that the models using Bayesian analysis had slightly higher accuracy of estimation performance than those using non-Bayesian analysis but they were more time-consuming. However, the novel approach of multiple agglomerative hierarchical clustering demonstrated the overall best performances. PMID:26689369
Tian, Ting; McLachlan, Geoffrey J; Dieters, Mark J; Basford, Kaye E
2015-01-01
It is a common occurrence in plant breeding programs to observe missing values in three-way three-mode multi-environment trial (MET) data. We proposed modifications of models for estimating missing observations for these data arrays, and developed a novel approach in terms of hierarchical clustering. Multiple imputation (MI) was used in four ways, multiple agglomerative hierarchical clustering, normal distribution model, normal regression model, and predictive mean match. The later three models used both Bayesian analysis and non-Bayesian analysis, while the first approach used a clustering procedure with randomly selected attributes and assigned real values from the nearest neighbour to the one with missing observations. Different proportions of data entries in six complete datasets were randomly selected to be missing and the MI methods were compared based on the efficiency and accuracy of estimating those values. The results indicated that the models using Bayesian analysis had slightly higher accuracy of estimation performance than those using non-Bayesian analysis but they were more time-consuming. However, the novel approach of multiple agglomerative hierarchical clustering demonstrated the overall best performances.
Value-based customer grouping from large retail data sets
NASA Astrophysics Data System (ADS)
Strehl, Alexander; Ghosh, Joydeep
2000-04-01
In this paper, we propose OPOSSUM, a novel similarity-based clustering algorithm using constrained, weighted graph- partitioning. Instead of binary presence or absence of products in a market-basket, we use an extended 'revenue per product' measure to better account for management objectives. Typically the number of clusters desired in a database marketing application is only in the teens or less. OPOSSUM proceeds top-down, which is more efficient and takes a small number of steps to attain the desired number of clusters as compared to bottom-up agglomerative clustering approaches. OPOSSUM delivers clusters that are balanced in terms of either customers (samples) or revenue (value). To facilitate data exploration and validation of results we introduce CLUSION, a visualization toolkit for high-dimensional clustering problems. To enable closed loop deployment of the algorithm, OPOSSUM has no user-specified parameters. Thresholding heuristics are avoided and the optimal number of clusters is automatically determined by a search for maximum performance. Results are presented on a real retail industry data-set of several thousand customers and products, to demonstrate the power of the proposed technique.
Fermi liquid, clustering, and structure factor in dilute warm nuclear matter
NASA Astrophysics Data System (ADS)
Röpke, G.; Voskresensky, D. N.; Kryukov, I. A.; Blaschke, D.
2018-02-01
Properties of nuclear systems at subsaturation densities can be obtained from different approaches. We demonstrate the use of the density autocorrelation function which is related to the isothermal compressibility and, after integration, to the equation of state. This way we connect the Landau Fermi liquid theory well elaborated in nuclear physics with the approaches to dilute nuclear matter describing cluster formation. A quantum statistical approach is presented, based on the cluster decomposition of the polarization function. The fundamental quantity to be calculated is the dynamic structure factor. Comparing with the Landau Fermi liquid theory which is reproduced in lowest approximation, the account of bound state formation and continuum correlations gives the correct low-density result as described by the second virial coefficient and by the mass action law (nuclear statistical equilibrium). Going to higher densities, the inclusion of medium effects is more involved compared with other quantum statistical approaches, but the relation to the Landau Fermi liquid theory gives a promising approach to describe not only thermodynamic but also collective excitations and non-equilibrium properties of nuclear systems in a wide region of the phase diagram.
Sumner, Isaiah; Iyengar, Srinivasan S
2007-10-18
We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.
Fuzzy Kernel k-Medoids algorithm for anomaly detection problems
NASA Astrophysics Data System (ADS)
Rustam, Z.; Talita, A. S.
2017-07-01
Intrusion Detection System (IDS) is an essential part of security systems to strengthen the security of information systems. IDS can be used to detect the abuse by intruders who try to get into the network system in order to access and utilize the available data sources in the system. There are two approaches of IDS, Misuse Detection and Anomaly Detection (behavior-based intrusion detection). Fuzzy clustering-based methods have been widely used to solve Anomaly Detection problems. Other than using fuzzy membership concept to determine the object to a cluster, other approaches as in combining fuzzy and possibilistic membership or feature-weighted based methods are also used. We propose Fuzzy Kernel k-Medoids that combining fuzzy and possibilistic membership as a powerful method to solve anomaly detection problem since on numerical experiment it is able to classify IDS benchmark data into five different classes simultaneously. We classify IDS benchmark data KDDCup'99 data set into five different classes simultaneously with the best performance was achieved by using 30 % of training data with clustering accuracy reached 90.28 percent.
NASA Astrophysics Data System (ADS)
Keshtkaran, Mohammad Reza; Yang, Zhi
2017-06-01
Objective. Spike sorting is a fundamental preprocessing step for many neuroscience studies which rely on the analysis of spike trains. Most of the feature extraction and dimensionality reduction techniques that have been used for spike sorting give a projection subspace which is not necessarily the most discriminative one. Therefore, the clusters which appear inherently separable in some discriminative subspace may overlap if projected using conventional feature extraction approaches leading to a poor sorting accuracy especially when the noise level is high. In this paper, we propose a noise-robust and unsupervised spike sorting algorithm based on learning discriminative spike features for clustering. Approach. The proposed algorithm uses discriminative subspace learning to extract low dimensional and most discriminative features from the spike waveforms and perform clustering with automatic detection of the number of the clusters. The core part of the algorithm involves iterative subspace selection using linear discriminant analysis and clustering using Gaussian mixture model with outlier detection. A statistical test in the discriminative subspace is proposed to automatically detect the number of the clusters. Main results. Comparative results on publicly available simulated and real in vivo datasets demonstrate that our algorithm achieves substantially improved cluster distinction leading to higher sorting accuracy and more reliable detection of clusters which are highly overlapping and not detectable using conventional feature extraction techniques such as principal component analysis or wavelets. Significance. By providing more accurate information about the activity of more number of individual neurons with high robustness to neural noise and outliers, the proposed unsupervised spike sorting algorithm facilitates more detailed and accurate analysis of single- and multi-unit activities in neuroscience and brain machine interface studies.
McAllister, Christine A; Miller, Allison J
2016-07-01
Autopolyploidy, genome duplication within a single lineage, can result in multiple cytotypes within a species. Geographic distributions of cytotypes may reflect the evolutionary history of autopolyploid formation and subsequent population dynamics including stochastic (drift) and deterministic (differential selection among cytotypes) processes. Here, we used a population genomic approach to investigate whether autopolyploidy occurred once or multiple times in Andropogon gerardii, a widespread, North American grass with two predominant cytotypes. Genotyping by sequencing was used to identify single nucleotide polymorphisms (SNPs) in individuals collected from across the geographic range of A. gerardii. Two independent approaches to SNP calling were used: the reference-free UNEAK pipeline and a reference-guided approach based on the sequenced Sorghum bicolor genome. SNPs generated using these pipelines were analyzed independently with genetic distance and clustering. Analyses of the two SNP data sets showed very similar patterns of population-level clustering of A. gerardii individuals: a cluster of A. gerardii individuals from the southern Plains, a northern Plains cluster, and a western cluster. Groupings of individuals corresponded to geographic localities regardless of cytotype: 6x and 9x individuals from the same geographic area clustered together. SNPs generated using reference-guided and reference-free pipelines in A. gerardii yielded unique subsets of genomic data. Both data sets suggest that the 9x cytotype in A. gerardii likely evolved multiple times from 6x progenitors across the range of the species. Genomic approaches like GBS and diverse bioinformatics pipelines used here facilitate evolutionary analyses of complex systems with multiple ploidy levels. © 2016 Botanical Society of America.
O'Donovan, Clare B; Walsh, Marianne C; Woolhead, Clara; Forster, Hannah; Celis-Morales, Carlos; Fallaize, Rosalind; Macready, Anna L; Marsaux, Cyril F M; Navas-Carretero, Santiago; Rodrigo San-Cristobal, S; Kolossa, Silvia; Tsirigoti, Lydia; Mvrogianni, Christina; Lambrinou, Christina P; Moschonis, George; Godlewska, Magdalena; Surwillo, Agnieszka; Traczyk, Iwona; Drevon, Christian A; Daniel, Hannelore; Manios, Yannis; Martinez, J Alfredo; Saris, Wim H M; Lovegrove, Julie A; Mathers, John C; Gibney, Michael J; Gibney, Eileen R; Brennan, Lorraine
2017-10-01
Traditionally, personalised nutrition was delivered at an individual level. However, the concept of delivering tailored dietary advice at a group level through the identification of metabotypes or groups of metabolically similar individuals has emerged. Although this approach to personalised nutrition looks promising, further work is needed to examine this concept across a wider population group. Therefore, the objectives of this study are to: (1) identify metabotypes in a European population and (2) develop targeted dietary advice solutions for these metabotypes. Using data from the Food4Me study (n 1607), k-means cluster analysis revealed the presence of three metabolically distinct clusters based on twenty-seven metabolic markers including cholesterol, individual fatty acids and carotenoids. Cluster 2 was identified as a metabolically healthy metabotype as these individuals had the highest Omega-3 Index (6·56 (sd 1·29) %), carotenoids (2·15 (sd 0·71) µm) and lowest total saturated fat levels. On the basis of its fatty acid profile, cluster 1 was characterised as a metabolically unhealthy cluster. Targeted dietary advice solutions were developed per cluster using a decision tree approach. Testing of the approach was performed by comparison with the personalised dietary advice, delivered by nutritionists to Food4Me study participants (n 180). Excellent agreement was observed between the targeted and individualised approaches with an average match of 82 % at the level of delivery of the same dietary message. Future work should ascertain whether this proposed method could be utilised in a healthcare setting, for the rapid and efficient delivery of tailored dietary advice solutions.
An effective trust-based recommendation method using a novel graph clustering algorithm
NASA Astrophysics Data System (ADS)
Moradi, Parham; Ahmadian, Sajad; Akhlaghian, Fardin
2015-10-01
Recommender systems are programs that aim to provide personalized recommendations to users for specific items (e.g. music, books) in online sharing communities or on e-commerce sites. Collaborative filtering methods are important and widely accepted types of recommender systems that generate recommendations based on the ratings of like-minded users. On the other hand, these systems confront several inherent issues such as data sparsity and cold start problems, caused by fewer ratings against the unknowns that need to be predicted. Incorporating trust information into the collaborative filtering systems is an attractive approach to resolve these problems. In this paper, we present a model-based collaborative filtering method by applying a novel graph clustering algorithm and also considering trust statements. In the proposed method first of all, the problem space is represented as a graph and then a sparsest subgraph finding algorithm is applied on the graph to find the initial cluster centers. Then, the proposed graph clustering algorithm is performed to obtain the appropriate users/items clusters. Finally, the identified clusters are used as a set of neighbors to recommend unseen items to the current active user. Experimental results based on three real-world datasets demonstrate that the proposed method outperforms several state-of-the-art recommender system methods.
Dynamic Trajectory Extraction from Stereo Vision Using Fuzzy Clustering
NASA Astrophysics Data System (ADS)
Onishi, Masaki; Yoda, Ikushi
In recent years, many human tracking researches have been proposed in order to analyze human dynamic trajectory. These researches are general technology applicable to various fields, such as customer purchase analysis in a shopping environment and safety control in a (railroad) crossing. In this paper, we present a new approach for tracking human positions by stereo image. We use the framework of two-stepped clustering with k-means method and fuzzy clustering to detect human regions. In the initial clustering, k-means method makes middle clusters from objective features extracted by stereo vision at high speed. In the last clustering, c-means fuzzy method cluster middle clusters based on attributes into human regions. Our proposed method can be correctly clustered by expressing ambiguity using fuzzy clustering, even when many people are close to each other. The validity of our technique was evaluated with the experiment of trajectories extraction of doctors and nurses in an emergency room of a hospital.
Hebbian self-organizing integrate-and-fire networks for data clustering.
Landis, Florian; Ott, Thomas; Stoop, Ruedi
2010-01-01
We propose a Hebbian learning-based data clustering algorithm using spiking neurons. The algorithm is capable of distinguishing between clusters and noisy background data and finds an arbitrary number of clusters of arbitrary shape. These properties render the approach particularly useful for visual scene segmentation into arbitrarily shaped homogeneous regions. We present several application examples, and in order to highlight the advantages and the weaknesses of our method, we systematically compare the results with those from standard methods such as the k-means and Ward's linkage clustering. The analysis demonstrates that not only the clustering ability of the proposed algorithm is more powerful than those of the two concurrent methods, the time complexity of the method is also more modest than that of its generally used strongest competitor.
Quan, Guotao; Gong, Hui; Deng, Yong; Fu, Jianwei; Luo, Qingming
2011-02-01
High-speed fluorescence molecular tomography (FMT) reconstruction for 3-D heterogeneous media is still one of the most challenging problems in diffusive optical fluorescence imaging. In this paper, we propose a fast FMT reconstruction method that is based on Monte Carlo (MC) simulation and accelerated by a cluster of graphics processing units (GPUs). Based on the Message Passing Interface standard, we modified the MC code for fast FMT reconstruction, and different Green's functions representing the flux distribution in media are calculated simultaneously by different GPUs in the cluster. A load-balancing method was also developed to increase the computational efficiency. By applying the Fréchet derivative, a Jacobian matrix is formed to reconstruct the distribution of the fluorochromes using the calculated Green's functions. Phantom experiments have shown that only 10 min are required to get reconstruction results with a cluster of 6 GPUs, rather than 6 h with a cluster of multiple dual opteron CPU nodes. Because of the advantages of high accuracy and suitability for 3-D heterogeneity media with refractive-index-unmatched boundaries from the MC simulation, the GPU cluster-accelerated method provides a reliable approach to high-speed reconstruction for FMT imaging.
Yang, Guang; Nawaz, Tahir; Barrick, Thomas R; Howe, Franklyn A; Slabaugh, Greg
2015-12-01
Many approaches have been considered for automatic grading of brain tumors by means of pattern recognition with magnetic resonance spectroscopy (MRS). Providing an improved technique which can assist clinicians in accurately identifying brain tumor grades is our main objective. The proposed technique, which is based on the discrete wavelet transform (DWT) of whole-spectral or subspectral information of key metabolites, combined with unsupervised learning, inspects the separability of the extracted wavelet features from the MRS signal to aid the clustering. In total, we included 134 short echo time single voxel MRS spectra (SV MRS) in our study that cover normal controls, low grade and high grade tumors. The combination of DWT-based whole-spectral or subspectral analysis and unsupervised clustering achieved an overall clustering accuracy of 94.8% and a balanced error rate of 7.8%. To the best of our knowledge, it is the first study using DWT combined with unsupervised learning to cluster brain SV MRS. Instead of dimensionality reduction on SV MRS or feature selection using model fitting, our study provides an alternative method of extracting features to obtain promising clustering results.
A Bayesian cluster analysis method for single-molecule localization microscopy data.
Griffié, Juliette; Shannon, Michael; Bromley, Claire L; Boelen, Lies; Burn, Garth L; Williamson, David J; Heard, Nicholas A; Cope, Andrew P; Owen, Dylan M; Rubin-Delanchy, Patrick
2016-12-01
Cell function is regulated by the spatiotemporal organization of the signaling machinery, and a key facet of this is molecular clustering. Here, we present a protocol for the analysis of clustering in data generated by 2D single-molecule localization microscopy (SMLM)-for example, photoactivated localization microscopy (PALM) or stochastic optical reconstruction microscopy (STORM). Three features of such data can cause standard cluster analysis approaches to be ineffective: (i) the data take the form of a list of points rather than a pixel array; (ii) there is a non-negligible unclustered background density of points that must be accounted for; and (iii) each localization has an associated uncertainty in regard to its position. These issues are overcome using a Bayesian, model-based approach. Many possible cluster configurations are proposed and scored against a generative model, which assumes Gaussian clusters overlaid on a completely spatially random (CSR) background, before every point is scrambled by its localization precision. We present the process of generating simulated and experimental data that are suitable to our algorithm, the analysis itself, and the extraction and interpretation of key cluster descriptors such as the number of clusters, cluster radii and the number of localizations per cluster. Variations in these descriptors can be interpreted as arising from changes in the organization of the cellular nanoarchitecture. The protocol requires no specific programming ability, and the processing time for one data set, typically containing 30 regions of interest, is ∼18 h; user input takes ∼1 h.
Cluster Analysis Identifies 3 Phenotypes within Allergic Asthma.
Sendín-Hernández, María Paz; Ávila-Zarza, Carmelo; Sanz, Catalina; García-Sánchez, Asunción; Marcos-Vadillo, Elena; Muñoz-Bellido, Francisco J; Laffond, Elena; Domingo, Christian; Isidoro-García, María; Dávila, Ignacio
Asthma is a heterogeneous chronic disease with different clinical expressions and responses to treatment. In recent years, several unbiased approaches based on clinical, physiological, and molecular features have described several phenotypes of asthma. Some phenotypes are allergic, but little is known about whether these phenotypes can be further subdivided. We aimed to phenotype patients with allergic asthma using an unbiased approach based on multivariate classification techniques (unsupervised hierarchical cluster analysis). From a total of 54 variables of 225 patients with well-characterized allergic asthma diagnosed following American Thoracic Society (ATS) recommendation, positive skin prick test to aeroallergens, and concordant symptoms, we finally selected 19 variables by multiple correspondence analyses. Then a cluster analysis was performed. Three groups were identified. Cluster 1 was constituted by patients with intermittent or mild persistent asthma, without family antecedents of atopy, asthma, or rhinitis. This group showed the lowest total IgE levels. Cluster 2 was constituted by patients with mild asthma with a family history of atopy, asthma, or rhinitis. Total IgE levels were intermediate. Cluster 3 included patients with moderate or severe persistent asthma that needed treatment with corticosteroids and long-acting β-agonists. This group showed the highest total IgE levels. We identified 3 phenotypes of allergic asthma in our population. Furthermore, we described 2 phenotypes of mild atopic asthma mainly differentiated by a family history of allergy. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Wright, Mark H.; Tung, Chih-Wei; Zhao, Keyan; Reynolds, Andy; McCouch, Susan R.; Bustamante, Carlos D.
2010-01-01
Motivation: The development of new high-throughput genotyping products requires a significant investment in testing and training samples to evaluate and optimize the product before it can be used reliably on new samples. One reason for this is current methods for automated calling of genotypes are based on clustering approaches which require a large number of samples to be analyzed simultaneously, or an extensive training dataset to seed clusters. In systems where inbred samples are of primary interest, current clustering approaches perform poorly due to the inability to clearly identify a heterozygote cluster. Results: As part of the development of two custom single nucleotide polymorphism genotyping products for Oryza sativa (domestic rice), we have developed a new genotype calling algorithm called ‘ALCHEMY’ based on statistical modeling of the raw intensity data rather than modelless clustering. A novel feature of the model is the ability to estimate and incorporate inbreeding information on a per sample basis allowing accurate genotyping of both inbred and heterozygous samples even when analyzed simultaneously. Since clustering is not used explicitly, ALCHEMY performs well on small sample sizes with accuracy exceeding 99% with as few as 18 samples. Availability: ALCHEMY is available for both commercial and academic use free of charge and distributed under the GNU General Public License at http://alchemy.sourceforge.net/ Contact: mhw6@cornell.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20926420
Classification via Clustering for Predicting Final Marks Based on Student Participation in Forums
ERIC Educational Resources Information Center
Lopez, M. I.; Luna, J. M.; Romero, C.; Ventura, S.
2012-01-01
This paper proposes a classification via clustering approach to predict the final marks in a university course on the basis of forum data. The objective is twofold: to determine if student participation in the course forum can be a good predictor of the final marks for the course and to examine whether the proposed classification via clustering…
Bayesian Modeling of Temporal Coherence in Videos for Entity Discovery and Summarization.
Mitra, Adway; Biswas, Soma; Bhattacharyya, Chiranjib
2017-03-01
A video is understood by users in terms of entities present in it. Entity Discovery is the task of building appearance model for each entity (e.g., a person), and finding all its occurrences in the video. We represent a video as a sequence of tracklets, each spanning 10-20 frames, and associated with one entity. We pose Entity Discovery as tracklet clustering, and approach it by leveraging Temporal Coherence (TC): the property that temporally neighboring tracklets are likely to be associated with the same entity. Our major contributions are the first Bayesian nonparametric models for TC at tracklet-level. We extend Chinese Restaurant Process (CRP) to TC-CRP, and further to Temporally Coherent Chinese Restaurant Franchise (TC-CRF) to jointly model entities and temporal segments using mixture components and sparse distributions. For discovering persons in TV serial videos without meta-data like scripts, these methods show considerable improvement over state-of-the-art approaches to tracklet clustering in terms of clustering accuracy, cluster purity and entity coverage. The proposed methods can perform online tracklet clustering on streaming videos unlike existing approaches, and can automatically reject false tracklets. Finally we discuss entity-driven video summarization- where temporal segments of the video are selected based on the discovered entities, to create a semantically meaningful summary.
NASA Astrophysics Data System (ADS)
Shen, Fei; Chen, Chao; Yan, Ruqiang
2017-05-01
Classical bearing fault diagnosis methods, being designed according to one specific task, always pay attention to the effectiveness of extracted features and the final diagnostic performance. However, most of these approaches suffer from inefficiency when multiple tasks exist, especially in a real-time diagnostic scenario. A fault diagnosis method based on Non-negative Matrix Factorization (NMF) and Co-clustering strategy is proposed to overcome this limitation. Firstly, some high-dimensional matrixes are constructed using the Short-Time Fourier Transform (STFT) features, where the dimension of each matrix equals to the number of target tasks. Then, the NMF algorithm is carried out to obtain different components in each dimension direction through optimized matching, such as Euclidean distance and divergence distance. Finally, a Co-clustering technique based on information entropy is utilized to realize classification of each component. To verity the effectiveness of the proposed approach, a series of bearing data sets were analysed in this research. The tests indicated that although the diagnostic performance of single task is comparable to traditional clustering methods such as K-mean algorithm and Guassian Mixture Model, the accuracy and computational efficiency in multi-tasks fault diagnosis are improved.
Yin, Zhong; Zhang, Jianhua
2014-07-01
Identifying the abnormal changes of mental workload (MWL) over time is quite crucial for preventing the accidents due to cognitive overload and inattention of human operators in safety-critical human-machine systems. It is known that various neuroimaging technologies can be used to identify the MWL variations. In order to classify MWL into a few discrete levels using representative MWL indicators and small-sized training samples, a novel EEG-based approach by combining locally linear embedding (LLE), support vector clustering (SVC) and support vector data description (SVDD) techniques is proposed and evaluated by using the experimentally measured data. The MWL indicators from different cortical regions are first elicited by using the LLE technique. Then, the SVC approach is used to find the clusters of these MWL indicators and thereby to detect MWL variations. It is shown that the clusters can be interpreted as the binary class MWL. Furthermore, a trained binary SVDD classifier is shown to be capable of detecting slight variations of those indicators. By combining the two schemes, a SVC-SVDD framework is proposed, where the clear-cut (smaller) cluster is detected by SVC first and then a subsequent SVDD model is utilized to divide the overlapped (larger) cluster into two classes. Finally, three-class MWL levels (low, normal and high) can be identified automatically. The experimental data analysis results are compared with those of several existing methods. It has been demonstrated that the proposed framework can lead to acceptable computational accuracy and has the advantages of both unsupervised and supervised training strategies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Influence of birth cohort on age of onset cluster analysis in bipolar I disorder.
