Sample records for clutter rejection technique

  1. Adaptive clutter rejection filters for airborne Doppler weather radar applied to the detection of low altitude windshear

    NASA Technical Reports Server (NTRS)

    Keel, Byron M.

    1989-01-01

    An optimum adaptive clutter rejection filter for use with airborne Doppler weather radar is presented. The radar system is being designed to operate at low-altitudes for the detection of windshear in an airport terminal area where ground clutter returns may mask the weather return. The coefficients of the adaptive clutter rejection filter are obtained using a complex form of a square root normalized recursive least squares lattice estimation algorithm which models the clutter return data as an autoregressive process. The normalized lattice structure implementation of the adaptive modeling process for determining the filter coefficients assures that the resulting coefficients will yield a stable filter and offers possible fixed point implementation. A 10th order FIR clutter rejection filter indexed by geographical location is designed through autoregressive modeling of simulated clutter data. Filtered data, containing simulated dry microburst and clutter return, are analyzed using pulse-pair estimation techniques. To measure the ability of the clutter rejection filters to remove the clutter, results are compared to pulse-pair estimates of windspeed within a simulated dry microburst without clutter. In the filter evaluation process, post-filtered pulse-pair width estimates and power levels are also used to measure the effectiveness of the filters. The results support the use of an adaptive clutter rejection filter for reducing the clutter induced bias in pulse-pair estimates of windspeed.

  2. Small Infrared Target Detection by Region-Adaptive Clutter Rejection for Sea-Based Infrared Search and Track

    PubMed Central

    Kim, Sungho; Lee, Joohyoung

    2014-01-01

    This paper presents a region-adaptive clutter rejection method for small target detection in sea-based infrared search and track. In the real world, clutter normally generates many false detections that impede the deployment of such detection systems. Incoming targets (missiles, boats, etc.) can be located in the sky, horizon and sea regions, which have different types of clutters, such as clouds, a horizontal line and sea-glint. The characteristics of regional clutter were analyzed after the geometrical analysis-based region segmentation. The false detections caused by cloud clutter were removed by the spatial attribute-based classification. Those by the horizontal line were removed using the heterogeneous background removal filter. False alarms by sun-glint were rejected using the temporal consistency filter, which is the most difficult part. The experimental results of the various cluttered background sequences show that the proposed region adaptive clutter rejection method produces fewer false alarms than that of the mean subtraction filter (MSF) with an acceptable degradation detection rate. PMID:25054633

  3. Designing clutter rejection filters with complex coefficients for airborne pulsed Doppler weather radar

    NASA Technical Reports Server (NTRS)

    Jamora, Dennis A.

    1993-01-01

    Ground clutter interference is a major problem for airborne pulse Doppler radar operating at low altitudes in a look-down mode. With Doppler zero set at the aircraft ground speed, ground clutter rejection filtering is typically accomplished using a high-pass filter with real valued coefficients and a stopband notch centered at zero Doppler. Clutter spectra from the NASA Wind Shear Flight Experiments of l991-1992 show that the dominant clutter mode can be located away from zero Doppler, particularly at short ranges dominated by sidelobe returns. Use of digital notch filters with complex valued coefficients so that the stopband notch can be located at any Doppler frequency is investigated. Several clutter mode tracking algorithms are considered to estimate the Doppler frequency location of the dominant clutter mode. From the examination of night data, when a dominant clutter mode away from zero Doppler is present, complex filtering is able to significantly increase clutter rejection over use of a notch filter centered at zero Doppler.

  4. Combat Identification with Sequential Observations, Rejection Option, and Out-of-Library Targets

    DTIC Science & Technology

    2005-09-01

    nature of the entities sharing the battlespace is unknown. Here CID characterizes those entities using information from a variety of sources. The goal...producing high-resolution returns with signif - icantly enhanced target to clutter (and noise) ratios through Doppler filtering and clutter...treat the subject from a natural science perspective. The following 43 subsections on the various model selection techniques are derived from these

  5. Automated vehicle detection in forward-looking infrared imagery.

    PubMed

    Der, Sandor; Chan, Alex; Nasrabadi, Nasser; Kwon, Heesung

    2004-01-10

    We describe an algorithm for the detection and clutter rejection of military vehicles in forward-looking infrared (FLIR) imagery. The detection algorithm is designed to be a prescreener that selects regions for further analysis and uses a spatial anomaly approach that looks for target-sized regions of the image that differ in texture, brightness, edge strength, or other spatial characteristics. The features are linearly combined to form a confidence image that is thresholded to find likely target locations. The clutter rejection portion uses target-specific information extracted from training samples to reduce the false alarms of the detector. The outputs of the clutter rejecter and detector are combined by a higher-level evidence integrator to improve performance over simple concatenation of the detector and clutter rejecter. The algorithm has been applied to a large number of FLIR imagery sets, and some of these results are presented here.

  6. Maximum-likelihood spectral estimation and adaptive filtering techniques with application to airborne Doppler weather radar. Thesis Technical Report No. 20

    NASA Technical Reports Server (NTRS)

    Lai, Jonathan Y.

    1994-01-01

    This dissertation focuses on the signal processing problems associated with the detection of hazardous windshears using airborne Doppler radar when weak weather returns are in the presence of strong clutter returns. In light of the frequent inadequacy of spectral-processing oriented clutter suppression methods, we model a clutter signal as multiple sinusoids plus Gaussian noise, and propose adaptive filtering approaches that better capture the temporal characteristics of the signal process. This idea leads to two research topics in signal processing: (1) signal modeling and parameter estimation, and (2) adaptive filtering in this particular signal environment. A high-resolution, low SNR threshold maximum likelihood (ML) frequency estimation and signal modeling algorithm is devised and proves capable of delineating both the spectral and temporal nature of the clutter return. Furthermore, the Least Mean Square (LMS) -based adaptive filter's performance for the proposed signal model is investigated, and promising simulation results have testified to its potential for clutter rejection leading to more accurate estimation of windspeed thus obtaining a better assessment of the windshear hazard.

  7. Gabor Jets for Clutter Rejection in Infrared Imagery

    DTIC Science & Technology

    2004-12-01

    application of a suitable model like Gabor Jets in facial recognition is well motivated by the observation that some low level, spatial-frequency...set. This is a simplified form of the Gabor Jet procedure and will not require any elastic graph matching procedures used in facial recognition . Another...motivation for employing Gabor jets as a post processing clutter rejecter is attributed to the great deal of research in facial recognition , invariant

  8. Background Characterization Techniques For Pattern Recognition Applications

    NASA Astrophysics Data System (ADS)

    Noah, Meg A.; Noah, Paul V.; Schroeder, John W.; Kessler, Bernard V.; Chernick, Julian A.

    1989-08-01

    The Department of Defense has a requirement to investigate technologies for the detection of air and ground vehicles in a clutter environment. The use of autonomous systems using infrared, visible, and millimeter wave detectors has the potential to meet DOD's needs. In general, however, the hard-ware technology (large detector arrays with high sensitivity) has outpaced the development of processing techniques and software. In a complex background scene the "problem" is as much one of clutter rejection as it is target detection. The work described in this paper has investigated a new, and innovative, methodology for background clutter characterization, target detection and target identification. The approach uses multivariate statistical analysis to evaluate a set of image metrics applied to infrared cloud imagery and terrain clutter scenes. The techniques are applied to two distinct problems: the characterization of atmospheric water vapor cloud scenes for the Navy's Infrared Search and Track (IRST) applications to support the Infrared Modeling Measurement and Analysis Program (IRAMMP); and the detection of ground vehicles for the Army's Autonomous Homing Munitions (AHM) problems. This work was sponsored under two separate Small Business Innovative Research (SBIR) programs by the Naval Surface Warfare Center (NSWC), White Oak MD, and the Army Material Systems Analysis Activity at Aberdeen Proving Ground MD. The software described in this paper will be available from the respective contract technical representatives.

  9. Spectrum Modal Analysis for the Detection of Low-Altitude Windshear with Airborne Doppler Radar

    NASA Technical Reports Server (NTRS)

    Kunkel, Matthew W.

    1992-01-01

    A major obstacle in the estimation of windspeed patterns associated with low-altitude windshear with an airborne pulsed Doppler radar system is the presence of strong levels of ground clutter which can strongly bias a windspeed estimate. Typical solutions attempt to remove the clutter energy from the return through clutter rejection filtering. Proposed is a method whereby both the weather and clutter modes present in a return spectrum can be identified to yield an unbiased estimate of the weather mode without the need for clutter rejection filtering. An attempt will be made to show that modeling through a second order extended Prony approach is sufficient for the identification of the weather mode. A pattern recognition approach to windspeed estimation from the identified modes is derived and applied to both simulated and actual flight data. Comparisons between windspeed estimates derived from modal analysis and the pulse-pair estimator are included as well as associated hazard factors. Also included is a computationally attractive method for estimating windspeeds directly from the coefficients of a second-order autoregressive model. Extensions and recommendations for further study are included.

  10. The effects of clutter-rejection filtering on estimating weather spectrum parameters

    NASA Technical Reports Server (NTRS)

    Davis, W. T.

    1989-01-01

    The effects of clutter-rejection filtering on estimating the weather parameters from pulse Doppler radar measurement data are investigated. The pulse pair method of estimating the spectrum mean and spectrum width of the weather is emphasized. The loss of sensitivity, a measure of the signal power lost due to filtering, is also considered. A flexible software tool developed to investigate these effects is described. It allows for simulated weather radar data, in which the user specifies an underlying truncated Gaussian spectrum, as well as for externally generated data which may be real or simulated. The filter may be implemented in either the time or the frequency domain. The software tool is validated by comparing unfiltered spectrum mean and width estimates to their true values, and by reproducing previously published results. The effects on the weather parameter estimates using simulated weather-only data are evaluated for five filters: an ideal filter, two infinite impulse response filters, and two finite impulse response filters. Results considering external data, consisting of weather and clutter data, are evaluated on a range cell by range cell basis. Finally, it is shown theoretically and by computer simulation that a linear phase response is not required for a clutter rejection filter preceeding pulse-pair parameter estimation.

  11. The pulse-pair algorithm as a robust estimator of turbulent weather spectral parameters using airborne pulse Doppler radar

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.; Lee, Jonggil

    1991-01-01

    The pulse pair method for spectrum parameter estimation is commonly used in pulse Doppler weather radar signal processing since it is economical to implement and can be shown to be a maximum likelihood estimator. With the use of airborne weather radar for windshear detection, the turbulent weather and strong ground clutter return spectrum differs from that assumed in its derivation, so the performance robustness of the pulse pair technique must be understood. Here, the effect of radar system pulse to pulse phase jitter and signal spectrum skew on the pulse pair algorithm performance is discussed. Phase jitter effect may be significant when the weather return signal to clutter ratio is very low and clutter rejection filtering is attempted. The analysis can be used to develop design specifications for airborne radar system phase stability. It is also shown that the weather return spectrum skew can cause a significant bias in the pulse pair mean windspeed estimates, and that the poly pulse pair algorithm can reduce this bias. It is suggested that use of a spectrum mode estimator may be more appropriate in characterizing the windspeed within a radar range resolution cell for detection of hazardous windspeed gradients.

  12. The design and implementation of radar clutter modelling and adaptive target detection techniques

    NASA Astrophysics Data System (ADS)

    Ali, Mohammed Hussain

    The analysis and reduction of radar clutter is investigated. Clutter is the term applied to unwanted radar reflections from land, sea, precipitation, and/or man-made objects. A great deal of useful information regarding the characteristics of clutter can be obtained by the application of frequency domain analytical methods. Thus, some considerable time was spent assessing the various techniques available and their possible application to radar clutter. In order to better understand clutter, use of a clutter model was considered desirable. There are many techniques which will enable a target to be detected in the presence of clutter. One of the most flexible of these is that of adaptive filtering. This technique was thoroughly investigated and a method for improving its efficacy was devised. The modified adaptive filter employed differential adaption times to enhance detectability. Adaptation time as a factor relating to target detectability is a new concept and was investigated in some detail. It was considered desirable to implement the theoretical work in dedicated hardware to confirm that the modified clutter model and the adaptive filter technique actually performed as predicted. The equipment produced is capable of operation in real time and provides an insight into real time DSP applications. This equipment is sufficiently rapid to produce a real time display on the actual PPI system. Finally a software package was also produced which would simulate the operation of a PPI display and thus ease the interpretation of the filter outputs.

  13. [Design Method Analysis and Performance Comparison of Wall Filter for Ultrasound Color Flow Imaging].

    PubMed

    Wang, Lutao; Xiao, Jun; Chai, Hua

    2015-08-01

    The successful suppression of clutter arising from stationary or slowly moving tissue is one of the key issues in medical ultrasound color blood imaging. Remaining clutter may cause bias in the mean blood frequency estimation and results in a potentially misleading description of blood-flow. In this paper, based on the principle of general wall-filter, the design process of three classes of filters, infinitely impulse response with projection initialization (Prj-IIR), polynomials regression (Pol-Reg), and eigen-based filters are previewed and analyzed. The performance of the filters was assessed by calculating the bias and variance of a mean blood velocity using a standard autocorrelation estimator. Simulation results show that the performance of Pol-Reg filter is similar to Prj-IIR filters. Both of them can offer accurate estimation of mean blood flow speed under steady clutter conditions, and the clutter rejection ability can be enhanced by increasing the ensemble size of Doppler vector. Eigen-based filters can effectively remove the non-stationary clutter component, and further improve the estimation accuracy for low speed blood flow signals. There is also no significant increase in computation complexity for eigen-based filters when the ensemble size is less than 10.

  14. Target attribute-based false alarm rejection in small infrared target detection

    NASA Astrophysics Data System (ADS)

    Kim, Sungho

    2012-11-01

    Infrared search and track is an important research area in military applications. Although there are a lot of works on small infrared target detection methods, we cannot apply them in real field due to high false alarm rate caused by clutters. This paper presents a novel target attribute extraction and machine learning-based target discrimination method. Eight kinds of target features are extracted and analyzed statistically. Learning-based classifiers such as SVM and Adaboost are developed and compared with conventional classifiers for real infrared images. In addition, the generalization capability is also inspected for various infrared clutters.

  15. A Polarization Technique for Mitigating Low Grazing Angle Radar Sea Clutter

    DTIC Science & Technology

    2017-03-03

    alarm mitigation, low grazing angles, polarimetry , radar, sea clutter. I. INTRODUCTION Sea clutter poses unique challenges for maritime radars looking...radar polarimetry offers a practical means of robustly mitigating LGA sea clutter across a range of radar and environmental parameters, we stood up a

  16. Global Infrasound Association Based on Probabilistic Clutter Categorization

    NASA Astrophysics Data System (ADS)

    Arora, Nimar; Mialle, Pierrick

    2016-04-01

    The IDC advances its methods and continuously improves its automatic system for the infrasound technology. The IDC focuses on enhancing the automatic system for the identification of valid signals and the optimization of the network detection threshold by identifying ways to refine signal characterization methodology and association criteria. An objective of this study is to reduce the number of associated infrasound arrivals that are rejected from the automatic bulletins when generating the reviewed event bulletins. Indeed, a considerable number of signal detections are due to local clutter sources such as microbaroms, waterfalls, dams, gas flares, surf (ocean breaking waves) etc. These sources are either too diffuse or too local to form events. Worse still, the repetitive nature of this clutter leads to a large number of false event hypotheses due to the random matching of clutter at multiple stations. Previous studies, for example [1], have worked on categorization of clutter using long term trends on detection azimuth, frequency, and amplitude at each station. In this work we continue the same line of reasoning to build a probabilistic model of clutter that is used as part of NETVISA [2], a Bayesian approach to network processing. The resulting model is a fusion of seismic, hydroacoustic and infrasound processing built on a unified probabilistic framework. References: [1] Infrasound categorization Towards a statistics based approach. J. Vergoz, P. Gaillard, A. Le Pichon, N. Brachet, and L. Ceranna. ITW 2011 [2] NETVISA: Network Processing Vertically Integrated Seismic Analysis. N. S. Arora, S. Russell, and E. Sudderth. BSSA 2013

  17. Evaluating a de-cluttering technique for NextGen RNAV and RNP charts

    DOT National Transportation Integrated Search

    2012-10-14

    The authors propose a de-cluttering technique to simplify the depiction of visually complex Area Navigation (RNAV) and Required Navigation Performance (RNP) procedures by reducing the number of paths shown on a single chart page. An experiment was co...

  18. Automatic Censoring CFAR Detector Based on Ordered Data Difference for Low-Flying Helicopter Safety

    PubMed Central

    Jiang, Wen; Huang, Yulin; Yang, Jianyu

    2016-01-01

    Being equipped with a millimeter-wave radar allows a low-flying helicopter to sense the surroundings in real time, which significantly increases its safety. However, nonhomogeneous clutter environments, such as a multiple target situation and a clutter edge environment, can dramatically affect the radar signal detection performance. In order to improve the radar signal detection performance in nonhomogeneous clutter environments, this paper proposes a new automatic censored cell averaging CFAR detector. The proposed CFAR detector does not require any prior information about the background environment and uses the hypothesis test of the first-order difference (FOD) result of ordered data to reject the unwanted samples in the reference window. After censoring the unwanted ranked cells, the remaining samples are combined to form an estimate of the background power level, thus getting better radar signal detection performance. The simulation results show that the FOD-CFAR detector provides low loss CFAR performance in a homogeneous environment and also performs robustly in nonhomogeneous environments. Furthermore, the measured results of a low-flying helicopter validate the basic performance of the proposed method. PMID:27399714

  19. Assessing clutter reduction in parallel coordinates using image processing techniques

    NASA Astrophysics Data System (ADS)

    Alhamaydh, Heba; Alzoubi, Hussein; Almasaeid, Hisham

    2018-01-01

    Information visualization has appeared as an important research field for multidimensional data and correlation analysis in recent years. Parallel coordinates (PCs) are one of the popular techniques to visual high-dimensional data. A problem with the PCs technique is that it suffers from crowding, a clutter which hides important data and obfuscates the information. Earlier research has been conducted to reduce clutter without loss in data content. We introduce the use of image processing techniques as an approach for assessing the performance of clutter reduction techniques in PC. We use histogram analysis as our first measure, where the mean feature of the color histograms of the possible alternative orderings of coordinates for the PC images is calculated and compared. The second measure is the extracted contrast feature from the texture of PC images based on gray-level co-occurrence matrices. The results show that the best PC image is the one that has the minimal mean value of the color histogram feature and the maximal contrast value of the texture feature. In addition to its simplicity, the proposed assessment method has the advantage of objectively assessing alternative ordering of PC visualization.

  20. Supervised target detection in hyperspectral images using one-class Fukunaga-Koontz Transform

    NASA Astrophysics Data System (ADS)

    Binol, Hamidullah; Bal, Abdullah

    2016-05-01

    A novel hyperspectral target detection technique based on Fukunaga-Koontz transform (FKT) is presented. FKT offers significant properties for feature selection and ordering. However, it can only be used to solve multi-pattern classification problems. Target detection may be considered as a two-class classification problem, i.e., target versus background clutter. Nevertheless, background clutter typically contains different types of materials. That's why; target detection techniques are different than classification methods by way of modeling clutter. To avoid the modeling of the background clutter, we have improved one-class FKT (OC-FKT) for target detection. The statistical properties of target training samples are used to define tunnel-like boundary of the target class. Non-target samples are then created synthetically as to be outside of the boundary. Thus, only limited target samples become adequate for training of FKT. The hyperspectral image experiments confirm that the proposed OC-FKT technique provides an effective means for target detection.

  1. Detection of gas plumes in cluttered environments using long-wave infrared hyperspectral sensors

    NASA Astrophysics Data System (ADS)

    Broadwater, Joshua B.; Spisz, Thomas S.; Carr, Alison K.

    2008-04-01

    Long-wave infrared hyperspectral sensors provide the ability to detect gas plumes at stand-off distances. A number of detection algorithms have been developed for such applications, but in situations where the gas is released in a complex background and is at air temperature, these detectors can generate a considerable amount of false alarms. To make matters more difficult, the gas tends to have non-uniform concentrations throughout the plume making it spatially similar to the false alarms. Simple post-processing using median filters can remove a number of the false alarms, but at the cost of removing a significant amount of the gas plume as well. We approach the problem using an adaptive subpixel detector and morphological processing techniques. The adaptive subpixel detection algorithm is able to detect the gas plume against the complex background. We then use morphological processing techniques to isolate the gas plume while simultaneously rejecting nearly all false alarms. Results will be demonstrated on a set of ground-based long-wave infrared hyperspectral image sequences.

  2. Efficient Spatiotemporal Clutter Rejection and Nonlinear Filtering-based Dim Resolved and Unresolved Object Tracking Algorithms

    NASA Astrophysics Data System (ADS)

    Tartakovsky, A.; Tong, M.; Brown, A. P.; Agh, C.

    2013-09-01

    We develop efficient spatiotemporal image processing algorithms for rejection of non-stationary clutter and tracking of multiple dim objects using non-linear track-before-detect methods. For clutter suppression, we include an innovative image alignment (registration) algorithm. The images are assumed to contain elements of the same scene, but taken at different angles, from different locations, and at different times, with substantial clutter non-stationarity. These challenges are typical for space-based and surface-based IR/EO moving sensors, e.g., highly elliptical orbit or low earth orbit scenarios. The algorithm assumes that the images are related via a planar homography, also known as the projective transformation. The parameters are estimated in an iterative manner, at each step adjusting the parameter vector so as to achieve improved alignment of the images. Operating in the parameter space rather than in the coordinate space is a new idea, which makes the algorithm more robust with respect to noise as well as to large inter-frame disturbances, while operating at real-time rates. For dim object tracking, we include new advancements to a particle non-linear filtering-based track-before-detect (TrbD) algorithm. The new TrbD algorithm includes both real-time full image search for resolved objects not yet in track and joint super-resolution and tracking of individual objects in closely spaced object (CSO) clusters. The real-time full image search provides near-optimal detection and tracking of multiple extremely dim, maneuvering objects/clusters. The super-resolution and tracking CSO TrbD algorithm provides efficient near-optimal estimation of the number of unresolved objects in a CSO cluster, as well as the locations, velocities, accelerations, and intensities of the individual objects. We demonstrate that the algorithm is able to accurately estimate the number of CSO objects and their locations when the initial uncertainty on the number of objects is large. We demonstrate performance of the TrbD algorithm both for satellite-based and surface-based EO/IR surveillance scenarios.

  3. A model of clutter for complex, multivariate geospatial displays.

    PubMed

    Lohrenz, Maura C; Trafton, J Gregory; Beck, R Melissa; Gendron, Marlin L

    2009-02-01

    A novel model of measuring clutter in complex geospatial displays was compared with human ratings of subjective clutter as a measure of convergent validity. The new model is called the color-clustering clutter (C3) model. Clutter is a known problem in displays of complex data and has been shown to affect target search performance. Previous clutter models are discussed and compared with the C3 model. Two experiments were performed. In Experiment 1, participants performed subjective clutter ratings on six classes of information visualizations. Empirical results were used to set two free parameters in the model. In Experiment 2, participants performed subjective clutter ratings on aeronautical charts. Both experiments compared and correlated empirical data to model predictions. The first experiment resulted in a .76 correlation between ratings and C3. The second experiment resulted in a .86 correlation, significantly better than results from a model developed by Rosenholtz et al. Outliers to our correlation suggest further improvements to C3. We suggest that (a) the C3 model is a good predictor of subjective impressions of clutter in geospatial displays, (b) geospatial clutter is a function of color density and saliency (primary C3 components), and (c) pattern analysis techniques could further improve C3. The C3 model could be used to improve the design of electronic geospatial displays by suggesting when a display will be too cluttered for its intended audience.

  4. Insect Detection of Small Targets Moving in Visual Clutter

    PubMed Central

    Barnett, Paul D; O'Carroll, David C

    2006-01-01

    Detection of targets that move within visual clutter is a common task for animals searching for prey or conspecifics, a task made even more difficult when a moving pursuer needs to analyze targets against the motion of background texture (clutter). Despite the limited optical acuity of the compound eye of insects, this challenging task seems to have been solved by their tiny visual system. Here we describe neurons found in the male hoverfly,Eristalis tenax, that respond selectively to small moving targets. Although many of these target neurons are inhibited by the motion of a background pattern, others respond to target motion within the receptive field under a surprisingly large range of background motion stimuli. Some neurons respond whether or not there is a speed differential between target and background. Analysis of responses to very small targets (smaller than the size of the visual field of single photoreceptors) or those targets with reduced contrast shows that these neurons have extraordinarily high contrast sensitivity. Our data suggest that rejection of background motion may result from extreme selectivity for small targets contrasting against local patches of the background, combined with this high sensitivity, such that background patterns rarely contain features that satisfactorily drive the neuron. PMID:16448249

  5. On the Use of Low-Cost Radar Networks for Collision Warning Systems Aboard Dumpers

    PubMed Central

    González-Partida, José-Tomás; León-Infante, Francisco; Blázquez-García, Rodrigo; Burgos-García, Mateo

    2014-01-01

    The use of dumpers is one of the main causes of accidents in construction sites, many of them with fatal consequences. These kinds of work machines have many blind angles that complicate the driving task due to their large size and volume. To guarantee safety conditions is necessary to use automatic aid systems that can detect and locate the different objects and people in a work area. One promising solution is a radar network based on low-cost radar transceivers aboard the dumper. The complete system is specified to operate with a very low false alarm rate to avoid unnecessary stops of the dumper that reduce its productivity. The main sources of false alarm are the heavy ground clutter, and the interferences between the radars of the network. This article analyses the clutter for LFM signaling and proposes the use of Offset Linear Frequency Modulated Continuous Wave (OLFM-CW) as radar signal. This kind of waveform can be optimized to reject clutter and self-interferences. Jointly, a data fusion chain could be used to reduce the false alarm rate of the complete radar network. A real experiment is shown to demonstrate the feasibility of the proposed system. PMID:24577521

  6. On the use of low-cost radar networks for collision warning systems aboard dumpers.

    PubMed

    González-Partida, José-Tomás; León-Infante, Francisco; Blázquez-García, Rodrigo; Burgos-García, Mateo

    2014-02-26

    The use of dumpers is one of the main causes of accidents in construction sites, many of them with fatal consequences. These kinds of work machines have many blind angles that complicate the driving task due to their large size and volume. To guarantee safety conditions is necessary to use automatic aid systems that can detect and locate the different objects and people in a work area. One promising solution is a radar network based on low-cost radar transceivers aboard the dumper. The complete system is specified to operate with a very low false alarm rate to avoid unnecessary stops of the dumper that reduce its productivity. The main sources of false alarm are the heavy ground clutter, and the interferences between the radars of the network. This article analyses the clutter for LFM signaling and proposes the use of Offset Linear Frequency Modulated Continuous Wave (OLFM-CW) as radar signal. This kind of waveform can be optimized to reject clutter and self-interferences. Jointly, a data fusion chain could be used to reduce the false alarm rate of the complete radar network. A real experiment is shown to demonstrate the feasibility of the proposed system.

  7. Study of clutter origin in in-vivo epi-optoacoustic imaging of human forearms

    NASA Astrophysics Data System (ADS)

    Preisser, Stefan; Held, Gerrit; Akarçay, Hidayet G.; Jaeger, Michael; Frenz, Martin

    2016-09-01

    Epi-optoacoustic (OA) imaging offers flexible clinical diagnostics of the human body when the irradiation optic is attached to or directly integrated into the acoustic probe. Epi-OA images, however, encounter clutter that deteriorates contrast and significantly limits imaging depth. This study elaborates clutter origin in clinical epi-optoacoustic imaging using a linear array probe for scanning the human forearm. We demonstrate that the clutter strength strongly varies with the imaging location but stays stable over time, indicating that clutter is caused by anatomical structures. OA transients which are generated by strong optical absorbers located at the irradiation spot were identified to be the main source of clutter. These transients obscure deep in-plane OA signals when detected by the transducer either directly or after being acoustically scattered in the imaging plane. In addition, OA transients generated in the skin below the probe result in acoustic reverberations, which cause problems in image interpretation and limit imaging depth. Understanding clutter origin allows a better interpretation of clinical OA imaging, helps to design clutter compensation techniques and raises the prospect of contrast optimization via the design of the irradiation geometry.

  8. Iterative nonlinear joint transform correlation for the detection of objects in cluttered scenes

    NASA Astrophysics Data System (ADS)

    Haist, Tobias; Tiziani, Hans J.

    1999-03-01

    An iterative correlation technique with digital image processing in the feedback loop for the detection of small objects in cluttered scenes is proposed. A scanning aperture is combined with the method in order to improve the immunity against noise and clutter. Multiple reference objects or different views of one object are processed in parallel. We demonstrate the method by detecting a noisy and distorted face in a crowd with a nonlinear joint transform correlator.

  9. Model-based adaptive 3D sonar reconstruction in reverberating environments.

    PubMed

    Saucan, Augustin-Alexandru; Sintes, Christophe; Chonavel, Thierry; Caillec, Jean-Marc Le

    2015-10-01

    In this paper, we propose a novel model-based approach for 3D underwater scene reconstruction, i.e., bathymetry, for side scan sonar arrays in complex and highly reverberating environments like shallow water areas. The presence of multipath echoes and volume reverberation generates false depth estimates. To improve the resulting bathymetry, this paper proposes and develops an adaptive filter, based on several original geometrical models. This multimodel approach makes it possible to track and separate the direction of arrival trajectories of multiple echoes impinging the array. Echo tracking is perceived as a model-based processing stage, incorporating prior information on the temporal evolution of echoes in order to reject cluttered observations generated by interfering echoes. The results of the proposed filter on simulated and real sonar data showcase the clutter-free and regularized bathymetric reconstruction. Model validation is carried out with goodness of fit tests, and demonstrates the importance of model-based processing for bathymetry reconstruction.

  10. Performance Evaluation of Adaptive Imaging Based on Multiphase Apodization with Cross-correlation: A Pilot Study in Abdominal Ultrasound.

    PubMed

    Shin, Junseob; Chen, Yu; Malhi, Harshawn; Chen, Frank; Yen, Jesse

    2018-05-01

    Degradation of image contrast caused by phase aberration, off-axis clutter, and reverberation clutter remains one of the most important problems in abdominal ultrasound imaging. Multiphase apodization with cross-correlation (MPAX) is a novel beamforming technique that enhances ultrasound image contrast by adaptively suppressing unwanted acoustic clutter. MPAX employs multiple pairs of complementary sinusoidal phase apodizations to intentionally introduce grating lobes that can be used to derive a weighting matrix, which mostly preserves the on-axis signals from tissue but reduces acoustic clutter contributions when multiplied with the beamformed radio-frequency (RF) signals. In this paper, in vivo performance of the MPAX technique was evaluated in abdominal ultrasound using data sets obtained from 10 human subjects referred for abdominal ultrasound at the USC Keck School of Medicine. Improvement in image contrast was quantified, first, by the contrast-to-noise ratio (CNR) and, second, by the rating of two experienced radiologists. The MPAX technique was evaluated for longitudinal and transverse views of the abdominal aorta, the inferior vena cava, the gallbladder, and the portal vein. Our in vivo results and analyses demonstrate the feasibility of the MPAX technique in enhancing image contrast in abdominal ultrasound and show potential for creating high contrast ultrasound images with improved target detectability and diagnostic confidence.

  11. Modern Approaches to the Computation of the Probability of Target Detection in Cluttered Environments

    NASA Astrophysics Data System (ADS)

    Meitzler, Thomas J.

    The field of computer vision interacts with fields such as psychology, vision research, machine vision, psychophysics, mathematics, physics, and computer science. The focus of this thesis is new algorithms and methods for the computation of the probability of detection (Pd) of a target in a cluttered scene. The scene can be either a natural visual scene such as one sees with the naked eye (visual), or, a scene displayed on a monitor with the help of infrared sensors. The relative clutter and the temperature difference between the target and background (DeltaT) are defined and then used to calculate a relative signal -to-clutter ratio (SCR) from which the Pd is calculated for a target in a cluttered scene. It is shown how this definition can include many previous definitions of clutter and (DeltaT). Next, fuzzy and neural -fuzzy techniques are used to calculate the Pd and it is shown how these methods can give results that have a good correlation with experiment. The experimental design for actually measuring the Pd of a target by observers is described. Finally, wavelets are applied to the calculation of clutter and it is shown how this new definition of clutter based on wavelets can be used to compute the Pd of a target.

  12. A novel imaging technique based on the spatial coherence of backscattered waves: demonstration in the presence of acoustical clutter

    NASA Astrophysics Data System (ADS)

    Dahl, Jeremy J.; Pinton, Gianmarco F.; Lediju, Muyinatu; Trahey, Gregg E.

    2011-03-01

    In the last 20 years, the number of suboptimal and inadequate ultrasound exams has increased. This trend has been linked to the increasing population of overweight and obese individuals. The primary causes of image degradation in these individuals are often attributed to phase aberration and clutter. Phase aberration degrades image quality by distorting the transmitted and received pressure waves, while clutter degrades image quality by introducing incoherent acoustical interference into the received pressure wavefront. Although significant research efforts have pursued the correction of image degradation due to phase aberration, few efforts have characterized or corrected image degradation due to clutter. We have developed a novel imaging technique that is capable of differentiating ultrasonic signals corrupted by acoustical interference. The technique, named short-lag spatial coherence (SLSC) imaging, is based on the spatial coherence of the received ultrasonic wavefront at small spatial distances across the transducer aperture. We demonstrate comparative B-mode and SLSC images using full-wave simulations that include the effects of clutter and show that SLSC imaging generates contrast-to-noise ratios (CNR) and signal-to-noise ratios (SNR) that are significantly better than B-mode imaging under noise-free conditions. In the presence of noise, SLSC imaging significantly outperforms conventional B-mode imaging in all image quality metrics. We demonstrate the use of SLSC imaging in vivo and compare B-mode and SLSC images of human thyroid and liver.

  13. Hand-Held EMI Sensor Combined with Inertial Positioning for Cued UXO Discrimination - APG Standardized UXO Test Site

    DTIC Science & Technology

    2013-04-01

    Measurement Tracking System (SAINT) with an advanced hand-held, time-domain electromagnetic sensor (TEM-HH) and document classification performance at...rejecting 77% of the clutter. 15. SUBJECT TERMS EMI, electromagnetic induction, UXO classification, UXO, IMU, inertial measurement unit, 16. SECURITY...U c. THIS PAGE U UU 19b. TELEPHONE NUMBER (include area code) 919-677-1560 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18

  14. Clutter elimination for deep clinical optoacoustic imaging using localised vibration tagging (LOVIT)☆

    PubMed Central

    Jaeger, Michael; Bamber, Jeffrey C.; Frenz, Martin

    2013-01-01

    This paper investigates a novel method which allows clutter elimination in deep optoacoustic imaging. Clutter significantly limits imaging depth in clinical optoacoustic imaging, when irradiation optics and ultrasound detector are integrated in a handheld probe for flexible imaging of the human body. Strong optoacoustic transients generated at the irradiation site obscure weak signals from deep inside the tissue, either directly by propagating towards the probe, or via acoustic scattering. In this study we demonstrate that signals of interest can be distinguished from clutter by tagging them at the place of origin with localised tissue vibration induced by the acoustic radiation force in a focused ultrasonic beam. We show phantom results where this technique allowed almost full clutter elimination and thus strongly improved contrast for deep imaging. Localised vibration tagging by means of acoustic radiation force is especially promising for integration into ultrasound systems that already have implemented radiation force elastography. PMID:25302147

  15. Circular SAR GMTI

    NASA Astrophysics Data System (ADS)

    Page, Douglas; Owirka, Gregory; Nichols, Howard; Scarborough, Steven

    2014-06-01

    We describe techniques for improving ground moving target indication (GMTI) performance in multi-channel synthetic aperture radar (SAR) systems. Our approach employs a combination of moving reference processing (MRP) to compensate for defocus of moving target SAR responses and space-time adaptive processing (STAP) to mitigate the effects of strong clutter interference. Using simulated moving target and clutter returns, we demonstrate focusing of the target return using MRP, and discuss the effect of MRP on the clutter response. We also describe formation of adaptive degrees of freedom (DOFs) for STAP filtering of MRP processed data. For the simulated moving target in clutter example, we demonstrate improvement in the signal to interference plus noise (SINR) loss compared to more standard algorithm configurations. In addition to MRP and STAP, the use of tracker feedback, false alarm mitigation, and parameter estimation techniques are also described. A change detection approach for reducing false alarms from clutter discretes is outlined, and processing of a measured data coherent processing interval (CPI) from a continuously orbiting platform is described. The results demonstrate detection and geolocation of a high-value target under track. The endoclutter target is not clearly visible in single-channel SAR chips centered on the GMTI track prediction. Detections are compared to truth data before and after geolocation using measured angle of arrival (AOA).

  16. Acquisition and processing of advanced sensor data for ERW and UXO detection and classification

    NASA Astrophysics Data System (ADS)

    Schultz, Gregory M.; Keranen, Joe; Miller, Jonathan S.; Shubitidze, Fridon

    2014-06-01

    The remediation of explosive remnants of war (ERW) and associated unexploded ordnance (UXO) has seen improvements through the injection of modern technological advances and streamlined standard operating procedures. However, reliable and cost-effective detection and geophysical mapping of sites contaminated with UXO such as cluster munitions, abandoned ordnance, and improvised explosive devices rely on the ability to discriminate hazardous items from metallic clutter. In addition to anthropogenic clutter, handheld and vehicle-based metal detector systems are plagued by natural geologic and environmental noise in many post conflict areas. We present new and advanced electromagnetic induction (EMI) technologies including man-portable and towed EMI arrays and associated data processing software. While these systems feature vastly different form factors and transmit-receive configurations, they all exhibit several fundamental traits that enable successful classification of EMI anomalies. Specifically, multidirectional sampling of scattered magnetic fields from targets and corresponding high volume of unique data provide rich information for extracting useful classification features for clutter rejection analysis. The quality of classification features depends largely on the extent to which the data resolve unique physics-based parameters. To date, most of the advanced sensors enable high quality inversion by producing data that are extremely rich in spatial content through multi-angle illumination and multi-point reception.

  17. An Efficient Adaptive Angle-Doppler Compensation Approach for Non-Sidelooking Airborne Radar STAP

    PubMed Central

    Shen, Mingwei; Yu, Jia; Wu, Di; Zhu, Daiyin

    2015-01-01

    In this study, the effects of non-sidelooking airborne radar clutter dispersion on space-time adaptive processing (STAP) is considered, and an efficient adaptive angle-Doppler compensation (EAADC) approach is proposed to improve the clutter suppression performance. In order to reduce the computational complexity, the reduced-dimension sparse reconstruction (RDSR) technique is introduced into the angle-Doppler spectrum estimation to extract the required parameters for compensating the clutter spectral center misalignment. Simulation results to demonstrate the effectiveness of the proposed algorithm are presented. PMID:26053755

  18. The neurological underpinnings of cluttering: Some initial findings.

    PubMed

    Ward, David; Connally, Emily L; Pliatsikas, Christos; Bretherton-Furness, Jess; Watkins, Kate E

    2015-03-01

    Cluttering is a fluency disorder characterised by overly rapid or jerky speech patterns that compromise intelligibility. The neural correlates of cluttering are unknown but theoretical accounts implicate the basal ganglia and medial prefrontal cortex. Dysfunction in these brain areas would be consistent with difficulties in selection and control of speech motor programs that are characteristic of speech disfluencies in cluttering. There is a surprising lack of investigation into this disorder using modern imaging techniques. Here, we used functional MRI to investigate the neural correlates of cluttering. We scanned 17 adults who clutter and 17 normally fluent control speakers matched for age and sex. Brain activity was recorded using sparse-sampling functional MRI while participants viewed scenes and either (i) produced overt speech describing the scene or (ii) read out loud a sentence provided that described the scene. Speech was recorded and analysed off line. Differences in brain activity for each condition compared to a silent resting baseline and between conditions were analysed for each group separately (cluster-forming threshold Z>3.1, extent p<0.05, corrected) and then these differences were further compared between the two groups (voxel threshold p<0.01, extent>30 voxels, uncorrected). In both conditions, the patterns of activation in adults who clutter and control speakers were strikingly similar, particularly at the cortical level. Direct group comparisons revealed greater activity in adults who clutter compared to control speakers in the lateral premotor cortex bilaterally and, as predicted, on the medial surface (pre-supplementary motor area). Subcortically, adults who clutter showed greater activity than control speakers in the basal ganglia. Specifically, the caudate nucleus and putamen were overactive in adults who clutter for the comparison of picture description with sentence reading. In addition, adults who clutter had reduced activity relative to control speakers in the lateral anterior cerebellum bilaterally. Eleven of the 17 adults who clutter also stuttered. This comorbid diagnosis of stuttering was found to contribute to the abnormal overactivity seen in the group of adults who clutter in the right ventral premotor cortex and right anterior cingulate cortex. In the remaining areas of abnormal activity seen in adults who clutter compared to controls, the subgroup who clutter and stutter did not differ from the subgroup who clutter but do not stutter. Our findings were in good agreement with theoretical predictions regarding the neural correlates of cluttering. We found evidence for abnormal function in the basal ganglia and their cortical output target, the medial prefrontal cortex. The findings are discussed in relation to models of cluttering that point to problems with motor control of speech. This paper reports findings on the neural correlates seen in adults who clutter, and offers hypotheses as to how these might map onto the behaviours seen amongst those who clutter. Readers will be able to (a) identify the structures that are implicated in the disorder of cluttering, (b) understand arguments relating these structures to the behavioural expression of the disorder, (c) understand some of the complexities in interpreting data pertaining to recovery from cluttering, (d) understand where future efforts in research into the neurological correlates of cluttering should be focussed. Copyright © 2015. Published by Elsevier Inc.

  19. Identification of the ideal clutter metric to predict time dependence of human visual search

    NASA Astrophysics Data System (ADS)

    Cartier, Joan F.; Hsu, David H.

    1995-05-01

    The Army Night Vision and Electronic Sensors Directorate (NVESD) has recently performed a human perception experiment in which eye tracker measurements were made on trained military observers searching for targets in infrared images. This data offered an important opportunity to evaluate a new technique for search modeling. Following the approach taken by Jeff Nicoll, this model treats search as a random walk in which the observers are in one of two states until they quit: they are either searching, or they are wandering around looking for a point of interest. When wandering they skip rapidly from point to point. When examining they move more slowly, reflecting the fact that target discrimination requires additional thought processes. In this paper we simulate the random walk, using a clutter metric to assign relative attractiveness to points of interest within the image which are competing for the observer's attention. The NVESD data indicates that a number of standard clutter metrics are good estimators of the apportionment of observer's time between wandering and examining. Conversely, the apportionment of observer time spent wandering and examining could be used to reverse engineer the ideal clutter metric which would most perfectly describe the behavior of the group of observers. It may be possible to use this technique to design the optimal clutter metric to predict performance of visual search.

  20. Revisiting flow maps: a classification and a 3D alternative to visual clutter

    NASA Astrophysics Data System (ADS)

    Gu, Yuhang; Kraak, Menno-Jan; Engelhardt, Yuri

    2018-05-01

    Flow maps have long been servicing people in exploring movement by representing origin-destination data (OD data). Due to recent developments in data collecting techniques the amount of movement data is increasing dramatically. With such huge amounts of data, visual clutter in flow maps is becoming a challenge. This paper revisits flow maps, provides an overview of the characteristics of OD data and proposes a classification system for flow maps. For dealing with problems of visual clutter, 3D flow maps are proposed as potential alternative to 2D flow maps.

  1. The Calculation of Fractal Dimension in the Presence of Non-Fractal Clutter

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Gregory, Don A.

    1999-01-01

    The area of information processing has grown dramatically over the last 50 years. In the areas of image processing and information storage the technology requirements have far outpaced the ability of the community to meet demands. The need for faster recognition algorithms and more efficient storage of large quantities of data has forced the user to accept less than lossless retrieval of that data for analysis. In addition to clutter that is not the object of interest in the data set, often the throughput requirements forces the user to accept "noisy" data and to tolerate the clutter inherent in that data. It has been shown that some of this clutter, both the intentional clutter (clouds, trees, etc) as well as the noise introduced on the data by processing requirements can be modeled as fractal or fractal-like. Traditional methods using Fourier deconvolution on these sources of noise in frequency space leads to loss of signal and can, in many cases, completely eliminate the target of interest. The parameters that characterize fractal-like noise (predominately the fractal dimension) have been investigated and a technique to reduce or eliminate noise from real scenes has been developed. Examples of clutter reduced images are presented.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Derek P.; Jacklin, Neil; Punnoose, Ratish J.

    Time-reversal is a wave focusing technique that makes use of the reciprocity of wireless propagation channels. It works particularly well in a cluttered environment with associated multipath reflection. This technique uses the multipath in the environment to increase focusing ability. Time-reversal can also be used to null signals, either to reduce unintentional interference or to prevent eavesdropping. It does not require controlled geometric placement of the transmit antennas. Unlike existing techniques it can work without line-of-sight. We have explored the performance of time-reversal focusing in a variety of simulated environments. We have also developed new algorithms to simultaneously focus atmore » a location while nulling at an eavesdropper location. We have experimentally verified these techniques in a realistic cluttered environment.« less

  3. Use of polarization to improve signal to clutter ratio in an outdoor active imaging system

    NASA Astrophysics Data System (ADS)

    Fontoura, Patrick F.; Giles, Michael K.; Padilla, Denise D.

    2005-08-01

    This paper describes the methodology and presents the results of the design of a polarization-sensitive system used to increase the signal-to-clutter ratio in a robust outdoor structured lighting sensor that uses standard CCD camera technology. This lighting sensor is intended to be used on an autonomous vehicle, looking down to the ground and horizontal to obstacles in an 8 foot range. The kinds of surfaces to be imaged are natural and man-made, such as asphalt, concrete, dirt and grass. The main problem for an outdoor eye-safe laser imaging system is that the reflected energy from background clutter tends to be brighter than the reflected laser energy. A narrow-band optical filter does not reduce significantly the background clutter in bright sunlight, and problems also occur when the surface is highly absorptive, like asphalt. Therefore, most of applications are limited to indoor and controlled outdoor conditions. A series of measurements was made for each of the materials studied in order to find the best configuration for the polarizing system and also to find out the potential improvement in the signal-to-clutter ratio (STC). This process was divided into three parts: characterization of the reflected sunlight, characterization of the reflected laser light, and measurement of the improvement in the STC. The results show that by using polarization properties it is possible to design an optical system that is able to increase the signal-to-clutter ratio from approximately 30% to 100% in the imaging system, depending on the kind of surface and on the incidence angle of the sunlight. The technique was also analyzed for indoor use, with the background clutter being the room illumination. For this specific case, polarization did not improve the signal-to-clutter ratio.

  4. Low-rank matrix decomposition and spatio-temporal sparse recovery for STAP radar

    DOE PAGES

    Sen, Satyabrata

    2015-08-04

    We develop space-time adaptive processing (STAP) methods by leveraging the advantages of sparse signal processing techniques in order to detect a slowly-moving target. We observe that the inherent sparse characteristics of a STAP problem can be formulated as the low-rankness of clutter covariance matrix when compared to the total adaptive degrees-of-freedom, and also as the sparse interference spectrum on the spatio-temporal domain. By exploiting these sparse properties, we propose two approaches for estimating the interference covariance matrix. In the first approach, we consider a constrained matrix rank minimization problem (RMP) to decompose the sample covariance matrix into a low-rank positivemore » semidefinite and a diagonal matrix. The solution of RMP is obtained by applying the trace minimization technique and the singular value decomposition with matrix shrinkage operator. Our second approach deals with the atomic norm minimization problem to recover the clutter response-vector that has a sparse support on the spatio-temporal plane. We use convex relaxation based standard sparse-recovery techniques to find the solutions. With extensive numerical examples, we demonstrate the performances of proposed STAP approaches with respect to both the ideal and practical scenarios, involving Doppler-ambiguous clutter ridges, spatial and temporal decorrelation effects. As a result, the low-rank matrix decomposition based solution requires secondary measurements as many as twice the clutter rank to attain a near-ideal STAP performance; whereas the spatio-temporal sparsity based approach needs a considerably small number of secondary data.« less

  5. A comparison of robust principal component analysis techniques for buried object detection in downward looking GPR sensor data

    NASA Astrophysics Data System (ADS)

    Pinar, Anthony; Havens, Timothy C.; Rice, Joseph; Masarik, Matthew; Burns, Joseph; Thelen, Brian

    2016-05-01

    Explosive hazards are a deadly threat in modern conflicts; hence, detecting them before they cause injury or death is of paramount importance. One method of buried explosive hazard discovery relies on data collected from ground penetrating radar (GPR) sensors. Threat detection with downward looking GPR is challenging due to large returns from non-target objects and clutter. This leads to a large number of false alarms (FAs), and since the responses of clutter and targets can form very similar signatures, classifier design is not trivial. One approach to combat these issues uses robust principal component analysis (RPCA) to enhance target signatures while suppressing clutter and background responses, though there are many versions of RPCA. This work applies some of these RPCA techniques to GPR sensor data and evaluates their merit using the peak signal-to-clutter ratio (SCR) of the RPCA-processed B-scans. Experimental results on government furnished data show that while some of the RPCA methods yield similar results, there are indeed some methods that outperform others. Furthermore, we show that the computation time required by the different RPCA methods varies widely, and the selection of tuning parameters in the RPCA algorithms has a major effect on the peak SCR.

  6. Adaptive early detection ML/PDA estimator for LO targets with EO sensors

    NASA Astrophysics Data System (ADS)

    Chummun, Muhammad R.; Kirubarajan, Thiagalingam; Bar-Shalom, Yaakov

    2000-07-01

    The batch Maximum Likelihood Estimator, combined with Probabilistic Data (ML-PDA), has been shown to be effective in acquiring low observable (LO) - low SNR - non-maneuvering targets in the presence of heavy clutter. The use of signal strength or amplitude information (AI) in the ML-PDA estimator with AI in a sliding-window fashion, to detect high- speed targets in heavy clutter using electro-optical (EO) sensors. The initial time and the length of the sliding-window are adjusted adaptively according to the information content of the received measurements. A track validation scheme via hypothesis testing is developed to confirm the estimated track, that is, the presence of a target, in each window. The sliding-window ML-PDA approach, together with track validation, enables early detection by rejecting noninformative scans, target reacquisition in case of temporary target disappearance and the handling of targets with speeds evolving over time. The proposed algorithm is shown to detect the target, which is hidden in as many as 600 false alarms per scan, 10 frames earlier than the Multiple Hypothesis Tracking (MHT) algorithm.

  7. Clutter Mitigation in Echocardiography Using Sparse Signal Separation

    PubMed Central

    Yavneh, Irad

    2015-01-01

    In ultrasound imaging, clutter artifacts degrade images and may cause inaccurate diagnosis. In this paper, we apply a method called Morphological Component Analysis (MCA) for sparse signal separation with the objective of reducing such clutter artifacts. The MCA approach assumes that the two signals in the additive mix have each a sparse representation under some dictionary of atoms (a matrix), and separation is achieved by finding these sparse representations. In our work, an adaptive approach is used for learning the dictionary from the echo data. MCA is compared to Singular Value Filtering (SVF), a Principal Component Analysis- (PCA-) based filtering technique, and to a high-pass Finite Impulse Response (FIR) filter. Each filter is applied to a simulated hypoechoic lesion sequence, as well as experimental cardiac ultrasound data. MCA is demonstrated in both cases to outperform the FIR filter and obtain results comparable to the SVF method in terms of contrast-to-noise ratio (CNR). Furthermore, MCA shows a lower impact on tissue sections while removing the clutter artifacts. In experimental heart data, MCA obtains in our experiments clutter mitigation with an average CNR improvement of 1.33 dB. PMID:26199622

  8. Target-adaptive polarimetric synthetic aperture radar target discrimination using maximum average correlation height filters.

    PubMed

    Sadjadi, Firooz A; Mahalanobis, Abhijit

    2006-05-01

    We report the development of a technique for adaptive selection of polarization ellipse tilt and ellipticity angles such that the target separation from clutter is maximized. From the radar scattering matrix [S] and its complex components, in phase and quadrature phase, the elements of the Mueller matrix are obtained. Then, by means of polarization synthesis, the radar cross section of the radar scatters are obtained at different transmitting and receiving polarization states. By designing a maximum average correlation height filter, we derive a target versus clutter distance measure as a function of four transmit and receive polarization state angles. The results of applying this method on real synthetic aperture radar imagery indicate a set of four transmit and receive angles that lead to maximum target versus clutter discrimination. These optimum angles are different for different targets. Hence, by adaptive control of the state of polarization of polarimetric radar, one can noticeably improve the discrimination of targets from clutter.

  9. Feature space trajectory for distorted-object classification and pose estimation in synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Casasent, David P.; Shenoy, Rajesh

    1997-10-01

    Classification and pose estimation of distorted input objects are considered. The feature space trajectory representation of distorted views of an object is used with a new eigenfeature space. For a distorted input object, the closest trajectory denotes the class of the input and the closest line segment on it denotes its pose. If an input point is too far from a trajectory, it is rejected as clutter. New methods for selecting Fukunaga-Koontz discriminant vectors, the number of dominant eigenvectors per class and for determining training, and test set compatibility are presented.

  10. Automated Hand-Held UXO Detection, Classification & Discrimination Sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Thomas H.

    2000-06-12

    The research focused on procedures for target discrimination and classification using hand-held EMI sensors. The idea is to have a small, portable sensor that can be operated in a sweep or similar pattern in front of the operator, and that is capable of distinguishing between buried UXO and clutter on the spot. Curing Phase 1, we developed the processing techniques for distinguishing between buried UXO and clutter using the EM61-HH hand-held metal detector.

  11. Multichannel Doppler Processing for an Experimental Low-Angle Tracking System

    DTIC Science & Technology

    1990-05-01

    estimation techniques at sea. Because of clutter and noise, it is necessary to use a number of different processing algorithms to extract the required...a number of different processing algorithms to extract the required information. Consequently, the ELAT radar system is composed of multiple...corresponding to RF frequencies, f, and f2. For mode 3, the ambiguities occur at vbi = 15.186 knots and vb2 = 16.96 knots. The sea clutter, with a spectrum

  12. Wavelet-Based Signal and Image Processing for Target Recognition

    NASA Astrophysics Data System (ADS)

    Sherlock, Barry G.

    2002-11-01

    The PI visited NSWC Dahlgren, VA, for six weeks in May-June 2002 and collaborated with scientists in the G33 TEAMS facility, and with Marilyn Rudzinsky of T44 Technology and Photonic Systems Branch. During this visit the PI also presented six educational seminars to NSWC scientists on various aspects of signal processing. Several items from the grant proposal were completed, including (1) wavelet-based algorithms for interpolation of 1-d signals and 2-d images; (2) Discrete Wavelet Transform domain based algorithms for filtering of image data; (3) wavelet-based smoothing of image sequence data originally obtained for the CRITTIR (Clutter Rejection Involving Temporal Techniques in the Infra-Red) project. The PI visited the University of Stellenbosch, South Africa to collaborate with colleagues Prof. B.M. Herbst and Prof. J. du Preez on the use of wavelet image processing in conjunction with pattern recognition techniques. The University of Stellenbosch has offered the PI partial funding to support a sabbatical visit in Fall 2003, the primary purpose of which is to enable the PI to develop and enhance his expertise in Pattern Recognition. During the first year, the grant supported publication of 3 referred papers, presentation of 9 seminars and an intensive two-day course on wavelet theory. The grant supported the work of two students who functioned as research assistants.

  13. Reducing Surface Clutter in Cloud Profiling Radar Data

    NASA Technical Reports Server (NTRS)

    Tanelli, Simone; Pak, Kyung; Durden, Stephen; Im, Eastwood

    2008-01-01

    An algorithm has been devised to reduce ground clutter in the data products of the CloudSat Cloud Profiling Radar (CPR), which is a nadir-looking radar instrument, in orbit around the Earth, that measures power backscattered by clouds as a function of distance from the instrument. Ground clutter contaminates the CPR data in the lowest 1 km of the atmospheric profile, heretofore making it impossible to use CPR data to satisfy the scientific interest in studying clouds and light rainfall at low altitude. The algorithm is based partly on the fact that the CloudSat orbit is such that the geodetic altitude of the CPR varies continuously over a range of approximately 25 km. As the geodetic altitude changes, the radar timing parameters are changed at intervals defined by flight software in order to keep the troposphere inside a data-collection time window. However, within each interval, the surface of the Earth continuously "scans through" (that is, it moves across) a few range bins of the data time window. For each radar profile, only few samples [one for every range-bin increment ((Delta)r = 240 m)] of the surface-clutter signature are available around the range bin in which the peak of surface return is observed, but samples in consecutive radar profiles are offset slightly (by amounts much less than (Delta)r) with respect to each other according to the relative change in geodetic altitude. As a consequence, in a case in which the surface area under examination is homogenous (e.g., an ocean surface), a sequence of consecutive radar profiles of the surface in that area contains samples of the surface response with range resolution (Delta)p much finer than the range-bin increment ((Delta)p << r). Once the high-resolution surface response has thus become available, the profile of surface clutter can be accurately estimated by use of a conventional maximum-correlation scheme: A translated and scaled version of the high-resolution surface response is fitted to the observed low-resolution profile. The translation and scaling factors that optimize the fit in a maximum-correlation sense represent (1) the true position of the surface relative to the sampled surface peak and (2) the magnitude of the surface backscatter. The performance of this algorithm has been tested on CloudSat data acquired over an ocean surface. A preliminary analysis of the test data showed a surface-clutter-rejection ratio over flat surfaces of >10 dB and a reduction of the contaminated altitude over ocean from about 1 km to about 0.5 km (over the ocean). The algorithm has been embedded in CloudSat L1B processing as of Release 04 (July 2007), and the estimated flat surface clutter is removed in L2B-GEOPROF product from the observed profile of reflectivity (see CloudSat product documentation for details and performance at http://www.cloudsat.cira.colostate.edu/ dataSpecs.php?prodid=1).

  14. The estimation of lower refractivity uncertainty from radar sea clutter using the Bayesian—MCMC method

    NASA Astrophysics Data System (ADS)

    Sheng, Zheng

    2013-02-01

    The estimation of lower atmospheric refractivity from radar sea clutter (RFC) is a complicated nonlinear optimization problem. This paper deals with the RFC problem in a Bayesian framework. It uses the unbiased Markov Chain Monte Carlo (MCMC) sampling technique, which can provide accurate posterior probability distributions of the estimated refractivity parameters by using an electromagnetic split-step fast Fourier transform terrain parabolic equation propagation model within a Bayesian inversion framework. In contrast to the global optimization algorithm, the Bayesian—MCMC can obtain not only the approximate solutions, but also the probability distributions of the solutions, that is, uncertainty analyses of solutions. The Bayesian—MCMC algorithm is implemented on the simulation radar sea-clutter data and the real radar sea-clutter data. Reference data are assumed to be simulation data and refractivity profiles are obtained using a helicopter. The inversion algorithm is assessed (i) by comparing the estimated refractivity profiles from the assumed simulation and the helicopter sounding data; (ii) the one-dimensional (1D) and two-dimensional (2D) posterior probability distribution of solutions.

  15. Evaluation of intensified image enhancement through conspicuity and triangle orientation discrimination measures

    NASA Astrophysics Data System (ADS)

    Dijk, Judith; van Eekeren, Adam W. M.; Toet, Alexander; den Hollander, Richard J. M.; Schutte, Klamer; van Heijningen, Ad W. P.; Bijl, Piet

    2013-04-01

    For many military operations, situational awareness is of great importance. During night conditions, this situational awareness can be improved using both analog and digital image-intensified cameras. The quality of image intensifiers is a topic of interest. One of the differences between a digital and analog system is noise behavior. For digital image intensifiers, the noise behavior is not as good as for analog image intensifiers, but it can be improved using noise-reduction techniques. In this paper, the improvement using temporal noise reduction and local adaptive contrast enhancement is shown and quantitatively evaluated by subjective measurement of the conspicuity and triangle orientation discrimination (TOD). The results of the conspicuity and TOD experiments are consistent with each other. The highest improvement is found for a low-clutter environment; for medium- and high-clutter environments, the improvement is less. This can be explained by the fact that image enhancement increases contrast of all image details, irrespective of whether they are targets or clutter. For low-clutter image enhancement, target conspicuity and target detection improvement will be largest, since there are not many distracting elements.

  16. Feature-based RNN target recognition

    NASA Astrophysics Data System (ADS)

    Bakircioglu, Hakan; Gelenbe, Erol

    1998-09-01

    Detection and recognition of target signatures in sensory data obtained by synthetic aperture radar (SAR), forward- looking infrared, or laser radar, have received considerable attention in the literature. In this paper, we propose a feature based target classification methodology to detect and classify targets in cluttered SAR images, that makes use of selective signature data from sensory data, together with a neural network technique which uses a set of trained networks based on the Random Neural Network (RNN) model (Gelenbe 89, 90, 91, 93) which is trained to act as a matched filter. We propose and investigate radial features of target shapes that are invariant to rotation, translation, and scale, to characterize target and clutter signatures. These features are then used to train a set of learning RNNs which can be used to detect targets within clutter with high accuracy, and to classify the targets or man-made objects from natural clutter. Experimental data from SAR imagery is used to illustrate and validate the proposed method, and to calculate Receiver Operating Characteristics which illustrate the performance of the proposed algorithm.

  17. Magneto-Radar Hidden Metal Detector

    DOEpatents

    McEwan, Thomas E.

    2005-07-05

    A varying magnetic field excites slight vibrations in an object and a radar sensor detects the vibrations at a harmonic of the excitation frequency. The synergy of the magnetic excitation and radar detection provides increased detection range compared to conventional magnetic metal detectors. The radar rejects background clutter by responding only to reflecting objects that are vibrating at a harmonic excitation field, thereby significantly improving detection reliability. As an exemplary arrangement, an ultra-wideband micropower impulse radar (MIR) is capable of being employed to provide superior materials penetration while providing range information. The magneto-radar may be applied to pre-screening magnetic resonance imaging (MRI) patients, landmine detection and finding hidden treasures.

  18. Performance of the NASA Airborne Radar with the Windshear Database for Forward-Looking Systems

    NASA Technical Reports Server (NTRS)

    Switzer, George F.; Britt, Charles L.

    1996-01-01

    This document describes the simulation approach used to test the performance of the NASA airborne windshear radar. An explanation of the actual radar hardware and processing algorithms provides an understanding of the parameters used in the simulation program. This report also contains a brief overview of the NASA airborne windshear radar experimental flight test results. A description of the radar simulation program shows the capabilities of the program and the techniques used for certification evaluation. Simulation of the NASA radar is comprised of three steps. First, the choice of the ground clutter data must be made. The ground clutter is the return from objects in or nearby an airport facility. The choice of the ground clutter also dictates the aircraft flight path since ground clutter is gathered while in flight. The second step is the choice of the radar parameters and the running of the simulation program which properly combines the ground clutter data with simulated windshear weather data. The simulated windshear weather data is comprised of a number of Terminal Area Simulation System (TASS) model results. The final step is the comparison of the radar simulation results to the known windshear data base. The final evaluation of the radar simulation is based on the ability to detect hazardous windshear with the aircraft at a safe distance while at the same time not displaying false alerts.

  19. Fast iterative censoring CFAR algorithm for ship detection from SAR images

    NASA Astrophysics Data System (ADS)

    Gu, Dandan; Yue, Hui; Zhang, Yuan; Gao, Pengcheng

    2017-11-01

    Ship detection is one of the essential techniques for ship recognition from synthetic aperture radar (SAR) images. This paper presents a fast iterative detection procedure to eliminate the influence of target returns on the estimation of local sea clutter distributions for constant false alarm rate (CFAR) detectors. A fast block detector is first employed to extract potential target sub-images; and then, an iterative censoring CFAR algorithm is used to detect ship candidates from each target blocks adaptively and efficiently, where parallel detection is available, and statistical parameters of G0 distribution fitting local sea clutter well can be quickly estimated based on an integral image operator. Experimental results of TerraSAR-X images demonstrate the effectiveness of the proposed technique.

  20. GMTI Direction of Arrival Measurements from Multiple Phase Centers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerry, Armin W.; Bickel, Douglas L.

    2015-03-01

    Ground Moving Target Indicator (GMTI) radar attempts to detect and locate targets with unknown motion. Very slow-moving targets are difficult to locate in the presence of surrounding clutter. This necessitates multiple antenna phase centers (or equivalent) to offer independent Direction of Arrival (DOA) measurements. DOA accuracy and precision generally remains dependent on target Signal-to-Noise Ratio (SNR), Clutter-toNoise Ratio (CNR), scene topography, interfering signals, and a number of antenna parameters. This is true even for adaptive techniques like Space-Time-AdaptiveProcessing (STAP) algorithms.

  1. Tumor response estimation in radar-based microwave breast cancer detection.

    PubMed

    Kurrant, Douglas J; Fear, Elise C; Westwick, David T

    2008-12-01

    Radar-based microwave imaging techniques have been proposed for early stage breast cancer detection. A considerable challenge for the successful implementation of these techniques is the reduction of clutter, or components of the signal originating from objects other than the tumor. In particular, the reduction of clutter from the late-time scattered fields is required in order to detect small (subcentimeter diameter) tumors. In this paper, a method to estimate the tumor response contained in the late-time scattered fields is presented. The method uses a parametric function to model the tumor response. A maximum a posteriori estimation approach is used to evaluate the optimal values for the estimates of the parameters. A pattern classification technique is then used to validate the estimation. The ability of the algorithm to estimate a tumor response is demonstrated by using both experimental and simulated data obtained with a tissue sensing adaptive radar system.