Bauer, M; Glenn, T; Alda, M; Andreassen, O A; Angelopoulos, E; Ardau, R; Baethge, C; Bauer, R; Bellivier, F; Belmaker, R H; Berk, M; Bjella, T D; Bossini, L; Bersudsky, Y; Cheung, E Y W; Conell, J; Del Zompo, M; Dodd, S; Etain, B; Fagiolini, A; Frye, M A; Fountoulakis, K N; Garneau-Fournier, J; Gonzalez-Pinto, A; Harima, H; Hassel, S; Henry, C; Iacovides, A; Isometsä, E T; Kapczinski, F; Kliwicki, S; König, B; Krogh, R; Kunz, M; Lafer, B; Larsen, E R; Lewitzka, U; Lopez-Jaramillo, C; MacQueen, G; Manchia, M; Marsh, W; Martinez-Cengotitabengoa, M; Melle, I; Monteith, S; Morken, G; Munoz, R; Nery, F G; O'Donovan, C; Osher, Y; Pfennig, A; Quiroz, D; Ramesar, R; Rasgon, N; Reif, A; Ritter, P; Rybakowski, J K; Sagduyu, K; Scippa, A M; Severus, E; Simhandl, C; Stein, D J; Strejilevich, S; Hatim Sulaiman, A; Suominen, K; Tagata, H; Tatebayashi, Y; Torrent, C; Vieta, E; Viswanath, B; Wanchoo, M J; Zetin, M; Whybrow, P C
2015-01-01
Two common approaches to identify subgroups of patients with bipolar disorder are clustering methodology (mixture analysis) based on the age of onset, and a birth cohort analysis. This study investigates if a birth cohort effect will influence the results of clustering on the age of onset, using a large, international database. The database includes 4037 patients with a diagnosis of bipolar I disorder, previously collected at 36 collection sites in 23 countries. Generalized estimating equations (GEE) were used to adjust the data for country median age, and in some models, birth cohort. Model-based clustering (mixture analysis) was then performed on the age of onset data using the residuals. Clinical variables in subgroups were compared. There was a strong birth cohort effect. Without adjusting for the birth cohort, three subgroups were found by clustering. After adjusting for the birth cohort or when considering only those born after 1959, two subgroups were found. With results of either two or three subgroups, the youngest subgroup was more likely to have a family history of mood disorders and a first episode with depressed polarity. However, without adjusting for birth cohort (three subgroups), family history and polarity of the first episode could not be distinguished between the middle and oldest subgroups. These results using international data confirm prior findings using single country data, that there are subgroups of bipolar I disorder based on the age of onset, and that there is a birth cohort effect. Including the birth cohort adjustment altered the number and characteristics of subgroups detected when clustering by age of onset. Further investigation is needed to determine if combining both approaches will identify subgroups that are more useful for research. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Ucar Zennure; Pete Bettinger; Krista Merry; Jacek Siry; J.M. Bowker
2016-01-01
Two different sampling approaches for estimating urban tree canopy cover were applied to two medium-sized cities in the United States, in conjunction with two freely available remotely sensed imagery products. A random point-based sampling approach, which involved 1000 sample points, was compared against a plot/grid sampling (cluster sampling) approach that involved a...
Lee, Sanghwa; Lee, Seung Ho; Paulson, Bjorn; Lee, Jae-Chul; Kim, Jun Ki
2018-06-20
The development of size-selective and non-destructive detection techniques for nanosized biomarkers has many reasons, including the study of living cells and diagnostic applications. We present an approach for Raman signal enhancement on biocompatible sensing chips based on surface enhancement Raman spectroscopy (SERS). A sensing chip was fabricated by forming a ZnO-based nanorod structure so that the Raman enhancement occurred at a gap of several tens to several hundred nanometers. The effect of coffee-ring formation was eliminated by introducing the porous ZnO nanorods for the bio-liquid sample. A peculiarity of this approach is that the gold sputtered on the ZnO nanorods initially grows at their heads forming clusters, as confirmed by secondary electron microscopy. This clustering was verified by finite element analysis to be the main factor for enhancement of local surface plasmon resonance (LSPR). This clustering property and the ability to adjust the size of the nanorods enabled the signal acquisition points to be refined using confocal based Raman spectroscopy, which could be applied directly to the sensor chip based on the optimization process in this experiment. It was demonstrated by using common cancer cell lines that cell growth was high on these gold-clad ZnO nanorod-based surface-enhanced Raman substrates. The porosity of the sensing chip, the improved structure for signal enhancement, and the cell assay make these gold-coated ZnO nanorods substrates promising biosensing chips with excellent potential for detecting nanometric biomarkers secreted by cells. Copyright © 2018 Elsevier B.V. All rights reserved.
Mapping similarities in temporal parking occupancy behavior based on city-wide parking meter data
NASA Astrophysics Data System (ADS)
Bock, Fabian; Xia, Karen; Sester, Monika
2018-05-01
The search for a parking space is a severe and stressful problem for drivers in many cities. The provision of maps with parking space occupancy information assists drivers in avoiding the most crowded roads at certain times. Since parking occupancy reveals a repetitive pattern per day and per week, typical parking occupancy patterns can be extracted from historical data. In this paper, we analyze city-wide parking meter data from Hannover, Germany, for a full year. We describe an approach of clustering these parking meters to reduce the complexity of this parking occupancy information and to reveal areas with similar parking behavior. The parking occupancy at every parking meter is derived from a timestamp of ticket payment and the validity period of the parking tickets. The similarity of the parking meters is computed as the mean-squared deviation of the average daily patterns in parking occupancy at the parking meters. Based on this similarity measure, a hierarchical clustering is applied. The number of clusters is determined with the Davies-Bouldin Index and the Silhouette Index. Results show that, after extensive data cleansing, the clustering leads to three clusters representing typical parking occupancy day patterns. Those clusters differ mainly in the hour of the maximum occupancy. In addition, the lo-cations of parking meter clusters, computed only based on temporal similarity, also show clear spatial distinctions from other clusters.
Quantitative consensus of supervised learners for diffuse lung parenchymal HRCT patterns
NASA Astrophysics Data System (ADS)
Raghunath, Sushravya; Rajagopalan, Srinivasan; Karwoski, Ronald A.; Bartholmai, Brian J.; Robb, Richard A.
2013-03-01
Automated lung parenchymal classification usually relies on supervised learning of expert chosen regions representative of the visually differentiable HRCT patterns specific to different pathologies (eg. emphysema, ground glass, honey combing, reticular and normal). Considering the elusiveness of a single most discriminating similarity measure, a plurality of weak learners can be combined to improve the machine learnability. Though a number of quantitative combination strategies exist, their efficacy is data and domain dependent. In this paper, we investigate multiple (N=12) quantitative consensus approaches to combine the clusters obtained with multiple (n=33) probability density-based similarity measures. Our study shows that hypergraph based meta-clustering and probabilistic clustering provides optimal expert-metric agreement.
Dynamic Fuzzy Model Development for a Drum-type Boiler-turbine Plant Through GK Clustering
NASA Astrophysics Data System (ADS)
Habbi, Ahcène; Zelmat, Mimoun
2008-10-01
This paper discusses a TS fuzzy model identification method for an industrial drum-type boiler plant using the GK fuzzy clustering approach. The fuzzy model is constructed from a set of input-output data that covers a wide operating range of the physical plant. The reference data is generated using a complex first-principle-based mathematical model that describes the key dynamical properties of the boiler-turbine dynamics. The proposed fuzzy model is derived by means of fuzzy clustering method with particular attention on structure flexibility and model interpretability issues. This may provide a basement of a new way to design model based control and diagnosis mechanisms for the complex nonlinear plant.
ERIC Educational Resources Information Center
Wang, Dongxu; Stewart, Donald; Chang, Chun
2016-01-01
Purpose: The purpose of this paper is to examine the effectiveness of a holistic school-based nutrition programme using the health-promoting school (HPS) approach, on teachers' knowledge, attitudes and behaviour in relation to nutrition in rural China. Design/methodology/approach: A cluster-randomised intervention trial design was employed. Two…
Graph-Based Object Class Discovery
NASA Astrophysics Data System (ADS)
Xia, Shengping; Hancock, Edwin R.
We are interested in the problem of discovering the set of object classes present in a database of images using a weakly supervised graph-based framework. Rather than making use of the ”Bag-of-Features (BoF)” approach widely used in current work on object recognition, we represent each image by a graph using a group of selected local invariant features. Using local feature matching and iterative Procrustes alignment, we perform graph matching and compute a similarity measure. Borrowing the idea of query expansion , we develop a similarity propagation based graph clustering (SPGC) method. Using this method class specific clusters of the graphs can be obtained. Such a cluster can be generally represented by using a higher level graph model whose vertices are the clustered graphs, and the edge weights are determined by the pairwise similarity measure. Experiments are performed on a dataset, in which the number of images increases from 1 to 50K and the number of objects increases from 1 to over 500. Some objects have been discovered with total recall and a precision 1 in a single cluster.
Marateb, Hamid Reza; Mansourian, Marjan; Adibi, Peyman; Farina, Dario
2014-01-01
Background: selecting the correct statistical test and data mining method depends highly on the measurement scale of data, type of variables, and purpose of the analysis. Different measurement scales are studied in details and statistical comparison, modeling, and data mining methods are studied based upon using several medical examples. We have presented two ordinal–variables clustering examples, as more challenging variable in analysis, using Wisconsin Breast Cancer Data (WBCD). Ordinal-to-Interval scale conversion example: a breast cancer database of nine 10-level ordinal variables for 683 patients was analyzed by two ordinal-scale clustering methods. The performance of the clustering methods was assessed by comparison with the gold standard groups of malignant and benign cases that had been identified by clinical tests. Results: the sensitivity and accuracy of the two clustering methods were 98% and 96%, respectively. Their specificity was comparable. Conclusion: by using appropriate clustering algorithm based on the measurement scale of the variables in the study, high performance is granted. Moreover, descriptive and inferential statistics in addition to modeling approach must be selected based on the scale of the variables. PMID:24672565
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Junghyun; Gangwon, Jo; Jaehoon, Jung
Applications written solely in OpenCL or CUDA cannot execute on a cluster as a whole. Most previous approaches that extend these programming models to clusters are based on a common idea: designating a centralized host node and coordinating the other nodes with the host for computation. However, the centralized host node is a serious performance bottleneck when the number of nodes is large. In this paper, we propose a scalable and distributed OpenCL framework called SnuCL-D for large-scale clusters. SnuCL-D's remote device virtualization provides an OpenCL application with an illusion that all compute devices in a cluster are confined inmore » a single node. To reduce the amount of control-message and data communication between nodes, SnuCL-D replicates the OpenCL host program execution and data in each node. We also propose a new OpenCL host API function and a queueing optimization technique that significantly reduce the overhead incurred by the previous centralized approaches. To show the effectiveness of SnuCL-D, we evaluate SnuCL-D with a microbenchmark and eleven benchmark applications on a large-scale CPU cluster and a medium-scale GPU cluster.« less
Probing potential Li-ion battery electrolyte through first principles simulation of atomic clusters
NASA Astrophysics Data System (ADS)
Kushwaha, Anoop Kumar; Sahoo, Mihir Ranjan; Nayak, Saroj
2018-04-01
Li-ion battery has wide area of application starting from low power consumer electronics to high power electric vehicles. However, their large scale application in electric vehicles requires further improvement due to their low specific power density which is an essential parameter and is closely related to the working potential windows of the battery system. Several studies have found that these parameters can be taken care of by considering different cathode/anode materials and electrolytes. Recently, a unique approach has been reported on the basis of cluster size in which the use of Li3 cluster has been suggested as a potential component of the battery electrode material. The cluster based approach significantly enhances the working electrode potential up to 0.6V in the acetonitrile solvent. In the present work, using ab-initio quantum chemical calculation and the dielectric continuum model, we have investigated various dielectric solvent medium for the suitable electrolyte for the potential component Li3 cluster. This study suggests that high dielectric electrolytic solvent (ethylene carbonate and propylene carbonate) could be better for lithium cluster due to improvement in the total electrode potential in comparison to the other dielectric solvent.
Spatial coding-based approach for partitioning big spatial data in Hadoop
NASA Astrophysics Data System (ADS)
Yao, Xiaochuang; Mokbel, Mohamed F.; Alarabi, Louai; Eldawy, Ahmed; Yang, Jianyu; Yun, Wenju; Li, Lin; Ye, Sijing; Zhu, Dehai
2017-09-01
Spatial data partitioning (SDP) plays a powerful role in distributed storage and parallel computing for spatial data. However, due to skew distribution of spatial data and varying volume of spatial vector objects, it leads to a significant challenge to ensure both optimal performance of spatial operation and data balance in the cluster. To tackle this problem, we proposed a spatial coding-based approach for partitioning big spatial data in Hadoop. This approach, firstly, compressed the whole big spatial data based on spatial coding matrix to create a sensing information set (SIS), including spatial code, size, count and other information. SIS was then employed to build spatial partitioning matrix, which was used to spilt all spatial objects into different partitions in the cluster finally. Based on our approach, the neighbouring spatial objects can be partitioned into the same block. At the same time, it also can minimize the data skew in Hadoop distributed file system (HDFS). The presented approach with a case study in this paper is compared against random sampling based partitioning, with three measurement standards, namely, the spatial index quality, data skew in HDFS, and range query performance. The experimental results show that our method based on spatial coding technique can improve the query performance of big spatial data, as well as the data balance in HDFS. We implemented and deployed this approach in Hadoop, and it is also able to support efficiently any other distributed big spatial data systems.
A semi-supervised classification algorithm using the TAD-derived background as training data
NASA Astrophysics Data System (ADS)
Fan, Lei; Ambeau, Brittany; Messinger, David W.
2013-05-01
In general, spectral image classification algorithms fall into one of two categories: supervised and unsupervised. In unsupervised approaches, the algorithm automatically identifies clusters in the data without a priori information about those clusters (except perhaps the expected number of them). Supervised approaches require an analyst to identify training data to learn the characteristics of the clusters such that they can then classify all other pixels into one of the pre-defined groups. The classification algorithm presented here is a semi-supervised approach based on the Topological Anomaly Detection (TAD) algorithm. The TAD algorithm defines background components based on a mutual k-Nearest Neighbor graph model of the data, along with a spectral connected components analysis. Here, the largest components produced by TAD are used as regions of interest (ROI's),or training data for a supervised classification scheme. By combining those ROI's with a Gaussian Maximum Likelihood (GML) or a Minimum Distance to the Mean (MDM) algorithm, we are able to achieve a semi supervised classification method. We test this classification algorithm against data collected by the HyMAP sensor over the Cooke City, MT area and University of Pavia scene.
Scoring clustering solutions by their biological relevance.
Gat-Viks, I; Sharan, R; Shamir, R
2003-12-12
A central step in the analysis of gene expression data is the identification of groups of genes that exhibit similar expression patterns. Clustering gene expression data into homogeneous groups was shown to be instrumental in functional annotation, tissue classification, regulatory motif identification, and other applications. Although there is a rich literature on clustering algorithms for gene expression analysis, very few works addressed the systematic comparison and evaluation of clustering results. Typically, different clustering algorithms yield different clustering solutions on the same data, and there is no agreed upon guideline for choosing among them. We developed a novel statistically based method for assessing a clustering solution according to prior biological knowledge. Our method can be used to compare different clustering solutions or to optimize the parameters of a clustering algorithm. The method is based on projecting vectors of biological attributes of the clustered elements onto the real line, such that the ratio of between-groups and within-group variance estimators is maximized. The projected data are then scored using a non-parametric analysis of variance test, and the score's confidence is evaluated. We validate our approach using simulated data and show that our scoring method outperforms several extant methods, including the separation to homogeneity ratio and the silhouette measure. We apply our method to evaluate results of several clustering methods on yeast cell-cycle gene expression data. The software is available from the authors upon request.
Dependent Neyman type A processes based on common shock Poisson approach
NASA Astrophysics Data System (ADS)
Kadilar, Gamze Özel; Kadilar, Cem
2016-04-01
The Neyman type A process is used for describing clustered data since the Poisson process is insufficient for clustering of events. In a multivariate setting, there may be dependencies between multivarite Neyman type A processes. In this study, dependent form of the Neyman type A process is considered under common shock approach. Then, the joint probability function are derived for the dependent Neyman type A Poisson processes. Then, an application based on forest fires in Turkey are given. The results show that the joint probability function of the dependent Neyman type A processes, which is obtained in this study, can be a good tool for the probabilistic fitness for the total number of burned trees in Turkey.
ClusterViz: A Cytoscape APP for Cluster Analysis of Biological Network.
Wang, Jianxin; Zhong, Jiancheng; Chen, Gang; Li, Min; Wu, Fang-xiang; Pan, Yi
2015-01-01
Cluster analysis of biological networks is one of the most important approaches for identifying functional modules and predicting protein functions. Furthermore, visualization of clustering results is crucial to uncover the structure of biological networks. In this paper, ClusterViz, an APP of Cytoscape 3 for cluster analysis and visualization, has been developed. In order to reduce complexity and enable extendibility for ClusterViz, we designed the architecture of ClusterViz based on the framework of Open Services Gateway Initiative. According to the architecture, the implementation of ClusterViz is partitioned into three modules including interface of ClusterViz, clustering algorithms and visualization and export. ClusterViz fascinates the comparison of the results of different algorithms to do further related analysis. Three commonly used clustering algorithms, FAG-EC, EAGLE and MCODE, are included in the current version. Due to adopting the abstract interface of algorithms in module of the clustering algorithms, more clustering algorithms can be included for the future use. To illustrate usability of ClusterViz, we provided three examples with detailed steps from the important scientific articles, which show that our tool has helped several research teams do their research work on the mechanism of the biological networks.
Garcia, Danilo; MacDonald, Shane; Archer, Trevor
2015-01-01
Background. The notion of the affective system as being composed of two dimensions led Archer and colleagues to the development of the affective profiles model. The model consists of four different profiles based on combinations of individuals' experience of high/low positive and negative affect: self-fulfilling, low affective, high affective, and self-destructive. During the past 10 years, an increasing number of studies have used this person-centered model as the backdrop for the investigation of between and within individual differences in ill-being and well-being. The most common approach to this profiling is by dividing individuals' scores of self-reported affect using the median of the population as reference for high/low splits. However, scores just-above and just-below the median might become high and low by arbitrariness, not by reality. Thus, it is plausible to criticize the validity of this variable-oriented approach. Our aim was to compare the median splits approach with a person-oriented approach, namely, cluster analysis. Method. The participants (N = 2, 225) were recruited through Amazons' Mechanical Turk and asked to self-report affect using the Positive Affect Negative Affect Schedule. We compared the profiles' homogeneity and Silhouette coefficients to discern differences in homogeneity and heterogeneity between approaches. We also conducted exact cell-wise analyses matching the profiles from both approaches and matching profiles and gender to investigate profiling agreement with respect to affectivity levels and affectivity and gender. All analyses were conducted using the ROPstat software. Results. The cluster approach (weighted average of cluster homogeneity coefficients = 0.62, Silhouette coefficients = 0.68) generated profiles with greater homogeneity and more distinctive from each other compared to the median splits approach (weighted average of cluster homogeneity coefficients = 0.75, Silhouette coefficients = 0.59). Most of the participants (n = 1,736, 78.0%) were allocated to the same profile (Rand Index = .83), however, 489 (21.98%) were allocated to different profiles depending on the approach. Both approaches allocated females and males similarly in three of the four profiles. Only the cluster analysis approach classified men significantly more often than chance to a self-fulfilling profile (type) and females less often than chance to this very same profile (antitype). Conclusions. Although the question whether one approach is more appropriate than the other is still without answer, the cluster method allocated individuals to profiles that are more in accordance with the conceptual basis of the model and also to expected gender differences. More importantly, regardless of the approach, our findings suggest that the model mirrors a complex and dynamic adaptive system.
A comparison of heuristic and model-based clustering methods for dietary pattern analysis.
Greve, Benjamin; Pigeot, Iris; Huybrechts, Inge; Pala, Valeria; Börnhorst, Claudia
2016-02-01
Cluster analysis is widely applied to identify dietary patterns. A new method based on Gaussian mixture models (GMM) seems to be more flexible compared with the commonly applied k-means and Ward's method. In the present paper, these clustering approaches are compared to find the most appropriate one for clustering dietary data. The clustering methods were applied to simulated data sets with different cluster structures to compare their performance knowing the true cluster membership of observations. Furthermore, the three methods were applied to FFQ data assessed in 1791 children participating in the IDEFICS (Identification and Prevention of Dietary- and Lifestyle-Induced Health Effects in Children and Infants) Study to explore their performance in practice. The GMM outperformed the other methods in the simulation study in 72 % up to 100 % of cases, depending on the simulated cluster structure. Comparing the computationally less complex k-means and Ward's methods, the performance of k-means was better in 64-100 % of cases. Applied to real data, all methods identified three similar dietary patterns which may be roughly characterized as a 'non-processed' cluster with a high consumption of fruits, vegetables and wholemeal bread, a 'balanced' cluster with only slight preferences of single foods and a 'junk food' cluster. The simulation study suggests that clustering via GMM should be preferred due to its higher flexibility regarding cluster volume, shape and orientation. The k-means seems to be a good alternative, being easier to use while giving similar results when applied to real data.
Vranish, James N.; Russell, William K.; Yu, Lusa E.; ...
2014-12-05
Iron–sulfur (Fe–S) clusters are protein cofactors that are constructed and delivered to target proteins by elaborate biosynthetic machinery. Mechanistic insights into these processes have been limited by the lack of sensitive probes for tracking Fe–S cluster synthesis and transfer reactions. Here we present fusion protein- and intein-based fluorescent labeling strategies that can probe Fe–S cluster binding. The fluorescence is sensitive to different cluster types ([2Fe–2S] and [4Fe–4S] clusters), ligand environments ([2Fe–2S] clusters on Rieske, ferredoxin (Fdx), and glutaredoxin), and cluster oxidation states. The power of this approach is highlighted with an extreme example in which the kinetics of Fe–S clustermore » transfer reactions are monitored between two Fdx molecules that have identical Fe–S spectroscopic properties. This exchange reaction between labeled and unlabeled Fdx is catalyzed by dithiothreitol (DTT), a result that was confirmed by mass spectrometry. DTT likely functions in a ligand substitution reaction that generates a [2Fe–2S]–DTT species, which can transfer the cluster to either labeled or unlabeled Fdx. The ability to monitor this challenging cluster exchange reaction indicates that real-time Fe–S cluster incorporation can be tracked for a specific labeled protein in multicomponent assays that include several unlabeled Fe–S binding proteins or other chromophores. Such advanced kinetic experiments are required to untangle the intricate networks of transfer pathways and the factors affecting flux through branch points. High sensitivity and suitability with high-throughput methodology are additional benefits of this approach. Lastly, we anticipate that this cluster detection methodology will transform the study of Fe–S cluster pathways and potentially other metal cofactor biosynthetic pathways.« less
Self-Assembly of Octopus Nanoparticles into Pre-Programmed Finite Clusters
NASA Astrophysics Data System (ADS)
Halverson, Jonathan; Tkachenko, Alexei
2012-02-01
The precise control of the spatial arrangement of nanoparticles (NP) is often required to take full advantage of their novel optical and electronic properties. NPs have been shown to self-assemble into crystalline structures using either patchy surface regions or complementary DNA strands to direct the assembly. Due to a lack of specificity of the interactions these methods lead to only a limited number of structures. An emerging approach is to bind ssDNA at specific sites on the particle surface making so-called octopus NPs. Using octopus NPs we investigate the inverse problem of the self-assembly of finite clusters. That is, for a given target cluster (e.g., arranging the NPs on the vertices of a dodecahedron) what are the minimum number of complementary DNA strands needed for the robust self-assembly of the cluster from an initially homogeneous NP solution? Based on the results of Brownian dynamics simulations we have compiled a set of design rules for various target clusters including cubes, pyramids, dodecahedrons and truncated icosahedrons. Our approach leads to control over the kinetic pathway and has demonstrated nearly perfect yield of the target.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Gurmeet; Nandi, Apurba; Gadre, Shridhar R., E-mail: gadre@iitk.ac.in
2016-03-14
A pragmatic method based on the molecular tailoring approach (MTA) for estimating the complete basis set (CBS) limit at Møller-Plesset second order perturbation (MP2) theory accurately for large molecular clusters with limited computational resources is developed. It is applied to water clusters, (H{sub 2}O){sub n} (n = 7, 8, 10, 16, 17, and 25) optimized employing aug-cc-pVDZ (aVDZ) basis-set. Binding energies (BEs) of these clusters are estimated at the MP2/aug-cc-pVNZ (aVNZ) [N = T, Q, and 5 (whenever possible)] levels of theory employing grafted MTA (GMTA) methodology and are found to lie within 0.2 kcal/mol of the corresponding full calculationmore » MP2 BE, wherever available. The results are extrapolated to CBS limit using a three point formula. The GMTA-MP2 calculations are feasible on off-the-shelf hardware and show around 50%–65% saving of computational time. The methodology has a potential for application to molecular clusters containing ∼100 atoms.« less
GPU Accelerated Clustering for Arbitrary Shapes in Geoscience Data
NASA Astrophysics Data System (ADS)
Pankratius, V.; Gowanlock, M.; Rude, C. M.; Li, J. D.
2016-12-01
Clustering algorithms have become a vital component in intelligent systems for geoscience that helps scientists discover and track phenomena of various kinds. Here, we outline advances in Density-Based Spatial Clustering of Applications with Noise (DBSCAN) which detects clusters of arbitrary shape that are common in geospatial data. In particular, we propose a hybrid CPU-GPU implementation of DBSCAN and highlight new optimization approaches on the GPU that allows clustering detection in parallel while optimizing data transport during CPU-GPU interactions. We employ an efficient batching scheme between the host and GPU such that limited GPU memory is not prohibitive when processing large and/or dense datasets. To minimize data transfer overhead, we estimate the total workload size and employ an execution that generates optimized batches that will not overflow the GPU buffer. This work is demonstrated on space weather Total Electron Content (TEC) datasets containing over 5 million measurements from instruments worldwide, and allows scientists to spot spatially coherent phenomena with ease. Our approach is up to 30 times faster than a sequential implementation and therefore accelerates discoveries in large datasets. We acknowledge support from NSF ACI-1442997.
Cluster Analysis of Rat Olfactory Bulb Responses to Diverse Odorants
Falasconi, Matteo; Leon, Michael; Johnson, Brett A.; Marco, Santiago
2012-01-01
In an effort to deepen our understanding of mammalian olfactory coding, we have used an objective method to analyze a large set of odorant-evoked activity maps collected systematically across the rat olfactory bulb to determine whether such an approach could identify specific glomerular regions that are activated by related odorants. To that end, we combined fuzzy c-means clustering methods with a novel validity approach based on cluster stability to evaluate the significance of the fuzzy partitions on a data set of glomerular layer responses to a large diverse group of odorants. Our results confirm the existence of glomerular response clusters to similar odorants. They further indicate a partial hierarchical chemotopic organization wherein larger glomerular regions can be subdivided into smaller areas that are rather specific in their responses to particular functional groups of odorants. These clusters bear many similarities to, as well as some differences from, response domains previously proposed for the glomerular layer of the bulb. These data also provide additional support for the concept of an identity code in the mammalian olfactory system. PMID:22459165
Big Data Clustering via Community Detection and Hyperbolic Network Embedding in IoT Applications.
Karyotis, Vasileios; Tsitseklis, Konstantinos; Sotiropoulos, Konstantinos; Papavassiliou, Symeon
2018-04-15
In this paper, we present a novel data clustering framework for big sensory data produced by IoT applications. Based on a network representation of the relations among multi-dimensional data, data clustering is mapped to node clustering over the produced data graphs. To address the potential very large scale of such datasets/graphs that test the limits of state-of-the-art approaches, we map the problem of data clustering to a community detection one over the corresponding data graphs. Specifically, we propose a novel computational approach for enhancing the traditional Girvan-Newman (GN) community detection algorithm via hyperbolic network embedding. The data dependency graph is embedded in the hyperbolic space via Rigel embedding, allowing more efficient computation of edge-betweenness centrality needed in the GN algorithm. This allows for more efficient clustering of the nodes of the data graph in terms of modularity, without sacrificing considerable accuracy. In order to study the operation of our approach with respect to enhancing GN community detection, we employ various representative types of artificial complex networks, such as scale-free, small-world and random geometric topologies, and frequently-employed benchmark datasets for demonstrating its efficacy in terms of data clustering via community detection. Furthermore, we provide a proof-of-concept evaluation by applying the proposed framework over multi-dimensional datasets obtained from an operational smart-city/building IoT infrastructure provided by the Federated Interoperable Semantic IoT/cloud Testbeds and Applications (FIESTA-IoT) testbed federation. It is shown that the proposed framework can be indeed used for community detection/data clustering and exploited in various other IoT applications, such as performing more energy-efficient smart-city/building sensing.
Big Data Clustering via Community Detection and Hyperbolic Network Embedding in IoT Applications
Sotiropoulos, Konstantinos
2018-01-01
In this paper, we present a novel data clustering framework for big sensory data produced by IoT applications. Based on a network representation of the relations among multi-dimensional data, data clustering is mapped to node clustering over the produced data graphs. To address the potential very large scale of such datasets/graphs that test the limits of state-of-the-art approaches, we map the problem of data clustering to a community detection one over the corresponding data graphs. Specifically, we propose a novel computational approach for enhancing the traditional Girvan–Newman (GN) community detection algorithm via hyperbolic network embedding. The data dependency graph is embedded in the hyperbolic space via Rigel embedding, allowing more efficient computation of edge-betweenness centrality needed in the GN algorithm. This allows for more efficient clustering of the nodes of the data graph in terms of modularity, without sacrificing considerable accuracy. In order to study the operation of our approach with respect to enhancing GN community detection, we employ various representative types of artificial complex networks, such as scale-free, small-world and random geometric topologies, and frequently-employed benchmark datasets for demonstrating its efficacy in terms of data clustering via community detection. Furthermore, we provide a proof-of-concept evaluation by applying the proposed framework over multi-dimensional datasets obtained from an operational smart-city/building IoT infrastructure provided by the Federated Interoperable Semantic IoT/cloud Testbeds and Applications (FIESTA-IoT) testbed federation. It is shown that the proposed framework can be indeed used for community detection/data clustering and exploited in various other IoT applications, such as performing more energy-efficient smart-city/building sensing. PMID:29662043
Consensus-Based Sorting of Neuronal Spike Waveforms
Fournier, Julien; Mueller, Christian M.; Shein-Idelson, Mark; Hemberger, Mike
2016-01-01
Optimizing spike-sorting algorithms is difficult because sorted clusters can rarely be checked against independently obtained “ground truth” data. In most spike-sorting algorithms in use today, the optimality of a clustering solution is assessed relative to some assumption on the distribution of the spike shapes associated with a particular single unit (e.g., Gaussianity) and by visual inspection of the clustering solution followed by manual validation. When the spatiotemporal waveforms of spikes from different cells overlap, the decision as to whether two spikes should be assigned to the same source can be quite subjective, if it is not based on reliable quantitative measures. We propose a new approach, whereby spike clusters are identified from the most consensual partition across an ensemble of clustering solutions. Using the variability of the clustering solutions across successive iterations of the same clustering algorithm (template matching based on K-means clusters), we estimate the probability of spikes being clustered together and identify groups of spikes that are not statistically distinguishable from one another. Thus, we identify spikes that are most likely to be clustered together and therefore correspond to consistent spike clusters. This method has the potential advantage that it does not rely on any model of the spike shapes. It also provides estimates of the proportion of misclassified spikes for each of the identified clusters. We tested our algorithm on several datasets for which there exists a ground truth (simultaneous intracellular data), and show that it performs close to the optimum reached by a support vector machine trained on the ground truth. We also show that the estimated rate of misclassification matches the proportion of misclassified spikes measured from the ground truth data. PMID:27536990
Consensus-Based Sorting of Neuronal Spike Waveforms.
Fournier, Julien; Mueller, Christian M; Shein-Idelson, Mark; Hemberger, Mike; Laurent, Gilles
2016-01-01
Optimizing spike-sorting algorithms is difficult because sorted clusters can rarely be checked against independently obtained "ground truth" data. In most spike-sorting algorithms in use today, the optimality of a clustering solution is assessed relative to some assumption on the distribution of the spike shapes associated with a particular single unit (e.g., Gaussianity) and by visual inspection of the clustering solution followed by manual validation. When the spatiotemporal waveforms of spikes from different cells overlap, the decision as to whether two spikes should be assigned to the same source can be quite subjective, if it is not based on reliable quantitative measures. We propose a new approach, whereby spike clusters are identified from the most consensual partition across an ensemble of clustering solutions. Using the variability of the clustering solutions across successive iterations of the same clustering algorithm (template matching based on K-means clusters), we estimate the probability of spikes being clustered together and identify groups of spikes that are not statistically distinguishable from one another. Thus, we identify spikes that are most likely to be clustered together and therefore correspond to consistent spike clusters. This method has the potential advantage that it does not rely on any model of the spike shapes. It also provides estimates of the proportion of misclassified spikes for each of the identified clusters. We tested our algorithm on several datasets for which there exists a ground truth (simultaneous intracellular data), and show that it performs close to the optimum reached by a support vector machine trained on the ground truth. We also show that the estimated rate of misclassification matches the proportion of misclassified spikes measured from the ground truth data.
A knowledge-driven approach to biomedical document conceptualization.
Zheng, Hai-Tao; Borchert, Charles; Jiang, Yong
2010-06-01
Biomedical document conceptualization is the process of clustering biomedical documents based on ontology-represented domain knowledge. The result of this process is the representation of the biomedical documents by a set of key concepts and their relationships. Most of clustering methods cluster documents based on invariant domain knowledge. The objective of this work is to develop an effective method to cluster biomedical documents based on various user-specified ontologies, so that users can exploit the concept structures of documents more effectively. We develop a flexible framework to allow users to specify the knowledge bases, in the form of ontologies. Based on the user-specified ontologies, we develop a key concept induction algorithm, which uses latent semantic analysis to identify key concepts and cluster documents. A corpus-related ontology generation algorithm is developed to generate the concept structures of documents. Based on two biomedical datasets, we evaluate the proposed method and five other clustering algorithms. The clustering results of the proposed method outperform the five other algorithms, in terms of key concept identification. With respect to the first biomedical dataset, our method has the F-measure values 0.7294 and 0.5294 based on the MeSH ontology and gene ontology (GO), respectively. With respect to the second biomedical dataset, our method has the F-measure values 0.6751 and 0.6746 based on the MeSH ontology and GO, respectively. Both results outperforms the five other algorithms in terms of F-measure. Based on the MeSH ontology and GO, the generated corpus-related ontologies show informative conceptual structures. The proposed method enables users to specify the domain knowledge to exploit the conceptual structures of biomedical document collections. In addition, the proposed method is able to extract the key concepts and cluster the documents with a relatively high precision. Copyright 2010 Elsevier B.V. All rights reserved.
Clustering cancer gene expression data by projective clustering ensemble
Yu, Xianxue; Yu, Guoxian
2017-01-01
Gene expression data analysis has paramount implications for gene treatments, cancer diagnosis and other domains. Clustering is an important and promising tool to analyze gene expression data. Gene expression data is often characterized by a large amount of genes but with limited samples, thus various projective clustering techniques and ensemble techniques have been suggested to combat with these challenges. However, it is rather challenging to synergy these two kinds of techniques together to avoid the curse of dimensionality problem and to boost the performance of gene expression data clustering. In this paper, we employ a projective clustering ensemble (PCE) to integrate the advantages of projective clustering and ensemble clustering, and to avoid the dilemma of combining multiple projective clusterings. Our experimental results on publicly available cancer gene expression data show PCE can improve the quality of clustering gene expression data by at least 4.5% (on average) than other related techniques, including dimensionality reduction based single clustering and ensemble approaches. The empirical study demonstrates that, to further boost the performance of clustering cancer gene expression data, it is necessary and promising to synergy projective clustering with ensemble clustering. PCE can serve as an effective alternative technique for clustering gene expression data. PMID:28234920
Old, L.; Wojtak, R.; Pearce, F. R.; ...
2017-12-20
With the advent of wide-field cosmological surveys, we are approaching samples of hundreds of thousands of galaxy clusters. While such large numbers will help reduce statistical uncertainties, the control of systematics in cluster masses is crucial. Here we examine the effects of an important source of systematic uncertainty in galaxy-based cluster mass estimation techniques: the presence of significant dynamical substructure. Dynamical substructure manifests as dynamically distinct subgroups in phase-space, indicating an ‘unrelaxed’ state. This issue affects around a quarter of clusters in a generally selected sample. We employ a set of mock clusters whose masses have been measured homogeneously withmore » commonly used galaxy-based mass estimation techniques (kinematic, richness, caustic, radial methods). We use these to study how the relation between observationally estimated and true cluster mass depends on the presence of substructure, as identified by various popular diagnostics. We find that the scatter for an ensemble of clusters does not increase dramatically for clusters with dynamical substructure. However, we find a systematic bias for all methods, such that clusters with significant substructure have higher measured masses than their relaxed counterparts. This bias depends on cluster mass: the most massive clusters are largely unaffected by the presence of significant substructure, but masses are significantly overestimated for lower mass clusters, by ~ 10 percent at 10 14 and ≳ 20 percent for ≲ 10 13.5. Finally, the use of cluster samples with different levels of substructure can therefore bias certain cosmological parameters up to a level comparable to the typical uncertainties in current cosmological studies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Old, L.; Wojtak, R.; Pearce, F. R.
With the advent of wide-field cosmological surveys, we are approaching samples of hundreds of thousands of galaxy clusters. While such large numbers will help reduce statistical uncertainties, the control of systematics in cluster masses is crucial. Here we examine the effects of an important source of systematic uncertainty in galaxy-based cluster mass estimation techniques: the presence of significant dynamical substructure. Dynamical substructure manifests as dynamically distinct subgroups in phase-space, indicating an ‘unrelaxed’ state. This issue affects around a quarter of clusters in a generally selected sample. We employ a set of mock clusters whose masses have been measured homogeneously withmore » commonly used galaxy-based mass estimation techniques (kinematic, richness, caustic, radial methods). We use these to study how the relation between observationally estimated and true cluster mass depends on the presence of substructure, as identified by various popular diagnostics. We find that the scatter for an ensemble of clusters does not increase dramatically for clusters with dynamical substructure. However, we find a systematic bias for all methods, such that clusters with significant substructure have higher measured masses than their relaxed counterparts. This bias depends on cluster mass: the most massive clusters are largely unaffected by the presence of significant substructure, but masses are significantly overestimated for lower mass clusters, by ~ 10 percent at 10 14 and ≳ 20 percent for ≲ 10 13.5. Finally, the use of cluster samples with different levels of substructure can therefore bias certain cosmological parameters up to a level comparable to the typical uncertainties in current cosmological studies.« less
Wasito, Ito; Hashim, Siti Zaiton M; Sukmaningrum, Sri
2007-01-01
Gene expression profiling plays an important role in the identification of biological and clinical properties of human solid tumors such as colorectal carcinoma. Profiling is required to reveal underlying molecular features for diagnostic and therapeutic purposes. A non-parametric density-estimation-based approach called iterative local Gaussian clustering (ILGC), was used to identify clusters of expressed genes. We used experimental data from a previous study by Muro and others consisting of 1,536 genes in 100 colorectal cancer and 11 normal tissues. In this dataset, the ILGC finds three clusters, two large and one small gene clusters, similar to their results which used Gaussian mixture clustering. The correlation of each cluster of genes and clinical properties of malignancy of human colorectal cancer was analysed for the existence of tumor or normal, the existence of distant metastasis and the existence of lymph node metastasis. PMID:18305825
Wasito, Ito; Hashim, Siti Zaiton M; Sukmaningrum, Sri
2007-12-30
Gene expression profiling plays an important role in the identification of biological and clinical properties of human solid tumors such as colorectal carcinoma. Profiling is required to reveal underlying molecular features for diagnostic and therapeutic purposes. A non-parametric density-estimation-based approach called iterative local Gaussian clustering (ILGC), was used to identify clusters of expressed genes. We used experimental data from a previous study by Muro and others consisting of 1,536 genes in 100 colorectal cancer and 11 normal tissues. In this dataset, the ILGC finds three clusters, two large and one small gene clusters, similar to their results which used Gaussian mixture clustering. The correlation of each cluster of genes and clinical properties of malignancy of human colorectal cancer was analysed for the existence of tumor or normal, the existence of distant metastasis and the existence of lymph node metastasis.
Flow Quantification from 2D Phase Contrast MRI in Renal Arteries Using Clustering
NASA Astrophysics Data System (ADS)
Zöllner, Frank G.; Monnsen, Jan Ankar; Lundervold, Arvid; Rørvik, Jarle
We present an approach based on clustering to segment renal arteries from 2D PC Cine MR images to measure blood velocity and flow. Such information are important in grading renal artery stenosis and support the decision on surgical interventions like percutan transluminal angioplasty. Results show that the renal arteries could be extracted automatically and the corresponding velocity profiles could be calculated. Furthermore, the clustering could detect possible phase wrap effects automatically as well as differences in the blood flow patterns within the vessel.
NASA Astrophysics Data System (ADS)
Scharfenberg, Franz-Josef; Bogner, Franz X.
2011-08-01
Emphasis on improving higher level biology education continues. A new two-step approach to the experimental phases within an outreach gene technology lab, derived from cognitive load theory, is presented. We compared our approach using a quasi-experimental design with the conventional one-step mode. The difference consisted of additional focused discussions combined with students writing down their ideas (step one) prior to starting any experimental procedure (step two). We monitored students' activities during the experimental phases by continuously videotaping 20 work groups within each approach ( N = 131). Subsequent classification of students' activities yielded 10 categories (with well-fitting intra- and inter-observer scores with respect to reliability). Based on the students' individual time budgets, we evaluated students' roles during experimentation from their prevalent activities (by independently using two cluster analysis methods). Independently of the approach, two common clusters emerged, which we labeled as `all-rounders' and as `passive students', and two clusters specific to each approach: `observers' as well as `high-experimenters' were identified only within the one-step approach whereas under the two-step conditions `managers' and `scribes' were identified. Potential changes in group-leadership style during experimentation are discussed, and conclusions for optimizing science teaching are drawn.
High Performance Computing Based Parallel HIearchical Modal Association Clustering (HPAR HMAC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patlolla, Dilip R; Surendran Nair, Sujithkumar; Graves, Daniel A.
For many applications, clustering is a crucial step in order to gain insight into the makeup of a dataset. The best approach to a given problem often depends on a variety of factors, such as the size of the dataset, time restrictions, and soft clustering requirements. The HMAC algorithm seeks to combine the strengths of 2 particular clustering approaches: model-based and linkage-based clustering. One particular weakness of HMAC is its computational complexity. HMAC is not practical for mega-scale data clustering. For high-definition imagery, a user would have to wait months or years for a result; for a 16-megapixel image, themore » estimated runtime skyrockets to over a decade! To improve the execution time of HMAC, it is reasonable to consider an multi-core implementation that utilizes available system resources. An existing imple-mentation (Ray and Cheng 2014) divides the dataset into N partitions - one for each thread prior to executing the HMAC algorithm. This implementation benefits from 2 types of optimization: parallelization and divide-and-conquer. By running each partition in parallel, the program is able to accelerate computation by utilizing more system resources. Although the parallel implementation provides considerable improvement over the serial HMAC, it still suffers from poor computational complexity, O(N2). Once the maximum number of cores on a system is exhausted, the program exhibits slower behavior. We now consider a modification to HMAC that involves a recursive partitioning scheme. Our modification aims to exploit divide-and-conquer benefits seen by the parallel HMAC implementation. At each level in the recursion tree, partitions are divided into 2 sub-partitions until a threshold size is reached. When the partition can no longer be divided without falling below threshold size, the base HMAC algorithm is applied. This results in a significant speedup over the parallel HMAC.« less
On simulations of rarefied vapor flows with condensation
NASA Astrophysics Data System (ADS)
Bykov, Nikolay; Gorbachev, Yuriy; Fyodorov, Stanislav
2018-05-01
Results of the direct simulation Monte Carlo of 1D spherical and 2D axisymmetric expansions into vacuum of condens-ing water vapor are presented. Two models based on the kinetic approach and the size-corrected classical nucleation theory are employed for simulations. The difference in obtained results is discussed and advantages of the kinetic approach in comparison with the modified classical theory are demonstrated. The impact of clusterization on flow parameters is observed when volume fraction of clusters in the expansion region exceeds 5%. Comparison of the simulation data with the experimental results demonstrates good agreement.
Clustering methods for the optimization of atomic cluster structure
NASA Astrophysics Data System (ADS)
Bagattini, Francesco; Schoen, Fabio; Tigli, Luca
2018-04-01
In this paper, we propose a revised global optimization method and apply it to large scale cluster conformation problems. In the 1990s, the so-called clustering methods were considered among the most efficient general purpose global optimization techniques; however, their usage has quickly declined in recent years, mainly due to the inherent difficulties of clustering approaches in large dimensional spaces. Inspired from the machine learning literature, we redesigned clustering methods in order to deal with molecular structures in a reduced feature space. Our aim is to show that by suitably choosing a good set of geometrical features coupled with a very efficient descent method, an effective optimization tool is obtained which is capable of finding, with a very high success rate, all known putative optima for medium size clusters without any prior information, both for Lennard-Jones and Morse potentials. The main result is that, beyond being a reliable approach, the proposed method, based on the idea of starting a computationally expensive deep local search only when it seems worth doing so, is capable of saving a huge amount of searches with respect to an analogous algorithm which does not employ a clustering phase. In this paper, we are not claiming the superiority of the proposed method compared to specific, refined, state-of-the-art procedures, but rather indicating a quite straightforward way to save local searches by means of a clustering scheme working in a reduced variable space, which might prove useful when included in many modern methods.
ERIC Educational Resources Information Center
Sawangsamutchai, Yutthasak; Rattanavich, Saowalak
2016-01-01
The objective of this research is to compare the English reading comprehension and motivation to read of seventh grade Thai students taught with applied instruction through the genre-based approach and teachers' manual. A randomized pre-test post-test control group design was used through the cluster random sampling technique. The data were…
Yang, Yung-Hun; Kim, Ji-Nu; Song, Eunjung; Kim, Eunjung; Oh, Min-Kyu; Kim, Byung-Gee
2008-09-01
In order to identify the regulators involved in antibiotic production or time-specific cellular events, the messenger ribonucleic acid (mRNA) expression data of the two gene clusters, actinorhodin (ACT) and undecylprodigiosin (RED) biosynthetic genes, were clustered with known mRNA expression data of regulators from S. coelicolor using a filtering method based on standard deviation and clustering analysis. The result identified five regulators including two well-known regulators namely, SCO3579 (WlbA) and SCO6722 (SsgD). Using overexpression and deletion of the regulator genes, we were able to identify two regulators, i.e., SCO0608 and SCO6808, playing roles as repressors in antibiotics production and sporulation. This approach can be easily applied to mapping out new regulators related to any interesting target gene clusters showing characteristic expression patterns. The result can also be used to provide insightful information on the selection rules among a large number of regulators.
Analysis of Fiber Clustering in Composite Materials Using High-Fidelity Multiscale Micromechanics
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Aboudi, Jacob; Arnold, Steven M.
2015-01-01
A new multiscale micromechanical approach is developed for the prediction of the behavior of fiber reinforced composites in presence of fiber clustering. The developed method is based on a coupled two-scale implementation of the High-Fidelity Generalized Method of Cells theory, wherein both the local and global scales are represented using this micromechanical method. Concentration tensors and effective constitutive equations are established on both scales and linked to establish the required coupling, thus providing the local fields throughout the composite as well as the global properties and effective nonlinear response. Two nondimensional parameters, in conjunction with actual composite micrographs, are used to characterize the clustering of fibers in the composite. Based on the predicted local fields, initial yield and damage envelopes are generated for various clustering parameters for a polymer matrix composite with both carbon and glass fibers. Nonlinear epoxy matrix behavior is also considered, with results in the form of effective nonlinear response curves, with varying fiber clustering and for two sets of nonlinear matrix parameters.