  2. Public attitudes toward-and identification of-cluttering and stuttering in Norway and Puerto Rico.

    PubMed

    St Louis, Kenneth O; Sønsterud, Hilda; Carlo, Edna J; Heitmann, Ragnhild R; Kvenseth, Helene

    2014-12-01

    The study sought to compare public attitudes toward cluttering versus stuttering in Norway and Puerto Rico and to compare respondents' identification of persons known with these fluency disorders. After reading lay definitions of cluttering and stuttering, three samples of adults from Norway and three from Puerto Rico rated their attitudes toward cluttering and/or stuttering on modified versions of the POSHA-Cl (for cluttering) and POSHA-S (for stuttering). They also identified children and adults whom they knew who either or both manifested cluttering or stuttering. Attitudes toward cluttering were essentially unaffected by rating either cluttering only or combined cluttering and stuttering on the same questionnaire in both countries. The same was also true of stuttering. Attitudes were very similar toward both disorders although slightly less positive for cluttering. Norwegian attitudes toward both disorders were generally more positive than Puerto Rican attitudes. The average respondent identified slightly more than one fluency disorder, a higher percentage for stuttering than cluttering and higher for adults than children. Cluttering-stuttering was rarely identified. Given a lay definition, this study confirmed that adults from diverse cultures hold attitudes toward cluttering that are similar to-but somewhat less positive than-their attitudes toward stuttering. It also confirmed that adults can identify cluttering among people they know, although less commonly than stuttering. Design controls in this study assured that consideration of stuttering did not affect either the attitudes or identification results for cluttering. The reader will be able to: (a) describe the effects-or lack thereof-of considerations of stuttering on attitudes toward cluttering; (b) describe differences in public identification of children and adults who either clutter or stutter; (c) describe differences between attitudes toward cluttering and stuttering in Norway and Puerto Rico. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. A simulation study of fast neutron interrogation for standoff detection of improvised explosive devices

    NASA Astrophysics Data System (ADS)

    Heider, S. A.; Dunn, W. L.

    2015-11-01

    The signature-based radiation-scanning technique utilizes radiation detector responses, called "signatures," and compares these to "templates" in order to differentiate targets that contain certain materials, such as explosives or drugs, from those that do not. Our investigations are aimed at the detection of nitrogen-rich explosives contained in improvised explosive devices. We use the term "clutter" to refer to any non-explosive materials with which the interrogating radiation may interact between source and detector. To deal with the many target types and clutter configurations that may be encountered in the field, the use of "artificial templates" is proposed. The MCNP code was used to simulate 14.1 MeV neutron source beams incident on one type of target containing various clutter and sample materials. Signatures due to inelastic-scatter and prompt-capture gamma rays from hydrogen, carbon, nitrogen, and oxygen and two scattered neutron signatures were considered. Targets containing explosive materials in the presence of clutter were able to be identified from targets that contained only non-explosive ("inert") materials. This study demonstrates that a finite number of artificial templates is sufficient for IED detection with fairly good sensitivity and specificity.

  4. Doppler characteristics of sea clutter.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raynal, Ann Marie; Doerry, Armin Walter

    2010-06-01

    Doppler radars can distinguish targets from clutter if the target's velocity along the radar line of sight is beyond that of the clutter. Some targets of interest may have a Doppler shift similar to that of clutter. The nature of sea clutter is different in the clutter and exo-clutter regions. This behavior requires special consideration regarding where a radar can expect to find sea-clutter returns in Doppler space and what detection algorithms are most appropriate to help mitigate false alarms and increase probability of detection of a target. This paper studies the existing state-of-the-art in the understanding of Doppler characteristicsmore » of sea clutter and scattering from the ocean to better understand the design and performance choices of a radar in differentiating targets from clutter under prevailing sea conditions.« less

  5. Experts' saliency ratings of speech-language dimensions associated with cluttering.

    PubMed

    Myers, Florence L; Bakker, Klaas

    2014-12-01

    The study aimed to investigate how cluttering specialists rated degree of prominence or saliency of various communication dimensions as contributing to the overall cluttering severity. Using a 9-point Likert type scoring system 31 cluttering specialists (with an average of 19 years of experience with cluttering) rated the relative importance of eight speech and language dimensions often associated with cluttering from '1' ('not important') at the low end to a '9' ('very important') at the high saliency end. Though the salience ratings differed the values in most cases were toward the high end of the rating scale. Additionally correlational analyses revealed several patterns of inter-correlation among the dimensions indicating that contribution of each communication dimension to overall cluttering severity may not be the same for all. Rather, it suggested that these dimensions may speak to cluttering severity through differential perceptual pathways that characterized the thinking of the experts who participated. Greater understanding of the various communication behaviors contributing to cluttering, severity is needed for theoretical research and clinical purposes. To the extent that the dimensions studied are thought to be relevant for cluttering, the results strengthen the notion that these dimensions (and perhaps others) should be included if we are to capture a comprehensive picture of cluttering severity. (a) describe the multidimensionality of cluttering; (b) discuss the perceptual saliency of speech-language dimensions associated with cluttering; (c) describe the interrelatedness of various speech-language dimensions associated with cluttering; (d) discuss how experts in cluttering rate the saliency of speech and language dimensions associated with cluttering when provided a list of these dimensions. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Quantifying clutter: A comparison of four methods and their relationship to bat detection

    Treesearch

    Joy M. O’Keefe; Susan C. Loeb; Hoke S. Hill Jr.; J. Drew Lanham

    2014-01-01

    The degree of spatial complexity in the environment, or clutter, affects the quality of foraging habitats for bats and their detection with acoustic systems. Clutter has been assessed in a variety of ways but there are no standardized methods for measuring clutter. We compared four methods (Visual Clutter, Cluster, Single Variable, and Clutter Index) and related these...

  7. A New Conflict Resolution Method for Multiple Mobile Robots in Cluttered Environments With Motion-Liveness.

    PubMed

    Shahriari, Mohammadali; Biglarbegian, Mohammad

    2018-01-01

    This paper presents a new conflict resolution methodology for multiple mobile robots while ensuring their motion-liveness, especially for cluttered and dynamic environments. Our method constructs a mathematical formulation in a form of an optimization problem by minimizing the overall travel times of the robots subject to resolving all the conflicts in their motion. This optimization problem can be easily solved through coordinating only the robots' speeds. To overcome the computational cost in executing the algorithm for very cluttered environments, we develop an innovative method through clustering the environment into independent subproblems that can be solved using parallel programming techniques. We demonstrate the scalability of our approach through performing extensive simulations. Simulation results showed that our proposed method is capable of resolving the conflicts of 100 robots in less than 1.23 s in a cluttered environment that has 4357 intersections in the paths of the robots. We also developed an experimental testbed and demonstrated that our approach can be implemented in real time. We finally compared our approach with other existing methods in the literature both quantitatively and qualitatively. This comparison shows while our approach is mathematically sound, it is more computationally efficient, scalable for very large number of robots, and guarantees the live and smooth motion of robots.

  8. Evaluation of the maximum-likelihood adaptive neural system (MLANS) applications to noncooperative IFF

    NASA Astrophysics Data System (ADS)

    Chernick, Julian A.; Perlovsky, Leonid I.; Tye, David M.

    1994-06-01

    This paper describes applications of maximum likelihood adaptive neural system (MLANS) to the characterization of clutter in IR images and to the identification of targets. The characterization of image clutter is needed to improve target detection and to enhance the ability to compare performance of different algorithms using diverse imagery data. Enhanced unambiguous IFF is important for fratricide reduction while automatic cueing and targeting is becoming an ever increasing part of operations. We utilized MLANS which is a parametric neural network that combines optimal statistical techniques with a model-based approach. This paper shows that MLANS outperforms classical classifiers, the quadratic classifier and the nearest neighbor classifier, because on the one hand it is not limited to the usual Gaussian distribution assumption and can adapt in real time to the image clutter distribution; on the other hand MLANS learns from fewer samples and is more robust than the nearest neighbor classifiers. Future research will address uncooperative IFF using fused IR and MMW data.

  9. Background adaptive division filtering for hand-held ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Lee, Matthew A.; Anderson, Derek T.; Ball, John E.; White, Julie L.

    2016-05-01

    The challenge in detecting explosive hazards is that there are multiple types of targets buried at different depths in a highlycluttered environment. A wide array of target and clutter signatures exist, which makes detection algorithm design difficult. Such explosive hazards are typically deployed in past and present war zones and they pose a grave threat to the safety of civilians and soldiers alike. This paper focuses on a new image enhancement technique for hand-held ground penetrating radar (GPR). Advantages of the proposed technique is it runs in real-time and it does not require the radar to remain at a constant distance from the ground. Herein, we evaluate the performance of the proposed technique using data collected from a U.S. Army test site, which includes targets with varying amounts of metal content, placement depths, clutter and times of day. Receiver operating characteristic (ROC) curve-based results are presented for the detection of shallow, medium and deeply buried targets. Preliminary results are very encouraging and they demonstrate the usefulness of the proposed filtering technique.

  10. Comparing masked target transform volume (MTTV) clutter metric to human observer evaluation of visual clutter

    NASA Astrophysics Data System (ADS)

    Camp, H. A.; Moyer, Steven; Moore, Richard K.

    2010-04-01

    The Night Vision and Electronic Sensors Directorate's current time-limited search (TLS) model, which makes use of the targeting task performance (TTP) metric to describe image quality, does not explicitly account for the effects of visual clutter on observer performance. The TLS model is currently based on empirical fits to describe human performance for a time of day, spectrum and environment. Incorporating a clutter metric into the TLS model may reduce the number of these empirical fits needed. The masked target transform volume (MTTV) clutter metric has been previously presented and compared to other clutter metrics. Using real infrared imagery of rural images with varying levels of clutter, NVESD is currently evaluating the appropriateness of the MTTV metric. NVESD had twenty subject matter experts (SME) rank the amount of clutter in each scene in a series of pair-wise comparisons. MTTV metric values were calculated and then compared to the SME observers rankings. The MTTV metric ranked the clutter in a similar manner to the SME evaluation, suggesting that the MTTV metric may emulate SME response. This paper is a first step in quantifying clutter and measuring the agreement to subjective human evaluation.

  11. Dynamic Singularity Spectrum Distribution of Sea Clutter

    NASA Astrophysics Data System (ADS)

    Xiong, Gang; Yu, Wenxian; Zhang, Shuning

    2015-12-01

    The fractal and multifractal theory have provided new approaches for radar signal processing and target-detecting under the background of ocean. However, the related research mainly focuses on fractal dimension or multifractal spectrum (MFS) of sea clutter. In this paper, a new dynamic singularity analysis method of sea clutter using MFS distribution is developed, based on moving detrending analysis (DMA-MFSD). Theoretically, we introduce the time information by using cyclic auto-correlation of sea clutter. For transient correlation series, the instantaneous singularity spectrum based on multifractal detrending moving analysis (MF-DMA) algorithm is calculated, and the dynamic singularity spectrum distribution of sea clutter is acquired. In addition, we analyze the time-varying singularity exponent ranges and maximum position function in DMA-MFSD of sea clutter. For the real sea clutter data, we analyze the dynamic singularity spectrum distribution of real sea clutter in level III sea state, and conclude that the radar sea clutter has the non-stationary and time-varying scale characteristic and represents the time-varying singularity spectrum distribution based on the proposed DMA-MFSD method. The DMA-MFSD will also provide reference for nonlinear dynamics and multifractal signal processing.

  12. Improved Resolution and Reduced Clutter in Ultra-Wideband Microwave Imaging Using Cross-Correlated Back Projection: Experimental and Numerical Results

    PubMed Central

    Jacobsen, S.; Birkelund, Y.

    2010-01-01

    Microwave breast cancer detection is based on the dielectric contrast between healthy and malignant tissue. This radar-based imaging method involves illumination of the breast with an ultra-wideband pulse. Detection of tumors within the breast is achieved by some selected focusing technique. Image formation algorithms are tailored to enhance tumor responses and reduce early-time and late-time clutter associated with skin reflections and heterogeneity of breast tissue. In this contribution, we evaluate the performance of the so-called cross-correlated back projection imaging scheme by using a scanning system in phantom experiments. Supplementary numerical modeling based on commercial software is also presented. The phantom is synthetically scanned with a broadband elliptical antenna in a mono-static configuration. The respective signals are pre-processed by a data-adaptive RLS algorithm in order to remove artifacts caused by antenna reverberations and signal clutter. Successful detection of a 7 mm diameter cylindrical tumor immersed in a low permittivity medium was achieved in all cases. Selecting the widely used delay-and-sum (DAS) beamforming algorithm as a benchmark, we show that correlation based imaging methods improve the signal-to-clutter ratio by at least 10 dB and improves spatial resolution through a reduction of the imaged peak full-width half maximum (FWHM) of about 40–50%. PMID:21331362

  13. Improved resolution and reduced clutter in ultra-wideband microwave imaging using cross-correlated back projection: experimental and numerical results.

    PubMed

    Jacobsen, S; Birkelund, Y

    2010-01-01

    Microwave breast cancer detection is based on the dielectric contrast between healthy and malignant tissue. This radar-based imaging method involves illumination of the breast with an ultra-wideband pulse. Detection of tumors within the breast is achieved by some selected focusing technique. Image formation algorithms are tailored to enhance tumor responses and reduce early-time and late-time clutter associated with skin reflections and heterogeneity of breast tissue. In this contribution, we evaluate the performance of the so-called cross-correlated back projection imaging scheme by using a scanning system in phantom experiments. Supplementary numerical modeling based on commercial software is also presented. The phantom is synthetically scanned with a broadband elliptical antenna in a mono-static configuration. The respective signals are pre-processed by a data-adaptive RLS algorithm in order to remove artifacts caused by antenna reverberations and signal clutter. Successful detection of a 7 mm diameter cylindrical tumor immersed in a low permittivity medium was achieved in all cases. Selecting the widely used delay-and-sum (DAS) beamforming algorithm as a benchmark, we show that correlation based imaging methods improve the signal-to-clutter ratio by at least 10 dB and improves spatial resolution through a reduction of the imaged peak full-width half maximum (FWHM) of about 40-50%.

  14. Searching in clutter : visual attention strategies of expert pilots

    DOT National Transportation Integrated Search

    2012-10-22

    Clutter can slow visual search. However, experts may develop attention strategies that alleviate the effects of clutter on search performance. In the current study we examined the effects of global and local clutter on visual search performance and a...

  15. An integrated measure of display clutter based on feature content, user knowledge and attention allocation factors.

    PubMed

    Pankok, Carl; Kaber, David B

    2018-05-01

    Existing measures of display clutter in the literature generally exhibit weak correlations with task performance, which limits their utility in safety-critical domains. A literature review led to formulation of an integrated display data- and user knowledge-driven measure of display clutter. A driving simulation experiment was conducted in which participants were asked to search 'high' and 'low' clutter displays for navigation information. Data-driven measures and subjective perceptions of clutter were collected along with patterns of visual attention allocation and driving performance responses during time periods in which participants searched the navigation display for information. The new integrated measure was more strongly correlated with driving performance than other, previously developed measures of clutter, particularly in the case of low-clutter displays. Integrating display data and user knowledge factors with patterns of visual attention allocation shows promise for measuring display clutter and correlation with task performance, particularly for low-clutter displays. Practitioner Summary: A novel measure of display clutter was formulated, accounting for display data content, user knowledge states and patterns of visual attention allocation. The measure was evaluated in terms of correlations with driver performance in a safety-critical driving simulation study. The measure exhibited stronger correlations with task performance than previously defined measures.

  16. A unified framework for gesture recognition and spatiotemporal gesture segmentation.

    PubMed

    Alon, Jonathan; Athitsos, Vassilis; Yuan, Quan; Sclaroff, Stan

    2009-09-01

    Within the context of hand gesture recognition, spatiotemporal gesture segmentation is the task of determining, in a video sequence, where the gesturing hand is located and when the gesture starts and ends. Existing gesture recognition methods typically assume either known spatial segmentation or known temporal segmentation, or both. This paper introduces a unified framework for simultaneously performing spatial segmentation, temporal segmentation, and recognition. In the proposed framework, information flows both bottom-up and top-down. A gesture can be recognized even when the hand location is highly ambiguous and when information about when the gesture begins and ends is unavailable. Thus, the method can be applied to continuous image streams where gestures are performed in front of moving, cluttered backgrounds. The proposed method consists of three novel contributions: a spatiotemporal matching algorithm that can accommodate multiple candidate hand detections in every frame, a classifier-based pruning framework that enables accurate and early rejection of poor matches to gesture models, and a subgesture reasoning algorithm that learns which gesture models can falsely match parts of other longer gestures. The performance of the approach is evaluated on two challenging applications: recognition of hand-signed digits gestured by users wearing short-sleeved shirts, in front of a cluttered background, and retrieval of occurrences of signs of interest in a video database containing continuous, unsegmented signing in American Sign Language (ASL).

  17. Acquisition and use of Orlando, Florida and Continental Airbus radar flight test data

    NASA Technical Reports Server (NTRS)

    Eide, Michael C.; Mathews, Bruce

    1992-01-01

    Westinghouse is developing a lookdown pulse Doppler radar for production as the sensor and processor of a forward looking hazardous windshear detection and avoidance system. A data collection prototype of that product was ready for flight testing in Orlando to encounter low level windshear in corroboration with the FAA-Terminal Doppler Weather Radar (TDWR). Airborne real-time processing and display of the hazard factor were demonstrated with TDWR facilitated intercepts and penetrations of over 80 microbursts in a three day period, including microbursts with hazard factors in excess of .16 (with 500 ft. PIREP altitude loss) and the hazard factor display at 6 n.mi. of a visually transparent ('dry') microburst with TDWR corroborated outflow reflectivities of +5 dBz. Range gated Doppler spectrum data was recorded for subsequent development and refinement of hazard factor detection and urban clutter rejection algorithms. Following Orlando, the data collection radar was supplemental type certified for in revenue service on a Continental Airlines Airbus in an automatic and non-interferring basis with its ARINC 708 radar to allow Westinghouse to confirm its understanding of commercial aircraft installation, interface realities, and urban airport clutter. A number of software upgrades, all of which were verified at the Receiver-Transmitter-Processor (RTP) hardware bench with Orlando microburst data to produce desired advanced warning hazard factor detection, included some preliminary loads with automatic (sliding window average hazard factor) detection and annunciation recording. The current (14-APR-92) configured software is free from false and/or nuisance alerts (CAUTIONS, WARNINGS, etc.) for all take-off and landing approaches, under 2500 ft. altitude to weight-on-wheels, into all encountered airports, including Newark (NJ), LAX, Denver, Houston, Cleveland, etc. Using the Orlando data collected on hazardous microbursts, Westinghouse has developed a lookdown pulse Doppler radar product with signal and data processing algorithms which detect realistic microburst hazards and has demonstrated those algorithms produce no false alerts (or nuisance alerts) in urban airport ground moving vehicle (GMTI) and/or clutter environments.

  18. Covert situational awareness with handheld ultrawideband short-pulse radar

    NASA Astrophysics Data System (ADS)

    Barnes, Mark A.; Nag, Soumya; Payment, Tim

    2001-08-01

    Law enforcement and emergency services all face the difficult task of determining the locations of people within a building. A handheld radar able to detect motion through walls and other obstructions has been developed to fill this need. This paper describes the attributes and difficulties of the radar design and includes test results of the radar's performance. This discussion begins by summarizing key user requirements and the electromagnetic losses of typical building materials. Ultra-wideband (UWB) short pulse radars are well suited for a handheld sensor primarily because of their inherit time isolation in high clutter environments and their capability to achieve high resolution at low spectral center frequencies. There are also constraints that complicate the system design. Using a technique referred to as time-modulation allows the radars to reject range ambiguities and enhances electromagnetic compatibility with similar radars and ambient systems. An outline of the specifications of the radar developed and a process diagram on how it generates a motion map showing range and direction of the people moving within structures is included. Images are then presented to illustrate its performance. The images include adults, child, and a dog. The test results also include data showing the radar's performance through a variety of building materials.

  19. Effet de l'encombrement visuel de l'ecran primaire de vol sur la performance du pilote, la charge de travail et le parcours visuel

    NASA Astrophysics Data System (ADS)

    Doyon-Poulin, Philippe

    Flight deck of 21st century commercial aircrafts does not look like the one the Wright brothers used for their first flight. The rapid growth of civilian aviation resulted in an increase in the number of flight deck instruments and of their complexity, in order to complete a safe and ontime flight. However, presenting an abundance of visual information using visually cluttered flight instruments might reduce the pilot's flight performance. Visual clutter has received an increased interest by the aerospace community to understand the effects of visual density and information overload on pilots' performance. Aerospace regulations demand to minimize visual clutter of flight deck displays. Past studies found a mixed effect of visual clutter of the primary flight display on pilots' technical flight performance. More research is needed to better understand this subject. In this thesis, we did an experimental study in a flight simulator to test the effects of visual clutter of the primary flight display on the pilot's technical flight performance, mental workload and gaze pattern. First, we identified a gap in existing definitions of visual clutter and we proposed a new definition relevant to the aerospace community that takes into account the context of use of the display. Then, we showed that past research on the effects of visual clutter of the primary flight display on pilots' performance did not manipulate the variable of visual clutter in a similar manner. Past research changed visual clutter at the same time than the flight guidance function. Using a different flight guidance function between displays might have masked the effect of visual clutter on pilots' performance. To solve this issue, we proposed three requirements that all tested displays must satisfy to assure that only the variable of visual clutter is changed during study while leaving other variables unaffected. Then, we designed three primary flight displays with a different visual clutter level (low, medium, high) but with the same flight guidance function, by respecting the previous requirements. Twelve pilots, with a mean experience of over 4000 total flight hours, completed an instrument landing in a flight simulator using all three displays for a total of nine repetitions. Our results showed that pilots reported lower workload level and had better lateral precision during the approach using the medium-clutter display compared to the low- and high-clutter displays. Also, pilots reported that the medium-clutter display was the most useful for the flight task compared to the two other displays. Eye tracker results showed that pilots' gaze pattern was less efficient for the high-clutter display compared to the low- and medium-clutter displays. Overall, these new experimental results emphasize the importance of optimizing visual clutter of flight displays as it affects both objective and subjective performance of experienced pilots in their flying task. This thesis ends with practical recommendations to help designers optimize visual clutter of displays used for man-machine interface.

  20. Dual-energy approach to contrast-enhanced mammography using the balanced filter method: spectral optimization and preliminary phantom measurement.

    PubMed

    Saito, Masatoshi

    2007-11-01

    Dual-energy contrast agent-enhanced mammography is a technique of demonstrating breast cancers obscured by a cluttered background resulting from the contrast between soft tissues in the breast. The technique has usually been implemented by exploiting two exposures to different x-ray tube voltages. In this article, another dual-energy approach using the balanced filter method without switching the tube voltages is described. For the spectral optimization of dual-energy mammography using the balanced filters, we applied a theoretical framework reported by Lemacks et al. [Med. Phys. 29, 1739-1751 (2002)] to calculate the signal-to-noise ratio (SNR) in an iodinated contrast agent subtraction image. This permits the selection of beam parameters such as tube voltage and balanced filter material, and the optimization of the latter's thickness with respect to some critical quantity-in this case, mean glandular dose. For an imaging system with a 0.1 mm thick CsI:T1 scintillator, we predict that the optimal tube voltage would be 45 kVp for a tungsten anode using zirconium, iodine, and neodymium balanced filters. A mean glandular dose of 1.0 mGy is required to obtain an SNR of 5 in order to detect 1.0 mg/cm2 iodine in the resulting clutter-free image of a 5 cm thick breast composed of 50% adipose and 50% glandular tissue. In addition to spectral optimization, we carried out phantom measurements to demonstrate the present dual-energy approach for obtaining a clutter-free image, which preferentially shows iodine, of a breast phantom comprising three major components-acrylic spheres, olive oil, and an iodinated contrast agent. The detection of iodine details on the cluttered background originating from the contrast between acrylic spheres and olive oil is analogous to the task of distinguishing contrast agents in a mixture of glandular and adipose tissues.

  1. Limitation on the use of a spaceborne SAR for rain measurements

    NASA Technical Reports Server (NTRS)

    Ahamad, Atiq

    1994-01-01

    A proof-of-concept experiment for remote sensing of precipitation by SAR is part of the SIR-C/X-SAR experiment. This thesis presents a feasibility study and recommendations for detection of precipitation using SIR-C/X-SAR. The principal limitation to rain measurement from a spaceborne SAR is the poor SCR (signal-to-clutter ratio). This is in part due to the system configuration and largely due to the large magnitude of echoes associated with the surface component. Two geometries apply: off-vertical and vertical pointing angles. Here we present calculations for both. With vertical geometry a large clutter component is associated with range sidelobes of the chirped transmitter pulse. To overcome this problem a narrow transmitted pulse (3 mu sec) processed without dechirping was used. Since the magnitude of the clutter over the ocean is high it is recommended that data in the chirped mode be obtained over the forest due to the significantly lower backscatter associated with it at nadir. With these recommendations, at nadir, it is believed that rain rates greater than 5 mm/hr may be detected. The use of a better weighting function that gives lower sidelobe levels than that used (a raised cos(exp 2)) is also recommended. At off-vertical look angles all the range cells have a large clutter component associated with them due to the geometry. The use of higher angles of incidence (theta greater than 60 deg) is recommended because of better SCR at these angles. With this recommendation, at off-vertical, it is believed that rain rates greater than 10 mm/hr may be detected. Various other techniques are described and recommended to improve the minimum detectable precipitation rate. These include trying to subtract the estimate of the clutter from the combined signal and clutter and trying to separate the Doppler of the rain echo and the surface echo. With these recommendations it is believed that it is possible to detect precipitation as low as 1 mm/hr at vertical and greater than 5 mm/hr at off-vertical look angles.

  2. Infrared small target detection in heavy sky scene clutter based on sparse representation

    NASA Astrophysics Data System (ADS)

    Liu, Depeng; Li, Zhengzhou; Liu, Bing; Chen, Wenhao; Liu, Tianmei; Cao, Lei

    2017-09-01

    A novel infrared small target detection method based on sky clutter and target sparse representation is proposed in this paper to cope with the representing uncertainty of clutter and target. The sky scene background clutter is described by fractal random field, and it is perceived and eliminated via the sparse representation on fractal background over-complete dictionary (FBOD). The infrared small target signal is simulated by generalized Gaussian intensity model, and it is expressed by the generalized Gaussian target over-complete dictionary (GGTOD), which could describe small target more efficiently than traditional structured dictionaries. Infrared image is decomposed on the union of FBOD and GGTOD, and the sparse representation energy that target signal and background clutter decomposed on GGTOD differ so distinctly that it is adopted to distinguish target from clutter. Some experiments are induced and the experimental results show that the proposed approach could improve the small target detection performance especially under heavy clutter for background clutter could be efficiently perceived and suppressed by FBOD and the changing target could also be represented accurately by GGTOD.

  3. The estimation of pointing angle and normalized surface scattering cross section from GEOS-3 radar altimeter measurements

    NASA Technical Reports Server (NTRS)

    Brown, G. S.; Curry, W. J.

    1977-01-01

    The statistical error of the pointing angle estimation technique is determined as a function of the effective receiver signal to noise ratio. Other sources of error are addressed and evaluated with inadequate calibration being of major concern. The impact of pointing error on the computation of normalized surface scattering cross section (sigma) from radar and the waveform attitude induced altitude bias is considered and quantitative results are presented. Pointing angle and sigma processing algorithms are presented along with some initial data. The intensive mode clean vs. clutter AGC calibration problem is analytically resolved. The use clutter AGC data in the intensive mode is confirmed as the correct calibration set for the sigma computations.

  4. An examination of along-track interferometry for detecting ground moving targets

    NASA Technical Reports Server (NTRS)

    Chen, Curtis W.; Chapin, Elaine; Muellerschoen, Ron; Hensley, Scott

    2005-01-01

    Along-track interferometry (ATI) is an interferometric synthetic aperture radar technique primarily used to measure Earth-surface velocities. We present results from an airborne experiment demonstrating phenomenology specific to the context of observing discrete ground targets moving admidst a stationary clutter background.

  5. Radar transponder apparatus and signal processing technique

    DOEpatents

    Axline, Jr., Robert M.; Sloan, George R.; Spalding, Richard E.

    1996-01-01

    An active, phase-coded, time-grating transponder and a synthetic-aperture radar (SAR) and signal processor means, in combination, allow the recognition and location of the transponder (tag) in the SAR image and allow communication of information messages from the transponder to the SAR. The SAR is an illuminating radar having special processing modifications in an image-formation processor to receive an echo from a remote transponder, after the transponder receives and retransmits the SAR illuminations, and to enhance the transponder's echo relative to surrounding ground clutter by recognizing special transponder modulations from phase-shifted from the transponder retransmissions. The remote radio-frequency tag also transmits information to the SAR through a single antenna that also serves to receive the SAR illuminations. Unique tag-modulation and SAR signal processing techniques, in combination, allow the detection and precise geographical location of the tag through the reduction of interfering signals from ground clutter, and allow communication of environmental and status information from said tag to be communicated to said SAR.

  6. Radar transponder apparatus and signal processing technique

    DOEpatents

    Axline, R.M. Jr.; Sloan, G.R.; Spalding, R.E.

    1996-01-23

    An active, phase-coded, time-grating transponder and a synthetic-aperture radar (SAR) and signal processor means, in combination, allow the recognition and location of the transponder (tag) in the SAR image and allow communication of information messages from the transponder to the SAR. The SAR is an illuminating radar having special processing modifications in an image-formation processor to receive an echo from a remote transponder, after the transponder receives and retransmits the SAR illuminations, and to enhance the transponder`s echo relative to surrounding ground clutter by recognizing special transponder modulations from phase-shifted from the transponder retransmissions. The remote radio-frequency tag also transmits information to the SAR through a single antenna that also serves to receive the SAR illuminations. Unique tag-modulation and SAR signal processing techniques, in combination, allow the detection and precise geographical location of the tag through the reduction of interfering signals from ground clutter, and allow communication of environmental and status information from said tag to be communicated to said SAR. 4 figs.

  7. Clutter in electronic medical records: examining its performance and attentional costs using eye tracking.

    PubMed

    Moacdieh, Nadine; Sarter, Nadine

    2015-06-01

    The objective was to use eye tracking to trace the underlying changes in attention allocation associated with the performance effects of clutter, stress, and task difficulty in visual search and noticing tasks. Clutter can degrade performance in complex domains, yet more needs to be known about the associated changes in attention allocation, particularly in the presence of stress and for different tasks. Frequently used and relatively simple eye tracking metrics do not effectively capture the various effects of clutter, which is critical for comprehensively analyzing clutter and developing targeted, real-time countermeasures. Electronic medical records (EMRs) were chosen as the application domain for this research. Clutter, stress, and task difficulty were manipulated, and physicians' performance on search and noticing tasks was recorded. Several eye tracking metrics were used to trace attention allocation throughout those tasks, and subjective data were gathered via a debriefing questionnaire. Clutter degraded performance in terms of response time and noticing accuracy. These decrements were largely accentuated by high stress and task difficulty. Eye tracking revealed the underlying attentional mechanisms, and several display-independent metrics were shown to be significant indicators of the effects of clutter. Eye tracking provides a promising means to understand in detail (offline) and prevent (in real time) major performance breakdowns due to clutter. Display designers need to be aware of the risks of clutter in EMRs and other complex displays and can use the identified eye tracking metrics to evaluate and/or adjust their display. © 2015, Human Factors and Ergonomics Society.

  8. Cluttering

    MedlinePlus

    ... to plan and evaluate treatment.) Myers, F. L. & St. Louis, K. O. (1992). Cluttering: A clinical perspective . ... on the nature, diagnosis, and treatment of cluttering.) St. Louis, K. O. (Ed.) (1996). Research and opinion ...

  9. Nonstationary EO/IR Clutter Suppression and Dim Object Tracking

    NASA Astrophysics Data System (ADS)

    Tartakovsky, A.; Brown, A.; Brown, J.

    2010-09-01

    We develop and evaluate the performance of advanced algorithms which provide significantly improved capabilities for automated detection and tracking of ballistic and flying dim objects in the presence of highly structured intense clutter. Applications include ballistic missile early warning, midcourse tracking, trajectory prediction, and resident space object detection and tracking. The set of algorithms include, in particular, adaptive spatiotemporal clutter estimation-suppression and nonlinear filtering-based multiple-object track-before-detect. These algorithms are suitable for integration into geostationary, highly elliptical, or low earth orbit scanning or staring sensor suites, and are based on data-driven processing that adapts to real-world clutter backgrounds, including celestial, earth limb, or terrestrial clutter. In many scenarios of interest, e.g., for highly elliptic and, especially, low earth orbits, the resulting clutter is highly nonstationary, providing a significant challenge for clutter suppression to or below sensor noise levels, which is essential for dim object detection and tracking. We demonstrate the success of the developed algorithms using semi-synthetic and real data. In particular, our algorithms are shown to be capable of detecting and tracking point objects with signal-to-clutter levels down to 1/1000 and signal-to-noise levels down to 1/4.

  10. The influence of clutter on real-world scene search: evidence from search efficiency and eye movements.

    PubMed

    Henderson, John M; Chanceaux, Myriam; Smith, Tim J

    2009-01-23

    We investigated the relationship between visual clutter and visual search in real-world scenes. Specifically, we investigated whether visual clutter, indexed by feature congestion, sub-band entropy, and edge density, correlates with search performance as assessed both by traditional behavioral measures (response time and error rate) and by eye movements. Our results demonstrate that clutter is related to search performance. These results hold for both traditional search measures and for eye movements. The results suggest that clutter may serve as an image-based proxy for search set size in real-world scenes.

  11. Optimization of Visual Information Presentation for Visual Prosthesis.

    PubMed

    Guo, Fei; Yang, Yuan; Gao, Yong

    2018-01-01

    Visual prosthesis applying electrical stimulation to restore visual function for the blind has promising prospects. However, due to the low resolution, limited visual field, and the low dynamic range of the visual perception, huge loss of information occurred when presenting daily scenes. The ability of object recognition in real-life scenarios is severely restricted for prosthetic users. To overcome the limitations, optimizing the visual information in the simulated prosthetic vision has been the focus of research. This paper proposes two image processing strategies based on a salient object detection technique. The two processing strategies enable the prosthetic implants to focus on the object of interest and suppress the background clutter. Psychophysical experiments show that techniques such as foreground zooming with background clutter removal and foreground edge detection with background reduction have positive impacts on the task of object recognition in simulated prosthetic vision. By using edge detection and zooming technique, the two processing strategies significantly improve the recognition accuracy of objects. We can conclude that the visual prosthesis using our proposed strategy can assist the blind to improve their ability to recognize objects. The results will provide effective solutions for the further development of visual prosthesis.

  12. Optimization of Visual Information Presentation for Visual Prosthesis

    PubMed Central

    Gao, Yong

    2018-01-01

    Visual prosthesis applying electrical stimulation to restore visual function for the blind has promising prospects. However, due to the low resolution, limited visual field, and the low dynamic range of the visual perception, huge loss of information occurred when presenting daily scenes. The ability of object recognition in real-life scenarios is severely restricted for prosthetic users. To overcome the limitations, optimizing the visual information in the simulated prosthetic vision has been the focus of research. This paper proposes two image processing strategies based on a salient object detection technique. The two processing strategies enable the prosthetic implants to focus on the object of interest and suppress the background clutter. Psychophysical experiments show that techniques such as foreground zooming with background clutter removal and foreground edge detection with background reduction have positive impacts on the task of object recognition in simulated prosthetic vision. By using edge detection and zooming technique, the two processing strategies significantly improve the recognition accuracy of objects. We can conclude that the visual prosthesis using our proposed strategy can assist the blind to improve their ability to recognize objects. The results will provide effective solutions for the further development of visual prosthesis. PMID:29731769

  13. Removing interfering clutter associated with radar pulses that an airborne radar receives from a radar transponder

    DOEpatents

    Ormesher, Richard C.; Axline, Robert M.

    2008-12-02

    Interfering clutter in radar pulses received by an airborne radar system from a radar transponder can be suppressed by developing a representation of the incoming echo-voltage time-series that permits the clutter associated with predetermined parts of the time-series to be estimated. These estimates can be used to estimate and suppress the clutter associated with other parts of the time-series.

  14. Least-mean-square spatial filter for IR sensors.

    PubMed

    Takken, E H; Friedman, D; Milton, A F; Nitzberg, R

    1979-12-15

    A new least-mean-square filter is defined for signal-detection problems. The technique is proposed for scanning IR surveillance systems operating in poorly characterized but primarily low-frequency clutter interference. Near-optimal detection of point-source targets is predicted both for continuous-time and sampled-data systems.

  15. Survey of Munitions Response Technologies

    DTIC Science & Technology

    2006-06-01

    3-34 3.3.4 Digital Data Processing .......................................................................... 3-36 4.0 SOURCE DATA AND METHODS...6-4 6.1.6 DGM versus Mag and Flag Processes ..................................................... 6-5 6.1.7 Translation to...signatures, surface clutter, variances in operator technique, target selection, and data processing all degrade from and affect optimum performance

  16. Persuasion in Advertising: Analyzing One of the Public Faces of Corporations

    ERIC Educational Resources Information Center

    Lemesianou, Christine A.

    2007-01-01

    Today's communication and information environments create an immense amount of clutter for consumers, but a well crafted advertising campaign can differentiate an organization from its competitors. Persuasion in Advertising is a critical assignment where students apply Aristotle's and Cicero's persuasive techniques to a specific advertising…

  17. Effects of clutter on information processing deficits in individuals with hoarding disorder.

    PubMed

    Raines, Amanda M; Timpano, Kiara R; Schmidt, Norman B

    2014-09-01

    Current cognitive behavioral models of hoarding view hoarding as a multifaceted problem stemming from various information processing deficits. However, there is also reason to suspect that the consequences of hoarding may in turn impact or modulate deficits in information processing. The current study sought to expand upon the existing literature by manipulating clutter to examine whether the presence of a cluttered environment affects information processing. Participants included 34 individuals with hoarding disorder. Participants were randomized into a clutter or non-clutter condition and asked to complete various neuropsychological tasks of memory and attention. Results revealed that hoarding severity was associated with difficulties in sustained attention. However, individuals in the clutter condition relative to the non-clutter condition did not experience greater deficits in information processing. Limitations include the cross-sectional design and small sample size. The current findings add considerably to a growing body of literature on the relationships between information processing deficits and hoarding behaviors. Research of this type is integral to understanding the etiology and maintenance of hoarding. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Improved relocatable over-the-horizon radar detection and tracking using the maximum likelihood adaptive neural system algorithm

    NASA Astrophysics Data System (ADS)

    Perlovsky, Leonid I.; Webb, Virgil H.; Bradley, Scott R.; Hansen, Christopher A.

    1998-07-01

    An advanced detection and tracking system is being developed for the U.S. Navy's Relocatable Over-the-Horizon Radar (ROTHR) to provide improved tracking performance against small aircraft typically used in drug-smuggling activities. The development is based on the Maximum Likelihood Adaptive Neural System (MLANS), a model-based neural network that combines advantages of neural network and model-based algorithmic approaches. The objective of the MLANS tracker development effort is to address user requirements for increased detection and tracking capability in clutter and improved track position, heading, and speed accuracy. The MLANS tracker is expected to outperform other approaches to detection and tracking for the following reasons. It incorporates adaptive internal models of target return signals, target tracks and maneuvers, and clutter signals, which leads to concurrent clutter suppression, detection, and tracking (track-before-detect). It is not combinatorial and thus does not require any thresholding or peak picking and can track in low signal-to-noise conditions. It incorporates superresolution spectrum estimation techniques exceeding the performance of conventional maximum likelihood and maximum entropy methods. The unique spectrum estimation method is based on the Einsteinian interpretation of the ROTHR received energy spectrum as a probability density of signal frequency. The MLANS neural architecture and learning mechanism are founded on spectrum models and maximization of the "Einsteinian" likelihood, allowing knowledge of the physical behavior of both targets and clutter to be injected into the tracker algorithms. The paper describes the addressed requirements and expected improvements, theoretical foundations, engineering methodology, and results of the development effort to date.

  19. Subaperture clutter filter with CFAR signal detection

    DOEpatents

    Ormesher, Richard C.; Naething, Richard M.

    2016-08-30

    The various technologies presented herein relate to the determination of whether a received signal comprising radar clutter further comprises a communication signal. The communication signal can comprise of a preamble, a data symbol, communication data, etc. A first portion of the radar clutter is analyzed to determine a radar signature of the first portion of the radar clutter. A second portion of the radar clutter can be extracted based on the radar signature of the first portion. Following extraction, any residual signal can be analyzed to retrieve preamble data, etc. The received signal can be based upon a linear frequency modulation (e.g., a chirp modulation) whereby the chirp frequency can be determined and the frequency of transmission of the communication signal can be based accordingly thereon. The duration and/or bandwidth of the communication signal can be a portion of the duration and/or the bandwidth of the radar clutter.

  20. A Statistical Method for Reducing Sidelobe Clutter for the Ku-Band Precipitation Radar on Board the GPM Core Observatory

    NASA Technical Reports Server (NTRS)

    Kubota, Takuji; Iguchi, Toshio; Kojima, Masahiro; Liao, Liang; Masaki, Takeshi; Hanado, Hiroshi; Meneghini, Robert; Oki, Riko

    2016-01-01

    A statistical method to reduce the sidelobe clutter of the Ku-band precipitation radar (KuPR) of the Dual-Frequency Precipitation Radar (DPR) on board the Global Precipitation Measurement (GPM) Core Observatory is described and evaluated using DPR observations. The KuPR sidelobe clutter was much more severe than that of the Precipitation Radar on board the Tropical Rainfall Measuring Mission (TRMM), and it has caused the misidentification of precipitation. The statistical method to reduce sidelobe clutter was constructed by subtracting the estimated sidelobe power, based upon a multiple regression model with explanatory variables of the normalized radar cross section (NRCS) of surface, from the received power of the echo. The saturation of the NRCS at near-nadir angles, resulting from strong surface scattering, was considered in the calculation of the regression coefficients.The method was implemented in the KuPR algorithm and applied to KuPR-observed data. It was found that the received power from sidelobe clutter over the ocean was largely reduced by using the developed method, although some of the received power from the sidelobe clutter still remained. From the statistical results of the evaluations, it was shown that the number of KuPR precipitation events in the clutter region, after the method was applied, was comparable to that in the clutter-free region. This confirms the reasonable performance of the method in removing sidelobe clutter. For further improving the effectiveness of the method, it is necessary to improve the consideration of the NRCS saturation, which will be explored in future work.

  1. Multidisciplinary unmanned technology teammate (MUTT)

    NASA Astrophysics Data System (ADS)

    Uzunovic, Nenad; Schneider, Anne; Lacaze, Alberto; Murphy, Karl; Del Giorno, Mark

    2013-01-01

    The U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC) held an autonomous robot competition called CANINE in June 2012. The goal of the competition was to develop innovative and natural control methods for robots. This paper describes the winning technology, including the vision system, the operator interaction, and the autonomous mobility. The rules stated only gestures or voice commands could be used for control. The robots would learn a new object at the start of each phase, find the object after it was thrown into a field, and return the object to the operator. Each of the six phases became more difficult, including clutter of the same color or shape as the object, moving and stationary obstacles, and finding the operator who moved from the starting location to a new location. The Robotic Research Team integrated techniques in computer vision, speech recognition, object manipulation, and autonomous navigation. A multi-filter computer vision solution reliably detected the objects while rejecting objects of similar color or shape, even while the robot was in motion. A speech-based interface with short commands provided close to natural communication of complicated commands from the operator to the robot. An innovative gripper design allowed for efficient object pickup. A robust autonomous mobility and navigation solution for ground robotic platforms provided fast and reliable obstacle avoidance and course navigation. The research approach focused on winning the competition while remaining cognizant and relevant to real world applications.

  2. Air Defense Initiative (ADI) Clutter Model

    DTIC Science & Technology

    1998-04-01

    Pusey, P. N., 1976 , "A Model for Non-Rayleigh Sea Echo," IEEE AP- 24 , No.6, November 197 6 James, W. J., 1961, The Effect of the Weather in Eastern...system procurement. RADC has been involved in the development of clutter models for system procurements for many years. Between 1976 and 1979, RADC...performed measurements and suggested clutter models for the SEEK IGLOO ( 1976 ) and the SEEK FROST (1978-9) programs. Since 1980, current clutter models

  3. Background characterization techniques for target detection using scene metrics and pattern recognition

    NASA Astrophysics Data System (ADS)

    Noah, Paul V.; Noah, Meg A.; Schroeder, John W.; Chernick, Julian A.

    1990-09-01

    The U.S. Army has a requirement to develop systems for the detection and identification of ground targets in a clutter environment. Autonomous Homing Munitions (AHM) using infrared, visible, millimeter wave and other sensors are being investigated for this application. Advanced signal processing and computational approaches using pattern recognition and artificial intelligence techniques combined with multisensor data fusion have the potential to meet the Army's requirements for next generation ARM.

  4. Influence of visual clutter on the effect of navigated safety inspection: a case study on elevator installation.

    PubMed

    Liao, Pin-Chao; Sun, Xinlu; Liu, Mei; Shih, Yu-Nien

    2018-01-11

    Navigated safety inspection based on task-specific checklists can increase the hazard detection rate, theoretically with interference from scene complexity. Visual clutter, a proxy of scene complexity, can theoretically impair visual search performance, but its impact on the effect of safety inspection performance remains to be explored for the optimization of navigated inspection. This research aims to explore whether the relationship between working memory and hazard detection rate is moderated by visual clutter. Based on a perceptive model of hazard detection, we: (a) developed a mathematical influence model for construction hazard detection; (b) designed an experiment to observe the performance of hazard detection rate with adjusted working memory under different levels of visual clutter, while using an eye-tracking device to observe participants' visual search processes; (c) utilized logistic regression to analyze the developed model under various visual clutter. The effect of a strengthened working memory on the detection rate through increased search efficiency is more apparent in high visual clutter. This study confirms the role of visual clutter in construction-navigated inspections, thus serving as a foundation for the optimization of inspection planning.

  5. Subspace Compressive GLRT Detector for MIMO Radar in the Presence of Clutter.

    PubMed

    Bolisetti, Siva Karteek; Patwary, Mohammad; Ahmed, Khawza; Soliman, Abdel-Hamid; Abdel-Maguid, Mohamed

    2015-01-01

    The problem of optimising the target detection performance of MIMO radar in the presence of clutter is considered. The increased false alarm rate which is a consequence of the presence of clutter returns is known to seriously degrade the target detection performance of the radar target detector, especially under low SNR conditions. In this paper, a mathematical model is proposed to optimise the target detection performance of a MIMO radar detector in the presence of clutter. The number of samples that are required to be processed by a radar target detector regulates the amount of processing burden while achieving a given detection reliability. While Subspace Compressive GLRT (SSC-GLRT) detector is known to give optimised radar target detection performance with reduced computational complexity, it however suffers a significant deterioration in target detection performance in the presence of clutter. In this paper we provide evidence that the proposed mathematical model for SSC-GLRT detector outperforms the existing detectors in the presence of clutter. The performance analysis of the existing detectors and the proposed SSC-GLRT detector for MIMO radar in the presence of clutter are provided in this paper.

  6. Acoustic Transducers as Passive Cooperative Targets for Wireless Sensing of the Sub-Surface World: Challenges of Probing with Ground Penetrating RADAR

    PubMed Central

    Martin, Gilles; Goavec-Mérou, Gwenhael; Rabus, David; Alzuaga, Sébastien; Arapan, Lilia; Sagnard, Marianne; Carry, Émile

    2018-01-01

    Passive wireless transducers are used as sensors, probed by a RADAR system. A simple way to separate the returning signal from the clutter is to delay the response, so that the clutter decays before the echoes are received. This can be achieved by introducing a fixed delay in the sensor design. Acoustic wave transducers are ideally suited as cooperative targets for passive, wireless sensing. The incoming electromagnetic pulse is converted into an acoustic wave, propagated on the sensor substrate surface, and reflected as an electromagnetic echo. According to a known law, the acoustic wave propagation velocity depends on the physical quantity under investigation, which is then measured as an echo delay. Both conversions between electromagnetic and acoustic waves are based on the piezoelectric property of the substrate of which the sensor is made. Investigating underground sensing, we address the problems of using GPR (Ground-Penetrating RADAR) for probing cooperative targets. The GPR is a good candidate for this application because it provides an electromagnetic source and receiver, as well as echo recording tools. Instead of designing dedicated electronics, we choose a commercially available, reliable and rugged instrument. The measurement range depends on parameters like antenna radiation pattern, radio spectrum matching between GPR and the target, antenna-sensor impedance matching and the transfer function of the target. We demonstrate measurements at depths ranging from centimeters to circa 1 m in a sandbox. In our application, clutter rejection requires delays between the emitted pulse and echoes to be longer than in the regular use of the GPR for geophysical measurements. This delay, and the accuracy needed for sensing, challenge the GPR internal time base. In the GPR units we used, the drift turns out to be incompatible with the targeted application. The available documentation of other models and brands suggests that this is a rather general limitation. We solved the problem by replacing the analog ramp generator defining the time base with a fully digital solution, whose time accuracy and stability relies on a quartz oscillator. The resulting stability is acceptable for sub-surface cooperative sensor measurement. PMID:29337914

  7. Acoustic Transducers as Passive Cooperative Targets for Wireless Sensing of the Sub-Surface World: Challenges of Probing with Ground Penetrating RADAR.

    PubMed

    Friedt, Jean-Michel; Martin, Gilles; Goavec-Mérou, Gwenhael; Rabus, David; Alzuaga, Sébastien; Arapan, Lilia; Sagnard, Marianne; Carry, Émile

    2018-01-16

    Passive wireless transducers are used as sensors, probed by a RADAR system. A simple way to separate the returning signal from the clutter is to delay the response, so that the clutter decays before the echoes are received. This can be achieved by introducing a fixed delay in the sensor design. Acoustic wave transducers are ideally suited as cooperative targets for passive, wireless sensing. The incoming electromagnetic pulse is converted into an acoustic wave, propagated on the sensor substrate surface, and reflected as an electromagnetic echo. According to a known law, the acoustic wave propagation velocity depends on the physical quantity under investigation, which is then measured as an echo delay. Both conversions between electromagnetic and acoustic waves are based on the piezoelectric property of the substrate of which the sensor is made. Investigating underground sensing, we address the problems of using GPR (Ground-Penetrating RADAR) for probing cooperative targets. The GPR is a good candidate for this application because it provides an electromagnetic source and receiver, as well as echo recording tools. Instead of designing dedicated electronics, we choose a commercially available, reliable and rugged instrument. The measurement range depends on parameters like antenna radiation pattern, radio spectrum matching between GPR and the target, antenna-sensor impedance matching and the transfer function of the target. We demonstrate measurements at depths ranging from centimeters to circa 1 m in a sandbox. In our application, clutter rejection requires delays between the emitted pulse and echoes to be longer than in the regular use of the GPR for geophysical measurements. This delay, and the accuracy needed for sensing, challenge the GPR internal time base. In the GPR units we used, the drift turns out to be incompatible with the targeted application. The available documentation of other models and brands suggests that this is a rather general limitation. We solved the problem by replacing the analog ramp generator defining the time base with a fully digital solution, whose time accuracy and stability relies on a quartz oscillator. The resulting stability is acceptable for sub-surface cooperative sensor measurement.

  8. Increased clutter level in echocardiography due to specular reflection

    NASA Astrophysics Data System (ADS)

    Fatemi, Ali; Torp, Hans; Aakhus, Svend; Rodriguez-Molares, Alfonso

    2017-03-01

    State-of-the-art echocardiography allows to correctly diagnose most of cardiovascular diseases. An unknown source of clutter, however, hinders the visualization of the heart in some cases. We believe this clutter is caused by the ultrasound beam being partially reflected by the ribs into the elevation direction, so that structures outside the imaging plane are displayed on top of the heart image as clutter noise. We conducted in vitro experiments in a water tank using a synthetic ventricle and pig ribs. By partially blocking the probe with the ribs in the elevation direction, objects outside the imaging plane were rendered in the B-mode image, which confirms that the ribs can behave as specular reflectors. In addition, we succeeded in reproducing clutter noise using a piece of polystyrene to simulate the reflections from the lungs. This indicates that the origin of the clutter noise in echocardiograms can be reverberation coming from the lungs via specular reflection at the ribs.

  9. New subspace methods for ATR

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Peng, Jing; Sims, S. Richard F.

    2005-05-01

    In ATR applications, each feature is a convolution of an image with a filter. It is important to use most discriminant features to produce compact representations. We propose two novel subspace methods for dimension reduction to address limitations associated with Fukunaga-Koontz Transform (FKT). The first method, Scatter-FKT, assumes that target is more homogeneous, while clutter can be anything other than target and anywhere. Thus, instead of estimating a clutter covariance matrix, Scatter-FKT computes a clutter scatter matrix that measures the spread of clutter from the target mean. We choose dimensions along which the difference in variation between target and clutter is most pronounced. When the target follows a Gaussian distribution, Scatter-FKT can be viewed as a generalization of FKT. The second method, Optimal Bayesian Subspace, is derived from the optimal Bayesian classifier. It selects dimensions such that the minimum Bayes error rate can be achieved. When both target and clutter follow Gaussian distributions, OBS computes optimal subspace representations. We compare our methods against FKT using character image as well as IR data.

  10. A Method for the Automatic Detection of Insect Clutter in Doppler-Radar Returns.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luke,E.; Kollias, P.; Johnson, K.

    2006-06-12

    The accurate detection and removal of insect clutter from millimeter wavelength cloud radar (MMCR) returns is of high importance to boundary layer cloud research (e.g., Geerts et al., 2005). When only radar Doppler moments are available, it is difficult to produce a reliable screening of insect clutter from cloud returns because their distributions overlap. Hence, screening of MMCR insect clutter has historically involved a laborious manual process of cross-referencing radar moments against measurements from other collocated instruments, such as lidar. Our study looks beyond traditional radar moments to ask whether analysis of recorded Doppler spectra can serve as the basismore » for reliable, automatic insect clutter screening. We focus on the MMCR operated by the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program at its Southern Great Plains (SGP) facility in Oklahoma. Here, archiving of full Doppler spectra began in September 2003, and during the warmer months, a pronounced insect presence regularly introduces clutter into boundary layer returns.« less

  11. Ground-Vegetation Clutter Affects Phyllostomid Bat Assemblage Structure in Lowland Amazonian Forest.

    PubMed

    Marciente, Rodrigo; Bobrowiec, Paulo Estefano D; Magnusson, William E

    2015-01-01

    Vegetation clutter is a limiting factor for bats that forage near ground level, and may determine the distribution of species and guilds. However, many studies that evaluated the effects of vegetation clutter on bats have used qualitative descriptions rather than direct measurements of vegetation density. Moreover, few studies have evaluated the effect of vegetation clutter on a regional scale. Here, we evaluate the influence of the physical obstruction of vegetation on phyllostomid-bat assemblages along a 520 km transect in continuous Amazonian forest. We sampled bats using mist nets in eight localities during 80 nights (3840 net-hours) and estimated the ground-vegetation density with digital photographs. The total number of species, number of animalivorous species, total number of frugivorous species, number of understory frugivorous species, and abundance of canopy frugivorous bats were negatively associated with vegetation clutter. The bat assemblages showed a nested structure in relation to degree of clutter, with animalivorous and understory frugivorous bats distributed throughout the vegetation-clutter gradient, while canopy frugivores were restricted to sites with more open vegetation. The species distribution along the gradient of vegetation clutter was not closely associated with wing morphology, but aspect ratio and wing load differed between frugivores and animalivores. Vegetation structure plays an important role in structuring assemblages of the bats at the regional scale by increasing beta diversity between sites. Differences in foraging strategy and diet of the guilds seem to have contributed more to the spatial distribution of bats than the wing characteristics of the species alone.

  12. Modified-hybrid optical neural network filter for multiple object recognition within cluttered scenes

    NASA Astrophysics Data System (ADS)

    Kypraios, Ioannis; Young, Rupert C. D.; Chatwin, Chris R.

    2009-08-01

    Motivated by the non-linear interpolation and generalization abilities of the hybrid optical neural network filter between the reference and non-reference images of the true-class object we designed the modifiedhybrid optical neural network filter. We applied an optical mask to the hybrid optical neural network's filter input. The mask was built with the constant weight connections of a randomly chosen image included in the training set. The resulted design of the modified-hybrid optical neural network filter is optimized for performing best in cluttered scenes of the true-class object. Due to the shift invariance properties inherited by its correlator unit the filter can accommodate multiple objects of the same class to be detected within an input cluttered image. Additionally, the architecture of the neural network unit of the general hybrid optical neural network filter allows the recognition of multiple objects of different classes within the input cluttered image by modifying the output layer of the unit. We test the modified-hybrid optical neural network filter for multiple objects of the same and of different classes' recognition within cluttered input images and video sequences of cluttered scenes. The filter is shown to exhibit with a single pass over the input data simultaneously out-of-plane rotation, shift invariance and good clutter tolerance. It is able to successfully detect and classify correctly the true-class objects within background clutter for which there has been no previous training.

  13. Retrodiction for Bayesian multiple-hypothesis/multiple-target tracking in densely cluttered environment

    NASA Astrophysics Data System (ADS)

    Koch, Wolfgang

    1996-05-01

    Sensor data processing in a dense target/dense clutter environment is inevitably confronted with data association conflicts which correspond with the multiple hypothesis character of many modern approaches (MHT: multiple hypothesis tracking). In this paper we analyze the efficiency of retrodictive techniques that generalize standard fixed interval smoothing to MHT applications. 'Delayed estimation' based on retrodiction provides uniquely interpretable and accurate trajectories from ambiguous MHT output if a certain time delay is tolerated. In a Bayesian framework the theoretical background of retrodiction and its intimate relation to Bayesian MHT is sketched. By a simulated example with two closely-spaced targets, relatively low detection probabilities, and rather high false return densities, we demonstrate the benefits of retrodiction and quantitatively discuss the achievable track accuracies and the time delays involved for typical radar parameters.

  14. Improved target detection algorithm using Fukunaga-Koontz transform and distance classifier correlation filter

    NASA Astrophysics Data System (ADS)

    Bal, A.; Alam, M. S.; Aslan, M. S.

    2006-05-01

    Often sensor ego-motion or fast target movement causes the target to temporarily go out of the field-of-view leading to reappearing target detection problem in target tracking applications. Since the target goes out of the current frame and reenters at a later frame, the reentering location and variations in rotation, scale, and other 3D orientations of the target are not known thus complicating the detection algorithm has been developed using Fukunaga-Koontz Transform (FKT) and distance classifier correlation filter (DCCF). The detection algorithm uses target and background information, extracted from training samples, to detect possible candidate target images. The detected candidate target images are then introduced into the second algorithm, DCCF, called clutter rejection module, to determine the target coordinates are detected and tracking algorithm is initiated. The performance of the proposed FKT-DCCF based target detection algorithm has been tested using real-world forward looking infrared (FLIR) video sequences.

  15. Clutter attenuation using the Doppler effect in standoff electromagnetic quantum sensing

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco; Jitrik, Oliverio; Uhlmann, Jeffrey; Venegas, Salvador

    2016-05-01

    In the context of traditional radar systems, the Doppler effect is crucial to detect and track moving targets in the presence of clutter. In the quantum radar context, however, most theoretical performance analyses to date have assumed static targets. In this paper we consider the Doppler effect at the single photon level. In particular, we describe how the Doppler effect produced by clutter and moving targets modifies the quantum distinguishability and the quantum radar error detection probability equations. Furthermore, we show that Doppler-based delayline cancelers can reduce the effects of clutter in the context of quantum radar, but only in the low-brightness regime. Thus, quantum radar may prove to be an important technology if the electronic battlefield requires stealthy tracking and detection of moving targets in the presence of clutter.

  16. Examining the robustness of automated aural classification of active sonar echoes.

    PubMed

    Murphy, Stefan M; Hines, Paul C

    2014-02-01

    Active sonar systems are used to detect underwater man-made objects of interest (targets) that are too quiet to be reliably detected with passive sonar. Performance of active sonar can be degraded by false alarms caused by echoes returned from geological seabed structures (clutter) in shallow regions. To reduce false alarms, a method of distinguishing target echoes from clutter echoes is required. Research has demonstrated that perceptual-based signal features similar to those employed in the human auditory system can be used to automatically discriminate between target and clutter echoes, thereby reducing the number of false alarms and improving sonar performance. An active sonar experiment on the Malta Plateau in the Mediterranean Sea was conducted during the Clutter07 sea trial and repeated during the Clutter09 sea trial. The dataset consists of more than 95,000 pulse-compressed echoes returned from two targets and many geological clutter objects. These echoes were processed using an automatic classifier that quantifies the timbre of each echo using a number of perceptual signal features. Using echoes from 2007, the aural classifier was trained to establish a boundary between targets and clutter in the feature space. Temporal robustness was then investigated by testing the classifier on echoes from the 2009 experiment.

  17. Clutter and conspecifics: a comparison of their influence on echolocation and flight behaviour in Daubenton's bat, Myotis daubentonii.

    PubMed

    Fawcett, Kayleigh; Ratcliffe, John M

    2015-03-01

    We compared the influence of conspecifics and clutter on echolocation and flight speed in the bat Myotis daubentonii. In a large room, actual pairs of bats exhibited greater disparity in peak frequency (PF), minimum frequency (F MIN) and call period compared to virtual pairs of bats, each flying alone. Greater inter-individual disparity in PF and F MIN may reduce acoustic interference and/or increase signal self-recognition in the presence of conspecifics. Bats flying alone in a smaller flight room, to simulate a more cluttered habitat as compared to the large flight room, produced calls of shorter duration and call period, lower intensity, and flew at lower speeds. In cluttered space, shorter call duration should reduce masking, while shorter call period equals more updates to the bat's auditory scene. Lower intensity likely reflects reduced range detection requirements, reduced speed the demands of flying in clutter. Our results show that some changes (e.g. PF separation) are associated with conspecifics, others with closed habitat (e.g. reduced call intensity). However, we demonstrate that call duration, period, and flight speed appear similarly influenced by conspecifics and clutter. We suggest that some changes reduce conspecific interference and/or improve self-recognition, while others demonstrate that bats experience each other like clutter.

  18. Ground-Vegetation Clutter Affects Phyllostomid Bat Assemblage Structure in Lowland Amazonian Forest

    PubMed Central

    Marciente, Rodrigo; Bobrowiec, Paulo Estefano D.; Magnusson, William E.

    2015-01-01

    Vegetation clutter is a limiting factor for bats that forage near ground level, and may determine the distribution of species and guilds. However, many studies that evaluated the effects of vegetation clutter on bats have used qualitative descriptions rather than direct measurements of vegetation density. Moreover, few studies have evaluated the effect of vegetation clutter on a regional scale. Here, we evaluate the influence of the physical obstruction of vegetation on phyllostomid-bat assemblages along a 520 km transect in continuous Amazonian forest. We sampled bats using mist nets in eight localities during 80 nights (3840 net-hours) and estimated the ground-vegetation density with digital photographs. The total number of species, number of animalivorous species, total number of frugivorous species, number of understory frugivorous species, and abundance of canopy frugivorous bats were negatively associated with vegetation clutter. The bat assemblages showed a nested structure in relation to degree of clutter, with animalivorous and understory frugivorous bats distributed throughout the vegetation-clutter gradient, while canopy frugivores were restricted to sites with more open vegetation. The species distribution along the gradient of vegetation clutter was not closely associated with wing morphology, but aspect ratio and wing load differed between frugivores and animalivores. Vegetation structure plays an important role in structuring assemblages of the bats at the regional scale by increasing beta diversity between sites. Differences in foraging strategy and diet of the guilds seem to have contributed more to the spatial distribution of bats than the wing characteristics of the species alone. PMID:26066654

  19. Low-Cost 3-D Flow Estimation of Blood With Clutter.

    PubMed

    Wei, Siyuan; Yang, Ming; Zhou, Jian; Sampson, Richard; Kripfgans, Oliver D; Fowlkes, J Brian; Wenisch, Thomas F; Chakrabarti, Chaitali

    2017-05-01

    Volumetric flow rate estimation is an important ultrasound medical imaging modality that is used for diagnosing cardiovascular diseases. Flow rates are obtained by integrating velocity estimates over a cross-sectional plane. Speckle tracking is a promising approach that overcomes the angle dependency of traditional Doppler methods, but suffers from poor lateral resolution. Recent work improves lateral velocity estimation accuracy by reconstructing a synthetic lateral phase (SLP) signal. However, the estimation accuracy of such approaches is compromised by the presence of clutter. Eigen-based clutter filtering has been shown to be effective in removing the clutter signal; but it is computationally expensive, precluding its use at high volume rates. In this paper, we propose low-complexity schemes for both velocity estimation and clutter filtering. We use a two-tiered motion estimation scheme to combine the low complexity sum-of-absolute-difference and SLP methods to achieve subpixel lateral accuracy. We reduce the complexity of eigen-based clutter filtering by processing in subgroups and replacing singular value decomposition with less compute-intensive power iteration and subspace iteration methods. Finally, to improve flow rate estimation accuracy, we use kernel power weighting when integrating the velocity estimates. We evaluate our method for fast- and slow-moving clutter for beam-to-flow angles of 90° and 60° using Field II simulations, demonstrating high estimation accuracy across scenarios. For instance, for a beam-to-flow angle of 90° and fast-moving clutter, our estimation method provides a bias of -8.8% and standard deviation of 3.1% relative to the actual flow rate.

  20. Synthetic aperture radar imagery of airports and surrounding areas: Study of clutter at grazing angles and their polarimetric properties

    NASA Technical Reports Server (NTRS)

    Onstott, Robert G.; Gineris, Denise J.; Clinthorne, James T.

    1991-01-01

    The statistical description of ground clutter at an airport and in the surrounding area is addressed. These data are being utilized in a program to detect microbursts. Synthetic aperture radar data were collected at the Denver Stapleton Airport. Mountain terrain data were examined to determine if they may potentially contribute to range ambiguity problems and degrade microburst detection. Results suggest that mountain clutter may not present a special problem source. The examination of clutter at small grazing angles was continued by examining data collected at especially low altitudes. Cultural objects such as buildings produce strong sources of backscatter at angles of about 85 deg, with responses of 30 dB to 60 dB above the background. Otherwise there are a few sources which produce significant scatter. The polarization properties of hydrospheres and clutter were examined with the intent of determining the optimum polarization. This polarization was determined to be dependent upon the ratio of VV and HH polarizations of both rain and ground clutter.

  1. Logarithmic r-θ mapping for hybrid optical neural network filter for multiple objects recognition within cluttered scenes

    NASA Astrophysics Data System (ADS)

    Kypraios, Ioannis; Young, Rupert C. D.; Chatwin, Chris R.; Birch, Phil M.