The electronic structure of Au25 clusters: between discrete and continuous.
Katsiev, Khabiboulakh; Lozova, Nataliya; Wang, Lu; Sai Krishna, Katla; Li, Ruipeng; Mei, Wai-Ning; Skrabalak, Sara E; Kumar, Challa S S R; Losovyj, Yaroslav
2016-08-21
Here, an approach based on synchrotron resonant photoemission is employed to explore the transition between quantization and hybridization of the electronic structure in atomically precise ligand-stabilized nanoparticles. While the presence of ligands maintains quantization in Au25 clusters, their removal renders increased hybridization of the electronic states in the vicinity of the Fermi level. These observations are supported by DFT studies.
Lukashin, A V; Fuchs, R
2001-05-01
Cluster analysis of genome-wide expression data from DNA microarray hybridization studies has proved to be a useful tool for identifying biologically relevant groupings of genes and samples. In the present paper, we focus on several important issues related to clustering algorithms that have not yet been fully studied. We describe a simple and robust algorithm for the clustering of temporal gene expression profiles that is based on the simulated annealing procedure. In general, this algorithm guarantees to eventually find the globally optimal distribution of genes over clusters. We introduce an iterative scheme that serves to evaluate quantitatively the optimal number of clusters for each specific data set. The scheme is based on standard approaches used in regular statistical tests. The basic idea is to organize the search of the optimal number of clusters simultaneously with the optimization of the distribution of genes over clusters. The efficiency of the proposed algorithm has been evaluated by means of a reverse engineering experiment, that is, a situation in which the correct distribution of genes over clusters is known a priori. The employment of this statistically rigorous test has shown that our algorithm places greater than 90% genes into correct clusters. Finally, the algorithm has been tested on real gene expression data (expression changes during yeast cell cycle) for which the fundamental patterns of gene expression and the assignment of genes to clusters are well understood from numerous previous studies.
Massive Star Clusters in Ongoing Galaxy Interactions: Clues to Cluster Formation
NASA Astrophysics Data System (ADS)
Keel, William C.; Borne, Kirk D.
2003-09-01
We present HST WFPC2 observations, supplemented by ground-based Hα data, of the star-cluster populations in two pairs of interacting galaxies selected for being in very different kinds of encounters seen at different stages. Dynamical information and n-body simulations provide the details of encounter geometry, mass ratio, and timing. In NGC 5752/4 we are seeing a weak encounter, well past closest approach, after about 2.5×108 yr. The large spiral NGC 5754 has a normal population of disk clusters, while the fainter companion NGC 5752 exhibits a rich population of luminous clusters with a flatter luminosity function. The strong, ongoing encounter in NGC 6621/2, seen about 1.0×108 yr past closest approach between roughly equal-mass galaxies, has produced an extensive population of luminous clusters, particularly young and luminous in a small region between the two nuclei. This region is dynamically interesting, with such a strong perturbation in the velocity field that the rotation curve reverses sign. From these results, in comparison with other strongly interacting systems discussed in the literature, cluster formation requires a threshold level of perturbation, with stage of the interaction a less important factor. The location of the most active star formation in NGC 6621/2 draws attention to a possible role for the Toomre stability threshold in shaping star formation in interacting galaxies. The rich cluster populations in NGC 5752 and NGC 6621 show that direct contact between gas-rich galaxy disks is not a requirement to form luminous clusters and that they can be triggered by processes happening within a single galaxy disk (albeit triggered by external perturbations). Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.
Genome-Wide Analysis of Type VI System Clusters and Effectors in Burkholderia Species.
Nguyen, Thao Thi; Lee, Hyun-Hee; Park, Inmyoung; Seo, Young-Su
2018-02-01
Type VI secretion system (T6SS) has been discovered in a variety of gram-negative bacteria as a versatile weapon to stimulate the killing of eukaryotic cells or prokaryotic competitors. Type VI secretion effectors (T6SEs) are well known as key virulence factors for important pathogenic bacteria. In many Burkholderia species, T6SS has evolved as the most complicated secretion pathway with distinguished types to translocate diverse T6SEs, suggesting their essential roles in this genus. Here we attempted to detect and characterize T6SSs and potential T6SEs in target genomes of plant-associated and environmental Burkholderia species based on computational analyses. In total, 66 potential functional T6SS clusters were found in 30 target Burkholderia bacterial genomes, of which 33% possess three or four clusters. The core proteins in each cluster were specified and phylogenetic trees of three components (i.e., TssC, TssD, TssL) were constructed to elucidate the relationship among the identified T6SS clusters. Next, we identified 322 potential T6SEs in the target genomes based on homology searches and explored the important domains conserved in effector candidates. In addition, using the screening approach based on the profile hidden Markov model (pHMM) of T6SEs that possess markers for type VI effectors (MIX motif) (MIX T6SEs), 57 revealed proteins that were not included in training datasets were recognized as novel MIX T6SE candidates from the Burkholderia species. This approach could be useful to identify potential T6SEs from other bacterial genomes.
Clustering performance comparison using K-means and expectation maximization algorithms.
Jung, Yong Gyu; Kang, Min Soo; Heo, Jun
2014-11-14
Clustering is an important means of data mining based on separating data categories by similar features. Unlike the classification algorithm, clustering belongs to the unsupervised type of algorithms. Two representatives of the clustering algorithms are the K -means and the expectation maximization (EM) algorithm. Linear regression analysis was extended to the category-type dependent variable, while logistic regression was achieved using a linear combination of independent variables. To predict the possibility of occurrence of an event, a statistical approach is used. However, the classification of all data by means of logistic regression analysis cannot guarantee the accuracy of the results. In this paper, the logistic regression analysis is applied to EM clusters and the K -means clustering method for quality assessment of red wine, and a method is proposed for ensuring the accuracy of the classification results.
Automatic detection of erythemato-squamous diseases using k-means clustering.
Ubeyli, Elif Derya; Doğdu, Erdoğan
2010-04-01
A new approach based on the implementation of k-means clustering is presented for automated detection of erythemato-squamous diseases. The purpose of clustering techniques is to find a structure for the given data by finding similarities between data according to data characteristics. The studied domain contained records of patients with known diagnosis. The k-means clustering algorithm's task was to classify the data points, in this case the patients with attribute data, to one of the five clusters. The algorithm was used to detect the five erythemato-squamous diseases when 33 features defining five disease indications were used. The purpose is to determine an optimum classification scheme for this problem. The present research demonstrated that the features well represent the erythemato-squamous diseases and the k-means clustering algorithm's task achieved high classification accuracies for only five erythemato-squamous diseases.
Android Malware Classification Using K-Means Clustering Algorithm
NASA Astrophysics Data System (ADS)
Hamid, Isredza Rahmi A.; Syafiqah Khalid, Nur; Azma Abdullah, Nurul; Rahman, Nurul Hidayah Ab; Chai Wen, Chuah
2017-08-01
Malware was designed to gain access or damage a computer system without user notice. Besides, attacker exploits malware to commit crime or fraud. This paper proposed Android malware classification approach based on K-Means clustering algorithm. We evaluate the proposed model in terms of accuracy using machine learning algorithms. Two datasets were selected to demonstrate the practicing of K-Means clustering algorithms that are Virus Total and Malgenome dataset. We classify the Android malware into three clusters which are ransomware, scareware and goodware. Nine features were considered for each types of dataset such as Lock Detected, Text Detected, Text Score, Encryption Detected, Threat, Porn, Law, Copyright and Moneypak. We used IBM SPSS Statistic software for data classification and WEKA tools to evaluate the built cluster. The proposed K-Means clustering algorithm shows promising result with high accuracy when tested using Random Forest algorithm.
Pep2Path: automated mass spectrometry-guided genome mining of peptidic natural products.
Medema, Marnix H; Paalvast, Yared; Nguyen, Don D; Melnik, Alexey; Dorrestein, Pieter C; Takano, Eriko; Breitling, Rainer
2014-09-01
Nonribosomally and ribosomally synthesized bioactive peptides constitute a source of molecules of great biomedical importance, including antibiotics such as penicillin, immunosuppressants such as cyclosporine, and cytostatics such as bleomycin. Recently, an innovative mass-spectrometry-based strategy, peptidogenomics, has been pioneered to effectively mine microbial strains for novel peptidic metabolites. Even though mass-spectrometric peptide detection can be performed quite fast, true high-throughput natural product discovery approaches have still been limited by the inability to rapidly match the identified tandem mass spectra to the gene clusters responsible for the biosynthesis of the corresponding compounds. With Pep2Path, we introduce a software package to fully automate the peptidogenomics approach through the rapid Bayesian probabilistic matching of mass spectra to their corresponding biosynthetic gene clusters. Detailed benchmarking of the method shows that the approach is powerful enough to correctly identify gene clusters even in data sets that consist of hundreds of genomes, which also makes it possible to match compounds from unsequenced organisms to closely related biosynthetic gene clusters in other genomes. Applying Pep2Path to a data set of compounds without known biosynthesis routes, we were able to identify candidate gene clusters for the biosynthesis of five important compounds. Notably, one of these clusters was detected in a genome from a different subphylum of Proteobacteria than that in which the molecule had first been identified. All in all, our approach paves the way towards high-throughput discovery of novel peptidic natural products. Pep2Path is freely available from http://pep2path.sourceforge.net/, implemented in Python, licensed under the GNU General Public License v3 and supported on MS Windows, Linux and Mac OS X.
Mirowsky, Jaime E; Devlin, Robert B; Diaz-Sanchez, David; Cascio, Wayne; Grabich, Shannon C; Haynes, Carol; Blach, Colette; Hauser, Elizabeth R; Shah, Svati; Kraus, William; Olden, Kenneth; Neas, Lucas
2017-05-01
Individual-level characteristics, including socioeconomic status, have been associated with poor metabolic and cardiovascular health; however, residential area-level characteristics may also independently contribute to health status. In the current study, we used hierarchical clustering to aggregate 444 US Census block groups in Durham, Orange, and Wake Counties, NC, USA into six homogeneous clusters of similar characteristics based on 12 demographic factors. We assigned 2254 cardiac catheterization patients to these clusters based on residence at first catheterization. After controlling for individual age, sex, smoking status, and race, there were elevated odds of patients being obese (odds ratio (OR)=1.92, 95% confidence intervals (CI)=1.39, 2.67), and having diabetes (OR=2.19, 95% CI=1.57, 3.04), congestive heart failure (OR=1.99, 95% CI=1.39, 2.83), and hypertension (OR=2.05, 95% CI=1.38, 3.11) in a cluster that was urban, impoverished, and unemployed, compared with a cluster that was urban with a low percentage of people that were impoverished or unemployed. Our findings demonstrate the feasibility of applying hierarchical clustering to an assessment of area-level characteristics and that living in impoverished, urban residential clusters may have an adverse impact on health.
Theoretical study of the H2 reaction with a Pt4 (111) cluster
NASA Astrophysics Data System (ADS)
Cruz, A.; Bertin, V.; Poulain, E.; Benitez, J. I.; Castillo, S.
2004-04-01
The Cs symmetry reaction of the H2 molecule on a Pt4 (111) clusters, has been studied using ab initio multiconfiguration self-consistent field plus extensive multireference configuration interaction variational and perturbative calculations. The H2 interaction by the vertex and by the base of a tetrahedral Pt4 cluster were studied in ground and excited triplet and singlet states (closed and open shells), where the reaction curves are obtained through many avoided crossings. The Pt4 cluster captures and activates the hydrogen molecule; it shows a similar behavior compared with other Ptn (n=1,2,3) systems. The Pt4 cluster in their lowest five open and closed shell electronic states: 3B2, 1B2, 1A1 3A1, 1A1, respectively, may capture and dissociate the H2 molecule without activation barriers for the hydrogen molecule vertex approach. For the threefolded site reaction, i.e., by the base, the situation is different, the hydrogen adsorption presents some barriers. The potential energy minima occur outside and inside the cluster, with strong activation of the H-H bond. In all cases studied, the Pt4 cluster does not absorb the hydrogen molecule.
Two-Way Regularized Fuzzy Clustering of Multiple Correspondence Analysis.
Kim, Sunmee; Choi, Ji Yeh; Hwang, Heungsun
2017-01-01
Multiple correspondence analysis (MCA) is a useful tool for investigating the interrelationships among dummy-coded categorical variables. MCA has been combined with clustering methods to examine whether there exist heterogeneous subclusters of a population, which exhibit cluster-level heterogeneity. These combined approaches aim to classify either observations only (one-way clustering of MCA) or both observations and variable categories (two-way clustering of MCA). The latter approach is favored because its solutions are easier to interpret by providing explicitly which subgroup of observations is associated with which subset of variable categories. Nonetheless, the two-way approach has been built on hard classification that assumes observations and/or variable categories to belong to only one cluster. To relax this assumption, we propose two-way fuzzy clustering of MCA. Specifically, we combine MCA with fuzzy k-means simultaneously to classify a subgroup of observations and a subset of variable categories into a common cluster, while allowing both observations and variable categories to belong partially to multiple clusters. Importantly, we adopt regularized fuzzy k-means, thereby enabling us to decide the degree of fuzziness in cluster memberships automatically. We evaluate the performance of the proposed approach through the analysis of simulated and real data, in comparison with existing two-way clustering approaches.
Kilborn, Joshua P; Jones, David L; Peebles, Ernst B; Naar, David F
2017-04-01
Clustering data continues to be a highly active area of data analysis, and resemblance profiles are being incorporated into ecological methodologies as a hypothesis testing-based approach to clustering multivariate data. However, these new clustering techniques have not been rigorously tested to determine the performance variability based on the algorithm's assumptions or any underlying data structures. Here, we use simulation studies to estimate the statistical error rates for the hypothesis test for multivariate structure based on dissimilarity profiles (DISPROF). We concurrently tested a widely used algorithm that employs the unweighted pair group method with arithmetic mean (UPGMA) to estimate the proficiency of clustering with DISPROF as a decision criterion. We simulated unstructured multivariate data from different probability distributions with increasing numbers of objects and descriptors, and grouped data with increasing overlap, overdispersion for ecological data, and correlation among descriptors within groups. Using simulated data, we measured the resolution and correspondence of clustering solutions achieved by DISPROF with UPGMA against the reference grouping partitions used to simulate the structured test datasets. Our results highlight the dynamic interactions between dataset dimensionality, group overlap, and the properties of the descriptors within a group (i.e., overdispersion or correlation structure) that are relevant to resemblance profiles as a clustering criterion for multivariate data. These methods are particularly useful for multivariate ecological datasets that benefit from distance-based statistical analyses. We propose guidelines for using DISPROF as a clustering decision tool that will help future users avoid potential pitfalls during the application of methods and the interpretation of results.
Hybrid approach of selecting hyperparameters of support vector machine for regression.
Jeng, Jin-Tsong
2006-06-01
To select the hyperparameters of the support vector machine for regression (SVR), a hybrid approach is proposed to determine the kernel parameter of the Gaussian kernel function and the epsilon value of Vapnik's epsilon-insensitive loss function. The proposed hybrid approach includes a competitive agglomeration (CA) clustering algorithm and a repeated SVR (RSVR) approach. Since the CA clustering algorithm is used to find the nearly "optimal" number of clusters and the centers of clusters in the clustering process, the CA clustering algorithm is applied to select the Gaussian kernel parameter. Additionally, an RSVR approach that relies on the standard deviation of a training error is proposed to obtain an epsilon in the loss function. Finally, two functions, one real data set (i.e., a time series of quarterly unemployment rate for West Germany) and an identification of nonlinear plant are used to verify the usefulness of the hybrid approach.
ERIC Educational Resources Information Center
Wang, Dongxu; Stewart, Donald; Chang, Chun
2016-01-01
Purpose: The purpose of this paper is to assess whether the school-based nutrition programme using the health-promoting school (HPS) framework was effective to improve parents' knowledge, attitudes and behaviour (KAB) in relation to nutrition in rural Mi Yun County, Beijing. Design/methodology/approach: A cluster-randomised intervention trial…
Cluster Analysis of Weighted Bipartite Networks: A New Copula-Based Approach
Chessa, Alessandro; Crimaldi, Irene; Riccaboni, Massimo; Trapin, Luca
2014-01-01
In this work we are interested in identifying clusters of “positional equivalent” actors, i.e. actors who play a similar role in a system. In particular, we analyze weighted bipartite networks that describes the relationships between actors on one side and features or traits on the other, together with the intensity level to which actors show their features. We develop a methodological approach that takes into account the underlying multivariate dependence among groups of actors. The idea is that positions in a network could be defined on the basis of the similar intensity levels that the actors exhibit in expressing some features, instead of just considering relationships that actors hold with each others. Moreover, we propose a new clustering procedure that exploits the potentiality of copula functions, a mathematical instrument for the modelization of the stochastic dependence structure. Our clustering algorithm can be applied both to binary and real-valued matrices. We validate it with simulations and applications to real-world data. PMID:25303095
Ye, Weimin; Robbins, R. T.
2004-01-01
Hierarchical cluster analysis based on female morphometric character means including body length, distance from vulva opening to anterior end, head width, odontostyle length, esophagus length, body width, tail length, and tail width were used to examine the morphometric relationships and create dendrograms for (i) 62 populations belonging to 9 Longidorus species from Arkansas, (ii) 137 published Longidorus species, and (iii) 137 published Longidorus species plus 86 populations of 16 Longidorus species from Arkansas and various other locations by using JMP 4.02 software (SAS Institute, Cary, NC). Cluster analysis dendograms visually illustrated the grouping and morphometric relationships of the species and populations. It provided a computerized statistical approach to assist by helping to identify and distinguish species, by indicating morphometric relationships among species, and by assisting with new species diagnosis. The preliminary species identification can be accomplished by running cluster analysis for unknown species together with the data matrix of known published Longidorus species. PMID:19262809
Fulton, Kara A.; Liu, Danping; Haynie, Denise L.; Albert, Paul S.
2016-01-01
The NEXT Generation Health study investigates the dating violence of adolescents using a survey questionnaire. Each student is asked to affirm or deny multiple instances of violence in his/her dating relationship. There is, however, evidence suggesting that students not in a relationship responded to the survey, resulting in excessive zeros in the responses. This paper proposes likelihood-based and estimating equation approaches to analyze the zero-inflated clustered binary response data. We adopt a mixed model method to account for the cluster effect, and the model parameters are estimated using a maximum-likelihood (ML) approach that requires a Gaussian–Hermite quadrature (GHQ) approximation for implementation. Since an incorrect assumption on the random effects distribution may bias the results, we construct generalized estimating equations (GEE) that do not require the correct specification of within-cluster correlation. In a series of simulation studies, we examine the performance of ML and GEE methods in terms of their bias, efficiency and robustness. We illustrate the importance of properly accounting for this zero inflation by reanalyzing the NEXT data where this issue has previously been ignored. PMID:26937263
Earthquake Declustering via a Nearest-Neighbor Approach in Space-Time-Magnitude Domain
NASA Astrophysics Data System (ADS)
Zaliapin, I. V.; Ben-Zion, Y.
2016-12-01
We propose a new method for earthquake declustering based on nearest-neighbor analysis of earthquakes in space-time-magnitude domain. The nearest-neighbor approach was recently applied to a variety of seismological problems that validate the general utility of the technique and reveal the existence of several different robust types of earthquake clusters. Notably, it was demonstrated that clustering associated with the largest earthquakes is statistically different from that of small-to-medium events. In particular, the characteristic bimodality of the nearest-neighbor distances that helps separating clustered and background events is often violated after the largest earthquakes in their vicinity, which is dominated by triggered events. This prevents using a simple threshold between the two modes of the nearest-neighbor distance distribution for declustering. The current study resolves this problem hence extending the nearest-neighbor approach to the problem of earthquake declustering. The proposed technique is applied to seismicity of different areas in California (San Jacinto, Coso, Salton Sea, Parkfield, Ventura, Mojave, etc.), as well as to the global seismicity, to demonstrate its stability and efficiency in treating various clustering types. The results are compared with those of alternative declustering methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dietrich, J.P.; et al.
Uncertainty in the mass-observable scaling relations is currently the limiting factor for galaxy cluster based cosmology. Weak gravitational lensing can provide a direct mass calibration and reduce the mass uncertainty. We present new ground-based weak lensing observations of 19 South Pole Telescope (SPT) selected clusters and combine them with previously reported space-based observations of 13 galaxy clusters to constrain the cluster mass scaling relations with the Sunyaev-Zel'dovich effect (SZE), the cluster gas massmore » $$M_\\mathrm{gas}$$, and $$Y_\\mathrm{X}$$, the product of $$M_\\mathrm{gas}$$ and X-ray temperature. We extend a previously used framework for the analysis of scaling relations and cosmological constraints obtained from SPT-selected clusters to make use of weak lensing information. We introduce a new approach to estimate the effective average redshift distribution of background galaxies and quantify a number of systematic errors affecting the weak lensing modelling. These errors include a calibration of the bias incurred by fitting a Navarro-Frenk-White profile to the reduced shear using $N$-body simulations. We blind the analysis to avoid confirmation bias. We are able to limit the systematic uncertainties to 6.4% in cluster mass (68% confidence). Our constraints on the mass-X-ray observable scaling relations parameters are consistent with those obtained by earlier studies, and our constraints for the mass-SZE scaling relation are consistent with the the simulation-based prior used in the most recent SPT-SZ cosmology analysis. We can now replace the external mass calibration priors used in previous SPT-SZ cosmology studies with a direct, internal calibration obtained on the same clusters.« less
Cao, Huojun; Amendt, Brad A
2016-11-01
Developmental dental anomalies are common forms of congenital defects. The molecular mechanisms of dental anomalies are poorly understood. Systematic approaches such as clustering genes based on similar expression patterns could identify novel genes involved in dental anomalies and provide a framework for understanding molecular regulatory mechanisms of these genes during tooth development (odontogenesis). A python package (pySAPC) of sparse affinity propagation clustering algorithm for large datasets was developed. Whole genome pair-wise similarity was calculated based on expression pattern similarity based on 45 microarrays of several stages during odontogenesis. pySAPC identified 743 gene clusters based on expression pattern similarity during mouse tooth development. Three clusters are significantly enriched for genes associated with dental anomalies (with FDR <0.1). The three clusters of genes have distinct expression patterns during odontogenesis. Clustering genes based on similar expression profiles recovered several known regulatory relationships for genes involved in odontogenesis, as well as many novel genes that may be involved with the same genetic pathways as genes that have already been shown to contribute to dental defects. By using sparse similarity matrix, pySAPC use much less memory and CPU time compared with the original affinity propagation program that uses a full similarity matrix. This python package will be useful for many applications where dataset(s) are too large to use full similarity matrix. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang. Copyright © 2016. Published by Elsevier B.V.
Wavelet-based clustering of resting state MRI data in the rat.
Medda, Alessio; Hoffmann, Lukas; Magnuson, Matthew; Thompson, Garth; Pan, Wen-Ju; Keilholz, Shella
2016-01-01
While functional connectivity has typically been calculated over the entire length of the scan (5-10min), interest has been growing in dynamic analysis methods that can detect changes in connectivity on the order of cognitive processes (seconds). Previous work with sliding window correlation has shown that changes in functional connectivity can be observed on these time scales in the awake human and in anesthetized animals. This exciting advance creates a need for improved approaches to characterize dynamic functional networks in the brain. Previous studies were performed using sliding window analysis on regions of interest defined based on anatomy or obtained from traditional steady-state analysis methods. The parcellation of the brain may therefore be suboptimal, and the characteristics of the time-varying connectivity between regions are dependent upon the length of the sliding window chosen. This manuscript describes an algorithm based on wavelet decomposition that allows data-driven clustering of voxels into functional regions based on temporal and spectral properties. Previous work has shown that different networks have characteristic frequency fingerprints, and the use of wavelets ensures that both the frequency and the timing of the BOLD fluctuations are considered during the clustering process. The method was applied to resting state data acquired from anesthetized rats, and the resulting clusters agreed well with known anatomical areas. Clusters were highly reproducible across subjects. Wavelet cross-correlation values between clusters from a single scan were significantly higher than the values from randomly matched clusters that shared no temporal information, indicating that wavelet-based analysis is sensitive to the relationship between areas. Copyright © 2015 Elsevier Inc. All rights reserved.
Caso, Giuseppe; de Nardis, Luca; di Benedetto, Maria-Gabriella
2015-10-30
The weighted k-nearest neighbors (WkNN) algorithm is by far the most popular choice in the design of fingerprinting indoor positioning systems based on WiFi received signal strength (RSS). WkNN estimates the position of a target device by selecting k reference points (RPs) based on the similarity of their fingerprints with the measured RSS values. The position of the target device is then obtained as a weighted sum of the positions of the k RPs. Two-step WkNN positioning algorithms were recently proposed, in which RPs are divided into clusters using the affinity propagation clustering algorithm, and one representative for each cluster is selected. Only cluster representatives are then considered during the position estimation, leading to a significant computational complexity reduction compared to traditional, flat WkNN. Flat and two-step WkNN share the issue of properly selecting the similarity metric so as to guarantee good positioning accuracy: in two-step WkNN, in particular, the metric impacts three different steps in the position estimation, that is cluster formation, cluster selection and RP selection and weighting. So far, however, the only similarity metric considered in the literature was the one proposed in the original formulation of the affinity propagation algorithm. This paper fills this gap by comparing different metrics and, based on this comparison, proposes a novel mixed approach in which different metrics are adopted in the different steps of the position estimation procedure. The analysis is supported by an extensive experimental campaign carried out in a multi-floor 3D indoor positioning testbed. The impact of similarity metrics and their combinations on the structure and size of the resulting clusters, 3D positioning accuracy and computational complexity are investigated. Results show that the adoption of metrics different from the one proposed in the original affinity propagation algorithm and, in particular, the combination of different metrics can significantly improve the positioning accuracy while preserving the efficiency in computational complexity typical of two-step algorithms.
Caso, Giuseppe; de Nardis, Luca; di Benedetto, Maria-Gabriella
2015-01-01
The weighted k-nearest neighbors (WkNN) algorithm is by far the most popular choice in the design of fingerprinting indoor positioning systems based on WiFi received signal strength (RSS). WkNN estimates the position of a target device by selecting k reference points (RPs) based on the similarity of their fingerprints with the measured RSS values. The position of the target device is then obtained as a weighted sum of the positions of the k RPs. Two-step WkNN positioning algorithms were recently proposed, in which RPs are divided into clusters using the affinity propagation clustering algorithm, and one representative for each cluster is selected. Only cluster representatives are then considered during the position estimation, leading to a significant computational complexity reduction compared to traditional, flat WkNN. Flat and two-step WkNN share the issue of properly selecting the similarity metric so as to guarantee good positioning accuracy: in two-step WkNN, in particular, the metric impacts three different steps in the position estimation, that is cluster formation, cluster selection and RP selection and weighting. So far, however, the only similarity metric considered in the literature was the one proposed in the original formulation of the affinity propagation algorithm. This paper fills this gap by comparing different metrics and, based on this comparison, proposes a novel mixed approach in which different metrics are adopted in the different steps of the position estimation procedure. The analysis is supported by an extensive experimental campaign carried out in a multi-floor 3D indoor positioning testbed. The impact of similarity metrics and their combinations on the structure and size of the resulting clusters, 3D positioning accuracy and computational complexity are investigated. Results show that the adoption of metrics different from the one proposed in the original affinity propagation algorithm and, in particular, the combination of different metrics can significantly improve the positioning accuracy while preserving the efficiency in computational complexity typical of two-step algorithms. PMID:26528984
Modified multidimensional scaling approach to analyze financial markets.
Yin, Yi; Shang, Pengjian
2014-06-01
Detrended cross-correlation coefficient (σDCCA) and dynamic time warping (DTW) are introduced as the dissimilarity measures, respectively, while multidimensional scaling (MDS) is employed to translate the dissimilarities between daily price returns of 24 stock markets. We first propose MDS based on σDCCA dissimilarity and MDS based on DTW dissimilarity creatively, while MDS based on Euclidean dissimilarity is also employed to provide a reference for comparisons. We apply these methods in order to further visualize the clustering between stock markets. Moreover, we decide to confront MDS with an alternative visualization method, "Unweighed Average" clustering method, for comparison. The MDS analysis and "Unweighed Average" clustering method are employed based on the same dissimilarity. Through the results, we find that MDS gives us a more intuitive mapping for observing stable or emerging clusters of stock markets with similar behavior, while the MDS analysis based on σDCCA dissimilarity can provide more clear, detailed, and accurate information on the classification of the stock markets than the MDS analysis based on Euclidean dissimilarity. The MDS analysis based on DTW dissimilarity indicates more knowledge about the correlations between stock markets particularly and interestingly. Meanwhile, it reflects more abundant results on the clustering of stock markets and is much more intensive than the MDS analysis based on Euclidean dissimilarity. In addition, the graphs, originated from applying MDS methods based on σDCCA dissimilarity and DTW dissimilarity, may also guide the construction of multivariate econometric models.
Identification of Flood Reactivity Regions via the Functional Clustering of Hydrographs
NASA Astrophysics Data System (ADS)
Brunner, Manuela I.; Viviroli, Daniel; Furrer, Reinhard; Seibert, Jan; Favre, Anne-Catherine
2018-03-01
Flood hydrograph shapes contain valuable information on the flood-generation mechanisms of a catchment. To make good use of this information, we express flood hydrograph shapes as continuous functions using a functional data approach. We propose a clustering approach based on functional data for flood hydrograph shapes to identify a set of representative hydrograph shapes on a catchment scale and use these catchment-specific sets of representative hydrographs to establish regions of catchments with similar flood reactivity on a regional scale. We applied this approach to flood samples of 163 medium-size Swiss catchments. The results indicate that three representative hydrograph shapes sufficiently describe the hydrograph shape variability within a catchment and therefore can be used as a proxy for the flood behavior of a catchment. These catchment-specific sets of three hydrographs were used to group the catchments into three reactivity regions of similar flood behavior. These regions were not only characterized by similar hydrograph shapes and reactivity but also by event magnitudes and triggering event conditions. We envision these regions to be useful in regionalization studies, regional flood frequency analyses, and to allow for the construction of synthetic design hydrographs in ungauged catchments. The clustering approach based on functional data which establish these regions is very flexible and has the potential to be extended to other geographical regions or toward the use in climate impact studies.
Basto, Mafalda P; Santos-Reis, Margarida; Simões, Luciana; Grilo, Clara; Cardoso, Luís; Cortes, Helder; Bruford, Michael W; Fernandes, Carlos
2016-01-01
The identification of populations and spatial genetic patterns is important for ecological and conservation research, and spatially explicit individual-based methods have been recognised as powerful tools in this context. Mammalian carnivores are intrinsically vulnerable to habitat fragmentation but not much is known about the genetic consequences of fragmentation in common species. Stone martens (Martes foina) and red foxes (Vulpes vulpes) share a widespread Palearctic distribution and are considered habitat generalists, but in the Iberian Peninsula stone martens tend to occur in higher quality habitats. We compared their genetic structure in Portugal to see if they are consistent with their differences in ecological plasticity, and also to illustrate an approach to explicitly delineate the spatial boundaries of consistently identified genetic units. We analysed microsatellite data using spatial Bayesian clustering methods (implemented in the software BAPS, GENELAND and TESS), a progressive partitioning approach and a multivariate technique (Spatial Principal Components Analysis-sPCA). Three consensus Bayesian clusters were identified for the stone marten. No consensus was achieved for the red fox, but one cluster was the most probable clustering solution. Progressive partitioning and sPCA suggested additional clusters in the stone marten but they were not consistent among methods and were geographically incoherent. The contrasting results between the two species are consistent with the literature reporting stricter ecological requirements of the stone marten in the Iberian Peninsula. The observed genetic structure in the stone marten may have been influenced by landscape features, particularly rivers, and fragmentation. We suggest that an approach based on a consensus clustering solution of multiple different algorithms may provide an objective and effective means to delineate potential boundaries of inferred subpopulations. sPCA and progressive partitioning offer further verification of possible population structure and may be useful for revealing cryptic spatial genetic patterns worth further investigation.
Basto, Mafalda P.; Santos-Reis, Margarida; Simões, Luciana; Grilo, Clara; Cardoso, Luís; Cortes, Helder; Bruford, Michael W.; Fernandes, Carlos
2016-01-01
The identification of populations and spatial genetic patterns is important for ecological and conservation research, and spatially explicit individual-based methods have been recognised as powerful tools in this context. Mammalian carnivores are intrinsically vulnerable to habitat fragmentation but not much is known about the genetic consequences of fragmentation in common species. Stone martens (Martes foina) and red foxes (Vulpes vulpes) share a widespread Palearctic distribution and are considered habitat generalists, but in the Iberian Peninsula stone martens tend to occur in higher quality habitats. We compared their genetic structure in Portugal to see if they are consistent with their differences in ecological plasticity, and also to illustrate an approach to explicitly delineate the spatial boundaries of consistently identified genetic units. We analysed microsatellite data using spatial Bayesian clustering methods (implemented in the software BAPS, GENELAND and TESS), a progressive partitioning approach and a multivariate technique (Spatial Principal Components Analysis-sPCA). Three consensus Bayesian clusters were identified for the stone marten. No consensus was achieved for the red fox, but one cluster was the most probable clustering solution. Progressive partitioning and sPCA suggested additional clusters in the stone marten but they were not consistent among methods and were geographically incoherent. The contrasting results between the two species are consistent with the literature reporting stricter ecological requirements of the stone marten in the Iberian Peninsula. The observed genetic structure in the stone marten may have been influenced by landscape features, particularly rivers, and fragmentation. We suggest that an approach based on a consensus clustering solution of multiple different algorithms may provide an objective and effective means to delineate potential boundaries of inferred subpopulations. sPCA and progressive partitioning offer further verification of possible population structure and may be useful for revealing cryptic spatial genetic patterns worth further investigation. PMID:26727497
Image Segmentation Method Using Fuzzy C Mean Clustering Based on Multi-Objective Optimization
NASA Astrophysics Data System (ADS)
Chen, Jinlin; Yang, Chunzhi; Xu, Guangkui; Ning, Li
2018-04-01
Image segmentation is not only one of the hottest topics in digital image processing, but also an important part of computer vision applications. As one kind of image segmentation algorithms, fuzzy C-means clustering is an effective and concise segmentation algorithm. However, the drawback of FCM is that it is sensitive to image noise. To solve the problem, this paper designs a novel fuzzy C-mean clustering algorithm based on multi-objective optimization. We add a parameter λ to the fuzzy distance measurement formula to improve the multi-objective optimization. The parameter λ can adjust the weights of the pixel local information. In the algorithm, the local correlation of neighboring pixels is added to the improved multi-objective mathematical model to optimize the clustering cent. Two different experimental results show that the novel fuzzy C-means approach has an efficient performance and computational time while segmenting images by different type of noises.
Zhang, Bo; Liu, Wei; Zhang, Zhiwei; Qu, Yanping; Chen, Zhen; Albert, Paul S
2017-08-01
Joint modeling and within-cluster resampling are two approaches that are used for analyzing correlated data with informative cluster sizes. Motivated by a developmental toxicity study, we examined the performances and validity of these two approaches in testing covariate effects in generalized linear mixed-effects models. We show that the joint modeling approach is robust to the misspecification of cluster size models in terms of Type I and Type II errors when the corresponding covariates are not included in the random effects structure; otherwise, statistical tests may be affected. We also evaluate the performance of the within-cluster resampling procedure and thoroughly investigate the validity of it in modeling correlated data with informative cluster sizes. We show that within-cluster resampling is a valid alternative to joint modeling for cluster-specific covariates, but it is invalid for time-dependent covariates. The two methods are applied to a developmental toxicity study that investigated the effect of exposure to diethylene glycol dimethyl ether.
Study of cluster behavior in the riser of CFB by the DSMC method
NASA Astrophysics Data System (ADS)
Liu, H. P.; Liu, D. Y.; Liu, H.
2010-03-01
The flow behaviors of clusters in the riser of a two-dimensional (2D) circulating fluidized bed was numerically studied based on the Euler-Lagrangian approach. Gas turbulence was modeled by means of Large Eddy Simulation (LES). Particle collision was modeled by means of the direct simulation Monte Carlo (DSMC) method. Clusters' hydrodynamic characteristics are obtained using a cluster identification method proposed by sharrma et al. (2000). The descending clusters near the wall region and the up- and down-flowing clusters in the core were studied separately due to their different flow behaviors. The effects of superficial gas velocity on the cluster behavior were analyzed. Simulated results showed that near wall clusters flow downward and the descent velocity is about -45 cm/s. The occurrence frequency of the up-flowing cluster is higher than that of down-flowing cluster in the core of riser. With the increase of superficial gas velocity, the solid concentration and occurrence frequency of clusters decrease, while the cluster axial velocity increase. Simulated results were in agreement with experimental data. The stochastic method used in present paper is feasible for predicting the cluster flow behavior in CFBs.
PuReD-MCL: a graph-based PubMed document clustering methodology.
Theodosiou, T; Darzentas, N; Angelis, L; Ouzounis, C A
2008-09-01
Biomedical literature is the principal repository of biomedical knowledge, with PubMed being the most complete database collecting, organizing and analyzing such textual knowledge. There are numerous efforts that attempt to exploit this information by using text mining and machine learning techniques. We developed a novel approach, called PuReD-MCL (Pubmed Related Documents-MCL), which is based on the graph clustering algorithm MCL and relevant resources from PubMed. PuReD-MCL avoids using natural language processing (NLP) techniques directly; instead, it takes advantage of existing resources, available from PubMed. PuReD-MCL then clusters documents efficiently using the MCL graph clustering algorithm, which is based on graph flow simulation. This process allows users to analyse the results by highlighting important clues, and finally to visualize the clusters and all relevant information using an interactive graph layout algorithm, for instance BioLayout Express 3D. The methodology was applied to two different datasets, previously used for the validation of the document clustering tool TextQuest. The first dataset involves the organisms Escherichia coli and yeast, whereas the second is related to Drosophila development. PuReD-MCL successfully reproduces the annotated results obtained from TextQuest, while at the same time provides additional insights into the clusters and the corresponding documents. Source code in perl and R are available from http://tartara.csd.auth.gr/~theodos/
A hybrid clustering and classification approach for predicting crash injury severity on rural roads.
Hasheminejad, Seyed Hessam-Allah; Zahedi, Mohsen; Hasheminejad, Seyed Mohammad Hossein
2018-03-01
As a threat for transportation system, traffic crashes have a wide range of social consequences for governments. Traffic crashes are increasing in developing countries and Iran as a developing country is not immune from this risk. There are several researches in the literature to predict traffic crash severity based on artificial neural networks (ANNs), support vector machines and decision trees. This paper attempts to investigate the crash injury severity of rural roads by using a hybrid clustering and classification approach to compare the performance of classification algorithms before and after applying the clustering. In this paper, a novel rule-based genetic algorithm (GA) is proposed to predict crash injury severity, which is evaluated by performance criteria in comparison with classification algorithms like ANN. The results obtained from analysis of 13,673 crashes (5600 property damage, 778 fatal crashes, 4690 slight injuries and 2605 severe injuries) on rural roads in Tehran Province of Iran during 2011-2013 revealed that the proposed GA method outperforms other classification algorithms based on classification metrics like precision (86%), recall (88%) and accuracy (87%). Moreover, the proposed GA method has the highest level of interpretation, is easy to understand and provides feedback to analysts.
An Effective and Robust Decentralized Target Tracking Scheme in Wireless Camera Sensor Networks.
Fu, Pengcheng; Cheng, Yongbo; Tang, Hongying; Li, Baoqing; Pei, Jun; Yuan, Xiaobing
2017-03-20
In this paper, we propose an effective and robust decentralized tracking scheme based on the square root cubature information filter (SRCIF) to balance the energy consumption and tracking accuracy in wireless camera sensor networks (WCNs). More specifically, regarding the characteristics and constraints of camera nodes in WCNs, some special mechanisms are put forward and integrated in this tracking scheme. First, a decentralized tracking approach is adopted so that the tracking can be implemented energy-efficiently and steadily. Subsequently, task cluster nodes are dynamically selected by adopting a greedy on-line decision approach based on the defined contribution decision (CD) considering the limited energy of camera nodes. Additionally, we design an efficient cluster head (CH) selection mechanism that casts such selection problem as an optimization problem based on the remaining energy and distance-to-target. Finally, we also perform analysis on the target detection probability when selecting the task cluster nodes and their CH, owing to the directional sensing and observation limitations in field of view (FOV) of camera nodes in WCNs. From simulation results, the proposed tracking scheme shows an obvious improvement in balancing the energy consumption and tracking accuracy over the existing methods.
An Effective and Robust Decentralized Target Tracking Scheme in Wireless Camera Sensor Networks
Fu, Pengcheng; Cheng, Yongbo; Tang, Hongying; Li, Baoqing; Pei, Jun; Yuan, Xiaobing
2017-01-01
In this paper, we propose an effective and robust decentralized tracking scheme based on the square root cubature information filter (SRCIF) to balance the energy consumption and tracking accuracy in wireless camera sensor networks (WCNs). More specifically, regarding the characteristics and constraints of camera nodes in WCNs, some special mechanisms are put forward and integrated in this tracking scheme. First, a decentralized tracking approach is adopted so that the tracking can be implemented energy-efficiently and steadily. Subsequently, task cluster nodes are dynamically selected by adopting a greedy on-line decision approach based on the defined contribution decision (CD) considering the limited energy of camera nodes. Additionally, we design an efficient cluster head (CH) selection mechanism that casts such selection problem as an optimization problem based on the remaining energy and distance-to-target. Finally, we also perform analysis on the target detection probability when selecting the task cluster nodes and their CH, owing to the directional sensing and observation limitations in field of view (FOV) of camera nodes in WCNs. From simulation results, the proposed tracking scheme shows an obvious improvement in balancing the energy consumption and tracking accuracy over the existing methods. PMID:28335537
NASA Astrophysics Data System (ADS)
Hartman, Joshua D.; Monaco, Stephen; Schatschneider, Bohdan; Beran, Gregory J. O.
2015-09-01
We assess the quality of fragment-based ab initio isotropic 13C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic 13C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readily in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits.
Hartman, Joshua D; Monaco, Stephen; Schatschneider, Bohdan; Beran, Gregory J O
2015-09-14
We assess the quality of fragment-based ab initio isotropic (13)C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic (13)C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readily in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits.
Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers.
Tomassen, Peter; Vandeplas, Griet; Van Zele, Thibaut; Cardell, Lars-Olaf; Arebro, Julia; Olze, Heidi; Förster-Ruhrmann, Ulrike; Kowalski, Marek L; Olszewska-Ziąber, Agnieszka; Holtappels, Gabriele; De Ruyck, Natalie; Wang, Xiangdong; Van Drunen, Cornelis; Mullol, Joaquim; Hellings, Peter; Hox, Valerie; Toskala, Elina; Scadding, Glenis; Lund, Valerie; Zhang, Luo; Fokkens, Wytske; Bachert, Claus
2016-05-01
Current phenotyping of chronic rhinosinusitis (CRS) into chronic rhinosinusitis with nasal polyps (CRSwNP) and chronic rhinosinusitis without nasal polyps (CRSsNP) might not adequately reflect the pathophysiologic diversity within patients with CRS. We sought to identify inflammatory endotypes of CRS. Therefore we aimed to cluster patients with CRS based solely on immune markers in a phenotype-free approach. Secondarily, we aimed to match clusters to phenotypes. In this multicenter case-control study patients with CRS and control subjects underwent surgery, and tissue was analyzed for IL-5, IFN-γ, IL-17A, TNF-α, IL-22, IL-1β, IL-6, IL-8, eosinophilic cationic protein, myeloperoxidase, TGF-β1, IgE, Staphylococcus aureus enterotoxin-specific IgE, and albumin. We used partition-based clustering. Clustering of 173 cases resulted in 10 clusters, of which 4 clusters with low or undetectable IL-5, eosinophilic cationic protein, IgE, and albumin concentrations, and 6 clusters with high concentrations of those markers. The group of IL-5-negative clusters, 3 clusters clinically resembled a predominant chronic rhinosinusitis without nasal polyps (CRSsNP) phenotype without increased asthma prevalence, and 1 cluster had a TH17 profile and had mixed CRSsNP/CRSwNP. The IL-5-positive clusters were divided into a group with moderate IL-5 concentrations, a mixed CRSsNP/CRSwNP and increased asthma phenotype, and a group with high IL-5 levels, an almost exclusive nasal polyp phenotype with strongly increased asthma prevalence. In the latter group, 2 clusters demonstrated the highest concentrations of IgE and asthma prevalence, with all samples expressing Staphylococcus aureus enterotoxin-specific IgE. Distinct CRS clusters with diverse inflammatory mechanisms largely correlated with phenotypes and further differentiated them and provided a more accurate description of the inflammatory mechanisms involved than phenotype information only. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Virtual screening by a new Clustering-based Weighted Similarity Extreme Learning Machine approach
Kudisthalert, Wasu
2018-01-01
Machine learning techniques are becoming popular in virtual screening tasks. One of the powerful machine learning algorithms is Extreme Learning Machine (ELM) which has been applied to many applications and has recently been applied to virtual screening. We propose the Weighted Similarity ELM (WS-ELM) which is based on a single layer feed-forward neural network in a conjunction of 16 different similarity coefficients as activation function in the hidden layer. It is known that the performance of conventional ELM is not robust due to random weight selection in the hidden layer. Thus, we propose a Clustering-based WS-ELM (CWS-ELM) that deterministically assigns weights by utilising clustering algorithms i.e. k-means clustering and support vector clustering. The experiments were conducted on one of the most challenging datasets–Maximum Unbiased Validation Dataset–which contains 17 activity classes carefully selected from PubChem. The proposed algorithms were then compared with other machine learning techniques such as support vector machine, random forest, and similarity searching. The results show that CWS-ELM in conjunction with support vector clustering yields the best performance when utilised together with Sokal/Sneath(1) coefficient. Furthermore, ECFP_6 fingerprint presents the best results in our framework compared to the other types of fingerprints, namely ECFP_4, FCFP_4, and FCFP_6. PMID:29652912
NASA Astrophysics Data System (ADS)
Wright, D. J.; Raad, M.; Hoel, E.; Park, M.; Mollenkopf, A.; Trujillo, R.
2016-12-01
Introduced is a new approach for processing spatiotemporal big data by leveraging distributed analytics and storage. A suite of temporally-aware analysis tools summarizes data nearby or within variable windows, aggregates points (e.g., for various sensor observations or vessel positions), reconstructs time-enabled points into tracks (e.g., for mapping and visualizing storm tracks), joins features (e.g., to find associations between features based on attributes, spatial relationships, temporal relationships or all three simultaneously), calculates point densities, finds hot spots (e.g., in species distributions), and creates space-time slices and cubes (e.g., in microweather applications with temperature, humidity, and pressure, or within human mobility studies). These "feature geo analytics" tools run in both batch and streaming spatial analysis mode as distributed computations across a cluster of servers on typical "big" data sets, where static data exist in traditional geospatial formats (e.g., shapefile) locally on a disk or file share, attached as static spatiotemporal big data stores, or streamed in near-real-time. In other words, the approach registers large datasets or data stores with ArcGIS Server, then distributes analysis across a cluster of machines for parallel processing. Several brief use cases will be highlighted based on a 16-node server cluster at 14 Gb RAM per node, allowing, for example, the buffering of over 8 million points or thousands of polygons in 1 minute. The approach is "hybrid" in that ArcGIS Server integrates open-source big data frameworks such as Apache Hadoop and Apache Spark on the cluster in order to run the analytics. In addition, the user may devise and connect custom open-source interfaces and tools developed in Python or Python Notebooks; the common denominator being the familiar REST API.