    2009-04-01

    θThe window unit in the design of the complex logarithmic r-θ mapping for hybrid optical neural network filter can allow multiple objects of the same class to be detected within the input image. Additionally, the architecture of the neural network unit of the complex logarithmic r-θ mapping for hybrid optical neural network filter becomes attractive for accommodating the recognition of multiple objects of different classes within the input image by modifying the output layer of the unit. We test the overall filter for multiple objects of the same and of different classes' recognition within cluttered input images and video sequences of cluttered scenes. Logarithmic r-θ mapping for hybrid optical neural network filter is shown to exhibit with a single pass over the input data simultaneously in-plane rotation, out-of-plane rotation, scale, log r-θ map translation and shift invariance, and good clutter tolerance by recognizing correctly the different objects within the cluttered scenes. We record in our results additional extracted information from the cluttered scenes about the objects' relative position, scale and in-plane rotation.

  2. Study to investigate and evaluate means of optimizing the Ku-band combined radar/communication functions for the space shuttle

    NASA Technical Reports Server (NTRS)

    Weber, C. L.; Udalov, S.; Alem, W.

    1977-01-01

    The performance of the space shuttle orbiter's Ku-Band integrated radar and communications equipment is analyzed for the radar mode of operation. The block diagram of the rendezvous radar subsystem is described. Power budgets for passive target detection are calculated, based on the estimated values of system losses. Requirements for processing of radar signals in the search and track modes are examined. Time multiplexed, single-channel, angle tracking of passive scintillating targets is analyzed. Radar performance in the presence of main lobe ground clutter is considered and candidate techniques for clutter suppression are discussed. Principal system parameter drivers are examined for the case of stationkeeping at ranges comparable to target dimension. Candidate ranging waveforms for short range operation are analyzed and compared. The logarithmic error discriminant utilized for range, range rate and angle tracking is formulated and applied to the quantitative analysis of radar subsystem tracking loops.

  3. Infrared small target detection based on multiscale center-surround contrast measure

    NASA Astrophysics Data System (ADS)

    Fu, Hao; Long, Yunli; Zhu, Ran; An, Wei

    2018-04-01

    Infrared(IR) small target detection plays a critical role in the Infrared Search And Track (IRST) system. Although it has been studied for years, there are some difficulties remained to the clutter environment. According to the principle of human discrimination of small targets from a natural scene that there is a signature of discontinuity between the object and its neighboring regions, we develop an efficient method for infrared small target detection called multiscale centersurround contrast measure (MCSCM). First, to determine the maximum neighboring window size, an entropy-based window selection technique is used. Then, we construct a novel multiscale center-surround contrast measure to calculate the saliency map. Compared with the original image, the MCSCM map has less background clutters and noise residual. Subsequently, a simple threshold is used to segment the target. Experimental results show our method achieves better performance.

  4. Door recognition in cluttered building interiors using imagery and lidar data

    NASA Astrophysics Data System (ADS)

    Díaz-Vilariño, L.; Martínez-Sánchez, J.; Lagüela, S.; Armesto, J.; Khoshelham, K.

    2014-06-01

    Building indoors reconstruction is an active research topic due to the importance of the wide range of applications to which they can be subjected, from architecture and furniture design, to movies and video games editing, or even crime scene investigation. Among the constructive elements defining the inside of a building, doors are important entities in applications like routing and navigation, and their automated recognition is advantageous e.g. in case of large multi-storey buildings with many office rooms. The inherent complexity of the automation of the recognition process is increased by the presence of clutter and occlusions, difficult to avoid in indoor scenes. In this work, we present a pipeline of techniques used for the reconstruction and interpretation of building interiors using information acquired in the form of point clouds and images. The methodology goes in depth with door detection and labelling as either opened, closed or furniture (false positive)

  5. Inversion for Refractivity Parameters Using a Dynamic Adaptive Cuckoo Search with Crossover Operator Algorithm

    PubMed Central

    Zhang, Zhihua; Sheng, Zheng; Shi, Hanqing; Fan, Zhiqiang

    2016-01-01

    Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg's 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter. PMID:27212938

  6. Global Infrasound Association Based on Probabilistic Clutter Categorization

    NASA Astrophysics Data System (ADS)

    Arora, N. S.; Mialle, P.

    2015-12-01

    The IDC collects waveforms from a global network of infrasound sensors maintained by the IMS, and automatically detects signal onsets and associates them to form event hypotheses. However, a large number of signal onsets are due to local clutter sources such as microbaroms (from standing waves in the oceans), waterfalls, dams, gas flares, surf (ocean breaking waves) etc. These sources are either too diffuse or too local to form events. Worse still, the repetitive nature of this clutter leads to a large number of false event hypotheses due to the random matching of clutter at multiple stations. Previous studies, for example [1], have worked on categorization of clutter using long term trends on detection azimuth, frequency, and amplitude at each station. In this work we continue the same line of reasoning to build a probabilistic model of clutter that is used as part of NET-VISA [2], a Bayesian approach to network processing. The resulting model is a fusion of seismic, hydro-acoustic and infrasound processing built on a unified probabilistic framework. Notes: The attached figure shows all the unassociated arrivals detected at IMS station I09BR for 2012 distributed by azimuth and center frequency. (The title displays the bandwidth of the kernel density estimate along the azimuth and frequency dimensions).This plot shows multiple micro-barom sources as well as other sources of infrasound clutter. A diverse clutter-field such as this one is quite common for most IMS infrasound stations, and it highlights the dangers of forming events without due consideration of this source of noise. References: [1] Infrasound categorization Towards a statistics-based approach. J. Vergoz, P. Gaillard, A. Le Pichon, N. Brachet, and L. Ceranna. ITW 2011 [2] NET-VISA: Network Processing Vertically Integrated Seismic Analysis. N. S. Arora, S. Russell, and E. Sudderth. BSSA 2013.

  7. A rejection method for selection of scattered states

    NASA Astrophysics Data System (ADS)

    Lawson, William S.

    1994-05-01

    A rejection method is presented that sidesteps much of the labor necessary in the usual techniques for choosing a scattered state after an electron-phonon collision with full band structure. The phonon wave number is chosen randomly, then tested to see if the resultant collision will satisfy energy conservation to within some accuracy. If not, the collision is rejected, and if so, then the wave number is adjusted in order to enforce energy conservation more precisely. The price one pays is in a high rejection rate. If the cost of a rejection is small, however, this rejection rate can be tolerated. This method will not compete with analytical models (near valley minima), but may outperform the more usual techniques. Accuracies of a few percent are practical. Simulations were preformed with the first conduction band of gallium arsenide.

  8. Research Topics on Cluttered Environments Interrogation and Propagation

    DTIC Science & Technology

    2014-11-04

    propagation in random and complex media and looked at specific applications associated with imaging and communication through a cluttered medium...imaging and communication schemes. We have used the results on the fourth moment to analyze wavefront correction schemes and obtained novel...and com- plex media and looked at specific applications associated with imaging and communication through a cluttered medium. The main new

  9. Limits to Clutter Cancellation in Multi-Aperture GMTI Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerry, Armin W.; Bickel, Douglas L.

    2015-03-01

    Multi-aperture or multi-subaperture antennas are fundamental to Ground Moving Target Indicator (GMTI) radar systems in order to detect slow-moving targets with Doppler characteristics similar to clutter. Herein we examine the performance of several subaperture architectures for their clutter cancelling performance. Significantly, more antenna phase centers isn’t always better, and in fact is sometimes worse, for detecting targets.

  10. Detection performance in clutter with variable resolution

    NASA Astrophysics Data System (ADS)

    Schmieder, D. E.; Weathersby, M. R.

    1983-07-01

    Experiments were conducted to determine the influence of background clutter on target detection criteria. The experiment consisted of placing observers in front of displayed images on a TV monitor. Observer ability to detect military targets embedded in simulated natural and manmade background clutter was measured when there was unlimited viewing time. Results were described in terms of detection probability versus target resolution for various signal to clutter ratios (SCR). The experiments were preceded by a search for a meaningful clutter definition. The selected definition was a statistical measure computed by averaging the standard deviation of contiguous scene cells over the whole scene. The cell size was comparable to the target size. Observer test results confirmed the expectation that the resolution required for a given detection probability was a continuum function of the clutter level. At the lower SCRs the resolution required for a high probability of detection was near 6 line pairs per target (LP/TGT), while at the higher SCRs it was found that a resoluton of less than 0.25 LP/TGT would yield a high probability of detection. These results are expected to aid in target acquisition performance modeling and to lead to improved specifications for imaging automatic target screeners.

  11. An Experiment Quantifying The Effect Of Clutter On Target Detection

    NASA Astrophysics Data System (ADS)

    Weathersby, Marshall R.; Schmieder, David E.

    1985-01-01

    Experiments were conducted to determine the influence of background clutter on target detection criteria. The experiment consisted of placing observers in front of displayed images on a TV monitor. Observer ability to detect military targets embedded in simulated natural and manmade background clutter was measured when there was unlimited viewing time. Results were described in terms of detection probability versus target resolution for various signal to clutter ratios (SCR). The experiments were preceded by a search for a meaningful clutter definition. The selected definition was a statistical measure computed by averaging the standard deviation of contiguous scene cells over the whole scene. The cell size was comparable to the target size. Observer test results confirmed the expectation that the resolution required for a given detection probability was a continuum function of the clutter level. At the lower SCRs the resolution required for a high probability of detection was near 6 lines pairs per target (LP/TGT), while at the higher SCRs it was found that a resolution of less than 0.25 LP/TGT would yield a high probability of detection. These results are expected to aid in target acquisition performance modeling and to lead to improved specifications for imaging automatic target screeners.

  12. Active confocal imaging for visual prostheses

    PubMed Central

    Jung, Jae-Hyun; Aloni, Doron; Yitzhaky, Yitzhak; Peli, Eli

    2014-01-01

    There are encouraging advances in prosthetic vision for the blind, including retinal and cortical implants, and other “sensory substitution devices” that use tactile or electrical stimulation. However, they all have low resolution, limited visual field, and can display only few gray levels (limited dynamic range), severely restricting their utility. To overcome these limitations, image processing or the imaging system could emphasize objects of interest and suppress the background clutter. We propose an active confocal imaging system based on light-field technology that will enable a blind user of any visual prosthesis to efficiently scan, focus on, and “see” only an object of interest while suppressing interference from background clutter. The system captures three-dimensional scene information using a light-field sensor and displays only an in-focused plane with objects in it. After capturing a confocal image, a de-cluttering process removes the clutter based on blur difference. In preliminary experiments we verified the positive impact of confocal-based background clutter removal on recognition of objects in low resolution and limited dynamic range simulated phosphene images. Using a custom-made multiple-camera system, we confirmed that the concept of a confocal de-cluttered image can be realized effectively using light field imaging. PMID:25448710

  13. Application of a Statistical Linear Time-Varying System Model of High Grazing Angle Sea Clutter for Computing Interference Power

    DTIC Science & Technology

    2017-12-08

    1088793. 3. R. Price and P. E. Green, Jr., “Signal processing in radar astronomy – communication via fluctuating multipath media,” rept. 234, MIT...Lincoln Laboratory (October 1960). 4. P. E. Green, Jr., “Radar astronomy measurement techniques,” rept. 282, MIT Lincoln Laboratory (December 1962). 5. A

  14. Automatic Threshold Detector Techniques

    DTIC Science & Technology

    1976-07-15

    Averaging CFAR in Non- Stationary Weibull Clutter, " L. Novak, (1974 IEEE Symposium on Information Theory ). 8. "The Weibull Distribution Applied to the... UGTS (K) ,Kml NPTS) 140 DO 153 K~lvNPT9 IF(SIGCSO(K) .LT.0. )SIOCSO(K).1 .E-50 IF(SIOWSO(K) .LT.0. )SIGWSQ(K)-1 .E-50 IF(SIONSG(K) .LT.O. )SIG3NSQCIO-1.E

  15. Multiple hypothesis tracking for cluttered biological image sequences.

    PubMed

    Chenouard, Nicolas; Bloch, Isabelle; Olivo-Marin, Jean-Christophe

    2013-11-01

    In this paper, we present a method for simultaneously tracking thousands of targets in biological image sequences, which is of major importance in modern biology. The complexity and inherent randomness of the problem lead us to propose a unified probabilistic framework for tracking biological particles in microscope images. The framework includes realistic models of particle motion and existence and of fluorescence image features. For the track extraction process per se, the very cluttered conditions motivate the adoption of a multiframe approach that enforces tracking decision robustness to poor imaging conditions and to random target movements. We tackle the large-scale nature of the problem by adapting the multiple hypothesis tracking algorithm to the proposed framework, resulting in a method with a favorable tradeoff between the model complexity and the computational cost of the tracking procedure. When compared to the state-of-the-art tracking techniques for bioimaging, the proposed algorithm is shown to be the only method providing high-quality results despite the critically poor imaging conditions and the dense target presence. We thus demonstrate the benefits of advanced Bayesian tracking techniques for the accurate computational modeling of dynamical biological processes, which is promising for further developments in this domain.

  16. Modeling visual clutter perception using proto-object segmentation

    PubMed Central

    Yu, Chen-Ping; Samaras, Dimitris; Zelinsky, Gregory J.

    2014-01-01

    We introduce the proto-object model of visual clutter perception. This unsupervised model segments an image into superpixels, then merges neighboring superpixels that share a common color cluster to obtain proto-objects—defined here as spatially extended regions of coherent features. Clutter is estimated by simply counting the number of proto-objects. We tested this model using 90 images of realistic scenes that were ranked by observers from least to most cluttered. Comparing this behaviorally obtained ranking to a ranking based on the model clutter estimates, we found a significant correlation between the two (Spearman's ρ = 0.814, p < 0.001). We also found that the proto-object model was highly robust to changes in its parameters and was generalizable to unseen images. We compared the proto-object model to six other models of clutter perception and demonstrated that it outperformed each, in some cases dramatically. Importantly, we also showed that the proto-object model was a better predictor of clutter perception than an actual count of the number of objects in the scenes, suggesting that the set size of a scene may be better described by proto-objects than objects. We conclude that the success of the proto-object model is due in part to its use of an intermediate level of visual representation—one between features and objects—and that this is evidence for the potential importance of a proto-object representation in many common visual percepts and tasks. PMID:24904121

  17. Bistatic Clutter Phenomenological Measurement/Model Development

    DTIC Science & Technology

    1988-05-01

    The objectives of this program are to provide technical analyses, test planning, and participation in the collection of near- simultaneous bistatic and...realistic clutter environment 2. Collect near- simultaneous monostatic and bistatic clutter data characteristic of relatively well-behaved terrain. The...FROM * waypoint at the same time and on the proper heading but this is not critical. The next waypoint or LINEUP waypoint is the first point where

  18. Investigation of an EMI sensor for detection of large metallic objects in the presence of metallic clutter

    NASA Astrophysics Data System (ADS)

    Black, Christopher; McMichael, Ian; Riggs, Lloyd

    2005-06-01

    Electromagnetic induction (EMI) sensors and magnetometers have successfully detected surface laid, buried, and visually obscured metallic objects. Potential military activities could require detection of these objects at some distance from a moving vehicle in the presence of metallic clutter. Results show that existing EMI sensors have limited range capabilities and suffer from false alarms due to clutter. This paper presents results of an investigation of an EMI sensor designed for detecting large metallic objects on a moving platform in a high clutter environment. The sensor was developed by the U.S. Army RDECOM CERDEC NVESD in conjunction with the Johns Hopkins University Applied Physics Laboratory.

  19. Methods And System Suppressing Clutter In A Gain-Block, Radar-Responsive Tag System

    DOEpatents

    Ormesher, Richard C.; Axline, Robert M.

    2006-04-18

    Methods and systems reduce clutter interference in a radar-responsive tag system. A radar transmits a series of linear-frequency-modulated pulses and receives echo pulses from nearby terrain and from radar-responsive tags that may be in the imaged scene. Tags in the vicinity of the radar are activated by the radar's pulses. The tags receive and remodulate the radar pulses. Tag processing reverses the direction, in time, of the received waveform's linear frequency modulation. The tag retransmits the remodulated pulses. The radar uses a reversed-chirp de-ramp pulse to process the tag's echo. The invention applies to radar systems compatible with coherent gain-block tags. The invention provides a marked reduction in the strength of residual clutter echoes on each and every echo pulse received by the radar. SAR receiver processing effectively whitens passive-clutter signatures across the range dimension. Clutter suppression of approximately 14 dB is achievable for a typical radar system.

  20. 51. WEST ACROSS CLUTTER TO WEST WALL OF WELLSERVICE SHED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. WEST ACROSS CLUTTER TO WEST WALL OF WELL-SERVICE SHED ADDITION ON REAR OF FACTORY BUILDING. AT LOWER RIGHT FOREGROUND IS 1960S PICKUP TRUCK, THE LAST MOTOR VEHICLE USED IN WELL SERVICE BY THE KREGEL WINDMILL COMPANY. MOST OF THE OBJECTS VISIBLE IN THIS VIEW ARE CLUTTER NOT RELATED TO THE WELL SERVICE BUSINESS. - Kregel Windmill Company Factory, 1416 Central Avenue, Nebraska City, Otoe County, NE

  1. Handheld Sensor for UXO Discrimination:

    DTIC Science & Technology

    2006-06-01

    between buried UXO and clutter. This project demonstrated the use of commercially available technology (Geonics EM61-HH handheld metal detector ) for...determine whether each target was UXO or clutter. The Geonics EM61-HH handheld metal detector is a pulsed electromagnetic induction (EMI) sensor. The...processing, the EM61-HH handheld metal detector can 2 be used in a cued identification mode to reliably discriminate between buried UXO and clutter

  2. Active Listening in a Bat Cocktail Party: Adaptive Echolocation and Flight Behaviors of Big Brown Bats, Eptesicus fuscus, Foraging in a Cluttered Acoustic Environment.

    PubMed

    Warnecke, Michaela; Chiu, Chen; Engelberg, Jonathan; Moss, Cynthia F

    2015-09-01

    In their natural environment, big brown bats forage for small insects in open spaces, as well as in vegetation and in the presence of acoustic clutter. While searching and hunting for prey, bats experience sonar interference, not only from densely cluttered environments, but also from calls of conspecifics foraging in close proximity. Previous work has shown that when two bats compete for a single prey item in a relatively open environment, one of the bats may go silent for extended periods of time, which can serve to minimize sonar interference between conspecifics. Additionally, pairs of big brown bats have been shown to adjust frequency characteristics of their vocalizations to avoid acoustic interference in echo processing. In this study, we extended previous work by examining how the presence of conspecifics and environmental clutter influence the bat's echolocation behavior. By recording multichannel audio and video data of bats engaged in insect capture in open and cluttered spaces, we quantified the bats' vocal and flight behaviors. Big brown bats flew individually and in pairs in an open and cluttered room, and the results of this study shed light on the different strategies that this species employs to negotiate a complex and dynamic environment. © 2015 S. Karger AG, Basel.

  3. Segmentation and pulse shape discrimination techniques for rejecting background in germanium detectors

    NASA Technical Reports Server (NTRS)

    Roth, J.; Primbsch, J. H.; Lin, R. P.

    1984-01-01

    The possibility of rejecting the internal beta-decay background in coaxial germanium detectors by distinguishing between the multi-site energy losses characteristic of photons and the single-site energy losses of electrons in the range 0.2 - 2 MeV is examined. The photon transport was modeled with a Monte Carlo routine. Background rejection by both multiple segmentation and pulse shape discrimination techniques is investigated. The efficiency of a six 1 cm-thick segment coaxial detector operating in coincidence mode alone is compared to that of a two-segment (1 cm and 5 cm) detector employing both front-rear coincidence and PSD in the rear segment to isolate photon events. Both techniques can provide at least 95 percent rejection of single-site events while accepting at least 80 percent of the multi-site events above 500 keV.

  4. Assessment of C-band Polarimetric Radar Rainfall Measurements During Strong Attenuation.

    NASA Astrophysics Data System (ADS)

    Paredes-Victoria, P. N.; Rico-Ramirez, M. A.; Pedrozo-Acuña, A.

    2016-12-01

    In the modern hydrological modelling and their applications on flood forecasting systems and climate modelling, reliable spatiotemporal rainfall measurements are the keystone. Raingauges are the foundation in hydrology to collect rainfall data, however they are prone to errors (e.g. systematic, malfunctioning, and instrumental errors). Moreover rainfall data from gauges is often used to calibrate and validate weather radar rainfall, which is distributed in space. Therefore, it is important to apply techniques to control the quality of the raingauge data in order to guarantee a high level of confidence in rainfall measurements for radar calibration and numerical weather modelling. Also, the reliability of radar data is often limited because of the errors in the radar signal (e.g. clutter, variation of the vertical reflectivity profile, beam blockage, attenuation, etc) which need to be corrected in order to increase the accuracy of the radar rainfall estimation. This paper presents a method for raingauge-measurement quality-control correction based on the inverse distance weighted as a function of correlated climatology (i.e. performed by using the reflectivity from weather radar). Also a Clutter Mitigation Decision (CMD) algorithm is applied for clutter filtering process, finally three algorithms based on differential phase measurements are applied for radar signal attenuation correction. The quality-control method proves that correlated climatology is very sensitive in the first 100 kilometres for this area. The results also showed that ground clutter affects slightly the radar measurements due to the low gradient of the terrain in the area. However, strong radar signal attenuation is often found in this data set due to the heavy storms that take place in this region and the differential phase measurements are crucial to correct for attenuation at C-band frequencies. The study area is located in Sabancuy-Campeche, Mexico (Latitude 18.97 N, Longitude 91.17º W) and the radar rainfall measurements are obtained from a C-band polarimetric radar whereas raingauge measurements come from stations with 10-min and 24-hr time resolutions.

  5. Recovery and recycling of uranium from rejected coated particles for compact high temperature reactors

    NASA Astrophysics Data System (ADS)

    Pai, Rajesh V.; Mollick, P. K.; Kumar, Ashok; Banerjee, J.; Radhakrishna, J.; Chakravartty, J. K.

    2016-05-01

    UO2 microspheres prepared by internal gelation technique were coated with pyrolytic carbon and silicon carbide using CVD technique. The particles which were not meeting the specifications were rejected. The rejected/failed UO2 based coated particles prepared by CVD technique was used for oxidation and recovery and recycling. The oxidation behaviour of sintered UO2 microspheres coated with different layers of carbon and SiC was studied by thermal techniques to develop a method for recycling and recovery of uranium from the failed/rejected coated particles. It was observed that the complete removal of outer carbon from the spheres is difficult. The crushing of microspheres enabled easier accessibility of oxygen and oxidation of carbon and uranium at 800-1000 °C. With the optimized process of multiple crushing using die & plunger and sieving the broken coated layers, we could recycle around fifty percent of the UO2 microspheres which could be directly recoated. The rest of the particles were recycled using a wet recycling method.

  6. Shallow Water UXO Technology Demonstration Site Scoring Record Number 5 (NAEVA/XTECH, EM61 MKII)

    DTIC Science & Technology

    2007-01-01

    Clutter items fit into one of three categories: ferrous, nonferrous , and mixed metals . The ferrous and nonferrous items have been further...fragments that have both a ferrous and nonferrous component and could reasonably be encountered in a range area. The mixed- metals clutter was placed...components; however, industrial scrap metal and cultural items are present as well. The mixed- metals clutter is composed of scrap ordnance items or

  7. Texture metric that predicts target detection performance

    NASA Astrophysics Data System (ADS)

    Culpepper, Joanne B.

    2015-12-01

    Two texture metrics based on gray level co-occurrence error (GLCE) are used to predict probability of detection and mean search time. The two texture metrics are local clutter metrics and are based on the statistics of GLCE probability distributions. The degree of correlation between various clutter metrics and the target detection performance of the nine military vehicles in complex natural scenes found in the Search_2 dataset are presented. Comparison is also made between four other common clutter metrics found in the literature: root sum of squares, Doyle, statistical variance, and target structure similarity. The experimental results show that the GLCE energy metric is a better predictor of target detection performance when searching for targets in natural scenes than the other clutter metrics studied.

  8. Quantitative Doppler Analysis Using Conventional Color Flow Imaging Acquisitions.

    PubMed

    Karabiyik, Yucel; Ekroll, Ingvild Kinn; Eik-Nes, Sturla H; Lovstakken, Lasse

    2018-05-01

    Interleaved acquisitions used in conventional triplex mode result in a tradeoff between the frame rate and the quality of velocity estimates. On the other hand, workflow becomes inefficient when the user has to switch between different modes, and measurement variability is increased. This paper investigates the use of power spectral Capon estimator in quantitative Doppler analysis using data acquired with conventional color flow imaging (CFI) schemes. To preserve the number of samples used for velocity estimation, only spatial averaging was utilized, and clutter rejection was performed after spectral estimation. The resulting velocity spectra were evaluated in terms of spectral width using a recently proposed spectral envelope estimator. The spectral envelopes were also used for Doppler index calculations using in vivo and string phantom acquisitions. In vivo results demonstrated that the Capon estimator can provide spectral estimates with sufficient quality for quantitative analysis using packet-based CFI acquisitions. The calculated Doppler indices were similar to the values calculated using spectrograms estimated on a commercial ultrasound scanner.

  9. Dysfluencies in the speech of adults with intellectual disabilities and reported speech difficulties.

    PubMed

    Coppens-Hofman, Marjolein C; Terband, Hayo R; Maassen, Ben A M; van Schrojenstein Lantman-De Valk, Henny M J; van Zaalen-op't Hof, Yvonne; Snik, Ad F M

    2013-01-01

    In individuals with an intellectual disability, speech dysfluencies are more common than in the general population. In clinical practice, these fluency disorders are generally diagnosed and treated as stuttering rather than cluttering. To characterise the type of dysfluencies in adults with intellectual disabilities and reported speech difficulties with an emphasis on manifestations of stuttering and cluttering, which distinction is to help optimise treatment aimed at improving fluency and intelligibility. The dysfluencies in the spontaneous speech of 28 adults (18-40 years; 16 men) with mild and moderate intellectual disabilities (IQs 40-70), who were characterised as poorly intelligible by their caregivers, were analysed using the speech norms for typically developing adults and children. The speakers were subsequently assigned to different diagnostic categories by relating their resulting dysfluency profiles to mean articulatory rate and articulatory rate variability. Twenty-two (75%) of the participants showed clinically significant dysfluencies, of which 21% were classified as cluttering, 29% as cluttering-stuttering and 25% as clear cluttering at normal articulatory rate. The characteristic pattern of stuttering did not occur. The dysfluencies in the speech of adults with intellectual disabilities and poor intelligibility show patterns that are specific for this population. Together, the results suggest that in this specific group of dysfluent speakers interventions should be aimed at cluttering rather than stuttering. The reader will be able to (1) describe patterns of dysfluencies in the speech of adults with intellectual disabilities that are specific for this group of people, (2) explain that a high rate of dysfluencies in speech is potentially a major determiner of poor intelligibility in adults with ID and (3) describe suggestions for intervention focusing on cluttering rather than stuttering in dysfluent speakers with ID. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Echolocating Big Brown Bats, Eptesicus fuscus, Modulate Pulse Intervals to Overcome Range Ambiguity in Cluttered Surroundings

    PubMed Central

    Wheeler, Alyssa R.; Fulton, Kara A.; Gaudette, Jason E.; Simmons, Ryan A.; Matsuo, Ikuo; Simmons, James A.

    2016-01-01

    Big brown bats (Eptesicus fuscus) emit trains of brief, wideband frequency-modulated (FM) echolocation sounds and use echoes of these sounds to orient, find insects, and guide flight through vegetation. They are observed to emit sounds that alternate between short and long inter-pulse intervals (IPIs), forming sonar sound groups. The occurrence of these strobe groups has been linked to flight in cluttered acoustic environments, but how exactly bats use sonar sound groups to orient and navigate is still a mystery. Here, the production of sound groups during clutter navigation was examined. Controlled flight experiments were conducted where the proximity of the nearest obstacles was systematically decreased while the extended scene was kept constant. Four bats flew along a corridor of varying widths (100, 70, and 40 cm) bounded by rows of vertically hanging plastic chains while in-flight echolocation calls were recorded. Bats shortened their IPIs for more rapid spatial sampling and also grouped their sounds more tightly when flying in narrower corridors. Bats emitted echolocation calls with progressively shorter IPIs over the course of a flight, and began their flights by emitting shorter starting IPI calls when clutter was denser. The percentage of sound groups containing 3 or more calls increased with increasing clutter proximity. Moreover, IPI sequences having internal structure become more pronounced when corridor width narrows. A novel metric for analyzing the temporal organization of sound sequences was developed, and the results indicate that the time interval between echolocation calls depends heavily on the preceding time interval. The occurrence of specific IPI patterns were dependent upon clutter, which suggests that sonar sound grouping may be an adaptive strategy for coping with pulse-echo ambiguity in cluttered surroundings. PMID:27445723

  11. Use of a SQUID array to detect T-cells with magnetic nanoparticles in determining transplant rejection

    NASA Astrophysics Data System (ADS)

    Flynn, Edward R.; Bryant, H. C.; Bergemann, Christian; Larson, Richard S.; Lovato, Debbie; Sergatskov, Dmitri A.

    2007-04-01

    Acute rejection in organ transplant is signaled by the proliferation of T-cells that target and kill the donor cells requiring painful biopsies to detect rejection onset. An alternative non-invasive technique is proposed using a multi-channel superconducting quantum interference device (SQUID) magnetometer to detect T-cell lymphocytes in the transplanted organ labeled with magnetic nanoparticles conjugated to antibodies specifically attached to lymphocytic ligand receptors. After a magnetic field pulse, the T-cells produce a decaying magnetic signal with a characteristic time of the order of a second. The extreme sensitivity of this technique, 10 5 cells, can provide early warning of impending transplant rejection and monitor immune-suppressive chemotherapy.

  12. Study of Command and Control (C&C) Structures on the Employment of Collaborative Engagement Capability (CEC) on Land Systems

    DTIC Science & Technology

    2012-09-01

    especially the sophisticated sea- skimming missiles that take advantage of the earth’s spherical nature as well the “sea clutter” that obstructs...radar capabilities such as the radar scanning range and ability to filter sea clutter to detect sea- skimming missile. The longer the range and the more...sea clutter Compact, cluttered with buildings, residents Common Threats Long-range sea skimming missiles Projectiles Platform Large platform

  13. Parametric Coding of the Size and Clutter of Natural Scenes in the Human Brain

    PubMed Central

    Park, Soojin; Konkle, Talia; Oliva, Aude

    2015-01-01

    Estimating the size of a space and its degree of clutter are effortless and ubiquitous tasks of moving agents in a natural environment. Here, we examine how regions along the occipital–temporal lobe respond to pictures of indoor real-world scenes that parametrically vary in their physical “size” (the spatial extent of a space bounded by walls) and functional “clutter” (the organization and quantity of objects that fill up the space). Using a linear regression model on multivoxel pattern activity across regions of interest, we find evidence that both properties of size and clutter are represented in the patterns of parahippocampal cortex, while the retrosplenial cortex activity patterns are predominantly sensitive to the size of a space, rather than the degree of clutter. Parametric whole-brain analyses confirmed these results. Importantly, this size and clutter information was represented in a way that generalized across different semantic categories. These data provide support for a property-based representation of spaces, distributed across multiple scene-selective regions of the cerebral cortex. PMID:24436318

  14. Clutter characterization within segmented hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Kacenjar, Steve T.; Hoffberg, Michael; North, Patrick

    2007-10-01

    Use of a Mean Class Propagation Model (MCPM) has been shown to be an effective approach in the expedient propagation of hyperspectral data scenes through the atmosphere. In this approach, real scene data are spatially subdivided into regions of common spectral properties. Each sub-region which we call a class possesses two important attributes (1) the mean spectral radiance and (2) the spectral covariance. The use of this attributes can significantly improve throughput performance of computing systems over conventional pixel-based methods. However, this approach assumes that background clutter can be approximated as having multivariate Gaussian distributions. Under such conditions, covariance propagations can be effectively performed from ground through the atmosphere. This paper explores this basic assumption using real-scene Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data and examines how the partitioning of the scene into smaller and smaller segments influences local clutter characterization. It also presents a clutter characterization metric that helps explain the migration of the magnitude of statistical clutter from parent class to child sub-classes populations. It is shown that such a metric can be directly related to an approximate invariant between the parent class and its child classes.

  15. Morphological filtering and multiresolution fusion for mammographic microcalcification detection

    NASA Astrophysics Data System (ADS)

    Chen, Lulin; Chen, Chang W.; Parker, Kevin J.

    1997-04-01

    Mammographic images are often of relatively low contrast and poor sharpness with non-stationary background or clutter and are usually corrupted by noise. In this paper, we propose a new method for microcalcification detection using gray scale morphological filtering followed by multiresolution fusion and present a unified general filtering form called the local operating transformation for whitening filtering and adaptive thresholding. The gray scale morphological filters are used to remove all large areas that are considered as non-stationary background or clutter variations, i.e., to prewhiten images. The multiresolution fusion decision is based on matched filter theory. In addition to the normal matched filter, the Laplacian matched filter which is directly related through the wavelet transforms to multiresolution analysis is exploited for microcalcification feature detection. At the multiresolution fusion stage, the region growing techniques are used in each resolution level. The parent-child relations between resolution levels are adopted to make final detection decision. FROC is computed from test on the Nijmegen database.

  16. Target detection in GPR data using joint low-rank and sparsity constraints

    NASA Astrophysics Data System (ADS)

    Bouzerdoum, Abdesselam; Tivive, Fok Hing Chi; Abeynayake, Canicious

    2016-05-01

    In ground penetrating radars, background clutter, which comprises the signals backscattered from the rough, uneven ground surface and the background noise, impairs the visualization of buried objects and subsurface inspections. In this paper, a clutter mitigation method is proposed for target detection. The removal of background clutter is formulated as a constrained optimization problem to obtain a low-rank matrix and a sparse matrix. The low-rank matrix captures the ground surface reflections and the background noise, whereas the sparse matrix contains the target reflections. An optimization method based on split-Bregman algorithm is developed to estimate these two matrices from the input GPR data. Evaluated on real radar data, the proposed method achieves promising results in removing the background clutter and enhancing the target signature.

  17. Polarization Techniques for Mitigation of Low Grazing Angle Sea Clutter

    DTIC Science & Technology

    2017-01-01

    Lincoln Laboratory funded an experimental data collection using a fully polarimetic X-band radar assembled largely from COTS components. The Point de Chene...applications and environments in which experimental polarimet- ric radar has proven invaluable. Most notably, the imaging and mapping applications of synthetic...polarimetric analysis, as discussed in Chapter 1. Another part is due to the experimental SAR community’s collective recognition of polarimetry’s value

  18. Design Goals for Future Camouflage Systems

    DTIC Science & Technology

    1981-01-01

    rthur D tittle Inc TABLE OF CONTENTS (continued) Page 7. Build Up the Energy Level of the Background (Clutter Enhancement, etc.) V-13 8. Decoys V-14 9...of electronic warfare, and is excluded from this project. Within each class, the following issues are addressed: * the energy field and the physics...recognized image (unlike the range/reflectivity/ motion signatures offered by most radars) and this makes camouflage even more difficult. Techniques for

  19. Detection of exudates in fundus imagery using a constant false-alarm rate (CFAR) detector

    NASA Astrophysics Data System (ADS)

    Khanna, Manish; Kapoor, Elina

    2014-05-01

    Diabetic retinopathy is the leading cause of blindness in adults in the United States. The presence of exudates in fundus imagery is the early sign of diabetic retinopathy so detection of these lesions is essential in preventing further ocular damage. In this paper we present a novel technique to automatically detect exudates in fundus imagery that is robust against spatial and temporal variations of background noise. The detection threshold is adjusted dynamically, based on the local noise statics around the pixel under test in order to maintain a pre-determined, constant false alarm rate (CFAR). The CFAR detector is often used to detect bright targets in radar imagery where the background clutter can vary considerably from scene to scene and with angle to the scene. Similarly, the CFAR detector addresses the challenge of detecting exudate lesions in RGB and multispectral fundus imagery where the background clutter often exhibits variations in brightness and texture. These variations present a challenge to common, global thresholding detection algorithms and other methods. Performance of the CFAR algorithm is tested against a publicly available, annotated, diabetic retinopathy database and preliminary testing suggests that performance of the CFAR detector proves to be superior to techniques such as Otsu thresholding.

  20. Robust frequency diversity based algorithm for clutter noise reduction of ultrasonic signals using multiple sub-spectrum phase coherence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gongzhang, R.; Xiao, B.; Lardner, T.

    2014-02-18

    This paper presents a robust frequency diversity based algorithm for clutter reduction in ultrasonic A-scan waveforms. The performance of conventional spectral-temporal techniques like Split Spectrum Processing (SSP) is highly dependent on the parameter selection, especially when the signal to noise ratio (SNR) is low. Although spatial beamforming offers noise reduction with less sensitivity to parameter variation, phased array techniques are not always available. The proposed algorithm first selects an ascending series of frequency bands. A signal is reconstructed for each selected band in which a defect is present when all frequency components are in uniform sign. Combining all reconstructed signalsmore » through averaging gives a probability profile of potential defect position. To facilitate data collection and validate the proposed algorithm, Full Matrix Capture is applied on the austenitic steel and high nickel alloy (HNA) samples with 5MHz transducer arrays. When processing A-scan signals with unrefined parameters, the proposed algorithm enhances SNR by 20dB for both samples and consequently, defects are more visible in B-scan images created from the large amount of A-scan traces. Importantly, the proposed algorithm is considered robust, while SSP is shown to fail on the austenitic steel data and achieves less SNR enhancement on the HNA data.« less

  1. Cognitive Algorithms for Signal Processing

    DTIC Science & Technology

    2011-03-18

    Analysis of Millennial Spiritual Issues,” Zygon, Journal of Science and Religion , 43(4), 797-821, 2008. [46] R. Linnehan, C. Mutz, L.I. Perlovsky, B...dimensions of X and Y : (a) true ‘smile’ and ‘frown’ patterns are shown without clutter; (b) actual image available for recognition (signal is below...clutter in 2 dimensions of X(n) = (X, Y ), is given by l(X(n)|m = clutter) = 1/ (X •  Y ), X = (Xmax-Xmin),  Y = (Ymax-Ymin); (6) 13 Minimal

  2. Shallow Water UXO Technology Demonstration Site Scoring Record No. 1. Technology Type/Platform: GEN-3 Array

    DTIC Science & Technology

    2008-04-01

    Clutter items fit into one of three categories: ferrous, nonferrous , and mixed metals . The ferrous and nonferrous items have been further divided into...that have both a ferrous and nonferrous component and could reasonably be encountered in a range area. The mixed- metals clutter was placed in the...however, there are also industrial scrap metal and cultural items as well. The mixed- metals clutter is comprised of scrap ordnance items or fragments

  3. Recent progress in the applications of layer-by-layer assembly to the preparation of nanostructured ion-rejecting water purification membranes.

    PubMed

    Sanyal, Oishi; Lee, Ilsoon

    2014-03-01

    Reverse osmosis (RO) and nanofiltration (NF) are the two dominant membrane separation processes responsible for ion rejection. While RO is highly efficient in removal of ions it needs a high operating pressure and offers very low selectivity between ions. Nanofiltration on the other hand has a comparatively low operating pressure and most commercial membranes offer selectivity in terms of ion rejection. However in many nanofiltration operations rejection of monovalent ions is not appreciable. Therefore a high flux high rejection membrane is needed that can be applied to water purification systems. One such alternative is the usage of polyelectrolyte multilayer membranes that are prepared by the deposition of alternately charged polyelectrolytes via layer-by-layer (LbL) assembly method. LbL is one of the most common self-assembly techniques and finds application in various areas. It has a number of tunable parameters like deposition conditions, number of bilayers deposited etc. which can be manipulated as per the type of application. This technique can be applied to make a nanothin membrane skin which gives high rejection and at the same time allow a high water flux across it. Several research groups have applied this highly versatile technique to prepare membranes that can be employed for water purification. Some of these membranes have shown better performance than the commercial nanofiltration and reverse osmosis membranes. These membranes have the potential to be applied to various different aspects of water treatment like water softening, desalination and recovery of certain ions. Besides the conventional method of LbL technique other alternative methods have also been suggested that can make the technique fast, more efficient and thereby make it more commercially acceptable.

  4. Detecting buried explosive hazards with handheld GPR and deep learning

    NASA Astrophysics Data System (ADS)

    Besaw, Lance E.

    2016-05-01

    Buried explosive hazards (BEHs), including traditional landmines and homemade improvised explosives, have proven difficult to detect and defeat during and after conflicts around the world. Despite their various sizes, shapes and construction material, ground penetrating radar (GPR) is an excellent phenomenology for detecting BEHs due to its ability to sense localized differences in electromagnetic properties. Handheld GPR detectors are common equipment for detecting BEHs because of their flexibility (in part due to the human operator) and effectiveness in cluttered environments. With modern digital electronics and positioning systems, handheld GPR sensors can sense and map variation in electromagnetic properties while searching for BEHs. Additionally, large-scale computers have demonstrated an insatiable appetite for ingesting massive datasets and extracting meaningful relationships. This is no more evident than the maturation of deep learning artificial neural networks (ANNs) for image and speech recognition now commonplace in industry and academia. This confluence of sensing, computing and pattern recognition technologies offers great potential to develop automatic target recognition techniques to assist GPR operators searching for BEHs. In this work deep learning ANNs are used to detect BEHs and discriminate them from harmless clutter. We apply these techniques to a multi-antennae, handheld GPR with centimeter-accurate positioning system that was used to collect data over prepared lanes containing a wide range of BEHs. This work demonstrates that deep learning ANNs can automatically extract meaningful information from complex GPR signatures, complementing existing GPR anomaly detection and classification techniques.

  5. Hairy Slices: Evaluating the Perceptual Effectiveness of Cutting Plane Glyphs for 3D Vector Fields.

    PubMed

    Stevens, Andrew H; Butkiewicz, Thomas; Ware, Colin

    2017-01-01

    Three-dimensional vector fields are common datasets throughout the sciences. Visualizing these fields is inherently difficult due to issues such as visual clutter and self-occlusion. Cutting planes are often used to overcome these issues by presenting more manageable slices of data. The existing literature provides many techniques for visualizing the flow through these cutting planes; however, there is a lack of empirical studies focused on the underlying perceptual cues that make popular techniques successful. This paper presents a quantitative human factors study that evaluates static monoscopic depth and orientation cues in the context of cutting plane glyph designs for exploring and analyzing 3D flow fields. The goal of the study was to ascertain the relative effectiveness of various techniques for portraying the direction of flow through a cutting plane at a given point, and to identify the visual cues and combinations of cues involved, and how they contribute to accurate performance. It was found that increasing the dimensionality of line-based glyphs into tubular structures enhances their ability to convey orientation through shading, and that increasing their diameter intensifies this effect. These tube-based glyphs were also less sensitive to visual clutter issues at higher densities. Adding shadows to lines was also found to increase perception of flow direction. Implications of the experimental results are discussed and extrapolated into a number of guidelines for designing more perceptually effective glyphs for 3D vector field visualizations.

  6. Signs of depth-luminance covariance in 3-D cluttered scenes.

    PubMed

    Scaccia, Milena; Langer, Michael S

    2018-03-01

    In three-dimensional (3-D) cluttered scenes such as foliage, deeper surfaces often are more shadowed and hence darker, and so depth and luminance often have negative covariance. We examined whether the sign of depth-luminance covariance plays a role in depth perception in 3-D clutter. We compared scenes rendered with negative and positive depth-luminance covariance where positive covariance means that deeper surfaces are brighter and negative covariance means deeper surfaces are darker. For each scene, the sign of the depth-luminance covariance was given by occlusion cues. We tested whether subjects could use this sign information to judge the depth order of two target surfaces embedded in 3-D clutter. The clutter consisted of distractor surfaces that were randomly distributed in a 3-D volume. We tested three independent variables: the sign of the depth-luminance covariance, the colors of the targets and distractors, and the background luminance. An analysis of variance showed two main effects: Subjects performed better when the deeper surfaces were darker and when the color of the target surfaces was the same as the color of the distractors. There was also a strong interaction: Subjects performed better under a negative depth-luminance covariance condition when targets and distractors had different colors than when they had the same color. Our results are consistent with a "dark means deep" rule, but the use of this rule depends on the similarity between the color of the targets and color of the 3-D clutter.

  7. Polarimetric subspace target detector for SAR data based on the Huynen dihedral model

    NASA Astrophysics Data System (ADS)

    Larson, Victor J.; Novak, Leslie M.

    1995-06-01

    Two new polarimetric subspace target detectors are developed based on a dihedral signal model for bright peaks within a spatially extended target signature. The first is a coherent dihedral target detector based on the exact Huynen model for a dihedral. The second is a noncoherent dihedral target detector based on the Huynen model with an extra unknown phase term. Expressions for these polarimetric subspace target detectors are developed for both additive Gaussian clutter and more general additive spherically invariant random vector clutter including the K-distribution. For the case of Gaussian clutter with unknown clutter parameters, constant false alarm rate implementations of these polarimetric subspace target detectors are developed. The performance of these dihedral detectors is demonstrated with real millimeter-wave fully polarimetric SAR data. The coherent dihedral detector which is developed with a more accurate description of a dihedral offers no performance advantage over the noncoherent dihedral detector which is computationally more attractive. The dihedral detectors do a better job of separating a set of tactical military targets from natural clutter compared to a detector that assumes no knowledge about the polarimetric structure of the target signal.

  8. Estimation of the rain signal in the presence of large surface clutter

    NASA Technical Reports Server (NTRS)

    Ahamad, Atiq; Moore, Richard K.

    1994-01-01

    The principal limitation for the use of a spaceborne imaging SAR as a rain radar is the surface-clutter problem. Signals may be estimated in the presence of noise by averaging large numbers of independent samples. This method was applied to obtain an estimate of the rain echo by averaging a set of N(sub c) samples of the clutter in a separate measurement and subtracting the clutter estimate from the combined estimate. The number of samples required for successful estimation (within 10-20%) for off-vertical angles of incidence appears to be prohibitively large. However, by appropriately degrading the resolution in both range and azimuth, the required number of samples can be obtained. For vertical incidence, the number of samples required for successful estimation is reasonable. In estimating the clutter it was assumed that the surface echo is the same outside the rain volume as it is within the rain volume. This may be true for the forest echo, but for convective storms over the ocean the surface echo outside the rain volume is very different from that within. It is suggested that the experiment be performed with vertical incidence over forest to overcome this limitation.

  9. Enhanced backgrounds in scene rendering with GTSIMS

    NASA Astrophysics Data System (ADS)

    Prussing, Keith F.; Pierson, Oliver; Cordell, Chris; Stewart, John; Nielson, Kevin

    2018-05-01

    A core component to modeling visible and infrared sensor responses is the ability to faithfully recreate background noise and clutter in a synthetic image. Most tracking and detection algorithms use a combination of signal to noise or clutter to noise ratios to determine if a signature is of interest. A primary source of clutter is the background that defines the environment in which a target is placed. Over the past few years, the Electro-Optical Systems Laboratory (EOSL) at the Georgia Tech Research Institute has made significant improvements to its in house simulation framework GTSIMS. First, we have expanded our terrain models to include the effects of terrain orientation on emission and reflection. Second, we have included the ability to model dynamic reflections with full BRDF support. Third, we have added the ability to render physically accurate cirrus clouds. And finally, we have updated the overall rendering procedure to reduce the time necessary to generate a single frame by taking advantage of hardware acceleration. Here, we present the updates to GTSIMS to better predict clutter and noise doe to non-uniform backgrounds. Specifically, we show how the addition of clouds, terrain, and improved non-uniform sky rendering improve our ability to represent clutter during scene generation.

  10. Reducing Error Rates for Iris Image using higher Contrast in Normalization process

    NASA Astrophysics Data System (ADS)

    Aminu Ghali, Abdulrahman; Jamel, Sapiee; Abubakar Pindar, Zahraddeen; Hasssan Disina, Abdulkadir; Mat Daris, Mustafa

    2017-08-01

    Iris recognition system is the most secured, and faster means of identification and authentication. However, iris recognition system suffers a setback from blurring, low contrast and illumination due to low quality image which compromises the accuracy of the system. The acceptance or rejection rates of verified user depend solely on the quality of the image. In many cases, iris recognition system with low image contrast could falsely accept or reject user. Therefore this paper adopts Histogram Equalization Technique to address the problem of False Rejection Rate (FRR) and False Acceptance Rate (FAR) by enhancing the contrast of the iris image. A histogram equalization technique enhances the image quality and neutralizes the low contrast of the image at normalization stage. The experimental result shows that Histogram Equalization Technique has reduced FRR and FAR compared to the existing techniques.

  11. Transoesophageal detection of heart graft rejection by electrical impedance: Using finite element method simulations

    NASA Astrophysics Data System (ADS)

    Giovinazzo, G.; Ribas, N.; Cinca, J.; Rosell-Ferrer, J.

    2010-04-01

    Previous studies have shown that it is possible to evaluate heart graft rejection level using a bioimpedance technique by means of an intracavitary catheter. However, this technique does not present relevant advantages compared to the gold standard for the detection of a heart rejection, which is the biopsy of the endomyocardial tissue. We propose to use a less invasive technique that consists in the use of a transoesophageal catheter and two standard ECG electrodes on the thorax. The aim of this work is to evaluate different parameters affecting the impedance measurement, including: sensitivity to electrical conductivity and permittivity of different organs in the thorax, lung edema and pleural water. From these results, we deduce the best estimator for cardiac rejection detection, and we obtain the tools to identify possible cases of false positive of heart rejection due to other factors. To achieve these objectives we have created a thoracic model and we have simulated, with a FEM program, different situations at the frequencies of 13, 30, 100, 300 and 1000 kHz. Our simulation demonstrates that the phase, at 100 and 300 kHz, has the higher sensitivity to changes in the electrical parameters of the heart muscle.

  12. Detection of Accelerating Targets in Clutter Using a De-Chirping Technique

    DTIC Science & Technology

    2014-06-01

    Academy, also in Canberra, working on the the- ory and simulation of spatial optical solitons and light-induced optical switching in nonlinear...signal gain in the receiver. UNCLASSIFIED 1 DSTO–RR–0399 UNCLASSIFIED target along the velocity vector , or equivalently by radar platform. The change of...the tracker uses range rate in its track initiation logic. (2) Lateral acceleration perpendicular to the velocity vector - the target is turning and

  13. Application of Smoothing Techniques for Tracking Maneuvering Targets. Multiple Target Tracking in Clutter: New Approaches

    DTIC Science & Technology

    1992-07-01

    target state estimation is affected not only by the measurement noise but also by the uncertainty in the origins of the measurements. To improve the...to identify targets in the presence of anticipated background noise (including earth, lunar, star backgrounds, complicated spacecraft structures...each other. Futhermore, those frames are often degraded versions of the original scene due to blur and noise . Through the task of image registration

  14. Monitoring liquid and solid content in froth using conductivity

    Treesearch

    J.Y. Zhu; F. Tan; R. Gleisner

    2005-01-01

    This study reports the feasibility of monitoring liquid and fiber rejection during froth flotation of fiber suspensions through conductivity measurements of the rejected froth. The technique was demonstrated in laboratory flotation experiments using nylon and wood fiber suspensions in two laboratory flotation cells. We found that both the total wet rejection and the...

  15. Mars radar clutter and surface roughness characteristics from MARSIS data

    NASA Astrophysics Data System (ADS)

    Campbell, Bruce A.; Schroeder, Dustin M.; Whitten, Jennifer L.

    2018-01-01

    Radar sounder studies of icy, sedimentary, and volcanic settings can be affected by reflections from surface topography surrounding the sensor nadir location. These off-nadir ;clutter; returns appear at similar time delays to subsurface echoes and complicate geologic interpretation. Additionally, broadening of the radar echo in delay by surface returns sets a limit on the detectability of subsurface interfaces. We use MARSIS 4 MHz data to study variations in the nadir and off-nadir clutter echoes, from about 300 km to 1000 km altitude, R, for a wide range of surface roughness. This analysis uses a new method of characterizing ionospheric attenuation to merge observations over a range of solar zenith angle and date. Mirror-like reflections should scale as R-2, but the observed 4 MHz nadir echoes often decline by a somewhat smaller power-law factor because MARSIS on-board processing increases the number of summed pulses with altitude. Prior predictions of the contributions from clutter suggest a steeper decline with R than the nadir echoes, but in very rough areas the ratio of off-nadir returns to nadir echoes shows instead an increase of about R1/2 with altitude. This is likely due in part to an increase in backscatter from the surface as the radar incidence angle at some round-trip time delay declines with increasing R. It is possible that nadir and clutter echo properties in other planetary sounding observations, including RIME and REASON flyby data for Europa, will vary in the same way with altitude, but there may be differences in the nature and scale of target roughness (e.g., icy versus rocky surfaces). We present global maps of the ionosphere- and altitude-corrected nadir echo strength, and of a ;clutter; parameter based on the ratio of off-nadir to nadir echoes. The clutter map offers a view of surface roughness at ∼75 m length scale, bridging the spatial-scale gap between SHARAD roughness estimates and MOLA-derived parameters.

  16. Path Planning for Non-Circular, Non-Holonomic Robots in Highly Cluttered Environments.

    PubMed

    Samaniego, Ricardo; Lopez, Joaquin; Vazquez, Fernando

    2017-08-15

    This paper presents an algorithm for finding a solution to the problem of planning a feasible path for a slender autonomous mobile robot in a large and cluttered environment. The presented approach is based on performing a graph search on a kinodynamic-feasible lattice state space of high resolution; however, the technique is applicable to many search algorithms. With the purpose of allowing the algorithm to consider paths that take the robot through narrow passes and close to obstacles, high resolutions are used for the lattice space and the control set. This introduces new challenges because one of the most computationally expensive parts of path search based planning algorithms is calculating the cost of each one of the actions or steps that could potentially be part of the trajectory. The reason for this is that the evaluation of each one of these actions involves convolving the robot's footprint with a portion of a local map to evaluate the possibility of a collision, an operation that grows exponentially as the resolution is increased. The novel approach presented here reduces the need for these convolutions by using a set of offline precomputed maps that are updated, by means of a partial convolution, as new information arrives from sensors or other sources. Not only does this improve run-time performance, but it also provides support for dynamic search in changing environments. A set of alternative fast convolution methods are also proposed, depending on whether the environment is cluttered with obstacles or not. Finally, we provide both theoretical and experimental results from different experiments and applications.

  17. Microvascular flow estimation by contrast-assisted ultrasound B-scan and statistical parametric images.

    PubMed

    Tsui, Po-Hsiang; Yeh, Chih-Kuang; Chang, Chien-Cheng

    2009-05-01

    The microbubbles destruction/replenishment technique has been previously applied to estimating blood flow in the microcirculation. The rate of increase of the time-intensity curve (TIC) due to microbubbles flowing into the region of interest (ROI), as measured from B-mode images, closely reflects the flow velocity. In previous studies, we proposed a new approach called the time-Nakagami-parameter curve (TNC) obtained from Nakagami images to monitor microbubble replenishment for quantifying the microvascular flow velocity. This study aimed to further explore some effects that may affect the TNC to estimate the microflow, including microbubble concentration, ultrasound transmitting energy, attenuation, intrinsic noise, and tissue clutter. In order to well control each effect production, we applied a typical simulation method to investigate the TIC and TNC. The rates of increase of the TIC and TNC were expressed by the rate constants beta(I) and beta(N), respectively, of a monoexponential model. The results show that beta(N) quantifies the microvascular flow velocity similarly to the conventional beta(I) . Moreover, the measures of beta(I) and beta(N) are not influenced by microbubble concentration, transducer excitation energy, and attenuation effect. Although the effect of intrinsic signals contributed by noise and blood would influence the TNC behavior, the TNC method has a better tolerance of tissue clutter than the TIC does, allowing the presence of some clutter components in the ROI. The results suggest that the TNC method can be used as a complementary tool for the conventional TIC to reduce the wall filter requirements for blood flow measurement in the microcirculation.

  18. New Cloud and Precipitation Research Avenues Enabled by low-cost Phased-array Radar Technology

    NASA Astrophysics Data System (ADS)

    Kollias, P.; Oue, M.; Fridlind, A. M.; Matsui, T.; McLaughlin, D. J.

    2017-12-01

    For over half a century, radars operating in a wide range of frequencies have been the primary source of observational insights of clouds and precipitation microphysics and dynamics and contributed to numerous significant advancements in the field of cloud and precipitation physics. The development of multi-wavelength and polarization diversity techniques has further strengthened the quality of microphysical and dynamical retrievals from radars and has assisted in overcoming some of the limitations imposed by the physics of scattering. Atmospheric radars have historically employed a mechanically-scanning dish antenna and their ability to point to, survey, and revisit specific points or regions in the atmosphere is limited by mechanical inertia. Electronically scanned, or phased-array, radars capable of high-speed, inertialess beam steering, have been available for several decades, but the cost of this technology has limited its use to military applications. During the last 10 years, lower power and lower-cost versions of electronically scanning radars have been developed, and this presents an attractive and affordable new tool for the atmospheric sciences. The operational and research communities are currently exploring phased array advantages in signal processing (i.e. beam multiplexing, improved clutter rejection, cross beam wind estimation, adaptive sensing) and science applications (i.e. tornadic storm morphology studies). Here, we will present some areas of atmospheric research where inertia-less radars with ability to provide rapid volume imaging offers the potential to advance cloud and precipitation research. We will discuss the added value of single phased-array radars as well as networks of these radars for several problems including: multi-Doppler wind retrieval techniques, cloud lifetime studies and aerosol-convection interactions. The performance of current (dish) and future (e-scan) radar systems for these atmospheric studies will be evaluated using numerical model output and a sophisticated radar simulator package.

  19. State estimation for autonomous flight in cluttered environments

    NASA Astrophysics Data System (ADS)

    Langelaan, Jacob Willem

    Safe, autonomous operation in complex, cluttered environments is a critical challenge facing autonomous mobile systems. The research described in this dissertation was motivated by a particularly difficult example of autonomous mobility: flight of a small Unmanned Aerial Vehicle (UAV) through a forest. In cluttered environments (such as forests or natural and urban canyons) signals from navigation beacons such as GPS may frequently be occluded. Direct measurements of vehicle position are therefore unavailable, and information required for flight control, obstacle avoidance, and navigation must be obtained using only on-board sensors. However, payload limitations of small UAVs restrict both the mass and physical dimensions of sensors that can be carried. This dissertation describes the development and proof-of-concept demonstration of a navigation system that uses only a low-cost inertial measurement unit and a monocular camera. Micro electromechanical inertial measurements units are well suited to small UAV applications and provide measurements of acceleration and angular rate. However, they do not provide information about nearby obstacles (needed for collision avoidance) and their noise and bias characteristics lead to unbounded growth in computed position. A monocular camera can provide bearings to nearby obstacles and landmarks. These bearings can be used both to enable obstacle avoidance and to aid navigation. Presented here is a solution to the problem of estimating vehicle state (position, orientation and velocity) as well as positions of obstacles in the environment using only inertial measurements and bearings to obstacles. This is a highly nonlinear estimation problem, and standard estimation techniques such as the Extended Kalman Filter are prone to divergence in this application. In this dissertation a Sigma Point Kalman Filter is implemented, resulting in an estimator which is able to cope with the significant nonlinearities in the system equations and uncertainty in state estimates while remaining tractable for real-time operation. In addition, the issues of data association and landmark initialization are addressed. Estimator performance is examined through Monte Carlo simulations in both two and three dimensions for scenarios involving UAV flight in cluttered environments. Hardware tests and simulations demonstrate navigation through an obstacle-strewn environment by a small Unmanned Ground Vehicle.

  20. 10 cm radar ground clutter measurements taken from a coastal steamer radar on passage from Bergen to North Cape in May 1982

    NASA Astrophysics Data System (ADS)

    Williams, P. D. L.

    1983-08-01

    The range of R.C.S. values from a high rising natural coastline viewed by radar on a ship proceeding along that coast from 1 to 10 miles away. The range of R.C.S. values from the mountainous country just inland of the first coastal echo. The likely range of spatial filling factor of inland ground clutter and radar detection of aircraft flying overland in these regions using interclutter visibility rather than classic DOPPLER MTI methods of ""sub clutter'' detection are addressed.

  1. Developing the fuzzy c-means clustering algorithm based on maximum entropy for multitarget tracking in a cluttered environment

    NASA Astrophysics Data System (ADS)

    Chen, Xiao; Li, Yaan; Yu, Jing; Li, Yuxing

    2018-01-01

    For fast and more effective implementation of tracking multiple targets in a cluttered environment, we propose a multiple targets tracking (MTT) algorithm called maximum entropy fuzzy c-means clustering joint probabilistic data association that combines fuzzy c-means clustering and the joint probabilistic data association (PDA) algorithm. The algorithm uses the membership value to express the probability of the target originating from measurement. The membership value is obtained through fuzzy c-means clustering objective function optimized by the maximum entropy principle. When considering the effect of the public measurement, we use a correction factor to adjust the association probability matrix to estimate the state of the target. As this algorithm avoids confirmation matrix splitting, it can solve the high computational load problem of the joint PDA algorithm. The results of simulations and analysis conducted for tracking neighbor parallel targets and cross targets in a different density cluttered environment show that the proposed algorithm can realize MTT quickly and efficiently in a cluttered environment. Further, the performance of the proposed algorithm remains constant with increasing process noise variance. The proposed algorithm has the advantages of efficiency and low computational load, which can ensure optimum performance when tracking multiple targets in a dense cluttered environment.

  2. Dual-energy contrast enhanced digital breast tomosynthesis: concept, method, and evaluation on phantoms

    NASA Astrophysics Data System (ADS)

    Puong, Sylvie; Patoureaux, Fanny; Iordache, Razvan; Bouchevreau, Xavier; Muller, Serge

    2007-03-01

    In this paper, we present the development of dual-energy Contrast-Enhanced Digital Breast Tomosynthesis (CEDBT). A method to produce background clutter-free slices from a set of low and high-energy projections is introduced, along with a scheme for the determination of the optimal low and high-energy techniques. Our approach consists of a dual-energy recombination of the projections, with an algorithm that has proven its performance in Contrast-Enhanced Digital Mammography1 (CEDM), followed by an iterative volume reconstruction. The aim is to eliminate the anatomical background clutter and to reconstruct slices where the gray level is proportional to the local iodine volumetric concentration. Optimization of the low and high-energy techniques is performed by minimizing the total glandular dose to reach a target iodine Signal Difference to Noise Ratio (SDNR) in the slices. In this study, we proved that this optimization could be done on the projections, by consideration of the SDNR in the projections instead of the SDNR in the slices, and verified this with phantom measurements. We also discuss some limitations of dual-energy CEDBT, due to the restricted angular range for the projection views, and to the presence of scattered radiation. Experiments on textured phantoms with iodine inserts were conducted to assess the performance of dual-energy CEDBT. Texture contrast was nearly completely removed and the iodine signal was enhanced in the slices.

  3. Ultrasonic technique for imaging tissue vibrations: preliminary results.

    PubMed

    Sikdar, Siddhartha; Beach, Kirk W; Vaezy, Shahram; Kim, Yongmin

    2005-02-01

    We propose an ultrasound (US)-based technique for imaging vibrations in the blood vessel walls and surrounding tissue caused by eddies produced during flow through narrowed or punctured arteries. Our approach is to utilize the clutter signal, normally suppressed in conventional color flow imaging, to detect and characterize local tissue vibrations. We demonstrate the feasibility of visualizing the origin and extent of vibrations relative to the underlying anatomy and blood flow in real-time and their quantitative assessment, including measurements of the amplitude, frequency and spatial distribution. We present two signal-processing algorithms, one based on phase decomposition and the other based on spectral estimation using eigen decomposition for isolating vibrations from clutter, blood flow and noise using an ensemble of US echoes. In simulation studies, the computationally efficient phase-decomposition method achieved 96% sensitivity and 98% specificity for vibration detection and was robust to broadband vibrations. Somewhat higher sensitivity (98%) and specificity (99%) could be achieved using the more computationally intensive eigen decomposition-based algorithm. Vibration amplitudes as low as 1 mum were measured accurately in phantom experiments. Real-time tissue vibration imaging at typical color-flow frame rates was implemented on a software-programmable US system. Vibrations were studied in vivo in a stenosed femoral bypass vein graft in a human subject and in a punctured femoral artery and incised spleen in an animal model.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akcakaya, Murat; Nehorai, Arye; Sen, Satyabrata

    Most existing radar algorithms are developed under the assumption that the environment (clutter) is stationary. However, in practice, the characteristics of the clutter can vary enormously depending on the radar-operational scenarios. If unaccounted for, these nonstationary variabilities may drastically hinder the radar performance. Therefore, to overcome such shortcomings, we develop a data-driven method for target detection in nonstationary environments. In this method, the radar dynamically detects changes in the environment and adapts to these changes by learning the new statistical characteristics of the environment and by intelligibly updating its statistical detection algorithm. Specifically, we employ drift detection algorithms to detectmore » changes in the environment; incremental learning, particularly learning under concept drift algorithms, to learn the new statistical characteristics of the environment from the new radar data that become available in batches over a period of time. The newly learned environment characteristics are then integrated in the detection algorithm. Furthermore, we use Monte Carlo simulations to demonstrate that the developed method provides a significant improvement in the detection performance compared with detection techniques that are not aware of the environmental changes.« less

  5. A learning-based semi-autonomous controller for robotic exploration of unknown disaster scenes while searching for victims.

    PubMed

    Doroodgar, Barzin; Liu, Yugang; Nejat, Goldie

    2014-12-01

    Semi-autonomous control schemes can address the limitations of both teleoperation and fully autonomous robotic control of rescue robots in disaster environments by allowing a human operator to cooperate and share such tasks with a rescue robot as navigation, exploration, and victim identification. In this paper, we present a unique hierarchical reinforcement learning-based semi-autonomous control architecture for rescue robots operating in cluttered and unknown urban search and rescue (USAR) environments. The aim of the controller is to enable a rescue robot to continuously learn from its own experiences in an environment in order to improve its overall performance in exploration of unknown disaster scenes. A direction-based exploration technique is integrated in the controller to expand the search area of the robot via the classification of regions and the rubble piles within these regions. Both simulations and physical experiments in USAR-like environments verify the robustness of the proposed HRL-based semi-autonomous controller to unknown cluttered scenes with different sizes and varying types of configurations.

  6. Machine learning for a Toolkit for Image Mining

    NASA Technical Reports Server (NTRS)

    Delanoy, Richard L.