Marković, Svetlana; Tošović, Jelena
2015-09-03
The UV-vis properties of 22 natural phenolic compounds, comprising anthraquinones, neoflavonoids, and flavonoids were systematically examined. The time-dependent density functional theory (TDDFT) approach in combination with the B3LYP, B3LYP-D2, B3P86, and M06-2X functionals was used to simulate the UV-vis spectra of the investigated compounds. It was shown that all methods exhibit very good (B3LYP slightly better) performance in reproducing the examined UV-vis spectra. However, the shapes of the Kohn-Sham molecular orbitals (MOs) involved in electronic transitions were misleading in constructing the MO correlation diagrams. To provide better understanding of redistribution of electron density upon excitation, the natural bond orbital (NBO) analysis was applied. Bearing in mind the spatial and energetic separations, as well as the character of the π bonding, lone pair, and π* antibonding natural localized molecular orbitals (NLMOs), the "NLMO clusters" were constructed. NLMO cluster should be understood as a part of a molecule characterized with distinguished electron density. It was shown that all absorption bands including all electronic transitions need to be inspected to fully understand the UV-vis spectrum of a certain compound, and, thus, to learn more about its UV-vis light absorption. Our investigation showed that the TDDFT and NBO theories are complementary, as the results from the two approaches can be combined to interpret the UV-vis spectra. Agreement between the predictions of the TDDFT approach and those based on the NLMO clusters is excellent in the case of major electronic transitions and long wavelengths. It should be emphasized that the approach for investigation of UV-vis light absorption based on the NLMO clusters is applied for the first time.
The Mass Function of Abell Clusters
NASA Astrophysics Data System (ADS)
Chen, J.; Huchra, J. P.; McNamara, B. R.; Mader, J.
1998-12-01
The velocity dispersion and mass functions for rich clusters of galaxies provide important constraints on models of the formation of Large-Scale Structure (e.g., Frenk et al. 1990). However, prior estimates of the velocity dispersion or mass function for galaxy clusters have been based on either very small samples of clusters (Bahcall and Cen 1993; Zabludoff et al. 1994) or large but incomplete samples (e.g., the Girardi et al. (1998) determination from a sample of clusters with more than 30 measured galaxy redshifts). In contrast, we approach the problem by constructing a volume-limited sample of Abell clusters. We collected individual galaxy redshifts for our sample from two major galaxy velocity databases, the NASA Extragalactic Database, NED, maintained at IPAC, and ZCAT, maintained at SAO. We assembled a database with velocity information for possible cluster members and then selected cluster members based on both spatial and velocity data. Cluster velocity dispersions and masses were calculated following the procedures of Danese, De Zotti, and di Tullio (1980) and Heisler, Tremaine, and Bahcall (1985), respectively. The final velocity dispersion and mass functions were analyzed in order to constrain cosmological parameters by comparison to the results of N-body simulations. Our data for the cluster sample as a whole and for the individual clusters (spatial maps and velocity histograms) in our sample is available on-line at http://cfa-www.harvard.edu/ huchra/clusters. This website will be updated as more data becomes available in the master redshift compilations, and will be expanded to include more clusters and large groups of galaxies.
Ng, Edmond S-W; Diaz-Ordaz, Karla; Grieve, Richard; Nixon, Richard M; Thompson, Simon G; Carpenter, James R
2016-10-01
Multilevel models provide a flexible modelling framework for cost-effectiveness analyses that use cluster randomised trial data. However, there is a lack of guidance on how to choose the most appropriate multilevel models. This paper illustrates an approach for deciding what level of model complexity is warranted; in particular how best to accommodate complex variance-covariance structures, right-skewed costs and missing data. Our proposed models differ according to whether or not they allow individual-level variances and correlations to differ across treatment arms or clusters and by the assumed cost distribution (Normal, Gamma, Inverse Gaussian). The models are fitted by Markov chain Monte Carlo methods. Our approach to model choice is based on four main criteria: the characteristics of the data, model pre-specification informed by the previous literature, diagnostic plots and assessment of model appropriateness. This is illustrated by re-analysing a previous cost-effectiveness analysis that uses data from a cluster randomised trial. We find that the most useful criterion for model choice was the deviance information criterion, which distinguishes amongst models with alternative variance-covariance structures, as well as between those with different cost distributions. This strategy for model choice can help cost-effectiveness analyses provide reliable inferences for policy-making when using cluster trials, including those with missing data. © The Author(s) 2013.
Thermodynamics and proton activities of protic ionic liquids with quantum cluster equilibrium theory
NASA Astrophysics Data System (ADS)
Ingenmey, Johannes; von Domaros, Michael; Perlt, Eva; Verevkin, Sergey P.; Kirchner, Barbara
2018-05-01
We applied the binary Quantum Cluster Equilibrium (bQCE) method to a number of alkylammonium-based protic ionic liquids in order to predict boiling points, vaporization enthalpies, and proton activities. The theory combines statistical thermodynamics of van-der-Waals-type clusters with ab initio quantum chemistry and yields the partition functions (and associated thermodynamic potentials) of binary mixtures over a wide range of thermodynamic phase points. Unlike conventional cluster approaches that are limited to the prediction of thermodynamic properties, dissociation reactions can be effortlessly included into the bQCE formalism, giving access to ionicities, as well. The method is open to quantum chemical methods at any level of theory, but combination with low-cost composite density functional theory methods and the proposed systematic approach to generate cluster sets provides a computationally inexpensive and mostly parameter-free way to predict such properties at good-to-excellent accuracy. Boiling points can be predicted within an accuracy of 50 K, reaching excellent accuracy for ethylammonium nitrate. Vaporization enthalpies are predicted within an accuracy of 20 kJ mol-1 and can be systematically interpreted on a molecular level. We present the first theoretical approach to predict proton activities in protic ionic liquids, with results fitting well into the experimentally observed correlation. Furthermore, enthalpies of vaporization were measured experimentally for some alkylammonium nitrates and an excellent linear correlation with vaporization enthalpies of their respective parent amines is observed.
Scalable cluster administration - Chiba City I approach and lessons learned.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Navarro, J. P.; Evard, R.; Nurmi, D.
2002-07-01
Systems administrators of large clusters often need to perform the same administrative activity hundreds or thousands of times. Often such activities are time-consuming, especially the tasks of installing and maintaining software. By combining network services such as DHCP, TFTP, FTP, HTTP, and NFS with remote hardware control, cluster administrators can automate all administrative tasks. Scalable cluster administration addresses the following challenge: What systems design techniques can cluster builders use to automate cluster administration on very large clusters? We describe the approach used in the Mathematics and Computer Science Division of Argonne National Laboratory on Chiba City I, a 314-node Linuxmore » cluster; and we analyze the scalability, flexibility, and reliability benefits and limitations from that approach.« less
Singh, Archana; Subudhi, Enketeswara; Sahoo, Rajesh Kumar; Gaur, Mahendra
2016-03-01
Deulajhari hot spring is located in the Angul district of Odisha. The significance of this hot spring is the presence of the hot spring cluster adjacent to the cold spring which attracts the attention of microbiologists to understand the role of physio-chemical factors of these springs on bacterial community structure. Next-generation sequencing technology helps us to depict the pioneering microflora of any ecological niche based on metagenomic approach. Our study represents the first Illumina based metagenomic study of Deulajhari hot spring DH1, and DH2 of the cluster with temperature 65 °C to 55 °C respectively establishing a difference of 10 °C. Comprehensive study of microbiota of these two hot springs was done using the metagenomic sequencing of 16S rRNA of V3-V4 region extracting metagenomic DNA from the two hot spring sediments. Sequencing community DNA reported about 28 phyla in spring DH1 of which the majority were Chloroflexi (22.98%), Proteobacteria (15.51%), Acidobacteria (14.51%), Chlorobi (9.52%), Nitrospirae (8.54%), and Armatimonadetes (7.07%), at the existing physiochemical conditions like; temperature 65 °C, pH 8.06, electro conductivity 0.020 dSm(- 1), and total organic carbon (TOC) 3.76%. About 40 phyla were detected in cluster DH2 at the existing physiochemical parameters like temperature 55 °C, pH 8.10, electro conductivity 0.019 dSm(- 1), and total organic carbon (TOC) 0.58% predominated with Chloroflexi (41.98%), Proteobacteria (10.74%), Nitrospirae (10.01%), Chlorobi (8.73%), Acidobacteria (6.73%) and Planctomycetes (3.73%). Approximately 68 class, 107 order, 171 genus and 184 species were reported in cluster DH1 but 102 class, 180 order, 375 genus and 411 species in cluster DH2. The comparative metagenomics study of the Deulajhari hot spring clusters DH1, and DH2 depicts the differential profile of the microbiota. Metagenome sequences of these two hot spring clusters are deposited to the SRA database and are available in NCBI with accession no. SRX1459734 for DH1 and SRX1459735 for DH2.
Cognitive Clusters in Specific Learning Disorder.
Poletti, Michele; Carretta, Elisa; Bonvicini, Laura; Giorgi-Rossi, Paolo
The heterogeneity among children with learning disabilities still represents a barrier and a challenge in their conceptualization. Although a dimensional approach has been gaining support, the categorical approach is still the most adopted, as in the recent fifth edition of the Diagnostic and Statistical Manual of Mental Disorders. The introduction of the single overarching diagnostic category of specific learning disorder (SLD) could underemphasize interindividual clinical differences regarding intracategory cognitive functioning and learning proficiency, according to current models of multiple cognitive deficits at the basis of neurodevelopmental disorders. The characterization of specific cognitive profiles associated with an already manifest SLD could help identify possible early cognitive markers of SLD risk and distinct trajectories of atypical cognitive development leading to SLD. In this perspective, we applied a cluster analysis to identify groups of children with a Diagnostic and Statistical Manual-based diagnosis of SLD with similar cognitive profiles and to describe the association between clusters and SLD subtypes. A sample of 205 children with a diagnosis of SLD were enrolled. Cluster analyses (agglomerative hierarchical and nonhierarchical iterative clustering technique) were used successively on 10 core subtests of the Wechsler Intelligence Scale for Children-Fourth Edition. The 4-cluster solution was adopted, and external validation found differences in terms of SLD subtype frequencies and learning proficiency among clusters. Clinical implications of these findings are discussed, tracing directions for further studies.
Million-body star cluster simulations: comparisons between Monte Carlo and direct N-body
NASA Astrophysics Data System (ADS)
Rodriguez, Carl L.; Morscher, Meagan; Wang, Long; Chatterjee, Sourav; Rasio, Frederic A.; Spurzem, Rainer
2016-12-01
We present the first detailed comparison between million-body globular cluster simulations computed with a Hénon-type Monte Carlo code, CMC, and a direct N-body code, NBODY6++GPU. Both simulations start from an identical cluster model with 106 particles, and include all of the relevant physics needed to treat the system in a highly realistic way. With the two codes `frozen' (no fine-tuning of any free parameters or internal algorithms of the codes) we find good agreement in the overall evolution of the two models. Furthermore, we find that in both models, large numbers of stellar-mass black holes (>1000) are retained for 12 Gyr. Thus, the very accurate direct N-body approach confirms recent predictions that black holes can be retained in present-day, old globular clusters. We find only minor disagreements between the two models and attribute these to the small-N dynamics driving the evolution of the cluster core for which the Monte Carlo assumptions are less ideal. Based on the overwhelming general agreement between the two models computed using these vastly different techniques, we conclude that our Monte Carlo approach, which is more approximate, but dramatically faster compared to the direct N-body, is capable of producing an accurate description of the long-term evolution of massive globular clusters even when the clusters contain large populations of stellar-mass black holes.
Recursive Hierarchical Image Segmentation by Region Growing and Constrained Spectral Clustering
NASA Technical Reports Server (NTRS)
Tilton, James C.
2002-01-01
This paper describes an algorithm for hierarchical image segmentation (referred to as HSEG) and its recursive formulation (referred to as RHSEG). The HSEG algorithm is a hybrid of region growing and constrained spectral clustering that produces a hierarchical set of image segmentations based on detected convergence points. In the main, HSEG employs the hierarchical stepwise optimization (HS WO) approach to region growing, which seeks to produce segmentations that are more optimized than those produced by more classic approaches to region growing. In addition, HSEG optionally interjects between HSWO region growing iterations merges between spatially non-adjacent regions (i.e., spectrally based merging or clustering) constrained by a threshold derived from the previous HSWO region growing iteration. While the addition of constrained spectral clustering improves the segmentation results, especially for larger images, it also significantly increases HSEG's computational requirements. To counteract this, a computationally efficient recursive, divide-and-conquer, implementation of HSEG (RHSEG) has been devised and is described herein. Included in this description is special code that is required to avoid processing artifacts caused by RHSEG s recursive subdivision of the image data. Implementations for single processor and for multiple processor computer systems are described. Results with Landsat TM data are included comparing HSEG with classic region growing. Finally, an application to image information mining and knowledge discovery is discussed.
A system for learning statistical motion patterns.
Hu, Weiming; Xiao, Xuejuan; Fu, Zhouyu; Xie, Dan; Tan, Tieniu; Maybank, Steve
2006-09-01
Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy K-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction.
Udrescu, Lucreţia; Sbârcea, Laura; Topîrceanu, Alexandru; Iovanovici, Alexandru; Kurunczi, Ludovic; Bogdan, Paul; Udrescu, Mihai
2016-09-07
Analyzing drug-drug interactions may unravel previously unknown drug action patterns, leading to the development of new drug discovery tools. We present a new approach to analyzing drug-drug interaction networks, based on clustering and topological community detection techniques that are specific to complex network science. Our methodology uncovers functional drug categories along with the intricate relationships between them. Using modularity-based and energy-model layout community detection algorithms, we link the network clusters to 9 relevant pharmacological properties. Out of the 1141 drugs from the DrugBank 4.1 database, our extensive literature survey and cross-checking with other databases such as Drugs.com, RxList, and DrugBank 4.3 confirm the predicted properties for 85% of the drugs. As such, we argue that network analysis offers a high-level grasp on a wide area of pharmacological aspects, indicating possible unaccounted interactions and missing pharmacological properties that can lead to drug repositioning for the 15% drugs which seem to be inconsistent with the predicted property. Also, by using network centralities, we can rank drugs according to their interaction potential for both simple and complex multi-pathology therapies. Moreover, our clustering approach can be extended for applications such as analyzing drug-target interactions or phenotyping patients in personalized medicine applications.
Udrescu, Lucreţia; Sbârcea, Laura; Topîrceanu, Alexandru; Iovanovici, Alexandru; Kurunczi, Ludovic; Bogdan, Paul; Udrescu, Mihai
2016-01-01
Analyzing drug-drug interactions may unravel previously unknown drug action patterns, leading to the development of new drug discovery tools. We present a new approach to analyzing drug-drug interaction networks, based on clustering and topological community detection techniques that are specific to complex network science. Our methodology uncovers functional drug categories along with the intricate relationships between them. Using modularity-based and energy-model layout community detection algorithms, we link the network clusters to 9 relevant pharmacological properties. Out of the 1141 drugs from the DrugBank 4.1 database, our extensive literature survey and cross-checking with other databases such as Drugs.com, RxList, and DrugBank 4.3 confirm the predicted properties for 85% of the drugs. As such, we argue that network analysis offers a high-level grasp on a wide area of pharmacological aspects, indicating possible unaccounted interactions and missing pharmacological properties that can lead to drug repositioning for the 15% drugs which seem to be inconsistent with the predicted property. Also, by using network centralities, we can rank drugs according to their interaction potential for both simple and complex multi-pathology therapies. Moreover, our clustering approach can be extended for applications such as analyzing drug-target interactions or phenotyping patients in personalized medicine applications. PMID:27599720
Potashev, Konstantin; Sharonova, Natalia; Breus, Irina
2014-07-01
Clustering was employed for the analysis of obtained experimental data set (42 plants in total) on seed germination in leached chernozem contaminated with kerosene. Among investigated plants were 31 cultivated plants from 11 families (27 species and 20 varieties) and 11 wild plant species from 7 families, 23 annual and 19 perennial/biannual plant species, 11 monocotyledonous and 31 dicotyledonous plants. Two-dimensional (two-parameter) clustering approach, allowing the estimation of tolerance of germinating seeds using a pair of independent parameters (С75%, V7%) was found to be most effective. These parameters characterized the ability of seeds to both withstand high concentrations of contaminants without the significant reduction of the germination, and maintain high germination rate within certain contaminant concentrations. The performed clustering revealed a number of plant features, which define the relation of a particular plant to a particular tolerance cluster; it has also demonstrated the possibility of generalizing the kerosene results for n-tridecane, which is one of the typical kerosene components. In contrast to the "manual" plant ranking based on the assessment of germination at discrete concentrations of the contaminant, the proposed clustering approach allowed a generalized characterization of the seed tolerance/sensitivity to hydrocarbon contaminants. Copyright © 2014 Elsevier B.V. All rights reserved.
Koren, Omry; Knights, Dan; Gonzalez, Antonio; Waldron, Levi; Segata, Nicola; Knight, Rob; Huttenhower, Curtis; Ley, Ruth E
2013-01-01
Recent analyses of human-associated bacterial diversity have categorized individuals into 'enterotypes' or clusters based on the abundances of key bacterial genera in the gut microbiota. There is a lack of consensus, however, on the analytical basis for enterotypes and on the interpretation of these results. We tested how the following factors influenced the detection of enterotypes: clustering methodology, distance metrics, OTU-picking approaches, sequencing depth, data type (whole genome shotgun (WGS) vs.16S rRNA gene sequence data), and 16S rRNA region. We included 16S rRNA gene sequences from the Human Microbiome Project (HMP) and from 16 additional studies and WGS sequences from the HMP and MetaHIT. In most body sites, we observed smooth abundance gradients of key genera without discrete clustering of samples. Some body habitats displayed bimodal (e.g., gut) or multimodal (e.g., vagina) distributions of sample abundances, but not all clustering methods and workflows accurately highlight such clusters. Because identifying enterotypes in datasets depends not only on the structure of the data but is also sensitive to the methods applied to identifying clustering strength, we recommend that multiple approaches be used and compared when testing for enterotypes.
Waldron, Levi; Segata, Nicola; Knight, Rob; Huttenhower, Curtis; Ley, Ruth E.
2013-01-01
Recent analyses of human-associated bacterial diversity have categorized individuals into ‘enterotypes’ or clusters based on the abundances of key bacterial genera in the gut microbiota. There is a lack of consensus, however, on the analytical basis for enterotypes and on the interpretation of these results. We tested how the following factors influenced the detection of enterotypes: clustering methodology, distance metrics, OTU-picking approaches, sequencing depth, data type (whole genome shotgun (WGS) vs.16S rRNA gene sequence data), and 16S rRNA region. We included 16S rRNA gene sequences from the Human Microbiome Project (HMP) and from 16 additional studies and WGS sequences from the HMP and MetaHIT. In most body sites, we observed smooth abundance gradients of key genera without discrete clustering of samples. Some body habitats displayed bimodal (e.g., gut) or multimodal (e.g., vagina) distributions of sample abundances, but not all clustering methods and workflows accurately highlight such clusters. Because identifying enterotypes in datasets depends not only on the structure of the data but is also sensitive to the methods applied to identifying clustering strength, we recommend that multiple approaches be used and compared when testing for enterotypes. PMID:23326225
Julie, E Golden; Selvi, S Tamil
2016-01-01
Wireless sensor networks (WSNs) consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS) is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes.
Julie, E. Golden; Selvi, S. Tamil
2016-01-01
Wireless sensor networks (WSNs) consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS) is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes. PMID:26881269
Surface EMG decomposition based on K-means clustering and convolution kernel compensation.
Ning, Yong; Zhu, Xiangjun; Zhu, Shanan; Zhang, Yingchun
2015-03-01
A new approach has been developed by combining the K-mean clustering (KMC) method and a modified convolution kernel compensation (CKC) method for multichannel surface electromyogram (EMG) decomposition. The KMC method was first utilized to cluster vectors of observations at different time instants and then estimate the initial innervation pulse train (IPT). The CKC method, modified with a novel multistep iterative process, was conducted to update the estimated IPT. The performance of the proposed K-means clustering-Modified CKC (KmCKC) approach was evaluated by reconstructing IPTs from both simulated and experimental surface EMG signals. The KmCKC approach successfully reconstructed all 10 IPTs from the simulated surface EMG signals with true positive rates (TPR) of over 90% with a low signal-to-noise ratio (SNR) of -10 dB. More than 10 motor units were also successfully extracted from the 64-channel experimental surface EMG signals of the first dorsal interosseous (FDI) muscles when a contraction force was held at 8 N by using the KmCKC approach. A "two-source" test was further conducted with 64-channel surface EMG signals. The high percentage of common MUs and common pulses (over 92% at all force levels) between the IPTs reconstructed from the two independent groups of surface EMG signals demonstrates the reliability and capability of the proposed KmCKC approach in multichannel surface EMG decomposition. Results from both simulated and experimental data are consistent and confirm that the proposed KmCKC approach can successfully reconstruct IPTs with high accuracy at different levels of contraction.
Distributed Multihop Clustering Approach for Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Israr, Nauman; Awan, Irfan
Prolonging the life time of Wireless Sensor Networks (WSNs) has been the focus of current research. One of the issues that needs to be addressed along with prolonging the network life time is to ensure uniform energy consumption across the network in WSNs especially in case of random network deployment. Cluster based routing algorithms are believed to be the best choice for WSNs because they work on the principle of divide and conquer and also improve the network life time considerably compared to flat based routing schemes. In this paper we propose a new routing strategy based on two layers clustering which exploits the redundancy property of the network in order to minimise duplicate data transmission and also make the intercluster and intracluster communication multihop. The proposed algorithm makes use of the nodes in a network whose area coverage is covered by the neighbouring nodes. These nodes are marked as temporary cluster heads and later use these temporary cluster heads randomly for multihop intercluster communication. Performance studies indicate that the proposed algorithm solves effectively the problem of load balancing across the network and is more energy efficient compared to the enhanced version of widely used Leach algorithm.
Unsupervised active learning based on hierarchical graph-theoretic clustering.
Hu, Weiming; Hu, Wei; Xie, Nianhua; Maybank, Steve
2009-10-01
Most existing active learning approaches are supervised. Supervised active learning has the following problems: inefficiency in dealing with the semantic gap between the distribution of samples in the feature space and their labels, lack of ability in selecting new samples that belong to new categories that have not yet appeared in the training samples, and lack of adaptability to changes in the semantic interpretation of sample categories. To tackle these problems, we propose an unsupervised active learning framework based on hierarchical graph-theoretic clustering. In the framework, two promising graph-theoretic clustering algorithms, namely, dominant-set clustering and spectral clustering, are combined in a hierarchical fashion. Our framework has some advantages, such as ease of implementation, flexibility in architecture, and adaptability to changes in the labeling. Evaluations on data sets for network intrusion detection, image classification, and video classification have demonstrated that our active learning framework can effectively reduce the workload of manual classification while maintaining a high accuracy of automatic classification. It is shown that, overall, our framework outperforms the support-vector-machine-based supervised active learning, particularly in terms of dealing much more efficiently with new samples whose categories have not yet appeared in the training samples.
Cluster-based adaptive power control protocol using Hidden Markov Model for Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Vinutha, C. B.; Nalini, N.; Nagaraja, M.
2017-06-01
This paper presents strategies for an efficient and dynamic transmission power control technique, in order to reduce packet drop and hence energy consumption of power-hungry sensor nodes operated in highly non-linear channel conditions of Wireless Sensor Networks. Besides, we also focus to prolong network lifetime and scalability by designing cluster-based network structure. Specifically we consider weight-based clustering approach wherein, minimum significant node is chosen as Cluster Head (CH) which is computed stemmed from the factors distance, remaining residual battery power and received signal strength (RSS). Further, transmission power control schemes to fit into dynamic channel conditions are meticulously implemented using Hidden Markov Model (HMM) where probability transition matrix is formulated based on the observed RSS measurements. Typically, CH estimates initial transmission power of its cluster members (CMs) from RSS using HMM and broadcast this value to its CMs for initialising their power value. Further, if CH finds that there are variations in link quality and RSS of the CMs, it again re-computes and optimises the transmission power level of the nodes using HMM to avoid packet loss due noise interference. We have demonstrated our simulation results to prove that our technique efficiently controls the power levels of sensing nodes to save significant quantity of energy for different sized network.