    1995-01-01

    A prototype user environment is described that enables a user with very limited computer skills to collaborate with a computer algorithm to develop search tools (agents) that can be used for image analysis, creating metadata for tagging images, searching for images in an image database on the basis of image content, or as a component of computer vision algorithms. Agents are learned in an ongoing, two-way dialogue between the user and the algorithm. The user points to mistakes made in classification. The algorithm, in response, attempts to discover which image attributes are discriminating between objects of interest and clutter. It then builds a candidate agent and applies it to an input image, producing an 'interest' image highlighting features that are consistent with the set of objects and clutter indicated by the user. The dialogue repeats until the user is satisfied. The prototype environment, called the Toolkit for Image Mining (TIM) is currently capable of learning spectral and textural patterns. Learning exhibits rapid convergence to reasonable levels of performance and, when thoroughly trained, Fo appears to be competitive in discrimination accuracy with other classification techniques.

  7. A parallel efficient partitioning algorithm for the statistical model of dynamic sea clutter at low grazing angle

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Wu, Zhensen; Linghu, Longxiang

    2017-10-01

    Study of characteristics of sea clutter is very important for signal processing of radar, detection of targets on sea surface and remote sensing. The sea state is complex at Low grazing angle (LGA), and it is difficult with its large irradiation area and a great deal simulation facets. A practical and efficient model to obtain radar clutter of dynamic sea in different sea condition is proposed, basing on the physical mechanism of interaction between electromagnetic wave and sea wave. The classical analysis method for sea clutter is basing on amplitude and spectrum distribution, taking the clutter as random processing model, which is equivocal in its physical mechanism. To achieve electromagnetic field from sea surface, a modified phase from facets is considered, and the backscattering coefficient is calculated by Wu's improved two-scale model, which can solve the statistical sea backscattering problem less than 5 degree, considering the effects of the surface slopes joint probability density, the shadowing function, the skewness of sea waves and the curvature of the surface on the backscattering from the ocean surface. We make the assumption that the scattering contribution of each facet is independent, the total field is the superposition of each facet in the receiving direction. Such data characters are very suitable to compute on GPU threads. So we can make the best of GPU resource. We have achieved a speedup of 155-fold for S band and 162-fold for Ku/Χ band on the Tesla K80 GPU as compared with Intel® Core™ CPU. In this paper, we mainly study the high resolution data, and the time resolution is millisecond, so we may have 10,00 time points, and we analyze amplitude probability density distribution of radar clutter.

  8. Trawling bats exploit an echo-acoustic ground effect

    PubMed Central

    Zsebok, Sandor; Kroll, Ferdinand; Heinrich, Melina; Genzel, Daria; Siemers, Björn M.; Wiegrebe, Lutz

    2013-01-01

    A water surface acts not only as an optic mirror but also as an acoustic mirror. Echolocation calls emitted by bats at low heights above water are reflected away from the bat, and hence the background clutter is reduced. Moreover, targets on the surface create an enhanced echo. Here, we formally quantified the effect of the surface and target height on both target detection and -discrimination in a combined laboratory and field approach with Myotis daubentonii. In a two-alternative, forced-choice paradigm, the bats had to detect a mealworm and discriminate it from an inedible dummy (20 mm PVC disc). Psychophysical performance was measured as a function of height above either smooth surfaces (water or PVC) or above a clutter surface (artificial grass). At low heights above the clutter surface (10, 20, or 35 cm), the bats' detection performance was worse than above a smooth surface. At a height of 50 cm, the surface structure had no influence on target detection. Above the clutter surface, also target discrimination was significantly impaired with decreasing target height. A detailed analysis of the bats' echolocation calls during target approach shows that above the clutter surface, the bats produce calls with significantly higher peak frequency. Flight-path reconstruction revealed that the bats attacked an target from below over water but from above over a clutter surface. These results are consistent with the hypothesis that trawling bats exploit an echo-acoustic ground effect, in terms of a spatio-temporal integration of direct reflections with indirect reflections from the water surface, to optimize prey detection and -discrimination not only for prey on the water but also for some range above. PMID:23576990

  9. A Pedestrian Detection Scheme Using a Coherent Phase Difference Method Based on 2D Range-Doppler FMCW Radar

    PubMed Central

    Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun

    2016-01-01

    For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method. PMID:26805835

  10. A Pedestrian Detection Scheme Using a Coherent Phase Difference Method Based on 2D Range-Doppler FMCW Radar.

    PubMed

    Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun

    2016-01-20

    For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method.

  11. Improved spatial resolution in PET scanners using sampling techniques

    PubMed Central

    Surti, Suleman; Scheuermann, Ryan; Werner, Matthew E.; Karp, Joel S.

    2009-01-01

    Increased focus towards improved detector spatial resolution in PET has led to the use of smaller crystals in some form of light sharing detector design. In this work we evaluate two sampling techniques that can be applied during calibrations for pixelated detector designs in order to improve the reconstructed spatial resolution. The inter-crystal positioning technique utilizes sub-sampling in the crystal flood map to better sample the Compton scatter events in the detector. The Compton scatter rejection technique, on the other hand, rejects those events that are located further from individual crystal centers in the flood map. We performed Monte Carlo simulations followed by measurements on two whole-body scanners for point source data. The simulations and measurements were performed for scanners using scintillators with Zeff ranging from 46.9 to 63 for LaBr3 and LYSO, respectively. Our results show that near the center of the scanner, inter-crystal positioning technique leads to a gain of about 0.5-mm in reconstructed spatial resolution (FWHM) for both scanner designs. In a small animal LYSO scanner the resolution improves from 1.9-mm to 1.6-mm with the inter-crystal technique. The Compton scatter rejection technique shows higher gains in spatial resolution but at the cost of reduction in scanner sensitivity. The inter-crystal positioning technique represents a modest acquisition software modification for an improvement in spatial resolution, but at a cost of potentially longer data correction and reconstruction times. The Compton scatter rejection technique, while also requiring a modest acquisition software change with no increased data correction and reconstruction times, will be useful in applications where the scanner sensitivity is very high and larger improvements in spatial resolution are desirable. PMID:19779586

  12. Certification of windshear performance with RTCA class D radomes

    NASA Technical Reports Server (NTRS)

    Mathews, Bruce D.; Miller, Fran; Rittenhouse, Kirk; Barnett, Lee; Rowe, William

    1994-01-01

    Superposition testing of detection range performance forms a digital signal for input into a simulation of signal and data processing equipment and algorithms to be employed in a sensor system for advanced warning of hazardous windshear. For suitable pulse-Doppler radar, recording of the digital data at the input to the digital signal processor furnishes a realistic operational scenario and environmentally responsive clutter signal including all sidelobe clutter, ground moving target indications (GMTI), and large signal spurious due to mainbeam clutter and/or RFI respective of the urban airport clutter and aircraft scenarios (approach and landing antenna pointing). For linear radar system processes, a signal at the same point in the process from a hazard phenomena may be calculated from models of the scattering phenomena, for example, as represented in fine 3 dimensional reflectivity and velocity grid structures. Superposition testing furnishes a competing signal environment for detection and warning time performance confirmation of phenomena uncontrollable in a natural environment.

  13. Facial expression, size, and clutter: Inferences from movie structure to emotion judgments and back.

    PubMed

    Cutting, James E; Armstrong, Kacie L

    2016-04-01

    The perception of facial expressions and objects at a distance are entrenched psychological research venues, but their intersection is not. We were motivated to study them together because of their joint importance in the physical composition of popular movies-shots that show a larger image of a face typically have shorter durations than those in which the face is smaller. For static images, we explore the time it takes viewers to categorize the valence of different facial expressions as a function of their visual size. In two studies, we find that smaller faces take longer to categorize than those that are larger, and this pattern interacts with local background clutter. More clutter creates crowding and impedes the interpretation of expressions for more distant faces but not proximal ones. Filmmakers at least tacitly know this. In two other studies, we show that contemporary movies lengthen shots that show smaller faces, and even more so with increased clutter.

  14. Age differences in search of web pages: the effects of link size, link number, and clutter.

    PubMed

    Grahame, Michael; Laberge, Jason; Scialfa, Charles T

    2004-01-01

    Reaction time, eye movements, and errors were measured during visual search of Web pages to determine age-related differences in performance as a function of link size, link number, link location, and clutter. Participants (15 young adults, M = 23 years; 14 older adults, M = 57 years) searched Web pages for target links that varied from trial to trial. During one half of the trials, links were enlarged from 10-point to 12-point font. Target location was distributed among the left, center, and bottom portions of the screen. Clutter was manipulated according to the percentage of used space, including graphics and text, and the number of potentially distracting nontarget links was varied. Increased link size improved performance, whereas increased clutter and links hampered search, especially for older adults. Results also showed that links located in the left region of the page were found most easily. Actual or potential applications of this research include Web site design to increase usability, particularly for older adults.

  15. Overseas testing of a multisensor landmine detection system: results and lessons learned

    NASA Astrophysics Data System (ADS)

    Keranen, Joe G.; Topolosky, Zeke

    2009-05-01

    The Nemesis detection system has been developed to provide an efficient and reliable unmanned, multi-sensor, groundbased platform to detect and mark landmines. The detection system consists of two detection sensor arrays: a Ground Penetrating Synthetic Aperture Radar (GPSAR) developed by Planning Systems, Inc. (PSI) and an electromagnetic induction (EMI) sensor array developed by Minelab Electronics, PTY. Limited. Under direction of the Night Vision and Electronic Sensors Directorate (NVESD), overseas testing was performed at Kampong Chhnang Test Center (KCTC), Cambodia, from May 12-30, 2008. Test objectives included: evaluation of detection performance, demonstration of real-time visualization and alarm generation, and evaluation of system operational efficiency. Testing was performed on five sensor test lanes, each consisting of a unique soil mixture and three off-road lanes which include curves, overgrowth, potholes, and non-uniform lane geometry. In this paper, we outline the test objectives, procedures, results, and lessons learned from overseas testing. We also describe the current state of the system, and plans for future enhancements and modifications including clutter rejection and feature-level fusion.

  16. MW 08-multi-beam air and surface surveillance radar

    NASA Astrophysics Data System (ADS)

    1989-09-01

    Signal of the Netherlands has developed and is marketing the MW 08, a 3-D radar to be used for short to medium range surveillance, target acquisition, and tracking. MW 08 is a fully automated detecting and tracking radar. It is designed to counter threats from aircraft and low flying antiship missiles. It can also deal with the high level missile threat. MW 08 operates in the 5 cm band using one antenna for both transmitting and receiving. The antenna is an array, consisting of 8 stripline antennas. The received radar energy is processed by 8 receiver channels. These channels come together in the beam forming network, in which 8 virtual beams are formed. From this beam pattern, 6 beams are used for the elevation coverage of 0-70 degrees. MW 08's output signals of the beam former are further handled by FFT and plot processors for target speed information, clutter rejection, and jamming suppression. A general purpose computer handles target track initiation, and tracking. Tracking data are transferred to the command and control systems with 3-D target information for fastest possible lockon.

  17. A novel heterogeneous training sample selection method on space-time adaptive processing

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Zhang, Yongshun; Guo, Yiduo

    2018-04-01

    The performance of ground target detection about space-time adaptive processing (STAP) decreases when non-homogeneity of clutter power is caused because of training samples contaminated by target-like signals. In order to solve this problem, a novel nonhomogeneous training sample selection method based on sample similarity is proposed, which converts the training sample selection into a convex optimization problem. Firstly, the existing deficiencies on the sample selection using generalized inner product (GIP) are analyzed. Secondly, the similarities of different training samples are obtained by calculating mean-hausdorff distance so as to reject the contaminated training samples. Thirdly, cell under test (CUT) and the residual training samples are projected into the orthogonal subspace of the target in the CUT, and mean-hausdorff distances between the projected CUT and training samples are calculated. Fourthly, the distances are sorted in order of value and the training samples which have the bigger value are selective preference to realize the reduced-dimension. Finally, simulation results with Mountain-Top data verify the effectiveness of the proposed method.

  18. Unsupervised iterative detection of land mines in highly cluttered environments.

    PubMed

    Batman, Sinan; Goutsias, John

    2003-01-01

    An unsupervised iterative scheme is proposed for land mine detection in heavily cluttered scenes. This scheme is based on iterating hybrid multispectral filters that consist of a decorrelating linear transform coupled with a nonlinear morphological detector. Detections extracted from the first pass are used to improve results in subsequent iterations. The procedure stops after a predetermined number of iterations. The proposed scheme addresses several weaknesses associated with previous adaptations of morphological approaches to land mine detection. Improvement in detection performance, robustness with respect to clutter inhomogeneities, a completely unsupervised operation, and computational efficiency are the main highlights of the method. Experimental results reveal excellent performance.

  19. An integrated approach to monitoring the calibration stability of operational dual-polarization radars

    DOE PAGES

    Vaccarono, Mattia; Bechini, Renzo; Chandrasekar, Chandra V.; ...

    2016-11-08

    The stability of weather radar calibration is a mandatory aspect for quantitative applications, such as rainfall estimation, short-term weather prediction and initialization of numerical atmospheric and hydrological models. Over the years, calibration monitoring techniques based on external sources have been developed, specifically calibration using the Sun and calibration based on ground clutter returns. In this paper, these two techniques are integrated and complemented with a self-consistency procedure and an intercalibration technique. The aim of the integrated approach is to implement a robust method for online monitoring, able to detect significant changes in the radar calibration. The physical consistency of polarimetricmore » radar observables is exploited using the self-consistency approach, based on the expected correspondence between dual-polarization power and phase measurements in rain. This technique allows a reference absolute value to be provided for the radar calibration, from which eventual deviations may be detected using the other procedures. In particular, the ground clutter calibration is implemented on both polarization channels (horizontal and vertical) for each radar scan, allowing the polarimetric variables to be monitored and hardware failures to promptly be recognized. The Sun calibration allows monitoring the calibration and sensitivity of the radar receiver, in addition to the antenna pointing accuracy. It is applied using observations collected during the standard operational scans but requires long integration times (several days) in order to accumulate a sufficient amount of useful data. Finally, an intercalibration technique is developed and performed to compare colocated measurements collected in rain by two radars in overlapping regions. The integrated approach is performed on the C-band weather radar network in northwestern Italy, during July–October 2014. The set of methods considered appears suitable to establish an online tool to monitor the stability of the radar calibration with an accuracy of about 2 dB. In conclusion, this is considered adequate to automatically detect any unexpected change in the radar system requiring further data analysis or on-site measurements.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaccarono, Mattia; Bechini, Renzo; Chandrasekar, Chandra V.

    The stability of weather radar calibration is a mandatory aspect for quantitative applications, such as rainfall estimation, short-term weather prediction and initialization of numerical atmospheric and hydrological models. Over the years, calibration monitoring techniques based on external sources have been developed, specifically calibration using the Sun and calibration based on ground clutter returns. In this paper, these two techniques are integrated and complemented with a self-consistency procedure and an intercalibration technique. The aim of the integrated approach is to implement a robust method for online monitoring, able to detect significant changes in the radar calibration. The physical consistency of polarimetricmore » radar observables is exploited using the self-consistency approach, based on the expected correspondence between dual-polarization power and phase measurements in rain. This technique allows a reference absolute value to be provided for the radar calibration, from which eventual deviations may be detected using the other procedures. In particular, the ground clutter calibration is implemented on both polarization channels (horizontal and vertical) for each radar scan, allowing the polarimetric variables to be monitored and hardware failures to promptly be recognized. The Sun calibration allows monitoring the calibration and sensitivity of the radar receiver, in addition to the antenna pointing accuracy. It is applied using observations collected during the standard operational scans but requires long integration times (several days) in order to accumulate a sufficient amount of useful data. Finally, an intercalibration technique is developed and performed to compare colocated measurements collected in rain by two radars in overlapping regions. The integrated approach is performed on the C-band weather radar network in northwestern Italy, during July–October 2014. The set of methods considered appears suitable to establish an online tool to monitor the stability of the radar calibration with an accuracy of about 2 dB. In conclusion, this is considered adequate to automatically detect any unexpected change in the radar system requiring further data analysis or on-site measurements.« less

  1. Recent advances in the development and transfer of machine vision technologies for space

    NASA Technical Reports Server (NTRS)

    Defigueiredo, Rui J. P.; Pendleton, Thomas

    1991-01-01

    Recent work concerned with real-time machine vision is briefly reviewed. This work includes methodologies and techniques for optimal illumination, shape-from-shading of general (non-Lambertian) 3D surfaces, laser vision devices and technology, high level vision, sensor fusion, real-time computing, artificial neural network design and use, and motion estimation. Two new methods that are currently being developed for object recognition in clutter and for 3D attitude tracking based on line correspondence are discussed.

  2. Clutter and target discrimination in forward-looking ground penetrating radar using sparse structured basis pursuits

    NASA Astrophysics Data System (ADS)

    Camilo, Joseph A.; Malof, Jordan M.; Torrione, Peter A.; Collins, Leslie M.; Morton, Kenneth D.

    2015-05-01

    Forward-looking ground penetrating radar (FLGPR) is a remote sensing modality that has recently been investigated for buried threat detection. FLGPR offers greater standoff than other downward-looking modalities such as electromagnetic induction and downward-looking GPR, but it suffers from high false alarm rates due to surface and ground clutter. A stepped frequency FLGPR system consists of multiple radars with varying polarizations and bands, each of which interacts differently with subsurface materials and therefore might potentially be able to discriminate clutter from true buried targets. However, it is unclear which combinations of bands and polarizations would be most useful for discrimination or how to fuse them. This work applies sparse structured basis pursuit, a supervised statistical model which searches for sets of bands that are collectively effective for discriminating clutter from targets. The algorithm works by trying to minimize the number of selected items in a dictionary of signals; in this case the separate bands and polarizations make up the dictionary elements. A structured basis pursuit algorithm is employed to gather groups of modes together in collections to eliminate whole polarizations or sensors. The approach is applied to a large collection of FLGPR data for data around emplaced target and non-target clutter. The results show that a sparse structure basis pursuits outperforms a conventional CFAR anomaly detector while also pruning out unnecessary bands of the FLGPR sensor.

  3. Advanced spacecraft thermal control techniques

    NASA Technical Reports Server (NTRS)

    Fritz, C. H.

    1977-01-01

    The problems of rejecting large amounts of heat from spacecraft were studied. Shuttle Space Laboratory heat rejection uses 1 kW for pumps and fans for every 5 kW (thermal) heat rejection. This is rather inefficient, and for future programs more efficient methods were examined. Two advanced systems were studied and compared to the present pumped-loop system. The advanced concepts are the air-cooled semipassive system, which features rejection of a large percentage of the load through the outer skin, and the heat pipe system, which incorporates heat pipes for every thermal control function.

  4. Detection and Tracking of Moving Targets Behind Cluttered Environments Using Compressive Sensing

    NASA Astrophysics Data System (ADS)

    Dang, Vinh Quang

    Detection and tracking of moving targets (target's motion, vibration, etc.) in cluttered environments have been receiving much attention in numerous applications, such as disaster search-and-rescue, law enforcement, urban warfare, etc. One of the popular techniques is the use of stepped frequency continuous wave radar due to its low cost and complexity. However, the stepped frequency radar suffers from long data acquisition time. This dissertation focuses on detection and tracking of moving targets and vibration rates of stationary targets behind cluttered medium such as wall using stepped frequency radar enhanced by compressive sensing. The application of compressive sensing enables the reconstruction of the target space using fewer random frequencies, which decreases the acquisition time. Hardware-accelerated parallelization on GPU is investigated for the Orthogonal Matching Pursuit reconstruction algorithm. For simulation purpose, two hybrid methods have been developed to calculate the scattered fields from the targets through the wall approaching the antenna system, and to convert the incoming fields into voltage signals at terminals of the receive antenna. The first method is developed based on the plane wave spectrum approach for calculating the scattered fields of targets behind the wall. The method uses Fast Multiple Method (FMM) to calculate scattered fields on a particular source plane, decomposes them into plane wave components, and propagates the plane wave spectrum through the wall by integrating wall transmission coefficients before constructing the fields on a desired observation plane. The second method allows one to calculate the complex output voltage at terminals of a receiving antenna which fully takes into account the antenna effects. This method adopts the concept of complex antenna factor in Electromagnetic Compatibility (EMC) community for its calculation.

  5. Quantification of visual clutter using a computation model of human perception : an application for head-up displays

    DOT National Transportation Integrated Search

    2004-03-20

    A means of quantifying the cluttering effects of symbols is needed to evaluate the impact of displaying an increasing volume of information on aviation displays such as head-up displays. Human visual perception has been successfully modeled by algori...

  6. Prevention and treatment of corneal graft rejection: current practice patterns of the Cornea Society (2011).

    PubMed

    Kharod-Dholakia, Bhairavi; Randleman, J Bradley; Bromley, Jennifer G; Stulting, R Doyle

    2015-06-01

    To analyze current practice patterns in the prevention and treatment of corneal graft rejection for both penetrating keratoplasty (PK) and endothelial keratoplasty (EK) and to compare these patterns with previously reported practices. In 2011, an electronic survey was sent to 670 members of the Cornea Society worldwide addressing the routine postoperative management of corneal transplants at different time points, treatment of various manifestations of corneal graft rejection, and preferred surgical techniques. A total of 204 of 670 surveys (30%) were returned and evaluated. All respondents used topical corticosteroids for routine postoperative management and treatment of endothelial graft rejection. Prednisolone was the topical steroid of choice in all clinical scenarios, similar to previous surveys from 1989 to 2004. Use of subconjunctival and systemic steroids increased for many scenarios of probable and definite graft rejection. Routine use of prednisolone decreased by approximately 10% from previous surveys, whereas difluprednate was used in 13% of high-risk eyes during the first 6 months. Dexamethasone, fluorometholone, and loteprednol use remained stable. Adjunctive topical cyclosporine use increased significantly for PK and EK. EK was the preferred technique for endothelial dysfunction, whereas PK and deep anterior lamellar keratoplasty were both used for keratoconus and anterior scars. Most respondents (75%) felt that graft rejection occurs more frequently after PK than after EK. Prednisolone remains the treatment of choice for management and treatment of graft rejection; however, since the introduction of difluprednate, its use has declined slightly since the introduction of difluprednate. Despite perceived differences in rejection rates, there were no differences in prophylactic steroid treatment for PK and EK.

  7. The impact of environmental factors on the performance of millimeter wave seekers in smart munitions

    NASA Astrophysics Data System (ADS)

    Hager, R.

    1987-08-01

    An assessment has been made of the degradation in performance of horizontal-glide smart munitions incorporating millimeter wave seekers operating in three types of environments. Atmospheric effects are shown to degrade performance appreciably only in very severe weather conditions. Electromagnetic line-of-sight masking due to foliage (forest canopy and tree-lined roads) will limit submunition usage and may be a potential problem. The most serious problem involves the confident detection of military vehicles in the presence of land clutter. Standard signal processing techniques involving signal amplitude and signal averaging are not likely to be adequate for detection. Observations regarding more sophisticated techniques and the current state of research are included.

  8. Analysis and Modeling of Multistatic Clutter and Reverberation and Support for the FORA

    DTIC Science & Technology

    2015-09-30

    experiments, the 2014 Nordic Seas experiment. The PI’s technical objectives for the experiment are to characterize and model multistatic bottom clutter... Nordic Seas experiments, as well as other efforts as directed by ONR-OA. APPROACH There is a 6-year ONR OA plan for three large experiments

  9. Buried landmine detection using multivariate normal clustering

    NASA Astrophysics Data System (ADS)

    Duston, Brian M.

    2001-10-01

    A Bayesian classification algorithm is presented for discriminating buried land mines from buried and surface clutter in Ground Penetrating Radar (GPR) signals. This algorithm is based on multivariate normal (MVN) clustering, where feature vectors are used to identify populations (clusters) of mines and clutter objects. The features are extracted from two-dimensional images created from ground penetrating radar scans. MVN clustering is used to determine the number of clusters in the data and to create probability density models for target and clutter populations, producing the MVN clustering classifier (MVNCC). The Bayesian Information Criteria (BIC) is used to evaluate each model to determine the number of clusters in the data. An extension of the MVNCC allows the model to adapt to local clutter distributions by treating each of the MVN cluster components as a Poisson process and adaptively estimating the intensity parameters. The algorithm is developed using data collected by the Mine Hunter/Killer Close-In Detector (MH/K CID) at prepared mine lanes. The Mine Hunter/Killer is a prototype mine detecting and neutralizing vehicle developed for the U.S. Army to clear roads of anti-tank mines.

  10. Enhanced Algorithms for EO/IR Electronic Stabilization, Clutter Suppression, and Track-Before-Detect for Multiple Low Observable Targets

    NASA Astrophysics Data System (ADS)

    Tartakovsky, A.; Brown, A.; Brown, J.

    The paper describes the development and evaluation of a suite of advanced algorithms which provide significantly-improved capabilities for finding, fixing, and tracking multiple ballistic and flying low observable objects in highly stressing cluttered environments. The algorithms have been developed for use in satellite-based staring and scanning optical surveillance suites for applications including theatre and intercontinental ballistic missile early warning, trajectory prediction, and multi-sensor track handoff for midcourse discrimination and intercept. The functions performed by the algorithms include electronic sensor motion compensation providing sub-pixel stabilization (to 1/100 of a pixel), as well as advanced temporal-spatial clutter estimation and suppression to below sensor noise levels, followed by statistical background modeling and Bayesian multiple-target track-before-detect filtering. The multiple-target tracking is performed in physical world coordinates to allow for multi-sensor fusion, trajectory prediction, and intercept. Output of detected object cues and data visualization are also provided. The algorithms are designed to handle a wide variety of real-world challenges. Imaged scenes may be highly complex and infinitely varied -- the scene background may contain significant celestial, earth limb, or terrestrial clutter. For example, when viewing combined earth limb and terrestrial scenes, a combination of stationary and non-stationary clutter may be present, including cloud formations, varying atmospheric transmittance and reflectance of sunlight and other celestial light sources, aurora, glint off sea surfaces, and varied natural and man-made terrain features. The targets of interest may also appear to be dim, relative to the scene background, rendering much of the existing deployed software useless for optical target detection and tracking. Additionally, it may be necessary to detect and track a large number of objects in the threat cloud, and these objects may not always be resolvable in individual data frames. In the present paper, the performance of the developed algorithms is demonstrated using real-world data containing resident space objects observed from the MSX platform, with backgrounds varying from celestial to combined celestial and earth limb, with instances of extremely bright aurora clutter. Simulation results are also presented for parameterized variations in signal-to-clutter levels (down to 1/1000) and signal-to-noise levels (down to 1/6) for simulated targets against real-world terrestrial clutter backgrounds. We also discuss algorithm processing requirements and C++ software processing capabilities from our on-going MDA- and AFRL-sponsored development of an image processing toolkit (iPTK). In the current effort, the iPTK is being developed to a Technology Readiness Level (TRL) of 6 by mid-2010, in preparation for possible integration with STSS-like, SBIRS high-like and SBSS-like surveillance suites.

  11. Motion detection, novelty filtering, and target tracking using an interferometric technique with GaAs phase conjugate mirror

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen (Inventor); Liu, Tsuen-Hsi (Inventor)

    1991-01-01

    A method and apparatus for detecting and tracking moving objects in a noise environment cluttered with fast- and slow-moving objects and other time-varying background. A pair of phase conjugate light beams carrying the same spatial information commonly cancel each other out through an image subtraction process in a phase conjugate interferometer, wherein gratings are formed in a fast photorefractive phase conjugate mirror material. In the steady state, there is no output. When the optical path of one of the two phase conjugate beams is suddenly changed, the return beam loses its phase conjugate nature and the interferometer is out of balance, resulting in an observable output. The observable output lasts until the phase conjugate nature of the beam has recovered. The observable time of the output signal is roughly equal to the formation time of the grating. If the optical path changing time is slower than the formation time, the change of optical path becomes unobservable, because the index grating can follow the change. Thus, objects traveling at speeds which result in a path changing time which is slower than the formation time are not observable and do not clutter the output image view.

  12. Application of speed-enhanced spatial domain correlation filters for real-time security monitoring

    NASA Astrophysics Data System (ADS)

    Gardezi, Akber; Bangalore, Nagachetan; Al-Kandri, Ahmed; Birch, Philip; Young, Rupert; Chatwin, Chris

    2011-11-01

    A speed enhanced space variant correlation filer which has been designed to be invariant to change in orientation and scale of the target object but also to be spatially variant, i.e. the filter function becoming dependant on local clutter conditions within the image. The speed enhancement of the filter is due to the use of optimization techniques employing low-pass filtering to restrict kernel movement to be within regions of interest. The detection and subsequent identification capability of the two-stage process has been evaluated in highly cluttered backgrounds using both visible and thermal imagery acquired from civil and defense domains along with associated training data sets for target detection and classification. In this paper a series of tests have been conducted in multiple scenarios relating to situations that pose a security threat. Performance matrices comprised of peak-to-correlation energy (PCE) and peak-to-side lobe ratio (PSR) measurements of the correlation output have been calculated to allow the definition of a recognition criterion. The hardware implementation of the system has been discussed in terms of Field Programmable Gate Array (FPGA) chipsets with implementation bottle necks and their solution being considered.

  13. A novel data-driven learning method for radar target detection in nonstationary environments

    DOE PAGES

    Akcakaya, Murat; Nehorai, Arye; Sen, Satyabrata

    2016-04-12

    Most existing radar algorithms are developed under the assumption that the environment (clutter) is stationary. However, in practice, the characteristics of the clutter can vary enormously depending on the radar-operational scenarios. If unaccounted for, these nonstationary variabilities may drastically hinder the radar performance. Therefore, to overcome such shortcomings, we develop a data-driven method for target detection in nonstationary environments. In this method, the radar dynamically detects changes in the environment and adapts to these changes by learning the new statistical characteristics of the environment and by intelligibly updating its statistical detection algorithm. Specifically, we employ drift detection algorithms to detectmore » changes in the environment; incremental learning, particularly learning under concept drift algorithms, to learn the new statistical characteristics of the environment from the new radar data that become available in batches over a period of time. The newly learned environment characteristics are then integrated in the detection algorithm. Furthermore, we use Monte Carlo simulations to demonstrate that the developed method provides a significant improvement in the detection performance compared with detection techniques that are not aware of the environmental changes.« less

  14. Slot Antenna Integrated Re-Entrant Resonator Based Wireless Pressure Sensor for High-Temperature Applications.

    PubMed

    Su, Shujing; Lu, Fei; Wu, Guozhu; Wu, Dezhi; Tan, Qiulin; Dong, Helei; Xiong, Jijun

    2017-08-25

    The highly sensitive pressure sensor presented in this paper aims at wireless passive sensing in a high temperature environment by using microwave backscattering technology. The structure of the re-entrant resonator was analyzed and optimized using theoretical calculation, software simulation, and its equivalent lump circuit model was first modified by us. Micro-machining and high-temperature co-fired ceramic (HTCC) process technologies were applied to fabricate the sensor, solving the common problem of cavity sealing during the air pressure loading test. In addition, to prevent the response signal from being immersed in the strong background clutter of the hermetic metal chamber, which makes its detection difficult, we proposed two key techniques to improve the signal to noise ratio: the suppression of strong background clutter and the detection of the weak backscattered signal of the sensor. The pressure sensor demonstrated in this paper works well for gas pressure loading between 40 and 120 kPa in a temperature range of 24 °C to 800 °C. The experimental results show that the sensor resonant frequency lies at 2.1065 GHz, with a maximum pressure sensitivity of 73.125 kHz/kPa.

  15. Breaking through the Advertising Clutter: A Qualitative Analysis of Broken Stereotypes in Print and Television Advertisements.

    ERIC Educational Resources Information Center

    Larson, Charles U.

    As a result of the overwhelming amount of print and electronic advertisements which compete for consumer attention, advertisers must find effective methods to get through the ad clutter and capture their audience's interest. Several tactics can accomplish this strategy, including the tactic of breaking or reversing audience expectations or…

  16. Measuring Search Efficiency in Complex Visual Search Tasks: Global and Local Clutter

    ERIC Educational Resources Information Center

    Beck, Melissa R.; Lohrenz, Maura C.; Trafton, J. Gregory

    2010-01-01

    Set size and crowding affect search efficiency by limiting attention for recognition and attention against competition; however, these factors can be difficult to quantify in complex search tasks. The current experiments use a quantitative measure of the amount and variability of visual information (i.e., clutter) in highly complex stimuli (i.e.,…

  17. Target and Clutter Scattering and their Effects on Military Radar Performance: Electromagnetic Wave Propagation Panel Specialists Meeting Held in Ottawa, Canada on 6-9 May 1991 (Diffraction par les Cibles et le Fouillis et ses Effets sur les Performances des Radars Militaires)

    DTIC Science & Technology

    1991-09-01

    In subsequent discussions, we shall classify a clutter process to be 2-7 predominantly Rayleigh if the value of f is less than 0.8, and the Pfa ...classified as "others’, the Pfa vs threshold curve , is closer to the Ricean model than to the Rayleigh model, and the value of the parameter 0 was usually...better, and for precipitation clutter the lattice was 4 to approximation of "...equally likely". PD and PFA are 6 dB bettor, here specified a 0.5 and 0.01

  18. Signal-processing analysis of the MC2823 radar fuze: an addendum concerning clutter effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jelinek, D.A.

    1978-07-01

    A detailed analysis of the signal processing of the MC2823 radar fuze was published by Thompson in 1976 which enabled the computation of dud probability versus signal-to-noise ratio where the noise was receiver noise. An addendum to Thompson's work was published by Williams in 1978 that modified the weighting function used by Thompson. The analysis presented herein extends the work of Thompson to include the effects of clutter (the non-signal portion of the echo from a terrain) using the new weighting function. This extension enables computation of dud probability versus signal-to-total-noise ratio where total noise is the sum of themore » receiver-noise power and the clutter power.« less

  19. Information transfer rate with serial and simultaneous visual display formats

    NASA Astrophysics Data System (ADS)

    Matin, Ethel; Boff, Kenneth R.

    1988-04-01

    Information communication rate for a conventional display with three spatially separated windows was compared with rate for a serial display in which data frames were presented sequentially in one window. For both methods, each frame contained a randomly selected digit with various amounts of additional display 'clutter.' Subjects recalled the digits in a prescribed order. Large rate differences were found, with faster serial communication for all levels of the clutter factors. However, the rate difference was most pronounced for highly cluttered displays. An explanation for the latter effect in terms of visual masking in the retinal periphery was supported by the results of a second experiment. The working hypothesis that serial displays can speed information transfer for automatic but not for controlled processing is discussed.

  20. Development of CDMS-II Surface Event Rejection Techniques and Their Extensions to Lower Energy Thresholds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofer, Thomas James

    2014-12-01

    The CDMS-II phase of the Cryogenic Dark Matter Search, a dark matter direct-detection experiment, was operated at the Soudan Underground Laboratory from 2003 to 2008. The full payload consisted of 30 ZIP detectors, totaling approximately 1.1 kg of Si and 4.8 kg of Ge, operated at temperatures of 50 mK. The ZIP detectors read out both ionization and phonon pulses from scatters within the crystals; channel segmentation and analysis of pulse timing parameters allowed e ective ducialization of the crystal volumes and background rejection su cient to set world-leading limits at the times of their publications. A full re-analysis ofmore » the CDMS-II data was motivated by an improvement in the event reconstruction algorithms which improved the resolution of ionization energy and timing information. The Ge data were re-analyzed using three distinct background-rejection techniques; the Si data from runs 125 - 128 were analyzed for the rst time using the most successful of the techniques from the Ge re-analysis. The results of these analyses prompted a novel \\mid-threshold" analysis, wherein energy thresholds were lowered but background rejection using phonon timing information was still maintained. This technique proved to have signi cant discrimination power, maintaining adequate signal acceptance and minimizing background leakage. The primary background for CDMS-II analyses comes from surface events, whose poor ionization collection make them di cult to distinguish from true nuclear recoil events. The novel detector technology of SuperCDMS, the successor to CDMS-II, uses interleaved electrodes to achieve full ionization collection for events occurring at the top and bottom detector surfaces. This, along with dual-sided ionization and phonon instrumentation, allows for excellent ducialization and relegates the surface-event rejection techniques of CDMS-II to a secondary level of background discrimination. Current and future SuperCDMS results hold great promise for mid- to low-mass WIMP-search results.« less

  1. Automatic Focusing for a 675 GHz Imaging Radar with Target Standoff Distances from 14 to 34 Meters

    NASA Technical Reports Server (NTRS)

    Tang, Adrian; Cooper, Ken B.; Dengler, Robert J.; Llombart, Nuria; Siegel, Peter H.

    2013-01-01

    This paper dicusses the issue of limited focal depth for high-resolution imaging radar operating over a wide range of standoff distances. We describe a technique for automatically focusing a THz imaging radar system using translational optics combined with range estimation based on a reduced chirp bandwidth setting. The demonstarted focusing algorithm estimates the correct focal depth for desired targets in the field of view at unknown standoffs and in the presence of clutter to provide good imagery at 14 to 30 meters of standoff.

  2. Polarimetric discrimination of atmospheric particulate matter

    NASA Astrophysics Data System (ADS)

    Raman, Prashant; Fuller, Kirk; Gregory, Don

    2012-06-01

    A polarimeter capable of measuring the complete Mueller matrix of highly scattering samples in transmission and reflection from 300 to 1100 nm has been constructed and tested. Exploratory research has been conducted which may lead to the standoff detection of bio-aerosols in the atmosphere. The polarization properties of bsubtilis (surrogate for anthrax spore) have been compared to ambient particulate matter species such as pollen, dust and soot (all sampled onto microscope slides) and differentiating features have been identified. The application of this technique for the discrimination of bio-aerosol from background clutter has been demonstrated.

  3. University role in astronaut life support systems: Portable thermal control systems

    NASA Technical Reports Server (NTRS)

    Ephrath, A. R.

    1971-01-01

    One of the most vital life support systems is that used to provide the astronaut with an adequate thermal environment. State-of-the-art techniques are reviewed for collecting and rejecting excess heat loads from the suited astronaut. Emphasis is placed on problem areas which exist and which may be suitable topics for university research. Areas covered include thermal control requirements and restrictions, methods of heat absorption and rejection or storage, and comparison between existing methods and possible future techniques.

  4. Cognitive software defined radar: waveform design for clutter and interference suppression

    NASA Astrophysics Data System (ADS)

    Kirk, Benjamin H.; Owen, Jonathan W.; Narayanan, Ram M.; Blunt, Shannon D.; Martone, Anthony F.; Sherbondy, Kelly D.

    2017-05-01

    Clutter and radio frequency interference (RFI) are prevalent issues in the field of radar and are specifically of interest to of cognitive radar. Here, methods for applying and testing the utility of cognitive radar for clutter and RFI mitigation are explored. Using the adaptable transmit capability, environmental database, and general "awareness" of a cognitive radar system (i.e. spectrum sensing, geographical location, etc.), a matched waveform is synthesized that improves the signal-to-clutter ratio (SCR), assuming at least an estimate of the target response and the environmental clutter response are known a prior i. RFI may also be mitigated by sensing the RF spectrum and adapting the transmit center frequency and bandwidth using methods that optimize bandwidth and signal-to-interference plus noise ratio (SINR) (i.e. the spectrum sensing, multi-objective (SS-MO) algorithm). The improvement is shown by a decrease in the noise floor. The above methods' effectiveness are examined via a test-bed developed around a software defined radio (SDR). Testing and the general use of commercial off the shelf (COTS) devices are desirable for their cost effectiveness, general ease of use, as well as technical and community support, but these devices provide design challenges in order to be effective. The universal software radio peripheral (USRP) X310 SDR is a relatively cheap and portable device that has all the system components of a basic cognitive radar. Design challenges of the SDR include phase coherency between channels, bandwidth limitations, dynamic range, and speed of computation and data communication / recording.

  5. DRFM Cordic Processor and Sea Clutter Modeling for Enhancing Structured False Target Synthesis

    DTIC Science & Technology

    2017-09-01

    was implemented using the Verilog hardware description language. The second investigation concerns generating sea clutter to impose on the false target...to achieve accuracy at 5.625o. The resulting design was implemented using the Verilog hardware description language. The second investigation...33 3. Initialization of the Angle Accumulator ....................................34 4. Design Methodology for I/Q Phase

  6. Flight Control in Complex Environments

    DTIC Science & Technology

    2016-10-24

    that allow insects, with their miniature brains and limited sensory systems to fly safely through cluttered natural environments . The most significant...specialisations that allow insects, with their miniature brains and limited sensory systems to fly safely through cluttered natural environments . The most...bees have developed more accurate or effective methods for flying safely through gaps than species from less complex environments . Fig. 4: The

  7. Combatting Inherent Vulnerabilities of CFAR Algorithms and a New Robust CFAR Design

    DTIC Science & Technology

    1993-09-01

    elements of any automatic radar system. Unfortunately, CFAR systems are inherently vulnerable to degradation caused by large clutter edges, multiple ...edges, multiple targets, and electronic countermeasures (ECM) environments. 20 Distribution, Availability of Abstract 21 Abstract Security...inherently vulnerable to degradation caused by large clutter edges, multiple targets and jamming environments. This thesis presents eight popular and studied

  8. Ship Detection in Gaofen-3 SAR Images Based on Sea Clutter Distribution Analysis and Deep Convolutional Neural Network

    PubMed Central

    You, Hongjian

    2018-01-01

    Target detection is one of the important applications in the field of remote sensing. The Gaofen-3 (GF-3) Synthetic Aperture Radar (SAR) satellite launched by China is a powerful tool for maritime monitoring. This work aims at detecting ships in GF-3 SAR images using a new land masking strategy, the appropriate model for sea clutter and a neural network as the discrimination scheme. Firstly, the fully convolutional network (FCN) is applied to separate the sea from the land. Then, by analyzing the sea clutter distribution in GF-3 SAR images, we choose the probability distribution model of Constant False Alarm Rate (CFAR) detector from K-distribution, Gamma distribution and Rayleigh distribution based on a tradeoff between the sea clutter modeling accuracy and the computational complexity. Furthermore, in order to better implement CFAR detection, we also use truncated statistic (TS) as a preprocessing scheme and iterative censoring scheme (ICS) for boosting the performance of detector. Finally, we employ a neural network to re-examine the results as the discrimination stage. Experiment results on three GF-3 SAR images verify the effectiveness and efficiency of this approach. PMID:29364194

  9. Ship Detection in Gaofen-3 SAR Images Based on Sea Clutter Distribution Analysis and Deep Convolutional Neural Network.

    PubMed

    An, Quanzhi; Pan, Zongxu; You, Hongjian

    2018-01-24

    Target detection is one of the important applications in the field of remote sensing. The Gaofen-3 (GF-3) Synthetic Aperture Radar (SAR) satellite launched by China is a powerful tool for maritime monitoring. This work aims at detecting ships in GF-3 SAR images using a new land masking strategy, the appropriate model for sea clutter and a neural network as the discrimination scheme. Firstly, the fully convolutional network (FCN) is applied to separate the sea from the land. Then, by analyzing the sea clutter distribution in GF-3 SAR images, we choose the probability distribution model of Constant False Alarm Rate (CFAR) detector from K-distribution, Gamma distribution and Rayleigh distribution based on a tradeoff between the sea clutter modeling accuracy and the computational complexity. Furthermore, in order to better implement CFAR detection, we also use truncated statistic (TS) as a preprocessing scheme and iterative censoring scheme (ICS) for boosting the performance of detector. Finally, we employ a neural network to re-examine the results as the discrimination stage. Experiment results on three GF-3 SAR images verify the effectiveness and efficiency of this approach.

  10. Application of musical timbre discrimination features to active sonar classification

    NASA Astrophysics Data System (ADS)

    Young, Victor W.; Hines, Paul C.; Pecknold, Sean

    2005-04-01

    In musical acoustics significant effort has been devoted to uncovering the physical basis of timbre perception. Most investigations into timbre rely on multidimensional scaling (MDS), in which different musical sounds are arranged as points in multidimensional space. The Euclidean distance between points corresponds to the perceptual distance between sounds and the multidimensional axes are linked to measurable properties of the sounds. MDS has identified numerous temporal and spectral features believed to be important to timbre perception. There is reason to believe that some of these features may have wider application in the disparate field of underwater acoustics, since anecdotal evidence suggests active sonar returns from metallic objects sound different than natural clutter returns when auralized by human operators. This is particularly encouraging since attempts to develop robust automatic classifiers capable of target-clutter discrimination over a wide range of operational conditions have met with limited success. Spectral features relevant to target-clutter discrimination are believed to include click-pitch and envelope irregularity; relevant temporal features are believed to include duration, sub-band attack/decay time, and time separation pitch. Preliminary results from an investigation into the role of these timbre features in target-clutter discrimination will be presented. [Work supported by NSERC and GDC.

  11. Signal-to-solar clutter calculations of AK-47 muzzle flash at various spectral bandpasses near the potassium D1/D2 doublet

    NASA Astrophysics Data System (ADS)

    Klett, Karl K., Jr.

    2010-04-01

    An analysis was performed, using MODTRAN, to determine the best filters to use for detecting the muzzle flash of an AK-47 in daylight conditions in the desert. Filters with bandwidths of 0.05, 0.1, 0.5, 1.0, 3.0, and 5.0 nanometers (nm) were analyzed to understand how the optical bandwidth affects the signal-to-solar clutter ratio. These filters were evaluated near the potassium D1 and D2 doublet emission lines that occur at 769.89 and 766.49 nm respectively that are observed where projectile propellants are used. The maximum spectral radiance, from the AK-47 muzzle flash, is 1.88 x 10-2 W/cm2 str micron, and is approximately equal to the daytime atmospheric spectral radiance. The increased emission, due to the potassium doublet lines, and decreased atmospheric transmission, due to oxygen absorption, combine to create a condition where the signal-to-solar clutter ratio is greater than 1. The 3 nm filter, has a signal-to-solar clutter ratio of 2.09 when centered at 765.37 nm and provides the best combination of both cost and signal sensitivity.

  12. Semantic priming from crowded words.

    PubMed

    Yeh, Su-Ling; He, Sheng; Cavanagh, Patrick

    2012-06-01

    Vision in a cluttered scene is extremely inefficient. This damaging effect of clutter, known as crowding, affects many aspects of visual processing (e.g., reading speed). We examined observers' processing of crowded targets in a lexical decision task, using single-character Chinese words that are compact but carry semantic meaning. Despite being unrecognizable and indistinguishable from matched nonwords, crowded prime words still generated robust semantic-priming effects on lexical decisions for test words presented in isolation. Indeed, the semantic-priming effect of crowded primes was similar to that of uncrowded primes. These findings show that the meanings of words survive crowding even when the identities of the words do not, suggesting that crowding does not prevent semantic activation, a process that may have evolved in the context of a cluttered visual environment.

  13. Unified sensor management in unknown dynamic clutter

    NASA Astrophysics Data System (ADS)

    Mahler, Ronald; El-Fallah, Adel

    2010-04-01

    In recent years the first author has developed a unified, computationally tractable approach to multisensor-multitarget sensor management. This approach consists of closed-loop recursion of a PHD or CPHD filter with maximization of a "natural" sensor management objective function called PENT (posterior expected number of targets). In this paper we extend this approach so that it can be used in unknown, dynamic clutter backgrounds.

  14. Nonstationary EO/IR Clutter Suppression and Dim Object Tracking

    DTIC Science & Technology

    2010-01-01

    Brown, A., and Brown, J., Enhanced Algorithms for EO /IR Electronic Stabilization, Clutter Suppression, and Track - Before - Detect for Multiple Low...estimation-suppression and nonlinear filtering-based multiple-object track - before - detect . These algorithms are suitable for integration into...In such cases, it is imperative to develop efficient real or near-real time tracking before detection methods. This paper continues the work started

  15. A flexible data fusion architecture for persistent surveillance using ultra-low-power wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Hanson, Jeffrey A.; McLaughlin, Keith L.; Sereno, Thomas J.

    2011-06-01

    We have developed a flexible, target-driven, multi-modal, physics-based fusion architecture that efficiently searches sensor detections for targets and rejects clutter while controlling the combinatoric problems that commonly arise in datadriven fusion systems. The informational constraints imposed by long lifetime requirements make systems vulnerable to false alarms. We demonstrate that our data fusion system significantly reduces false alarms while maintaining high sensitivity to threats. In addition, mission goals can vary substantially in terms of targets-of-interest, required characterization, acceptable latency, and false alarm rates. Our fusion architecture provides the flexibility to match these trade-offs with mission requirements unlike many conventional systems that require significant modifications for each new mission. We illustrate our data fusion performance with case studies that span many of the potential mission scenarios including border surveillance, base security, and infrastructure protection. In these studies, we deployed multi-modal sensor nodes - including geophones, magnetometers, accelerometers and PIR sensors - with low-power processing algorithms and low-bandwidth wireless mesh networking to create networks capable of multi-year operation. The results show our data fusion architecture maintains high sensitivities while suppressing most false alarms for a variety of environments and targets.

  16. Progresses with Net-VISA on Global Infrasound Association

    NASA Astrophysics Data System (ADS)

    Mialle, Pierrick; Arora, Nimar

    2017-04-01

    Global Infrasound Association algorithms are an important area of active development at the International Data Centre (IDC). These algorithms play an important part of the automatic processing system for verification technologies. A key focus at the IDC is to enhance association and signal characterization methods by incorporating the identification of signals of interest and the optimization of the network detection threshold. The overall objective is to reduce the number of associated infrasound arrivals that are rejected from the automatic bulletins when generating the Reviewed Event Bulletins (REB), and hence reduce IDC analyst workload. Despite good accuracy by the IDC categorization, a number of signal detections due to clutter sources such as microbaroms or surf are built into events. In this work we aim to optimize the association criteria based on knowledge acquired by IDC in the last 6 years, and focus on the specificity of seismo-acoustic events. The resulting work has been incorporated into NETVISA [1], a Bayesian approach to network processing. The model that we propose is a fusion of seismic, hydroacoustic and infrasound processing built on a unified probabilistic framework. References: [1] NETVISA: Network Processing Vertically Integrated Seismic Analysis. N. S. Arora, S. Russell, and E. Sudderth. BSSA 2013

  17. Progresses with Net-VISA on Global Infrasound Association

    NASA Astrophysics Data System (ADS)

    Mialle, P.; Arora, N. S.

    2016-12-01

    Global Infrasound Association algorithms are an important area of active development at the International Data Centre (IDC). These algorithms play an important part of the automatic processing system for verification technologies. A key focus at the IDC is to enhance association and signal characterization methods by incorporating the identification of signals of interest and the optimization of the network detection threshold. The overall objective is to reduce the number of associated infrasound arrivals that are rejected from the automatic bulletins when generating the Reviewed Event Bulletins (REB), and hence reduce IDC analyst workload. Despite good accuracy by the IDC categorization, a number of signal detections due to clutter sources such as microbaroms or surf are built into events. In this work we aim to optimize the association criteria based on knowledge acquired by IDC in the last 6 years, and focus on the specificity of seismo-acoustic events. The resulting work has been incorporated into NETVISA [1], a Bayesian approach to network processing. The model that we propose is a fusion of seismic, hydroacoustic and infrasound processing built on a unified probabilistic framework. References: [1] NETVISA: Network Processing Vertically Integrated Seismic Analysis. N. S. Arora, S. Russell, and E. Sudderth. BSSA 2013

  18. Organ transplant tissue rejection: detection and staging by fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    MacAulay, Calum E.; Whitehead, Peter D.; McManus, Bruce; Zeng, Haishan; Wilson-McManus, Janet; MacKinnon, Nick; Morgan, David C.; Dong, Chunming; Gerla, Paul; Kenyon, Jennifer

    1998-07-01

    Patients receiving heart or other organ transplants usually require some level of anti-rejection drug therapy, most commonly cyclosporine. The rejection status of the organ must be monitored to determine the optimal anti-rejection drug therapy. The current method for monitoring post-transplant rejection status of heart transplant patients consists of taking biopsies from the right ventricle. In this work we have developed a system employing optical and signal-processing techniques that will allow a cardiologist to measure spectral changes associated with tissue rejection using an optical catheter probe. The system employs time gated illumination and detection systems to deal with the dynamic signal acquisition problems associated with in vivo measurements of a beating heart. Spectral data processing software evaluates and processes the data to produce a simple numerical score. Results of measurements made on 100 excised transplanted isograft and allograft rat hearts have demonstrated the ability of the system to detect the presence of rejection and to accurately correlate the spectroscopic results with the ISHLT (International Society for Heart and Lung Transplantation) stage of rejection determined by histopathology. In vivo measurements using a pig transplant model are now in process.

  19. Statistically Self-Consistent and Accurate Errors for SuperDARN Data

    NASA Astrophysics Data System (ADS)

    Reimer, A. S.; Hussey, G. C.; McWilliams, K. A.

    2018-01-01

    The Super Dual Auroral Radar Network (SuperDARN)-fitted data products (e.g., spectral width and velocity) are produced using weighted least squares fitting. We present a new First-Principles Fitting Methodology (FPFM) that utilizes the first-principles approach of Reimer et al. (2016) to estimate the variance of the real and imaginary components of the mean autocorrelation functions (ACFs) lags. SuperDARN ACFs fitted by the FPFM do not use ad hoc or empirical criteria. Currently, the weighting used to fit the ACF lags is derived from ad hoc estimates of the ACF lag variance. Additionally, an overcautious lag filtering criterion is used that sometimes discards data that contains useful information. In low signal-to-noise (SNR) and/or low signal-to-clutter regimes the ad hoc variance and empirical criterion lead to underestimated errors for the fitted parameter because the relative contributions of signal, noise, and clutter to the ACF variance is not taken into consideration. The FPFM variance expressions include contributions of signal, noise, and clutter. The clutter is estimated using the maximal power-based self-clutter estimator derived by Reimer and Hussey (2015). The FPFM was successfully implemented and tested using synthetic ACFs generated with the radar data simulator of Ribeiro, Ponomarenko, et al. (2013). The fitted parameters and the fitted-parameter errors produced by the FPFM are compared with the current SuperDARN fitting software, FITACF. Using self-consistent statistical analysis, the FPFM produces reliable or trustworthy quantitative measures of the errors of the fitted parameters. For an SNR in excess of 3 dB and velocity error below 100 m/s, the FPFM produces 52% more data points than FITACF.

  20. A GPU-Parallelized Eigen-Based Clutter Filter Framework for Ultrasound Color Flow Imaging.

    PubMed

    Chee, Adrian J Y; Yiu, Billy Y S; Yu, Alfred C H

    2017-01-01

    Eigen-filters with attenuation response adapted to clutter statistics in color flow imaging (CFI) have shown improved flow detection sensitivity in the presence of tissue motion. Nevertheless, its practical adoption in clinical use is not straightforward due to the high computational cost for solving eigendecompositions. Here, we provide a pedagogical description of how a real-time computing framework for eigen-based clutter filtering can be developed through a single-instruction, multiple data (SIMD) computing approach that can be implemented on a graphical processing unit (GPU). Emphasis is placed on the single-ensemble-based eigen-filtering approach (Hankel singular value decomposition), since it is algorithmically compatible with GPU-based SIMD computing. The key algebraic principles and the corresponding SIMD algorithm are explained, and annotations on how such algorithm can be rationally implemented on the GPU are presented. Real-time efficacy of our framework was experimentally investigated on a single GPU device (GTX Titan X), and the computing throughput for varying scan depths and slow-time ensemble lengths was studied. Using our eigen-processing framework, real-time video-range throughput (24 frames/s) can be attained for CFI frames with full view in azimuth direction (128 scanlines), up to a scan depth of 5 cm ( λ pixel axial spacing) for slow-time ensemble length of 16 samples. The corresponding CFI image frames, with respect to the ones derived from non-adaptive polynomial regression clutter filtering, yielded enhanced flow detection sensitivity in vivo, as demonstrated in a carotid imaging case example. These findings indicate that the GPU-enabled eigen-based clutter filtering can improve CFI flow detection performance in real time.

  1. Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection.

    PubMed

    Mertz, Jerome; Kim, Jinhyun

    2010-01-01

    It is well known that light-sheet illumination can enable optically sectioned wide-field imaging of macroscopic samples. However, the optical sectioning capacity of a light-sheet macroscope is undermined by sample-induced scattering or aberrations that broaden the thickness of the sheet illumination. We present a technique to enhance the optical sectioning capacity of a scanning light-sheet microscope by out-of-focus background rejection. The technique, called HiLo microscopy, makes use of two images sequentially acquired with uniform and structured sheet illumination. An optically sectioned image is then synthesized by fusing high and low spatial frequency information from both images. The benefits of combining light-sheet macroscopy and HiLo background rejection are demonstrated in optically cleared whole mouse brain samples, using both green fluorescent protein (GFP)-fluorescence and dark-field scattered light contrast.

  2. Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection

    NASA Astrophysics Data System (ADS)

    Mertz, Jerome; Kim, Jinhyun

    2010-01-01

    It is well known that light-sheet illumination can enable optically sectioned wide-field imaging of macroscopic samples. However, the optical sectioning capacity of a light-sheet macroscope is undermined by sample-induced scattering or aberrations that broaden the thickness of the sheet illumination. We present a technique to enhance the optical sectioning capacity of a scanning light-sheet microscope by out-of-focus background rejection. The technique, called HiLo microscopy, makes use of two images sequentially acquired with uniform and structured sheet illumination. An optically sectioned image is then synthesized by fusing high and low spatial frequency information from both images. The benefits of combining light-sheet macroscopy and HiLo background rejection are demonstrated in optically cleared whole mouse brain samples, using both green fluorescent protein (GFP)-fluorescence and dark-field scattered light contrast.

  3. Neural responses to witnessing peer rejection after being socially excluded: fMRI as a window into adolescents’ emotional processing

    PubMed Central

    Masten, Carrie L.; Eisenberger, Naomi I.; Pfeifer, Jennifer H.; Dapretto, Mirella

    2013-01-01

    During adolescence, concerns about peer rejection and acceptance become increasingly common. Adolescents regularly experience peer rejection firsthand and witness these behaviors among their peers. In the current study, neuroimaging techniques were employed to conduct a preliminary investigation of the affective and cognitive processes involved in witnessing peer acceptance and rejection—specifically when these witnessed events occur in the immediate aftermath of a firsthand experience with rejection. During an fMRI scan, twenty-three adolescents underwent a simulated experience of firsthand peer rejection. Then, immediately following this experience they watched as another adolescent was ostensibly first accepted and then rejected. Findings indicated that in the immediate aftermath of being rejected by peers, adolescents displayed neural activity consistent with distress when they saw another peer being accepted, and neural activity consistent with emotion regulation and mentalizing (e.g., perspective-taking) processes when they saw another peer being rejected. Furthermore, individuals displaying a heightened sensitivity to firsthand rejection were more likely to show neural activity consistent with distress when observing a peer being accepted. Findings are discussed in terms of how witnessing others being accepted or rejected relates to adolescents’ interpretations of both firsthand and observed experiences with peers. Additionally, the potential impact that witnessed events might have on the broader perpetuation of bullying at this age is also considered. PMID:24033579

  4. Shadow Probability of Detection and False Alarm for Median-Filtered SAR Imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raynal, Ann Marie; Doerry, Armin Walter; Miller, John A.

    2014-06-01

    Median filtering reduces speckle in synthetic aperture radar (SAR) imagery while preserving edges, at the expense of coarsening the resolution, by replacing the center pixel of a sliding window by the median value. For shadow detection, this approach helps distinguish shadows from clutter more easily, while preserving shadow shape delineations. However, the nonlinear operation alters the shadow and clutter distributions and statistics, which must be taken into consideration when computing probability of detection and false alarm metrics. Depending on system parameters, median filtering can improve probability of detection and false alarm by orders of magnitude. Herein, we examine shadow probabilitymore » of detection and false alarm in a homogeneous, ideal clutter background after median filter post-processing. Some comments on multi-look processing effects with and without median filtering are also made.« less

  5. Precipitation measurement using SIR-C: A feasibility study

    NASA Technical Reports Server (NTRS)

    Ahamad, Atiq; Moore, Richard K.

    1993-01-01

    A precipitation detection and measurement experiment is planned for the SIR-C/X-SAR mission. This study was conducted to determine under what conditions an off-nadir experiment is feasible. The signal-to-clutter ratio, the signal-to-noise ratio, and the minimum detectable rain rate were investigated. Available models, used in previous studies, were used for the surface clutter and the rain echo. The study also considers the attenuation of the returns at X band. It was concluded that an off-nadir rain-measurement experiment is feasible only for rain rates greater than 10 mm/hr for look angles greater than 60 deg. For the range of look angles 5 less than theta(sub 1) less than 50, the rain rate required is very high for adequate signal-to-clutter ratio, and hence the feasibility of the experiment.

  6. Performance of Distributed CFAR Processors in Pearson Distributed Clutter

    NASA Astrophysics Data System (ADS)

    Messali, Zoubeida; Soltani, Faouzi

    2006-12-01

    This paper deals with the distributed constant false alarm rate (CFAR) radar detection of targets embedded in heavy-tailed Pearson distributed clutter. In particular, we extend the results obtained for the cell averaging (CA), order statistics (OS), and censored mean level CMLD CFAR processors operating in positive alpha-stable (P&S) random variables to more general situations, specifically to the presence of interfering targets and distributed CFAR detectors. The receiver operating characteristics of the greatest of (GO) and the smallest of (SO) CFAR processors are also determined. The performance characteristics of distributed systems are presented and compared in both homogeneous and in presence of interfering targets. We demonstrate, via simulation results, that the distributed systems when the clutter is modelled as positive alpha-stable distribution offer robustness properties against multiple target situations especially when using the "OR" fusion rule.

  7. Fully invariant wavelet enhanced minimum average correlation energy filter for object recognition in cluttered and occluded environments

    NASA Astrophysics Data System (ADS)

    Tehsin, Sara; Rehman, Saad; Riaz, Farhan; Saeed, Omer; Hassan, Ali; Khan, Muazzam; Alam, Muhammad S.

    2017-05-01

    A fully invariant system helps in resolving difficulties in object detection when camera or object orientation and position are unknown. In this paper, the proposed correlation filter based mechanism provides the capability to suppress noise, clutter and occlusion. Minimum Average Correlation Energy (MACE) filter yields sharp correlation peaks while considering the controlled correlation peak value. Difference of Gaussian (DOG) Wavelet has been added at the preprocessing stage in proposed filter design that facilitates target detection in orientation variant cluttered environment. Logarithmic transformation is combined with a DOG composite minimum average correlation energy filter (WMACE), capable of producing sharp correlation peaks despite any kind of geometric distortion of target object. The proposed filter has shown improved performance over some of the other variant correlation filters which are discussed in the result section.

  8. Water Reclamation Using a Ceramic Nanofiltration Membrane and Surface Flushing with Ozonated Water

    PubMed Central

    Hoang, Anh T.; Okuda, Tetsuji; Takeuchi, Haruka; Tanaka, Hiroaki; Nghiem, Long D.

    2018-01-01

    A new membrane fouling control technique using ozonated water flushing was evaluated for direct nanofiltration (NF) of secondary wastewater effluent using a ceramic NF membrane. Experiments were conducted at a permeate flux of 44 L/m2h to evaluate the ozonated water flushing technique for fouling mitigation. Surface flushing with clean water did not effectively remove foulants from the NF membrane. In contrast, surface flushing with ozonated water (4 mg/L dissolved ozone) could effectively remove most foulants to restore the membrane permeability. This surface flushing technique using ozonated water was able to limit the progression of fouling to 35% in transmembrane pressure increase over five filtration cycles. Results from this study also heighten the need for further development of ceramic NF membrane to ensure adequate removal of pharmaceuticals and personal care products (PPCPs) for water recycling applications. The ceramic NF membrane used in this study showed approximately 40% TOC rejection, and the rejection of PPCPs was generally low and highly variable. It is expected that the fouling mitigation technique developed here is even more important for ceramic NF membranes with smaller pore size and thus better PPCP rejection. PMID:29671797

  9. Neural net classification of x-ray pistachio nut data

    NASA Astrophysics Data System (ADS)

    Casasent, David P.; Sipe, Michael A.; Schatzki, Thomas F.; Keagy, Pamela M.; Le, Lan Chau

    1996-12-01

    Classification results for agricultural products are presented using a new neural network. This neural network inherently produces higher-order decision surfaces. It achieves this with fewer hidden layer neurons than other classifiers require. This gives better generalization. It uses new techniques to select the number of hidden layer neurons and adaptive algorithms that avoid other such ad hoc parameter selection problems; it allows selection of the best classifier parameters without the need to analyze the test set results. The agriculture case study considered is the inspection and classification of pistachio nuts using x- ray imagery. Present inspection techniques cannot provide good rejection of worm damaged nuts without rejecting too many good nuts. X-ray imagery has the potential to provide 100% inspection of such agricultural products in real time. Only preliminary results are presented, but these indicate the potential to reduce major defects to 2% of the crop with 1% of good nuts rejected. Future image processing techniques that should provide better features to improve performance and allow inspection of a larger variety of nuts are noted. These techniques and variations of them have uses in a number of other agricultural product inspection problems.

  10. Water Reclamation Using a Ceramic Nanofiltration Membrane and Surface Flushing with Ozonated Water.

    PubMed

    Fujioka, Takahiro; Hoang, Anh T; Okuda, Tetsuji; Takeuchi, Haruka; Tanaka, Hiroaki; Nghiem, Long D

    2018-04-19

    A new membrane fouling control technique using ozonated water flushing was evaluated for direct nanofiltration (NF) of secondary wastewater effluent using a ceramic NF membrane. Experiments were conducted at a permeate flux of 44 L/m²h to evaluate the ozonated water flushing technique for fouling mitigation. Surface flushing with clean water did not effectively remove foulants from the NF membrane. In contrast, surface flushing with ozonated water (4 mg/L dissolved ozone) could effectively remove most foulants to restore the membrane permeability. This surface flushing technique using ozonated water was able to limit the progression of fouling to 35% in transmembrane pressure increase over five filtration cycles. Results from this study also heighten the need for further development of ceramic NF membrane to ensure adequate removal of pharmaceuticals and personal care products (PPCPs) for water recycling applications. The ceramic NF membrane used in this study showed approximately 40% TOC rejection, and the rejection of PPCPs was generally low and highly variable. It is expected that the fouling mitigation technique developed here is even more important for ceramic NF membranes with smaller pore size and thus better PPCP rejection.

  11. Non-Rayleigh Sea Clutter: Properties and Detection of Targets

    DTIC Science & Technology

    1976-06-25

    subject should consult Guinard and Daley [7], which provides an overview of the theory and references all the I______.... important work. 6 * .-- - - S...results for scattering from slightly rough surfaces and composite surfaces obtained by Rice [1], Wright [2,3], Valenzuela [4-6], Guinard and Daley [7], and...for vertical polarization. In 1970, Trunk and George [10] considered the log-normal and contaminated-normal descriptions of sea clutter and calculated

  12. Radar returns from ground clutter in vicinity of airports

    NASA Technical Reports Server (NTRS)

    Raemer, H. R.; Rahgavan, R.; Bhattacharya, A.

    1988-01-01

    The objective of this project is to develop a dynamic simulation of the received signals from natural and man-made ground features in the vicinity of airports. The simulation is run during landing and takeoff stages of a flight. Vugraphs of noteworthy features of the simulation, ground clutter data bases, the development of algorithms for terrain features, typical wave theory results, and a gravity wave height profile are given.

  13. Shallow Water UXO Technology Demonstration Site Scoring Record No. 5 (NAEVA/XTECH, EM61 MKII)

    DTIC Science & Technology

    2008-04-01

    been fired or degaussed. Clutter items fit into one of three categories: ferrous, nonferrous , and mixed metals . The ferrous and nonferrous ...electromagnetic (EM) metal detectors . The system was relatively lightweight, requiring a small aluminum boat for towing. This configuration should...composed of ordnance components; however, industrial scrap metal and cultural items are present as well. The mixed- metals clutter is composed of

  14. Top-attack modeling and automatic target detection using synthetic FLIR scenery

    NASA Astrophysics Data System (ADS)

    Weber, Bruce A.; Penn, Joseph A.

    2004-09-01

    A series of experiments have been performed to verify the utility of algorithmic tools for the modeling and analysis of cold-target signatures in synthetic, top-attack, FLIR video sequences. The tools include: MuSES/CREATION for the creation of synthetic imagery with targets, an ARL target detection algorithm to detect imbedded synthetic targets in scenes, and an ARL scoring algorithm, using Receiver-Operating-Characteristic (ROC) curve analysis, to evaluate detector performance. Cold-target detection variability was examined as a function of target emissivity, surrounding clutter type, and target placement in non-obscuring clutter locations. Detector metrics were also individually scored so as to characterize the effect of signature/clutter variations. Results show that using these tools, a detailed, physically meaningful, target detection analysis is possible and that scenario specific target detectors may be developed by selective choice and/or weighting of detector metrics. However, developing these tools into a reliable predictive capability will require the extension of these results to the modeling and analysis of a large number of data sets configured for a wide range of target and clutter conditions. Finally, these tools should also be useful for the comparison of competitive detection algorithms by providing well defined, and controllable target detection scenarios, as well as for the training and testing of expert human observers.

  15. Ship Detection in SAR Image Based on the Alpha-stable Distribution

    PubMed Central

    Wang, Changcheng; Liao, Mingsheng; Li, Xiaofeng

    2008-01-01

    This paper describes an improved Constant False Alarm Rate (CFAR) ship detection algorithm in spaceborne synthetic aperture radar (SAR) image based on Alpha-stable distribution model. Typically, the CFAR algorithm uses the Gaussian distribution model to describe statistical characteristics of a SAR image background clutter. However, the Gaussian distribution is only valid for multilook SAR images when several radar looks are averaged. As sea clutter in SAR images shows spiky or heavy-tailed characteristics, the Gaussian distribution often fails to describe background sea clutter. In this study, we replace the Gaussian distribution with the Alpha-stable distribution, which is widely used in impulsive or spiky signal processing, to describe the background sea clutter in SAR images. In our proposed algorithm, an initial step for detecting possible ship targets is employed. Then, similar to the typical two-parameter CFAR algorithm, a local process is applied to the pixel identified as possible target. A RADARSAT-1 image is used to validate this Alpha-stable distribution based algorithm. Meanwhile, known ship location data during the time of RADARSAT-1 SAR image acquisition is used to validate ship detection results. Validation results show improvements of the new CFAR algorithm based on the Alpha-stable distribution over the CFAR algorithm based on the Gaussian distribution. PMID:27873794

  16. Learning-dependent plasticity with and without training in the human brain.

    PubMed

    Zhang, Jiaxiang; Kourtzi, Zoe

    2010-07-27

    Long-term experience through development and evolution and shorter-term training in adulthood have both been suggested to contribute to the optimization of visual functions that mediate our ability to interpret complex scenes. However, the brain plasticity mechanisms that mediate the detection of objects in cluttered scenes remain largely unknown. Here, we combine behavioral and functional MRI (fMRI) measurements to investigate the human-brain mechanisms that mediate our ability to learn statistical regularities and detect targets in clutter. We show two different routes to visual learning in clutter with discrete brain plasticity signatures. Specifically, opportunistic learning of regularities typical in natural contours (i.e., collinearity) can occur simply through frequent exposure, generalize across untrained stimulus features, and shape processing in occipitotemporal regions implicated in the representation of global forms. In contrast, learning to integrate discontinuities (i.e., elements orthogonal to contour paths) requires task-specific training (bootstrap-based learning), is stimulus-dependent, and enhances processing in intraparietal regions implicated in attention-gated learning. We propose that long-term experience with statistical regularities may facilitate opportunistic learning of collinear contours, whereas learning to integrate discontinuities entails bootstrap-based training for the detection of contours in clutter. These findings provide insights in understanding how long-term experience and short-term training interact to shape the optimization of visual recognition processes.

  17. Generation of Antigen Microarrays to Screen for Autoantibodies in Heart Failure and Heart Transplantation.

    PubMed

    Chruscinski, Andrzej; Huang, Flora Y Y; Nguyen, Albert; Lioe, Jocelyn; Tumiati, Laura C; Kozuszko, Stella; Tinckam, Kathryn J; Rao, Vivek; Dunn, Shannon E; Persinger, Michael A; Levy, Gary A; Ross, Heather J

    2016-01-01

    Autoantibodies directed against endogenous proteins including contractile proteins and endothelial antigens are frequently detected in patients with heart failure and after heart transplantation. There is evidence that these autoantibodies contribute to cardiac dysfunction and correlate with clinical outcomes. Currently, autoantibodies are detected in patient sera using individual ELISA assays (one for each antigen). Thus, screening for many individual autoantibodies is laborious and consumes a large amount of patient sample. To better capture the broad-scale antibody reactivities that occur in heart failure and post-transplant, we developed a custom antigen microarray technique that can simultaneously measure IgM and IgG reactivities against 64 unique antigens using just five microliters of patient serum. We first demonstrated that our antigen microarray technique displayed enhanced sensitivity to detect autoantibodies compared to the traditional ELISA method. We then piloted this technique using two sets of samples that were obtained at our institution. In the first retrospective study, we profiled pre-transplant sera from 24 heart failure patients who subsequently received heart transplants. We identified 8 antibody reactivities that were higher in patients who developed cellular rejection (2 or more episodes of grade 2R rejection in first year after transplant as defined by revised criteria from the International Society for Heart and Lung Transplantation) compared with those who did have not have rejection episodes. In a second retrospective study with 31 patients, we identified 7 IgM reactivities that were higher in heart transplant recipients who developed antibody-mediated rejection (AMR) compared with control recipients, and in time course studies, these reactivities appeared prior to overt graft dysfunction. In conclusion, we demonstrated that the autoantibody microarray technique outperforms traditional ELISAs as it uses less patient sample, has increased sensitivity, and can detect autoantibodies in a multiplex fashion. Furthermore, our results suggest that this autoantibody array technology may help to identify patients at risk of rejection following heart transplantation and identify heart transplant recipients with AMR.

  18. Generation of Antigen Microarrays to Screen for Autoantibodies in Heart Failure and Heart Transplantation

    PubMed Central

    Chruscinski, Andrzej; Huang, Flora Y. Y.; Nguyen, Albert; Lioe, Jocelyn; Tumiati, Laura C.; Kozuszko, Stella; Tinckam, Kathryn J.; Rao, Vivek; Dunn, Shannon E.; Persinger, Michael A.; Levy, Gary A.; Ross, Heather J.

    2016-01-01

    Autoantibodies directed against endogenous proteins including contractile proteins and endothelial antigens are frequently detected in patients with heart failure and after heart transplantation. There is evidence that these autoantibodies contribute to cardiac dysfunction and correlate with clinical outcomes. Currently, autoantibodies are detected in patient sera using individual ELISA assays (one for each antigen). Thus, screening for many individual autoantibodies is laborious and consumes a large amount of patient sample. To better capture the broad-scale antibody reactivities that occur in heart failure and post-transplant, we developed a custom antigen microarray technique that can simultaneously measure IgM and IgG reactivities against 64 unique antigens using just five microliters of patient serum. We first demonstrated that our antigen microarray technique displayed enhanced sensitivity to detect autoantibodies compared to the traditional ELISA method. We then piloted this technique using two sets of samples that were obtained at our institution. In the first retrospective study, we profiled pre-transplant sera from 24 heart failure patients who subsequently received heart transplants. We identified 8 antibody reactivities that were higher in patients who developed cellular rejection (2 or more episodes of grade 2R rejection in first year after transplant as defined by revised criteria from the International Society for Heart and Lung Transplantation) compared with those who did have not have rejection episodes. In a second retrospective study with 31 patients, we identified 7 IgM reactivities that were higher in heart transplant recipients who developed antibody-mediated rejection (AMR) compared with control recipients, and in time course studies, these reactivities appeared prior to overt graft dysfunction. In conclusion, we demonstrated that the autoantibody microarray technique outperforms traditional ELISAs as it uses less patient sample, has increased sensitivity, and can detect autoantibodies in a multiplex fashion. Furthermore, our results suggest that this autoantibody array technology may help to identify patients at risk of rejection following heart transplantation and identify heart transplant recipients with AMR. PMID:26967734

  19. Fukunaga-Koontz transform based dimensionality reduction for hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Ochilov, S.; Alam, M. S.; Bal, A.

    2006-05-01

    Fukunaga-Koontz Transform based technique offers some attractive properties for desired class oriented dimensionality reduction in hyperspectral imagery. In FKT, feature selection is performed by transforming into a new space where feature classes have complimentary eigenvectors. Dimensionality reduction technique based on these complimentary eigenvector analysis can be described under two classes, desired class and background clutter, such that each basis function best represent one class while carrying the least amount of information from the second class. By selecting a few eigenvectors which are most relevant to desired class, one can reduce the dimension of hyperspectral cube. Since the FKT based technique reduces data size, it provides significant advantages for near real time detection applications in hyperspectral imagery. Furthermore, the eigenvector selection approach significantly reduces computation burden via the dimensionality reduction processes. The performance of the proposed dimensionality reduction algorithm has been tested using real-world hyperspectral dataset.

  20. Motion detection, novelty filtering, and target tracking using an interferometric technique with a GaAs phase conjugate mirror

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen (Inventor); Liu, Tsuen-Hsi (Inventor)

    1990-01-01

    A method and apparatus is disclosed for detecting and tracking moving objects in a noise environment cluttered with fast-and slow-moving objects and other time-varying background. A pair of phase conjugate light beams carrying the same spatial information commonly cancel each other out through an image subtraction process in a phase conjugate interferometer, wherein gratings are formed in a fast photo-refractive phase conjugate mirror material. In the steady state, there is no output. When the optical path of one of the two phase conjugate beams is suddenly changed, the return beam loses its phase conjugate nature and the inter-ferometer is out of balance, resulting in an observable output. The observable output lasts until the phase conjugate nature of the beam has recovered. The observable time of the output signal is roughly equal to the formation time of the grating. If the optical path changing time is slower than the formation time, the change of optical path becomes unobservable, because the index grating can follow the change. Thus, objects traveling at speeds which result in a path changing time which is slower than the formation time are not observable and do not clutter the output image view.

  1. Anti-ship missile tracking with a chirped amplitude modulation ladar

    NASA Astrophysics Data System (ADS)

    Redman, Brian C.; Stann, Barry L.; Ruff, William C.; Giza, Mark M.; Aliberti, Keith; Lawler, William B.

    2004-09-01

    Shipboard infrared search and track (IRST) systems can detect sea-skimming anti-ship missiles at long ranges. Since IRST systems cannot measure range and velocity, they have difficulty distinguishing missiles from slowly moving false targets and clutter. ARL is developing a ladar based on its patented chirped amplitude modulation (AM) technique to provide unambiguous range and velocity measurements of targets handed over to it by the IRST. Using the ladar's range and velocity data, false alarms and clutter objects will be distinguished from valid targets. If the target is valid, it's angular location, range, and velocity, will be used to update the target track until remediation has been effected. By using an array receiver, ARL's ladar can also provide 3D imagery of potential threats in support of force protection. The ladar development program will be accomplished in two phases. In Phase I, currently in progress, ARL is designing and building a breadboard ladar test system for proof-of-principle static platform field tests. In Phase II, ARL will build a brassboard ladar test system that will meet operational goals in shipboard testing against realistic targets. The principles of operation for the chirped AM ladar for range and velocity measurements, the ladar performance model, and the top-level design for the Phase I breadboard are presented in this paper.

  2. Sensing resonant objects in the presence of noise and clutter using iterative, single-channel acoustic time reversal

    NASA Astrophysics Data System (ADS)

    Waters, Zachary John

    The presence of noise and coherent returns from clutter often confounds efforts to acoustically detect and identify target objects buried in inhomogeneous media. Using iterative time reversal with a single channel transducer, returns from resonant targets are enhanced, yielding convergence to a narrowband waveform characteristic of the dominant mode in a target's elastic scattering response. The procedure consists of exciting the target with a broadband acoustic pulse, sampling the return using a finite time window, reversing the signal in time, and using this reversed signal as the source waveform for the next interrogation. Scaled laboratory experiments (0.4-2 MHz) are performed employing a piston transducer and spherical targets suspended in the free field and buried in a sediment phantom. In conjunction with numerical simulations, these experiments provide an inexpensive and highly controlled means with which to examine the efficacy of the technique. Signal-to-noise enhancement of target echoes is demonstrated. The methodology reported provides a means to extract both time and frequency information for surface waves that propagate on an elastic target. Methods developed in the laboratory are then applied in medium scale (20-200 kHz) pond experiments for the detection of a steel shell buried in sandy sediment.

  3. Visualizing Spatially Varying Distribution Data

    NASA Technical Reports Server (NTRS)

    Kao, David; Luo, Alison; Dungan, Jennifer L.; Pang, Alex; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Box plot is a compact representation that encodes the minimum, maximum, mean, median, and quarters information of a distribution. In practice, a single box plot is drawn for each variable of interest. With the advent of more accessible computing power, we are now facing the problem of visual icing data where there is a distribution at each 2D spatial location. Simply extending the box plot technique to distributions over 2D domain is not straightforward. One challenge is reducing the visual clutter if a box plot is drawn over each grid location in the 2D domain. This paper presents and discusses two general approaches, using parametric statistics and shape descriptors, to present 2D distribution data sets. Both approaches provide additional insights compared to the traditional box plot technique

  4. Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection

    PubMed Central

    Mertz, Jerome; Kim, Jinhyun

    2010-01-01

    It is well known that light-sheet illumination can enable optically sectioned wide-field imaging of macroscopic samples. However, the optical sectioning capacity of a light-sheet macroscope is undermined by sample-induced scattering or aberrations that broaden the thickness of the sheet illumination. We present a technique to enhance the optical sectioning capacity of a scanning light-sheet microscope by out-of-focus background rejection. The technique, called HiLo microscopy, makes use of two images sequentially acquired with uniform and structured sheet illumination. An optically sectioned image is then synthesized by fusing high and low spatial frequency information from both images. The benefits of combining light-sheet macroscopy and HiLo background rejection are demonstrated in optically cleared whole mouse brain samples, using both green fluorescent protein (GFP)-fluorescence and dark-field scattered light contrast. PMID:20210471

  5. Collision Avoidance W-Band FMCW Radars in an Altimeter Application

    DTIC Science & Technology

    2006-08-01

    underground mining applications. Potentially, a small low– powered downward looking aerial radar employing Frequency Modulated Continuous Wave (FMCW) ranging...frequency [1]. 3 Figure 3: Epsilon Lambda ELF 171-1A radar. Model and System block diagram [2]. 4 Figure 4: Beam limited resolution cell (after [3]). 6...Figure 5: (black curves) Projected SNR variation of clutter return with range for ELF 171-1A type system in different weather conditions. Clutter-to

  6. Specification for a standard radar sea clutter model

    NASA Astrophysics Data System (ADS)

    Paulus, Richard A.

    1990-09-01

    A model for the average sea clutter radar cross section is proposed for the Oceanographic and Atmospheric Master Library. This model is a function of wind speed (or sea state), wind direction relative to the antenna, refractive conditions, radar antenna height, frequency, polarization, horizontal beamwidth, and compressed pulse length. The model is fully described, a FORTRAN 77 computer listing is provided, and test cases are given to demonstrate the proper operation of the program.

  7. Mid-Frequency Reverberation Measurements with Full Companion Environmental Support

    DTIC Science & Technology

    2014-12-30

    acoustic modeling is based on measured stratification and observed wave amplitudes on the New Jersey shelf during the SWARM experiment.3 Ray tracing is...wave model then gives quantitative results for the clutter. 2. Swarm NLIW model and ray tracing Nonlinear internal waves are very common on the...receiver in order to give quantitative clutter to reverberation. To picture the mechanism, a set of rays was launched from a source at range zero and

  8. RCS Matrix Studies of Sea Clutter

    DTIC Science & Technology

    1981-03-01

    boat. The sea conditions were fairly calm and the return from the targets was in gen - eral well above the clutter level, especially since the targets...pta, I I FAll Aut PONit 0 1 4S aaaiit 114 FIUR 6b Fanc Poaiaioul Dat Pont 251-450i 5 SNI)28 #A.p I A-7 w Ft it I 0 F 114A iI ~~ I o W VVs 0 U IVi

  9. Shallow Water UXO Technology Demonstration Site Scoring Record No. 7

    DTIC Science & Technology

    2007-05-01

    categories: ferrous, nonferrous , and mixed metals . The ferrous and nonferrous items are further divided into the three weight zones as presented in... nonferrous component and could reasonably be encountered in a range area. The mixed- metals clutter was placed in the open water area only. TABLE 1-3...Table 1-4, and distributed throughout all test areas. Most of this clutter is composed of ordnance components; however, industrial scrap metal and

  10. An Investigation of the Pareto Distribution as a Model for High Grazing Angle Clutter

    DTIC Science & Technology

    2011-03-01

    radar detection schemes under controlled conditions. Complicated clutter models result in mathematical difficulties in the determination of optimal and...a population [7]. It has been used in the modelling of actuarial data; an example is in excess of loss quotations in insurance [8]. Its usefulness as...UNCLASSIFIED modified Bessel functions, making it difficult to employ in radar detection schemes. The Pareto Distribution is amenable to mathematical

  11. Documentation of incidental factors affecting the home healthcare work environment.

    PubMed

    Sitzman, Kathleen L; Leiss, Jack K

    2009-10-01

    Working conditions related to unrestrained pets, unruly children, clutter, and poor lighting during home healthcare visits are considered normal aspects of care providers' jobs. To date, there has been no documentation related to how often these factors are present in the home healthcare setting during home visits. In this study, 833 home healthcare nurses practicing in North Carolina answered a questionnaire that included items related to how often unrestrained pets, unruly children, poor lighting, and clutter existed in the homes they visited. Results showed that one-third to one-half of the respondents usually or always visited homes with unrestrained pets, clutter, or poor lighting and few nurses usually or always visited homes with uncontrolled children. Better understanding of the prevalence of these factors will facilitate further study related to their effects on safety, efficiency, and job satisfaction for home healthcare workers.

  12. Improvement of Automated Identification of the Heart Wall in Echocardiography by Suppressing Clutter Component

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroki; Hasegawa, Hideyuki; Kanai, Hiroshi

    2013-07-01

    For the facilitation of analysis and elimination of the operator dependence in estimating the myocardial function in echocardiography, we have previously developed a method for automated identification of the heart wall. However, there are misclassified regions because the magnitude-squared coherence (MSC) function of echo signals, which is one of the features in the previous method, is sensitively affected by the clutter components such as multiple reflection and off-axis echo from external tissue or the nearby myocardium. The objective of the present study is to improve the performance of automated identification of the heart wall. For this purpose, we proposed a method to suppress the effect of the clutter components on the MSC of echo signals by applying an adaptive moving target indicator (MTI) filter to echo signals. In vivo experimental results showed that the misclassified regions were significantly reduced using our proposed method in the longitudinal axis view of the heart.

  13. Clutter modeling of the Denver Airport and surrounding areas

    NASA Technical Reports Server (NTRS)

    Harrah, Steven D.; Delmore, Victor E.; Onstott, Robert G.

    1991-01-01

    To accurately simulate and evaluate an airborne Doppler radar as a wind shear detection and avoidance sensor, the ground clutter surrounding a typical airport must be quantified. To do this, an imaging airborne Synthetic Aperture Radar (SAR) was employed to investigate and map the normalized radar cross sections (NRCS) of the ground terrain surrounding the Denver Stapleton Airport during November of 1988. Images of the Stapleton ground clutter scene were obtained at a variety of aspect and elevation angles (extending to near-grazing) at both HH and VV polarizations. Presented here, in viewgraph form with commentary, are the method of data collection, the specific observations obtained of the Denver area, a summary of the quantitative analysis performed on the SAR images to date, and the statistical modeling of several of the more interesting stationary targets in the SAR database. Additionally, the accompanying moving target database, containing NRCS and velocity information, is described.

  14. Millimeter wave backscatter measurements in support of collision avoidance applications

    NASA Astrophysics Data System (ADS)

    Narayanan, Ram M.; Snuttjer, Brett R. J.

    1997-11-01

    Millimeter-wave short range radar systems have unique advantages in surface navigation applications, such as military vehicle mobility, aircraft landing assistance, and automotive collision avoidance. In collision avoidance applications, characterization of clutter due to terrain and roadside objects is necessary in order to maximize the signal-to-clutter ratio (SCR) and to minimize false alarms. The results of two types of radar cross section (RCS) measurements at 95 GHz are reported in this paper. The first set of measurements presents data on the normalized RCS (NRCS) as well as clutter distributions of various terrain types at low grazing angles of 5° and 7.5°. The second set of measurements presents RCS data and statistics on various types of roadside objects, such as metallic and wooden sign posts. These results are expected to be useful for designers of short-range millimeter-wave collision avoidance radar systems.

  15. Reduction of background clutter in structured lighting systems

    DOEpatents

    Carlson, Jeffrey J.; Giles, Michael K.; Padilla, Denise D.; Davidson, Jr., Patrick A.; Novick, David K.; Wilson, Christopher W.

    2010-06-22

    Methods for segmenting the reflected light of an illumination source having a characteristic wavelength from background illumination (i.e. clutter) in structured lighting systems can comprise pulsing the light source used to illuminate a scene, pulsing the light source synchronously with the opening of a shutter in an imaging device, estimating the contribution of background clutter by interpolation of images of the scene collected at multiple spectral bands not including the characteristic wavelength and subtracting the estimated background contribution from an image of the scene comprising the wavelength of the light source and, placing a polarizing filter between the imaging device and the scene, where the illumination source can be polarized in the same orientation as the polarizing filter. Apparatus for segmenting the light of an illumination source from background illumination can comprise an illuminator, an image receiver for receiving images of multiple spectral bands, a processor for calculations and interpolations, and a polarizing filter.

  16. Could Sentinel Skin Transplants Have Some Utility in Solid Organ Transplantation?

    PubMed

    Ali, J M; Catarino, P; Dunning, J; Giele, H; Vrakas, G; Parmar, J

    2016-10-01

    Accurate diagnosis of allograft rejection can be hazardous and challenging. A strategy that has emerged from experience with vascularized composite allografts (VCAs) is the use of sentinel skin transplants (SSTs)-portions of donor skin transplanted synchronously to an allograft. Work in nonhuman animal models and experience with VCAs suggest concordance between rejection occurring in the primary allograft and the SST, and that appearance of rejection in the SST may precede rejection in the primary allograft, permitting early therapeutic intervention that may improve outcomes with lower rates of chronic rejection. The encouraging findings reported in VCA transplantation raise the possibility that SST may also be useful in solid organ transplantation. Some evidence is provided by experience with abdominal wall transplantation in some intestinal and multivisceral transplant recipients. Results from those reports raise the possibility that rejection may manifest in the skin component before emergence in the intestinal allograft, providing a "lead time" during which treatment of rejection of the abdominal wall could prevent the emergence of intestinal rejection. It is plausible that these findings may be extrapolated to other solid organ allografts, especially those for which obtaining an accurate diagnosis of acute rejection can be hazardous and challenging, such as the lung or pancreas. However, more data are required to support widespread adoption of this technique. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Time-Reversal Based Range Extension Technique for Ultra-Wideband (UWB) Sensors and Applications in Tactical Communications and Networking

    DTIC Science & Technology

    2009-10-16

    than 2 GHz ( HF , VHF, UHF and L bands), the rather low IF frequency image rejection is difficult to implement and image rejection mixer techniques are...energy of the signal in the integration window at the receiver should be maximized [4] [5] [6] [7]. For navigation and geolocation , the ultra short...vectors h/, hi/ hyv/, hf = [hjf h T f • • h T Nf] T (3.25) 20 CHAPTER 3. THEORETICAL WORK (U \\ -j \\hnf(fi-i)\\,i = l ,,,,. (h"^-lv^|/l„/(/i-i

  18. A statistically valid method for using FIA plots to guide spectral class rejection in producing stratification maps

    Treesearch

    Michael L. Hoppus; Andrew J. Lister

    2002-01-01

    A Landsat TM classification method (iterative guided spectral class rejection) produced a forest cover map of southern West Virginia that provided the stratification layer for producing estimates of timberland area from Forest Service FIA ground plots using a stratified sampling technique. These same high quality and expensive FIA ground plots provided ground reference...

  19. Optimisation of 12 MeV electron beam simulation using variance reduction technique

    NASA Astrophysics Data System (ADS)

    Jayamani, J.; Termizi, N. A. S. Mohd; Kamarulzaman, F. N. Mohd; Aziz, M. Z. Abdul

    2017-05-01

    Monte Carlo (MC) simulation for electron beam radiotherapy consumes a long computation time. An algorithm called variance reduction technique (VRT) in MC was implemented to speed up this duration. This work focused on optimisation of VRT parameter which refers to electron range rejection and particle history. EGSnrc MC source code was used to simulate (BEAMnrc code) and validate (DOSXYZnrc code) the Siemens Primus linear accelerator model with the non-VRT parameter. The validated MC model simulation was repeated by applying VRT parameter (electron range rejection) that controlled by global electron cut-off energy 1,2 and 5 MeV using 20 × 107 particle history. 5 MeV range rejection generated the fastest MC simulation with 50% reduction in computation time compared to non-VRT simulation. Thus, 5 MeV electron range rejection utilized in particle history analysis ranged from 7.5 × 107 to 20 × 107. In this study, 5 MeV electron cut-off with 10 × 107 particle history, the simulation was four times faster than non-VRT calculation with 1% deviation. Proper understanding and use of VRT can significantly reduce MC electron beam calculation duration at the same time preserving its accuracy.

  20. Note: A non-invasive electronic measurement technique to measure the embedded four resistive elements in a Wheatstone bridge sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravelo Arias, S. I.; Ramírez Muñoz, D.; Cardoso, S.

    2015-06-15

    The work shows a measurement technique to obtain the correct value of the four elements in a resistive Wheatstone bridge without the need to separate the physical connections existing between them. Two electronic solutions are presented, based on a source-and-measure unit and using discrete electronic components. The proposed technique brings the possibility to know the mismatching or the tolerance between the bridge resistive elements and then to pass or reject it in terms of its related common-mode rejection. Experimental results were taken in various Wheatstone resistive bridges (discrete and magnetoresistive integrated bridges) validating the proposed measurement technique specially when themore » bridge is micro-fabricated and there is no physical way to separate one resistive element from the others.« less

  1. Experimental Comparison of High Duty Cycle and Pulsed Active Sonars in a Littoral Environment

    DTIC Science & Technology

    2014-09-30

    A series of metrics (eg. number of detections, matched-filter gain, false alarm rates, track purity, track latency, etc.) will be used to quantify...for QA. These data were used to generate spectrograms, ambient noise and reverberation decay plots, and clutter images, all of which helped...Perhaps the most useful of these for QA were the clutter images which provided a rapid visual assessment to estimate SNR, identify at what range the

  2. Maximum Likelihood Shift Estimation Using High Resolution Polarimetric SAR Clutter Model

    NASA Astrophysics Data System (ADS)

    Harant, Olivier; Bombrun, Lionel; Vasile, Gabriel; Ferro-Famil, Laurent; Gay, Michel

    2011-03-01

    This paper deals with a Maximum Likelihood (ML) shift estimation method in the context of High Resolution (HR) Polarimetric SAR (PolSAR) clutter. Texture modeling is exposed and the generalized ML texture tracking method is extended to the merging of various sensors. Some results on displacement estimation on the Argentiere glacier in the Mont Blanc massif using dual-pol TerraSAR-X (TSX) and quad-pol RADARSAT-2 (RS2) sensors are finally discussed.

  3. Multi-contact Variable-Compliance Manipulation in Extreme Clutter

    DTIC Science & Technology

    2014-06-16

    house to find eggs and young. (b) When noodling , people find catfish holes from which to pull fish out. (c)-(d) A person makes contact along his...Figure 7: Haptic Map of detected rigid contacts. by mapping all the rigid taxels at every time- instant . For visualizing the haptic map, we use point...the environment while reaching into clutter. (a) A raccoon reaches into a bird house to find eggs and young. (b) When noodling , people find catfish

  4. Characterization of Sea Clutter Amplitude and Doppler Bin PDFs

    DTIC Science & Technology

    2014-05-30

    range- cells that are processed have their maximum difference of grazing angle be less than 0.1 degrees. The following parameters shall be reported...FFT of varying lengths over a range cell time-series as explained in [5]. However this is optional data reporting t is beyond the minimum baseline...Simulation of Coherent Sea Clutter", IEEE transactions on aerospace and electronic systems vol. 48, no. 4 October 2012. [6] Rosenberg, L., D. J. Crisp

  5. High Grazing Angle and High Resolution Sea Clutter: Correlation and Polarisation Analyses

    DTIC Science & Technology

    2007-03-01

    the azimuthal correlation. The correlation between the HH and VV sea clutter data is low. A CA-CFAR ( cell average constant false-alarm rate...to calculate the power spectra of correlation profiles. The frequency interval of the traditional Discrete Fourier Transform is NT1 Hz, where N and...sea spikes, the Entropy-Alpha decomposition of sea spikes is shown in Figure 30. The process first locates spikes using a cell -average constant false

  6. Saberliner flight test for airborne wind shear forward looking detection and avoidance radar systems

    NASA Technical Reports Server (NTRS)

    Mathews, Bruce D.

    1991-01-01

    Westinghouse conducted a flight test with its Sabreliner AN/APG-68 instrumented radar to assess the urban discrete/ground moving vehicle clutter environment. Glideslope approaches were flown into Washington National, BWI, and Georgetown, Delaware, airports employing radar mode timing, waveform, and processing configurations plausible for microburst windshear avoidance. The perceptions, both general and specific, of the clutter environment furnish an empirical foundation for beginning low false alarm detection algorithm development.

  7. Shallow Water UXO Technology Demonstration Site Scoring Record Number 4 (CTC, FEREX, DLG-GPS, MAG)

    DTIC Science & Technology

    2007-01-01

    into one of three categories: ferrous, nonferrous , and mixed- metals . The ferrous and nonferrous items have been further divided into three weight...ferrous and nonferrous component and could reasonably be encountered in a range area. The mixed- metals clutter was placed in the open water area...also industrial scrap metal and cultural items as well. The mixed- metals clutter is comprised of scrap ordnance items or fragments that have both a

  8. Broadband Acoustic Clutter

    DTIC Science & Technology

    2006-09-30

    DRDC-A, and the NATO Undersea Research Centre, La Spezia Italy (this is ongoing). Under these main topics, accomplishments included: a...associated with clutter from an undersea ridge and mud volcano cluster. RESULTS A constrained comparison of waveguide reverberation theory and...1000 Hz c) 0 10 20 −70 −60 −50 −40 −30 −20 −10 Angle (deg) S ca tte rin g S tr en gt h (d B ) 900 Hz a) Figure 1. Measured (x) seabed a

  9. Large-scale weakly supervised object localization via latent category learning.

    PubMed

    Chong Wang; Kaiqi Huang; Weiqiang Ren; Junge Zhang; Maybank, Steve

    2015-04-01

    Localizing objects in cluttered backgrounds is challenging under large-scale weakly supervised conditions. Due to the cluttered image condition, objects usually have large ambiguity with backgrounds. Besides, there is also a lack of effective algorithm for large-scale weakly supervised localization in cluttered backgrounds. However, backgrounds contain useful latent information, e.g., the sky in the aeroplane class. If this latent information can be learned, object-background ambiguity can be largely reduced and background can be suppressed effectively. In this paper, we propose the latent category learning (LCL) in large-scale cluttered conditions. LCL is an unsupervised learning method which requires only image-level class labels. First, we use the latent semantic analysis with semantic object representation to learn the latent categories, which represent objects, object parts or backgrounds. Second, to determine which category contains the target object, we propose a category selection strategy by evaluating each category's discrimination. Finally, we propose the online LCL for use in large-scale conditions. Evaluation on the challenging PASCAL Visual Object Class (VOC) 2007 and the large-scale imagenet large-scale visual recognition challenge 2013 detection data sets shows that the method can improve the annotation precision by 10% over previous methods. More importantly, we achieve the detection precision which outperforms previous results by a large margin and can be competitive to the supervised deformable part model 5.0 baseline on both data sets.

  10. Expertise Effects in Face-Selective Areas are Robust to Clutter and Diverted Attention, but not to Competition

    PubMed Central

    McGugin, Rankin Williams; Van Gulick, Ana E.; Tamber-Rosenau, Benjamin J.; Ross, David A.; Gauthier, Isabel

    2015-01-01

    Expertise effects for nonface objects in face-selective brain areas may reflect stable aspects of neuronal selectivity that determine how observers perceive objects. However, bottom-up (e.g., clutter from irrelevant objects) and top-down manipulations (e.g., attentional selection) can influence activity, affecting the link between category selectivity and individual performance. We test the prediction that individual differences expressed as neural expertise effects for cars in face-selective areas are sufficiently stable to survive clutter and manipulations of attention. Additionally, behavioral work and work using event related potentials suggest that expertise effects may not survive competition; we investigate this using functional magnetic resonance imaging. Subjects varying in expertise with cars made 1-back decisions about cars, faces, and objects in displays containing one or 2 objects, with only one category attended. Univariate analyses suggest car expertise effects are robust to clutter, dampened by reducing attention to cars, but nonetheless more robust to manipulations of attention than competition. While univariate expertise effects are severely abolished by competition between cars and faces, multivariate analyses reveal new information related to car expertise. These results demonstrate that signals in face-selective areas predict expertise effects for nonface objects in a variety of conditions, although individual differences may be expressed in different dependent measures depending on task and instructions. PMID:24682187

  11. Measured Changes in C-Band Radar Reflectivity of Clear Air Caused by Aircraft Wake Vortices

    NASA Technical Reports Server (NTRS)

    Mackenzie, Anne I.

    1997-01-01

    Wake vortices from a C-130 airplane were observed at the NASA Wallops Flight Facility with a ground-based, monostatic C-band radar and an antenna-mounted boresight video camera. The airplane wake was viewed from a distance of approximately 1 km, and radar scanning was adjusted to cross a pair of marker smoke trails generated by the C-130. For each airplane pass, changes in radar reflectivity were calculated by subtracting the signal magnitudes during an initial clutter scan from the signal magnitudes during vortex-plus-clutter scans. The results showed both increases and decreases in reflectivity on and near the smoke trails in a characteristic sinusoidal pattern of heightened reflectivity in the center and lessened reflectivity at the sides. Reflectivity changes in either direction varied from -131 to -102 dBm(exp -1); the vortex-plus-clutter to noise ratio varied from 20 to 41 dB. The radar recordings lasted 2.5 min each; evidence of wake vortices was found for up to 2 min after the passage of the airplane. Ground and aircraft clutter were eliminated as possible sources of the disturbance by noting the occurrence of vortex signatures at different positions relative to the ground and the airplane. This work supports the feasibility of vortex detection by radar, and it is recommended that future radar vortex detection be done with Doppler systems.

  12. Pacific Sardine Characteristics Affecting the Conduct of an Acoustic Clutter Experiment off the West Coast of the United States

    DTIC Science & Technology

    2012-05-15

    P. Cotel, "Three-dimensional structure and avoidance behavior of anchovy and common sardine schools in central southern Chile ," ICES J. Mar. Sei. 61...the most abundant species of schooling fish off the West Coast Therefore, sardines are the best candidates to be clutter targets. In preparation for...fish and to interpret the results, pertinent characteristics of the major fish species in the region must be known. The best source of that knowledge

  13. Signal Processing Algorithms for the Terminal Doppler Weather Radar: Build 2

    DTIC Science & Technology

    2010-04-30

    the various TDWR base data quality issues, range-velocity (RV) ambiguity was deemed to be the most severe challenge nationwide. Compared to S - band ... power is computed as PN = median(|5«| 2)/(ln 2), where s is the complex I&Q signal, k is the range gate number, and / is the pulse time index. The...frequencies to the ground-clutter band around zero, the clutter filtering also removes power from the aliased frequencies and distorts the phase response

  14. Development of Genuine Neural Network Prototype Chip

    DTIC Science & Technology

    1991-01-28

    priori distribution is equivalent, and more readily visualized with a rank curve . The sonar signal data consisted of approximately 85% class Target and...15% class Clutter. For this reason, the rank curves for the class Clutter were used for device parameter analysis. R & D STATUS REPORT 1/28/91 N00014...the signal CLASSLD#. Four 10-bit class probabilities are available on the output bus (C0-C9, C16-C25, C32-C41 and C48- C57 ) at each clock cycle. A

  15. Advancement of High Resolution Radar Polarimetry in Target Verses Clutter Detection, Discrimination, Classification: A. Basic Theory and Modeling of Polarimetric Clutter Phenomenology.

    DTIC Science & Technology

    1988-07-15

    the interim period, polarimetLic measurement data collected at other DOD/NATO/Industrial R/D/M facilities will be used. These basic studies will be...the polarization sphere and its spread can he related either to the coherency factor or the depolarization factor plus descriptive parameters of the...careful study of the concluding sections outlining the overall scenario of solved and unsolved problems. Here, we also refer to the recent report (Dec

  16. The Effects of Better Environmental Inputs in Estimating Sea Clutter

    DTIC Science & Technology

    1988-01-01

    3.2 A Spectral Ocean Wave Model: DWAVE 11 3.3 Limitations of DWAVE 11 4. HYBRID MODEL DEVELOPMENT 12 4.1 Overall Plan 12 4.2 High Resolution...intensive. 10 3.2 A Spectral Ocean Wave Model: DWAVE Most of the spectral ocean wave models give essentially the same type of outputs, for example, the...sea clutter estimation. A deep ocean wave model DWAVE by Offshore & Coastal Technologies, Inc. (OCTI) has been chosen because it can be run on a

  17. PMHT Approach for Multi-Target Multi-Sensor Sonar Tracking in Clutter.

    PubMed

    Li, Xiaohua; Li, Yaan; Yu, Jing; Chen, Xiao; Dai, Miao

    2015-11-06

    Multi-sensor sonar tracking has many advantages, such as the potential to reduce the overall measurement uncertainty and the possibility to hide the receiver. However, the use of multi-target multi-sensor sonar tracking is challenging because of the complexity of the underwater environment, especially the low target detection probability and extremely large number of false alarms caused by reverberation. In this work, to solve the problem of multi-target multi-sensor sonar tracking in the presence of clutter, a novel probabilistic multi-hypothesis tracker (PMHT) approach based on the extended Kalman filter (EKF) and unscented Kalman filter (UKF) is proposed. The PMHT can efficiently handle the unknown measurements-to-targets and measurements-to-transmitters data association ambiguity. The EKF and UKF are used to deal with the high degree of nonlinearity in the measurement model. The simulation results show that the proposed algorithm can improve the target tracking performance in a cluttered environment greatly, and its computational load is low.

  18. Heuristic automation for decluttering tactical displays.

    PubMed

    St John, Mark; Smallman, Harvey S; Manes, Daniel I; Feher, Bela A; Morrison, Jeffrey G

    2005-01-01

    Tactical displays can quickly become cluttered with large numbers of symbols that can compromise effective monitoring. Here, we studied how heuristic automation can aid users by intelligently "decluttering" the display. In a realistic simulated naval air defense task, 27 experienced U.S. Navy users monitored a cluttered airspace and executed defensive responses against significant threats. An algorithm continuously evaluated aircraft for their levels of threat and decluttered the less threatening ones by dimming their symbols. Users appropriately distrusted and spot-checked the automation's assessments, and decluttering had very little effect on which aircraft were judged as significantly threatening. Nonetheless, decluttering improved the timeliness of responses to threatening aircraft by 25% as compared with a baseline display with no decluttering; it was especially beneficial for threats in more peripheral locations, and 25 of 27 participants preferred decluttering. Heuristic automation, when properly designed to guide users' attention by decluttering less important objects, may prove valuable in many cluttered monitoring situations, including air traffic management, crisis team management, and tactical situation awareness in general.

  19. Differences in the effects of crowding on size perception and grip scaling in densely cluttered 3-D scenes.

    PubMed

    Chen, Juan; Sperandio, Irene; Goodale, Melvyn Alan

    2015-01-01

    Objects rarely appear in isolation in natural scenes. Although many studies have investigated how nearby objects influence perception in cluttered scenes (i.e., crowding), none has studied how nearby objects influence visually guided action. In Experiment 1, we found that participants could scale their grasp to the size of a crowded target even when they could not perceive its size, demonstrating for the first time that neurologically intact participants can use visual information that is not available to conscious report to scale their grasp to real objects in real scenes. In Experiments 2 and 3, we found that changing the eccentricity of the display and the orientation of the flankers had no effect on grasping but strongly affected perception. The differential effects of eccentricity and flanker orientation on perception and grasping show that the known differences in retinotopy between the ventral and dorsal streams are reflected in the way in which people deal with targets in cluttered scenes. © The Author(s) 2014.

  20. Using Virtual Reality in the Inference-Based Treatment of Compulsive Hoarding

    PubMed Central

    St-Pierre-Delorme, Marie-Eve; O’Connor, Kieron

    2016-01-01

    The present study evaluated the efficacy of adding a virtual reality (VR) component to the treatment of compulsive hoarding (CH), following inference-based therapy (IBT). Participants were randomly assigned to either an experimental or a control condition. Seven participants received the experimental and seven received the control condition. Five sessions of 1 h were administered weekly. A significant difference indicated that the level of clutter in the bedroom tended to diminish more in the experimental group as compared to the control group F(2,24) = 2.28, p = 0.10. In addition, the results demonstrated that both groups were immersed and present in the environment. The results on posttreatment measures of CH (Saving Inventory revised, Saving Cognition Inventory and Clutter Image Rating scale) demonstrate the efficacy of IBT in terms of symptom reduction. Overall, these results suggest that the creation of a virtual environment may be effective in the treatment of CH by helping the compulsive hoarders take action over their clutter. PMID:27486574

  1. Wind Turbine Clutter Mitigation in Coastal UHF Radar

    PubMed Central

    Wang, Caijun; Jiang, Dapeng; Wen, Biyang

    2014-01-01

    Coastal UHF radar provides a unique capability to measure the sea surface dynamic parameters and detect small moving targets, by exploiting the low energy loss of electromagnetic waves propagating along the salty and good conducting ocean surface. It could compensate the blind zone of HF surface wave radar at close range and reach further distance than microwave radars. However, its performance is susceptible to wind turbines which are usually installed on the shore. The size of a wind turbine is much larger than the wavelength of radio waves at UHF band, which results in large radar cross section. Furthermore, the rotation of blades adds time-varying Doppler frequency to the clutter and makes the suppression difficult. This paper proposes a mitigation method which is based on the specific periodicity of wind turbine clutter and performed mainly in the time-frequency domain. Field experimental data of a newly developed UHF radar are used to verify this method, and the results prove its effectiveness. PMID:24550709

  2. Wind turbine clutter mitigation in coastal UHF radar.

    PubMed

    Yang, Jing; Pan, Chao; Wang, Caijun; Jiang, Dapeng; Wen, Biyang

    2014-01-01

    Coastal UHF radar provides a unique capability to measure the sea surface dynamic parameters and detect small moving targets, by exploiting the low energy loss of electromagnetic waves propagating along the salty and good conducting ocean surface. It could compensate the blind zone of HF surface wave radar at close range and reach further distance than microwave radars. However, its performance is susceptible to wind turbines which are usually installed on the shore. The size of a wind turbine is much larger than the wavelength of radio waves at UHF band, which results in large radar cross section. Furthermore, the rotation of blades adds time-varying Doppler frequency to the clutter and makes the suppression difficult. This paper proposes a mitigation method which is based on the specific periodicity of wind turbine clutter and performed mainly in the time-frequency domain. Field experimental data of a newly developed UHF radar are used to verify this method, and the results prove its effectiveness.

  3. Development of an instrument for non-destructive identification of Unexploded Ordnance using tagged neutrons - a proof of concept study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitra, S.; Dioszegi, I.

    2011-10-23

    Range clearance operations at munitions testing grounds must discriminate Unexploded Ordnance (UXO) from clutter items and distinguish UXO filled with High Explosives (HE) from those with inert fillers. Non-destructive technologies are thus necessary for the cost-effective disposal of UXO during remediation of such sites. The only technique showing promise so far for the non-destructive elemental characterization of UXO fillers utilizes neutron interactions with the material to detect carbon (C), nitrogen (N) and oxygen (O) which have unique ratios in HE. However, several unresolved issues hinder the wide application of this potentially very suitable technique. The most important one is thatmore » neutrons interact with all surrounding matter in addition to the interrogated material, leading to a very high gamma-ray background in the detector. Systems requiring bulky shielding and having poor signal-to-noise ratios (SNRs) for measuring elements are unsuitable for field deployment. The inadequacies of conventional neutron interrogation methods are overcome by using the tagged-neutron approach, and the availability of compact sealed neutron generators exploiting this technique offers field deployment of non-intrusive measurement systems for detecting threat materials, like explosives and drugs. By accelerating deuterium ions into a tritium target, the subsequent fusion reaction generates nearly back-to-back emissions of neutrons and alpha particles of energy 14.1 and 3.5 MeV respectively. A position-sensitive detector recognizes the associated alpha particle, thus furnishing the direction of the neutron. The tagged neutrons interact with the nuclei of the interrogated object, producing element-specific prompt gamma-rays that the gamma detectors recognize. Measuring the delay between the detections of the alpha particle and the gamma-ray determines where the reaction occurred along the axis of the neutron beam (14.1 MeV neutrons travel at 5 cm/nanosecond, while gamma rays cover 30 cm/nanosecond). The main advantage of the technique is its ability to simultaneously provide 2D and 3D imaging of objects and their elemental composition. This work reports on the efficacy of using 14 MeV neutrons tagged by the associated particle neutron time-of-flight technique (APnTOF) to extract neutron induced characteristic gamma-rays from an object-of-interest with high SNR and without interference from nearby clutter.« less

  4. Effective biosonar echo-to-clutter rejection ratio in a complex dynamic scene.

    PubMed

    Knowles, Jeffrey M; Barchi, Jonathan R; Gaudette, Jason E; Simmons, James A

    2015-08-01

    Biosonar guidance in a rapidly changing complex scene was examined by flying big brown bats (Eptesicus fuscus) through a Y-shaped maze composed of rows of strongly reflective vertical plastic chains that presented the bat with left and right corridors for passage. Corridors were 80-100 cm wide and 2-4 m long. Using the two-choice Y-shaped paradigm to compensate for left-right bias and spatial memory, a moveable, weakly reflective thin-net barrier randomly blocked the left or right corridor, interspersed with no-barrier trials. Flight path and beam aim were tracked using an array of 24 microphones surrounding the flight room. Each bat flew on a path centered in the entry corridor (base of Y) and then turned into the left or right passage, to land on the far wall or to turn abruptly, reacting to avoid a collision. Broadcasts were broadly beamed in the direction of flight, smoothly leading into an upcoming turn. Duration of broadcasts decreased slowly from 3 to 2 ms during flights to track the chains' progressively closer ranges. Broadcast features and flight velocity changed abruptly about 1 m from the barrier, indicating that echoes from the net were perceived even though they were 18-35 dB weaker than overlapping echoes from surrounding chains.

  5. Low-Rank Matrix Recovery Approach for Clutter Rejection in Real-Time IR-UWB Radar-Based Moving Target Detection

    PubMed Central

    Sabushimike, Donatien; Na, Seung You; Kim, Jin Young; Bui, Ngoc Nam; Seo, Kyung Sik; Kim, Gil Gyeom

    2016-01-01

    The detection of a moving target using an IR-UWB Radar involves the core task of separating the waves reflected by the static background and by the moving target. This paper investigates the capacity of the low-rank and sparse matrix decomposition approach to separate the background and the foreground in the trend of UWB Radar-based moving target detection. Robust PCA models are criticized for being batched-data-oriented, which makes them inconvenient in realistic environments where frames need to be processed as they are recorded in real time. In this paper, a novel method based on overlapping-windows processing is proposed to cope with online processing. The method consists of processing a small batch of frames which will be continually updated without changing its size as new frames are captured. We prove that RPCA (via its Inexact Augmented Lagrange Multiplier (IALM) model) can successfully separate the two subspaces, which enhances the accuracy of target detection. The overlapping-windows processing method converges on the optimal solution with its batch counterpart (i.e., processing batched data with RPCA), and both methods prove the robustness and efficiency of the RPCA over the classic PCA and the commonly used exponential averaging method. PMID:27598159

  6. Wavelet-based polarimetry analysis

    NASA Astrophysics Data System (ADS)

    Ezekiel, Soundararajan; Harrity, Kyle; Farag, Waleed; Alford, Mark; Ferris, David; Blasch, Erik

    2014-06-01

    Wavelet transformation has become a cutting edge and promising approach in the field of image and signal processing. A wavelet is a waveform of effectively limited duration that has an average value of zero. Wavelet analysis is done by breaking up the signal into shifted and scaled versions of the original signal. The key advantage of a wavelet is that it is capable of revealing smaller changes, trends, and breakdown points that are not revealed by other techniques such as Fourier analysis. The phenomenon of polarization has been studied for quite some time and is a very useful tool for target detection and tracking. Long Wave Infrared (LWIR) polarization is beneficial for detecting camouflaged objects and is a useful approach when identifying and distinguishing manmade objects from natural clutter. In addition, the Stokes Polarization Parameters, which are calculated from 0°, 45°, 90°, 135° right circular, and left circular intensity measurements, provide spatial orientations of target features and suppress natural features. In this paper, we propose a wavelet-based polarimetry analysis (WPA) method to analyze Long Wave Infrared Polarimetry Imagery to discriminate targets such as dismounts and vehicles from background clutter. These parameters can be used for image thresholding and segmentation. Experimental results show the wavelet-based polarimetry analysis is efficient and can be used in a wide range of applications such as change detection, shape extraction, target recognition, and feature-aided tracking.

  7. Tile-based parallel coordinates and its application in financial visualization

    NASA Astrophysics Data System (ADS)

    Alsakran, Jamal; Zhao, Ye; Zhao, Xinlei

    2010-01-01

    Parallel coordinates technique has been widely used in information visualization applications and it has achieved great success in visualizing multivariate data and perceiving their trends. Nevertheless, visual clutter usually weakens or even diminishes its ability when the data size increases. In this paper, we first propose a tile-based parallel coordinates, where the plotting area is divided into rectangular tiles. Each tile stores an intersection density that counts the total number of polylines intersecting with that tile. Consequently, the intersection density is mapped to optical attributes, such as color and opacity, by interactive transfer functions. The method visualizes the polylines efficiently and informatively in accordance with the density distribution, and thus, reduces visual cluttering and promotes knowledge discovery. The interactivity of our method allows the user to instantaneously manipulate the tiles distribution and the transfer functions. Specifically, the classic parallel coordinates rendering is a special case of our method when each tile represents only one pixel. A case study on a real world data set, U.S. stock mutual fund data of year 2006, is presented to show the capability of our method in visually analyzing financial data. The presented visual analysis is conducted by an expert in the domain of finance. Our method gains the support from professionals in the finance field, they embrace it as a potential investment analysis tool for mutual fund managers, financial planners, and investors.

  8. Robust pedestrian detection and tracking from a moving vehicle

    NASA Astrophysics Data System (ADS)

    Tuong, Nguyen Xuan; Müller, Thomas; Knoll, Alois

    2011-01-01

    In this paper, we address the problem of multi-person detection, tracking and distance estimation in a complex scenario using multi-cameras. Specifically, we are interested in a vision system for supporting the driver in avoiding any unwanted collision with the pedestrian. We propose an approach using Histograms of Oriented Gradients (HOG) to detect pedestrians on static images and a particle filter as a robust tracking technique to follow targets from frame to frame. Because the depth map requires expensive computation, we extract depth information of targets using Direct Linear Transformation (DLT) to reconstruct 3D-coordinates of correspondent points found by running Speeded Up Robust Features (SURF) on two input images. Using the particle filter the proposed tracker can efficiently handle target occlusions in a simple background environment. However, to achieve reliable performance in complex scenarios with frequent target occlusions and complex cluttered background, results from the detection module are integrated to create feedback and recover the tracker from tracking failures due to the complexity of the environment and target appearance model variability. The proposed approach is evaluated on different data sets both in a simple background scenario and a cluttered background environment. The result shows that, by integrating detector and tracker, a reliable and stable performance is possible even if occlusion occurs frequently in highly complex environment. A vision-based collision avoidance system for an intelligent car, as a result, can be achieved.

  9. Model studies of surface noise interference in ground-probing radar

    NASA Astrophysics Data System (ADS)

    Arcone, S. A.; Delaney, A. J.

    1985-11-01

    Ground-probing radar can be an effective tool for exploring the top 10 to 20 m of ground, especially in cold regions where the freezing of water decreases signal absorption. However, the large electrical variability of the surface, combined with the short wavelengths used, can often cause severe ground clutter that can mask a desired, deeper return. In this study a model facility was constructed consisting of a metallic reflector covered by sand. Troughs of saturated sand were emplaced at the surface to carry surface electrical properties and to act as a noise source to interfere with the bottom reflections. Antenna polarization and height, and signal stacking in both static (antennas stationary) and dynamic (antennas moving) modes were then investigated as methods for reducing the surface clutter. Polarization parallel to the profile direction (perpendicular to the troughs' axes) gave profiles superior to the perpendicular case because of the dimensional sensitivity of the antenna radiation. Dynamic stacking greatly improved the signal-to-noise ratio because noise sources were averaged as the antennas moved, while the desired reflector, buried at constant depth, was enhanced. Raising the antennas above the surface also reduced noise because the surface area over which reflections were integrated increased. All three noise reduction techniques could be effective in surveys for reflectors at nearly constant depth such as groundwater tables or ice/water interfaces.

  10. Multiresolution wavelet analysis for efficient analysis, compression and remote display of long-term physiological signals.

    PubMed

    Khuan, L Y; Bister, M; Blanchfield, P; Salleh, Y M; Ali, R A; Chan, T H

    2006-06-01

    Increased inter-equipment connectivity coupled with advances in Web technology allows ever escalating amounts of physiological data to be produced, far too much to be displayed adequately on a single computer screen. The consequence is that large quantities of insignificant data will be transmitted and reviewed. This carries an increased risk of overlooking vitally important transients. This paper describes a technique to provide an integrated solution based on a single algorithm for the efficient analysis, compression and remote display of long-term physiological signals with infrequent short duration, yet vital events, to effect a reduction in data transmission and display cluttering and to facilitate reliable data interpretation. The algorithm analyses data at the server end and flags significant events. It produces a compressed version of the signal at a lower resolution that can be satisfactorily viewed in a single screen width. This reduced set of data is initially transmitted together with a set of 'flags' indicating where significant events occur. Subsequent transmissions need only involve transmission of flagged data segments of interest at the required resolution. Efficient processing and code protection with decomposition alone is novel. The fixed transmission length method ensures clutter-less display, irrespective of the data length. The flagging of annotated events in arterial oxygen saturation, electroencephalogram and electrocardiogram illustrates the generic property of the algorithm. Data reduction of 87% to 99% and improved displays are demonstrated.

  11. Expertise Effects in Face-Selective Areas are Robust to Clutter and Diverted Attention, but not to Competition.

    PubMed

    McGugin, Rankin Williams; Van Gulick, Ana E; Tamber-Rosenau, Benjamin J; Ross, David A; Gauthier, Isabel

    2015-09-01

    Expertise effects for nonface objects in face-selective brain areas may reflect stable aspects of neuronal selectivity that determine how observers perceive objects. However, bottom-up (e.g., clutter from irrelevant objects) and top-down manipulations (e.g., attentional selection) can influence activity, affecting the link between category selectivity and individual performance. We test the prediction that individual differences expressed as neural expertise effects for cars in face-selective areas are sufficiently stable to survive clutter and manipulations of attention. Additionally, behavioral work and work using event related potentials suggest that expertise effects may not survive competition; we investigate this using functional magnetic resonance imaging. Subjects varying in expertise with cars made 1-back decisions about cars, faces, and objects in displays containing one or 2 objects, with only one category attended. Univariate analyses suggest car expertise effects are robust to clutter, dampened by reducing attention to cars, but nonetheless more robust to manipulations of attention than competition. While univariate expertise effects are severely abolished by competition between cars and faces, multivariate analyses reveal new information related to car expertise. These results demonstrate that signals in face-selective areas predict expertise effects for nonface objects in a variety of conditions, although individual differences may be expressed in different dependent measures depending on task and instructions. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Summary of the Manufacture, Testing and Model Validation of a Full-Scale Radiator for Fission Surface Power Applications

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Calder, James; Siamidis, John

    2011-01-01

    A full-scale radiator for a lunar fission surface power application was manufactured by Material innovations, Inc., for the NASA Glenn Research Center. The radiator was designed to reject 6 kWt with an inlet water temperature of 400 K and a water mass flow rate of 0.5 kg/s. While not flight hardware, the radiator incorporated many potential design features and manufacturing techniques for future flight hardware. The radiator was tested at NASA Glenn Research Center for heat rejection performance. The results showed that the radiator design was capable of rejecting over 6 kWt when operating at the design conditions. The actual performance of the radiator as a function of operational manifolds, inlet water temperature and facility sink temperature was compared to the predictive model developed by NASA Glenn Research Center. The results showed excellent agreement with the model with the actual average face sheet temperature being within 1% of the predicted value. The results will be used in the design and production of NASA s next generation fission power heat rejection systems. The NASA Glenn Research Center s Technology Demonstration Unit will be the first project to take advantage of the newly developed manufacturing techniques and analytical models.

  13. Detectability of underground electrical cables junction with a ground penetrating radar: electromagnetic simulation and experimental measurements

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; serhir, mohammed; kameni, abelin; lambert, marc; pichon, lionel

    2016-04-01

    For a company like Electricity De France (EDF), being able to detect accurately using non-destructive methods the position of the buried junction between two underground cables is a crucial issue. The junction is the linking part where most maintenance operations are carried out. The challenge of this work is to conduct a feasibility study to confirm or deny the relevance of Ground Penetrating Radar (GPR) to detect these buried junctions in their actual environment against clutter. Indeed, the cables are buried in inhomogeneous medium at around 80cm deep. To do this, the study is conducted in a numerical environment. We use the 3D simulation software CST MWS to model a GPR scenario. In this simulation, we place the already optimized bowtie antennas operating in the frequency band [0.5 GHz - 3 GHz] in front of wet soil (dispersive) and dry soil where the underground cable is placed at 80cm deep. We collect the amplitude and phase of the reflected waves in order to detect the contrast provoked by the geometric dimensions variation of the cable [1] (diameter of the cable is 48mm and the diameter of the junction 74mm). The use of an ultra-wideband antenna is necessary to reconcile resolution and penetration of electromagnetic waves in the medium to be characterized. We focus on the performance of the GPR method according to the characteristics of the surrounding medium in which the electric cables are buried, the polarization of the Tx and Rx antennas. The experimental measurement collected in the EDF site will be presented. The measured data are processed using the clutter reduction method based on digital filtering [2]. We aim at showing that using the developed bowtie antennas that the GPR technique is well adapted for the cable junction localization even in cluttered environment. References [1] D. J. Daniels, "Surface-Penetrating Radar", London, IEE 1996. [2] Potin, D.; Duflos, E.; Vanheeghe, P., "Landmines Ground-Penetrating Radar Signal Enhancement by Digital Filtering," in Geoscience and Remote Sensing, IEEE Transactions on , vol.44, no.9, pp.2393-2406, Sept. 2006 .

  14. Experimental Evaluation of Camouflage Effectiveness in the Thermal Infrared (Experimentele Evaluatie van de Effectiviteit van Camouflage in het Thermische Infrarood)

    DTIC Science & Technology

    1993-03-01

    shape distortion. For recognitio , , however, camouflage rnr’f.ure" have to adjiist the tLugek signoawuie in more detail to the background clutter...ous trees, 4m height at ±100m range 4 ag.. _!tural field (seasonal plant growing) 5 ba~e soil (ploughed rough surface) 1) concrete -, face 7 Water...surlace (small pond, Im depth) 8 Up- and down hill slopes (bare seil and grass covered). North and South facing At regular intervals, the physical

  15. Combining High Dynamic Range Photography and High Range Resolution RADAR for Pre-discharge Threat Cues

    DTIC Science & Technology

    2011-08-16

    Munitions • Dragunov • AK47 • RPG • AR10 Confusers • Person with Tripod • Person with Broom Results • Dragunov, AK47 , RPG, and AR10 detected as...weapons • Person+Tripod declared as clutter • Person+Broom declared as clutter Notes • AK47 and Dragunov in same room Demo April 2010 Detection Results...tp9042 AK47 + Dragunov RPG Person + Tripod Person + Broom AR10 R an g e Sweep Number Sweep Number Declarations RADAR Data UNCLASSIFIED Summary

  16. Pulse shape discrimination for background rejection in germanium gamma-ray detectors

    NASA Technical Reports Server (NTRS)

    Feffer, P. T.; Smith, D. M.; Campbell, R. D.; Primbsch, J. H.; Lin, R. P.

    1989-01-01

    A pulse-shape discrimination (PSD) technique is developed to reject the beta-decay background resulting from activation of Ge gamma-ray detectors by cosmic-ray secondaries. These beta decays are a major source of background at 0.2-2 MeV energies in well shielded Ge detector systems. The technique exploits the difference between the detected current pulse shapes of single- and multiple-site energy depositions within the detector: beta decays are primarily single-site events, while photons at these energies typically Compton scatter before being photoelectrically absorbed to produce multiple-site events. Depending upon the amount of background due to sources other than beta decay, PSD can more than double the detector sensitivity.

  17. Sleep versus wake classification from heart rate variability using computational intelligence: consideration of rejection in classification models.

    PubMed

    Lewicke, Aaron; Sazonov, Edward; Corwin, Michael J; Neuman, Michael; Schuckers, Stephanie

    2008-01-01

    Reliability of classification performance is important for many biomedical applications. A classification model which considers reliability in the development of the model such that unreliable segments are rejected would be useful, particularly, in large biomedical data sets. This approach is demonstrated in the development of a technique to reliably determine sleep and wake using only the electrocardiogram (ECG) of infants. Typically, sleep state scoring is a time consuming task in which sleep states are manually derived from many physiological signals. The method was tested with simultaneous 8-h ECG and polysomnogram (PSG) determined sleep scores from 190 infants enrolled in the collaborative home infant monitoring evaluation (CHIME) study. Learning vector quantization (LVQ) neural network, multilayer perceptron (MLP) neural network, and support vector machines (SVMs) are tested as the classifiers. After systematic rejection of difficult to classify segments, the models can achieve 85%-87% correct classification while rejecting only 30% of the data. This corresponds to a Kappa statistic of 0.65-0.68. With rejection, accuracy improves by about 8% over a model without rejection. Additionally, the impact of the PSG scored indeterminate state epochs is analyzed. The advantages of a reliable sleep/wake classifier based only on ECG include high accuracy, simplicity of use, and low intrusiveness. Reliability of the classification can be built directly in the model, such that unreliable segments are rejected.

  18. Study of fuel cell thermal control systems for advanced missions.

    NASA Technical Reports Server (NTRS)

    Caputo, R. S.

    1972-01-01

    This study evaluated many heat rejection and thermal control concepts which could be applied to fuel cells for long term (600 hours) orbital and lunar surface missions. The concepts considered several types of radiators which utilized pumped gas, liquid and two phase working fluids and incorporated solid conduction fins as well as heat pipe (vapor chamber) fins. The comparison of the concepts was based on weight, area and other factors such as standby power, ability to accommodate heat load variation, control complexity, and meteoroid survival capability. A design selection matrix was established and an optimum (primary) and an alternate (secondary) heat rejection concept was chosen. Heat rejection techniques utilizing self-controlled heat pipe radiators dominate the results.

  19. Penalty dynamic programming algorithm for dim targets detection in sensor systems.

    PubMed

    Huang, Dayu; Xue, Anke; Guo, Yunfei

    2012-01-01

    In order to detect and track multiple maneuvering dim targets in sensor systems, an improved dynamic programming track-before-detect algorithm (DP-TBD) called penalty DP-TBD (PDP-TBD) is proposed. The performances of tracking techniques are used as a feedback to the detection part. The feedback is constructed by a penalty term in the merit function, and the penalty term is a function of the possible target state estimation, which can be obtained by the tracking methods. With this feedback, the algorithm combines traditional tracking techniques with DP-TBD and it can be applied to simultaneously detect and track maneuvering dim targets. Meanwhile, a reasonable constraint that a sensor measurement can originate from one target or clutter is proposed to minimize track separation. Thus, the algorithm can be used in the multi-target situation with unknown target numbers. The efficiency and advantages of PDP-TBD compared with two existing methods are demonstrated by several simulations.