C. Pascual; A. Garcia-Abril; L.G. Garcia-Montero; S. Martin-Fernandez; W.B. Cohen
2008-01-01
In this paper, we present a two-stage approach for characterizing the structure of Pinus sylvestris L. stands in forests of central Spain. The first stage was to delimit forest stands using eCognition and a digital canopy height model (DCHM) derived from lidar data. The polygons were then clustered into forest structure types based on the DCHM data...
Effects of manganese doping on the structure evolution of small-sized boron clusters
NASA Astrophysics Data System (ADS)
Zhao, Lingquan; Qu, Xin; Wang, Yanchao; Lv, Jian; Zhang, Lijun; Hu, Ziyu; Gu, Guangrui; Ma, Yanming
2017-07-01
Atomic doping of clusters is known as an effective approach to stabilize or modify the structures and properties of resulting doped clusters. We herein report the effect of manganese (Mn) doping on the structure evolution of small-sized boron (B) clusters. The global minimum structures of both neutral and charged Mn doped B cluster \\text{MnB}nQ (n = 10-20 and Q = 0, ±1) have been proposed through extensive first-principles swarm-intelligence based structure searches. It is found that Mn doping has significantly modified the grow behaviors of B clusters, leading to two novel structural transitions from planar to tubular and then to cage-like B structures in both neutral and charged species. Half-sandwich-type structures are most favorable for small \\text{MnB}n-/0/+ (n ⩽ 13) clusters and gradually transform to Mn-centered double-ring tubular structures at \\text{MnB}16-/0/+ clusters with superior thermodynamic stabilities compared with their neighbors. Most strikingly, endohedral cages become the ground-state structures for larger \\text{MnB}n-/0/+ (n ⩾ 19) clusters, among which \\text{MnB}20+ adopts a highly symmetric structure with superior thermodynamic stability and a large HOMO-LUMO gap of 4.53 eV. The unique stability of the endohedral \\text{MnB}\\text{20}+ cage is attributed to the geometric fit and formation of 18-electron closed-shell configuration. The results significantly advance our understanding about the structure and bonding of B-based clusters and strongly suggest transition-metal doping as a viable route to synthesize intriguing B-based nanomaterials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wykes, M., E-mail: mikewykes@gmail.com; Parambil, R.; Gierschner, J.
Here, we present a general approach to treating vibronic coupling in molecular crystals based on atomistic simulations of large clusters. Such clusters comprise model aggregates treated at the quantum chemical level embedded within a realistic environment treated at the molecular mechanics level. As we calculate ground and excited state equilibrium geometries and vibrational modes of model aggregates, our approach is able to capture effects arising from coupling to intermolecular degrees of freedom, absent from existing models relying on geometries and normal modes of single molecules. Using the geometries and vibrational modes of clusters, we are able to simulate the fluorescencemore » spectra of aggregates for which the lowest excited state bears negligible oscillator strength (as is the case, e.g., ideal H-aggregates) by including both Franck-Condon (FC) and Herzberg-Teller (HT) vibronic transitions. The latter terms allow the adiabatic excited state of the cluster to couple with vibrations in a perturbative fashion via derivatives of the transition dipole moment along nuclear coordinates. While vibronic coupling simulations employing FC and HT terms are well established for single-molecules, to our knowledge this is the first time they are applied to molecular aggregates. Here, we apply this approach to the simulation of the low-temperature fluorescence spectrum of para-distyrylbenzene single-crystal H-aggregates and draw comparisons with coarse-grained Frenkel-Holstein approaches previously extensively applied to such systems.« less
Munneke, Marten; Nijkrake, Maarten J; Keus, Samyra Hj; Kwakkel, Gert; Berendse, Henk W; Roos, Raymund Ac; Borm, George F; Adang, Eddy M; Overeem, Sebastiaan; Bloem, Bastiaan R
2010-01-01
Many patients with Parkinson's disease are treated with physiotherapy. We have developed a community-based professional network (ParkinsonNet) that involves training of a selected number of expert physiotherapists to work according to evidence-based recommendations, and structured referrals to these trained physiotherapists to increase the numbers of patients they treat. We aimed to assess the efficacy of this approach for improving health-care outcomes. Between February, 2005, and August, 2007, we did a cluster-randomised trial with 16 clusters (defined as community hospitals and their catchment area). Clusters were randomly allocated by use of a variance minimisation algorithm to ParkinsonNet care (n=8) or usual care (n=8). Patients were assessed at baseline and at 8, 16, and 24 weeks of follow-up. The primary outcome was a patient preference disability score, the patient-specific index score, at 16 weeks. Health secondary outcomes were functional mobility, mobility-related quality of life, and total societal costs over 24 weeks. Analysis was by intention to treat. This trial is registered, number NCT00330694. We included 699 patients. Baseline characteristics of the patients were comparable between the ParkinsonNet clusters (n=358) and usual-care clusters (n=341). The primary endpoint was similar for patients within the ParkinsonNet clusters (mean 47.7, SD 21.9) and control clusters (48.3, 22.4). Health secondary endpoints were also similar for patients in both study groups. Total costs over 24 weeks were lower in ParkinsonNet clusters compared with usual-care clusters (difference euro727; 95% CI 56-1399). Implementation of ParkinsonNet networks did not change health outcomes for patients living in ParkinsonNet clusters. However, health-care costs were reduced in ParkinsonNet clusters compared with usual-care clusters. ZonMw; Netherlands Organisation for Scientific Research; Dutch Parkinson's Disease Society; National Parkinson Foundation; Stichting Robuust. Copyright 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wei-Chen; Maitra, Ranjan
2011-01-01
We propose a model-based approach for clustering time series regression data in an unsupervised machine learning framework to identify groups under the assumption that each mixture component follows a Gaussian autoregressive regression model of order p. Given the number of groups, the traditional maximum likelihood approach of estimating the parameters using the expectation-maximization (EM) algorithm can be employed, although it is computationally demanding. The somewhat fast tune to the EM folk song provided by the Alternating Expectation Conditional Maximization (AECM) algorithm can alleviate the problem to some extent. In this article, we develop an alternative partial expectation conditional maximization algorithmmore » (APECM) that uses an additional data augmentation storage step to efficiently implement AECM for finite mixture models. Results on our simulation experiments show improved performance in both fewer numbers of iterations and computation time. The methodology is applied to the problem of clustering mutual funds data on the basis of their average annual per cent returns and in the presence of economic indicators.« less
Freire, Sergio Miranda; Teodoro, Douglas; Wei-Kleiner, Fang; Sundvall, Erik; Karlsson, Daniel; Lambrix, Patrick
2016-01-01
This study provides an experimental performance evaluation on population-based queries of NoSQL databases storing archetype-based Electronic Health Record (EHR) data. There are few published studies regarding the performance of persistence mechanisms for systems that use multilevel modelling approaches, especially when the focus is on population-based queries. A healthcare dataset with 4.2 million records stored in a relational database (MySQL) was used to generate XML and JSON documents based on the openEHR reference model. Six datasets with different sizes were created from these documents and imported into three single machine XML databases (BaseX, eXistdb and Berkeley DB XML) and into a distributed NoSQL database system based on the MapReduce approach, Couchbase, deployed in different cluster configurations of 1, 2, 4, 8 and 12 machines. Population-based queries were submitted to those databases and to the original relational database. Database size and query response times are presented. The XML databases were considerably slower and required much more space than Couchbase. Overall, Couchbase had better response times than MySQL, especially for larger datasets. However, Couchbase requires indexing for each differently formulated query and the indexing time increases with the size of the datasets. The performances of the clusters with 2, 4, 8 and 12 nodes were not better than the single node cluster in relation to the query response time, but the indexing time was reduced proportionally to the number of nodes. The tested XML databases had acceptable performance for openEHR-based data in some querying use cases and small datasets, but were generally much slower than Couchbase. Couchbase also outperformed the response times of the relational database, but required more disk space and had a much longer indexing time. Systems like Couchbase are thus interesting research targets for scalable storage and querying of archetype-based EHR data when population-based use cases are of interest. PMID:26958859
Freire, Sergio Miranda; Teodoro, Douglas; Wei-Kleiner, Fang; Sundvall, Erik; Karlsson, Daniel; Lambrix, Patrick
2016-01-01
This study provides an experimental performance evaluation on population-based queries of NoSQL databases storing archetype-based Electronic Health Record (EHR) data. There are few published studies regarding the performance of persistence mechanisms for systems that use multilevel modelling approaches, especially when the focus is on population-based queries. A healthcare dataset with 4.2 million records stored in a relational database (MySQL) was used to generate XML and JSON documents based on the openEHR reference model. Six datasets with different sizes were created from these documents and imported into three single machine XML databases (BaseX, eXistdb and Berkeley DB XML) and into a distributed NoSQL database system based on the MapReduce approach, Couchbase, deployed in different cluster configurations of 1, 2, 4, 8 and 12 machines. Population-based queries were submitted to those databases and to the original relational database. Database size and query response times are presented. The XML databases were considerably slower and required much more space than Couchbase. Overall, Couchbase had better response times than MySQL, especially for larger datasets. However, Couchbase requires indexing for each differently formulated query and the indexing time increases with the size of the datasets. The performances of the clusters with 2, 4, 8 and 12 nodes were not better than the single node cluster in relation to the query response time, but the indexing time was reduced proportionally to the number of nodes. The tested XML databases had acceptable performance for openEHR-based data in some querying use cases and small datasets, but were generally much slower than Couchbase. Couchbase also outperformed the response times of the relational database, but required more disk space and had a much longer indexing time. Systems like Couchbase are thus interesting research targets for scalable storage and querying of archetype-based EHR data when population-based use cases are of interest.
A Context-sensitive Approach to Anonymizing Spatial Surveillance Data: Impact on Outbreak Detection
Cassa, Christopher A.; Grannis, Shaun J.; Overhage, J. Marc; Mandl, Kenneth D.
2006-01-01
Objective: The use of spatially based methods and algorithms in epidemiology and surveillance presents privacy challenges for researchers and public health agencies. We describe a novel method for anonymizing individuals in public health data sets by transposing their spatial locations through a process informed by the underlying population density. Further, we measure the impact of the skew on detection of spatial clustering as measured by a spatial scanning statistic. Design: Cases were emergency department (ED) visits for respiratory illness. Baseline ED visit data were injected with artificially created clusters ranging in magnitude, shape, and location. The geocoded locations were then transformed using a de-identification algorithm that accounts for the local underlying population density. Measurements: A total of 12,600 separate weeks of case data with artificially created clusters were combined with control data and the impact on detection of spatial clustering identified by a spatial scan statistic was measured. Results: The anonymization algorithm produced an expected skew of cases that resulted in high values of data set k-anonymity. De-identification that moves points an average distance of 0.25 km lowers the spatial cluster detection sensitivity by less than 4% and lowers the detection specificity less than 1%. Conclusion: A population-density–based Gaussian spatial blurring markedly decreases the ability to identify individuals in a data set while only slightly decreasing the performance of a standardly used outbreak detection tool. These findings suggest new approaches to anonymizing data for spatial epidemiology and surveillance. PMID:16357353
Taamneh, Madhar; Taamneh, Salah; Alkheder, Sharaf
2017-09-01
Artificial neural networks (ANNs) have been widely used in predicting the severity of road traffic crashes. All available information about previously occurred accidents is typically used for building a single prediction model (i.e., classifier). Too little attention has been paid to the differences between these accidents, leading, in most cases, to build less accurate predictors. Hierarchical clustering is a well-known clustering method that seeks to group data by creating a hierarchy of clusters. Using hierarchical clustering and ANNs, a clustering-based classification approach for predicting the injury severity of road traffic accidents was proposed. About 6000 road accidents occurred over a six-year period from 2008 to 2013 in Abu Dhabi were used throughout this study. In order to reduce the amount of variation in data, hierarchical clustering was applied on the data set to organize it into six different forms, each with different number of clusters (i.e., clusters from 1 to 6). Two ANN models were subsequently built for each cluster of accidents in each generated form. The first model was built and validated using all accidents (training set), whereas only 66% of the accidents were used to build the second model, and the remaining 34% were used to test it (percentage split). Finally, the weighted average accuracy was computed for each type of models in each from of data. The results show that when testing the models using the training set, clustering prior to classification achieves (11%-16%) more accuracy than without using clustering, while the percentage split achieves (2%-5%) more accuracy. The results also suggest that partitioning the accidents into six clusters achieves the best accuracy if both types of models are taken into account.
Yu, Han; Hageman Blair, Rachael
2016-01-01
Understanding community structure in networks has received considerable attention in recent years. Detecting and leveraging community structure holds promise for understanding and potentially intervening with the spread of influence. Network features of this type have important implications in a number of research areas, including, marketing, social networks, and biology. However, an overwhelming majority of traditional approaches to community detection cannot readily incorporate information of node attributes. Integrating structural and attribute information is a major challenge. We propose a exible iterative method; inverse regularized Markov Clustering (irMCL), to network clustering via the manipulation of the transition probability matrix (aka stochastic flow) corresponding to a graph. Similar to traditional Markov Clustering, irMCL iterates between "expand" and "inflate" operations, which aim to strengthen the intra-cluster flow, while weakening the inter-cluster flow. Attribute information is directly incorporated into the iterative method through a sigmoid (logistic function) that naturally dampens attribute influence that is contradictory to the stochastic flow through the network. We demonstrate advantages and the exibility of our approach using simulations and real data. We highlight an application that integrates breast cancer gene expression data set and a functional network defined via KEGG pathways reveal significant modules for survival.
Automatic Depth Extraction from 2D Images Using a Cluster-Based Learning Framework.
Herrera, Jose L; Del-Blanco, Carlos R; Garcia, Narciso
2018-07-01
There has been a significant increase in the availability of 3D players and displays in the last years. Nonetheless, the amount of 3D content has not experimented an increment of such magnitude. To alleviate this problem, many algorithms for converting images and videos from 2D to 3D have been proposed. Here, we present an automatic learning-based 2D-3D image conversion approach, based on the key hypothesis that color images with similar structure likely present a similar depth structure. The presented algorithm estimates the depth of a color query image using the prior knowledge provided by a repository of color + depth images. The algorithm clusters this database attending to their structural similarity, and then creates a representative of each color-depth image cluster that will be used as prior depth map. The selection of the appropriate prior depth map corresponding to one given color query image is accomplished by comparing the structural similarity in the color domain between the query image and the database. The comparison is based on a K-Nearest Neighbor framework that uses a learning procedure to build an adaptive combination of image feature descriptors. The best correspondences determine the cluster, and in turn the associated prior depth map. Finally, this prior estimation is enhanced through a segmentation-guided filtering that obtains the final depth map estimation. This approach has been tested using two publicly available databases, and compared with several state-of-the-art algorithms in order to prove its efficiency.
A possibilistic approach to clustering
NASA Technical Reports Server (NTRS)
Krishnapuram, Raghu; Keller, James M.
1993-01-01
Fuzzy clustering has been shown to be advantageous over crisp (or traditional) clustering methods in that total commitment of a vector to a given class is not required at each image pattern recognition iteration. Recently fuzzy clustering methods have shown spectacular ability to detect not only hypervolume clusters, but also clusters which are actually 'thin shells', i.e., curves and surfaces. Most analytic fuzzy clustering approaches are derived from the 'Fuzzy C-Means' (FCM) algorithm. The FCM uses the probabilistic constraint that the memberships of a data point across classes sum to one. This constraint was used to generate the membership update equations for an iterative algorithm. Recently, we cast the clustering problem into the framework of possibility theory using an approach in which the resulting partition of the data can be interpreted as a possibilistic partition, and the membership values may be interpreted as degrees of possibility of the points belonging to the classes. We show the ability of this approach to detect linear and quartic curves in the presence of considerable noise.
NASA Astrophysics Data System (ADS)
Murthy, Ch; MIEEE; Mohanta, D. K.; SMIEE; Meher, Mahendra
2017-08-01
Continuous monitoring and control of the power system is essential for its healthy operation. This can be achieved by making the system observable as well as controllable. Many efforts have been made by several researchers to make the system observable by placing the Phasor Measurement Units (PMUs) at the optimal locations. But so far the idea of controllability with PMUs is not considered. This paper contributes how to check whether the system is controllable or not, if not then how make it controllable using a clustering approach. IEEE 14 bus system is considered to illustrate the concept of controllability.
A novel approach to the theory of homogeneous and heterogeneous nucleation.
Ruckenstein, Eli; Berim, Gersh O; Narsimhan, Ganesan
2015-01-01
A new approach to the theory of nucleation, formulated relatively recently by Ruckenstein, Narsimhan, and Nowakowski (see Refs. [7-16]) and developed further by Ruckenstein and other colleagues, is presented. In contrast to the classical nucleation theory, which is based on calculating the free energy of formation of a cluster of the new phase as a function of its size on the basis of macroscopic thermodynamics, the proposed theory uses the kinetic theory of fluids to calculate the condensation (W(+)) and dissociation (W(-)) rates on and from the surface of the cluster, respectively. The dissociation rate of a monomer from a cluster is evaluated from the average time spent by a surface monomer in the potential well as obtained from the solution of the Fokker-Planck equation in the phase space of position and momentum for liquid-to-solid transition and the phase space of energy for vapor-to-liquid transition. The condensation rates are calculated using traditional expressions. The knowledge of those two rates allows one to calculate the size of the critical cluster from the equality W(+)=W(-) as well as the rate of nucleation. The developed microscopic approach allows one to avoid the controversial application of classical thermodynamics to the description of nuclei which contain a few molecules. The new theory was applied to a number of cases, such as the liquid-to-solid and vapor-to-liquid phase transitions, binary nucleation, heterogeneous nucleation, nucleation on soluble particles and protein folding. The theory predicts higher nucleation rates at high saturation ratios (small critical clusters) than the classical nucleation theory for both solid-to-liquid as well as vapor-to-liquid transitions. As expected, at low saturation ratios for which the size of the critical cluster is large, the results of the new theory are consistent with those of the classical one. The present approach was combined with the density functional theory to account for the density profile in the cluster. This approach was also applied to protein folding, viewed as the evolution of a cluster of native residues of spherical shape within a protein molecule, which could explain protein folding/unfolding and their dependence on temperature. Copyright © 2014 Elsevier B.V. All rights reserved.
Detecting false positive sequence homology: a machine learning approach.
Fujimoto, M Stanley; Suvorov, Anton; Jensen, Nicholas O; Clement, Mark J; Bybee, Seth M
2016-02-24
Accurate detection of homologous relationships of biological sequences (DNA or amino acid) amongst organisms is an important and often difficult task that is essential to various evolutionary studies, ranging from building phylogenies to predicting functional gene annotations. There are many existing heuristic tools, most commonly based on bidirectional BLAST searches that are used to identify homologous genes and combine them into two fundamentally distinct classes: orthologs and paralogs. Due to only using heuristic filtering based on significance score cutoffs and having no cluster post-processing tools available, these methods can often produce multiple clusters constituting unrelated (non-homologous) sequences. Therefore sequencing data extracted from incomplete genome/transcriptome assemblies originated from low coverage sequencing or produced by de novo processes without a reference genome are susceptible to high false positive rates of homology detection. In this paper we develop biologically informative features that can be extracted from multiple sequence alignments of putative homologous genes (orthologs and paralogs) and further utilized in context of guided experimentation to verify false positive outcomes. We demonstrate that our machine learning method trained on both known homology clusters obtained from OrthoDB and randomly generated sequence alignments (non-homologs), successfully determines apparent false positives inferred by heuristic algorithms especially among proteomes recovered from low-coverage RNA-seq data. Almost ~42 % and ~25 % of predicted putative homologies by InParanoid and HaMStR respectively were classified as false positives on experimental data set. Our process increases the quality of output from other clustering algorithms by providing a novel post-processing method that is both fast and efficient at removing low quality clusters of putative homologous genes recovered by heuristic-based approaches.
Manchanda, Ranjit; Burnell, Matthew; Loggenberg, Kelly; Desai, Rakshit; Wardle, Jane; Sanderson, Saskia C; Gessler, Sue; Side, Lucy; Balogun, Nyala; Kumar, Ajith; Dorkins, Huw; Wallis, Yvonne; Chapman, Cyril; Tomlinson, Ian; Taylor, Rohan; Jacobs, Chris; Legood, Rosa; Raikou, Maria; McGuire, Alistair; Beller, Uziel; Menon, Usha; Jacobs, Ian
2016-07-01
Newer approaches to genetic counselling are required for population-based testing. We compare traditional face-to-face genetic counselling with a DVD-assisted approach for population-based BRCA1/2 testing. A cluster-randomised non-inferiority trial in the London Ashkenazi Jewish population. Ashkenazi Jewish men/women >18 years; exclusion criteria: (a) known BRCA1/2 mutation, (b) previous BRCA1/2 testing and (c) first-degree relative of BRCA1/2 carrier. Ashkenazi Jewish men/women underwent pre-test genetic counselling prior to BRCA1/2 testing in the Genetic Cancer Prediction through Population Screening trial (ISRCTN73338115). Genetic counselling clinics (clusters) were randomised to traditional counselling (TC) and DVD-based counselling (DVD-C) approaches. DVD-C involved a DVD presentation followed by shorter face-to-face genetic counselling. Outcome measures included genetic testing uptake, cancer risk perception, increase in knowledge, counselling time and satisfaction (Genetic Counselling Satisfaction Scale). Random-effects models adjusted for covariates compared outcomes between TC and DVD-C groups. One-sided 97.5% CI was used to determine non-inferiority. relevance, satisfaction, adequacy, emotional impact and improved understanding with the DVD; cost-minimisation analysis for TC and DVD-C approaches. 936 individuals (clusters=256, mean-size=3.6) were randomised to TC (n=527, clusters=134) and DVD-C (n=409, clusters=122) approaches. Groups were similar at baseline, mean age=53.9 (SD=15) years, women=66.8%, men=33.2%. DVD-C was non-inferior to TC for increase in knowledge (d=-0.07; lower 97.5% CI=-0.41), counselling satisfaction (d=-0.38, 97.5% CI=1.2) and risk perception (d=0.08; upper 97.5% CI=3.1). Group differences and CIs did not cross non-inferiority margins. DVD-C was equivalent to TC for uptake of genetic testing (d=-3%; lower/upper 97.5% CI -7.9%/1.7%) and superior for counselling time (20.4 (CI 18.7 to 22.2) min reduction (p<0.005)). 98% people found the DVD length and information satisfactory. 85-89% felt it improved their understanding of risks/benefits/implications/purpose of genetic testing. 95% would recommend it to others. The cost of genetic counselling for DVD-C=£7787 and TC=£17 307. DVD-C resulted in cost savings=£9520 (£14/volunteer). DVD-C is an effective, acceptable, non-inferior, time-saving and cost-efficient alternative to TC. ISRCTN 73338115. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Oluwadare, Oluwatosin; Cheng, Jianlin
2017-11-14
With the development of chromosomal conformation capturing techniques, particularly, the Hi-C technique, the study of the spatial conformation of a genome is becoming an important topic in bioinformatics and computational biology. The Hi-C technique can generate genome-wide chromosomal interaction (contact) data, which can be used to investigate the higher-level organization of chromosomes, such as Topologically Associated Domains (TAD), i.e., locally packed chromosome regions bounded together by intra chromosomal contacts. The identification of the TADs for a genome is useful for studying gene regulation, genomic interaction, and genome function. Here, we formulate the TAD identification problem as an unsupervised machine learning (clustering) problem, and develop a new TAD identification method called ClusterTAD. We introduce a novel method to represent chromosomal contacts as features to be used by the clustering algorithm. Our results show that ClusterTAD can accurately predict the TADs on a simulated Hi-C data. Our method is also largely complementary and consistent with existing methods on the real Hi-C datasets of two mouse cells. The validation with the chromatin immunoprecipitation (ChIP) sequencing (ChIP-Seq) data shows that the domain boundaries identified by ClusterTAD have a high enrichment of CTCF binding sites, promoter-related marks, and enhancer-related histone modifications. As ClusterTAD is based on a proven clustering approach, it opens a new avenue to apply a large array of clustering methods developed in the machine learning field to the TAD identification problem. The source code, the results, and the TADs generated for the simulated and real Hi-C datasets are available here: https://github.com/BDM-Lab/ClusterTAD .