  20. Adaptive Shape Kernel-Based Mean Shift Tracker in Robot Vision System

    PubMed Central

    2016-01-01

    This paper proposes an adaptive shape kernel-based mean shift tracker using a single static camera for the robot vision system. The question that we address in this paper is how to construct such a kernel shape that is adaptive to the object shape. We perform nonlinear manifold learning technique to obtain the low-dimensional shape space which is trained by training data with the same view as the tracking video. The proposed kernel searches the shape in the low-dimensional shape space obtained by nonlinear manifold learning technique and constructs the adaptive kernel shape in the high-dimensional shape space. It can improve mean shift tracker performance to track object position and object contour and avoid the background clutter. In the experimental part, we take the walking human as example to validate that our method is accurate and robust to track human position and describe human contour. PMID:27379165

  1. Flag-based detection of weak gas signatures in long-wave infrared hyperspectral image sequences

    NASA Astrophysics Data System (ADS)

    Marrinan, Timothy; Beveridge, J. Ross; Draper, Bruce; Kirby, Michael; Peterson, Chris

    2016-05-01

    We present a flag manifold based method for detecting chemical plumes in long-wave infrared hyperspectral movies. The method encodes temporal and spatial information related to a hyperspectral pixel into a flag, or nested sequence of linear subspaces. The technique used to create the flags pushes information about the background clutter, ambient conditions, and potential chemical agents into the leading elements of the flags. Exploiting this temporal information allows for a detection algorithm that is sensitive to the presence of weak signals. This method is compared to existing techniques qualitatively on real data and quantitatively on synthetic data to show that the flag-based algorithm consistently performs better on data when the SINRdB is low, and beats the ACE and MF algorithms in probability of detection for low probabilities of false alarm even when the SINRdB is high.

  2. A Track Initiation Method for the Underwater Target Tracking Environment

    NASA Astrophysics Data System (ADS)

    Li, Dong-dong; Lin, Yang; Zhang, Yao

    2018-04-01

    A novel efficient track initiation method is proposed for the harsh underwater target tracking environment (heavy clutter and large measurement errors): track splitting, evaluating, pruning and merging method (TSEPM). Track initiation demands that the method should determine the existence and initial state of a target quickly and correctly. Heavy clutter and large measurement errors certainly pose additional difficulties and challenges, which deteriorate and complicate the track initiation in the harsh underwater target tracking environment. There are three primary shortcomings for the current track initiation methods to initialize a target: (a) they cannot eliminate the turbulences of clutter effectively; (b) there may be a high false alarm probability and low detection probability of a track; (c) they cannot estimate the initial state for a new confirmed track correctly. Based on the multiple hypotheses tracking principle and modified logic-based track initiation method, in order to increase the detection probability of a track, track splitting creates a large number of tracks which include the true track originated from the target. And in order to decrease the false alarm probability, based on the evaluation mechanism, track pruning and track merging are proposed to reduce the false tracks. TSEPM method can deal with the track initiation problems derived from heavy clutter and large measurement errors, determine the target's existence and estimate its initial state with the least squares method. What's more, our method is fully automatic and does not require any kind manual input for initializing and tuning any parameter. Simulation results indicate that our new method improves significantly the performance of the track initiation in the harsh underwater target tracking environment.

  3. Dynamic adjustment of echolocation pulse structure of big-footed myotis (Myotis macrodactylus) in response to different habitats.

    PubMed

    Wang, Lei; Luo, Jinhong; Wang, Hongna; Ou, Wei; Jiang, Tinglei; Liu, Ying; Lyle, Dennis; Feng, Jiang

    2014-02-01

    Studying relationships between characteristics of sonar pulses and habitat clutter level is important for the understanding of signal design in bat echolocation. However, most studies have focused on overall spectral and temporal parameters of such vocalizations, with focus less on potential variation in frequency modulation rates (MRs) occurring within each pulse. In the current study, frequency modulation (FM) characteristics were examined in echolocation pulses recorded from big-footed myotis (Myotis macrodactylus) bats as these animals searched for prey in five habitats differing in relative clutter level. Pulses were analyzed using ten parameters, including four structure-related characters which were derived by dividing each pulse into three elements based on two knees in the FM sweep. Results showed that overall frequency, pulse duration, and MR all varied across habitat. The strongest effects were found for MR in the body of the pulse, implying that this particular component plays a major role as M. macrodactylus, and potentially other bat species, adjust to varying clutter levels in their foraging habitats.

  4. Road-Aided Ground Slowly Moving Target 2D Motion Estimation for Single-Channel Synthetic Aperture Radar.

    PubMed

    Wang, Zhirui; Xu, Jia; Huang, Zuzhen; Zhang, Xudong; Xia, Xiang-Gen; Long, Teng; Bao, Qian

    2016-03-16

    To detect and estimate ground slowly moving targets in airborne single-channel synthetic aperture radar (SAR), a road-aided ground moving target indication (GMTI) algorithm is proposed in this paper. First, the road area is extracted from a focused SAR image based on radar vision. Second, after stationary clutter suppression in the range-Doppler domain, a moving target is detected and located in the image domain via the watershed method. The target's position on the road as well as its radial velocity can be determined according to the target's offset distance and traffic rules. Furthermore, the target's azimuth velocity is estimated based on the road slope obtained via polynomial fitting. Compared with the traditional algorithms, the proposed method can effectively cope with slowly moving targets partly submerged in a stationary clutter spectrum. In addition, the proposed method can be easily extended to a multi-channel system to further improve the performance of clutter suppression and motion estimation. Finally, the results of numerical experiments are provided to demonstrate the effectiveness of the proposed algorithm.

  5. Detection, recognition, identification, and tracking of military vehicles using biomimetic intelligence

    NASA Astrophysics Data System (ADS)

    Pace, Paul W.; Sutherland, John

    2001-10-01

    This project is aimed at analyzing EO/IR images to provide automatic target detection/recognition/identification (ATR/D/I) of militarily relevant land targets. An increase in performance was accomplished using a biomimetic intelligence system functioning on low-cost, commercially available processing chips. Biomimetic intelligence has demonstrated advanced capabilities in the areas of hand- printed character recognition, real-time detection/identification of multiple faces in full 3D perspectives in cluttered environments, advanced capabilities in classification of ground-based military vehicles from SAR, and real-time ATR/D/I of ground-based military vehicles from EO/IR/HRR data in cluttered environments. The investigation applied these tools to real data sets and examined the parameters such as the minimum resolution for target recognition, the effect of target size, rotation, line-of-sight changes, contrast, partial obscuring, background clutter etc. The results demonstrated a real-time ATR/D/I capability against a subset of militarily relevant land targets operating in a realistic scenario. Typical results on the initial EO/IR data indicate probabilities of correct classification of resolved targets to be greater than 95 percent.

  6. Ultrasonic technique for inspection of GPHS capsule girth weld integrity

    NASA Astrophysics Data System (ADS)

    Placr, Arnost

    1993-05-01

    An innovative nondestructive examination (NDE) technique for the inspection of integrity of General Purpose Heat Source (GPHS) capsule girth welds was developed employing a Lamb wave as the mode of the sound propagation. Reliability of the Lamb wave technique was tested on GPHS capsules using plutonium pallet simulators. All ten capsules, which were previously rejected, passed ultrasonic (UT) inspection using the Lamb wave technique.

  7. Supporting the Growing Needs of the GIS Industry

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Visual Learning Systems, Inc. (VLS), of Missoula, Montana, has developed a commercial software application called Feature Analyst. Feature Analyst was conceived under a Small Business Innovation Research (SBIR) contract with NASA's Stennis Space Center, and through the Montana State University TechLink Center, an organization funded by NASA and the U.S. Department of Defense to link regional companies with Federal laboratories for joint research and technology transfer. The software provides a paradigm shift to automated feature extraction, as it utilizes spectral, spatial, temporal, and ancillary information to model the feature extraction process; presents the ability to remove clutter; incorporates advanced machine learning techniques to supply unparalleled levels of accuracy; and includes an exceedingly simple interface for feature extraction.

  8. Description, characteristics and testing of the NASA airborne radar

    NASA Technical Reports Server (NTRS)

    Jones, W. R.; Altiz, O.; Schaffner, P.; Schrader, J. H.; Blume, H. J. C.

    1991-01-01

    Presented here is a description of a coherent radar scattermeter and its associated signal processing hardware, which have been specifically designed to detect microbursts and record their radar characteristics. Radar parameters, signal processing techniques and detection algorithms, all under computer control, combine to sense and process reflectivity, clutter, and microburst data. Also presented is the system's high density, high data rate recording system. This digital system is capable of recording many minutes of the in-phase and quadrature components and corresponding receiver gains of the scattered returns for selected spatial regions, as well as other aircraft and hardware related parameters of interest for post-flight analysis. Information is given in viewgraph form.

  9. A Behavior-Based Strategy for Single and Multi-Robot Autonomous Exploration

    PubMed Central

    Cepeda, Jesus S.; Chaimowicz, Luiz; Soto, Rogelio; Gordillo, José L.; Alanís-Reyes, Edén A.; Carrillo-Arce, Luis C.

    2012-01-01

    In this paper, we consider the problem of autonomous exploration of unknown environments with single and multiple robots. This is a challenging task, with several potential applications. We propose a simple yet effective approach that combines a behavior-based navigation with an efficient data structure to store previously visited regions. This allows robots to safely navigate, disperse and efficiently explore the environment. A series of experiments performed using a realistic robotic simulator and a real testbed scenario demonstrate that our technique effectively distributes the robots over the environment and allows them to quickly accomplish their mission in large open spaces, narrow cluttered environments, dead-end corridors, as well as rooms with minimum exits.

  10. Visual processing speed.

    PubMed

    Owsley, Cynthia

    2013-09-20

    Older adults commonly report difficulties in visual tasks of everyday living that involve visual clutter, secondary task demands, and time sensitive responses. These difficulties often cannot be attributed to visual sensory impairment. Techniques for measuring visual processing speed under divided attention conditions and among visual distractors have been developed and have established construct validity in that those older adults performing poorly in these tests are more likely to exhibit daily visual task performance problems. Research suggests that computer-based training exercises can increase visual processing speed in older adults and that these gains transfer to enhancement of health and functioning and a slowing in functional and health decline as people grow older. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Visual environment recognition for robot path planning using template matched filters

    NASA Astrophysics Data System (ADS)

    Orozco-Rosas, Ulises; Picos, Kenia; Díaz-Ramírez, Víctor H.; Montiel, Oscar; Sepúlveda, Roberto

    2017-08-01

    A visual approach in environment recognition for robot navigation is proposed. This work includes a template matching filtering technique to detect obstacles and feasible paths using a single camera to sense a cluttered environment. In this problem statement, a robot can move from the start to the goal by choosing a single path between multiple possible ways. In order to generate an efficient and safe path for mobile robot navigation, the proposal employs a pseudo-bacterial potential field algorithm to derive optimal potential field functions using evolutionary computation. Simulation results are evaluated in synthetic and real scenes in terms of accuracy of environment recognition and efficiency of path planning computation.

  12. Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts.

    PubMed Central

    MacMillan-Crow, L A; Crow, J P; Kerby, J D; Beckman, J S; Thompson, J A

    1996-01-01

    Inflammatory processes in chronic rejection remain a serious clinical problem in organ transplantation. Activated cellular infiltrate produces high levels of both superoxide and nitric oxide. These reactive oxygen species interact to form peroxynitrite, a potent oxidant that can modify proteins to form 3-nitrotyrosine. We identified enhanced immunostaining for nitrotyrosine localized to tubular epithelium of chronically rejected human renal allografts. Western blot analysis of rejected tissue demonstrated that tyrosine nitration was restricted to a few specific polypeptides. Immunoprecipitation and amino acid sequencing techniques identified manganese superoxide dismutase, the major antioxidant enzyme in mitochondria, as one of the targets of tyrosine nitration. Total manganese superoxide dismutase protein was increased in rejected kidney, particularly in the tubular epithelium; however, enzymatic activity was significantly decreased. Exposure of recombinant human manganese superoxide dismutase to peroxynitrite resulted in a dose-dependent (IC50 = 10 microM) decrease in enzymatic activity and concomitant increase in tyrosine nitration. Collectively, these observations suggest a role for peroxynitrite during development and progression of chronic rejection in human renal allografts. In addition, inactivation of manganese superoxide dismutase by peroxynitrite may represent a general mechanism that progressively increases the production of peroxynitrite, leading to irreversible oxidative injury to mitochondria. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8876227

  13. Applied adaptive disturbance rejection using output redefinition on magnetic bearings

    NASA Astrophysics Data System (ADS)

    Matras, Alex Logan

    Recent work has shown Adaptive Disturbance Rejection to be an effective technique for rejecting forces due to imbalance, runout and base motion disturbances on flywheels supported by magnetic bearings over a large span of frequencies. Often the applicability of some of the adaptive methods is limited because they require certain properties (such as almost-strict positive realness) that magnetic bearings do not possess. In this thesis, one method for adaptive disturbance rejection, called Adaptive Feedforward Cancellation (AFC), is modified to allow for a much wider range of frequencies to be rejected. This is accomplished by redefining the output of the original system to be the output from a reduced order state estimator instead. This can give a new system with an infinite gain margin. Additionally, the adaptation laws for the two disturbance rejection gains are slightly modified so that each adapts to a different signal in order to provide the best performance. A detailed model of a magnetic bearing is developed and computer simulations based on that model are performed to give an initial test of the new control law. A state-of-the-art magnetic bearing setup is then developed and used to implement the new control laws and determine their effectiveness. The results are successful and validate the new ideas that are presented.

  14. Respiratory Artefact Removal in Forced Oscillation Measurements: A Machine Learning Approach.

    PubMed

    Pham, Thuy T; Thamrin, Cindy; Robinson, Paul D; McEwan, Alistair L; Leong, Philip H W

    2017-08-01

    Respiratory artefact removal for the forced oscillation technique can be treated as an anomaly detection problem. Manual removal is currently considered the gold standard, but this approach is laborious and subjective. Most existing automated techniques used simple statistics and/or rejected anomalous data points. Unfortunately, simple statistics are insensitive to numerous artefacts, leading to low reproducibility of results. Furthermore, rejecting anomalous data points causes an imbalance between the inspiratory and expiratory contributions. From a machine learning perspective, such methods are unsupervised and can be considered simple feature extraction. We hypothesize that supervised techniques can be used to find improved features that are more discriminative and more highly correlated with the desired output. Features thus found are then used for anomaly detection by applying quartile thresholding, which rejects complete breaths if one of its features is out of range. The thresholds are determined by both saliency and performance metrics rather than qualitative assumptions as in previous works. Feature ranking indicates that our new landmark features are among the highest scoring candidates regardless of age across saliency criteria. F1-scores, receiver operating characteristic, and variability of the mean resistance metrics show that the proposed scheme outperforms previous simple feature extraction approaches. Our subject-independent detector, 1IQR-SU, demonstrated approval rates of 80.6% for adults and 98% for children, higher than existing methods. Our new features are more relevant. Our removal is objective and comparable to the manual method. This is a critical work to automate forced oscillation technique quality control.

  15. Neyman Pearson detection of K-distributed random variables

    NASA Astrophysics Data System (ADS)

    Tucker, J. Derek; Azimi-Sadjadi, Mahmood R.

    2010-04-01

    In this paper a new detection method for sonar imagery is developed in K-distributed background clutter. The equation for the log-likelihood is derived and compared to the corresponding counterparts derived for the Gaussian and Rayleigh assumptions. Test results of the proposed method on a data set of synthetic underwater sonar images is also presented. This database contains images with targets of different shapes inserted into backgrounds generated using a correlated K-distributed model. Results illustrating the effectiveness of the K-distributed detector are presented in terms of probability of detection, false alarm, and correct classification rates for various bottom clutter scenarios.

  16. Background rejection in NEXT using deep neural networks

    DOE PAGES

    Renner, J.; Farbin, A.; Vidal, J. Muñoz; ...

    2017-01-16

    Here, we investigate the potential of using deep learning techniques to reject background events in searches for neutrinoless double beta decay with high pressure xenon time projection chambers capable of detailed track reconstruction. The differences in the topological signatures of background and signal events can be learned by deep neural networks via training over many thousands of events. These networks can then be used to classify further events as signal or background, providing an additional background rejection factor at an acceptable loss of efficiency. The networks trained in this study performed better than previous methods developed based on the usemore » of the same topological signatures by a factor of 1.2 to 1.6, and there is potential for further improvement.« less

  17. Location detection and tracking of moving targets by a 2D IR-UWB radar system.

    PubMed

    Nguyen, Van-Han; Pyun, Jae-Young

    2015-03-19

    In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking.

  18. Ultrafast Harmonic Coherent Compound (UHCC) imaging for high frame rate echocardiography and Shear Wave Elastography

    PubMed Central

    Correia, Mafalda; Provost, Jean; Chatelin, Simon; Villemain, Olivier; Tanter, Mickael; Pernot, Mathieu

    2016-01-01

    Transthoracic shear wave elastography of the myocardium remains very challenging due to the poor quality of transthoracic ultrafast imaging and the presence of clutter noise, jitter, phase aberration, and ultrasound reverberation. Several approaches, such as, e.g., diverging-wave coherent compounding or focused harmonic imaging have been proposed to improve the imaging quality. In this study, we introduce ultrafast harmonic coherent compounding (UHCC), in which pulse-inverted diverging-waves are emitted and coherently compounded, and show that such an approach can be used to enhance both Shear Wave Elastography (SWE) and high frame rate B-mode Imaging. UHCC SWE was first tested in phantoms containing an aberrating layer and was compared against pulse-inversion harmonic imaging and against ultrafast coherent compounding (UCC) imaging at the fundamental frequency. In-vivo feasibility of the technique was then evaluated in six healthy volunteers by measuring myocardial stiffness during diastole in transthoracic imaging. We also demonstrated that improvements in imaging quality could be achieved using UHCC B-mode imaging in healthy volunteers. The quality of transthoracic images of the heart was found to be improved with the number of pulse-inverted diverging waves with reduction of the imaging mean clutter level up to 13.8-dB when compared against UCC at the fundamental frequency. These results demonstrated that UHCC B-mode imaging is promising for imaging deep tissues exposed to aberration sources with a high frame-rate. PMID:26890730

  19. Interplay between immune responses to HLA and non-HLA self-antigens in allograft rejection.

    PubMed

    Angaswamy, Nataraju; Tiriveedhi, Venkataswarup; Sarma, Nayan J; Subramanian, Vijay; Klein, Christina; Wellen, Jason; Shenoy, Surendra; Chapman, William C; Mohanakumar, T

    2013-11-01

    Recent studies strongly suggest an increasing role for immune responses against self-antigens (Ags) which are not encoded by the major histocompatibility complex in the immunopathogenesis of allograft rejection. Although, improved surgical techniques coupled with improved methods to detect and avoid sensitization against donor human leukocyte antigen (HLA) have improved the immediate and short term function of transplanted organs. However, acute and chronic rejection still remains a vexing problem for the long term function of the transplanted organ. Immediately following organ transplantation, several factors both immune and non immune mechanisms lead to the development of local inflammatory milieu which sets the stage for allograft rejection. Traditionally, development of antibodies (Abs) against mismatched donor HLA have been implicated in the development of Ab mediated rejection. However, recent studies from our laboratory and others have demonstrated that development of humoral and cellular immune responses against non-HLA self-Ags may contribute in the pathogenesis of allograft rejection. There are reports demonstrating that immune responses to self-Ags especially Abs to the self-Ags as well as cellular immune responses especially through IL17 has significant pro-fibrotic properties leading to chronic allograft failure. This review summarizes recent studies demonstrating the role for immune responses to self-Ags in allograft immunity leading to rejection as well as present recent evidence suggesting there is interplay between allo- and autoimmunity leading to allograft dysfunction. Copyright © 2013 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  20. Study of thermal management for space platform applications

    NASA Technical Reports Server (NTRS)

    Oren, J. A.

    1980-01-01

    Techniques for the management of the thermal energy of large space platforms using many hundreds of kilowatts over a 10 year life span were evaluated. Concepts for heat rejection, heat transport within the vehicle, and interfacing were analyzed and compared. The heat rejection systems were parametrically weight optimized over conditions for heat pipe and pumped fluid approaches. Two approaches to achieve reliability were compared for: performance, weight, volume, projected area, reliability, cost, and operational characteristics. Technology needs are assessed and technology advancement recommendations are made.

  1. Feasibility of Small Animal Anatomical and Functional Imaging with Neutrons: A Monte Carlo Simulation Study

    NASA Astrophysics Data System (ADS)

    Medich, David C.; Currier, Blake H.; Karellas, Andrew

    2014-10-01

    A novel technique is presented for obtaining a single in-vivo image containing both functional and anatomical information in a small animal model such as a mouse. This technique, which incorporates appropriate image neutron-scatter rejection and uses a neutron opaque contrast agent, is based on neutron radiographic technology and was demonstrated through a series of Monte Carlo simulations. With respect to functional imaging, this technique can be useful in biomedical and biological research because it could achieve a spatial resolution orders of magnitude better than what presently can be achieved with current functional imaging technologies such as nuclear medicine (PET, SPECT) and fMRI. For these studies, Monte Carlo simulations were performed with thermal (0.025 eV) neutrons in a 3 cm thick phantom using the MCNP5 simulations software. The goals of these studies were to determine: 1) the extent that scattered neutrons degrade image contrast; 2) the contrasts of various normal and diseased tissues under conditions of complete scatter rejection; 3) the concentrations of Boron-10 and Gadolinium-157 required for contrast differentiation in functional imaging; and 4) the efficacy of collimation for neutron scatter image rejection. Results demonstrate that with proper neutron-scatter rejection, a neutron fluence of 2 ×107 n/cm2 will provide a signal to noise ratio of at least one ( S/N ≥ 1) when attempting to image various 300 μm thick tissues placed in a 3 cm thick phantom. Similarly, a neutron fluence of only 1 ×107 n/cm2 is required to differentiate a 300 μm thick diseased tissue relative to its normal tissue counterpart. The utility of a B-10 contrast agent was demonstrated at a concentration of 50 μg/g to achieve S/N ≥ 1 in 0.3 mm thick tissues while Gd-157 requires only slightly more than 10 μg/g to achieve the same level of differentiation. Lastly, neutron collimator with an L/D ratio from 50 to 200 were calculated to provide appropriate scatter rejection for thick tissue biological imaging with neutrons.

  2. Multiline 3D beamforming using micro-beamformed datasets for pediatric transesophageal echocardiography

    NASA Astrophysics Data System (ADS)

    Bera, D.; Raghunathan, S. B.; Chen, C.; Chen, Z.; Pertijs, M. A. P.; Verweij, M. D.; Daeichin, V.; Vos, H. J.; van der Steen, A. F. W.; de Jong, N.; Bosch, J. G.

    2018-04-01

    Until now, no matrix transducer has been realized for 3D transesophageal echocardiography (TEE) in pediatric patients. In 3D TEE with a matrix transducer, the biggest challenges are to connect a large number of elements to a standard ultrasound system, and to achieve a high volume rate (>200 Hz). To address these issues, we have recently developed a prototype miniaturized matrix transducer for pediatric patients with micro-beamforming and a small central transmitter. In this paper we propose two multiline parallel 3D beamforming techniques (µBF25 and µBF169) using the micro-beamformed datasets from 25 and 169 transmit events to achieve volume rates of 300 Hz and 44 Hz, respectively. Both the realizations use angle-weighted combination of the neighboring overlapping sub-volumes to avoid artifacts due to sharp intensity changes introduced by parallel beamforming. In simulation, the image quality in terms of the width of the point spread function (PSF), lateral shift invariance and mean clutter level for volumes produced by µBF25 and µBF169 are similar to the idealized beamforming using a conventional single-line acquisition with a fully-sampled matrix transducer (FS4k, 4225 transmit events). For completeness, we also investigated a 9 transmit-scheme (3  ×  3) that allows even higher frame rates but found worse B-mode image quality with our probe. The simulations were experimentally verified by acquiring the µBF datasets from the prototype using a Verasonics V1 research ultrasound system. For both µBF169 and µBF25, the experimental PSFs were similar to the simulated PSFs, but in the experimental PSFs, the clutter level was ~10 dB higher. Results indicate that the proposed multiline 3D beamforming techniques with the prototype matrix transducer are promising candidates for real-time pediatric 3D TEE.

  3. Target-Oriented High-Resolution SAR Image Formation via Semantic Information Guided Regularizations

    NASA Astrophysics Data System (ADS)

    Hou, Biao; Wen, Zaidao; Jiao, Licheng; Wu, Qian

    2018-04-01

    Sparsity-regularized synthetic aperture radar (SAR) imaging framework has shown its remarkable performance to generate a feature enhanced high resolution image, in which a sparsity-inducing regularizer is involved by exploiting the sparsity priors of some visual features in the underlying image. However, since the simple prior of low level features are insufficient to describe different semantic contents in the image, this type of regularizer will be incapable of distinguishing between the target of interest and unconcerned background clutters. As a consequence, the features belonging to the target and clutters are simultaneously affected in the generated image without concerning their underlying semantic labels. To address this problem, we propose a novel semantic information guided framework for target oriented SAR image formation, which aims at enhancing the interested target scatters while suppressing the background clutters. Firstly, we develop a new semantics-specific regularizer for image formation by exploiting the statistical properties of different semantic categories in a target scene SAR image. In order to infer the semantic label for each pixel in an unsupervised way, we moreover induce a novel high-level prior-driven regularizer and some semantic causal rules from the prior knowledge. Finally, our regularized framework for image formation is further derived as a simple iteratively reweighted $\\ell_1$ minimization problem which can be conveniently solved by many off-the-shelf solvers. Experimental results demonstrate the effectiveness and superiority of our framework for SAR image formation in terms of target enhancement and clutters suppression, compared with the state of the arts. Additionally, the proposed framework opens a new direction of devoting some machine learning strategies to image formation, which can benefit the subsequent decision making tasks.

  4. Biomimetic Signal Processing Using the Biosonar Measurement Tool (BMT)

    NASA Astrophysics Data System (ADS)

    Abawi, Ahmad T.; Hursky, Paul; Porter, Michael B.; Tiemann, Chris; Martin, Stephen

    2004-11-01

    In this paper data recorded on the Biosonar Measurement Tool (BMT) during a target echolocation experiment are used to 1) find ways to separate target echoes from clutter echoes, 2) analyze target returns and 3) find features in target returns that distinguish them from clutter returns. The BMT is an instrumentation package used in dolphin echolocation experiments developed at SPAWARSYSCEN. It can be held by the dolphin using a bite-plate during echolocation experiments and records the movement and echolocation strategy of a target-hunting dolphin without interfering with its motion through the search field. The BMT was developed to record a variety of data from a free-swimming dolphin engaged in a bottom target detection task. These data include the three dimensional location of the dolphin, including its heading, pitch roll and velocity as well as passive acoustic data recorded on three channels. The outgoing dolphin click is recorded on one channel and the resulting echoes are recorded on the two remaining channels. For each outgoing click the BMT records a large number of echoes that come from the entire ensonified field. Given the large number of transmitted clicks and the returned echoes, it is almost impossible to find a target return from the recorded data on the BMT. As a means of separating target echoes from those of clutter, an echo-mapping tool was developed. This tool produces an echomap on which echoes from targets (and other regular objects such as surface buoys, the side of a boat and so on) stack together as tracks, while echoes from clutter are scattered. Once these tracks are identified, the retuned echoes can easily be extracted for further analysis.

  5. Hyperspectral target detection analysis of a cluttered scene from a virtual airborne sensor platform using MuSES

    NASA Astrophysics Data System (ADS)

    Packard, Corey D.; Viola, Timothy S.; Klein, Mark D.

    2017-10-01

    The ability to predict spectral electro-optical (EO) signatures for various targets against realistic, cluttered backgrounds is paramount for rigorous signature evaluation. Knowledge of background and target signatures, including plumes, is essential for a variety of scientific and defense-related applications including contrast analysis, camouflage development, automatic target recognition (ATR) algorithm development and scene material classification. The capability to simulate any desired mission scenario with forecast or historical weather is a tremendous asset for defense agencies, serving as a complement to (or substitute for) target and background signature measurement campaigns. In this paper, a systematic process for the physical temperature and visible-through-infrared radiance prediction of several diverse targets in a cluttered natural environment scene is presented. The ability of a virtual airborne sensor platform to detect and differentiate targets from a cluttered background, from a variety of sensor perspectives and across numerous wavelengths in differing atmospheric conditions, is considered. The process described utilizes the thermal and radiance simulation software MuSES and provides a repeatable, accurate approach for analyzing wavelength-dependent background and target (including plume) signatures in multiple band-integrated wavebands (multispectral) or hyperspectrally. The engineering workflow required to combine 3D geometric descriptions, thermal material properties, natural weather boundary conditions, all modes of heat transfer and spectral surface properties is summarized. This procedure includes geometric scene creation, material and optical property attribution, and transient physical temperature prediction. Radiance renderings, based on ray-tracing and the Sandford-Robertson BRDF model, are coupled with MODTRAN for the inclusion of atmospheric effects. This virtual hyperspectral/multispectral radiance prediction methodology has been extensively validated and provides a flexible process for signature evaluation and algorithm development.

  6. Autonomous UAV-Based Mapping of Large-Scale Urban Firefights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snarski, S; Scheibner, K F; Shaw, S

    2006-03-09

    This paper describes experimental results from a live-fire data collect designed to demonstrate the ability of IR and acoustic sensing systems to detect and map high-volume gunfire events from tactical UAVs. The data collect supports an exploratory study of the FightSight concept in which an autonomous UAV-based sensor exploitation and decision support capability is being proposed to provide dynamic situational awareness for large-scale battalion-level firefights in cluttered urban environments. FightSight integrates IR imagery, acoustic data, and 3D scene context data with prior time information in a multi-level, multi-step probabilistic-based fusion process to reliably locate and map the array of urbanmore » firing events and firepower movements and trends associated with the evolving urban battlefield situation. Described here are sensor results from live-fire experiments involving simultaneous firing of multiple sub/super-sonic weapons (2-AK47, 2-M16, 1 Beretta, 1 Mortar, 1 rocket) with high optical and acoustic clutter at ranges up to 400m. Sensor-shooter-target configurations and clutter were designed to simulate UAV sensing conditions for a high-intensity firefight in an urban environment. Sensor systems evaluated were an IR bullet tracking system by Lawrence Livermore National Laboratory (LLNL) and an acoustic gunshot detection system by Planning Systems, Inc. (PSI). The results demonstrate convincingly the ability for the LLNL and PSI sensor systems to accurately detect, separate, and localize multiple shooters and the associated shot directions during a high-intensity firefight (77 rounds in 5 sec) in a high acoustic and optical clutter environment with no false alarms. Preliminary fusion processing was also examined that demonstrated an ability to distinguish co-located shooters (shooter density), range to <0.5 m accuracy at 400m, and weapon type.« less

  7. Ground Clutter as a Monitor of Radar Stability at Kwajalein,RMI

    NASA Technical Reports Server (NTRS)

    Silberstein, David S.; Wolff, David B.; Marks, David A.; Atlas, David; Pippitt, Jason L.

    2007-01-01

    There are many applications in which the absolute and day-to-day calibration of radar sensitivity is necessary. This is particularly so in the case of quantitative radar measurements of precipitation. While absolute calibrations can be done periodically using solar radiation, variations that occur between such absolute checks are required to maintain the accuracy of the data. The authors have developed a method for h s purpose using the radar on Kwajalein Atoll, which has been used to provide a baseline calibration for control of measurements of rainfall made by the Tropical Rainfall Measuring Mission 0T.he method u ses echoes from a multiplicity of ground targets. The average clutter echoes at the lowest elevation scan have been found to be remarkably stable from hour to hour, day to day, and month to month within better than +1 dB. They vary significantly only after either deliberate system modifications, equipment failure or unknown causes. A cumulative probability distribution of echo reflectivities (Ze in dBZ) is obtained on a daily basis. This CDF includes both the precipitation and clutter echoes. Because the precipitation echoes at Kwajalein rarely exceed 45 dBZ, selecting an upper percentile of the CDF associated with intense clutter reflectivities permits monitoring of radar stability. The reflectivity level at which the CDF attains 95% is our reference. Daily measurements of the CDFs have been made since August 1999 and have been used to correct the 7 M years of measurements and thus enhance the integrity of the global record of precipitation observed by TRMM. The method also has potential applicability to other pound radar sites.

  8. Magnetoelectric gradiometer with enhanced vibration rejection efficiency under H-field modulation

    NASA Astrophysics Data System (ADS)

    Xu, Junran; Zhuang, Xin; Leung, Chung Ming; Staruch, Margo; Finkel, Peter; Li, Jiefang; Viehland, D.

    2018-03-01

    A magnetoelectric (ME) gradiometer consisting of two Metglas/Pb(Zr,Ti)O3 fiber-based sensors has been developed. The equivalent magnetic noise of both sensors was first determined to be about 60 pT/√Hz while using an H-field modulation technique. The common mode rejection ratio of a gradiometer based on these two sensors was determined to be 74. The gradiometer response curve was then measured, which provided the dependence of the gradiometer output as a function of the source-gradiometer-normalized distance. Investigations in the presence of vibration noise revealed that a ME gradiometer consisting of two ME magnetometers working under H-field modulation was capable of significant vibration rejection. The results were compared to similar studies of ME gradiometers operated in a passive working mode. Our findings demonstrate that this active gradiometer has a good vibration rejection capability in the presence of both magnetic signals and vibration noise/interferences by using two magnetoelectric sensors operated under H-field modulation.

  9. 24/7 security system: 60-FPS color EMCCD camera with integral human recognition

    NASA Astrophysics Data System (ADS)

    Vogelsong, T. L.; Boult, T. E.; Gardner, D. W.; Woodworth, R.; Johnson, R. C.; Heflin, B.

    2007-04-01

    An advanced surveillance/security system is being developed for unattended 24/7 image acquisition and automated detection, discrimination, and tracking of humans and vehicles. The low-light video camera incorporates an electron multiplying CCD sensor with a programmable on-chip gain of up to 1000:1, providing effective noise levels of less than 1 electron. The EMCCD camera operates in full color mode under sunlit and moonlit conditions, and monochrome under quarter-moonlight to overcast starlight illumination. Sixty frame per second operation and progressive scanning minimizes motion artifacts. The acquired image sequences are processed with FPGA-compatible real-time algorithms, to detect/localize/track targets and reject non-targets due to clutter under a broad range of illumination conditions and viewing angles. The object detectors that are used are trained from actual image data. Detectors have been developed and demonstrated for faces, upright humans, crawling humans, large animals, cars and trucks. Detection and tracking of targets too small for template-based detection is achieved. For face and vehicle targets the results of the detection are passed to secondary processing to extract recognition templates, which are then compared with a database for identification. When combined with pan-tilt-zoom (PTZ) optics, the resulting system provides a reliable wide-area 24/7 surveillance system that avoids the high life-cycle cost of infrared cameras and image intensifiers.

  10. Effective biosonar echo-to-clutter rejection ratio in a complex dynamic scene

    PubMed Central

    Knowles, Jeffrey M.; Barchi, Jonathan R.; Gaudette, Jason E.; Simmons, James A.

    2015-01-01

    Biosonar guidance in a rapidly changing complex scene was examined by flying big brown bats (Eptesicus fuscus) through a Y-shaped maze composed of rows of strongly reflective vertical plastic chains that presented the bat with left and right corridors for passage. Corridors were 80–100 cm wide and 2–4 m long. Using the two-choice Y-shaped paradigm to compensate for left–right bias and spatial memory, a moveable, weakly reflective thin-net barrier randomly blocked the left or right corridor, interspersed with no-barrier trials. Flight path and beam aim were tracked using an array of 24 microphones surrounding the flight room. Each bat flew on a path centered in the entry corridor (base of Y) and then turned into the left or right passage, to land on the far wall or to turn abruptly, reacting to avoid a collision. Broadcasts were broadly beamed in the direction of flight, smoothly leading into an upcoming turn. Duration of broadcasts decreased slowly from 3 to 2 ms during flights to track the chains' progressively closer ranges. Broadcast features and flight velocity changed abruptly about 1 m from the barrier, indicating that echoes from the net were perceived even though they were 18–35 dB weaker than overlapping echoes from surrounding chains. PMID:26328724

  11. Ultrasound molecular imaging of acute cardiac transplantation rejection using nanobubbles targeted to T lymphocytes.

    PubMed

    Liu, Jinfeng; Chen, Yihan; Wang, Guohua; Lv, Qing; Yang, Yali; Wang, Jing; Zhang, Pingyu; Liu, Jie; Xie, Yu; Zhang, Li; Xie, Mingxing

    2018-04-01

    Clinical surveillance of acute heart transplantation rejection requires repeated invasive endomyocardial biopsies and noninvasive diagnostic techniques are desperately needed. It is acknowledged that T lymphocyte infiltration is the central process of acute rejection. We hypothesized that ultrasound molecular imaging with T lymphocyte-targeted nanobubbles could be used to detect acute rejection in heart transplantation. In this study, nanobubbles bearing anti-CD3 antibody (NB CD3 ) or isotype antibody (NB con ) were prepared and characterized. There was significant adhesion of NB CD3 to T lymphocytes compared with NB con in vitro. The signal intensity of the adherent NB CD3 was significantly higher than that of the NB con in allograft rats, but not significantly different in isograft rats. Furthermore, the signal intensity of NB CD3 in allograft rats was significantly higher than that in isograft rats, indicating more T lymphocyte infiltration in allograft rats compared with isograft rats. These results were further confirmed by immunohistochemistry examination, and the signal intensity of NB CD3 was positively correlated with the number of T lymphocytes in allograft rats. In summary, ultrasound molecular imaging with T lymphocyte-targeted nanobubbles can detect T lymphocyte infiltration in acute rejection and could be used as a noninvasive method in acute rejection detection after cardiac transplantation. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Stochastic-Constraints Method in Nonstationary Hot-Clutter Cancellation Part II: Unsupervised Training Applications

    DTIC Science & Technology

    2003-04-01

    N (1) j =1 would lead to effective cold-clutter mitigation within the output snapshot ikt, ie. eir irl - lbJO 2 IMQ kt = T RoJi~ + j - 1 2 R2 + 󈨑...I 4k-2, t j i k-.., t ] (10) Note that the particular parameters used- in [9, 2] to simulate HF scattering from the sea K=2, bo= 1, b6 =-1.9359, b2=0.998...the construction of R,+I and R,c+ 2. The system of r stochastic constraints corresponding to Wk - j , t k.lt zik- j , t for j = l,..., . (12) may then be

  13. Comparison of simulated and actual wind shear radar data products

    NASA Technical Reports Server (NTRS)

    Britt, Charles L.; Crittenden, Lucille H.

    1992-01-01

    Prior to the development of the NASA experimental wind shear radar system, extensive computer simulations were conducted to determine the performance of the radar in combined weather and ground clutter environments. The simulation of the radar used analytical microburst models to determine weather returns and synthetic aperture radar (SAR) maps to determine ground clutter returns. These simulations were used to guide the development of hazard detection algorithms and to predict their performance. The structure of the radar simulation is reviewed. Actual flight data results from the Orlando and Denver tests are compared with simulated results. Areas of agreement and disagreement of actual and simulated results are shown.

  14. Clutter isolation and cardiac monitoring using harmonic doppler radar with heterodyne receiver and passive RF tags.

    PubMed

    Singh, Aditya; Lubecke, Victor

    2010-01-01

    A harmonic radar employing the use of harmonic passive RF tags can be successfully used to isolate the human respiration from environmental clutter. This paper describes the successful use of heterodyne receiver architecture with Doppler radar to track the heart-rate of a human being using passive body-worn harmonic tags in presence of a controlled noise generator at distances up to 120 cm. The heterodyne system results have been compared with those of a conventional Doppler radar for cardiopulmonary monitoring that fails to isolate the noise from heart-rate in presence of a noise source.

  15. Analysis and improved design considerations for airborne pulse Doppler radar signal processing in the detection of hazardous windshear

    NASA Technical Reports Server (NTRS)

    Lee, Jonggil

    1990-01-01

    High resolution windspeed profile measurements are needed to provide reliable detection of hazardous low altitude windshear with an airborne pulse Doppler radar. The system phase noise in a Doppler weather radar may degrade the spectrum moment estimation quality and the clutter cancellation capability which are important in windshear detection. Also the bias due to weather return Doppler spectrum skewness may cause large errors in pulse pair spectral parameter estimates. These effects are analyzed for the improvement of an airborne Doppler weather radar signal processing design. A method is presented for the direct measurement of windspeed gradient using low pulse repetition frequency (PRF) radar. This spatial gradient is essential in obtaining the windshear hazard index. As an alternative, the modified Prony method is suggested as a spectrum mode estimator for both the clutter and weather signal. Estimation of Doppler spectrum modes may provide the desired windshear hazard information without the need of any preliminary processing requirement such as clutter filtering. The results obtained by processing a NASA simulation model output support consideration of mode identification as one component of a windshear detection algorithm.

  16. Space moving target detection and tracking method in complex background

    NASA Astrophysics Data System (ADS)

    Lv, Ping-Yue; Sun, Sheng-Li; Lin, Chang-Qing; Liu, Gao-Rui

    2018-06-01

    The background of the space-borne detectors in real space-based environment is extremely complex and the signal-to-clutter ratio is very low (SCR ≈ 1), which increases the difficulty for detecting space moving targets. In order to solve this problem, an algorithm combining background suppression processing based on two-dimensional least mean square filter (TDLMS) and target enhancement based on neighborhood gray-scale difference (GSD) is proposed in this paper. The latter can filter out most of the residual background clutter processed by the former such as cloud edge. Through this procedure, both global and local SCR have obtained substantial improvement, indicating that the target has been greatly enhanced. After removing the detector's inherent clutter region through connected domain processing, the image only contains the target point and the isolated noise, in which the isolated noise could be filtered out effectively through multi-frame association. The proposed algorithm in this paper has been compared with some state-of-the-art algorithms for moving target detection and tracking tasks. The experimental results show that the performance of this algorithm is the best in terms of SCR gain, background suppression factor (BSF) and detection results.

  17. Close-range radar rainfall estimation and error analysis

    NASA Astrophysics Data System (ADS)

    van de Beek, C. Z.; Leijnse, H.; Hazenberg, P.; Uijlenhoet, R.

    2016-08-01

    Quantitative precipitation estimation (QPE) using ground-based weather radar is affected by many sources of error. The most important of these are (1) radar calibration, (2) ground clutter, (3) wet-radome attenuation, (4) rain-induced attenuation, (5) vertical variability in rain drop size distribution (DSD), (6) non-uniform beam filling and (7) variations in DSD. This study presents an attempt to separate and quantify these sources of error in flat terrain very close to the radar (1-2 km), where (4), (5) and (6) only play a minor role. Other important errors exist, like beam blockage, WLAN interferences and hail contamination and are briefly mentioned, but not considered in the analysis. A 3-day rainfall event (25-27 August 2010) that produced more than 50 mm of precipitation in De Bilt, the Netherlands, is analyzed using radar, rain gauge and disdrometer data. Without any correction, it is found that the radar severely underestimates the total rain amount (by more than 50 %). The calibration of the radar receiver is operationally monitored by analyzing the received power from the sun. This turns out to cause a 1 dB underestimation. The operational clutter filter applied by KNMI is found to incorrectly identify precipitation as clutter, especially at near-zero Doppler velocities. An alternative simple clutter removal scheme using a clear sky clutter map improves the rainfall estimation slightly. To investigate the effect of wet-radome attenuation, stable returns from buildings close to the radar are analyzed. It is shown that this may have caused an underestimation of up to 4 dB. Finally, a disdrometer is used to derive event and intra-event specific Z-R relations due to variations in the observed DSDs. Such variations may result in errors when applying the operational Marshall-Palmer Z-R relation. Correcting for all of these effects has a large positive impact on the radar-derived precipitation estimates and yields a good match between radar QPE and gauge measurements, with a difference of 5-8 %. This shows the potential of radar as a tool for rainfall estimation, especially at close ranges, but also underlines the importance of applying radar correction methods as individual errors can have a large detrimental impact on the QPE performance of the radar.

  18. The Neural Dynamics of Attentional Selection in Natural Scenes.

    PubMed

    Kaiser, Daniel; Oosterhof, Nikolaas N; Peelen, Marius V

    2016-10-12

    The human visual system can only represent a small subset of the many objects present in cluttered scenes at any given time, such that objects compete for representation. Despite these processing limitations, the detection of object categories in cluttered natural scenes is remarkably rapid. How does the brain efficiently select goal-relevant objects from cluttered scenes? In the present study, we used multivariate decoding of magneto-encephalography (MEG) data to track the neural representation of within-scene objects as a function of top-down attentional set. Participants detected categorical targets (cars or people) in natural scenes. The presence of these categories within a scene was decoded from MEG sensor patterns by training linear classifiers on differentiating cars and people in isolation and testing these classifiers on scenes containing one of the two categories. The presence of a specific category in a scene could be reliably decoded from MEG response patterns as early as 160 ms, despite substantial scene clutter and variation in the visual appearance of each category. Strikingly, we find that these early categorical representations fully depend on the match between visual input and top-down attentional set: only objects that matched the current attentional set were processed to the category level within the first 200 ms after scene onset. A sensor-space searchlight analysis revealed that this early attention bias was localized to lateral occipitotemporal cortex, reflecting top-down modulation of visual processing. These results show that attention quickly resolves competition between objects in cluttered natural scenes, allowing for the rapid neural representation of goal-relevant objects. Efficient attentional selection is crucial in many everyday situations. For example, when driving a car, we need to quickly detect obstacles, such as pedestrians crossing the street, while ignoring irrelevant objects. How can humans efficiently perform such tasks, given the multitude of objects contained in real-world scenes? Here we used multivariate decoding of magnetoencephalogaphy data to characterize the neural underpinnings of attentional selection in natural scenes with high temporal precision. We show that brain activity quickly tracks the presence of objects in scenes, but crucially only for those objects that were immediately relevant for the participant. These results provide evidence for fast and efficient attentional selection that mediates the rapid detection of goal-relevant objects in real-world environments. Copyright © 2016 the authors 0270-6474/16/3610522-07$15.00/0.

  19. Characterization of Mid-Infrared Single Mode Fibers as Modal Filters

    NASA Technical Reports Server (NTRS)

    Ksendzov, A.; Lay, O.; Martin, S.; Sanghera, J. S.; Busse, L. E.; Kim, W. H.; Pureza, P. C.; Nguyen, V. Q.; Aggarwal, I. D.

    2007-01-01

    We present a technique for measuring the modal filtering ability of single mode fibers. The ideal modal filter rejects all input field components that have no overlap with the fundamental mode of the filter and does not attenuate the fundamental mode. We define the quality of a nonideal modal filter Q(sub f) as the ratio of transmittance for the fundamental mode to the transmittance for an input field that has no overlap with the fundamental mode. We demonstrate the technique on a 20 cm long mid-infrared fiber that was produced by the U.S. Naval Research Laboratory. The filter quality Q(sub f) for this fiber at 10.5 micron wavelength is 1000 +/- 300. The absorption and scattering losses in the fundamental mode are approximately 8 dB/m. The total transmittance for the fundamental mode, including Fresnel reflections, is 0.428 +/- 0.002. The application of interest is the search for extrasolar Earthlike planets using nulling interferometry. It requires high rejection ratios to suppress the light of a bright star, so that the faint planet becomes visible. The use of modal filters increases the rejection ratio (or, equivalently, relaxes requirements on the wavefront quality) by reducing the sensitivity to small wavefront errors. We show theoretically that, exclusive of coupling losses, the use of a modal filter leads to the improvement of the rejection ratio in a two-beam interferometer by a factor of Q(sub f).

  20. Orbital radar evidence for lunar subsurface layering in Maria Serenitatis and Crisium

    NASA Technical Reports Server (NTRS)

    Peeples, W. J.; Sill, W. R.; May, T. W.; Ward, S. H.; Phillips, R. J.; Jordan, R. L.; Abbott, E. A.; Killpack, T. J.

    1978-01-01

    Data from the lunar-orbiting Apollo 17 radar sounding experiment (60-m wavelength) have been examined in both digital and holographic formats, and it is concluded that there are two subsurface radar reflectors below the surface in Mare Serenitatis and one reflector below the surface in Mare Crisium. The mean apparent depths of the reflectors below the surface of the former Mare are 0.9 and 1.6 km, while the reflector below the surface of the latter Mare has a mean depth of 1.4 km. These reflectors represent basin-wide subsurface interfaces. Techniques for reducing surface backscatter (clutter) in the data are described, and reasons for thinking that the distinct alignments in radar returns represent subsurface reflecting horizons are explained

  1. Automatic detection, tracking and sensor integration

    NASA Astrophysics Data System (ADS)

    Trunk, G. V.

    1988-06-01

    This report surveys the state of the art of automatic detection, tracking, and sensor integration. In the area of detection, various noncoherent integrators such as the moving window integrator, feedback integrator, two-pole filter, binary integrator, and batch processor are discussed. Next, the three techniques for controlling false alarms, adapting thresholds, nonparametric detectors, and clutter maps are presented. In the area of tracking, a general outline is given of a track-while-scan system, and then a discussion is presented of the file system, contact-entry logic, coordinate systems, tracking filters, maneuver-following logic, tracking initiating, track-drop logic, and correlation procedures. Finally, in the area of multisensor integration the problems of colocated-radar integration, multisite-radar integration, radar-IFF integration, and radar-DF bearing strobe integration are treated.

  2. Coronagraphic Imaging with HST and STIS

    NASA Technical Reports Server (NTRS)

    Grady, C. A.; Proffitt, C.; Malumuth, E.; Woodgate, B. E.; Gull, T. R.; Bowers, C. W.; Heap, S. R.; Kimble, R. A.; Lindler, D.; Plait, P.

    2002-01-01

    Revealing faint circumstellar nebulosity and faint stellar or substellar companions to bright stars typically requires use of techniques for rejecting the direct, scattered, and diffracted light of the star. One such technique is Lyot coronagraphy. We summarize the performance of the white-light coronagraphic capability of the Space Telescope Imaging spectrograph, on board the Hubble Space Telescope.

  3. Thoracic organ transplantation: laboratory methods.

    PubMed

    Patel, Jignesh K; Kobashigawa, Jon A

    2013-01-01

    Although great progress has been achieved in thoracic organ transplantation through the development of effective immunosuppression, there is still significant risk of rejection during the early post-transplant period, creating a need for routine monitoring for both acute antibody and cellular mediated rejection. The currently available multiplexed, microbead assays utilizing solubilized HLA antigens afford the capability of sensitive detection and identification of HLA and non-HLA specific antibodies. These assays are being used to assess the relative strength of donor specific antibodies; to permit performance of virtual crossmatches which can reduce the waiting time to transplantation; to monitor antibody levels during desensitization; and for heart transplants to monitor antibodies post-transplant. For cell mediated immune responses, the recent development of gene expression profiling has allowed noninvasive monitoring of heart transplant recipients yielding predictive values for acute cellular rejection. T cell immune monitoring in heart and lung transplant recipients has allowed individual tailoring of immunosuppression, particularly to minimize risk of infection. While the current antibody and cellular laboratory techniques have enhanced the ability to manage thoracic organ transplant recipients, future developments from improved understanding of microchimerism and graft tolerance may allow more refined allograft monitoring techniques.

  4. Transitional epithelial lesions of the ureter in renal transplant rejection.

    PubMed

    Katz, J P; Greenstein, S M; Hakki, A; Miller, A; Katz, S M; Simonian, S

    1988-04-01

    The spectrum of ureteric lesions of human renal allografts, long attributed exclusively to postsurgical complications such as ischemia, has recently been shown to include the types of rejection seen in the kidney. Since the rejected ureter also exhibits transitional epithelial lesions that may impact on renal and ureteral function, we studied, by light, immunohistochemical, immunofluorescent, and electron microscopic techniques, ureters of 65 irreversibly rejected kidneys. Seven unused cadaver kidneys served as controls. Urothelial lesions, noticed in 57 of 65 ureters (88%), ranged from minimal basal vacuolization to complete sloughing with or without necrosis of the epithelial lining. Epithelial exfoliation was noticed in 31 cases (54.4%), and basal vacuolization, severe enough to produce cleavage of the epithelial junctions and thus create bullae, was noticed in 21 cases (36.8%). Immunofluorescent and immunoperoxidase stains, performed in 16 cases, were all positive for immunoglobulins but yielded varied results ranging from granular to linear staining, particularly in the region of the basal cells and the basement membrane. Electron microscopic findings confirmed the light microscopic alterations. By contrast, control ureters showed no lesions. Urothelial ureteric lesions might impede ureteral functions and result in obstruction or infection, thus compounding the consequences of renal allograft rejection. Moreover, elucidation of the pathophysiology of the process will advance the understanding of various cutaneous and transitional epithelial autoimmune conditions.

  5. Towards a Cognitive Radar: Canada's Third-Generation High Frequency Surface Wave Radar (HFSWR) for Surveillance of the 200 Nautical Mile Exclusive Economic Zone.

    PubMed

    Ponsford, Anthony; McKerracher, Rick; Ding, Zhen; Moo, Peter; Yee, Derek

    2017-07-07

    Canada's third-generation HFSWR forms the foundation of a maritime domain awareness system that provides enforcement agencies with real-time persistent surveillance out to and beyond the 200 nautical mile exclusive economic zone (EEZ). Cognitive sense-and-adapt technology and dynamic spectrum management ensures robust and resilient operation in the highly congested High Frequency (HF) band. Dynamic spectrum access enables the system to simultaneously operate on two frequencies on a non-interference and non-protected basis, without impacting other spectrum users. Sense-and-adapt technologies ensure that the system instantaneously switches to a new vacant channel on the detection of another user or unwanted jamming signal. Adaptive signal processing techniques mitigate against electrical noise, interference and clutter. Sense-and-adapt techniques applied at the detector and tracker stages maximize the probability of track initiation whilst minimizing the probability of false or otherwise erroneous track data.

  6. Penalty Dynamic Programming Algorithm for Dim Targets Detection in Sensor Systems

    PubMed Central

    Huang, Dayu; Xue, Anke; Guo, Yunfei

    2012-01-01

    In order to detect and track multiple maneuvering dim targets in sensor systems, an improved dynamic programming track-before-detect algorithm (DP-TBD) called penalty DP-TBD (PDP-TBD) is proposed. The performances of tracking techniques are used as a feedback to the detection part. The feedback is constructed by a penalty term in the merit function, and the penalty term is a function of the possible target state estimation, which can be obtained by the tracking methods. With this feedback, the algorithm combines traditional tracking techniques with DP-TBD and it can be applied to simultaneously detect and track maneuvering dim targets. Meanwhile, a reasonable constraint that a sensor measurement can originate from one target or clutter is proposed to minimize track separation. Thus, the algorithm can be used in the multi-target situation with unknown target numbers. The efficiency and advantages of PDP-TBD compared with two existing methods are demonstrated by several simulations. PMID:22666074

  7. Visualizing nD Point Clouds as Topological Landscape Profiles to Guide Local Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oesterling, Patrick; Heine, Christian; Weber, Gunther H.

    2012-05-04

    Analyzing high-dimensional point clouds is a classical challenge in visual analytics. Traditional techniques, such as projections or axis-based techniques, suffer from projection artifacts, occlusion, and visual complexity.We propose to split data analysis into two parts to address these shortcomings. First, a structural overview phase abstracts data by its density distribution. This phase performs topological analysis to support accurate and non-overlapping presentation of the high-dimensional cluster structure as a topological landscape profile. Utilizing a landscape metaphor, it presents clusters and their nesting as hills whose height, width, and shape reflect cluster coherence, size, and stability, respectively. A second local analysis phasemore » utilizes this global structural knowledge to select individual clusters or point sets for further, localized data analysis. Focusing on structural entities significantly reduces visual clutter in established geometric visualizations and permits a clearer, more thorough data analysis. In conclusion, this analysis complements the global topological perspective and enables the user to study subspaces or geometric properties, such as shape.« less

  8. Virtual target tracking (VTT) as applied to mobile satellite communication networks

    NASA Astrophysics Data System (ADS)

    Amoozegar, Farid

    1999-08-01

    Traditionally, target tracking has been used for aerospace applications, such as, tracking highly maneuvering targets in a cluttered environment for missile-to-target intercept scenarios. Although the speed and maneuvering capability of current aerospace targets demand more efficient algorithms, many complex techniques have already been proposed in the literature, which primarily cover the defense applications of tracking methods. On the other hand, the rapid growth of Global Communication Systems, Global Information Systems (GIS), and Global Positioning Systems (GPS) is creating new and more diverse challenges for multi-target tracking applications. Mobile communication and computing can very well appreciate a huge market for Cellular Communication and Tracking Devices (CCTD), which will be tracking networked devices at the cellular level. The objective of this paper is to introduce a new concept, i.e., Virtual Target Tracking (VTT) for commercial applications of multi-target tracking algorithms and techniques as applied to mobile satellite communication networks. It would be discussed how Virtual Target Tracking would bring more diversity to target tracking research.

  9. Commercial Capaciflector

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    1991-01-01

    A capacitive proximity/tactile sensor with unique performance capabilities ('capaciflector' or capacitive reflector) is being developed by NASA/Goddard Space Flight Center (GSFC) for use on robots and payloads in space in the interests of safety, efficiency, and ease of operation. Specifically, this sensor will permit robots and their attached payloads to avoid collisions in space with humans and other objects and to dock these payloads in a cluttered environment. The sensor is simple, robust, and inexpensive to manufacture with obvious and recognized commercial possibilities. Accordingly, NASA/GSFC, in conjunction with industry, is embarking on an effort to 'spin' this technology off into the private sector. This effort includes prototypes aimed at commercial applications. The principles of operation of these prototypes are described along with hardware, software, modelling, and test results. The hardware description includes both the physical sensor in terms of a flexible printed circuit board and the electronic circuitry. The software description will include filtering and detection techniques. The modelling will involve finite element electric field analysis and will underline techniques used for design optimization.

  10. Towards a Cognitive Radar: Canada’s Third-Generation High Frequency Surface Wave Radar (HFSWR) for Surveillance of the 200 Nautical Mile Exclusive Economic Zone

    PubMed Central

    Ponsford, Anthony; McKerracher, Rick; Ding, Zhen; Moo, Peter; Yee, Derek

    2017-01-01

    Canada’s third-generation HFSWR forms the foundation of a maritime domain awareness system that provides enforcement agencies with real-time persistent surveillance out to and beyond the 200 nautical mile exclusive economic zone (EEZ). Cognitive sense-and-adapt technology and dynamic spectrum management ensures robust and resilient operation in the highly congested High Frequency (HF) band. Dynamic spectrum access enables the system to simultaneously operate on two frequencies on a non-interference and non-protected basis, without impacting other spectrum users. Sense-and-adapt technologies ensure that the system instantaneously switches to a new vacant channel on the detection of another user or unwanted jamming signal. Adaptive signal processing techniques mitigate against electrical noise, interference and clutter. Sense-and-adapt techniques applied at the detector and tracker stages maximize the probability of track initiation whilst minimizing the probability of false or otherwise erroneous track data. PMID:28686198

  11. Detection of Moving Targets Using Soliton Resonance Effect

    NASA Technical Reports Server (NTRS)

    Kulikov, Igor K.; Zak, Michail

    2013-01-01

    The objective of this research was to develop a fundamentally new method for detecting hidden moving targets within noisy and cluttered data-streams using a novel "soliton resonance" effect in nonlinear dynamical systems. The technique uses an inhomogeneous Korteweg de Vries (KdV) equation containing moving-target information. Solution of the KdV equation will describe a soliton propagating with the same kinematic characteristics as the target. The approach uses the time-dependent data stream obtained with a sensor in form of the "forcing function," which is incorporated in an inhomogeneous KdV equation. When a hidden moving target (which in many ways resembles a soliton) encounters the natural "probe" soliton solution of the KdV equation, a strong resonance phenomenon results that makes the location and motion of the target apparent. Soliton resonance method will amplify the moving target signal, suppressing the noise. The method will be a very effective tool for locating and identifying diverse, highly dynamic targets with ill-defined characteristics in a noisy environment. The soliton resonance method for the detection of moving targets was developed in one and two dimensions. Computer simulations proved that the method could be used for detection of singe point-like targets moving with constant velocities and accelerations in 1D and along straight lines or curved trajectories in 2D. The method also allows estimation of the kinematic characteristics of moving targets, and reconstruction of target trajectories in 2D. The method could be very effective for target detection in the presence of clutter and for the case of target obscurations.

  12. Compound Radar Approach for Breast Imaging.

    PubMed

    Byrne, Dallan; Sarafianou, Mantalena; Craddock, Ian J

    2017-01-01

    Multistatic radar apertures record scattering at a number of receivers when the target is illuminated by a single transmitter, providing more scattering information than its monostatic counterpart per transmission angle. This paper considers the well-known problem of detecting tumor targets within breast phantoms using multistatic radar. To accurately image potentially cancerous targets size within the breast, a significant number of multistatic channels are required in order to adequately calibrate-out unwanted skin reflections, increase the immunity to clutter, and increase the dynamic range of a breast radar imaging system. However, increasing the density of antennas within a physical array is inevitably limited by the geometry of the antenna elements designed to operate with biological tissues at microwave frequencies. A novel compound imaging approach is presented to overcome these physical constraints and improve the imaging capabilities of a multistatic radar imaging modality for breast scanning applications. The number of transmit-receive (TX-RX) paths available for imaging are increased by performing a number of breast scans with varying array positions. A skin calibration method is presented to reduce the influence of skin reflections from each channel. Calibrated signals are applied to receive a beamforming method, compounding the data from each scan to produce a microwave radar breast profile. The proposed imaging method is evaluated with experimental data obtained from constructed phantoms of varying complexity, skin contour asymmetries, and challenging tumor positions and sizes. For each imaging scenario outlined in this study, the proposed compound imaging technique improves skin calibration, clearly detects small targets, and substantially reduces the level of undesirable clutter within the profile.

  13. Small maritime target detection through false color fusion

    NASA Astrophysics Data System (ADS)

    Toet, Alexander; Wu, Tirui

    2008-04-01

    We present an algorithm that produces a fused false color representation of a combined multiband IR and visual imaging system for maritime applications. Multispectral IR imaging techniques are increasingly deployed in maritime operations, to detect floating mines or to find small dinghies and swimmers during search and rescue operations. However, maritime backgrounds usually contain a large amount of clutter that severely hampers the detection of small targets. Our new algorithm deploys the correlation between the target signatures in two different IR frequency bands (3-5 and 8-12 μm) to construct a fused IR image with a reduced amount of clutter. The fused IR image is then combined with a visual image in a false color RGB representation for display to a human operator. The algorithm works as follows. First, both individual IR bands are filtered with a morphological opening top-hat transform to extract small details. Second, a common image is extracted from the two filtered IR bands, and assigned to the red channel of an RGB image. Regions of interest that appear in both IR bands remain in this common image, while most uncorrelated noise details are filtered out. Third, the visual band is assigned to the green channel and, after multiplication with a constant (typically 1.6) also to the blue channel. Fourth, the brightness and colors of this intermediate false color image are renormalized by adjusting its first order statistics to those of a representative reference scene. The result of these four steps is a fused color image, with naturalistic colors (bluish sky and grayish water), in which small targets are clearly visible.

  14. Influence of hydrophobic surface treatment toward performance of air filter

    NASA Astrophysics Data System (ADS)

    Shahfiq Zulkifli, Nazrul; Zaini Yunos, Muhamad; Ahmad, Azlinnorazia; Harun, Zawati; Akhair, Siti Hajar Mohd; Adibah Raja Ahmad, Raja; Hafeez Azhar, Faiz; Rashid, Abdul Qaiyyum Abd; Ismail, Al Emran

    2017-08-01

    This study investigated the performance of hydrophobic surface treatment by using silica aerogel powder via spray coating techniques. Hydrophobic properties were determined by measuring the level of the contact angle. Meanwhile, performance was evaluated in term of the hydrogen gas flow and humidity rejection. The results are shown by contact angle that the microstructure filter, especially in the upper layer and sub-layer has been changed. The results also show an increase of hydrophobicity due to the increased quantity of silica aerogel powder. Results also showed that the absorption and rejection filter performance filter has increased after the addition of silica aerogel powder. The results showed that with the addition of 5 grams of powder of silica aerogel have the highest result of wetting angle 134.11°. The highest humidity rejection found with 5 grams of powder of silica aerogel.

  15. Ultrawideband radar; Proceedings of the Meeting, Los Angeles, CA, Jan. 22, 23, 1992

    NASA Astrophysics Data System (ADS)

    Lahaie, Ivan J.

    1992-05-01

    The present conference discusses a canonical representation of the radar range equation in the time domain, two-way beam patterns fron ultrawideband arrays, modeling of ultrawideband sea clutter, the analysis of time-domain ultrawideband radar signals, a frequency-agile ultrawideband microwave source, and the performance of ultrawideband antennas. Also discussed are the diffraction of ultrawideband radar pulses, sea-clutter measurements with an ultrawideband X-band radar having variable resolution, results from a VHF-impulse SAR, an ultrawideband differential radar, the development of 2D target images from ultrawideband radar systems, ultrawideband generators, and the radiated waveform of a monolithic photoconductive GaAs pulser. (For individual items see A93-28202 to A93-28223)

  16. Simplified formulae for the estimation of offshore wind turbines clutter on marine radars.

    PubMed

    Grande, Olatz; Cañizo, Josune; Angulo, Itziar; Jenn, David; Danoon, Laith R; Guerra, David; de la Vega, David

    2014-01-01

    The potential impact that offshore wind farms may cause on nearby marine radars should be considered before the wind farm is installed. Strong radar echoes from the turbines may degrade radars' detection capability in the area around the wind farm. Although conventional computational methods provide accurate results of scattering by wind turbines, they are not directly implementable in software tools that can be used to conduct the impact studies. This paper proposes a simple model to assess the clutter that wind turbines may generate on marine radars. This method can be easily implemented in the system modeling software tools for the impact analysis of a wind farm in a real scenario.

  17. Simplified Formulae for the Estimation of Offshore Wind Turbines Clutter on Marine Radars

    PubMed Central

    Grande, Olatz; Cañizo, Josune; Jenn, David; Danoon, Laith R.; Guerra, David

    2014-01-01

    The potential impact that offshore wind farms may cause on nearby marine radars should be considered before the wind farm is installed. Strong radar echoes from the turbines may degrade radars' detection capability in the area around the wind farm. Although conventional computational methods provide accurate results of scattering by wind turbines, they are not directly implementable in software tools that can be used to conduct the impact studies. This paper proposes a simple model to assess the clutter that wind turbines may generate on marine radars. This method can be easily implemented in the system modeling software tools for the impact analysis of a wind farm in a real scenario. PMID:24782682

  18. Wavelength band selection method for multispectral target detection.

    PubMed

    Karlholm, Jörgen; Renhorn, Ingmar

    2002-11-10

    A framework is proposed for the selection of wavelength bands for multispectral sensors by use of hyperspectral reference data. Using the results from the detection theory we derive a cost function that is minimized by a set of spectral bands optimal in terms of detection performance for discrimination between a class of small rare targets and clutter with known spectral distribution. The method may be used, e.g., in the design of multispectral infrared search and track and electro-optical missile warning sensors, where a low false-alarm rate and a high-detection probability for detection of small targets against a clutter background are of critical importance, but the required high frame rate prevents the use of hyperspectral sensors.

  19. A retrospective detection algorithm for extraction of weak targets in clutter and interference environments

    NASA Astrophysics Data System (ADS)

    Prengaman, R. J.; Thurber, R. E.; Bath, W. G.

    The usefulness of radar systems depends on the ability to distinguish between signals returned from desired targets and noise. A retrospective processor uses all contacts (or 'plots') from several past radar scans, taking into account all possible target trajectories formed from stored contacts for each input detection. The processor eliminates many false alarms, while retaining those contacts describing resonable trajectories. The employment of a retrospective processor makes it, therefore, possible to obtain large improvements in detection sensitivity in certain important clutter environments. Attention is given to the retrospective processing concept, a theoretical analysis of the multiscan detection process, the experimental evaluation of retrospective data filter, and aspects of retrospective data filter hardware implementation.

  20. Separation of macromolecular proteins and rejection of toxic heavy metal ions by PEI/cSMM blend UF membranes.

    PubMed

    Kanagaraj, P; Nagendran, A; Rana, D; Matsuura, T; Neelakandan, S

    2015-01-01

    The charged surface modifying macromolecule (cSMM) was blended into the casting solution of poly(ether imide) (PEI) to prepare surface modified ultrafiltration membranes by phase inversion technique. The separation of proteins including bovine serum albumin, egg albumin, pepsin and trypsin was investigated by the fabricated membranes. On increasing cSMM content, solute rejection decreases whereas membrane flux increases. The pore size and surface porosity of the 5 wt% cSMM blend PEI membranes increases to 41.4 Å and 14.8%, respectively. Similarly, the molecular weight cut-off of the membranes ranged from 20 to 45 kDa, depending on the various compositions of the prepared membranes. The toxic heavy metal ions Cu(II), Cr(III), Zn(II) and Pb(II) from aqueous solutions were subjected to rejection by the prepared blended membrane with various concentration of polyethyleneimine (PETIM) as water soluble polymeric ligand. It was found that the rejection behavior of metal ion depends on the PETIM concentration and the stability complexation of metal ion with ligand. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Failure Mode and Effect Analysis (FMEA) Applications to Identify Iron Sand Reject and Losses in Cement Industry : A Case Study

    NASA Astrophysics Data System (ADS)

    Helia, V. N.; Wijaya, W. N.

    2017-06-01

    One of the main raw materials required in the manufacture of cement is iron sand. Data from the Procurement Department on XYZ Company shows that the number of defective iron sand (reject) fluctuates every month. Iron sand is an important raw material in the cement production process, so that the amount of iron sand reject and losses got financial and non-financial impact. This study aims to determine the most dominant activity as the cause of rejection and losses of iron sands and suggest improvements that can be made by using the approach of FMEA (Failure Mode and Effect Analysis). Data collection techniques in this study was using the method of observation, interviews, and focus group discussion (FGD) as well as the assessment of the experts to identify it. Results from this study is there are four points of the most dominant cause of the defect of iron sand (mining activities, acceptance, examination and delivery). Recommendation for overcoming these problem is presented (vendor improvement).

  2. Comparison of 2 heterotopic heart transplant techniques in rats: cervical and abdominal heart.

    PubMed

    Ma, Yi; Wang, Guodong

    2011-04-01

    Heterotopic heart transplant in rats has been accepted as the most commonly used animal model to investigate the mechanisms of transplant immunology. Many ingenious approaches to this model have been reported. We sought to improve this model and compare survival rates and histologic features of acute rejection in cervical and abdominal heart transplants. Rats were divided into cervical and abdominal groups. Microsurgical techniques were introduced for vascular anastomoses. In the abdominal heart transplant group, the donor's thoracic aorta was anastomosed end-to-side to the recipient's infrarenal abdominal aorta, and the donor's pulmonary artery was anastomosed to the recipient's inferior vena cava. In the cervical heart transplant group, the donor's thoracic aorta was anastomosed to the recipient's common carotid artery, and the donor's pulmonary artery was anastomosed to the recipient's external jugular vein. Survival time of the 2 models was followed and pathology was examined. Histologic features of allogeneic rejection also were compared in the cervical and abdominal heart transplant groups. The mean time to recover the donor's hearts was 7.4 ± 2.2 minutes in the cervical group and 7.2 ± 1.8 minutes in the abdominal group. In the cervical and abdominal heart transplant models, the mean recipient's operative time was 23.2 ± 2.6 minutes and 21.6 ± 2.8 minutes. Graft survival was 98% and 100% in the cervical and abdominal heart transplant groups. There was no significant difference in graft survival between the 2 methods. Heart allografts rejected at 5.7 and 6.2 days in the cervical and abdominal transplant groups. There was no difference in the histologic features of acute allogenic rejection in cervical and abdominal heart transplant. Both cervical and abdominal heart transplants can achieve a high rate of success. The histologic features of acute allogeneic rejection in the models are comparable.

  3. Big brown bats (Eptesicus fuscus) reveal diverse strategies for sonar target tracking in clutter.

    PubMed

    Mao, Beatrice; Aytekin, Murat; Wilkinson, Gerald S; Moss, Cynthia F

    2016-09-01

    Bats actively adjust the acoustic features of their sonar calls to control echo information specific to a given task and environment. A previous study investigated how bats adapted their echolocation behavior when tracking a moving target in the presence of a stationary distracter at different distances and angular offsets. The use of only one distracter, however, left open the possibility that a bat could reduce the interference of the distracter by turning its head. Here, bats tracked a moving target in the presence of one or two symmetrically placed distracters to investigate adaptive echolocation behavior in a situation where vocalizing off-axis would result in increased interference from distracter echoes. Both bats reduced bandwidth and duration but increased sweep rate in more challenging distracter conditions, and surprisingly, made more head turns in the two-distracter condition compared to one, but only when distracters were placed at large angular offsets. However, for most variables examined, subjects showed distinct strategies to reduce clutter interference, either by (1) changing spectral or temporal features of their calls, or (2) producing large numbers of sonar sound groups and consistent head-turning behavior. The results suggest that individual bats can use different strategies for target tracking in cluttered environments.

  4. Perception of silent and motionless prey on vegetation by echolocation in the gleaning bat Micronycteris microtis.

    PubMed

    Geipel, Inga; Jung, Kirsten; Kalko, Elisabeth K V

    2013-03-07

    Gleaning insectivorous bats that forage by using echolocation within dense forest vegetation face the sensorial challenge of acoustic masking effects. Active perception of silent and motionless prey in acoustically cluttered environments by echolocation alone has thus been regarded impossible. The gleaning insectivorous bat Micronycteris microtis however, forages in dense understory vegetation and preys on insects, including dragonflies, which rest silent and motionless on vegetation. From behavioural experiments, we show that M. microtis uses echolocation as the sole sensorial modality for successful prey perception within a complex acoustic environment. All individuals performed a stereotypical three-dimensional hovering flight in front of prey items, while continuously emitting short, multi-harmonic, broadband echolocation calls. We observed a high precision in target localization which suggests that M. microtis perceives a detailed acoustic image of the prey based on shape, surface structure and material. Our experiments provide, to our knowledge, the first evidence that a gleaning bat uses echolocation alone for successful detection, classification and precise localization of silent and motionless prey in acoustic clutter. Overall, we conclude that the three-dimensional hovering flight of M. microtis in combination with a frequent emission of short, high-frequency echolocation calls is the key for active prey perception in acoustically highly cluttered environments.

  5. Perception of silent and motionless prey on vegetation by echolocation in the gleaning bat Micronycteris microtis

    PubMed Central

    Geipel, Inga; Jung, Kirsten; Kalko, Elisabeth K. V.

    2013-01-01

    Gleaning insectivorous bats that forage by using echolocation within dense forest vegetation face the sensorial challenge of acoustic masking effects. Active perception of silent and motionless prey in acoustically cluttered environments by echolocation alone has thus been regarded impossible. The gleaning insectivorous bat Micronycteris microtis however, forages in dense understory vegetation and preys on insects, including dragonflies, which rest silent and motionless on vegetation. From behavioural experiments, we show that M. microtis uses echolocation as the sole sensorial modality for successful prey perception within a complex acoustic environment. All individuals performed a stereotypical three-dimensional hovering flight in front of prey items, while continuously emitting short, multi-harmonic, broadband echolocation calls. We observed a high precision in target localization which suggests that M. microtis perceives a detailed acoustic image of the prey based on shape, surface structure and material. Our experiments provide, to our knowledge, the first evidence that a gleaning bat uses echolocation alone for successful detection, classification and precise localization of silent and motionless prey in acoustic clutter. Overall, we conclude that the three-dimensional hovering flight of M. microtis in combination with a frequent emission of short, high-frequency echolocation calls is the key for active prey perception in acoustically highly cluttered environments. PMID:23325775

  6. Using an Improved SIFT Algorithm and Fuzzy Closed-Loop Control Strategy for Object Recognition in Cluttered Scenes

    PubMed Central

    Nie, Haitao; Long, Kehui; Ma, Jun; Yue, Dan; Liu, Jinguo

    2015-01-01

    Partial occlusions, large pose variations, and extreme ambient illumination conditions generally cause the performance degradation of object recognition systems. Therefore, this paper presents a novel approach for fast and robust object recognition in cluttered scenes based on an improved scale invariant feature transform (SIFT) algorithm and a fuzzy closed-loop control method. First, a fast SIFT algorithm is proposed by classifying SIFT features into several clusters based on several attributes computed from the sub-orientation histogram (SOH), in the feature matching phase only features that share nearly the same corresponding attributes are compared. Second, a feature matching step is performed following a prioritized order based on the scale factor, which is calculated between the object image and the target object image, guaranteeing robust feature matching. Finally, a fuzzy closed-loop control strategy is applied to increase the accuracy of the object recognition and is essential for autonomous object manipulation process. Compared to the original SIFT algorithm for object recognition, the result of the proposed method shows that the number of SIFT features extracted from an object has a significant increase, and the computing speed of the object recognition processes increases by more than 40%. The experimental results confirmed that the proposed method performs effectively and accurately in cluttered scenes. PMID:25714094

  7. Hierarchical streamline bundles.

    PubMed

    Yu, Hongfeng; Wang, Chaoli; Shene, Ching-Kuang; Chen, Jacqueline H

    2012-08-01

    Effective 3D streamline placement and visualization play an essential role in many science and engineering disciplines. The main challenge for effective streamline visualization lies in seed placement, i.e., where to drop seeds and how many seeds should be placed. Seeding too many or too few streamlines may not reveal flow features and patterns either because it easily leads to visual clutter in rendering or it conveys little information about the flow field. Not only does the number of streamlines placed matter, their spatial relationships also play a key role in understanding the flow field. Therefore, effective flow visualization requires the streamlines to be placed in the right place and in the right amount. This paper introduces hierarchical streamline bundles, a novel approach to simplifying and visualizing 3D flow fields defined on regular grids. By placing seeds and generating streamlines according to flow saliency, we produce a set of streamlines that captures important flow features near critical points without enforcing the dense seeding condition. We group spatially neighboring and geometrically similar streamlines to construct a hierarchy from which we extract streamline bundles at different levels of detail. Streamline bundles highlight multiscale flow features and patterns through clustered yet not cluttered display. This selective visualization strategy effectively reduces visual clutter while accentuating visual foci, and therefore is able to convey the desired insight into the flow data.

  8. Infrared maritime target detection using the high order statistic filtering in fractional Fourier domain

    NASA Astrophysics Data System (ADS)

    Zhou, Anran; Xie, Weixin; Pei, Jihong

    2018-06-01

    Accurate detection of maritime targets in infrared imagery under various sea clutter conditions is always a challenging task. The fractional Fourier transform (FRFT) is the extension of the Fourier transform in the fractional order, and has richer spatial-frequency information. By combining it with the high order statistic filtering, a new ship detection method is proposed. First, the proper range of angle parameter is determined to make it easier for the ship components and background to be separated. Second, a new high order statistic curve (HOSC) at each fractional frequency point is designed. It is proved that maximal peak interval in HOSC reflects the target information, while the points outside the interval reflect the background. And the value of HOSC relative to the ship is much bigger than that to the sea clutter. Then, search the curve's maximal target peak interval and extract the interval by bandpass filtering in fractional Fourier domain. The value outside the peak interval of HOSC decreases rapidly to 0, so the background is effectively suppressed. Finally, the detection result is obtained by the double threshold segmenting and the target region selection method. The results show the proposed method is excellent for maritime targets detection with high clutters.

  9. Single vs. dual color fire detection systems: operational tradeoffs

    NASA Astrophysics Data System (ADS)

    Danino, Meir; Danan, Yossef; Sinvani, Moshe

    2017-10-01

    In attempt to supply a reasonable fire plume detection, multinational cooperation with significant capital is invested in the development of two major Infra-Red (IR) based fire detection alternatives, single-color IR (SCIR) and dual-color IR (DCIR). False alarm rate was expected to be high not only as a result of real heat sources but mainly due to the IR natural clutter especially solar reflections clutter. SCIR uses state-of-the-art technology and sophisticated algorithms to filter out threats from clutter. On the other hand, DCIR are aiming at using additional spectral band measurements (acting as a guard), to allow the implementation of a simpler and more robust approach for performing the same task. In this paper we present the basics of SCIR & DCIR architecture and the main differences between them. In addition, we will present the results from a thorough study conducted for the purpose of learning about the added value of the additional data available from the second spectral band. Here we consider the two CO2 bands of 4-5 micron and of 2.5-3 micron band as well as off peak band (guard). The findings of this study refer also to Missile warning systems (MWS) efficacy, in terms of operational value. We also present a new approach for tunable filter to such sensor.

  10. Feature aided Monte Carlo probabilistic data association filter for ballistic missile tracking

    NASA Astrophysics Data System (ADS)

    Ozdemir, Onur; Niu, Ruixin; Varshney, Pramod K.; Drozd, Andrew L.; Loe, Richard

    2011-05-01

    The problem of ballistic missile tracking in the presence of clutter is investigated. Probabilistic data association filter (PDAF) is utilized as the basic filtering algorithm. We propose to use sequential Monte Carlo methods, i.e., particle filters, aided with amplitude information (AI) in order to improve the tracking performance of a single target in clutter when severe nonlinearities exist in the system. We call this approach "Monte Carlo probabilistic data association filter with amplitude information (MCPDAF-AI)." Furthermore, we formulate a realistic problem in the sense that we use simulated radar cross section (RCS) data for a missile warhead and a cylinder chaff using Lucernhammer1, a state of the art electromagnetic signature prediction software, to model target and clutter amplitude returns as additional amplitude features which help to improve data association and tracking performance. A performance comparison is carried out between the extended Kalman filter (EKF) and the particle filter under various scenarios using single and multiple sensors. The results show that, when only one sensor is used, the MCPDAF performs significantly better than the EKF in terms of tracking accuracy under severe nonlinear conditions for ballistic missile tracking applications. However, when the number of sensors is increased, even under severe nonlinear conditions, the EKF performs as well as the MCPDAF.

  11. Theory and Measurement of Partially Correlated Persistent Scatterers

    NASA Astrophysics Data System (ADS)

    Lien, J.; Zebker, H. A.

    2011-12-01

    Interferometric synthetic aperture radar (InSAR) time-series methods can effectively estimate temporal surface changes induced by geophysical phenomena. However, such methods are susceptible to decorrelation due to spatial and temporal baselines (radar pass separation), changes in orbital geometries, atmosphere, and noise. These effects limit the number of interferograms that can be used for differential analysis and obscure the deformation signal. InSAR decorrelation effects may be ameliorated by exploiting pixels that exhibit phase stability across the stack of interferograms. These so-called persistent scatterer (PS) pixels are dominated by a single point-like scatterer that remains phase-stable over the spatial and temporal baseline. By identifying a network of PS pixels for use in phase unwrapping, reliable deformation measurements may be obtained even in areas of low correlation, where traditional InSAR techniques fail to produce useful observations. PS identification is challenging in natural terrain, due to low reflectivity and few corner reflectors. Shanker and Zebker [1] proposed a PS pixel selection technique based on maximum-likelihood estimation of the associated signal-to-clutter ratio (SCR). In this study, we further develop the underlying theory for their technique, starting from statistical backscatter characteristics of PS pixels. We derive closed-form expressions for the spatial, rotational, and temporal decorrelation of PS pixels as a function of baseline and signal-to-clutter ratio. We show that previous decorrelation and critical baseline expressions [2] are limiting cases of our result. We then describe a series of radar scattering simulations and show that the simulated decorrelation matches well with our analytic results. Finally, we use our decorrelation expressions with maximum-likelihood SCR estimation to analyze an area of the Hayward Fault Zone in the San Francisco Bay Area. A series of 38 images of the area were obtained from C-band ERS radar satellite passes between May 1995 and December 2000. We show that the interferogram stack exhibits PS decorrelation trends in agreement with our analytic results. References 1. P. Shanker and H. Zebker, "Persistent scatterer selection using maximum likelihood estimation," Geophysical Research Letters, Vol. 34, L22301, 2007. 2. H. Zebker and J. Villasenor, "Decorrelation in Interferometric Radar Echos," IEEE Transactions on Geoscience and Remote Sensing, Vol. 30, No. 5, Sept. 1992.

  12. Terradynamically streamlined shapes in animals and robots enhance traversability through densely cluttered terrain.

    PubMed

    Li, Chen; Pullin, Andrew O; Haldane, Duncan W; Lam, Han K; Fearing, Ronald S; Full, Robert J

    2015-06-22

    Many animals, modern aircraft, and underwater vehicles use fusiform, streamlined body shapes that reduce fluid dynamic drag to achieve fast and effective locomotion in air and water. Similarly, numerous small terrestrial animals move through cluttered terrain where three-dimensional, multi-component obstacles like grass, shrubs, vines, and leaf litter also resist motion, but it is unknown whether their body shape plays a major role in traversal. Few ground vehicles or terrestrial robots have used body shape to more effectively traverse environments such as cluttered terrain. Here, we challenged forest-floor-dwelling discoid cockroaches (Blaberus discoidalis) possessing a thin, rounded body to traverse tall, narrowly spaced, vertical, grass-like compliant beams. Animals displayed high traversal performance (79 ± 12% probability and 3.4 ± 0.7 s time). Although we observed diverse obstacle traversal strategies, cockroaches primarily (48 ± 9% probability) used a novel roll maneuver, a form of natural parkour, allowing them to rapidly traverse obstacle gaps narrower than half their body width (2.0 ± 0.5 s traversal time). Reduction of body roundness by addition of artificial shells nearly inhibited roll maneuvers and decreased traversal performance. Inspired by this discovery, we added a thin, rounded exoskeletal shell to a legged robot with a nearly cuboidal body, common to many existing terrestrial robots. Without adding sensory feedback or changing the open-loop control, the rounded shell enabled the robot to traverse beam obstacles with gaps narrower than shell width via body roll. Such terradynamically 'streamlined' shapes can reduce terrain resistance and enhance traversability by assisting effective body reorientation via distributed mechanical feedback. Our findings highlight the need to consider body shape to improve robot mobility in real-world terrain often filled with clutter, and to develop better locomotor-ground contact models to understand interaction with 3D, multi-component terrain.

  13. Tracking through laser-induced clutter for air-to-ground directed energy system

    NASA Astrophysics Data System (ADS)

    Belen'kii, Mikhail; Brinkley, Timothy; Hughes, Kevin; Tannenbaum, Allen

    2003-09-01

    The agility and speed with which directed energy can be retargeted and delivered to the target makes a laser weapon highly desirable in tactical battlefield environments. A directed energy system can effectively damage and possibly destroy relatively soft targets on the ground. In order to accurately point a high-energy beam at the target, the directed energy system must be able to acquire and track targets of interest in highly cluttered environments, under different weather, smoke, and camouflage conditions and in the presence of turbulence and thermal blooming. To meet these requirements, we proposed a concept of a multi spectral tracker, which integrates three sensors: SAR radar, a passive MWIR optical tracker, and a range-gated laser illuminated tracker. In this paper we evaluated the feasibility of the integrated optical tracker and arrived to the following conclusions: a) the contrast enhancement by mapping the original pixel distribution to the desired one enhances the target identification capability, b) a reduction of the divergence of the illuminating beam reduces rms pointing error of a laser tracker, c) a clutter removal algorithm based on active contours is capable of capturing targets in highly cluttered environments, d) the daytime rms pointing error caused by anisoplanatism of the track point to the aim point is comparable to the diffraction-limited beam spot size, f) the peak intensity shift from the optical axis caused by thermal blooming at 5 km range for the air-to-ground engagement scenario is on the order of 8 μrad, and it is 10 μrad at 10 km range, and e) the thermal blooming reduces the peak average power in a 2 cm bucket at 5 km range by a factor of 8, and it reduces the peak average power in the bucket at 10 km range by a factor of 22.

  14. Autonomous UAV-based mapping of large-scale urban firefights

    NASA Astrophysics Data System (ADS)

    Snarski, Stephen; Scheibner, Karl; Shaw, Scott; Roberts, Randy; LaRow, Andy; Breitfeller, Eric; Lupo, Jasper; Nielson, Darron; Judge, Bill; Forren, Jim

    2006-05-01

    This paper describes experimental results from a live-fire data collect designed to demonstrate the ability of IR and acoustic sensing systems to detect and map high-volume gunfire events from tactical UAVs. The data collect supports an exploratory study of the FightSight concept in which an autonomous UAV-based sensor exploitation and decision support capability is being proposed to provide dynamic situational awareness for large-scale battalion-level firefights in cluttered urban environments. FightSight integrates IR imagery, acoustic data, and 3D scene context data with prior time information in a multi-level, multi-step probabilistic-based fusion process to reliably locate and map the array of urban firing events and firepower movements and trends associated with the evolving urban battlefield situation. Described here are sensor results from live-fire experiments involving simultaneous firing of multiple sub/super-sonic weapons (2-AK47, 2-M16, 1 Beretta, 1 Mortar, 1 rocket) with high optical and acoustic clutter at ranges up to 400m. Sensor-shooter-target configurations and clutter were designed to simulate UAV sensing conditions for a high-intensity firefight in an urban environment. Sensor systems evaluated were an IR bullet tracking system by Lawrence Livermore National Laboratory (LLNL) and an acoustic gunshot detection system by Planning Systems, Inc. (PSI). The results demonstrate convincingly the ability for the LLNL and PSI sensor systems to accurately detect, separate, and localize multiple shooters and the associated shot directions during a high-intensity firefight (77 rounds in 5 sec) in a high acoustic and optical clutter environment with very low false alarms. Preliminary fusion processing was also examined that demonstrated an ability to distinguish co-located shooters (shooter density), range to <0.5 m accuracy at 400m, and weapon type. The combined results of the high-intensity firefight data collect and a detailed systems study demonstrate the readiness of the FightSight concept for full system development and integration.

  15. Changes in the action potential and transient outward potassium current in cardiomyocytes during acute cardiac rejection in rats.

    PubMed

    Luo, Wenqi; Jia, Yixin; Zheng, Shuai; Li, Yan; Han, Jie; Meng, Xu

    2017-01-01

    Acute cardiac rejection contributes to the changes in the electrophysiological properties of grafted hearts. However, the electrophysiological changes of cardiomyocytes during acute cardiac rejection are still unknown. An understanding of the electrophysiological mechanisms of cardiomyocytes could improve the diagnosis and treatment of acute cardiac rejection. So it is important to characterize the changes in the action potential ( AP ) and the transient outward potassium current ( I to ) in cardiomyocytes during acute cardiac rejection. Heterotopic heart transplantation was performed in allogeneic [Brown Norway (BN)-to-Lewis] and isogeneic (BN-to-BN) rats. Twenty models were established in each group. Ten recipients were sacrificed at the 2nd day and the other ten recipients were sacrificed at the 4 th day after the operation in each group. Histopathological examinations of the grafted hearts were performed in half of the recipients in each group randomly. The other half of the grafted hearts were excised rapidly and enzymatically dissociated to obtain single cardiomyocytes. The AP and I to current were recorded using the whole cell patch-clamp technique. Forty grafted hearts were successfully harvested and used in experiments. Histologic examination showed mild rejection at the 2 nd day and moderate rejection at the 4 th day in the allogeneic group after cardiac transplantation, while no evidence of histologic lesions of rejection were observed in the isogeneic group. Compared with the isogeneic group, the action potential duration ( APD ) of cardiomyocytes in the allogeneic group was significantly prolonged ( APD 90 was 49.28±5.621 mV in the isogeneic group and 88.08±6.445 mV in the allogeneic group at the 2 nd day, P=0.0016; APD 90 was 59.34±5.183 mV in the isogeneic group and 104.0±9.523 mV in the allogeneic group at the 4 th day, P=0.0064). The current density of I to was significantly decreased at the 4 th day after cardiac transplantation. The APD of cardiomyocytes was significantly prolonged during acute cardiac rejection in rats, which might be partly attributed to decreased current densities of I to .

  16. Nanoantenna harmonic sensor: theoretical analysis of contactless detection of molecules with light

    NASA Astrophysics Data System (ADS)

    Farhat, Mohamed; Cheng, Mark M. C.; Le, Khai Q.; Chen, Pai-Yen

    2015-10-01

    The nonlinear harmonic sensor is a popular wireless sensor and radiofrequency identification (RFID) technique, which allows high-performance sensing in a severe interference/clutter background by transmitting a radio wave and detecting its modulated higher-order harmonics. Here we introduce the concept and design of optical harmonic tags based on nonlinear nanoantennas that can contactlessly detect electronic (e.g. electron affinity) and optical (e.g. relative permittivity) characteristics of molecules. By using a dual-resonance gold-molecule-silver nanodipole antenna within the quantum mechanical realm, the spectral form of the second-harmonic scattering can sensitively reveal the physical properties of molecules, paving a new route towards optical molecular sensors and optical identification (OPID) of biological, genetic, and medical events for the ‘Internet of Nano-Things’.

  17. Coherent Doppler Lidar for Precision Navigation of Spacecrafts

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Pierrottet, Diego; Petway, Larry; Hines, Glenn; Lockhard, George; Barnes, Bruce

    2011-01-01

    A fiber-based coherent Doppler lidar, utilizing an FMCW technique, has been developed and its capabilities demonstrated through two successful helicopter flight test campaigns. This Doppler lidar is expected to play a critical role in future planetary exploration missions because of its ability in providing the necessary data for soft landing on the planetary bodies and for landing missions requiring precision navigation to the designated location on the ground. Compared with radars, the Doppler lidar can provide significantly higher precision velocity and altitude data at a much higher rate without concerns for measurement ambiguity or target clutter. Future work calls for testing the Doppler lidar onboard a rocket-powered free-flyer platform operating in a closed-loop with the vehicle s guidance, navigation, and control (GN&C) unit.

  18. Stacked Autoencoders for Outlier Detection in Over-the-Horizon Radar Signals

    PubMed Central

    Protopapadakis, Eftychios; Doulamis, Anastasios; Doulamis, Nikolaos; Dres, Dimitrios; Bimpas, Matthaios

    2017-01-01

    Detection of outliers in radar signals is a considerable challenge in maritime surveillance applications. High-Frequency Surface-Wave (HFSW) radars have attracted significant interest as potential tools for long-range target identification and outlier detection at over-the-horizon (OTH) distances. However, a number of disadvantages, such as their low spatial resolution and presence of clutter, have a negative impact on their accuracy. In this paper, we explore the applicability of deep learning techniques for detecting deviations from the norm in behavioral patterns of vessels (outliers) as they are tracked from an OTH radar. The proposed methodology exploits the nonlinear mapping capabilities of deep stacked autoencoders in combination with density-based clustering. A comparative experimental evaluation of the approach shows promising results in terms of the proposed methodology's performance. PMID:29312449

  19. Review of photoacoustic flow imaging: its current state and its promises

    PubMed Central

    van den Berg, P.J.; Daoudi, K.; Steenbergen, W.

    2015-01-01

    Flow imaging is an important method for quantification in many medical imaging modalities, with applications ranging from estimating wall shear rate to detecting angiogenesis. Modalities like ultrasound and optical coherence tomography both offer flow imaging capabilities, but suffer from low contrast to red blood cells and are sensitive to clutter artefacts. Photoacoustic imaging (PAI) is a relatively new field, with a recent interest in flow imaging. The recent enthusiasm for PA flow imaging is due to its intrinsic contrast to haemoglobin, which offers a new spin on existing methods of flow imaging, and some unique approaches in addition. This review article will delve into the research on photoacoustic flow imaging, explain the principles behind the many techniques and comment on their individual advantages and disadvantages. PMID:26640771

  20. Nanoantenna harmonic sensor: theoretical analysis of contactless detection of molecules with light.

    PubMed

    Farhat, Mohamed; Cheng, Mark M C; Le, Khai Q; Chen, Pai-Yen

    2015-10-16

    The nonlinear harmonic sensor is a popular wireless sensor and radiofrequency identification (RFID) technique, which allows high-performance sensing in a severe interference/clutter background by transmitting a radio wave and detecting its modulated higher-order harmonics. Here we introduce the concept and design of optical harmonic tags based on nonlinear nanoantennas that can contactlessly detect electronic (e.g. electron affinity) and optical (e.g. relative permittivity) characteristics of molecules. By using a dual-resonance gold-molecule-silver nanodipole antenna within the quantum mechanical realm, the spectral form of the second-harmonic scattering can sensitively reveal the physical properties of molecules, paving a new route towards optical molecular sensors and optical identification (OPID) of biological, genetic, and medical events for the 'Internet of Nano-Things'.

  1. Review of photoacoustic flow imaging: its current state and its promises.

    PubMed

    van den Berg, P J; Daoudi, K; Steenbergen, W

    2015-09-01

    Flow imaging is an important method for quantification in many medical imaging modalities, with applications ranging from estimating wall shear rate to detecting angiogenesis. Modalities like ultrasound and optical coherence tomography both offer flow imaging capabilities, but suffer from low contrast to red blood cells and are sensitive to clutter artefacts. Photoacoustic imaging (PAI) is a relatively new field, with a recent interest in flow imaging. The recent enthusiasm for PA flow imaging is due to its intrinsic contrast to haemoglobin, which offers a new spin on existing methods of flow imaging, and some unique approaches in addition. This review article will delve into the research on photoacoustic flow imaging, explain the principles behind the many techniques and comment on their individual advantages and disadvantages.

  2. A review of automated image understanding within 3D baggage computed tomography security screening.

    PubMed

    Mouton, Andre; Breckon, Toby P

    2015-01-01

    Baggage inspection is the principal safeguard against the transportation of prohibited and potentially dangerous materials at airport security checkpoints. Although traditionally performed by 2D X-ray based scanning, increasingly stringent security regulations have led to a growing demand for more advanced imaging technologies. The role of X-ray Computed Tomography is thus rapidly expanding beyond the traditional materials-based detection of explosives. The development of computer vision and image processing techniques for the automated understanding of 3D baggage-CT imagery is however, complicated by poor image resolutions, image clutter and high levels of noise and artefacts. We discuss the recent and most pertinent advancements and identify topics for future research within the challenging domain of automated image understanding for baggage security screening CT.

  3. Current Status and Future Perspectives of the LUCIFER Experiment

    DOE PAGES

    Beeman, J. W.; Bellini, F.; Benetti, P.; ...

    2013-09-30

    In the field of fundamental particle physics, the neutrino has become more and more important in the last few years, since the discovery of its mass. In particular, the ultimate nature of the neutrino (if it is a Dirac or a Majorana particle) plays a crucial role not only in neutrino physics, but also in the overall framework of fundamental particle interactions and in cosmology. The only way to disentangle its ultimate nature is to search for the neutrinoless double beta decay. The idea of LUCIFER is to combine the bolometric technique proposed for the CUORE experiment with the bolometricmore » light detection technique used in cryogenic dark matter experiments. The bolometric technique allows an extremely good energy resolution while its combination with the scintillation detection offers an ultimate tool for background rejection. The goal of LUCIFER is not only to build a background-free small-scale experiment but also to directly prove the potentiality of this technique. Preliminary tests on several detectors containing different interesting DBD emitters have clearly demonstrated the excellent background rejection capabilities that arise from the simultaneous, independent, double readout of heat and scintillation light.« less

  4. Radiofrequency for the Treatment of Lumbar Radicular Pain: Impact on Surgical Indications.

    PubMed

    Trinidad, José Manuel; Carnota, Ana Isabel; Failde, Inmaculada; Torres, Luis Miguel

    2015-01-01

    Study Design. Quasiexperimental study. Objective. To investigate whether radiofrequency treatment can preclude the need for spinal surgery in both the short term and long term. Background. Radiofrequency is commonly used to treat lumbosacral radicular pain. Only few studies have evaluated its effects on surgical indications. Methods. We conducted a quasiexperimental study of 43 patients who had been scheduled for spinal surgery. Radiofrequency was indicated for 25 patients. The primary endpoint was the decision of the patient to reject spinal surgery 1 month and 1 year after treatment (pulsed radiofrequency of dorsal root ganglion, 76%; conventional radiofrequency of the medial branch, 12%; combined technique, 12%). The primary endpoint was the decision of the patient to reject spinal surgery 1 month and 1 year after treatment. In addition, we also evaluated adverse effects, ODI, NRS. Results. We observed after treatment with radiofrequency 80% of patients rejected spinal surgery in the short term and 76% in the long term. We conclude that radiofrequency is a useful treatment strategy that can achieve very similar outcomes to spinal surgery. Patients also reported a very high level of satisfaction (84% satisfied/very satisfied). We also found that optimization of the electrical parameters of the radiofrequency improved the outcome of this technique.

  5. Speech as a pilot input medium

    NASA Technical Reports Server (NTRS)

    Plummer, R. P.; Coler, C. R.

    1977-01-01

    The speech recognition system under development is a trainable pattern classifier based on a maximum-likelihood technique. An adjustable uncertainty threshold allows the rejection of borderline cases for which the probability of misclassification is high. The syntax of the command language spoken may be used as an aid to recognition, and the system adapts to changes in pronunciation if feedback from the user is available. Words must be separated by .25 second gaps. The system runs in real time on a mini-computer (PDP 11/10) and was tested on 120,000 speech samples from 10- and 100-word vocabularies. The results of these tests were 99.9% correct recognition for a vocabulary consisting of the ten digits, and 99.6% recognition for a 100-word vocabulary of flight commands, with a 5% rejection rate in each case. With no rejection, the recognition accuracies for the same vocabularies were 99.5% and 98.6% respectively.

  6. Monitoring of experimental rat lung transplants by high-resolution flat-panel volumetric computer tomography (fpVCT).

    PubMed

    Greschus, Susanne; Kuchenbuch, Tim; Plötz, Christian; Obert, Martin; Traupe, Horst; Padberg, Winfried; Grau, Veronika; Hirschburger, Markus

    2009-01-01

    Noninvasive assessment of experimental lung transplants with high resolution would be favorable to exclude technical failure and to follow up graft outcome in the living animal. Here we describe a flat-panel Volumetric Computed Tomography (fpVCT) technique using a prototype scanner. Lung transplantation was performed in allogeneic as well as in corresponding syngeneic rat strain combinations. At different time points post-transplantation, fpVCT was performed. Lung transplants can be visualized in the living rat with high-spatial resolution. FpVCT allows a detailed analysis of the lung and the bronchi. Infiltrates developing during rejection episodes can be diagnosed and follow-up studies can easily be performed. With fpVCT it is possible to control the technical success of the surgical procedure. Graft rejection can be visualized individually in the living animal noninvasively, which is highly advantageous for studying the pathogenesis of chronic rejection or to monitor new therapies.

  7. A Low-Power CMOS Front-End for Photoplethysmographic Signal Acquisition With Robust DC Photocurrent Rejection.

    PubMed

    Wong, A K Y; Kong-Pang Pun; Yuan-Ting Zhang; Ka Nang Leung

    2008-12-01

    A micro-power CMOS front-end, consisting of a transimpedance amplifier (TIA) and an ultralow cutoff frequency lowpass filter for the acquisition of photoplethysmographic signal (PPG) is presented. Robust DC photocurrent rejection for the pulsed signal source is achieved through a sample-and-hold stage in the feed-forward signal path and an error amplifier in the feedback path. Ultra-low cutoff frequency of the filter is achieved with a proposed technique that incorporates a pair of current-steering transistors that increases the effective filter capacitance. The design was realized in a 0.35-mum CMOS technology. It consumes 600 muW at 2.5 V, rejects DC photocurrent ranged from 100 nA to 53.6 muA, and achieves lower-band and upper-band - 3-dB cutoff frequencies of 0.46 and 2.8 Hz, respectively.

  8. Design and analysis of planar spiral resonator bandstop filter for microwave frequency

    NASA Astrophysics Data System (ADS)

    Motakabber, S. M. A.; Shaifudin Suharsono, Muhammad

    2017-11-01

    In microwave frequency, a spiral resonator can act as either frequency reject or acceptor circuits. A planar logarithmic spiral resonator bandstop filter has been developed based on this property. This project focuses on the rejection property of the spiral resonator. The performance analysis of the exhibited filter circuit has been performed by using scattering parameters (S-parameters) technique in the ultra-wideband microwave frequency. The proposed filter is built, simulated and S-parameters analysis have been accomplished by using electromagnetic simulation software CST microwave studio. The commercial microwave substrate Taconic TLX-8 has been used to build this filter. Experimental results showed that the -10 dB rejection bandwidth of the filter is 2.32 GHz and central frequency is 5.72 GHz which is suitable for ultra-wideband applications. The proposed design has been full of good compliance with the simulated and experimental results here.

  9. Rejection of Alpha Surface Background in Non-scintillating Bolometric Detectors: The ABSuRD Project

    DOE PAGES

    Biassoni, M.; Brofferio, C.; Bucci, C.; ...

    2016-01-14

    Due to their excellent energy resolution values and the vast choice of possible materials, bolometric detectors are currently widely used in the physics of rare events. A limiting aspect for bolometers rises from their inability to discriminate among radiation types or surface from bulk events. It has been demonstrated that the main limitation to sensitivity for purely bolometric detectors is represented by surface alpha contaminations, causing a continuous background that cannot be discriminated. A new scintillation based technique for the rejection of surface alpha background in non- scintillating bolometric experiments is proposed in this work. The idea is to combinemore » a scintillating and a high sensitivity photon detector with a non- scintillating absorber. Finally, we present results showing the possibility to reject events due to alpha decay at or nearby the surface of the crystal.« less

  10. 40 CFR 86.316-79 - Carbon monoxide and carbon dioxide analyzer specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) The use of linearizing circuits is permitted. (c) The minimum water rejection ratio (maximum CO 2... shall be 5000:1. (e) Zero suppression. Various techniques of zero suppression may be used to increase...

  11. 40 CFR 86.316-79 - Carbon monoxide and carbon dioxide analyzer specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) The use of linearizing circuits is permitted. (c) The minimum water rejection ratio (maximum CO 2... shall be 5000:1. (e) Zero suppression. Various techniques of zero suppression may be used to increase...

  12. Analysis techniques for background rejection at the Majorana Demonstrator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuestra, Clara; Rielage, Keith Robert; Elliott, Steven Ray

    2015-06-11

    The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, 40-kg modular HPGe detector array to search for neutrinoless double beta decay in 76Ge. In view of the next generation of tonne-scale Ge-based 0νββ-decay searches that will probe the neutrino mass scale in the inverted-hierarchy region, a major goal of the MAJORANA DEMONSTRATOR is to demonstrate a path forward to achieving a background rate at or below 1 count/tonne/year in the 4 keV region of interest around the Q-value at 2039 keV. The background rejection techniques to be applied to the data include cuts based on data reduction, pulsemore » shape analysis, event coincidences, and time correlations. The Point Contact design of the DEMONSTRATOR's germanium detectors allows for significant reduction of gamma background.« less

  13. In vivo quantification of amyloid burden in TTR-related cardiac amyloidosis

    PubMed Central

    Kollikowski, Alexander Marco; Kahles, Florian; Kintsler, Svetlana; Hamada, Sandra; Reith, Sebastian; Knüchel, Ruth; Röcken, Christoph; Mottaghy, Felix Manuel; Marx, Nikolaus; Burgmaier, Mathias

    2017-01-01

    Summary Cardiac transthyretin-related (ATTR) amyloidosis is a severe cardiomyopathy for which therapeutic approaches are currently under development. Because non-invasive imaging techniques such as cardiac magnetic resonance imaging and echocardiography are non-specific, the diagnosis of ATTR amyloidosis is still based on myocardial biopsy. Thus, diagnosis of ATTR amyloidosis is difficult in patients refusing myocardial biopsy. Furthermore, myocardial biopsy does not allow 3D-mapping and quantification of myocardial ATTR amyloid. In this report we describe a 99mTc-DPD-based molecular imaging technique for non-invasive single-step diagnosis, three-dimensional mapping and semiquantification of cardiac ATTR amyloidosis in a patient with suspected amyloid heart disease who initially rejected myocardial biopsy. This report underlines the clinical value of SPECT-based nuclear medicine imaging to enable non-invasive diagnosis of cardiac ATTR amyloidosis, particularly in patients rejecting biopsy. PMID:29259858

  14. An Efficient Moving Target Detection Algorithm Based on Sparsity-Aware Spectrum Estimation

    PubMed Central

    Shen, Mingwei; Wang, Jie; Wu, Di; Zhu, Daiyin

    2014-01-01

    In this paper, an efficient direct data domain space-time adaptive processing (STAP) algorithm for moving targets detection is proposed, which is achieved based on the distinct spectrum features of clutter and target signals in the angle-Doppler domain. To reduce the computational complexity, the high-resolution angle-Doppler spectrum is obtained by finding the sparsest coefficients in the angle domain using the reduced-dimension data within each Doppler bin. Moreover, we will then present a knowledge-aided block-size detection algorithm that can discriminate between the moving targets and the clutter based on the extracted spectrum features. The feasibility and effectiveness of the proposed method are validated through both numerical simulations and raw data processing results. PMID:25222035

  15. Fractal active contour model for segmenting the boundary of man-made target in nature scenes

    NASA Astrophysics Data System (ADS)

    Li, Min; Tang, Yandong; Wang, Lidi; Shi, Zelin

    2006-02-01

    In this paper, a novel geometric active contour model based on the fractal dimension feature to extract the boundary of man-made target in nature scenes is presented. In order to suppress the nature clutters, an adaptive weighting function is defined using the fractal dimension feature. Then the weighting function is introduced into the geodesic active contour model to detect the boundary of man-made target. Curve driven by our proposed model can evolve gradually from the initial position to the boundary of man-made target without being disturbed by nature clutters, even if the initial curve is far away from the true boundary. Experimental results validate the effectiveness and feasibility of our model.

  16. Noise-Coupled Image Rejection Architecture of Complex Bandpass ΔΣAD Modulator

    NASA Astrophysics Data System (ADS)

    San, Hao; Kobayashi, Haruo

    This paper proposes a new realization technique of image rejection function by noise-coupling architecture, which is used for a complex bandpass ΔΣAD modulator. The complex bandpass ΔΣAD modulator processes just input I and Q signals, not image signals, and the AD conversion can be realized with low power dissipation. It realizes an asymmetric noise-shaped spectra, which is desirable for such low-IF receiver applications. However, the performance of the complex bandpass ΔΣAD modulator suffers from the mismatch between internal analog I and Q paths. I/Q path mismatch causes an image signal, and the quantization noise of the mirror image band aliases into the desired signal band, which degrades the SQNDR (Signal to Quantization Noise and Distortion Ratio) of the modulator. In our proposed modulator architecture, an extra notch for image rejection is realized by noise-coupled topology. We just add some passive capacitors and switches to the modulator; the additional integrator circuit composed of an operational amplifier in the conventional image rejection realization is not necessary. Therefore, the performance of the complex modulator can be effectively raised without additional power dissipation. We have performed simulation with MATLAB to confirm the validity of the proposed architecture. The simulation results show that the proposed architecture can achieve the realization of image-rejection effectively, and improve the SQNDR of the complex bandpass ΔΣAD modulator.

  17. Segmentation of deformable organs from medical images using particle swarm optimization and nonlinear shape priors

    NASA Astrophysics Data System (ADS)

    Afifi, Ahmed; Nakaguchi, Toshiya; Tsumura, Norimichi

    2010-03-01

    In many medical applications, the automatic segmentation of deformable organs from medical images is indispensable and its accuracy is of a special interest. However, the automatic segmentation of these organs is a challenging task according to its complex shape. Moreover, the medical images usually have noise, clutter, or occlusion and considering the image information only often leads to meager image segmentation. In this paper, we propose a fully automated technique for the segmentation of deformable organs from medical images. In this technique, the segmentation is performed by fitting a nonlinear shape model with pre-segmented images. The kernel principle component analysis (KPCA) is utilized to capture the complex organs deformation and to construct the nonlinear shape model. The presegmentation is carried out by labeling each pixel according to its high level texture features extracted using the overcomplete wavelet packet decomposition. Furthermore, to guarantee an accurate fitting between the nonlinear model and the pre-segmented images, the particle swarm optimization (PSO) algorithm is employed to adapt the model parameters for the novel images. In this paper, we demonstrate the competence of proposed technique by implementing it to the liver segmentation from computed tomography (CT) scans of different patients.

  18. Orientation-Enhanced Parallel Coordinate Plots.

    PubMed

    Raidou, Renata Georgia; Eisemann, Martin; Breeuwer, Marcel; Eisemann, Elmar; Vilanova, Anna

    2016-01-01

    Parallel Coordinate Plots (PCPs) is one of the most powerful techniques for the visualization of multivariate data. However, for large datasets, the representation suffers from clutter due to overplotting. In this case, discerning the underlying data information and selecting specific interesting patterns can become difficult. We propose a new and simple technique to improve the display of PCPs by emphasizing the underlying data structure. Our Orientation-enhanced Parallel Coordinate Plots (OPCPs) improve pattern and outlier discernibility by visually enhancing parts of each PCP polyline with respect to its slope. This enhancement also allows us to introduce a novel and efficient selection method, the Orientation-enhanced Brushing (O-Brushing). Our solution is particularly useful when multiple patterns are present or when the view on certain patterns is obstructed by noise. We present the results of our approach with several synthetic and real-world datasets. Finally, we conducted a user evaluation, which verifies the advantages of the OPCPs in terms of discernibility of information in complex data. It also confirms that O-Brushing eases the selection of data patterns in PCPs and reduces the amount of necessary user interactions compared to state-of-the-art brushing techniques.

  19. Computational Chemical Imaging for Cardiovascular Pathology: Chemical Microscopic Imaging Accurately Determines Cardiac Transplant Rejection

    PubMed Central

    Tiwari, Saumya; Reddy, Vijaya B.; Bhargava, Rohit; Raman, Jaishankar

    2015-01-01

    Rejection is a common problem after cardiac transplants leading to significant number of adverse events and deaths, particularly in the first year of transplantation. The gold standard to identify rejection is endomyocardial biopsy. This technique is complex, cumbersome and requires a lot of expertise in the correct interpretation of stained biopsy sections. Traditional histopathology cannot be used actively or quickly during cardiac interventions or surgery. Our objective was to develop a stain-less approach using an emerging technology, Fourier transform infrared (FT-IR) spectroscopic imaging to identify different components of cardiac tissue by their chemical and molecular basis aided by computer recognition, rather than by visual examination using optical microscopy. We studied this technique in assessment of cardiac transplant rejection to evaluate efficacy in an example of complex cardiovascular pathology. We recorded data from human cardiac transplant patients’ biopsies, used a Bayesian classification protocol and developed a visualization scheme to observe chemical differences without the need of stains or human supervision. Using receiver operating characteristic curves, we observed probabilities of detection greater than 95% for four out of five histological classes at 10% probability of false alarm at the cellular level while correctly identifying samples with the hallmarks of the immune response in all cases. The efficacy of manual examination can be significantly increased by observing the inherent biochemical changes in tissues, which enables us to achieve greater diagnostic confidence in an automated, label-free manner. We developed a computational pathology system that gives high contrast images and seems superior to traditional staining procedures. This study is a prelude to the development of real time in situ imaging systems, which can assist interventionists and surgeons actively during procedures. PMID:25932912

  20. Phase Distribution and Selection of Partially Correlated Persistent Scatterers

    NASA Astrophysics Data System (ADS)

    Lien, J.; Zebker, H. A.

    2012-12-01

    Interferometric synthetic aperture radar (InSAR) time-series methods can effectively estimate temporal surface changes induced by geophysical phenomena. However, such methods are susceptible to decorrelation due to spatial and temporal baselines (radar pass separation), changes in orbital geometries, atmosphere, and noise. These effects limit the number of interferograms that can be used for differential analysis and obscure the deformation signal. InSAR decorrelation effects may be ameliorated by exploiting pixels that exhibit phase stability across the stack of interferograms. These so-called persistent scatterer (PS) pixels are dominated by a single point-like scatterer that remains phase-stable over the spatial and temporal baseline. By identifying a network of PS pixels for use in phase unwrapping, reliable deformation measurements may be obtained even in areas of low correlation, where traditional InSAR techniques fail to produce useful observations. Many additional pixels can be added to the PS list if we are able to identify those in which a dominant scatterer exhibits partial, rather than complete, correlation across all radar scenes. In this work, we quantify and exploit the phase stability of partially correlated PS pixels. We present a new system model for producing interferometric pixel values from a complex surface backscatter function characterized by signal-to-clutter ratio (SCR). From this model, we derive the joint probabilistic distribution for PS pixel phases in a stack of interferograms as a function of SCR and spatial baselines. This PS phase distribution generalizes previous results that assume the clutter phase contribution is uncorrelated between radar passes. We verify the analytic distribution through a series of radar scattering simulations. We use the derived joint PS phase distribution with maximum-likelihood SCR estimation to analyze an area of the Hayward Fault Zone in the San Francisco Bay Area. We obtain a series of 38 interferometric images of the area from C-band ERS radar satellite passes between May 1995 and December 2000. We compare the estimated SCRs to those calculated with previously derived PS phase distributions. Finally, we examine the PS network density resulting from varying selection thresholds of SCR and compare to other PS identification techniques.

  1. A novel approach to automatic threat detection in MMW imagery of people scanned in portals

    NASA Astrophysics Data System (ADS)

    Vaidya, Nitin M.; Williams, Thomas

    2008-04-01

    We have developed a novel approach to performing automatic detection of concealed threat objects in passive MMW imagery of people scanned in a portal setting. It is applicable to the significant class of imaging scanners that use the protocol of having the subject rotate in front of the camera in order to image them from several closely spaced directions. Customary methods of dealing with MMW sequences rely on the analysis of the spatial images in a frame-by-frame manner, with information extracted from separate frames combined by some subsequent technique of data association and tracking over time. We contend that the pooling of information over time in traditional methods is not as direct as can be and potentially less efficient in distinguishing threats from clutter. We have formulated a more direct approach to extracting information about the scene as it evolves over time. We propose an atypical spatio-temporal arrangement of the MMW image data - to which we give the descriptive name Row Evolution Image (REI) sequence. This representation exploits the singular aspect of having the subject rotate in front of the camera. We point out which features in REIs are most relevant to detecting threats, and describe the algorithms we have developed to extract them. We demonstrate results of successful automatic detection of threats, including ones whose faint image contrast renders their disambiguation from clutter very challenging. We highlight the ease afforded by the REI approach in permitting specialization of the detection algorithms to different parts of the subject body. Finally, we describe the execution efficiency advantages of our approach, given its natural fit to parallel processing. mage

  2. The effect of electronically steering a phased array ultrasound transducer on near-field tissue heating.

    PubMed

    Payne, Allison; Vyas, Urvi; Todd, Nick; de Bever, Joshua; Christensen, Douglas A; Parker, Dennis L

    2011-09-01

    This study presents the results obtained from both simulation and experimental techniques that show the effect of mechanically or electronically steering a phased array transducer on proximal tissue heating. The thermal response of a nine-position raster and a 16-mm diameter circle scanning trajectory executed through both electronic and mechanical scanning was evaluated in computer simulations and experimentally in a homogeneous tissue-mimicking phantom. Simulations were performed using power deposition maps obtained from the hybrid angular spectrum (HAS) method and applying a finite-difference approximation of the Pennes' bioheat transfer equation for the experimentally used transducer and also for a fully sampled transducer to demonstrate the effect of acoustic window, ultrasound beam overlap and grating lobe clutter on near-field heating. Both simulation and experimental results show that electronically steering the ultrasound beam for the two trajectories using the 256-element phased array significantly increases the thermal dose deposited in the near-field tissues when compared with the same treatment executed through mechanical steering only. In addition, the individual contributions of both beam overlap and grating lobe clutter to the near-field thermal effects were determined through comparing the simulated ultrasound beam patterns and resulting temperature fields from mechanically and electronically steered trajectories using the 256-randomized element phased array transducer to an electronically steered trajectory using a fully sampled transducer with 40 401 phase-adjusted sample points. Three distinctly different three distinctly different transducers were simulated to analyze the tradeoffs of selected transducer design parameters on near-field heating. Careful consideration of design tradeoffs and accurate patient treatment planning combined with thorough monitoring of the near-field tissue temperature will help to ensure patient safety during an MRgHIFU treatment.

  3. Timing matters: sonar call groups facilitate target localization in bats.

    PubMed

    Kothari, Ninad B; Wohlgemuth, Melville J; Hulgard, Katrine; Surlykke, Annemarie; Moss, Cynthia F

    2014-01-01

    To successfully negotiate a cluttered environment, an echolocating bat must control the timing of motor behaviors in response to dynamic sensory information. Here we detail the big brown bat's adaptive temporal control over sonar call production for tracking prey, moving predictably or unpredictably, under different experimental conditions. We studied the adaptive control of vocal-motor behaviors in free-flying big brown bats, Eptesicus fuscus, as they captured tethered and free-flying insects, in open and cluttered environments. We also studied adaptive sonar behavior in bats trained to track moving targets from a resting position. In each of these experiments, bats adjusted the features of their calls to separate target and clutter. Under many task conditions, flying bats produced prominent sonar sound groups identified as clusters of echolocation pulses with relatively stable intervals, surrounded by longer pulse intervals. In experiments where bats tracked approaching targets from a resting position, bats also produced sonar sound groups, and the prevalence of these sonar sound groups increased when motion of the target was unpredictable. We hypothesize that sonar sound groups produced during flight, and the sonar call doublets produced by a bat tracking a target from a resting position, help the animal resolve dynamic target location and represent the echo scene in greater detail. Collectively, our data reveal adaptive temporal control over sonar call production that allows the bat to negotiate a complex and dynamic environment.

  4. Timing matters: sonar call groups facilitate target localization in bats

    PubMed Central

    Kothari, Ninad B.; Wohlgemuth, Melville J.; Hulgard, Katrine; Surlykke, Annemarie; Moss, Cynthia F.

    2014-01-01

    To successfully negotiate a cluttered environment, an echolocating bat must control the timing of motor behaviors in response to dynamic sensory information. Here we detail the big brown bat's adaptive temporal control over sonar call production for tracking prey, moving predictably or unpredictably, under different experimental conditions. We studied the adaptive control of vocal-motor behaviors in free-flying big brown bats, Eptesicus fuscus, as they captured tethered and free-flying insects, in open and cluttered environments. We also studied adaptive sonar behavior in bats trained to track moving targets from a resting position. In each of these experiments, bats adjusted the features of their calls to separate target and clutter. Under many task conditions, flying bats produced prominent sonar sound groups identified as clusters of echolocation pulses with relatively stable intervals, surrounded by longer pulse intervals. In experiments where bats tracked approaching targets from a resting position, bats also produced sonar sound groups, and the prevalence of these sonar sound groups increased when motion of the target was unpredictable. We hypothesize that sonar sound groups produced during flight, and the sonar call doublets produced by a bat tracking a target from a resting position, help the animal resolve dynamic target location and represent the echo scene in greater detail. Collectively, our data reveal adaptive temporal control over sonar call production that allows the bat to negotiate a complex and dynamic environment. PMID:24860509

  5. Segmentation of vessels cluttered with cells using a physics based model.

    PubMed

    Schmugge, Stephen J; Keller, Steve; Nguyen, Nhat; Souvenir, Richard; Huynh, Toan; Clemens, Mark; Shin, Min C

    2008-01-01

    Segmentation of vessels in biomedical images is important as it can provide insight into analysis of vascular morphology, topology and is required for kinetic analysis of flow velocity and vessel permeability. Intravital microscopy is a powerful tool as it enables in vivo imaging of both vasculature and circulating cells. However, the analysis of vasculature in those images is difficult due to the presence of cells and their image gradient. In this paper, we provide a novel method of segmenting vessels with a high level of cell related clutter. A set of virtual point pairs ("vessel probes") are moved reacting to forces including Vessel Vector Flow (VVF) and Vessel Boundary Vector Flow (VBVF) forces. Incorporating the cell detection, the VVF force attracts the probes toward the vessel, while the VBVF force attracts the virtual points of the probes to localize the vessel boundary without being distracted by the image features of the cells. The vessel probes are moved according to Newtonian Physics reacting to the net of forces applied on them. We demonstrate the results on a set of five real in vivo images of liver vasculature cluttered by white blood cells. When compared against the ground truth prepared by the technician, the Root Mean Squared Error (RMSE) of segmentation with VVF and VBVF was 55% lower than the method without VVF and VBVF.

  6. Robust Small Target Co-Detection from Airborne Infrared Image Sequences.

    PubMed

    Gao, Jingli; Wen, Chenglin; Liu, Meiqin

    2017-09-29

    In this paper, a novel infrared target co-detection model combining the self-correlation features of backgrounds and the commonality features of targets in the spatio-temporal domain is proposed to detect small targets in a sequence of infrared images with complex backgrounds. Firstly, a dense target extraction model based on nonlinear weights is proposed, which can better suppress background of images and enhance small targets than weights of singular values. Secondly, a sparse target extraction model based on entry-wise weighted robust principal component analysis is proposed. The entry-wise weight adaptively incorporates structural prior in terms of local weighted entropy, thus, it can extract real targets accurately and suppress background clutters efficiently. Finally, the commonality of targets in the spatio-temporal domain are used to construct target refinement model for false alarms suppression and target confirmation. Since real targets could appear in both of the dense and sparse reconstruction maps of a single frame, and form trajectories after tracklet association of consecutive frames, the location correlation of the dense and sparse reconstruction maps for a single frame and tracklet association of the location correlation maps for successive frames have strong ability to discriminate between small targets and background clutters. Experimental results demonstrate that the proposed small target co-detection method can not only suppress background clutters effectively, but also detect targets accurately even if with target-like interference.

  7. Reliable motion detection of small targets in video with low signal-to-clutter ratios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, S.A.; Naylor, R.B.

    1995-07-01

    Studies show that vigilance decreases rapidly after several minutes when human operators are required to search live video for infrequent intrusion detections. Therefore, there is a need for systems which can automatically detect targets in live video and reserve the operator`s attention for assessment only. Thus far, automated systems have not simultaneously provided adequate detection sensitivity, false alarm suppression, and ease of setup when used in external, unconstrained environments. This unsatisfactory performance can be exacerbated by poor video imagery with low contrast, high noise, dynamic clutter, image misregistration, and/or the presence of small, slow, or erratically moving targets. This papermore » describes a highly adaptive video motion detection and tracking algorithm which has been developed as part of Sandia`s Advanced Exterior Sensor (AES) program. The AES is a wide-area detection and assessment system for use in unconstrained exterior security applications. The AES detection and tracking algorithm provides good performance under stressing data and environmental conditions. Features of the algorithm include: reliable detection with negligible false alarm rate of variable velocity targets having low signal-to-clutter ratios; reliable tracking of targets that exhibit motion that is non-inertial, i.e., varies in direction and velocity; automatic adaptation to both infrared and visible imagery with variable quality; and suppression of false alarms caused by sensor flaws and/or cutouts.« less

  8. Coordinate-Based Clustering Method for Indoor Fingerprinting Localization in Dense Cluttered Environments.

    PubMed

    Liu, Wen; Fu, Xiao; Deng, Zhongliang

    2016-12-02

    Indoor positioning technologies has boomed recently because of the growing commercial interest in indoor location-based service (ILBS). Due to the absence of satellite signal in Global Navigation Satellite System (GNSS), various technologies have been proposed for indoor applications. Among them, Wi-Fi fingerprinting has been attracting much interest from researchers because of its pervasive deployment, flexibility and robustness to dense cluttered indoor environments. One challenge, however, is the deployment of Access Points (AP), which would bring a significant influence on the system positioning accuracy. This paper concentrates on WLAN based fingerprinting indoor location by analyzing the AP deployment influence, and studying the advantages of coordinate-based clustering compared to traditional RSS-based clustering. A coordinate-based clustering method for indoor fingerprinting location, named Smallest-Enclosing-Circle-based (SEC), is then proposed aiming at reducing the positioning error lying in the AP deployment and improving robustness to dense cluttered environments. All measurements are conducted in indoor public areas, such as the National Center For the Performing Arts (as Test-bed 1) and the XiDan Joy City (Floors 1 and 2, as Test-bed 2), and results show that SEC clustering algorithm can improve system positioning accuracy by about 32.7% for Test-bed 1, 71.7% for Test-bed 2 Floor 1 and 73.7% for Test-bed 2 Floor 2 compared with traditional RSS-based clustering algorithms such as K-means.

  9. Coordinate-Based Clustering Method for Indoor Fingerprinting Localization in Dense Cluttered Environments

    PubMed Central

    Liu, Wen; Fu, Xiao; Deng, Zhongliang

    2016-01-01

    Indoor positioning technologies has boomed recently because of the growing commercial interest in indoor location-based service (ILBS). Due to the absence of satellite signal in Global Navigation Satellite System (GNSS), various technologies have been proposed for indoor applications. Among them, Wi-Fi fingerprinting has been attracting much interest from researchers because of its pervasive deployment, flexibility and robustness to dense cluttered indoor environments. One challenge, however, is the deployment of Access Points (AP), which would bring a significant influence on the system positioning accuracy. This paper concentrates on WLAN based fingerprinting indoor location by analyzing the AP deployment influence, and studying the advantages of coordinate-based clustering compared to traditional RSS-based clustering. A coordinate-based clustering method for indoor fingerprinting location, named Smallest-Enclosing-Circle-based (SEC), is then proposed aiming at reducing the positioning error lying in the AP deployment and improving robustness to dense cluttered environments. All measurements are conducted in indoor public areas, such as the National Center For the Performing Arts (as Test-bed 1) and the XiDan Joy City (Floors 1 and 2, as Test-bed 2), and results show that SEC clustering algorithm can improve system positioning accuracy by about 32.7% for Test-bed 1, 71.7% for Test-bed 2 Floor 1 and 73.7% for Test-bed 2 Floor 2 compared with traditional RSS-based clustering algorithms such as K-means. PMID:27918454

  10. Automated rejection of parasitic frequency sidebands in heterodyne-detection LIDAR applications

    NASA Technical Reports Server (NTRS)

    Esproles, Carlos; Tratt, David M.; Menzies, Robert T.

    1989-01-01

    A technique is described for the detection of the sporadic onset of multiaxial mode behavior of a normally single-mode TEA CO2 laser. The technique is implemented using primarily commercial circuit modules; it incorporates a peak detector that displays the RF detector output on a digital voltmeter, and a LED bar graph. The technique was successfully demonstrated with an existing coherent atmospheric LIDAR facility utilizing an injection-seeded single-mode TEA CO2 laser. The block schematic diagram is included.

  11. Clipboard

    ERIC Educational Resources Information Center

    Timmons, Virginia G.

    1977-01-01

    Thorough advance planning will eliminate much of the clutter and the mud hazards associated with the introduction of ceramics. Provides some helpful suggestions for teaching ceramics in an efficient and tidy fashion. (Author/RK)

  12. Bed Bug Tips

    EPA Pesticide Factsheets

    How to deal with bed bugs in one printable page. Ten tips include ensuring correct insect identification, reducing clutter, understand integrated pest management, using mattress and box spring encasements, and heat treatment.

  13. Hoarding disorder

    MedlinePlus

    ... of items, gradual buildup of clutter in living spaces and difficulty discarding things are usually the first ... for which there is no immediate need or space. By middle age, symptoms are often severe and ...

  14. Background rejection of TEXONO experiment to explore the sub-keV energy region with HPGe detector

    NASA Astrophysics Data System (ADS)

    Singh, M. K.; Sharma, V.; Singh, L.; Chen, J. H.; Singh, V.; Subrahmanyam, V. S.; Soma, A. K.; Wong, H. T.

    2017-10-01

    To observe the neutrino-nucleus coherent scattering as well as for dark matter search, a detection system with ultra-low energy high purity germanium detector has been set up by the TEXONO Collaboration in Kuo-Sheng Nuclear Power Plant. Owing to the weak nature and small recoil energy of these rare events, understanding of background sources and their contribution to the energy spectrum are the key factors in this experiment. In this report, we will focus in detail on the different sources of backgrounds in the TEXONO experiment and the techniques used to reject/minimize them.

  15. Wide-field two-photon microscopy with temporal focusing and HiLo background rejection

    NASA Astrophysics Data System (ADS)

    Yew, Elijah Y. S.; Choi, Heejin; Kim, Daekeun; So, Peter T. C.

    2011-03-01

    Scanningless depth-resolved microscopy is achieved through spatial-temporal focusing and has been demonstrated previously. The advantage of this method is that a large area may be imaged without scanning resulting in higher throughput of the imaging system. Because it is a widefield technique, the optical sectioning effect is considerably poorer than with conventional spatial focusing two-photon microscopy. Here we propose wide-field two-photon microscopy based on spatio-temporal focusing and employing background rejection based on the HiLo microscope principle. We demonstrate the effects of applying HiLo microscopy to widefield temporally focused two-photon microscopy.