Jacquez, Geoffrey M; Meliker, Jaymie R; Avruskin, Gillian A; Goovaerts, Pierre; Kaufmann, Andy; Wilson, Mark L; Nriagu, Jerome
2006-08-03
Methods for analyzing space-time variation in risk in case-control studies typically ignore residential mobility. We develop an approach for analyzing case-control data for mobile individuals and apply it to study bladder cancer in 11 counties in southeastern Michigan. At this time data collection is incomplete and no inferences should be drawn - we analyze these data to demonstrate the novel methods. Global, local and focused clustering of residential histories for 219 cases and 437 controls is quantified using time-dependent nearest neighbor relationships. Business address histories for 268 industries that release known or suspected bladder cancer carcinogens are analyzed. A logistic model accounting for smoking, gender, age, race and education specifies the probability of being a case, and is incorporated into the cluster randomization procedures. Sensitivity of clustering to definition of the proximity metric is assessed for 1 to 75 k nearest neighbors. Global clustering is partly explained by the covariates but remains statistically significant at 12 of the 14 levels of k considered. After accounting for the covariates 26 Local clusters are found in Lapeer, Ingham, Oakland and Jackson counties, with the clusters in Ingham and Oakland counties appearing in 1950 and persisting to the present. Statistically significant focused clusters are found about the business address histories of 22 industries located in Oakland (19 clusters), Ingham (2) and Jackson (1) counties. Clusters in central and southeastern Oakland County appear in the 1930's and persist to the present day. These methods provide a systematic approach for evaluating a series of increasingly realistic alternative hypotheses regarding the sources of excess risk. So long as selection of cases and controls is population-based and not geographically biased, these tools can provide insights into geographic risk factors that were not specifically assessed in the case-control study design.
Novel approaches to pin cluster synchronization on complex dynamical networks in Lur'e forms
NASA Astrophysics Data System (ADS)
Tang, Ze; Park, Ju H.; Feng, Jianwen
2018-04-01
This paper investigates the cluster synchronization of complex dynamical networks consisted of identical or nonidentical Lur'e systems. Due to the special topology structure of the complex networks and the existence of stochastic perturbations, a kind of randomly occurring pinning controller is designed which not only synchronizes all Lur'e systems in the same cluster but also decreases the negative influence among different clusters. Firstly, based on an extended integral inequality, the convex combination theorem and S-procedure, the conditions for cluster synchronization of identical Lur'e networks are derived in a convex domain. Secondly, randomly occurring adaptive pinning controllers with two independent Bernoulli stochastic variables are designed and then sufficient conditions are obtained for the cluster synchronization on complex networks consisted of nonidentical Lur'e systems. In addition, suitable control gains for successful cluster synchronization of nonidentical Lur'e networks are acquired by designing some adaptive updating laws. Finally, we present two numerical examples to demonstrate the validity of the control scheme and the theoretical analysis.
Shah, Sohil Atul
2017-01-01
Clustering is a fundamental procedure in the analysis of scientific data. It is used ubiquitously across the sciences. Despite decades of research, existing clustering algorithms have limited effectiveness in high dimensions and often require tuning parameters for different domains and datasets. We present a clustering algorithm that achieves high accuracy across multiple domains and scales efficiently to high dimensions and large datasets. The presented algorithm optimizes a smooth continuous objective, which is based on robust statistics and allows heavily mixed clusters to be untangled. The continuous nature of the objective also allows clustering to be integrated as a module in end-to-end feature learning pipelines. We demonstrate this by extending the algorithm to perform joint clustering and dimensionality reduction by efficiently optimizing a continuous global objective. The presented approach is evaluated on large datasets of faces, hand-written digits, objects, newswire articles, sensor readings from the Space Shuttle, and protein expression levels. Our method achieves high accuracy across all datasets, outperforming the best prior algorithm by a factor of 3 in average rank. PMID:28851838
Fast clustering using adaptive density peak detection.
Wang, Xiao-Feng; Xu, Yifan
2017-12-01
Common limitations of clustering methods include the slow algorithm convergence, the instability of the pre-specification on a number of intrinsic parameters, and the lack of robustness to outliers. A recent clustering approach proposed a fast search algorithm of cluster centers based on their local densities. However, the selection of the key intrinsic parameters in the algorithm was not systematically investigated. It is relatively difficult to estimate the "optimal" parameters since the original definition of the local density in the algorithm is based on a truncated counting measure. In this paper, we propose a clustering procedure with adaptive density peak detection, where the local density is estimated through the nonparametric multivariate kernel estimation. The model parameter is then able to be calculated from the equations with statistical theoretical justification. We also develop an automatic cluster centroid selection method through maximizing an average silhouette index. The advantage and flexibility of the proposed method are demonstrated through simulation studies and the analysis of a few benchmark gene expression data sets. The method only needs to perform in one single step without any iteration and thus is fast and has a great potential to apply on big data analysis. A user-friendly R package ADPclust is developed for public use.
Husnawati, Husnawati; Afendi, Farit Mochamad; Darusman, Latifah K.; Altaf-Ul-Amin, Md.; Sato, Tetsuo; Ono, Naoaki; Sugiura, Tadao; Kanaya, Shigehiko
2014-01-01
Indonesia has the largest medicinal plant species in the world and these plants are used as Jamu medicines. Jamu medicines are popular traditional medicines from Indonesia and we need to systemize the formulation of Jamu and develop basic scientific principles of Jamu to meet the requirement of Indonesian Healthcare System. We propose a new approach to predict the relation between plant and disease using network analysis and supervised clustering. At the preliminary step, we assigned 3138 Jamu formulas to 116 diseases of International Classification of Diseases (ver. 10) which belong to 18 classes of disease from National Center for Biotechnology Information. The correlation measures between Jamu pairs were determined based on their ingredient similarity. Networks are constructed and analyzed by selecting highly correlated Jamu pairs. Clusters were then generated by using the network clustering algorithm DPClusO. By using matching score of a cluster, the dominant disease and high frequency plant associated to the cluster are determined. The plant to disease relations predicted by our method were evaluated in the context of previously published results and were found to produce around 90% successful predictions. PMID:24804251
A novel approach for measuring residential socioeconomic ...
Individual-level characteristics, including socioeconomic status, have been associated with poor metabolic and cardiovascular health; however, residential area-level characteristics may also independently contribute to health status. In the current study, we used hierarchical clustering to aggregate 444 US Census block groups in Durham, Orange, and Wake Counties, NC, USA into six homogeneous clusters of similar characteristics based on 12 demographic factors. We assigned 2254 cardiac catheterization patients to these clusters based on residence at first catheterization. After controlling for individual age, sex, smoking status, and race, there were elevated odds of patients being obese (odds ratio (OR) = 1.92, 95% confidence intervals (CI) = 1.39, 2.67), and having diabetes (OR = 2.19, 95% CI = 1.57, 3.04), congestive heart failure (OR = 1.99, 95% CI = 1.39, 2.83), and hypertension (OR = 2.05, 95% CI = 1.38, 3.11) in a cluster that was urban, impoverished, and unemployed, compared to a cluster that was urban with a low percentage of people that were impoverished or unemployed. Our findings demonstrate the feasibility of applying hierarchical clustering to an assessment of area-level characteristics and that living in impoverished, urban residential clusters may have an adverse impact on health. The study highlights the importance of neighborhood characteristics on health. After controlling for individual-level demographic factors, significant differences in dise
Kent, Peter; Stochkendahl, Mette Jensen; Christensen, Henrik Wulff; Kongsted, Alice
2015-01-01
Recognition of homogeneous subgroups of patients can usefully improve prediction of their outcomes and the targeting of treatment. There are a number of research approaches that have been used to recognise homogeneity in such subgroups and to test their implications. One approach is to use statistical clustering techniques, such as Cluster Analysis or Latent Class Analysis, to detect latent relationships between patient characteristics. Influential patient characteristics can come from diverse domains of health, such as pain, activity limitation, physical impairment, social role participation, psychological factors, biomarkers and imaging. However, such 'whole person' research may result in data-driven subgroups that are complex, difficult to interpret and challenging to recognise clinically. This paper describes a novel approach to applying statistical clustering techniques that may improve the clinical interpretability of derived subgroups and reduce sample size requirements. This approach involves clustering in two sequential stages. The first stage involves clustering within health domains and therefore requires creating as many clustering models as there are health domains in the available data. This first stage produces scoring patterns within each domain. The second stage involves clustering using the scoring patterns from each health domain (from the first stage) to identify subgroups across all domains. We illustrate this using chest pain data from the baseline presentation of 580 patients. The new two-stage clustering resulted in two subgroups that approximated the classic textbook descriptions of musculoskeletal chest pain and atypical angina chest pain. The traditional single-stage clustering resulted in five clusters that were also clinically recognisable but displayed less distinct differences. In this paper, a new approach to using clustering techniques to identify clinically useful subgroups of patients is suggested. Research designs, statistical methods and outcome metrics suitable for performing that testing are also described. This approach has potential benefits but requires broad testing, in multiple patient samples, to determine its clinical value. The usefulness of the approach is likely to be context-specific, depending on the characteristics of the available data and the research question being asked of it.
A self-consistent density based embedding scheme applied to the adsorption of CO on Pd(111)
NASA Astrophysics Data System (ADS)
Lahav, D.; Klüner, T.
2007-06-01
We derive a variant of a density based embedded cluster approach as an improvement to a recently proposed embedding theory for metallic substrates (Govind et al 1999 J. Chem. Phys. 110 7677; Klüner et al 2001 Phys. Rev. Lett. 86 5954). In this scheme, a local region in space is represented by a small cluster which is treated by accurate quantum chemical methodology. The interaction of the cluster with the infinite solid is taken into account by an effective one-electron embedding operator representing the surrounding region. We propose a self-consistent embedding scheme which resolves intrinsic problems of the former theory, in particular a violation of strict density conservation. The proposed scheme is applied to the well-known benchmark system CO/Pd(111).
A Clustering-Based Approach to Enriching Code Foraging Environment.
Niu, Nan; Jin, Xiaoyu; Niu, Zhendong; Cheng, Jing-Ru C; Li, Ling; Kataev, Mikhail Yu
2016-09-01
Developers often spend valuable time navigating and seeking relevant code in software maintenance. Currently, there is a lack of theoretical foundations to guide tool design and evaluation to best shape the code base to developers. This paper contributes a unified code navigation theory in light of the optimal food-foraging principles. We further develop a novel framework for automatically assessing the foraging mechanisms in the context of program investigation. We use the framework to examine to what extent the clustering of software entities affects code foraging. Our quantitative analysis of long-lived open-source projects suggests that clustering enriches the software environment and improves foraging efficiency. Our qualitative inquiry reveals concrete insights into real developer's behavior. Our research opens the avenue toward building a new set of ecologically valid code navigation tools.
NASA Technical Reports Server (NTRS)
Brumfield, J. O.; Bloemer, H. H. L.; Campbell, W. J.
1981-01-01
Two unsupervised classification procedures for analyzing Landsat data used to monitor land reclamation in a surface mining area in east central Ohio are compared for agreement with data collected from the corresponding locations on the ground. One procedure is based on a traditional unsupervised-clustering/maximum-likelihood algorithm sequence that assumes spectral groupings in the Landsat data in n-dimensional space; the other is based on a nontraditional unsupervised-clustering/canonical-transformation/clustering algorithm sequence that not only assumes spectral groupings in n-dimensional space but also includes an additional feature-extraction technique. It is found that the nontraditional procedure provides an appreciable improvement in spectral groupings and apparently increases the level of accuracy in the classification of land cover categories.
Sauzet, Odile; Peacock, Janet L
2017-07-20
The analysis of perinatal outcomes often involves datasets with some multiple births. These are datasets mostly formed of independent observations and a limited number of clusters of size two (twins) and maybe of size three or more. This non-independence needs to be accounted for in the statistical analysis. Using simulated data based on a dataset of preterm infants we have previously investigated the performance of several approaches to the analysis of continuous outcomes in the presence of some clusters of size two. Mixed models have been developed for binomial outcomes but very little is known about their reliability when only a limited number of small clusters are present. Using simulated data based on a dataset of preterm infants we investigated the performance of several approaches to the analysis of binomial outcomes in the presence of some clusters of size two. Logistic models, several methods of estimation for the logistic random intercept models and generalised estimating equations were compared. The presence of even a small percentage of twins means that a logistic regression model will underestimate all parameters but a logistic random intercept model fails to estimate the correlation between siblings if the percentage of twins is too small and will provide similar estimates to logistic regression. The method which seems to provide the best balance between estimation of the standard error and the parameter for any percentage of twins is the generalised estimating equations. This study has shown that the number of covariates or the level two variance do not necessarily affect the performance of the various methods used to analyse datasets containing twins but when the percentage of small clusters is too small, mixed models cannot capture the dependence between siblings.
Li, Huanjie; Nickerson, Lisa D; Nichols, Thomas E; Gao, Jia-Hong
2017-03-01
Two powerful methods for statistical inference on MRI brain images have been proposed recently, a non-stationary voxelation-corrected cluster-size test (CST) based on random field theory and threshold-free cluster enhancement (TFCE) based on calculating the level of local support for a cluster, then using permutation testing for inference. Unlike other statistical approaches, these two methods do not rest on the assumptions of a uniform and high degree of spatial smoothness of the statistic image. Thus, they are strongly recommended for group-level fMRI analysis compared to other statistical methods. In this work, the non-stationary voxelation-corrected CST and TFCE methods for group-level analysis were evaluated for both stationary and non-stationary images under varying smoothness levels, degrees of freedom and signal to noise ratios. Our results suggest that, both methods provide adequate control for the number of voxel-wise statistical tests being performed during inference on fMRI data and they are both superior to current CSTs implemented in popular MRI data analysis software packages. However, TFCE is more sensitive and stable for group-level analysis of VBM data. Thus, the voxelation-corrected CST approach may confer some advantages by being computationally less demanding for fMRI data analysis than TFCE with permutation testing and by also being applicable for single-subject fMRI analyses, while the TFCE approach is advantageous for VBM data. Hum Brain Mapp 38:1269-1280, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Vathsala, H.; Koolagudi, Shashidhar G.
2017-01-01
In this paper we discuss a data mining application for predicting peninsular Indian summer monsoon rainfall, and propose an algorithm that combine data mining and statistical techniques. We select likely predictors based on association rules that have the highest confidence levels. We then cluster the selected predictors to reduce their dimensions and use cluster membership values for classification. We derive the predictors from local conditions in southern India, including mean sea level pressure, wind speed, and maximum and minimum temperatures. The global condition variables include southern oscillation and Indian Ocean dipole conditions. The algorithm predicts rainfall in five categories: Flood, Excess, Normal, Deficit and Drought. We use closed itemset mining, cluster membership calculations and a multilayer perceptron function in the algorithm to predict monsoon rainfall in peninsular India. Using Indian Institute of Tropical Meteorology data, we found the prediction accuracy of our proposed approach to be exceptionally good.
An approach to online network monitoring using clustered patterns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jinoh; Sim, Alex; Suh, Sang C.
Network traffic monitoring is a core element in network operations and management for various purposes such as anomaly detection, change detection, and fault/failure detection. In this study, we introduce a new approach to online monitoring using a pattern-based representation of the network traffic. Unlike the past online techniques limited to a single variable to summarize (e.g., sketch), the focus of this study is on capturing the network state from the multivariate attributes under consideration. To this end, we employ clustering with its benefit of the aggregation of multidimensional variables. The clustered result represents the state of the network with regardmore » to the monitored variables, which can also be compared with the previously observed patterns visually and quantitatively. Finally, we demonstrate the proposed method with two popular use cases, one for estimating state changes and the other for identifying anomalous states, to confirm its feasibility.« less
NASA Technical Reports Server (NTRS)
Sutherland, Betsy M.; Georgakilas, Alexandros G.; Bennett, Paula V.; Laval, Jacques; Sutherland, John C.; Gewirtz, A. M. (Principal Investigator)
2003-01-01
Assessing DNA damage induction, repair and consequences of such damages requires measurement of specific DNA lesions by methods that are independent of biological responses to such lesions. Lesions affecting one DNA strand (altered bases, abasic sites, single strand breaks (SSB)) as well as damages affecting both strands (clustered damages, double strand breaks) can be quantified by direct measurement of DNA using gel electrophoresis, gel imaging and number average length analysis. Damage frequencies as low as a few sites per gigabase pair (10(9)bp) can be quantified by this approach in about 50ng of non-radioactive DNA, and single molecule methods may allow such measurements in DNA from single cells. This review presents the theoretical basis, biochemical requirements and practical aspects of this approach, and shows examples of their applications in identification and quantitation of complex clustered damages.
An approach to online network monitoring using clustered patterns
Kim, Jinoh; Sim, Alex; Suh, Sang C.; ...
2017-03-13
Network traffic monitoring is a core element in network operations and management for various purposes such as anomaly detection, change detection, and fault/failure detection. In this study, we introduce a new approach to online monitoring using a pattern-based representation of the network traffic. Unlike the past online techniques limited to a single variable to summarize (e.g., sketch), the focus of this study is on capturing the network state from the multivariate attributes under consideration. To this end, we employ clustering with its benefit of the aggregation of multidimensional variables. The clustered result represents the state of the network with regardmore » to the monitored variables, which can also be compared with the previously observed patterns visually and quantitatively. Finally, we demonstrate the proposed method with two popular use cases, one for estimating state changes and the other for identifying anomalous states, to confirm its feasibility.« less
Copula based flexible modeling of associations between clustered event times.
Geerdens, Candida; Claeskens, Gerda; Janssen, Paul
2016-07-01
Multivariate survival data are characterized by the presence of correlation between event times within the same cluster. First, we build multi-dimensional copulas with flexible and possibly symmetric dependence structures for such data. In particular, clustered right-censored survival data are modeled using mixtures of max-infinitely divisible bivariate copulas. Second, these copulas are fit by a likelihood approach where the vast amount of copula derivatives present in the likelihood is approximated by finite differences. Third, we formulate conditions for clustered right-censored survival data under which an information criterion for model selection is either weakly consistent or consistent. Several of the familiar selection criteria are included. A set of four-dimensional data on time-to-mastitis is used to demonstrate the developed methodology.
Clustering analysis for muon tomography data elaboration in the Muon Portal project
NASA Astrophysics Data System (ADS)
Bandieramonte, M.; Antonuccio-Delogu, V.; Becciani, U.; Costa, A.; La Rocca, P.; Massimino, P.; Petta, C.; Pistagna, C.; Riggi, F.; Riggi, S.; Sciacca, E.; Vitello, F.
2015-05-01
Clustering analysis is one of multivariate data analysis techniques which allows to gather statistical data units into groups, in order to minimize the logical distance within each group and to maximize the one between different groups. In these proceedings, the authors present a novel approach to the muontomography data analysis based on clustering algorithms. As a case study we present the Muon Portal project that aims to build and operate a dedicated particle detector for the inspection of harbor containers to hinder the smuggling of nuclear materials. Clustering techniques, working directly on scattering points, help to detect the presence of suspicious items inside the container, acting, as it will be shown, as a filter for a preliminary analysis of the data.
Efficient Deployment of Key Nodes for Optimal Coverage of Industrial Mobile Wireless Networks
Li, Xiaomin; Li, Di; Dong, Zhijie; Hu, Yage; Liu, Chengliang
2018-01-01
In recent years, industrial wireless networks (IWNs) have been transformed by the introduction of mobile nodes, and they now offer increased extensibility, mobility, and flexibility. Nevertheless, mobile nodes pose efficiency and reliability challenges. Efficient node deployment and management of channel interference directly affect network system performance, particularly for key node placement in clustered wireless networks. This study analyzes this system model, considering both industrial properties of wireless networks and their mobility. Then, static and mobile node coverage problems are unified and simplified to target coverage problems. We propose a novel strategy for the deployment of clustered heads in grouped industrial mobile wireless networks (IMWNs) based on the improved maximal clique model and the iterative computation of new candidate cluster head positions. The maximal cliques are obtained via a double-layer Tabu search. Each cluster head updates its new position via an improved virtual force while moving with full coverage to find the minimal inter-cluster interference. Finally, we develop a simulation environment. The simulation results, based on a performance comparison, show the efficacy of the proposed strategies and their superiority over current approaches. PMID:29439439
Towards the use of similarity distances to music genre classification: A comparative study.
Goienetxea, Izaro; Martínez-Otzeta, José María; Sierra, Basilio; Mendialdua, Iñigo
2018-01-01
Music genre classification is a challenging research concept, for which open questions remain regarding classification approach, music piece representation, distances between/within genres, and so on. In this paper an investigation on the classification of generated music pieces is performed, based on the idea that grouping close related known pieces in different sets -or clusters- and then generating in an automatic way a new song which is somehow "inspired" in each set, the new song would be more likely to be classified as belonging to the set which inspired it, based on the same distance used to separate the clusters. Different music pieces representations and distances among pieces are used; obtained results are promising, and indicate the appropriateness of the used approach even in a such a subjective area as music genre classification is.
Inferring time-varying network topologies from gene expression data.
Rao, Arvind; Hero, Alfred O; States, David J; Engel, James Douglas
2007-01-01
Most current methods for gene regulatory network identification lead to the inference of steady-state networks, that is, networks prevalent over all times, a hypothesis which has been challenged. There has been a need to infer and represent networks in a dynamic, that is, time-varying fashion, in order to account for different cellular states affecting the interactions amongst genes. In this work, we present an approach, regime-SSM, to understand gene regulatory networks within such a dynamic setting. The approach uses a clustering method based on these underlying dynamics, followed by system identification using a state-space model for each learnt cluster--to infer a network adjacency matrix. We finally indicate our results on the mouse embryonic kidney dataset as well as the T-cell activation-based expression dataset and demonstrate conformity with reported experimental evidence.
Application of Artificial Intelligence For Euler Solutions Clustering
NASA Astrophysics Data System (ADS)
Mikhailov, V.; Galdeano, A.; Diament, M.; Gvishiani, A.; Agayan, S.; Bogoutdinov, Sh.; Graeva, E.; Sailhac, P.
Results of Euler deconvolution strongly depend on the selection of viable solutions. Synthetic calculations using multiple causative sources show that Euler solutions clus- ter in the vicinity of causative bodies even when they do not group densely about perimeter of the bodies. We have developed a clustering technique to serve as a tool for selecting appropriate solutions. The method RODIN, employed in this study, is based on artificial intelligence and was originally designed for problems of classification of large data sets. It is based on a geometrical approach to study object concentration in a finite metric space of any dimension. The method uses a formal definition of cluster and includes free parameters that facilitate the search for clusters of given proper- ties. Test on synthetic and real data showed that the clustering technique successfully outlines causative bodies more accurate than other methods of discriminating Euler solutions. In complicated field cases such as the magnetic field in the Gulf of Saint Malo region (Brittany, France), the method provides geologically insightful solutions. Other advantages of the clustering method application are: - Clusters provide solutions associated with particular bodies or parts of bodies permitting the analysis of different clusters of Euler solutions separately. This may allow computation of average param- eters for individual causative bodies. - Those measurements of the anomalous field that yield clusters also form dense clusters themselves. The application of cluster- ing technique thus outlines areas where the influence of different causative sources is more prominent. This allows one to focus on areas for reinterpretation, using different window sizes, structural indices and so on.