  16. Syntactic error modeling and scoring normalization in speech recognition: Error modeling and scoring normalization in the speech recognition task for adult literacy training

    NASA Technical Reports Server (NTRS)

    Olorenshaw, Lex; Trawick, David

    1991-01-01

    The purpose was to develop a speech recognition system to be able to detect speech which is pronounced incorrectly, given that the text of the spoken speech is known to the recognizer. Better mechanisms are provided for using speech recognition in a literacy tutor application. Using a combination of scoring normalization techniques and cheater-mode decoding, a reasonable acceptance/rejection threshold was provided. In continuous speech, the system was tested to be able to provide above 80 pct. correct acceptance of words, while correctly rejecting over 80 pct. of incorrectly pronounced words.

  17. Multifrequency Measurements of Radar Ground Clutter at 42 Sites. Volume 3: Appendix E

    DTIC Science & Technology

    1991-11-15

    pulse, horizontal polarization. E-33 76260-22 0 0 -10 + + X.0 Ox + IL 0 tD -20 0 U. 0 4w + RANGE POL. RES. (m) 150 H e -30 + 150 V 0so 0 15/36 H + 15/36...10 _ +. x U- 0 tD - 00. 2 Z + 4 0 x0 w 0 0+ 0 -30 VHF UHF L -X-BAND FREQUENCY (MHz) Figure E-53. Mean clutter strength versus frequency at Woking. For...76260-3 -10 RANGE POL. RES. (in) 150 H . 150 V 0 15/36 H + 15/36 V X -20 x ’U0 + U. 0 tD -30- 0 0+ IL.0 0 2 0 4w + x -40- VHF UHF L- S- X-BAND FREQUENCY

  18. Particle Filtering with Region-based Matching for Tracking of Partially Occluded and Scaled Targets*

    PubMed Central

    Nakhmani, Arie; Tannenbaum, Allen

    2012-01-01

    Visual tracking of arbitrary targets in clutter is important for a wide range of military and civilian applications. We propose a general framework for the tracking of scaled and partially occluded targets, which do not necessarily have prominent features. The algorithm proposed in the present paper utilizes a modified normalized cross-correlation as the likelihood for a particle filter. The algorithm divides the template, selected by the user in the first video frame, into numerous patches. The matching process of these patches by particle filtering allows one to handle the target’s occlusions and scaling. Experimental results with fixed rectangular templates show that the method is reliable for videos with nonstationary, noisy, and cluttered background, and provides accurate trajectories in cases of target translation, scaling, and occlusion. PMID:22506088

  19. Real-time obstacle avoidance using harmonic potential functions

    NASA Technical Reports Server (NTRS)

    Kim, Jin-Oh; Khosla, Pradeep K.

    1992-01-01

    This paper presents a new formulation of the artificial potential approach to the obstacle avoidance problem for a mobile robot or a manipulator in a known environment. Previous formulations of artificial potentials for obstacle avoidance have exhibited local minima in a cluttered environment. To build an artificial potential field, harmonic functions that completely eliminate local minima even for a cluttered environment are used. The panel method is employed to represent arbitrarily shaped obstacles and to derive the potential over the whole space. Based on this potential function, an elegant control strategy is proposed for the real-time control of a robot. The harmonic potential, the panel method, and the control strategy are tested with a bar-shaped mobile robot and a three-degree-of-freedom planar redundant manipulator.

  20. Use of [18F]FDG PET to Monitor The Development of Cardiac Allograft Rejection

    PubMed Central

    Daly, Kevin P.; Dearling, Jason L. J.; Seto, Tatsuichiro; Dunning, Patricia; Fahey, Frederic; Packard, Alan B.; Briscoe, David M.

    2014-01-01

    Background Positron Emission Tomography (PET) has the potential to be a specific, sensitive and quantitative diagnostic test for transplant rejection. To test this hypothesis, we evaluated 18F-labeled fluorodeoxyglucose ([18F]FDG) and 13N-labeled ammonia ([13N]NH3) small animal PET imaging in a well-established murine cardiac rejection model. Methods Heterotopic transplants were performed using minor MHC mismatched B6.C-H2bm12 donor hearts in C57BL/6(H-2b) recipients. C57BL/6 donor hearts into C57BL/6 recipients served as isograft controls. [18F]FDG PET imaging was performed weekly between post-transplant days 7 and 42 and the percent injected dose was computed for each graft. [13N]NH3 imaging was performed to evaluate myocardial perfusion. Results There was a significant increase in [18F]FDG uptake in allografts from day 14 to day 21 (1.6% to 5.2%; P<0.001) and uptake in allografts was significantly increased on post-transplant days 21 (5.2% vs. 0.9%; P=0.005) and 28 (4.8% vs. 0.9%; P=0.006) compared to isograft controls. Furthermore, [18F]FDG uptake correlated with an increase in rejection within allografts between days 14 and 28 post-transplant. Finally, the uptake of [13N]NH3 was significantly lower relative to the native heart in allografts with chronic vasculopathy compared to isograft controls on day 28 (P=0.01). Conclusions PET imaging with [18F]FDG can be used following transplantation to monitor the evolution of rejection. In addition, decreased uptake of [13N]NH3 in rejecting allografts may be reflective of decreased myocardial blood flow. These data suggest that combined [18F]FDG and [13N]NH3 PET imaging could be used as a non-invasive, quantitative technique for serial monitoring of allograft rejection and has potential application in human transplant recipients. PMID:25675207

  1. Saliency Detection on Light Field.

    PubMed

    Li, Nianyi; Ye, Jinwei; Ji, Yu; Ling, Haibin; Yu, Jingyi

    2017-08-01

    Existing saliency detection approaches use images as inputs and are sensitive to foreground/background similarities, complex background textures, and occlusions. We explore the problem of using light fields as input for saliency detection. Our technique is enabled by the availability of commercial plenoptic cameras that capture the light field of a scene in a single shot. We show that the unique refocusing capability of light fields provides useful focusness, depths, and objectness cues. We further develop a new saliency detection algorithm tailored for light fields. To validate our approach, we acquire a light field database of a range of indoor and outdoor scenes and generate the ground truth saliency map. Experiments show that our saliency detection scheme can robustly handle challenging scenarios such as similar foreground and background, cluttered background, complex occlusions, etc., and achieve high accuracy and robustness.

  2. The detection of objects in a turbid underwater medium using orbital angular momentum (OAM)

    NASA Astrophysics Data System (ADS)

    Cochenour, Brandon; Rodgers, Lila; Laux, Alan; Mullen, Linda; Morgan, Kaitlyn; Miller, Jerome K.; Johnson, Eric G.

    2017-05-01

    We present an investigation of the optical property of orbital angular momentum (OAM) for use in the detection of objects obscured by a turbid underwater channel. In our experiment, a target is illuminated by a Gaussian beam. An optical vortex is formed by passing the object-reflected and backscattered light through a diffractive spiral phase plate at the receiver, which allows for the spatial separation of coherent and non-coherent light. This provides a method for discriminating target from environment. Initial laboratory results show that the ballistic target return can be detected 2-3 orders of magnitude below the backscatter clutter level. Furthermore, the detection of this coherent component is accomplished with the use of a complicated optical heterodyning scheme. The results suggest new optical sensing techniques for underwater imaging or LIDAR.

  3. RF Reference Switch for Spaceflight Radiometer Calibration

    NASA Technical Reports Server (NTRS)

    Knuble, Joseph

    2013-01-01

    The goal of this technology is to provide improved calibration and measurement sensitivity to the Soil Moisture Active Passive Mission (SMAP) radiometer. While RF switches have been used in the past to calibrate microwave radiometers, the switch used on SMAP employs several techniques uniquely tailored to the instrument requirements and passive remote-sensing in general to improve radiometer performance. Measurement error and sensitivity are improved by employing techniques to reduce thermal gradients within the device, reduce insertion loss during antenna observations, increase insertion loss temporal stability, and increase rejection of radar and RFI (radio-frequency interference) signals during calibration. The two legs of the single-pole double-throw reference switch employ three PIN diodes per leg in a parallel-shunt configuration to minimize insertion loss and increase stability while exceeding rejection requirements at 1,413 MHz. The high-speed packaged diodes are selected to minimize junction capacitance and resistance while ensuring the parallel devices have very similar I-V curves. Switch rejection is improved by adding high-impedance quarter-wave tapers before and after the diodes, along with replacing the ground via of one diode per leg with an open circuit stub. Errors due to thermal gradients in the switch are reduced by embedding the 50-ohm reference load within the switch, along with using a 0.25-in. (approximately equal to 0.6-cm) aluminum prebacked substrate. Previous spaceflight microwave radiometers did not embed the reference load and thermocouple directly within the calibration switch. In doing so, the SMAP switch reduces error caused by thermal gradients between the load and switch. Thermal issues are further reduced by moving the custom, highspeed regulated driver circuit to a physically separate PWB (printed wiring board). Regarding RF performance, previous spaceflight reference switches have not employed high-impedance tapers to improve rejection. The use of open-circuit stubs instead of a via to provide an improved RF short is unique to this design. The stubs are easily tunable to provide high rejection at specific frequencies while maintaining very low insertion loss in-band.

  4. Attenuation measuring ultrasound shearwave elastography and in vivo application in post-transplant liver patients

    NASA Astrophysics Data System (ADS)

    Nenadic, Ivan Z.; Qiang, Bo; Urban, Matthew W.; Zhao, Heng; Sanchez, William; Greenleaf, James F.; Chen, Shigao

    2017-01-01

    Ultrasound and magnetic resonance elastography techniques are used to assess mechanical properties of soft tissues. Tissue stiffness is related to various pathologies such as fibrosis, loss of compliance, and cancer. One way to perform elastography is measuring shear wave velocity of propagating waves in tissue induced by intrinsic motion or an external source of vibration, and relating the shear wave velocity to tissue elasticity. All tissues are inherently viscoelastic and ignoring viscosity biases the velocity-based estimates of elasticity and ignores a potentially important parameter of tissue health. We present attenuation measuring ultrasound shearwave elastography (AMUSE), a technique that independently measures both shear wave velocity and attenuation in tissue and therefore allows characterization of viscoelasticity without using a rheological model. The theoretical basis for AMUSE is first derived and validated in finite element simulations. AMUSE is validated against the traditional methods for assessing shear wave velocity (phase gradient) and attenuation (amplitude decay) in tissue mimicking phantoms and excised tissue. The results agreed within one standard deviation. AMUSE was used to measure shear wave velocity and attenuation in 15 transplanted livers in patients with potential acute rejection, and the results were compared with the biopsy findings in a preliminary study. The comparison showed excellent agreement and suggests that AMUSE can be used to separate transplanted livers with acute rejection from livers with no rejection.

  5. Antifouling polyethersulfone hemodialysis membranes incorporated with poly (citric acid) polymerized multi-walled carbon nanotubes.

    PubMed

    Abidin, Muhammad Nidzhom Zainol; Goh, Pei Sean; Ismail, Ahmad Fauzi; Othman, Mohd Hafiz Dzarfan; Hasbullah, Hasrinah; Said, Noresah; Kadir, Siti Hamimah Sheikh Abdul; Kamal, Fatmawati; Abdullah, Mohd Sohaimi; Ng, Be Cheer

    2016-11-01

    Poly (citric acid)-grafted-MWCNT (PCA-g-MWCNT) was incorporated as nanofiller in polyethersulfone (PES) to produce hemodialysis mixed matrix membrane (MMM). Citric acid monohydrate was polymerized onto the surface of MWCNTs by polycondensation. Neat PES membrane and PES/MWCNTs MMMs were fabricated by dry-wet spinning technique. The membranes were characterized in terms of morphology, pure water flux (PWF) and bovine serum albumin (BSA) protein rejection. The grafting yield of PCA onto MWCNTs was calculated as 149.2%. The decrease of contact angle from 77.56° to 56.06° for PES/PCA-g-MWCNTs membrane indicated the increase in surface hydrophilicity, which rendered positive impacts on the PWF and BSA rejection of the membrane. The PWF increased from 15.8Lm(-2)h(-1) to 95.36Lm(-2)h(-1) upon the incorporation of PCA-g-MWCNTs due to the attachment of abundant hydrophilic groups that present on the MWCNTs, which have improved the affinity of membrane towards the water molecules. For protein rejection, the PES/PCA-g-MWCNTs MMM rejected 95.2% of BSA whereas neat PES membrane demonstrated protein rejection of 90.2%. Compared to commercial PES hemodialysis membrane, the PES/PCA-g-MWCNTs MMMs showed less flux decline behavior and better PWF recovery ratio, suggesting that the membrane antifouling performance was improved. The incorporation of PCA-g-MWCNTs enhanced the separation features and antifouling capabilities of the PES membrane for hemodialysis application. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. BiSet: Semantic Edge Bundling with Biclusters for Sensemaking.

    PubMed

    Sun, Maoyuan; Mi, Peng; North, Chris; Ramakrishnan, Naren

    2016-01-01

    Identifying coordinated relationships is an important task in data analytics. For example, an intelligence analyst might want to discover three suspicious people who all visited the same four cities. Existing techniques that display individual relationships, such as between lists of entities, require repetitious manual selection and significant mental aggregation in cluttered visualizations to find coordinated relationships. In this paper, we present BiSet, a visual analytics technique to support interactive exploration of coordinated relationships. In BiSet, we model coordinated relationships as biclusters and algorithmically mine them from a dataset. Then, we visualize the biclusters in context as bundled edges between sets of related entities. Thus, bundles enable analysts to infer task-oriented semantic insights about potentially coordinated activities. We make bundles as first class objects and add a new layer, "in-between", to contain these bundle objects. Based on this, bundles serve to organize entities represented in lists and visually reveal their membership. Users can interact with edge bundles to organize related entities, and vice versa, for sensemaking purposes. With a usage scenario, we demonstrate how BiSet supports the exploration of coordinated relationships in text analytics.

  7. Sensitivity Analysis of Sampling Number on Quality of Polarmetric Measurements from S-band Dual-Polarization Radar

    NASA Astrophysics Data System (ADS)

    KIM, H.; Suk, M. K.; Jung, S. A.; Park, J. S.; Ko, J. S.

    2016-12-01

    The data quality of dual-polarimetric weather radar is subject to radar scanning strategies such as pulse length, pulse repetition frequency (PRF), antenna scan speed, and sampling number. In terms of sampling number, the quality of radar moment data increases with the increasing of sampling number at the given PRF and pulse length while the feasible number of elevation angles decreases for the given time or the time required for radar volume scan increases with the relatively high sampling number. For operational weather radar, the sampling number is subjectively determined by the proficient radar operator. The determination of suitable sampling number is still challengeable for operational dual-polarimetric weather radar.In this study, we analyzed the sensitivity of polarimetric measurements to sampling number based on special radar experiment for rainfall and snowfall events using S-band dual-polarimetric radar (YIT) at Yong-In test bed. For this experiment, YIT radar transmitted a simultaneously polarized beam in horizontal and vertical with pulse length of 1.0 μs and single PRF of 600Hz. The beam width and gate size were 1.0° and 250m, respectively. The volume scan was composed of three PPI scans with three sampling numbers (antenna scan speed) of 40 (15°s-1), 60(10°s-1), and 85(7°s-1) at same elevation angle (=0.2°). We first investigated the spatial fluctuation of the polarimetric measurements according to three sampling numbers using radial texture. As the sampling number increases, the radial fluctuations of polarimetric measurements decrease. Second, we also examined the sensitivity to fuzzy logic based quality control algorithm for dual-polarimetric radar (Ye et al. 2015). The probability density functions (PDFs) of fuzzy logic feature parameters between ground clutter and meteorological echo area were compared. For overlapping area in both PDFs between ground clutter and meteorological echo increases with decreasing the sampling number. As the overlapping area increases, the classification of ground clutter (or meteorological echo) in fuzzy logic classifier is more difficult due to similar characteristics between ground clutter and meteorological echoes.

  8. Pile-Up Discrimination Algorithms for the HOLMES Experiment

    NASA Astrophysics Data System (ADS)

    Ferri, E.; Alpert, B.; Bennett, D.; Faverzani, M.; Fowler, J.; Giachero, A.; Hays-Wehle, J.; Maino, M.; Nucciotti, A.; Puiu, A.; Ullom, J.

    2016-07-01

    The HOLMES experiment is a new large-scale experiment for the electron neutrino mass determination by means of the electron capture decay of ^{163}Ho. In such an experiment, random coincidence events are one of the main sources of background which impair the ability to identify the effect of a non-vanishing neutrino mass. In order to resolve these spurious events, detectors characterized by a fast response are needed as well as pile-up recognition algorithms. For that reason, we have developed a code for testing the discrimination efficiency of various algorithms in recognizing pile up events in dependence of the time separation between two pulses. The tests are performed on simulated realistic TES signals and noise. Indeed, the pulse profile is obtained by solving the two coupled differential equations which describe the response of the TES according to the Irwin-Hilton model. To these pulses, a noise waveform which takes into account all the noise sources regularly present in a real TES is added. The amplitude of the generated pulses is distributed as the ^{163}Ho calorimetric spectrum. Furthermore, the rise time of these pulses has been chosen taking into account the constraints given by both the bandwidth of the microwave multiplexing read out with a flux ramp demodulation and the bandwidth of the ADC boards currently available for ROACH2. Among the different rejection techniques evaluated, the Wiener Filter technique, a digital filter to gain time resolution, has shown an excellent pile-up rejection efficiency. The obtained time resolution closely matches the baseline specifications of the HOLMES experiment. We report here a description of our simulation code and a comparison of the different rejection techniques.

  9. Why You Should Believe Cold Fusion is Real

    NASA Astrophysics Data System (ADS)

    Storms, Edmund K.

    2005-03-01

    Nuclear reactions are now claimed to be initiated in certain solid materials at an energy too low to overcome the Coulomb barrier. These reactions include fusion, accelerated radioactive decay, and transmutation involving heavy elements. Evidence is based on hundreds of measurements of anomalous energy using a variety of calorimeters at levels far in excess of error, measurement of nuclear products using many normally accepted techniques, observations of many patterns of behavior common to all studies, measurement of anomalous energetic emissions using accepted techniques, and an understanding of most variables that have hindered reproducibility in the past. This evidence can be found at www.LENR-CANR.orgwww.LENR-CANR.org. Except for an accepted theory, the claims have met all requirements normally required before a new idea is accepted by conventional science, yet rejection continues. How long can the US afford to reject a clean and potentially cheap source of energy, especially when other nations are attempting to develop this energy and the need for such an energy source is so great?

  10. Six Sigma Approach to Improve Stripping Quality of Automotive Electronics Component – a case study

    NASA Astrophysics Data System (ADS)

    Razali, Noraini Mohd; Murni Mohamad Kadri, Siti; Con Ee, Toh

    2018-03-01

    Lacking of problem solving skill techniques and cooperation between support groups are the two obstacles that always been faced in actual production line. Inadequate detail analysis and inappropriate technique in solving the problem may cause the repeating issues which may give impact to the organization performance. This study utilizes a well-structured six sigma DMAIC with combination of other problem solving tools to solve product quality problem in manufacturing of automotive electronics component. The study is concentrated at the stripping process, a critical process steps with highest rejection rate that contribute to the scrap and rework performance. The detail analysis is conducted in the analysis phase to identify the actual root cause of the problem. Then several improvement activities are implemented and the results show that the rejection rate due to stripping defect decrease tremendously and the process capability index improved from 0.75 to 1.67. This results prove that the six sigma approach used to tackle the quality problem is substantially effective.

  11. A Novel AMARS Technique for Baseline Wander Removal Applied to Photoplethysmogram.

    PubMed

    Timimi, Ammar A K; Ali, M A Mohd; Chellappan, K

    2017-06-01

    A new digital filter, AMARS (aligning minima of alternating random signal) has been derived using trigonometry to regulate signal pulsations inline. The pulses are randomly presented in continuous signals comprising frequency band lower than the signal's mean rate. Frequency selective filters are conventionally employed to reject frequencies undesired by specific applications. However, these conventional filters only reduce the effects of the rejected range producing a signal superimposed by some baseline wander (BW). In this work, filters of different ranges and techniques were independently configured to preprocess a photoplethysmogram, an optical biosignal of blood volume dynamics, producing wave shapes with several BWs. The AMARS application effectively removed the encountered BWs to assemble similarly aligned trends. The removal implementation was found repeatable in both ear and finger photoplethysmograms, emphasizing the importance of BW removal in biosignal processing in retaining its structural, functional and physiological properties. We also believe that AMARS may be relevant to other biological and continuous signals modulated by similar types of baseline volatility.

  12. Applying Reflective Middleware Techniques to Optimize a QoS-enabled CORBA Component Model Implementation

    NASA Technical Reports Server (NTRS)

    Wang, Nanbor; Parameswaran, Kirthika; Kircher, Michael; Schmidt, Douglas

    2003-01-01

    Although existing CORBA specifications, such as Real-time CORBA and CORBA Messaging, address many end-to-end quality-of service (QoS) properties, they do not define strategies for configuring these properties into applications flexibly, transparently, and adaptively. Therefore, application developers must make these configuration decisions manually and explicitly, which is tedious, error-prone, and open sub-optimal. Although the recently adopted CORBA Component Model (CCM) does define a standard configuration framework for packaging and deploying software components, conventional CCM implementations focus on functionality rather than adaptive quality-of-service, which makes them unsuitable for next-generation applications with demanding QoS requirements. This paper presents three contributions to the study of middleware for QoS-enabled component-based applications. It outlines rejective middleware techniques designed to adaptively (1) select optimal communication mechanisms, (2) manage QoS properties of CORBA components in their contain- ers, and (3) (re)con$gure selected component executors dynamically. Based on our ongoing research on CORBA and the CCM, we believe the application of rejective techniques to component middleware will provide a dynamically adaptive and (re)configurable framework for COTS software that is well-suited for the QoS demands of next-generation applications.

  13. Improving the limits of detection of low background alpha emission measurements

    NASA Astrophysics Data System (ADS)

    McNally, Brendan D.; Coleman, Stuart; Harris, Jack T.; Warburton, William K.

    2018-01-01

    Alpha particle emission - even at extremely low levels - is a significant issue in the search for rare events (e.g., double beta decay, dark matter detection). Traditional measurement techniques require long counting times to measure low sample rates in the presence of much larger instrumental backgrounds. To address this, a commercially available instrument developed by XIA uses pulse shape analysis to discriminate alpha emissions produced by the sample from those produced by other surfaces of the instrument itself. Experience with this system has uncovered two residual sources of background: cosmogenics and radon emanation from internal components. An R&D program is underway to enhance the system and extend the pulse shape analysis technique further, so that these residual sources can be identified and rejected as well. In this paper, we review the theory of operation and pulse shape analysis techniques used in XIA's alpha counter, and briefly explore data suggesting the origin of the residual background terms. We will then present our approach to enhance the system's ability to identify and reject these terms. Finally, we will describe a prototype system that incorporates our concepts and demonstrates their feasibility.

  14. Artificial intelligence techniques: predicting necessity for biopsy in renal transplant recipients suspected of acute cellular rejection or nephrotoxicity.

    PubMed

    Hummel, A D; Maciel, R F; Sousa, F S; Cohrs, F M; Falcão, A E J; Teixeira, F; Baptista, R; Mancini, F; da Costa, T M; Alves, D; Rodrigues, R G D S; Miranda, R; Pisa, I T

    2011-05-01

    The gold standard for nephrotoxicity and acute cellular rejection (ACR) is a biopsy, an invasive and expensive procedure. More efficient strategies to screen patients for biopsy are important from the clinical and financial points of view. The aim of this study was to evaluate various artificial intelligence techniques to screen for the need for a biopsy among patients suspected of nephrotoxicity or ACR during the first year after renal transplantation. We used classifiers like artificial neural networks (ANN), support vector machines (SVM), and Bayesian inference (BI) to indicate if the clinical course of the event suggestive of the need for a biopsy. Each classifier was evaluated by values of sensitivity and area under the ROC curve (AUC) for each of the classifiers. The technique that showed the best sensitivity value as an indicator for biopsy was SVM with an AUC of 0.79 and an accuracy rate of 79.86%. The results were better than those described in previous works. The accuracy for an indication of biopsy screening was efficient enough to become useful in clinical practice. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Multispectral image fusion for detecting land mines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, G.A.; Sengupta, S.K.; Aimonetti, W.D.

    1995-04-01

    This report details a system which fuses information contained in registered images from multiple sensors to reduce the effects of clutter and improve the ability to detect surface and buried land mines. The sensor suite currently consists of a camera that acquires images in six bands (400nm, 500nm, 600nm, 700nm, 800nm and 900nm). Past research has shown that it is extremely difficult to distinguish land mines from background clutter in images obtained from a single sensor. It is hypothesized, however, that information fused from a suite of various sensors is likely to provide better detection reliability, because the suite ofmore » sensors detects a variety of physical properties that are more separable in feature space. The materials surrounding the mines can include natural materials (soil, rocks, foliage, water, etc.) and some artifacts.« less

  16. Robonaut Mobile Autonomy: Initial Experiments

    NASA Technical Reports Server (NTRS)

    Diftler, M. A.; Ambrose, R. O.; Goza, S. M.; Tyree, K. S.; Huber, E. L.

    2006-01-01

    A mobile version of the NASA/DARPA Robonaut humanoid recently completed initial autonomy trials working directly with humans in cluttered environments. This compact robot combines the upper body of the Robonaut system with a Segway Robotic Mobility Platform yielding a dexterous, maneuverable humanoid ideal for interacting with human co-workers in a range of environments. This system uses stereovision to locate human teammates and tools and a navigation system that uses laser range and vision data to follow humans while avoiding obstacles. Tactile sensors provide information to grasping algorithms for efficient tool exchanges. The autonomous architecture utilizes these pre-programmed skills to form complex behaviors. The initial behavior demonstrates a robust capability to assist a human by acquiring a tool from a remotely located individual and then following the human in a cluttered environment with the tool for future use.

  17. Ultra-wideband horn antenna with abrupt radiator

    DOEpatents

    McEwan, Thomas E.

    1998-01-01

    An ultra-wideband horn antenna transmits and receives impulse waveforms for short-range radars and impulse time-of flight systems. The antenna reduces or eliminates various sources of close-in radar clutter, including pulse dispersion and ringing, sidelobe clutter, and feedline coupling into the antenna. Dispersion is minimized with an abrupt launch point radiator element; sidelobe and feedline coupling are minimized by recessing the radiator into a metallic horn. Low frequency cut-off associated with a horn is extended by configuring the radiator drive impedance to approach a short circuit at low frequencies. A tapered feed plate connects at one end to a feedline, and at the other end to a launcher plate which is mounted to an inside wall of the horn. The launcher plate and feed plate join at an abrupt edge which forms the single launch point of the antenna.

  18. Three plot correlation-based small infrared target detection in dense sun-glint environment for infrared search and track

    NASA Astrophysics Data System (ADS)

    Kim, Sungho; Choi, Byungin; Kim, Jieun; Kwon, Soon; Kim, Kyung-Tae

    2012-05-01

    This paper presents a separate spatio-temporal filter based small infrared target detection method to address the sea-based infrared search and track (IRST) problem in dense sun-glint environment. It is critical to detect small infrared targets such as sea-skimming missiles or asymmetric small ships for national defense. On the sea surface, sun-glint clutters degrade the detection performance. Furthermore, if we have to detect true targets using only three images with a low frame rate camera, then the problem is more difficult. We propose a novel three plot correlation filter and statistics based clutter reduction method to achieve robust small target detection rate in dense sun-glint environment. We validate the robust detection performance of the proposed method via real infrared test sequences including synthetic targets.

  19. Polarization differences in airborne ground penetrating radar performance for landmine detection

    NASA Astrophysics Data System (ADS)

    Dogaru, Traian; Le, Calvin

    2016-05-01

    The U.S. Army Research Laboratory (ARL) has investigated the ultra-wideband (UWB) radar technology for detection of landmines, improvised explosive devices and unexploded ordnance, for over two decades. This paper presents a phenomenological study of the radar signature of buried landmines in realistic environments and the performance of airborne synthetic aperture radar (SAR) in detecting these targets as a function of multiple parameters: polarization, depression angle, soil type and burial depth. The investigation is based on advanced computer models developed at ARL. The analysis includes both the signature of the targets of interest and the clutter produced by rough surface ground. Based on our numerical simulations, we conclude that low depression angles and H-H polarization offer the highest target-to-clutter ratio in the SAR images and therefore the best radar performance of all the scenarios investigated.

  20. Adaptive polarization image fusion based on regional energy dynamic weighted average

    NASA Astrophysics Data System (ADS)

    Zhao, Yong-Qiang; Pan, Quan; Zhang, Hong-Cai

    2005-11-01

    According to the principle of polarization imaging and the relation between Stokes parameters and the degree of linear polarization, there are much redundant and complementary information in polarized images. Since man-made objects and natural objects can be easily distinguished in images of degree of linear polarization and images of Stokes parameters contain rich detailed information of the scene, the clutters in the images can be removed efficiently while the detailed information can be maintained by combining these images. An algorithm of adaptive polarization image fusion based on regional energy dynamic weighted average is proposed in this paper to combine these images. Through an experiment and simulations, most clutters are removed by this algorithm. The fusion method is used for different light conditions in simulation, and the influence of lighting conditions on the fusion results is analyzed.

  1. Night vision: requirements and possible roadmap for FIR and NIR systems

    NASA Astrophysics Data System (ADS)

    Källhammer, Jan-Erik

    2006-04-01

    A night vision system must increase visibility in situations where only low beam headlights can be used today. As pedestrians and animals have the highest risk increase in night time traffic due to darkness, the ability of detecting those objects should be the main performance criteria, and the system must remain effective when facing the headlights of oncoming vehicles. Far infrared system has been shown to be superior to near infrared system in terms of pedestrian detection distance. Near infrared images were rated to have significantly higher visual clutter compared with far infrared images. Visual clutter has been shown to correlate with reduction in detection distance of pedestrians. Far infrared images are perceived as being more unusual and therefore more difficult to interpret, although the image appearance is likely related to the lower visual clutter. However, the main issue comparing the two technologies should be how well they solve the driver's problem with insufficient visibility under low beam conditions, especially of pedestrians and other vulnerable road users. With the addition of an automatic detection aid, a main issue will be whether the advantage of FIR systems will vanish given NIR systems with well performing automatic pedestrian detection functionality. The first night vision introductions did not generate the sales volumes initially expected. A renewed interest in night vision systems are however to be expected after the release of night vision systems by BMW, Mercedes and Honda, the latter with automatic pedestrian detection.

  2. Executive Functioning in Participants Over Age of 50 with Hoarding Disorder.

    PubMed

    Ayers, Catherine R; Dozier, Mary E; Wetherell, Julie Loebach; Twamley, Elizabeth W; Schiehser, Dawn M

    2016-05-01

    The current investigation utilized mid-life and late-life participants diagnosed with hoarding disorder (HD) to explore the relationship between executive functioning and hoarding severity. Correlational analyses were used to investigate the associations between executive functioning and hoarding severity in nondemented participants. Multiple regression was used to determine if executive functioning had a unique association with HD severity when accounting for depressive symptoms. Participants were recruited from the San Diego area for HD intervention studies. Participants were 113 nondemented adults aged 50-86 years who met DSM-5 criteria for HD. The mean age of the sample utilized in the analyses was 63.76 years (SD, 7.2; range, 51-85 years). The sample was mostly female (72%), Caucasian (81.4%), and unmarried (78%). Hoarding severity was assessed using the Saving Inventory-Revised and the Clutter Image Rating and depression was assessed using the Hospital Anxiety and Depression Scale. Executive functioning was assessed using the Wisconsin Card Sorting Test (WCST-128) and the Trail Making and Verbal Fluency subtests of the Delis-Kaplan Executive Function System. Executive function (operationalized as perseveration on the WCST-128) was significantly associated with Clutter Image Ratings. In a multivariate context, executive function and depressive symptom severity were both significant predictors of variance in Clutter Image Rating. Our results suggest that executive function is related to severity of HD symptoms and should be considered as part of the conceptualization of HD. Published by Elsevier Inc.

  3. The influence of the earth radiation on space target detection system

    NASA Astrophysics Data System (ADS)

    Su, Xiaofeng; Chen, FanSheng; Cuikun, .; Liuyan, .

    2017-05-01

    In the view of space remote sensing such as satellite detection space debris detection etc. visible band is usually used in order to have the all-weather detection capability, long wavelength infrared (LWIR) detection is also an important supplement. However, in the tow wave band, the earth can be a very strong interference source, especially in the dim target detecting. When the target is close to the earth, especially the LEO target, the background radiation of the earth will also enter into the baffle, and became the stray light through reflection, the stray light can reduce the signal to clutter ratio (SCR) of the target and make it difficult to be detected. In the visible band, the solar albedo by the earth is the main clutter source while in the LWIR band the radiation of the earth is the main clutter source. So, in this paper, we establish the energy transformation from the earth background radiation to the detection system to assess the effects of the stray light. Firstly, we discretize the surface of the earth to different unit, and using MODTRAN to calculate the radiation of the discrete point in different light and climate conditions, then, we integral all the radiation which can reach the baffle in the same observation angles to get the energy distribution, finally, according the target energy and the non-uniformity of the detector, we can calculate the design requirement of the system stray light suppression, which provides the design basis for the optical system.

  4. Synthetic Aperture Radar Imagery of Airports and Surrounding Areas: Denver Stapleton International Airport

    NASA Technical Reports Server (NTRS)

    Onstott, Robert G.; Gineris, Denise J.

    1990-01-01

    This is the third in a series of three reports which address the statistical description of ground clutter at an airport and in the surrounding area. These data are being utilized in a program to detect microbursts. Synthetic aperture radar (SAR) data were collected at the Denver Stapleton Airport using a set of parameters which closely match those which are anticipated to be utilized by an aircraft on approach to an airport. These data and the results of the clutter study are described. Scenes of 13 x 10 km were imaged at 9.38 GHz and HH-, VV-, and HV-polarizations, and contain airport grounds and facilities (up to 14 percent), cultural areas (more than 50 percent), and rural areas (up to 6 percent). Incidence angles range from 40 to 84 deg. At the largest depression angles the distributed targets, such as forest, fields, water, and residential, rarely had mean scattering coefficients greater than -10 dB. From 30 to 80 percent of an image had scattering coefficients less than -20 dB. About 1 to 10 percent of the scattering coefficients exceeded 0 dB, and from 0 to 1 percent above 10 dB. In examining the average backscatter coefficients at large angles, the clutter types cluster according to the following groups: (1) terminals (-3 dB), (2) city and industrial (-7 dB), (3) warehouse (-10 dB), (4) urban and residential (-14 dB), and (5) grass (-24 dB).

  5. Target oriented dimensionality reduction of hyperspectral data by Kernel Fukunaga-Koontz Transform

    NASA Astrophysics Data System (ADS)

    Binol, Hamidullah; Ochilov, Shuhrat; Alam, Mohammad S.; Bal, Abdullah

    2017-02-01

    Principal component analysis (PCA) is a popular technique in remote sensing for dimensionality reduction. While PCA is suitable for data compression, it is not necessarily an optimal technique for feature extraction, particularly when the features are exploited in supervised learning applications (Cheriyadat and Bruce, 2003) [1]. Preserving features belonging to the target is very crucial to the performance of target detection/recognition techniques. Fukunaga-Koontz Transform (FKT) based supervised band reduction technique can be used to provide this requirement. FKT achieves feature selection by transforming into a new space in where feature classes have complimentary eigenvectors. Analysis of these eigenvectors under two classes, target and background clutter, can be utilized for target oriented band reduction since each basis functions best represent target class while carrying least information of the background class. By selecting few eigenvectors which are the most relevant to the target class, dimension of hyperspectral data can be reduced and thus, it presents significant advantages for near real time target detection applications. The nonlinear properties of the data can be extracted by kernel approach which provides better target features. Thus, we propose constructing kernel FKT (KFKT) to present target oriented band reduction. The performance of the proposed KFKT based target oriented dimensionality reduction algorithm has been tested employing two real-world hyperspectral data and results have been reported consequently.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renner, J.; Farbin, A.; Vidal, J. Muñoz

    Here, we investigate the potential of using deep learning techniques to reject background events in searches for neutrinoless double beta decay with high pressure xenon time projection chambers capable of detailed track reconstruction. The differences in the topological signatures of background and signal events can be learned by deep neural networks via training over many thousands of events. These networks can then be used to classify further events as signal or background, providing an additional background rejection factor at an acceptable loss of efficiency. The networks trained in this study performed better than previous methods developed based on the usemore » of the same topological signatures by a factor of 1.2 to 1.6, and there is potential for further improvement.« less

  7. Experimental philosophy and the problem of free will.

    PubMed

    Nichols, Shaun

    2011-03-18

    Many philosophical problems are rooted in everyday thought, and experimental philosophy uses social scientific techniques to study the psychological underpinnings of such problems. In the case of free will, research suggests that people in a diverse range of cultures reject determinism, but people give conflicting responses on whether determinism would undermine moral responsibility. When presented with abstract questions, people tend to maintain that determinism would undermine responsibility, but when presented with concrete cases of wrongdoing, people tend to say that determinism is consistent with moral responsibility. It remains unclear why people reject determinism and what drives people's conflicted attitudes about responsibility. Experimental philosophy aims to address these issues and thereby illuminate the philosophical problem of free will.

  8. Detecting and mitigating wind turbine clutter for airspace radar systems.

    PubMed

    Wang, Wen-Qin

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results.

  9. Detecting and Mitigating Wind Turbine Clutter for Airspace Radar Systems

    PubMed Central

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results. PMID:24385880

  10. Comparison of scatter rejection and low-contrast performance of scan equalization digital radiography (SEDR), slot-scan digital radiography, and full-field digital radiography systems for chest phantom imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Xinming; Shaw, Chris C.; Lai, Chao-Jen

    Purpose: To investigate and compare the scatter rejection properties and low-contrast performance of the scan equalization digital radiography (SEDR) technique to the slot-scan and conventional full-field digital radiography techniques for chest imaging. Methods: A prototype SEDR system was designed and constructed with an a-Se flat-panel (FP) detector to improve image quality in heavily attenuating regions of an anthropomorphic chest phantom. Slot-scanning geometry was used to reject scattered radiation without attenuating primary x rays. The readout scheme of the FP was modified to erase accumulated scatter signals prior to image readout. A 24-segment beam width modulator was developed to regulate x-raymore » exposures regionally and compensate for the low x-ray flux in heavily attenuating regions. To measure the scatter-to-primary ratios (SPRs), a 2 mm thick lead plate with a 2-D array of aperture holes was used to measure the primary signals, which were then subtracted from those obtained without the lead plate to determine scatter components. A 2-D array of aluminum beads (3 mm in diameter) was used as the low-contrast objects to measure the contrast ratios (CRs) and contrast-to-noise ratios (CNRs) for evaluating the low-contrast performance in chest phantom images. A set of two images acquired with the same techniques were subtracted from each other to measure the noise levels. SPRs, CRs, and CNRs of the SEDR images were measured in four anatomical regions of chest phantom images and compared to those of slot-scan images and full-field images acquired with and without antiscatter grid. Results: The percentage reduction of SPR (percentage of SPRs reduced with scatter removal/rejection methods relative to that for nongrid full-field imaging) averaged over four anatomical regions was measured to be 80%, 83%, and 71% for SEDR, slot-scan, and full-field with grid, respectively. The average CR over four regions was found to improve over that for nongrid full-field imaging by 259%, 279%, and 145% for SEDR, slot-scan, and full-field with grid, respectively. The average CNR over four regions was found to improve over that for nongrid full-field imaging by 201% for SEDR as compared to 133% for the slot-scan technique and 14% for the antiscatter grid method. Conclusions: Both SEDR and slot-scan techniques outperformed the antiscatter grid method used in standard full-field radiography. For imaging with the same effective exposure, the SEDR technique offers no advantage over the slot-scan method in terms of SPRs and CRs. However, it improves CNRs significantly, especially in heavily attenuating regions. The improvement of low-contrast performance may help improve the detection of the lung nodules or other abnormalities and may offer SEDR the potential for dose reduction in chest radiography.« less

  11. Fan filters, the 3-D Radon transform, and image sequence analysis.

    PubMed

    Marzetta, T L

    1994-01-01

    This paper develops a theory for the application of fan filters to moving objects. In contrast to previous treatments of the subject based on the 3-D Fourier transform, simplicity and insight are achieved by using the 3-D Radon transform. With this point of view, the Radon transform decomposes the image sequence into a set of plane waves that are parameterized by a two-component slowness vector. Fan filtering is equivalent to a multiplication in the Radon transform domain by a slowness response function, followed by an inverse Radon transform. The plane wave representation of a moving object involves only a restricted set of slownesses such that the inner product of the plane wave slowness vector and the moving object velocity vector is equal to one. All of the complexity in the application of fan filters to image sequences results from the velocity-slowness mapping not being one-to-one; therefore, the filter response cannot be independently specified at all velocities. A key contribution of this paper is to elucidate both the power and the limitations of fan filtering in this new application. A potential application of 3-D fan filters is in the detection of moving targets in clutter and noise. For example, an appropriately designed fan filter can reject perfectly all moving objects whose speed, irrespective of heading, is less than a specified cut-off speed, with only minor attenuation of significantly faster objects. A simple geometric construction determines the response of the filter for speeds greater than the cut-off speed.

  12. Protecting Yourself from Bed Bugs in Public Places

    EPA Pesticide Factsheets

    Infestations in non-residential areas are rare, but may still present opportunities for hitchhiking bugs. So reduce clutter, stow belongings separately, monitor or inspect upholstered furniture, educate staff, and keep integrated pest management in mind.

  13. ARTIST: A fully automated artifact rejection algorithm for single-pulse TMS-EEG data.

    PubMed

    Wu, Wei; Keller, Corey J; Rogasch, Nigel C; Longwell, Parker; Shpigel, Emmanuel; Rolle, Camarin E; Etkin, Amit

    2018-04-01

    Concurrent single-pulse TMS-EEG (spTMS-EEG) is an emerging noninvasive tool for probing causal brain dynamics in humans. However, in addition to the common artifacts in standard EEG data, spTMS-EEG data suffer from enormous stimulation-induced artifacts, posing significant challenges to the extraction of neural information. Typically, neural signals are analyzed after a manual time-intensive and often subjective process of artifact rejection. Here we describe a fully automated algorithm for spTMS-EEG artifact rejection. A key step of this algorithm is to decompose the spTMS-EEG data into statistically independent components (ICs), and then train a pattern classifier to automatically identify artifact components based on knowledge of the spatio-temporal profile of both neural and artefactual activities. The autocleaned and hand-cleaned data yield qualitatively similar group evoked potential waveforms. The algorithm achieves a 95% IC classification accuracy referenced to expert artifact rejection performance, and does so across a large number of spTMS-EEG data sets (n = 90 stimulation sites), retains high accuracy across stimulation sites/subjects/populations/montages, and outperforms current automated algorithms. Moreover, the algorithm was superior to the artifact rejection performance of relatively novice individuals, who would be the likely users of spTMS-EEG as the technique becomes more broadly disseminated. In summary, our algorithm provides an automated, fast, objective, and accurate method for cleaning spTMS-EEG data, which can increase the utility of TMS-EEG in both clinical and basic neuroscience settings. © 2018 Wiley Periodicals, Inc.

  14. 3D-FFT for Signature Detection in LWIR Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medvick, Patricia A.; Lind, Michael A.; Mackey, Patrick S.

    Improvements in analysis detection exploitation are possible by applying whitened matched filtering within the Fourier domain to hyperspectral data cubes. We describe an implementation of a Three Dimensional Fast Fourier Transform Whitened Matched Filter (3DFFTMF) approach and, using several example sets of Long Wave Infra Red (LWIR) data cubes, compare the results with those from standard Whitened Matched Filter (WMF) techniques. Since the variability in shape of gaseous plumes precludes the use of spatial conformation in the matched filtering, the 3DFFTMF results were similar to those of two other WMF methods. Including a spatial low-pass filter within the Fourier spacemore » can improve signal to noise ratios and therefore improve detection limit by facilitating the mitigation of high frequency clutter. The improvement only occurs if the low-pass filter diameter is smaller than the plume diameter.« less

  15. Universal explosive detection system for homeland security applications

    NASA Astrophysics Data System (ADS)

    Lee, Vincent Y.; Bromberg, Edward E. A.

    2010-04-01

    L-3 Communications CyTerra Corporation has developed a high throughput universal explosive detection system (PassPort) to automatically screen the passengers in airports without requiring them to remove their shoes. The technical approach is based on the patented energetic material detection (EMD) technology. By analyzing the results of sample heating with an infrared camera, one can distinguish the deflagration or decomposition of an energetic material from other clutters such as flammables and general background substances. This becomes the basis of a universal explosive detection system that does not require a library and is capable of detecting trace levels of explosives with a low false alarm rate. The PassPort is a simple turnstile type device and integrates a non-intrusive aerodynamic sampling scheme that has been shown capable of detecting trace levels of explosives on shoes. A detailed description of the detection theory and the automated sampling techniques, as well as the field test results, will be presented.

  16. Clutter suppression and classification using twin inverted pulse sonar in ship wakes.

    PubMed

    Leighton, T G; Finfer, D C; Chua, G H; White, P R; Dix, J K

    2011-11-01

    Twin inverted pulse sonar (TWIPS) is here deployed in the wake of a moored rigid inflatable boat (RIB) with propeller turning, and then in the wake of a moving tanker of 4580 dry weight tonnage (the Whitchallenger). This is done first to test its ability to distinguish between scatter from the wake and scatter from the seabed, and second to test its ability to improve detectability of the seabed through the wake, compared to conventional sonar processing techniques. TWIPS does this by distinguishing between linear and nonlinear scatterers and has the further property of distinguishing those nonlinear targets which scatter energy at the even-powered harmonics from those which scatter in the odd-powered harmonics. TWIPS can also, in some manifestations, require no range correction (and therefore does not require the a priori environment knowledge necessary for most remote detection technologies).

  17. Teleautonomous guidance for mobile robots

    NASA Technical Reports Server (NTRS)

    Borenstein, J.; Koren, Y.

    1990-01-01

    Teleautonomous guidance (TG), a technique for the remote guidance of fast mobile robots, has been developed and implemented. With TG, the mobile robot follows the general direction prescribed by an operator. However, if the robot encounters an obstacle, it autonomously avoids collision with that obstacle while trying to match the prescribed direction as closely as possible. This type of shared control is completely transparent and transfers control between teleoperation and autonomous obstacle avoidance gradually. TG allows the operator to steer vehicles and robots at high speeds and in cluttered environments, even without visual contact. TG is based on the virtual force field (VFF) method, which was developed earlier for autonomous obstacle avoidance. The VFF method is especially suited to the accommodation of inaccurate sensor data (such as that produced by ultrasonic sensors) and sensor fusion, and allows the mobile robot to travel quickly without stopping for obstacles.

  18. Simulation study into the identification of nuclear materials in cargo containers using cosmic rays

    NASA Astrophysics Data System (ADS)

    Blackwell, T. B.; Kudryavtsev, V. A.

    2015-04-01

    Muon tomography represents a new type of imaging technique that can be used in detecting high-Z materials. Monte Carlo simulations for muon scattering in different types of target materials are presented. The dependence of the detector capability to identify high-Z targets on spatial resolution has been studied. Muon tracks are reconstructed using a basic point of closest approach (PoCA) algorithm. In this article we report the development of a secondary analysis algorithm that is applied to the reconstructed PoCA points. This algorithm efficiently ascertains clusters of voxels with high average scattering angles to identify `areas of interest' within the inspected volume. Using this approach the effect of other parameters, such as the distance between detectors and the number of detectors per set, on material identification is also presented. Finally, false positive and false negative rates for detecting shielded HEU in realistic scenarios with low-Z clutter are presented.

  19. Incorporating signal-dependent noise for hyperspectral target detection

    NASA Astrophysics Data System (ADS)

    Morman, Christopher J.; Meola, Joseph

    2015-05-01

    The majority of hyperspectral target detection algorithms are developed from statistical data models employing stationary background statistics or white Gaussian noise models. Stationary background models are inaccurate as a result of two separate physical processes. First, varying background classes often exist in the imagery that possess different clutter statistics. Many algorithms can account for this variability through the use of subspaces or clustering techniques. The second physical process, which is often ignored, is a signal-dependent sensor noise term. For photon counting sensors that are often used in hyperspectral imaging systems, sensor noise increases as the measured signal level increases as a result of Poisson random processes. This work investigates the impact of this sensor noise on target detection performance. A linear noise model is developed describing sensor noise variance as a linear function of signal level. The linear noise model is then incorporated for detection of targets using data collected at Wright Patterson Air Force Base.

  20. Fabrication of zirconia composite membrane by in-situ hydrothermal technique and its application in separation of methyl orange.

    PubMed

    Kumar, R Vinoth; Ghoshal, Aloke Kumar; Pugazhenthi, G

    2015-11-01

    The main objective of the work was preparation of zirconia membrane on a low cost ceramic support through an in-situ hydrothermal crystallization technique for the separation of methyl orange dye. To formulate the zirconia film on the ceramic support, hydrothermal reaction mixture was prepared using zirconium oxychloride as a zirconia source and ammonia as a precursor. The synthesized zirconia powder was characterized by X-ray diffractometer (XRD), N2 adsorption/desorption isotherms, Thermogravimetric analysis (TGA), Fourier transform infrared analysis (FTIR), Energy-dispersive X-ray (EDX) analysis and particle size distribution (PSD) to identify the phases and crystallinity, specific surface area, pore volume and pore size distribution, thermal behavior, chemical composition and size of the particles. The porosity, morphological structure and pure water permeability of the prepared zirconia membrane, as well as ceramic support were investigated using the Archimedes' method, Field emission scanning electron microscopy (FESEM) and permeability. The specific surface area, pore volume, pore size distribution of the zirconia powder was found to be 126.58m(2)/g, 3.54nm and 0.3-10µm, respectively. The porosity, average pore size and pure water permeability of the zirconia membrane was estimated to be 42%, 0.66µm and 1.44×10(-6)m(3)/m(2)skPa, respectively. Lastly, the potential of the membrane was investigated with separation of methyl orange by means of flux and rejection as a function of operating pressure and feed concentration. The rejection was found to decrease with increasing the operating pressure and increases with increasing feed concentrations. Moreover, it showed a high ability to reject methyl orange from aqueous solution with a rejection of 61% and a high permeation flux of 2.28×10(-5)m(3)/m(2)s at operating pressure of 68kPa. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Producing gapped-ferrite transformer cores

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1980-01-01

    Improved manufacturing techniques make reproducible gaps and minimize cracking. Molded, unfired transformer cores are cut with thin saw and then fired. Hardened semicircular core sections are bonded together, placed in aluminum core box, and fluidized-coated. After winding is run over box, core is potted. Economical method significantly reduces number of rejects.

  2. Clinical application of radiolabelled platelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kessler, C.

    1990-01-01

    This book presents papers on the clinical applications of radiolabelled platelets. The papers are grouped into six sections on platelet labelling techniques, radiolabelled platelets in cardiology, monitoring of antiplatelet therapy, platelet scintigraphy in stroke patients, platelet scintigraphy in angiology, and platelet scintigraphy in hematology and other clinical applications, including renal transplant rejection.

  3. Polarized light reveals stress in machined laminated plastics

    NASA Technical Reports Server (NTRS)

    Frankowski, J.

    1967-01-01

    Polarized light applied to drilled laminated plastic components exposes to the human eye the locked-in stresses that will result in fractures and delaminations when the soldering procedure takes place. This technique detects stresses early in the production cycle before appreciable man-hours are invested in an item destined for rejection.

  4. The Use of Computer-Aided Decision Support Systems for Complex Source Selection Decisions

    DTIC Science & Technology

    1989-09-01

    unique low noise interferometer developed at Fusetech Inc. by using divided Fabry - Perot fiber optic cells, common- mode rejection, matched path lengths and...potential techniques for a demodulation scheme. They proposed a detailed investigation of the approaches as part of the program. For mine applications

  5. Preparing for Treatment Against Bed Bugs

    EPA Pesticide Factsheets

    Whether hiring a pest management professional or trying to eliminate the bugs yourself, taking these first steps will increase effectiveness and speed: reduce clutter, use encasements on your mattress and box spring, vacuum and heat treat, and seal cracks.

  6. Clutter Identification Using Electromagnetic Survey Data

    DTIC Science & Technology

    2013-07-01

    for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE JUL 2013 2 . REPORT... 2 2.0 Technology... 2 2.1 Technology Description .................................................................................................. 2 2.2

  7. Controlling for confounding variables in MS-omics protocol: why modularity matters.

    PubMed

    Smith, Rob; Ventura, Dan; Prince, John T

    2014-09-01

    As the field of bioinformatics research continues to grow, more and more novel techniques are proposed to meet new challenges and improvements upon solutions to long-standing problems. These include data processing techniques and wet lab protocol techniques. Although the literature is consistently thorough in experimental detail and variable-controlling rigor for wet lab protocol techniques, bioinformatics techniques tend to be less described and less controlled. As the validation or rejection of hypotheses rests on the experiment's ability to isolate and measure a variable of interest, we urge the importance of reducing confounding variables in bioinformatics techniques during mass spectrometry experimentation. © The Author 2013. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  8. Infrared maritime target detection using a probabilistic single Gaussian model of sea clutter in Fourier domain

    NASA Astrophysics Data System (ADS)

    Zhou, Anran; Xie, Weixin; Pei, Jihong; Chen, Yapei

    2018-02-01

    For ship targets detection in cluttered infrared image sequences, a robust detection method, based on the probabilistic single Gaussian model of sea background in Fourier domain, is put forward. The amplitude spectrum sequences at each frequency point of the pure seawater images in Fourier domain, being more stable than the gray value sequences of each background pixel in the spatial domain, are regarded as a Gaussian model. Next, a probability weighted matrix is built based on the stability of the pure seawater's total energy spectrum in the row direction, to make the Gaussian model more accurate. Then, the foreground frequency points are separated from the background frequency points by the model. Finally, the false-alarm points are removed utilizing ships' shape features. The performance of the proposed method is tested by visual and quantitative comparisons with others.

  9. View-Dependent Streamline Deformation and Exploration

    PubMed Central

    Tong, Xin; Edwards, John; Chen, Chun-Ming; Shen, Han-Wei; Johnson, Chris R.; Wong, Pak Chung

    2016-01-01

    Occlusion presents a major challenge in visualizing 3D flow and tensor fields using streamlines. Displaying too many streamlines creates a dense visualization filled with occluded structures, but displaying too few streams risks losing important features. We propose a new streamline exploration approach by visually manipulating the cluttered streamlines by pulling visible layers apart and revealing the hidden structures underneath. This paper presents a customized view-dependent deformation algorithm and an interactive visualization tool to minimize visual clutter in 3D vector and tensor fields. The algorithm is able to maintain the overall integrity of the fields and expose previously hidden structures. Our system supports both mouse and direct-touch interactions to manipulate the viewing perspectives and visualize the streamlines in depth. By using a lens metaphor of different shapes to select the transition zone of the targeted area interactively, the users can move their focus and examine the vector or tensor field freely. PMID:26600061

  10. Infrared small target detection based on directional zero-crossing measure

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangyue; Ding, Qinghai; Luo, Haibo; Hui, Bin; Chang, Zheng; Zhang, Junchao

    2017-12-01

    Infrared small target detection under complex background and low signal-to-clutter ratio (SCR) condition is of great significance to the development on precision guidance and infrared surveillance. In order to detect targets precisely and extract targets from intricate clutters effectively, a detection method based on zero-crossing saliency (ZCS) map is proposed. The original map is first decomposed into different first-order directional derivative (FODD) maps by using FODD filters. Then the ZCS map is obtained by fusing all directional zero-crossing points. At last, an adaptive threshold is adopted to segment targets from the ZCS map. Experimental results on a series of images show that our method is effective and robust for detection under complex backgrounds. Moreover, compared with other five state-of-the-art methods, our method achieves better performance in terms of detection rate, SCR gain and background suppression factor.

  11. Flight investigation of cockpit-displayed traffic information utilizing coded symbology in an advanced operational environment

    NASA Technical Reports Server (NTRS)

    Abbott, T. S.; Moen, G. C.; Person, L. H., Jr.; Keyser, G. L., Jr.; Yenni, K. R.; Garren, J. F., Jr.

    1980-01-01

    Traffic symbology was encoded to provide additional information concerning the traffic, which was displayed on the pilot's electronic horizontal situation indicators (EHSI). A research airplane representing an advanced operational environment was used to assess the benefit of coded traffic symbology in a realistic work-load environment. Traffic scenarios, involving both conflict-free and conflict situations, were employed. Subjective pilot commentary was obtained through the use of a questionnaire and extensive pilot debriefings. These results grouped conveniently under two categories: display factors and task performance. A major item under the display factor category was the problem of display clutter. The primary contributors to clutter were the use of large map-scale factors, the use of traffic data blocks, and the presentation of more than a few airplanes. In terms of task performance, the cockpit-displayed traffic information was found to provide excellent overall situation awareness. Additionally, mile separation prescribed during these tests.

  12. View-Dependent Streamline Deformation and Exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Xin; Edwards, John; Chen, Chun-Ming

    Occlusion presents a major challenge in visualizing 3D flow and tensor fields using streamlines. Displaying too many streamlines creates a dense visualization filled with occluded structures, but displaying too few streams risks losing important features. We propose a new streamline exploration approach by visually manipulating the cluttered streamlines by pulling visible layers apart and revealing the hidden structures underneath. This paper presents a customized view-dependent deformation algorithm and an interactive visualization tool to minimize visual cluttering for visualizing 3D vector and tensor fields. The algorithm is able to maintain the overall integrity of the fields and expose previously hidden structures.more » Our system supports both mouse and direct-touch interactions to manipulate the viewing perspectives and visualize the streamlines in depth. By using a lens metaphor of different shapes to select the transition zone of the targeted area interactively, the users can move their focus and examine the vector or tensor field freely.« less

  13. Geostationary microwave imagers detection criteria

    NASA Technical Reports Server (NTRS)

    Stacey, J. M.

    1986-01-01

    Geostationary orbit is investigated as a vantage point from which to sense remotely the surface features of the planet and its atmosphere, with microwave sensors. The geometrical relationships associated with geostationary altitude are developed to produce an efficient search pattern for the detection of emitting media and metal objects. Power transfer equations are derived from the roots of first principles and explain the expected values of the signal-to-clutter ratios for the detection of aircraft, ships, and buoys and for the detection of natural features where they are manifested as cold and warm eddies. The transport of microwave power is described for modeled detection where the direction of power flow is explained by the Zeroth and Second Laws of Thermodynamics. Mathematical expressions are derived that elucidate the detectability of natural emitting media and metal objects. Signal-to-clutter ratio comparisons are drawn among detectable objects that show relative detectability with a thermodynamic sensor and with a short-pulse radar.

  14. Accurate object tracking system by integrating texture and depth cues

    NASA Astrophysics Data System (ADS)

    Chen, Ju-Chin; Lin, Yu-Hang

    2016-03-01

    A robust object tracking system that is invariant to object appearance variations and background clutter is proposed. Multiple instance learning with a boosting algorithm is applied to select discriminant texture information between the object and background data. Additionally, depth information, which is important to distinguish the object from a complicated background, is integrated. We propose two depth-based models that can compensate texture information to cope with both appearance variants and background clutter. Moreover, in order to reduce the risk of drifting problem increased for the textureless depth templates, an update mechanism is proposed to select more precise tracking results to avoid incorrect model updates. In the experiments, the robustness of the proposed system is evaluated and quantitative results are provided for performance analysis. Experimental results show that the proposed system can provide the best success rate and has more accurate tracking results than other well-known algorithms.

  15. Ultra-wideband horn antenna with abrupt radiator

    DOEpatents

    McEwan, T.E.

    1998-05-19

    An ultra-wideband horn antenna transmits and receives impulse waveforms for short-range radars and impulse time-of flight systems. The antenna reduces or eliminates various sources of close-in radar clutter, including pulse dispersion and ringing, sidelobe clutter, and feedline coupling into the antenna. Dispersion is minimized with an abrupt launch point radiator element; sidelobe and feedline coupling are minimized by recessing the radiator into a metallic horn. Low frequency cut-off associated with a horn is extended by configuring the radiator drive impedance to approach a short circuit at low frequencies. A tapered feed plate connects at one end to a feedline, and at the other end to a launcher plate which is mounted to an inside wall of the horn. The launcher plate and feed plate join at an abrupt edge which forms the single launch point of the antenna. 8 figs.

  16. View-Dependent Streamline Deformation and Exploration.

    PubMed

    Tong, Xin; Edwards, John; Chen, Chun-Ming; Shen, Han-Wei; Johnson, Chris R; Wong, Pak Chung

    2016-07-01

    Occlusion presents a major challenge in visualizing 3D flow and tensor fields using streamlines. Displaying too many streamlines creates a dense visualization filled with occluded structures, but displaying too few streams risks losing important features. We propose a new streamline exploration approach by visually manipulating the cluttered streamlines by pulling visible layers apart and revealing the hidden structures underneath. This paper presents a customized view-dependent deformation algorithm and an interactive visualization tool to minimize visual clutter in 3D vector and tensor fields. The algorithm is able to maintain the overall integrity of the fields and expose previously hidden structures. Our system supports both mouse and direct-touch interactions to manipulate the viewing perspectives and visualize the streamlines in depth. By using a lens metaphor of different shapes to select the transition zone of the targeted area interactively, the users can move their focus and examine the vector or tensor field freely.

  17. Doppler Radar Vital Signs Detection Method Based on Higher Order Cyclostationary.

    PubMed

    Yu, Zhibin; Zhao, Duo; Zhang, Zhiqiang

    2017-12-26

    Due to the non-contact nature, using Doppler radar sensors to detect vital signs such as heart and respiration rates of a human subject is getting more and more attention. However, the related detection-method research meets lots of challenges due to electromagnetic interferences, clutter and random motion interferences. In this paper, a novel third-order cyclic cummulant (TOCC) detection method, which is insensitive to Gaussian interference and non-cyclic signals, is proposed to investigate the heart and respiration rate based on continuous wave Doppler radars. The k -th order cyclostationary properties of the radar signal with hidden periodicities and random motions are analyzed. The third-order cyclostationary detection theory of the heart and respiration rate is studied. Experimental results show that the third-order cyclostationary approach has better estimation accuracy for detecting the vital signs from the received radar signal under low SNR, strong clutter noise and random motion interferences.

  18. Efficiency improvement by navigated safety inspection involving visual clutter based on the random search model.

    PubMed

    Sun, Xinlu; Chong, Heap-Yih; Liao, Pin-Chao

    2018-06-25

    Navigated inspection seeks to improve hazard identification (HI) accuracy. With tight inspection schedule, HI also requires efficiency. However, lacking quantification of HI efficiency, navigated inspection strategies cannot be comprehensively assessed. This work aims to determine inspection efficiency in navigated safety inspection, controlling for the HI accuracy. Based on a cognitive method of the random search model (RSM), an experiment was conducted to observe the HI efficiency in navigation, for a variety of visual clutter (VC) scenarios, while using eye-tracking devices to record the search process and analyze the search performance. The results show that the RSM is an appropriate instrument, and VC serves as a hazard classifier for navigation inspection in improving inspection efficiency. This suggests a new and effective solution for addressing the low accuracy and efficiency of manual inspection through navigated inspection involving VC and the RSM. It also provides insights into the inspectors' safety inspection ability.

  19. Temporal binding of neural responses for focused attention in biosonar

    PubMed Central

    Simmons, James A.

    2014-01-01

    Big brown bats emit biosonar sounds and perceive their surroundings from the delays of echoes received by the ears. Broadcasts are frequency modulated (FM) and contain two prominent harmonics sweeping from 50 to 25 kHz (FM1) and from 100 to 50 kHz (FM2). Individual frequencies in each broadcast and each echo evoke single-spike auditory responses. Echo delay is encoded by the time elapsed between volleys of responses to broadcasts and volleys of responses to echoes. If echoes have the same spectrum as broadcasts, the volley of neural responses to FM1 and FM2 is internally synchronized for each sound, which leads to sharply focused delay images. Because of amplitude–latency trading, disruption of response synchrony within the volleys occurs if the echoes are lowpass filtered, leading to blurred, defocused delay images. This effect is consistent with the temporal binding hypothesis for perceptual image formation. Bats perform inexplicably well in cluttered surroundings where echoes from off-side objects ought to cause masking. Off-side echoes are lowpass filtered because of the shape of the broadcast beam, and they evoke desynchronized auditory responses. The resulting defocused images of clutter do not mask perception of focused images for targets. Neural response synchronization may select a target to be the focus of attention, while desynchronization may impose inattention on the surroundings by defocusing perception of clutter. The formation of focused biosonar images from synchronized neural responses, and the defocusing that occurs with disruption of synchrony, quantitatively demonstrates how temporal binding may control attention and bring a perceptual object into existence. PMID:25122915

  20. Learning-Based Object Identification and Segmentation Using Dual-Energy CT Images for Security.

    PubMed

    Martin, Limor; Tuysuzoglu, Ahmet; Karl, W Clem; Ishwar, Prakash

    2015-11-01

    In recent years, baggage screening at airports has included the use of dual-energy X-ray computed tomography (DECT), an advanced technology for nondestructive evaluation. The main challenge remains to reliably find and identify threat objects in the bag from DECT data. This task is particularly hard due to the wide variety of objects, the high clutter, and the presence of metal, which causes streaks and shading in the scanner images. Image noise and artifacts are generally much more severe than in medical CT and can lead to splitting of objects and inaccurate object labeling. The conventional approach performs object segmentation and material identification in two decoupled processes. Dual-energy information is typically not used for the segmentation, and object localization is not explicitly used to stabilize the material parameter estimates. We propose a novel learning-based framework for joint segmentation and identification of objects directly from volumetric DECT images, which is robust to streaks, noise and variability due to clutter. We focus on segmenting and identifying a small set of objects of interest with characteristics that are learned from training images, and consider everything else as background. We include data weighting to mitigate metal artifacts and incorporate an object boundary field to reduce object splitting. The overall formulation is posed as a multilabel discrete optimization problem and solved using an efficient graph-cut algorithm. We test the method on real data and show its potential for producing accurate labels of the objects of interest without splits in the presence of metal and clutter.

Top